
HAL Id: tel-04884651
https://theses.hal.science/tel-04884651v1

Submitted on 13 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preuves formelles en mathématiques appliquées :
formalisation en Coq des éléments finis de Lagrange

simpliciaux
Houda Mouhcine

To cite this version:
Houda Mouhcine. Preuves formelles en mathématiques appliquées : formalisation en Coq des éléments
finis de Lagrange simpliciaux. Symbolic Computation [cs.SC]. Université Paris-Saclay, 2024. English.
�NNT : 2024UPASG112�. �tel-04884651�

https://theses.hal.science/tel-04884651v1
https://hal.archives-ouvertes.fr

Formal Proofs in Applied Mathematics :

A Coq Formalization of Simplicial

Lagrange Finite Elements

Preuves Formelles en Mathématiques Appliquées :

Formalisation en Coq des Éléments Finis de Lagrange Simpliciaux

Thèse de doctorat de l'université Paris-Saclay

 École doctorale n°580, sciences et technologies de l’information

et de la communication (STIC)

 Spécialité de doctorat : Informatique mathématique

Graduate School : Informatique et sciences du numérique. Référent : Faculté des sciences d’Orsay

Thèse préparée dans l’unité de recherche : Laboratoire Méthodes Formelles

(Université Paris Saclay, CNRS, ENS Paris-Saclay), sous la direction de Sylvie

BOLDO, directrice de recherche, la co-direction de Micaela MAYERO, maîtresse de

conférences, le co-encadrement de François CLÉMENT, chargé de recherche

Thèse soutenue à Paris-Saclay, le 09 décembre 2024, par

 Houda MOUHCINE

Composition du Jury
Membres du jury avec voix délibérative

Sylvain CONCHON

Professeur des universités,

université Paris Saclay, France

 Président

Damien POUS

Directeur de recherche, CNRS et

ENS Lyon, France

 Rapporteur & Examinateur

Alan SCHMITT

Directeur de recherche, Inria

Rennes, France

 Rapporteur & Examinateur

Laura GRIGORI

Professeure, EPFL, Suisse
 Examinatrice

Sébastien IMPÉRIALE

Chargé de recherche, Inria Saclay,

France

 Examinateur

N
N

T
 :
 2

0
2
4
U

P
A

S
G

1
1
2

T
H

E
S

E
 D

E
 D

O
C

T
O

R
A

T

Titre : Preuves Formelles en Mathématiques Appliquées: Formalisation en Coq des Éléments Finis de Lagrange

Simpliciaux.

Mots clés : Preuves formelles, Coq, Méthode des éléments finis, Lagrange FE.

Résumé : Cette thèse est consacrée au

développement de preuves formelles de théorèmes et

de propositions mathématiques dans le domaine de

l'analyse réelle, en utilisant l'assistant de preuve Coq

pour assurer leur exactitude. Le cœur de ce travail est

divisé en deux parties principales. La première partie

se concentre sur l'utilisation de Coq pour formaliser le

principe d'induction de Lebesgue et le théorème de

Tonelli, permettant le calcul d'intégrales doubles sur

des espaces produits en intégrant itérativement par

rapport à chaque variable. Ce travail s'appuie sur des

recherches antérieures en théorie de la mesure et sur

l'intégrale de Lebesgue. La deuxième partie s'inscrit

dans le cadre de la méthode des éléments finis (MEF),

une technique numérique largement utilisée pour

résoudre numériquement les équations aux dérivées

partielles. La MEF joue un rôle important dans de

nombreux programmes de simulation industrielle, en

particulier pour l'approximation de solutions à des

problèmes complexes. Plus précisément, nous

visons à construire les éléments finis, en nous

concentrant sur les éléments finis de Lagrange

simpliciaux. Ce travail nécessite l'utilisation d'un

large éventail de concepts algébriques tels que les

familles finies, les monoïdes, les espaces vectoriels,

les espaces affines et les espaces de dimension finie.

Pour mener cette étude, nous commençons par

définir un élément fini général dans Coq. Ensuite,

nous démontrons l'efficacité de cette définition en

construisant les éléments finis simpliciaux de

Lagrange. Cela implique la formalisation en logique

classique de plusieurs composants fondamentaux, y

compris la construction de l'espace

d'approximation, l'expression de ses polynômes de

base de Lagrange, et la formalisation des

transformations géométriques affines et de la

propriété d'unisolvance des éléments finis de

Lagrange.

Title : Formal Proofs in Applied Mathematics: A Coq Formalization of Simplicial Lagrange Finite Elements

Keywords : Formal proofs, Coq, Finite Element Method, Lagrange FE.

Abstract : This thesis is dedicated to developing

formal proofs of mathematical theorems and

propositions within the field of real analysis, using the

Coq proof assistant to ensure their correctness. The

core of this work is divided into two main parts. The

first part focuses on using Coq to formalize the

Lebesgue induction principle and the Tonelli

theorem, allowing the computation of double

integrals on product spaces by iteratively integrating

with respect to each variable. This work builds upon

previous research in measure theory and the

Lebesgue integral. The second part is within the

framework of the Finite Element Method (FEM), a

widely used numerical technique for numerically

solving partial differential equations. FEM plays an

important role in numerous industrial simulation

programs, particularly in approximating solutions to

complex problems. Specifically, we aim to construct

finite elements, focusing on simplicial Lagrange

finite elements. This work requires the use of a

broad range of algebraic concepts such as finite

families, monoids, module spaces, affine spaces,

and finite-dimensional spaces. To conduct this

study, we begin by defining a general finite

element in Coq. Then, we show the effectiveness of

this definition by building the widely used simplicial

Lagrange finite elements. This involves the

formalization in classical logic of several

foundational components, including the

construction of the approximation space,

expressing its Lagrange polynomial basis, and

formalizing affine geometric transformations and

the unisolvence property of Lagrange finite

elements.

Synthèse en Français

Cette thèse est consacrée au développement de preuves formelles de théorèmes et de propositions
mathématiques dans le domaine de l’analyse réelle, en utilisant l’assistant de preuve Coq pour
assurer leur exactitude. Le cœur de ce travail est divisé en deux parties principales.

La première partie se concentre sur l’utilisation de Coq pour formaliser des concepts
mathématiques fondamentaux en analyse fonctionnelle, notamment le principe d’induction de
Lebesgue et le théorème de Tonelli. Ce travail sert de base pour prouver des propriétés liées aux
fonctions mesurables. Le principe d’induction de Lebesgue se présente comme une technique de
preuve pour établir des résultats concernant les fonctions mesurables non négatives, notamment
celles qui impliquent des intégrales. Il reflète les trois étapes de construction suivies par
Henri Lebesgue pour définir son intégrale. Ces étapes comprennent d’abord l’établissement
de la propriété pour des fonctions indicatrices, puis son extension aux fonctions simples non
négatives en vérifiant sa compatibilité avec les opérations linéaires positives. Enfin, la propriété
s’applique à toutes les fonctions mesurables non négatives en s’assurant de sa compatibilité
avec l’opération de supremum. Ce principe est dérivé d’un type inductif et apparâıt comme un
outil nécessaire pour prouver le théorème de Tonelli.

Le théorème de Tonelli permet de simplifier le calcul d’intégrales multiples en établissant leur
égalité avec des intégrales itérées, facilitant ainsi l’interchangeabilité des ordres d’intégration.
Ce théorème est applicable spécifiquement aux fonctions mesurables non négatives et s’aligne
avec le théorème de Fubini, qui étend son domaine d’application aux fonctions intégrables
avec des signes arbitraires. Dans le cadre de cette thèse, l’accent est mis sur les fonctions non
négatives à deux variables, ce qui prépare le terrain pour de futures explorations concernant les
équations aux dérivées partielles (EDP) impliquant plusieurs variables.

La deuxième partie de ce travail de recherche, qui constitue le principal axe de cette thèse,
s’intéresse à la formalisation dans Coq et à la construction des éléments finis, qui sont essentiels
à la méthode des éléments finis (MEF). Cette méthode est largement utilisée pour trouver
des solutions approximatives à des problèmes de valeur aux limites pour des EDP dans divers
domaines scientifiques tels que la physique, la mécanique et la biologie. L’utilisation étendue et
le succès de la MEF par les numériciens peuvent être attribués à sa flexibilité et à sa précision
dans la gestion de problèmes présentant des géométries complexes, des discontinuités et des
contraintes. Cependant, malgré les larges applications de la MEF, plusieurs défis critiques
peuvent nuire à son efficacité et à sa fiabilité. Le processus de mise en place des simula-
tions, de leur exécution et de l’analyse des résultats est souvent extrêmement chronophage,
surtout pour les simulations complexes. De plus, les programmes de MEF sont généralement
complexes, nécessitant une attention particulière aux détails. Même des erreurs mineures
dans la mise en œuvre peuvent entrâıner des contradictions significatives dans les résultats,
compromettant la validité des résultats de simulation et pouvant conduire à des conclusions

erronées. Pour faire face à ces problèmes, des preuves formelles sont employées pour garantir
la correction et la fiabilité des algorithmes et des méthodes utilisés dans les simulations de MEF.

Plus précisément, nous visons à formaliser un élément fini (EF), qui est défini
mathématiquement comme un triplet et formalisé sous forme d’un record. La MEF sub-
divise un grand domaine en parties plus petites et plus simples appelées éléments finis,
typiquement reliés par des points appelés sommets. Chaque élément est caractérisé par un
triplet constitué de trois composants complémentaires, notés (K,P,Σ). Le composant K
représente l’élément géométrique pour l’élément fini, qui varie en forme, des intervalles dans des
espaces unidimensionnels aux formes plus complexes comme des triangles ou des quadrilètres
en deux dimensions, et des tétraèdres ou des cuböıdes en trois dimensions, en fonction de la
complexité du domaine et des exigences de la simulation. Dans le cadre de cette thèse, nous
nous concentrons spécifiquement sur les simplexes, qui sont une généralisation du concept
de triangle ou de tétraèdre à des dimensions arbitraires. Le second composant P du triplet
d’éléments finis représente un espace vectoriel de dimension finie de fonctions polynomiales
définies sur l’élément géométrique K. Ces polynômes sont utilisés pour approximer la solution
au sein de l’élément fini, où le degré du polynôme (par exemple, linéaire, quadratique) détermine
la précision de l’approximation. Le troisième composant Σ du triplet correspond à une famille
de formes linéaires, également appelées degrés de liberté locaux, qui agissent sur les fonctions
au sein de l’espace P. Ces formes sont choisies pour satisfaire la propriété d’unisolvance,
garantissant que l’élément fini est bien défini. Cependant, traiter le problème pour des éléments
individuels n’est pas suffisant. La méthode des éléments finis (MEF) assemble les équations
locales de chaque élément fini en un système global d’équations qui représente l’ensemble du
problème. En résolvant ce système global, nous obtenons une approximation de la solution qui
couvre l’ensemble du domaine du problème.

L’accent de cette dernière partie de la recherche est la construction des éléments finis de
la famille Lagrange simpliciaux en utilisant Coq. L’objectif principal de ce développement est
d’établir un élément fini utile et de garantir que nos définitions pour les éléments finis sont
suffisantes et valides pour être utilisées. Le choix de formaliser les éléments finis de Lagrange
pour cette étude découle de leur utilisation répandue dans les applications de la MEF et
de leur simplicité inhérente. Ce travail explore également la formalisation des définitions et
des preuves concernant des propriétés essentielles telles que les polynômes de Lagrange, les
transformations géométriques affines, et les éléments finis courrants et de références, entre autres.

Pour mettre cela en œuvre, nous devrons utiliser l’analyse réelle et des structures algébriques
allant des monöıdes abéliens aux espaces de modules de la bibliothèque Coquelicot. Chaque com-
posant contribue à l’objectif principal de cette thèse, qui est d’établir formellement la propriété
d’unisolvance des éléments finis de Lagrange. Les orientations futures incluent la formalisation
des éléments finis quadrangulaires, certaines formules de quadrature et la construction d’espaces
de Sobolev. Ainsi, les efforts collectifs décrits dans ce travail visent un objectif à long terme
plus large : la vérification formelle des programmes de calcul scientifique et des parties de bib-
liothèques C++ comme FreeFEM++ et XLiFE++, qui implémentent la méthode des éléments
finis.

 الإهداء

أهدي ثمرة جهدي المتواضع إلى من وهبوني الحياة والأمل، والنشأة على شغف الاطلاع
والمعرفة، ومن علموني أن أرتقي سلم الحياة بحكمة وصبر؛ برا، وإحسانا، ووفاء لهما والدي

 .العزيز، ووالدتي العزيزة

Acknowledgments

Je tiens tout d’abord à exprimer ma profonde gratitude à mes encadrants de thèse pour leur
encadrement exceptionnel tout au long de ces trois années.

Un immense merci à ma directrice de thèse, Sylvie Boldo, pour son soutien, ses précieux
conseils, ses nombreuses relectures, sa gentillesse et sa patience, qui ont été des piliers dans
l’accomplissement de ce travail. Je vous remercie du fond du cœur.

Je remercie également mon co-encadrant, François Clément, pour son guidage éclairé et ses
retours constructifs pertinents qui ont grandement enrichi mes recherches. Sa capacité à ré-
expliquer avec patience des concepts qui lui paraissent évidents a été d’une aide inestimable.
Merci pour son engagement et sa persévérance.

Un grand merci aussi à ma co-encadrante, Micaela Mayero, pour son soutien constant et
sa pédagogie remarquable. Sa capacité à comprendre mes interrogations et à y répondre de
manière constructive, ainsi que son accompagnement tout au long de ces trois années, ont été
cruciaux pour moi.

Je souhaite également remercier Vincent Martin pour son aide précieuse. Son expertise
mathématique, sa créativité dans la résolution de preuves complexes, et son talent pour expliquer
clairement, souvent à l’aide de dessins, ont été des atouts inestimables dans l’avancée de ce
travail.

Je suis également reconnaissante envers Alan Schmitt et Damien Pous d’avoir accepté de
rapporter ma thèse. Vos retours précieux m’ont permis d’améliorer significativement mon
manuscrit. Un grand merci également à Sylvain Conchon d’avoir présidé mon jury de sou-
tenance, ainsi qu’à Sébastien Impériale et Laura Grigori pour votre participation active au jury.
Vos remarques constructives ont été très bénéfiques.

Je remercie chaleureusement les membres des laboratoires LMF de l’Université Paris-Saclay,
l’équipe SERENA d’Inria Paris, et le LIPN de l’Université Sorbonne Paris Nord pour leur
accueil. Un remerciement spécial à Annabelle Tissier, Stéphanie Raynaud et Joyce Soares pour
leur soutien administratif essentiel à mon intégration et à la préparation de ma soutenance.

Je dédie un immense merci à ma famille, en particulier à mes parents adorés, Ahmed
Mouhcine et Zohra El Wahabi. Votre amour inconditionnel, votre soutien et vos encouragements
constants ont été ma force dans les moments bons comme difficiles. Je vous aime profondément.

Je remercie chaleureusement mes sœurs Hajar, Kaoutar, Soukaina, Chaimaa, et mon frère
Oussama pour la joie et le soutien sans faille que vous m’apportez. Chacun de vous a contribué à
cette aventure, par vos sourires, vos mots encourageants et votre capacité à me faire rire, même
quand les défis semblaient insurmontables.

Un remerciement spécial à mon époux, Saâd, pour sa compréhension et son soutien durant
les moments difficiles, et pour avoir partagé avec moi chaque étape de ce parcours.

Pour clore ce préambule, je souhaite dédier cette thèse à mon cher père, réalisant ainsi son
rêve de voir tous ses enfants réussir et obtenir un doctorat. Ce travail est le fruit des sacrifices
que tu as faits pour mon éducation et ma réussite. Merci pour tout.

Contents

1 Introduction 1

1.1 Research Framework . 1

1.2 Motivations of the Thesis . 3

1.3 Related Work . 6

1.4 Organization of the Thesis . 8

2 Coq and Support Libraries 11

2.1 The Coq Proof Assistant . 11

2.2 The Coquelicot Library . 14

2.2.1 Extended Real Numbers . 14

2.2.2 Total Functions . 15

2.2.3 Algebraic Hierarchy . 15

2.3 The math-comp Library . 17

I Formalization of The Tonelli Theorem 19

3 Lebesgue Integration Theory 21

3.1 Measurable Space . 21

3.1.1 σ-algebra and Measurability of Subsets 22

3.1.2 Cartesian Product Space and Measurability 23

3.1.3 Measurablility of Functions . 23

3.2 Measure Space . 24

3.2.1 Formalization of Measures . 24

3.2.2 Main Properties of Measures . 25

3.3 Simple Functions . 26

3.3.1 Definition of Simple Functions . 26

3.3.2 Canonical Representation of Simple Functions 26

3.3.3 Integration of Simple Functions . 27

3.4 Integration of Nonnegative Measurable Functions 28

3.4.1 Definition and First Properties . 28

3.4.2 Adapted Sequences . 29

3.4.3 The Theorem of Beppo Levi (Monotone Convergence) 30

4 Formalization of the Tonelli Theorem 31

4.1 Lebesgue Induction Principle . 31

4.1.1 Inductive Representation of Nonnegative Measurable Functions 31

4.1.2 Verifying SFp and SFplus Equivalence . 32

4.1.3 Equivalent Inductive Types of Mp . 34

I

II CONTENTS

4.1.4 Verifying Mp and Mplus Equivalence . 35

4.2 Product Measure on a Product Space . 35

4.2.1 Specification of a Product Measure . 35

4.2.2 Product σ-Algebra . 36

4.2.3 Section of Subsets . 37

4.2.4 Measurability of Measure of Section . 38

4.2.5 Existence and Uniqueness of the Product Measure 40

4.3 Tonelli Theorem . 40

4.3.1 Section of Functions . 42

4.3.2 Iterated Integral and the First Formula of Tonelli Theorem 42

4.3.3 Change of Measure, Second Formula, and Tonelli Theorem 44

II Formalization of Simplicial Finite Elements 47

5 Algebra 49

5.1 Functions and restrictions . 49

5.1.1 Subsets . 49

5.1.2 Image, Pre-image and Composition of Functions 50

5.1.3 Bijective Functions . 51

5.1.4 Bijective Functions on Subsets . 52

5.2 Ordinals and Finite Families . 53

5.2.1 Principle of Double Induction . 53

5.2.2 Ordinals . 54

5.2.3 Finite Family . 56

5.3 Algebraic Structures . 58

5.3.1 Abstract Monoid and Finite Iterations of the Law 59

5.3.2 Multiplicative Monoid and Monomials . 61

5.3.3 Group and Module Space . 62

5.3.4 Linear Combination in a Module Space 64

5.3.5 Kronecker Delta Function . 65

5.3.6 Affine Spaces and Barycenter . 65

5.4 Finite Dimensional Subspaces . 67

5.4.1 Linear Span . 67

5.4.2 Generating, Free, Basis Families . 68

5.4.3 Affine independence . 70

5.4.4 Dual Space, Duality . 70

5.5 Binomials . 71

6 Mathematical Presentation of Finite Elements 73

6.1 Continuous Problem: Strong and Weak Formulation 73

6.1.1 Definitions and Notations . 73

6.1.2 Strong Formulation . 75

6.1.3 Weak Formulation . 76

6.1.4 Algebraic Form and Lax-Milgram Theorem. 76

6.2 Discrete Problem . 77

6.2.1 Approximate Problem . 77

6.2.2 Building the Mesh . 78

6.2.3 Building the Linear System . 80

6.3 General Definition of a Finite Element . 81

CONTENTS III

6.4 Unisolvence Principle . 82

7 Formalization of Finite Elements 85

7.1 Formalization of Finite Elements . 85

7.2 Shape Functions of Finite Element . 87

7.3 Construction of a Local Interpolation Operator 88

8 Constructing the Polynomial Space Pd
k 91

8.1 Multi-Indices . 91

8.1.1 Definition of Ad
k, Cdk and Šdk,k−i Families 92

8.1.2 Ordering Multi-Indices . 96

8.1.3 Bijectivity of Ad
k . 98

8.2 Pd
k Polynomial Space . 99

8.2.1 Definition of the Polynomial Space Pd
k and its Basis Bd,k 99

8.2.2 Linear Independence of the Family Bd,k 100

8.2.3 Overview of Polynomial Space Pd
k Properties 103

8.3 Pd
1 Polynomial Space . 105

8.4 P1
k Polynomial Space . 106

9 Reference and Current Finite Elements 107

9.1 Simplicial Geometry . 108

9.1.1 Definition of Reference Vertices and Lagrange Nodes 108

9.1.2 Definition of Current Lagrange Nodes . 110

9.1.3 Connection Between Vertices and Nodes 112

9.1.4 Lagrange Sub-vertices and Sub-nodes . 114

9.2 Pd
1 Lagrange Polynomial Bases on the Reference Element 117

9.3 Affine Geometrical Transformation of Finite Element 120

9.4 Building Current FEs From the Reference FE . 125

9.4.1 Reference Finite Element . 125

9.4.2 Generating the Current Finite Elements 126

9.4.3 Current Shape Functions and Local Interpolation Operator 130

9.5 Pd
1 Lagrange Polynomials Basis on a Current Element 131

9.6 P1
k Lagrange Polynomial Bases on a Segment . 132

10 Simplicial Lagrange Finite Elements 137

10.1 Face Hyperplanes . 137

10.2 Geometric Mappings . 141

10.2.1 Geometric Hyperface Mapping . 141

10.2.2 Geometric Mapping with Permutation . 146

10.3 Current Simplicial Lagrange Finite Elements . 148

10.3.1 Nodal Linear Forms . 149

10.3.2 Specifics of the Pdk Lagrange Finite Elements 150

10.3.3 Unisolvence of the Pd0 Lagrange Finite Elements 151

10.3.4 Unisolvence of the Pd1 Lagrange Finite Element 152

10.3.5 Unisolvence of the P1
k Lagrange Finite Element 153

10.3.6 Factorization of Polynomials . 153

10.3.7 Unisolvence of the Pdk Lagrange Finite Elements 155

10.4 Reference Simplicial Lagrange Finite Elements 157

11 Conclusions and Perspectives 159

IV CONTENTS

List of Figures 163

12 Bibliography 167

Chapter 1

Introduction

1.1 Research Framework

In the digital age, where software and hardware systems form the backbone of global industries,
ensuring the reliability and safety of these systems is paramount. This is where formal methods
come into play, offering a solid framework for developing, verifying, and analyzing complex
computing systems. Based on mathematical logic, formal methods consist of a comprehensive
set of techniques designed to verify the correctness of systems relative to defined specifications.
These techniques include methods like model checking [49], abstract interpretation [25], as
well as various formal proof techniques [45]. These proof techniques encompass deductive
verification, automated theorem proving, and interactive theorem proving, among others.
As technology becomes increasingly sophisticated and integrated into multiple aspects of
daily life, the potential impact of software and hardware failures grows exponentially. From
automotive safety and aerospace engineering to financial services and healthcare, failures in
these systems can lead to catastrophic outcomes, including loss of life and significant economic
damage. Formal methods address this risk by providing a framework that can rigorously verify
that systems perform as intended under all specified conditions. For instance, consider an
autonomous vehicle designed to detect obstacles and make real-time driving decisions. If the
software responsible for obstacle detection fails due to a coding error or a hardware malfunction,
the vehicle might not recognize a pedestrian crossing the street or another vehicle stopping
suddenly. This could result in a failure to apply brakes or take evasive action, leading to a
collision. To mitigate these risks, formal methods can be employed during the development
phase of the automotive software. Formal methods involve using mathematical models to
verify the correctness of algorithms governing the vehicle’s operations under various conditions.
By applying these methods, developers can ensure that the software adheres strictly to all
operational specifications and can handle both expected and unexpected scenarios safely.
This verification helps in reducing the risk of software failures that could lead to catastrophic
outcomes.

This thesis specifically focuses on the domain of formal proofs through interactive theorem
proving, a process wherein a human user develops proofs using proof assistant software. To
verify these formal proofs, a variety of tools are employed, including ACL2 [50], Coq [23],
HOL Light [44], Lean [29], Mizar [61] and PVS [63]. Such a proof assistant primarily involves for-
malizing statements and their corresponding proof into a form that computers can understand.
This process requires defining all the variables, functions, and statements in mathematical and
logical terms. Subsequently, the focus is on constructing these proofs thoroughly using a variety
of tactics, assuming the hypotheses of the statements are correct. Tactics represent instructions

1

2 CHAPTER 1. INTRODUCTION

or commands that guide the proof assistant through logical deductions (i.e., through the process
of building a formal proof step by step). When a user writes a proof, they apply tactics to break
down the problem, simplify expressions, and logically derive the desired conclusion from the
given hypotheses and assumptions. Moreover, the process of constructing a proof is more than
just verifying that a formula or statement is correct; it is a mental exercise that forces the user
to engage deeply with the underlying concepts and principles, thereby enhancing their grasp
of the material. Instead of merely inputting a formula into an automated proof verifier and
verifying its correctness, the act of deliberately thinking through why a formula holds provides
valuable insights. In this work, we particularly focus on validating pen-and-paper/informal
proofs, built by human beings, using Coq.

We have opted to work with the Coq proof assistant for multiple reasons. First and foremost,
there have been several libraries developed that are highly relevant to our research. Notable
among these are the standard Reals library for real numbers [57], the Coquelicot extension [14]
for advanced real analysis, and the Flocq library for floating-point arithmetic [15]. In addition,
there have been several libraries implemented addressing mathematical concepts, such as the
Lax-Milgram theorem [10] and the Lebesgue integral [11]. As a student who joined during the
later stages of these developments and came from a mathematical background without prior
exposure to Coq, I had to learn Coq from scratch. Nonetheless, given the breadth of existing
resources and the direct support from my supervisors, who have extensive experience working
with Coq and are well-versed in its usage, it made practical sense for me to continue working in
Coq. Additionally, Coq includes the Flocq library, a comprehensive resource for floating-point
arithmetic that is essential for bounding rounding errors. This library will prove useful in the
context of finite element methods (FEM), particularly for estimating the error between the
computed and exact solutions of a given partial differential equation (PDE).

When working with traditional tools like pen and paper for proving mathematical state-
ments, we might use shorthand or make intuitive leaps that rely on assumed knowledge or
assumptions that are not explicitly stated. This includes using abbreviations or assuming cer-
tain mathematical properties without explicitly proving them at every step. These could create
gaps in the proof where not every logical step is fully detailed. However, when we use a proof
assistant (like Coq), every element of the proof must be explicitly defined and every step must
be logically justified. This means that the user cannot simply assume or omit details; they must
specify which definitions are being used and how the parts of the argument fit together. Let us
illustrate with a simple example, in the case of the intermediate value theorem. It is essential
that a ⩽ b, where a and b are the endpoints of the interval [a, b] for the function. This theorem
states that if we have a continuous function on an interval from a to b, then for any value d
between f(a) and f(b), there exists some point c within that interval where f(c) = d. However,
if we overlook specifying that a ⩽ b in a traditional, informal proof, we might incorrectly apply
the theorem to the case where a > b, which does not make sense. In a formal proof system
like Coq, one must clearly define each condition, including a ⩽ b, before proving the theorem.
This requirement ensures that all necessary conditions are met and prevents logical errors from
missing assumptions. This method ensures there are no gaps because the computer requires
complete clarity and will point out any missing parts. To this end, it is easier to start with
a pen-and-paper proof that acts as a draft that guides the formal verification process, which
allows for more freedom to sketch out ideas and explore how different parts of the proof interact
without the constraints of formal syntax. Then, once the rough ideas are clearly understood and
laid out, the next step is to organize and formalize each part of the proof in a proof assistant.

1.2. MOTIVATIONS OF THE THESIS 3

Real numbers library [57]

Coquelicot library [14]

Wave Equation [12]

Lax-Milgram [10]

Lebesgue Integral [11]

Lebesgue Induction Principle &
Tonelli Theorem [9]

Simplicial FE

Simplicial Lagrange FE

Quadrangular FE [Future]

Sobolev Spaces [Future]

Quadrature Formulas [Future]

Finite Element Method [Future] Programs [Future]

Figure 1.1: A diagram illustrating a chronological and thematic roadmap of the Coq formalization of mathematical
concepts, distinguished by color-coded stages of completion. The green boxes denote prior work. The yellow

boxes, which are completed, represent the focus of the thesis. The turquoise blue boxes outline anticipated

future work. The light blue box sets a long-term goal.

1.2 Motivations of the Thesis

My thesis builds upon a structured series of prior developments, as illustrated in the work
diagram in Figure 1.1. The foundation of these developments began with the creation of a real
numbers library in 2001 [57], and the Coquelicot library [14] as its conservative extension in
2015. This groundwork enabled the first full formalization and proof of a numerical C program
designed for the simulation of the wave equation, published in 2013 [12, 13]. Specifically,
the finite difference scheme was addressed for the simulation of the wave equation, a method
suitable for a restricted class of problems, particularly those constrained by the geometry of the
domain. The next phase of this work aims to adopt a more powerful tool, the finite element
method, which is based on a stronger theoretical foundation. To implement this method,
an existence and uniqueness result for solutions to a class of partial differential equations
(PDEs) is needed, here the Lax-Milgram theorem. This theorem, which operates within a
general Hilbert space, a complete vector space with an inner product, was formally proven
in 2017 [10]. In addition, establishing the appropriate context for applying the Lax-Milgram
theorem requires the development and formalization of Sobolev spaces, which involves first
constructing the Lebesgue integrals. The formalization of Lebesgue integration for non-negative
measurable functions was published in 2021 [11], with future work focusing on the development
of Lebesgue and Sobolev spaces. Building on this substantial groundwork, my thesis is
underpinned by two primary motivations that collectively ensure the correctness of essential
concepts in functional and numerical analysis using formal proofs within the Coq proof assistant.

The first part of the thesis focuses on the Coq formalization of two main mathematical

4 CHAPTER 1. INTRODUCTION

concepts in functional analysis, specifically, the Lebesgue induction principle and the Tonelli
theorem. This work has been published in 2023 [9]. The Lebesgue induction principle serves as
a proof technique for properties associated with nonnegative measurable functions, particularly
those involving integrals. It reflects the three construction steps followed by Henri Lebesgue
to build his integral [53]. The principle unfolds in three steps: initially, the property is
established for indicator functions. Subsequently, it extends to nonnegative simple functions by
verifying its compatibility with positive linear operations. Finally, the property applies to all
nonnegative measurable functions by verifying its compatibility with the supremum operation.
This principle is derived from an inductive type and emerges as a tool for proving the Tonelli
theorem, as elaborated in more detail in Section 4.1.

The Tonelli theorem offers a convenient method for simplifying the computation of multiple
integrals by establishing their equality with iterated integrals, each occurring in a single
dimension, thereby facilitating the interchangeability of integration orders. This theorem is
applicable specifically to nonnegative measurable functions. It aligns with the Fubini theorem,
a related result that extends its scope to integrable functions with arbitrary signs. In the
context of this thesis, the focus is on nonnegative functions with two variables, as detailed in
Section 4.3. This part of the thesis lays the groundwork for future explorations when we will
deal with PDEs that involve multiple variables.

Furthermore, the second part of this research, which represents the main focus of this
thesis, delves into the Coq formalization and the construction of finite elements that represent
the cornerstone of the Finite Element Method (FEM). This latter is a widely used numerical
technique for finding approximate solutions to boundary value problems for partial differential
equations (PDEs) arising across various scientific domains, like physics, mechanics, and biology.
It can be applied to a wide range of problems, including for instance structural analysis (stress,
deformation), thermal analysis (heat transfer), fluid dynamics, and electromagnetic potentials,
among others. This extensive use and success of FEM by numericians is largely attributed to its
flexibility and precision in handling problems with complex geometries, discontinuities, and con-
straints common in engineering and physical sciences, which are explored and cited throughout
the literature, see for instance [19, 35, 66, 73]. Despite the wide applications of the FEM, several
critical challenges can adversely affect its efficiency and reliability [4]. The process of setting up
simulations, executing them, and analyzing the results is often extremely time-consuming, espe-
cially for complex simulations. Furthermore, FEM programs are typically lengthy and complex,
requiring high attention to detail. Even minor errors in implementation can result in significant
contradictions in the results, compromising the validity of the simulation outcomes and
potentially leading to incorrect conclusions. To address these issues, formal proofs are employed
to ensure the correctness and reliability of the algorithms and methods used in FEM simulations.

More specifically, we aim to thoroughly formalize a generic finite element (FE), which is
mathematically defined as a triplet and formalized as a record as detailed in Section 7.1. The
FEM subdivides a large problem into smaller, simpler parts that are called finite elements,
typically connected by points called vertices, as depicted in Figure 1.2. Each element is
characterized by a triplet consisting of three complementary components, denoted as (K,P,Σ).

The component K represents the geometric element for the finite element, which varies in form
from intervals in one-dimensional spaces to more complex shapes like triangles or quadrilaterals

1https://omni.wikiwand.com/fr/articles/Maillage

https://omni.wikiwand.com/fr/articles/Maillage

1.2. MOTIVATIONS OF THE THESIS 5

Figure 1.2: Visual representation of a 2D disk approximated with a mesh made of triangles1. We note that the
boundary of the mesh is not perfectly circular. A triangular mesh is made up of triangular elements that are
connected at their vertices and faces (see Section 6.2.2).

in two-dimensional spaces, and tetrahedrons or cuboids in three-dimensions, depending on
the complexity of the domain and the requirements of the simulation. For the purposes of
this thesis, the focus will be exclusively on working with simplices, which are a generalization
of the concept of a triangle or tetrahedron to arbitrary dimensions (see Equation (6.6) in
Section 6.2.2). The second component P of the finite element triplet, represents a finite-
dimensional vector space of polynomial functions defined on the geometric element K. These
polynomials are used to approximate the solution within the finite element, where the degree
of the polynomial (e.g. linear, quadratic) determines the accuracy of the approximation. The
third component Σ of the triplet, corresponds to a family of linear forms (σi)i∈[0..ndof], also
known as local degrees of freedom, which act on the functions within the space P. These forms
are chosen to satisfy the unisolvence property, ensuring the mapping p ∈ P 7−→ (σi(p))i∈[0..ndof]

is bijective. However, addressing the problem for individual elements alone is not suffi-
cient. The Finite Element Method (FEM) assembles the local equations from each finite
element into a global system of equations that represents the entire problem. By solving this
global system, we obtain an approximation of the solution that spans the entire problem domain.

The focus of this last part of the research is the construction of the finite elements of
the simplicial Lagrange family [36, Section 7.4 p.78-81] using the Coq proof assistant. The
main objective of this development is to establish a useful finite element, and also ensure that
our definitions for finite elements are sufficient and valid to be used. The choice to formalize
Lagrange FE for this study stems from its widespread use in FEM applications and its inherent
simplicity. This work further delves into the formalization of definitions and proofs concerning
essential properties such as the Lagrange polynomials, affine geometric transformations, and
both current and reference finite elements, among others. To implement this, we will need
to use real analysis and algebraic structures ranging from abelian monoids to module spaces
of the Coquelicot library [14], as detailed in Section 2.2. Additionally, we will use various
algebraic properties described in Chapter 5, including definitions of fintype and bigop, which
are part of the Mathematical Component library [56]. Each of these components contributes
towards the primary aim of this thesis, which is to formally establish the unisolvence property
of the Lagrange FE, as detailed in Section 10.3.7. Additionally, future directions include the
formalization of quadrangular finite elements, some quadrature formulas, and the construction

6 CHAPTER 1. INTRODUCTION

of Sobolev spaces. Thus, the collective efforts described in this work are directed towards a
broader long-term goal, which is the formal verification of scientific computing programs and
parts of C++ libraries like FreeFEM++2 and XLiFE++3, which implement the FEM.

The mathematical definitions and proofs in this research are derived from a variety of textbooks,
specifically [34, 35, 36, 41], and primarily based on [20, 21]. The Coq code is available in the
repositories Lebesgue and FEM at:

https://lipn.univ-paris13.fr/coq-num-analysis

It is also available in the Opam package (version ≥ 2.0) at (search with category ”Mathematic-
s/Reals Calculus and Topology”):

https://coq.inria.fr/coq-package-index

1.3 Related Work

This section reviews various formalizations relevant to the subject of the thesis. Beyond the
Reals library, there are alternative approaches to developing a library of real numbers. One
such alternative is the CoRN (Constructive Reals and Numbers) library [26], which is available
within the Coq system and is designed for the constructive formalization of real numbers. In
addition, the Lebesgue integral and in particular the Tonelli theorem, a fundamental result
in measure theory, have been extensively formalized across different proof assistants. The
formalizations that align closely with our work appear in Isabelle/HOL [62] and Lean [29]. In
2007, David Lester formalized the Tonelli theorem within the PVS-NASA library4, building on his
earlier work [54]. In 2011, Johannes Hölzl and Armin Heller developed foundational concepts
in measure theory in Isabelle/HOL [46], including the formalization of the binary and iterated
product measures, along with the Lebesgue integral and proving the Fubini theorem. Moreover,
a significant work occurred in 2019, Noboru Endou covered the formalization in Mizar [33]
of various aspects necessary to establish the Fubini theorem, including product measures,
measurable functions, and integration over product spaces. Another related work, Floris van
Doorn’s contributions to Lean Mathlib in 20215 [71] include the integration of functions with
respect to product measures, the existence and uniqueness of product measures, along with the
measurability and integrability of functions in product spaces, particularly the formal proof
of the Tonelli and the Fubini theorems in a way similar to our, but for the Bochner integral,
an extension of the Lebesgue integral of functions taking values in a Banach space. He also
introduced a Lebesgue induction principle, which bears some resemblance to our method;
however, to our knowledge our approach of deriving it from an inductive type represents a novel
contribution. The construction and the Coq formalization of Fubini’s theorem were developed
by Affeldt Reynald and Cyril Cohen in 2023 for functions of arbitrary sign [2] within the
math-comp Analysis library6. In contrast, our work is limited to nonnegative functions.

Now, in terms of contributions to the finite element method framework, specifics on finite
elements have not yet been studied elsewhere up to our knowledge. However, there have

2https://freefem.org/
3https://uma.ensta-paris.fr/soft/XLiFE++/
4https://github.com/nasa/pvslib/blob/master/measure integration/fubini tonelli.pvs
5https://leanprover-community.github.io/mathlib4 docs/Mathlib/MeasureTheory/Constructions/Prod/

Integral.html
6https://github.com/math-comp/analysis/blob/master/theories/lebesgue integral.v

https://lipn.univ-paris13.fr/coq-num-analysis
https://coq.inria.fr/coq-package-index
https://freefem.org/
https://uma.ensta-paris.fr/soft/XLiFE++/
https://github.com/nasa/pvslib/blob/master/measure_integration/fubini_tonelli.pvs
https://leanprover-community.github.io/mathlib4_docs/Mathlib/MeasureTheory/Constructions/Prod/Integral.html
https://leanprover-community.github.io/mathlib4_docs/Mathlib/MeasureTheory/Constructions/Prod/Integral.html
https://github.com/math-comp/analysis/blob/master/theories/lebesgue_integral.v

1.3. RELATED WORK 7

been some developments in the areas of polynomial interpolation and mesh construction. Our
research primarily focuses on working with simplices. We focus on constructing finite elements
on individual elements within the mesh. A mesh is a discretization of the domain into finite
elements of varying geometric shapes, such as simplices or quadrilaterals. Some advancements
have been made in the construction of entire meshes, and the geometry of individual elements.

The SciLean library involves computational geometry concepts within the Lean proof
assistant. The development in this library seems still under construction, as there are admitted
proofs throughout and numerous unfinished results, but it remains useful for calculating
approximate solutions to partial differential equations. It includes definitions and proper-
ties for handling the geometric construct of prism7, allowing the representation of various
geometric shapes such as simplices, cubes, and pyramids through induction. Furthermore,
the SciLean library proceeded in constructing a triangular mesh8, as the one depicted in
Figure 1.2, from a list of triangles by identifying unique edges and organizing them along
with their corresponding triangles. Following this, the calculation of the barycenter and the
barycentric coordinates for points within the prism have been presented in the SciLean library
as well. In our Coq work, the implementation of barycenters is applicable to any family
of points in an affine space, regardless of the specific geometric shape these points might
form. Whether the points form a simplex, a quadrilateral, or any other polygonal/polyhedral
shape, the barycenter can be computed as long as we have a representation of these points
in the affine space and a set of weights (i.e., the barycentric coordinates when scaled to sum one).

Additionally, the SciLean library defines and implements Lagrange polynomial bases, such
that at each node of an element, the function has a value of 1 at one node and 0 at all
others, providing a simple way to interpolate values across prisms. In our work, however, we
extend the formalization and definition of these polynomial bases to encompass all geometric
shapes in the form of simplices within a real affine space. Another formalization similar to our
work of Lagrange polynomial bases has also been undertaken in mathlib Lean9, that offers a
thorough study in addition to the one in SciLean, by emphasizing the definition of the Lagrange
polynomial bases, along with the Lagrange nodes for the interpolation process, supported by
various theorems to validate that the Lagrange polynomial will exactly match the provided
value at each specified point.

Moreover, in 2010, Laura I. Meikle and Jacques D. Fleuriot focused on enhancing
two-dimensional planar geometry using Isabelle/HOL, such as convex hulls and Delaunay
triangulations [58]. This includes basic geometric definitions such as points, and orientation
of points (collinearity, betweenness). Additionally, Yves Bertot and Jean-François Dufourd,
focused on the formal verification of an algorithm for constructing Delaunay triangulations
of a mesh using the Coq proof assistant [31]. This algorithm was implemented to construct
triangles such that none of the input points lie inside the circumcircle of any triangle. In a more
recent work, published in 2018, Bertot extended his earlier work in [6], by addressing a broader
class of triangulation algorithms, that guarantees that the resulting mesh satisfies important
geometric properties, such as covering the convex hull and maintaining boundary edges. In our
development, we specifically focus on viewing a given mesh cell as the convex hull of its affinely
independent vertices, and subsequently constructing a finite element on this cell.

7https://github.com/lecopivo/SciLean/blob/fea6cf7/SciLean/Data/Mesh/PrismRepr.lean
8https://github.com/lecopivo/SciLean/blob/fea6cf7/SciLean/Data/Mesh/TriangularMesh.lean
9https://leanprover-community.github.io/mathlib4 docs/Mathlib/LinearAlgebra/Lagrange.html

https://github.com/lecopivo/SciLean/blob/fea6cf7/SciLean/Data/Mesh/PrismRepr.lean
https://github.com/lecopivo/SciLean/blob/fea6cf7/SciLean/Data/Mesh/TriangularMesh.lean
https://leanprover-community.github.io/mathlib4_docs/Mathlib/LinearAlgebra/Lagrange.html

8 CHAPTER 1. INTRODUCTION

There have been various formal developments in the domain of ordinary differential equation
(ODE) and partial differential equation (PDE) resolutions, including [47, 69, 30], but these are
beyond the scope of our work. In this work, we do not aim to formalize the Finite Element
Method itself; that will be addressed in future efforts. Instead, our current focus is on formalizing
finite elements, which will be useful in future formalizations of ODE and PDE resolutions.

1.4 Organization of the Thesis

The thesis is organized into two main parts, each comprising several distinct chapters. Chap-
ters 2, 3 and 6 present the formal and mathematical needed contents to offer valuable context
and insight into the work pertinent to this study. I have contributed to the remaining chapters,
with minor contributions in Chapter 5.

Chapter 2 introduces the Coq proof assistant and some of its supporting libraries, including
the Reals standard library, Coquelicot which enhances Coq’s handling of real numbers, and the
math-comp library. It explains the differences between constructive and classical logic within
Coq, and highlights its type inference capabilities. Additionally, the chapter also addresses
the limitations of the Reals standard library, presents an approach to structuring algebraic
hierarchies by canonical structures.

Part I focuses on the formalization of the Lebesgue induction principle and the Tonelli
theorem.

Chapter 3 outlines essential concepts from [11] developed in 2021 that are necessary for
understanding this part, focusing on the Coq formalization of the Lebesgue integral. This
chapter introduces fundamental measure theory concepts, including the measurability of
subsets and functions in Section 3.1, a formal definition of measure in Section 3.2 along
with its properties, the canonical representation of simple functions in Section 3.3, and their
integration process. Additionally, it covers the integration of nonnegative measurable functions
in Section 3.4. As I did not contribute to this work, I have included only pertinent details to
provide clarity and context for this thesis.

Chapter 4 delves into the formalization of the Lebesgue induction principle (LIP) and the
Tonelli theorem. This chapter represents my initial contributions during my PhD, starting with
the formal proof of LIP in Section 4.1, which is a proof technique for dealing with properties
related to nonnegative measurable functions. Subsequently, Section 4.2 is dedicated to the
construction of product measures within a product space, including the development of the
corresponding product σ-algebra and the properties of the section of subsets. Furthermore,
Section 4.3 is devoted to the construction of iterated integrals and the formalization of the
proof of the Tonelli theorem. This theorem focuses on the study of double integrals and the
interchangeability of integration orders, highlighting the ability of the Lebesgue integral in
handling multi-variable functions.

Part II addresses the formalization of simplicial finite elements.

Chapter 5 outlines the formalization of algebraic concepts and properties that underpin the
subsequent chapters on finite elements. It leverages several libraries, such as the math-comp
library for handling finite types, iterated operators, and binomial coefficients, and the Coquelicot

1.4. ORGANIZATION OF THE THESIS 9

library to incorporate new algebraic structures, such as affine spaces, into its hierarchy. The
development described in this chapter draws inspiration from the works of Gostiaux [41].
However, my contributions to the formalizations described in this chapter were very minor.
Section 5.1 explores complementary aspects of functions, with a particular focus on functions
on subsets. Section 5.2 addresses support for finite families of any type. Discussions of algebraic
structures are presented in Section 5.3. The study of finite dimensional subspaces is specifically
addressed in Section 5.4. Finally, Section 5.5 offers a concise discussion on binomial coefficients.

Chapter 6 provides a purely mathematical overview of the finite element method, which is
a widely-used computational technique in engineering and mathematical modeling for approx-
imating solutions to boundary value problems associated with partial differential equations
(PDEs). It studies a second-order linear elliptic PDE within a d-dimensional domain, referred
to as the Poisson problem (6.1) in Section 6.1, and discusses its transition from the strong
formulation to the weak formulation. Next, the chapter details the development of the related
linear system through discretization, emphasizing the construction of the mesh in Section 6.2,
as illustrated in Figure 1.2. Subsequently, the chapter introduces a comprehensive definition of
finite elements as a triplet in Section 6.3, along with a detailed explanation of the principle of
unisolvence in Section 6.4, which is necessary to ensure that the studied problem has a unique
solution. While not all aspects discussed in this chapter are formalized using Coq, it lays the
foundational steps necessary for the numerical implementation of these principles. This chapter
is essential for understanding the concepts explored in subsequent chapters.

Starting from Chapter 7 onwards is my contribution to the subject of the thesis. Chapter 7
builds upon the mathematical foundations delineated in the previous chapter. It starts with
a detailed discussion on the Coq formalization of a general finite element in Section 7.1,
represented as a triplet within individual cells of the mesh using a record-based approach. This
is followed by Section 7.2 which defines the local shape functions as a basis for the polynomial
approximation space P. The chapter concludes with Section 7.3, focusing on the construction
of a local interpolation operator associated with this finite element.

Chapter 8 delves into the construction of the polynomial space Pd
k , which comprises

polynomials of degrees less than k on Rd. This chapter begins with an in-depth discussion
of multi-indices in Section 8.1, essential for the construction of multivariate monomials. This
section introduces the definition of the Ad

k, Cdk , and Šdk,k−i families, explores the ordering

of multi-indices, and studies the bijectivity of Ad
k. Section 8.2 then moves on to define the

polynomial space Pd
k as the linear combinations of monomials, detailing its canonical basis Bd,k,

establishing the linear independence of this family, and reviewing some key properties of Pd
k

spaces. The discourse narrows down further in Sections 8.3 and 8.4, where the focus shifts to
specific polynomial spaces: Pd

1 and P1
k , studying cases where the spatial dimension d or the

degree of approximation k is equal to 1.

Chapter 9 starts with a study of simplicial geometric aspects in Section 9.1, where it defines
reference vertices, reference and current Lagrange nodes, and establishes connections between
vertices and nodes, as well as introduces sub-vertices and sub-nodes. Section 9.2 discusses
the Pd

1 Lagrange polynomial bases on the reference geometric element when the degree k is
equal to 1, along with several key properties of these polynomials. Section 9.3 delves into the
affine geometrical transformation of finite elements that map the reference element to current
elements and its inverse function, setting the stage for Section 9.4, which outlines the process
of constructing current finite elements (FEs) from the reference FE, including the formulation

10 CHAPTER 1. INTRODUCTION

of current shape functions and local interpolation operators. Section 9.5 elaborates on the Pd
1

Lagrange polynomials basis on a current geometric element when k = 1, while Section 9.6
focuses on P1

k Lagrange polynomial bases on a segment when the spatial dimension d is equal
to 1. We thoroughly examine how these polynomials are formalized in Coq and used across
both reference and current geometrical elements.

Chapter 10 focuses exclusively on constructing simplicial Lagrange finite elements, beginning
with a formal definition of face hyperplanes in Section 10.1. Section 10.2 explores geometric
mappings, detailing the process of transforming nodes from the reference geometric element
in dimension d − 1 to an hyperplane of the current geometric element. The focus then shifts
to the construction of current simplicial Lagrange finite elements within Coq in Section 10.3,
which covers nodal linear forms, specifics of the triplet of the Lagrange finite elements, and a
comprehensive formal proof of the unisolvence property addressing specific cases where k = 1
or k = 0 and d = 1. This section also discusses some factorization properties of polynomials
related to these elements. Finally, Section 10.4 is devoted to the construction of the reference
simplicial Lagrange finite elements.

Chapter 11 concludes the thesis by summarizing the discussed topics and proposing
directions for future research.

In this thesis, I try to keep code snippets straightforward and simple. As a consequence,
these snippets may differ slightly from the actual implementation: details such as ’scopes’ are
omitted, and some arguments are replaced with underscores to enhance clarity and relevance.

Chapter 2

Coq and Support Libraries

This chapter provides an overview of Coq, a proof assistant used for verifying mathematical
theorems and certifying programs. We explore the differences between constructive and classical
logic within Coq, and highlight essential tools such as its type inference capabilities. The chapter
presents the Coquelicot library, which enhances Coq’s handling of real numbers. Finally, we
examine an approach to structuring algebraic hierarchies by canonical structures, and we give
a brief introduction to the math-comp library.

2.1 The Coq Proof Assistant

Coq [23] is an interactive proof assistant, designed for formalizing mathematical theorems and
verifying proofs. It uses a special command language called the Vernacular to manage the
logical content in a Coq file and organize proof development. Gallina is the core language of
Coq used to express programs, types, and proofs. It is a dependently typed functional language,
meaning that it is based on type theory, where types can depend on values. Additionally, Coq
provides a tactic language to simplify the proof process by allowing users to construct proofs
interactively, step by step, without having to write the proof terms manually. These tactics
guide the proof towards completion, and Coq automatically generates the corresponding proof
term when the proof is complete. The Coq’s logic is based on an extension of the Calculus
of Constructions (CoC) [24], originally designed in 1986, known as the Calculus of Inductive
Constructions (CIC) [65]. CIC combines type theory (which includes functions, types, and
type constructors) with inductive types to express both programs and proofs. Unlike classical
logic, which is commonly used by most mathematicians and allows the use of principles
like the law of excluded middle (EM), stating that every proposition is either true or false,
Coq is based on constructive logic. This type of logic, also called intuitionistic logic, does
not accept the law of excluded middle as universally valid. Instead, constructive logic em-
phasizes that the truth of a proposition depends on our ability to build a constructive proof for it.

One of the valuable characteristics of Coq is type checking that helps guarantee that proofs are
correct and that functions behave as intended. Moreover, Coq provides a system of type inference
that helps simplify the process of writing proofs and programs by automatically deducing the
types of expressions without the user having to explicitly annotate everything. This makes the
system much more concise and easier to use. For instance, if a user writes a function that takes
a natural number, in an environment where the notations also involve integers, and returns its
square, Coq can infer that the input type is nat without requiring the user to explicitly declare
it. Without type inference, users would need to manually specify the type of every object or
variable, which would quickly become tedious, resulting in difficult-to-read code. For this reason,

11

12 CHAPTER 2. COQ AND SUPPORT LIBRARIES

we primarily rely on implicit arguments, as making them explicit all the time would clutter the
code and reduce clarity. In Coq, explicit arguments are the default, meaning that we must
specify them every time we invoke the function or use the type. For example:

Definition add (x : nat) : nat := x + 2.

Here, + is a notation of Nat.add, and x is an explicit argument of the function add. An im-
plicit argument, on the other hand, is an argument that Coq can automatically infer from the
context. Suppose we want to define the identity function id that works for any type, Coq will
automatically infer what type A should be, based on the argument provided for x. For instance:

Definition id {A : Type} (x : A) : A := x.

Here, A : Type is an implicit argument, denoted by the {} brackets around it.

In Coq, inductive types are established through one or more constructors that enable the
creation of new instances of the type. These constructors allow the construction of every
possible value of the type, starting from a base set of initial values. Inductive types can be used
to define various structured data, such as natural numbers, lists, and trees. They often include
recursive definitions, meaning the type being defined can refer back to itself. For instance, a
simple inductive definition for a list type might feature a constructor for an empty list and
another constructor that combines a head element with a tail, where the tail is itself a list.
Moreover, working with inductive types usually involves pattern matching, where different cases
corresponding to the constructors of the type are considered. There is another fundamental
mechanism in Coq named Records, which are a specialized form of inductive types, thereby
inheriting all the benefits associated with inductive types, including the ability to be used in
pattern matching and recursive definitions. Essentially, records are single-constructor inductive
types designed to group several related values together into a single value. Additionally, each
field within a record can have a type dependent on the values of the previous fields. Moreover,
records can employ coercion [68]; this is achieved by declaring one of the fields as a coercion
with the syntax :> , enabling implicit conversion of this record type to another specified type
when necessary.

A significant aspect of constructive logic is its approach to existential statements. In classical
logic, to verify a statement of the form ∃ x, P(x), known as weak existential quantification, it
suffices to give the existence of a witness x for which P(x) is true, without specifying a program
for constructing it. This form of existential statement is used when the goal is to establish the
existence of an element as part of proving certain proposition, rather than to use this element
directly to define functions. In contrast, constructive logic provides a more specific result: it
requires not only demontrating the existence of an object, but also providing a concrete program
for its construction. Within this framework, the existential statement is formalized in Coq as
{x | P(x)}, known as strong existential quantification. In more details, to prove an existential
statement in constructive logic, one must construct an explicit witness for x that satisfies the
property P(x). This approach ensures that the witness can be constructed and used in further
computations or definitions. This process of constructing witnesses and programs reflects the
Curry-Howard correspondence, a key feature of Coq’s logic. The Curry-Howard correspondence
is an equivalence between proofs in logic and programs in computer science. It is important to
note that while a proof of a strong existential allows us to infer the proof of the correspond-
ing weak existential statement, the reverse is not true except if we require an axiom (such as (v)).

Although Coq is primarily based on constructive logic, it remains flexible enough to handle
classical reasoning when necessary. This flexibility means that any theorem provable in classical

2.1. THE COQ PROOF ASSISTANT 13

logic can also be established in Coq, by incorporating classical axioms such as the law of
excluded middle (EM) (here {P} + {¬ P}) or the double negation elimination (¬ ¬ P → P, where
¬ denotes logical negation operation). Despite the foundational role of constructive logic
in systems like Coq, which offers significant advantages in specific areas of mathematics and
computer science, we opted to use classical logic in our work. This decision was driven by
two main factors: firstly, we aim to adhere to the traditional reasoning methods commonly
used by mathematicians; secondly, formalizing real analysis within an exclusively constructive
framework does not align with our objectives, as the formulation and proof of statements using
constructive logic do not fit the approach we want to pursue in our work.

Below, we outline the axioms used in our development:

(i) The Law of Excluded Middle: The principle of EM is necessary in classical analysis,
and is implemented in Coq as classic_dec and formally expressed as:

∀ P : Prop, {P} + {¬ P}.

This axiom asserts that for any proposition P, there exists either a proof of P or a proof of
its negation ¬ P. Additionally, the + symbol signifies a sum type, also known as a disjoint
union, which, in the context of logic represents a strong ”or”. This means that we can
decide whether the proposition P is either true or false. For instance, this axiom can be
applied to propositions involving real functions.

(ii) The Axiom of Choice: The axiom of choice is used in real analysis to select elements
from sets without explicitly constructing a method for choosing. The provided Coq code
snippet formalizes this axiom as follows:

∀ {A B : Type} (R : A → B → Prop),
(∀ x : A, ∃ y : B, R x y) → ∃ f : A → B, ∀ x : A, R x (f x).

This axiom asserts the existence of a choice function that assigns to each set a chosen
element from that set.

(iii) Propositional Extensionality: The propositional extensionality axiom states that if two
propositions P and Q are equivalent, then they are also equal as propositions. Formally,
the axiom is expressed as:

∀ P Q : Prop, P ↔ Q → P = Q.

Without propositional extensionality, proving equality between propositions is generally
impossible. This axiom implies the proof irrelevance axiom which is stated as follows:

∀ (H : Prop) (p1 p2 : H), p1 = p2.

(iv) Functional Extensionality: The functional extensionality axiom states that two func-
tions are equal if they produce the same outputs for all possible inputs.

∀ {A B : Type}, (f g : A → B), (∀ x : A, f x = g x) → f = g.

Without functional extensionality, proving equality between functions (a common task in
real analysis) is generally impossible.

(v) Constructive Indefinite Description:

∀ (A : Type) (P : A → Prop), (∃ x : A, P x) → {x : A | P x}.

14 CHAPTER 2. COQ AND SUPPORT LIBRARIES

This axiom enables the transition from a weak existence (i.e., without computational con-
tent) to a strong constructive existence. It implies the previous axiom of choice through the
following lemma ChoiceFacts.constructive_indefinite_descr_fun_choice from the Coq
standard library.

In essence, we have chosen to adopt classical logic for real analysis, aligning with the traditional
approach followed by most mathematicians. This approach includes the integration of the axioms
previously discussed, which will be assumed throughout this thesis.

2.2 The Coquelicot Library

Upon installing Coq, users gain access to the standard library, which provides a set of theories
that can be imported directly using the Require Import command. In this work, we employ
the standard library for real numbers Reals [57], which is based on a classical axiomatization of
real numbers developed in 2001. This library provides basic tools for dealing with real number
operations and properties, including limits for sequences and functions, derivatives of functions,
Riemann integrals, and a collection of theorems for these mathematical constructs. Additionally,
we make use of the Coquelicot1 library [14], an extension to the standard real numbers library,
which enhances and expands the functionality related to real analysis. It offers more user-friendly
handling of derivatives, integrals, continuity, and limits using filters.

2.2.1 Extended Real Numbers

While these features (i.e., derivatives, integrals, and limits) operate within the Coquelicot library
in the context of real numbers R, they are adeptly designed to address boundary behaviors
involving the extended real numbers R = R∪{−∞,+∞}. This extension is essential for handling
scenarios where operations might exceed the finite limits of real numbers, reaching into the
infinite boundaries (±∞), such as in the evaluation of limits or integrals, for example, considering
the limit of 1/x as x approaches zero from the positive side approaches +∞. The formal
representation of extended real numbers is provided in the Coquelicot library as follows:

Inductive Rbar : Set := Finite : R → Rbar | p_infty : Rbar | m_infty : Rbar.

In this context, R is implemented as an inductive type in Coq, which can be understood as a
data type allowing for multiple constructors. It is defined through three constructors: Finite,
representing real numbers and serving as a canonical injection mapping real numbers to the
extended real numbers. This constructor says that if we have a real number R, we can create
an instance of Rbar by applying Finite to it. For example, Finite 3.14 creates an Rbar value
representing the real number 3.14; the second constructor p_infty takes no arguments and
creates a new instance of Rbar representing positive infinity (+∞); and similarly, the last
constructor m_infty creates an instance of Rbar representing negative infinity (−∞). These
constructors enable the expression of operations and properties that involve infinite quantities,
which are otherwise not possible with standard real numbers. For example, considering the
operation sup (supremum), which finds the least upper bound of a set, this operation can
lead to infinite values depending on the set considered. In Coq code, this functionality is
encapsulated in operations like Rbar_lub for the least upper bound of subsets and Sup_seq for
the supremum of sequences.

Within the framework of extended real numbers, multiple properties for operations and order
relations have been established. For instance, addition is defined as a total function for all pairs

1https://gitlab.inria.fr/coquelicot/coquelicot/

https://gitlab.inria.fr/coquelicot/coquelicot/

2.2. THE COQUELICOT LIBRARY 15

of extended real numbers. The indeterminate forms ∞ −∞ are arbitrarily mapped toward 0.
Typically, lemmas concerning addition exclude these cases. Similarly, multiplication is a total
function, and the indeterminate forms 0 × +∞ are also assigned the value 0, aligning with
common conventions applied to nonnegative real numbers in Lebesgue integral theory.

2.2.2 Total Functions

One of the challenges in the standard library of reals arises from the use of dependent types,
i.e., types that depend on values, which can complicate the formalization of mathematical
concepts like limits, integrals, and derivatives. For instance, consider the concept of limits in
real analysis. A limit might only be defined when certain conditions (such as convergence) hold,
and thus, if the limit does not exist (or if we cannot provide a proof), the limit function is said
to be partial, i.e., it requires a proof to return a value. In Coquelicot, the aim is to reduce this
burden by using total functions. A total function, as opposed to partial functions, is defined for
all possible inputs in its domain and always returns a result, regardless of whether the proof
exists, and handles the proofs separately when needed. Even if the limit does not exist for a
particular function, the total function still provides a value. To help understand, let us consider
an example of the inverse function (see eg, [57, p.18]). In the Reals library, the inverse function
is defined as a total function, where it is not necessary to specify that the denominator must be
nonzero. This condition is only necessary when simplifying expressions like x × 1

x . Coquelicot
has extended this concept of total functions to other notions such as derivatives and more.

The fact that Coquelicot builds on top of the Reals standard library means that users do not
need to choose between one or the other. Instead, they can use both libraries together, taking
advantage of the best of both worlds. Coquelicot enhances real analysis without conflicting with
or overriding the standard Coq definitions. In other terms, the definitions in Coquelicot are
compatible with those in the Reals standard library, and users can easily switch between both
libraries without needing to redefine basic concepts. This is particularly useful when importing
or referencing modules from different parts of Coq’s environment.

2.2.3 Algebraic Hierarchy

Furthermore, the Coquelicot library uses canonical structures to implement a hierarchy of
algebraic structures, including commutative monoids and groups, rings, and module spaces
(see Figure 2.1), using type inference and a series of records equipped with coercions. These
structures are similar to type classes in other programming languages, such as Haskell [43],
but are specifically designed for Coq’s logical and functional programming environment. The
resulting hierarchy allows Coquelicot to systematically organize and relate various algebraic
concepts, making it easier to apply proofs and properties from one structure to another.
Each algebraic structure builds upon the simpler ones as depicted in Figure 2.1; for instance,
properties proven for abelian groups can be directly applied to other structures like rings, which
are more complex but still share some foundational properties with groups without redundancy.
This extension is possible because the ring structure includes the group structure as a part of
its definition.

This is a high level method that uses the type system of Coq and its capabilities for
structuring and abstracting algebraic concepts. Abstraction in this context means creating
general definitions that can apply to many specific cases without modification. For example,
once we define what it means to be a group abstractly, we can apply this definition to any

16 CHAPTER 2. COQ AND SUPPORT LIBRARIES

Figure 2.1: Hierarchy of algebraic structures used in this thesis. Additions to the Coquelicot library (version 3.4.0)

and previous work [10] are in blue . For instance, finite iterations of operators using ’MathComps bigop, most
morphisms, algebraic substructures, and the affine space structure have been added. Downward solid arrows
specify inheritance, horizontal dashed arrows specify parameters, and the bent double-headed arrows mention
that the input structure is shown to be an instance of the output one. For instance, any ModuleSpace (see
Section 5.3) has the AffineSpace (see Section 5.3.6) structure over itself.

specific instance set and operation that meets the criteria. In simpler terms, suppose we define
a canonical structure for a group in Coq, defined as a set G, along with a binary operation
+ that satisfies four fundamental properties: closure, associativity, identity, and invertibility
(refer to Section 5.3.3). If we prove a property or theorem for a generic group (G,+) in Coq,
the system can apply this theorem to any specific instance of a group, such as the real numbers
equipped with addition (R,+) without requiring reproof.

To broaden the understanding of algebraic structures and illustrate the role of canonical
structures within Coq, the diagram referenced in the Figure in 2.1 illustrates a sophisticated
hierarchy of algebraic structures used in the present developments, delineating how foundational
concepts like abelian monoids evolve into more complex entities such as rings, module spaces,
and affine spaces, each building upon the properties and operations of the ones above it. At
the base, we have abelian monoids, characterized by a single associative binary operation (either
addition or multiplication) that is commutative and includes an identity element. These monoids
extend into abelian groups by incorporating inverses for each element. The next level up is rings,
which enhance additive abelian groups by adding a second associative operation, multiplication,
that distributes over the addition operation. Moving further, module spaces generalize the
concept of vector spaces, allowing operations involving scalars from a ring, thus extending the
functionalities of groups with operations like scalar multiplication, linear combinations, and dot
products. At the pinnacle of the hierarchy in Figure 2.1 are affine spaces, which abstract points
and translations from vector spaces, focusing on geometric transformations rather than merely
algebraic operations. Each level in this hierarchy introduces morphisms that are compatible
with all operations of the algebraic structure called linear mappings for module spaces, and
affine mappings for affine spaces. This emphasizes the flexible nature of algebraic structures,
allowing properties and proofs developed for simpler structures to be extended to more complex
ones. Detailed discussions on these algebraic structures will be presented in Section 5.3.

2.3. THE MATH-COMP LIBRARY 17

2.3 The math-comp Library

The math-comp2 library [56], short for Mathematical Components, represents a collaborative
contribution within the Coq community. This comprehensive library encompasses the formal-
ization of a wide range of mathematical properties, with special emphasis on algebraic structures
such as groups, rings, fields, and beyond. It also develops finite types such as ordinals, which are
essential for managing families with a finite number of elements. Furthermore, the math-comp
library features a module bigop for the formalization of finitely iterated operations in monoids
like sums and products. Additionally, math-comp supports combinatorial structures, including
binomial coefficients. All the properties mentioned will be necessary for our developments that
will be discussed in detail in Chapter 5.

Bounded Natural Numbers

Bounded naturals are represented by a finite type, denoted as ’ I_n, which includes all natural
numbers from the set [0..n−1]. This is formally defined within math-comp as an inductive type,
referring to ordinals:

Inductive ordinal (n : nat) := Ordinal : ∀m : nat, m < n → ’I_n.

The construction of a value of type ordinal requires providing a proof that m < n. In this
context, n represents the upper bound of the set ’ I_n.

The finite type ’ I_n coerces to nat, which means that elements of this finite type can
be automatically treated as natural numbers within Coq. This feature allows all functions
and operations defined for natural numbers to be seamlessly applied to elements of ’ I_n

without needing to manually convert these elements into natural numbers. The cardinality
of ’ I_n is exactly n. This means that the set contains n distinct elements, and that ’ I_0 is empty.

We begin by introducing the basic concept of the ordinal ord0 corresponding to the value 0 in
the set ’ I_n.+1. It is defined as the smallest element in the finite type ’ I_n.+1, which represents
the set [0.. n] , where n.+1 is a notation for S n (the successor of n). We require the upper bound
to be n.+1 as ’ I_0 is empty and does not contain 0. The formal definition of ord0 is substantiated
by the lemma ltn0Sn, which proves that 0 is strictly less than n.+1 for any natural number n.

Definition ord0 : ’I_n.+1 := Ordinal (ltn0Sn n).

In addition to identifying the smallest ordinal, we also present the largest ordinal in a finite
set. The value ord_max serves this purpose, representing the maximum ordinal in the set ’ I_n.+1,
which includes every natural number up to n. This is achieved by setting the value of ord_max
to n in ’ I_n.+1, and using the lemma ltnSn, which formally proves that n is strictly less than
n.+1.

Definition ord_max : ’I_n.+1 := Ordinal (ltnSn n).

Let us now explore some specific utility functions and properties designed to manipulate
and transform ordinal types.

The operation of converting an ordinal from the set of size n to the set of size m, provided that
n = m, is defined as follows:

Definition cast_ord : ∀n m : nat, n = m → ’I_n → ’I_m.

2https://github.com/math-comp

https://github.com/math-comp

18 CHAPTER 2. COQ AND SUPPORT LIBRARIES

Moreover, ”widening” an ordinal involves adjusting the type of an index when transitioning
from a set with a smaller number of elements ’ I_n to a larger one ’ I_m, given that n ⩽ m. This
is given as:

Definition widen_ord : ∀n m : nat, n ⩽ m → ’I_n → ’I_m.

This function guarantees that the ordinal maintains its original value despite the increase in set
size. For example, consider n = 3 and m = 5, with a proof that H: n ⩽ m. If we take an ordinal i
in ’ I_3, corresponding to the value 2 (noting that 2 < 3), then the widen_ord H i is an ordinal
in ’ I_5, still representing the number 2, satisfying 2 < 5.

On the other hand, another important function in math-comp, referred to as lift, not only
transfers an ordinal from a smaller set to a larger one but also alters its value. This function is
mathematically expressed as follows:

∀i ∈ [0..n− 1], ∀j ∈ [0..n− 2], lift i j =

{
j if j < i
j + 1 else.

This is given in Coq as:

Definition lift : ∀n : nat, ’ I_n → ’I_n.−1 → ’I_n.

For example, consider i, the ordinal in ’ I_6, having a value of 2 (since 2 < 6), and the
ordinals j1 and j2 in ’ I_5 with values 1 and 3 respectively (note 1 < 5 and 3 < 5). Then,
lift i j1 yields an ordinal in ’ I_6 with value 1 (since 1 < 2 and 1 < 6), and lift i j2 results in
an ordinal in ’ I_6 of value 3 + 1 = 4 (since 3 ≥ 2 and 4 < 6).

Part I

Formalization of The Tonelli
Theorem

19

Chapter 3

Lebesgue Integration Theory

This chapter summarizes the necessary concepts from [11] needed for the continuation of
this work and delves into a formalization of the Lebesgue integral using the Coq proof
assistant (see Section 2.1). The Lebesgue integral was chosen over the Riemann and gauge
(Henstock–Kurzweil) integrals [5] for several reasons. For instance, the Riemann integral does
not support that

∫
lim fn = lim

∫
fn, a property needed for proving that Lp spaces are complete.

Additionally, the gauge integral does not easily extend to functions valued in Rn, Cn, or Banach
spaces, which is a limitation for our purposes.

In this thesis, we use the Lebesgue integral [70] for the full formal proof of the Tonelli
Theorem, as detailed in Chapter 4. This theorem focuses on the study of double integrals and
their exchanges, highlighting the ability of the Lebesgue integral in handling multi-variable
functions. The use of the Lebesgue integral is further anticipated to extend into the domain of
numerical analysis, especially in solving partial differential equations (PDEs) through the finite
element method (FEM). Moreover, its application is expected to contribute to the development
of Sobolev spaces [1]. These spaces are relevant in diverse areas, including functional analysis
(e.g. see [17]) as well as statistical and probabilistic mathematics (e.g. see [37]).

The Lebesgue integral is constructed by initially defining the integral for indicator functions
corresponding to measurable subsets. This definition is then extended to simple functions,
which consist of finite linear combinations of indicator functions, thereby expanding the concept
of integration to all nonnegative measurable functions by taking the supremum. We refer to this
method as the Lebesgue scheme. In chapter 4, we introduce the Lebesgue induction principle,
a tool, established further in Section 4.1, to prove properties about nonnegative measurable
functions that follow the Lebesgue scheme.

This chapter introduces the concepts of measure theory (e.g. see [22]). Initially, Section 3.1
discusses the measurability of subsets and functions. Section 3.2 presents a formalization of
measure in Coq and outlines its properties. Following this, Section 3.3 elaborates on the canonical
representation of simple functions and their integration. The chapter concludes with Section 3.4,
focusing on the integration of nonnegative measurable functions.

3.1 Measurable Space

A measurable space is a tuple (X,Σ), where X is a set, often referred to as the universe or
space that can vary from the real number line R to more complex spaces, and the component Σ
represents a σ-algebra on X. Specifically, a σ-algebra is a collection of subsets from the power

21

22 CHAPTER 3. LEBESGUE INTEGRATION THEORY

set, denoted as P(X), that includes the empty set and is closed under the operations of taking
complements and countable unions. This power set P(X) is defined as the set of all possible
subsets of X, including the empty set and X itself. Additionally, the subsets within Σ are called
measurable subsets, as detailed in Section 3.1.1. Moving further, Section 3.1.2 is devoted to the
cartesian product spaces, formed by the product of two measurable spaces. Lastly, Section 3.1.3
is focused on the measurability of functions.

3.1.1 σ-algebra and Measurability of Subsets

In Coq, we pose a generic set X as X : Type. The subsets of X can be represented by the type
X → Prop, which leads to defining the power set of X, of type (X → Prop) → Prop. In general,
listing every subset within a σ-algebra can be complicated due to its potentially vast size.
Instead, we specify a smaller collection of subsets known as generators, denoted by G, and
represented in Coq by genX : (X → Prop) → Prop. From these generators, the σ-algebra is
derived through operations including taking complements, countable unions, and intersections
(refer to [20, Section 8.5]). The smallest σ-algebra containing these generators G, is referred to
as a generated σ-algebra and symbolized by σ(G). It is often sufficient to confirm a particular
property for these generators to deduce that the same property holds for the entire σ-algebra
they generate.

The formalization of σ-algebras in Coq is defined as an inductive type, characterizing mea-
surable subsets. Considering a set of generators genX, a subset is called measurable if it meets one
of the following properties: it is a generator, it is empty, it is the complement of a measurable
subset, or it is the countable union of measurable subsets.

Inductive measurable : (X → Prop) → Prop :=
| measurable_gen : ∀A : X → Prop, genX A → measurable A

| measurable_empty : measurable (fun _ ⇒ False)
| measurable_compl : ∀A : X → Prop, measurable (fun x ⇒ ¬ A x) → measurable A

| measurable_union_countable : ∀(A : nat → X → Prop),
(∀ n, measurable (A n)) → measurable (fun x ⇒ ∃ n, A n x).

In this context, (fun x : X ⇒ expr) defines a lambda term. It means a function that takes an
input x of type X and returns the value of the expression expr.

Building upon this definition, several lemmas have been established, such as the measura-
bility of the entire set X (i.e., X ∈ Σ), and that of the intersection of countable subsets (i.e.,⋂
n∈NAn ∈ Σ), within a σ-algebra (see [11, Section 4.2 p.11]). Formally, a σ-algebra is defined

as a subset of the power set that coincides with the σ-algebra induced by itself as a generator,

Definition is_sigma_algebra : ((X → Prop) → Prop) → Prop :=
fun calS ⇒ calS = measurable calS.

This definition aligns with one of the commonly used mathematical definitions: a collection S
is a σ-algebra when it contains the empty set, and is closed under complement and countable
unions. The Coq implementation confirms this equivalence through the following lemma,

Lemma is_sigma_algebra_correct : ∀calS : (X → Prop) → Prop,
is_sigma_algebra calS ↔
(calS (fun _ ⇒ False) ∧
(∀ (A : X → Prop), calS (fun x ⇒ ¬ A x) → calS A) ∧
(∀ (A : nat → X → Prop), (∀ n, calS (A n)) → calS (fun x ⇒ ∃ n, A n x))).

For instance, when the measurable space has a topological space structure, the σ- algebra
typically chosen is the Borel σ-algebra. It is the smallest σ-algebra generated by all open subsets.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/sigma_algebra.v?ref_type=tags#L40-L47
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/sigma_algebra.v?ref_type=tags#L40-L47
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/sigma_algebra.v?ref_type=tags#L274
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/sigma_algebra.v?ref_type=tags#L278-L285

3.1. MEASURABLE SPACE 23

In the context of R, examples of such open subsets include open intervals like (a, b), where a
and b are real numbers with a < b.

3.1.2 Cartesian Product Space and Measurability

When considering two measurable spaces, namely (X1,Σ1) and (X2,Σ2), along with their
corresponding generators G1 and G2, determining the measurability of the cartesian product
X1 ×X2 must be carefully done in terms of choosing the appropriate σ-algebra. A key concept
in this context is the product σ-algebras (see Section 4.2.2), which is especially significant as it
ensures the measurability of the canonical projection, these are the mappings ((x1, x2) 7→ x1)
and ((x1, x2) 7→ x2) (for further details on measurable functions, refer to Section 3.1.3). The
product σ-algebra is generated by the Cartesian products of measurable subsets from X1 and X2.

However, when it comes to identifying a suitable generator for this σ-algebra, simply considering
the Cartesian products of elements from G1 and G2 proves to be wrong. For example, this
approach fails to establish the measurability of sets like A1 ×X2, where A1 belongs to G1. To
address this issue, it is necessary to include the full sets in the initial generator sets. This is
achieved through the following definition in Coq,

Variable genX1 : (X1 → Prop) → Prop.
Variable genX2 : (X2 → Prop) → Prop.
Definition Gen_Product : (X1 ∗ X2 → Prop) → Prop :=
fun A ⇒ ∃A1 A2, (genX1 A1 ∨ A1 = fun _ ⇒ True) ∧
(genX2 A2 ∨ A2 = fun _ ⇒ True) ∧ (∀ B : X1∗X2, A B ↔ A1 (fst B) ∧ A2 (snd B)).

here, the function fst extracts the first element of the pair B = (B1, B2), and snd extracts the
second element.

3.1.3 Measurablility of Functions

Building on the concept of measurability for subsets, the measurability of a function is defined
here. Considering two measurable spaces (X1,Σ1) and (X2,Σ2), along with their generators G1

and G2, a function f : X1 → X2 is said measurable when for every set A2 in Σ2, the pre-image
f−1(A2) is in Σ1. In other words, for a measurable subset A2 in X2, the set {x1 | f(x1) ∈ A2} in
X1 is measurable. The definition of a measurable function in Coq is then provided as follows:

Definition measurable_fun (f : X1 → X2) : Prop :=
∀ A2, measurable genX2 A2 → measurable genX1 (fun x1 : X1 ⇒ A2 (f x1)).

Let us focus on functions mapping from a measurable space X to R. We note that a σ-
algebra on R, typically the Borel σ-algebra, consists of subsets of R that include the empty
set and are closed under the operations of taking complements and forming countable unions
of these subsets. For R, a possible set of generators for this σ-algebra, among others, is the
intervals such as (a,∞) for each a in R. In Coq, this generator is defined as follows:

Definition gen_Rbar : (R → Prop) → Prop := fun A ⇒ ∃ a : R , ∀x : R , A x ↔ a ⩽R x.

To classify a function f : X → R as measurable, it must satisfy the condition that the pre-
image of any set from a σ-algebra on R under f is a measurable set in X. The definition of
measurability for this function is specified as follows:

Variable genX : (X → Prop) → Prop.
Definition measurable_fun_Rbar := measurable_fun genX gen_Rbar.

The set M(X,Σ) represents the set of measurable functions over a given measurable space X
with values in R, and within this collection, the subset comprising solely nonnegative functions
is indicated by M+(X,Σ), and referred to in Coq as:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/sigma_algebra.v?ref_type=tags#L409-L413
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/measurable_fun.v?ref_type=tags#L45-L48
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/sigma_algebra_R_Rbar.v?ref_type=tags#L416
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/measurable_fun.v?ref_type=tags#L209
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/measurable_fun.v?ref_type=tags#L214-L215

24 CHAPTER 3. LEBESGUE INTEGRATION THEORY

Definition Mplus : (X → R) → Prop := fun f ⇒ nonneg f ∧ measurable_fun_Rbar f.

One of the aspects of measurable functions is their compatibility with basic algebraic opera-
tions such as addition, scalar multiplication, and multiplication. Considering two nonnegative
measurable functions f, g : X → R within a measurable space X, it is established that their
summation f+g and any scalar multiplication af (where a ∈ R+) maintain measurability. These
concepts are formalized within Coq as follows,

Lemma Mplus_plus : ∀(f1 f2 : X → R), Mplus f1 → Mplus f2 →
Mplus (fun x ⇒ f1 x +R f2 x).

Lemma Mplus_scal : ∀(a : R) (f : X → R), 0 ⩽R a → Mplus f →
Mplus (fun x ⇒ a ∗R (f x)).

For additional details about R, refer to Section 2.2. Moreover, the pointwise multiplication of
two nonnegative measurable functions f and g is also measurable:

Lemma Mplus_mult : ∀(f1 f2 : X → R), Mplus f1 → Mplus f2 →
Mplus (fun x ⇒ f1 x ∗R f2 x).

Furthermore, the supremum of a sequence of nonnegative measurable functions (fn)n∈N main-
tains both non-negativity and measurability:

Lemma Mplus_Sup_seq : ∀(f : nat → X → R), (∀ n, Mplus (f n)) →
Mplus (fun x ⇒ Sup_seq (fun n ⇒ f n x)).

3.2 Measure Space

A measure space, denoted as (X,Σ, µ), is additionally equipped with a measure µ, a function
from Σ to the extended real number line. By allowing the measure µ to take the value +∞, it
becomes possible to handle sets of infinite size.

Well-known examples of measures include the Lebesgue measure, which generalizes the
concept of length to bounded intervals; the counting measure, assigning the number of elements
to each set; and the Dirac measure at a point a in a space X, which assigns a measure of 1 to
any set containing a and a measure of 0 to any set excluding a (see [11, Section 8 p.31]). These
measures are foundational in fields such as probability theory and functional analysis, and are
essential to understanding various probability measures detailed in [8].

Section 3.2.1 is dedicated to the formalization of measures within the Coq proof assistant. In
this section, we detail essential axiomatic properties, such as σ-additivity, which are fundamental
for a valid measure definition. Following this, Section 3.2.2 builds on this foundation to explore
the main properties of measures, including monotonicity, and the continuity of measures from
both below and above.

3.2.1 Formalization of Measures

In the context of a measurable space characterized by a set X : Type and a generator
genX: (X → Prop) → Prop (detailed in Section 3.1.1), measures are formalized as a Record type
in Coq. This record includes a mapping meas : (X → Prop) → Rbar that assigns to each subset a
value in R, along with essential properties that qualify this mapping as a measure. The definition
is structured as follows,

Record measure := mk_measure {
meas :> (X → Prop) → Rbar;

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/measurable_fun.v?ref_type=tags#L283-L285
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/measurable_fun.v?ref_type=tags#L424-L425
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/measurable_fun.v?ref_type=tags#L1438-L1440
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/measurable_fun.v?ref_type=tags#L285-L287
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/measure.v?ref_type=tags#L45-L55

3.2. MEASURE SPACE 25

meas_False : meas (fun _ ⇒ False) = 0;
meas_ge_0 : ∀A, 0 ⩽R (meas A);
meas_sigma_additivity : ∀A : nat → X → Prop,

(∀ n, measurable genX (A n)) → (∀p n m x, A n x → A m x → n = m) →
meas (fun x ⇒ ∃n, A n x) = Sup_seq (fun n ⇒ sum_Rbar n (fun m ⇒ meas (A m)))}.

To simplify the use of the measure record, coercion is employed (denoted by the symbol :>),
transforming the type measure into a function type (X→ Prop)→ R when needed. The principle
meas_sigma_additivity of σ-additivity, states that for a sequence (An)n∈N of pairwise disjoint
measurable subsets of X, symbolized mathematically by ⊎ for disjoint unions, the measure is
additive across the sequence,

µ

(⊎
i∈N

Ai

)
=
∑
i∈N

µ(Ai) = sup
n∈N

∑
i∈[0..n]

µ(Ai) (3.1)

3.2.2 Main Properties of Measures

From the assumptions defining measures, further properties such as monotonicity are derived,

A ⊂ B ⇒ µ(A) ⩽ µ(B)

for measurable subsets A and B. This allows the replacement of the limit of a nondecreasing
sequence with its supremum. Other interesting concepts known as the continuity from below
and from above of the measure are introduced, respectively (see [11, Section 5.2 p.18] for more
details). In Section 4.2.4, we rely on these properties to establish the measurability of the
measure of the section of subsets.

For any nondecreasing sequence of measurable subsets A1 ⊆ A2 ⊆ A3 ⊆ · · · in Σ, continuity
from below of µ states that the measure of the union of these subsets equals the limit (or the
supremum) of the measures of these subsets. In mathematical terms,

µ

(⋃
n∈N

An

)
= lim

n→∞
µ(An) = sup

n∈N
µ(An).

For any nonincreasing sequence of measurable subsets A1 ⊇ A2 ⊇ A3 ⊇ · · · with at least one
subset of finite measure µ(A1) < ∞, continuity from above of µ states that the measure of the
intersection of these subsets equals the infimum of the measures of these subsets.

µ

(⋂
n∈N

An

)
= lim

n→∞
µ(An) = inf

n∈N
µ(An).

The Coq formalization of continuity from below is straightforward as a property of the measure
function.

Definition continuous_from_below : ((X → Prop) → R) → Prop :=
fun mu ⇒ ∀A : nat → X → Prop,

(∀ n, measurable genX (A n)) → (∀ n x, A n x → A (S n) x) →
mu (fun x ⇒ ∃n, A n x) = Sup_seq (fun n ⇒ mu (A n)).

here, Sup_seq calculates the supremum of a sequence of real numbers. We can prove that this
continuity property holds for all measures. This is formalized as follows:

Lemma measure_continuous_from_below : ∀(mu : measure), continuous_from_below mu.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/measure.v?ref_type=tags#L345-L349
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/measure.v?ref_type=tags#L352-L353

26 CHAPTER 3. LEBESGUE INTEGRATION THEORY

3.3 Simple Functions

This section is divided into three parts, each focusing on different aspects of simple functions
and their application in measure theory. Section 3.3.1 is dedicated to the definition of simple
functions. Moving forward, Section 3.3.2 addresses the canonical representation of simple func-
tions in Coq, ensuring that the function values remain finite and are efficiently handled through
a strictly sorted list. Lastly, Section 3.3.3 concentrates on the integration of nonnegative simple
functions, highlighting the mathematical expression of the Lebesgue integral for these functions
and its implementation in Coq.

3.3.1 Definition of Simple Functions

Simple functions are essential in constructing the Lebesgue integral. Such a function, mapping
from a set X to the real numbers R, can be expressed as a finite sum of distinct constants,
each multiplied by a characteristic function, that indicates the measurable subsets of X where
f attains the corresponding constant value. Specifically, they are functions whose image has
finite cardinality.

Mathematically, a simple function f is defined as:

f =
∑

y∈f(X)

y × 1f−1({y}) (3.2)

where 1A denotes the characteristic function (or indicator function) of subset A. The character-
istic function is defined in Coq via pattern matching, assigns 1 to elements within the specified
subset and 0 to all others,

Definition charac : (X → Prop) → X → R :=
fun A x ⇒ match (excluded_middle_informative (A x)) with
| left _ ⇒ 1
| right _ ⇒ 0
end.

Here excluded_middle_informative is the excluded middle axiom defined in Section 2.1. A char-
acteristic function 1A is measurable if and only if its corresponding subset A belongs to the
σ-algebra Σ, which is also convenient for representing the restriction of numerical functions to
subsets of X (see for instance Section 4.2.3). The set of measurable characteristic functions is
denoted as IF(X,Σ). Measurable simple functions are collected into the set SF(X,Σ), with a
subset SF+(X,Σ) including only the nonnegative simple functions. This subset, SF+(X,Σ),
is compatible with various mathematical operations, such as addition, multiplication, and non-
negative scalar multiplication.

3.3.2 Canonical Representation of Simple Functions

In [11], simple functions are canonically characterized by the strictly sorted list of their values,
using the predicate SFplus genX : (X → R) → Prop. The traditional mathematical formulation of
simple functions, as seen in Equation (3.2), is not directly implementable in Coq for cases where
f(X) might be infinite. Since f is a simple function, we guarantee that this range remains
finite. To address this, a data structure in the form of a list is adopted, allowing access to the
possible values, thereby enabling the computation of integrals for simple functions.

This Coq definition outlines a property called finite_vals_canonic that links the function f
and the unique sorted list ℓ of real numbers, ensuring that each element in ℓ corresponds to at

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Subset_charac.v?ref_type=tags#L38-L42
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/simple_fun.v?ref_type=tags#L45-L49

3.3. SIMPLE FUNCTIONS 27

least one element in X under the function f , and representing all possible useful values of the
function f when applied to the elements of the set X.

Definition finite_vals_canonic : (X → R) → list R → Prop :=
fun f l ⇒ (LocallySorted Rlt l) ∧ (∀ y, In y l → ∃x, f x = y) ∧ (∀ x, In (f x) l).

Here, LocallySorted : (R→ R→ Prop) → list R→ Prop denotes the inductive definition of a
sorted list, where the strict ordering Rlt is required to eliminate duplicates.

To establish that these simple functions indeed represent a finite linear combination of in-
dicator functions, it has been demonstrated that finite_vals_canonic f ℓ leads to an equality
similar to the Equation (3.2), but with y drawn from the list ℓ,

f =
∑
y∈ℓ

y × 1f−1({y}).

In Coq, this is formulated as,

Lemma finite_vals_sum_eq : ∀(f : X → R) (l : list R), finite_vals_canonic f l →
∀ x, f x = sum_Rbar_map l (fun y ⇒ y ∗ (charac (fun z ⇒ f z = y) x)).

We now present the formalization in Coq of simple functions that have measurable pre-
images. The definitions are listed as follows:

Definition SF_aux := fun (genX : (X → Prop) → Prop) (f : X → R) (l : list R) ⇒
finite_vals_canonic f l ∧ (∀ y, measurable genX (fun x ⇒ f x = y)).

Definition SF := fun (genX : (X → Prop) → Prop) (f : X → R) ⇒ {l : list R | SF_aux genX f l}.

In this context, the result is within the Set type because direct access to it is essential for
integral computation. A weak existential declaration is not allowed for this purpose. In Coq,
the expression {x | P x} signifies that there is a constructive way to prove the existence of an
x such that P x holds, with the construct itself being of type Set. This constitutes a strong
existential, meaning it is possible to extract and use the witness x in a statement (see Section 2.1).

Accordingly, the set SF+ is represented in Coq as,

Definition SFplus := fun (genX : (X → Prop) → Prop) (f : X → R) ⇒
nonneg (fun x : X ⇒ f x) ∧ (∃ l : list R, SF_aux genX f l).

3.3.3 Integration of Simple Functions

The Lebesgue integral of a simple function f , that belongs to the set SF , is defined as the sum
of the product between the function values and the measures of the sets on which these values
are taken. This is mathematically represented as follows:∫

SF
f dµ

def.
=

∑
y∈f(X)

y × µ
(
f−1({y})

)
. (3.3)

Here, the subsets f−1({y}), corresponding to each y in the range f(X), partition the domain
X of the function.

The definition of the integral within SF is straightforward and derived from a proof of type
SF.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/simple_fun.v?ref_type=tags#L307-L313
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/simple_fun.v?ref_type=tags#L315-L316
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/simple_fun.v?ref_type=tags#L393-L394

28 CHAPTER 3. LEBESGUE INTEGRATION THEORY

Context {X : Type}.
Context {genX : (X → Prop) → Prop}.
Variable mu : measure genX.

Definition af1 : (X → R) → R → R := fun (f : X → R) (y : R) ⇒
y ∗R (mu (fun x : X ⇒ Finite (f x) = y)).

Definition LInt_SF : ∀(f : X → R), SF genX f → R :=
fun f Hf ⇒ let lf := proj1_sig Hf in sum_Rbar_map lf (af1 f).

This definition requires the hypothesis Hf : SF genX f, which validates that f is indeed a simple
function and provides the list witness lf that the definition relies upon. The function proj1_sig

returns the first part of Hf, namely the list lf, which is then used as the basis for summation.

A remarkable property of the integral of simple functions is its linearity, which states that the
integral operator is linear with respect to both the addition of functions and scalar multiplication
in SF (refer to [11, Section 6.3 p.22]).

3.4 Integration of Nonnegative Measurable Functions

We now focus on nonnegative measurable functions of the form X → R , which may adopt an
extensive range of values, including infinite ones. The Lebesgue integral for these nonnegative
measurable functions is defined by approximating them from below using an increasing sequence
of simple functions. The formulation of the Lebesgue integral, along with some of its initial
properties, is introduced in Section 3.4.1. Following this, Section 3.4.2 focuses on the concept
of adapted sequences. The crucial theorem of Beppo Levi (monotone convergence) is discussed
in Section 3.4.3.

3.4.1 Definition and First Properties

The construction of the Lebesgue integral within the set M+ (see Section 3.1.3) operates in
three steps. Initially, the integration of indicator functions in IF is achieved by taking the
measure of their respective supports. Subsequently, this integration framework is extended to
simple functions in SF+, using the principle of positive linearity (refer to Section 3.3.3 for
further details). Finally, this process involves a further extension to all measurable functions in
M+, by taking the supremum of the integrals of these simple functions.

The integral for a nonnegative measurable function f within M+ is represented as follows:

∀f ∈ M+,

∫
M+

f dµ
def.
= sup

ψ∈SF+
ψ⩽f

∫
SF+

ψ dµ (3.4)

In this expression, the supremum is computed over all nonnegative measurable simple functions
ψ that are pointwise less than or equal to f . The integral within SF+ is detailed in Section 3.3.3.

Defining this integral as a total function, we assign a value to any input function f . This
Coq definition is similar to the mathematical expression (3.4).

Definition LInt_p (f : X → R) : R :=

Rbar_lub (fun y : R ⇒ ∃(g : X → R) (Hg : SF genX g),
non_neg g ∧ (∀ x, g x ⩽R f x) ∧ LInt_SF mu g Hg = y).

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/LInt_p.v?ref_type=tags#L46-L52

3.4. INTEGRATION OF NONNEGATIVE MEASURABLE FUNCTIONS 29

In this definition, Rbar_lub has the type (R → Prop) → R (see Section 2.2), and it computes the
least upper bound (LUB) or supremum.

An elementary example of integration is the relationship between this integral and the char-
acteristic function since the latter is a measurable function. When the subset A is measurable,
1A belongs to M+, and its integral with respect to the measure µ corresponds to the measure
of A. This is written as: ∫

M+

1A dµ = µ(A). (3.5)

Lemma LInt_p_charac :
∀ A, measurable genX A → LInt_p (charac A) = mu A.

A fundamental aspect of the Lebesgue integral is its monotonicity property, which can be stated
as follows:

∀f, g ∈ M+, f ⩽R g =⇒
∫
M+

f dµ ⩽ R

∫
M+

g dµ.

This is translated into Coq as:

Lemma LInt_p_monotone :

∀ (f g : X → R), (∀ x, f x ⩽R g x) → LInt_p f ⩽R LInt_p g.

The concept of the least upper bound used in defining the total function suffices to ensure
monotonicity for any functions f and g, not only for the nonnegative and measurable functions
as indicated in the mathematical statement.

Another result involves the σ-additivity of the integral stating that for any sequence of
nonnegative measurable functions (fn)n∈[1..N], the integral of the sum of these functions is equal
to the sum of their individual integrals within M+. Mathematically, this can be expressed as
follows: ∫

M+

(
sup
N∈N

N∑
n=1

fn

)
dµ = sup

N∈N

N∑
n=1

∫
M+

fn dµ (3.6)

3.4.2 Adapted Sequences

An adapted sequence for a given function f , is a nondecreasing sequence of nonnegative functions
(φn)n∈N, that converges pointwise from below toward f : as n tends to infinity, the pointwise
limit of the sequence becomes f , and equivalently, the supremum (or least upper bound) of the
sequence at each point equates to f . Mathematically, this means:

f = lim
n→∞

φn = sup
n∈N

φn.

In Coq, this concept is expressed as:

Definition is_adapted_seq : (X → R) → (nat → X → R) → Prop :=
fun f g ⇒ (∀ n, non_neg (g n)) ∧ (∀ x n, g n x ⩽ g (S n) x) ∧

(∀ x, is_sup_seq (fun n ⇒ g n x) (f x)).

Since the Lebesgue integral extends the notion of integration to a wider class of functions beyond
simple functions, adapted sequences were constructed to provide a means to approximate any
nonnegative measurable function by a sequence of simple functions. In [11], the value of adapted
sequences corresponding to all nonnegative measurable functions was given.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/LInt_p.v?ref_type=tags#L70-L71
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/LInt_p.v?ref_type=tags#L88-L91
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/simple_fun.v?ref_type=tags#L1362-L1367

30 CHAPTER 3. LEBESGUE INTEGRATION THEORY

3.4.3 The Theorem of Beppo Levi (Monotone Convergence)

The theorem of Beppo Levi, also referred to as the monotone convergence theorem, stands as
one of the most fundamental results within the domains of measure and integration theories.
Given a measure space defined by a set X, a σ-algebra Σ, and a measure µ, the theorem of
Beppo Levi introduces an integral-limit interchange formula, mathematically represented as,

Theorem 1 (Beppo Levi, monotone convergence).
Let (fn)n∈N be a sequence of pointwise nondecreasing and nonnegative measurable functions.
Then, the supn∈N fn is nonnegative and measurable, and we have in M+∫

M+

sup
n∈N

fn dµ = sup
n∈N

∫
M+

fn dµ (3.7)

The proof of this lemma involves a comprehensive set of established results of measurable func-
tions, including monotony of the integral, and fundamental properties of the supremum as
referenced in [11]. This theorem is formalized in Coq as follows:

Lemma Beppo_Levi : ∀(f : nat → X → Rbar),
Mplus_seq genX f → (∀ x n, f n x ⩽R f (S n) x) →
LInt_p mu (fun x ⇒ Sup_seq (fun n ⇒ f n x)) = Sup_seq (fun n ⇒ LInt_p mu (f n)).

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/LInt_p.v?ref_type=tags#L518-L521

Chapter 4

Formalization of the Tonelli Theorem

This chapter highlights one of my contributions during my PhD, detailing the formalization of
the Lebesgue induction principle and the Tonelli Theorem. This work has been published as a
conference article in 2022 [9]. Section 4.1 is dedicated to the Lebesgue induction principle, a
proof technique for dealing with properties related to nonnegative measurable functions. Sec-
tion 4.2 is focused on the construction of product measures within a product space, including
the development of the corresponding product σ-algebra and the properties of the section of
subsets. Furthermore, Section 4.3 is dedicated to the construction of iterated integrals and the
formalization of the proof of the Tonelli theorem. These developments are supported by the
insights presented in Chapter 3, which outline the properties of Lebesgue integration.

4.1 Lebesgue Induction Principle

As explained in Section 3.1.3, within the context of a measurable space (X,Σ), the function
space M+(X,Σ) demonstrates closure under nonnegative scalar multiplication, addition, and
the supremum operation. The latter implies that if we consider a collection, potentially infinite,
of functions from M+ and take the supremum (least upper bound) of that collection pointwise,
the resulting function remains within the M+ space.

4.1.1 Inductive Representation of Nonnegative Measurable Functions

We recall the function spaces as defined in Section 3.1.3 as follows:

M+(X,Σ) = {f : X → R+ | ∀A ⊂ R measurable , f−1(A) ∈ Σ} (4.1)

SF+(X,Σ) = {f : X → R+ | f(x) =
∑

y∈f(X)

y × 1f−1({y})}, (4.2)

IF(X,Σ) = {1A : X → {0, 1} | A ∈ Σ}. (4.3)

The space M+ of nonnegative measurable functions was initially defined in Coq and discussed
in Section 3.1.3, page 23, following the standard mathematical definition denoted as Mplus.
According to this definition, a function is measurable if the pre-image of any measurable set is
also measurable. In this section, however, we introduce an alternative representation of M+ as
an inductive type, Mp, built on extended real-valued functions. Specifically, we represent the set
M+ as the closure of measurable characteristic functions under positive linear combinations
and increasing supremum operations.

31

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Mp.v?ref_type=tags#L250-L255

32 CHAPTER 4. FORMALIZATION OF THE TONELLI THEOREM

Inductive Mp : (X → R) → Prop :=
| Mp_charac : ∀A, measurable genX A → Mp (charac A)

| Mp_scal : ∀ (a : R) (f : X → R), 0 ⩽ a → Mp f → Mp (fun x ⇒ a ∗R f x)

| Mp_plus : ∀ f g : X → R , Mp f → Mp g → Mp (fun x ⇒ f x +R g x)

| Mp_sup : ∀ f : nat → X → R , incr_fun_seq f → (∀ n, Mp (f n)) →
Mp (fun x ⇒ Sup_seq (fun n ⇒ f n x)).

Here, charac A denotes the characteristic function 1A of a subset A (see Section 3.3.1),
genX refers to the generator of the measurable space X (see Section 3.1.1), and the property
incr_fun_seq f is defined by the following relation ∀ x n, f n x ⩽R f (S n) x.

Consequently, the Coq system provides for free the following induction lemma corresponding to
Mp:

Lemma Mp_ind : ∀P : (X → R) → Prop,
(∀ A, measurable genX A → P (charac A)) →
(∀ (a : R) f, 0 ⩽ a → Mp f → P f → P (fun x ⇒ a ∗R f x)) →
(∀ f g, Mp f → P f → Mp g → P g → P (fun x ⇒ f x +R g x)) →
(∀ f, incr_fun_seq f → (∀ n, Mp (f n)) →
(∀ n, P (f n)) → P (fun x ⇒ Sup_seq (fun n ⇒ f n x))) →
∀ f, (Mp f → P f).

This representation is a widely-used proof technique in Lebesgue integration theory, that has
various applications, including proving the Tonelli theorem as highlighted in the article [9], which
will be explained later in Section 4.3. This approach can be informally stated as,

Lemma 1 (Lebesgue induction principle). Let P be a predicate on functions of type X → R.
Assume that P holds on IF , and that it is compatible on M+ with positive linear operations
and with the supremum of nondecreasing sequences:

∀A, A ∈ Σ ⇒ P (1A), (4.4)

∀a ∈ R+, ∀f ∈ M+, P (f) ⇒ P (af), (4.5)

∀f, g ∈ M+, P (f) ∧ P (g) ⇒ P (f + g), (4.6)

∀(fn)n∈N ∈ M+, (∀n ∈ N, fn ⩽ fn+1 ∧ P (fn)) ⇒ P

(
sup
n∈N

fn

)
. (4.7)

Then, P holds on M+.

There exist several alternative formulations of the Lebesgue induction principle. For
example, we choose to have a in R rather than R in the Equation (4.5), resulting in an
equivalent yet more straightforward lemma to use. Moreover, as indicated in ([71, p.8]), it is
possible to refine the premises of the constructors. For instance, in the Equation (4.6), it might
suffice to consider simple functions f and g with distinct image values, except 0, or those with
disjoint supports.

Lemma 1 (Lebesgue induction principle) holds on Mp. However, we want to establish its
validity within Mplus. To achieve this, we will demonstrate the equivalence between Mp and
Mplus.

4.1.2 Verifying SFp and SFplus Equivalence

We further introduce an inductive type for the set of nonnegative simple functions denoted as
SFp, with constructors that are similar to the initial three constructors of Mp.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Mp.v?ref_type=tags#L38-L41

4.1. LEBESGUE INDUCTION PRINCIPLE 33

Inductive SFp : (X → R) → Prop :=
| SFp_charac : ∀A : X → Prop, measurable genX A → SFp (charac A)
| SFp_scal : ∀ (a : R) (f : X → R), 0 ⩽ a → SFp f → SFp (fun x ⇒ a ∗ f x)
| SFp_plus : ∀ (f g : X → R), SFp f → SFp g → SFp (fun x ⇒ f x + g x).

In this section, our primary goal is to establish the correctness of the SFp definition in comparison
to the one outlined in Section 3.3.2 as SFplus. This involves proving a lemma that establishes
the equivalence of the inductive type SFp with SFplus, as stated below,

Lemma SFp_correct : ∀f, SFp f ↔ SFplus genX f.

We recall that SFplus is defined as the set of simple functions canonically represented through
a strictly sorted list of their values, as elaborated in [11]. The definition of SFplus includes
the generator genX as an argument, which is essential to ensure that the function f meets the
measurability requirements of the measurable space X. genX also serves as an argument of SFp,
not implicit here.

The proof of this lemma is divided into two implications separately. The first part, proving
SFp f implies SFplus genX f, is straightforward and uses the induction property on the hypothesis
for validation. The reverse implication, from SFplus genX f to SFp f, is more complex as it relies
on auxiliary results, which will be detailed later in the proof. We proceed by addressing different
cases based on the structure of the list ℓ.

(i) Empty List ℓ = []: The function f belongs to SFp since f is expressed as a linear combi-
nation of characteristic functions over an empty set, which are trivially measurable.

(ii) Base Case (v1 :: []): We consider f with only one value, v1, represented as,

f = v1 × 1f−1({v1}).

which meets the SFp conditions through scaling and characteristic function properties.

(iii) Inductive Step (v1 :: v2 :: ℓ): In this case, we rely on an auxiliary lemma that will be
proved after we complete the proof of this implication.

Lemma SFplus_cons :
∀ (f : X → R) v1 v2 l, nonneg f → SF_aux genX f (v1 :: v2 :: l) →
let g x := f x + (v1 − v2) ∗ charac (fun t ⇒ f t = v2) x in

nonneg g ∧ SF_aux genX g (v1 :: l).

This lemma constructs a simple function g, associated with a smaller sublist of size n+ 1,
from a simple function f represented by a list of values of size n + 2. The function g is
defined as the sum of f and the difference between the first two values in the list, scaled
by the characteristic function of the pre-image (or inverse image) of v2 under the function
f . This allows expressing f as:

f = (v2 − v1) × 1f−1({v2}) + g,

such that g maintains the SFplus conditions. Applying the SFplus rule confirms that f , as
a sum of two simple functions, remains simple. The scalar multiple (v2 − v1) × 1f−1({v2})
is then validated as a simple function using the SFp_scal rule, contingent on v2 − v1 ≥ 0,
which is established due to the ordering described in section 3.3.2. Finally, the SFp_charac

rule substantiates the simplicity of the characteristic function. By applying the induction
hypothesis to g(x), we verify its simplicity by using the recursive reduction in list ℓ, thereby
deducing that f indeed satisfies the SFp criteria. □

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Mp.v?ref_type=tags#L115
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/simple_fun.v?ref_type=tags#L330-L335

34 CHAPTER 4. FORMALIZATION OF THE TONELLI THEOREM

The construction of the function g is challenging for two reasons. Firstly, assigning the value
zero to g over the set f−1({v2})—that is, for every x in the domain of f where f(x) = v2,
setting g(x) = 0)— is unsuitable because zero might introduce a new value to the list, which
goes against the objective of reducing the size of the list of values of g. Consequently, the
initial list must contain at least two distinct values to avoid this issue. Secondly, the alternative
approach of setting g to v2 over f−1({v1}) does not allow us to represent f as the sum of g and
a nonnegative value multiplied by an indicator function.

Now, let us proceed to prove the lemma SFplus_cons. Given f ∈ SF+ and its associated
canonical list ℓ, this lemma constructs a new function g in SF+, canonically associated with
the list ℓ minus a specific item v2. This implies that on the nonempty subset f−1({v2}), g is
constrained to take one of the remaining values, specifically v1, as illustrated in Figure 4.1.
Furthermore, this construction guarantees the property g ⩽ f due to the property of the
canonical list (see Section 3.3.2).

x

f(x)

v1

v2
v3

...

v7

x

g(x)

v1

v2
v3

...

v7

Figure 4.1: Illustration of Lemma SFplus_cons. The value v2 taken by the simple function f (on the left) is
replaced in g (on the right) by the value v1 (in red).

Since f belongs to SFplus then we express f as,

f =
∑

v∈{v1,v2}∪ℓ

v × 1f−1({v}),

where v1 and v2 are distinct values such that v1 < v2, and neither v1 nor v2 is included in the list ℓ.

By defining g as g := f + (v1 − v2) × 1f−1({v2}), the result is,

g =
∑

v∈{v1}∪ℓ

v × 1f−1({v}) + v1 × 1f−1({v2}),

showing that g belongs to SFplus with a reduced list of values.

4.1.3 Equivalent Inductive Types of Mp

To decompose the proof process of the equivalence between Mp and Mplus in Coq, we introduce
and enumerate several inductive types that serve as equivalents to the inductive type Mp. More
precisely, the first inductive type, Mp1, is constructed using SFp. Meanwhile, the second inductive
type, Mp2, is proven to be equivalent to Mp1. The passage from Mp2 to Mp goes by taking the
supremum, which allows to recover functions that yield values in R , using the coercions between
R and R (see Section 2.2). The Coq code implementations corresponding to these inductive
types are provided below,

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/simple_fun.v?ref_type=tags#L330-L335
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Mp.v?ref_type=tags#L137-L140
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Mp.v?ref_type=tags#L186-L191

4.2. PRODUCT MEASURE ON A PRODUCT SPACE 35

Inductive Mp1 : (X → R) → Prop :=
| Mp1_SFp : ∀ f : X → R, SFp genX f → Mp1 f

| Mp1_sup : ∀ (f : nat → X → R), incr_fun_seq f →
(∀ n, Mp1 (f n)) → Mp1 (fun x ⇒ Sup_seq (fun n ⇒ f n x)).

Inductive Mp2 : (X → R) → Prop :=
| Mp2_charac : ∀A, measurable genX A → Mp2 (charac A)
| Mp2_scal : ∀ (a : R) (f : X → R), 0 ⩽ a → Mp2 f → Mp2 (fun x ⇒ a ∗ f x)
| Mp2_plus : ∀ (f g : X → R), Mp2 f → Mp2 g → Mp2 (fun x ⇒ f x + g x)
| Mp2_sup : ∀ (f : nat → X → R), incr_fun_seq f →

(∀ n, Mp2 (f n)) → Mp2 (fun x ⇒ Sup_seq (fun n ⇒ f n x)).

We notice that Mp2 shares similarities with the inductive type Mp, yet differs in their operational
definitions for addition and multiplication: Mp uses +R and ∗R , whereas Mp2 adopts the real +R

and ∗R operators. The path for proving the equivalence between Mp and these two inductive
types is straightforward, using induction on the hypothesis of f and the construction of the
adapted sequences (see Section 3.4.2).

4.1.4 Verifying Mp and Mplus Equivalence

With all essential elements established, we are now equipped to verify the correctness of the Mp

definition. In other words, we aim to ensure that Mp accurately represents M+ just as Mplus

does. This is captured in the following lemma,

Lemma Mp_correct : ∀f, Mp f ↔ Mplus genX f.

To establish the first implication of this equivalence, Mp f → Mplus genX f, the proof uses the
inductive principle on the premise Mp f. This requires proving that f, as defined by each
of the Mp constructors (refer to Section 4.1.1), satisfies Mplus. Conversely, the proof for
Mplus genX f → Mp f is more direct, relying solely on the implications Mp2 genX f → Mp f and
Mplus genX f → Mp2 f, as outlined in Section 4.1.3. Thus, the Lebesgue induction principle ap-
plies to Mplus.

4.2 Product Measure on a Product Space

In this section, we define the product measure for measurable subsets within a product space,
allowing for integration over such a product space. The concepts and tools developed here are
used for the subsequent proof of the Tonelli theorem in Section 4.3.

4.2.1 Specification of a Product Measure

Before delving into the specifics of the product measure, let us establish the concept of a
product measure space. Consider two measure spaces (X1,Σ1, µ1) and (X2,Σ2, µ2), we define
the product measure space as (X1×X2,Σ1⊗Σ2, µ1⊗µ2), where Σ1⊗Σ2 represents the product
σ-algebra, which will be further discussed in Section 4.2.2, and µ1 ⊗ µ2 is the product measure
that operates over this product σ-algebra and will be defined in Section 4.2.5.

The measure µ1 ⊗µ2 has to satisfy the properties of measures outlined in Section 3.2.1, and
conforms to the box property. This property is expressed as follows,

∀A1 ∈ Σ1, ∀A2 ∈ Σ2, µ1 ⊗ µ2(A1 ×A2) = µ1(A1)µ2(A2). (4.8)

To guarantee the existence and uniqueness of such a product measure (see Section 4.2.5), we
require that µ1 and µ2 be σ-finite. In other words, the full sets X1 and X2 are the nondecreasing

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Mp.v?ref_type=tags#L292

36 CHAPTER 4. FORMALIZATION OF THE TONELLI THEOREM

unions of subsets with finite measures. Informally, this can be written as: X1 =
⋃∞
n=1An and

X2 =
⋃∞
n=1Bn, where each An and Bn has a finite measure, i.e., µ1(An) <∞ and µ2(Bn) <∞.

The construction of a candidate product measure involves a three-step process, as illustrated
in Figure 4.2. Initially, we establish X1-sections (also known as ”vertical” cuttings) of subsets
to be Σ2-measurable (refer to Section 4.2.3). Subsequently, we prove the measurability of the
measure of these sections over (X1,Σ1), constructed in two stages, depending on whether µ is
finite or σ-finite as will be detailed in Section 4.2.4. Finally, the candidate product measure is
defined as the integral of these section measures, as will be outlined in Section 4.2.5. Ultimately,
we verify that this candidate qualifies as a product measure, and we ensure its uniqueness
is guaranteed. The main argument behind establishing the measurability of the measure of
sections lies in the monotone class theorem [22, Section 1.6 p.40], which is applied twice in this
context: first, to establish the measurability of the measure of sections, and second, to ensure
the uniqueness of the resulting product measure.

A ∈ Σ1 ⊗ Σ2

sx1(A) ∈ Σ2

(x1 7−→ µ2(sx1(A))) ∈ M+(X1,Σ1)

µ1 ⊗ µ2 :=
(
A 7−→

∫
X1
µ2(sx1(A)) dµ1

)
is a product measure

Monotone Class Thm
Restricted measure

product measure is unique

Figure 4.2: Flowchart illustrating the construction of the product measure. The filled colors represent different
subsections: 4.2.2 in brown , 4.2.3 in yellow , 4.2.4 in green , and 4.2.5 in turquoise blue . Dashed lines indicate
the application of the proof arguments.

4.2.2 Product σ-Algebra

In conjunction with the notion of product measure, the product σ-algebra, denoted as Σ1 ⊗ Σ2

over the space X1 × X2 is introduced in [11, Section 4.3]. This σ-algebra is the smallest σ-
algebra generated by the Cartesian products of measurable subsets A1 and A2 that belong to
the respective σ-algebras Σ1 and Σ2. Its informal mathematical definition is as follows,

Σ1 ⊗ Σ2
def.
= σ (Σ1×Σ2) where Σ1×Σ2

def.
= {A1 ×A2 | A1 ∈ Σ1, A2 ∈ Σ2}. (4.9)

Here, σ(·) denotes the σ-algebra generated by a collection of sets Σ1×Σ2 (refer to Section 3.1.1).

According to [11, Section 4.3] and Section 3.1.2, Σ1 ⊗ Σ2 can be equivalently described as
the σ-algebra generated by the expression,

(gen(Σ1) ∪ {X1}) × (gen(Σ2) ∪ {X2})

This generator is implemented in Coq as Gen_Product genX1 genX2, and is succinctly referred to
as genX1xX2 in subsequent sections. Similarly, reversing the variable order yields genX2xX1, which
corresponds to Gen_Product genX2 genX1.

4.2. PRODUCT MEASURE ON A PRODUCT SPACE 37

4.2.3 Section of Subsets

X1

X2

A

x1

sx1(A)

y1

sy1(A)

Figure 4.3: X1-sections of a subset A of X1 ×X2 at points x1 and y1.

In the context of integrating over a product space, the concept of sections of subsets becomes
relevant. This mathematical concept involves maintaining one variable constant while investi-
gating a subset within the Cartesian product space. To illustrate, let us consider a Cartesian
product space X1 ×X2 with a subset A contained within it, as shown in Figure 4.3.

Taking a specific point x1 in X1, the X1-section of A at x1 is the subset of X2 formed
by pairing each element x2 in X2 with x1 in such a way that (x1, x2) belongs to A. This
operation effectively slices the original subset A along the X1-axis, resulting in a subset of X2

that corresponds to all possible second coordinates for the fixed x1. The X1-section is defined
mathematically and in the Coq language as follows:

sx1(A) := {x2 ∈ X2 | (x1, x2) ∈ A}.

Definition section (x1 : X1) (A : X1 ∗ X2 → Prop) (x2 : X2) : Prop := A (x1, x2).

Similarly, one can define the X2-section of A at a specific point x2 in X2 by fixing the
second variable and considering all points in X1 that, when paired with x2, belong to A.

Sections exhibit compatibility with various set operations. For instance, they are compatible
with the empty set (sx1(∅) = ∅), the complement (sx1(Ac) = sx1(A)c), countable union
(sx1 (

⋃∞
i=1Ai) =

⋃∞
i=1 sx1(Ai)), countable intersection (sx1 (

⋂∞
i=1Ai) =

⋂∞
i=1 sx1(Ai)), and

maintain monotonicity (A ⊂ B ⇒ sx1(A) ⊂ sx1(B)). Additionally, they satisfy the following
property of sections,

∀A1 ∈ X1, ∀A2 ∈ X2, and ∀x1 ∈ X1,

sx1(A1 ×A2) =

{
A2 when x1 ∈ A1,

∅ otherwise,
(4.10)

Following this, the subsequent lemma establishes that if a subset A is Σ1 ⊗ Σ2-measurable,
then its X1-sections at any point in X1 are Σ2-measurable. Given that the measurability of
subsets is defined as an inductive type (see Section 3.1.1), the proof involves straightforward
induction on the hypothesis.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L47-L48
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L91-L92

38 CHAPTER 4. FORMALIZATION OF THE TONELLI THEOREM

Lemma section_measurable :
∀ A x1, measurable genX1xX2 A → measurable genX2 (section x1 A).

4.2.4 Measurability of Measure of Section

Given the measurability of sections (see Section 4.2.3), their measures can be determined. In
Figure 4.2, the product measure is defined as the integral of the measures of sections. In Coq,
the representation of the measure for X1-sections is defined through the total function:

Definition meas_section (A : X1 ∗ X2 → Prop) (x1 : X1) : R := muX2 (section x1 A).

Here, muX2 denotes the measure µ2 on the space X2.

Before proceeding with the integration of this function, it is essential to establish both its
nonnegativity and measurability. Specifically, for every Σ1 ⊗ Σ2-measurable subset A, let us
demonstrate that the function (x1 7−→ µ2(sx1(A))) belongs to M+(X1,Σ1).

The nonnegativity property of (x1 7−→ µ2(sx1(A))) is a direct consequence of the properties
of measures. The proof of measurability unfolds in two stages: firstly, when the measure µ2 is
assumed to be finite (i.e., when µ2(X2) is finite); and secondly, in the more general σ-finite case
(i.e., when the full set X2 is the nondecreasing unions of subsets with finite measure µ2). The
first stage adopts a high-level approach, relying on the monotone class’s theorem, and will be
applied further to prove the second stage. The latter stage extends the first by incorporating
restricted measures.

Let us now prove that the measure of X1-sections is measurable.

(i) Assuming muX2 is finite. The first step of the proof of the measurability of meas_section

is stated in Coq as,

Lemma meas_section_Mplus_finite : ∀A, is_finite_measure muX2 →
measurable genX1xX2 A → Mplus genX1 (meas_section A).

In this context, the assumption is_finite_measure muX2 asserts the finiteness of the
measure muX2. The lemma meas_section_Mplus_finite states that under this assumption
and considering the measurability of the subset A with respect to the product space
generated by genX1xX2, the measure of the section of this subset belongs to the space
M+(X1,Σ1).

Define S as the set of measurable subsets A of the product space Σ1 ⊗ Σ2 for which the
function mapping each x1 to the measure of the sections sx1(A) in the space X2 under the
measure µ2 belongs to the space of nonnegative measurable functions,

S :=
{
A ∈ Σ1 ⊗ Σ2 |

(
x1 7−→ µ2(sx1(A))

)
∈ M+(X1,Σ1)

}
.

To establish the claim that S = Σ1⊗Σ2, it is sufficient to show that Σ1⊗Σ2 ⊂ S. Initially,
we prove that S contains a generator Σ := Σ1×Σ2 of Σ1 ⊗ Σ2 (refer to Section 4.2.2).
Next, we demonstrate that S includes the algebra of sets generated by Σ (i.e., the closure
of Σ under complement and finite union). Furthermore, we establish that S forms a
monotone class, demonstrating closure under monotone countable union and intersection.
This step relies on the finiteness assumption on µ2, along with continuity from below and

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L169-L170
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L362-L363

4.2. PRODUCT MEASURE ON A PRODUCT SPACE 39

from above (see Section 3.2.2).

Finally, we conclude by applying the following corollary of the monotone class theorem
using X := X1 ∗ X2, P := S, and gen := Σ. This corollary asserts that if a monotone class P

(i.e., P is closed under countable increasing unions and countable decreasing intersections
of its subsets) contains the smallest algebra of sets containing gen, it also includes the
smallest σ-algebra containing gen (see [22, Section 1.6 p.40].).

Theorem monotone_class_Prop : ∀(gen : (X → Prop) → Prop) (P : (X → Prop) → Prop),
is_Monotone_class P → Incl (Algebra gen) P →
Incl (Sigma_algebra gen) P.

In this context, the function Incl represents the inclusion relationship between subsets
within the power set of X. Furthermore, Algebra denotes an algebra of sets generated
by gen, characterized by closure under taking complements and finite unions. Meanwhile,
Sigma_algebra extends the concept of an algebra by being closed under countable unions.

(ii) In the second stage of the proof of the measurability of meas_section, we presume the
measure µ2 to be σ-finite. The lemma is presented in Coq as follows,

Lemma meas_section_Mplus_sigma_finite :
∀ A, is_sigma_finite_measure muX2 →
measurable genX1xX2 A → Mplus genX1 (meas_section A).

The assumption of σ-finitness implies the existence of a nondecreasing sequence
(Bn)n∈N ∈ Σ2 such that X2 =

⋃
n∈NBn, and µ2(Bn) is finite for every n ∈ N.

For each n ∈ N, we establish the restricted measure as follows,

µn2 := (A2 ∈ Σ2 7−→ µ2(A2 ∩Bn) ∈ R+)

Consequently, since µn2 is a finite measure on (X2,Σ2), and considering the initial stage of
the proof (i) when dealing with finite measures, we deduce that,

∀A ∈ Σ1 ⊗ Σ2, (x1 7−→ µn2 (sx1(A))) ∈ M+(X1,Σ1).

Moreover, considering that sx1(A) ∈ Σ2 (refer to Section 4.2.3), and using the distributivity
of countable intersection over union, we have,

sx1(A) = sx1(A) ∩
⋃
n∈N

Bn =
⋃
n∈N

(sx1(A) ∩Bn) .

By applying the continuity from below property of µ2, we observe that for all A ∈ Σ1⊗Σ2

and x1 ∈ X1,

µ2(sx1(A)) = µ2

(⋃
n∈N

(sx1(A) ∩Bn)

)
= sup

n∈N
µn2 (sx1(A)).

In conclusion, the proof is finished since M+(X1,Σ1) is closed under supremum, as detailed
in Section 3.1.3. Thus, µ2(sx1(A)) ∈ M+(X1,Σ1). □

Let us now describe how the measure of a X1-section of a product set is determined. Based
on the Equation (4.10), the measure of the section of A1 ×A2 is expressed as:

∀A1 ∈ Σ1, ∀A2 ∈ Σ2, (x1 7−→ µ2(sx1(A1 ×A2))) = µ2(A2)1A1 . (4.11)

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L391-L392

40 CHAPTER 4. FORMALIZATION OF THE TONELLI THEOREM

4.2.5 Existence and Uniqueness of the Product Measure

Existence

Considering that the measures of sections are measurable as detailed in Section 4.2.4, their
integration becomes eligible. The candidate product measure is defined as a function over
the product σ-algebra Σ1 ⊗ Σ2, a concept explored in Section 4.2.2. This function is expressed
through the subsequent mathematical expression and is also implemented within Coq as outlined
below,

(µ1 ⊗ µ2)(A) :=

∫
X1

µ2(sx1(A)) dµ1,

Definition meas_prod_meas (A : X1 ∗ X2 → Prop) : R :=
LInt_p muX1 (meas_section muX2 A).

It is evident that this candidate function is both nonnegative and attains zero on the empty set.
The σ-additivity property is proved through the σ-additivity of the measure muX2 and that of
the integral established by the Equation (3.6) in Section 3.4.1. This verification confirms this
function satisfies the properties of a measure, enabling us to formalize the following Coq record

defining the product measure meas_prod as an object of type measure and is associated with the
product space generated by genX1xX2 (see Section 3.2 and Section 4.2.2).

Definition meas_prod : measure genX1xX2 :=
mk_measure genX1xX2 meas_prod_meas

meas_prod_emptyset meas_prod_nonneg

meas_prod_sigma_additivity.

This record is provided through the mk_measure constructor, where meas_prod_meas parameter
represents the function that acts as the candidate product measure. This function has been
validated to ensure it satisfies the properties of a measure. In Coq, the product measure is
captured with the notation muX1xX2 := meas_prod muX1 muX2.

Uniqueness

Product measures are proved to preserve the finiteness or σ-finiteness property of the initial
measures µ1 and µ2. Then, the proof of the uniqueness of the product measure follows a
parallel course to the verification of the measurability of the measure of sections, as detailed in
Section 4.2.4. Initially, when the measures µ1 and µ2 are finite, we introduce two finite product
measures, denoted as m and m̃, induced by the measures µ1 and µ2, both satisfying the box

property (4.8). We then consider the set S def.
= {A ∈ Σ1 ⊗ Σ2 |m(A) = m̃(A)} and prove that

it contains Σ1 ⊗ Σ2 through the application of monotone_class_Prop, establishing uniqueness of
the product measure (i.e., m = m̃). Following this, the proof is extended to σ-finite measures
by using restricted measures.

4.3 Tonelli Theorem

Having defined the product measure in Section 4.2, we are now equipped to explore integration
within a product space. Similar to Section 4.2, we assume that the measures are σ-finite,
ensuring the existence and uniqueness of the product measure.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L462-L463
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L499-L501
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L674-L682

4.3. TONELLI THEOREM 41

In this section, we delve into the proof of the Tonelli theorem, allowing the computation of
a double integral on a product space by iteratively integrating with respect to each variable,
in either order. Alongside this, the theorem also states measurability properties that guarantee
the legitimacy of all integrals. This mathematical concept is expressed as follows,

Theorem 2 (Tonelli). Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be measure spaces. Assume that µ1
and µ2 are σ-finite. Let f ∈ M+(X1 ×X2,Σ1 ⊗ Σ2). Then, we have(

∀x1 ∈ X1, fx1 ∈ M+(X2,Σ2)
)

∧
∫
X2

fx1 dµ2 ∈ M+(X1,Σ1), (4.12)

(
∀x2 ∈ X2, f

x2 ∈ M+(X1,Σ1)
)

∧
∫
X1

fx2 dµ1 ∈ M+(X2,Σ2), (4.13)

and we have ∫
X1×X2

f d(µ1 ⊗ µ2) =

∫
X1

(∫
X2

fx1 dµ2

)
dµ1 (4.14)

=

∫
X2

(∫
X1

fx2 dµ1

)
dµ2. (4.15)

where fx1 and fx2 represent sections of functions that will be defined in the following section.

f ∈ M+(X1 ×X2,Σ1 ⊗ Σ2)

fx1 ∈ M+(X2,Σ2)

If :=
(
x1 7−→

∫
X2
fx1 dµ2

)
∈ M+(X1,Σ1)

∫
X1×X2

f d(µ1 ⊗ µ2) =
∫
X1
If dµ1

fx2 ∈ M+(X1,Σ1)

Jf :=
(
x2 7−→

∫
X1
fx2 dµ1

)
∈ M+(X2,Σ2)∫

X1×X2
f d(µ1 ⊗ µ2) =

∫
X2
Jf dµ2

Lebesgue induction principle

Swap of variables
Change of measure

Figure 4.4: Flowchart illustrating the construction of iterated integrals on a product space. The filled colors
correspond to Sections: 4.3.1 in yellow , 4.3.2 in green , and 4.3.3 in turquoise blue . Dashed lines indicate the
application of the specified proof arguments.

Adopting the same methodology used in Section 4.2, the construction of the iterated integral
(represented on the right-hand side of the Equation (4.14)) unfolds in three steps, as illustrated
in Figure 4.4. In the first step, we establish the Σ2-measurability of X1-sections of functions
(refer to Section 4.3.1 for further details about sections of functions). Next, we demonstrate the
Σ1-measurability of the integral computed over X2 of these sections of functions. The iterated
integral is then formed as the integral (in X1) of the integral (in X2) of the sections of functions
as described in Section 4.3.2. Subsequently, Formula (4.14) is proven, and from this, (4.15) is
derived by exchanging variables, using both a change of measure and the uniqueness of the

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L1090-L1095

42 CHAPTER 4. FORMALIZATION OF THE TONELLI THEOREM

product measure (see Section 4.3.3).

The main argument driving this proof is the Lebesgue induction principle, as detailed in
Section 4.1, applied twice: firstly, to guarantee the measurability of the integral of sections of
functions in conjunction with the first Tonelli formula (4.14); and secondly, to establish the
change-of-measure formula, which will be further explained in Section 4.3.3.

4.3.1 Section of Functions

Following the same approach for the section of set established in Section 4.2.3, consider a given
extended real-valued function f : X1 × X2 → R. For each element x1 fixed within X1, the
X1-section of f at x1 is defined through partial application with respect to the first variable as:

fx1 := (x2 7→ f(x1, x2)).

Definition section_fun (x1 : X1) (f : X1 ∗ X2 → R) (x2 : X2) : R := f (x1, x2).

The mathematical relevance of this definition differs from that outlined in Section 4.2.3, as it
focuses on sections of functions rather than sections of subsets.

Similarly, for each element x2 fixed within the set X2, the X2-section of the function f ,
denoted as fx2 , is defined through partial application with respect to the second variable,

fx2 := (x1 7→ f(x1, x2)).

The measurability of a function with respect to a product σ-algebra guarantees that its
sections are measurable with respect to the σ-algebra of the variable that remains unfixed.
More precisely, if we have a nonnegative measurable function f defined on X1×X2 with respect
to Σ1⊗Σ2, then the X1-sections of f will be measurable on X2 with respect to Σ2. This concept
is formalized in Coq as follows:

Lemma section_fun_Mplus : ∀(f : X1 ∗ X2 → R) (x1 : X1),
Mplus genX1xX2 f → Mplus genX2 (section_fun x1 f).

The utility of sections of function is further enhanced by their compatibility with a range of
mathematical operations, including addition and scalar multiplication.

Moreover, the integral of a function defined on a product space is the integral of a section of
this function with respect to the unfixed variable. Given the complexity of integrating the func-
tion f(x1, x2) over its entire domain due to its dependence on multiple variables, one can fix one
variable to simplify the integration process. Consequently, for a fixed x1, the integration of the
X1-section fx1(x2) over the domain X2 can be represented as

∫
X2
fx1(x2) dµ2 =

∫
X2
f(x1, x2) dµ2.

4.3.2 Iterated Integral and the First Formula of Tonelli Theorem

Given that X1-sections of measurable functions are nonnegative and measurable with respect to
Σ2 as elaborated in Section 4.3.1, we can compute their integral over X2. For any function f
within the space M+(X1 ×X2,Σ1 ⊗ Σ2), we define the integral If as follows,

If :=

(
x1 7−→

∫
X2

fx1 dµ2

)
,

This integral is encoded in Coq as,

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L50-L51
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L145-L146
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L787-L788

4.3. TONELLI THEOREM 43

Definition LInt_p_section_fun (f : X1 ∗ X2 → R) (x1 : X1) : R :=
LInt_p muX2 (section_fun x1 f).

The process of iterated integration introduces an extra step of integration over X1,
requiring a prior confirmation that If belongs to M+(X1,Σ1). The nonnegativity property
of If is a straightforward consequence of the integral’s monotonicity property, as discussed in
Section 3.4.1. Moreover, the measurability property of If , along with the formulation and proof
of the first Tonelli formula (4.14), will be established by the use of the Lebesgue induction
principle elaborated in Section 4.1.

We express the first Equation of the Tonelli theorem (4.14) as below,

Lemma Tonelli_aux1 : ∀f : X1 ∗ X2 → Rbar, Mplus genX1xX2 f →
Mplus genX1 (LInt_p_section_fun f) ∧
LInt_p meas_prod f = LInt_p muX1 (LInt_p_section_fun f).

In this code snippet, meas_prod denotes the product measure as defined in Section 4.2. We
initiate the proof of the lemma by introducing a predicate P that states the nonnegativity and
measurability of If and Equation (4.14) for a given function f ,

Let P (f : X1 ∗ X2 → R) : Prop :=
Mplus genX1 (LInt_p_section_fun f) ∧

LInt_p meas_prod f = LInt_p muX1 (LInt_p_section_fun f).

The property P will be proven compatible with indicator functions, positive linearity, and the
supremum operation for an increasing sequence of measurable functions (fn)n∈N. This derives
from the compatibility of the integral If with the same properties, along with previously
established results such as the positive linearity property of the Lebesgue integral, the closure
properties of M+, as discussed in Sections 3.1.3 and 3.4.1, and the Beppo Levi theorem, as
outlined in Section 3.4.3. In more detail, through the application of the Lebesgue induction
principle we get the following steps.

(i) P holds on IF(X1 ×X2,Σ1 ⊗ Σ2).

Our first step in proving the lemma Tonelli_aux1 (see Equation (4.14)) involves demon-
strating that the predicate P holds on the set of measurable characteristic functions IF .
To achieve this, we verify the following equality for a measurable subset A and any given
x1 ∈ X1,

I1A(x1) =

∫
X2

1sx1 (A)
(x1) dµ2 = µ2(sx1(A)) ∈ M+(X1,Σ1),

where 1A denotes the characteristic function of a subset A. This equality is a consequence
of Equation (3.5) page 29, and the measurability of the subset of sections as detailed in
Section 4.2.3, as well as the measurability of their measures. This is useful to validate
the Equation (4.14) specifically for characteristic functions within the Tonelli theorem,
illustrated by the Equation below,∫

X1×X2

1A d(µ1 ⊗ µ2) =

∫
X1

I1A(x1) dµ1

(ii) P holds on SF+(X1 ×X2,Σ1 ⊗ Σ2).

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L1000-L1003

44 CHAPTER 4. FORMALIZATION OF THE TONELLI THEOREM

In the second step, we extend the validity of the predicate P to the set of nonnegative simple
functions SF+. The integral of the mapping I := (f 7→ If), is proven to be positively
linear. We verify the following lemmas,

Lemma LInt_p_section_fun_meas_prod_plus : ∀(f g : X1 ∗ X2 → R),
Mplus genX1xX2 f → Mplus genX1xX2 g →

P f → P g → P (fun x ⇒ f x +R g x).

Lemma LInt_p_section_fun_meas_prod_scal : ∀(a : R) (f : X1 ∗ X2 → R),
0 ⩽ a → Mplus genX1xX2 f → P f → P (fun x ⇒ a ∗R f x).

The proof of these lemmas is straightforward, deriving from the application of the positive
linearity of the integral If .

(iii) P holds on M+(X1 ×X2,Σ1 ⊗ Σ2).

Subsequently, we demonstrate that the predicate P applies to the set of nonnegative mea-
surable functions M+. This means that P is compatible with the supremum, in addi-
tion to the first two steps (i) and (ii) of this proof. According to the theorem of Beppo
Levi (monotone convergence) (referenced in Section 3.4.3), we prove that the mapping
I is compatible with the supremum. For any nondecreasing sequence (fn)n∈N within
M+(X1 ×X2,Σ1 ⊗ Σ2),

Isupn∈N fn = sup
n∈N

Ifn

Therefore, within Coq, we establish the following lemma, which validates the compatibility
of P with the supremum of nondecreasing, nonnegative simple functions,

Lemma LInt_p_section_fun_meas_prod_Sup_seq :
∀ f, incr_fun_seq f → Mplus_seq genX1xX2 f →

(∀ n, P (f n)) → P (fun x ⇒ Sup_seq (fun n ⇒ f n x)).

We thus conclude that property P holds on M+, which in turn confirms the validity of the
first formula (Equation (4.14)) of the Tonelli theorem.

4.3.3 Change of Measure, Second Formula, and Tonelli Theorem

The proof of the second Equation of the Tonelli theorem, as referenced in Equation (4.15), can
be proved using the same path as the first Tonelli formula (4.14). This involves using the sections
of function with respect to the second variable, introducing Jf as,

Jf :=

(
x2 7−→

∫
X1

fx2 dµ1

)
demonstrating that this function belongs to M+(X2,Σ2) as illustrated in Figure 4.4, and
establishing the stated equality through the application of the Lebesgue induction principle.

Although this strategy is easy, it is quite lengthy and redundant. Instead, we simply switch the
roles of the two variables, expressing the previous result for functions of the type X2 ∗ X1 → R .
Subsequently, the challenging aspect lies in a change of measure that brings back the original
function type X1 ∗ X2 → R .

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L937-L961
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L964-L966

4.3. TONELLI THEOREM 45

The concept of changing measures uses the idea of an image measure, which is also referred
to as a pushforward measure. This concept is detailed, in [22, Section 2.6]. In this process, the
measure is shifted between σ-algebras, moving specifically from Σ2 ⊗ Σ1 to Σ1 ⊗ Σ2.

Change of Measure

In the setting of measurable spaces (X1,Σ1) and (X2,Σ2), consider a measurable function h :
X1 → X2. Given a measure µ1 on (X1,Σ1), the image measure of µ1 under the map h is
constructed as a measure on (X2,Σ2) defined by,

h#µ1
def.
= µ1 ◦ h−1.

In this context, h−1 refers to the pre-image operation of measurable subsets under h, not
the inverse of the function h. In Coq, this concept is represented as meas_image h Mh mu. The
verification of the properties of the image measure h#µ1 relies on the properties of the measure
µ1, and the measurability of h.

Given f ∈ M+(X2,Σ2), the compatibility of measurability with function composition ensures
that f ◦h ∈ M+(X1,Σ1). This premise allows the formulation of the change-of-measure formula,
which is articulated in both mathematical expression and within Coq as follows:∫

X2

f d(h#µ1) =

∫
X1

f ◦ h dµ1. (4.16)

Lemma LInt_p_change_meas : ∀(h : X1 → X2) (Mh : measurable_fun genX1 genX2 h)

(f : X2 → R), Mplus genX2 f →
LInt_p (meas_image h Mh muX1) f = LInt_p muX1 (fun x : X1 ⇒ f (h x)).

The proof of this lemma uses the principle of induction based on the hypothesis of f. This
approach is done as Mplus is shown to be equivalent to Mp in Section 4.1.4. More specifically, we
demonstrate that this equality is compatible with characteristic functions, positive linearity, and
the supremum operation. These properties are derived from the integral properties, including
positive linearity, and the theorem (1) (Beppo Levi, monotone convergence) in Section 3.4.3.

Swap Function

We define the product measure, denoted by µ12 := µ1⊗µ2 on the product space (X1×X2,Σ1⊗
Σ2), as induced by µ1 and µ2, according to Section 4.2. Conversely, by interchanging the roles
of the two spaces, we pose µ21 := µ2 ⊗µ1 as the product measure on (X2 ×X1,Σ2 ⊗Σ1), which
is represented in Coq as,

muX2xX1 := meas_prod muX2 muX1.

We consider the function of the swap of variables h := (x2, x1) 7−→ (x1, x2) and prove its
measurability Mh, we then prove that the image measure h#µ21, is indeed a product measure on
the product space (X1 ×X2,Σ1 ⊗ Σ2), induced by µ1 and µ2. In the Coq proof assistant, this
is represented as meas_prod_swap := meas_image h Mh muX2xX1.

Second Formula of Tonelli Theorem

Having gathered all the necessary components, we are now ready to establish the second formula
of the Tonelli theorem (4.15). For a function f ∈ M+(X1 × X2,Σ1 ⊗ Σ2), we have f ◦ h ∈

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/LInt_p.v?ref_type=tags#L1530-L1532

46 CHAPTER 4. FORMALIZATION OF THE TONELLI THEOREM

M+(X2 × X1,Σ2 ⊗ Σ1). Using the section of functions with respect to x2 (as detailed in
Section 4.3.1), we obtain for any x2 in X2,

fx2 := (x1 7−→ f(x1, x2)) = (x1 7−→ f ◦ h(x2, x1)) = (f ◦ h)x2 . (4.17)

This leads us to the equalities,

∫
X1×X2

f dµ12
(a)
=

∫
X1×X2

f d(h#µ21)
(b)
=

∫
X2×X1

f ◦ h dµ21

(c)
=

∫
X2

(∫
X1

(f ◦ h)x2 dµ1

)
dµ2

(d)
=

∫
X2

(∫
X1

fx2 dµ1

)
dµ2.

The uniqueness of the product measure, as established in Section 4.2, implies that the image
measure under the swap function satisfies h#µ21 = µ12, thereby establishing assertion (a).
Assertion (b) follows from the application of the change-of-measure formula (4.16). The
application of the first formula of Tonelli’s theorem (4.14) to the space X2 × X1 leads to (c),
while Equation (4.17) yields result (d).

In Coq, we use swap f to express the composition f ◦ h. The second Equation of Tonelli’s
theorem, as articulated in Equation (4.15), is expressed in the Coq environment as follows,

Lemma Tonelli_aux2 : ∀f, Mplus genX1xX2 f →
Mplus genX2 (LInt_p_section_fun muX1 (swap f)) ∧
LInt_p meas_prod_swap f = LInt_p muX2 (LInt_p_section_fun muX1 (swap f)).

This completes the demonstration of the second formula of the Tonelli Theorem.

Statement of Tonelli Theorem

Lastly, consider X1 and X2 any type, and that µ1 and µ2 are σ-finite measures, we obtain a
comprehensive theorem that legitimates all integrals, as presented in Tonelli’s Theorem,

Context {X1 X2 : Type}.
Context {genX1 : (X1 → Prop) → Prop}.
Context {genX2 : (X2 → Prop) → Prop}.

Let genX1xX2 := Gen_Product genX1 genX2.

Variable muX1 : measure genX1.
Variable muX2 : measure genX2.
Hypothesis HmuX1 : is_sigma_finite_measure genX1 muX1.
Hypothesis HmuX2 : is_sigma_finite_measure genX2 muX2.

Let muX1xX2 := meas_prod muX1 muX2 HmuX2.

Theorem Tonelli : ∀(f : X1 ∗ X2 → R), Mplus genX1xX2 f →
(Mplus genX1 (LInt_p_section_fun muX2 f) ∧
(Mplus genX2 (LInt_p_section_fun muX1 (swap f)) ∧
LInt_p muX1xX2 f = LInt_p muX1 (LInt_p_section_fun muX2 f)) ∧
LInt_p muX1xX2 f = LInt_p muX2 (LInt_p_section_fun muX1 (swap f))).

In this code snippet, Gen_Product is a function that constructs a generator for the product of two
measurable spaces X1 and X2, as defined in Section 4.2.2, and meas_prod denotes the product
measure as defined in Section 4.2.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L1049-L1052
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L1049-L1052
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Tonelli.v?ref_type=tags#L1090-L1095

Part II

Formalization of Simplicial Finite
Elements

47

Chapter 5

Algebra

This chapter covers some algebraic developments necessary for the formalization of finite
elements and the formal proof of their properties. These complements are mainly based on the
Coquelicot and math-comp libraries, as discussed in Section 2.2 and 2.3, respectively. Coquelicot
is essential for its hierarchy of canonical structures that represent mathematical algebraic
structures, while math-comp is primarily used for handling finite types (ordinals), iterated
operators (bigop), and binomial coefficients. The content and structure of this chapter are
partly inspired by the works of Gostiaux [41].

This chapter is organized into various sections exploring distinct concepts and structures
within algebra. Section 5.1 discusses subsets, images, pre-images, and bijective functions, along
with the bijectivity property restricted on subsets. Section 5.2 highlights the principle of double
induction, addressing finite families and ordinal numbers. Section 5.3 delves into algebraic
structures, covering monoids, groups, module spaces, and affine spaces, including the concept
of barycenters. Section 5.4 focuses on finite dimensional subspaces, introducing topics such as
linear span, basis families, affine independence, and the dual space concept. Finally, Section 5.5
provides an overview of binomial coefficients.

From this chapter through to the end of the report, certain notations will be presented in
boldface. This indicates that they represent families (such as vectors in Rn) containing multiple
elements, distinguishing them from scalars in R or N, for example.

5.1 Functions and restrictions

This section starts with an introduction of the concept of subsets, as detailed in Section 5.1.1.
Following this, Section 5.1.2 focuses on the direct and reciprocal images of subsets under map-
pings, and explores the concept of function composition. The discussion then progresses to bi-
jective functions in Section 5.1.3, including the existence of bijective inverse functions. Finally,
Section 5.1.4 provides the properties of bijectivity when restricted to subsets, demonstrating
how bijective functions can retain their characteristics within specific subsets of a given type.

5.1.1 Subsets

In Coq, we define a generic set U : Type. The subsets of U can be represented as a predicate by
the type U → Prop. This sets the stage for discussing properties and operations on subsets of U.
We start by defining a full set within the set U, which includes all possible elements of U, and
always returns True.

49

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Subset.v?ref_type=tags#L56

50 CHAPTER 5. ALGEBRA

Definition fullset : U → Prop := fun _ ⇒ True.

We address the definition of the inclusion relation between two subsets, A and B of U. The
relation is described mathematically as follows:

A ⊂ B
def.
= ∀x ∈ U, x ∈ A =⇒ x ∈ B.

This concept is implemented in Coq for subsets A, B : U → Prop by the following definition:

Definition incl (A B : U → Prop) : Prop := ∀x : U, A x → B x.

Furthermore, for any element x in U , there exists a set known as a singleton, denoted by
{x}, which consists solely of the element x. This concept is formalized in Coq as:

Definition singleton : U → U → Prop := fun x y : U ⇒ x = y.

This defines a predicate that takes two arguments x and y of type U, and returns a proposition
that states whether x is equal to y.

5.1.2 Image, Pre-image and Composition of Functions

We now explore the notions of direct and reciprocal image (pre-image) of a subset ([41, Section
1.3 p.16]). Consider U1 and U2 two types. A function, denoted as f : U1 → U2, maps each
element x1 of the domain U1 to an element x2 in the codomain U2. This mapping is also referred
to as an application, and the terms are used interchangeably.

Let A1 be a subset of U1. The direct image of A1 under the function f , denoted f(A1), is
defined mathematically as:

f(A1)
def.
= { x2 ∈ U2 | ∃x1 ∈ A1, f(x1) = x2}.

In Coq, this concept is captured through the following inductive definition:

Inductive image {U1 U2 : Type} (f : U1 → U2) (A1 : U1 → Prop) : U2 → Prop :=
Im : ∀ x1 : U1, A1 x1 → image f A1 (f x1).

Conversely, the pre-image (or reciprocal image) of a subset A2 of U2 under f is defined as:

f−1(A2)
def.
= {x1 ∈ U1 | f(x1) ∈ A2}.

The Coq implementation of the pre-image is straightforward:

Definition preimage := fun {U1 U2 : Type} (f : U1 → U2) (A2 : U2 → Prop) (x1 : U1) ⇒ A2 (f x1).

Let us now discuss the composition of two functions. Consider U1, U2, and U3 three sets
of any Type, and two functions, f : U1 → U2 and g : U2 → U3. Function composition involves
creating a new function that maps the output of one function into the input of another ([41,
Section 1.4 p.18]). Specifically, we define a function that first applies f and then g to the result
of f, forming a new function denoted g ◦ f from U1 to U3. It is important to note the sequence
in which f and g are applied.

Definition compose : U1 → U3 := fun x1 : U1 ⇒ g (f x1).

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Subset.v?ref_type=tags#L81
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Subset.v?ref_type=tags#L63
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Function.v?ref_type=tags#L41
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Function.v?ref_type=tags#L46
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/Lebesgue/Function.v?ref_type=tags#L53

5.1. FUNCTIONS AND RESTRICTIONS 51

5.1.3 Bijective Functions

Consider two types, U1 and U2. We present the properties of functions between these sets,
specifically focusing on injectivity, surjectivity, and bijectivity ([41, Section 1.4 p.17]).

A function f : U1 → U2 is defined as injective if it does not map two distinct elements of
U1 to the same element in U2. This property guarantees that each element of the domain U1

corresponds uniquely to an element in the codomain U2. The formal definition in Coq is:

Definition injective := ∀x1 x2 : U1, f x1 = f x2 → x1 = x2.

In simpler terms, f is injective if and only if for every singleton {x2} of U2, the pre-image
f−1({x2}) is either empty or a singleton.

A function f : U1 → U2 is surjective if every element in U2 has at least one pre-image in
U1. This property ensures that the image of the function covers the entire codomain U2 (i.e.,
f(U1) = U2). It is expressed in Coq as:

Definition surjective (f : U1 → U2) : Prop := ∀x2 : U2, ∃x1 : U1, f x1 = x2.

The definition of injective is already present in the standard library of Coq, while surjective

was added during the development of this work.

We now state that a function g : U2 → U1 satisfies the cancellation property, which means
that composing a function f : U1 → U2 with g yields the identity function.

Definition cancel := fun (f : U1 → U2) (g : U2 → U1) ⇒ ∀x1 : U1, g (f x1) = x1.

This leads to the bijectivity property. A function is considered bijective if it admits a left
and right inverse for the composition of functions. This dual property establishes a one-to-one
correspondence between all elements of U1 and U2. The Coq definition of a bijective function is:

Variant bijective (A B : Type) (f : B → A) : Prop :=
Bijective : ∀g : A → B, cancel f g → cancel g f → bijective f.

In this context, the Variant type is similar to the Inductive type, but it cannot be used to
perform a proof by induction.

We can now transform the inductive type bijective, which involves weak existential quan-
tification, into a strong existential quantification as established through this lemma:

Lemma bij_EX : bijective f → {g : U2 → U1 | cancel f g ∧ cancel g f}.

From the bijective property of f , we deduce the existence of the inverse function, denoted
as f−1, which maps each element of U2 back to its unique pre-image in U1.

Definition f_inv {f : U1 → U2} (Hf : bijective f) : U2 → U1 := proj1_sig (bij_EX Hf).

Here, proj1_sig is used to extract the witness function component from the proof that such
an inverse exists under the assumption that f is bijective. Thus, we deduce that the inverse
mapping f−1 is also bijective.

Lemma f_inv_bij : ∀{f : U1 → U2} (Hf : bijective f), bijective (f_inv Hf)

It is important to distinguish between the notation f−1(A2) for the pre-image and the inverse
function f−1. While both use similar symbols, the pre-image represents a set of elements in U1,
whereas the inverse function maps each element of U2 directly back to U1.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_compl.v?ref_type=tags#L283
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_compl.v?ref_type=tags#L503
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_compl.v?ref_type=tags#L575
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_compl.v?ref_type=tags#L604

52 CHAPTER 5. ALGEBRA

5.1.4 Bijective Functions on Subsets

In this section, we focus on applying the bijectivity property specifically to subsets rather than
entire sets. This discussion serves as a continuation and a more focused examination of the
general concepts of bijectivity introduced earlier. Throughout this section, we append the terms
used with the suffix ”S” to indicate that the definitions, properties, and lemmas are exclusively
related to restrictions of functions to subsets.

We initiate by defining two types, U1 and U2, and their subsets, P1 and P2, respectively. We
then consider a function f : U1 → U2 and present its properties when limited to these specific
subsets. The reason we need to explicitly address bijectivity restricted to the subsets P1 and
P2, rather than the entire sets U1 and U2, is that we will later study the bijectivity of certain
linear forms restricted to polynomial spaces, instead of the full space of functions of infinite
dimension.

The following function computes the image of f over a subset defined by P1. It is defined as:

Definition RgS := fun (P1 : U1 → Prop) (f : U1 → U2) ⇒ image f P1.

This set contains all the images of elements from P1 produced by the function f (refer to
Section 5.1.2).

We further proceed to check whether the range of f from type U1 to U2, when restricted to
a subset P1, is a subset of P2. This inquiry is formalized in Coq with the following definition:

Definition funS (f : U1 → U2) : Prop := incl (RgS P1 f) P2.

Here, incl stands for inclusion (refer to Section 5.1.1). The function funS formalizes the idea
of a restricted function on a subset.

A function f is considered injective when restricted to a subset P1 if

Definition injS : Prop := ∀x1 y1 : U1, P1 x1 → P1 y1 → f x1 = f y1 → x1 = y1.

This definition ensures that no two distinct elements within P1 map to the same element in U2,
thereby preserving the injectivity of the function within the subset.

A function f is surjective on a subset P2, restricted to P1, if

Definition surjS (f : U1 → U2) : Prop := ∀x2 : U2, P2 x2 → ∃x1 : U1, P1 x1 ∧ f x1 = x2.

This ensures every element of P2 is an image of some element from P1, covering P2 entirely with
images from P1.

As for the bijectivity, we state that for every element x1 in the subset P1, applying f : U1 → U2

followed by g : U2 → U1 results in the identity. This definition ensures that g is a left inverse of
f on the subset P1.

Definition canS (P1 : U1 → Prop) (f : U1 → U2) (g : U2 → U1) : Prop :=
∀ x1 : U1, P1 x1 → g (f x1) = x1.

This defines the concept of a cancellation property between two functions f and g, which are
presumed to act as inverses on the subset defined by P1.

Putting all parts together, we now establish the bijective relationship of two functions
f : U1 → U2 and g : U2 → U1 between the subsets P1 and P2 of U1 and U2, respectively. This
is stated as follows:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_sub.v?ref_type=tags#L79
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_sub.v?ref_type=tags#L82
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_sub.v?ref_type=tags#L84-L85
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_sub.v?ref_type=tags#L87
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_sub.v?ref_type=tags#L91
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_sub.v?ref_type=tags#L114-L115

5.2. ORDINALS AND FINITE FAMILIES 53

Definition bijS_spec := fun (P1 : U1 → Prop) (P2 : U2 → Prop) (f : U1 → U2) (g : U2 → U1) ⇒
funS P1 P2 f ∧ funS P2 P1 g ∧ canS P1 f g ∧ canS P2 g f.

This specification states that the entire image of f, when applied to elements that satisfy P1, falls
within P2, and similarly, the image of g, when applied to elements that satisfy P2, falls within
P1. It also ensures that f and g are proper inverses within these subsets, effectively maintaining
a mutual inclusion of function images and establishing a bijection between the subsets P1 and P2.

Ultimately, a function f is asserted to be bijective if there exists a potential inverse function
g that satisfies bijS_spec. This relationship is given by:

Variant bijS (P1 : U1 → Prop) (P2 : U2 → Prop) (f : U1 → U2) : Prop :=
BijS_ : ∀ g : U2 → U1, bijS_spec P1 P2 f g → bijS P1 P2 f.

The bijS predicate in Coq is used to check if a function f between two types, U1 and U2, is a
partial bijection that meets the conditions specified by the predicates P1 and P2 in the definition
bijS_spec.

Since bijS is defined as an inductive type equivalent to weak existential quantification, we
can transform it into strong existential quantification by employing the bijective specifications
as follows:

Lemma bijS_EX : ∀(P1 : U1 → Prop) (P2 : U2 → Prop) (f : U1 → U2),
bijS P1 P2 f → {g : U2 → U1 | bijS_spec P1 P2 f g }.

This lemma directly follows from ex_EX, an alias for the axiom
constructive_indefinite_description. For more details on this axiom, refer to Section 2.1.

Once we assume that f is bijective on subsets, the next step is to extract the actual inverse
function f−1 from the proof provided by bijS_EX.

Definition f_invS := fun (P1 : U1 → Prop) (P2 : U2 → Prop) (f : U1 → U2) (Hf : bijS P1 P2 f) ⇒
proj1_sig (bijS_EX Hf).

This inverse function f−1 is constructed from the bijection f and is verified to be bijective from
the subset P2 ⊆ U2 back to P1 ⊆ U1:

Lemma f_invS_bijS : ∀(P1 : U1 → Prop) (P2 : U2 → Prop) (f : U1 → U2) (Hf : bijS P1 P2 f),
bijS P2 P1 (f_invS Hf).

5.2 Ordinals and Finite Families

Section 5.2.1 introduces the principle of double induction, an extension of mathematical induc-
tion that is applied simultaneously to two variables. The study of finite ordinal numbers is the
focus of Section 5.2.2. Building on this, Section 5.2.3 explores the concept of finite families,
which can be understood as vectors of known size, defined as functions that map a finite ordinal
type to any other type, providing some concepts necessary to manage these families.

5.2.1 Principle of Double Induction

Double induction is a mathematical technique that essentially involves using the principle
of mathematical induction simultaneously on two variables (see Figure 5.1). While simple
induction begins by proving a property for a base case, when n = 0, it then assumes the
property holds for an arbitrary n and proves it for n+1, double induction extends this concept
to two dimensions. We study the double induction from 1 instead of 0, as this approach will

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_sub.v?ref_type=tags#L114-L115
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_sub.v?ref_type=tags#L117
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_sub.v?ref_type=tags#L117
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_sub.v?ref_type=tags#L137
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_sub.v?ref_type=tags#L1052
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_sub.v?ref_type=tags#L1052
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Function_sub.v?ref_type=tags#L1089
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/nat_compl.v?ref_type=tags#L159-L164

54 CHAPTER 5. ALGEBRA

be useful later for proving the unisolvence property of Lagrange finite elements in Section 10.3.7.

We formalize this principle in Coq as follows:

Lemma nat_ind2_alt_11 : ∀(P : nat → nat → Prop),
(∀ m, 0 < m → P m 1) → (∀ n, 0 < n → P 1 n) →
(∀ m n, 0 < m → 0 < n → P m.+1 n → P m n.+1 → P m.+1 n.+1) →
∀ m n, 0 < m → 0 < n → P m n.

This lemma consists of proving a property P m n for all positive integers m and n using a stepwise
approach. We first establish the base cases for the lines n=1 and m=1. Then, we use the
inductive hypothesis to extend these base cases to all (m, n) pairs by a kind of ”staircase” logic:
if the property holds at the next step horizontally or vertically, it can be extended diagonally.

In more detail, the figure 5.1 represents a graphical depiction of a double induc-
tion method used to prove a property P m n for all positive m and n, as described in the
lemma nat_ind2_alt_11. The lemma establishes two base cases: (∀ m, 0 < m → P m 1) and
(∀ n, 0 < n → P 1 n). In the diagram, these are illustrated by the green horizontal line
at n = 1 and the green vertical line at m = 1. Each orange dot on these lines represents
that P m 1 and P 1 n hold for all positive m and n, respectively. The inductive step in the
lemma states: (∀ m n, 0 < m → 0 < n → P m.+1 n → P m n.+1 → P m.+1 n.+1). In the figure, this
is depicted by showing that once P m.+1 n (a step to the right on the grid, shown as an
orange dot to the left of the green dot) and P m n.+1 (a step up on the grid, shown as an
orange dot below the green dot) are true, then P m.+1 n.+1 (the green dot) is also true. The ar-
rows show the direction of the induction, moving rightward and upward to establish P m.+1 n.+1.

We have also formalized other lemmas analogous to nat_ind2_alt_11 for nonnegative integers;
however, these are not used in subsequent developments.

N

N

1

m

m+1

m+2

0 1 n n+1 n+2 n+3 n+4

Figure 5.1: Visual representation of the lemma nat_ind2_alt_11 with P(m, n) being proven for all positive m
and n through base cases and inductive steps as double induction.

5.2.2 Ordinals

In this thesis, we are interested in the study of finite ordinals, which are defined to represent
elements strictly smaller than a given natural number n. In this section, we give some
specific utility functions and properties designed to manipulate and transform ordinal types,

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/nat_compl.v?ref_type=tags#L159-L164

5.2. ORDINALS AND FINITE FAMILIES 55

complementary to those of the math-comp library [56, Section 7.4] discussed in Section 2.3. We
will need to study ordinals as they will be used later in our work to construct finite families
mapping from some ordinal type to any other type.

We recall that the finite type ’ I_n represents the set of ordinals strictly less than n. In
other words, ’ I_n corresponds to the set of natural numbers [0..n− 1]. The notation ’ I_{m,n} is
defined to represent functions from one ordinal to another, specifically ’ I_m → ’I_n. This means
that any element of ’ I_{m,n} is a function that maps elements from the set [0..m − 1] to the
set [0..n− 1]. Similarly, ’ I_[n] is a simplified notation. It denotes the set of functions ’ I_{n,n},
which includes all functions from [0..n− 1] to itself.

We present operations designed to manipulate finite ordinals, enabling both increment and
decrement of ordinal values.

The lower_S operation is designed to decrease the value of an ordinal by one by shifting it
down from its current set ’ I_n.+1 to the smaller set ’ I_n, provided that it is not the smallest
ordinal, ord0 (see Section 2.3).

Definition lower_S : ∀{n : nat} {i : ’ I_n.+1}, i ̸= ord0 → ’I_n.

This function constructs a new ordinal value, explicitly in the set ’ I_n. We confirm the correct-
ness of this operation, by verifying that the value of the result is indeed equal to i.−1.

Lemma lower_S_correct : ∀{n} {i : ’I_n.+1} (H : i ̸= ord0), lower_S H = i.−1 :> nat.

The notation :> is used for type coercion, which means that lower_S H is converted from its
type ’ I_n to a natural number type (see Section 2.1 for more details on coercions).

Conversely, the lift_S function increments the value of an ordinal by shifting it from a set
of size n to a set of size n+ 1.

Definition lift_S {n} (i : ’I_n) : ’I_n.+1 := lift ord0 i.

Essentially, lift_S is a specialized case of the more general lift function defined in Section 2.3,
that increments the value of ordinal i from the beginning.

Again, we verify the correctness of this definition as the value of the result is equal to i.+1.

Lemma lift_S_correct : ∀{n} (i : ’I_n), lift_S i = i.+1 :> nat.

Progressing further, we explore an interesting aspect of ordinal manipulation through the
skip_ord function. This function maps an index from a smaller set, ’ I_n, to a larger one, ’ I_n.+1,
while intentionally skipping over a specified position, denoted by i0. This operation is delineated
as follows:

Definition skip_ord {n} (i0 : ’I_n.+1) (j : ’I_n) : ’I_n.+1 := lift i0 (cast_ord (pred_Sn n) j).

The functions lift and cast_ord are defined in Section 2.3. This precise adjustment is
supported by the proof pred_Sn n, which validates that n = n.+1.−1 for the casting function
to operate correctly. Consider the case where n = 3, which means ’ I_3 includes the elements
{0, 1, 2} and ’ I_4 extends to {0, 1, 2, 3}. Selecting i0 ordinal of value 2 in ’ I_4 as the position
to skip, we apply the skip_ord function to map each ordinal from ’ I_3 to ’ I_4. This mapping
process ensures that all elements of ’ I_3 find corresponding positions in ’ I_4, except for the
skipped position i0 of value 2, which does not correspond to any original element from ’ I_3.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/ord_compl.v?ref_type=tags#L1259-L1260
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/ord_compl.v?ref_type=tags#L1272
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/ord_compl.v?ref_type=tags#L1272
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/ord_compl.v?ref_type=tags#L1257
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/ord_compl.v?ref_type=tags#L1269
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/ord_compl.v?ref_type=tags#L1772-L1773

56 CHAPTER 5. ALGEBRA

Transitioning to operations involving concatenated sets, the concat_l_ord function manages
the canonical projection from a larger set, ’ I_(n1 + n2), onto its first segment, ’ I_n1, given the
proof that the index is within the bounds of n1.

Definition concat_l_ord : ∀{n1 n2 : nat} {i : ’I_(n1 + n2)}, i < n1 → ’I_n1.

Conversely, the concat_r_ord function handles the projection of indices from the concate-
nated set ’ I_(n1 + n2) onto the second segment ’ I_n2, with an appropriate downshift in index
values.

Definition concat_r_ord : ∀{n1 n2 : nat} {i : ’I_(n1 + n2)}, ¬ i < n1 → ’I_n2.

5.2.3 Finite Family

This section builds upon the previous one and is dedicated to finite families that are functions
from some ordinal type ’ I_n to any type E. For instance, these families can represent vectors or
matrices when E is a module space. The notation ’ Eˆn of ’ I_n → E refers to the set of functions
from ’ I_n to E. In other words, it represents the type of finite families of elements from E,
where the indices are elements of ’ I_n. Furthermore, ’ Eˆ0 denotes the type of functions from
the empty set ’ I_0 to E. Thus, ’ Eˆ0 is a type with a single element, called unit type. The names
of statements in this section will have the suffix ”F” to indicate families.

Constructors of Finite Families

Throughout this section, we declare a context where E, F, and G represent any type. A finite
family A, denoted as an n-family, contains n items of type E, and is typically expressed as
A : ’ I_n → E or A : ’ Eˆn, where ’ I_n represents the set of indices.

Let us provide some specific types of finite families. A constant family is a vector of n-items
where every element is identical. The implementation of such a family can be illustrated by the
following Coq definition:

Definition constF n (x : E) : ’Eˆn := fun _ ⇒ x.

This function takes the size n of the family, and an element x of type E, and returns a family of
type ’ Eˆn where each of the n elements is the element x. This function uses a lambda expression
fun _ ⇒ x to create a function that ignores its argument (indicated by ’ _’) and consistently
returns x. Consider an example when n=4 and x=2 we obtain constF 4 2 = (2,2,2,2).

The correctness of this definition is verified by the lemma:

Lemma constF_correct : ∀n (x : E) (i : ’ I_n), constF n x i = x.

Single-element families are a specialized type of constant family constF that contains only
one item x0. The definition in Coq can be represented as:

Definition singleF (x0 : E) : ’Eˆ1 := constF 1 x0.

This function differs from the predicate singleton defined in Section 5.1.1, as it is a function
that returns a finite family of size 1, rather than a predicate comparing two elements.

Operations on Finite Families: Casting and Resizing in Coq

We turn our attention to several useful operations that manipulate finite families, building on
the properties developed for ordinals in Section 5.2.2.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/ord_compl.v?ref_type=tags#L1737-L1739
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/ord_compl.v?ref_type=tags#L1741-L1743
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Finite_family.v?ref_type=tags#L459
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Finite_family.v?ref_type=tags#L668
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Finite_family.v?ref_type=tags#L461

5.2. ORDINALS AND FINITE FAMILIES 57

Finite families can interact and relate to each other through inclusion operation, ensuring
for example that elements of one family are contained within another. Consider a predicate PE

defining a subset of the set E, we define a predicate asserting that all items of the n-family A

belong to PE. This can be formalized in Coq with the following definition:

Definition inclF {n} (A : ’Eˆn) (PE : E → Prop) : Prop := ∀i, PE (A i).

By using this predicate, we can establish a relationship between two families A1 and A2 of
potentially different sizes, n1 and n2 respectively, where all items of one must appear in the
other,

Definition invalF {n1 n2} (A1 : ’Eˆn1) (A2 : ’Eˆn2) : Prop :=
inclF A1 (fun x : E ⇒ ∃i : ’ I_n2, x = A2 i)

An important aspect to note is that if A1 contains duplicate items, it is possible for the
definition invalF to hold true even if n2 < n1. For example, we define two families A1 = (3, 3, 5)
and A2 = (3, 5). Since every element in A1 has a corresponding element in A2, we can say that
the proposition invalF A1 A2 holds true, indicating that all elements of A1 are included in A2,
despite A2 being shorter than A1.

Revisiting the operator cast_ord of type casting of ordinals explored in Section 2.3, the castF

function extends the cast_ord operation to entire families. Given a proof that the two sizes n1

and n2 are equal, castF transforms a family A1 of type ’ Eˆn1 into a family of type ’ Eˆn2, while
maintaining the order of elements.

Definition castF {n1 n2} (H : n1 = n2) (A1 : ’Eˆn1) : ’Eˆn2 :=
fun i2 : ’ I_n2 ⇒ A1 (cast_ord (eq_sym H) i2).

Expanding upon the ordinal functions lift_S and skip_ord outlined in Section 5.2.2, we
adapt these operations to manipulate finite families. The liftF_S function removes the first
item from an n.+1-family, shifting all its subsequent items.

Definition liftF_S {n} (A : ’Eˆn.+1) : ’Eˆn := fun i ⇒ A (lift_S i).

Similarly, the skipF function creates a new family by omitting the i0-th item from an n.+1-family.

Definition skipF {n} (A : ’Eˆn.+1) (i0 : ’I_n.+1) : ’Eˆn := fun (j : ’ I_n) ⇒ A (skip_ord i0 j).

Another quite similar operation is the replaceF function, which creates a new family by
replacing the element at a specific index i0 with a new value x0, while leaving all other elements
unchanged. This function is formalized as follows:

Definition replaceF {n} (A : ’Eˆn) (x0 : E) (i0 : ’ I_n) : ’ Eˆn :=
fun i : ’ I_n ⇒ match (ord_eq_dec i i0) with
| left _ ⇒ x0

| right _ ⇒ A i

end.

Let us illustrate with a simple example. Consider a family A = (2, 5, 8) of type ’ natˆ3.
Assuming we want to replace the element at index i0 of value 1 in ’ Iˆ3, with a new value
x0 = 10. The replaceF A x0 i0 outputs (2, 10, 8).

Additionally, we can concatenate two families A1 and A2 by combining them into a unified
family A = A1 ⊕A2 through the concatF function defined as a patern matching, preserving the
original order of elements from both.

Definition concatF {n1 n2} (A1 : ’Eˆn1) (A2 : ’Eˆn2) : ’Eˆ(n1 + n2) := fun i: ’ I_(n1 + n2) ⇒
match (lt_dec i n1) with
| left H ⇒ A1 (concat_l_ord H)

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Finite_family.v?ref_type=tags#L485
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Finite_family.v?ref_type=tags#L487
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Finite_family.v?ref_type=tags#L525-L527
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Finite_family.v?ref_type=tags#L561-L562
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Finite_family.v?ref_type=tags#L600-L601
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Finite_family.v?ref_type=tags#L607-L612
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Finite_family.v?ref_type=tags#L576-L580

58 CHAPTER 5. ALGEBRA

| right H ⇒ A2 (concat_r_ord H)
end.

This function uses the lt_dec decision function to determine whether i < n1 or not, using ordinal
operations concat_l_ord and concat_r_ord defined in Section 5.2.2 to correctly index into A1 and
A2. For instance, we consider two families A1 = (1, 3) in ’ natˆ2 and A2 = (5, 7, 9) in ’ natˆ3. The
concatF function operates as follows:

concatF A1 A2 = fun i : ’ I2+3 ⇒

{
A1 i if i < 2,

A2 (i − 2) else.

Thus, the new concatenated family will be (1, 3, 5, 7, 9).

Last but not least, when involving ordered data, we construct a sortedness predicate of the
elements of a finite family.

Definition sortedF (op : E → E → Prop) {n} (A : ’Eˆn) : Prop := ∀(i j : ’I_n),
i < j → op (A i) (A j).

This predicate is used to determine whether a family of elements A is sorted with respect to a
given ordering operation op.

Concluding this section, we consider cases where the elements of a family are functions. Each
item in the family can itself be a function, which is expressed as f : ’(E → F)ˆn, meaning the
family consists of n functions from E to F. We define a function that, for each index i within
the set ’ I_n, applies the i-th function from the family of function f to the i-th element of the
family A, resulting in a new element of type F. The Coq definition is given by:

Definition mapiF {n} (f : ’(E → F)ˆn) (A : ’Eˆn) : ’ Fˆn := fun i : ’ I_n ⇒ f i (A i).

Building on this definition, the mapF function represents an n-family made of the images by
f of items of A. The Coq definition represents this function as follows:

Definition mapF {n} (f : E → F) (A : ’Eˆn) : ’ Fˆn := mapiF (fun⇒ f) A.

here, (fun ⇒ f) creates an anonymous function, that is equivalent to writing (fun _ ⇒ f), which
ignores its arguments and simply returns f.

Extending the concept of mapping to the binary function f, the map2F applies the function
f to corresponding elements from two n-families A and B.

Definition map2F {n} (f : E → F → G) (A : ’Eˆn) (B : ’Fˆn) : ’ Gˆn :=
fun i : ’ I_n ⇒ f (A i) (B i).

5.3 Algebraic Structures

Section 5.3.1 focuses on abstract monoids, exploring their structure and the operation of finite
iterations. Section 5.3.2 discusses the structure of multiplicative monoids, including the study
of finite product operations within this structure. Section 5.3.3 introduces the structure of
module spaces [41, Section 6.1 p.163], beginning with the definition and properties of additive
group and submodule spaces. Section 5.3.4 studies linear combinations within module spaces.
Section 5.3.5 introduces the Kronecker delta function and outlines its properties. Finally, Sec-
tion 5.3.6 concludes by extending the discussion to affine spaces, and introducing the concept of
barycenters.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/ord_compl.v?ref_type=tags#L1004-L1005
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Finite_family.v?ref_type=tags#L631
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Finite_family.v?ref_type=tags#L632-L633
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Finite_family.v?ref_type=tags#L635

5.3. ALGEBRAIC STRUCTURES 59

5.3.1 Abstract Monoid and Finite Iterations of the Law

A monoid G is defined as a set equipped with an operation that is associative and has an identity
element, typically denoted as zero when the operation is denoted plus. For a structure to be
classified as a monoid, it must satisfy the following axioms:

1. Closure: ∀a, b ∈ G, op a b ∈ G,

2. Associativity: ∀a, b, c ∈ G, (op (op a b) c) = op (a op (b c)).

3. Identity Element: ∀a ∈ G, op e a = op a e = a.

An abelian monoid builds upon the concept of a monoid by introducing the requirement for
the operation to be commutative. This means that for all elements a, b ∈ G, the equation
op a b = op b a must hold. In Coquelicot, this algebraic structure is denoted as AbelianMonoid,
and it is the entry point in the hierarchy of algebraic structures.

In Coq, we can define the summation over elements of an abelian monoid G using the
following:

Definition sum {n} (u : ’Gˆn) : G := \big[plus_cm/0]_(i < n) u i.

This definition employs the big operator from the math-comp library [7]. Here, plus_cm is an
abstract operation carrying the proof that the abstract operation plus of Coquelicot is indeed
a commutative monoid law in the world of math-comp, which is used to compute the sum of
families indexed from 0 to n − 1. The initial value of 0 in the summation indicates that we
start with the identity element zero of the monoid, to ensure the operation is well-defined even
when the set being summed is empty. We use the symbole + as the notation for the abstract
operation plus.

The properties of plus_cm, such as associativity and commutativity, ensure that the order of
addition does not affect the outcome of the sum. Furthermore, if n = 0, the summation of zero
elements results in the identity element zero, demonstrating that the sum is well-defined even
for an empty index set. This is outlined in Coq as:

Lemma sum_nil : ∀(u : ’ Gˆ0), sum u = 0.

We recall that ’ Gˆ0 denotes the type of functions from the empty set ’ I_0 to G. Thus, ’ Gˆ0 is
a type with a single element, called unit type. Moreover, it is also an abelian monoid, as a
functional type towards the abelian monoid G.

We also establish that if all elements of a family u are zero (i.e., u is the identity element of
the monoid ’ Gˆn), the resultant sum is zero.

Lemma sum_zero_compat : ∀{n} (u : ’Gˆn), u = 0 → sum u = 0.

We observe that the first occurrence of 0 is of type ’ Gˆn, and the second 0 is of type G.

Summation can be understood recursively: the sum of a non-empty family u decomposes
into the sum of its first element u0 and the sum of the remaining elements of the family.

Lemma sum_ind_l : ∀{n} (u : ’ Gˆn.+1), sum u = u ord0 + sum (liftF_S u).

where, liftF_S is the shift function of finite families defined in Section 5.2.3.

In scenarios involving families, where most elements are zeros except for a possibly non-
zero entry, the itemF function constructs such families using the replacement function replaceF

established in Section 5.2.3.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L2132
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L2126
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L2162
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L2158-L2159
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L2165
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L564

60 CHAPTER 5. ALGEBRA

Definition itemF n (x : G) (i0 : ’I_n) : ’ Gˆn := replaceF 0 x i0.

This function initializes all elements to the identity element of the monoid (zero), except for the
element at index i0, which is set to x. The following lemma states that the sum of this family
equals the element x.

Lemma sum_itemF : ∀{n} (x : G) (i0 : ’ I_n), sum (itemF n x i0) = x.

Expanding upon the concept of family concatenation, the summation over concatenated
families confirms that the sum of a concatenated family equals the combined sums of the original
families.

Lemma sum_concatF : ∀{n1 n2} (u1 : ’Gˆn1) (u2 : ’ Gˆn2),
sum (concatF u1 u2) = sum u1 + sum u2.

where, concatF is the concatenation function of finite families defined in Section 5.2.3.

Furthermore, we provide a Coq definition of the concept of concatenating a family of fam-
ilies. Here is a detailed explanation of this definition. We start by introducing the function
concatnF_aux, which uses lists instead of families. The list of lists is concatenated into a single
list:

Definition concatnF_aux {n} {b : ’natˆn} (u : ∀i : ’I_n, ’ Gˆ(b i)) : list G :=
List.concat (to_listF (fun i ⇒ to_listF (u i))).

In this definition, n indicates the number of families, b is the family of natural numbers
indicating the size of each family u, and u i is a family of type G with length b i for each
index i. To explain how this function works, we use the list concat function which flattens a
list of lists into a single continuous list, by appending each head of the list to the recursively
concatenated tail. Here to_listF converts a family into a list.

We validate that the total length of this concatenated list concatnF_aux is equal to the sum of
the lengths of the individual families b i.

Lemma concatnF_aux_length : ∀{n} {b : ’natˆn} (u : ∀i: ’ I_n, ’ Gˆ(b i)),
length (concatnF_aux u) = sum b.

This leads to the definition of the concatnF function, which casts the concatenated list
concatnF_aux back into a single family of size sum b.

Definition concatnF {n} {b : ’natˆn} (u : ∀i: ’I_n, ’ Gˆ(b i)) : ’ Gˆ(sum b) :=
castF (concatnF_aux_length u) (of_listF (concatnF_aux u)).

where, castF is the casting function of types of finite families defined in Section 5.2.3, and
of_listF is a function that converts a list into a family whose length is the length of the list.

To better understand the process of concatenating a family of families, let us consider a
practical example where we have three families: u0 = (a, b, c) ∈ ’ Gˆ3, u1 = (d, e) ∈ ’ Gˆ2,
and u2 = (f, g, h, i) ∈ ’ Gˆ4. The family b = (3, 2, 4) represents the lengths of these fami-
lies. Initially, each family ui is transformed into a list using the function to_listF. This
results in the separate lists [a, b, c], [d, e], and [f, g, h, i]. These lists are then compiled into
a single list of lists: [[a, b, c], [d, e], [f, g, h, i]]. Following this, the concatenation function
processes the list of lists, combining them into a single, flattened list: [a, b, c, d, e, f, g, h, i].
Notably, the total length of this list is 9, which precisely corresponds to the summed lengths in
b. Finally, the function concatnF takes this unified list and casts it back into a family of type ’ Gˆ9.

Given that the concatnF function merges multiple families, defined by u, into a unified family,
the value at any particular index k can be retrieved using the lemma:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L2375
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L2236-L2238
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L2236-L2238
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L2842-L2843
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L2845-L2847
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L2860-L2861
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Compl/Finite_family.v?ref_type=tags#L5506-L5510
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L3295-L3297

5.3. ALGEBRAIC STRUCTURES 61

Lemma concatnF_splitn_ord : ∀{n : nat} {b : ’natˆn} (u : ∀i : ’ I_n, ’ Gˆ(b i)) (k : ’ I_(sum b)),
concatnF u k = u (splitn_ord1 k) (splitn_ord2 k).

Where splitn_ord1 k and splitn_ord2 k respectively output i : ’ I_n and j : ’ I_(b i) such that
concatnF u k = u i j refers to the k-th element in the concatenated family of u. Note that the
type of k carries the sizes b.

For illustration, consider the previous example with three blocks defined by b = (3, 2, 4),
and the concatenated function sequence given by u = (u0, u1, u2). If k = 3 (representing the
4-th element in the concatenated family using 0-based indexing), this falls within the second
block (block index i = 1). Consequently, splitn_ord1 k evaluates to 1. Within this block, k = 3

represents the first position. Thus, splitn_ord2 k evaluates to 0, pinpointing the exact location
in the sequence as concatnF u 3 = u 1 0.

5.3.2 Multiplicative Monoid and Monomials

Finite Product in a Multiplicative Monoid

The real number type, R, is already equipped with an additive monoid structure. We introduce
the alias R_mul := R with coercions to assign it an additional multiplicative monoid structure,
whereby the operation sum is interpreted as a product where 1 is an identity element of this
monoid. In this section, we will outline the definition of the big product operation, and its
inherent properties.

The big product operation, denoted in Coq by prod_R, aggregates elements through multi-
plication. Mathematically, this operation can be expressed as:

n−1∏
i=0

ui = u0 · u1 · . . . · un−1.

Here, ui represents the elements of a family u belonging to Rn.

A special case of the product operation indicates that a family consisting solely of the identity
element ((1, . . . , 1) in this case) results in one, irrespective of the size of the family u.

Lemma prod_R_one_compat : ∀{n} (u : ’R_mulˆn), u = 1 → prod_R u = 1.

The first occurrence of 1 is of type ’ R_mulˆn, while the second occurrence of 1 is of type R_mul.

Lastly, we state that if any element of the family u is zero, the entire product evaluates to
zero, showcasing the absorbing element property of zero in multiplication. This is captured as,

Lemma prod_R_zero : ∀{n} (u : ’ R_mulˆn), (∃ i : ’ I_n, 0 = u i)→ prod_R u = 0.

Monomials

A multi-variate monomial is defined as a product of powers of variables, with each variable
possibly raised to a non-negative integer exponent. It has the general form:

n−1∏
i=0

uαi
i = uα0

0 × uα1
1 × . . .× u

αn−1

n−1 . (5.1)

In the expression, (u0, u1, . . . , un−1) ∈ Rn represents a family of variables in R. The family
(α0, α1, . . . , αn−1) ∈ Nn corresponds to their respective non-negative integer exponents. For

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L3250-L3251
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Monoid_compl.v?ref_type=tags#L3275-L3277
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/MonoidMult.v?ref_type=tags#L233
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/MonoidMult.v?ref_type=tags#L253

62 CHAPTER 5. ALGEBRA

instance, if a monomial is defined in three variables x, y, and z, and α = (2, 1, 3), the monomial
can be expressed as x2yz3.

We first define the family (uαi
i)i∈[0..n−1] ∈ Rn through the map2F function defined in Section 5.2.3.

In Coq, this operation is implemented as follows using the pow power function from the real
numbers library:

Definition powF {n} (u : ’Rˆn) (a : ’ natˆn) : ’ Rˆn := map2F pow u a.

Then we compute the product of the resulting elements in Equation (5.1). The formal
definition in Coq is presented as follows:

Definition powF_P {n} (a : ’natˆn) (u : ’Rˆn) : R := prod_R (powF u a).

This function effectively creates a monomial where each term of the product is a component of
the family u, each raised to the corresponding exponent in the family a.

5.3.3 Group and Module Space

A group (G,+) is a set equipped with a monoid structure and an inverse operation that adheres
to the following axiom:

• Inverse: ∀x ∈ G, x+ (−x) = (−x) + x = 0.

A group is further classified as an abelian (or commutative) group if it satisfies the commutative
property, meaning that for all x and y in the group, x+ y = y+ x. In Coquelicot, this structure
is denoted as AbelianGroup (see Figure 2.1).

Given an abelian group (E,+), we can define G as a subgroup of E using the following Coq
definition:

Definition compatible_g {E : AbelianGroup} (G : E → Prop) : Prop :=
(∀ (x y : E), G x → G y → G (plus x (opp y))) ∧ (∃ (x : E), G x).

This definition specifies that G is closed under substraction, and is not the empty set.
Namely, it is compatible with the group structure.

A module space (E,+, ·) over a commutative ring K, is a generalization of vector spaces,
denoted in Coquelicot as ModuleSpace. Moreover, a ring K is an algebraic structure consisting of
a set equipped with two operations: addition +, which forms an abelian group with an additive
identity 0, and multiplication ·, which is associative and distributes over addition.

A module space E is a mathematical structure consisting of a set equipped with two op-
erations: vector addition + and scalar multiplication ·. The elements of E are referred to as
vectors, and those of K are known as scalars. These operations must adhere to the following
axioms to establish a module space:

1. (E,+) is an abelian group.

2. Distributivity of Vectors: ∀ν ∈ K,∀(x, y) ∈ E2, ν.(x+ y) = ν.x+ ν.y,

3. Distributivity of Scalars: ∀(ν, µ) ∈ K2, ∀x ∈ E, (ν + µ).x = ν.x+ µ.x,

4. Associativity of Scalars: ∀(ν, µ) ∈ K2,∀x ∈ E, ν.(µ.x) = (νµ).x,

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/monomial.v?ref_type=tags#L46
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/monomial.v?ref_type=tags#L51
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/LM/compatible.v?ref_type=tags#L45-L47

5.3. ALGEBRAIC STRUCTURES 63

5. Identity Element: ∀x ∈ E, 1K .x = x, where 1K denotes the multiplicative identity in K.

In this context, the dot operation · is of type: K → E → E in Coq.

Specifically, since a field is an abelian ring in which every non-zero element is invertible, module
spaces extend the concept of vector spaces by expanding the set of scalars from a field to a ring.

A submodule space of a module space (E,+, ·) over the ring K is any subset F of E that is
an additive subgroup of E and satisfies scalar multiplication closure, such that for every scalar
µ ∈ K and every vector x ∈ F , the product µx remains in F ([41, Section 6.2 p.165]). The
formal definition in Coq is presented as follows:

Definition compatible_ms {K : Ring} {E : ModuleSpace K} (F : E → Prop) :=
compatible_g F ∧ (∀ (x : E) (a : K), F x → F (scal a x)).

The space F qualifies as a module space over the ring K, satisfying the essential axioms
required for a module space where K is a ring. It is noteworthy that both the zero vector {0}
and the entire set E naturally form submodule spaces of E.

A series of lemmas further elucidates the basic properties of submodule spaces:

Lemma compatible_ms_zero: ∀F : E → Prop, compatible_ms F → F zero.
Lemma compatible_ms_plus: ∀(F : E → Prop) (x y : E), compatible_ms F →

F x → F y → F (plus x y).

Linearity forms the core principle of linear algebra, combining the two operation laws that
define module spaces. This concept is required not only for defining linear applications but
also will be useful in subsequent sections to construct, for instance, linear combinations within
module spaces.

Consider two module spaces, E and F , over a ring K. A function f from E to F is termed a
linear application if it satisfies linear properties formally defined in Coq as follows:

Definition lin_map {K : Ring} {E F : ModuleSpace K} (f: E → F) : Prop :=
(∀ (x y : E), f (plus x y) = plus (f x) (f y))

∧ (∀ (x : E) (a : K), f (scal a x) = scal a (f x)).

Note that the first occurrence of plus refers to the addition operation in E, while the second
occurrence pertains to the addition operation within F .

From this definition, we can deduce that:

f : E → F is linear ⇐⇒ ∀(x, y) ∈ E2, ∀(ν, µ) ∈ K2, f(νx+ µy) = νf(x) + µf(y).

If f is linear and bijective, it is called an isomorphism.

Let E and F be two module spaces over a ring K. The set of linear applications from E to
F forms a submodule space of the space of all applications from E to F . We denote this set by
L(E,F).

Lemma cms_lm: ∀E F : ModuleSpace R_Ring, compatible_ms lin_map.

We note that the space of all applications from E to F is a module space itself, as it aligns
with the fct_ModuleSpace function, which establishes a module space over functions from any
type E to any module space F over the same ring K.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/LM/compatible.v?ref_type=tags#L119-L121
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/LM/compatible.v?ref_type=tags#L123-L135
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/LM/linear_map.v?ref_type=tags#L196-L198
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/ModuleSpace_R_compl.v?ref_type=tags#L622
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/LM/linear_map.v?ref_type=tags#L178-L183

64 CHAPTER 5. ALGEBRA

5.3.4 Linear Combination in a Module Space

Within a module space E over a ring K, consider a finite family (Bi)i∈[0..n−1] and scalars
(Li)i∈[0..n−1]. The linear combination of these families is defined mathematically as:

n−1∑
i=0

LiBi.

Here, Li represents the coefficients in the ring K.

To formalize this definition in Coq, we start by constructing the scalar multiplication across
elements of two sequences using the map2F function, defined in Section 5.2.3. Let a scalar L from
Kn and a family B from En:

Definition scalF {n} (L : ’Kˆn) (B : ’Eˆn) : ’ Eˆn := map2F scal L B.

Then, summing the result of this function to produce the linear combination in E:

Definition lin_comb {n} (L : ’Kˆn) (B : ’Eˆn) : E := sum (scalF L B).

In this definition, the finite summation sum is established in Section 5.3.1.

One important lemma of linear combinations is that any linear combination where the coefficients
equal zero results in the zero family.

Lemma lc_zero_compat_l : ∀{n} (L : ’Kˆn) (B : ’ Eˆn), L = 0 → lin_comb L B = 0.

For higher-dimensional spaces of dimension n + 1, a linear combination can be recursively
broken down into a scalar multiplication of their first elements, plus the linear combination of
the rest of their elements (after ”lifting”). This is established through this lemma:

Lemma lc_ind_l : ∀{n} (L : ’ Kˆn.+1) (B : ’ Eˆn.+1),
lin_comb L B = scal (L ord0) (B ord0) + lin_comb (liftF_S L) (liftF_S B).

We recall that ord0 refers to the first index in a non-empty family (refer to Section 2.3), and
the liftF_S function as referenced in Section 5.2.3 shifts the indices of each family by one,
effectively ”lifting” the sequence to exclude the first element and then proceeding with the
next part of the family. This recursive approach allows to perform proofs involving linear
combination by induction on the number of vectors. This lemma is a consequence of the
sum_ind_l lemma.

Moving to the linearity aspect of mappings, we have for any given index i within ’ I_n, the
function that takes an element B from the space ’ Eˆn and returns the i-th component of B is a
linear mapping.

Lemma lm_component : ∀{n} (i : ’I_n), lin_map (fun B : ’Eˆn ⇒ B i).

Here, lin_map refers to the property of being a linear mapping (see Section 5.3.3), which means
that the i-th component Bi must satisfy the two assertions of linearity: preservation of addition,
and scalar multiplication.

Furthermore, considering we have two module spaces E and F over a ring K. We describe a
more complex scenario involving a family of scalar valued linear maps on K and their interaction
with linear combinations. Assuming that each function fi in the family is a linear map, we
conclude that the linear combination of the maps x 7−→

∑n−1
i=0 fi(x)Bi where Bi are elements of

F , remains a linear map.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/ModuleSpace_compl.v?ref_type=tags#L560
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/ModuleSpace_compl.v?ref_type=tags#L957
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/ModuleSpace_compl.v?ref_type=tags#L1037-L1038
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/ModuleSpace_compl.v?ref_type=tags#L1052-L1054
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/ModuleSpace_compl.v?ref_type=tags#L443
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/ModuleSpace_compl.v?ref_type=tags#L1828-L1830

5.3. ALGEBRAIC STRUCTURES 65

Lemma fct_lc_l_lm : ∀{n} (f : ’(E → K)ˆn) (B : ’ Fˆn), (∀ j : ’ I_n, lin_map (f j)) →
lin_map (fun x : E ⇒ lin_comb (fun i : ’I_n ⇒ f i x) B).

5.3.5 Kronecker Delta Function

In the context of real numbers R, the Kronecker delta function is a widely used tool in mathe-
matical expressions involving for example vectors. It is defined precisely for all i, j ∈ N by the
following:

δi,j
def.
=

{
1 if i = j,

0 if i ̸= j.
(5.2)

The function is implemented in Coq using the decidability lemma Nat.eq_dec to handle decision
about equality in nat, as shown in the following pattern matching:

Definition kronecker (i j : nat) : R :=
match (Nat.eq_dec i j) with
| left _ ⇒ one

| right _ ⇒ zero

end.

The Kronecker delta function is symmetric confirmed within Coq as:

Lemma kronecker_sym : ∀(i j : nat), kronecker i j = kronecker j i.

By Equation (5.2), the Kronecker delta function equals 1 when its indices match i = j.

Lemma kronecker_is_1 : ∀(i j : nat), i = j → kronecker i j = 1.

Conversely, the Kronecker delta function equals 0 when its indices do not match i ̸= j.

Lemma kronecker_is_0 : ∀(i j : nat), i ̸= j → kronecker i j = 0.

A key utility of the Kronecker delta function is observed when it is summed over one of its
indices. In such cases, the sum across any row or column of a matrix representation equates to
one. The corresponding lemmas in Coq are:

Lemma sum_kronecker_l : ∀{n} (j : ’I_n), sum (fun i : ’ I_n ⇒ kronecker i j) = 1.
Lemma sum_kronecker_r : ∀{n} (i : ’I_n), sum (fun j : ’ I_n ⇒ kronecker i j) = 1.

Additionally, we recall from Section 5.3.1 that itemF is a function that creates a family in
which all entries are initialized to a zero element of an abelian monoid R, except for one specified
index where the value is the number x ∈ R. In this context, we state that for any dimension d,
the family produced by the itemF function at index i with value x is equal to the family where
each element is the product of x and the Kronecker delta evaluated at i and j.

Lemma itemF_kronecker_eq : ∀{d} (x : R) (i : ’I_d), itemF d x i = (fun j ⇒ x ∗ kronecker i j).

One important thing to note is that decrementing both indices of the Kronecker delta function
does not change their equality status as long as both indices are non-zero.

Lemma kronecker_pred_eq : ∀i j, i ̸= 0 → j ̸= 0 → kronecker (i − 1) (j − 1) = kronecker i j.

5.3.6 Affine Spaces and Barycenter

Affine spaces are a fundamental concept in geometry and algebra that extend the ideas of
module spaces (see Section 5.3.3). While a module space focuses on vectors that abstract the
concepts of direction and magnitude, an affine space emphasizes points and the transformations
between them. Any module space may be equipped with an affine space structure by choosing

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Ring_compl.v?ref_type=tags#L1230
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Ring_compl.v?ref_type=tags#L1373
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Ring_compl.v?ref_type=tags#L1355
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Ring_compl.v?ref_type=tags#L1364
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Ring_compl.v?ref_type=tags#L1393-L1399
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Ring_compl.v?ref_type=tags#L1381-L1382
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Ring_compl.v?ref_type=tags#L1376-L1378

66 CHAPTER 5. ALGEBRA

some origin that may differ from the null vector. For instance, in R3, every plane is an affine
subspace whether it contains (0, 0, 0) or not.

An affine space is denoted in Coq as AffineSpace. Mathematically, if V is a module space
over a ring K, then an associated affine space E consists of a non-empty set of points that is

equipped with a function vect : E → E → V, denoted by
−−→
AB := vect A B for all A and B in E. This

function satisfies the following conditions:

1. Chasles relation: ∀A,B,C ∈ E,
−−→
AB +

−−→
BC =

−→
AC.

2. Bijectivity: ∀(A : E)(−→u : V), ∃!B : E,
−−→
AB = −→u .

Another key operation is the construction of affine combinations of points in E, which is an
extension of linear combinations in module spaces (refer to Section 5.3.4). It is defined through
the following predicate:

n−1∑
i=0

Li
−−→
GAi =

−→
0 . (5.3)

When
∑n−1

i=0 Li is invertible in the ring K (i.e., the sum of the weights has an inverse in the ring
K), G is called the affine combination of points (Ai)i∈[0..n−1] with coefficients (Li)i∈[0..n−1]. This
is translated in Coq as:

Context {K : Ring}.
Context {V : ModuleSpace K}.
Context {E : AffineSpace V}.
Definition aff_comb {n} (L : ’Kˆn) (A : ’Eˆn) (G : E) : Prop := lin_comb L (vectF G A) = 0.

Here, vectF G is a function that converts a family of points in E into a family of vectors in V

starting from G.

The Equation (5.3) implies the following equation using the Chasles relation with any point
O: (

n−1∑
i=0

Li

)
−−→
OG =

n−1∑
i=0

Li
−−→
OAi. (5.4)

When
∑n−1

i=0 Li is invertible, G is also called barycenter of points (Ai)i∈[0..n−1] with weights
{Li}i∈[0..n−1]. Moreover, when the sum is one and the points (Ai)i∈[0..n−1] are affinely indepen-
dent (see Section 5.4.3), the weights are called the barycentric coordinates of G in the affine
system (Ai)i∈[0..n−1].

We guarantee the existence of a barycenter G as an affine combination of points in A using
weights L through this lemma,

Lemma baryc_EX : ∀{n} {L : ’ Kˆn} (A : ’ Eˆn), invertible (sum L) → { G | aff_comb L A G }.

The precondition invertible (sum L) specifies that the sum of the weights has an inverse in
the ring K, and the Equation (5.4) may be simplified. If K is a field, this means that

∑n−1
i=0 Li ̸= 0.

The barycenter G is then defined as a total function based on whether the sum of the weights
L is invertible or not as follows:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/AffineSpace.v?ref_type=tags#L247-L252
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/AffineSpace.v?ref_type=tags#L1322
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/AffineSpace.v?ref_type=tags#L1423-L1424
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/AffineSpace.v?ref_type=tags#L1427-L1431

5.4. FINITE DIMENSIONAL SUBSPACES 67

Definition barycenter {n} {L : ’Kˆn} (A : ’Eˆn) : E := match invertible_dec (sum L) with
| left HL ⇒ proj1_sig (baryc_EX A HL)
| right _ ⇒ point_of_as E

end.

When the sum of the weights is invertible, the function is the affine combination of the points
A with weights L extracted from the lemma baryc_EX. When the sum is not invertible, the
function returns a default point from the affine space E (the witness of non-emptiness of E).

Now, we determine a special kind of barycenter, named isobarycenter , which corresponds to
equal weights, e.g. 1.

Definition isobarycenter {n} (A : ’Eˆn) : E := barycenter ones A.

In the sequel, we consider V1 and V2 as module spaces over a ring K, and associated affine
spaces E1 and E2. A function f : E1 → E2 preserving barycenters of any family of points with
any weights of invertible sum is called an affine mapping . It is defined as follows:

Definition aff_map (f : E1 → E2) : Prop := ∀n (L : ’Kˆn) (A1 : ’ E1ˆn),
invertible (sum L) → f (barycenter L A1) = barycenter L (mapF f A1).

A significant property of affine mappings is their behavior under the bijective property. A
function is bijective if it is both injective and surjective, as established in Section 5.1.3. If
f : E1 → E2 is an affine and bijective map, then its inverse is also an affine map, stated by:

Lemma am_bij_compat : ∀{f : E1 → E2} (Hf : bijective f), aff_map f → aff_map (f_inv Hf).

Furthermore, let us assume E1 and E2 are two module spaces over a ring K, and each is
considered as an affine space over itself. In this setting, the vector from point A to point B is
defined by vect A B := B − A. Within this framework, affine mappings can be expressed as the
sum of a linear map and a constant vector. This decomposition is formalized as follows:

Lemma am_lm_ms : ∀{lf : E1 → E2} (c2 : E2), lin_map lf → aff_map (lf + (fun⇒ c2)).

This lemma demonstrates that adding a constant vector to any linear map creates an affine map.
Conversely, by subtracting the image of the zero vector in E1 from the map f, one can revert it
to a linear map. For more details on the linearity of mappings, refer to Section 5.3.3.

Lemma am_lm_0_rev : ∀{f : E1 → E2}, aff_map f → lin_map (f − (fun⇒ f 0)).

5.4 Finite Dimensional Subspaces

5.4.1 Linear Span

Consider E a module space over a ring K, and B a family of vectors of E. The linear span of B

is the subset of E of all possible linear combinations of B. This is formally captured in a Coq
environment as an inductive type:

Inductive lin_span {n} (B : ’Eˆn) : E → Prop := Lin_span : ∀L, lin_span B (lin_comb L B).

In this definition, lin_span is a predicate that specifies which vectors of E are in the span of a
given family of vectors B (refer to Section 5.1.1).

A vector x ∈ E is in the linear span of B if there exists a family of scalars L from K, such that
x can be expressed as the linear combination of B with coefficients L, i.e.,

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/AffineSpace.v?ref_type=tags#L1433
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/AffineSpace.v?ref_type=tags#L2069-L2071
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/AffineSpace.v?ref_type=tags#L2336-L2337
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/AffineSpace.v?ref_type=tags#L2432-L2433
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/AffineSpace.v?ref_type=tags#L2442-L2443
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim.v?ref_type=tags#L154-L155

68 CHAPTER 5. ALGEBRA

x ∈ span (B0, . . . , Bn−1)
def.
= ∃L ∈ Kn, x =

n−1∑
i=0

LiBi. (5.5)

From this Equation (5.5), since the span of B encompasses all possible linear combinations
of the vectors within the set, then each individual vector in B is included in its linear span when
it is multiplied by the scalar coefficient 1, while all other coefficients are set to 0.

Lemma lin_span_inclF_diag : ∀{n} (B : ’Eˆn), inclF B (lin_span B).

Here, inclF represents the inclusion property of finite families in a subset discussed in Sec-
tion 5.2.3.

Moreover, when comparing two families of vectors, B1 and B2, with different dimensions,
their linear spans are equal if each family is included in the span of the other.

Lemma lin_span_ext : ∀{n1 n2} (B1 : ’Eˆn1) (B2 : ’ Eˆn2),
inclF B1 (lin_span B2) → inclF B2 (lin_span B1) → lin_span B1 = lin_span B2.

The linear span of a family of vectors qualifies as a submodule space in the module space E

(see Section 5.3.3).

Lemma lin_span_cms : compatible_ms (lin_span B).

Consequently, the linear span is also closed under addition and scalar multiplication that
naturally extends to the closure under all linear combinations.

Lemma lin_span_lc_closed : ∀(n : nat) (L : ’Kˆn) (A B : ’ Eˆn),
inclF A (lin_span B) → lin_span B (lin_comb L A).

5.4.2 Generating, Free, Basis Families

Let E be a module space over a ring K. After confirming that the linear span of a family of
vectors B of E qualifies as a module space and includes all linear combinations of vectors from
B, we can define a predicate stating that B is a generating family for a subset PE of E. This
relationship is formally captured by the following definition:

Definition lin_gen (PE : E → Prop) {n} (B : ’Eˆn) : Prop := PE = lin_span B.

This definition underlines that the subset PE is entirely spanned by the vectors (Bi)i∈[0..n−1].
It ensures that for B to qualify as a generating family, every element within PE must be
representable as a linear combination of the vectors in B.

We now address the inclusion relationship between a generating family and the subset it
spans. If B forms a generating family for a subset PE of E, it implies that each vector in B must
be an element of PE, expressed through the inclusion function inclF defined in Section 5.2.3.

Lemma lin_gen_inclF : ∀{PE : E → Prop} {n} {B : ’Eˆn}, lin_gen PE B → inclF B PE.

Next, we delve into the concept of linear independence of vectors. The vectors (Bi)i∈[0..n−1]

are linearly independent (or that the family of vectors B is free [41, Section 6.6 p.188]) if the
only zero linear combination is the trivial one.

Definition lin_indep {n} (B : ’Eˆn) := ∀(L : ’ Kˆn), lin_comb L B = 0 → L = 0.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim.v?ref_type=tags#L247
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim.v?ref_type=tags#L247
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim.v?ref_type=tags#L326-L329
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim.v?ref_type=tags#L446
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim.v?ref_type=tags#L452
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim.v?ref_type=tags#L176
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim.v?ref_type=tags#L542
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim.v?ref_type=tags#L193-L194

5.4. FINITE DIMENSIONAL SUBSPACES 69

This guarantees that no vector in B is redundant; none can be represented as a linear
combination of others.

Having established B as both a generating family and as linearly independent, we are posi-
tioned to declare that B forms a basis for PE. This is specified as follows:

Definition basis (PE : E → Prop) {n} (B : ’Eˆn) := lin_gen PE B ∧ lin_indep B.

Ultimately, we tie together the basis with the notion of dimension. The dimension of a submodule
space PE of the module space E is defined as the number of vectors in its bases. This is formulated
as follows:

Inductive has_dim (PE : E → Prop) n : Prop :=
Dim : ∀ (B : ’ Eˆn), basis PE B → has_dim PE n.

This dimension describes the minimum number of vectors required to span the entire subset
PE, and the maximum number of vectors that may be linearly independent. We prove that all
bases of PE have the same dimension, thereby ensuring the correctness of this definition.

We articulate that in a module space E, if the vectors (Bi)i∈[0..n−1] are linearly independent,
then they also form a basis for its linear span, and vice versa.

Lemma basis_lin_span_equiv : ∀{n} {B : ’Eˆn}, basis (lin_span B) B ↔ lin_indep B.

To establish a family as a basis in a submodule space, it must satisfy the condition of having
the correct size (matching the known dimension n), and must be linearly independent.

Lemma lin_indep_basis : ∀{PE : E → Prop} {n} {B : ’Eˆn},
has_dim PE n → inclF B PE → lin_indep B → basis PE B.

We now present a specific lemma that explores the relationship between bijections and
injections within the framework of a module space E over the ring of real numbers R. This
lemma is very important for subsequent discussions, particularly in establishing the unisolvence
property of the Lagrange finite element. The details of its application are thoroughly discussed
in Section 10.3.7.

Within the module space E, we consider a subset PE of the type of functions from E to R.
We assume PE to be finite-dimensional of dimension nPE, and acknowledge its structure as a
submodule space.

Consider a family of vectors A of type ’ Eˆn, and define a family of linear functions
(u(Ai))i∈[0..n−1] ∈ Rn. Then, if the number of vectors in A matches the dimension nPE of
PE where PE is a subset of the function space F(E,R), then there exists a bijection between PE

and the full set Rn if and only if the function u is injective on the module space corresponding
to PE. The formal lemma is expressed as follows:

Lemma lmS_bijS_val_gather_equiv : ∀{E : ModuleSpace R_Ring} {PE : (E → R) → Prop}
{nPE : nat} (HPE : compatible_ms PE) {n : nat} (A : ’Eˆn),
n = nPE → bijS PE fullset (fun (u : E → R) (i : ’I_n) ⇒ u (A i)) ↔
(∀ u : sub_ModuleSpace HPE, (∀ i : ’I_n, val u (A i) = 0) → u = 0).

This lemma has slightly been simplified from its original version in Coq to enhance clarity
and readability. The term bijS signifies bijectivity within subsets, which is explored in detail
in Section 5.1.4. The sub_ModuleSpace declaration is associated with the construction of the
module space PE, based on the proof HPE that it is closed under linear operations. Meanwhile,
val serves as the canonical injection from sub_ModuleSpace HPE into E.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim.v?ref_type=tags#L209-L210
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim.v?ref_type=tags#L221-L222
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim.v?ref_type=tags#L1468-L1469
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim_R.v?ref_type=tags#L708-L710
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim_R.v?ref_type=tags#L1278-L1281

70 CHAPTER 5. ALGEBRA

5.4.3 Affine independence

Building on the principle of linear independence discussed in Section 5.4.2, we introduce the
notion of affine independence within the context of affine spaces. Let E be a module space,
considered as an affine space over itself (see Section 5.3.6). A family of points (Ai)i∈[0..n] is
considered affine independent if the family of vectors (Ai − A0)i∈[1..n] is linearly independent.
The formal definition in Coq is presented as follows:

Definition affine_independent {n} (A : ’Eˆn.+1) := lin_indep (liftF_S A − constF n (A ord0)).

In simpler terms, no point in the set can be expressed as an affine combination of the others,
where an affine combination involves coefficients whose sum must be invertible. Further details
on affine combinations can be found in Section 5.3.6. This definition uses the operations
liftF_S and constF of finite families, as described in Section 5.2.3. The application liftF_S A

shifts each element of A by one position, while the constF function creates a constant vector
where every element is the first element of A.

An important property of an affine independent family is highlighted by the lemma
affine_independent_lc stating that for two families of scalars, if they sum to the same value
and produce the same affine combination of points, then they must be identical.

Lemma affine_independent_lc : ∀{n} (L1 L2 : ’Rˆn.+1) (A : ’Eˆn.+1),
affine_independent A → sum L1 = sum L2 → lin_comb L1 A = lin_comb L2 A → L1 = L2.

Additionally, the concept of an affine generator is introduced, which describes a set of points
that represent any point in an affine space through an affine combination where the coefficients
sum to one. This sum condition ensures that the affine combination remains within the same
affine space as the points (Ai)i∈[0..n−1]. Consider a module space E over the ring R, we have:

Definition affine_generator {n} (A : ’Eˆn) : Prop := ∀(x : E), ∃ (L : ’ Rˆn),
sum L = 1 ∧ x = lin_comb L A.

Finally, a relationship between affine independence and affine generators is established. If a
family of n + 1 points A is affine independent in a space of dimension n, it also qualifies as an
affine generator for that space.

Lemma affine_independent_generator : ∀{n} (A : ’Eˆn.+1),
has_dim fullset n → affine_independent A → affine_generator A.

5.4.4 Dual Space, Duality

In this section, we introduce the concept of the dual space of a module space E over the ring
R, as detailed in Gostiaux’s work [41, Section 6.8 p.210]. The dual space, denoted L(E,R)
or alternatively E′, comprises all linear forms mapping elements from E to R. Notably, E′

itself constitutes a module space over R, equipped with operations that conform to the linear
structure of module spaces.

To concretely understand the structure of E′, let E be a finite dimensional module space
and B = (ei)i∈[0..n−1] a basis of E. The concept of a dual basis is introduced for E′. A dual
basis is a family of linear forms B′ = (e′i)i∈[0..n−1] such that each e′i uniquely corresponds to ei
from the original basis B. The action of these dual basis vectors on E is defined by the relation:

e′i(ej) = δi,j (Kronecker delta) (5.6)

where δ is the Kronecker delta function given in Section 5.3.5. This definition ensures that
each linear form e′i in the dual basis B′ maps its corresponding basis vector ei in E to 1, and

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim_R.v?ref_type=tags#L2092-L2093
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim_R.v?ref_type=tags#L2146-L2149
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim_R.v?ref_type=tags#L2167-L2168
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim_R.v?ref_type=tags#L2190-L2192

5.5. BINOMIALS 71

all other basis vectors to 0.

The family of linear forms B′ is both free and spans the entire dual space E′, hence it forms
a basis for E′. This is possible because in finite dimensions, the dual space E′ has the same
dimension as E. And so, in this case, E′ is isomorphic to E.

Having briefly discussed the concept of dual basis of a basis in E, we now turn our attention
to the corresponding reverse concept: the predual basis of a basis in E′. Specifically, for any
given basis B′ of the dual space E′, there exists a unique basis B in the finite dimensional module
space E such that B′ is the dual basis of B. This relationship is mathematically characterized
by the condition:

e′i(ej) = δi,j .

In Coq, the concept of a predual basis is formulated for a finite dimensional subspace PE

of the module space E over the ring R. This construction requires that the mapping from PE

(a subset of E) to Rn defined by B’ is a bijection. This relationship is given by the following
definition:

Definition predual_basis : ∀{E : ModuleSpace R_Ring} {PE : E → Prop} {n : nat}
{B’ : ’(E → R)ˆn}, bijS PE fullset (gather B’) → ’Eˆn.

here, the function gather is used here to transform the family B’ of linear forms of type
’(E → R)ˆn, into a single function that maps any input from E to a vector in ’ Rˆn.

The requirement for bijectivity of the dual basis B’ here, stems from the need to establish a
reversible mapping between the space E and its dual space E’ .

Moreover, we specify that for a finite dimensional subspace PE of a module space E over a
ring R, if PE is equipped with a basis B’ of n linear maps from E to R, then there exists a unique
corresponding basis in E, the predual basis. This is formalized as follows:

Lemma predual_basis_basis : ∀{E : ModuleSpace R_Ring} {PE : E → Prop} {n : nat},
has_dim PE n → ∀B’ : ’(E → R)ˆn, (∀ i : ’ I_n, lin_map (B’ i)) →

∀ HB’ : bijS PE fullset (gather B’), basis PE (predual_basis HB’).

5.5 Binomials

In this section, we give a brief introduction of binomial coefficients, commonly represented as(
n
k

)
and denoted in math-comp library1 by ’ C. The binomial coefficients are the positive integers

that provide the number of ways to choose a set of k elements from n elements without regard
to the order, where n, k ∈ N. In this thesis, binomials are needed for constructing various
elements required for the triplet of the Lagrange finite element. This includes, for example, the
family of multi-indices (refer to Section 8.1) and the dimension of the polynomial approximation
space (detailed in Section 8.2).

In this context, we introduce pbinom, a Coq function that computes a modified binomial coeffi-
cient. Specifically, pbinom m n calculates

(
m+n
m

)
− 1. This is given in Coq as:

Definition pbinom (m n : nat) : nat := (’C ((m + n), m)).−1.

The standard binomial coefficient
(
m+n
m

)
can be recovered directly from the successor of the

pbinom function as it is always positive:

1https://math-comp.github.io/htmldoc/mathcomp.ssreflect.binomial.html

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim_R.v?ref_type=tags#L1735-L1737
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/Finite_dim_R.v?ref_type=tags#L1743
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/binomial_compl.v?ref_type=tags#L60
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/binomial_compl.v?ref_type=tags#L67

72 CHAPTER 5. ALGEBRA

Lemma pbinomS_eq : ∀m n, (pbinom m n).+1 = ’C (m + n, m).

Given that
(
m+n
m

)
is always positive, the expression (pbinom m n).+1 structurally reinforces

this property. This adjustment enables the application of functions such as liftF_S (refer to
Section 5.2.3), which require a family size of ’something + 1’ to be defined structurally, without
imposing further assumptions on size.

We present an interesting property connecting sums of binomial coefficients (see Sec-
tion 5.3.1). This property is mathematically expressed as:

n∑
i=0

(
i+m

i

)
=

(
n+m+ 1

n

)
.

This is translated in Coq as:

Lemma pbinomS_rising_sum_r : ∀m n,
sum (fun i : ’ I_n.+1 ⇒ (pbinom i m).+1) = (pbinom n m.+1).+1.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Algebra/binomial_compl.v?ref_type=tags#L127-L128

Chapter 6

Mathematical Presentation of Finite
Elements

The Finite Element Method (FEM)1 is a widely-used computational technique in engineering
and mathematical modeling for approximating solutions to boundary value problems associated
with partial differential equations [19, 34, 35, 36, 66]. Its application is particularly useful since
deriving analytical solutions is almost always impossible. The principle of the FEM involves
dividing a complex domain into smaller, simpler parts called geometrical finite elements (see
Figure 6.1). The equations formulated within each of these finite elements are then assembled
to form a larger system of equations, representing the entire problem.

This chapter introduces the fundamental principles of the Finite Element Method (see
Figure 6.1), using the Galerkin method [66]. These principles are essential for the comprehen-
sion of the topics discussed in the subsequent chapters. Although not every aspect covered
in this chapter will be formalized using Coq in the present document, it provides detailed
steps necessary for the numerical implementation of these principles. A case study illustrating
these steps is the Poisson problem (6.1), a second-order linear elliptic partial differential
equation within a d-dimensional domain ([48, p.26]). We will demonstrate the construction of
a weak discrete formulation for this problem as described in Equation (6.4) in Section 6.2.1
and develop the related linear system through discretization [40]. Additionally, this chapter
also defines the geometric mapping transforming the reference geometric element into current
geometric elements in Section 6.2.2. Following this, we introduce the general definition of
finite elements as a triplet in Section 6.3, (e.g. see [59]). Finally, the principle of unisolvence,
necessary for ensuring that the studied problem has a unique solution, is explained in Section 6.4.

We recall that, similar to the previous chapter, certain notations will be presented in boldface.
This indicates that they represent families (such as vectors in Rn) containing multiple elements,
distinguishing them from scalars in R or N, for example.

6.1 Continuous Problem: Strong and Weak Formulation

6.1.1 Definitions and Notations

Consider Ω, a non-empty, open, bounded, and connected subset of Rd, with d ≥ 1 is the spa-

tial dimension and Γ
def.
= ∂Ω representing its regular boundary (i.e., the boundary is smooth,

1https://jschoeberl.github.io/iFEM/FEM/finiteelements.html

73

https://jschoeberl.github.io/iFEM/FEM/finiteelements.html

74 CHAPTER 6. MATHEMATICAL PRESENTATION OF FINITE ELEMENTS

Continuous Variational Form:
Equation (6.1) (Section 6.1)

Domain Discretization:
Build the Mesh (Section 6.2.2)

Discrete Variational Form:
Equation (6.4) (Section 6.2.1)

System Resolution:
Equation (6.9) (Section 6.2.3)

Lax Milgram Thm

Hilbert Space
(ex: H1

0 (Ω))

Finite Element
(K,P,Σ)

Quadrature Formula

Figure 6.1: A brief overview of the components in a typical stationary FEM. The thick black arrows illustrate the
standard steps in solving a problem using FEM, while the dashed red arrows indicate the application of theorems
or numerical tools. The filled colors correspond to Sections: 6.1.2 in brown , 6.2.2 in yellow , and 6.2.1 in green ,

6.2.3 in turquoise blue .

which implies that it is continuously differentiable to some degree) where certain conditions (like
Dirichlet or Neumann conditions [3]) are imposed. To elucidate further:

• An open subset is one where, around every point, a small sphere can be drawn such that
its entire interior falls within the subset.

• A bounded subset means all the points fit within a specific distance from a central point.

• A subset is termed connected if there is a continuous path within the subset that links any
two points in Ω.

In this section, we define various spaces of functions, ranging from Lebesgue spaces to Sobolev
spaces, which will be useful in subsequent sections for a better understanding and application
of the finite element method.

Lebesgue Space

The Lebesgue space L2(Ω) is a space of functions defined with respect to the measure space
(Ω,B, µ), where B is the Borel sigma-algebra that is generated by the open subsets of the
domain Ω, and µ is the Lebesgue measure [18] (refer to Sections 3.1.1 and 3.2). The space
L2(Ω) includes all measurable functions f : Ω → R that are square-integrable over Ω. A function
f is square-integrable if the integral of the square of f over Ω is finite, i.e.,∫

Ω
|f(x)|2 dµ <∞.

This space is a Hilbert space (i.e., complete normed vector space with an associated inner

product), with the norm defined by ∥f∥L2(Ω) =
(∫

Ω |f(x)|2 dµ
)1/2

. Completeness here means
that every Cauchy sequence of vectors in the Lebesgue space L2(Ω) converges to a limit that is

6.1. CONTINUOUS PROBLEM: STRONG AND WEAK FORMULATION 75

also in L2(Ω).

The construction of L2(Ω) heavily relies on the theory of the Lebesgue integral provided in
Chapter 3.

Sobolev Space

The Sobolev space H1(Ω) is a subset of the Lebesgue space L2(Ω), designed to include functions
that are square integrable and also requires that the first derivatives of these functions, inter-
preted in the weak sense, are square-integrable (see eg [17, 51, 64, 1]). A weak derivative allows
us to extend the concept of differentiation to functions that might not be differentiable in the
traditional sense. Specifically, a function u : Ω → R has a weak derivative v : (Ω → R)d denoted
by v = (v0, . . . , vd−1), with respect to xi if, for every infinitely differentiable function ϕ with
compact support in Ω (i.e., ϕ ∈ D(Ω)), the following integral equation holds:

∀i ∈ [0..d− 1],

∫
Ω
u ∂xiϕdµ = −

∫
Ω
v ϕdµ,

where ∂xiϕ (or ∂ϕ
∂xi

) is the partial derivative of ϕ with respect to the i-th coordinate.

The gradient operator, denoted by ∇u, collects the first-order weak derivatives into a family.
This operator is used to compute the vector of partial derivatives of a function, representing the
vector of weak partial derivatives of u. In mathematical notation, it is expressed as follows:

∇u =

(
∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xd

)
∈ Rd.

Additionally, a function has compact support means it is nonzero only within a bounded region
and zero everywhere else.

In essence, H1(Ω) is a Hilbert space that consists of all functions u ∈ L2(Ω) for which the
weak derivatives ∇u also belong to L2(Ω). In mathematical terms,

H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ (L2(Ω))d},

The norm in this space is given by,

∥u∥H1(Ω) =
(
∥u∥2L2(Ω) + ∥∇u∥2L2(Ω)

)1/2
.

The space H1
0 (Ω) is a subspace of H1(Ω) and includes those functions in H1(Ω) that vanish at

the boundary Γ. The norm ∥ · ∥ on H1
0 (Ω) is given by:

∥u∥H1
0 (Ω) = ∥∇u∥L2(Ω).

6.1.2 Strong Formulation

Consider a function f in the space L2(Ω). The Poisson equation is a boundary-value problem
expressed in the strong formulation as follows:

find u : Ω → R such that:
−∆u = f in Ω

u = 0 on Γ,
(6.1)

76 CHAPTER 6. MATHEMATICAL PRESENTATION OF FINITE ELEMENTS

where the Laplace operator, denoted by ∆, is a second-order differential operator defined as

∆u
def.
=
∑d

i=1
∂2u
∂x2i

: Ω → R, where u is the function to be determined.

The Poisson equation is widely used across various scientific and engineering disciplines,
notably in modeling phenomena such as steady-state heat distribution within mediums that
have internal heat sources. For instance, the equation −∆u = f can represent how temperature
is distributed within a material, where f corresponds to heat produced by electronic components.

6.1.3 Weak Formulation

The Finite Element Method (FEM) for solving PDEs is written using a weak, variational
formulation. For instance, if we look at the Poisson problem in its strong formulation, the
solution u is expected to have second derivatives and thus be at least C1(Ω) (i.e., the function
u is continuously differentiable over the domain Ω, meaning both u and its first derivatives are
continuous across Ω). However, in many cases, there is no solution with such regularity (for
domains with geometrical or physical irregularities for example). The correct mathematical
setting is the weak, variational formulation. It requires u to be only in H1

0 (Ω), which means u
and its (weak) first derivatives need only be square-integrable, not necessarily continuous. The
Lax-Milgram theorem states indeed the existence and the uniqueness of the weak solution in
this space.

To transition to the weak formulation of the Poisson equation, we begin with multiplying
both sides of the strong form of the Poisson Equation (6.1) by a test function v ∈ H1

0 (Ω). We
then integrate over the domain Ω,

−
∫
Ω

∆u v dµ =

∫
Ω
fv dµ.

Following this, we apply the integration by parts formula [16], to the left-hand side of the
equation, and take the boundary condition into account, we obtain the weak form of the Poisson
equation,

find u ∈ H1
0 (Ω), such that:

∀v ∈ H1
0 (Ω),

∫
Ω
∇u ·∇v dµ =

∫
Ω
fv dµ. (6.2)

The strong formulation (6.1) is so called because solutions are required to satisfy the partial
differential equation at every point within the domain Ω explicitly, and this requires that all the
necessary derivatives exist and be continuous as specified by the equation (6.1). On the other
hand, the weak formulation is termed weak because it weakens these requirements: the solution
is required to satisfy the integral of the PDE multiplied by any test functions in a specified space
(the integral is often integrated by parts). The PDE in this form is also called a variational
formulation. There are fewer requirements on the existence and continuity of the derivatives,
thus the weak solution lives in a larger space than the strong solution: in many cases, the weak
solution exists, whereas the strong solution may not be properly defined.

6.1.4 Algebraic Form and Lax-Milgram Theorem.

Before we proceed with the approximation of the problem described in Equation (6.2) using
the Finite Element Method (FEM), it is essential to verify that the problem is well-posed.

6.2. DISCRETE PROBLEM 77

This entails confirming that there exists a unique solution. To establish this, we rely on the
Lax-Milgram theorem, as referenced in [10, 52].

We generalize the components of Equation (6.2) into a Hilbert space setting. Specifically, we
use the space (V, ∥.∥V) to represent (H1

0 (Ω), ∥.∥H1
0 (Ω)), the bilinear form a to represent (u, v) 7−→∫

Ω∇u ·∇v, and the linear form ℓ to represent v 7−→
∫
Ω fv, for all u and v in V . This abstract

formulation becomes the algebraic problem:

find u ∈ V, such that: ∀v ∈ V, a(u, v) = ℓ(v). (6.3)

To ensure the applicability of the Lax-Milgram theorem, we need to verify that the bilinear form
a meets the following conditions:

(i) boundedness : there exists a constant c > 0 such that for all u, v ∈ V ,

|a(u, v)| ⩽ c∥u∥V ∥v∥V .

(ii) coercivity : there exists a constant α > 0 such that for all u ∈ V ,

a(u, u) ≥ α∥u∥2V .

With these conditions met, the Lax-Milgram theorem guarantees the existence of a unique so-
lution u ∈ V for the weak formulation of the Poisson equation as specified in Equation (6.2).
The requisite conditions for applying this theorem are indeed satisfied in the case of the Equa-
tion (6.2).

6.2 Discrete Problem

In this section, we aim to find an approximate solution to problem (6.3), by using the Galerkin
method (see [34, p.30]), which involves formulating the discrete Poisson problem.

6.2.1 Approximate Problem

The Galerkin method approximates the infinite-dimensional space V with a finite-dimensional
subspace Vh of V , which is referred to as the approximation space. The space Vh is defined as the
space of continuous functions whose restriction to any cell of the mesh Th (refer to Section 6.2.2
below) belongs to an approximation space P of finite dimension, which will be characterized
further in detail in Section 8.2, usually a space of polynomials.

Vh
def.
= {vh ∈ C0(Rd,R) | ∀K ∈ Th, vh|K ∈ P} ⊂ V.

Consequently, by constructing an appropriate approximation space Vh, the formulation for the
weak discrete Poisson problem is

find uh ∈ Vh, such that: ∀vh ∈ Vh, a(uh, vh) = ℓ(vh). (6.4)

The Lax Milgram theorem applies directly to Equation (6.4) when computing approximate
solutions. The next question to consider is the accuracy of the approximate solution uh with
respect to the exact solution u. To address this, we refer to the Lemma of Céa, which provides

78 CHAPTER 6. MATHEMATICAL PRESENTATION OF FINITE ELEMENTS

a bound on the error of the Galerkin approximation [19, 48], and states that the error between
the continuous solution u and the discrete solution uh is bounded by

∀vh ∈ Vh, ∥u− uh∥V ⩽
c

α
∥u− vh∥V ,

where c > 0 and α > 0 are the continuity and the coercivity constants of the bilinear form a (see
Section 6.1.4). More specifically, this means that the error in the finite element approximation
(u−uh) is bounded by a constant c

α times the smallest error of the best possible approximation
of u achievable by any function vh within the subspace Vh. Moreover, a smaller value of the
factor c

α leads to a smaller error bound, which in turn indicates that the solution uh produced
by the FEM is closer to the true solution u.

6.2.2 Building the Mesh

Figure 6.2: Visual representation of a 3D model of a cerebral aneurysm with a mesh made of tetrahedrons [38].

The discrete problem (6.4) constitutes a linear system. This latter is obtained by discretizing
the domain Ω into finite elements as depicted in Figure 6.2 (see eg, [40] and [66, Chapter 3 p.73],
and expressing the approximate solution uh and a test function vh in terms of basis functions
associated with these elements as will be established further in Section 6.2.3. Specifically, we
consider a mesh Th, which partitions the domain Ω into a collection of closed subsets known as
the cells of the mesh (see [34, p.54]), or geometric elements {Km}Nc

m=1, where Nc is the total
number of cells. Each cell Km within the mesh Th has a nonempty interior (i.e., the largest open
set that is completely contained within Km), and these interiors are mutually disjoint, thereby
ensuring complete coverage of the domain Ω,

(
∀m ∈ [1..Nc],

◦
Km ̸= ∅

)
∧
(
∀m,n ∈ [1..Nc],m ̸= n⇒

◦
Km ∩

◦
Kn= ∅

)
∧

(
Nc⋃

m=1

Km = Ω

)
.

In this context,
◦
Km represents the interior of the cell Km. Typically, the geometric shapes

of Km are intervals in one-dimensional space, triangles or quadrilaterals in two-dimensional
spaces, and tetrahedra or cuboids in three-dimensions (see Figure 1.2). For the purposes of this
thesis, we will focus exclusively on working with simplices, which are a generalization of the

6.2. DISCRETE PROBLEM 79

concept of a triangle or tetrahedron to arbitrary dimensions.

The parameter h > 0 of Th denotes the degree of the mesh refinement. A smaller h value
indicates a finer mesh with smaller, more numerous cells, hopefully leading to more precise
results. Specifically, h is defined as the diameter of the largest cell, as visually depicted in
Figure 6.3.

h = max
1⩽m⩽Nc

diam(Km).

h

Km

Figure 6.3: Geometric parameter h for a triangle Km, which represents the diameter of the cell Km.

To simplify the notation, the index m of the cells Km is omitted in further developments.

A mesh is said to be conforming (see [34, p.61]) when, for example, in dimension d = 2, the
intersection of two distinct cells is either empty, or consists of a vertex, an edge, as illustrated
in Figure 6.4.

Figure 6.4: On the left, two triangular cells in a conforming mesh, where the intersection of the two cells is an
entire edge, ensuring continuity across the mesh. On the right, three triangular cells form a non-conforming mesh
because the vertex of one cell lies along the interior of an edge of another cell.

In the framework of FEM, two types of geometric configurations exist: the reference
geometric element K̂ and the current geometric element K. The reference element, denoted as
K̂, is a unit right simplex. i.e., it is the interval [0, 1] in one-dimensional space, the unit isosceles
right triangle in two-dimensional spaces, and the unit right tetrahedron in three-dimensional
spaces.

In a space of dimension d ≥ 1, the reference cell K̂ is formed by d+ 1 points in Rd, known as
the reference vertices (v̂i)

d
i=0 which will be discussed further in Section 9.1.1. It is characterized

as a compact, connected polytope with a non-empty interior. Specifically, K̂ is represented as
the unit right simplex (see [35, p.21]), defined by,

80 CHAPTER 6. MATHEMATICAL PRESENTATION OF FINITE ELEMENTS

K̂
def.
=

{
x̂ ∈ Rd | 0 ⩽ x̂i ⩽ 1 for i = [0..d− 1], and

d−1∑
i=0

x̂i ⩽ 1

}
⊂ Rd. (6.5)

By convention, the reference vertices (v̂i)
d
i=0 are defined by v̂0 = 0, and for all

∀i ∈ [1..d], v̂i = δi−1 (see Section 9.1.1).

From the reference cell K̂, we generate each cell of the mesh Th, referred to as the current cells
K within the physical domain where the problem is defined. This process involves a family of
C1-diffeomorphic geometric mappings, denoted as TKgeo, which transforms K̂ onto each individual

cell K in Th. A simplex K in Rd is defined as the convex hull of a set of d+ 1 current vertices.
These vertices, represented as (vi)i∈[0..d], are points in Rd. The convex hull of these points, K,
is the smallest convex set that contains all the vertices. It can be mathematically expressed as
follows,

K
def.
=

{
x =

d∑
i=0

µivi ∈ Rd | ∀i ∈ [0..d], µi ≥ 0 ∧
d∑
i=0

µi = 1

}
. (6.6)

The geometric transformation TKgeo is mathematically defined as,

TKgeo : K̂ ∋ x̂ 7−→
d∑
i=0

ψ̂i(x̂)vi ∈ K. (6.7)

The ψ̂i are known as local shape functions, polynomial functions specified on K̂. Each shape
function ψ̂i is uniquely defined to fulfill the condition ψ̂i(v̂j) = δi,j for i, j ∈ [0..d], where δi,j is
the Kronecker delta function defined in Section 5.3.5. This condition ensures that TKgeo(v̂i) = vi

for each vertex v̂i of the reference cell K̂. The transformation TKgeo is an affine map in C∞(Rd)
associated with an invertible Jacobian matrix denoted by JKgeo (see e.g. [42]). For additional
examples and a detailed discussion of geometric mappings, refer to Section 9.3 and see [36,
p.90].

6.2.3 Building the Linear System

This section outlines the process of computing the global matrix by solving a system of linear
equations. Currently, this part has not been formalized in Coq; it is included here solely to
offer a conceptual understanding of how the Finite Element Method (FEM) operates and how
the approximate solutions are computed (see Figure 6.1).

We recall from Section 6.2.1, that the weak discrete formulation of the Poisson problem is
defined as follows:

find uh ∈ Vh, such that for all vh ∈ Vh, a(uh, vh) = ℓ(vh).

With the construction of a conforming mesh, we are now equipped to derive a corresponding
system of linear equations. Let (ϕj)j∈[1..Ndof] represent the global shape functions forming a
basis for Vh, where Ndof indicates the total number of the global degrees of freedom in the mesh
Th, which is also equal to the dimension of the space Vh. However, the detailed construction
of the global shape functions (ϕj)j∈[1..Ndof] will not be discussed. By setting vh = ϕi for all
i ∈ [1..Ndof] and expressing the approximate solution uh in terms of this basis, we obtain the
following formulation,

6.3. GENERAL DEFINITION OF A FINITE ELEMENT 81

find uh =
∑Ndof

j=1 Ujϕj such that:

∀i ∈ [1..Ndof],

Ndof∑
j=1

a(ϕj , ϕi)Uj = ℓ(ϕi). (6.8)

This problem can also be represented as,

find U
def.
= [U1, . . . , UNdof

]⊤ in RNdof , such that:

AU = b, where

{
Aij = a(ϕj , ϕi), i, j ∈ [1..Ndof],
bi = ℓ(ϕi), i ∈ [1..Ndof].

(6.9)

Here, the matrix A is often called the stiffness matrix, U is the vector of unknown coefficients
that are the components of the discrete solution uh in the basis (ϕj)j∈[1..Ndof], and b is the
vector representing the integral of the source term f multiplied by the basis functions. The final
task of finding the solution involves solving this linear system through numerical linear algebra
techniques. The computation of the matrix A involves evaluating the bilinear form a for every
pair of basis functions.

a(ϕj , ϕi) =

∫
Ω
∇ϕj ·∇ϕi

(1)
=

∑
K∈Th

∫
K
∇ϕj ·∇ϕi

(2)
=

∑
K∈Th

∫
K̂

(JKgeo)
−T ∇̂ϕ̂j · (JKgeo)

−T ∇̂ϕ̂i |detJKgeo|

(3)
≈

∑
K∈Th

Nq∑
ig=1

(
(JKgeo)

−T ∇̂ϕ̂j · (JKgeo)
−T ∇̂ϕ̂i | detJKgeo|

)
(ξ̂ig) ω̂ig .

(6.10)

The integral over the entire domain Ω is first represented as a sum of integrals over each mesh
element, as shown by the assertion (1).

Following this, in assertion (2), we transform each integral over the current element K into
an integral over the reference element K̂, (defined above in the Equation (6.6) and (6.5),
respectively) by a change of variables. This transformation uses the inverse transpose of the
Jacobian matrix [36, Section 8.1, p.89] of the geometric mapping TKgeo, which maps gradient
vectors from the reference to the current element. We also use the gradients of the basis
functions on the reference element, ∇̂ϕ̂i and ∇̂ϕ̂j , scaled by the absolute value determinant of
the Jacobian matrix, |detJKgeo|, to adjust for the deformation between the reference element
and the current element.

Finally, assertion (3) approximates the integral over the reference element K̂ using the numerical
quadrature method ([34, p.213]). This approximation is evaluated at specific quadrature points
ξ̂ig , multiplied by the corresponding quadrature weights ω̂ig , for all basis functions (ϕ̂j)j∈[1..Ndof]

of the mesh.

6.3 General Definition of a Finite Element

This section introduces the general definition of the finite element triplet, which establishes the
structure and mathematical formulation of finite elements. The formalization of this triplet

82 CHAPTER 6. MATHEMATICAL PRESENTATION OF FINITE ELEMENTS

in Coq will be presented in detail in Section 7.1, where essential proofs and definitions will
support its implementation. For instance, the unisolvence property, discussed in the following
Section 6.4, will also be addressed as part of this formalization.

At the heart of finite element analysis lies the concept of a finite element defined as a triple
(K,P,Σ) (see e.g [19, p.93]), where each component plays a role in defining how a function is
approximated and represented on a cell K of the mesh Th.

(i) K denotes a geometric element that is a compact, connected subset of Rd with a non-empty
interior. This geometric element can take various forms—such as a triangle, quadrilateral,
tetrahedron, or hexahedron, depending on the complexity and requirements of the simu-
lation (see Section 6.2.2).

(ii) P represents a finite-dimensional vector space of functions defined on each geometric ele-
ment K. The dimension of this space, indicated by ndof, represents the number of local
degrees of freedom within each element. P serves as the approximation space for functions,
typically polynomials of bounded degree. It provides a space for representing the solution
within each geometric element, where the choice of polynomial degree (linear, quadratic,
etc.) can be increased in order to adjust the accuracy of the solution.

(iii) Σ is a family of ndof linear forms acting on functions within the space P. This family is

denoted as Σ
def.
= {σi}i∈[0..ndof−1]. These linear forms represent the local degrees of freedom

within a finite element and are designed to ensure that the mapping ΦΣ : P → Rndof , given
by

ΦΣ(p) := (σi(p))i∈[0..ndof−1],

establishes an isomorphism. This isomorphism ensures a bijective correspondence between
the function space P and the vector space Rndof , thereby Σ forms a basis for the space
of linear forms L(P,R), which is the dual space of P. This property is known as the
unisolvence property, and will be described in more detail in the following Section 6.4.

While several families of finite elements exist, such as Crouzeix–Raviart, Raviart–Thomas,
and Nédélec [34, 35, 36, 55], this thesis focuses on the Lagrange finite elements [34, 16], which are
the most classical and widely used. Within the Lagrange family, for each i ∈ [0..ndof−1], σi is the
evaluation at evenly distributed points within each geometric element K. These points, known
as Lagrange nodes, include the vertices and will be further elaborated upon in Section 9.1. More
specifically, the unisolvence property ensures that each family of coefficients of polynomials in
P is uniquely determined by the values of the polynomial at specified nodes. These coefficients
are the unknowns that need to be computed within the finite element method. Once these
coefficients are accurately determined, they precisely define the polynomial that approximates
the solution to the partial differential equation in each geometric element. When the total
degree k = 1 or the spatial dimension d = 1, the Lagrange finite elements use Lagrange bases,
which are polynomial functions defined on each element of the mesh. These polynomials ensure
interpolation at these nodes, and their definition will be given in Section 9.5.

6.4 Unisolvence Principle

This section details the unisolvence principle (see e.g. [36, Section 7.4 p.79]) and outlines the
necessary conditions to establish it in the context of the finite element method. This property
is fundamental to the reliability of the finite element method, ensuring that the solution to

6.4. UNISOLVENCE PRINCIPLE 83

the mathematical problem model is uniquely determined by the values taken by the degrees of
freedom in each element of the mesh.

q

p

α1

α2

αndof

σ1(p)

σ2(p)

σndof(p)

P Rndof

Φ−1
Σ

ΦΣ

Figure 6.5: The bijective relationship between the approximation space P and the real number space Rndof .

As discussed previously in Section 6.3, a finite element is defined as a triplet (K,P,Σ). We
recall that unisolvence refers to the bijectivity of the mapping ΦΣ, satisfying condition (iii)
from Section 6.3 (see Figure 6.5). This bijectivity ensures a unique correspondence between the
function space P and the vector space Rndof , expressed as:

∀(α0, . . . , αndof−1) ∈ Rndof , ∃!p ∈ P, ∀i ∈ [0..ndof − 1], σi(p) = αi.

To verify this condition, one must equivalently demonstrate the following properties:

dimP = card Σ = ndof. (6.11)

∀p ∈ P, (∀i ∈ [0..ndof − 1], σi(p) = 0) ⇒ (p = 0). (6.12)

When these properties are satisfied, the finite element is referred to as unisolvent. The first
condition (6.11) ensures the dimension of the polynomial space P and the cardinal of the family
of linear forms are the same. The second condition (6.12), expresses that the kernel of ΦΣ

reduces to the zero vector (i.e., Ker(ΦΣ) = {p ∈ P | ΦΣ(p) = 0}), hence its injectivity.

This section on the unisolvence property of finite elements will be very useful in the later
chapters, as it establishes the unique correspondence between the degrees of freedom and the
functions in the approximation space. This property relies on a series of algebraic concepts,
including bijectivity, injectivity, and their equivalence, along with related properties. All these
algebraic results are thoroughly formalized in Coq in Section subsec:fun:bijS.

84 CHAPTER 6. MATHEMATICAL PRESENTATION OF FINITE ELEMENTS

Chapter 7

Formalization of Finite Elements and
Related Properties

This chapter specifically builds upon the work done in Chapter 6 concerning the general defi-
nition of a finite element, represented as a triplet within individual cells K of the mesh Th. In
Section 7.1, we represent the formalization of this triplet in the Coq proof assistant, using a
record-based approach that includes the foundational components of a finite element. In Sec-
tion 7.2, we define the shape functions as a basis for the polynomial space P. This latter was
briefly introduced in Section 6.3. Following this, in Section 7.3, we develop the local interpolation
operator associated with this finite element.

7.1 Formalization of Finite Elements:
A Record-Based Approach

In this section, we introduce a record type named FE. The fields of this record provide a
comprehensive representation of finite elements, building upon concepts discussed in Sec-
tions 6.3 and 6.4. It includes the necessary components required to approximate solutions
to partial differential equations (PDEs) within each mesh cell. This is achieved by exploring
the interconnections among geometric elements, function spaces, and linear forms within the
finite element method. However, the structure of this record is not limited to these three
elements; it also includes additional significant assumptions, which will be detailed subsequently.

Let us consider the structure of the finite element FE record and highlight the specifics of each
field within this record, which will be described afterwards to understand their contributions,
as demonstrated in the following code snippet.

Record FE : Type := mk_FE {
d : nat; (* spatial dimension, e.g., 1, 2, 3 *)

ndof : nat; (* number of degrees of freedom *)

d_pos : 0 < d; (* dimension is positive *)

ndof_pos : 0 < ndof; (* degrees of freedom are positive *)

shape : shape_type; (* geometric shape of the element *)

nvtx : nat := nvtx_of_shape d shape; (* number of vertices *)

vtx : ’(’ Rˆd)ˆnvtx; (* vertices of geometrical element *)

K_geom : ’Rˆd → Prop := convex_envelop vtx; (* geometric element *)

P_approx : FRd d → Prop; (* polynomial approximation space *)

P_approx_has_dim : has_dim P_approx ndof; (* subspace of dimension ndof *)

85

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE.v?ref_type=tags#L59-L73

86 CHAPTER 7. FORMALIZATION OF FINITE ELEMENTS

Sigma : ’(FRd d → R)ˆndof; (* linear forms over the approximation space *)

Sigma_lm : ∀i, lin_map (Sigma i); (* linearity of each form *)

unisolvence : bijS P_approx fullset (gather Sigma); (* bijectivity *)

}.

This record type encapsulates various properties relevant to a finite element. In subsequent
developments, when we need to access any of these properties or fields, we refer to them through
an instance fe of type FE.

The record begins by defining d as the spatial dimension, and ndof as the number of degrees of
freedom, which corresponds to the dimension d and the number ndof as mentioned in Section 6.3.
The constraints d_pos and ndof_pos ensure that these values are positive, highlighting that
there is at least one degree of freedom.

The shape of the element is described by the shape field, defined through the enumeration
shape_type, which identifies different geometric shapes—specifically, a Simplex or a Quad as
illustrated in Figure 7.1 in 2 dimensions. The choice of shape affects the nvtx computation,
which determines the number of vertices of the shape by the function nvtx_of_shape depending
on the dimension d and the selected shape. The corresponding code implementing these type
and function is given below,

Inductive shape_type := Simplex | Quad.
Definition nvtx_of_shape (d : nat) (shape : shape_type) : nat :=
match shape with | Simplex ⇒ d.+1 | Quad ⇒ 2ˆd end.

Th Th

Figure 7.1: Illustration of a mesh Th with two configurations: the right mesh is divided into 2D quadrangles, and
the left mesh is divided into 2D triangles. The orange points represent the vertices of the mesh.

The vertices vtx of a geometric element are represented as a family of points within the
space ’ Rˆd, with a size of nvtx. We recall from Section 5.2.3, that the notation ’(’ Rˆd)ˆnvtx

represents the type of a family of nvtx elements where each element is of type ’ Rˆd. The
value nvtx is calculated based on the shape of the geometric element and does not represent
a parameter of the type FE. Additionally, the field K_geom is derived from the subset of ’ Rˆd

describing the geometric element itself and is also a calculated attribute rather than a parameter
of type FE. The element K represents the first component of the finite element triple, which is
mathematically expressed in Section 6.2.2 through Equation (6.6) and discussed in Section 6.3.
Examples of geometric elements include segments in R, triangles in R2, and tetrahedra in R3. The

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE.v?ref_type=tags#L38
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE.v?ref_type=tags#L40-L44

7.2. SHAPE FUNCTIONS OF FINITE ELEMENT 87

K_geom field is defined as the convex hull of the vertices, constructed using the convex_envelop

predicate (see Equation (6.6) in Section 6.2.2). This predicate is defined in the Coq as an
inductive type, as illustrated below:

Context {E : ModuleSpace R_Ring}.
Inductive convex_envelop {n} (V : ’Eˆn) : E → Prop :=
| Cvx : ∀ (L : ’ Rˆn), (∀ i, 0 ⩽ L i) → sum L = 1 →

convex_envelop V (lin_comb L V).

Here, the function lin_comb computes the linear combination of elements in the module space
E with coefficients from the ring R. This function is detailed in Section 5.3.4.

This definition implies that any point in ’ Rˆd belongs to K_geom if it can be expressed as a
convex combination of the vertices vtx of a finite element within the mesh. Specifically, a
convex combination, specified by the constructor Cvx, requires that the coefficients (weights)
L, which are used to combine these vertices, are between 0 and 1, and sum up to one. This
condition ensures that every resulting point lies within the geometric element or is situated
on its boundary (inside the triangle in 2D for example). In this record, we have not formally
established that the interior of the geometrical element K_geom is non-empty.

We now turn our attention to the second component of the finite element triplet, the
approximation space P_approx, as detailed in Section 6.3. P_approx is a subspace of the vector
space FRd d := ’Rˆd → R, which is the functional space of real-valued functions defined over ’ Rˆd

(refer to Sections 5.3.3 and 5.2.3 for further details on modules and families of functions). The
dimension of P_approx is determined by the property P_approx_has_dim, which corresponds
precisely to the number of degrees of freedom, denoted as ndof. For further details on the
definition of the dimension, refer to Section 5.4.2.

Lastly, the third component of the finite element triplet, outlined in Section 6.3, is the
field Sigma : ’(FRd d → R)ˆndof. This field represents a collection of ndof linear forms, which are
collectively denoted as Σ. These forms correspond to the local degrees of freedom (DOF) within
a geometric element of the mesh. These DOFs refer to the independent values that define the
shape of the solution in each element of the mesh. These might include values such as function
values at the mesh nodes (nodal values), derivatives at nodes, or integral values over the elements.
Each function Sigma i within this family is a linear map, assumed in Sigma_lm and specified by
lin_map property, a concept thoroughly detailed in Section 5.3.3. Furthermore, the unisolvence

field specifies that gather Sigma : FRd d → ’Rˆndof is bijective, denoted by the predicate bijS.
This bijectivity exists between the approximation space P_approx and the full vector space
’ Rˆndof, denoted here as fullset. For a more detailed discussion on the unisolvence property,
refer to Section 6.4, and for further insights into the nature of bijS, consult Section 5.1.4. The
role of gather Sigma is to transform the family Sigma of linear forms into a single function that
maps any input from FRd d to a vector in ’ Rˆndof.

7.2 Shape Functions of Finite Element

This section covers the concept of shape functions, as elaborated in [35], which are used to
approximate the solution to PDEs. We associate the shape functions with a finite element
represented by the triplet (K,P,Σ). As discussed in Section 6.3 (item iii), the functions within
Σ serve as a basis for the dual space of linear forms L(P,R). Consequently, there exists a
family of functions (θi)i∈[0..ndof−1], referred to in Coq as theta, that belongs to the polynomial

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geometry.v?ref_type=tags#L41-L43

88 CHAPTER 7. FORMALIZATION OF FINITE ELEMENTS

space P, with Σ forming the dual basis to θ. For more detail about duality, refer to Section 5.4.4.

We assume a variable fe of type FE. The conditions for the functions, θ, to qualify as local
shape functions for a finite element fe are formally specified as follows:

Definition is_local_shape_fun := fun (theta : ’(FRd (d fe))ˆ(ndof fe)) ⇒
(∀ i : ’ I_(ndof fe), P_approx fe (theta i)) ∧
(∀ i j : ’ I_(ndof fe), Sigma fe i (theta j) = kronecker i j).

Here, ’ I_(ndof fe) is a notation used in Coq to represent an ordinal (see Sections 2.3 and 5.2.2).
The theta input consists of a family of ndof fe functions, each of which is defined within the
function space FRd (d fe). We recall that ndof fe indicates the number of degrees of freedom
associated with the finite element fe, and FRd (d fe) refers to the vector space of functions map-
ping from the real space Rd to R, where d fe indicates the spatial dimension. Specifically, for
the family (θi)i∈[0..ndof−1] to be considered as local shape functions, they must satisfy two condi-
tions. Firstly, each function θi must belong to the approximation space P_approx fe associated
with fe. Secondly, each function θj must fulfill the Kronecker delta property (see Section 5.3.5)
according to the degrees of freedom specified by the linear forms Sigma fe. This requirement is
mathematically articulated as:

∀i, j ∈ [0..ndof − 1], σi(θj) = δi,j . (7.1)

The construction of local shape functions (θi)i∈[0..ndof−1] is represented as the predual basis of
(σi)i∈[0..ndof−1] within each finite element (refer to Section 5.4.4), using the unisolvence condition.

Definition shape_fun : ’(FRd (d fe))ˆ(ndof fe) := predual_basis (unisolvence fe).

The concept of the predual_basis is discussed in Section 5.4.4. By this definition, we say
that the defined shape_fun indeed qualifies as local shape functions in accordance with the
is_local_shape_fun definition,

Lemma shape_fun_correct : is_local_shape_fun shape_fun.

Subsequently, we can verify that shape_fun forms a basis for the polynomial approximation space
P of a finite element fe.

Lemma shape_fun_basis : basis (P_approx fe) shape_fun.

This proof is concise and directly follows from the lemma predual_basis_basis, which is detailed
in Section 5.4.4.

7.3 Construction of a Local Interpolation Operator

The finite element method employs interpolation to approximate solutions to partial differential
equations within the finite element mesh, such as the Poisson equation discussed in Chapter 6.
The objective of this section is to construct a local interpolation operator, as outlined in [34],
using the elements (K,P,Σ). This operator aims to approximate functions defined on the
geometric element K (a subset of Ω) by using elements from P whose degrees of freedom are
suitably chosen.

For a function v, the local interpolation process is described by the operator Ih, defined as,

Ih : F(Rd,R) ∋ v 7→
ndof−1∑
i=0

σi(v) θi ∈ P. (7.2)

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE.v?ref_type=tags#L123-L126
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE.v?ref_type=tags#L123-L126
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE.v?ref_type=tags#L156
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE.v?ref_type=tags#L158
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE.v?ref_type=tags#L171

7.3. CONSTRUCTION OF A LOCAL INTERPOLATION OPERATOR 89

The notation F(Rd,R) refers to a space of functions from Rd to R.

In the Coq proof assistant, we define the local interpolation operation as:

Definition local_interp : FRd (d fe) → FRd (d fe) :=
fun v ⇒ lin_comb (fun i ⇒ Sigma fe i v) shape_fun.

where lin_comb is a function that implements the mathematical concept of a linear combination
in a module space (refer to Section 5.3.4 for more detail). By definition, the interpolation
operator is a linear mapping that takes its values in the approximation space P.

Lemma local_interp_is_poly : ∀(v : FRd (d fe)), P_approx fe (local_interp v).

This lemma is established since P, a subspace of F(Rd,R), is a module space, it is closed
under addition and scalar multiplication (refer to Section 5.3.3). This closure property ensures
that any linear combination of the functions (θi)i∈[0..ndof−1] within P also remains within P.
Consequently, it follows that the interpolation operator Ih(v) belongs to P.

Furthermore, when the interpolation operator Ih is applied to a function v, it produces a
new function known as the interpolated function Ihv, which serves as an approximation of v
within the finite element mesh. Consequently, we can verify that the degrees of freedom for Ihv
exactly match those of the function v. The relevant lemma is stated as follows:

Lemma Sigma_local_interp : ∀(i : ’I_(ndof fe)) (v : FRd (d fe)),
Sigma fe i (local_interp v) = Sigma fe i v.

The proof of this lemma is straightforward and proceeds as follows, based on the linearity of the
functions σi, Equation (7.1), and the properties of the Kronecker delta function δi,j . For each
j ∈ [0..ndof − 1] we have:

σj(Ihv) = σj

(
ndof−1∑
i=0

σi(v)θi

)
=

ndof−1∑
i=0

σi(v)σj(θi) =

ndof−1∑
i=0

σi(v)δi,j = σj(v).

□
Another noteworthy result is that the interpolation operator Ih is a projection from F(Rd,R)

to P. This implies that for any polynomial p within the space P, the operator Ih effectively
preserves p without any changes. The corresponding lemma is formally stated as follows:

Lemma local_interp_proj : ∀p : FRd (d fe), (P_approx fe) p → local_interp p = p.

Let us verify this. Since p ∈ P, then p is expressed as p =
∑ndof−1

j=0 xjθj , as (θi)i∈[0..ndof−1] is
proved to be a basis for P (see Section 7.2). Then, applying Ih yields,

Ihp =

ndof−1∑
i=0

σi(p) θi =

ndof−1∑
i=0

ndof−1∑
j=0

xj σi(θj) θi =

ndof−1∑
i=0

ndof−1∑
j=0

xj δi,j θi =

ndof−1∑
j=0

xj θj = p.

Furthermore, applying Ih twice to any function v in the space F(Rd,R) results

Ih(Ihv) = Ihv.

This demonstrates the idempotency of the interpolation operator Ih.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE.v?ref_type=tags#L179-L180
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE.v?ref_type=tags#L182-L183
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE.v?ref_type=tags#L242-L244
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE.v?ref_type=tags#L221-L222

90 CHAPTER 7. FORMALIZATION OF FINITE ELEMENTS

Chapter 8

Constructing the Polynomial Space
Pd
k

In this chapter, we construct a polynomial space, denoted as Pd
k of polynomials of degree at

most k on Rd [34, 35, 36, 59], and define one of its bases. The main concept of this study
is the family of multi-indices, denoted as Ad

k, essential for constructing polynomials for the
approximation space Pd

k (refer to Section 5.2.3 for more details on finite families). We will
particularly study cases where the degree of approximation is k = 1 and the spatial dimension is
d = 1. The reason behind focusing on these cases will become apparent in subsequent chapters
(see Section 10.3.7), particularly when we address the proof of the unisolvence property of the
Lagrange finite element. This proof employs double induction on both d and k, starting from 1.

This chapter is structured into four sections: Section 8.1 introduces multi-indices and their
applications; Section 8.2 discusses the structure of the Pd

k polynomial space and outlines a basis
of this space; Section 8.3 details the specifics of Pd

1 space, focusing on affine polynomials in d
dimensions; and Section 8.4 deals with P1

k space, addressing polynomial functions in a single
variable.

8.1 Multi-Indices

This section introduces the concept of multi-indices [36, Section 7.3, p.78] and discusses their
role in constructing multivariate polynomial spaces, particularly in constructing bases for the
polynomial approximation space. Specifically, the family Ad

k is a collection of multi-indices used
to construct polynomials up to a certain degree k and within a certain number of variables d.
Thus, Ad

k provides a systematic way to enumerate all possible monomials up to a given order
in a polynomial space and consists in defining the indices of the nodes within a geometrical
element (see Figure 8.2). Here is a formal definition and explanation of how this family is
constructed.

A multi-index α is a tuple of nonnegative integers for all d,

α
def.
= (α0, α1, . . . , αd−1) ∈ Nd,

where each αi represents the power or degree of the variable xi in the multivariate monomial
(x0, . . . , xd−1) 7−→

∏d−1
i=0 x

αi
i (For more detailed information about monomials, refer to Sec-

tion 5.3.2). The dimension d represents the number of variables, and the elements of α specify

91

92 CHAPTER 8. CONSTRUCTING THE POLYNOMIAL SPACE PD
K

the degree to which each variable is raised. We define |α| def.= α0 + α1 + . . .+ αd−1 as the total
degree of the monomial.

8.1.1 Definition of Ad
k, Cdk and Šdk,k−i Families

The family of multi-indices Ad
k is defined for all d as:

Ad
k

def.
= {α ∈ Nd | |α| def.=

d−1∑
i=0

αi ⩽ k}. (8.1)

This family includes all multi-indices α for which the sum of the indices does not exceed k.

The family Ad
k is a disjoint union of sub-families. Each sub-family corresponds to a specific layer

Cdℓ , which is the family of multi-indices α that includes indices where the sum precisely equals
ℓ for ℓ ⩽ k. This construction helps organize polynomial terms of varying degrees, where each
layer includes all exponents of monomial terms in d variables that sum exactly to ℓ for ℓ ⩽ k.

Ad
k =

k⊎
ℓ=0

Cdℓ , with Cdℓ
def.
= {α ∈ Nd | |α| = ℓ}. (8.2)

To determine the cardinality (i.e., the number of distinct elements) of the family Ad
k, it is essential

to first verify that Ad
k is injective, as this family may contain repetitions. A detailed discussion

of injectivity will be provided in Section 8.1.3. For now, we assume that the cardinality of Ad
k

is computed as follows:

card Ad
k =

(
d+ k

k

)
def.
=

(d+ k)!

d! k!
.

In Coq, the cardinality of Ad
k is equal to the binomial expression (pbinom d k) + 1. For further

details about binomial coefficients, refer to Section 5.5. Building on this, we will construct the
family Ad

k of this length.

The family of layers Cdk is structured as a disjoint union of vertical slices, each denoted by
Šdk,k−i. For a visual representation of how these families are organized, refer to Figure 8.1.

Cdk =
k⊎
i=0

Šdk,k−i with Šdk,k−i
def.
= {(k − i,α) ∈ Nd | α ∈ Cd−1

i }. (8.3)

The slices Šdk,k−i are represented by the Slice_fun function and implemented through the
Slice_op function as follows:

Definition Slice_op {d : nat} (i : nat) (alpha : ’natˆd) : ’natˆ(d.+1) :=
castF (add1n d) (concatF (singleF i) alpha).

Definition Slice_fun {d n} (i:nat) (a : ’I_n → ’natˆd) : ’I_n → ’natˆ(d.+1) :=
mapF (Slice_op i) a.

Here, a casting function, castF, is required to adjust the data type based on a function related
to the property (add1n d) which asserts that adding 1 to any natural number n results in n.+1.
We recall from Section 2.3, that the .+1 notation represents the successor of a number n. For
an in-depth explanation of the castF function, refer to Section 5.2.3. To maintain brevity and
focus in this thesis, detailed descriptions of all casting functions are omitted. Instead, a more
concise expression format is used, with details filled in using underscores.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/multi_index.v?ref_type=tags#L926-L929
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/multi_index.v?ref_type=tags#L969-L970

8.1. MULTI-INDICES 93

The function Slice_op concatenates a single-element vector containing i to the multi-index
alpha. Building upon Slice_op, the Slice_fun maps this operation across a collection of
multi-indices a.

Figure 8.1: Vertical slices Šd
k,k−i in the case d = k = 3 (see Equation (8.3)). The reference Lagrange nodes

â(α0,α1,α2) in blue correspond to the element (α0, α1, α2) ∈ Cd
k (refer to Section 9.1.1). For instance, the family

Šd
k,1 = {(1, 0, 2), (1, 1, 1), (1, 2, 0)} is depicted by the indices of the nodes linked by a dashed arrow.

We easily deduce that the sum of the elements of the Slice_op family equals the degree k.

Lemma Slice_op_sum: ∀(d k i : nat) (alpha:’natˆd), i ⩽ k → sum alpha = k−i →
sum (Slice_op i alpha) = k.

The proof of this lemma is derived from the definition of the Slice_op function. It uses the
property of sum functions as outlined in the sum_concatF lemma, detailed in Section 5.3.1. This
particular lemma asserts that the sum of two concatenated sequences equals the sum of each
individual sequence. Consequently, by adding the sum of i to the sum of alpha, which is given
as k − i, the resultant sum is k.

In the definition of the family Cdk , the notation
⊎

signifies a disjoint union, meaning that
each family Šdk,k−i constitutes a distinct and separate part of the total family Cdk , with no shared

elements among these parts. Similarly to the case of the family Ad
k, determining the cardinality

of the family Cdk requires first verifying that Cdk is injective (see Section 8.1.3). For the moment,
we assume that the cardinality of Cdk is computed as follows:

card Cdk =

(
d+ k − 1

d− 1

)
def.
=

(d+ k − 1)!

(d− 1)! k!
.

Building on this, we will construct the family Cdk corresponding to this computed length.

In Coq, the family Cdk when d > 0 is implemented using the concatenation function concatnF

(see Section 5.3.1), in conjunction with the Slice_fun function:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/multi_index.v?ref_type=tags#L931-L932
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/multi_index.v?ref_type=tags#L1029-L1034

94 CHAPTER 8. CONSTRUCTING THE POLYNOMIAL SPACE PD
K

Fixpoint CSdk (d k :nat) : ’I_((pbinom k d).+1) → ’natˆd.+1 :=
match d with

| O ⇒ fun _ _ ⇒ k

| S dd ⇒ castF _ (concatnF (fun i:’I_k.+1 ⇒ Slice_fun (k−i) (CSdk dd i)))
end.

In this definition, the CSdk function computes Cd+1
k , as indicated by the size of this family.

Specifically, when d = 0, CSdk 0 k corresponds to C1
k , and the only family with size 1 and

degree k is represented by {k}. For d > 0, CSdk is exactly the Equation (8.3). Additionally,
’ I_((pbinom d k).+1 represents the finite type of ordinals of bound pbinom d k (see Section 2.3).

Figure 8.2: Lagrange nodes âα of the reference simplex K̂d when d ∈ {2, 3} and k = 3 (see Section 9.1.1). Each
node is depicted as a colored ball, and corresponds to a unique element of Ad

3. The colors correspond to degrees
ℓ ⩽ 3 of polynomials, or equivalently to lengths of multi-indices (i.e., in Cd

ℓ for ℓ ⩽ 3). In pink , the node â0

corresponds to constant polynomials (with degree 0) in Pd
0 , and the multi-index 0 in the singleton Cd

0 . In green ,

the nodes correspond to non-constant affine polynomials (with degree 1), and multi-indices δ1, . . . , δd in Cd
1 . In

red , the nodes correspond to non-affine quadratic polynomials (with degree 2), and multi-indices in Cd
2 . In blue ,

the nodes correspond to non-quadratic cubic polynomials (with degree 3), and multi-indices in Cd
3 . We observe in

this picture that Ad
3 = Cd

0 ∪ Cd
1 ∪ Cd

2 ∪ Cd
3 .

To enhance our understanding of the concepts of layers Cdk and slices Šdk,k−i, consider the
following example with d = 3 and k = 3 (voir Figure 8.1).

C3
3 =

k=3⊎
i=0

Šd=3
k=3,3−i = Šd=3

k=3,3 ⊎ Šd=3
k=3,2 ⊎ Šd=3

k=3,1 ⊎ Šd=3
k=3,0

= {(3,α) ∈ N3 | α ∈ C2
0} ⊎ {(2,α) ∈ N3 | α ∈ C2

1} ⊎ {(1,α) ∈ N3 | α ∈ C2
2}

⊎ {(0,α) ∈ N3 | α ∈ C2
3}

= {(3, 0, 0)} ⊎ {(2, 1, 0), (2, 0, 1)} ⊎ {(1, 2, 0), (1, 1, 1), (1, 0, 2)}
⊎ {(0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3)}

= {(3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2), (0, 3, 0), (0, 2, 1),

(0, 1, 2), (0, 0, 3)}.

8.1. MULTI-INDICES 95

The Coq definition of the family of multi-indices Ad
k is represented as:

Definition Adk (d k : nat) : ’I_((pbinom d k).+1) → ’natˆd :=
match d with

| 0 ⇒ zero

| S d ⇒ castF _ (concatnF (fun i:’I_k.+1 ⇒ CSdk d i))
end.

When d is zero, the family Adk 0 k returns the trivial 0-family. For d > 0, it calculates Ad
k as

defined in Equation (8.2) using the concatnF function. For an in-depth explanation of the
concatnF function, refer to Sections 5.3.1. Figure 8.2 provides a visual representation of the
organization of these indices.

When d = 1, the family A1
k includes the one-dimensional multi-indices α, consisting of all

natural numbers from 0 to k, inclusive. This family is defined as:

A1
k

def.
= {α ∈ N | α ⩽ k} = {0, 1, 2, . . . , k}. (8.4)

This can be verified easily using the Equation (8.2) that A1
k can be expressed as a disjoint union

of C1
ℓ for ℓ varying from 0 to k. Notably, since C1

ℓ = {ℓ} for each ℓ, the union of these families
covers every integer from 0 to k. Therefore, the elements of this union are exactly {0, 1, 2, . . . , k},
matching the right-hand side of the Equation 8.4. Furthermore, the total number of elements
in A1

k is given by:

card A1
k =

(
k + 1

k

)
= k + 1.

On the other hand, when k = 1, Ad
1 includes all d-dimensional multi-indices α where the

total sum of all the components of α does not exceed 1. This effectively limits the entries to
be mostly zeros, with at most one component being 1, and the rest being 0. The family Ad

1 is
defined as:

Ad
1
def.
= {α ∈ Nd |

d−1∑
i=0

αi ⩽ 1} = {0, δ0, δ1, . . . , δd−1}. (8.5)

The notation 0 denotes the zero multi-index (0, . . . , 0) in d dimensions, and δi is a family of
size d that has 1 at the i-th position and 0 elsewhere (see Section 5.3.5). The total number of
elements in Ad

1 is given by:

card Ad
1 =

(
d+ 1

1

)
= d+ 1.

In Coq, a lemma related to this family is captured as follows:

Lemma Ad1_eq : ∀d, Adk d 1 = castF _ (concatF (singleF (constF d 0)) (itemF d 1)).

All functions referenced in this lemma, including castF, concatF, singleF, constF, are discussed
in detail in Section 5.2.3, while itemF is elaborated in Section 5.3.1. The proof of this lemma uses
the fact that Ad

1 = Cd0 ⊎ Cd1 , where Cd0 is the family of all d-dimensional multi-indices where all
components sum to zero. Practically, this family contains only the zero multi-index (0, 0, ..., 0)
in d dimensions. Meanwhile, Cd1 comprises all d-dimensional multi-indices with components
summing to one, including all standard basis vectors (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1).

We observe that, regardless of the parameter k, the output of Adk d k when applied to the
smallest index, ord0, always yields the zero multi-index of length d (refer to Section 2.3 for more
detail about the ordinals).

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/multi_index.v?ref_type=tags#L1324-L1329
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/multi_index.v?ref_type=tags#L1377-L1380

96 CHAPTER 8. CONSTRUCTING THE POLYNOMIAL SPACE PD
K

Lemma Adk_0 : ∀d k, Adk d k ord0 = zero.

The proof of this lemma begins by unfolding the definition of Ad
k as a concatenated function

made up of the layers Cdk , as detailed in Equation (8.2). This is followed by a case analysis based
on the dimension d. In the case where d = 0, the family of multi-indices Adk is the vector zero
of size d. Conversely, when d ̸= 0, the lemma concatnF_splitn_ord, referenced in Section 5.3.1,
is used. Employing this lemma, the function Ad

k simplifies to Ad
k[0] = Cd0 [0] = (0, . . . , 0). Here,

Cd0 [0] signifies the first item within the family Ad
k.

Another significant result is that there exists a bijection between the family of multi-indices
Ad−1
k and the layer Cdk , by the function fdk,0 (see Figure 8.3). This mapping is explicitly defined

as:

fdk,0 : Ad−1
k → Cdk
α 7−→ (k − |α|,α)

(8.6)

Specifically, this bijection implies that the cardinality of the two families is equal:

card(Cdk) = card(Ad−1
k).

We formalize the function fd1+1
k,0 in Coq using the concatenation function Slice_op defined above.

Definition T_node_face0 (d1 k : nat) (ipk : ’I_(pbinom d1 k).+1) :=
Slice_op (k − sum (Adk d1 k ipk)) (Adk d1 k ipk).

We demonstrate that the sum of the sequence produced by T_node_face0 equals the degree k.

Lemma T_node_face0_sum_eq : ∀ipk : ’I_(pbinom d1 k).+1, sum (T_node_face0 ipk) = k.

The proof follows easily from the previous lemma Slice_op_sum.

8.1.2 Ordering Multi-Indices

The family of multi-indices Ad
k, which represents variable powers in multivariate polynomials,

is organized in an increasing order, as depicted in Figure 8.3. To establish this ordering, the
grsymlex_lt function is used in Coq. This order is mathematically defined for all α,β ∈ Nd as
follows:

α <grsymlex β
def.
=

{
|α| < |β|, or
|α| = |β| ∧ β <lex α.

(8.7)

Here, |α| and |β| denote the sum of the components of α and β, respectively. The ordering
<lex is the lexicographic order, similar to the dictionary order. In the expression β <lex α, we
intentionally switch the order of α and β so that the ordering aligns with the well-ordering of
the multi-indices (kδi)i∈[1..d] (which are associated to the reference vertices v̂1, v̂2, . . . , v̂d) (see
Figure 8.3 and Section 9.1.1).

The grsymlex_lt function is a strict total monomial order, which means that the relation
defined by grsymlex_lt is total, irreflexive, and transitive. These properties are formalized in
the following lemmas:

Lemma grsymlex_lt_total_strict : ∀{n} (x y:’natˆn),
x ̸= y → grsymlex_lt x y ∨ grsymlex_lt y x.

Lemma grsymlex_lt_irrefl : ∀{n} (x:’natˆn), ¬ grsymlex_lt x x.
Lemma grsymlex_lt_trans : ∀{n} (x y z:’natˆn),

grsymlex_lt x y → grsymlex_lt y z → grsymlex_lt x z.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/multi_index.v?ref_type=tags#L1516-L1517
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L192-L193
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L195
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Multi_index.v?ref_type=tags#L678
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Multi_index.v?ref_type=tags#L702-L719

8.1. MULTI-INDICES 97

Figure 8.3: This figure illustrates the cases for d ∈ {2, 3} and k = 3. The multi-indices in A2
3 are mapped to

those of C3
3 via the mapping fd

k,0 (see Equation (8.6) in Section 8.1.1). This mapping is depicted geometrically,

showing how the reference triangle nodes correspond to the nodes on the blue face of the tetrahedron. Notably,
this face, opposite vertex v̂0, contains nodes indexed by Cd

k . The node coloring helps in visualizing the mapping:
for every (α0, α1) ∈ A2

3, the mapping is defined as f2
3,0(α0, α1) = (3 − (α0 + α1), α0, α1). For example, for

(α0, α1) = (0, 0) we have f2
3,0(0, 0) = (3 − 0, (0, 0)) = (3, 0, 0). The figure also indicates the order of multi-

indices Ad
3 under the monomial order grsymlex_lt, represented by dashed arrows. For example, in A3

3, we have
(3, 0, 0) < (2, 1, 0) < (2, 0, 1) < (1, 2, 0) < (1, 1, 1) < (1, 0, 2) < (0, 3, 0) < (0, 2, 1) < (0, 1, 2) < (0, 0, 3).

An equivalent and recursive definition of the function grsymlex_lt compares first the sum of
the elements in the multi-index x and that in the multi-index y, each of length d. If the sums
are equal, it compares the remaining elements after omitting the first. This comparison uses the
skipF function to reduce the vector size (refer to Section 5.2.3).

Lemma grsymlex_lt_S : ∀{n : nat} (x y : ’ natˆn.+1), grsymlex_lt x y ↔
sum x < sum y ∨ sum x = sum y ∧ grsymlex_lt (skipF x ord0) (skipF y ord0).

We verify that both families of multi-indices, Ad
k and Cdk , are sorted according to the monomial

order grsymlex_lt, using the sortedF function defined in Section 5.2.3. For the family Cdk , we
establish the following lemma:

Lemma CSdk_grsymlex_lt : ∀d k : nat, sortedF grsymlex_lt (CSdk d k).

The proof is based on induction on d. In the base case where d = 0, Cd+1
k returns a singleton,

making the family trivially sorted. For the inductive case (d > 0), the proof uses several
properties, including the lemma grsymlex_lt_trans, which ensures the transitivity of the
monomial order. Additionally, from Equation (8.3), the family Cdk is expressed as a disjoint
union of slices Šdk,k−i. Since αi ∈ Cd−1

i is sorted according to the monomial order grsymlex_lt

by the induction hypothesis, applying the Slice_fun function preserves this sorting, leading to
the conclusion that the entire multi-index family Cdk is fully sorted under the monomial order.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Multi_index.v?ref_type=tags#L686
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Multi_index.v?ref_type=tags#L1230

98 CHAPTER 8. CONSTRUCTING THE POLYNOMIAL SPACE PD
K

The family Ad
k is also sorted, and the proof follows a similar path, as specified by the following

lemma:

Lemma Adk_grsymlex_lt : ∀d k : nat, sortedF grsymlex_lt (Adk d k).

The proof of this lemma employs pattern matching on the variable d to divide the argument
in two distinct cases: When d = 0, the family A0

k contains a single element, which is trivially
sorted, due to the absence of other elements to compare against. As for the inductive step
d > 0, according to the definition in Equation (8.2), the family Ad

k is a concatenation of the
family of layers Cdℓ for each ℓ ∈ [0..k]. Given that the monomial order grsymlex_lt is transitive,
as established by the lemma grsymlex_lt_trans, and considering that each family Cdℓ is sorted
according to this order, as demonstrated by the previous lemma CSdk_grsymlex_lt, coupled
with the fact that the last item of Cdℓ is smaller than the first item of Cdℓ+1, it follows that the

entire concatenated family Ad
k retains its sorted order.

To illustrate this lemma and its proof with a simple example, consider the case where d = 2
and k = 3, as depicted in Figure 8.3. Here, A2

3 denotes the family of all multi-indices (α0, α1)
for two variables, where the total degree does not exceed 3 (i.e., |α| = α0 + α1 ⩽ 3). We will
examine how these multi-indices are ordered according to grsymlex_lt and verify the claim of
the lemma Adk_grsymlex_lt that Adk is sorted. The multi-indices, grouped by their total degrees,
include,

• |α| = 0 : C2
0 = {(0, 0)}.

• |α| = 1 : C2
1 = {(1, 0), (0, 1)}.

• |α| = 2 : C2
2 = {(2, 0), (1, 1), (0, 2)}.

• |α| = 3 : C2
3 = {(3, 0), (2, 1), (1, 2), (0, 3)}.

The grsymlex_lt order sorts multi-indices primarily by their sums, and secondarily by iterating
after skipping the first component. Therefore, the C2

ℓ are sorted, and the last of C2
ℓ is smaller

than the first of C2
ℓ+1 for ℓ ∈ [0..2]. The expected sorted sequence of these indices is as follows:

A2
3 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)}.

8.1.3 Bijectivity of Ad
k

The function Ad
k maps indices from the finite set ’ I_((pbinom d k).+1) to vectors of natural

numbers ’ natˆd with the condition |α| ⩽ k. The bijectivity of Ad
k, derived from its injective

and surjective properties, enables the definition of its inverse function.

We begin by establishing the surjectivity of the Ad
k function, which ensures that for every

possible vector of natural number in dimension d whose elements sum to at most k, there exists
some index ipk in ’ I_((pbinom d k).+1) that will produce it.

Lemma Adk_surj : ∀d k (b:’ natˆd), sum b ⩽ k → { ipk | b = Adk d k ipk }.

The proof of this lemma follows directly from the surjectivity of Cdk . It requires the appli-
cation of various properties related to the slices Šdk,k−i and their concatenation (see Section 5.3.1).

Next, we establish the injectivity of the Ad
k function, ensuring that every different input

index ipk in ’ I_((pbinom d k).+1) produces a unique vector in ’ natˆd, meaning no two different
multi-indices will have the same vector output.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Multi_index.v?ref_type=tags#L1462-L1463
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Multi_index.v?ref_type=tags#L1441-L1442
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Multi_index.v?ref_type=tags#L1481-L1482

8.2. PD
K POLYNOMIAL SPACE 99

Lemma Adk_inj : ∀d k : nat, injective (Adk d k).

To prove this property, we apply the sortedF_inj lemma, which states that a function is
injective if it is sorted according to an irreflexive binary relation. In this case, the binary
relation in question is the irreflexive monomial order grsymlex_lt as established by the lemma
grsymlex_lt_irrefl, discussed in Section 8.1.2. Given that the family Ad

k has been shown to be
sorted according to grsymlex_lt by the lemma Adk_grsymlex_lt, we can deduce the injectivity
of Ad

k.

Similarly, the injectivity of the function Cdk follows the same reasoning as Ad
k, using the lemma

CSdk_grsymlex_lt to prove that Cdk is sorted under grsymlex_lt, thus ensuring its injectivity. This
is formalized as:

Lemma CSdk_inj: ∀ d k : nat, injective (CSdk d k).

Given that Ad
k is both injective and surjective between the finite set ’ I_((pbinom d k).+1)

and the family of natural numbers in ’ natˆd with the condition |α| ⩽ k, we define its inverse
function as follows:

Definition Adk_inv (d k : nat) (b : ’natˆd) : ’ I_((pbinom d k).+1) :=
match (le_dec (sum b) k) with
| left H ⇒ proj1_sig (Adk_surj d k b H)
| right _ ⇒ ord0

end.

This function outputs an inverse index within a finite set ’ I_((pbinom d k).+1). It uses a
conditional statement to check whether the sum of the elements in vector b is less than or equal
to k, and if the sum exceeds k, the function defaults to ord0, indicating that no valid index
corresponds to b under the Ad

k mapping.

8.2 Pd
k Polynomial Space

In this section, we explore the polynomial space Pd
k (see [36, p.78], [59, p.108]), which consists of

a d-variate polynomials, with total degree not exceeding k. A basis of this space is constructed
using the family of multi-indices Ad

k defined in Section 8.1. Within the framework of this thesis,
we will recognize that the polynomial space Pd

k is characterized by multiple bases for special
values of d and k. In this section, we introduce the monomial basis, and in subsequent chapters,
we will explore the Lagrange polynomial basis. In the upcoming sections, we will focus on
specific examples within this space, particularly for the cases where k = 1 and d = 1, detailed
in Sections 8.3 and 8.4, respectively.

8.2.1 Definition of the Polynomial Space Pd
k and its Basis Bd,k

The polynomial space Pd
k is defined as follows:

Pd
k

def.
= span (Xα)α∈Ad

k
=


x 7→

∑
α∈Ad

k

cα

d−1∏
i=0

xαi
i

 : Rd → R
∣∣∣ (cα)α∈Ad

k
∈ R

 . (8.8)

where each monomial is represented as:

Xα def.
=

(
x ∈ Rd 7−→

d−1∏
i=0

xαi
i ∈ R

)
. (8.9)

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Multi_index.v?ref_type=tags#L1307-L1308
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Multi_index.v?ref_type=tags#L1489-L1494
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/Multi_index.v?ref_type=tags#L1489-L1494

100 CHAPTER 8. CONSTRUCTING THE POLYNOMIAL SPACE PD
K

Each polynomial in the space Pd
k is expressed as a linear combination of terms. Each

term is a product of the variables xi ∈ R raised to some power αi, where the multi-index
α = (α0, α1, . . . , αd−1) varies across the family Ad

k. This family includes all tuples of non-
negative integers such that their sum does not exceed k (see Section 8.1). Additionally, the
coefficients cα ∈ R for each α ∈ Ad

k are the scalars that weight each monomial in this linear
combination. For more detailed information about monomials, refer to Section 5.3.2. The
monomials Xα form a family within the polynomial space Pd

k , which we denote as Bd,kα , to
make the dependence on d and k explicit. The family Bd,k includes all possible monomials
formed by taking each combination of exponents in Ad

k.

Let us consider FRd d to be the vector space of functions mapping from the real space Rd to
R. The Coq implementation of Bd,k is provided as follows:

Definition BasisPdk d k : ’(FRd d)ˆ((pbinom d k).+1) :=
fun (ipk : ’ I_((pbinom d k).+1)) (x : ’ Rˆd) ⇒ powF_P (Adk d k ipk) x.

Here, powF_P represents the product of powers of variables, where each variable xi from the
vector x ∈ Rd is raised to a corresponding power (see Section 5.3.2). This family serves as a
collection of functions spanning the entire space Pd

k , allowing any polynomial in this space to
be represented as a linear combination of the monomials of this family. This also means that
Bd,k is a generating family for Pd

k .

In the following Coq snippet, the space Pd
k is defined as the linear span of the family provided

by Bd,k (see Section 5.4.1).

Definition Pdk d k : FRd d → Prop := lin_span (BasisPdk d k).

Since every linear span in a module space over a ring (such as the real numbers R) satisfies the
properties of a module space, we conclude that the Pd

k is closed under the linear operations.

Lemma Pdk_cms : ∀d k, compatible_ms (Pdk d k).

Here, compatible_ms means that the space Pd
k qualifies as a subgroup of the space of functions

FRd and is closed under scalar multiplication, as detailed in Section 5.3.3.

Moreover, the polynomial space Pd
k is closed under linear combinations. This closure is

presented in the following lemma:

Lemma Pdk_lc : ∀ {d} {n} k (p : ’(FRd d)ˆn), (∀ i : ’ I_n, Pdk d k (p i)) →
∀ (L:’ Rˆn), Pdk d k (lin_comb L p).

This lemma is directly proved by the lemma lin_span_lc_closed introduced in Section 5.4.1,
which ensures that linear combinations of functions p within the polynomial space Pd

k remain
within it, as Pd

k is a linear span of the family Bd,k.

8.2.2 Linear Independence of the Family Bd,k

The family Bd,k consists of monomials Xα that generate the polynomial space Pd
k for all α ∈ Ad

k.
To prove that Bd,k forms a basis of the space Pd

k , we must demonstrate its linear independence.
This is stated by the following lemma:

Lemma BasisPdk_lin_indep: lin_indep (BasisPdk d k).

To demonstrate the linear independence of Bd,k, we begin by considering a zero linear combina-
tion of the monomials Xα with coefficents cα, and prove that cα are zero. For further details
on linear independence, see Section 5.4.2. Let us assume that we have cα ∈ R such that,

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L100-L102
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L107
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L110-L111
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L133-L135
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L1499

8.2. PD
K POLYNOMIAL SPACE 101

∑
α∈Ad

k

cαX
α = 0. (8.10)

We want to prove that c is the zero family. Let us consider β ∈ Ad
k, and prove that cβ = 0:

We begin by applying the partial derivative operator ∂β to both sides of Equation (8.10),
where each βi represents the order of derivation with respect to the variable xi. The partial
derivative operator is defined as:

∂β
def.
=

∂|β|

∂xβ00 ∂x
β1
1 ...∂x

βd−1

d−1

,

where |β| = β0 +β1 + . . .+βd−1 is the total order of the derivative. In Coquelicot, the derivative
operator is defined, but it is limited to polynomials for the sake of simplicity.

Now, using the linearity of partial derivatives, we obtain:

∂β

 ∑
α∈Ad

k

cαX
α

 =
∑
α∈Ad

k

cα ∂βXα = ∂β0 = 0. (8.11)

By evaluating the equality (8.11) between functions at 0 in Rd, we obtain the following identity:∑
α∈Ad

k

cα ∂βXα(0) = 0.

We then proceed by studying cases based on the respective values of α and β, leading to the
decomposition:

cβ ∂βXβ(0) +
∑
α∈Ad

k
∀i∈[0..d−1],αi<βi

cα ∂βXα(0) +
∑
α∈Ad

k
∃i∈[0..d−1],αi>βi

cα ∂βXα(0) = 0. (8.12)

Each component of this sum will now be examined in detail.

(i) first term of the sum: case α = β.
This case involves differentiating the monomial Xβ with respect to the same β. According
to the differentiation rules for monomials, we have:

∂βXβ = β! ̸= 0, (8.13)

where β! =
∏d−1
i=0 βi refers to the factorial of the multi-index β. The assertion (8.13) is

supported by the following lemma:

Lemma BasisPdk_lin_indep_aux1 : ∀d k beta : ’natˆd) (i : ’I_(pbinom d k).+1),
beta = Adk d k i → DeriveF beta (BasisPdk d k i) zero ̸= zero.

Given this lemma, we can simplify Equation (8.12) to:

cβ β! +
∑
α∈Ad

k
∀i∈[0..d−1],αi<βi

cα ∂βXα(0) +
∑
α∈Ad

k
∃i∈[0..d−1],αi>βi

cα ∂βXα(0) = 0. (8.14)

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L1440-L1442

102 CHAPTER 8. CONSTRUCTING THE POLYNOMIAL SPACE PD
K

(ii) second term of the sum: case ∀i ∈ [0..d− 1],αi < βi.
In this case, the derivative ∂βXα involves differentiating the term xαi

i more times than
its power αi. This results in the derivative being zero. The following lemma establishes
this result:

Lemma BasisPdk_lin_indep_aux2 : ∀d k beta : ’natˆd) (i : ’I_(pbinom d k).+1),
beta ̸= Adk d k i → DeriveF alpha (BasisPdk d k i) zero = zero.

Therefore, the sum of these derivatives evaluated at zero also equals zero, due to the
properties of differentiation: ∑

α∈Ad
k

∀i∈[0..d−1],αi<βi

cα∂
βXα(0) = 0.

Consequently, Equation (8.14) can be further simplified to:

cβ β! + 0 +
∑
α∈Ad

k
∃i∈[0..d−1],αi>βi

cα ∂βXα(0) = 0. (8.15)

(iii) third term of the sum: case ∃i ∈ [0..d− 1],αi > βi.
In this case, the derivative ∂βXα involves differentiating the term xαi

i fewer times than
its power αi. As a result, evaluating these derivatives at zero yields zero for any expo-
nent αi > 0. This is supported by the lemma BasisPdk_lin_indep_aux2. Consequently,
Equation (8.15) becomes:

cβ β! + 0 + 0 = 0. (8.16)

This leads to the conclusion that cβ = 0 for all β ∈ Ad
k. Therefore, we have established

the linear independence of the family Bd,k.
□

Consequently, the family Bd,k constitutes a basis for the vector space Pd
k , as demonstrated

by the following lemma:

Lemma BasisPdk_basis : basis (Pdk d k) (BasisPdk d k).

The proof is a direct application of the lemma basis_lin_span_equiv, established in Sec-
tion 5.4.2. This lemma states that since the family Bd,k is linearly independent by the preceding
lemma BasisPdk_lin_indep, it necessarily forms a basis for the linear span of Bd,k.

Therefore, the dimension of Pd
k is equal to the cardinality of Bd,k, which aligns with the

cardinality of Ad
k. The specific dimension of this space is established by the following equation:

dimPd
k =

(
d+ k

k

)
=

(d+ k)!

d! k!
. (8.17)

This calculated dimension is supported through this lemma,

Lemma Pdk_has_dim : has_dim (Pdk d k) ((pbinom d k).+1).

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L1454-L1456
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L1526
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L1532

8.2. PD
K POLYNOMIAL SPACE 103

8.2.3 Overview of Polynomial Space Pd
k Properties

The following section highlights a series of fundamental properties of the polynomial spaces
Pd
k , which are essential for developing results related to Lagrange polynomials through linear

algebraic operations in the upcoming chapters.

Decomposition of Polynomial Spaces

We introduce a structured method for decomposing a polynomial in higher-dimensional spaces
into components from polynomial spaces in lower dimensions or of lower degree. Specifically, for
any polynomial p ∈ Pd+1

k+1 , there exist two unique polynomials, p0 ∈ Pd
k+1 and p1 ∈ Pd+1

k that
we build in Coq, such that:

∀(x0, . . . , xd) ∈ Rd+1, p(x0, . . . , xd) = p0(x0, . . . , xd−1) + xd p1(x0, . . . , xd). (8.18)

Polynomial Multiplication in Polynomial Spaces and Monotonicity

Furthermore, for any given polynomial degrees k, ℓ ∈ N, and dimension d, we consider two
polynomials p ∈ Pd

k and q ∈ Pd
ℓ . The product pq then resides in Pd

k+ℓ. This property extends
to finite products of polynomials. Specifically, assuming each polynomial function pi belongs to
Pd
αi

for all i ∈ {0, . . . , n − 1}, i.e., each pi is a polynomial in d variables with a total degree at

most αi, such that
∑n−1

i=0 αi ⩽ k, then the product of these polynomials is

n−1∏
i=0

pi ∈ Pd
k . (8.19)

We further address the principle of monotonicity within the polynomial spaces Pd
k . This

concept highlights that polynomial spaces of higher degrees contain all polynomials from their
lower-degree counterparts. Mathematically, this is articulated by stating that if k1 ⩽ k2, and a
polynomial p ∈ Pd

k1
, then p ∈ Pd

k2
.

Composing Polynomials with Affine Maps

Let us now establish and verify the compatibility of the polynomial spaces Pd
k with the operation

of composing polynomials with affine maps (see Section 5.3.6). This is formalized in the following
lemma:

Lemma Pdk_compose_am : ∀{n d} k (p : FRd d) (f : ’ Rˆn → ’Rˆd),
aff_map f → (Pdk d k) p → (Pdk n k) (compose p f).

Consider an affine map f : Rn → Rd, defined as f(x) = (fi(x))i∈[0..d−1]. For further details on

affine mappings, refer to Section 5.3.6. Given that p is a polynomial in Pd
k , it can be expressed as

a linear combination of basis polynomials Bd,k, such that p =
∑

α∈Ad
k
LαBd,kα with L ∈ RcardAd

k .

To verify this lemma, we must demonstrate that:

p ◦ f =

 ∑
α∈Ad

k

LαBd,kα

 ◦ f =
∑
α∈Ad

k

Lα

(
Bd,kα ◦ f

)
=
∑
α∈Ad

k

Lα

(
x 7−→

d−1∏
i=0

fαi
i (x)

)
∈ Pn

k .

Given that f is affine, each power function fαi
i resides within Pn

αi
. Therefore, the product of

these mappings,
∏d−1
i=0 f

αi
i , stays within Pn

k , as addressed by Equation (8.19). Applying Lemma

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L616-L619

104 CHAPTER 8. CONSTRUCTING THE POLYNOMIAL SPACE PD
K

Pdk_lc, which is discussed in Section 8.2.1, we confirm that the composition is compatible with
the structure of the polynomial space.
□

The following lemma asserts the reverse case, demonstrating that if composing a polynomial
p with a bijective affine map f yields a polynomial in the n-dimensional space Pn

k , then p must
necessarily be an element of the d-dimensional space Pd

k .

Lemma Pdk_am_rev : ∀{d} k (p : FRd d) (f : ’ Rˆd → ’Rˆd),
aff_map f → bijective f → (Pdk d k) (compose p f) → (Pdk d k) p.

To validate this lemma, we approach the proof by initially considering the function (p ◦ f) ◦
f−1 instead of directly examining p, using the identity property of bijections. This method is
supported by the lemma f_inv_can_r, which states that the composition of f with its inverse
yields the identity function when f is bijective. According to the lemma am_bij_compat discussed
in Section 5.3.6, f−1 is also an affine map. Thus, since p ◦ f ∈ Pd

k , we conclude, through the
previously verified lemma Pdk_compose_am that (p ◦ f) ◦ f−1 ∈ Pd

k . Consequently, p ∈ Pd
k .

□

Finally, we prove that given a generating family (Bα)α∈Ad
k

for the polynomial space Pd
k , and

an affine bijective function f , then the polynomial space Pd
k is exactly the linear span of their

composition.

Lemma Pdk_am_compose_basis : ∀{d} k (B : ’(FRd d)ˆ(pbinom d k).+1)
(f : ’ Rˆd → ’Rˆd), lin_gen (Pdk d k) B → aff_map f → bijective f →

Pdk d k = lin_span (fun i ⇒ compose (B i) f).

Let us dissect the proof step by step. To demonstrate the equality of these two spaces, we
need to prove that each space is a subset of the other. Consider an affine bijective function
f : Rd → Rd.

(i) Prove Pd
k ⊂ span (B ◦ f):

Considering a polynomial p in Pd
k , from the lemma am_bij_compat as discussed in Sec-

tion 5.3.6, we deduce that f−1 is affine. Applying the lemma Pdk_compose_am, we get
p ◦ f−1 also belongs to Pd

k . Assuming B forms a generating family for the polynomial
space Pd

k , it follows that p ◦ f−1 ∈ span B, thereby it can be expressed as a linear combi-
nation of basis elements in B:

∀x ∈ Rd, p ◦ f−1(x) =
∑
α∈Ad

k

LαBα(x).

Composing both sides with f and applying the lemma f_inv_can_l which states the canon-
ical left inverse property of f , we establish that:

∀x ∈ Rd, p(x) = (p ◦ f−1 ◦ f)(x) =
∑
α∈Ad

k

Lα(Bα ◦ f)(x).

Thus, p is in the span of B ◦ f , completing the proof that Pd
k ⊂ span(B ◦ f).

(ii) Prove span (B ◦ f) ⊂ Pd
k :

Consider any polynomial p within span(B ◦ f). This implies that p can be expressed as
follows:

∀x ∈ Rd, p(x) =
∑
α∈Ad

k

Lα(Bα ◦ f)(x).

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L637-L640
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L651-L656
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L651-L656

8.3. PD
1 POLYNOMIAL SPACE 105

Since the family B forms a generating family for the space Pd
k , we know from the lemma

lin_gen_inclF that each term in the family B belongs to Pd
k (refer to Section 5.4.2).

Applying the lemma Pdk_compose_am, it follows that the composition B ◦ f also lies within
Pd
k . Consequently, their linear combination

∑
α∈Ad

k
Lα(Bα ◦ f) ∈ Pd

k , as stated by the

lemma Pdk_lc. Thus, p belongs to Pd
k , completing the proof that span(B ◦ f) ⊂ Pd

k .

This lemma will be used for later discussions, particularly for establishing that the Pd
k spaces

for d = 1 can be expressed as the linear span of the Lagrange polynomial basis L1,k as well, as
outlined in Section 9.6.

8.3 Pd
1 Polynomial Space

This section focuses on the case k = 1 of the space Pd
1 , which provides a framework for linear

approximations in multiple dimensions. This space consists of all polynomials in d variables
with degree at most 1. It can be defined as:

Pd
1 = span(1, x0, x1, . . . , xd−1). (8.20)

This space includes affine polynomials, which are the sum of a constant term and linear terms
in each of the d variables.

The dimension of Pd
1 is:

dimPd
1 =

(
d+ 1

1

)
= d+ 1.

A basis for Pd
1 consists of all monomials of degree at most 1. Explicitly, it can be written as:

Bd,1 = (1, x0, x1, . . . , xd−1) .

In this notation, 1 represents the constant polynomial, and xi denotes the linear terms
associated with the variable xi for i ∈ [0..d− 1]. To elaborate further on the construction of the
Bd,1 family, we reference the following two Coq lemmas.

The first lemma specifies that for any dimension d, the first basis element, indexed by
ord0 (representing the zero index as detailed in Section 2.3), is the constant function 1. This
corresponds directly to the constant term within the polynomial basis.

Lemma BasisPd1_0 : ∀{d:nat}, BasisPdk d 1 ord0 = fun _ ⇒ 1.

The proof of this lemma is derived directly from lemma Ad1_eq, detailed in Section 8.1.1. This
lemma states that in the polynomial space Pd

1 when the degree k = 1, the exponent vector for
the constant term within the family Ad

1 consists solely of zero exponents. Thus, the polynomial
function represented by this basis element will consistently yield 1 for any input.

The second lemma focuses on the remaining basis elements, specifically the linear terms
in each variable xi. For any index ipk other than ord0 (the zero index), we define Bd,1 as
x 7→ xipk−1. This is stated by the following lemma:

Lemma BasisPd1_neq0 : ∀{d:nat} (ipk : ’I_(pbinom d 1).+1) (H : (ipk ̸= ord0)),
BasisPdk d 1 ipk = fun x ⇒ x (lower_S (cast _ _ H)).

Here, the function lower_S used to adjust the index ipk by lowering it within a set of indices of
size d+1, given that ipk is not the zero index (see Section 2.3). The proof of this lemma utilizes

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L251
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_Pdk.v?ref_type=tags#L260-L263

106 CHAPTER 8. CONSTRUCTING THE POLYNOMIAL SPACE PD
K

the Ad1_neq0 lemma, which focuses on cases where the index ipk is different from ord0 (refer to
Equation (8.5)). This lemma specifies that for such indices, the exponent family sets one entry
to 1 and all others to 0, indicating each term is a single variable raised to the power of 1.

8.4 P1
k Polynomial Space

In this section, we address the case d = 1 of the polynomial space P1
k , which consists of all

polynomials in one variable up to a specified degree k. Mathematically, P1
k is defined as:

P1
k = span (1, x, x2, . . . , xk).

The dimension of P1
k is:

dimP1
k =

(
k + 1

k

)
= k + 1.

The basis for P1
k includes all monomials from degree 0 up to degree k, represented as the powers

of the variable x. Specifically, the basis is defined as:

B1,k =
{

1, x, x2, . . . , xk
}
.

where 1 represents the constant polynomial, and xi represents the polynomial term of degree i
for i ∈ [1..k]. These monomials collectively form a basis that spans the space P1

k , enabling the
representation of any polynomial up to degree k.

Chapter 9

Reference and Current Finite
Elements: Geometry and Pd

k
Lagrange Polynomial Basis

In this chapter, we build current finite elements from the reference element and formalize
the Lagrange polynomials and affine transformations. We particularly emphasize their roles
in finite element analysis, as elaborated in [36, Section 5.1 p.49] and [55, Section 2.4.3 p.84].
A detailed examination of how these polynomials are formulated and implemented in both
reference and current geometrical elements is provided. Additionally, we explore specific cases
when the spatial dimension d = 1 and the polynomial degree k = 1.

We begin with Section 9.1, where we discuss vertices, sub-vertices, nodes, and sub-nodes in
both reference and current geometric elements (simplices). We highlight the affine independence
property and provide detailed examples to enhance comprehension of these concepts. This
section is essential as it lays the groundwork for subsequent sections, where we will demonstrate
that the Lagrange polynomials are evaluated at Lagrange nodes to approximate the solution of
the system. Additionally, the significance of these nodes and vertices extends further, as they
are necessary for illustrating their transformation through an affine map between reference and
current geometric elements. Furthermore, sub-vertices and sub-nodes will be required in the
next chapter (see Chapter 10) to prove the unisolvence property.

Subsequently, in Section 9.2, we concentrate on the k = 1 case of reference Lagrange
interpolation polynomials within the reference geometric element, as detailed in [16, Section 3.2
p.72]. We specifically explore the approximation space Pd

1 , which includes polynomials of degree
at most one within a d-dimensional space. This section also outlines several key properties of
these polynomials.

Next, in Section 9.3, we address a specific affine transformation [55, Section 2.4.6 p.87],
denoted by TKgeo, which is essential for mapping the reference element onto the current element
in physical space. This section further explores how these transformations preserve geometric
features such as vertices, nodes, and barycentric coordinates. Additionally, we construct the
inverse of TKgeo, thereby enabling the reverse mapping from the current to the reference element.

Building upon this section, we extend our discussion in Section 9.4 to the construction
of current simplices finite elements on each simplex in the mesh Th, from the reference finite
element, and the current vertices. The approach involves mapping polynomial functions

107

108 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

and degrees of freedom from the reference to the current elements through the geometric
transformations ψK and TKgeo.

Following this, in Section 9.5 we address the k = 1 case of current Lagrange polynomials in
the space Pd

1 , for current geometric elements. These polynomials are defined by a composition
of the reference polynomials with the inverse affine transformation, denoted (TKgeo)

−1.

The final Section 9.6, delves into the case when d = 1 of Lagrange polynomials, focusing
on polynomials of degrees up to k. Both the reference and current polynomials are thoroughly
explored, along with their properties.

9.1 Simplicial Geometry

This section presents various geometric features and their interactions within the context of the
finite element method (FEM). As elaborated in Chapter 6, FEM simplifies complex geometrical
shapes by decomposing them into smaller, more manageable components, known as geometric
elements. Within the mesh Th, each element is characterized by vertices, which define the
shape of the element, and nodes, which represent the degrees of freedom where the system of
equations that FEM addresses is formulated.

Beware of the notation used for vertices and nodes. Those denoted with a hat (such as v̂ and
â) are reference vertices and nodes, while those marked with a check (such as v̌ and ǎ) represent
sub-nodes and sub-vertices of the current elements.

9.1.1 Definition of Reference Vertices and Lagrange Nodes

Defining and manipulating vertices and nodes is fundamental for establishing the geometry and
constructing linear forms of the Lagrange finite elements. Vertices represent the corner points
of a geometric element, defining the physical shape and boundaries. Nodes, on the other hand,
are specific locations within or on the boundaries of the element where the solution to a system
of equations is computed, as illustrated in Figure 9.1. While nodes may coincide with vertices,
they can also include additional points along the faces or within the interior of the element. The
number of these nodes is dictated by the degree of the polynomial used in the approximation
space, which influences the level of precision in the numerical solution of the equations.

Reference Vertices

We introduce the family of reference vertices for the reference simplex K̂ in the affine space Rd

(see Section 6.2.2). It is mathematically expressed for all i ∈ [0..d]:

v̂i
def.
=

{
0 if i = 0,
δi−1 else.

(9.1)

This family consists of d+ 1 reference points in Rd, which define the boundaries of the simplex,
and 0 is the zero family of length d. This is represented within Coq as follows:

Definition vtx_simplex_ref : ’(’Rˆd)ˆ(S d) :=
fun i : ’ I_d.+1 ⇒ match (ord_eq_dec i ord0) with
| left _ ⇒ zero

| right _ ⇒ kronecker (i − 1)
end.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L76-L80

9.1. SIMPLICIAL GEOMETRY 109

Figure 9.1: Lagrange nodes of the reference simplex for d = 1, 2, 3 (rows) and k = 1, 2, 3, 4 (columns) are detailed
in Section 9.1.1. Nodes represent all the points within these geometric shapes, whereas vertices specifically define
the corners. Nodes corresponding to the highest degree are depicted in red , and the others in blue . The
multi-indices of the nodes are indicated for all cases when d = 1 and d = 2, but only for the highest degree when
d = 3.

This definition specifies a function that assigns a d-dimensional point to each index i ∈ [0..d]
within Rd. Specifically, for the zero index i = 0, the function returns the first vertex consisting
entirely of zeros. For any non-zero index, it returns a unit vector defined using the Kronecker
delta function (see Section 5.3.5), where all components are zero except for the (i − 1)-th
component, which is set to 1. The reference vertices are depicted in Figure 9.2.

For instance, let us consider the case where d = 3 and i ∈ [0..3], a simplex forms a tetrahedron
with 4 vertices:

• For i = 0, the output is v̂0 = (0, 0, 0), denoting the origin point.

• For i = 1, the output is v̂1 = (1, 0, 0) = δ0, indicating the unit point along the x-axis.

• For i = 2, the output is v̂2 = (0, 1, 0) = δ1, indicating the unit point along the y-axis.

• For i = 3, the output is v̂3 = (0, 0, 1) = δ2, indicating the unit point along the z-axis.

Affine Independence of the Reference Vertices

An essential property of these vertices is their affine independence, which states that a family of
points (Ai)i∈[0..d] is affinely independent if and only if the family of vectors (Ai+1 −A0)i∈[0..d−1]

is linearly independent (see Sections 5.4.3 and 5.4.2 for the detailed definitions). This property
ensures that no vertex can be expressed as an affine combination of the others (see Section 5.3.6).
Affine independence offers several advantages: Firstly, it allows each element to retain a unique
shape, which prevents the occurrence of degenerate elements where the shape might collapse
into a lower-dimensional space, such as a triangle collapsing into a line segment. Another
advantage is that it allows the transformation mapping TKgeo to preserve the original shape of

110 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

the geometric element. This transformation mapping is briefly introduced in Section 6.2.2 and
defined by the Equation (9.12), and will be discussed in more detail in Section 9.3 of this chapter.

We establish the affine independence of the reference vertices v̂0, . . . , v̂d.

Lemma vtx_simplex_ref_affine_independent: affine_independent vtx_simplex_ref.

The proof of this lemma requires demonstrating that the only solution to the linear equation∑d−1
i=0 ci (v̂i+1 − v̂0) = 0 is the trivial one, where all coefficients ci are zero. Unfolding the defi-

nition of vtx_simplex_ref reveals that the difference between each v̂i+1 and v̂0 is the Kronecker
delta function minus the zero function, simplifying to

∑d−1
i=0 ci(δi,j − 0) = 0 for j ∈ [0..d − 1].

Using the properties of the Kronecker delta function (refer to Section 5.3.5), we conclude that
cj = 0 for all j ∈ [0..d− 1], establishing the affine independence of the family (v̂i)i∈[0..d].

Reference Lagrange Nodes

In the Finite Element Method, reference Lagrange nodes within a simplex are predefined points
that consist in constructing Lagrange polynomials (see Section 9.6), that approximate the so-
lutions to equations defined over a geometric domain. These nodes are typically located at
specific geometric locations such as vertices, edge centers, and face centers, among others. They
are evenly distributed on the reference simplex K̂. Mathematically, these nodes can be defined
as follows:

∀i ∈ [0..d− 1], (âα)i
def.
=

αi
k
, ∀α ∈ Ad

k. (9.2)

Here, k denotes the degree of polynomial approximation for the space Pd
k , and α specifies the

coordinates of each node (see Section 8.1.1). In Coq, we define the explicit expression of the
reference Lagrange node as (âAd

k[ipk]
)i, where ipk ∈ [0..cardAd

k − 1] and i ∈ [0..d − 1]. In this

context, ipk corresponds to the numbering of the multi-index α within the family Ad
k, and i

represents the index of each item of Ad
k[ipk] ranging from 0 to d − 1. For the sake of brevity,

we often work with nodes of the form âα, which take vectors as inputs.

In Coq, the reference Lagrange nodes are implemented as:

Definition node_ref := fun (ipk : ’I_((pbinom d k).+1)) (i : ’I_d) ⇒
INR (Adk d k ipk i) / INR k.

Here, the binomial expression (pbinom d k).+1 represents the cardinal of Ad
k (refer to Sections 5.5

and 8.1). This definition is done using the INR : nat → R function that converts a natural
number into a real number. This conversion is necessary because the function node_ref performs
real arithmetic rather than integer arithmetic.

For a practical example, consider a 3D case with k = 3, as depicted in Figure 9.2. The family
A3

3 includes α values in N3 such that |α| ⩽ 3. Reference nodes would then be points in the unit
simplex. For instance, for α = (1, 1, 1) we obtain:

â(1,1,1) =
(1, 1, 1)

3
= (1/3, 1/3, 1/3).

9.1.2 Definition of Current Lagrange Nodes

In the FEM, current Lagrange nodes [36] are not arbitrarily placed but are calculated through a
process involving the vertices of the simplex. Mathematically, the position of each node within

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L103
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L157-L159

9.1. SIMPLICIAL GEOMETRY 111

Figure 9.2: Lagrange nodes âα of the reference simplex K̂3 when d = 3 and k = 3. Each node is depicted as a
colored ball, and corresponds to a unique element of A3

3. The colors correspond to degrees ℓ ⩽ 3 of polynomials,
or equivalently to lengths of multi-indices (i.e., in Cd

ℓ for ℓ ⩽ 3). In pink , the node â0 corresponds to constant

polynomials (with degree 0) in P3
0 , and the multi-index 0 in the singleton C3

0 . In green , the nodes correspond to

non-constant affine polynomials (with degree 1), and multi-indices δ1, . . . , δd in C3
1 . In red , the nodes correspond

to non-affine quadratic polynomials (with degree 2), and multi-indices in C3
2 . In blue , the nodes correspond

to non-quadratic cubic polynomials (with degree 3), and multi-indices in C3
3 . We observe in this picture that

A3
3 = C3

0 ∪ C3
1 ∪ C3

2 ∪ C3
3 .

a simplex is derived using a linear combination of the vertex coordinates of the simplex. The
weights of these combinations are determined by a family of multi-indices and the degree of the
polynomial space, denoted as k. Let (vi)i∈[0..d] be a family of affinely independent points, the
general formula for node positioning is represented in Coq as node_cur and expressed mathe-
matically as:

aα
def.
=

(
1 − |α|

k

)
v0 +

d−1∑
i=0

αi
k

vi+1, ∀α ∈ Ad
k. (9.3)

In the equation provided (9.3),

(
1 − |α|

k

)
and

αi
k

represent the barycentric coordinates of the

current node aα with respect to the vertices (vi)i∈[0..d] (refer to Section 5.3.6). These barycentric
coordinates ensure that the current node aα is a convex combination of the vertices (vi)i∈[0..d],
positioned either inside or on the boundary of the simplex K. This distribution guarantees that
the sum of the barycentric coordinates equals 1:

(
1 − |α|

k

)
+

d−1∑
i=0

αi
k

= 1.

Thus, aα geometrically represents the barycenter of the vertices given by these coordinates.

112 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

The following Coq code snippet represents aα as the function that computes the node po-
sitions based on the current vertices vtx_cur of the simplex in Rd and the maximum degree of
polynomials k. This function is defined as follows:

Definition node_cur (vtx_cur : ’(’Rˆd)ˆ(S d)) : ’Rˆ{(pbinom d k).+1,d} :=
fun (ipk : ’ I_((pbinom d k).+1)) ⇒
scal (1 − scal (/ INR k) (sum (mapF INR (Adk d k ipk)))) (vtx_cur ord0) +
lin_comb (scal (/ INR k) (mapF INR (Adk d k ipk))) (liftF_S vtx_cur).

This function takes vtx_cur as argument, where vtx_cur is a family of d + 1 vertices of the
simplex in d-dimensional real space (’ Rˆd). The operation liftF_S consists in skipping the first
item of the family of vertices, to only keep (vi+1)i∈[0..d−1]. Moreover, the mapF function serves
in applying the INR function to each element of the vector returned by Adk (see Section 5.2.3 for
more detail about finite families).

To provide an example of how the node positions are calculated and distributed within a
simplex, let us consider the same previous example of a three-dimensional case with a polynomial
degree k = 3, and a family of vertices (v0,v1,v2,v3) = ((1, 1, 1), (2, 3, 5), (0, 1, 0), (3, 1, 4)) that
are affinely independent. According to the Equation (9.3), the current node for each α ∈ A3

3 is
defined by:

aα =

(
1 − |α|

3

)
v0 +

α0

3
v1 +

α1

3
v2 +

α2

3
v3.

For instance, for α = (α0, α1, α2) = (1, 0, 0) we obtain

a(1,0,0) =

(
1 − 1

3

)
(1, 1, 1) +

1

3
(2, 3, 5) =

(
4

3
,

5

3
,

7

3

)
.

9.1.3 Connection Between Vertices and Nodes

The relationship between vertices and nodes is embedded, except when the degree k = 0:
specifically, all vertices are considered nodes, but not all nodes are vertices. Depending on the
polynomial degree, both reference and current nodes include the vertices and possibly other
points along the face edges or even within the interior of the elements.

Let us demonstrate the equality and inclusion relationship between nodes (aα)α∈Ad
k

and

vertices (vi)i∈[0..d] for cases where k = 1 and k > 1 for all d ≥ 1.

(i) For first-order polynomials where k = 1 (affine polynomials): Let us prove that the nodes
coincide with the vertices, i.e.,

∀ipk ∈ [0..d], aAd
k[ipk]

= vipk. (9.4)

This is captured in Coq as follows for all current vertices vtx_cur:

Lemma vtx_node_Pd1_cur : ∀(vtx_cur : ’Rˆ{d.+1,d}) (ipk :’I_d.+1),
vtx_cur ipk = node_cur d 1 vtx_cur (cast_ord _ ipk).

where, the cast_ord function is defined in Section 5.2.2. The proof of this lemma proceeds
by first expanding the Equation (9.3) of node_cur when k = 1, leading to the equation:

aα =

(
1 −

d−1∑
i=0

αi

)
v0 +

d−1∑
i=0

αi vi+1, ∀α ∈ Ad
1. (9.5)

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L150-L154
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L319-L320
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L319-L320

9.1. SIMPLICIAL GEOMETRY 113

From here, we address the case of the index ipk ∈ [0..d] to be the first index ord0 or not,
leading to two specific cases, where ipk represents the numerotation of the multi-index α
in the family Ad

1 (see Equation (8.5) in Section 8.1):

• Case 1: ipk = 0 (first vertex Ad
1[0] = (0, . . . , 0)):

Using the Adk_0 lemma, as detailed in Section 8.1.1, which specifies that the first
multi-index for any dimension d and polynomial degree k results in 0, simplifies the
equation as follows:

aAd
1[0]

= (1 − 0)v0 + 0 v1 + 0 v2 + . . .+ 0 vd = v0.

• Case 2: ipk ̸= 0 (remaining vertices Ad
1[ipk] = δipk−1 for ipk ∈ [1..d]):

The proof in this branch uses the Ad1_eq lemma, as outlined in Section 8.1.1, which
establishes that for any dimension d ≥ 1, the family Ad

1, as described by the Equa-
tion (8.5), is defined as a concatenation of a zero function and a unit index function,
denoted as itemF d 1. Given that ipk ̸= 0, we affirm that the multi-index α is equal
to itemF d 1. This item function form is represented by the Kronecker delta function,
which generates a vector where all elements are initially zero except for one element
that equals 1 (refer to Section 5.2.3). Equation (9.5) becomes,

aAd
1[ipk]

= aδipk−1
=

(
1 −

d−1∑
i=0

δipk−1,i

)
v0 +

d−1∑
i=0

δipk−1,i vi+1 = vipk, (9.6)

using properties of the Kronecker delta function (refer to Section 5.3.5), such as∑d−1
i=0 δipk−1,i = 1 and

∑d−1
i=0 δipk−1,i vi+1 = vipk.

The proof then concludes that for all cases, the node positions, as computed by
node_cur, are indeed identical to the positions of the vertices. □

Similar to the previous lemma, the following lemma asserts that each reference vertex
vtx_simplex_ref of the simplex in d dimensions corresponds exactly to a reference node
calculated with a polynomial degree of 1.

Lemma vtx_node_Pd1_ref : ∀(ipk :’I_d.+1),
vtx_simplex_ref d ipk = node_ref d 1 (cast_ord _ ipk).

The proof of this lemma is succinct, using the previously established lemma
vtx_node_Pd1_cur.

(ii) For higher-order elements where k > 1, additional nodes are introduced. These nodes may
be located on the faces or within the interior of the elements. In this case, we prove that
every current vertex vtx_cur of a simplex in d dimensions is included within the family of
current nodes node_cur, i.e.,

∀ipk ∈ [0..d], ∃jpk ∈ [0..cardAd
k − 1], aAd

k[jpk]
= vipk. (9.7)

This is translated in Coq as:

Lemma vtx_cur_invalF : ∀vtx_cur, invalF vtx_cur (node_cur vtx_cur).

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L352-L353
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L247-L248
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L247-L248

114 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

The invalF function refers to the inclusion relation of finite families (see Section 5.2.3). The
proof for this lemma is structured similarly to the previous one, using pattern matching
to divide the proof into cases depending on whether the index ipk is the first index (ord0)
or another index.

• Case 1: ipk = 0:
This case is relatively straightforward. By setting jpk = 0, and using the Adk_0 lemma
established in Section 8.1.1, the equation of the current node (9.3) simplifies to merely
the vertex at ord0, confirming direct inclusion.

• Case 2: ipk ̸= 0:
In this case, we use the inverse function Adk_inv, defined in Section 8.1.3, to determine
the index jpk that should satisfy the equality between the current vertices and the
current nodes vipk = aAd

k[jpk]
. The inverse multi-index is then chosen to be jpk =

(Ad
k)

−1(k δipk−1) ensuring that Ad
k[jpk] ∈ Ad

k, since it satisfies the conditions that

k δipk−1 ∈ Nd and |k δipk−1| = k
∑d−1

i=0 δipk−1,i = k ⩽ k. Consequently, the current
node defined in the Equation (9.3) transforms as follows:

aAd
k[jpk]

= akδipk−1
=

(
1 −

d−1∑
i=0

k δipk−1,i

k

)
v0 +

d−1∑
i=0

k δipk−1,i

k
vi+1 = vipk,

using the same properties of the Kronecker delta, as outlined in Section 5.3.5. Thus,
this validates the lemma. □

Similarly, every element of vtx_simplex_ref is an element of node_ref.

Lemma vtx_simplex_ref_inclF : invalF vtx_simplex_ref node_ref.

The proof of this lemma derives directly from the previously established lemma
vtx_cur_invalF.

9.1.4 Lagrange Sub-vertices and Sub-nodes

In this section, we formalize sub-vertices and sub-nodes. These concepts are essential for the up-
coming chapter (see Section 10.3.7), where we establish the unisolvence property of the Lagrange
finite element. The proof depends on applying the inductive principle to k, which requires to
relate concepts and properties between k and k − 1. Here, we assume that k ≥ 1.

Sub-Vertices of Lagrange Nodes

Let (vi)i∈[0..d] be an affine independent family of vertices in Rd. We highlight the equivalence
between the current sub-vertices and the Lagrange nodes. Specifically, the current sub-vertices
(v̌i)i∈[0..d] of a simplex in Rd for all d ≥ 1, correspond exactly to specific Lagrange nodes when
decrementing the polynomial degree k by one (refer to Figure 9.3). More precisely, for all k ≥ 1
we have:

∀i ∈ [1..d], v̌i
def.
= a(k−1)δi−1

and v̌0
def.
= v0. (9.8)

where δi is the Kronecker delta function (refer to Section 5.3.5).

Definition sub_vertex := fun (i : ’I_d.+1) ⇒
match (ord_eq_dec i ord0) with
| left _ ⇒ vtx_cur ord0

| right Hi ⇒ node_cur_alt d k vtx_cur (Adk_inv d k (itemF d (k.−1) (lower_S Hi)))
end.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L272
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L369-L374

9.1. SIMPLICIAL GEOMETRY 115

In this context, node_cur_alt refers to the current Lagrange nodes defined by the Equation (9.3),
and itemF d (k.−1) (lower_S Hi) is the finite family where elements are the kronecker delta
function δi−1 multiplied by k − 1. Moreover, the function lower_S is used to adjust the index i

by lowering it by 1 within the set of indices ’ I_d.+1 (see Section 5.2.2).

Figure 9.3: Illustration of the passage from the nodes of A3
3 (degree ⩽ 3) to the nodes of A3

2 (degree ⩽ 2) in
the case d = 3. It corresponds geometrically to passing from the tetrahedron defined by (v0,v1,v2,v3) to the
tetrahedron defined by the sub-vertices (v̌0, v̌1, v̌2, v̌3), where v̌0 = v0 and, ∀i ∈ [1..3], v̌i = a2δi−1 (these are the
sub-vertices, i.e., the last nodes along the axes that are not the vertices for i ∈ [1..3]). The sub-nodes ǎα with
α ∈ A3

2 in the tetrahedron (v̌0, v̌1, v̌2, v̌3) are the same as the nodes aα of (v0,v1,v2,v3) with α ∈ A3
2, except

the (blue) nodes that correspond to k = 3 (C3
3).

We express the sub-vertices by this expression for all k ≥ 1:

∀i ∈ [0..d], v̌i =
1

k
v0 +

k − 1

k
vi. (9.9)

Let us prove this Equation (9.9). We proceed by cases on the index i. When i = 0, we have
v̌0 = v0. For i ̸= 0, the proof uses the sum_itemF lemma (refer to Section 5.2) to demonstrate
that the length |(k−1) δi−1| = (k−1)

∑d−1
j=0 δi−1,j = k−1 ⩽ k. Consequently, (k−1) δi−1 ∈ Ad

k.
The computation then simplifies further as follows using Equations (9.3) and (9.8).

v̌i = a(k−1)δi−1
=

1 −
d−1∑
j=0

(k − 1) δi−1,j

k

v0 +
d−1∑
j=0

(k − 1) δi−1,j

k
vj+1,

=
1

k
v0 +

k − 1

k
vi.

□
When the degree k is set to 1, we can deduce from Equation (9.9) that all sub-vertices of a

simplex are identical to the first vertex v0, denoted in Coq as vtx_cur ord0. This assertion is
formalized as follows:

Lemma sub_vertex_k_1 : ∀(i:’I_d.+1), k = 1 → sub_vertex i = vtx_cur ord0.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L397-L398

116 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

The function of sub-vertices referenced in the Equation (9.9) preserves affine independence
when applied to a family of affinely independent vertices (vi)i∈[0..d] in Rd when k > 1.

Hypothesis k_gt_1 : 1 < k.
Hypothesis Hvtx : affine_independent vtx_cur.
Lemma sub_vertex_affine_independent : affine_independent (sub_vertex d k vtx_cur).

This is established by assuming the linear combination
∑d−1

i=0 ci(v̌i+1− v̌0) = 0, we demonstrate
that all coefficients ci must be zero. By unfolding the Equation (9.9) of sub-vertices and using
properties of affine combinations, scalar multiplication (see Section 5.3.6), we transform this
equality into:

d−1∑
i=0

ci

(
k − 1

k
vi+1 −

(
1 − 1

k

)
v0

)
=
k − 1

k

d−1∑
i=0

ci(vi+1 − v0) = 0.

Given that k−1
k ̸= 0 and the vertices vi are affinely independent, we affirm that all coefficients

ci are necessarily zero for i ∈ [0..d− 1]. □

Sub-Nodes of Lagrange Nodes

Another interesting concept within the framework of Lagrange nodes is that of sub-nodes, as
illustrated in Figure 9.3. These sub-nodes, which are points in Rd, correspond to the current
nodes at a lower polynomial degree k − 1 associated with the sub-vertices (v̌i)i∈[0..d]. The

definition of sub-nodes, ǎα for all α ∈ Ad
k−1, is provided in Coq as follows:

Definition sub_node : ’(’Rˆd)ˆ((pbinom d k.−1).+1) :=
node_cur d (k.−1) (sub_vertex d k vtx_cur).

Mathematically, each sub-node is defined as an affine combination of sub-vertices (see Sec-
tion 5.3.6), where the coefficients are derived from a family α of multi-indices in Ad

k−1, ensuring
that the total weight of the coefficients sums up to 1. For all d ≥ 1 and k > 1 we have:

∀α ∈ Ad
k−1, ǎα

def.
= av̌α, (9.10)

Here, av̌α represents the current node, as defined by Equation (9.3) in Section 9.1.2,
which takes v̌ as an argument. This means aα is expressed in terms of the sub-vertices. For
simplicity in mathematical expressions, we often omit the argument and refer to it simply as aα.

Now, by unfolding the Equation (9.9) of sub-vertices, we deduce that each sub-node defined
on the simplex (v̌0, . . . , v̌d), when α ∈ Ad

k−1, aligns exactly with the original current nodes avα
generated at the degree k applied to current vertices (vi)i∈[0..d]. This correspondence between
nodes and sub-nodes is established through the following lemma:

Lemma sub_node_cur_eq : ∀(ipk : ’I_((pbinom d k.−1).+1)),
sub_node ipk = node_cur d k vtx_cur (widen_ord _ ipk).

where, widen_ord is the injection from the set with a smaller number of elements corresponding
here to Ad

k−1, to a larger one Ad
k used to adjust the type of indices (see Section 5.2.2).

The proof of this lemma is verified for each α ∈ Ad
k−1 as:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L476
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L538-L539
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_simplex.v?ref_type=tags#L542-L544

9.2. PD
1 LAGRANGE POLYNOMIAL BASES ON THE REFERENCE ELEMENT 117

ǎα
def.
= av̌α =

(
1 − |α|

k − 1

)
v̌0 +

d−1∑
i=0

αi
k − 1

v̌i+1, from Equation (9.10)

=

(
1 − |α|

k − 1

)
v0 +

d−1∑
i=0

αi
k − 1

(
1

k
v0 +

k − 1

k
vi+1

)
, from Equation (9.9)

=

(
1 − |α|

k

)
v0 +

d−1∑
i=0

αi
k
vi+1, (real arithmetic)

= avα.

9.2 Pd
1 Lagrange Polynomial Bases on the Reference Element

In this section, we formalize and explore the characteristics of Lagrange polynomials used to
approximate solutions across the domain of the problem, particularly when the dimension d ≥ 1
and the degree of approximation is k = 1. The so called reference Lagrange polynomial bases,
denoted as (L̂d,1j)j∈[0..d], for the polynomial space Pd

1 (see Section 8.3), are mathematically
represented as:

∀j ∈ [0..d], ∀x̂ ∈ Rd, L̂d,1j (x̂)
def.
=

{
1 −

∑d−1
i=0 x̂i, if j = 0

x̂j−1, else.
(9.11)

This is translated into Coq as a match-case approach:

Definition LagPd1_ref : ’(FRd d)ˆ(S d) := fun (j : ’I_d.+1) (x : ’Rˆd) ⇒
match (ord_eq_dec j ord0) with
| left _ ⇒ 1 − sum x

| right H ⇒ x (lower_S H)
end.

The function lower_S consists in decrementing the index j (see Section 5.2.2). These reference

Lagrange polynomials (L̂d,1j)j∈[0..d] are specifically designed to be 1 at one vertex and 0 at all
others within the reference geometric element. Their primary role is to provide a basis for
interpolating values within each element. To express this property, we refer to the Coq lemma
verifying the Kronecker delta property:

Lemma LagPd1_ref_kron_vtx : ∀i j : ’I_d.+1,
LagPd1_ref j (vtx_simplex_ref d i) = kronecker i j.

To demonstrate this, we first expand the definitions of LagPd1_ref and vtx_simplex_ref, followed
by a detailed case study based on whether indices i or j are zero, dividing the proof into four
distinct cases:

• Case 1: i = 0, j = 0:
The equation simplifies to 1 −

∑d−1
ℓ=0 0 = 1 = δ0,0, aligning with the Kronecker delta

property as specified by the lemma kronecker_is_1. Since the summation of zeros simplifies
to zero, the polynomial evaluates to one.

• Case 2: i ̸= 0, j = 0:
The polynomial equation becomes 1 −

∑d−1
ℓ=0 δi−1,ℓ = 0 = δi,0, consistent with the

lemma kronecker_is_0 due to the non-matching indices. According to the lemma
sum_kronecker_r, discussed in Section 5.3.5, the summation equals one, resulting in the
polynomial evaluating to zero.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_ref.v?ref_type=tags#L44-L48
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_ref.v?ref_type=tags#L116-L117

118 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

• Case 3: i = 0, j ̸= 0:
In this case, the equation evaluates again to zero, as expected when indices differ, supported
by the lemma kronecker_is_0.

• Case 4: i ̸= 0, j ̸= 0:
The equation simplifies to δi−1,j−1 = δi,j . This equality holds regardless of whether the
indices i and j are distinct or not, using lemma kronecker_pred_eq, the equality holds.

□
Furthermore, when k = 1, the Lagrange polynomials satisfy the Kronecker delta condition

when evaluated at node points.

Lemma LagPd1_ref_kron_node : ∀i j : ’I_d.+1, LagPd1_ref j (node_ref d 1 i) = kronecker i j.

This property holds because when k = 1, we deduce from lemma vtx_node_Pd1_ref, that the
reference vertices coincide with the reference nodes (refer to Section 9.1.3).

Another important property of these polynomials is that they are affine mappings in the
function space FRd d. An affine map, in mathematical terms, can be described as a linear trans-
formation followed by a translation, as defined in Section 5.3.6. This property is encapsulated
in the lemma:

Lemma LagPd1_ref_am: ∀i : ’I_d.+1, aff_map (LagPd1_ref i).

Let i ∈ [0..d]. The proof is demonstrated by first defining a function g as g(x̂) = L̂d,1i (x̂)−L̂d,1i (0).
Using the lemma am_lm_ms detailed in Section 5.3.6, it suffices to demonstrate that the function g
is linear. This involves examining different cases depending on the index i in [0..d]. When i = 0,
we obtain g(x̂) = 1 −

∑d−1
i=0 x̂i − 1 = −

∑d−1
i=0 x̂i, which straightforwardly is a linear function

after simplification. For i ̸= 0, the function g directly accesses a specific component of x̂, i.e.,
g(x̂) = x̂i−1, which is inherently linear thanks to lm_component lemma (see Section 5.3.4). This

confirms that g maintains linearity in all cases, thus establishing the affine nature of each L̂d,1i
function.
□

Additionally, the reference Lagrange polynomials (L̂d,1j)j∈[0..d] simplify the linear combination
of vertices of a reference simplex to a single coefficient under the condition that the sum of weights
equals 1.

Lemma LagPd1_ref_lc : ∀(L : ’Rˆd.+1) (j : ’ I_d.+1),
sum L = 1 → LagPd1_ref j (lin_comb L (vtx_simplex_ref d)) = L j.

This lemma uses the property that an affine mapping preserves the barycenter of reference
vertices (v̂i)i∈[0..d] under an affine combination, as detailed in Section 5.3.6 by the aff_map

definition. The result can be articulated through the equation:

L̂d,1j

(
d∑
i=0

Liv̂i

)
=

d∑
i=0

LiL̂d,1j (v̂i) =
d∑
i=0

Liδi,j = Lj .

This follows directly from the previous Lemma LagPd1_ref_kron_vtx.
□

Lagrange polynomials are designed such that when evaluated at any point in the simplex
in Rd, the sum of all polynomials equals one. This property ensures that the polynomials
form a partition of unity, which implies that these polynomials can be used to construct local
approximations of functions. The summation property is formally expressed in the lemma:

Lemma LagPd1_ref_sum_1 : ∀x : ’Rˆd, sum (fun i : ’ I_d.+1 ⇒ LagPd1_ref i x) = 1.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_ref.v?ref_type=tags#L146-L147
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_ref.v?ref_type=tags#L169-L170
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_ref.v?ref_type=tags#L204-L206
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_ref.v?ref_type=tags#L156-L157

9.2. PD
1 LAGRANGE POLYNOMIAL BASES ON THE REFERENCE ELEMENT 119

The proof is straightforward and begins by applying the sum_ind_l lemma (refer to Section 5.3.1),

which decomposes the summation of the polynomials (L̂d,1i)i∈[0..d]. By unfolding the definition
given in the Equation (9.11) of these Lagrange polynomials, and using properties such as asso-
ciativity and commutativity to rearrange and simplify the terms, the equation for any x̂ ∈ Rd

becomes:

d∑
i=0

L̂d,1i (x̂) = L̂d,10 (x̂) +
d−1∑
i=0

L̂d,1i+1(x̂) =

(
1 −

d−1∑
i=0

x̂i

)
+

d−1∑
i=0

x̂i = 1.

□

From these results, we ensure that the Lagrange polynomials are linearly independent.

Lemma LagPd1_ref_lin_indep : lin_indep LagPd1_ref.

Indeed, let (cj)j∈[0,d] ∈ R such that for all x̂ ∈ Rd,
∑d

j=0 cjL̂
d,1
j (x̂) = 0. From Lemma

LagPd1_ref_kron_vtx and the ring properties of R, setting x̂ = v̂i for all i ∈ [0..d], results in∑d
j=0 cjδi,j = ci = 0. Consequently, the Lagrange polynomial family is free.

Given the linear independence of the Lagrange polynomials, they form a basis for Pd
1 , since

they span the entire vector space Pd
1 . This is true as stated in the lemma below,

Lemma Pd1_lin_span_LagPd1_ref : Pdk d 1 = lin_span (LagPd1_ref d).

The proof for this lemma demonstrates that the space Pd
1 spanned by the monomials functions

(Bd,1i)i∈[0..d], as detailed in Section 8.3, is equal to the linear span of the reference Lagrange poly-

nomials (L̂d,1j)j∈[0..d]. Using the lemma lin_span_ext from Section 5.4.1, involves showing that

every polynomial in Pd
1 can be expressed as a linear combination of the Lagrange polynomials

and vice versa, thereby proving that these two families span the same vector space. We begin
with a case analysis on the index i ∈ [0..d] for both inclusions.

(i) Prove that Bd,1i ∈ span (L̂d,1j)j∈[0..d] (i.e., ∃L ∈ Rd+1, Bd,1i =
∑d

j=0 LjL̂
d,1
j):

• Case 1: i = 0:
We construct a vector L := (concatF (singleF 1) ones) in Rd+1 (i.e., a collection of
ones with the appropriate type L = (1, . . . , 1) ∈ Rd+1), where concatF and singleF

are defined in Section 5.2.3. This vector L is specifically designed to express the basis
polynomial Bd,10 in terms of the Lagrange polynomials as follows:

d∑
j=0

LjL̂d,1j (x̂) = L0L̂d,10 (x̂) +

d−1∑
j=0

Lj+1L̂d,1j+1(x̂)

= 1 × (1 −
d−1∑
j=0

x̂j) + (1, . . . , 1) ×
d−1∑
j=0

x̂j

= 1.

This is verified using the lc_ind_l lemma, which consists in decomposing a linear
combination into a sum of the first computed result and the linear combination of the
rest (see Section 5.3.4). Hence, since Bd,10 = 1 from BasisPd1_0 lemma as addressed
in Section 8.3, the equation simplifies to:

Bd,10 (x̂) =

d∑
j=0

LjL̂d,1j (x̂).

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_ref.v?ref_type=tags#L279
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_ref.v?ref_type=tags#L320

120 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

• Case 2: i ̸= 0:
In this segment of the proof, using the definition given in Equation (9.11), and
referencing the BasisPd1_neq0 lemma detailed in Section 8.3, we establish that
L̂d,1i = Bd,1i = x̂i−1 for i ∈ [1..d]. It then suffices to show that L̂d,1i ∈ span L̂d,1i , a
conclusion that follows directly from the lemma lin_span_inclF_diag, as elaborated
in Section 5.4.1.

(ii) Prove that L̂d,1j ∈ span (Bd,1i)i∈[0..d]:
This case proceeds similarly to the first addressing each case depending on whether the
index j is zero or not. There are a few changes, particularly in the choice of vector L.
For j ̸= 0, we construct the vector as L := (concatF (singleF 1) (opp ones)) in Rd+1 (i.e.,
a collection of ones with the appropriate type L = (1,−1, . . . ,−1) ∈ Rd+1), and then
replicate the proof process.

By expanding the properties of Lagrange polynomials in multidimensional spaces, partic-
ularly at the first-degree approximation, we establish their bijectivity through the proofs of
surjectivity and injectivity. This bijectivity is fundamental for proving the bijectivity of the
geometric transformation TKgeo, which will be defined in the next section to map the reference
geometric element to the current one.

The demonstration of surjectivity is encapsulated in the following lemma:

Lemma LagPd1_ref_surj : ∀L : ’Rˆd.+1, sum L = 1 →
∃ x : ’ Rˆd, (fun j : ’ I_d.+1 ⇒ LagPd1_ref j x) = L.

We begin the proof by choosing a vector x in Rd, which we specifically set as Li+1 ∈ Rd for all
i ∈ [0..d − 1]. To proceed, we verify that L̂d,1j (Li+1) = Lj for each j ∈ [0..d] and i ∈ [0..d − 1].
We analyze the scenarios for the index j. In the base case where j = 0, the definition of the
Lagrange polynomial unfolds through Equation (9.11), and applying the lemma sum_ind_l (see
Section 5.3.1) leads us to:

L̂d,10 (Li+1) = 1 −
d−1∑
ℓ=0

Lℓ+1 = L0.

For cases where j ̸= 0, we confirm that L̂d,1j+1(Li+1) = Lj using the same Equation (9.11).

Now, we address the injectivity property of the Lagrange polynomials, which is established
through the following lemma:

Lemma LagPd1_ref_inj : ∀(x y : ’Rˆd),
(∀ j : ’ I_d.+1, LagPd1_ref j x = LagPd1_ref j y) → x = y.

The proof of this lemma is straightforward. Since for i ∈ [0..d−1] x̂i = L̂d,1i+1(x̂) and ŷi = L̂d,1i+1(ŷ)

hold for all x̂, ŷ ∈ Rd, the desired result follows directly from our initial assumption.

9.3 Affine Geometrical Transformation of Finite Element

The generation of a current geometric element K from the reference geometric element, denoted
as K̂, involves a C1-diffeomorphism geometric transformation, represented by TKgeo : K̂ → K,

which effectively maps K̂ into each cell K of the mesh Th as depicted in Figure 9.4. A
practical approach to implementing this mapping is through the use of the reference Lagrange
polynomials when k = 1 (see e.g. [36, Section 8.1, p.89]), along with current vertices of the cell

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_ref.v?ref_type=tags#L235-L237
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_ref.v?ref_type=tags#L272-L273

9.3. AFFINE GEOMETRICAL TRANSFORMATION OF FINITE ELEMENT 121

K.

We recall from Sections 6.2.2 and 7.1 that the geometric regions K̂ and K, typically take the
form of geometric primitives like triangles in 2D or tetrahedra in 3D. These shapes are defined
using the convex hulls of families of vertices in the reference and current elements, respectively.

Definition K_geom_cur : ’Rˆd → Prop := convex_envelop vtx_cur. (*K*)
Definition K_geom_ref : ’Rˆd → Prop := convex_envelop (vtx_simplex_ref d). (*Khat*)

v̂0

v̂2

v̂1
0

1

1

v0 = TKgeo(v̂0)

v2 = TKgeo(v̂2)

v1 = TKgeo(v̂1)

TKgeo

K̂

K

Figure 9.4: Example of a geometric transformation of elements from the reference geometric element to the
current element. The unit triangle on the left, denoted as K̂, represents the reference element. The vertices of the
reference triangle, v̂0, v̂1, and v̂2, correspond to the coordinates (0,0), (1,0), and (0,1) respectively. The arrow
labeled TK

geo represents a geometric transformation function. This function maps the reference element K̂ to the
corresponding current element K. The triangle on the right, denoted as K, represents the current geometric
element. The vertices v0, v1, and v2 of the current triangle are the images of the reference vertices under the
transformation TK

geo, expressed as v0 = TK
geo(v̂0), v1 = TK

geo(v̂1), and v2 = TK
geo(v̂2).

The geometric transformation TKgeo is mathematically formulated in Equation (6.7) of Sec-

tion 6.2.2, and is specified here using Lagrange polynomials (L̂d,1i)i∈[0..d] (refer to Equation (9.11)
in Section 9.2) as the chosen shape functions.

TKgeo : K̂ ∋ x̂ 7−→
d∑
i=0

L̂d,1i (x̂)vi ∈ K. (9.12)

where x̂ represents a point in K̂, and (v0, . . . ,vd) are the vertices of the current cell K in the
mesh Th. This mapping is translated into Coq as a total function.

Definition T_geom : ’Rˆd → ’Rˆd := fun x_ref ⇒
lin_comb (fun i : ’I_d.+1 ⇒ LagPd1_ref d i x_ref) vtx_cur.

This implementation effectively demonstrates how each point in the reference element is
mapped to a point in the current element through a linear combination of the vertices weighted
by the values of the reference Lagrange polynomials at x̂.

All transformations (TKgeo)K∈Th are affine, if and only if the geometric transformation includes

a translation vector bK ∈ Rd and a Jacobian matrix JKgeo ∈ Rd,d for all K ∈ Th [36, Section 8.1,
p.89], such that:

TKgeo : K̂ ∋ x̂ 7−→ JKgeox̂ + bK , (9.13)

This property has not been formalized in Coq; however, the lemma verifying that TKgeo is an
affine mapping is established as follows:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L99
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L114
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_transf_affine.v?ref_type=tags#L48-L49
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_transf_affine.v?ref_type=tags#L51-L52

122 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

Lemma T_geom_am : aff_map T_geom.

To verify this, we define for all x̂ ∈ Rd,

g(x̂) = TKgeo(x̂) − TKgeo(0) =
d∑
i=0

L̂d,1i (x̂)vi −
d∑
i=0

L̂d,1i (0)vi.

Given that an affine map can be expressed as a linear map plus a constant vector thanks to
am_lm_ms lemma, it suffices to show that g is a linear map. Since each reference Lagrange
polynomial L̂d,1i is an affine map through the lemma LagPd1_ref_am (refer to Section 9.2), it

follows that their differences L̂d,1i (x̂) − L̂d,1i (0) represent linear maps. By applying the lemma
am_lm_0_rev (see Section 5.3.6), we affirm the linearity of these differences. Finally, using the
fct_lc_l_lm lemma, we confirm that a linear combination of linear maps remains linear, as
detailed in Section 5.3.4.
□

The primary use of TKgeo in finite element analysis is to map reference vertices (v̂i)i∈[0..d] and
nodes (âα)α∈Ad

k
to their corresponding current positions (refer to Section 9.1). Specifically, for

each vertex within a simplex of dimension d, we state the following lemma,

Lemma T_geom_transports_vtx: ∀(vtx_cur : ’(’Rˆd)ˆd.+1) (i : ’I_d.+1),
T_geom (vtx_simplex_ref d i) = vtx_cur i.

This lemma is easy and is straightforwardly validated by using the LagPd1_ref_kron_vtx lemma,
which is detailed in Section 9.2, ensuring that the linear combination involving the Kronecker
delta function simplifies to precisely the i-th vertex, thereby confirming the correct mapping of
vertices from the reference to a current element.

Similarly, each reference node in dimension d, specified by the function node_ref in Coq, is
mapped onto the current nodes node_cur with the same index. This is articulated through the
following lemma:

Lemma T_geom_transports_node : ∀k (ipk : ’I_(pbinom d k).+1),
T_geom (node_ref d k ipk) = node_cur d k vtx_cur ipk.

The proof of this lemma is also succinct as we proceed by applying the lc_ind_l lemma
to express the linear combination of TKgeo as the sum of the first component and the linear
combination of the rest (see Section 5.3.4). Then, by employing the definitions of reference
and current nodes outlined in Section 9.1—specifically through Equations (9.2) and (9.3)
respectively—we obtain the desired result.

More generally, any point defined relative to the reference simplex will have the same relative
position in the current simplex under the affine transformation TKgeo. This means that TKgeo
applied to an affine combination of reference vertices equals the same affine combination of the
current vertices, when the sum of the coefficients equals 1. In other terms, TKgeo preserves the
barycentric coordinates, which represent a point within a simplex as a weighted average of the
vertices of the simplex (see Section 5.3.6). This is expressed as follows:

∀c ∈ Rd+1,

d∑
i=0

ci = 1 =⇒ TKgeo

(
d∑
i=0

civ̂i

)
=

d∑
i=0

civi. (9.14)

Here, the condition
∑d

i=0 ci = 1 ensures that these barycentric coordinates describe a convex

combination of the vertices. Note that, if ∀i ∈ [0..d], ci ≥ 0, the barycentric point
∑d

i=0 civ̂i lies

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_transf_affine.v?ref_type=tags#L64-L65
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_transf_affine.v?ref_type=tags#L75-L76

9.3. AFFINE GEOMETRICAL TRANSFORMATION OF FINITE ELEMENT 123

inside the simplex K̂.

Furthermore, it is important to ensure that the numbering of the nodes (aα)α∈Ad
k

is

compatible with that adopted in the geometric finite element. This property is guaranteed if the
geometric transformation TKgeo is a C1-diffeomorphism. In other words, TKgeo must be bijective,

with both TKgeo and its inverse, (TKgeo)
−1, being continuously differentiable, a property denoted

as class C1. Moreover, as TKgeo is an affine map, it suffices to prove that it is invertible. This

holds when the vertices are affinely independent. Note that the C1 class of TKgeo and (TKgeo)
−1

has not been formalized in Coq.

To formally establish that TKgeo is bijective, it is necessary to demonstrate both its surjectivity

and injectivity on Rd. These proofs are encapsulated in the following Coq lemmas:

Variable vtx_cur : ’(’Rˆd)ˆd.+1.
Hypothesis Hvtx : affine_independent vtx_cur.
Lemma T_geom_surj : ∀(x_cur : ’Rˆd), ∃ (x_ref : ’ Rˆd), T_geom x_ref = x_cur.

Surjectivity ensures that all points in Rd can be covered by TKgeo. The proof of the lemma is

derived from the surjectivity of the reference Lagrange polynomials (L̂d,1i)i∈[0..d], as demon-
strated in Section 9.2. Indeed, applying a fundamental lemma about affine spaces named
affine_independent_generator, discussed in Section 5.4.3, along with the affine independence
of the vertex family vtx_cur, we confirm that the current vertices are affinely generating. This
means that every point x in the space Rd can be expressed as an affine combination (i.e.,
∀x ∈ Rd,∃L ∈ Rd+1,

∑d
i=0 Li = 1 and x =

∑d
i=0 Livi) of the current vertices. Hence, from the

lemma LagPd1_ref_surj, we conclude that:

TKgeo(x̂)
def.
=

d∑
i=0

L̂d,1i (x̂)vi =
d∑
i=0

Livi = x.

□
Concerning the injectivity of TKgeo, we need to prove that no two distinct points in Rd corre-

spond to the same point.

Lemma T_geom_inj : ∀x_ref y_ref: ’Rˆd, T_geom y_ref = T_geom x_ref → y_ref = x_ref.

The injectivity of TKgeo is confirmed by applying the affine_independent_lc lemma (refer to
Section 5.4.3). Given an affinely independent family of vertices (vi)i∈[0..d], we suppose that∑d

i=0 L̂
d,1
i (ŷ)vi =

∑d
i=0 L̂

d,1
i (x̂)vi. Since both the sums of L̂d,1i (ŷ) and L̂d,1i (x̂) are equal to 1,

as deduced from the lemma LagPd1_ref_sum_1 detailed in Section 9.2, it follows that L̂d,1i (ŷ) =

L̂d,1i (x̂) for all i ∈ [0..d]. Consequently, from the injectivity of the Lagrange polynomials, as
outlined in the LagPd1_ref_inj lemma of Section 9.2, we conclude that x̂ and ŷ are identical in
Rd.
□

From the surjectivity and injectivity of TKgeo, we conclude that:

Lemma T_geom_bij : bijective T_geom.

Having established that the transformation mapping TKgeo is bijective, we can define the

inverse function (TKgeo)
−1 through the functional inverse f_inv, as detailed in Section 5.1.3.

Definition T_geom_inv : ’Rˆd → ’Rˆd := f_inv T_geom_bij.

The bijectivity of TKgeo implies a specific property: when composed with its inverse (TKgeo)
−1, the

result is the identity function on the respective spaces. This can be expressed in two parts:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_transf_affine.v?ref_type=tags#L109-L110
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_transf_affine.v?ref_type=tags#L120-L121
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_transf_affine.v?ref_type=tags#L130
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_transf_affine.v?ref_type=tags#L137

124 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

∀x ∈ Rd, TKgeo ◦ (TKgeo)
−1(x) = x (right identity) (9.15)

∀x̂ ∈ Rd, (TKgeo)
−1 ◦ TKgeo(x̂) = x̂ (left identity) (9.16)

As TKgeo is a bijective affine function, its inverse, (TKgeo)
−1, naturally inherits several fundamental

properties. More specifically, stemming from the affine properties of TKgeo, expressed in

Equation (9.13), and considering that the transformation is bijective, (TKgeo)
−1 also possesses

affine characteristic. This is described by (TKgeo)
−1(x) = (JKgeo)

−1(x− bK), where JKgeo represents

a Jacobian matrix in Rd,d, a detail not formalized in Coq (see e.g. [42] and [36, Section 8.1, p.89]).

This ensures that (TKgeo)
−1 is an affine transformation due to the linearity of the inverse

matrix operation and the translation adjustment.

Lemma T_geom_inv_am : aff_map T_geom_inv.

Additionally, if TKgeo maps nodes, vertices, and linear combinations of vertices from a reference

element K̂ to a current element K, then (TKgeo)
−1 must necessarily map them back from K to

K̂. This reciprocal mapping ensures the following:

∀c ∈ Rd+1,

d∑
i=0

ci = 1 =⇒ (TKgeo)
−1

(
d∑
i=0

civi

)
=

d∑
i=0

civ̂i. (9.17)

When d = 1, the current element K, as outlined in Equation (6.6) in Section 6.2.2, corre-
sponds to the interval [a, b] in R. The two vertices (v0, v1) of this interval are affinely independent

(i.e., v0 ̸= v1), and its interior,
◦
K, is nonempty. The geometric mapping and its inverse associ-

ated with these vertices, illustrated in Figure 9.5, are specified as follows:

∀x̂ ∈ R, TKgeo : R ∋ x̂ 7−→ (v1 − v0) x̂+ v0 ∈ R. (9.18)

∀x ∈ R, (TKgeo)
−1 : R ∋ x 7−→ x− v0

v1 − v0
∈ R if v0 ̸= v1. (9.19)

v̂0

0

v̂1

1 v0 = TK
geo(v̂0)

v1 = TK
geo(v̂1)

K̂

K

TK
geo

Figure 9.5: Representation of a geometric transformation, denoted as TK
geo, in dimension 1 from the reference

geometric element K̂ to a current geometric element K. The left side of the figure represents K̂, which is a line
segment between two reference points v̂0 and v̂1, that correspond to the coordinates 0 and 1, respectively, on this
line segment. The right side of the figure represents K, which is also a line segment between two points v0 and
v1. These later are the images of v̂0 and v̂1 under the transformation TK

geo.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_transf_affine.v?ref_type=tags#L301-L302

9.4. BUILDING CURRENT FES FROM THE REFERENCE FE 125

9.4 Building Current Simplicial Finite Elements From Refer-
ence Finite Element

Constructing current finite elements from a reference finite element has several significant
advantages and purposes. Using a reference finite element simplifies the mathematical formu-
lation and the computational implementation since elements in the mesh may have different
shapes and sizes, especially in complex geometries. This means that the basis functions,
which are used to approximate solutions, for instance, the Lagrange polynomial bases defined
earlier in Section 9.2, need to be defined and precomputed only once on the reference element
rather than directly on each individual current finite element. If basis functions were to be
defined individually for each current element, each element would require a unique set of basis
functions based on its specific geometry. This approach would complicate the implementation
and increase the computational cost significantly. Instead, by defining these functions on a
simple reference element, they can be easily and efficiently transformed to any other current
element in the mesh of the problem domain using a well-defined mapping transformation (refer
to Section 9.3). Additionally, operations such as integration, necessary for assembling system
matrices like stiffness and mass matrices, and differentiation needed for evaluating gradients
of functions (refer to Section 6.2.3), are more straightforward on a reference element. The
reference element typically has a regular shape (like a unit square or triangle), which simplifies
these mathematical operations. For example, quadrature formulas can be readily applied to
standard shapes, and these results are then transformed to fit the actual elements.

Let Ω be a domain in Rd with d ≥ 1. Following Section 6.2.2, Th = (Km)m∈[1..Nc] represents a
mesh of Ω, where each Km is a simplex (a generalization of triangles and tetrahedra to arbitrary
dimensions) and Nc is the total number of cells in the mesh. Constructing a family of finite
elements on the cells of Th involves selecting a reference finite element (K̂, P̂, Σ̂).

9.4.1 Reference Finite Element

We start by choosing a reference finite element denoted by (K̂, P̂, Σ̂). This reference finite
element is declared in Coq as a variable FE_ref of type FE (see Section 7.1), which contains the
geometric shape (here a simplex), the polynomial space, and the family of degrees of freedom.
More specifically, we use the elements of the record FE to define the reference finite element as
a triplet as follows:

(i) K̂ is the reference geometric element, defined as the convex hull of the d + 1 reference
vertices (v̂i)i∈[0..d] defined in Coq as:

Let nvtx := S (d FE_ref).
Let vtx_ref : ’(’ Rˆ(d FE_ref))ˆnvtx := castF _ (vtx FE_ref).
Let K_geom_ref : ’Rˆ(d FE_ref) → Prop := convex_envelop vtx_ref.

Here, Let is used for local definitions limited to the section enclosed by a begin/end pair,
and nvtx is the number of reference vertices in the reference geometric element K̂.

We assume that FE_ref forms indeed a reference finite element by the following hypothesis:

Hypothesis FE_ref_is_ref : ∀i : ’I_nvtx, vtx_ref i = vtx_simplex_ref (d FE_ref) i.

This hypothesis ensures that the vertices vtx_ref are the vertices of the reference simplex
vtx_simplex_ref in dimension d, as detailed in Section 9.1.1.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L99
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L107-L108

126 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

(ii) P̂ is the approximation space defined on K̂ with finite dimension.

Let P_approx_ref : FRd (d FE_ref) → Prop := P_approx FE_ref.
Let P_approx_has_dim_ref := P_approx_has_dim FE_ref.

(iii) Σ̂ is the family of degrees of freedom (σ̂0, . . . , σ̂ndof−1) defined in Coq as:

Let Sigma_ref : ’(FRd (d FE_ref) → R)ˆ(ndof FE_ref) := Sigma FE_ref.

Here, ndof represents the number of degrees of freedom associated with the finite element
FE_ref. We assume that both the spatial dimension d and the number of degrees of freedom
ndof are positive, denoted by the constraints d_pos and ndof_pos respectively in Coq. Each
of the linear forms is a function from the approximation space P̂ to R that satisfies the
linearity and the unisolvence property detailed in Section 6.4, ensuring the shape functions
are uniquely determined.

Let Sigma_lm_ref := Sigma_lm FE_ref.
Let unisolvence_ref := unisolvence FE_ref.

The shape functions of the reference finite element are designated by {θ̂0, . . . , θ̂ndof−1} ∈
(F(Rd,R))ndof (see Section 7.2).

Let shape_fun_ref : ’(FRd (d FE_ref))ˆ(ndof FE_ref) := shape_fun FE_ref.

We define the reference local interpolation operator (see Section 7.3) as:

IK̂ : F(Rd,R) ∋ v̂ 7−→
ndof−1∑
i=0

σ̂i(v̂) θ̂i ∈ P̂. (9.20)

The Coq formalization of this concept is straightforward,

Let local_interp_ref : FRd (d FE_ref) → FRd (d FE_ref) :=
fun v ⇒ local_interp FE_ref v.

9.4.2 Generating the Current Finite Elements

To generate a current finite element on a cell K ∈ Th, we need to transform functions defined
on K̂ to functions defined on K. First, we consider the functional space F(Rd,R) on K. We
define an isomorphism in Coq as follows:

Variable vtx_cur : ’(’Rˆ(d FE_ref))ˆnvtx.
Hypothesis Hvtx : affine_independent vtx_cur.
Definition cur_to_ref : FRd (d FE_ref) → FRd (d FE_ref) :=

fun (g_cur : FRd (d FE_ref)) (x_ref : ’Rˆ(d FE_ref)) ⇒ g_cur (T_geom vtx_cur x_ref).

Here, nvtx is the total number of current vertices in the current geometric element K. The
isomorphism property is detailed in Section 5.3.3. cur_to_ref is a linear function that transforms
a function g_cur defined on the current geometric element to a function defined on the reference
geometric element through the geometric transformation T_geom. Informally, this is expressed
as:

ψK : F(Rd,R) ∋ g 7−→ g ◦ TKgeo ∈ F(Rd,R). (9.21)

The function ψK is defined on the space F(Rd,R), which represents the set of all functions from
Rd to R, and TKgeo is the geometric transformation sending K̂ into K (see section 9.3).

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L68-L70
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L72
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L74-L76
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L78
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L80-L81
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L117-L118

9.4. BUILDING CURRENT FES FROM THE REFERENCE FE 127

Inversely, we define the inverse of the function ψK which transforms functions defined on K̂
into functions that operate on K. This is achieved through the inverse geometric transformation
(TKgeo)

−1 as follows:

Definition ref_to_cur : FRd (d FE_ref) → FRd (d FE_ref) :=
fun (g_ref : FRd (d FE_ref)) (x_cur : ’Rˆ(d FE_ref)) ⇒

g_ref (T_geom_inv vtx_cur Hvtx x_cur).

here, the hypothesis Hvtx is necessary because the bijectivity of TKgeo, and consequently the

existence of its inverse (TKgeo)
−1, indeed relies on the affine independence of the vertices vtx_cur

(see also Section 5.1.3). This function is expressed mathematically as:

(ψK)−1 : F(Rd,R) ∋ ĝ 7−→ ĝ ◦ (TKgeo)
−1 ∈ F(Rd,R). (9.22)

The function (ψK)−1 is linear, similar to ψK . It is designed to be the inverse of ψK . This means
that applying (ψK)−1 after ψK yields the identity function and vice versa.

(i) first identity: ∀ĝ ∈ F(Rd,R), ∀x̂ ∈ Rd we have

ψK((ψK)−1(ĝ))(x̂) = (ψK)−1(ĝ)(TKgeo(x̂)) = ĝ((TKgeo)
−1(TKgeo(x̂))) = ĝ(x̂). (9.23)

This relies on the bijective left identity (9.16) of the geometric mapping TKgeo established

in Section 9.3, which ensures that (TKgeo)
−1 and TKgeo are inverse.

(ii) second identity: ∀g ∈ F(Rd,R), ∀x ∈ Rd we have

(ψK)−1(ψK(g))(x) = ψK(g)((TKgeo)
−1(x)) = g(TKgeo((T

K
geo)

−1(x))) = g(x). (9.24)

This uses the bijective right identity (9.15) of the geometric mapping TKgeo established in
Section 9.3.

With all the necessary components defined for the reference finite element FE_ref, we are
now ready to construct and formalize the current finite element (K,PK ,ΣK), denoted in Coq
as FE_cur. This process begins with declaring a set of affinely independent vertices, (vi)i∈[0..d].
Mathematically, this triple (K,PK ,ΣK) is represented as:

K
def.
= TKgeo(K̂) ∈ Th,

PK
def.
= (ψK)−1(P̂),

ΣK
def.
= {(σK,i)i∈[0..ndof−1]; σK,i : F(Rd,R) ∋ p 7−→ σ̂i(ψ

K(p)) ∈ Rndof}.
(9.25)

To confirm that this triple constitutes a finite element, we must demonstrate the unisolvence
property that will be established further by the lemma unisolvence_cur. Before delving into
this proof, let us formalize and explain each component of the triple (9.25) in detail.

Current Geometric Element

The current geometric element K is constructed as a convex hull of affinely independent current
vertices.

Variable vtx_cur : ’(’Rˆ(d FE_ref))ˆnvtx.
Definition K_geom_cur := convex_envelop vtx_cur.

The definition of the convex envelope is given in Section 6.2.2. The geometric element K can also
be constructed as the image of K̂ under the transformation TKgeo in the mesh Th (see Section 9.3).
This is formalized in Coq as:

Lemma T_geom_image : K_geom_cur = image T_geom K_geom_ref.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L120-L121
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/geom_transf_affine.v?ref_type=tags#L223-L224

128 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

Current Approximation Space

The polynomial space PK , denoted in Coq as P_approx_cur, is defined as the pre-image of P̂
under the transformation ψK in the current geometric element K. Formally:

Definition P_approx_cur : FRd (d FE_ref) → Prop := preimage cur_to_ref P_approx_ref.

The construction of P_approx_cur uses the concept of pre-image as detailed in Section 5.1.2.
This definition establishes the following equivalence:

g ∈ PK ⇐⇒ ψK(g) ∈ P̂. (9.26)

Conversely, any function g that belongs to P̂ will map under the transformed counterpart via
(ψK)−1 to a function in PK through the following lemma:

Lemma P_approx_cur_correct : ∀g_ref : FRd (d FE_ref),
P_approx_ref g_ref → P_approx_cur (ref_to_cur g_ref).

The proof of this implication follows directly from the inverse property stated in Equation
(9.23). Specifically, this means that for any function ĝ ∈ F(Rd,R) in the reference approximation
space P̂, we have ĝ = ψK((ψK)−1(ĝ)) ∈ P̂. This implies that (ψK)−1(ĝ) ∈ (ψK)−1(P̂). Hence,
the desired result follows directly from the definition of PK as the pre-image of P̂ under ψK .

As observed from the Equation (9.21), the transformation function ψK is bijective, implying
a one-to-one correspondence between approximation spaces PK and P̂.

Lemma cur_to_ref_bijS : bijS P_approx_cur P_approx_ref cur_to_ref.

where, bijS refers to the bijectivity on the subsets PK and P̂ (see Section 5.1.4). The bijectivity
of ψK is essential for proving that PK is a finite dimensional space. To ensure this property,
we use the lemma bijS_ex, also detailed in Section 5.1.4, which establishes that if an inverse
function exists and satisfies four specific criteria, then ψK qualifies as a bijection. Specifically,
by designating (ψK)−1 as the inverse function to ψK , we first proceed by explicitly demontrating
that ψK(PK) = P̂ and (ψK)−1(P̂) = PK , which are affirmed by Equation (9.26) and lemma
P_approx_cur_correct, respectively. Furthermore, we confirm that the compositions of ψK and
(ψK)−1 accurately return the original inputs. This confirmation is directly derived from the
identity properties of ψK and (ψK)−1, as delineated in Equations (9.23) and (9.24), thereby
maintaining the bijectivity of the transformation function ψK .

The approximation space PK which is defined as the pre-image of P̂ under the transformation
ψK , is a vector space (see Section 5.3.3). This is derived from the linearity of the function
ψK , and that P̂ is also a vector space, that maintains properties like closure under scalar
multiplication and addition.

Lemma P_approx_cur_cms : compatible_ms P_approx_cur.

Another important aspect of PK is its finite dimensionality (in this context, the dimension
of PK is the number of the degrees of freedom ndof). This characteristic means that the space
can be spanned by a finite number of basis functions. For instance, PK might be spanned by
polynomials up to a certain degree, such as all linear or quadratic polynomials defined over K.

Lemma P_approx_cur_has_dim : has_dim P_approx_cur (ndof FE_ref).

The proof of this lemma relies on the established properties discussed in this section. To prove
the lemma, it is sufficient to demonstrate the existence of a basis in PK = (ψK)−1(P̂) consisting
of ndof elements, denoted as (ψK)−1(θ̂i), where (θ̂i)i∈[0..ndof−1] represents the family of reference

shape functions from the reference approximation space P̂ (see Section 7.2). Indeed, given that

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L123-L224
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L192-L193
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L200-L201
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L217
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L217
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L224

9.4. BUILDING CURRENT FES FROM THE REFERENCE FE 129

PK is closed under linear operations, as established by the previous lemma P_approx_cur_cms,
and considering the bijectivity of the function ψK as shown by cur_to_ref_bijS, together with
the fact that the family (θ̂i)i∈[0..ndof−1] forms a basis for P̂, it follows that the space PK is a
finite dimensional space.

Family of Current Linear Forms

The family of current linear forms Σ contains ndof linear forms acting on functions within the
space PK .

ΣK = {(σK,i)i∈[0..ndof−1]; σK,i : F(Rd,R) ∋ p 7−→ σ̂i(ψ
K(p)) ∈ Rndof}. (9.27)

This is defined formally as:

Definition Sigma_cur : ’(FRd (d FE_ref) → R)ˆ(ndof FE_ref) :=
fun (i : ’ I_(ndof FE_ref)) p ⇒ Sigma_ref i (cur_to_ref p).

We recall that Sigma_ref represents the family Σ̂ of reference degrees of freedom (σ̂i)i∈[0..ndof−1]

in K̂ for the finite element FE_ref, as detailed in Section 9.4.1. The family Sigma_cur constitutes
a basis for the dual space of linear forms L(PK ,R). This is not formalized in Coq as it is not
necessary for further developments. Furthermore, each function σi acts as a linear map on
functions within the space FRd d, as discussed in Section 5.3.3. This property is characterized as
follows:

Lemma Sigma_cur_lm : ∀i : ’I_(ndof FE_ref), lin_map (Sigma_cur i).

The proof derives straightforwardly from the linearity of the reference linear forms (σ̂i)i∈[0..ndof−1]

in the family Σ̂.

Last but not least, for the triple (9.25) to qualify as a finite element, it must satisfy the
unisolvence property.

Lemma unisolvence_cur : bijS P_approx_cur fullset (gather Sigma_cur).

Here, bijS refers to the bijectivity on subsets as discussed in Section 5.1.4, and the function
gather is used here to transform the family Sigma_cur of linear forms of type ’(FRd d → R)ˆndof,
into a single function that maps any input from FRd d to a vector in ’ Rˆndof. Let us prove this
lemma.

As discussed in Section 7.1, the unisolvence property establishes a bijection between the ap-
proximation space PK and Rndof . Specifically, we show that the mapping ΦΣK

: PK ∋ p 7−→
(σK,i(p))i∈[0..ndof−1] ∈ Rndof is an isomorphism. To establish this, it suffices to prove the con-
ditions specified in Equations (6.11) and (6.12) of Section 6.4, which state that the linear
map ΦΣK

between the vector spaces PK and Rndof is bijective if and only if two criteria are
met: first, that the dimensions of these two spaces are equal, which is confirmed by Lemma
P_approx_cur_has_dim, and second, that ΦΣK

is a linear injective map. The linearity of ΦΣK

follows from Lemma Sigma_cur_lm. To prove injectivity, it must be shown that:

∀p ∈ PK , (∀i ∈ [0..ndof − 1], σK,i(p) = 0) =⇒ (p = 0).

Consider p ∈ PK such that σK,i(p) = 0. From Equation (9.27), it follows that σ̂i(ψ
K(p)) = 0.

Given that ψK(p) ∈ P̂ and leveraging the unisolvence property of the reference linear forms Σ̂,
as established by unisolvence_ref in Section 9.4.1, we deduce that ψK(p) = 0. Consequently,
since the transformation map ψK is injective, we conclude that p = 0.
□

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L251
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L254-255
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L263-264

130 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

Consequently, the current finite element, denoted as FE_cur, is constructed as a record using
the mk_FE constructor defined in Section 7.1, incorporating all the properties of a finite element
within a single value.

Definition FE_cur :=
mk_FE (d FE_ref) (ndof FE_ref) (d_pos FE_ref)
(ndof_pos FE_ref) (shape FE_ref) (castF _ vtx_cur)
P_approx_cur P_approx_cur_has_dim

Sigma_cur Sigma_cur_lm unisolvence_cur.

9.4.3 Current Shape Functions and Local Interpolation Operator

From the current finite element FE_cur, we construct the shape functions of the current geometric
element K ∈ Th as:

Let d_cur := d FE_cur.
Let ndof_cur := ndof FE_cur.
Let shape_fun_cur : ’(FRd d_cur)ˆndof_cur := shape_fun FE_cur.

Here, shape_fun is the shape function defined as a predual basis of (σi)i∈[0..ndof−1] detailed in
Section 7.2.

The shape functions θK,i are derived by applying the inverse of the transformation (ψK)−1

to the reference shape functions θ̂i. This function is represented both mathematically and in
Coq as follows:

θK,i = (ψK)−1(θ̂i), ∀i ∈ [0..ndof − 1]. (9.28)

Lemma shape_fun_cur_correct : ∀i : ’I_(ndof FE_ref),
shape_fun_cur i = ref_to_cur (shape_fun_ref i).

Furthermore, the local interpolation operator IK is mathematically defined by the following
expression:

IK : F(Rd,R) ∋ v 7−→
ndof−1∑
i=0

σK,i(v) θK,i ∈ PK . (9.29)

The operator transforms v into an approximation function within the space PK by linearly
combining basis shape functions θK,i, each weighted by coefficients σK,i(v). In a formal setting,
the operator is implemented as:

Let local_interp_cur : FRd d_cur → FRd d_cur := fun v ⇒ local_interp FE_cur v.

Here, local_interp_cur is an instantiation of Ih defined in Section 7.3.

An additional property of IK is given in the following lemma:

Lemma local_interp_cur_ref : ∀v : FRd (d FE_ref),
local_interp_ref (cur_to_ref v) = cur_to_ref (local_interp_cur v).

This lemma asserts that applying the transformation ψK to v before interpolating by IK̂ is
equivalent to interpolating v first and then applying ψK . This property is justified since the
function ψK is a linear map, which ensures that the transformations and interpolations commute
as follows:

IK̂ ◦ ψK(v) =

ndof−1∑
i=0

σ̂i(ψ
K(v)) θ̂i =

ndof−1∑
i=0

σK,i(v) ψK(θK,i) = ψK ◦ IK(v).

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L282-286
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L292
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L334-L335
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L365-L366
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L369-L371

9.5. PD
1 LAGRANGE POLYNOMIALS BASIS ON A CURRENT ELEMENT 131

9.5 Pd
1 Lagrange Polynomials Basis on a Current Element

In the progression of our discussion on Lagrange polynomials and their application within
the finite element method, this section delves into the formulation and properties of the
current Lagrange polynomials (Ld,1i)i∈[0..d], when the dimension is d ≥ 1 and the degree of
approximation is k = 1. The properties of these polynomials are built upon the concepts of the
reference Lagrange polynomials (L̂d,1i)i∈[0..d] established in the earlier Section 9.2, and the affine

transformation mapping TKgeo, along with its inverse, presented in Section 9.3.

Given a family of d + 1 affinely independent points (vi)i∈[0..d] in Rd, the current Lagrange

polynomials (Ld,1i)i∈[0..d] are defined as follows:

Ld,1i (x)
def.
= L̂d,1i ◦ (TKgeo)

−1(x), ∀i ∈ [0..d], ∀x ∈ Rd. (9.30)

Here is the implementation definition in Coq:

Hypothesis Hvtx : affine_independent vtx_cur.
Definition LagPd1_cur (i : ’I_d.+1) (x_cur : ’Rˆd) :=
LagPd1_ref d i (T_geom_inv vtx_cur Hvtx x_cur).

This definition leads to the property that L̂d,1i = Ld,1i ◦ TKgeo, thus establishing a bidirectional

mapping between the reference and current elements. Each Ld,1i is designated as the i-th
current Lagrange polynomial of Pd

1 , associated with the points (vi)i∈[0..d].

The transition from L̂d,1 to Ld,1 preserves several properties similar to those established in
Section 9.2. More specifically, each current Lagrange polynomial Ld,1i is defined such that it also
equals 1 at the corresponding vertex vi and 0 at all other vertices of the current simplex.

Lemma LagPd1_cur_kron_vtx : ∀i j : ’I_d.+1, LagPd1_cur j (vtx_cur i) = kronecker i j.

Proving this lemma requires the use of the T_geom_inv property (TKgeo)
−1(vi) = v̂i which maps

vertices of the current element back to the corresponding vertices in the reference element (see

Section 9.3). Consequently, we derive that Ld,1j (vi) = L̂d,1j ((TKgeo)
−1(vi)) = L̂d,1j (v̂i) = δi,j . This

result is deduced from the Kronecker delta property of the reference Lagrange polynomials, as
confirmed by the lemma LagPd1_ref_kron_vtx in Section 9.2.
□

As when k = 1, the nodes coincide with the vertices, we obviously have the same result for
the current nodes (refer to Section 9.1.3).

Lemma LagPd1_cur_kron_node : ∀i j : ’I_d.+1
LagPd1_cur j (node_cur d 1 vtx_cur i) = kronecker i j.

Additionally, within a simplex defined by affinely independent vertices (vi)i∈[0..d] in Rd,
any point x ∈ Rd can be uniquely decomposed as an affine combination of these vertices, with
coefficients derived from the current Lagrange polynomials (Ld,1i)i∈[0..d] applied to x. Specifically,
this decomposition is expressed as:

x =
d∑
i=0

Ld,1i (x)vi and

d∑
i=0

Ld,1i (x) = 1. (9.31)

These coefficients can be seen as the barycentric coordinates of x in the simplex (see Sec-

tion 5.3.6), constrained by the condition
∑d

i=0 L
d,1
i = 1. This condition is verified in Coq

through the lemma LagPd1_ref_sum_1 from Section 9.2. Moreover, if Ld,1i (x) ≥ 0 for all
i ∈ [0..d], then any point x ∈ Rd will be positioned either inside or on the boundary of the

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_cur.v?ref_type=tags#L48-L49
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_cur.v?ref_type=tags#L90-L91
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_cur.v?ref_type=tags#L100-L101

132 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

simplex K.

Another essential attribute of the current Lagrange polynomial family (Ld,1i)i∈[0..d] is their

role as a basis for the approximation space Pd
1 . This implies that any polynomial within this

space can be uniquely represented by a linear combination of these polynomials. To establish
this, the polynomials (Ld,1i)i∈[0..d] must fulfill two requirements, first to be linearly independent

and second to span the entire polynomial space Pd
1 .

The first requirement addresses their linear independence. The current Lagrange polynomials
(Ld,1i)i∈[0..d] maintain their linear independence when transformed from the current geometric

element through the affine transformation TKgeo. This is formally stated through this lemma as
follows:

Variable vtx_cur : ’(’Rˆd)ˆd.+1.
Hypothesis Hvtx : affine_independent vtx_cur.
Lemma LagPd1_cur_lin_indep : lin_indep LagPd1_cur.

Establishing this property is succinct, it involves a change of variable using the left identity
property of TKgeo as outlined in Equation (9.16). Then, by invoking the linear independence
of the reference Lagrange polynomials, verified by the lemma LagPd1_ref_lin_indep detailed
earlier in Section 9.2, we confirm the linear independence of the current Lagrange polynomial
(Ld,1i)i∈[0..d].
□

The second requirement is that the polynomials (Ld,1i)i∈[0..d] span the approximation space

Pd
1 , allowing any polynomial within this space to be expressed as a linear combination of Ld,1

polynomials associated with an affinely independent family of vertices vtx_cur. This is formally
captured by:

Variable vtx_cur : ’(’Rˆd)ˆd.+1.
Hypothesis Hvtx : affine_independent vtx_cur.
Lemma Pd1_lin_span_LagPd1_cur : Pdk d 1 = lin_span (LagPd1_cur vtx_cur Hvtx).

The proof proceeds by applying the previously established lemma Pdk_am_compose_basis from
Section 8.2.3, which demonstrates that composing the basis (L̂d,1i)i∈[0..d], verified as a basis by

the lemma LagPd1_ref_basis in Section 9.2, with the affine bijective map (TKgeo)
−1, spans the

polynomial space Pd
1 . The affine bijective properties of the (TKgeo)

−1 map are derived from the
lemmas T_geom_inv_am and f_inv_bij, detailed in Sections 9.3 and 5.1.3, respectively.
□

Consequently, the current Lagrange polynomial family (Ld,1i)i∈[0..d] form a basis for the ap-

proximation space Pd
1 implemented in Coq as follows:

Variable vtx_cur : ’(’Rˆd)ˆd.+1.
Hypothesis Hvtx : affine_independent vtx_cur.
Lemma LagPd1_cur_basis : basis (Pdk d 1) (LagPd1_cur vtx_cur Hvtx).

9.6 P1
k Lagrange Polynomial Bases on a Segment

This section expands our discussion onto the specifics of P1
k Lagrange basis polynomials (see [35,

p.8]), specifically within the polynomial space P1
k when d = 1 and the polynomial degree k ≥ 1.

The primary objective of these polynomials, denoted as (L1,k
i)i∈[0..k], consists in approximating

functions by constructing polynomials that pass through a family of k + 1 interpolation nodes
ai in R, which are previously defined by Equation (9.3) in Section 9.1.2. More specifically, when

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_cur.v?ref_type=tags#L119
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_cur.v?ref_type=tags#L164-L166
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_cur.v?ref_type=tags#L164-L166
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagPd1_cur.v?ref_type=tags#L185-L187

9.6. P1
K LAGRANGE POLYNOMIAL BASES ON A SEGMENT 133

d = 1, the mathematical formulation of these nodes is defined as follows:

Let (v0, v1) a pair of affinely independent vertices in R, and (ai)i∈[0..k] represent k+1 distinct
points in R, where each node ai is computed as:

ai =


v0 + v1

2
for i = 0

v0 +
i

k
(v1 − v0) ∀i ∈ [0..k].

Then, the Lagrange polynomial bases denoted by LagP1k_cur in Coq, and visually depicted
in Figure 9.6, are mathematically defined as follows:

∀i ∈ [0..k],∀x ∈ R, L1,k
i (x)

def.
=

k∏
j=0,j ̸=i

x− aj
ai − aj

. (9.32)

Figure 9.6: Graphical representation of Lagrange interpolation polynomials (L1,k
i)i∈[0..k] to different values of

k ∈ [1..3], over a single variable x ∈ R. For k = 1: There are two polynomials corresponding to current
Lagrange nodes at a0 and a1. The solid line represents L1,1

0 (x) and the dashed line represents L1,1
1 (x). Each

polynomial equals 1 at its respective node and 0 at the other node, forming linear polynomials. For k = 2: There
are three polynomials, corresponding to three Lagrange nodes. The colors differentiate the basis polynomials
L1,2

0 (x), L1,2
1 (x), and L1,2

2 (x). Each polynomial is 1 at its respective node and 0 at the others. The shapes of the
polynomials are now quadratic. For k = 3: There are four polynomials (four nodes). Each plot here is a cubic
polynomial. Again, each polynomial is 1 at its node and 0 at all others.

The Lagrange polynomials exhibit notable properties, especially the fact that the degree of
each L1,k

i polynomial is precisely k. This directly stems from the definition of the polynomial

as outlined in Equation (9.32). By definition, each polynomial L1,k
i is uniquely associated with

one interpolation node ai. It evaluates to 1 at node ai and to zero at all other nodes. This
relationship is represented in the following lemma:

Lemma LagP1k_cur_kron_node_alt : ∀(i j : ’I_(pbinom 1 k).+1) (vtx_cur : ’Rˆ{2,1}),
affine_independent vtx_cur →
LagP1k_cur vtx_cur j (node_cur 1 k vtx_cur i) = kronecker i j.

Let us verify this lemma. Based on the definition of the current polynomials through the
Equation (9.32) when evaluated at the current nodes ai, we demonstrate that

k∏
ℓ=0,ℓ ̸=j

ai − aℓ
aj − aℓ

= δi,j .

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagP1k.v?ref_type=tags#L153-L156

134 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

We conduct a case analysis on whether the indices i and j are identical or not. We note that
aj ̸= aℓ when ℓ ̸= j.

(i) Case 1: i = j
Here, since i equals j, we refer to the kronecker_is_1 lemma from Section 5.3.5, which
asserts that the Kronecker delta evaluates to 1. Consequently, the equation simplifies, as
confirmed by the prod_R_one_compat lemma (see Section 5.3.2), indicating that a product
over a family of ones results in 1.

(ii) Case 2: i ̸= j
With i differing from j, we use the kronecker_is_0 lemma, setting the Kronecker delta to
0. The expression then reduces to zero, a result validated by the prod_R_zero lemma (see
Section 5.3.2), when there exists a zero in the family. Thus, the proof is achieved. □

As a direct consequence of the Kronecker delta property, we deduce the linear independence
of the family of Lagrange polynomial basis (L1,k

i)i∈[0..k]. This step is important for establishing
that these polynomials form a basis for the space of polynomial functions P1

k , which we aim to
demonstrate at the end of this section.

Lemma LagP1k_cur_lin_indep : ∀(vtx_cur : ’Rˆ{2,1}),
affine_independent vtx_cur → lin_indep (LagP1k_cur vtx_cur).

In simpler terms, our goal is to show that for any coefficients (cj)j∈[0..k] ∈ R, if
∑k

j=0 cjL
1,k
j (x) = 0

for all x ∈ R, then each coefficient cj must be zero. By evaluating the Lagrange polynomial

(L1,k
j)j∈[0..k] at each node ai ∈ R for i ∈ [0..k], and applying the previously established lemma

LagP1k_cur_kron_nodes_alt, we achieve the desired result.

In this part of the section, we focus on demonstrating that the current Lagrange polyno-
mials (L1,k

i)i∈[0..k] indeed constitute a basis for the space P1
k . To achieve this, we initiate by

constructing the family of reference Lagrange polynomials, denoted (L̂1,k
i)i∈[0..k]. This involves

detailing the necessary properties of these reference polynomials. Using these properties, we
will then systematically derive the results confirming that the current Lagrange polynomials
serve as a basis for the polynomial space P1

k .

The reference Lagrange polynomials are obtained by evaluating the current Lagrange poly-
nomials at the reference vertices (v̂i)i∈{0,1}, discussed in Section 9.1.1, as follows:

Definition LagP1k_ref : ’(’Rˆ1 → R)ˆ((pbinom 1 k).+1) :=
LagP1k_cur (vtx_simplex_ref 1).

These reference polynomials belong to the polynomial space P1
k . From this definition, we notice

that the properties of the reference Lagrange polynomials (L̂1,k
i)i∈[0..k] are straightforwardly

derived from those of the corresponding current polynomials (L1,k
i)i∈[0..k]. Specifically, at each

interpolation node âi, the polynomial L̂1,k
i takes a value of 1, and 0 at all other nodes. This

behavior is encapsulated by the following code snippet:

Lemma LagP1k_ref_kron_node : ∀i j : ’I_(pbinom 1 k).+1,
LagP1k_ref j (node_ref 1 k i) = kronecker i j.

Moreover, the reference Lagrange polynomials (L̂1,k
i)i∈[0..k] are linearly independent, a con-

clusion drawn from the linear independence of the current polynomials (L1,k
i)i∈[0..k], as supported

by the lemma LagP1k_cur_lin_indep.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagP1k.v?ref_type=tags#L165-L167
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagP1k.v?ref_type=tags#L165-L167
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagP1k.v?ref_type=tags#L54-L55
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagP1k.v?ref_type=tags#L184-L185
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagP1k.v?ref_type=tags#L193

9.6. P1
K LAGRANGE POLYNOMIAL BASES ON A SEGMENT 135

Lemma LagP1k_ref_lin_indep : lin_indep LagP1k_ref.

Given that P1
k has a finite dimension of k+ 1, and that (L̂1,k

i)i∈[0..k] are linearly independent
belonging to P1

k , we apply the lemma lin_indep_basis, discussed in Section 5.4.2, to affirm that

(L̂1,k
i)i∈[0..k] indeed form a basis for the space P1

k .

Lemma LagP1k_ref_basis : basis (Pdk 1 k) (LagP1k_ref k).

The definition of L̂1,k allows us to explore the relationship between the current and refer-
ence Lagrange polynomials. Specifically, each current Lagrange polynomial (Ld,1i)i∈[0..k] can be
expressed at any point as follows:

L1,k
i (x)

def.
= L̂1,k

i ◦ (TKgeo)
−1(x), ∀i ∈ [0, 1], ∀x ∈ R. (9.33)

This equation is established relying on the results of the geometric transformations TKgeo described
in Section 9.3 as follows:

L̂1,k
i ◦ (TKgeo)

−1(x) =
k∏

j=0,j ̸=i

(TKgeo)
−1(x) − âj

âi − âj
.

Setting x̂ = (TKgeo)
−1(x), where (TKgeo)

−1 : x 7−→ x− v0
v1 − v0

(refer to Section 9.3), and multiplying

both terms of the quotient by (v1−v0 ̸= 0), where (v0, v1) is a pair of affinely independent points
in R, we get

L̂1,k
i ◦ (TKgeo)

−1(x) =
k∏

j=0,j ̸=i

(x̂− âj)(v1 − v0)

(âi − âj)(v1 − v0)
,

=

k∏
j=0,j ̸=i

(x̂(v1 − v0) + v0) − (âj(v1 − v0) + v0)

(âi(v1 − v0) + v0) − (âj(v1 − v0) + v0)
.

Using the Equation (9.18) for d = 1, we obtain

L̂1,k
i ◦ (TKgeo)

−1(x) =
k∏

j=0,j ̸=i

TKgeo(x̂) − TKgeo(âj)

TKgeo(âi) − TKgeo(âj)

=

k∏
j=0,j ̸=i

TKgeo((T
K
geo)

−1(x)) − TKgeo((T
K
geo)

−1(aj))

TKgeo((T
K
geo)

−1(ai)) − TKgeo((T
K
geo)

−1(aj))
.

Finally, using the bijection right identity of TKgeo shown in Equation (9.15), we validate our
desired result

L̂1,k
i ◦ (TKgeo)

−1(x) =
k∏

j=0,j ̸=i

(x− aj)

(ai − aj)
= L1,k

i (x).

Thus, establishing Equation (9.33).
□

Using Equation (9.33), we establish that the current Lagrange polynomials span the approx-
imation space P1

k .

Lemma P1k_lin_span_LagP1k_cur : ∀(vtx_cur : ’Rˆ{2,1}),
affine_independent vtx_cur → Pdk 1 k = lin_span (LagP1k_cur k vtx_cur).

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagP1k.v?ref_type=tags#L320
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagP1k.v?ref_type=tags#L328-L330
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagP1k.v?ref_type=tags#L328-L330

136 CHAPTER 9. REFERENCE AND CURRENT FINITE ELEMENTS

This lemma is verified by directly applying the lemma Pdk_am_compose_basis (see Section 8.2.3),
which confirms that the polynomial space P1

k precisely corresponds to the linear span of the

reference Lagrange polynomials (L̂1,k
i)i∈[0..k] when composed with the mapping (TKgeo)

−1. This

composition is valid under the conditions that (L̂1,k
i)i∈[0..k] already form a basis for P1

k as

confirmed by the lemma LagP1k_ref_basis, and that the transformation (TKgeo)
−1 is both affine

and bijective. These conditions are substantiated by the lemmas T_geom_inv_am and f_inv_bij,
respectively (refer to Sections 9.3 and 5.1.3).

Consequently, from the linear independence established by the lemma LagP1k_cur_lin_indep

and the fact that they span P1
k as demonstrated by the lemma P1k_lin_span_LagP1k_cur, we

can conclude that the current Lagrange polynomials (L1,k
i)i∈[0..k] indeed form a basis for the

polynomial space P1
k .

Lemma LagP1k_cur_basis : ∀(vtx_cur : ’Rˆ{2,1}),
affine_independent vtx_cur → basis (Pdk 1 k) (LagP1k_cur k vtx_cur).

We conclude that, in contrast to what was established previously, where we derived the
properties of the reference Lagrange polynomials (L̂1,k

i)i∈[0..k] from the current ones, we are now

reversing the process. We have deduced that the current Lagrange polynomials (L1,k
i)i∈[0..k] form

a basis, based on the reference polynomials (L̂1,k
i)i∈[0..k] constituting a basis.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/poly_LagP1k.v?ref_type=tags#L340-L342

Chapter 10

Simplicial Lagrange Finite Elements

The Lagrange family of finite elements is a fundamental concept in the field of numerical
analysis, particularly within the framework of the finite element method used for solving
partial differential equations [59]. Each Lagrange finite element is associated with a polynomial
space and a family of nodal points, where the solution values are exactly represented by the
polynomial approximation (see Section 6 for more details).

This chapter is structured as follows: initially, in Section 10.1 we define the face hyperplanes
for both current and reference geometric elements and explore their interaction with Lagrange
polynomials. Next, we introduce the geometric mappings, which consist of transitioning between
the faces of the geometric elements, as elaborated in Section 10.2. We then proceed to discuss the
construction of current simplicial Lagrange finite elements, detailed in Section 10.3. Finally, we
outline the generation of the reference simplicial Lagrange finite element with fixed dimensions
d and degree k, covered in Section 10.4.

10.1 Face Hyperplanes

In geometry, a hyperplane is an affine space whose dimension is one less than that of the
space in which it resides. For example, in a three-dimensional space, a hyperplane is a plane.
Additionally, a hyperface refers to a part of the face hyperplane that is a boundary or edge of a
geometric structure. For example, in three-dimensional spaces, the hyperfaces of a tetrahedron
are flat triangles, and in two-dimensional space, it is a straight line. We also call face hyperplane
the hyperplane containing one of the hyperfaces of the simplicial geometric element. The
concept of face hyperplanes will be needed later, particularly for proving the unisolvence of
simplicial Lagrange finite elements (see Section 10.3.7), and when transforming nodes, for
instance, from a reference element of d− 1 to an hyperface of a current geometric element on d
dimension using affine mappings, which will be discussed throughout this chapter. Some figures
will accompany these explanations to aid in understanding the concepts.

In this chapter, we will introduce two face hyperplanes Hd
0 of simplices, the face hyperplane

opposite to the first vertex v0 of the current simplex K in Rd, and the face hyperplane Ĥd
d

opposite to the last vertex v̂d of the reference simplex K̂.

Consider a spatial dimension d ≥ 1, and a family of affinely independent vertices (vi)i∈[0..d]
(refer to Section 5.2.3 for more details on finite families). The face hyperplane Hd

0 of the current
simplex of vertices (vi)i∈[0..d] is a subspace in Rd, formally defined as the kernel of the first
current Lagrange polynomial:

137

138 CHAPTER 10. SIMPLICIAL LAGRANGE FINITE ELEMENTS

Hd
0

def.
= ker (Ld,10) = {x ∈ Rd | Ld,10 (x) = 0}. (10.1)

Here, (Ld,1i)i∈[0..d] represents the current Lagrange polynomials defined in Section 9.5. The face

hyperplane Hd
0 is the set of all points that belong to the hyperplane defined by (v0,v1, . . . ,vd)

(i.e., containing the face opposite the first vertex v0 of the current simplex in Rd) (see e.g.
Figure 10.1). The face hyperplane Hd

0 is formalized as follows:

Definition face0 d (vtx_cur : ’Rˆ{d.+1,d}) (Hvtx: affine_independent vtx_cur):
’ Rˆd → Prop := fun x ⇒ LagPd1_cur vtx_cur Hvtx ord0 x = 0.

In this context, ’ Rˆ{d.+1,d} is a notation that represents a function that maps each pair of
indices from ’ I_{d.+1} to ’ I_d to a real number R. We recall from Section 2.3 that ’ I_d denotes
the type of all natural numbers less than n.

Similarly, the last reference hyperplane Ĥd
d contains the face of the reference simplex K̂ in

Rd positioned opposite to the last vertex v̂d.

Ĥd
d

def.
= ker (L̂d,1d) = {x̂ ∈ Rd | L̂d,1d (x̂) = 0}. (10.2)

This definition is specified in Coq as follows:

Definition face_ref_d d : ’Rˆd → Prop := fun x ⇒ LagPd1_ref d ord_max x = 0.

Here, LagPd1_ref represents the reference Lagrange polynomials evaluated at the maximum
ordinal ord_max, which corresponds to the last vertex of the simplex in Rd (refer to Section 9.2).

Figure 10.1: Geometric hyperface mapping TK
geo in the case d = k = 3 with d = d1 + 1. This figure depicts the

transformation TK
geo of a reference simplex K̂d onto the current simplex K, and reference nodes âα onto current

nodes aα, see Lemmas T_geom_transports_vtx and T_geom_transports_node. For instance, we show that
the reference hyperplane Ĥd

d is mapped onto Hd
0. The nodes in these two faces are colored in order to help see

the correspondence: for all α ∈ C3
3 , we have aα = TK

geo(âα).

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L41-L43
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L178-L179

10.1. FACE HYPERPLANES 139

A point x ∈ Rd belongs to the hyperplane Hd
0 if and only if x can be represented as an affine

combination of the vertices (vi)i∈[1..d] where the sum of the coefficients (Li)i∈[0..d−1] equals 1.

Lemma face0_equiv : ∀d (vtx_cur : ’Rˆ{d.+1,d}) (x : ’Rˆd)
(Hvtx: affine_independent vtx_cur),
face0 d vtx_cur Hvtx x ↔ (∃ L : ’Rˆd, sum L = 1 ∧ x = lin_comb L (liftF_S vtx_cur)).

liftF_S skips the first item of the argument family (refer to Section 5.2.3). Thus,
(liftF_S vtx_cur) contains the vertices v1 to vd. The proof demonstrates both implications
of the equivalence.

(⇒) Let x ∈ Rd lie on the hyperplane Hd
0. The proof begins by selecting the coefficients L as

the current Lagrange polynomials, Ld,1i+1(x) ∈ Rd, for x ∈ Rd. We must demonstrate:

d−1∑
i=0

Ld,1i+1(x) = 1 ∧ x =

d−1∑
i=0

Ld,1i+1(x)vi+1. (10.3)

Indeed,

(i) We verify the first part of this claim (10.3). Given the assumption, we know that

for all x ∈ Hd
0,L

d,1
0 (x) = 0. Since the sum of the Lagrange polynomials (Ld,1i)i∈[0..d]

equals 1 as established by the lemma LagPd1_cur_sum_1 (see Section 9.5), we have

d−1∑
i=0

Ld,1i+1(x) =
d∑
i=0

Ld,1i (x) − Ld,10 (x) = 1 − 0 = 1.

(ii) As for the second part of the claim (10.3), we recognize that any point x ∈ Hd
0

can be uniquely decomposed into an affine combination of the vertices (vi)i∈[0..d],

using coefficients derived from the Lagrange polynomials (Ld,1i)i∈[0..d] applied to x

as expressed by Equation (9.31) in Section 9.5. Given that for all x ∈ Hd
0 then

Ld,10 (x) = 0, the decomposition simplifies to:

x =
d∑
i=0

Ld,1i (x)vi = Ld,10 (x)v0 +
d−1∑
i=0

Ld,1i+1(x)vi+1 =
d−1∑
i=0

Ld,1i+1(x)vi+1.

(⇐) Assuming that x ∈ Rd is a linear combination of the vertices (vi)i∈[1..d], with coefficients

(Li)i∈[0..d−1] that sum to 1. We then define (L′
j)j∈[0..d] = (0, L0, L1, . . . , Ld−1) ∈ Rd+1.

Considering that the inverse geometric transformation (TKgeo)
−1 preserves barycentric co-

ordinates, as detailed in Equation (9.17) in Section 9.3, and maps the vertices vi onto v̂i,
we can derive the following result:

Ld,10 (x) = L̂d,10 ◦ (TKgeo)
−1(x) = L̂d,10 ◦ (TKgeo)

−1

(
d−1∑
i=0

Livi+1

)

= L̂d,10

(
d−1∑
i=0

Liv̂i+1

)

= L̂d,10

 d∑
j=0

(0, L0, L1, . . . , Ld−1) v̂j


= L̂d,10

 d∑
j=0

L′
j v̂j

 = L′
0 = 0.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L46-L49

140 CHAPTER 10. SIMPLICIAL LAGRANGE FINITE ELEMENTS

From the lemma LagPd1_ref_lc, elaborated in Section 9.2, we obtain the last equality.
Thus, x ∈ Hd

0 and the verification of this equivalence is complete. □

In a d-dimensional simplex determined by the d+ 1 affinely independent vertices (vi)i∈[0..d]
in Rd, where d ≥ 1, we consider the current nodes (aα)α∈Ad

k
, as detailed by the Equation 9.3

in Section 9.1.2. The placement of this node within the face hyperplane Hd
0 is indicated by its

index. Assuming k ≥ 1 and a multi-index α ∈ Ad
k, the relationship can be expressed as:

aα ∈ Hd
0 ⇐⇒ α ∈ Cdk . (10.4)

In this context, Cdk denotes the family of multi-indices whose sum precisely equals the degree
k of the polynomial approximation (see Equation (8.2) in Section 8.1.1). This is formalized in
Coq as:

Lemma node_face0_in_Cdk : ∀d k (vtx_cur : ’(’Rˆd)ˆd.+1)
(ipk : ’ I_((pbinom d k).+1)) (Hvtx: affine_independent vtx_cur),
0 < d → 0 < k → (pbinom d k.−1).+1 ⩽ ipk ↔
face0 d vtx_cur Hvtx (node_cur d k vtx_cur ipk).

In this context, (pbinom d k.−1).+1 ⩽ ipk signifies that α ∈ Ad
k\Ad

k−1 = Cdk (refer to Section 8.1).
The proof of this equivalence is intricate, employing various algebraic properties of Lagrange
polynomials. By applying the lemma T_geom_transports_node discussed in Section 9.3, and using
the fact that the inverse geometric mapping (TKgeo)

−1 transports the barycentric coordinates as
detailed in Equation (9.17) from Section 9.3, we simplify the proof process for the equivalence
of the Equation (10.4) as:

aα ∈ Hd
0 ⇐⇒ 0 = Ld,10 (aα) = L̂d,10 ◦ (TKgeo)

−1(aα)

= L̂d,10

(
(TKgeo)

−1(TKgeo(âα))
)

= L̂d,10

(
(TKgeo)

−1

(
d∑
i=0

L̂d,1i (âα)vi

))

= L̂d,10

(
d∑
i=0

L̂d,1i (âα)v̂i

)
.

This leads us to demonstrate that:

L̂d,10

(
d∑
i=0

L̂d,1i (âα)v̂i

)
= 0 ⇐⇒

d−1∑
i=0

αi = k. (10.5)

The proof of this equivalence is established as follows:

Using the property of linear combinations lc_ind_l, which extracts the first item of the linear
combination (refer to Section 5.3.4), and drawing upon the definitions of the reference vertices
where v̂0 = 0 and v̂i = δi−1 for i ∈ [1, d] as discussed in Section 9.1.1, and considering the
definition of the reference Lagrange polynomials outlined in Equation (9.11) in Section 9.2, we
express the left-hand side of the left equation of the equivalence (10.5) as follows:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L79-L83

10.2. GEOMETRIC MAPPINGS 141

L̂d,10

(
d∑
i=0

L̂d,1i (âα)v̂i

)
= L̂d,10

(
L̂d,10 (âα)v̂0 +

d−1∑
i=0

L̂d,1i+1(âα)v̂i+1

)

= L̂d,10

((
1 −

d−1∑
i=0

(âα)i

)
v̂0 +

d−1∑
i=0

L̂d,1i+1(âα)v̂i+1

)

= 1 −
d−1∑
j=0

(
0 +

d−1∑
i=0

L̂d,1i+1(âα)δi,j

)
, since v̂0 = 0

= 1 −
d−1∑
j=0

L̂d,1j+1(âα) = 1 −
d−1∑
j=0

(âα)j = 1 −
d−1∑
j=0

αj
k

=
1

k

k − d−1∑
j=0

αj

 .

Thus, its cancellation when k > 0 is equivalent to
∑d−1

j=0 αj = k. This yields the desired result.
□

From the properties (8.2) and (10.4), we conclude that the current sub-nodes ǎα corre-
sponding to all α ∈ Ad

k−1 for k ≥ 1, do not lie on the face hyperplane Hd
0. This conclusion is

supported by the equality of the sub-nodes with the current nodes, as detailed in Equation (9.10)
in Section 9.1.4.

Lemma sub_node_out_face0 : ∀d k (vtx_cur : ’(’Rˆd)ˆd.+1) (ipk : ’I_((pbinom d k).+1))
(Hvtx: affine_independent vtx_cur),
0 < d → 0 < k → ¬ face0 d vtx_cur Hvtx (sub_node d k.+1 vtx_cur ipk).

Here, the symbol ¬ represents logical negation used to mean ”not”.
This lemma leads to the following implication:

α ∈ Ad
k−1 =⇒ ǎα /∈ Hd

0. (10.6)

10.2 Geometric Mappings

This section explores geometric hyperface mapping with an index shift function, as discussed in
Section 10.2.1, and geometric mapping using a permutation function, explained in Section 10.2.2.
These mappings are needed in the subsequent Section 10.3.7, particularly for establishing the
unisolvence of simplicial Lagrange finite elements, which is fundamental to the reliability of the
finite element method.

10.2.1 Geometric Hyperface Mapping

We introduce the concept of geometric hyperface mapping with an index shift function. This
section explains the process of transforming the reference geometric element K̂ in dimension d1
to current geometric elements K in dimension d1 + 1.

For an index i ∈ [0..d1 + 1], we introduce the mapping θd1i from [0..d1] to [0..d1 + 1], defined
by:

∀j ∈ [0..d1], θd1i (j)
def.
=

{
j if j < i,
j + 1 if j ≥ i.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L165-L168
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L165-L168

142 CHAPTER 10. SIMPLICIAL LAGRANGE FINITE ELEMENTS

The mapping θd1i corresponds precisely to the lift i function, and is the lift_S function when
i = ord0 (refer to Sections 2.3 and 5.2.2, respectively). This function shifts indices by inserting
a gap immediately after index i for those j values that are greater than or equal to i. The
function is injective, and is illustrated in Figure 10.2.

j
0 1 2 ... i-1 i ... d1-2 d1-1 d1

0 1 2 ... i-1 i i+1 ... d1-1 d1 d1+1
θd1
i (j)

Figure 10.2: Illustration of the function θd1i : It maps an index j ∈ [0..d1] from the top horizontal axis to a new
index on the bottom horizontal axis, which ranges in [0..d1 + 1]. For indices where j < i, the function preserves
the value, i.e., θd1i (j) = j. For indices where j ≥ i, the function increments j by 1, meaning θd1i (j) = j + 1. This
behavior is represented in the figure using dashed arrows.

When i = 0, the mapping θd10 shifts all indices by 1 in the set [0..d1] as θd10 = j + 1, for all
j ∈ [0..d1].

Consider a family of d1 + 2 affinely independent vertices, denoted as (vi)i∈[0..d1+1], in the

space Rd1+1. The hyperface mapping ϕ
θ
d1
0

is defined to transform coordinates from the reference

geometric element K̂ in a lower-dimensional space Rd1 , to a current geometric element K in a
higher-dimensional space Rd1+1 applying the index shift function defined by θd10 as illustrated
in the Figure 10.1. We represent this function in Coq as T_geom_face0 and it is mathematically
expressed as:

∀x̂ ∈ Rd1 , ϕ
θ
d1
0

(x̂) = v1 +

d1−1∑
i=0

x̂i (vi+2 − v1). (10.7)

This is translated in Coq as:

Definition T_geom_face0 : ’Rˆd1 → ’Rˆd1.+1 := fun (x_ref : ’Rˆd1) ⇒
vtx_cur ord1 + lin_comb x_ref (liftF_S (liftF_S vtx_cur) − constF d1 (vtx_cur ord1)).

The Equation (10.7) implies that ϕ
θ
d1
0

is an affine map.

Lemma T_geom_face0_am : aff_map T_geom_face0

The mapping ϕ
θ
d1
0

consists of a constant vector v1 and a linear combination of the terms

x̂i (vi+2 − v1), which constitutes a linear map. This result follows directly from the lemma
am_lm_ms (refer to Section 5.3.6), which establishes that adding a constant vector to a linear
map yields an affine map. The fact that ϕ

θ
d1
0

is an affine map is essential, as it will be needed

further to prove its bijectivity, which in turn is essential to establishing the unisolvence of the
Lagrange finite elements.

A convenient alternate definition for the function ϕ
θ
d1
0

is:

ϕ
θ
d1
0

(x̂) =

d1∑
i=0

L̂d1,1i (x̂) vi+1. (10.8)

This is formulated in Coq as follows:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L221-L224
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L232
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L227-L229

10.2. GEOMETRIC MAPPINGS 143

Definition T_geom_face0_alt :’Rˆd1 → ’Rˆd1.+1 := fun x_ref : ’Rˆd1 ⇒
lin_comb (fun i : ’I_d1.+1 ⇒ LagPd1_ref d1 i x_ref) (liftF_S vtx_cur).

Instead of directly manipulating the vertices, this version (10.8) uses the reference Lagrange

polynomials (L̂d1,1i)i∈[0..d1].

To demonstrate the equivalence between these two approaches, yielding identical results, we
present the following lemma:

Lemma T_geom_face0_eq : T_geom_face0_alt = T_geom_face0.

The proof of this lemma relies on the application of the lemma lc_ind_l, as detailed in Sec-
tion 5.3.4. We have

d1∑
i=0

L̂d1,1i (x̂)vi+1 = L̂d1,10 (x̂)v1 +

d1−1∑
i=0

L̂d1,1i+1 (x̂)vi+2

=

(
1 −

d1−1∑
i=0

x̂i

)
v1 +

d1−1∑
i=0

x̂ivi+2

= v1 +

d1−1∑
i=0

x̂i (vi+2 − v1) = ϕ
θ
d1
0

(x̂).

□
We present two equivalent forms of the expressions for the ϕ

θ
d1
0

mapping because each form

is useful depending on the context. When the goal is to manipulate equations directly with
points vi, we utilize Equation (10.7). Alternatively, when working with equations involving
Lagrange polynomials, Equation (10.8) is more appropriate. Specifically, Equation (10.8) will
be instrumental later on to demonstrate that the image of Rd1 under the ϕ

θ
d1
0

mapping is

included in the face hyperplane Hd
0.

Composing any polynomial p from a higher-dimensional polynomial approximation space
Pd1+1
k with the geometric hyperface map ϕ

θ
d1
0

: Rd1 → Rd1+1 effectively transitions it to a

lower-dimensional space Pd1
k , while preserving its polynomial degree k.

∀d1 ≥ 0,∀p ∈ Pd1+1
k , p ◦ ϕ

θ
d1
0

∈ Pd1
k .

This is encapsulated in the following lemma:

Lemma T_geom_face0_compose : ∀k (p : FRd d1.+1),
(Pdk d1.+1 k) p → Pdk d1 k (compose p T_geom_face0).

The validity of this lemma follows straightforwardly from the lemma Pdk_compose_am demon-
strated in Section 8.2.3, using the fact that ϕ

θ
d1
0

is an affine map by the lemma T_geom_face0_am.

An important aspect of the mapping ϕ
θ
d1
0

, akin to the property discussed in the lemma

T_geom_transports_node for the geometric mapping TKgeo as detailed in Section 9.3, is that it
transforms a reference node into a corresponding current node on the face of the current geo-
metric element K. This is visually represented in Figure 10.3. This transformation is verified
through the following lemma:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L264
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L297-L299
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L307-L311

144 CHAPTER 10. SIMPLICIAL LAGRANGE FINITE ELEMENTS

Figure 10.3: Geometric hyperface mapping ϕ
θ
d1
0

in the case d1 + 1 = k = 3. Illustration of the transformation

ϕ
θ
d1
0

of a reference triangle K̂2 onto Hd1+1
0 , which is highlighted as the 0-th face opposite the vertex v0 depicted

in blue. The mapping ϕ
θ
d1
0

showcases the correspondence, illustrated by the colors, between the reference nodes

in the reference triangle K̂2 and the face nodes of the tetrahedron: From Equation (10.9), we have ϕ
θ
d1
0

(â(i,j)) =

a(3−(i+j),i,j), for all (i, j) ∈ A3
2. The hyperplane is labeled H[[v]]d

0 in the figure, indicating that the definition of
this hyperplane depends on the vertex configuration denoted by v in dimension d = d1+1. However, for simplicity
in the text, this notation is abbreviated to Hd+1

0 .

Lemma T_geom_face0_map_node : ∀k (ipk : ’I_(pbinom d1 k).+1), 0 < k →
T_geom_face0 (node_ref d1 k ipk) =
node_cur d1.+1 k vtx_cur (Adk_inv d1.+1 k (T_node_face0 d1 k ipk)).

The definitions of node_ref and node_cur are detailed in Sections 9.1.1 and 9.1.2, respectively.
T_node_face0 is the function fd1k,0 defined by the Equation (8.6) in Section 8.1, and Adk_inv is the

inverse function of Adk, computing indices corresponding to the multi-indices in the family Ad1
k ,

as defined in Section 8.1. This relationship is mathematically captured for all k > 0 as follows:

∀α ∈ Ad1
k , ϕ

θ
d1
0

(âd1α) = ad1+1

f
d1
k,0(α)

. (10.9)

In this context, âd1α denotes the reference Lagrange nodes in the geometric element K̂ within
Rd1 , and ad1+1

f
d1
k,0(α)

represents the current Lagrange nodes in K within the higher-dimensional

space Rd1+1. The mapping function fd1k,0
def.
= (α 7−→ (k − |α|,α)) takes its values in Cd1+1

k , a

subset of Ad1+1
k . This function is bijective from Ad1

k to Cd1+1
k , ensuring that |fd1k,0(α)| = k as

substantiated by the lemma T_node_face0_sum_eq discussed in Section 8.1.1.

Let us detail the validity of the Equation (10.9) in more detail. We have from (9.3) and (10.7):

10.2. GEOMETRIC MAPPINGS 145

∀α ∈ Ad1
k , ad1+1

f
d1
k,0(α)

=

(
1 −

|fd1k,0(α)|
k

)
v0 +

d1∑
i=0

(fd1k,0(α))i

k
vi+1

=

(
1 − k − |α| + |α|

k

)
v0 +

1

k

(
(k − |α|)v1 +

d1−1∑
i=0

αi vi+2

)

= 0 +
1

k

(
(k − |α|)v1 +

d1−1∑
i=0

αi vi+2

)

= v1 +

d1−1∑
i=0

αi
k

(vi+2 − v1)

= ϕ
θ
d1
0

(âd1α).

□
The image of the full set Rd1 under the geometric hyperface map ϕ

θ
d1
0

remains within the

face hyperplane Hd1+1
0 as:

∀d1 ≥ 0, ϕ
θ
d1
0

(Rd1) ⊂ Hd1+1
0 . (10.10)

This relationship is formalized in the following lemma:

Lemma T_geom_face0_in_face0 : ∀(vtx_cur : ’Rˆ{d1.+2,d1.+1})
(Hvtx : affine_independent vtx_cur)
incl (image T_geom_face0 fullset) (face0 d1.+1 vtx_cur Hvtx)

To demonstrate this property, we consider each point x̂ ∈ Rd1 and show that ϕ
θ
d1
0

(x̂) belongs

to Hd1+1
0 . This proof uses the lemma face0_equiv from Section 10.1, which offers an equivalent

characterization of the hyperplane Hd1+1
0 . This involves proving that:

∃L ∈ Rd1+1,

d1∑
i=0

Li = 1 ∧ ϕ
θ
d1
0

(x̂) =

d1∑
i=0

Li(x)vi+1.

To prove this statement, we begin by choosing the reference Lagrange polynomials
(L̂d1,1i)i∈[0..d1] ∈ Rd1+1 as the appropriate candidate for the coefficients (Li)i∈[0..d1] of the lin-
ear combination of ϕ

θ
d1
0

. The proof consists of verifying two claims: first, we affirm that the sum

of the Lagrange polynomials equals 1, which is supported by the lemma LagPd1_ref_sum_1 dis-
cussed in Section 9.2. Second, we verify that ϕ

θ
d1
0

(x̂) =
∑d1

i=0 L̂
d1,1
i (x̂)vi+1, which is provided by

the lemma T_geom_face0_eq. By establishing these two points, we demonstrate that the image
of Rd1 under ϕ

θ
d1
0

is contained within Hd1+1
0 . □

Moreover, since the vertices (vi)i∈[0..d1+1] are affinely independent, then ϕ
θ
d1
0

is bijective from

Rd1 to Hd1+1
0 , and its inverse function ϕ−1

θ
d1
0

is bijective from Hd1+1
0 to Rd1 .

Lemma T_geom_face0_bijS : ∀(vtx_cur : ’Rˆ{d1.+2,d1.+1})
(Hvtx : affine_independent vtx_cur)
bijS fullset (face0 d1.+1 vtx_cur Hvtx) T_geom_face0.

Definition T_geom_face0_inv : ’Rˆd1.+1 → ’Rˆd1 := f_invS (T_geom_face0_bijS).

Where f_invS is the inverse function defined in Section 5.1.4 for the proof of injectivity.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L380-L381
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L392-L417
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L392-L417

146 CHAPTER 10. SIMPLICIAL LAGRANGE FINITE ELEMENTS

10.2.2 Geometric Mapping with Permutation

The focus here shifts to geometric mappings applying a permutation function. We provide
some necessary properties that will be further exploited to prove the lemma of the unisolvence
of the Lagrange finite elements in Section 10.3. The practical application of these concepts is
illustrated through detailed examples and figures.

We consider the spatial dimension d ≥ 1. For an index i ∈ [0..d], we introduce a permutation
mapping πdi from [0..d] to [0..d], defined by:

∀j ∈ [0..d], πdi (j)
def.
=


d if j = i,
i if j = d,
j else .

(10.11)

0 1 2 3 ... i-1 i i+1... d-2 d-1 d
j

0 1 2 3 ... i-1 i i+1... d-2 d-1 d
πd
i (j)

Figure 10.4: Illustration of the permutation function πd
i , which represents transpositions within the set of indices

[0..d] for a spatial dimension d ≥ 1. The upper horizontal axis represents the input index j ∈ [0..d], while the lower
horizontal axis represents the output index πd

i (j). The permutation mapping πd
i specifically swaps the index i

with d, and maintains the positions of all other indices. This type of permutation is called a transposition because
it swaps exactly two elements while leaving all others fixed.

The mapping πdi is a transposition, where exactly two elements swap positions (here i and d),
and all other elements remain unchanged. Like all permutations, πdi is a bijective function from
the set [0..d] onto itself and is involutive, and is illustrated in the Figure 10.4. The bijectivity
of the transposition πdi ensures that it has an inverse function (πdi)−1 = πdi .

When i = 0, the mapping πd0 can be seen as a simple form of inverting the order of the
endpoints (first and last elements) of the set [0..d] while leaving the rest of the indices intact.
This consists in swapping the first and last elements.

Consider a family of d + 1 affinely independent vertices, denoted as (vi)i∈[0..d], in Rd. We

define a geometric transformation ϕK
πd
0

that transforms coordinates from the reference geometric

element K̂ in Rd to current geometric elements K in Rd. This mapping uses the transposition
function πd0 , as depicted in Figure 10.4.

The function ϕK
πd
0

is formalized in Coq as follows, which corresponds to the geometric mapping

TKgeo outlined in Section 9.3, though with a permutation of the vertices.

Definition T_geom_d_0 : ’Rˆd → ’Rˆd := T_geom (transpF vtx_cur ord_max ord0).

In this context, transpF denotes the transposition function, which specifically swaps here the
vertices between the last position ord_max and the first position ord0, as detailed in Section 2.3.

Similarly to (9.12), the mathematical expression for the geometric mapping ϕK
πd
0

is given by:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L433-L434

10.2. GEOMETRIC MAPPINGS 147

∀x̂ ∈ Rd, ϕK
πd
0
(x̂)

def.
=

d∑
i=0

L̂d,1
(πd

0)
−1(i)

(x̂) vi. (10.12)

The mapping ϕK
πd
0

inherits the properties of the geometric mapping TKgeo. It is an affine map.

Lemma T_geom_d_0_am : aff_map T_geom_d_0.

The proof that ϕK
πd
0

is affine follows directly from the lemma T_geom_am, as previously established

in Section 9.3. This highlights the preservation of affine properties despite the permutation of
vertices.

Additionally, the mapping ϕK
πd
0

: Rd → Rd is verified to be bijective.

Lemma T_geom_d_0_bij : bijective T_geom_d_0.

Since the permutation of vertices by the function πd0 preserves the affine independence of the
vertices, the bijectivity of ϕK

πd
0

is substantiated by the established bijectivity of TKgeo through the

lemma T_geom_bij referenced in Section 9.3.

Thus, the geometric mapping ϕK
πd
0

has an inverse function (ϕK
πd
0
)−1 that maps Rd to Rd, which

is also an affine mapping (refer to Section 5.1.3 for more details on inverse functions).

Definition T_geom_d_0_inv : ’Rˆd → ’Rˆd := f_inv (T_geom_d_0_bij).

Moreover, two properties demonstrate the correctness of (ϕK
πd
0
)−1, ensuring that the application

of (ϕK
πd
0
)−1 followed by ϕK

πd
0
, or vice versa, returns the original input.

∀x ∈ Rd, ϕK
πd
0
◦ (ϕK

πd
0
)−1(x) = x (right identity) (10.13)

∀x̂ ∈ Rd, (ϕK
πd
0
)−1 ◦ ϕK

πd
0
(x̂) = x̂ (left identity) (10.14)

A further attribute of the geometric mapping ϕK
πd
0

is that the image of the reference face

hyperplane Ĥd
d of K̂ under the geometric mapping ϕK

πd
0

is equal to the face hyperplane Hd
0 of the

current geometric element K.

ϕK
πd
0
(Ĥd

d) = Hd
0. (10.15)

Where Hd
0 and Ĥd

d are the face hyperplanes defined in Section 10.1.

Additionally, composing any polynomial p from the polynomial space Pd
k with the transfor-

mation mapping ϕK
πd
0
, the resulting function remains within the same polynomial space. This

property is specified by the lemma:

Lemma T_geom_d_0_compose : ∀k (p : FRd d),
Pdk d k p → Pdk d k (compose p T_geom_d_0).

This result is established by applying the lemma Pdk_compose_am, which was demonstrated
in Section 8.2.3. It asserts that since ϕK

πd
0

is an affine map, as confirmed by the lemma

T_geom_d_0_am, composing p with ϕK
πd
0

maintains the function within Pd
k .

Similarly, the property holds true for the inverse transformation (ϕK
πd
0
)−1. The relevant lemma

is:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L499
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L437
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L443-L444
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L508-L510
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L517-L519

148 CHAPTER 10. SIMPLICIAL LAGRANGE FINITE ELEMENTS

Lemma T_geom_d_0_inv_compose : ∀k (p : FRd d),
Pdk d k p → Pdk d k (compose p T_geom_d_0_inv).

The proof follows similarly, relying on the condition that (ϕK
πd
0
)−1 is also an affine map.

Now, building on the definition of current Lagrange polynomials (Ld,1i)i∈[0..d] as detailed
in Equation (9.30) from Section 9.5, we can demonstrate that these polynomials are also de-

composed by the corresponding reference Lagrange polynomials (L̂d,1i)i∈[0..d] with the inverse

transformation mapping (ϕK
πd
0
)−1. This is mathematically and formally represented as follows:

∀x ∈ Rd, ∀i ∈ [0..d], Ld,1i (x) = L̂d,1
(πd

0)
−1(i)

◦ (ϕK
πd
0
)−1(x). (10.16)

This is translated in Coq as:

Lemma LagPd1_cur_T_geom_d_0_inv : ∀i x,
LagPd1_cur vtx_cur Hvtx i x =
transpF (LagPd1_ref d) ord0 ord_max i (T_geom_d_0_inv x).

This lemma is verified given that any point x in the current d-dimensional simplex has a unique
decomposition of affinely independent vertices (vi)i∈[0..d], ensuring that

∑d
i=0 L

d,1
i (x) = 1 such

that x =
∑d

i=0 L
d,1
i vi as explained by Equation (9.31) in Section 9.5. Let x ∈ Rd and ŷ

def.
=

(ϕK
πd
0
)−1(x) ∈ Rd, i.e., such that ŷ

def.
= ϕK

πd
0
(ŷ) = x. Using the Equation (10.12), we obtain

x =
d∑
i=0

L̂d,1
(πd

0)
−1(i)

(ŷ)vi =
d∑
i=0

L̂d,1
(πd

0)
−1(i)

((ϕK
πd
0
)−1(x))vi.

Thus, from the uniqueness of barycentric coordinates with the sum of coefficients that equals
one, we establish that for all i ∈ [0..d], Ld,1i = L̂d,1

(πd
0)

−1(i)
◦ (ϕK

πd
0
)−1.

□
It is important to emphasize that the definition of the function ϕK

πd
0

and all its properties

apply to any permutation, not limited solely to transpositions πdi .

10.3 Construction of the Current Simplicial Lagrange Finite El-
ements

The objective of this section is to construct the simplicial Lagrange finite element, which builds
upon the nodal finite element framework outlined in Section 10.3.1. From the formalization
point of view, the primary motivation for formalizing Lagrange finite elements lies in ensuring
that our formalization within the FE record, detailed in Section 7.1, accurately represents
the mathematical principles of finite elements and proves to be both useful and applicable.
Moreover, this formalization guarantees that the type FE is non-empty for any given cell K.

Before we delve into the details of this part of the work, it is essential to highlight an
important aspect concerning the construction of the current Lagrange finite elements (FEs).
The transition from the reference finite element (FE) to the current FEs, as detailed in Sec-
tion 9.4, might have been a logical approach for constructing simplicial Lagrange finite elements
using the affine geometric transformation. However, we will first establish the proof of the
unisolvence of the Pdk Lagrange finite elements for the current FE. We will then proceed to derive
properties for the reference FE, as elaborated in Section 10.3.7 for further details on this subject.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L458-L460

10.3. CURRENT SIMPLICIAL LAGRANGE FINITE ELEMENTS 149

In Section 10.3.1, we introduce the linear forms associated with nodes, which are essential
for the construction of simplicial Lagrange finite elements. Next, in section 10.3.2 we present
definitions and specific properties of the Pdk Lagrange finite elements, where k is the degree
of the polynomials and d represents the dimensionality. In Section 10.3.3, we analyze cases
where the degree k of the polynomial space Pd

k is zero, establishing the unisolvence of Lagrange
finite elements for this condition. Following this, in Sections 10.3.4 and 10.3.5, we extend
our examination to scenarios where either the degree k or the dimension d is equal to one,
respectively, analyzing each situation’s specific characteristics and implications for unisolvence.
We particularly study these two cases separately, as they will be needed when we address
the proof of the unisolvence principle of the Pdk Lagrange finite element employing the double
induction on both d and k in Section 10.3.7.

In the sequel, we consider a family of d + 1 affinely independent vertices (vi)i∈[0..d], in the

space Rd with d ≥ 1 that define a simplex K.

10.3.1 Nodal Linear Forms

This section introduces the nodal linear forms Σnod, which serve in the construction of Lagrange
linear forms in the upcoming Section 10.3.2. Let K a geometric element in the vector space Rd.
Nodes within K are typed as follows:

Variable node : ’(’Rˆd)ˆnnode.

The number of nodes, denoted in Coq as nnode, where each node represents a specific location
in the domain where the solution is computed. We assume that the number of nodes nnode is a
positive integer.

As discussed in Section 7.1, ndof is the number of degrees of freedom within a finite element.
Consider a finite dimensional space P of functions in F(Rd,R). Let n ≥ 1, the dimension of
P equals n, is a necessary ingredient required for establishing the unisolvence property of the
finite element. In Coq, n is represented as the number of nodes nnode, the dimension of P is
ndof_nodal, and we define ndof_nodal := nnode.

Given n nodes (ai)i∈[0..n−1] ∈ Rd, the associated ndof
def.
= n nodal linear forms in L(P,R) are

defined by Σnodal((ai)i∈[0..n−1])
def.
= (σnodali)i∈[0..ndof−1] with:

∀i ∈ [0..ndof − 1],∀p ∈ P, σnodali : p 7−→ p(ai) ∈ R. (10.17)

This definition is implemented in Coq as:

Definition Sigma_nodal : ’(FRd d → R)ˆndof_nodal :=
fun (i : ’ I_ndof_nodal) (p : FRd d) ⇒ p (node i).

Each σnodali is proved to be a linear map through this lemma:

Lemma Sigma_nodal_lm : ∀i : ’I_ndof_nodal, lin_map (Sigma_nodal i).

Where lin_map means that a function is linear if it is compatible with both addition and scalar
multiplication, as detailed in Section 5.3.3. The proof of this lemma is straightforward, using
the lemma lm_pt_eval, which establishes that evaluating a function defined in a module space
at a point preserves linearity.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L409-L410
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_simplex.v?ref_type=tags#L412-L413

150 CHAPTER 10. SIMPLICIAL LAGRANGE FINITE ELEMENTS

10.3.2 Specifics of the Pdk Lagrange Finite Elements

The construction of the Pdk Lagrange finite element triple (K,Pd
k ,Σ

Lag) within a d-dimensional
space, where d ≥ 1 and k ≥ 0, builds upon a nodal framework detailed in the previous sec-
tion 10.3.1. This involves constructing the geometric element, degrees of freedom, and poly-
nomial approximation space, exclusively in terms of the nodes. It is important to distinguish
between Pdk and Pd

k , as each term has a unique meaning. Pd
k refers to the polynomial approxi-

mation space, while Pdk represents a triplet in the finite element framework, which includes Pd
k

as one of its components.

(i) For the first component of the triplet of the Lagrange finite element, the geometric element
K, a subset of Rd, is given as a non degenerate simplex, which is the convex hull of d+ 1
affinely independent vertices in Rd, adhering to the specifications set out in the generic
finite element record described in Section 7.1.

Definition shape_LagPdk_is_Simplex := Simplex.
Local Definition nvtx_LagPdk dL : nat := nvtx_of_shape dL shape_LagPdk_is_Simplex.

where, nvtx_of_shape is the number of vertices depending on the dimension d and the
shape of K. It is d + 1 for simplices. In this context, the Local Definition keyword
is used similarly to Definition, but its scope is restricted. It defines, for instance, a
function that is only available within the section or file where it is declared.

Lagrange nodes (aα)α∈Ad
k

in the Pdk Lagrange finite element are positioned evenly in K.

For further detail about the Lagrange nodes, refer to Section 9.1.2. These nodes are
the specific locations within each geometric element K where the solution of the model is
approximated. The number of nodes, a positive integer, also depends on the approximation
degree k. It is the cardinal of the family Ad

k (refer to Section 8.1), is defined as follows:

Definition nnode_LagPdk d k : nat := (pbinom d k).+1.

Here, pbinom refers to the binomial coefficient function, as discussed in Section 5.5.

(ii) As for the second component of the triplet of the Lagrange finite element, Pd
k is the finite-

dimensional vector space of polynomials defined on K constructed in Sections 8.2. The
dimension of Pd

k matches the number of the local degrees of freedom ndof of Lagrange.

Lemma Pdk_has_dim_ndof_LagPdk : ∀d k, has_dim (Pdk d k) (ndof_LagPdk d k).

The monomial basis of the polynomial space Pdk is defined in Section 8.2. Additionally, the
Lagrange polynomial bases for the cases when d or k equals 1 are formalized in Sections 9.2
and 9.6, respectively.

(iii) Finally, the last component of the triplet is the family of Lagrange linear forms, which is
exactly the family of nodal linear forms ΣLag = Σnodal((aα)α∈Ad

k
) defined in Section 10.3.1.

Correspondingly, the number of these Lagrange degrees of freedom, corresponds to the
number of the nodal degrees of freedom previously defined in section 10.3.1 as follows:

Definition ndof_LagPdk d k : nat := ndof_nodal (nnode_LagPdk d k).

The next equality underscores the principle that in nodal Lagrange elements, the number
of Lagrange degrees of freedom directly corresponds to the number of Lagrange nodes.

Lemma ndof_is_dimPdk : ndof_LagPdk = nnode_LagPdk.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L627-L628

10.3. CURRENT SIMPLICIAL LAGRANGE FINITE ELEMENTS 151

Each Lagrange node aα, where α ∈ Ad
k, corresponds to a specific Lagrange degree of

freedom σnodali , which are essentially the independent values that the finite element solution
seeks to determine. This is formalized in Coq as:

Definition Sigma_LagPdSk_cur d k vtx_cur : ’(FRd d → R)ˆ(ndof_LagPdk d k) :=
Sigma_nodal d (nnode_LagPdk d k) (node_cur d k vtx_cur).

10.3.3 Unisolvence of the Pd0 Lagrange Finite Elements

When constructing the Pd0 Lagrange finite element, where the polynomial degree k is zero,
the mathematical complexity is significantly reduced compared to formulations involving
higher-degree polynomials, which requires handling more complex terms. This scenario
represents the simplest form of Lagrange elements. Specifically, for k = 0, there is a single
node, and consequently, the family of multi-indices simplifies to Ad

0 = {0}. This case is distinc-
tively treated because the node in this instance does not meet the requirements of Equation (9.3).

Let us delve into the mathematical constructs that support the Pd0 Lagrange finite element.

Based on the construction of the polynomial space Pd
k detailed in Section 8.2, we deduce Pd

0 for
k = 0 and any spatial dimension d ≥ 1 as follows:

Pd
0 =

{
p ∈ Rd → R

∣∣∣ ∃c ∈ R, p(x) = c, ∀x ∈ Rd
}
. (10.18)

This space consists of all functions that are constant in Rd. In this case, there is typically just
one nodal point per element. Consider a family of d+1 affinely independent vertices (vi)i∈[0..d], in

the space Rd, this node is chosen as the isobarycenter (geometric center) of the vertices defining
the simplex (refer to Section 5.3.6). This point is computed as the average of the vertices and
is placed geometrically at the center of the simplex. This is represented formally by:

Definition node_iso : ’Rˆd := isobarycenter (vtx_cur : ’Rˆd.+1).

In mathematical terms, the isobarycenter node_iso is given by:

a0
def.
=

1

d+ 1

d∑
i=0

vi.

The nodal basis function ΦΣ0 : F(Rd,R) → R for the Pd0 finite element is defined such that
for any function f in the function space F(Rd,R), ΦΣ0 evaluates f at the isobarycenter a0. This
is expressed by:

Definition Sigma_0 : ’(FRd d → R)ˆ(ndof_LagPdk d 0) := fun _ p ⇒ p node_iso.

We assert that each component of the vector Σ0 is a linear map,

Lemma Sigma_0_lm : ∀i : ’ I_(ndof_LagPdk dL 0), lin_map (Sigma_0 i).

This lemma confirms that the evaluations at a specific point (in this case, the isobarycenter)
preserve linearity. This conclusion is drawn directly from the lemma Sigma_nodal_lm, as detailed
in the previous Section 10.3.1.

We further assert that the map ΦΣ0 establishes a bijective correspondence between the
polynomial space Pd

0 and the vector space R. The unisolvence, as explained in Section 6.4,
asserts that the degrees of freedom are adequate to uniquely determine any polynomial within
Pd
k . Here, for k = 0 the isobarycenter suffices to entirely fix a p ∈ Pd

0 . This is established
through the following lemma:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L636-L637
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L908
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L910-L911
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L913
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L918-L919

152 CHAPTER 10. SIMPLICIAL LAGRANGE FINITE ELEMENTS

Lemma unisolvence_LagPd0 : bijS (Pdk d 0) fullset (gather (Sigma_0)).

Here, fullset and gather are defined in Sections 5.1.1 and 5.4.2, respectively.

This assertion is substantiated by initially applying the lemma lmS_bijS_val_gather_equiv,
outlined in Section 5.4.2. This lemma establishes that the bijective condition is fulfilled because
the number of nodal points, specifically, the single isobarycentric node, matches the dimension
of the polynomial space Pd

0 , which is one. Additionally, the mapping ΦΣ0 is demonstrated to
be injective, thereby establishing bijectivity. The criterion for injectivity is easily verified: for
any polynomial p in Pd

0 , if p(a0) evaluates to zero, and given that p is a constant c (as detailed
in Equation (10.18)), it necessarily follows that p is the zero function. Therefore, the proof
concludes effectively, confirming the unique correspondence between the polynomial values and
their evaluations at the nodal point.

10.3.4 Unisolvence of the Pd1 Lagrange Finite Element

For any dimension d where d ≥ 1, the polynomial space Pd
1 encompasses affine polynomials,

which include terms up to the first power (refer to Section 8.3). The nodal points, (aα)α∈Ad
1
,

coincide with d + 1 vertices, (vi)i∈[0..d], as established by the lemma vtx_node_Pd1_cur in

Section 9.1.3. We recall from Section 5.3.2, that Ad
1 = {0, δ0, δ1, . . . , δd−1}.

Let (vi)i∈[0..d] a d + 1 affinely independent vertices that define a simplex in the multidi-

mensional space Rd. The unisolvence of the Pd
1 Lagrange finite elements guarantees that each

polynomial in Pd
1 is uniquely determined by its values at the Lagrange nodes. This property is

formalized as follows:

Lemma unisolvence_LagPd1_cur : ∀(d : nat) (vtx_cur : ’Rˆ{d.+1,d}),
0 < d → affine_independent vtx_cur →
bijS (Pdk d 1) fullset (gather (Sigma_LagPdSk_cur d 1 vtx_cur)).

The proof begins by addressing the case where d = 0, which is trivial due to the precondition
d > 0. Moving to the case d + 1, similar to the approach detailed in Section 10.3.3 for Pd

0 , we
employ the lemma lmS_bijS_val_gather_equiv. This lemma confirms that the mapping ΦΣLag

is bijective if it is injective, provided that the dimension of Pd+1
1 aligns with that of Rd+2 (i.e.,

dimPd+1
1 = d+ 2 = card ΣLag).

To establish injectivity, it is necessary to demonstrate that for any polynomial p ∈ Pd+1
1 and

if for all α ∈ Ad+1
1 , p(aα) = 0 where aα ∈ Rd+1, then p itself must be zero. This requirement

is underpinned by the fact that the Lagrange polynomials (Ld,1i)i∈[0..d+1] constitute a linearly

independent family for Pd+1
1 , as established by the lemma LagPd1_cur_lin_indep in Section 9.5.

Therefore, any polynomial p can be expressed as a linear combination of the elements of this fam-
ily, written as p =

∑d+1
i=0 ciL

d,1
i where c ∈ Rd+2. By applying the lemma LagPd1_cur_kron_node,

as detailed in Section 9.5, we obtain for all α ∈ Ad+1
1 ,

0 = p(aα) =

d+1∑
i=0

ciLd,1i (aα) =

{ ∑d+1
i=0 ciL

d,1
i (a0) = c0∑d+1

i=0 ciL
d,1
i (aδj−1

) = cj for all j ∈ [1..d+ 1].

This result confirms that each coefficient cj must be zero for all j ∈ [0..d+ 1]. Hence, we deduce
that p = 0, proving that the polynomial space Pd+1

1 is unisolvent at degree one. □

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L640-L643

10.3. CURRENT SIMPLICIAL LAGRANGE FINITE ELEMENTS 153

10.3.5 Unisolvence of the P1
k Lagrange Finite Element

The proof of the unisolvence for higher-degree polynomials of P1
k Lagrange finite elements when

the spatial dimension d = 1 is similar to the previous case when k = 1.

Lemma unisolvence_LagP1k_cur : ∀k vtx_cur,
0 < k → affine_independent vtx_cur →
bijS (Pdk 1 k) fullset (gather (Sigma_LagPdSk_cur 1 k vtx_cur)).

The proof is based on the fact that (L1,k
i)i∈[0..k] is a basis of the space P1

k , and that dimP1
k =

k + 1 = card ΣLag.

10.3.6 Factorization of Polynomials

Before tackling the main topic of this chapter, the unisolvence proof of the Pdk Lagrange finite
element [36, Section 7.4 p.79], it is necessary to establish essential theorems that address the
factorization of polynomials that vanish on hyperplanes [16, Section 3.1 p.71]. These theorems
provide essential support for understanding and proving the unisolvence property of this finite
element.

The first lemma focuses specifically on how a polynomial can be factorized when it vanishes
on the last reference hyperplane, Ĥd

d, of the reference simplex K̂, detailed in Section 10.1. Let
p̂ ∈ Pd

k+1 for any integers d and k with d > 0, then we have the equivalence:

p̂|Ĥd
d

= 0 ⇐⇒ ∃q̂ ∈ Pd
k , p̂ = L̂d,1d × q̂. (10.19)

This is formalized in Coq as:

Lemma factorize_poly_zero_on_face_ref_d : ∀(d k : nat), 0 < d →
∀ p_ref : FRd d, Pdk d k.+1 p_ref →

(∀ x_ref : ’ Rˆd, face_ref_d d x_ref → p_ref x_ref = 0) ↔
∃ q_ref : FRd d, Pdk d k q_ref ∧ p_ref = (LagPd1_ref d ord_max) ∗ q_ref.

The proof of this lemma unfolds in two parts, each proving a direction of the equivalence.

(⇒) We start by assuming for every x̂ ∈ Ĥd
d, the condition p̂(x̂) = 0 holds. Proceeding

by cases on the dimension d, the trivial case d = 0 is immediately satisfied, because
of the hypothesis d > 0. For d + 1, using the decomposition property of polynomials as
described by Equation (8.18) in Section 8.2.3, for all p̂ ∈ Pd+1

k+1 , there exists two polynomials

p̃0 ∈ Pd
k+1 and q̂ ∈ Pd+1

k , leading to the expression:

p̂ = p̃0 + x̂d q̂.

Thus, for any x̂ = (x̂0, . . . , x̂d−1, 0) ∈ Rd+1 from (10.2), we have x̂ ∈ Ĥd+1
d+1 and

p̂(x̂) = p̃0(x̂0, . . . , x̂d−1) + 0 q̂(x̂0, . . . , x̂d−1, 0).

From the assumption, it follows that p̃0(x0, . . . , xd−1) = 0. This result enables us to
establish the factorization relationship, which is derived from the definition of the reference
Lagrange polynomial in Section 9.2, as shown in Equation (9.11):

p̂ = x̂d × q̂ = L̂d+1,1
d+1 × q̂.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L640-L670-L673
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L697-L702

154 CHAPTER 10. SIMPLICIAL LAGRANGE FINITE ELEMENTS

(⇐) Assuming the existence of q̂ ∈ Pd
k , such that p̂ = L̂d,1d × q̂, the proof is immediate. Given

x̂ ∈ Ĥd
d from Equation (10.2), we have L̂d,1d (x̂) = 0 by definition, the multiplication by

zero ensures that the polynomial p̂ necessarily vanishes on Ĥd
d.

□

The second lemma addresses the factorization of a polynomial that vanishes on the zeroth
hyperplane Hd

0 on a current nondegenerate simplex K [36, Lemma 7.10 p.78], as defined in
Section 10.1. Let p ∈ Pd

k+1 for a dimension d and the polynomial degree k, then we have the
equivalence:

p|Hd
0

= 0 ⇐⇒ ∃q ∈ Pd
k , p = Ld,10 × q. (10.20)

Lemma factorize_poly_zero_on_face0 :
∀ (d k : nat) (vtx_cur : ’Rˆ{d.+1,d}) (Hvtx: affine_independent vtx_cur),
0 < d → ∀p : FRd d, Pdk d k.+1 p →
(∀ x : ’ Rˆd, face0 d vtx_cur Hvtx x → p x = 0) ↔
∃ q : FRd d, Pdk d k q ∧ p = (LagPd1_cur vtx_cur Hvtx ord0) ∗ q.

The proof of this lemma follows by demonstrating both implications of the equivalence.

(⇒) We assume that for every x ∈ Hd
0 (i.e., Ld,10 (x) = 0), p(x) = 0 is satisfied.

We pose p̂
def.
= p ◦ ϕK

πd
0

such that the polynomial p is transformed by the geometric

transformation ϕK
πd
0
. This transformation maintains p̂ within Pd

k+1 using the lemma

T_geom_d_0_compose outlined in Section 10.2.2.

Using the previously established lemma factorize_poly_zero_on_face_ref_d, p̂ is factor-
ized as the product of another polynomial q̂ ∈ Pd

k and the reference Lagrange polynomial,

such that p̂ = L̂d,1d × q̂. This is applicable under the condition that p̂ vanishes on the last

reference hyperplane Ĥd
d. This condition is verified since for all x̂ ∈ Ĥd

d, ϕ
K
πd
0
(x̂) ∈ Hd

0

deduced from the Equation (10.15), then we have by assumption p̂(x̂) = p ◦ ϕK
πd
0
(x̂) = 0.

Setting q = q̂ ◦ (ϕK
πd
0
)−1 and applying the lemma T_geom_d_0_inv_compose established in

Section 10.2.2, we obtain q ∈ Pd
k . Subsequently, the polynomial p can be expressed as:

p = p̂ ◦ (ϕK
πd
0
)−1 = (L̂d,1d × q̂) ◦ (ϕK

πd
0
)−1 = L̂d,1d ◦ (ϕK

πd
0
)−1 × q̂ ◦ (ϕK

πd
0
)−1.

According to lemma LagPd1_cur_T_geom_d_0_inv (refer to Equations (10.16) and (10.11)
in Section 10.2.2), we have

p = Ld,10 × q̂ ◦ (ϕK
πd
0
)−1 = Ld,10 × q.

(⇐) This implication is straightforward. Assuming the existence of q ∈ Pd
k such that p =

Ld,10 × q. Given x ∈ Hd
0, since Ld,10 (x) = 0 by definition, the multiplication by zero ensures

the polynomial p vanishes on Hd
0.

□

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L737-L744

10.3. CURRENT SIMPLICIAL LAGRANGE FINITE ELEMENTS 155

10.3.7 Unisolvence of the Pdk Lagrange Finite Elements

We now proceed to establish the unisolvence property for the Pdk Lagrange finite element, where
the geometric element K is defined by a simplex with affinely independent vertices (vi)i∈[0..d].
In this context, both the spatial dimension d and the polynomial degree k are greater than zero.

Theorem unisolvence_LagPdSk_cur : ∀d k (vtx_cur :’Rˆ{d.+1,d}),
0 < d → 0 < k → affine_independent vtx_cur →
bijS (Pdk d k) fullset (gather (Sigma_LagPdSk_cur d k vtx_cur)).

The proof begins by defining a predicate P that captures the statement of the theorem for all
d > 0 and k > 0,

P (d, k)
def.
=
[
∀(vi)i∈[0..d] ∈ Rd affinely independent , ΦΣLag : Pd

k → Rndof is bijective
]
.

Here, ΦΣLag represents the mapping associated with the family of degrees of freedom ΣLag, as
defined in Section 10.3.2. We proceed by applying a double induction technique nat_ind2_alt_11,
first on the spatial dimension d and subsequently on the polynomial degree k, as detailed in
Section 5.2.1.

(i) Base Case: for all k ≥ 1, P (1, k).
This case follows directly from the lemma unisolvence_LagP1k_cur, which has been proven
in Section 10.3.5. This lemma establishes unisolvence for 1-dimensional spaces for all
degrees k ≥ 1.

(ii) Base Case: for all d ≥ 1, P (d, 1).
Similarly, this assertion is supported by the lemma unisolvence_LagPd1_cur, demonstrated
in Section 10.3.4. This lemma establishes the unisolvence property for affine polynomials
for any spatial dimension d ≥ 1.

(iii) Double induction: for all d, k ≥ 1, P (d, k + 1) ∧ P (d+ 1, k) → P (d+ 1, k + 1).

Consider d ≥ 1 and k ≥ 1. Assuming that P (d, k + 1) and P (d + 1, k) hold, we aim to
establish P (d+ 1, k+ 1). Let (vi)i∈[0..d+1] be a family of d+ 2 affinely independent points

in Rd+1. By employing the lemma lmS_bijS_val_gather_equiv from Section 5.4.2, it is
established that the mapping ΦΣLag : Pd+1

k+1 → Rndof is bijective if it is injective, provided

that the dimension of Pd+1
k+1 aligns with that of Rndof since

dimPd+1
k+1 = card ΣLag = ndof =

(
d+ k + 2

k + 1

)
.

Let p ∈ Pd+1
k+1 be such that p(aα) = 0 for all the Lagrange nodes (aα)α∈Ad+1

k+1
as defined in

the Equation (9.3) in Section 9.1.2. We prove that p = 0.

• Factorization using P (d, k + 1): This process begins by applying the property
P (d, k + 1) to the reference vertices (v̂i)i∈[0..d], which are affinely independent as

discussed in Section 9.1.1. We define p0
def.
= p ◦ ϕθd0 . According to the lemma

T_geom_face0_compose established in Section 10.2.1, p0 belongs to Pd
k+1. Furthermore,

from (8.6) in Section 8.1.1 and the lemma T_geom_face0_map_node in section 10.2.1,
it is established that for all β ∈ Ad

k+1, f
d+1
k+1,0(β) ∈ Cd+1

k+1 ⊂ Ad+1
k+1, leading to

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L778-L781

156 CHAPTER 10. SIMPLICIAL LAGRANGE FINITE ELEMENTS

∀β ∈ Ad
k+1, p0(âβ) = p ◦ ϕθd0 (âβ) = p(afd+1

k+1,0(β)
) = 0.

By applying lemma lmS_bijS_val_gather_equiv on the property P (d, k+ 1), we con-
clude that p0 = 0. Given that ϕθd0

: Rd → Hd+1
0 is bijective (refer to Lemma

T_geom_face0_bijS in Section 10.2.1), it follows that for every x ∈ Hd+1
0 ,

p(x) = p0 ◦ ϕ−1
θd0

(x) = 0 (i.e., p|Hd+1
0

= 0).

Then, using the previously established lemma factorize_poly_zero_on_face0 in Sec-
tion 10.3.6, p is factorized into the product of another polynomial q ∈ Pd+1

k and the

zeroth current Lagrange polynomial, resulting in the expression p = Ld,10 × q.

• Cancellation using P (d+ 1, k). We apply the property P (d+ 1, k) to sub-vertices
(v̌i)i∈[0..d+1], which are affinely independent as detailed in Section 9.1.4. Then, for all

γ ∈ Ad+1
k ⊂ Ad+1

k+1, according to lemma sub_node_cur_eq and Euqation (9.10) from
Section 9.1.4, we have ǎγ = av̌γ . Therefore,

p(ǎγ) = Ld,10 (ǎγ) × q(ǎγ) = 0.

where the Lagrange sub-nodes (ǎ)γ∈Ad+1
k

are defined in the Equation (9.10) in Sec-

tion 9.1.4. Based on the lemma sub_node_out_face0 discussed in Section 10.1,
ǎγ /∈ Hd+1

0 , implying Ld,10 (ǎγ) ̸= 0. This leads us to conclude that q(ǎγ) = 0.
By reapplying the lemma lmS_bijS_val_gather_equiv on the property P (d+1, k), we
deduce that q = 0, which subsequently provides p = 0.

Finally, we have established the unisolvence principle, for all approximation degrees k ≥ 1,
and spatial dimensions d ≥ 1.
□

The Lagrange linear forms, denoted ΣLag are defined as gathering both the base case when k = 0
and the general case for k > 0, as illustrated below:

Definition Sigma_LagPdk_cur : ’(FRd d → R)ˆ(ndof_LagPdk d k)
:= match k with

| O ⇒ Sigma_0 d vtx_cur

| S n ⇒ Sigma_LagPdSk_cur d (S n) vtx_cur
end.

Each component of ΣLag is a linear map. This assertion is based on the established linearity
of Σ0 and Σn, which are defined in Sections 10.3.3 and 10.3.1, respectively.

Lemma Sigma_LagPdk_cur_lm : ∀i : ’I_(ndof_LagPdk d k), lin_map (Sigma_LagPdk_cur i).

We prove the unisolvence property of these linear forms for both cases. Specifically, for
the case when k = 0, unisolvence is established by the lemma unisolvence_LagPd0, as de-
tailed in Section 10.3.3. For cases when k ≥ 1, the property is substantiated by the lemma
unisolvence_LagPdSk_cur, which is thoroughly discussed earlier.

Lemma unisolvence_LagPdk_cur : bijS (Pdk d k) fullset (gather Sigma_LagPdk_cur).

Finally, the simplicial current Lagrange finite element is constructed as a record of type FE
as follows:

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L944-L948
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L950-L952
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L961-L962
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L969-L974

10.4. REFERENCE SIMPLICIAL LAGRANGE FINITE ELEMENTS 157

Definition FE_LagPdk_cur :=
mk_FE d (nnode_LagPdk d k) d_pos (nnode_LagPdk_pos d k)
Simplex vtx_cur (Pdk d k) (Pdk_has_dim_ndof_LagPdk d k)
Sigma_LagPdk_cur Sigma_LagPdk_cur_lm unisolvence_LagPdk_cur.

where, mk_FE is the constructor of the record FE (see Section 7.1).

10.4 Construction of the Reference Simplicial Lagrange Finite
Elements

This section focuses on the construction of the P̂dk reference Lagrange finite element (K̂, P̂d
k , Σ̂

Lag)
within a d-dimensional space, where d ≥ 1 and the polynomial approximation degree k ≥
0. This construction is generated from the current finite element of Lagrange using the
FE_LagPdk_cur constructor detailed in the previous section 10.3, considering a family of ref-
erence vertices (v̂i)i∈[0..d] as an argument, which are affinely independent as established by the
lemma vtx_simplex_ref_affine_independent (see Section 9.1.1). The reference FE of Lagrange
is formalized as:

Definition FE_LagPdk_ref := FE_LagPdk_cur d k d_pos (vtx_simplex_ref d)
(vtx_simplex_ref_affine_independent d).

From this definition, we can derive all the fields from the record FE_LagPdk_cur for the
reference FE of Lagrange. For example, the family of linear forms Σ̂Lag can be defined as
follows:

Definition Sigma_LagPdk_ref d k : ’(FRd d → R)ˆ(ndof_LagPdk d k) :=
Sigma_LagPdk_cur d k (vtx_simplex_ref d).

The unisolvence of these forms follows directly from the record FE_LagPdk_ref.

In summary, this chapter was dedicated to the construction of both current and reference
simplicial Lagrange finite elements, building on the concepts of nodal finite elements introduced
in Section 10.3.1. The primary objective of this development is to establish a reliable and useful
framework for the finite elements FE, which are formally defined as a record in Section 7.1. This
framework includes detailed proofs to ensure that we are indeed capable of constructing a finite
element.

In essence, we observe that transitioning from the reference finite element (FE) to the current
FEs, as discussed in Section 9.4, could have been an interesting approach for constructing sim-
plicial Lagrange finite elements. Specifically, this method would involve initially constructing
the reference Lagrange FE, followed by the current Lagrange FE using the affine geometric
transformation. However, the proof strategy outlined in Section 10.3.7 to establish the unisol-
vence of the Pdk Lagrange finite elements cannot be directly applied to the construction of the
reference Lagrange FE. This is because, during the second step of the proof (the cancellation
phase), the induction property depends on sub-vertices. Sub-vertices of a reference geometric
element do not qualify as valid reference vertices. Consequently, it is more practical to state
and prove the unisolvence theorem for the current FE first, and subsequently derive properties
for the reference FE.

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L991-L993
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/tree/PhD_HM_2024/FEM/FE_LagP.v?ref_type=tags#L988-L989

158 CHAPTER 10. SIMPLICIAL LAGRANGE FINITE ELEMENTS

Chapter 11

Conclusions and Perspectives

Conclusions

This thesis centers on the formalization of mathematical concepts using the Coq proof assistant,
focusing primarily on the Tonelli theorem and simplicial finite elements within the finite
element method (FEM). The first part of this work involved formalizing the Tonelli Theorem,
beginning with the Lebesgue Induction Principle. We represented the set of nonnegative
measurable functions as an inductive type and established the equivalence of various inductive
types, such as SFp and SFplus, along with Mp and Mplus. Delving into the intricate details of
product measures on product spaces, we specified and constructed the product σ-algebras,
demonstrating the measurability and uniqueness of these measures. This work culminated in
a comprehensive formal proof of the Tonelli theorem, including the formalization of iterated
integrals and changes in measure to swap the roles of the variables.

In the second part of the thesis, we shifted our focus to the simplicial finite elements
of the FEM, beginning with an exploration of basic algebraic properties and progressing to
the formalization of finite elements. We have thoroughly specified and formalized a range of
algebraic concepts and structures in Coq, with a particular emphasis on the finite families and
the formalization of some algebraic structures, including monoids and affine spaces. Further,
the study continued with a brief analysis of binomial coefficients, essential for computing
the dimensions of certain polynomial spaces and the cardinality of specific families. After
laying the foundational algebraic properties, we proceeded to develop a detailed mathematical
framework to understand the finite element method. This passage was provided to enhance our
comprehension of FEM, although not all concepts presented were formalized in Coq. We carried
this out specifically through the study of the strong and weak formulations of the Poisson
problem. We then discussed the Lax-Milgram theorem to state the existence and uniqueness
of the solution to the problem being addressed. We highlighted the transition from continuous
to discrete formulations by discretizing the domain of our problem to construct a mesh. This
mesh was carefully designed to meet the criteria of a conforming mesh, setting the stage for the
final step of solving the linear system of equations to obtain the approximate solution to the
problem. Furthermore, we explored the Coq formalization of finite elements (FE) defined as a
triplet (K,P,Σ) within individual mesh cells using a record-based approach, where K represents
the simplicial geometric element, P the polynomial approximation space, and Σ the family of
linear forms. Each component of the finite element triplet was constructed and examined in
more detail. We then defined local shape functions as a basis for the space P to approximate
the solution. We concluded with an emphasis on constructing a local interpolation operator
associated with this finite element. The work further progressed with the formalization of the

159

160 CHAPTER 11. CONCLUSIONS AND PERSPECTIVES

polynomial space Pd
k , which comprises polynomials of degrees less than k on Rd. This space

was constructed as linear combinations of monomials indexed by the family of multi-indices
Ad
k. We explored the ordering of monomials within this family and established a monomial

basis, Bd,k, for Pd
k . Additionally, we reviewed key properties of the Pd

k spaces and provided
formal definitions of the Lagrange polynomial spaces Pd

1 and P1
k when either the degree k or

the spatial dimension d is 1. We constructed the Lagrange bases of these spaces and thoroughly
examined how these polynomials are formalized in Coq and used across both reference and
current geometrical elements. Following this, we continued our study to the simplicial geometric
aspects of K, defining both reference vertices and Lagrange nodes in reference and current
element, where solution values are evaluated. We established connections between vertices and
nodes and introduced the concepts of sub-vertices and sub-nodes. Additionally, we formalized
the affine geometric transformations of finite elements and their inverse functions, which map
the reference element to current elements and vice versa. This affine mapping set the stage
for the construction of current finite elements from the reference finite elements. Moving
forward to the culmination of our work, we focused exclusively on the construction of the
simplicial Lagrange finite element in both current and reference geometric elements. This final
phase involved the detailed exploration of each component of the triplet (K,Pd

k ,Σ
Lag) which

was built upon the concepts of nodal finite elements. Through these efforts, we provided a
comprehensive formal proof of the fundamental property of unisolvence of Lagrange degrees of
freedom. These linear forms were constructed and represented as the evaluation of functions
at specific nodes. The formal proof of unisolvence was notably complicated, involving the
use of all previously mentioned properties and additional elements. For instance, it included
the construction of some affine geometric mappings essential for transforming nodes from
the reference geometric element in dimension d − 1 to a hyperplane of the current geometric
element. Overall, these developments aim at fulfilling the main objective of the thesis: to
establish a robust, reliable mathematical framework for finite elements that can pave the way
to be effectively applied in computational simulations without inconsistencies. Constructing
the Lagrange finite element ensures there are no inconsistencies inside the record. Through
detailed formalization, particularly in the implementation and verification of finite elements and
their properties, this collaborative research has resulted in significant developments within the
coq−num−analysis library in Coq. This includes the creation of the Lebesgue directory, which
contains a total of 34 kloc (lines of code), and the new FEM directory, consisting of 32 kloc.

The work presented in this thesis contributes to both the formal proof community and
the field of numerical analysis, with a focus on improving the reliability and accuracy of finite
element method (FEM) simulations by enabling the identification and correction of potential
errors. Additionally, we aim to make these developments accessible and usable by others,
which presents its own challenges. This is not simply a matter of providing sufficient lemmas,
but rather of formulating and proving them in a way that is easily applicable, whether by
computer scientists or numerical analysts. Achieving this often requires revisiting and refining
the proofs to make them clearer and more comprehensible. By integrating formal proofs with
mathematical numerical techniques such as FEM, this work offers a framework that can be
taught and incorporated into academic programs as a long-term goal. This approach will not
only deepen the understanding of FEM but also help future engineers and scientists recognize
the importance of combining formal proofs with numerical computations to achieve precise and
reliable results.

Throughout this thesis, multiple challenges have been encountered that require solutions.
These challenges primarily revolved around the formalization process within the Coq proof as-

161

sistant. A significant initial hurdle involved determining the appropriate formulations for defi-
nitions and theorems. Often, after defining a concept or stating a lemma, we would realize that
it did not meet the intended criteria, prompting frequent revisions and re-proofs. An example
of this was the formalization of the Lebesgue induction principle, reffered in Coq as Mp_ind, to
support the proof of the Tonelli theorem. The complexity of this task stemmed from the absence
of this principle in the existing literature, along with challenges in its definition. Initially, it was
considered in terms of simple functions, which complicated the formulation. However, it was
ultimately defined as an inductive type applicable to all measurable functions. This decision was
important because it influenced the scope and applicability of the theorem within our formaliza-
tions. Another challenge was related to the algebraic structures required for formalizing finite
elements. We initially sought to leverage existing libraries, such as the Mathematical Compo-
nents (math-comp) library to nourish our development, which is a great source of insight into the
formalization of mathematics. We used their formalizations of finite types (ordinals), iterated
operators (bigop), and binomial coefficients. However, we encountered compatibility issues be-
tween the canonical structures of Coquelicot and those defined within math-comp. Additionally,
our work required the use of multinomials and infinite-dimensional vector spaces, concepts that,
to the best of our knowledge, were not fully developed in the math-comp library. These conflicts
introduced significant challenges in the development of our algebraic structures.

Future Works

As discussed in Part I of the thesis, the Tonelli Theorem is applied to manage multivariate
integrals, facilitating the extension of FEM to address problems in higher dimensions. To
effectively handle PDEs involving multiple variables and functions of arbitrary signs, an
extended version of this theorem, known as the Tonelli-Fubini theorem, will be utilized. Future
work will aim to formally prove this theorem in Coq, which requires extending the properties
used to prove the Tonelli theorem, to integrable functions of arbitrary signs.

Additionally, as elaborated in Chapter 6, FEM is particularly applicable to the weak for-
mulations of PDEs, which involve integrals and function spaces. They notably require the use
of Sobolev spaces W k,p [1, 51]. These spaces are extensively used in numerous fields, including
functional analysis [72, 17, 67], and statistical and probabilistic mathematics [37, 8, 32], they
are not yet developed in Coq but are planned for future work. Sobolev spaces are essential for
handling the regularity of solutions to PDEs, helping in the analysis of the differentiability and
integrability of solutions. This appears in the study of the case of the Poisson Equation as dis-
cussed in Section 6.1.3), where solutions are often explored within a specific subspace of the H1

Sobolev space (see e.g. [35, Section 3.2 p.120] for details). We recall that the H1 space is defined
to include functions in L2 having a weak derivative in L2. The construction of Sobolev spaces
involves developing and formalizing also in Coq the Lp Lebesgue spaces as Banach spaces, which
are complete normed vector spaces. They are defined as the quotient of Lp, the space of functions
whose absolute values raised to the power p ≥ 1 are integrable, by the subspace of functions that
are zero almost everywhere. A significant challenge in this formalization process lies in handling
the quotient structure and its associated class of equivalence. Future work will focus on defining
and verifying that these spaces meet all criteria to be considered complete normed vector spaces.

Following the formalization of simplicial finite elements, the next phase of this research
involves the formalization of quadrangular finite elements, specifically those of Lagrange. The
scope may further expand to include formal verification of other finite element types such as
Crouzeix–Raviart, Raviart–Thomas, and Nédélec [34]. Subsequently, an intriguing area of future

162 CHAPTER 11. CONCLUSIONS AND PERSPECTIVES

work will involve exploring simple quadrature formulas and establishing their formal proofs.
Quadrature formulas are numerical methods used to approximate the integral of a function.
They are needed in the future for the computational aspects of this work, particularly in solving
the linear system required to find an approximate solution to the model under study [34, Chapter
9]. To illustrate these concepts, consider the Poisson equation, expressed as −∆u = f over a
domain Ω with suitable boundary conditions. Although this problem appears straightforward, it
encapsulates the fundamental attributes of a broad class of elliptic PDEs. The solution process
involves meshing Ω into geometric elements K with specific properties and applying the standard
Finite Element Method (FEM) with conventional finite elements, such as Lagrange elements on
a conforming mesh of Ω. This process requires calculating expressions like:

∫
Ω
∇ϕj ·∇ϕi =

∑
K∈Th

∫
K
∇ϕj ·∇ϕi

=
∑
K∈Th

∫
K̂

(JKgeo)
−T ∇̂ϕ̂j · (JKgeo)

−T ∇̂ϕ̂i |detJKgeo|

≈
∑
K∈Th

Nq∑
ig=1

(
(JKgeo)

−T ∇̂ϕ̂j · (JKgeo)
−T ∇̂ϕ̂i | detJKgeo|

)
(ξ̂ig) ω̂ig .

(11.1)

Here, (ϕi)i∈[1..Ndof] represents a basis of the approximation space Vh and JKgeo is the Jacobian

matrix transforming the reference element K̂ to the current element K. The points ξ̂ig and

weights ω̂ig are the Gaussian quadrature points and weights on K̂. Achieving this goal requires
constructing and formalizing a conforming mesh Th in Coq and defining the corresponding ranges
of quadrature formulas as: ∫

K̂
f(x) ≈

∑
ig

f(xig)ωig .

Additionally, another focus is on how to generate accurate quadrature formulas by construc-
tion, accompanied by a proof or certificate of correctness. Besides, considering the real pro-
grams compute using floating-point numbers, we therefore wish to bound rounding errors [60].
Potential methods include extracting a program from Coq proof λ-term or Why31 environment
or incorporating annotations within the C++ code to specify properties that are subsequently
verified using tools like Frama−C [27], Why3 [39], Gappa [28], or Coq. This approach, similar
to one previously applied to a one-dimensional wave equation as documented in [12], aims to
deepen our understanding of integrating formal proofs with computational programs. The col-
lective efforts described in this thesis are aimed towards a significant long-term objective: the
formal verification of scientific computing programs and parts of C++ libraries that implement
the Finite Element Method (FEM), particularly those such as FreeFEM++2 and XLiFE++3.
FreeFEM++ is a widely used open-source package that provides a high level of abstraction to
easily solve partial differential equations via FEM, and XLiFE++ is another powerful tool that
supports extended finite element methods, designed to handle a variety of problem types with
high precision.

1https://www.why3.org/
2https://freefem.org/
3https://uma.ensta-paris.fr/soft/XLiFE++/

https://www.why3.org/
https://freefem.org/
https://uma.ensta-paris.fr/soft/XLiFE++/

List of Figures

1.1 A diagram illustrating a chronological and thematic roadmap of the Coq formal-
ization of mathematical concepts, distinguished by color-coded stages of com-
pletion. The green boxes denote prior work. The yellow boxes, which are

completed, represent the focus of the thesis. The turquoise blue boxes outline

anticipated future work. The light blue box sets a long-term goal. 3

1.2 Visual representation of a 2D disk approximated with a mesh made of triangles4.
We note that the boundary of the mesh is not perfectly circular. A triangular
mesh is made up of triangular elements that are connected at their vertices and
faces (see Section 6.2.2). 5

2.1 Hierarchy of algebraic structures used in this thesis. Additions to the Coqueli-
cot library (version 3.4.0) and previous work [10] are in blue . For instance,
finite iterations of operators using ’MathComps bigop, most morphisms, algebraic
substructures, and the affine space structure have been added. Downward solid
arrows specify inheritance, horizontal dashed arrows specify parameters, and the
bent double-headed arrows mention that the input structure is shown to be an
instance of the output one. For instance, any ModuleSpace (see Section 5.3) has
the AffineSpace (see Section 5.3.6) structure over itself. 16

4.1 Illustration of Lemma SFplus_cons. The value v2 taken by the simple function f
(on the left) is replaced in g (on the right) by the value v1 (in red). 34

4.2 Flowchart illustrating the construction of the product measure. The filled colors
represent different subsections: 4.2.2 in brown , 4.2.3 in yellow , 4.2.4 in green ,

and 4.2.5 in turquoise blue . Dashed lines indicate the application of the proof
arguments. 36

4.3 X1-sections of a subset A of X1 ×X2 at points x1 and y1. 37
4.4 Flowchart illustrating the construction of iterated integrals on a product space.

The filled colors correspond to Sections: 4.3.1 in yellow , 4.3.2 in green , and

4.3.3 in turquoise blue . Dashed lines indicate the application of the specified
proof arguments. 41

5.1 Visual representation of the lemma nat_ind2_alt_11 with P(m, n) being proven for
all positive m and n through base cases and inductive steps as double induction. . 54

6.1 A brief overview of the components in a typical stationary FEM. The thick black
arrows illustrate the standard steps in solving a problem using FEM, while the
dashed red arrows indicate the application of theorems or numerical tools. The
filled colors correspond to Sections: 6.1.2 in brown , 6.2.2 in yellow , and 6.2.1

in green , 6.2.3 in turquoise blue . 74

163

164 LIST OF FIGURES

6.2 Visual representation of a 3D model of a cerebral aneurysm with a mesh made of
tetrahedrons [38]. 78

6.3 Geometric parameter h for a triangle Km, which represents the diameter of the
cell Km. 79

6.4 On the left, two triangular cells in a conforming mesh, where the intersection of
the two cells is an entire edge, ensuring continuity across the mesh. On the right,
three triangular cells form a non-conforming mesh because the vertex of one cell
lies along the interior of an edge of another cell. 79

6.5 The bijective relationship between the approximation space P and the real number
space Rndof . 83

7.1 Illustration of a mesh Th with two configurations: the right mesh is divided into
2D quadrangles, and the left mesh is divided into 2D triangles. The orange points
represent the vertices of the mesh. 86

8.1 Vertical slices Šdk,k−i in the case d = k = 3 (see Equation (8.3)). The reference

Lagrange nodes â(α0,α1,α2) in blue correspond to the element (α0, α1, α2) ∈ Cdk
(refer to Section 9.1.1). For instance, the family Šdk,1 = {(1, 0, 2), (1, 1, 1), (1, 2, 0)}
is depicted by the indices of the nodes linked by a dashed arrow. 93

8.2 Lagrange nodes âα of the reference simplex K̂d when d ∈ {2, 3} and k = 3 (see
Section 9.1.1). Each node is depicted as a colored ball, and corresponds to a
unique element of Ad

3. The colors correspond to degrees ℓ ⩽ 3 of polynomials, or
equivalently to lengths of multi-indices (i.e., in Cdℓ for ℓ ⩽ 3). In pink , the node â0

corresponds to constant polynomials (with degree 0) in Pd
0 , and the multi-index

0 in the singleton Cd0 . In green , the nodes correspond to non-constant affine

polynomials (with degree 1), and multi-indices δ1, . . . , δd in Cd1 . In red , the
nodes correspond to non-affine quadratic polynomials (with degree 2), and multi-
indices in Cd2 . In blue , the nodes correspond to non-quadratic cubic polynomials
(with degree 3), and multi-indices in Cd3 . We observe in this picture that Ad

3 =
Cd0 ∪ Cd1 ∪ Cd2 ∪ Cd3 . 94

8.3 This figure illustrates the cases for d ∈ {2, 3} and k = 3. The multi-indices
in A2

3 are mapped to those of C3
3 via the mapping fdk,0 (see Equation (8.6) in

Section 8.1.1). This mapping is depicted geometrically, showing how the reference
triangle nodes correspond to the nodes on the blue face of the tetrahedron.
Notably, this face, opposite vertex v̂0, contains nodes indexed by Cdk . The node
coloring helps in visualizing the mapping: for every (α0, α1) ∈ A2

3, the mapping is
defined as f23,0(α0, α1) = (3− (α0 +α1), α0, α1). For example, for (α0, α1) = (0, 0)

we have f23,0(0, 0) = (3−0, (0, 0)) = (3, 0, 0). The figure also indicates the order of

multi-indices Ad
3 under the monomial order grsymlex_lt, represented by dashed

arrows. For example, in A3
3, we have (3, 0, 0) < (2, 1, 0) < (2, 0, 1) < (1, 2, 0) <

(1, 1, 1) < (1, 0, 2) < (0, 3, 0) < (0, 2, 1) < (0, 1, 2) < (0, 0, 3). 97

9.1 Lagrange nodes of the reference simplex for d = 1, 2, 3 (rows) and k = 1, 2, 3, 4
(columns) are detailed in Section 9.1.1. Nodes represent all the points within
these geometric shapes, whereas vertices specifically define the corners. Nodes
corresponding to the highest degree are depicted in red , and the others in blue .
The multi-indices of the nodes are indicated for all cases when d = 1 and d = 2,
but only for the highest degree when d = 3. 109

LIST OF FIGURES 165

9.2 Lagrange nodes âα of the reference simplex K̂3 when d = 3 and k = 3. Each node
is depicted as a colored ball, and corresponds to a unique element of A3

3. The
colors correspond to degrees ℓ ⩽ 3 of polynomials, or equivalently to lengths of
multi-indices (i.e., in Cdℓ for ℓ ⩽ 3). In pink , the node â0 corresponds to constant

polynomials (with degree 0) in P3
0 , and the multi-index 0 in the singleton C3

0 .
In green , the nodes correspond to non-constant affine polynomials (with degree

1), and multi-indices δ1, . . . , δd in C3
1 . In red , the nodes correspond to non-

affine quadratic polynomials (with degree 2), and multi-indices in C3
2 . In blue ,

the nodes correspond to non-quadratic cubic polynomials (with degree 3), and
multi-indices in C3

3 . We observe in this picture that A3
3 = C3

0 ∪ C3
1 ∪ C3

2 ∪ C3
3 111

9.3 Illustration of the passage from the nodes of A3
3 (degree ⩽ 3) to the nodes of

A3
2 (degree ⩽ 2) in the case d = 3. It corresponds geometrically to passing from

the tetrahedron defined by (v0,v1,v2,v3) to the tetrahedron defined by the sub-
vertices (v̌0, v̌1, v̌2, v̌3), where v̌0 = v0 and, ∀i ∈ [1..3], v̌i = a2δi−1

(these are
the sub-vertices, i.e., the last nodes along the axes that are not the vertices for
i ∈ [1..3]). The sub-nodes ǎα with α ∈ A3

2 in the tetrahedron (v̌0, v̌1, v̌2, v̌3)
are the same as the nodes aα of (v0,v1,v2,v3) with α ∈ A3

2, except the (blue)
nodes that correspond to k = 3 (C3

3). 115

9.4 Example of a geometric transformation of elements from the reference geometric
element to the current element. The unit triangle on the left, denoted as K̂,
represents the reference element. The vertices of the reference triangle, v̂0, v̂1,
and v̂2, correspond to the coordinates (0,0), (1,0), and (0,1) respectively. The
arrow labeled TKgeo represents a geometric transformation function. This function

maps the reference element K̂ to the corresponding current element K. The
triangle on the right, denoted as K, represents the current geometric element.
The vertices v0, v1, and v2 of the current triangle are the images of the reference
vertices under the transformation TKgeo, expressed as v0 = TKgeo(v̂0), v1 = TKgeo(v̂1),

and v2 = TKgeo(v̂2). 121

9.5 Representation of a geometric transformation, denoted as TKgeo, in dimension 1

from the reference geometric element K̂ to a current geometric element K. The
left side of the figure represents K̂, which is a line segment between two reference
points v̂0 and v̂1, that correspond to the coordinates 0 and 1, respectively, on
this line segment. The right side of the figure represents K, which is also a line
segment between two points v0 and v1. These later are the images of v̂0 and v̂1
under the transformation TKgeo. 124

9.6 Graphical representation of Lagrange interpolation polynomials (L1,k
i)i∈[0..k] to

different values of k ∈ [1..3], over a single variable x ∈ R. For k = 1: There are
two polynomials corresponding to current Lagrange nodes at a0 and a1. The solid
line represents L1,1

0 (x) and the dashed line represents L1,1
1 (x). Each polynomial

equals 1 at its respective node and 0 at the other node, forming linear polynomials.
For k = 2: There are three polynomials, corresponding to three Lagrange nodes.
The colors differentiate the basis polynomials L1,2

0 (x), L1,2
1 (x), and L1,2

2 (x). Each
polynomial is 1 at its respective node and 0 at the others. The shapes of the
polynomials are now quadratic. For k = 3: There are four polynomials (four
nodes). Each plot here is a cubic polynomial. Again, each polynomial is 1 at its
node and 0 at all others. 133

166 LIST OF FIGURES

10.1 Geometric hyperface mapping TKgeo in the case d = k = 3 with d = d1 + 1.

This figure depicts the transformation TKgeo of a reference simplex K̂d onto the
current simplex K, and reference nodes âα onto current nodes aα, see Lemmas
T_geom_transports_vtx and T_geom_transports_node. For instance, we show that
the reference hyperplane Ĥd

d is mapped onto Hd
0. The nodes in these two faces

are colored in order to help see the correspondence: for all α ∈ C3
3 , we have

aα = TKgeo(âα). 138

10.2 Illustration of the function θd1i : It maps an index j ∈ [0..d1] from the top horizon-
tal axis to a new index on the bottom horizontal axis, which ranges in [0..d1 + 1].
For indices where j < i, the function preserves the value, i.e., θd1i (j) = j. For

indices where j ≥ i, the function increments j by 1, meaning θd1i (j) = j+ 1. This
behavior is represented in the figure using dashed arrows. 142

10.3 Geometric hyperface mapping ϕ
θ
d1
0

in the case d1 + 1 = k = 3. Illustration of the

transformation ϕ
θ
d1
0

of a reference triangle K̂2 onto Hd1+1
0 , which is highlighted as

the 0-th face opposite the vertex v0 depicted in blue. The mapping ϕ
θ
d1
0

showcases

the correspondence, illustrated by the colors, between the reference nodes in the
reference triangle K̂2 and the face nodes of the tetrahedron: From Equation (10.9),
we have ϕ

θ
d1
0

(â(i,j)) = a(3−(i+j),i,j), for all (i, j) ∈ A3
2. The hyperplane is labeled

H[[v]]d

0 in the figure, indicating that the definition of this hyperplane depends on
the vertex configuration denoted by v in dimension d = d1 + 1. However, for
simplicity in the text, this notation is abbreviated to Hd+1

0 144
10.4 Illustration of the permutation function πdi , which represents transpositions within

the set of indices [0..d] for a spatial dimension d ≥ 1. The upper horizontal axis
represents the input index j ∈ [0..d], while the lower horizontal axis represents the
output index πdi (j). The permutation mapping πdi specifically swaps the index i
with d, and maintains the positions of all other indices. This type of permutation
is called a transposition because it swaps exactly two elements while leaving all
others fixed. 146

Chapter 12

Bibliography

[1] Robert A. Adams. Sobolev Spaces, volume 65 of Pure and Applied Mathematics. Academic
Press, New York - San Francisco - London, 1975. URL: https://fr.scribd.com/document/
373760111.

[2] Reynald Affeldt and Cyril Cohen. Measure construction by extension in dependent type
theory with application to integration. Journal of Automated Reasoning, 67(3):28, 2023.
URL: https://doi.org/10.48550/arXiv.2209.02345.

[3] Wolfgang Arendt and Mahamadi Warma. Dirichlet and Neumann boundary conditions:
What is in between? Nonlinear Evolution Equations and Related Topics: Dedicated to
Philippe Bénilan, pages 119–135, 2004. URL: https://doi.org/10.1007/978-3-0348-7924-8 6.

[4] Duane Arnold. The Sleipner Platform Disaster, 2021. Accessed: 2023-09-20. URL: https:
//www-users.cse.umn.edu/∼arnold/disasters/sleipner.html.

[5] Robert G. Bartle. A Modern Theory of Integration, volume 32 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, 2001. URL: https://doi.org/
10.1090/gsm/032.

[6] Yves Bertot. Formal verification of a geometry algorithm: a quest for abstract views and
symmetry in Coq proofs. In International Colloquium on Theoretical Aspects of Computing,
pages 3–10. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-02508-3 1.

[7] Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. Canonical big operators.
In International Conference on Theorem Proving in Higher Order Logics, pages 86–101.
Springer, 2008. URL: https://inria.hal.science/inria-00331193v1.

[8] Patrick Billingsley. Probability and Measure. Wiley Series in Probability and Mathematical
Statistics. John Wiley & Sons, Inc., New York, 3rd edition, 1995. URL: https://www.
colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf.

[9] Sylvie Boldo, François Clément, Vincent Martin, Micaela Mayero, and Houda Mouhcine.
Lebesgue Induction and Tonelli’s Theorem in Coq. In Formal Methods - 25th International
Symposium, FM, Proceedings, volume 14000 of LNCS, pages 39–55. Springer, 2023. URL:
https://inria.hal.science/hal-03889276.

[10] Sylvie Boldo, François Clément, Florian Faissole, Vincent Martin, and Micaela Mayero.
A Coq Formal Proof of the Lax–Milgram Theorem. In Proc. of the 6th ACM SIGPLAN
Internat. Conf. on Certified Programs and Proofs (CPP 2017), pages 79–89. Association
for Computing Machinery, New York, 2017. URL: https://hal.inria.fr/hal-01391578/.

167

https://fr.scribd.com/document/373760111
https://fr.scribd.com/document/373760111
https://doi.org/10.48550/arXiv.2209.02345
https://doi.org/10.1007/978-3-0348-7924-8_6
https://www-users.cse.umn.edu/~arnold/disasters/sleipner.html
https://www-users.cse.umn.edu/~arnold/disasters/sleipner.html
https://doi.org/10.1090/gsm/032
https://doi.org/10.1090/gsm/032
https://doi.org/10.1007/978-3-030-02508-3_1
https://inria.hal.science/inria-00331193v1
https://www.colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf
https://www.colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf
https://inria.hal.science/hal-03889276
https://hal.inria.fr/hal-01391578/

168 CHAPTER 12. BIBLIOGRAPHY

[11] Sylvie Boldo, François Clément, Florian Faissole, Vincent Martin, and Micaela Mayero. A
Coq Formalization of Lebesgue Integration of Nonnegative Functions. J. Autom. Reason.,
66(2):175–213, 2021. URL: https://hal.inria.fr/hal-03471095/.

[12] Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero, Guillaume
Melquiond, and P. Weis. Wave Equation Numerical Resolution: a Comprehensive Mech-
anized Proof of a C Program. J. Autom. Reason., 50(4):423–456, 2013. URL: https:
//hal.inria.fr/hal-00649240/.

[13] Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero, Guillaume
Melquiond, and Pierre Weis. Trusting computations: a mechanized proof from partial
differential equations to actual program. Comput. Math. with Appl., 68(3):325–352, 2014.
URL: https://hal.inria.fr/hal-00769201/.

[14] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot: A user-friendly
library of real analysis for Coq. Mathematics in Computer Science, 9:41–62, 2015. URL:
https://doi.org/10.1007/s11786-014-0181-1.

[15] Sylvie Boldo and Guillaume Melquiond. Flocq: A Unified Library for Proving Floating-
point Algorithms in Coq. In Proc. of the IEEE 20th Symposium on Computer Arithmetic
(ARITH-20), pages 243–252. IEEE, 2011. URL: https://doi.org/10.1109/ARITH.2011.40.

[16] Susanne Brenner and L. Ridgway Scott. The mathematical theory of finite element methods.
Springer, 2008. URL: https://doi.org/10.1007/978-0-387-75934-0.

[17] Häım Brezis. Analyse fonctionnelle—Théorie et applications. Collection Mathématiques
Appliquées pour la Mâıtrise. Masson, Paris, 1983. In French. URL: https://fr.scribd.com/
doc/251853015.

[18] Frank Burk. Lebesgue measure and integration: an introduction. John Wiley & Sons, 2011.

[19] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems, volume 40 of Clas-
sics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, 2002. Reprint of the 1978 original [North-Holland, Amsterdam]. URL:
https://doi.org/10.1137/1.9780898719208.

[20] François Clément and Vincent Martin. Lebesgue integration. Detailed Proofs to be
Formalized in Coq. Research Report RR-9386, Inria, Paris, 2021. Version 2. URL:
https://hal.inria.fr/hal-03105815v2.

[21] François Clément and Vincent Martin. Finite Element Method. Detailed proofs to be
formalized in Coq. Research Report RR-9557, Inria, Paris, 2023. Version 1. URL: https:
//inria.hal.science/hal-04713897.

[22] Donald L. Cohn. Measure Theory. Birkhäuser, New York, 2nd edition, 2013. URL: https:
//doi.org/10.1007/978-1-4614-6956-8.

[23] The Coq Reference Manual. URL: https://coq.inria.fr/refman/.

[24] Thierry Coquand and Gerard Huet. The calculus of constructions. Information And Com-
putation, 76(2-3):95–120, 1988. URL: https://inria.hal.science/inria-00076024/document.

[25] Patrick Cousot and Radhia Cousot. Systematic Design of Program Analysis Frameworks. In
Proceedings of the 6th Annual ACM Symposium on Principles of Programming Languages,
pages 269–282, San Antonio, Texas, USA, 1979. ACM. doi:10.1145/567752.567778.

https://hal.inria.fr/hal-03471095/
https://hal.inria.fr/hal-00649240/
https://hal.inria.fr/hal-00649240/
https://hal.inria.fr/hal-00769201/
https://doi.org/10.1007/s11786-014-0181-1
https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.1007/978-0-387-75934-0
https://fr.scribd.com/doc/251853015
https://fr.scribd.com/doc/251853015
https://doi.org/10.1137/1.9780898719208
https://hal.inria.fr/hal-03105815v2
https://inria.hal.science/hal-04713897
https://inria.hal.science/hal-04713897
https://doi.org/10.1007/978-1-4614-6956-8
https://doi.org/10.1007/978-1-4614-6956-8
https://coq.inria.fr/refman/
https://inria.hal.science/inria-00076024/document
https://doi.org/10.1145/567752.567778

169

[26] Lúıs Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C-CoRN, the constructive Coq
repository at Nijmegen. In Mathematical Knowledge Management: Third International
Conference, MKM 2004, Bia lowieża, Poland, September 19-21, 2004. Proceedings 3, pages
88–103. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-27818-4 7.

[27] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-c: A software analysis perspective. In International conference
on software engineering and formal methods, pages 233–247. Springer, 2012. URL: https:
//doi.org/10.1007/s00165-014-0326-7.

[28] Florent de Dinechin, Christoph Lauter, and Guillaume Melquiond. Assisted verification of
elementary functions using Gappa. In Proceedings of the 2006 ACM Symposium on Applied
Computing, pages 1318–1322, Dijon, France, 2006. URL: http://www.lri.fr/∼melquion/
doc/06-mcms-article.pdf%7D.

[29] Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von
Raumer. The Lean theorem prover (system description). In Automated Deduction-CADE-
25: 25th International Conference on Automated Deduction, Berlin, Germany, August 1-
7, 2015, Proceedings 25, pages 378–388. Springer, 2015. URL: https://doi.org/10.1007/
978-3-319-21401-6 26.

[30] Elif Deniz, Adnan Rashid, Osman Hasan, and Sofiène Tahar. On the formalization of
the heat conduction problem in HOL. In International Conference on Intelligent Com-
puter Mathematics, pages 21–37. Springer, 2022. URL: https://doi.org/10.48550/arXiv.
2208.06642.

[31] Jean-François Dufourd and Yves Bertot. Formal study of plane Delaunay triangulation. In
International Conference on Interactive Theorem Proving, pages 211–226. Springer, 2010.
URL: https://doi.org/10.1007/978-3-642-14052-5 16.

[32] Rick Durrett. Probability—Theory and Examples, volume 49 of Cambridge Series in Statis-
tical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 5th edition,
2019. URL: https://doi.org/10.1017/9781108591034.

[33] Noboru Endou. Fubini’s Theorem. Formaliz. Math., 27(1):67–74, 2019. URL: https://doi.
org/10.2478/forma-2019-0007.

[34] Alexandre Ern. Aide-mémoire des éléments finis, volume 360. Dunod, 2005. In French.
URL: http://idirsadani.d.i.f.unblog.fr/files/2010/06/elmentsfinis.pdf.

[35] Alexandre Ern and Jean-Luc Guermond. Theory and Practice of Finite Elements, volume
159 of Applied Mathematical Sciences. Springer, New York, 2004. URL: https://doi.org/
10.1007/978-1-4757-4355-5.

[36] Alexandre Ern and Jean-Luc Guermond. Finite elements I: Approximation and interpola-
tion, volume 72. Springer Nature, 2021. URL: https://doi.org/10.1007/978-3-030-56341-7.

[37] William Feller. An Introduction to Probability Theory and its Applications. Vol. I. John
Wiley & Sons, Inc., New York - London - Sydney, 3rd edition, 1968. URL: https://archive.
org/details/dli.ernet.5666/page/203/mode/2up.

[38] Miguel A. Fernández, Jean-Frédéric Gerbeau, and Vincent Martin. Numerical simulation of
blood flows through a porous interface. M2AN Math. Model. Numer. Anal., 42(6):961–990,
2008. URL: https://doi.org/10.1051/m2an:2008031.

https://doi.org/10.1007/978-3-540-27818-4_7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
http://www.lri.fr/~melquion/doc/06-mcms-article.pdf%7D
http://www.lri.fr/~melquion/doc/06-mcms-article.pdf%7D
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.48550/arXiv.2208.06642
https://doi.org/10.48550/arXiv.2208.06642
https://doi.org/10.1007/978-3-642-14052-5_16
https://doi.org/10.1017/9781108591034
https://doi.org/10.2478/forma-2019-0007
https://doi.org/10.2478/forma-2019-0007
http://idirsadani.d.i.f.unblog.fr/files/2010/06/elmentsfinis.pdf
https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1007/978-3-030-56341-7
https://archive.org/details/dli.ernet.5666/page/203/mode/2up
https://archive.org/details/dli.ernet.5666/page/203/mode/2up
https://doi.org/10.1051/m2an:2008031

170 CHAPTER 12. BIBLIOGRAPHY

[39] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 – where programs meet provers.
Proceedings of the 22nd European Symposium on Programming, 7792:125–128, 2013. doi:

http://tertium.org/papers/esop-13.pdf.

[40] Sashikumaar Ganesan and Lutz Tobiska. Finite Element Spaces. Cambridge University
Press, 2017. URL: https://doi.org/10.1017/9781108235013.004.

[41] Bernard Gostiaux. Cours de mathématiques spéciales: Algèbre, volume 1. Presses Universi-
taires de France-PUF, 1993. In French. URL: http://livre21.com/LIVREF/F12/F012073.
pdf.

[42] Bernard Gostiaux. Géométrie: arcs et nappes, volume 5. Presses universi-
taires de France, 1995. In French. URL: https://archive.org/details/e-ramis.
-cours-de-mathematiques-speciales-t-5.

[43] Cordelia V Hall, Kevin Hammond, Simon L Peyton Jones, and Philip L Wadler. Type
classes in Haskell. ACM Transactions on Programming Languages and Systems (TOPLAS),
18(2):109–138, 1996. URL: https://doi.org/10.1145/227699.227700.

[44] John Harrison. HOL Light: A tutorial introduction. In International Conference on Formal
Methods in Computer-Aided Design, pages 265–269. Springer, 1996. URL: https://doi.org/
10.1007/BFb0031814.

[45] John Harrison. Formal proof—theory and practice. Notices of the AMS, 55(11):1395–1406,
2008. URL: https://www.ams.org/notices/200811/tx081101395p.pdf.

[46] Johannes Hölzl and Armin Heller. Three Chapters of Measure Theory in Isabelle/HOL. In
Marko van Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editors, Proc. of
the 2nd Internat. Conf. on Interactive Theorem Proving, volume 6898 of LNCS, pages 135–
151. Springer, Berlin - Heidelberg, 2011. URL: https://doi.org/10.1007/978-3-642-22863-6
12.

[47] Fabian Immler and Johannes Hölzl. Numerical analysis of ordinary differential equations
in Isabelle/HOL. In Interactive Theorem Proving: Third International Conference, ITP
2012, Princeton, NJ, USA, August 13-15, 2012. Proceedings 3, pages 377–392. Springer,
2012. URL: https://doi.org/10.1007/978-3-642-32347-8 26.

[48] Claes Johnson. Numerical solution of partial differential equations by the finite
element method. Courier Corporation, 2012. URL: https://archive.org/details/
numericalsolutio0000john.

[49] Rahul Karmakar. Symbolic model checking: a comprehensive review for critical system
design. Advances in Data and Information Sciences: Proceedings of ICDIS 2021, pages
693–703, 2022. URL: https://doi.org/10.1007/978-981-16-5689-7 62.

[50] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-aided reasoning:
ACL2 case studies, volume 4. Springer Science & Business Media, 2013. URL: https:
//doi.org/10.1007/978-1-4757-3188-0.

[51] Semen Samsonovich Kutateladze. Fundamentals of functional analysis, volume 12. Springer
Science & Business Media, 2013. URL: http://old.math.nsc.ru/LBRT/g2/english/ssk/fa e.
pdf.

[52] Peter D Lax. Functional analysis, volume 55. John Wiley & Sons, 2002. URL: http:
//users.math.uoc.gr/∼frantzikinakis/FunctionalGrad2015/Lax.pdf.

https://doi.org/http://tertium.org/papers/esop-13.pdf
https://doi.org/http://tertium.org/papers/esop-13.pdf
https://doi.org/10.1017/9781108235013.004
http://livre21.com/LIVREF/F12/F012073.pdf
http://livre21.com/LIVREF/F12/F012073.pdf
https://archive.org/details/e-ramis.-cours-de-mathematiques-speciales-t-5
https://archive.org/details/e-ramis.-cours-de-mathematiques-speciales-t-5
https://doi.org/10.1145/227699.227700
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/BFb0031814
https://www.ams.org/notices/200811/tx081101395p.pdf
https://doi.org/10.1007/978-3-642-22863-6_12
https://doi.org/10.1007/978-3-642-22863-6_12
https://doi.org/10.1007/978-3-642-32347-8_26
https://archive.org/details/numericalsolutio0000john
https://archive.org/details/numericalsolutio0000john
https://doi.org/10.1007/978-981-16-5689-7_62
https://doi.org/10.1007/978-1-4757-3188-0
https://doi.org/10.1007/978-1-4757-3188-0
http://old.math.nsc.ru/LBRT/g2/english/ssk/fa_e.pdf
http://old.math.nsc.ru/LBRT/g2/english/ssk/fa_e.pdf
http://users.math.uoc.gr/~frantzikinakis/FunctionalGrad2015/Lax.pdf
http://users.math.uoc.gr/~frantzikinakis/FunctionalGrad2015/Lax.pdf

171

[53] Henri Léon Lebesgue. Leçons sur l’intégration et la recherche des fonctions primitives
professées au Collège de France. Cambridge University Press, Cambridge, 2009. Reprint
of the 1904 original [Gauthier-Villars, Paris]. In French. URL: https://doi.org/10.1017/
CBO9780511701825.

[54] David R Lester. Topology in PVS: continuous mathematics with applications. In Proc. of
the 2nd Workshop on Automated Formal Methods (AFM 2007), pages 11–20, 2007. URL:
https://doi.org/10.1145/1345169.1345171.

[55] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential
equations by the finite element method: The FEniCS book, volume 84. Springer Science &
Business Media, 2012. URL: https://doi.org/10.1007/978-3-642-23099-8.

[56] Assia Mahboubi and Enrico Tassi. Mathematical components. Online book, 2021. URL:
https://doi.org/10.5281/zenodo.7118596.

[57] Micaela Mayero. Formalisation et automatisation de preuves en analyses réelle et
numérique. Thèse de doctorat, Université Paris VI, 2001. In French. URL: https:
//www-lipn.univ-paris13.fr/∼mayero/publis/these-mayero.ps.gz.

[58] Laura I Meikle and Jacques D Fleuriot. Automation for Geometry in Isabelle/HOL. In
PAAR@ IJCAR, pages 84–94. Citeseer, 2010. URL: https://doi.org/10.29007/r5k7.

[59] Peter Monk. Finite element methods for Maxwell’s equations. Oxford university press,
2003. URL: https://books.google.fr/books/about/Finite Element Methods for Maxwell s
Equ.html?id=zI7Y1jT9pCwC&redir esc=y.

[60] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jeannerod, Mioara
Joldes, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, and Serge Torres. Hand-
book of Floating-Point Arithmetic. Birkhauser Basel, 2 edition, 2018. doi:10.1007/

978-3-319-76526-6.

[61] Adam Naumowicz and Artur Korni lowicz. A brief overview of Mizar. In International
Conference on Theorem Proving in Higher Order Logics, pages 67–72. Springer, 2009. URL:
https://doi.org/10.1007/978-3-642-03359-9 5.

[62] Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: a proof assistant
for higher-order logic. Springer, 2002. URL: https://doi.org/10.1007/3-540-45949-9.

[63] Sam Owre, John M Rushby, and Natarajan Shankar. PVS: A prototype verification system.
In International Conference on Automated Deduction, pages 748–752. Springer, 1992. URL:
https://doi.org/10.1007/3-540-55602-8 217.

[64] Pablo Pedregal. Functional Analysis, Sobolev Spaces, and Calculus of Variations. Springer,
2024. URL: https://doi.org/10.1007/978-3-031-49246-4.

[65] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in the Calculus of
Constructions. In Mathematical Foundations of Programming Semantics: 5th International
Conference Tulane University, New Orleans, Louisiana, USA March 29–April 1, 1989 Pro-
ceedings 5, pages 209–228. Springer, 1990. URL: https://doi.org/10.1007/BFb0040259.

[66] Alfio Quarteroni and Alberto Valli. Numerical approximation of partial differential equa-
tions, volume 23 of Springer Series in Computational Mathematics. Springer, Berlin, 1994.
URL: https://doi.org/10.1007/978-3-540-85268-1.

https://doi.org/10.1017/CBO9780511701825
https://doi.org/10.1017/CBO9780511701825
https://doi.org/10.1145/1345169.1345171
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.5281/zenodo.7118596
https://www-lipn.univ-paris13.fr/~mayero/publis/these-mayero.ps.gz
https://www-lipn.univ-paris13.fr/~mayero/publis/these-mayero.ps.gz
https://doi.org/10.29007/r5k7
https://books.google.fr/books/about/Finite_Element_Methods_for_Maxwell_s_Equ.html?id=zI7Y1jT9pCwC&redir_esc=y
https://books.google.fr/books/about/Finite_Element_Methods_for_Maxwell_s_Equ.html?id=zI7Y1jT9pCwC&redir_esc=y
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-642-03359-9_5
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-031-49246-4
https://doi.org/10.1007/BFb0040259
https://doi.org/10.1007/978-3-540-85268-1

172 CHAPTER 12. BIBLIOGRAPHY

[67] Walter Rudin. Real and Complex Analysis. McGraw-Hill Book Co., New York,
3rd edition, 1987. URL: https://59clc.wordpress.com/wp-content/uploads/2011/01/
real-and-complex-analysis.pdf.

[68] Amokrane Saibi. Typing algorithm in type theory with inheritance. In Proceedings of the
24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
292–301, 1997.

[69] Mohit Tekriwal, Karthik Duraisamy, and Jean-Baptiste Jeannin. A formal proof of the Lax
equivalence theorem for finite difference schemes. In NASA Formal Methods Symposium,
pages 322–339. Springer, 2021. URL: https://doi.org/10.48550/arXiv.2103.13534.

[70] Gerald Teschl. Topics in Real Analysis. 2021. URL: https://www.mat.univie.ac.at/∼gerald/
ftp/book-ra/ra.pdf.

[71] Floris van Doorn. Formalized Haar Measure. In L. Cohen and C. Kaliszyk, editors, Proc.
of the 12th Internat. Conf. on Interactive Theorem Proving, volume 193 of LIPIcs, pages
18:1–18:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. URL: https://doi.
org/10.4230/LIPIcs.ITP.2021.18.

[72] Kōsaku Yosida. Functional Analysis. Classics in Mathematics. Springer, Berlin, 1995.
Reprint of the 6th (1980) edition [Springer, Berlin - New York]. URL: https://doi.org/10.
1007/978-3-642-61859-8.

[73] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The Finite Element Method: its Basis and
Fundamentals. Elsevier/Butterworth Heinemann, Amsterdam, 7th edition, 2013. URL:
https://doi.org/10.1016/C2009-0-24909-9.

https://59clc.wordpress.com/wp-content/uploads/2011/01/real-and-complex-analysis.pdf
https://59clc.wordpress.com/wp-content/uploads/2011/01/real-and-complex-analysis.pdf
https://doi.org/10.48550/arXiv.2103.13534
https://www.mat.univie.ac.at/~gerald/ftp/book-ra/ra.pdf
https://www.mat.univie.ac.at/~gerald/ftp/book-ra/ra.pdf
https://doi.org/10.4230/LIPIcs.ITP.2021.18
https://doi.org/10.4230/LIPIcs.ITP.2021.18
https://doi.org/10.1007/978-3-642-61859-8
https://doi.org/10.1007/978-3-642-61859-8
https://doi.org/10.1016/C2009-0-24909-9

	Introduction
	Research Framework
	Motivations of the Thesis
	Related Work
	Organization of the Thesis

	Coq and Support Libraries
	The Coq Proof Assistant
	The Coquelicot Library
	Extended Real Numbers
	Total Functions
	Algebraic Hierarchy

	The math-comp Library

	I Formalization of The Tonelli Theorem
	Lebesgue Integration Theory
	Measurable Space
	-algebra and Measurability of Subsets
	Cartesian Product Space and Measurability
	Measurablility of Functions

	Measure Space
	Formalization of Measures
	Main Properties of Measures

	Simple Functions
	Definition of Simple Functions
	Canonical Representation of Simple Functions
	Integration of Simple Functions

	Integration of Nonnegative Measurable Functions
	Definition and First Properties
	Adapted Sequences
	The Theorem of Beppo Levi (Monotone Convergence)

	Formalization of the Tonelli Theorem
	Lebesgue Induction Principle
	Inductive Representation of Nonnegative Measurable Functions
	Verifying [language=Coq, basicstyle=]SFp and [language=Coq, basicstyle=]SFplus Equivalence
	Equivalent Inductive Types of [language=Coq, basicstyle=]Mp
	Verifying [language=Coq, basicstyle=]Mp and [language=Coq, basicstyle=]Mplus Equivalence

	Product Measure on a Product Space
	Specification of a Product Measure
	Product -Algebra
	Section of Subsets
	Measurability of Measure of Section
	Existence and Uniqueness of the Product Measure

	Tonelli Theorem
	Section of Functions
	Iterated Integral and the First Formula of Tonelli Theorem
	Change of Measure, Second Formula, and Tonelli Theorem

	II Formalization of Simplicial Finite Elements
	Algebra
	Functions and restrictions
	Subsets
	Image, Pre-image and Composition of Functions
	Bijective Functions
	Bijective Functions on Subsets

	Ordinals and Finite Families
	Principle of Double Induction
	Ordinals
	Finite Family

	Algebraic Structures
	Abstract Monoid and Finite Iterations of the Law
	Multiplicative Monoid and Monomials
	Group and Module Space
	Linear Combination in a Module Space
	Kronecker Delta Function
	Affine Spaces and Barycenter

	Finite Dimensional Subspaces
	Linear Span
	Generating, Free, Basis Families
	Affine independence
	Dual Space, Duality

	Binomials

	Mathematical Presentation of Finite Elements
	Continuous Problem: Strong and Weak Formulation
	Definitions and Notations
	Strong Formulation
	Weak Formulation
	Algebraic Form and Lax-Milgram Theorem.

	Discrete Problem
	Approximate Problem
	Building the Mesh
	Building the Linear System

	General Definition of a Finite Element
	Unisolvence Principle

	Formalization of Finite Elements
	Formalization of Finite Elements
	Shape Functions of Finite Element
	Construction of a Local Interpolation Operator

	Constructing the Polynomial Space Pdk
	Multi-Indices
	Definition of Adk, Cdk and dk,k-i Families
	Ordering Multi-Indices
	Bijectivity of Adk

	Pdk Polynomial Space
	Definition of the Polynomial Space Pdk and its Basis Bd,k
	Linear Independence of the Family Bd,k
	Overview of Polynomial Space Pdk Properties

	Pd1 Polynomial Space
	P1k Polynomial Space

	Reference and Current Finite Elements
	Simplicial Geometry
	Definition of Reference Vertices and Lagrange Nodes
	Definition of Current Lagrange Nodes
	Connection Between Vertices and Nodes
	Lagrange Sub-vertices and Sub-nodes

	Pd1 Lagrange Polynomial Bases on the Reference Element
	Affine Geometrical Transformation of Finite Element
	Building Current FEs From the Reference FE
	Reference Finite Element
	Generating the Current Finite Elements
	Current Shape Functions and Local Interpolation Operator

	Pd1 Lagrange Polynomials Basis on a Current Element
	P1k Lagrange Polynomial Bases on a Segment

	Simplicial Lagrange Finite Elements
	Face Hyperplanes
	Geometric Mappings
	Geometric Hyperface Mapping
	Geometric Mapping with Permutation

	Current Simplicial Lagrange Finite Elements
	Nodal Linear Forms
	Specifics of the Pdk Lagrange Finite Elements
	Unisolvence of the Pd0 Lagrange Finite Elements
	Unisolvence of the Pd1 Lagrange Finite Element
	Unisolvence of the P1k Lagrange Finite Element
	Factorization of Polynomials
	Unisolvence of the Pdk Lagrange Finite Elements

	Reference Simplicial Lagrange Finite Elements

	Conclusions and Perspectives
	List of Figures
	Bibliography

