
HAL Id: tel-04884750
https://theses.hal.science/tel-04884750v1

Submitted on 13 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Indécidabilité des invariants géométriques dans les
pavages

Léo Paviet Salomon

To cite this version:
Léo Paviet Salomon. Indécidabilité des invariants géométriques dans les pavages. Computational
Complexity [cs.CC]. Normandie Université, 2024. English. �NNT : 2024NORMC238�. �tel-04884750�

https://theses.hal.science/tel-04884750v1
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le diplôme de doctorat
Spécialité INFORMATIQUE

Préparée au sein de l'Université de Caen Normandie

Ιndécidabilité des invariants géοmétriques dans les pavages

Présentée et soutenue par
LEO PAVIET SALOMON

Thèse soutenue le 17/12/2024
devant le jury composé de :

M. PASCAL VANIER Professeur des universités - Université de Caen Normandie
(UCN) Directeur de thèse

M. NICOLAS OLLINGER Professeur des universités - Université d'Orléans Président du jury

M. JULIEN CERVELLE Professeur des universités - UNIVERSITE PARIS 12 VAL DE
MARNE Membre du jury

M. MATHIEU HOYRUP Chargé de recherche - Université de Lorraine Membre du jury

M. SAMUEL PETITE Professeur des universités - UNIVERSITE AMIENS PICARDIE
JULES VERNE Membre du jury

MME MARIE-PIERRE BEAL Professeur des universités - Université Gustave Eiffel Rapporteur du jury

Thèse dirigée par PASCAL VANIER (Groupe de recherche en informatique, image et
instrumentation de Caen)

Contents

Contents i

Acknowledgements v

Notations and conventions vii

Introduction ix
Tilings, colourings, decorations . ix
Some historical background . x
Structure of the document . xi

1 First definitions 1
1.1 Subshifts and tilings . 2

1.1.1 Subshifts: patterns and local rules 2
Wang Tiles: an historical point of view 2
From tilings to subshifts and forbidden patterns 3
Some basic definitions . 5
Back to Wang tiles . 7

1.1.2 Factor maps, conjugacy and invariants 8
Block maps . 9
Conjugacy and conjugacy invariants 10

1.1.3 Topological aspects and some operations 14
Dynamical systems . 14
Cylinders, compactness, continuity 14
Dynamical and mixing properties . 17

1.1.4 Walks on graphs, regular languages, sofic subshifts 20
Multidimensional sofic subshifts . 20
Interlude: some graph theory . 21
The one-dimensional case . 22

1.2 Computability . 25
1.2.1 Turing Machines and decision problems 25
1.2.2 Arithmetical hierarchy . 28
1.2.3 Some natural links with subshifts . 32

The domino problem . 32
Effective subshifts . 35
Lifting constructions . 37

1.3 Some notions of group theory . 38
1.3.1 Group presentations . 38
1.3.2 Cayley graphs . 40
1.3.3 Tilings on groups . 42

2 Extender entropies 45

i

ii CONTENTS

2.1 Extender sets . 46
2.1.1 Regular languages . 46

Follower and predecessor sets . 46
Extender sets and syntactic monoids 48
Extender sets and subshifts . 48

2.1.2 First examples and constructions . 50
2.2 Another kind of entropy . 53

2.2.1 Extender entropy: a conjugacy invariant 54
2.2.2 Preliminary results on extender entropies 58

2.3 Computability considerations . 60
2.3.1 Inclusion of extender sets . 60
2.3.2 Number of extender sets . 62

2.4 Characterizations of extender entropies . 63
2.4.1 Minimal subshifts . 63
2.4.2 Mixing properties . 64
2.4.3 One-dimensional effective subshifts 65

Encoding integers into configurations 66
Configurations with controlled density 66
An auxiliary subshift . 68
Multiplying the number of patterns 70
Counting patterns and extender sets 71

2.4.4 Computable subshifts . 73
2.4.5 Multi-dimensional sofic subshifts . 73

Marked offsets instead of periods . 74
A sofic marking subshift . 75
Counting extender sets . 79

2.4.6 A short note about syntactic monoids 80
2.5 Summary . 81

3 The projective fundamental group of subshifts 83
3.1 Filling holes and patching defects . 84

3.1.1 Conway’s tiling group . 85
3.1.2 Defects in tilings . 88

3.2 Projective fundamental group: adaptation to subshifts 89
3.2.1 The classical fundamental group . 89

Paths and loops . 90
Homotopy and the fundamental group 91
Covering spaces . 93

3.2.2 Definition of the group and links with other notions 94
An actual fundamental group of scene spaces 95
A combinatorial point of view . 97

3.2.3 First examples and properties . 101
3.3 Projective connectedness . 103

3.3.1 Definition and basepoint independence 104
3.3.2 Projective connectedness as a mixing property 105

Cones and cone-connected subshifts 106
Chain-mixing properties . 108
Transitivity . 110
Contractibility . 111

3.3.3 One-dimensional SFT . 114
3.3.4 Deciding projective connectedness 116

3.4 Hom-shifts . 118

CONTENTS iii

3.4.1 Definition and first results . 118
The case of trees . 119
Universal graph coverings . 124
Fundamental group of graphs . 126

3.4.2 Non-contractible Hom-shifts . 129
3.5 Finitely presented groups and SFTs . 131

3.5.1 The construction . 132
3.5.2 Only Crossed Wires Matter . 134
3.5.3 A normal form for paths . 137
3.5.4 Computing the projective fundamental group 142
3.5.5 Open questions: beyond finitely presented groups 146

Infinitely generated groups . 146
Recursively presented groups . 146

4 Substitutive subshifts on graphs 147
4.1 Substitutions . 149
4.2 Substitutive subshifts are sofic . 150

4.2.1 The discrete grid . 151
4.2.2 The euclidean plane . 153

Matching rules for euclidean substitutive tilings 153
Combinatorial point-of-view on euclidean tilings 154

4.2.3 Beyond the geometry . 154
Soficity relative to substitutive discrete subshifts 154
Substitutions on groups . 156
Other combinatorial notions of substitutions 157

4.3 Graph subshifts . 158
4.3.1 Basic graph theory . 159
4.3.2 A specific class of graphs . 160
4.3.3 Graph subshifts and SFTs . 161
4.3.4 Substitutive graphs and Lindenmayer systems 166

Skeletons, borders, meta-tiles . 170
Sheets and subgraphs . 175

4.3.5 Sofic graphs and coloured substitutions 178
Coloured substitutions on graphs . 178
Sofic graph subshifts . 179

4.4 An equivalent to Mozes theorem . 181
4.4.1 Self-simulation in graphs . 181
4.4.2 Construction of a self-simulating graph SFT 184

The decorations . 185
Matching rules . 187

4.4.3 Self-simulation . 193
Substitutive graphs can be decorated 194
Decorated graphs are sheeted-substitutive 195

4.4.4 Some consequences of the construction 197
Link between the two substitutive subshifts 197
Removing sheets . 198
A monotonicity result . 199

References 201

Acknowledgements

v

Notations and conventions

D ⊂f Zd D is a finite subset of Zd
f : A ↪→ B, g : A↠ B f, g are injective, surjective from A to B
πA The natural projection on A
SX The symmetric group (set of bijections, with compo-

sition) on X
u Point (or vector) of Zd
ei ei = (0, . . . , 0︸ ︷︷ ︸

i

, 1, 0, . . . , 0︸ ︷︷ ︸
d−i−1

), the i-th basis vector of Zd.

J−n, nK The set {i ∈ Z|−n ≤ i ≤ n}
Bn The Zd-ball J−n, nKd

Qn The set J0, n− 1Kd

A A finite set of symbols, called an alphabet
A∗ The set of all the d-dimensional square patterns over

A
|w|a Number of occurrences of a ∈ A in the pattern w
XF The subshift defined by the forbidden patterns F
w ⊑ x The configuration (or pattern) x contains the pattern

w
σu Shift operator by u ∈ Zd
L(X),Ln(X) The language of X, the Qn-supported language of X
[w] Cylinder [w] =

{
x ∈ X

∣∣∣x|supp(w) = w
}

s A substitution
S̄ The set S ∪ {s−1 | s ∈ S}
π1(X) Fundamental group of a topological space X
πproj1 (X) Projective fundamental group of X
⟨S | R⟩ Presentation of a group G by generators S and rela-

tions R
Total A decision problem
M(x)↓,M(x)↓n,M(x)↑,M(x)↑n On entry x, the machine M halts, halts in at most n

steps, runs forever, runs for at least n steps

vii

Introduction

Tilings, colourings, decorations

This thesis studies problems which are all related to tilings. In everyday life, tilings are
usually decorative coverings of walls or floors, which contrary to mosaics use a limited
amount of different tiles to produce geometric and aesthetically pleasing patterns. To the
computer scientist’s eye, a tiling’s artistic value is second to other questions:

1. Given a box with sufficiently many copies of a few different tiles, will a tiler be able
to properly tile an entire wall ? More importantly, will they be able to tile an infinite
wall (unlikely as it is for a regular tiler to encounter such a wall, computer scientists
have plenty of time to devote to tiling infinite surfaces) ?

2. Assuming you find a clever way to ensure that a given surface can in fact be tiled, can
you say anything about the kind of patterns you can produce ? After all, even with
finitely many different tiles, they might allow for surprisingly complex arrangements:
can you count them, or describe them in any way ?

3. Suppose that you are not particularly happy with the appearance of your walls’
tiling. Can you locally modify it so as to replace the parts you are not satisfied with,
without having to change the rest of the tiling ? More generally, does the structure
of the valid tilings allow for purely local changes ? If not, can you describe the kind
of modifications that must be done in order to change a finite part of tiling (for
example, do you need to modify a finite region but larger than the one you initially
wanted to modify ? Do you need to modify tiles in arbitrary locations, or only in a
specific region of the plane, e.g. to the right of your initial changes ?)

4. Given that some of your walls are not exactly planar, but have some depth, relief,
and non-trivial curvature, does the set of possible tilings change when taking this
additional geometrical constraints into account ? More generally, can you imagine
different surfaces or geometries such that tilings would be completely different from
what you would obtain by tilings plain bi-dimensional walls ?

Fortunately, our computer scientist can entirely formalize these problems. When done
in the simplest possible way, they become questions about Wang Tiles: these are square
tiles, which all have the same size, and which have some decorations (or colours) on each
one of their four sides. In order to model the fact that tiles must fit together, two Wang
tiles can be placed next to one another only if they share the same colour on the sides
that are in contact. If we moreover enforce that tiles must all aligned, each tiling of some
surface D using tiles from a set A can be viewed as an element of AD where D ⊆ Z2.
Using this formalism, it becomes easy to ask the same questions for surfaces D ⊆ Zd, d ≥ 1
instead, giving the higher-dimensional computer scientist some work to do. We can even
further generalize the kind of tilings being considered: instead of only enforcing matching
rules between neighbouring tiles, we can enforce additional constraints between tiles which
might further apart. To be able to give precise instructions to the tiler, the computer

ix

x NOTATIONS AND CONVENTIONS

scientist chooses to specify each such constraint as a forbidden pattern: that is, a pattern,
or specific arrangement of finitely many tiles, that must not appear in any tiling. Letting
F be a finite set of such rules, we will call XF ⊆ AZ2 the set of tilings of the infinite
plane by the tiles A that respect all the rules, that is, which avoid any pattern of F ,
everywhere. This is called a subshift of finite type, and will be an important object
studied throughout the thesis. If the computer scientist wants to be especially annoying
to their tiler, they can instead specify infinitely many such rules: the set of valid tilings
will then simply be called a subshift, although there is no telling what its patterns might
look like. Surprisingly, this is all we need to answer by the negative most of the questions
asked so far:

1. The first question is known as the Domino problem. We describe it in Section 1.2.3,
and show that there is no general method which solves it in Theorem 1.77 ([Ber66]).

2. As a consequence, the second question does not admit a satisfying answer either in
general. The specific question of counting the number of valid patterns of a given
size will be studied in Definition 1.23, and the broader question of describing tilings
and their patterns, up to some loss of specificity, is the idea behind the definition of
conjugacy invariants Definition 1.21: this as a way to formalize what it means for
tilings to be equivalent, or to say that the patterns of one can be “derived” from the
patterns of the other.

3. The third question will be studied in depth in Chapter 2. Our main question will be
to quantify in some way the amount of patterns of various sizes which can freely be
replaced by one another, or swapped out, in larger tilings, and to find some precise
quantitative restrictions on the number of such patterns.

4. The fourth question is excessively general, and will be studied from two different
points of view in the thesis: in Chapter 3, we will try to understand what happens if
you try to tile two dimensional surfaces, where you possibly leave some large holes, or
gaps, in the tiling. It turns out that this can significantly alter the set of valid tilings,
and we will try to understand the structure of those new tilings from an algebraic
perspective. In Chapter 4, we instead completely relax the condition that tiles must
assembled in any kind of geometric way, and will study abstract arrangements, known
as tilings on graphs. In fact, tilings of Z2 and Zd for d ≥ 2 often share similar
properties, but it turns out that we can relax generalize subshifts to be defined on
much more general spaces, such as groups or even arbitrary graphs. We will focus
on a specific class of tilings, namely substitutive tilings, and try to relate their
structure when defined as subshifts on graphs compared to the well-known case of
substitutive subshifts of Zd.

An important leitmotiv underpinning the present document is the fact that despite their
elementary definition, tilings, or more precisely subshifts, exhibit an immense variety of
complex properties, ranging from algorithmic undecidability to algebraic characterizations.
A recurring, informal but important question that we will try to study from several angles
is therefore the following: how complex can tilings be (algorithmically, combinatorially,
algebraically), even when we restrict ourselves to the simplest possible classes of subshifts
?

Some historical background

The study of subshifts is an important part of a mathematical domain called symbolic
dynamics. The “dynamical” aspect of the informal definitions given above is not apparent.

STRUCTURE OF THE DOCUMENT xi

Indeed, although the first part of this introduction introduces subshifts as a way to model
arrangements of tiles which respect some local constraints, one of the reasons behind for
the variety and large panorama of interesting questions about subshifts can be understood
by looking at subshifts from another point of view, namely, the one of dynamical systems.
Before that, let us take a step back and give some additional details on the first approach.

We generally attribute to Hao Wang the definition of Wang tiles, introduced in [Wan61,
Section 4.1], while studying whether there existed procedure deciding the satisfiability of
logical formulaes of the ∀∃∀. His main conjecture was that it was decidable whether or not
a given set of tiles A tiled the plane, that is, if one could place a tile of A on each position
of the infinite grid Z2 while respecting the adjacency constraints between neighbouring
tiles. Although false, this conjecture highlights the importance of decision problems, and
more generally computability theory, in the study of multi-dimensional subshifts. In-
deed, the proofs of the undecidability of the domino problem, first by Berger [Ber66]
and Robinson [Rob71], and later by Kari [Kar96] using a completely different method,
have successfully been adapted to show that those links between symbolic dynamics and
computability theory exist in very different settings (see for example and among many
others [BS16], [ABM19], [AK21], [Bar22], [EGL23]). More recently, computability theory
has found other uses to precisely characterize some behaviours of subshifts (formally, the
values taken by conjugacy invariants, which we define in Section 1.1.2), in e.g. [HM10]
or [JV13], and we will ourselves continue this line of research in Chapter 2 – we say a few
more words about this at the end of this introduction.

On the other hand, the earliest results stated with a formalism which is similar to the
modern are proven as early as [MH38], and several decades ago if we consider some specific
problems (for example, [Thu12] studies the so-called Prouhet-Thue-Morse sequence). This
historical approach studies problems which are mainly related to infinite sequences of
symbols, which can be viewed as discrete versions of trajectories in a dynamical system:
a dynamical system is simply a space X with some self-map T , that you iterate on X,
possibly infinitely many times, to obtain trajectories (Tn(x))n∈Z when T is furthermore
invertible. If instead of recording precisely Tn(x) at each timestep, you only keep track
of a coarser information, e.g. some element Xi ∋ Tn(x) in a partition X =

⊔k
i=0Xi

of the space, you obtain an infinite sequence which approximates the original trajectory.
This point of view motivates the study of those sequences from another perspective, using
tools from the theory of dynamical systems, and some objects already mentioned in this
introduction (conjugacy invariants, entropy ...) are in fact typical objects from this theory,
and their interplay with the more combinatorial definition of a subshift makes symbolic
dynamics a new, interesting field on its own.

Structure of the document

Each chapter contains a more detailed introduction, and motivating examples and ques-
tions. We briefly summarize here the contents of each chapter, as well as state our main
theorems.

The Chapter 1 is a general introductory chapter, and has to be read first. We recall
the main definitions that will be used throughout the entire document, and the necessary
background and preliminary results in order to familiarize with the various objects. In
particular, as we study subshifts and tilings using various tools, we recall the important
notions of computability theory and group theory that we need in other chapters.

The three chapters Chapter 2, Chapter 3 and Chapter 4 are independent, and can be
read in any order:

• Chapter 2 is devoted to the study of a conjugacy invariant named extender en-
tropy, from the point of view of computability theory. Introduced in [FP19], it is

xii NOTATIONS AND CONVENTIONS

based on classical notions studied in formal languages ([Myh57], [Ner58]) and in sub-
shifts themselves (see for example [KM13], [FOP16]). The idea behind the definition
is that instead of trying to count the number of valid patterns in a subshift, we are
interested in how many of those patterns are “equivalent”, in the sense that they can
be exchanged, or replaced by one another, in any valid configuration. This quantita-
tively captures the informal idea that there is some amount of information “flowing”
from the inside of a pattern to the outside regarding how it can legally be extended
while respecting the constraints of the subshift. Our main results completely charac-
terize the possible values of extender entropy on various classical classes of subshifts,
both one-dimensional and multi-dimensional, using classifications of real numbers in
terms of their computability properties. Our main results are the following:

Theorem (Theorem 2.43). The extender entropies of effective Z-subshifts are exactly
the non-negative Π3 real numbers.

Theorem (Theorem 2.48). For any d ≥ 2, the extender entropies of sofic Zd-
subshifts are exactly the non-negative Π3 real numbers.

• We study in Chapter 3 another conjugacy invariant introduced in [GP95], called
the projective fundamental group πproj1 (X) of a subshift X, an object algebraic
nature which captures some geometrical properties of the subshift. Contrary to the
extender entropy studied in Chapter 2, which is interested in how finite patterns can
be extended, we can view the projective fundamental group as a way to investigate
how “holes” in an infinite tiling can be filled to produce a valid complete configuration
of the subshift. Like the usual fundamental group of a topological space, this group
moreover gives precise information about the obstructions that some “tilings with
holes” have with regards to being completed into entire configurations. We study
various properties of this group, and relate some of its properties with well-known
notions of symbolic dynamics. Our main result is about the possibility of realizing a
large class of groups as projective fundamental groups of “simple” subshifts:

Theorem (Theorem 3.81). Let G = ⟨S | R⟩ be a finitely presented group. Then,
there exists an SFT X such that:

– X is projectively connected.
– πproj1 (X) ≃ G

• Chapter 4 is more exploratory, and tries to understand how the expressive properties
of subshifts of finite type change with the geometry of the ambient space (until know,
Zd). More precisely, we try to adapt a classical result, the Mozes theorem [Moz89], in
a much more elementary setting: this theorem states that a specific class of subshifts,
namely substitutive subshifts, can be “enforced” by subshifts of finite type (formally,
we say that they are sofic sunshifts, a definition we give in Section 1.1.4 and revisit
in Section 4.3.5). This is a somewhat surprising result, as substitutive subshifts
exhibit a hierarchical, global structure, while subshifts of finite type are only able
to enforce finitely many purely local constraints. Nevertheless, this result has been
adapted in a variety of settings, ([Goo98], [FO10], [BS16]), and the goal of this chapter
is to understand whether this result still holds when considering subshifts on graphs
rather than Zd, using only combinatorial arguments, without using any underlying
geometrical properties of the ambient space being tiled. Another motivation for
the introduction of this more general setting is the fact that a similar direction has
already been explored in symbolic dynamics, with subshifts on more general groups
than Zd, or graphs of algebraic origin, with similar questions to the one we ask in
this chapter ([Sil20], [Bar22]). Our main result is a weaker version of Mozes theorem:

STRUCTURE OF THE DOCUMENT xiii

Theorem (Theorem 4.68). Let s be a graph substitution, and sc a coloured s-
substitution. Suppose that s is quasi-connected. Then, there exists a sofic graph
subshift Ysc which is X∞

sc -sheeted and contains X∞
sc .

Chapter 1

First definitions

1.1 Subshifts and tilings . 2
1.1.1 Subshifts: patterns and local rules 2

Wang Tiles: an historical point of view 2
From tilings to subshifts and forbidden patterns 3
Some basic definitions . 5
Back to Wang tiles . 7

1.1.2 Factor maps, conjugacy and invariants 8
Block maps . 9
Conjugacy and conjugacy invariants 10

1.1.3 Topological aspects and some operations 14
Dynamical systems . 14
Cylinders, compactness, continuity 14
Dynamical and mixing properties . 17

1.1.4 Walks on graphs, regular languages, sofic subshifts 20
Multidimensional sofic subshifts . 20
Interlude: some graph theory . 21
The one-dimensional case . 22

1.2 Computability . 25
1.2.1 Turing Machines and decision problems 25
1.2.2 Arithmetical hierarchy . 28
1.2.3 Some natural links with subshifts . 32

The domino problem . 32
Effective subshifts . 35
Lifting constructions . 37

1.3 Some notions of group theory . 38
1.3.1 Group presentations . 38
1.3.2 Cayley graphs . 40
1.3.3 Tilings on groups . 42

All the problems studied throughout this thesis are related to tilings. We will not try
to give any definition general enough to encompass all the different kinds of tilings one
might encounter, neither in the literature nor even in this thesis. However, we will see how
two different formalisms help us characterize what we mean, in context, by “tiling”, and
how they influence the kind of questions one might then ask about tilings.

Far from being independent, these two formalisms merely are two distinct point of views
on the same underlying mathematical objects: although their history differs, one must
play with these multiple facets in order to solve most problems related to tilings. The first

1

2 CHAPTER 1. FIRST DEFINITIONS

formalism that we describe in Section 1.1.1 is one dating back to Wang [Wan61], and is more
combinatorial in nature. In this setting, tilings are defined as some generalized colourings,
which verify some local, puzzle-like constraints. This formalism will in particular influence
the definitions of Chapter 4. The second point of view, presented in Section 1.1.3, is by
contrast closely linked with the field of dynamical systems, and carries with it the tools and
the questions from this domain. It defines tilings as subsets of an abstract space satisfying
some dynamical conditions. In fact, most definitions of Section 1.1.3 will be reformulations
in our specific setting of the more general ones for dynamical systems; the combinatorial
nature of tilings then provides a more concrete representation of these properties. In this
chapter, Section 1.1 presents both points of view and gives other general results about
subshifts, as well as a few classical classes of subshifts that will be further studied in this
thesis.

We also introduce in Section 1.2 the theory of computability. It is mainly used in Chap-
ter 2, but we will nevertheless use some results in other sections of the thesis.

Finally, in Section 1.3, we give a quick overview of some algebraic notions that we
need in this thesis: the notion of group presentation which will be essential for Chapter 3
and in particular Section 3.5, and the notion of Cayley graphs, which motivates some
constructions in Chapter 4.

This document assumes that the reader already has a basic knowledge of some mathe-
matical objects, most notably metric spaces and topological spaces, and basic group theory.
We do not assume any advanced knowledge of these objects, and will recall in this first
chapter the definitions that the reader might not be familiar with. We do not assume any
familiarity with dynamical systems in general, and tiling spaces and symbolic dynamics in
particular. In any case, we try to give some useful intuitions and motivations behind our
definitions and the questions we investigate, and we do not try to give the most general
possible statements or smartest proofs if we believe that doing so would be detrimental to
clarity.

1.1 Subshifts and tilings

1.1.1 Subshifts: patterns and local rules

Wang Tiles: an historical point of view

In 1961, while studying problems related to fragments of first order logic, Hao Wang
introduced an object now called Wang tiles [Wan61], and the associated tilesets. In the
following definition, C is a finite set of colours.

Definition 1.1: Wang tiles

A Wang tile is a quadruplet c = (cW , cS , cE , cN) ∈ C4.
A tileset is a finite set of Wang tiles.

We typically represent Wang tiles as unit squares, with coloured sides:

Using these tiles, the goal is to find a valid tiling of the plane: the rules are simple,
one wants to place one tile at each position of Z2, and neighbouring tiles must have the
same colour on their common side.

1.1. SUBSHIFTS AND TILINGS 3

Definition 1.2: Tiling

Given a tileset T , we define a T -tiling as a map τ : Z2 → T which verifies
that for all (i, j) ∈ Z2:

• τ(i, j)E = τ(i+ 1, j)W

• τ(i, j)N = τ(i, j + 1)S

The set of all the T -tilings is called a tiling space, denoted by XT .

T =
{

, , , , ,
}

Figure 1.1: A Wang tileset T and a configuration of XT .

One can then ask all sorts of questions about the tiling space of some tileset T , and we
will see in particular in Section 1.2.3 how seemingly simple and natural problems about
Wang tiles and tiling spaces happen to be computationally involved. For now, let us
take a step back and introduce a slightly different formalism, which will both be easier to
generalize and to work with. Most results and constructions presented in this section can
be found in [LM21].

From tilings to subshifts and forbidden patterns

We call alphabet a finite set A of symbols. We call a mapping from Zd to A a config-
uration: thinking of Zd as a graph and of A as a set of colours, a configuration is then
a colouring of the grid Zd by A. The set of all configurations is AZd . For a configuration
x and some position i ∈ Zd, we usually use the subscript notation xi rather than the
functional notation x(i).

In Chapter 2 and Chapter 3, we will only consider the case of Zd configurations, as
explained above. Most of the time, we will even restrict ourselves to the particular cases
d = 1 and d = 2. This is the most common setting in the literature, for reasons that
will be detailed below. However, Chapter 4 tries to extend results to a case of more
general structures, that we call self-similar graphs. In that case, configurations will then
be elements of AG for some infinite graph G, but we defer the precise definitions to this
chapter to simplify this first exposition.

We will mainly be interested in sets of configurations. However, we will not talk about
generic subsets of AZd , and we will only consider sets called subshifts, corresponding to
the following intuition:

4 CHAPTER 1. FIRST DEFINITIONS

• A subshift is the set of all the configurations verifying some common condition, or
restriction.

• This restriction has to be:

– Local: in order to determine if a configuration satisfies the condition, it should
be enough to verify it locally, without looking at the entire configuration at
once.

– Homogeneous: the restriction, which is local as required above, should be veri-
fied everywhere in the configuration.

These conditions try to capture the fact that we want to model and study tilings, in
which the tiles have to “fit” together – this is the locality condition – and we tile the surface
using the same tiles everywhere – this corresponds to the required homogeneity.

More formally, we will define a subshift as the set of configurations avoiding some
patterns.

Definition 1.3: Pattern

A pattern is a function u : D → A, where D is a finite subset of Zd called
the domain (or support) of u, denoted by dom(u).

It will sometimes be convenient to consider patterns only up to translation. In that
case, two patterns u, v would be considered the same if there exists some translation i ∈ Zd
such that u = i+v. This is in fact what we usually mean by a pattern, but to avoid having
to explicitly work with equivalence classes, we often talk about “the” support of a pattern
– we will try to be explicit if and where the distinction matters.

For example, we say that a configuration x contains a pattern u at position i ∈ Zd
and we write u ⊑ x if for all j ∈ dom(u), xi+j = uj. A configuration is said to avoid a
pattern u if it does not contain it, in which case we naturally write that u ̸⊑ x.

Definition 1.4: Subshift

Given an alphabet A, a dimension d and a family F of finite patterns, we
define the d-dimensional subshift XF as the set of all the configurations
that do not contain any pattern of F :

XF =
{
x ∈ AZd | ∀u ∈ F , u ̸⊑ x

}

We call points of the subshift the configurations x ∈ XF . The family F is
a family of forbidden patterns defining XF .

Given F , we will also say that the configurations x ∈ XF are valid.
The definition of a subshift uses a negative condition – subshifts are sets of configuration

which avoid a specific family of forbidden patterns – which tells us little about what
those configurations actually look like. In particular, given a family F , it is possible
for a pattern u not to contain any pattern of F , while still being forbidden in XF as a
consequence of the other patterns being explicitly rejected: in this case, we say that u
is locally admissible, but not globally admissible or extensible. For example, on
the binary alphabet A = {0, 1} and considering subshifts over Z, forbidding the patterns
F = {01, 10, 111} necessarily prevents 11 from appearing in any valid configuration. In

1.1. SUBSHIFTS AND TILINGS 5

particular, this means that several families of forbidden patterns could be used to define
the same subshift.

It is possible to state the definition using a positive property, and specifying which
patterns are allowed instead:

Proposition 1.5: Allowed patterns

If X ⊆ AZd is a subshift, there exists a family of allowed finite patterns G
such that

X =
{
x ∈ AZd | ∀D ⊂f Zd, x

∣∣
D
∈ G

}

Proof. Define

G =
⋃

x∈X

⋃

D⊂fZd

x
∣∣
D

However, we will almost always define subshifts using families of forbidden patterns.
Indeed, for an allowed family G, it is not clear that any given g ∈ G actually appears
in some configuration of X – said differently, specifying the locally admissible patterns
is not sufficient to determine those which are extensible. When defining a subshift more
informally, we will however switch between the two points of view.

Some basic definitions

The definition of a subshift suggests that we can quantify how complicated a subshift is by
considering the “simplest” family F defining it. The most natural such class of subshifts
is the class of subshifts of finite type, or SFTs for short:

Definition 1.6: SFT

An subshift of finite type (SFT) is a subshift X = XF for some finite
family of forbidden patterns F .

The simplest example of an SFT is the full-shift:

Definition 1.7: Full-shift

The full-shift over an alphabet A is AZd
= X∅.

We can now explain where the names subshift and full-shift come from: given the previ-
ous definition, we can see that a subshift is a subset of the full-shift (obtained by forbidding
some patterns in the full-shift). Now, the “shift” comes from the shift functions:

6 CHAPTER 1. FIRST DEFINITIONS

A =
{

,
}

F =
{

,
}

Figure 1.2: An example of a configuration from an SFT defined by two forbidden patterns
on a binary alphabet

Definition 1.8: Shift

For any i ∈ Zd, we denote σi and call i-shift the map

σi : AZd → AZd

x 7→ (j ∈ Zd 7→ xi+j)

In the case of Z-subshifts, we simply write σ = σ1.

The shift functions are translations of configurations: σi simply translates entire config-
urations by i. The aforementioned “homogeneity property” of subshifts can be reformulated
more formally as the fact that a subshift is σ-invariant:

Proposition 1.9

Let X = XF ⊆ AZd be a subshift. Then for any u ∈ Zd, σu(X) = X.

Proof. If x does not contain any pattern from F , neither does σu(x). Moreover, σu◦σ−u =
σ−u ◦ σu = idX , hence σu is bijective and so σu(X) = X.

For an arbitrary subset of the full-shift X ⊆ AZd , requiring that for all i, σi(X) = X is
not sufficient to ensure that X is a subshift, and we will detail in Section 1.1.3 the missing
condition. We call orbit of a configuration the set of all its shifts:

Definition 1.10: Orbit

Let x ∈ AZd be a configuration. The orbit of x is the set

Orb(x) =
⋃

u∈Zd

σu(x)

1.1. SUBSHIFTS AND TILINGS 7

We give one more definition, to be able to refer to the extensible patterns of a subshift
in a more precise and succinct way.

Notation. For any n ≥ 1, we write Qn = J0, n − 1Kd ⊂ Zd (Q standing for “quadrant”).
For n ≥ 0, write Bn = J−n, nKd.

In order to lighten the notation, we do not specify the dimension d and use Qn,Bn
regardless of d, context making it clear.

Notation. For any alphabet A, we write A∗ =
⊔
n≥1AQn . Here again, the dimension is

implicit and should be clear from the context. In dimension 1, this is the standard notation
for the set of all finite words (or finite sequences) on A.

Definition 1.11: Language

Let X be a subshift. For a finite domain D ⊂f Zd, we note

LD(X) =
{
x
∣∣
D
| x ∈ X

}

the D-language of X. In the specific case D = Qn, we write Ln(X) =
LQn(X) the n-language of X.
The language of X is then the set of all its extensible patterns, i.e.

L(X) =
⋃

D⊂fZd

LD(X)

It will sometimes be useful to also talk about the language of a single configuration
x ∈ X. In that case, we naturally write LD(x),Ln(x) and L(x) without ambiguity. Note
that in those expressions, we consider patterns supported by D or Qn up to translation:

Ln(x) =
⋃

u∈Zd

x
∣∣
u+Qn

=
⋃

y∈Orb(x)

y
∣∣
Qn

Back to Wang tiles

It is now pretty clear that the definition of subshifts is more general than what we could
express with Wang tiles and tiling spaces; in particular, given a tileset T , the set of all the
T -tilings is a Z2 subshift on the alphabet T : moreover, it is an SFT, as we can define it by
forbidding all the pairs of adjacent tiles whose shared sides do not have the same colour.
In fact, this is an equivalence: all SFTs on Z2 can be re-encoded into a Wang tileset. The
precise definition of what we mean by “re-encoding” will be given in Section 1.1.2, but it
suffices for now to detail this particular example.

Consider an alphabet A, and X a Z2 subshift of finite type over A. By definition, there
exists a finite family of forbidden two-dimensional patterns F such that X = XF . Let r
be the maximal size of a pattern of F : as forbidden patterns are only considered up to
translation when defining XF , this means that we can consider that dom(w) ⊆ Qr for all
w ∈ F . By completing those patterns in all the possible ways, we can even assume that
F ⊂ AQr .

Now, let G = AQr \ F , and let CH = AJ0,rK×J0,r−1K and CV = AJ0,r−1K×J0,rK. For
each pattern w ∈ G, we construct a Wang tile tw with side colours in CH ∪ CV : the left
(respectively bottom, right, top) colour is given by the r−1 leftmost columns (respectively

8 CHAPTER 1. FIRST DEFINITIONS

bottommost rows, rightmost columns, topmost rows) of w. The resulting Wang tileset is
T = {tw, w ∈ Lr(X)}.

The six 2× 2
patterns of XF

From a pattern
to a Wang tile

Corresponding
tile

The entire
tileset,

|T | = |L2(XF)|
Figure 1.3: Equivalence between the SFT of Figure 1.2 and the Wang tileset of Figure 1.1

As A is finite, Lr(X) and therefore T are finite; however, X being an SFT defined
by F implies that Lr(X) is enough to fully describe the subshift: more precisely, any
configuration x ∈ AZ2 such that Lr(x) ⊆ Lr(X) does belong to X, as it clearly avoids
all the forbidden patterns of F . In particular, any valid configuration x ∈ X can easily
be converted to a T -tiling, and the converse is also true. Intuitively, the tileset T defines
an “isomorphic” subshift to X: this is the idea that we try to make precise below. This
construction is called the r-higher-block code of X, of which we give a precise definition
in Section 1.1.2.

As an (a priori) intermediate class of subshifts, we also define the class of nearest-
neighbour SFTs, or NN-SFT. For any dimension d > 0 and 0 ≤ i < d, write ei for the
i-th basis vector, that is, ei = (0, . . . , 0︸ ︷︷ ︸

i

, 1, 0, . . . , 0︸ ︷︷ ︸
d−i−1

):

Definition 1.12: Nearest-Neighbour

A Zd-subshift X is a nearest-neighbour SFT if all its forbidden patterns
have a support of the form {0, ei} for some 0 ≤ i < d.

In particular, the subshift defined by any Wang tileset is a nearest-neighbour SFT. We
will see in Section 1.1.4 yet another representation of one-dimensional subshifts of finite
type, using graphs.

1.1.2 Factor maps, conjugacy and invariants

In a lot of problems, we do not really care about the concrete set of tilings used to define
a subshift X, and as in Figure 1.3 we want to be able to define an equivalence notion on
subshifts. In particular, subshifts X and Y should be considered equivalents if one can
“recover” any configuration of X starting from configurations of Y , and vice-versa, via
some invertible operation. For now, we will use definitions motivated by such high-level
considerations, and we will see in Section 1.1.3 that they in fact satisfy some general and
more abstract properties, and in particular, are far from being ad hoc.

1.1. SUBSHIFTS AND TILINGS 9

Block maps

As explained in Section 1.1.1, subshifts are defined using local and homogeneous conditions
and restrictions. It seems natural then to study functions and maps that act on subshifts
in a similar way, in order for the image of a subshift to remain a subshift, on a possibly
different alphabet. This high-level motivation is enough to propose the following definition,
and we will see in Section 1.1.3 why it corresponds to a natural construction coming from
more mathematical considerations.

Definition 1.13: Block map

Let r ≥ 0, d ≥ 1 and let A,B be some alphabets. We call local map a
function f : ABr → B. The block map Φ whose local map is f is defined
as

Φ: AZd → BZd

x 7→
Zd → B
u 7→ f(x

∣∣
u+Br

)

We call r the radius of Φ, written radius(Φ).

Block maps are sometimes called sliding block codes in the literature. Most of the
time, what we really care about is the image of some subshift X under the block map, and
in particular we do not need to define the local map f : ABr → B but can only restrict
the definition to be f : LBr(X) → B. We still call block map the associated block map
defined only on X rather than on the full shift AZd . Moreover, we will also sometimes
abuse the notation and write Φ(u) for a pattern u. In this case, the image has domain
{v | v + Br ⊂ dom(u)}, as those are the only point at which we can apply the local map,
and in particular dom(Φ(u)) ⊊ dom(u) whenever u ̸= Zd. An important case is the case
Φ: ABn → ABn−r for n ≥ r.

Note that block maps defined in this way a priori satisfy our “local and homogeneous”
conditions: indeed, for any configuration x ∈ AZd , Φ(x) is a configuration of BZd , and:

• the value of a cell Φ(x)u depends only on its Br-neighbourhood in x where r =
radius(Φ).

• two cells with the same Br-neighbourhood in x will be mapped to the same symbol
in Φ(x).

In fact, this is enough to guarantee the following proposition:

Proposition 1.14

Let X ⊂ AZd be a subshift and Φ: X → BZd be a block map. Then Φ(X)
is a subshift.

Proof. Let r = radius(Φ), and define L =
⋃
n≥r Φ(LBn(X)). Let F = B∗ \ L. We claim

that Φ(X) = XF , the subshift on B whose forbidden patterns are the complement of L. To
show this, we need to show that no pattern of F appears in configurations of Φ(X), and
that moreover if a configuration y ∈ BZd is such that for all u ∈ F , u ̸⊑ y, then y ∈ Φ(X).
The former point is obvious by definition of F . Let then y ∈ BZd be such that it avoids

10 CHAPTER 1. FIRST DEFINITIONS

all patterns of F . Write vn = y|Bn
. By definition of F , for any n we have vn ∈ L, and in

particular there exists un ∈ LBn+r(X) such that Φ(un) = vn. We define a configuration x
and sequences of patterns (u

(i)
n) for all n by induction as follows:

• As (un) is infinite and A is finite, there exists a ∈ A and subsequence (u
(0)
n) of (un)

such that u(0)n (0) = a for all n. Let x0 = a.

• Assume that x|Bi
and (u

(i)
n)n∈N have already been defined, satisfying for all n ∈

N u
(i)
n

∣∣∣
Bi

= x|Bi
. Then, there exists a subsequence (u

(i+1)
n)n∈N of elements which

coincide on Bi+1. We can then define x|Bi+1\Bi
= u

(i+1)
0

∣∣∣
Bi+1\Bi

, and so we get a

definition of x|Bi+1
.

As
⋃

Bi
= Z2, we eventually define x on the entire plane. Moreover, for i ≥ 0 we have by

construction x|Bi+r
= u

(i+r)
0

∣∣∣
Bi+r

. In particular, Φ(x)|Bi
= vi, and so Φ(x) = y.

Note that we cannot deduce from the previous proof that if X is an SFT, then its image
Φ(X) is an SFT itself. It The consequences of this remark will explored be in Section 1.1.4.

Definition 1.15: Embedding, factor map

Let Φ: X → Y be a block map. If Φ is injective, we say that it is an
embedding of X in Y . If Φ is surjective, we say that Y is a factor of X,
and that X factors onto Y – in that case, Φ will also be called a factor
map.

The previous remark can then be reformulated as the fact that factors of SFTs need
not be SFTs.

We give an additional easy property on block maps, directly following from the def-
initions, which we informally refer to when saying that “block maps commute with the
shifts”.

Proposition 1.16

Let Φ: X → Y be a block map. Then, Φ ◦ σX = σY ◦Φ, where σX , σY are
the respective shift functions on X and Y .

Conjugacy and conjugacy invariants

A somewhat surprising fact is that inverses of block maps are also block maps:

Proposition 1.17

Let Φ: X → Y be a bijective block map. Then its inverse Φ−1 : Y → X is
a block map.

We could prove this result by hand, but we will show it in a more elegant manner
in Section 1.1.3 using a topological characterization of subshifts and block maps. For now,
we simply observe that block maps behave particularly well with subshifts, in the sense

1.1. SUBSHIFTS AND TILINGS 11

that they map subshifts to subshifts, and are stable under a lot of operations, most notably
composition and inverse when it makes sense.

Definition 1.18: Conjugacy

Let Φ: X → Y be a block map. If it is bijective, we say that it is a
conjugacy, and X and Y are conjugate subshifts.

Conjugacy is the “correct” notion of isomorphism for subshift, and captures the ideas
already hinted at in Section 1.1.1 of being able to “recode” or recover configurations of
one subshift from the other. In particular, the construction of higher-block codes of Sec-
tion 1.1.1 can now be formalized:

Definition 1.19: Higher-block code

Let X ⊆ AZd be any subshift, and r > 0. We call r-higher-block map of
X the map Φr : X → LBr(X)Z

d whose local map of radius r is

f : ABr → ABr

w 7→ w

the domain being viewed as a set of patterns, the co-domain being seen as
an alphabet, i.e. a set of symbols.
We call r-higher-block code of X the subshift Φr(X) ⊆ LBr(X)Z

d .

It is pretty clear that Φr is always a conjugacy, whose inverse has radius 0 and a local
map given by g(w) = w0.

The proof that was sketched in Section 1.1.1 can be formalized to show the following
result, stated in our new terminology:

Theorem 1.20

Let X ⊆ AZd be any subshift. The following are equivalent:

• X is an SFT.

• X is conjugate to a nearest-neighbour SFT.

• X is conjugate to a Wang tiling space.

Proof. If X = XF , simply let r = maxu∈F mink dom(u) ⊆ Qk. Then X is conjugate to its
r-higher-block code, which is easily seen to be a nearest neighbour SFT.

Now, having a notion of isomorphism, we might wonder which kind of properties are
stable under isomorphism.

12 CHAPTER 1. FIRST DEFINITIONS

Definition 1.21: Conjugacy invariant

A conjugacy invariant is a mathematical object f(X) associated to a
subshift X, such that f(X) = f(Y) when X and Y are conjugate.

This definition is necessarily quite vague, as conjugacy invariant can by nature be pretty
much any mathematical object. For example, in this thesis, we will explore an invariant
called the extender entropy in Chapter 2, which is a real number, and another invariant
called the projective fundamental group in Chapter 3, which is a group. Generally, we do
not have the reciprocal, that is, if f(X) = f(Y) we don’t necessarily have that X and Y
are conjugate, even when one restricts to small classes of subshifts.

Let us now give a few examples of examples of properties and objects that are invariant
by conjugacy:

Proposition 1.22

Being a subshift of finite type is invariant by conjugacy.

Proof. Let X ⊆ AZd
, Y ⊆ BZd be two subshifts, and Φ: X → Y be a conjugacy with local

map ϕ. A minor difficulty is that ϕ is not defined outside of the language of X, and so we
cannot really consider patterns u of X such that Φ(u) ̸∈ L(Y), as Φ might simply not be
defined on u. Suppose that Y is of finite type. Define, for n ≥ 0 and any subshift Z, the
set Fn(Z) = BQn \ Ln(Z). As Y is an SFT, there exists N such that Y = XFN (Y). Let
r = radius(Φ), and let then x ∈ XFN+2r(X) ⊆ AZd . As any pattern u of support Br in x
contains only subpatterns of size N + 2r that are valid in X, we can compute Φ(x), by
applying ϕ everywhere. We obtain a configuration y ∈ XFN (Y) = Y , and so x ∈ X. As Φ
is bijective, we get that X = XFN+2r(X) and in particular it is an SFT.

In dimension 1, Proposition 1.22 is much simpler to prove, as any sufficiently large
locally admissible pattern is globally admissible in an SFT. We will see in Section 1.2.3
that the situation is very different for higher-dimensional SFTs.

We now present another invariant, which will inspire our definitions in Chapter 2. This
is a special case of an invariant defined for any dynamical system, but which is especially
easy to define in the case of subshifts:

Definition 1.23: Entropy

Let X be any subshift on Zd. The entropy of X is the real

h(X) = inf
n→+∞

log|Ln(X)|
|Qn|

= lim
n→+∞

log|Ln(X)|
nd

The fact that the limit exists is not obvious, and is a consequence of a classical lemma,
known as the subadditivity (or Fekete’s) lemma. We will prove in Proposition 2.20 that
a variant of entropy, namely, the extender entropy, is well-defined, using this technique.
Entropy measures how many globally admissible patterns exist inX, and can be interpreted
as follows: h(X) is the average amount of information (in bits) that you learn about a
configuration x whenever a random cell of x is revealed to you – this is from the point of
view of information theory: of course, the two-points subshift {0Zd

, 1Z
d} has zero entropy,

1.1. SUBSHIFTS AND TILINGS 13

but knowing the value of a single cell reveals the entire configuration: this is consistent
with our informal description, as every cell after the first one is completely determined,
and far from “unexpected”.

Proposition 1.24

If X and Y are conjugate subshifts then h(X) = h(Y).

Proof. Let Φ: X → Y be a conjugacy, and assume without loss of generality that radius(Φ) =
radius(Φ−1) = r. Then for n ≥ 2r,

|Ln−2r(X) ≤ |Ln(Y)| ≤ |Ln+2r(X)||

Dividing everything by nd, we can rewrite those inequalities as

|Ln−2r(X)|
(n− 2r)d︸ ︷︷ ︸

→h(X)

(n− 2r)d

nd︸ ︷︷ ︸
→1

≤ |Ln(Y)|
nd︸ ︷︷ ︸

→h(Y)

≤ |Ln+2r(X)|
(n+ 2r)d︸ ︷︷ ︸

→h(X)

(n+ 2r)d

nd︸ ︷︷ ︸
→1

and we get h(X) ≤ h(Y) ≤ h(X) and so h(X) = h(Y).

Finally, and in order to show that conjugacy invariants can be very diverse mathemat-
ical objects, we introduce an algebraic invariant:

Definition 1.25: Automorphism group

Let X be a subshift, and G be the set of bijective block maps X → X.
Then SX = (G, ◦) is a group, called the automorphism group of X.

Proposition 1.26

Let Φ: X → Y be a conjugacy. Then SX ≃ SY .

Proof.

Ψ: SX → SY

f 7→ Φ ◦ f ◦ Φ−1

is an isomorphism between SX and SY .

This group has been extensively studied, but many important questions remain open.
For example, writing X2 and X3 the full-shifts on respectively 2 and 3 symbols, we do
not know if SX2 and SX3 are isomorphic, although they embed into each other. There
are also deep links between this automorphism group and dynamical properties (presented
in Section 1.1.3), see for example [Hoc09a; Sal15; Sal16], and with the complexity of the
subshift (that is, the sequence (|Ln(X)|)n∈N), see e.g. [Don+15; CK15a; CK15b; Don+17].
We will not study this group in the thesis, but another algebraic invariant in Chapter 3.

14 CHAPTER 1. FIRST DEFINITIONS

1.1.3 Topological aspects and some operations

We now turn our attention to a second point of view about subshifts, which was hinted at
in Section 1.1.2. Although most definitions given until now are combinatorial in nature,
and explain why subshifts lend themselves especially well to analysis using tools from
computability theory, they are only a specific subclass of dynamical systems. This
second point of view allows us to use powerful results and techniques of the theory of
dynamical systems, or point set topology, to study general properties of subshifts.

Dynamical systems

In general, a dynamical system can be seen as a space on which we have an action that we
wish to apply repeatedly: that is, given X a space and f : X → X, we try to understand
the orbits of the points (x, f(x), f2(x) . . .), or (. . . , f−1(x), x, f(x), f2(x) . . .) in the case
of a reversible map f . In general, studying orbits is a difficult problem, and many other –
hopefully easier – questions naturally arise:

• Are there stable subspaces, that is, Y ⊂ X such that f(Y) ⊆ Y ?

• Does some orbit, or even every orbit, pass arbitrarily close to every point ?

• Do close points have “close” orbits ? Otherwise, how unpredictable or chaotic are
the orbits ?

• What about the same questions, asked for the systems (X, fn) for n > 1 instead ?

We will see how some of these questions can be translated in combinatorial terms when
studying subshifts in particular. The specific study of subshifts and related objects consti-
tutes the field of symbolic dynamics, and we refer to [Kur03] for a complete introduction.

Definition 1.27: Dynamical system

A (discrete-time) dynamical system is a pair (X, f) where X is a space,
and f : X → X is a function.

Generally, and in order to diminish the complexity of the system, we consider a compact
(topological) space X and a continuous action f . As we will now see, those conditions
are satisfied with subshifts, and a subshift X with the shift action σ can be viewed as a
dynamical system. One encounters a minor subtlety when considering higher-dimensional
subshifts in this general framework of dynamical systems: indeed, over Z-subshifts, we
have σk = σk1 for any k ∈ Z, and so (X,σ1) satisfies the definition given in Definition 1.27
(of course, we still need to define a topology on X). On the other hand, we do not have
a single action for Zd subshifts with d > 1. We will briefly mention in Section 1.1.3 how
some classical notions of the study of dynamical systems can be adapted in this case. In
general though, this is only a minor difficulty, as most definitions can straightforwardly be
adapted to accommodate the existence of multiple actions (σu)u∈Zd .

Cylinders, compactness, continuity

We first give a definition of a distance on AZd , which in turn induces a topology that we
describe below. For a point u = (u1, . . . ud) ∈ Zd, we write ∥u∥∞ = max1≤i≤d |ui|. In
particular, Br is the ball of radius r for this norm.

1.1. SUBSHIFTS AND TILINGS 15

Definition 1.28: Distance - subshifts

Let A be a finite alphabet, and define:

d : AZd ×AZd

(x, y) 7→ 2− inf
u∈Zd{∥u∥∞,xu ̸=yu}

Then d is a distance on AZ2 .

An intuitive way to understand this distance is the following: configurations are close
if they agree on a large central ball. Other distances, or pseudo-distances, have been
considered in the literature, see the recent thesis [Ben23] for a survey. A basis of open sets
is the set of cylinders:

Definition 1.29: Cylinders

For any pattern u ∈ AZd , we call cylinder and write [u] the set

[u] = {x ∈ AZd
, x
∣∣
dom(u)

= u}

We sometimes abuse the notation and also write [u] for [u] ∩ X for some subshift
X ⊆ AZd when X is clear from the context.

Depending on the familiarity of the reader with metric spaces or the more abstract
topological spaces, one can use either point of view to think about the topology of subshifts
thanks to the following proposition:

Proposition 1.30

The topology induced by the distance d has the family ([u])u∈A∗ as a basis
of open sets. It is the product topology of the discrete topology on each of
the spaces A.

As any subshift is a subset of some AZd , both the distance and the topology on X itself
are obtained as the induced distance and topology. From now on, we will always consider
the space AZd with this topology and distance for any finite alphabet A.

We can now give a completely topological characterization of subshifts, equivalent
to Definition 1.4. This in turn will imply that block maps (and therefore, conjugacy) have
nice topological descriptions, making some results easier to prove.

Proposition 1.31

For any finite alphabet A, the space AZd is compact.

Proof. Let X = AZd . As each A is finite and so obviously compact, an abstract proof is
given by Tychonoff’s theorem, stating that a product of compact spaces is compact, and
so X is compact. A more concrete proof can be derived from the proof of Proposition 1.14.
Once again, we can simply use the “metric” point of view, and show that any sequence

16 CHAPTER 1. FIRST DEFINITIONS

of configurations (xn) ∈ XN contains a converging subsequence. Using the same diagonal
argument than in Proposition 1.14, we can construct by successive extractions sequences
(xin) and a configuration x ∈ AZ2 , with x|Bn

= xnk |Bn
for all k ≥ 0.

Proposition 1.32

For a finite alphabet A, the subshifts of AZd are exactly the closed, shift-
invariant subsets of AZd .

Proof. Let F be a family of finite forbidden d-dimensional patterns on some alphabet A,
and let X = XF . Then X is shift-invariant by Proposition 1.9. Then, let (xn) ∈ XN be a
converging sequence of configurations of X, xn → x. We show that x ∈ X. Up to some
extraction, we can assume that for any n ∈ N we have x|Bn

= xn|Bn
. In particular, x|Bn

is locally admissible, that is, it does not contain patterns from F . Therefore, x itself does
not contain any forbidden pattern, and so x ∈ X, hence X is closed.

Let X be closed and shift-invariant in AZd . We claim that X = XAZd\L(X)
. The

inclusion X ⊆ XA∗\L(X) is clear. For the other inclusion, let x ∈ XA∗\L(X). By definition,
for all n ∈ N, x|Bn

∈ L(X), and so there exists xn ∈ X with x|Bn
= xn|Bn

, and moreover
xn → x (in AZd). As X is closed, we in fact get x ∈ X.

Corollary 1.33: Compactness

Subshifts are compact spaces.

Proof. X ⊆ AZd is closed in a compact space, so it is compact.

One of the consequences is that a sequence of larger and larger locally admissible pat-
terns (un)n∈N for a subshift X, for example with dom(un) = Bn, admits a converging
subsequence to some x ∈ X. In particular, if un ⊑ un+1 for all n, then un → x ∈ X.

The following theorem, attributed to Curtis, Hedlund and Lyndon by Hedlund himself
in [Hed69], explains why we argued that the definition of block maps presented in Sec-
tion 1.1.2 was indeed the correct one:

Theorem 1.34: Curtis-Hedlund-Lyndon [Hed69, Thm. 3.4]

Let (X,σX), (Y, σY) be subshifts on Zd. Then, the block maps Φ: X → Y are
exactly the continuous maps Φ which satisfy for all u ∈ Zd that Φ◦σX,u = σY,u ◦Φ.

Proof. Let A and B be the respective alphabets of X,Y . The fact that block maps com-
mute with the shift functions is Proposition 1.16. As block maps are defined using local
functions, they are also clearly continuous: this is easily seen using the “metric” definition
of continuity, as for a block map Φ and any n > 0, x, x′ ∈ X, d(x, x′) ≥ 2−n implies
that d(Φ(x),Φ(x′)) ≤ 2−n+radius(Φ) – in fact, we obtain that block maps are Lipschitz-
continuous, with a Lipschitz constant depending on their radius, which is a much stronger
property.

For the other direction, let Φ be a shift-commuting continuous function. As X is
compact, any continuous function is uniformly continuous by Heine theorem. As X is
furthermore a metric space, there exists r ≥ 0 such that for any x, x′ ∈ X, d(x, x′) ≤

1.1. SUBSHIFTS AND TILINGS 17

2−r =⇒ d(Φ(x),Φ(x′)) ≤ 1
2 , that is, Φ(x)0 = Φ(y)0. We can therefore define the map:

ϕ : Lr(X)→ B
u 7→ Φ(u)0

where Φ(u)0 is the value of Φ(x)0 for x in [u], which is well-defined by the above
remark. The fact that Φ is shift-commuting means that Φ is the block map whose local
function is ϕ.

This theorem has been generalized to spaces other than subshifts on Zd, but the proofs
are always very similar, see for example [CC10].

We are now ready to prove Proposition 1.17 using tools from topology rather than
constructing inverse block maps “by hand”:

Proof of Proposition 1.17. Φ: X → Y is continuous and defined on a compact space, so
Φ−1 is also continuous. It is easy to check that Φ−1 also commutes with all the shift
functions on Y , and so by Theorem 1.34, it is a block map.

Dynamical and mixing properties

As dynamical systems, subshifts can be studied from this point of view, and we can try to
understand how classical definitions and properties from the theory of dynamical systems
can be reformulated, or better understood, in the case of subshifts. The difficulty of
(X,σ) not being an actual dynamical system mentioned in Section 1.1.3, at least when
using Definition 1.27, will have minor consequences on some definitions, most importantly
what it means for a subshift to be mixing. In particular, this explains why some results
of Section 2.3.2 will differentiate between the one-dimensional and the higher-dimensional
case. We give a few examples of properties that will be used later in the thesis, mainly
in Section 2.4 and Section 3.3. Some other but lesser-known and sometimes more technical
properties will also be introduced directly in those chapters whenever needed.

Periodicity A first example of dynamical property is periodicity. We give the higher-
dimensional definition directly, and mention an interesting detail about this definition.

Definition 1.35: Periodic subshift

Let x ∈ AZd be a configuration. We say that x is periodic if there exists
n0, . . . , nd−1 > 0 such that for all 0 ≤ i < d, σniei(x) = x.
A subshift X is periodic if all its configurations are periodic. If X has no
periodic point, then it is aperiodic.

Note that aperiodicity is not the negation of periodicity: a subshift containing periodic
and non-periodic configurations is neither periodic not aperiodic. An interesting result,
which is a consequence of compactness, is the following:

Theorem 1.36 [BDJ08, Thm. 3.8]

If X is periodic, then it is finite.

Note that this theorem is interesting only when we use the definition of “periodic
subshift” given in Definition 1.35. The traditional definition is obtained here as a corollary,
showing that both are in fact equivalent:

18 CHAPTER 1. FIRST DEFINITIONS

Corollary 1.37

If X ⊆ AZd is a periodic subshift, there exists (ni)0≤i<d such that for any
x ∈ X and 0 ≤ i < d, σniei(x) = x.

In dimensions d ≥ 2, other weaker notions of periodicity exist, and we might simply
require that for some ei there exists ni such that σniei(x) = x. In this thesis, whenever we
say that a subshift is periodic, we mean that it satisfies Definition 1.35, which is classically
known as strong periodicity in the literature.

Minimality Another strong condition, which admits a nice characterization in the spe-
cial case of subshifts, is minimality. In full generality, the usual definition – which also
explains the name of minimal subshifts – is the following:

Definition 1.38: Minimal subshift

A subshift X is minimal if it contains no proper non-empty subshift.

This is a general definition from the theory of dynamical systems, which even in the
general case admits several other equivalent definitions. In the case of subshifts, this can
be reformulated in a very simple condition:

Proposition 1.39

Let X be any subshift, defined by some family of forbidden patterns F .
Then X is minimal if and only for all u ∈ L(X), XF∪{u} = ∅. Equivalently,
for all x ∈ X, u ⊑ x.

Proof. If u ∈ L(X) then XF∪{u} is a proper subshift of X.

We will see in Section 2.4.1 that minimality can prevent some otherwise complicated
combinatorial properties from appearing in multidimensional subshifts.

Transitivity and mixing properties We give here some of the most important “mixing
notions” studied in dynamical systems in general, and tiling spaces in particular. By
“mixing notion”, we mean any property which quantifies the way arbitrarily large patterns
can be “glued” with each other, that is, to what extent can we find configurations containing
both u, v ∈ Ln(X) for any pair of patterns u, v as n grows ? A rather weak notion is
transitivity:

Definition 1.40: Transitivity

A subshift X ⊆ AZd is transitive if for any pair of patterns v, w ∈ L(X),
there exists x ∈ X such that v ⊑ x and w ⊑ x.

A formulation that makes the link clearer with some other, more quantitative mixing
notions can easily be obtained:

1.1. SUBSHIFTS AND TILINGS 19

Proposition 1.41

A subshift X is transitive if and only if

∀n > 0, ∃u ∈ Zd, ∀v, w ∈ Ln(X), ∃x ∈ X,x
∣∣
BN

= v, x
∣∣
BN+u

= w

A stronger property is the one of weakly mixing dynamical systems.

Definition 1.42: Weak mixing

A dynamical system (X,T) is weakly mixing if (X ×X,T × T) is tran-
sitive.

Finally, the last definition which we will discuss in Section 2.4.2 and Section 3.3.2 is the
mixing property. We give a definition which is only valid for one-dimensional subshifts:

Definition 1.43: Mixing

A subshift X ⊆ AZ is mixing if for n > 0, there exists N > 0 such that
for any z ∈ Z with |z| ≥ N and any pair of patterns v, w ∈ Ln(X), there
exists x ∈ X such that x|BN

= v, x|BN+z = w.

In the case of subshifts, we try to give a high-level overview of the difference between
being transitive, weakly mixing, and mixing:

• Transitive means that any two patterns can be glued, without any control over “how”
(their relative position, their distance ...)

• Weakly mixing means that we still do not control anything on how we can glue an
arbitrary pair of patterns, but for any two pairs of patterns (P1, P2) and (Q1, Q2),
we can glue P1 and P2 on the one hand, Q1 and Q2 on the other hand, in the same
relative positions.

• Mixing means that any two patterns can be glued in any relative position, provided
that they are placed sufficiently far from one another.

In the case of higher-dimensional subshifts, being mixing is often too strong of a con-
dition. Indeed, one has to deal with patterns of complex shapes, such as rings, and more
generally patterns with non-rectangular support, which can then be at large distance but
in complex geometric configurations (for example, sequences of concentric rings that “be-
long” alternatively to v or w). We often choose to study weaker conditions, specifying only
how rectangular blocks can be glued together, and avoid imposing anything on general
patterns – see Section 3.4 for such a notion.

In particular, we have the easy chain of implications:

Proposition 1.44

Mixing =⇒ Weakly mixing =⇒ Transitive.
Those implications are strict.

20 CHAPTER 1. FIRST DEFINITIONS

1.1.4 Walks on graphs, regular languages, sofic subshifts

Multidimensional sofic subshifts

The main class of subshifts that we presented up to this point was the class of SFTs.
However, as already mentioned about the proof of Proposition 1.14, the class of SFTs is
not stable by factor map:

Definition 1.45: Sofic subshift

Let Y ⊆ BZd be a subshift. We say that X is sofic if there exists an
SFT X ⊆ AZd and a factor map Φ: X → Y . In that case, X is an SFT
extension of Y .

More succinctly, sofic shifts are factors of SFTs. We will often use the next proposition
to make some simplifying assumptions on sofic subshifts:

Proposition 1.46

Let Y ⊆ Zd be a sofic subshift. There exists a nearest-neighbour SFT X
and a factor map Φ of radius 0 such that Y = Φ(X).

Proof. Let Z be the Zd SFT and Ψ: Z → Y be the factor map given by Definition 1.45.
By Theorem 1.20, Z is conjugate via Θ: Z → Z ′ to a nearest-neighbour SFT Z ′. Let r =
radius(Ψ◦Θ−1), and let X = Φr(Z

′) be the r-higher-block code of Z ′ (see Definition 1.19).
Then X is a nearest-neighbour SFT, and Φ = Ψ ◦ Θ−1 ◦ Φ−1

r is a factor map X → Y of
radius 0.

X Z ′ Z Y
Φr Θ Ψ

In general, in later constructions, we will often view sofic subshifts as being “SFTs up
to construction lines”. The typical example will be a sofic subshift Y ⊆ BZd obtained as
the natural projection of an SFT X ⊆ (A × B)Zd ≃ AZd × BZd . We will refer to this
situation as X being a subshift with two (or more) layers, the sofic subshift Y being then
the subshift consisting only of one (or more) of X’s layers.

Example 1 (Sunny-side-up). We define the sunny-side-up subshift in dimension d as
the subshift of {0, 1}Zd defined by

Yd = {y ∈ {0, 1}Z
d
,
∑

u∈Zd

yi ≤ 1}

We show that Y = Y1, the one-dimensional sunny-side-up, is a sofic subshift. For
a visual illustration of what we mean by layers, let us represent Y as a subshift on the
alphabet B = {□,■□}, Y being the set of configurations containing at most 1 yellow square.

Let A = { , , } ⊊ { , }
︸ ︷︷ ︸

B

× { , , }
︸ ︷︷ ︸

Aarrow

.

We define a nearest-neighbour SFT X on A by defining the allowed patterns F =
{ , , , }. More informally, the arrows on the Aarrow layer must be con-
tinued in the same direction. Define then the block-map Φ: X → Y of radius 0 which

1.1. SUBSHIFTS AND TILINGS 21

simply forgets the Aarrow layer, projecting only on the B layer of A. Then Φ is a factor
map, and so Y is sofic as the image of the nearest neighbour SFT X by a block map.

The proof that Yd is sofic for d > 1 is presented in Section 3.2.3, but follows the same
ideas of using additional colours and layers to identify the only point that can be mapped
to the unique 1 in configurations of Yd.

Notation. For any product A =
∏n
i=1Ai, we will denote πAj : A → Aj the natural

projection. We will sometimes use this notation in the following ways:

• π∏
j∈J⊂J1,nK Aj

=
∏
j∈J πAj is a map

∏n
i=1Ai →

∏
j∈J Aj .

• If X ⊆ (
∏n
i=1Ai)

Zd is a subshift with several layers, we write πAj (X) ⊆ AZd

j the
subshift obtained by applying πAi :

∏n
i=1 → Aj point-wise on each configuration.

Proposition 1.47

The class of sofic shifts strictly contains the class of SFTs (in any dimen-
sion).

Proof. Every SFT is clearly sofic, as for example they are the images of themselves by the
identity map. We show that the sunny-side-up in dimension d is sofic but not an SFT.
The fact that it is sofic is proven in Example 1 for the case d = 1, and Section 3.2.3 for
the case d = 2 which easily generalizes to higher dimensions. Suppose that Yd = XF is an
SFT, defined by some finite family of forbidden patterns F . Let then k be such that F ⊆
{0, 1}Qk . Let x ∈ {0, 1}Zd be the configuration defined by xu = 1 ⇐⇒ u ∈ {0, (k+1)e0}.
As x contains two symbols “1”, we have x ̸∈ Yd. However, as those “1” are at distance k+1,
we also have that for any u ∈ Zd, x|u+Qk

̸∈ F . Indeed, every subpattern of x of size k is
globally admissible in Yd, hence locally admissible. By definition, this means that x ∈ XF ,
that is x ∈ Yd. This is a contradiction.

In Chapter 2, we will present some other tools and techniques to distinguish SFTs from
sofic subshifts, and even sofic subshifts from non-sofic subshifts.

Interlude: some graph theory

A convenient way to represent SFTs and sofic subshifts in dimension one is to use graphs.
We briefly present here the kind of graphs we consider, bearing in mind that graphs are used
at several places in the thesis (most importantly in Section 3.4 and Chapter 4) with slightly
different assumptions, that will therefore be highlighted when needed. In particular, some
additional definitions will be given in Section 4.3.1, and that we choose not to mention for
now as they are only needed in this chapter.

Definition 1.48: Graphs

A graph G is a pair (V (G), E(G)) of vertices V (G) and edges E(G) ⊆
V (G) × V (G). If for all (u, v) ∈ E(G), we have (v, u) ∈ E(G), then G is
said to be undirected, and directed otherwise.

In the case of undirected graphs, we will sometimes abuse notation and terminology,
and talk about “the” edge e = (u, v) between u and v for both (u, v) and (v, u) ∈ E(G).

22 CHAPTER 1. FIRST DEFINITIONS

Notation. For a graph G = (V,E), and an edge e ∈ E, we write s(e), t(e) ∈ V the vertices
such that e = (s(e), t(e)). Those vertices are respectively called the starting and ending
vertices of e. If it exists, the edge (t(e), s(e)) is written e−1, and the map e ∈ E → e−1 is
then an involution.

It is sometimes convenient to have some additional information carried by the graph:

Definition 1.49: Labeled graph

Let G = (V,E) be a graph. A vertex-labeling function is a map λV : V →
C into some set C; An edge-labeling function is a map λE : E → D
into some set D. In this case, (V,E, λV), (V,E, λE) and (V,E, λV , λE) are
respectively called vertex-labeled, edge-labeled and labeled graphs.

Finally, we need a last set of definitions:

Definition 1.50: Paths, walks, cycles

Let G = (V,E) be a graph. A path, or walk, in G, is a sequence v1, . . . , vn
of vertices such that for 1 ≤ i ≤ n − 1, (vi, vi+1) ∈ E. It is a cycle if
v1 = vn, is simple if vi ̸= vj for i ̸= j, and is non-backtracking if vi ̸= vi+2

for 1 ≤ i ≤ n− 2.

Unless specified otherwise, all the graphs considered in Section 1.1.4 are finite, i.e. have
finite sets of vertices and edges.

The one-dimensional case

In dimension 1, there exist links between graphs and subshifts. A first easy observation, fol-
lowing from Theorem 1.20, shows that we can use directed graphs to represent Z subshifts
of finite type:

Proposition 1.51

Let G = (V,E) be a directed graph. Then, the set of bi-infinite walks on
G is a nearest-neighbour SFT on the alphabet V .

Proof. The bi-infinite walks on G are exactly the Z-indexed sequences x of elements of
V such that for all i ∈ Z, (xi, xi+1) ∈ E. In other words, this set of walks is exactly
XV 2\E .

However, the interesting direction is the other one, which shows that many examples
of algorithmic problems on SFTs can be solved using general techniques of graph theory.
Let us write Walks(G) for the set of bi-infinite walks on G, so that Proposition 1.51 states
that Walks(G) is a NN-SFT.:

1.1. SUBSHIFTS AND TILINGS 23

Proposition 1.52

Let X be an SFT. Then, there exists a graph G = (V,E) such that X is
conjugate to Walks(G).

Proof. By Theorem 1.20, X is conjugate to a nearest-neighbour SFT Y = XF ⊆ BZ, with
F ∈ B2. Define G = (B,B2 \ F). Then X ≃ Y = Walks(G).

This point of view is very useful, as we can use the structure of directed graphs to prove
general claims about Z SFTs. An important example concerns periodic points, which as
we will see in Section 1.2.3 does not hold in higher dimensions:

Proposition 1.53

Let X be a non-empty Z-subshift. Then X contains a periodic point.

Proof. As periodic points are preserved by conjugacy, we can assume by Proposition 1.52
that X = Walks(G) for some finite graph G. As X is non-empty, there exists a bi-infinite
walk x in G. In particular, G must contain a cycle, which can then be used to produce a
periodic point: more precisely, as G is finite, there exists i, j ∈ Z such that xi = xj . Up
to shifting x, we can even assume i = 0. The configuration k ∈ Z 7→ x(k mod j) is then a
point in X and is periodic of period j.

For sofic subshifts, a very similar characterization holds, which in turns allows us to
use the theory of formal languages to study problems about them, rather than graph
theory in general:

Definition 1.54: Labeled walks

Let G = (V,E, λE) be an edge-labeled graph. An edge-labeled walk is
a sequence y = (yi)i∈Ja,bK for a ≤ b ∈ N ∪ {±∞}, such that there exists a
walk x = (xi)i∈Ja,b+1K with λE(xi, xi+1) = yi for all i.

Said differently, an edge-labeled walk is the sequence of labels read along the edges
taken by a walk, in the sense of Definition 1.50. One of the main tools to study sofic
subshifts over Z is then the following result:

Theorem 1.55 [Wei73, Thm. 3]

Z-sofic subshifts are exactly the sets of bi-infinite edge-labeled walks on
graphs.

One important nuance with SFTs is that an edge-labeling map need not be injective:
in particular, the same edge-labeled walk might correspond to different walks in the graph,
and therefore, be extended in infinite edge-labeled walks in different ways.

Proof. Suppose that Y ⊆ BZ is sofic, so that by Proposition 1.46 it is a factor of a nearest-
neighbour SFT X ⊆ AZ2 by some 0-block-map Φ with local map f . Let G be the graph

24 CHAPTER 1. FIRST DEFINITIONS

given by Proposition 1.52 such thatX is the set of walks on G. Define then the edge-labeled
graph H as H = (V (G), E(G), λE) where:

λE : E(H)→ B
(a, b) 7→ f(a)

One can then check that edge-labeled walks onH are exactly the elements of Φ(X) = Y .
Suppose now that Y is the set of bi-infinite walks on some graph G = (V,E, λE).

Simply define X as X = XV 2\E , and Φ the 1-block-map induced by by the local map
f : (·, a, b) ∈ V 3 7→ (λE(a, b)) ∈ B.

This result makes sofic subshifts amenable to analysis using graph-theoretic tools: for
example, the same proof as Proposition 1.53 gives that Z-sofic subshifts are either empty or
contain a periodic point. However, as labeled walks on graphs, we can study sofic subshifts
with another tool, the theory of formal languages, and in particular of regular languages.
In order to define regular languages, we will introduce a combinatorial device, and which
will be generalized in some sense in Section 1.2. This is a rather short introduction to
the topic, and we only give the necessary definitions; a complete introduction to formal
languages and automata theory can be found in [And06], although more details will be
given in Section 2.1.1 as needed:

Definition 1.56: Finite Automaton

A finite automaton A is a quintuple A = (A, Q, δ, I, F), satisfying:

• A is a finite alphabet, and Q a finite set of states.

• δ : Q×A → 2Q is a partial transition function.

• I, F ⊆ Q are respectively an initial and final set of states.

This is the typical definition of automata as found in the literature. However, we can
easily see the link between the formalism of Definition 1.56 and the one of edge-labeled
walks: consider the graph G whose vertex set is Q, with edges E = {(q, q′) ∈ Q2 | q′ ∈
δ(q,A)}, edge labels 2A and an edge-labeling map defined by λE(q, q

′) = {a ∈ A | q′ ∈
δ(q, a)} ⊆ A.

This automaton is to be thought of as a machine, reading a word letter by letter and
transitioning from to state according to the letters it reads:

Definition 1.57: Automaton run

Let A = (A, Q, δ, I, F) be a finite automaton. A valid run of A on a word
w ∈ An is a sequence of states (q0, q1, q2, . . . , qn) ∈ Qn+1 such that:

• q0 ∈ I

• For 0 ≤ i < n, qi+1 ∈ δ(qi, wi)

It is an accepting run if moreover qn ∈ F .

In other words, a valid run on w is an edge-labeled walk on the graph defined after Def-
inition 1.56, where the sequence of labels is the word w. We will therefore usually extend
the map δ : Q × A → 2Q to a map δ : Q × A∗ → 2Q, setting δ(q, w) as the set of states

1.2. COMPUTABILITY 25

that can be reached by a run on w starting from the state q. This allows us to define the
language recognized by the automaton:

Definition 1.58: Regular language

The language L(A) of an automaton A is the set of words that admit
some accepting run of A.
A language L is regular if there exists an automaton A such that L = L(A).

Using Theorem 1.55, the next proposition becomes an easy reformulation in the setting
of formal languages:

Proposition 1.59

Let X be a sofic subshift. Then,
⋃
n∈N Ln(X) is a regular language.

Reciprocally, if L is regular, the subshift whose allowed words are the
elements of L is sofic.

The second point of Proposition 1.59 is somewhat misleading, although correct: for it
to be a non-empty statement, the language L must be infinite, and be – at least for some
infinite family – downwards closed, in the sense that (u ∈ L ∧ w ⊑ u) =⇒ w ∈ L.

Proposition 1.59 is a powerful way to show that some Z-subshifts are not sofic, by
showing that their languages are not regular. This is often an easy solution, as we will
see in Section 2.1, as regular languages have been studied extensively and admit a large
variety of characterizations.

A final theorem about finite automata which will make proofs of Chapter 2 easier relates
the general finite automata introduced in Definition 1.56, and deterministic automata: an
automaton A = (A, Q, δ, I, F) is deterministic if I = {q0} for some q0 ∈ Q, and |δ(q, a)| ≤
1 for all q ∈ Q, a ∈ A – in that case, we write δ(q, a) = q′ instead of δ(q, a) = {q′}.

Theorem 1.60

Let L ⊆ A∗ be a language. Then L is regular if and only there exists a
deterministic automaton A = (A, Q, δ, q0, F) such that L = L(A).

1.2 Computability

1.2.1 Turing Machines and decision problems

We quickly introduce the main computability notions that we will use in this thesis, either
directly or as a motivation for the kind of problems that we choose to look at. Although
we recall the main definitions, we expect the reader to be somewhat familiar with the basic
objects. We refer to [Soa16, Introduction, Turing Machines] for a more detailed exposition.

Historically, the “building block” of computability theory was the notion of Turing
Machine. Although computability can be defined in a way that avoids mentioning Turing
Machines altogether, this point of view makes the link with tilings quite clear, as we will
see in Section 1.2.3. A Turing Machine can be viewed a generalization of finite automata
(see Definition 1.56), with an additional memory.

26 CHAPTER 1. FIRST DEFINITIONS

Definition 1.61: Turing Machine

A (deterministic) Turing Machine M is a 6-tuple M = (A, Q,□, δ, q0, F),
where:

• A is a finite alphabet, and □ ∈ A is the blank symbol.

• Q is a finite set of states, and q0 ∈ Q is the initial state, F ⊆ Q is a
(possibly empty) set of final states.

• δ : Q×A → Q×Q×A× {−1, 0, 1} is a partial transition function.

Just as we defined runs for finite automata Definition 1.57, we can define a run of a
Turing Machine.

Definition 1.62: Turing Machine global state

A global state of some Turing Machine M is a triplet (Γ, h, q) where
Γ ∈ AZ is a tape, h ∈ Z is the head position, and q ∈ Q is the internal
state of M .

We can now define the action of M on a global state. The idea is that a machine M
acts on bi-infinite tapes, in which each cell contains a symbol from A, using a read-write
head located somewhere on the tape. At each step, the machine updates its internal state
q ∈ Q depending on the content of the tape at its head position, possibly rewrites the
symbol in this position, and moves its head to an adjacent cell (or stays in place) – the
new internal state, and the actions on the tape, are all given by δ. More formally:

Definition 1.63: Turing Machine run

Let M = (A, Q,□, δ, q0, F) be a Turing Machine and S = (Γ, h, q) be some
global state. Let (q′, b, k) = δ(q,Γh) ∈ Q × A × {−1, 0, 1}. A step of M
on S is the global state S′ = (Γ′, h′, q′), where:

• h′ = h+ k ∈ Z.

• Γ′
h = b ∈ A, and for i ̸= h, Γ′

i = Γi.

If δ(q,Γh) is not defined, then there are no valid steps from this global
state.
A run of M on some input x = a0 . . . an−1 ∈ (A \ {□})n is a (possibly
infinite) sequence of steps S0, S1, . . . , where S0 is the global state (Γ0, 0, q0),

with initial global state Γ0(i) =

{
ai if 0 ≤ i < n

□ otherwise
.

Just as with automata, we can associate to a Turing Machine a language, and more
precisely, as we have a tape on which we can write, we can compute functions:

1.2. COMPUTABILITY 27

Definition 1.64: Turing Machine function

Let M = (A, Q,□, δ, q0, F) be a Turing Machine, with a total transition
function δ, and q0 ̸∈ F . Let (S0, . . . , Sn) be a finite run on x = a0 . . . an−1,
where Si = (Γi, hi, qi) for 0 ≤ i ≤ n satisfying that for i < n, we have
qi ̸∈ F and qn ∈ F . Let y = Γn|J0,mini>0{Γn

i =□}−1K be the word on A \ □
read at the origin of the last tape Γn. We write:

• M(x)↓n as M stops in n steps, or more generally M(x)↓, and say that
M halts on input x.

• M(x) = y is the value of the function computed by M on x.

• If there exists no such finite run, we write M(x)↑, and say that M
does not halt.

In particular, M : A∗ → A∗ is not necessarily total, even if δ is.

We can now define decision problems, and what it means for a problem to be solvable:

Definition 1.65: Decision problem

A decision problem Problem is a subset of {0, 1}∗. An element x ∈
Problem is a solution, or positive instance, of the problem.

Rather than subsets of {0, 1}∗, we will often define decision problems as closed questions
about some objects:

Decision Problem Pseudo-problem

Input: Some object X.
Output: Whether X satisfies some property P.

This is an equivalent point of view on the same object: indeed, this is a way to define
the set of (encodings of) objects X in {0, 1}∗ such that P(X) holds. This is also why it
is important to restrict ourselves to closed questions. We often choose this formulation
of decision problems, as we find that it makes more apparent the fact that one has to
carefully define what the “valid inputs” are, and in particular, to ensure that they have a
representation that could be given to a Turing Machine to operate on.

Definition 1.66: Decidable, enumerable

A decision problem Problem is decidable (or solvable) if there exists a
total Turing Machine M such that for x ∈ {0, 1}∗, M(x) = 1 if and only if
x ∈ Problem.
It is (recursively) enumerable if there exists M such that for all x ∈
{0, 1}∗, M(x)↓ and M(x) = 1.

The first and most well-known example of a problem which is undecidable is the Halting

28 CHAPTER 1. FIRST DEFINITIONS

Problem:

Decision Problem Halt

Input: A Turing Machine M .
Output: Whether M halts on the empty input.

Theorem 1.67 [Tur+36]

Halt is undecidable.

For any property P , we say that a subset X of {0, 1}∗ is co-P if and only if {0, 1}∗ \X
is P .

We will need another last notion to classify the difficulty of certain decision problems.
The notion of reduction is a way to formalize that one problem is harder than another:

Definition 1.68: Many-one reduction

Let A,B ⊂ {0, 1}∗ be two decision problems. We say that B is harder than
A, and write A ≤m B, if there exists a total Turing Machine M such that
x ∈ A ⇐⇒ M(x) ∈ B. In that case, we say that M is a (many-one)
reduction from A to B, or that A is reducible to B.

The definition of Turing Machines given in this section is very robust, in the sense that
many natural variants have the same expressive power (that is, compute the same func-
tions). For example, we can have more than a single tape, we can use mono-infinite rather
than bi-infinite tapes, we can generalize the possible moves from {−1, 0, 1} to any finite
set, and so on. This will be useful when considering tilings that “represent” computations
of Turing Machines, in Section 1.2.3.

1.2.2 Arithmetical hierarchy

In a lot of applications, knowing whether a problem is decidable or not can in itself be
difficult; depending on the domain, one hopes that the problem being considered is solv-
able, and can then try to find the most “efficient” algorithm deciding it. On the other
hand, we will see in Section 1.2.3 that most problems about higher-dimensional subshifts
are undecidable, and that it is generally easy to show that a given problem is also unde-
cidable. We therefore want to obtain more fine-grained information about its “degree of
undecidability”: we can in fact construct a hierarchy of undecidable problems, and one
of our goals will then be to find exactly where our questions about subshifts lie in this
hierarchy. This “hierarchy of undecidability” is called the arithmetical hierarchy. There
are many approaches to define this hierarchy, and we choose one based on logical formulae.
For definiteness, we consider first-order formulae in the language of Peano arithmetic.

1.2. COMPUTABILITY 29

Definition 1.69: Arithmetical hierarchy - Formulae

We recursively define for n ≥ 0 the sets Σ0
n and Π0

n of logical formulae as follows:

• If ψ contains only bounded quantifiers, it belongs both to Σ0
0 and Π0

0.

• If ψ is equivalent to a formula ∃x, ϕ(x) with ϕ(x) ∈ Π0
n, then ψ ∈ Σ0

n+1.

• If ψ is equivalent to a formula ∀x, ϕ(x) with ϕ(x) ∈ Σ0
n, then ψ ∈ Π0

n+1.

This defines a hierarchy on the set of first-order formulae:

Proposition 1.70

For any n ≥ 0:

• Σ0
n ⊊ Σ0

n+1 and Π0
n ⊊ Π0

n+1.

• Σ0
n ⊊ Π0

n+1 and Π0
n ⊊ Σ0

n+1.

Proof. The inclusions are immediate consequences of the definition. The fact that they
are strict is a classical diagonal argument (see [Soa16, Corollary 4.2.3]).

This is sufficient to assign a “level” to any formula: as there exists an encoding
of pairs (and so of any finite sequence) of integers which can be written in first-order
Peano arithmetic, the usual example being the Cantor pairing function (x, y) ∈ N2 7→
(x+y+1)(x+y)

2 + y ∈ N, a formula ψ = ∃x1, ∃x2 . . . ∃xnϕ can always be written as an equiva-
lent formula ψ′ = ∃x, ϕ′(x) where ϕ and ϕ′ are in the same level of the hierarchy (and the
same holds for universal quantifiers).

We can now define an equivalent hierarchy of sets of natural numbers:

Definition 1.71: Arithmetical hierarchy - Sets

A set of integers X ⊂ N is a Π0
n (resp. Σ0

n) set if and only if there exists a
Π0
n (resp. Σ0

n) formula ϕ such that for all x ∈ N,

x ∈ X ⇐⇒ ϕ(x) is true

As a special case, a set X ∈ Σ0
0 = Π0

0 is said to be recursive, or computable. We
refer to [Soa16] for more details, but try to give some intuitions. There are some profound
links between the arithmetical hierarchy thus defined, and computability theory. The first
result is the following:

Proposition 1.72

A set X is Σ0
1 if and only if there exists a Turing Machine M such that for

x ∈ N, x ∈ X ⇐⇒ M(x)↓, that is if X is recursively enumerable. It is Π0
1

if and only there exists M such that for x ∈ N, x ∈ X ⇐⇒ M(x)↑.

30 CHAPTER 1. FIRST DEFINITIONS

Proof sketch. We prove it for recursively enumerable sets. Let X be recursively enumer-
able, and M such that x ∈ X ⇐⇒ M(x)↓ for all x ∈ N. We can then write a formula ψ(n)
corresponding to the statement “M stops in at most n steps on input x” in first-order Peano
arithmetic with only bounded quantifiers (we do not detail the exact encoding scheme, but
it is enough to notice that in n steps, the machine only ever visits finitely many cells of
its tape, and so we can encode its entire run so far with a finite integer). In particular,
the formula ∃nψ(n) is equivalent to the fact that M halts. Conversely, as any formula
with only bounded-quantifier in first-order Peano can be decided by a Turing Machine, it
is sufficient to decide a Σ0

1 formula ψ(x) of the form ∃n, ϕ(x, n) to test for each possible
value of n the (thus decidable) formula ϕ(x, n) and halt when it is true.

We can define within each of those classes some “reference” problems, which are at least
as hard as any other problem of the same class:

Definition 1.73: Complete problems

A problem P is said to be Σ0
n-hard (resp. Π0

n-hard) if for any Σ0
n problem

A (resp. Π0
n problem A), we have A ≤m P . If furthermore P is itself a Σ0

n

problem, it is Σ0
n-complete (resp. Π0

n-complete).

By Proposition 1.72, Halt is Σ0
1-complete. We will see in Section 1.2.3 that a natural

problem related to tilings is also Σ0
1-complete, and give in Section 2.3 other examples of

complete problems, both related and unrelated to tilings, for higher levels in the hierarchy.
In order to characterize some conjugacy invariants of tilings, we need yet another

hierarchy. As presented in Section 1.1.2, the entropy Definition 1.23 is a real number
which is invariant by conjugacy. However, the hierarchy defined so far only makes sense
for integers – in the language of Peano arithmetic. More generally, Turing Machines are
discrete objects, and we have no way to make computations with real numbers. A general
introduction to the field of computable analysis is [Wei12], and we only state the basic
ideas. Our goal here is to characterize how “complicated” any real number is, from the
point of view of computability theory. As real numbers can be defined using only rational
numbers (which can themselves easily be encoded, so that Turing Machines can be assumed
to work with them), we will characterize reals using the rationals which define it: more
precisely, a real x ∈ R can be viewed as the set {q ∈ Q | q ≤ x} (this is akin to “Dedekind
cuts” construction of the real numbers). Up to any reasonable encoding, this is a set of
natural numbers, which falls in some class of the arithmetic hierarchy:

Definition 1.74: Arithmetical hierarchy - Reals

We define for any n ≥ 0 the following sets of real numbers:

Σn = {x ∈ R | {q ∈ Q | q ≤ x is a Σ0
n set}}

and
Πn = {x ∈ R | {q ∈ Q | q ≤ x is a Π0

n set}}

There exists another definition, more analytical in nature, of those same classes. We
will provide an even further simplified definition, which we will use in Section 2.3.

1.2. COMPUTABILITY 31

Proposition 1.75

For any n ≥ 0,

Σn = {sup
i1

inf
i2

sup
i3

. . . f(i1, . . . , in) for a computable f : Nn → Q}

and

Πn = {inf
i1

sup
i2

inf
i3
. . . f(i1, . . . , in) for a computable f : Nn → Q}

Proof. Let x ∈ Σ1 (as defined in Definition 1.74). Therefore, {q ∈ Q | q ≤ x} is a Σ0
1

set, i.e. it is recursively enumerable, so there exists M a Turing Machine enumerating it.
Then x = supiM(i). On the other hand, suppose that x = supi f(i) for a computable
map f : N→ Q. Then {q ∈ Q | q ≤ x} = {q ∈ Q | ∃i, q ≤ f(i)} which is clearly a Σ0

1 set.
The same proof shows the equivalence for the class Π1, and an induction on n prove in

the same way that this holds for any n.

In fact, Proposition 1.75 is the way the arithmetical hierarchy of real numbers if de-
fined in [ZW01]. We can even make some additional assumptions on this expression. For
notational convenience, we state and prove it only in the case n = 3, which is the one we
need in Chapter 2, the general case being proven in exactly the same way:

Proposition 1.76

Let x = supi infj supk f(i, j, k) for some computable function f : N3 → Q.
Then there exists g : N3 → Q computable such that:

• x = supi infj supk . . . g(i, j, k)

• For any i, j ∈ N, gij : k ∈ N 7→ g(i, j, k) ∈ Q is non-decreasing.

• For any i ∈ N, gi : j ∈ N 7→ lim+∞ gij is non-increasing.

• i ∈ N 7→ lim+∞ gi is non-decreasing.

Proof. This is already proven in [ZW01, Lemma 3.1], for the case n = 2 and with a slightly
different presentation. For i, j, k ∈ N, define g(i, j, k) = maxi′≤iminj′≤j maxk′≤k f(i, j, k).
We claim that g satisfies the required conditions:

• g is computable: indeed, it suffices to compute all the images f(i′, j′, k′) for i′ ≤
i, j′ ≤ j, k′ ≤ k to determine g(i, j, k), which is a finite number of computable values.

• gij : k 7→ g(i, j, k) is clearly non-decreasing, the maps gi : j 7→ limk→+∞ gij(k) is
non-increasing, and i→ limj→+∞ gi(j) is also clearly non-decreasing.

• In the next computations, the sup and inf are replaced by limits by the previous

32 CHAPTER 1. FIRST DEFINITIONS

remark about monotonicity:

sup
i

inf
j
sup
k
g(i, j, k) = sup

i
inf
j
sup
k
(max
i′≤i

min
j′≤j

max
k′≤k

f(i′, j′, k′))

= sup
i

inf
j
lim
k
(max
i′≤i

min
j′≤j

max
k′≤k

f(i′, j′, k′))

= sup
i

inf
j
(max
i′≤i

min
j′≤j

lim
k

max
k′≤k

f(i′, j′, k′))

= sup
i

inf
j
(max
i′≤i

min
j′≤j

sup
k
f(i′, j′, k))

= sup
i

inf
j
sup
k
f(i, j, k)

where the last line is either obtained by repeating the process of replacing and
commuting the various sup, inf, lim operators, or more directly by applying [ZW01,
Lemma 3.1, (7)].

1.2.3 Some natural links with subshifts

The domino problem

One of the first links between computability theory and subshifts is the fact that even the
apparently simple problems on higher-dimensional SFTs are in fact undecidable. Hence,
when asking any non-trivial question about subshifts, we cannot avoid the fact that it
is most the time undecidable, and either try to find partial algorithms, or additional
conditions on the subshifts that we consider to make the problem solvable, or use more
advanced concepts in computability theory to fully characterize and understand the extent
to which these problems are “hard”.

The simplest problem one can ask about an SFT, or as historically introduced, about
a set of Wang tiles, is whether one can find an infinite tiling of the plane using these tiles.
This problem is commonly known as the Domino problem:

Decision Problem Domino

Input: A finite family of Z2 forbidden patterns F .
Output Whether XF is empty.

In dimension 1, this problem is easy: indeed, as shown in Proposition 1.52, it is equiva-
lent to finding an infinite walk in a graph, that is, a cycle. A more abstract but equivalent
(in this setting) decision procedure consists in using Proposition 1.53, and enumerate pe-
riodic points: this is known as Wang’s Algorithm, which is in fact a semi-algorithm as it
does not necessarily terminate. Given F :

• Enumerate all the locally admissible rectangular patterns.

• If one has the same right and left, and top and bottom, sides, it can be “glued” to
itself in all four directions to form a periodic tiling, and so XF is not empty.

• On the other hand, if there are no locally admissible patterns of support Qn, then
there is a fortiori no globally admissible pattern of this size, and so XF is empty.

In dimension 2 and higher, this procedure does not terminate, due to the existence of
aperiodic SFTs, which were an important tool for Berger to prove the following theorem:

1.2. COMPUTABILITY 33

Theorem 1.77 [Ber66]

Domino is Σ0
1-complete.

Sketch of the proof. The upper-bound is a consequence of compactness: using the same
procedure than in dimension 1, we can simply enumerate all the larger and larger locally
admissible patterns. As local admissibility is decidable, and as the existence of arbitrarily
large locally admissible patterns is equivalent to the subshift being non-empty, we get that
Domino ∈ Σ0

1.
The proof of the lower-bound is based on the following ideas:

• One can represent a run of a Turing MachineM using Wang Tiles, and more generally
SFTs: each row in a configuration x represents a global state, with each cell of x|Z×{i}
being a symbol of the alphabet of M , and some other layers indicate the position of
the head, and of the current state. As each step (see Definition 1.63) is purely local
(the tape, head and internal state only changes around the head), we can enforce
the consistency of consecutive steps using local rules. See Figure 1.4 for how one can
define such a tileset, and obtain a corresponding subshift XM .

q0

q3

q0

q2

q1

q1

q0

0

0

0

0

0

0

1

1

1

1

1

0

0

1

1

1

Start

Figure 1.4: Part of a configuration encoding a run of a Turing Machine M on the empty
input. We consider machines with one-way infinite tapes. Each row represents a global
state, and time goes upwards. The initial state is q0. The letter from the alphabet
A = {0, 1,□} is in the square node drawn on each cell, and the current state is in the
coloured circle of a cell. There is only one state per row, corresponding to the position
of the head on the tape. The precise encoding of M and the matching rules are left to
the reader, but should easily be inferred from the figure: for example, we see here that
δ(q0, 1) = (q2, 1,+1), and δ(q3,□) = (q0, 1, 0)

.

• The goal is then to reduce Domino to Halt, ensuring that the subshift is empty

34 CHAPTER 1. FIRST DEFINITIONS

exactly when M does not halt on the empty input. To do this, we simply add to the
list of forbidden patterns all the tiles containing any final state of M . This means
that no configuration can encode a finite run ending in a final state of M .

• This is however not sufficient: for example, configurations corresponding to empty
tapes □Z with no head and no internal state must exist by compactness, and so the
reduction fails. In order to ensure that every infinite configuration actually corre-
sponds to a run, it suffices to ensure that the beginning of a run appears somewhere;
we do this by forcing it to appear “everywhere”, using an elaborate extra layer. A
visual representation is given in Figure 1.6, using the tileset of Figure 1.5 initially
presented in [Rob71].

Figure 1.5: The Robinson tileset consists of these tiles, as well as their rotations by π
2 ,

−π
2 and π. The arrows must be continued by an arrow going in the same direction. An

additional constraint, not depicted in the tileset, is that there must a “blue corner” in each
2× 2 square, and these blue tiles must be placed in a 2Z× 2Z-sublattice.

Using these tiles, the only valid configurations consist of “nested squares” of larger
and larger size. A precise description of the valid configurations can be found e.g.
in [GS21], in which the authors furthermore modify the tileset to ensure additional
mixing properties; a more visual understanding of the valid configurations is given
in Figure 1.6:

Figure 1.6: Part of a configuration of the Robinson SFT, where only the coloured tiles have
been represented. Dashed lines correspond to tiles with a double arrow in this direction,
the colour on the dashed lines being there for visual purposes only.

The idea is then to superimpose a layer from Robinson’s subshift with the origi-
nal subshift XM simulating M , but not as a cartesian product. We instead use the
“empty space” between the squares to embed longer and longer runs of M . Using this

1.2. COMPUTABILITY 35

hierarchical structure, we can therefore correctly initialize the computation, simulat-
ing the same computations infinitely many times in parallel, so that the reduction
finally works: the final subshift is empty if and only if M halts on the empty input.

Effective subshifts

We now present one last class of subshifts that we will be interested in during this thesis,
namely effective subshifts. Although this class naturally appears when trying to consider
larger classes than sofic subshifts defined by “algorithmic” conditions (rather than dynami-
cal ones, as in Section 1.1.3), we will conclude this section by a theorem showing that they
are in fact a very natural class, which arises when studying some problems which would a
priori be unrelated to computability theory.

Definition 1.78: Effective subshifts

Let X be a Zd subshift. If there exists a recursively enumerable family of
finite forbidden patterns F such that X = XF , then X is an effective sub-
shift. If furthermore L(X) itself is recursively enumerable (and therefore
computable), we say that X is a computable subshift.

Whenever we will consider decision problems for which the input can be an effective
subshifts, we assume that it is given as a machineM which enumerates a family of forbidden
patterns. In general, we will not consider algorithmic problems on subshifts which are not
effective, as there is no clear way to specify what the input should even be.

We will see in Chapter 2 some ways to prove that effective subshifts are not sofic. Let us
give a family of subshifts which are not even necessarily effective, but we will nevertheless
consider in Chapter 3. We first give some background about balanced words. A general
introduction to the objects presented here can be found in [Pyt+02, Sturmian Sequences]
or [Lot02, Chapter 2].

Definition 1.79: Balanced word

A (possibly infinite) word x on the alphabet {0, 1} is balanced if for all
sub-words u, v ⊑ x of the same length |u| = |v|, we have ||u|1 − |v|1| ≤ 1.

Definition 1.80: Mechanical word

Let α ∈ [0, 1], β ∈ R. We define the mechanical word xα,β of slope α
and offset β as the bi-infinite sequence

xα,β : Z 7→ {0, 1}
n→ ⌊α(n+ 1) + β⌋ − ⌊αn+ β⌋

A visual illustration of mechanical words is given in Figure 1.7:

36 CHAPTER 1. FIRST DEFINITIONS

Figure 1.7: Examples of parameters (α, β) producing the same mechanical word 001000100
on the interval J−1, 7K. The purple and orange lines have rational slope, and intersect the
grid; any arbitrarily small variation of their slope avoids this technicality, while producing
the same word.

Lemma 1.81 [Lot02, Lem. 2.1.14]

Mechanical infinite words are balanced.

Proposition 1.82 [Lot02, Prop. 2.1.17]

Let x be a finite balanced word. Then there exists an infinite mechanical
word containing it as a subword.

It is false that infinite balanced words are mechanical – the simplest counter-example
being ∞

010∞. Some partial converses do hold (see [Lot02, Lemma 2.1.15]), but they are
not as easy to formulate for balanced words on Z as they are on N.

We can then define the subshift associated to some parameters α, β. A particularly
important example is the class of Sturmian subshifts:

Definition 1.83: Sturmian subshift

Let α ∈ [0, 1] be an irrational real. We define the Sturmian subshift Xα

as
Xα = Orb(xα,0),

the closure of the orbit of the mechanical word xα,0.

As there are uncountably many non-computable irrational reals α, this class contains
uncountably many non-effective subshifts, as Xα, Xα′ are not conjugate for α ̸= α′. There
are many equivalent definitions of Sturmian subshifts, we give another classical one:

Proposition 1.84

LetX be a Z subshift which is not eventually periodic. ThenX is Sturmian
if and only if for all n ≥ 1, |Ln(X)| = n+ 1.

See [Lot02, Chapter 2.1] for a proof. From this, we can deduce the next characterization
on mechanical words:

1.2. COMPUTABILITY 37

Proposition 1.85

If α is irrational, Xα contains no periodic point and is therefore not sofic.
It is effective if and only if α ∈ Σ1 ∩Π1.

Proof. We combine Proposition 1.84 and the fact that all the points of Xα have the same
language. As periodic configurations have complexity (Ln(X))n∈N bounded by a constant,
this proves that Xα is aperiodic. See [Lot02, Theorem 2.1.5] for another proof.

The fact that effectiveness ofXα is equivalent to the computability of α is a consequence
of the fact that for x ∈ Xα, we have limn→+∞

|x|[0,n−1]|1
n → α. In particular, if Xα

was effective, we could approximate α, and the reciprocal is clear using the definition of
mechanical words.

As a convention, we will try whenever possible to use Z to denote effective subshifts,
Y for sofic subshifts, and X either for an SFT or to designate any arbitrary subshift.

Lifting constructions

We define two variants of an operation defined on subshifts of dimension d which produce
a new subshift of dimension d+ 1:

Definition 1.86: Lifts

Let z ∈ AZd be any configuration. We define its periodic lift as the
d+ 1-dimensional configuration

z↑ : Zd+1 → A
(i1, . . . , id, id+1) 7→ z(i1,...,id)

The (periodic) lift of a Zd-subshift X is X↑ = {x↑ | x ∈ X}.
We define the free lift of a subshift X as:

X⇑ = {x ∈ AZd+1 | ∀i ∈ Z, x
∣∣
Zd×{i} ∈ X}

In other words, X↑ contains configurations which are obtained by stacking infinitely
many copies of the same configuration x ∈ X on top of one another, in the extra dimension;
and X⇑ is obtained by stacking configurations of X, but not necessarily the same one.

z

z↑

Figure 1.8: An example of a periodically-lifted configuration, from some non-sofic Z-
subshift.

38 CHAPTER 1. FIRST DEFINITIONS

Theorem 1.87: Lift [Hoc09b],[AS13, Thm 3.1],[DRS12, Thm. 10]

X is an effective Zd-subshift if and only if X↑ is a sofic Zd+1-subshift.

Brief sketch of the proof. There are two main ways by which this theorem has been proven:
the first one, used in [Hoc09b] and [AS13], is a refinement on the ideas of Theorem 1.77.
Instead of simply simulating a machine in the configurations, the simulated machine now
also needs to check whether any row of the Z2 configurations contain a forbidden pattern
of the original Z-effective subshift. In order to do this, a complex system of information
routing, synchronization mechanism ... are developed and “embedded” into valid configura-
tions, so that the computations of the simulated machine eventually detect any forbidden
pattern in themselves, and “forbid” them by entering some special, explicitly forbidden
state.

The proof of [DRS12] is quite different, and relies on a analogous to Kleene’s fixed point
theorem. The idea is to build a self-simulating tileset, the configurations of which can be
decomposed into larger and larger N×N “grids”, each simulating a valid configuration of X
itself. Here again, one embeds computations of universal Turing Machines within these self-
simulating configurations, which are then able to perform longer and longer computations
at higher “levels” of the simulation, and eventually detect forbidden patterns too.

Both proofs are quite technical, and we simply refer to the original articles for more
details. The very high-level overview in both case is the same: we embed, in additional
layers, computations of Turing Machines that enumerate the forbidden patterns of the
effective subshift, and check that they do not appear in a configuration. Using a block-map,
we then “remove” these computations, keeping only the underlying layer of the original
lifted effective Z-subshift, which is therefore sofic.

This theorem will mainly be used as a black-box: in order to construct a sofic subshift
(or SFT) in dimension d ≥ 2 satisfying some properties, it will be convenient to first
define an effective subshift in dimension d − 1, with the required properties (which is
usually easier, as effective subshifts are much less constrained than sofic subshifts), and
then lift it to obtain a d-dimensional sofic shift (and its SFT extension), which hopefully
still satisfies the required conditions. This will be especially true when we want to impose
computability-type restrictions, as they will naturally tend to define effective subshifts.

1.3 Some notions of group theory

In this thesis, we will explore some of the links between tilings and groups in two different
ways: in Chapter 3, we will study a conjugacy invariant which happens to be a group;
in order to obtain characterizations of groups that can be obtained in this way, we need
to introduce a way to abstractly describe general groups, and to (coarsely) classify them
according to how “complicated” they are from an algorithmic point of view. In Chapter 4,
we will introduce tilings of graphs (rather than tilings of Zd), using some motivations
coming from group theory presented in Section 1.3.2 and Section 1.3.3. The necessary
tools are presented in Section 1.3.1. For yet another approach to the study of links between
group theory and symbolic dynamics, see [Van19].

1.3.1 Group presentations

We define in this section the notion of presentation of a group, using a combinatorial
point of view rather than a purely algebraic one, making the results of Section 3.5 more
intuitive. We assume that the reader is already familiar with the notion of (possibly

1.3. SOME NOTIONS OF GROUP THEORY 39

infinite, non-necessarily abelian) group. The point of view adopted here can be found with
more details in [MKS04].

Given a group (G, ∗), we say that S ⊆ G is a generating set if any element g of G
can be written as a product s1 ∗ s2 ∗ · · · ∗ sn = g. It is symmetric if for any s ∈ S, we also
have s−1 ∈ S. From now on, we will always use the multiplicative notation for groups,
and omit the operator ∗, writing e.g. gh for the product g ∗ h.

We are now going to view group elements as being words, on an alphabet of generators,
where words are considered the same if they can be rewritten into one another by adding,
or removing, subwords which “represent” identity words in G. Let us make this idea more
precise. Let S be some (non-necessarily finite) alphabet, and define S−1 = {s−1 | s ∈ S}
a set of formal inverses. A word in S is then an element of (S ∪ S−1)∗, where the
empty word is denoted ε. The fact that w,w′ are equal (as words in S) is denoted by
w ≡ w′. We use the standard notation sn = (s, s, . . . , s)︸ ︷︷ ︸

n times

for any s ∈ S, and similarly

s−n = (s−1, . . . , s−1) for s−1 ∈ S−1. We write as usual s1s2 . . . sn the word (s1, . . . , sn).
For a word w = w1 . . . wn ∈ (S∪S−1)n, we define the word w−1 as w−1 = w′

n . . . w
′
1, where

w′
i =

{
s−1 if wi = s ∈ S
s if wi = s−1 ∈ S−1

. We define ε−1 = ε. Let now R be a (non-necessarily

finite) set of words, called relators. We define a binary relation →S,R on ((S ∪ S−1)∗)2,
that we write w →S,R w′ or w → w′ when the context is clear, by w → w′ ⇐⇒ ∃r ∈
R, 1 ≤ k ≤ |w|, w′ = w1 . . . wkrwk+1 . . . wn. In other words, w → w′ if w′ can be obtained
by inserting a relator r ∈ R somewhere in w. We denote by ↔∗

S,R the reflexive and
transitive closure of →, and [w] the equivalence class of w for this relation.

Definition 1.88: Presentation of a group

Let S be an alphabet, S−1 a set of formal inverses of S, and R a set of
finite words on S ∪ S−1. Let R′ = R ∪ {ss−1 | s ∈ S} ∪ {s−1s | s ∈ S}.
The group defined by the presentation ⟨S | R⟩, written G = ⟨S | R⟩, is
the group whose elements are the classes {[w] | w ∈ (S ∪S−1)∗} for ↔∗

S,R′ ,
with inverses w−1, and the group operation being word concatenation.

See [MKS04, Theorem 1.1] and more generally the book’s first chapter for more details
on this construction, in particular the fact that it is indeed a group, and that the unit of
this group is [ε].

Example 2. We can define Z/2Z × Z/3Z with the presentation
〈
a, b | a2, b3, aba−1b−1

〉
.

We give an example of successive rewriting showing that abbab↔∗ ε:

abbab→ abbbb−1ab

← ab−1ab

→ ab−1aaba−1b−1b

← ab−1ba−1

← aa−1

← ε

Relators are sometimes in the form of a relation, that is, an equality w = w′, which
defines another relation like → where we can replace w by w′ (instead of inserting): this
is an equivalent point of view, as we can consider the relator ww′−1 instead, defining the
same group in the end.

40 CHAPTER 1. FIRST DEFINITIONS

Algebraic properties are not clearly related to group presentations. In particular, there
is a priori no clear relation between a presentation of a group, and whether it is e.g. empty,
cyclic, simple... We will see below that those are indeed hard decision problems. For now,
let us simply define some classes of groups which are amenable to algorithmic analysis,
and on which we will mainly focus in the remainder of this thesis:

Definition 1.89: Finitely, recursively presented group

Let G be a group. It is finitely generated if there exists a finite S
and a set R such that G ≃ ⟨S | R⟩. It is finitely presented if R can
moreover be chosen finite. It is recursively presented if there exists a
(non-necessarily finite) set S, and a recursively enumerable family R, such
that G ≃ ⟨S | R⟩.

As with subshifts, where decision problems on SFTs were undecidable, most non-trivial
decision problems on groups are also undecidable:

Decision Problem Word

Input: A finitely presented group ⟨S | R⟩ and a word w on S ∪ S−1.
Output Whether [w] = [ε] in the group ⟨S | R⟩.

Theorem 1.90 [Nov55; Nov58], [Boo58]

The Word problem is Σ0
1-complete.

Note that the word problem is equivalent to asking whether ⟨S | R⟩ itself is trivial, in
the case of finitely presented groups: indeed, it is trivial if and only each generator s is, of
which there are finitely many.

1.3.2 Cayley graphs

Finally, we show how each group can be viewed as a graph, and how one can generalize
tilings to arbitrary finitely generated groups G rather than simply Zd.

Definition 1.91: Cayley graph

Let G be a group, and S be a set of generators of G. The Cayley graph
is an edge-labeled directed graph ΓG,S = (V,E, λE), defined by:

• V = G, that is each group element is a vertex.

• (g, gs) ∈ E ⇐⇒ s ∈ S.

• λE(g, gs) = s.

With this definition, each path (s1, . . . , sn) from the identity vertex 1G to any element
g ∈ G “represents” the same element of the group, that is, s1s2 . . . sn =G g. Indeed,

1.3. SOME NOTIONS OF GROUP THEORY 41

whenever we follow an edge, we multiply on the right the starting vertex to obtain the
ending vertex of this edge. In particular, any cycle in the graph ΓG,S is a relation, that
is, a word on the alphabet of generators which is equal (in G) to the identity of G. Note
though that the definition is not symmetric with respect to left or right multiplication: the
vertices g and sg for any s ∈ S, g ∈ G might be at a large distance in ΓG,S , while g, gs are
neighbours by definition. Also note that the graph depends on the chosen generating set:
for example, the groups Z/nZ have cyclic Cayley graphs if one considers the presentation
Z/nZ = ⟨a | an = 1⟩, but the Cayley graph is a clique (up to the edge-labeling) for the
presentation ⟨a0, . . . , an−1 | aiaj = ai+j mod n, 0 ≤ i, j < n⟩, see Figure 1.9.

Notation. The cyclic graph of order n, denoted Cn, is the undirected graph Cn = (J0, n−
1K, E) where {i, j} ∈ E ⇐⇒ j = i+ 1 mod n.

a0

a1

a2

a3

a4

Cayley graph of Z/5Z for the
standard presentation

〈
a | a5

〉

a0

a1

a2

a3

a4

Cayley graph of Z/5Z for the presentation〈
a0, . . . , a4 | a(i+j mod 5)a

−1
i a−1

j , 0 ≤ i, j ≤ 4
〉

Figure 1.9: Two presentations of the same group, and the corresponding Cayley graphs

Figure 1.10: The ball of radius 3 of the Cayley graph of the free group F2 with the standard
presentation.

We will consider in Chapter 4 graphs that are not necessarily Cayley graphs, although
they will present some similarities. There are theorems characterizing when a graph is
indeed a Cayley graph of some group (and, in this case, of which group), but we will not
really be interested in this question within this thesis.

42 CHAPTER 1. FIRST DEFINITIONS

1.3.3 Tilings on groups

One can define a notion of subshift on groups, just as we defined subshifts on Zd in Defini-
tion 1.4. The simplest definition uses the characterization given in Proposition 1.32: one de-
fines a topology on G using cylinders, and subshifts on some alphabet A are then the shift-
invariants subsets ofAG, where the shift σg is defined for g ∈ G by σg : x ∈ Ag 7→ (h 7→ xhg)
– other conventions exist in the literature, but they are all obviously equivalent. As was
the case over Zd, there is also a combinatorial characterization of subshifts, using forbidden
patterns. We will explore a very similar formalism in Section 4.3. Although we do not yet
give precise definitions, we can also consider an equivalent to Wang Tiles, which would be
2n-uplets where n = |S|. A valid tiling x is then a way to associate a tile to each element
g ∈ G, and the tiles xg, xgs for s ∈ S must coincide on their “s and and s−1-sides”. As
an informal example, let us consider the following example over the free group F2, whose
Cayley graph is depicted in Figure 1.10:

Example 3 (Wang tiling on F2). Figure 1.11 shows a locally (and provably globally)
admissible pattern of a Wang Tiling on F2, using a Wang tileset for which it is easy to
easy to see that no tiling of Z2 exists (using the obvious morphism F2 → Z2, we can also
view the “F2-Wang tiles” as the usual Wang tiles).

T =
{

, , ,
}

a

b

a

b

Figure 1.11: Tiling of the ball of radius 3 of F2. Wang tiles are represented as squares,
where the right, top, left and bottom sides correspond respectively to the generators a, b,
a−1, b−1 in F2.

There are some important results concerning tilings on Cayley graphs of finitely pre-
sented groups, but the most important ones state that the “natural” problems do not
depend on the chosen set of generators for the group. More precisely, the domino problem
on the Cayley graph ΓG,S is decidable if and only if it is decidable on ΓG,S′ for any other

1.3. SOME NOTIONS OF GROUP THEORY 43

generating set S′ of G. This is a well-known fact in this area, for which we did not find
the first reference: we refer to the recent thesis [Bit24] for the usual constructions and
references about decision problems on subshifts on groups, and the aforementioned result
is in particular proven as Lemma 2.0.7.

Chapter 2

Extender entropies

2.1 Extender sets . 46
2.1.1 Regular languages . 46

Follower and predecessor sets . 46
Extender sets and syntactic monoids 48
Extender sets and subshifts . 48

2.1.2 First examples and constructions . 50
2.2 Another kind of entropy . 53

2.2.1 Extender entropy: a conjugacy invariant 54
2.2.2 Preliminary results on extender entropies 58

2.3 Computability considerations . 60
2.3.1 Inclusion of extender sets . 60
2.3.2 Number of extender sets . 62

2.4 Characterizations of extender entropies . 63
2.4.1 Minimal subshifts . 63
2.4.2 Mixing properties . 64
2.4.3 One-dimensional effective subshifts 65

Encoding integers into configurations 66
Configurations with controlled density 66
An auxiliary subshift . 68
Multiplying the number of patterns 70
Counting patterns and extender sets 71

2.4.4 Computable subshifts . 73
2.4.5 Multi-dimensional sofic subshifts . 73

Marked offsets instead of periods . 74
A sofic marking subshift . 75
Counting extender sets . 79

2.4.6 A short note about syntactic monoids 80
2.5 Summary . 81

In this chapter, we try to look at a conjugacy invariant defined by Thomas French
and Ronnie Pavlov in [FP19], called the extender entropy of a subshift. This is a real
number, which tries to quantify the number of patterns of a given size that can be freely
exchanged within any configuration. One possible interest of looking at this quantity is
to study the following problem: given a family of forbidden patterns F , is the subshift
XF sofic ? It turns out that this in Section 1.1.4: indeed, if one-dimensional question is
much harder in dimension d ≥ 2, for reasons already presented sofic subshifts can be seen
as automata and walks on labeled graphs, multi-dimensional subshifts are on the contrary

45

46 CHAPTER 2. EXTENDER ENTROPIES

complicated objects, from an algorithmic perspective. In particular, deciding whether an
SFT (and a fortiori a sofic subshift) is empty is already undecidable (see Section 1.2.3).
In higher dimensions, a less ambitious approach than solving this problem then consists
in studying criteria, typically in the form of conjugacy invariants h, which take strictly
more values on the class Ed of d-dimensional effective subshifts than on the class S of
d-dimensional sofic subshifts. For invariants h for which h(Ed) = h(Sd), we still obtain the
interesting fact, which is possibly a surprise, that sofic subshifts and behind them SFTs
can “express” as much complexity as the much more general class Ed. In this case, it is
then natural to study more precisely what are the values taken by h, and to find some
characterizations or subclasses T for which h(T) ⊊ h(S).

The general organisation of this chapter is as follows: in Section 2.1, we present the
motivations behind the introduction of this specific invariant, the extender entropy hE ,
and we explain in particular how it relates to well-known problems on regular languages.
In Section 2.2, we give the actual definition of hE , and prove some basic facts and proper-
ties. Section 2.3 then presents the main tool used to study hE in the rest of the chapter,
and shows that computability theory is a natural object to characterize extender entropies.
Finally, Section 2.4 gives some characterizations of the values taken by hE on some usual
classes of subshifts, such as minimal or mixing subshifts, and proves the main results of
the chapter, which is a complete characterization of hE(Ed) and hE(Sd) for any d ≥ 1, and
we prove that for d ≥ 2, they are identical.

Some of the results presented in this chapter are also available in [CPV24], unpublished
at the time of writing.

2.1 Extender sets

As briefy mentioned above, the main notions considered in this chapter are in fact inspired
by classical problems on regular languages, and their natural links to sofic Z subshifts.
This translation from results on automata and languages to subshifts has already been
exploited, and most of the content of this section can already be found in [LM21, Chapter
3]. A systematic study of extender sets for one-dimensional subshifts as defined in this
section can be found in [Fre16b], in particular in the case of sofic Z-subshifts.

2.1.1 Regular languages

We give in this section additional results and ideas to study regular languages that were not
already mentioned in Section 1.1.4. We refer to this section for the most basic definitions.

Follower and predecessor sets

Definition 2.1: Follower, predecessor sets - languages

Let A be a finite alphabet and L ⊂ A∗ be a language. For any x ∈ A∗, we
call follower set of x the set

FL(x) = {y ∈ A∗, x · y ∈ L}

We call predecessor set of x the set

PL(x) = {y ∈ A∗, y · x ∈ L}

In other words, FL(x) is the set of valid (right-)completions of x in L. Note that this
set can be empty, even if x ∈ L, and that it might be non-empty for x ̸∈ L. A classical

2.1. EXTENDER SETS 47

result from the theory of formal languages provides a complete characterization for regular
languages:

Theorem 2.2: Myhill-Nerode Theorem [Myh57; Ner58]

Let L ⊂ A∗ be an arbitrary language. Then L is regular if and only F =
{FL(x), x ∈ A∗} is finite.

Note that each set FL(x) might be an infinite set; the theorem simply states that there
are finitely many classes of words admitting different valid completions in L exactly when
L is regular.

Proof. The easy direction is to show that L being regular implies that F is finite. In this
case, by Theorem 1.60, there exists an automaton A = (A, Q, δ, q0, T) recognizing L. We
can assume that A is complete, that is, δ : Q×A is total (and so the extension δ : Q×A∗ is
also total), and that A is deterministic. Then, for x, y ∈ A∗, if we have δ(q0, x) = δ(q0, y)
then FL(x) = FL(y). Indeed, for any w ∈ A∗,

w ∈ FL(x) ⇐⇒ x · w ∈ L
⇐⇒ δ(q0, x · w) ∈ T
⇐⇒ δ(δ(q0, x), w) ∈ T
⇐⇒ δ(δ(q0, y), w) ∈ T
⇐⇒ w ∈ FL(y)

In particular, |F | ≤ |Q|.
The other direction is only slightly more involved: if F is finite, define the automaton

A = (A, F, δF , FL(∅), {FL(x), x ∈ L}), where δF (FL(y), a) = FL(y · a) ∈ F . It is routine
to show that this is a well-defined transition function, and that the automaton A accepts
exactly L.

This theorem is mainly useful to prove that some language L is not regular. Indeed,
it suffices to exhibit an infinite family (xn)n∈N of words having pairwise distinct follower
sets to ensure that L is not regular by Theorem 2.2, and to show that FL(xi) ̸= FL(xj), it
is enough to exhibit some yi such that xi · yi ∈ L and xj · yi ̸∈ L.

Example 4. The language L = {anbn, n ∈ N} is not regular. Indeed, for i ̸= j, bi ∈
FL(a

i) \ FL(a
j), so (FL(a

i))i∈N is an infinite family of follower sets.

As regular languages are a stable class, we also explain why we usually consider only
follower sets rather than predecessor sets:

Lemma 2.3

Let L ⊆ A∗ be an arbitrary language. Then {FL(x), x ∈ A∗} is finite if
and only if {PL(x), x ∈ A∗} is finite.

Proof. This is simply because L = {wnwn−1 . . . w0 | w0 . . . wn ∈ L} is regular if and only
if L is regular, and FL(x) = PL(x).

48 CHAPTER 2. EXTENDER ENTROPIES

Extender sets and syntactic monoids

Adapting the Myhill-Nerode theorem to the case of one-dimensional sofic subshifts is quite
straightforward. We introduce an intermediate step, which will make it easier to generalize
the definitions to higher-dimensional subshifts, while not changing anything for Z-subshifts.

Definition 2.4: Extender set - language

Let L ⊂ A∗ be a language, and x ∈ A∗. We call extender set of x the set

EL(x) = {(u, v) ∈ (A∗)2, u · x · v ∈ L}

For languages, this does not change the previous results:

Proposition 2.5

A language L is regular if and only if E = {EL(x)} is finite.

Proof. Denote F, P,E respectively the set of follower sets, predecessor sets, and extender
sets of L. Clearly, |E| ≥ |F | so E being finite implies that L is regular by Theorem 2.2.
Indeed, if EL(x) = EL(y) for any words x, y ∈ A∗, then FL(ε · x) = FL(ε · y) as for any v,
εxv ∈ L ⇐⇒ εyv ∈ L.

Reciprocally, if L is regular, then we can consider a minimal automatonA = (A, Q, δ, q0, T)
recognizing L. It is easy to adapt the proof of Theorem 2.2 to show that for any x, y ∈ A∗,
we have EL(x) = EL(y) if and only if δ(q0, x) = δ(q0, y).

This construction is also standard in the literature, and is one of the main ideas in the
algebraic study of formal languages. Denoting ∼L the equivalence relation on A∗ defined
by x ∼L y if and only if EL(x) = EL(y) – it is easy to see that this indeed defines an
equivalence relation – we can define a central object in the theory of formal languages, the
syntactic monoid1 of a language:

Definition 2.6: Syntactic monoid [And06, Def 3.6]

Let L be a language. Then M(L) = L/ ∼L with the concatenation opera-
tion is a monoid, called the syntactic monoid of L.

We will state, at the end of this section, a minor result about syntactic monoids, and
more precisely their growth rate, in a sense that we will precise in due time. A general
introduction to this domain can be found in [And06].

Extender sets and subshifts

In the case of subshifts, we are no longer dealing with finite words, but infinite configura-
tions on Zd. However, as subshifts are compact, the definitions are sufficiently robust to
accomodate for this difference:

1Formally, a monoid is a set with an associative binary operation and an identity element. Informally,
a monoid is a group in which some (or all) elements might not have inverses.

2.1. EXTENDER SETS 49

Notation. For possibly infinite patterns u, v over a common alphabet A, if dom(u) ∩
dom(v) = ∅, we define u ⊔ v as the pattern

u ⊔ v : (dom(u) ∪ dom(v))→ A

z 7→
{
uz if z ∈ dom(u)

vz otherwise

Definition 2.7: Extender set - subshift

Let X ⊆ AZd be a subshift, and let D ⊂f Zd, u ∈ AD. We call extender
set of u the set

EX(u) = {x ∈ AZd\D, x ⊔ u ∈ X}

Lemma 2.8

LetX ⊆ AZ be a subshift, n ≥ 0 and u, v ∈ An. Then EX(u) = Ex(v) ⇐⇒
EL(X)(u) = EL(X)(v).

Proof. If EX(u) = EX(v) then for any (w,w′) ∈ EL(X)(x), we have by definition wuw′ ∈
L(X) and so there exists a configuration x ∈ X with x[0,n−1] = wuw′. As EX(u) = EX(v),
we can replace u by v within x to obtain a configuration containing wvw′ and so wvw′ ∈
L(X), and therefore (w,w′) ∈ EL(X)(y).

The other direction is a simple application of compactness: if EL(X)(u) = EL(X)(v),
then for all x such that x⊔ u ∈ X, we can consider for n ≥ 0 the words wn = x[−n,−1] and
w′
n = x[|u|,|u|+n−1]. Then, wnuw′

n ∈ L(X), so wnvw′
n ∈ L(X). Then (wnvw

′
n) converges to

the configuration x ⊔ v, which by compactness is in X.

Remark. In the case of Z subshifts, we can also immediately extend the notions of prede-
cessor (resp. follower) set PX(u) (resp. FX(u)) of a word u, as being the set of left-infinite
(resp. right-infinite) sequences w such that wu ∈ L(X) (resp. uw ∈ L(X)). As for EX(n),
we write PX(n) (resp. FX(n)) for |{PX(u), u ∈ An}| (resp. |{FX(u), u ∈ An}|).

To some extent, we can view extender sets (and the number of distinct extender sets)
as a way to quantify how much information is carried by each pattern, regarding the
way it can be extended in a valid configuration. Intuitively, having a small number of
extender sets can be seen as the fact that the extensions of patterns are determined only
by a small part of the pattern. Although not rigorous, this idea can be formalized (see for
example [DR22] for a slightly different point of view), and should in any case be the general
idea to keep in mind when trying to construct subshifts with prescribed (EX(n))n∈N .

Unsurprisingly given Proposition 2.5, we have the following proposition for Z-subshifts:

Proposition 2.9

Let X ⊆ AZ be a subshift. Then X is sofic if and only if {EL(x), x ∈ A∗}
is finite.

Proof. X is sofic if and only L(X) is a regular language by Proposition 1.59, and so Propo-
sition 2.5 gives the result.

50 CHAPTER 2. EXTENDER ENTROPIES

This proposition, as Theorem 2.2, is mainly used to prove that some subshifts are not
sofic. However, the theorem relies on properties of regular languages, and sofic subshifts
in higher dimensions are not easily definable by their language, but as factors of SFTs. It
is then quite natural to determine if similar characterizations hold for sofic Zd-subshifts.
In fact, some results are already known. In order to study quantitavely the number of
extender sets, it will be convenient to use the following notation:

Notation. LetX ⊆ AZd be a subshift, and letD ⊂f Zd. We denoteEX(D) = {EX(u), u ∈
AD}.

For n ≥ 0, we also denote EX(n) = |EX(Qn)| = |EX(J0, n− 1Kd)|.

Note that EX(n) is the cardinal of the set EX(Qn): we will indeed very rarely be
interested in what this set is, but rather, the behaviour of the sequence (EX(n))n∈N.

Theorem 2.10 [OP16, Thm 1.1]

Let X ⊆ AZd be a subshift. If there exists n such that EX(n) ≤ n, then
X is sofic.

An important thing to note here is the fact that the bound EX(n) ≤ n is a very
restrictive bound: indeed, the volume of Qn in dimension d is nd, and there are therefore
up to 2n

d patterns of this size.
In dimension 1, we also have the following easier result, which improves on Proposi-

tion 2.9:

Proposition 2.11 [OP16, Thm 3.4]

Let X ⊆ AZ be a subshift. X is sofic if and only if (EX(n))n∈N is bounded.

2.1.2 First examples and constructions

We are now ready to compute EX(n) for some classes of subshifts, in any dimension.

Example 5 (Full-shifts). Let X = AZd . Then EX(n) = 1 for all n. In particular, despite
being of maximal pattern complexity, this subshift has the minimal number of extender sets.

The situation is also simple in the case of subshifts with very low pattern complexity,
in particular the periodic subshifts:

Example 6 (Periodic subshifts). Let X ⊆ AZd be a periodic subshift, so that there exists
p1, . . . , pd ∈ Z such that for any x ∈ X and 1 ≤ i ≤ d, x = σpiei(x). For n ≥ maxi pi, it is
therefore clear that for u ∈ AQn the set EX(u) depends only on u[

∏d
i=1J0,pi−1K]. Therefore,

noting p =
∏d
i=1 pi, we have EX(n) ≤ p|A|, which in particular does not depend on n.

Recall that for a subshift X in dimension d, we defined X⇑ as the d + 1-dimensional
subshift whose “hyperplanes” in direction e0 were independent but configurations of X,
and X↑ the d+ 1-dimensional subshift of X⇑ when all those hyperplanes are equal to the
same configuration (see Section 1.2.3).

2.1. EXTENDER SETS 51

Proposition 2.12

Let X be a Zd-subshift. Then for any n > 0,

EX⇑(n) = EX(n)
n and EX↑(n) = EX(n).

Proof. Let n > 0 and u, v ∈ Ln(X⇑). Then

EX⇑(u) = EX⇑(v) ⇐⇒ ∀0 ≤ j < n,EX

(
u
∣∣
J0,n−1K×{j}

)
= EX

(
v
∣∣
J0,n−1K×{j}

)

Similarly, for u, v ∈ Ln(X↑), we have

EX↑(u) = EX↑(v) ⇐⇒ EX

(
u
∣∣
J0,n−1K×{0}

)
= EX

(
v
∣∣
J0,n−1K×{0}

)

Finally, we show how this notion can be used to distinguish SFT from more complicated
subshifts:

Definition 2.13: Border

Let D ⊂f Zd. Denote d1 the distance induced by the norm ∥∥1, and define
the r-border of D as

∂rD = {z ∈ D, d1(z,Zd \D) ≤ r}
In particular,

∂rQn = {(i1, . . . , id) ∈ Qn,∃k, ik ∈ J0, r − 1K ∪ Jn− r, n− 1K}

For a pattern u, we might write ∂r(u) for u|∂rdom(u).

Example 7 (SFT, Folklore, see for example [KM13, Section 2]). Let X ⊆ AZd be an SFT,
defined by a family F . Then EX(n) = 2O(nd−1). Without loss of generality, we can assume
that F ⊆ AQr for some r ≥ 0. Then, for n ≥ 2r, consider u, v ∈ AQn equal on their r-
border. Now, if x is such that u⊔x ∈ X, then clearly v⊔x ∈ X. Contraposing, we get that
EX(u) ̸= EX(v) =⇒ ∃(i, j) ∈ ∂r(Qn), ui,j ̸= vi,j, and so EX(n) ≤ A|∂r(Qn)|d ≤ |A|2rdnd−1

A reader already familiar with usual arguments about sofic shifts might think that this
immediately implies that the same inequality holds for sofic subshifts, using the fact that
for a factor map ϕ : X → Y of radius r we have EY (n) ≤ EX(n+ r). Unfortunately, such
an inequality does not hold in general. We will see in Section 2.2.1 some results of this
kind, which relate EX(n) and EΦ(X)(n) for some factor map Φ, but the usual arguments
applied when dealing with the classical entropy (see Definition 1.23) cannot be applied
here.

Of course, the bound of Example 7 is not a characterization: using Proposition 2.12
and the lifting construction, one can construct subshifts which are not SFT, starting from
a Z subshift (possibly not even effective), repeatedly lifting its configurations to obtain
d-dimensional subshifts with few extender sets. In particular, we have the following result,
which shows that Theorem 2.10 is in a sense optimal:

52 CHAPTER 2. EXTENDER ENTROPIES

Proposition 2.14 [OP16, Thm 1.4]

For any d ≥ 1, there exists a non-sofic subshift X satisfying for all n ∈ N,
EX(n) = n+ 1.

Proof. Consider a non-effective Sturmian subshift X ⊆ {0, 1}Z. Then, as Sturmian sub-
shifts have pattern complexity n + 1 (see 1.84), we have EX(n) ≤ n + 1, and as X is
not sofic, Theorem 2.10 implies that EX(n) = n + 1. We can then consider the sub-
shifts X1 = X↑, X2 = X↑↑ . . . to obtain subshifts of arbitrary dimensions, and EXd

(n) =
EX(n) = n + 1 by Proposition 2.12. They are not sofic, for otherwise, by Theorem 1.87,
X would be effective.

We finally give here another construction, from which we draw inspiration in Sec-
tion 2.4.3 and Section 2.4.5. The idea itself comes from [DR22], where the authors studied
a similar problem, not in terms of extender sets but in terms of what they call epitome. This
is a similar object, although quite technical, and this example is particularly interesting in
both settings.

For any Z2 subshiftX over some alphabetA, we define the subshiftsXmirror, Xsemi−mirror,
depicted in Figure 2.1 as follows:

• Xmirror is a subshift on alphabet A ⊔ {■□}, and Xsemi−mirror is defined on alphabet
A ⊔ {■□,□}.

• Each configuration x of either subshifts Xmirror, Xsemi−mirror might contain an hor-
izontal infinite line of ■□, splitting x in an upper and a lower half-plane. Those are
the only ■□ symbols in x.

• The upper half-plane must be a globally admissible pattern of X.

• In Xmirror, the lower half-plane must be the reflection of the upper half-plane by the
horizontal ■□-row.

• In Xsemi−mirror, the lower-half plane consists only of □-coloured cells, except for at
most one cell coloured with A. This non-□ cell must be the mirror of the corre-
sponding cell in the upper half-plane. Formally, if for some i, j ∈ Z, k > 0, we have
xi,j = ■□ and xi,j−k ∈ A, then xi,j−k = xi,j+k.

Figure 2.1: Configurations of the mirror and semi-mirror subshifts associated to the binary
full-shift. This is [DR22, Example 5′′].

The next proposition is somewhat folklore, and its proof illustrates one of the classical
techniques used to show that some effective subshifts are not sofic.

2.2. ANOTHER KIND OF ENTROPY 53

Proposition 2.15 [ABJ18, Prop. 57]

Let Y ⊆ AZ2 be a subshift satisfying h(Y) > 0. Then Ymirror is not sofic.

Proof. We prove this by contradiction. Suppose that Ymirror is sofic, and let then X ⊆ BZ2

be a nearest-neighbour SFT and Φ: X → Ymirror be a 1-block factor map. Let Dn =
J−n, nK2. Then, by definition of the entropy, for large enough n and any 0 < h < h(Y):

• |LDn(Y)| ≥ 2h(2n+1)2

• |∂1Dn| = 8n and so |X| ≤ |B|8n

As Y ⊂ Ymirror, there are therefore at least 2h(2n+1)2 patterns of support Dn in Ymirror

that do not contain a symbol ■□. Let S ⊂ LDn(Ymirror) be this set of patterns. Note
that if u, v ∈ LDn(X) are such that ∂1(u) = ∂1(v), as X is a nearest-neighbour SFT, we
have EX(u) = EX(v). For n large enough, |S| ≥ 2h(2n+1)2 ≥ |B|8n and so there exists
u, v ∈ X such that Φ(u),Φ(v) ∈ S, but Φ(u) ̸= Φ(v), and ∂1(u) = ∂1(v). Choosing any
configuration x ∈ X containing u and such that Φ(x) contains a ■□-row, as EX(u) = EX(v),
we can replace the occurrence of u in x by v to obtain another configuration x′ ∈ X. Now,
as Φ(u) ̸= Φ(v), and Φ being a 1-block map, Φ(x′) ̸∈ Ymirror as the mirror is broken where
we replaced u by v.

We see that this proof relies on similar ideas than those formalized by extender sets:
the obstruction to some Y being sofic is the fact that there are too few extender sets in
any SFT cover X, which means that the “rest” of a configuration x ∈ X cannot distinguish
between several patterns u, v ∈ EX(w) and must be valid for all (or none) of them. In the
case of positive entropy, this means in particular that there exists multiple patterns with
the same extender set but different images under the hypothetical factor map.

However, this arguments breaks if we slightly relax the mirroring condition:

Proposition 2.16

Let Y be a sofic Z2 subshift. Then Ysemi−mirror is sofic. Furthermore, if
u ̸= v ∈ L(X) then EYsemi−mirror(u) ̸= EYsemi−mirror(v).

Proof. The first part of the proposition is easy, using standard constructions from symbolic
dynamics. For example, using variants of the sunny side up subshift (see Example 1), one
can mark specific positions in a configuration, and so ensure that at most one cell is
mirrored, or only one “mirror” row appears in a configuration.

Now, let n ≥ 0 and u ̸= v ∈ Ln(Y). One can use the reflected cell to pinpoint any
difference between u and v: considering a configuration y ∈ Ysemi−mirror containing u, such
that the mirrored cell is the cell ui,j where ui,j ̸= vi,j , the mirroring condition then ensures
that we cannot replace u by v in y, and so EYsemi−mirror(u) ̸= EYsemi−mirror(v).

2.2 Another kind of entropy

The sequence (EX(n))n∈N can be a complicated and counter-intuitive object, even in the
case of sofic Z-subshifts. In particular, let us mention some properties that might be
unexpected:

54 CHAPTER 2. EXTENDER ENTROPIES

Proposition 2.17 [OP16, Ex. 3.5]

There exists a sofic Z subshift X such that for all n, EX(2n) = 46 and
EX(2n + 1) = 44. In particular, EX(n) is periodic and is not non-
decreasing.

This example is attributed to Martin Delacourt. More generally, we have the stronger
theorem:

Theorem 2.18 [Fre16a, Thm. 1.3]

Let n ≥ 0. For any partition
⊔k
i=1Ai = J0, n − 1K and any sequence 0 =

r1 < · · · < rk ∈ N, there exists m ≥ 0 and X a sofic Z-subshift such that
for all sufficiently large ℓ, when ℓ mod n ∈ Aj , we have EX(ℓ) = m+ rj .

More precise quantitative bounds are given in the article [Fre16a, Thm. 1.3] and are
not reproduced here: the important remark is that pretty much any periodic sequence
can be realized as the sequence (EX(n)) for some sofic subshift X. This motivates the
introduction of a simpler, although less precise, quantity to study the behaviour of extender
sets in any subshift. We show in this section how to define a conjugacy invariant based on
the sequence EX(n), called the extender entropy.

2.2.1 Extender entropy: a conjugacy invariant

Extender entropy has already been defined and studied for Z subshifts in [FP19, Def 2.17].
We show here how to adapt the definition from one-dimensional to multi-dimensional
subshifts.

Definition 2.19: Extender entropy [FP19, Def 2.17]

Let X be a Zd-subshift. We call extender entropy of X the real

hE(x) = lim
n→+∞

logEX(n)

nd

Before stating properties about the extender entropy, we need to show that it actually
exists. It was already proven for Z-subshift by [FP19, Theorem 3.1], and we extend the
argument to arbitrary subshifts:

Proposition 2.20

For any non-empty subshift X ⊆ AZd ,

lim
n→+∞

logEX(n)

nd
= inf

n∈N

logEX(n)

nd

In particular, hE(X) exists.

Proof. The proof relies on the subadditivity (or Fekete’s) lemma. The usual strategy is

2.2. ANOTHER KIND OF ENTROPY 55

to prove that the sequence f = (logEX(n)
nd)n∈N satisfies fm+n ≤ fm + fn, or equivalently,

EX(m+n)(m+n)d ≤ EX(m)m
d
EX(n)

nd . However, we do not know if this holds in general.
We can nevertheless follow the usual proof of the subadditivity lemma, as EX(n) is still
regular enough to obtain a similar inequality.

Fix some k, n ∈ N and write n = kq + r the Euclidean division of n by k. Define the
map

ϕ : Ln(X)→ EX(k)
qd ×AQn\Qkq

w 7→


 ∏

z∈Qkq

EX(w
∣∣
Qk+kz


× w

∣∣
Qn\Qkq

Ideally, we would like to partition a square of side n into squares of size k, and relate the
extender set of the larger pattern and the extender sets of all the smaller pattern. What
ϕ does is precisely this “partition”, in the case where k does not divide n, so there remains
some small rectangular strips not coverered by the k-squares within Qn, as illustrated
in Figure 2.2.

k

kq
n

Qn \ Qkq

B1 B2

Bq2

Figure 2.2: Example in dimension d = 2 for n = 14 and k = 3, so n = 3× 4 + 2: an n× n
square contains q2 = 16 squares of size 3× 3.

We now claim that for any patterns u, v ∈ AQn , we have ϕ(u) = ϕ(v) =⇒ EX(u) =
EX(v). This is clear if we interpret the equality of extender sets as meaning that two
patterns can be freely exchanged in any configuration. Indeed, let now x be such that
x ⊔ u ∈ X. Call (i, j)-block the domain Qk + k(i, j), and fix any ordering of the blocks
B1, . . . , Bqd . Denote wℓ ∈ AQn the pattern equal to u on the blocks Bℓ′ for ℓ′ ≤lex ℓ
and equal to v elsewhere. In particular, as ϕ(u) = ϕ(v), we have w0 = v and wqd = u.
Consider x such that x ⊔ v ∈ X. Then, by ϕ(u) = ϕ(v), we have EX(v|B1

= u|B1
).

Therefore, x⊔w1 ∈ X, and ϕ(v) = ϕ(w1). We can therefore repeat the argument qd times,
and we obtain x ⊔ wn = x ⊔ u ∈ X. This gives EX(v) ⊆ EX(u), and so by symmetry
EX(v) = EX(u).

Now, as n = kq + r is a Euclidean division, we have 0 ≤ r < k and so |Qn \ Qkq| ≤
drnd−1 ≤ dknd−1. As we have shown that ϕ factored through EX , we get

EX(n) ≤ EX(k)q
d ×Adknd−1

56 CHAPTER 2. EXTENDER ENTROPIES

Hence,

logEX(n)

nd
≤ qdEX(k)

nd
+
O(nd−1)

nd

≤ logEX(k)

kd
+O(

1

n
)

As n goes to +∞ we obtain lim supn
logEX(n)

nd ≤ logEX(k)
kd

, and taking the infimum over
k gives lim supn

logEX(n)
nd ≤ infk

logEX(k)
kd

. But clearly the inequality holds in the other
direction, so logEX(n)

nd converges to inf logEX(n)
nd .

In fact, the previous proof can be adapted to prove a slightly stronger result. We state
it and give a sketch of the proof, the details being identical to the case of Proposition 2.20.

Lemma 2.21

Let r = a
b ∈ Q and X any Z2-subshift. Then, denoting EX(am, bm) =

|EX(J0, am− 1K× J0, bm− 1K)|, we have:

limm→+∞
logEX(am, bm)

abm2
= hE(X)

Sketch of the proof of Lemma 2.21. We follow the strategy of the proof of Proposition 2.20,
using rectangles instead of squares.

bm

am

bmq1

amq2

n

< am

< bm

(a) Tiling a square of side n = 11 by a
rectangle am× bm, m = 1

n

n

nq1

nq2

bm

am

< n

< n

(b) Tiling a rectangle am× bm with m = 5 by a
square of side n = 4

Figure 2.3: Example for a rectangle of ratio r = a
b , with a = 3, b = 2

Figure 2.3 shows how we adapt the previous proof to deal with rectangles. What is
fixed in this construction is the ratio r = a

b . The same proof gives the following inequalities
for all m,n ≥ 1:

logEX(n)

n2
≤ logEX(am, bm)

abm2
+O(

1

n
)

and
logEX(am, bm)

abm2
≤ logEX(n)

n2
+O(

1

n
)

As we already know that logEX(n)
n2 → hE(X) as n→ +∞, we obtain

lim
m→+∞

logEX(am, bm)

abm2
= hE(X)

2.2. ANOTHER KIND OF ENTROPY 57

We give another useful way to write this equality. Denoting Am = abm2 the area of
the rectangle, we can write EX(am, bm) = 2hE(X)Am+om(m2).

Now that hE is proven to be well-defined for any subshift in any dimension, we fur-
thermore claim that it is a conjugacy invariant. As before, it is already proven in the case
of Z subshift in [FP19, Theorem 3]. The geometry of Zd makes the proof slightly more
heavy in terms of notations, but the general strategy is exactly the same.

Proposition 2.22

Let X be a Zd subshift, and Φr : X → Xr the natural conjugacy from X
to its r-higher-block code Xr. Then hE(X) = hE(Xr).

This is a consequence of the following lemma:

Lemma 2.23

For n ≥ r and u, v ∈ LBn(X), EXr(Φr(u)) = EXr(Φr(v)) if and only if
EX(u) = EX(v) and furthermore ∂2r(u) = ∂2r(v).

Proof of Lemma 2.23. We prove both directions:
⇒: Let u, v ∈ LBn(X), and suppose that EXr(Φr(u)) = EXr(Φr(v)). Φr(u),Φr(v)

are patterns of support Bn−r. Let then w ∈ EXr(Φr(u)), and let z ∈ ∂1(Bn−r+1), that
is, a point adjacent to dom(Φr(u)), neighbour to some z′ ∈ Bn−r for the ∥∥1 norm. By
definition of Φr, wz and Φr(u)z′ must coincide (when viewed as patterns of support Br) on
a set of the form J−r, r− 1K× J−r, rKd−1. The same holds for Φr(v)z′ , as w ∈ EXr(Φr(v)).
This in turn implies that u and v coincide on ∂2r(Bn), as Φr(v)z′ = v|z′+Br

.
Now, for any w ∈ EX(u), we show that w ∈ EX(v), which by symmetry gives the

equality EX(u) = EX(v). As w ⊔ u ∈ X, we have Φr(w ⊔ u) ∈ Xr, and we can decompose
Φr(w⊔u) = Φr(w)⊔ sΦr(u), with up to translation dom(s) = Bn+r \Bn−r, and s depends
only on u|∂rQn

and w|∂rQn+r
. By the previous point, u|∂rQn

= v|∂rQn
and so Φr(w ⊔ v) =

Φr(w) ⊔ s ⊔Φr(v). As EXr(Φr(u)) = EXr(Φr(v)), this means that Φr(w ⊔ v) ∈ Xr, which
by definition of Φr implies w ⊔ v ∈ X.
⇐: Suppose that EX(u) = EX(v) and furthermore ∂2r(u) = ∂2r(v). Consider any

w ∈ EXr(Φr(u)). By definition, w ⊔ Φr(u) ∈ Xr and so Φ−1
r (w ⊔ Φr(u)) ∈ X. We

can write Φ−1
r (w ⊔ Φr(u)) = w ⊔ u. By definition of Φ−1

r , w|∂rBn+r
depends only on w

and ∂2r(u). Therefore, as ∂2r(u) = ∂2r(v), we have Φ−1
r (w ⊔ Φr(v)) = w ⊔ v, and as

EX(u) = EX(v), this means that w ∈ EX(v) and so w ⊔ Φr(v) ∈ Xr, which means that
EXr(Φr(u)) ⊆ EXr(Φr(v)), and by symmetry we have equality.

Proof of Proposition 2.22. By Lemma 2.23, we have that for n > 4r, EX(n) ≤ EXr(n −
2r) ≤ EX(n)|A|2drn

d−1 . As r is fixed, we obtain hE(X) = hE(Xr).

Lemma 2.24

Let X,Y be subshifts conjugate via a block map Φ: X → Y of radius
0. Let s be the radius of Φ−1. Then, for all u, v ∈ LBn(X) such that
EX(u) = EX(v), and any w ∈ EL(X)(u) of support ∂s(Bn+s), we have
EY (Φ(w ⊔ u)) = EY (Φ(w ⊔ v)).

58 CHAPTER 2. EXTENDER ENTROPIES

Proof. Observe that

EY (Φ(w ⊔ u)) =
⋃

x∈Φ−1(Φ(w⊔u))

Φ(EX(x)) =
⋃

w∈Φ−1(w),w⊔u∈L(X)

Φ(EX(w ⊔ u))

The first equality always holds and is a set-theoretic equality; the second equality
comes from the fact that if x ∈ Φ−1(Φ(w ⊔ u)), then as Φ−1 has radius s and w has
“width” s, one must have x|dom(u) = u. We assumed that EX(u) = EX(v), therefore {w ∈
Φ−1(w), w ⊔ u ∈ L(X)} = {w ∈ Φ−1(w), w ⊔ v ∈ L(X)}, hence EX(w ⊔ u) = EX(w ⊔ v),
which finally gives EY (Φ(u)) = EY (Φ(v)).

We can now generalize [FP19, Thm 3] to arbitrary subshifts:

Theorem 2.25 [FP19, Thm 3]

Extender entropy is a conjugacy invariant.

Proof. Suppose that X and Y are Zd-subshifts, conjugate via ϕ : X → Y . By Proposi-
tion 2.22, we can assume that ϕ has radius 0, up to taking a higher block code ofX. Let s be
the radius of ϕ−1. By Lemma 2.24, we have that for n > 2s, EY (n) ≤ EX(n−2s)|A|2dsn

d−1 .
As s is fixed, we get hE(Y) ≤ hE(X). Applying this result to the conjugacy ϕ−1 : Y → X
instead, we obtain the reverse inequality and finally hE(X) = hE(Y).

2.2.2 Preliminary results on extender entropies

We state here without several other results of [FP19] and easy corollaries of our previous
remarks of Section 2.1.2.

Theorem 2.26 [FP19, Thm 4.3]

For any x ≤ y, there exists a Z-subshift X satisfying hE(X) = x, h(X) = y.

Note that this theorem says nothing about the dynamical or computational properties
of X. In particular, X is never assumed to be effective. In fact, the proof shows that if
x, y are both Π1 real numbers, then X is effective. Using Proposition 2.12, we can then
immediately extend the result to any dimension d ≥ 1.

Theorem 2.27 [FP19, Thm 3.2]

For any Zd-subshifts X,Y , we have hE(X × Y) = hE(X) + hE(Y).

Finally, we have the immediate corollaries of the previous sections:

Corollary 2.28

Let X be a Zd SFT. Then hE(X) = 0.

Proof. This is Example 7.

2.2. ANOTHER KIND OF ENTROPY 59

Corollary 2.29

Let X be a Z-sofic subshift. Then hE(X) = 0.

Proof. If X is sofic, then (EX(n))n∈N is bounded by Proposition 2.11, and so hE(X) =
0.

However, we also have some positive results, showing how to construct a large class of
real numbers as extender entropies:

Proposition 2.30

Let X be a sofic Z2 subshift. Then there exists Y a sofic Z2 subshift such
that hE(Y) = h(X).

Proof. Let A be the alphabet of X. We can always assume that h(X) > 0, as otherwise
taking any SFT Y works by Corollary 2.28. By Proposition 2.16, we know that Y =
Xsemi−mirror is sofic and satisfies hE(Y) ≥ h(X). For the other inequality, we simply show
that h(Y) = h(X). Then, as hE(Y) ≤ h(Y), we get equality.

Any pattern of Y might contain:

• A row of ■□, at some height 0 ≤ m < n.

• A pattern of Ln×(n−m−1)(X), which we simply approximate by a pattern of Ln(X).

• A possible reflected cell, with colour in A and position in Qn.

In total, we get |Ln(Y)| ≤ |A|n3|Ln(X)|, and so as log(|A|n3)
n2 → 0, we get h(Y) =

h(X).

In particular, we obtain the following corollary:

Corollary 2.31

Every Π1 real number is the extender entropy of some sofic Z2-subshift.

Proof. Every Π1 real number is the entropy of a sofic Z2-subshift (in fact, even of an SFT)
by [HM10], and we conclude by Proposition 2.30.

We will also be able to transfer results from construction of subshifts on Z or Z2 to
higher dimensions:

Proposition 2.32

Let X be a Zd effective (resp. sofic, computable) subshift. Then for all
d′ > d there exists an effective (resp. sofic, computable) Zd′-subshift Y
such that hE(Y) = hE(X)

Proof. This is a simple application of Proposition 2.12, noticing that if X is effective (resp.
sofic, computable) then so is X⇑.

60 CHAPTER 2. EXTENDER ENTROPIES

From now on, our constructions will therefore be done for Z and Z2 subshifts.

2.3 Computability considerations

In this section, we now show that the class of real numbers that can be realized as extender
entropies of sofic or effective subshifts is much larger than the Π1 class that Corollary 2.31
shows how to construct. We will in fact provide a complete characterization.

2.3.1 Inclusion of extender sets

In a first step, we prove an upper bound on the set of realizable extender entropies, of
effective, computable, and sofic subshifts. In order to do this, we will define some decision
problems, the difficulty of which will correspond to classes in the arithmetic hierarchy of
real numbers.

Decision Problem Extender-inclusion

Input: An effective subshift X ⊆ AZd , and n ≥ 0, u, v ∈ Ln(X).
Output: Whether EX(u) ⊆ EX(v).

Proposition 2.33

Extender-inclusion is Π0
2-complete.

In order to prove Proposition 2.33, we will reduce Extender-inclusion to another
classical problem.

Decision Problem Det-Rec-State

Input: A deterministic Turing Machine M and a state q.
Output: Does M visit q infinitely often during its run starting from the
empty input ?

This problem is known to be Π0
2-complete. It is a simple reformulation of Inf (the

problem of determining if a machine halts on infinitely many inputs), detailed for example
in [Soa16, Theorem 4.3.2].

Proof of Proposition 2.33. We prove both directions:

Proof that Extender-inclusion is a Π0
2 problem: By definition, if dom(u) =

dom(v) then:

EX(u) ⊆ EX(v) ⇐⇒ ∀D ⊂f Zd \ dom(u), ∀B ∈ AD, B ⊔ u ̸∈ L(X) ∨B ⊔ v ∈ L(X)

If X is effective, then testing if a pattern belongs to L(X) is a Π0
1 problem, so testing

B ⊔ u ̸∈ L(X) is a Σ0
1 problem. Therefore, testing it for all B ∈ A∗ is a Π0

2 problem.

2.3. COMPUTABILITY CONSIDERATIONS 61

Proof that Extender-inclusion is Π0
2-hard: It suffices to show it for Z-subshifts.

We reduce the problem to Det-Rec-State. Let (M, q) some instance of Det-Rec-State,
and define the following subshift XM :

• XM is a Z-subshift over the alphabet {0, 1,□}.

• 0 and 1 cannot appear in the same configuration.

• 1 appears at most once in a configuration.

• If 0 appears twice in a configuration x, so that there exists i, n with xi = xi+n = 0,
then x is n-periodic. Moreover, if M visits the state q at least m times, then we
enforce that n ≥ m.

This is an effective subshift: the constraints on 0, 1 and on the periodicity are clearly effec-
tive, and we can enumerate the forbidden small periods by simply executing the machine
M , and forbidding additional patterns each time it enters the state q.

The instance of Extender-inclusion that we consider is then (X, 0, 1). Indeed, we
claim that EX(0) ⊆ EX(1) if and only if M enters q infinitely often starting from the
empty input: the symbol 0 either appears in a configuration ∞□0□∞, or in a periodic
configuration ∞(0□n)∞. The first kind of configurations also belong to EX(1), but not the
second, as 0s and 1s cannot occur in the same configuration. However, those n-periodic
configurations exist exactly when the machine visits q less than n times.

Note that, although not crucial in the previous proof, we rely on the observations made
in the case of periodic subshifts in Example 6: ensuring that configurations are periodic is
a straightforward way to enforce that different patterns u, v have different extender sets,
as replacing a single occurrence of u by v makes the configuration no longer periodic.

Proposition 2.34

If we restrict the possible input to computable subshifts, then Extender-
inclusion is Π0

1-complete.

Proof. Both directions are proven as in the case of effective subshift in Proposition 2.33:

Proof that Extender-inclusion is a Π0
1 problem for computable subshifts:

We still write

EX(u) ⊆ EX(v) ⇐⇒ ∀D ⊂f Zd \ dom(u),∀B ∈ AD, B ⊔ u ̸∈ L(X) ∨B ⊔ v ∈ L(X)

Now, as X is computable, testing for any particular B whether B⊔u ̸∈ L(X) is decidable,
and so testing it for all B ∈ A∗ is a Π0

1 problem.

Proof that Extender-inclusion is Π0
1-hard for computable subshifts: We de-

fine another problem to which we reduce Extender-inclusion:

Decision Problem Co-Halt

Input: A Turing Machine M .
Output: Whether M runs forever on the empty input.

62 CHAPTER 2. EXTENDER ENTROPIES

As the complement of Halt, this problem is Π0
1.

The reduction and the proof are then exactly the same as in Proposition 2.33, where
we instead define the subshift XM by forbidding periods less than n if M runs for at least
n steps. This is a computable subshift, as it suffices to run M for n steps to decide whether
or not any given pattern is allowed.

2.3.2 Number of extender sets

The Section 1.2.2 shows how to relate decision problems and computability properties of
real numbers. We can therefore obtain restrictions on the reals that might be realized as
extender entropies:

Decision Problem Extender-count

Input: An effective Zd-subshift X and k, n ≥ 0.
Output: Whether k ≤ EX(n).

Lemma 2.35

Extender-count is a Σ0
2 problem.

Proof. We simply write a first-order formula ϕ(X, k, n) which is true if and only if k ≤
EX(n):

ϕ(X, k, n) = ∃v1, . . . , vk ∈ Ln(X),
∧

1≤i<j≤k
EX(vi) ̸= EX(vj)

For any vi, vj , the proposition EX(vi) ̸= EX(vj) can simply be rewritten as ¬(EX(vi) ⊆
EX(vj) ∧ EX(vj) ⊆ EX(vi)), which by Proposition 2.33 is a Σ0

2 problem. We can then
rewrite

ϕ(X, k, n) = ∃v1, . . . , vk ∈ A∗,
∧

1≤i≤k
vi ∈ Ln(X)

︸ ︷︷ ︸
Π0

1⊂Σ0
2

∧
∧

1≤i<j≤k
EX(vi) ̸= EX(vj)

︸ ︷︷ ︸
Σ0

2

Moreover, for any Σ0
2 formula ψ, the formula ∃xψ is still Σ0

2. Hence, ϕ(X, k, n) ∈
Σ0
2.

Proposition 2.36

Let X be an effective Zd-subshift. Then hE(X) ∈ Π3.

Proof. Given X,n ≥ 0, the set {k ∈ N, k ≤ EX(n)} is a Σ0
2 set by Lemma 2.35. This

immediately implies that {x ∈ R, x ≤ logEX(n)
nd } is a Σ0

2 set as logarithms and quotients
are computable functions. By definition, this means that for all n, logEX(n)

nd ∈ Σ2. As
hE(X) = infn

logEX(n)
nd by Proposition 2.20, we get hE(X) ∈ Π3.

2.4. CHARACTERIZATIONS OF EXTENDER ENTROPIES 63

Proposition 2.37

Let X be a computable Zd-subshift. Then hE(X) ∈ Π2.

Proof. The proof is the same as for Proposition 2.36. We simply show that if X is com-
putable, then for any n the set {k ∈ N, k ≤ EX(n)} is a Σ0

2 set. Indeed, as in the proof
of Lemma 2.35, we can write a formula ϕ(X, k, n) which holds if and only if k ≤ EX(n)
as:

ϕ(X, k, n) = ∃v1, . . . , vk ∈ A∗,
∧

1≤i≤k
vi ∈ Ln(X)

︸ ︷︷ ︸
decidable

∧
∧

1≤i<j≤k
EX(vi) ̸= EX(vj)

︸ ︷︷ ︸
Σ0

1

and therefore ϕ(X, k, n) is a Σ0
1 formula.

2.4 Characterizations of extender entropies

Before moving on to the proof of our main results about the extender entropy of sofic and
effective subshifts in general, we prove some easier results, about the possible behaviours
of the extender entropy when the subshifts satisfy additional dynamical properties.

2.4.1 Minimal subshifts

Recall from Proposition 1.39 that a minimal subshift is a subshift in which no additional
pattern can be forbidden, for otherwise it becomes empty. From this characterization, we
deduce a nice result on the extender sets of minimal subshifts:

Proposition 2.38

Let X be a minimal subshift. For any n ≥ 0 and u, v ∈ Ln(X), EX(u) ⊆
EX(v) =⇒ u = v.

Proof. We show by contradiction that EX(u) ⊆ EX(v) and u ̸= v imply that X is not
minimal. More precisely, if F is a family of forbidden patterns defining X, we prove that
XF∪{u} ̸= ∅. Indeed, let x ∈ X be some configuration. As EX(u) ⊆ EX(v), we can replace
any occurrence of u by v in x, and construct for any n ≥ 0 configurations xn such that
u ̸⊑ xn|Bd

n
. By compactness, we obtain at the limit a configuration x∞ ∈ X containing no

u, so x∞ ∈ XF∪{u}, which is a contradiction.

Corollary 2.39

Let X be a Zd-minimal subshift. Then h(X) = hE(X).

This means that any result on the entropy of minimal subshifts immediately gives the
same result about its extender entropy. In particular, we have the following results as
immediate consequences from previous theorems of the literature:

64 CHAPTER 2. EXTENDER ENTROPIES

Corollary 2.40

If X is a minimal sofic subshift, then hE(X) = 0.

Proof. This is because for a Zd-sofic subshiftX, minimality implies thatX has zero entropy
(folklore, see for example [Gan18, Proposition 6.1], in which one can find other results about
how dynamical properties constrain the possible values of the entropy).

Proposition 2.41

The extender entropies of minimal Zd effective subshifts are exactly the Π1

real numbers.

Proof. This is a consequence of the fact that the entropies of minimal effective subshifts
are the Π1 real numbers, see for example [Kur03, Theorem 4.77] for a proof.

2.4.2 Mixing properties

Recall from Definition 1.43 that a Z-subshift is mixing if for any two patterns u, v ∈
Ln(X), there exists some N ≥ 0 such that for any z ∈ Z, |z| ≥ N , there exists some
configuration x such that x|Qn

= u and x|z+n+Qn
= v (this is a slight but equivalent

reformulation of the definition given in Definition 1.43). If N can be chosen independently
from n, we say that X is N -mixing. Less formally, mixing means that provided that we
place them sufficiently far, any patterns u and v can appear in the same configuration.
Such a property could a priori prevent some behaviours in (EX(n))n∈N: intuitively, being
mixing means that little information “escapes” from the pattern to determine the rest of the
configuration, and the only influence exerted by the pattern is in a bounded neighbourhood
around it. This is formally incorrect, and this intuition is in fact false:

Proposition 2.42

Let X be a Z-subshift. Then there exists a Z-subshift Y which is 1-mixing,
and such that hE(X) = hE(Y).
If X is effective, then Y can be chosen effective too.

Proof. Let X = XF ⊆ AZ be defined by a family of forbidden patterns F ⊂ A∗. We can
assume that F = A∗ \ L(X). In particular, we assume that the domain of each f ∈ F is
an interval, and for any u ∈ A∗, if u contains no element of F then u ∈ L(X). Consider
the alphabet B = A ⊔ {#}, and let Y be the Z-subshift with alphabet B and the same
family of forbidden patterns F . Then, y ∈ Y contains arbitrary (possibly empty, possibly
infinite) words of L(X), separated by #. Now, clearly Y is 1-mixing as for any words
u, v ∈ L(Y), we have u#v ∈ L(Y). Moreover, Y is clearly effective if X is effective.

It remains to show that hE(X) = hE(Y).

Claim 1. For any n ≥ 0, the following inequality holds:

EX(n) ≤ EY (n) ≤ EX(n) +
∑

0≤i,j≤n,i+j<n
PX(i)FX(j)

.

2.4. CHARACTERIZATIONS OF EXTENDER ENTROPIES 65

Proof. We prove the two inequalities separately:

• For the leftmost inequality, notice thatX ⊆ Y , and in particular for any u, v ∈ Ln(X)
and x such that x ⊔ u ∈ X,x ⊔ v ̸∈ X, we have x ⊔ u ∈ Y but still x ⊔ v ̸∈ Y .
More informally, a configuration “witnessing” that EX(u) ̸= EX(v) also proves that
EY (u) ̸= EY (v).

• For the rightmost inequality, let u, v ∈ Ln(Y):

– If # ̸∈ u and # ̸∈ v, then we have EY (u) = EY (v) ⇐⇒ EX(u) = EX(v).
Indeed, by assumption on F this means that u, v ∈ L(X), and if EY (u) = EY (v)
then in particular any x ∈ EY (u) not containing # is also an extender for u
in X. Therefore, EX(u) = EX(v). On the other hand, if EX(u) = EX(v),
then let x ∈ EY (u) \ EX(u). Then x must contain some #. Let w ⊑ x be the
maximal subpattern so that # ̸∈ w ⊔ u and dom(w ⊔ u) is an interval. Then
w ∈ EL(Y)(u) (indeed, we assumed that F was such that locally admissible
patterns on intervals are globally admissible), and as EX(u) = EX(v) we also
have w ∈ EL(Y)(v), and so x ∈ EY (v) as w is bounded by #’s in x (or is
infinite).

– If u contain a #, then let 0 ≤ i < n be the leftmost position such that ui = #,
and let 0 ≤ j < n be the rightmost such position. It is clear that EY (u) depends
only on PY (u|J0,i−1K) and FY (u|Jj+1,n−1K). Moreover, for the same reasons as
above, this depends only on PX(u|J0,i−1K) and FX(u|Jj+1,n−1K).

Summing the two cases separately, we get

EY (n) ≤ EX(n) +
∑

0≤i≤j<n
PX(i)FX(n− 1− j) ≤ EX(n) +

∑

i+j<n

PX(i)FX(j)

■

Now, we also have for all n that PX(n) ≤ EX(n) and FX(n) ≤ EX(n). Moreover, by
definition of hE(X), we have EX(n) = 2hE(X)n+o(n). Denoting α = hE(X), we have:

EY (n) ≤ EX(n) +
∑

i+j<n

PX(i)FX(j)

≤ EX(n) +
∑

i+j<n

EX(i)EX(j)

≤ 2αn+o(n) +
∑

i+j<n

2αi+o(i)2αj+o(j)

≤ poly(n)2αn+o(n)

Taking the log and dividing by n, and with n going to +∞ we finally get hE(X) ≤
hE(Y) ≤ hE(X).

2.4.3 One-dimensional effective subshifts

We will now turn our attention to the general case of effective subshifts. By Proposi-
tion 2.36, we cannot realize more than then Π3 real numbers. We will show that in fact,
effective-Z subshifts are already enough to realize this class.

66 CHAPTER 2. EXTENDER ENTROPIES

Theorem 2.43

The extender entropies of effective Z-subshifts are exactly the non-negative
Π3 real numbers.

The proof relies on an explicit construction of a subshift Zα satisfying hE(Zα) = α
for any positive real α ∈ Π3. The high-level strategy is rather simple: the main idea is
to first try to enforce h(Zα) ≈ 2αn, and then ensure that for u ̸= v ∈ L(Zα) we have
EZα(u) ̸= EZα(v). However, even the first requirement is already impossible to satisfy, as
if it were true, we would have h(Zα) = α an arbitrary Π3 real while entropies of effective
subshifts are always Π1 reals. Nevertheless, this is still the strategy we try to follow. The
rest of the Section 2.4.3 is the proof of this theorem. Note that thanks to Theorem 2.27,
it is enough to prove it for any α ∈ [0, 1] ∩Π3.

Encoding integers into configurations

Part of the construction will use ideas from the proof of Proposition 2.33, where configura-
tions are periodic, with the allowed periods depending on the behaviour of some machine.
We formally define this construction and define a few helpful notations.

Let A∗ = {∗,□}.

Notation. For i > 0, 0 ≤ k1 < i, note ⟨i⟩k1 = σk1(. . .□·∗□i−1∗□i−1∗. . .). More formally:

⟨i⟩k1 : Z→ A∗

p 7→
{
∗ if p = k1 mod i

□ otherwise

Denote ⟨∞⟩ = {x ∈ AZ
∗ , |x|∗ ≤ 1}.

Taking the orbit of all those configurations, we obtain the subshift

X∗ =
⋃{
⟨i⟩k1 , i > 0, 0 ≤ k1 < i

}
=
⋃{
⟨i⟩k1 , i > 0, 0 ≤ k1 < i

}
⊔ ⟨∞⟩

We call the configurations of ⟨∞⟩ degenerate configurations.

Claim 2. |Ln(X∗)| = O(n2).

Proof. By definition:

Ln(X∗) = {0n} ∪
⋃

i≤n
{0i ∗ 0n−i−1}

⋃

i≤n

⋃

0≤k1<i
0k1 ∗ 0i−1 · · · ∗ 0n−k1 mod i

Configurations with controlled density

We now explain how to construct configurations with a controlled density, that is, config-
urations on {0, 1} where the number of 1 in large patterns converges to some value. More
precisely, for some α ∈ [0, 1], we want to construct a subshift Tα ⊆ {0, 1}Z which verifies
for any x ∈ Tα:

lim
n→+∞

|x|J0,n−1K|1
n

= α

There are several explicit construction of such subshifts T . The one we choose here
is based on Toeplitz subshifts. A general introduction to many equivalent definitions

2.4. CHARACTERIZATIONS OF EXTENDER ENTROPIES 67

and properties of Toeplitz subshifts can be found in [Sel20], but we only restate what is
necessary for our proofs, without giving general results about Toeplitz subshifts.

Define the 2-adic valuation map v2 : N → N by v2(n) = maxm 2m|n, and consider
the sequence T = 12131214 · · · = (v2(2n))n>0 (also known as the ruler function, see Oeis
A001511). Using T , we can associate to any sequence (un)n>0 another sequence Tu, called
its Toeplitzification, defined by (Tu)n = uTn for all n > 0.

Let β ∈ [0, 1] be a real number, and let (βn)n>0 be its binary expansion, so that β =∑+∞
n=1 βn2

−n. Define Tβ the sequence defined for all n by (Tβ)n = βTn = β1β2β1β3β1

Claim 3. For any β ∈ [0, 1], n ≥ 1 and for w ⊑ Tβ any subsequence of length n, we have
|w|1 = βn+O(1).

Proof. It is enough to prove the claim for dom(w) = J1, 2kK, as v2(2k + ℓ) = v2(ℓ) for
0 < ℓ < 2k. Then:

|w|1 = |{1 ≤ i ≤ 2k | (Tβ)i = 1}|
= |{1 ≤ i ≤ 2k | βTi = 1}|

=
k∑

j=1

|{1 ≤ i ≤ 2k | Ti = j}|1βj=1

=
k∑

j=1

βj |{1 ≤ i ≤ 2k | Ti = j}|

=
k−1∑

j=0

βj |{1 ≤ i ≤ 2k | v2(i) = j}|

=
k−1∑

j=0

βj |{p ∈ N | 1 ≤ 2j(2p+ 1) ≤ 2k}|

=
k−1∑

j=0

βj |{0 ≤ p < 2k−j−1}|

=
k−1∑

j=0

βj2
k−j−1

= 2k
k∑

j=1

βj2
−j

= n(β −
∞∑

j=k+1

(βj2
−j))

= n(β +O(
1

n
))

We can then define a subshift associated to a real number β, by considering the orbit
of the Tβ. However, our goal is not to control a density of 1 in configurations, but to
control the number of extender sets. We still use the previous idea of constructing periodic
configurations to separate extender sets.

Notation. Let α ∈ [0, 1], i > 0, and 0 ≤ k1 < i. Define

T (β, i)k1 : Z→ {0, 1}
p 7→ (Tβ)p+k1 mod i

https://oeis.org/A001511

68 CHAPTER 2. EXTENDER ENTROPIES

In other words, T (β, i)0 is the sequence obtained by repeating periodically the word
((Tβ)1 . . . (Tβ)i), and T (β, i)k1 = σk1(T (β, i)0).

Notation. We denote by β(x) the inverse operation: more precisely, for x = (T (β, i)k1),
we define

β(x) =

log i∑

k=1

βk2
−k =

log i−1∑

k=0

xk1+2k2
−k−1

We now define, for every α ∈ [0, 1] and i > 0, the Z-subshift Tα,i on alphabet {0, 1} as

T≤α,i =
{
T (β, i)k1 ∈ {0, 1}Z, β ≤ α, 0 ≤ k1 < i

}

Claim 4. T≤α,i is a subshift.

Claim 5. For α ∈ [0, 1] ∩ Π1 and any i > 0, T≤α,i is an SFT. Moreover, there exists an
enumerating Turing Machine M such that T≤α,i =M(α, i) eventually; in other words, one
can enumerate a finite family F such that T≤α,i = XF uniformly in α.

Proof. By definition of the class Π1, the set {r ∈ Q, r > α} is recursively enumerable. One
can then forbid the non-i-periodic configurations, or those which do not correspond to some
prefix of the ruler sequence. Moreover, we forbid the finitely many patterns corresponding
to Toeplitzification of rationals r =

∑log i
k=1 rk2

−k with r > α. More precisely, we forbid
all the patterns of length 2i such that for all k1 < i, wk1wk1+1 . . . wk1+i−1 is the prefix of
T (r, i)0 for some r > α.

An auxiliary subshift

Let α ∈ [0, 1] ∩ Π3 be a positive real number. By definition, there exists (αi,j)i,j∈N such
that α = infi supj αi,j . We can make the following assumptions:

• For all i ∈ N, we have that (αi,j)j∈N is a non-decreasing sequence. Denote αi =
supj αi,j .

• The sequence (αi)i∈N is non-increasing.

We do not define yet the subshift Zα satisfying hE(Zα) = α. For the moment, we
construct an intermediary subshift, from which we will easily obtain Zα. Define therefore
Wα the following Z-subshift on various layers:

1. First layer L1: we set the first layer to be L1 = X∗ as defined in Section 2.4.3.
Informally, in a configuration x, this layer will be some ⟨i⟩_ and will act as a witness
for some i such that x “approximates” αi = supj αi,j ∈ Σ2.

2. Second layer L2: we also set the second layer to be L2 = X∗. Informally, in a
configuration x with first layer ⟨i⟩_, this layer will be some ⟨j⟩_ and will act as a
witness for some j such that x “approximates” αi,j = Π1.

3. Density layer Ld: the density layer is Ld = AZ
d = {0, 1}Z. We impose an additional

condition: in a configuration x having its first two layers non-degenerate (in the sense
of Section 2.4.3), respectively ⟨i⟩_ and ⟨j⟩_, the density layer will be a configuration
of T (αi,j , i). As αi,j ∈ Π1, we have by Claim 5 that T (αi,j , i) is an SFT.

2.4. CHARACTERIZATIONS OF EXTENDER ENTROPIES 69

Finally, define Wα as:

Wα =
{
(z(1), z(2), z(d)) ∈ L1 × L2 × Ld

∣∣ z(2) ∈ ⟨∞⟩
}

∪
⋃

i>0

⋃

j≥i

{ (
⟨i⟩k1 , ⟨j⟩k2 , T (β, i)k1

)
∈ L1 × L2 × Ld

∣∣

i ≤ j, 0 ≤ k1 < i, 0 ≤ k2 < j, 0 ≤ β ≤ αi,j
}

We show in Figure 2.4 an example of a configuration of Wα. In accordance with Sec-
tion 2.4.3, we say that a configuration z ∈Wα is degenerate if its second layer is degen-
erate in X∗, and proper otherwise. We extend this distinction to patterns of L(Wα): a
pattern w is degenerate if it only appears in degenerate configurations, and proper if there
exists a proper configuration z such that w ⊑ z.

∗ ∗ ∗ ∗∗ ∗ ∗
1 0 1 1 1 0 1 0 1 0 1 1 1 0 1

w

1 0 1 1 1 0 1 0 1 0 1 1 1 0 1

w

1 0 1 1 1 0 1 0 1 0 1 1 1 0 1

w

Figure 2.4: A proper pattern: Ld contains a Toeplitz encoding of .10102 = 5
8 . z =

(⟨15⟩11 , ⟨18⟩1 , T (58 , 15)10). The vertical red line indicates the origin.

We now prove that Wα is effective:

Claim 6. If α ∈ [0, 1] ∩Π3, then Wα is an effective Z-subshift.

Proof. The first two layers are clearly effective, as they are simply periodic configurations.
One can enforce that in a configuration z = (⟨i⟩ , ⟨j⟩ , z(d)), we have i ≤ j by forbidding all
the patterns (∗0n−1, P, z(d)) ∈ Ln(L1 × L2 × Ld) where P contains at least 2 ∗. The only
remaining condition is then to ensure that in a proper configuration z = (⟨i⟩k1 , ⟨j⟩k2 , z(d)),
we have zd ∈ T≤αi,j ,i. But this is also straightforward, as we can simply enumerate the
patterns of T≤αi,j ,i only when the first two layers each contain two ∗, so that we know
the respective i, j encoded in those first and second layers, and therefore the Π1 real αi,j .
By Claim 5, this is an effective procedure, and so Wα is effective.

Let DE(n) = |{EWα(w), w ∈ Ln(Wα) and w is degenerate}|, and PE(n) = |{EWα(w), w ∈
Ln(Wα) and w is proper}|. The idea is that DE(n) should be negligible, while PE(n) re-
lates to α in a precise way.

Claim 7. If u is a degenerate pattern and v is a proper pattern, then EWα(u) ̸= EWα(v).

Proof. By definition of proper patterns, there exists a proper configuration extending v,
which therefore cannot extend u.

Claim 8. DE(n) = O(n3).

Proof. Let n ≥ 1, (u = (u(1), u(2), u(d)), v = (v(1), v(2), v(d))) ∈ Ln(Wα) be two degen-
erate patterns. By definition of Wα, for any z(d) ∈ Ln(Ld) = {0, 1}n, we have that
(u(1), u(2), z(d)) ∈ Ln(Wα) is a degenerate pattern. In particular, if u(1) = v(1) and
u(2) = v(2), then EWα(u) = EWα(v). As u, v are degenerate, for any z = (z(1), z(2), z(d)) ∈
Wα such that u ⊑ z, we have |z(2)|∗ ≤ 1, so there are O(n) such patterns. Moreover,
Ln(X∗) = O(n2) by Claim 2, so in total, DE(n) = O(n3).

Claim 9. If u ̸= v are proper patterns, then EWα(u) ̸= EWα(v).

Proof. There exists z = (⟨i⟩k1 , ⟨j⟩k2 , z(d)) ∈ Wα such that z|J0,n−1K = u. Then, z is
i× j periodic as ⟨i⟩k1 , z(d) are i-periodic and ⟨j⟩k2 is j-periodic, so z|Z\J0,n−1K completely
determines z|J0,n−1K and in particular z|Z\J0,n−1K ̸∈ EWα(v).

70 CHAPTER 2. EXTENDER ENTROPIES

Those claims imply that EWα(n) = O(n3) + PE(n). However, (PE(n))n∈N grows
polynomially, and not exponentially. It will nonetheless be possible to slightly alter the
construction to obtain a precisely controlled growth rate of (PE(n)) thanks to the next
remark:

Lemma 2.44

Let z = (⟨i⟩k1 , ⟨j⟩k2 , z(d)) ∈ Wα be a proper configuration. Then
|z(d)

∣∣
J0,i−1K|1 ≤ αii+Oi(1), and for i ≥ n, |z(d)

∣∣
J0,n−1K|1 ≤ αnn+On(1).

Proof. The first inequality holds because z(d) is T (β, i)k1 for some β ≤ αi,j , which is i-
periodic, and so z(d)

∣∣
J0,i−1K is (up to a cyclic permutation) T (β, i)|J0,i−1K. By Claim 3 it

contains βi+O(i) symbols 1, and β ≤ αi,j ≤ αi.
To get the second claim, we assumed that (αk)k∈N was non-increasing so αn ≤ αi.

Multiplying the number of patterns

A common technique from the literature to transform a density-like property of a subshift
into an entropy-like property is to add another layer acting almost as a full-shift (see for
example [HM10, Section 8] or [CV21, Section 4.6]). More precisely, consider the following
construction. Let Af = {□, 0, 1} and Lf = AZ

f , and define πsync : Af → {0, 1} be the map
defined by πsync(□) = 0 and πsync(0) = πsync(1) = 1. We naturally extend πsync to a map
Lf → {0, 1}Z. We can then add a fourth layer to Wα:

4. Free layer Lf : We add a layer Lf which is synchronized with the density layer in
the following sense: if z = (z(1), z(2), z(d), z(f)) is such that (z(1), z(2), z(d)) is a proper
Wα configuration then we require πsync(z(f)) = z(d), and that z(f) is periodic (with
the same period than z(1) and z(d)), see Figure 2.5.

More precisely, we define the subshift Zα from Wα as follows:

Zα =
{
(z(1), z(2), z(d), z(f)) ∈ L1 × L2 × Ld × Lf

∣∣ z(2) ∈ ⟨∞⟩
}

∪
⋃

i>0

⋃

j≥i

{(
⟨i⟩k1 , ⟨j⟩k2 , T (β, i)k1 , z

(f)
)
∈ L1 × L2 × Ld × Lf

∣∣

0 ≤ k1 < i, 0 ≤ k2 < j, 0 ≤ β ≤ αi,j ,
πsync(z

(f)) = T (β, i)k1 , z
(f) is i-periodic

}

∗ ∗ ∗ ∗∗ ∗ ∗
1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1
0 1 0 0 0 1 1 0 1 0

w

0 1 0 0 0 1 1 0 1 0

w

0 1 0 0 0 1 1 0 1 0

w

Figure 2.5: A proper pattern: Ld contains a Toeplitz encoding of .10102 = 5
8 . z =

(⟨15⟩11 , ⟨18⟩1 , T (58 , 15)10). The vertical red line indicates the origin.

The Figure 2.5 shows a proper pattern of Zα, corresponding to the addition of the free
layer to the pattern of Wα already depicted in Figure 2.4.

Claim 10. Zα is an effective Z-subshift.

2.4. CHARACTERIZATIONS OF EXTENDER ENTROPIES 71

Proof. This is a consequence of Wα being effective by Claim 6. Indeed, it suffices to
forbid on top of the patterns defining Wα all the patterns (u(1), u(2), u(d), u(f)) where u(2)

contains two ∗, in which (u(d), u(f)) contains either of (0, 0), (0, 1), (1,□), and to enforce
the periodicity of u(f) according to the one of u(1).

In Zα, we say that a pattern u (resp. a configuration z) is proper (resp. degenerate) if
πL1×L2×Ld

(u) ∈ L(Wα) (resp. πL1×L2×Ld
(z) ∈Wα) is proper (resp. degenerate).

Counting patterns and extender sets

Note that the proofs of Claim 8 and Claim 9 also give the equivalent claims for Zα:

Claim 11. |EX(u), u ∈ Ln(Zα) is degenerate| = O(n3) and if u ̸= v ∈ Ln(Zα) are proper
then EZα(u) ̸= EZα(v).

In fact, we have the following quantitative claim, relating the patterns of Wα to those
of Zα:

Claim 12. Let (⟨i⟩k1 , ⟨j⟩k2 , z(d)) be proper in Wα, and let d be the number of 1 in any
i-period of z(d). Then:

|{(⟨i⟩k1 , ⟨j⟩k2 , z
(d), z(f)) ∈ Zα}| = 2d

Proof. (⟨i⟩k1 , ⟨j⟩k2 , z(d), z(f)) ∈ L(Zα) if and only if πsync(z(f)) = z(d), if and only for all
k such that z(d)k = 1, we have z(d) ∈ {0, 1}. As z(f) is also i-periodic, and as the symbols
of z(d) within a period can be chosen independently, we have the required equality.

The key lemma is then the following, mirroring Lemma 2.44.

Lemma 2.45

Let P (n) be the number of proper patterns in Ln(Zα). Then

2αnn+On(1) ≤ P (n) ≤ poly(n)
n∑

i=1

2αii+Oi(1)

Proof. We first prove the leftmost inequality. For any n ≥ 0, it suffices to exhibit a family of
patterns of the required cardinality, all having a different extender set. Consider for j ≥ n
the pattern wj ∈ Ln(Wα), defined by wj = (⟨n⟩0 , ⟨j⟩0 , T (αn,j , 0))|J0,n−1K. By Claim 3,
wj contains dj = αn,jn + On(1) symbols 1 in its density layer. Taking j → +∞, we get
αn,j → αn and therefore at the limit, we obtain a pattern w ∈ Ln(Wα) which is proper
and with d = αnn symbols 1 in its density layer. By Claim 12, we obtain the lower bound.

For the rightmost inequality, we will do a rough overestimation of the number of proper
patterns in Zα. To do this, we first count the number of proper patterns in Wα. For a
proper pattern u = (⟨i⟩k1 , ⟨i⟩k2 , T (β, i)k1) ∈ Ln(Wα):

• If i < n, then the pattern u is i-periodic and so it suffices to bound the number of
i-periods. In particular, by Lemma 2.44, there are at most αii+ O(1) symbols 1 in
T (β, i)k1 .

• Otherwise, Lemma 2.44 also gives that there are at most αnn + O(1) symbols 1 in
T (β, i)k1 .

72 CHAPTER 2. EXTENDER ENTROPIES

Summing everything and given Claim 12, we get that

P (n) ≤
n∑

i=1

i−1∑

k1=0

n∑

j=i

j−1∑

k2=0

2αii+Oi(1) +
n∑

k1=0

n∑

k2=0

2αnn+O(1)

≤ poly(n)
n∑

i=1

2αii+Oi(1)

We can now prove the claimed theorem, using a small computational lemma:

Lemma 2.46

For any non-zero polynomial P with P (n) > 0 for n > 0, d > 0, and any
converging positive sequence αn → α, we have

log
(∑n

i=0 P (i)2
αii

d
)

nd
→ α

Proof. Fix ε > 0, and let I ∈ N be such that for all i ≥ I, |αi − α| ≤ ε and moreover
P (i + 1) ≥ P (i). Let us note Sn =

∑n
i=0 P (i)2

αii
d , and fix some i ≥ I. Now, Sn ≥

P (n)2αnnd ≥ P (n)2(α−ϵ)nd and so logSn

nd ≥ α− ϵ.
On the other hand,

Sn =

I∑

i=0

P (i)2αii
d

︸ ︷︷ ︸
K

+

n∑

k=I+1

P (i)2αii
d

≤ K +
n∑

i=I+1

P (i)2(α+ε)i
d

≤ K + nP (n)2(α+ε)n
d

≤ (n+ 1)P (n)2(α+ε)n
d

for large enough n

and so logSn

nd ≤ α+ ε+ log(n+1)P (n)
nd . By taking n large enough so that log(n+1)P (n)

nd ≤ ϵ, we
finally have

α− ε ≤ logSn
nd

≤ α+ 2ε

for all sufficiently large n. As this holds for any ε > 0, we get logSn

nd → α.

Proof of Theorem 2.43. Let α ∈ Π3 and consider the subshift Zα defined in Section 2.4.3.
It is effective by Claim 10. Denoting P (n) the number of proper patterns of size n of Zα,
we have by Claim 11 that EZα(n) = O(n3) + P (n), and so by Lemma 2.45 we have

2αnn+On(1) ≤ EZα(n) ≤ poly(n)

n∑

i=1

2αii+Oi(1)

Taking n→ +∞ we get αn → α and therefore hE(Zα) = α by Lemma 2.46.

2.4. CHARACTERIZATIONS OF EXTENDER ENTROPIES 73

2.4.4 Computable subshifts

In the case of computable subshift, the construction used to prove Theorem 2.43 also
proves the next theorem:

Theorem 2.47

The extender entropies of computable Zd subshifts are exactly the non-
negative Π2 real numbers.

Proof. The upper bound is given by Proposition 2.37. It suffices to prove the theorem
for Z subshifts, thanks to Proposition 2.32. Now, notice that if α a Π2 real number, the
subshift Zα constructed in the proof of Theorem 2.43 is in fact computable. To see this,
note that we can now write α = infi supj αi,j where the αi,j are computable (rather than
Π1). This means that given a pattern w of L1 × L2 × Ld × Lf , assuming that the bits of
Lf are consistent with the density bits of Ld:

• If w(2) contains at most one ∗ then it is allowed (this is already the case in the proof
of Theorem 2.43).

• Otherwise, w ⊑ (⟨i⟩k1 , ⟨j⟩k2 , T (β, i)k1 , w(f)). As j ≥ i and w(2) contains two ∗, so
does w(1), and so we know the period of w. It then suffices to check if β ≤ αi,j ,
which is decidable as αi,j is computable.

2.4.5 Multi-dimensional sofic subshifts

We would now like to show that this characterization of extender entropies also holds for
sofic multi-dimensional subshifts. In order to transfer the result of Theorem 2.43 to sofic
Zd-subshifts, one could try to follow one of those ideas:

• Use Proposition 2.32 and free lifts. This does not work, as the free lift of an effective
subshift is effective but not sofic in general.

• Adapt the ideas of Section 2.4.3 and Section 2.4.3 to an higher-dimensional con-
struction, by using periodic square blocks. However, arguments similar to those
used in Proposition 2.15 show that we have no hope of such a subshift, containing
configurations of arbitrarily large periods, being sofic.

• Use ideas from Proposition 2.16 to avoid the problem of having arbitrarily large
periods. Now, the problem is the number of extender sets will be very hard to bound:
indeed, a key element in the proof of Theorem 2.43, which is explicit in Lemma 2.46,
is the fact that configurations “implementing” approximations of αi,j have a small
period, and therefore, become negligible compared to the number of patterns of larger
periods.

Combining those ideas, we will nevertheless manage to show that the following result
holds:

74 CHAPTER 2. EXTENDER ENTROPIES

Theorem 2.48

For any d ≥ 2, the extender entropies of sofic Zd-subshifts are exactly the
non-negative Π3 real numbers.

The proof relies on an observation already present in Proposition 2.16: it is not nec-
essary to ensure that configuration are periodic to distinguish the extender sets of any
two “good” patterns, it is enough that there exists a configuration which witnesses any
difference between those patterns. One can understand this difference by considering the
following logical formulas. The first one corresponds to the case of periodic configurations:

∀u,∃z ∈ EX(u), ∀v, z ∈ EX(v) =⇒ u = v.

This is of course under-specified, notably, u and v must be chosen in some specific subset of
L(X) for the formula to hold. However, such a formula would indeed imply that all such
patterns u, v have different extender sets. The semi-mirror construction instead makes
another kind of property hold:

∀u,∀v,∃z ∈ EX(u), u ̸= v =⇒ z ̸∈ EX(v).

Using this observation, we will prove Theorem 2.48 with the following strategy:

• For each α ∈ Π3 ∩ [0, 1], consider the subshift Wα constructed in Section 2.4.3.

• Using Theorem 1.87, we obtain a sofic Z2 subshift Wα
↑, where i × i squares have a

controlled density of symbols 1 in their density layer.

• In each i × i square, we identify a single bit. This bit is made i × i periodic using
some additional background layers.

• Arguments similar to those used in Proposition 2.16 then ensure that all the “proper”
patterns have different extender sets, and the computations of Section 2.4.3 can be
adapted to show that the number of such patterns is what we need to obtain an
extender entropy α.

Note that:

• We can restrict ourselves to the case α ∈ [0, 1] thanks to Theorem 2.27.

• We can restrict ourselves to the case of Z2-subshifts thanks to Proposition 2.32, as
the free lift of a sofic subshift is sofic.

Marked offsets instead of periods

As in Section 2.4.3, we will introduce some specific intermediate subshifts to build the
actual subshift Yα with hE(Yα) = α. In order to implement this “marker” layer, which
identifies a single bit per square as explained above, let Am = {□,■□}, and define for any
i > 0,m1,m2 ∈ J0, i− 1K2 the configuration:

[2i]m1,m2
: Z2 → Am

p 7→
{
■□ if p = m1 mod 2i ∧ p = m2 mod 2i

□ otherwise

As a shortcut, we will use p = (m1,m2) mod (2i, 2i) for p = m1 mod 2i ∧ p = m2

mod 2i. Note that [2i]m1,m2
is (2i, 2i)-periodic. For x = [2i]m1,m2

, say that a position

2.4. CHARACTERIZATIONS OF EXTENDER ENTROPIES 75

Figure 2.6: The configuration [2 · 3]2,1 ∈ Xm, where the dashed cells represent the marked
positions.

p ∈ Z2 is marked if p ∈ (m1 + iZ,m2 + iZ). Note that some marked positions p satisfy
xp = □. Note Marked(x) this set of position.

We now define the subshift Xm of those configurations: let [∞] = {x ∈ Am, |x|■□ ≤ 1}.
Then, define

Xm = {[2i]m1,m2
, i > 0, 0 ≤ m1,m2 < i} ∪ [∞]

Claim 13. Xm is a sofic subshift.

A sofic marking subshift

Keeping the notations used in Section 2.4.3, we will define for α ∈ [0, 1]∩Π3 a Z2-subshift
Yα using several layers:

1. Lifted layers: The first three of Yα are L1
↑, L2

↑ and Ld
↑ where L1, L2, Ld are the

layers of Wα.

2. Marker layer Lm: We define the marker layer Lm = Xm.

3. Free layer Lf : As in Section 2.4.3, we define Lf = {□, 0, 1}.

and we can now define the subshift Yα formally as follows:

Yα =
{
(y(1)

↑
, y(2)

↑
, y(d)

↑
, y(m), y(f)) ∈ ⟨∞⟩↑ × ⟨∞⟩↑ × Ld↑ × [∞]× Lf}

∪
⋃

i>0

{
(⟨i⟩k1

↑, y(2)
↑
, y(d)

↑
, [2i]m1,m2

, y(f)) ∈ L1
↑ × ⟨∞⟩↑ × Ld↑ × Lm × Lf | 0 ≤ m1,m2 < i}

∪
⋃

i>0

⋃

j≥i

{
(⟨i⟩k1

↑, ⟨j⟩k2
↑, T (β, i)k1

↑, [2i]m1,m2
, y(f)) ∈ L1

↑ × L2
↑ × Ld↑ × Lm × Lf |

0 ≤ k1 < i, 0 ≤ k2 < j, 0 ≤ m1,m2 < i, 0 ≤ β ≤ αi,j ,
πsync(y

(f)) = T (β, i)k1
↑, y(f)

∣∣∣
Marked([2i]m1,m2

)
is constant}

Informally, the configurations of Yα are obtained as follows:

• They contain a lift z↑ of a configuration z ∈Wα.

• If z’s first layer is non-degenerate equal to some ⟨i⟩, then the marker layer y(m)

“marks” one position per (i, i)-square, and is (2i, 2i)-periodic with a single ■□-cell per
period.

76 CHAPTER 2. EXTENDER ENTROPIES

• If furthermore z’s second layer is non-degenerate, so that z is in fact a proper con-
figuration in Wα, then the value of the free bits in position Marked(y(m)) are all the
same, i.e. one bit per (i, i)-square is periodic. In that case, the other free bits can
only be superimposed onto non-zero bits of the underlying Toeplitz configuration of
z↑, just as in Section 2.4.3.

We naturally extend the terminology of Section 2.4.3 to Yα, and say that y ∈ Yα is
proper (resp. degenerate) if πL1×L2×Ld

↑ is proper (resp. degenerate) in Wα, and the same
for patterns rather than for entire configurations.

We claim that Yα is sofic and satisfies hE(Yα) = α. The fact that is has the required
extender entropy is proven in a similar fashion than in Section 2.4.3, so we first prove the
main claim that it is sofic, showing that those few modifications to Zα are sufficient.

Lemma 2.49

Yα is sofic.

There are three main steps in this proof. We will build an SFT that factors down to
Yα, using several layers:

• The first layers will be used to implement the marked positions, and in particular to
enforce that if the first layer of Yα is some ⟨i⟩_↑ then the marker layer is some [2i]_.

• The next layer is used to synchronize the periodic bit in all the marked position of
Yα’s Free Layer.

• Finally, we need to slightly alter the construction so that there is a forced periodic
free bit only if the first layers of Yα are a (lift of a) proper configuration of Wα.

Using grids to mark positions We define a sofic subshift Ygrid, whose configurations
are grids of a specific mesh. Let Ab = {□, }, Ar = {□, , , } and Av = {□, , , }.
Then define:

• The column layer: The column layer Lc ⊂ AZ2

b contains a (i, 1)-periodic config-
uration for some i > 0, with one per period. Configurations of Lb are then blue
columns, at distance i from one another.

• The red and violet layers Lr, Lv: They are respectively subshifts on Ar,Av.
Their configurations are grids (as illustrated in Figure 2.7) of some mesh 2i.

Define Ygrid ⊂ Lc×Lr×Lv as the subshift where the blue of columns of Lc are separated
by any i > 0, the red and violet grids have mesh 2i, and the red and violet grids are offset
by (i, i), as illustrated in Figure 2.7.

Claim 14. Lb, Lr and Lv are sofic.

Proof. It is easy to construct Lr or Lv, that is, a subshift of grids, given Lb. Indeed, one
can construct such a grid using a layer Lb, a layer which is Lb rotated so that the lines are
horizontal, and using a third layer to synchronize the periods in the horizontal and vertical
directions by using diagonal signals.

Claim 15. Ygrid is sofic.

2.4. CHARACTERIZATIONS OF EXTENDER ENTROPIES 77

Figure 2.7: A configuration of Ygrid. The vertical blue lines are 3-periodic, and the two
grids each have mesh 6 and are offset by (3, 3)

Proof. Each of Lb, Lv, Lr are sofic, and it remains to show how to synchronize the periods
of the three layers and the offset of the two coloured grids. The offset can be solved as
in the previous claim, by sending signals in diagonal which must only intersect grids on
and , and the periods can also be made the same by noticing that there must be exactly
one between consecutive horizontal and . Such a constraint can be checked by an
SFT, so finally Ygrid is sofic.

Making a free bit periodic Define the subshift Ysync ⊆ Ygrid × Lf as

Ysync = {y(c), y(r), y(v), y(f) ∈ Lc × Lr × Lv × Lf | (y(c), y(r), y(v)) ∈ Ygrid
∃b ∈ {0, 1},
∀p ∈ Z2, (y(r)p = ∨ y(v)p =) =⇒ y(f)p = b}

Claim 16. Ysync is sofic

Proof. Define the global subshift Lg = {0Z2
, 1Z

2}, which is clearly an SFT. Then, Ygrid×
Lf ×Lg is sofic by Claim 15, and therefore Ysync is sofic as it is the image of Ygrid×Lf ×Lg
by the following factor map whose block-map is πgrid→sync defined by:

πgrid→sync : Ac ×Ar ×Av ×Af × {0, 1} → Ac ×Ar ×Av ×Af

(ac, ar, av, af , ag) 7→
(
ac, ar, av,

{
ag if (ar = ∨ av =)

af otherwise

)

Synchronization only in proper configurations As explained above, in Yα, we im-
pose that there is a periodic free bit in each i × i-square only when the underlying lifted
Wα configuration is proper. The reason for that shall become clear when counting ex-
tender sets, and can be understood as the fact that we want degenerate configurations to
amount to a very low number of extender sets, and we therefore do not want to have any
configuration that could “differentiate” degenerate patterns using a marked periodic bit.

To do this, we need to “know” whether the configuration is degenerate. This can only
be done in an effective subshift, which means that the lifted configurations should already
“carry” this information and transmit it to Yα.

Define Lp = {pZ,dZ}, the proper layer, which is clearly an SFT. Define then a
subshift W ′

α ⊆Wα × Lp as

78 CHAPTER 2. EXTENDER ENTROPIES

W ′
α ={(z(1), z(2), z(d), z(p)) ∈ L1 × L2 × Ld × Lp |

(z(1), z(2), z(d)) ∈Wα,

z(2) ̸∈ ⟨∞⟩ =⇒ z(p) = pZ}
In other words, the layer Lp can be any of pZ and dZ in degenerate configurations of

W ′
α, but must be pZ in proper configurations.

Claim 17. W ′
α is effective.

Proof. If suffices to forbid for all n > 0 all the patterns (w(1), w(2), w(d),dn) ∈ Ln(Wα) ×
{dn} in which w(1) and w(2) each contain at least two ∗. This is clearly an effective
procedure, and as Wα is effective by Claim 6, we have W ′

α effective.

We are now ready to prove that Yα itself is a sofic subshift.

Proof of Lemma 2.49. To show that Yα is sofic, we will define yet another subshift Y ′
α

using Ysync and W ′
α. A simple 1-block map will then be enough to obtain Yα as a factor

of Y ′
α, which will be enough to conclude. Hence, we define:

Y ′
α =

{
(y(1)

↑
, y(2)

↑
, y(d)

↑
, y(p)

↑
, y(c), y(r), y(v), y(f) ∈W ′

α
↑ × Ygrid × Lf) |

∀p ∈ Z2, y(1)p = ∗ ⇐⇒ ycp = ,

πsync(y
(f)) = y(d)

↑
,

y(p) = pZ =⇒ (y(c), y(r), y(v), y(f)) ∈ Ysync
}

In other words, the configurations of Y ′
α consist of a lifted configuration of yα ∈Wα, a

configuration of ygrid ∈ Ygrid, a layer of free bits y(f) and a constant layer y(p) equal to p
or d. The blue columns of ygrid are aligned with the ∗ of the first layer of yα. The free bits
of y(f) can only appear on the “density bits” of y(d)α , and one i× i-periodic position has a
synchronized bit via ygrid when the global constant layer is pZ2 . By Claim 17, Theorem 1.87
and Claim 16, Y ′

α is sofic.

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

bbbbbbbbbbbbbbbbbbbbbbbbb

Figure 2.8: The layers L1, Lc, Lr, Lv and parts of Lf of some configuration of Y ′
α. Only

the synchronized buit of Lf is shown, all the other ones are independent.

Define now the 1-block map ϕ:

ϕ : A∗ ×A∗ ×Ad × {p,d} × Ac ×Ar ×Av ×Af → A∗ ×A∗ ×Ad × {□,■□} × Af}

(a1, a2, ad, ag, ac, ar, av, af) 7→
(
a1, a2, ad,

{
■□ if ar =
□ otherwise

, af

)

2.4. CHARACTERIZATIONS OF EXTENDER ENTROPIES 79

Counting extender sets

It remains to show that Yα indeed has the claimed number of extender sets. We do not
need to prove precise bounds, and can once again overestimate the number of extender
sets.

Claim 18. |{EYα(w), w ∈ Ln(Yα) degenerate}| = poly(n).

Proof. By Claim 11 it suffices to show that if u, v are degenerate and coincide on L1, L2, Ld, Lm
then they have the same extender sets. But this is the case as we do not impose any kind
of periodicity on the free bits in degenerate configurations.

Say that two patterns u, v ∈ Ln(Yα) are similar if they coincide on their layers
L1

↑, L2
↑, Ld

↑ and Lm.

Claim 19. For u, v two similar patterns, EYα(u) ̸= EYα(v) if and only if there exists
y ∈ EYα(u) and p ∈ Marked(πLm(y ⊔ u)) such that u(f)p ̸= v

(f)
p .

Proof. If there exists such a configuration y and marked position p, then clearly y does
not extend v, as the marked positions need all have the same value on the free layer in
proper configurations. For the other direction, notice that πL1×L2×Ld

(EYα(u)) depends
only on πL1×L2×Ld

(u) by definition of Yα. Now, consider y ∈ EZα(u) such that for any
p ∈ dom(u) ∩Marked(πLm(y ⊔ u)), we have u(f)(p) = v

(f)
p . As all the bits of Lf outside

of Marked(πLm(y ⊔ u)) are independent, this means in particular that they do not depend
on πLm(u) outside of marked positions, and so this implies that y also extends v. Thus, if
EZα(u) ̸= EZα(v), no such y, p exist.

Figure 2.9 shows an example of similar patterns, a possible configuration extending
one but not the other, and tries to picture why we need to consider similar patterns with
an additional condition on the position of their differences in Claim 19.

u

v

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

1

0

1 11

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

1

1

0 00

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

Figure 2.9: Example of similar patterns. Only some of the free bits are depicted. The
dashed patterns are simply decorations: although u, v differ on some blue position, those
positions do not satisfy the hypothesis of Claim 19 as they cannot be marked in neither
u nor v. Yellow positions can be marked in both, and u, v differ on them, so they satisfy
the hypothesis of Claim 19. The violet position obviously satisfies the hypothesis. On the
right, an example of configuration extending u but not v.

This is enough to allow to prove an analogous of Lemma 2.45 without having the direct
analogous of Claim 11:

80 CHAPTER 2. EXTENDER ENTROPIES

Lemma 2.50

Let P (n) be the number of proper patterns in Ln(Yα). Then

2αnn2+On(n) ≤ P (n) ≤ poly(n)
n∑

i=1

2αii
2+Oi(i)

Proof. We first prove the leftmost inequality, by exhibiting a specific family of patterns with
distinct extender sets. Fix n ≥ 0, and define for any j ≥ n the set Pj = {(⟨n⟩0↑, ⟨j⟩0↑, Tαn,j (n)

↑, y(m), y(f)) ∈
Yα}. By Claim 3, for yj ∈ Pj there are αn,jn2+O(n) symbols 1 in πLd

(yj)|Qn
. As αn,j → α,

we can take j →∞ to obtain a set Pj of configurations which all have αnn2+O(n) symbols
1 in their Ld↑ layer. Therefore, for those j, we have that for any pattern w ∈ Pj |Qn

, there
are 2αnn2+O(n) different free layers possible in Pj . Consider any two distinct such patterns
u, v, differing in some position p in their layer Lf and containing no ■ on their layer Lm
– such patterns exist, as the Lm layers extending u are of the form [2n]_. Then, the
configuration [2n]p+(n,n) mod (2n,2n) extends πLm(u) and marks in particular the position
p. With this Lm layer, the patterns u, v are similar, and differ in a marked position, so
by Claim 19 they have different extender sets. This gives P (n) ≥ 2αnn2+O(n)

For the upper bound, we bound the number of extender sets by bounding the number
of proper patterns {y|Qn

, y = (⟨i⟩k1 , ⟨j⟩k2 , T (β, i)k1 , [2i]m1,m2
)} – this is sufficient, as de-

generate patterns are negligible by Claim 18. We make a rough overestimation, as we will
pretend that for every such pattern w, and every position p ∈ Qn such that w(d)

p = 1, w
can be extended in a configuration y marking p.

• If i ≤ n, there are at most αii2 + Oi(i) symbols 1 in the density layer of any i × i
square, which are then (i, i)-periodic.

• If i > n, as αi is decreasing we can simply bound the number of 1 by αnn2 +O(n2).

Finally, we get:

P (n) ≤
n∑

i=1

i−1∑

k1=0

n∑

j=i

j−1∑

k2=0

2αii
2+Oi(i) +

n∑

k1=0

n∑

k2=0

2αnn2+O(n)

≤ poly(n)
n∑

i=1

2αii
2+Oi(n)

Proof of Theorem 2.48. As observed in Section 2.4.5, it suffices to prove the case α ∈ [0, 1].
Then, by Lemma 2.49, the subshift Yα defined in Section 2.4.5 is sofic. By Lemma 2.50
and Lemma 2.46, we also get hE(Yα) = α.

2.4.6 A short note about syntactic monoids

As explained in Section 2.1, extender sets are usually important in the theory of formal
languages as they are used to define the syntactic monoid of a language. As for any monoid
or group, we can try to determine what its growth rate is, in the following sense:

2.5. SUMMARY 81

Definition 2.51: Reduced length

Let L ⊂ A∗ be a language and u ∈ L. The reduced length of u is
∥u∥L = minv∼Lu |v|.

Definition 2.52: Growth rate

Let L ⊆ A∗ be a language. The exponential growth rate of M(L) is

h(M(L)) = lim
n→+∞

log|{[u] ∈M(L) | u ∈ L, ∥u∥L ≤ n}|
n

In the case of groups rather than monoids, this object – more precisely, the study of
the sequence of |{g ∈ G, ∥g∥G ≤ n}| where ∥g∥G is defined relative to a presentation of
the group G rather than via syntactic constructs – is of prime importance. For monoids,
it is generally seen as a more anecdotal question, although some work has been done to
understand the growth rates of some classes of monoids [Kam+24; IYN12]. In any case,
we get the following result almost for free with our construction:

Theorem 2.53

The exponential growth rates of syntactic monoids of languages of effective
Z-subshifts are exactly the non-negative Π3 real numbers:

{h(M(L(X))), X effective Z-subshift} = Π3 ∩ R+

Proof. The key remark is that for the specific case of Zα constructed in the proof of The-
orem 2.43, for almost all patterns w ∈ L(Zα) we have ∥w∥ = |w|, and so h(M(L(Zα))) =
hE(Zα). More precisely, proper patterns w ∈ L(Zα) whose first and second layers con-
tain at most one ∗ are already reduced, so the lower bound of Lemma 2.45 holds in the
context of the syntactic monoid by the same proof, and the overestimation made for the
upper bound also holds, as we prove it by counting patterns rather than extender sets
anyway. Hence, the proof of Lemma 2.45, and therefore of Theorem 2.43, also prove that
h(M(L(Zα))) = hE(Zα) = α for any α ∈ Π3 ∩ R+.

2.5 Summary

We give in Figure 2.10 a summary of the computability characterizations presented in this
chapter.

82 CHAPTER 2. EXTENDER ENTROPIES

Z Zd, d ≥ 2

SFT {0} (Corollary 2.28)
Sofic {0} (Corollary 2.29) Π3 (Theorem 2.48)

Effective Π3 (Theorem 2.43)
Computable Π2 (Theorem 2.47)

Sofic and minimal {0} (Corollary 2.40)
Effective and 1-Mixing Π3 (Proposition 2.42)
Effective and minimal Π1 (Proposition 2.41)

Figure 2.10: Characterizations of the extender entropies realized by some classes of sub-
shifts.

Chapter 3

The projective fundamental group of
subshifts

3.1 Filling holes and patching defects . 84
3.1.1 Conway’s tiling group . 85
3.1.2 Defects in tilings . 88

3.2 Projective fundamental group: adaptation to subshifts 89
3.2.1 The classical fundamental group . 89

Paths and loops . 90
Homotopy and the fundamental group 91
Covering spaces . 93

3.2.2 Definition of the group and links with other notions 94
An actual fundamental group of scene spaces 95
A combinatorial point of view . 97

3.2.3 First examples and properties . 101
3.3 Projective connectedness . 103

3.3.1 Definition and basepoint independence 104
3.3.2 Projective connectedness as a mixing property 105

Cones and cone-connected subshifts 106
Chain-mixing properties . 108
Transitivity . 110
Contractibility . 111

3.3.3 One-dimensional SFT . 114
3.3.4 Deciding projective connectedness 116

3.4 Hom-shifts . 118
3.4.1 Definition and first results . 118

The case of trees . 119
Universal graph coverings . 124
Fundamental group of graphs . 126

3.4.2 Non-contractible Hom-shifts . 129
3.5 Finitely presented groups and SFTs . 131

3.5.1 The construction . 132
3.5.2 Only Crossed Wires Matter . 134
3.5.3 A normal form for paths . 137
3.5.4 Computing the projective fundamental group 142
3.5.5 Open questions: beyond finitely presented groups 146

Infinitely generated groups . 146
Recursively presented groups . 146

83

84 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

This chapter will focus on a conjugacy invariant called the Projective Fundamental
Group of subshifts, introduced by Geller and Propp in [GP95]. The main motivations
behind the introduction of this invariant come from two different directions, highlighted
in Section 3.1:

• Given a subshift X ⊆ AZd (not necessarily of finite type) and a partial configuration
x ∈ AZd\D for some bounded D, can we fill x in a valid configuration of X ? Variants
of this question are also of interest, for example one might allow a finite number of
changes in x before filling it.

• Given a subshift X ⊆ AZd and a configuration x ∈ AZd , does there exist a block map
Φ such that Φ(x) ∈ X ? This is a very general question, and needs to be refined to
be answered meaningfully. Usually, one does not consider arbitrary configurations
x ∈ AZd , but instead focuses on those that are “defective” relative to X (in a sense
explained below).

The main result of this chapter is that any finitely presented group is the projective
fundamental group of some Z2-SFT, and will be proven in Section 3.5. The rest of the
chapter will be devoted to studying some other properties of this group, or closely-related
questions:

• Section 3.2 will formally define the projective fundamental group, and give a few
examples and computations in easy cases.

• Section 3.3 will focus on a property, called projective connectedness, which is
analogous to path-connectedness in the usual topological setting, and state some
sufficient conditions for a subshift to be projectively connected.

• Section 3.4 will study a specific class of subshifts, the Hom shifts, which are partic-
ularly well-suited for the algebraic approach to tilings taken in this chapter.

• Section 3.5 will show that a large class of groups, namely finitely presented groups
(see Definition 1.89) can be realized as the projective fundamental groups of Z2 SFTs.

Some results, mainly of Section 3.5, have been published in [PV23].

3.1 Filling holes and patching defects

We start this section with a very famous and classical combinatorial problem, attributed
to Max Black: using standard 2× 1 and 1× 2 dominoes, can you tile the “mutilated 8× 8-
chessboard” depicted in Figure 3.1 – in the sense that dominoes do not overlap, or fall out
of the bounds of the mutilated chessboard ?

Presented as above, the problem is made easier by the presence of black and white cells
on the chessboard: of course, this does not change the solution, as the only constraints
are of geometric nature, but it makes it easier to notice that the “mutilation” consisted
in removing two black squares. As a domino must cover exactly one black and one white
square, this counting (or colouring) argument shows that it is impossible to tile the mu-
tilated chessboard with dominoes. This simple problem can be refined much further, and
an advanced version of this colouring argument will be our first starting point to introduce
our main object, the projective fundamental group.

3.1. FILLING HOLES AND PATCHING DEFECTS 85

Figure 3.1: The 8× 8 mutilated chessboard

3.1.1 Conway’s tiling group

Conway and Lagarias introduced in [CL90] algebraic objects associated with a tileset,
called the tile boundary group and tile homology group, which generalizes all the counting
or colouring arguments of this kind. In particular, [CL90, Section 5] explicitly considers
the example of the mutilated chessboard. In, [Thu90], Thurston then considers a number
of other problems, working with shapes more complex than dominoes to try to tile some
specific surfaces. We do not reproduce the full constructions and arguments, but rather try
to give an overview of the main idea. As we will mainly be working with Wang Tiles, the
point of view that we adopt is different from the original presentation that can be found
in [CL90]. A lighter introduction to the initial constructions can be found in [Pro97].

Recall that a set of Wang Tiles is a set T = {(tW , tS , tE , tN) | t ∈ T} where each
tD for t ∈ T,D ∈ {W,S,E,N} is a colour belonging to some set C. For simplicity, we
can always assume that the vertical colours {(tW , tE) | t ∈ T} and the horizontal colours
{(tS , tN) | t ∈ T} are disjoints. We can now define the tiling group of T :

Definition 3.1: Tiling Group [Thu90]

For a Wang tileset T , we define the tiling group of T as

Γ(T) =
〈
C | t−1

W t−1
N tEtS , t = (tW , tS , tE , tN) ∈ T

〉

For a Wang tileset T , the tiling group Γ(T) is a finitely presented group, where ele-
ments of the groups are sequences of colours of C – or their formal inverses. The relation
t−1
W t−1

N tEtS = 1Γ(T) can then be seen as follows: starting from the bottom-left corner of
the tile t = (tW , tS , tE , tN), we write in order the colours encountered when going counter-
clockwise around t, counting a colour c ∈ C as itself if we encounter it when moving from
left to right or from bottom to top, and as c−1 otherwise.

tS

tE

tN

tW

86 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

This group can be used to define the contour words of tilings of simply connected
finite subsetD ⊂f Z2 (see [MRR01] for a general introduction and several results): starting
from one of the boundary vertices ofD, the contour word associated with a tiling x : D → T
is the element of Γ(T) obtained when following the edges of D clockwise:

Example 8 (Dominoes – contour word). We give an example of a contour word for a
region tiled by dominoes. As we work in the framework of Wang tiles, we need to explicitly
define what we mean by a domino. Consider the following set T of Wang tiles:

In a tiling, those tiles must be paired as follows to produce what we call dominoes:

We already distinguished the vertical and horizontal colours, in order to properly define
the tiling group. More precisely, in order to make the computations readable, we use the
following symbols instead of colours: H for ■, h for □, V for ■ and v for ■. The tiling
group can then be written as follows, where the relations are given in the same order as
the tiles above:

Γ(T) =
〈
H,V, h, v | V −1h−1V H, V −1H−1vH, V −1H−1V h, v−1H−1V H

〉

Consider now the tiled region shown in Figure 3.2:

Figure 3.2: A region tiled by dominoes represented as Wang tiles.

The contour word associated to this tiled region, starting from the marked vertex, is
V −1H−1V −1H−2V 3HV −1H2. Some easy rewriting using the relations of Γ(T) show that
this is the identity element of the group:

V −1H−1V −1H−2V 3HV −1H2 = V −1H−1V −1H−2V 3HV −1(h−1h)H2

= V −1H−1V −1H−2V 2hH2

= V −1H−1V −1H−2V 2h(V −1H−1HV)H2

= V −1H−1V −1H−2V HV H2

= . . .

= 1Γ(T)

As this word does not depend on tiles other than those at the boundary of D, we
can also associate a contour word to any finite polygonal domain D with colours on its
boundary, rather than an actual tiling of D (see Example 9 and in particular Figure 3.3

3.1. FILLING HOLES AND PATCHING DEFECTS 87

for an example). This word obviously depends on the starting point of the contour of this
polygonal domain, but different starting points generate words that are conjugate in Γ(T).
This is generally not important, as one of the most important results about those contour
words is the following:

Proposition 3.2: Conway’s criterion

Let T be a Wang tileset, D ⊂f Z2 a finite simply connected domain with
coloured boundary. Then, D can be tiled only if its contour word is the
identity of Γ(T).

In general, this is not an equivalence – that is, there exists Wang tilesets and finite
regions with coloured boundaries that cannot be tiled, but whose contour word is trivial.
Nevertheless, some refinements of this idea can give information on the tilings of the region,
for example, the number of valid tilings, or their structure (see for example [MRR01,
Propositions 3, 4, 5]).

Example 9 (Mutilated chessboard – tiling group). We show using contour words that the
mutilated chessboard cannot be tiled by dominoes. We follow the computations of [Sch98,
Proposition 6.1], and refer to it for the proofs of the claims. The Wang tileset used to
define dominoes is the one of Example 8.

Claim 20. H2 = h2, V 2 = v2, and H2, V 2 are in the center of Γ (that is to say, for any
g ∈ Γ(T), we have gH2 = H2g).

Claim 21. Let Γ′ = Γ(T)/
〈
H2, V 2

〉
, let h′, v′, H ′, V ′ be the images of respectively

h, v,H, V in the quotient and let ϕ : Γ′ → GL3(Z) be the following map:

ϕ(h′) =



−1 1 1
0 1 0
0 0 1


 , ϕ(H ′) =



−1 1 0
0 1 0
0 0 1




ϕ(v′) =



1 0 1
0 1 1
0 0 −1


 , ϕ(V ′) =



1 0 0
0 1 1
0 0 −1




Then ϕ is an injective group morphism.

Now, in order to show that the mutilated chessboard Figure 3.1 cannot be tiled by
dominoes, we want to apply Proposition 3.2:

In Figure 3.3, we can see a mutilated chessboard with the only possible colours on
the border that would result from a tiling by dominoes, when represented as Wang tiles
from T . The contour word g obtained from this, starting from the marked point on the
figure, is g = V −1H−1V −7H−7V HV 7H7. By Claim 20, we have g = (V H)4(V 2H2)−2.
By Claim 21, it suffices to show that ϕ((V ′H ′)4) ̸= I3 ∈ GL3(Z) to show that the mutilated

chessboard is not tileable by dominoes. As ϕ((V ′H ′)4) =



1 0 2
0 1 0
0 0 1


 we have the desired

claim.

Although the Conway tiling group is a powerful algebraic tool to study whether or
not some concrete regions can be tiled by a given Wang tileset, the group Γ(T) is not

88 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

Starting point

Figure 3.3: A mutilated chessboard with colours on its border, corresponding to a possible
tiling by complete dominoes.

a conjugacy invariant of the subshift XT : for example, adding a tile with a fresh colour
which does not appear in any valid infinite tiling adds a generator to Γ(T), and there exist
completely different tilesets T ′ for which we neither have Γ(T) ◁ Γ(T ′) nor Γ(T ′) ◁ Γ(T).
This is one of the shortcomings that the projective fundamental group tries to solve.

3.1.2 Defects in tilings

Another motivation to study the projective fundamental group of subshifts comes from
a different perspectives, namely, studying “defects” in tilings. This approach has mostly
been used in [Piv07]. We will mainly adopt the perspective of this article, as there is a
very rich literature studying similar problems, with no unanimous definitions or motivating
examples. Broadly speaking, given a subshift X, the idea is to study configurations which
are “almost” in X, up to some local “defects”, and in particular, whether some specific
classes of defects can be corrected by a simple process (mainly block maps, or any other
combinatorial process, with the goal of modifying x in as few positions as possible so that
it now belongs to X). Let us be a bit more precise:

Definition 3.3: Defects [Piv07, Sec. 1]

Let X ⊂ AZ2 be a subshift and x ∈ AZ2 . The defect field of x is the map

Fx : Z2 → N ∪ {∞}
u 7→ max{r | x

∣∣
Br+u

∈ Lr(X)}

The defect set of x is the set of local minima of Fx.
For R ≥ 0, the R-defect points is DR(x) = {u ∈ Z2,Fx(u) ≥ R}.
A configuration x is defective if x ̸∈ X but supu∈Z2 Fx(u) =∞.

Defective configurations are configurations which contain arbitrary large balls which are
globally admissible patterns of X. In [Piv07], the author tries to understand the subshifts
X, and the kind of defective configurations x, which are such that there exists block maps
ϕ such that ϕ(x) ∈ X. More precisely, we have the following important proposition:

3.2. PROJECTIVE FUNDAMENTAL GROUP: ADAPTATION TO SUBSHIFTS 89

Proposition 3.4 [Piv07, Prop. 1.2]

Let X ⊂ AZ2 be a subshift, and let ϕ : AZ2 → AZ2 be a block map such
that ϕ(X) ⊆ X. Let x ∈ AZ2 be a defective configuration. Then ϕ(x) is
either defective or in X.

In particular, this motivates the following definition, further characterizing defective
configurations:

Definition 3.5

Let X ⊂ AZ2 be a subshift, and let ϕ : AZ2 → AZ2 be a block map such
that ϕ(X) = X. Let x ∈ AZ2 be a defective configuration.

• If ϕn(x) is defective for all n > 0, then x has a ϕ-persistent defect.

• If there exists R ≥ 0 and y ∈ X such that x|DR(x) = y|DR(x), then x
has a removable defect; otherwise, it has an essential defect.

Persistent defects are defects that cannot be removed by applying block maps; essential
defects are defects that cannot be removed by modifying a finite region around some specific
points of the configuration. One can then wonder whether a defective configuration a has
a ϕ-persistent defect for any block map ϕ, and if a has an essential defect. It turns out
that in a number of (technical) cases, the projective fundamental group of X can help
answer those questions. We refer to [Piv07] for the precise statements, as we would need
to introduce significantly more objects in order to simply state the main results – see in
particular the propositions and theorems 2.11, 2.15, 3.8 and 4.10 of this article.

3.2 Projective fundamental group: adaptation to subshifts

The ideas of Section 3.1 are quite similar to another classical construction in topology,
known as the fundamental group. This is a homeomorphism invariant, associated with
any topological space X and denoted π(X) – with a small caveat detailed in Section 3.2.1
– which tries to capture the structure of “holes” in the space, by considering paths and
loops winding around those holes. A complete introduction to the general field of algebraic
topology can be found in [Hat00], and we simply give the basic definition to highlight the
similarities and links with the projective fundamental group.

3.2.1 The classical fundamental group

The idea of the fundamental group, and algebraic topology in general, is to associate
algebraic structures with topological spaces, intuitively capturing the shape, dimension
and relative disposition of “holes” in the space. Here, “holes” are to be understood at
an intuitive level, as a formal definition would otherwise end up being circular, defining
holes as what is being measured by the invariant of algebraic topology such as homotopy
or homology groups. In our particular setting, we will only consider the first homotopy
group, called the fundamental group, that we now define. This section is a rather short
introduction, and adopts a classical point-of-view - that is, we do not use any category
theory, or more abstract axiomatization of algebraic topology invariants. An introduction
to those topics with a more categorical and “modern” point-of-view than [Hat00] can be
found in [May99] or [Die08].

90 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

Paths and loops

The first notion that we need is the one of paths:

Definition 3.6: Path - topology

LetX be a topological space. A path p inX is a continuous map p : [0, 1]→
X.
p(0), p(1) are the endpoints of the path p. If p(0) = p(1), p is called a loop,
based at p(0).

Paths need not be injective, non-constant, or any other restriction. Paths can nonethe-
less be quite complicated objects: paradigmatic examples are the numerous space-filling
curves, such as the Hilbert Curve [Hil35], which are surjective paths p : [0, 1] → [0, 1]2.
There is however a nice structure on the set of paths:

Definition 3.7: Path concatenation

Let p, q : [0, 1] → X be two paths. Suppose that p(1) = q(0). We then
define the concatenation p ∗ q as the path:

p ∗ q : [0, 1]→ X

t 7→
{
p(2t) if t ≤ 1

2

q(2t− 1) otherwise

The concatenation of p, q can be seen as the path which follows p and then q, with
a renormalization so that it is still a proper path [0, 1] → X. It is easy to see that it is
indeed a path, as p ∗ q is continuous.

We can define a last operation on paths:

Definition 3.8: Path inverse

Let p : [0, 1]→ X be a path. The inverse of p is the path

p−1 : [0, 1]→ X

t 7→ p(1− t)

With those two operations, one can define a group, in fact a group per point x0 ∈ X:

Proposition 3.9

Let X be a topological space and x0 ∈ X be a basepoint. Let L =
{loops of X based at x0}. Then, (L, ∗) is a group.

This group is however rather unwieldy. Indeed, there are in general uncountably many
loops based at x0 even in simple cases. Moreover, most of those loops ought to be intuitvely
considered the same, and do not carry different “topological” information on the space –

3.2. PROJECTIVE FUNDAMENTAL GROUP: ADAPTATION TO SUBSHIFTS 91

for example, taking X = [0, 1], x0 = 0, all the loops t 7→ sin(2πxα), α > 0, which simply
go from 0 to 1 and back at different “speeds”.

Homotopy and the fundamental group

For this reason, we will consider a quotient of this space, by an operation called homotopy,
or more informally, deformation:

Definition 3.10: Path homotopy

Let p, q : [0, 1]→ X be two paths. We say that they are homotopic, and write p ∼
q, if p(0) = q(0) and p(1) = q(1) and if there exists a continuous mapH : [0, 1]2 → X,
called a path homotopy, such that:

• ∀t ∈ [0, 1], H(t, 0) = p(t), that is, H(·, 0) = p

• ∀t ∈ [0, 1], H(t, 1) = q(t), that is, H(·, 1) = q

• ∀x ∈ [0, 1], H(0, x) = p(0) = q(0) and H(1, x) = p(1) = q(1), that is, H(·, x)
is a also a path between p(0) and q(0)

We denote [p] the homotopy class of a path p.

This is a special case of the following more general definition:

Definition 3.11: Homotopy

An homotopy is a continuous mapH : X×[0, 1] : Y . The mapH(t, ·) : X →
Y is sometimes denoted Ht.

The key observation is the following:

Lemma 3.12

Let p0, p1, q0, q1 be paths in X, such that:

• p0(0) = p1(0), p0(1) = p1(1), that is p0, p1 have the same endpoints.

• q0(0) = q1(0), q0(1) = q1(1), that is q0, q1 have the same endpoints.

• p0(1) = q0(0), so that pi ∗ qj is well-defined for any i, j ∈ {0, 1}.

• p0 ∼ p1, q0 ∼ q1

Then (p0 ∗ q0) ∼ (p1 ∗ q1).

Corollary 3.13

The concatenation ∗ extends to loop homotopy classes: for any paths p, q
with p(1) = q(0), we have [p ∗ q] = [p] ∗ [q].

92 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

We are ready to define the main object of this section:

Definition 3.14: Fundamental group

Let X be a topological space, and x0 ∈ X. The fundamental group based
at x0 is the group π1(X,x0) of loops based at x0, with the concatenation
operation: denoting L = {loops based at x0}, we define

π1(X,x0) = ({[p], p ∈ L}, ∗)

Proposition 3.15

The fundamental group is a homeomorphism invariant.

Proof. It is easy to check that homeomorphisms send paths and path homotopies to paths
and path homotopies respectively. Hence, loop homotopy classes are sent to loop homotopy
classes.

In some cases, we can avoid the reference to the basepoint, if we are only interested to
π1(X,x0) up to group isomorphism:

Definition 3.16: Path-connectedness

A topological space X is path-connected if for any x, y ∈ X, there exists
a path p : [0, 1]→ X such that p(0) = x, p(1) = y.

Proposition 3.17

If X is path-connected, then for any x0, y0 ∈ X, π1(X,x0) ≃ π1(X, y0),
and we write π1(X) without reference to a basepoint.

Proof. Let x0, y0 ∈ X. As X is path connected, consider any path γ from x0 to y0, and
define

ϕ : π1(X,x0)→ π1(X, y0)

[p] 7→ [γ ∗ p ∗ γ−1]

By Corollary 3.13, ϕ is well-defined, and as it is a conjugacy, it is in particular an
isomorphism.

Example 10. π1(R) = {e}.

Proof. As X is clearly path-connected, it suffices to show that π1(R, 0) = {e}. We will
show this by explicitly defining a path homotopy between any loop p based at 0 and the
trivial loop [0, 1]→ 0. Let then p be a loop based at 0 and define

H : [0, 1]2 → X

(t, x)→ xp(t)

3.2. PROJECTIVE FUNDAMENTAL GROUP: ADAPTATION TO SUBSHIFTS 93

Then: H(·, 0) = 0× p = 0, H(·, 1) = 1× p = p, and for any x we have:

H(0, x) = x× p(0) = x× 0 = 0 = H(1, x).

Hence H is a path homotopy between the constant loop and p, so there is a single loop
class and π1(X) is trivial.

In general, computing this fundamental group, even in simple cases, can be quite hard,
even when the group itself is e.g. finite or free. A typical example, motivating the intro-
duction of a key tool that we will adapt and use in the setting of subshifts in Section 3.4,
is the circle. To compute π1(S1) = π1([0, 1]/(0 ∼ 1)), we need the notion of covering.

Covering spaces

Definition 3.18: Covering space

Let X be a topological space. A covering of X is a space Y and a map
ρ : Y → X such that for any point x ∈ X, there exists a neighbourhood
x ∈ U ⊂ X, and a discrete space Dx, such that:

• ρ−1(U) =
⊔
i∈Dx

Vi, that is, ρ−1(U) is a disjoint union of open sets.

• For any i ∈ DX , ρ|Vi → U is an homeomorphism.

ρ is a covering map. We sometimes use “covering” for ρ or Y alone, when
the other one is clear from context.

One can think of a covering (Y, ρ) as an “unrolled” version of the base space X: indeed,
around each y point of Y one can find a small neighbourhood V which is isomorphic to
ρ(V) ⊆ X. We will often call lift of (a point, a path ...) x the object x̃ such that ρ(x̃) = x,
where ρ might have been extended to e.g. [0, 1]× Y → [0, 1]×X, or later Y Z2 → XZ2 in
the obvious way.

In particular, we have the following important theorem:

Proposition 3.19 [Hat00, Prop. 1.30]

If ρ : X̃ → X is a covering, then for any homotopy H : Y × [0, 1]→ X and
map H̃0 : Y → X̃ lifting H0 = H(·, 0), then there exists a unique homotopy
H̃ : Y × [0, 1]→ X̃ of H̃0 lifting H.

As this holds for any space Y , we obtain the following interesting special cases:

Proposition 3.20

Let ρ : X̃ → X be a covering. Let p, p′ : [0, 1]→ X be two homotopic paths
starting at x0 ∈ X. Then, for any lift x̃0 ∈ X̃ of x0:

• There exists a unique path p̃ : [0, 1]→ X̃ lifting p starting at x̃0

• p̃ and p̃′ are homotopic paths.

94 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

Proof. For the first point, we apply Proposition 3.19 with Y a one-point space {y}, so that
p : Y → X can be viewed as any arbitrary point p(y) = x0 ∈ X.

For the second point, we apply Proposition 3.19 with Y = [0, 1], so that p : Y → X is
a path. The fact that p̃ ∼ p̃′ is a consequence of the fact that the homotopy preserves the
paths’ endpoints at all time, that is to say, for all x ∈ [0, 1] we have H(0, x) = p(0) = p′(0),
and so H̃(0, x) = p̃(0) = p̃′(0).

More details can be found in [Hat00, Lifting Properties]. The last proposition we state
explains why we needed to introduce covering spaces in order to study fundamental groups.
A few key properties are hidden here (for example, why we need to consider covering spaces
with trivial fundamental groups, whether those exist at all, or whether it is unique up to
isomorphism), but we simply want to highlight part of the link between coverings and the
fundamental group itself:

Proposition 3.21 [Hat00, Prop. 1.39]

Let ρ : X̃ → X be a covering, and suppose thatX, X̃ are path-connected, X
is locally path-connected, and that π1(X̃) is the trivial group. Then, π1(X)
is isomorphic to the set of homeomorphisms d of X̃ satisfying ρ ◦ d = ρ.

This gives us the following non-trivial example:

Example 11 ([Hat00, Thm 1.7]). π1(S1) = Z.

Proof. As a covering space with trivial fundamental group for S1, we can consider R with
the map ρ : x ∈ R 7→ (cos 2πx, sin 2πx) ∈ S1 – in fact, it is a theorem that this is the only
such covering up to isomorphism.

Now, let d be a homeomorphism d of R satisfying ρ ◦ d = ρ. In particular, for any
x ∈ R, there exists nx ∈ Z such that d(x) = x + nx. But as d is continuous, we must
have nx independent from x, and so d is simply a translation by some n ∈ Z, written
dn. As any translation by m ∈ Z induces such a homeomorphism dm : R → R, and as
dm ◦ dm′ = dm+m′ , the group of those homeomorphisms is Z. By Proposition 3.21, we
get π1(S1) ≃ Z. Intuitively, each loop in S1 is homotopic to one which winds exactly n
times around the circle. Said differently, π1(X) is generated by the loop p : x ∈ [0, 1] 7→
(cos 2πx, sin 2πx).

This strategy – using covering spaces in order to compute fundamental groups – will
also be used in the case of the projective fundamental group of subshifts, in particular
in Section 3.4.

3.2.2 Definition of the group and links with other notions

In the case of subshifts, we have a first technical difficulty: although a subshift X is a
compact topological space, it is totally disconnected, meaning in particular that the path-
connected components are trivial, and therefore paths in X are constant. To go around
this difficulty, the idea introduced in [GP95] is to consider a (projective, or inverse) limit
of fundamental groups π1(Xn), defined for spaces (Xn)n∈N which “converge” to X itself in
some sense. We will present two equivalent point of views on the projective fundamental
group, the first one (Section 3.2.2) closely resembling the classical objects introduced
in Section 3.2.1, and the second one (Section 3.2.2) more combinatorial in nature and
similar to other classical constructions in symbolic dynamics.

In what follows, we keep some of the terminology of the original article of Geller and
Propp [GP95].

3.2. PROJECTIVE FUNDAMENTAL GROUP: ADAPTATION TO SUBSHIFTS 95

An actual fundamental group of scene spaces

For now, let us stick to the formal, topological definitions rather than the combinatorial
ones. We will call aperture window a bounded subset B ⊂ Rd. Instead of considering
configurations x ∈ AZd as colourings of the discrete grid, we view them as colourings x̃
of the euclidean plane Rd as follows: for any z =∈ Rd, x̃z = x⌊z⌋, where we compute
⌊z⌋ coordinate-wise. We drop the notation x̃ and use x even for Rd configurations when
context makes it clear. We naturally extend the shift σv to those configurations for any
v ∈ Zd. We then define X̃ = {x̃, x ∈ X}. Note in particular that X̃ is not an Rd subshift
in the general sense, as we only consider the Zd action on configurations.

Notation. For any two configurations x, y ∈ ARd , point z ∈ Rd, and aperture window
B ⊂ Rd, define the equivalence relation ∼B as

(x, z) ∼B (y, z) ⇐⇒ x
∣∣
z+B

= y
∣∣
z+B

In particular, (x, z) ̸∼B (x, z′) for z ̸= z′, and (x, z) ̸∼B (σu(x), z+ u) for u ̸= 0.

Definition 3.22: Scene space

For a subshift X ⊆ Zd and aperture window B ⊂ Rd, define the B-scene
space as SB(X) = (X̃ × Rd)/ ∼B.

Whenever X is clear from the context, we will simply write SB. Each point of SB can
then be seen as a pattern (not up to translation), whose support is some translation of B.
As for any topological space, we can now try to compute the fundamental group of SB. In
general, we will not however directly compute π1(SB, (x|B+z, z)):

• The space SB is a “complicated” space, and we do not have any straightforward way
to compute its fundamental group in general, even for simple subshifts X such as
SFTs.

• It is a priori unclear how π1(SB, (x|B+z, z)) depends on B.

• It is also unclear how π1(SB, (x|B+z, z)) depends on the concrete space X being
considered, rather than the conjugacy class of X in the space of subshifts.

For all those reasons, we will need to use another technical construction that we in-
troduce now. The definitions are given in a general setting, and will be reframed for the
specific setting of computing projective fundamental groups of Zd subshifts afterwards.

Definition 3.23: Restriction maps

Let B′ ⊆ B ⊂ Rd. Define the canonical restriction map

restrB′,B : AB → AB′

P 7→ (z ∈ B′ 7→ P (z))

We naturally extend those maps to
⋃

z∈Rd Az+B, so that if dom(P) = B+z
then dom(restrB′,B(P)) = B′ + z, and to SB so that restrB′,B : SB → SB′ .

96 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

Those maps forget the part B \ B′ of a pattern of support B. In particular, they are
all surjective, but not necessarily injective, if a B′-supported pattern can be extended in
more than one way.

Using this and a general algebraic construction, we can define a single group associated
toX, called the Projective Fundamental Group. We give here a first definition, and another
point of view, which will be shown to be equivalent, will be given in Section 3.2.2:

Definition 3.24: Projective limit

Let (I,≤) be a partially ordered set, and let (Gi)i∈I be a family of sets.
Suppose that we have a family of functions fij : Gj → Gi for all i ≤ j ∈ I,
satisfying:

• For all i ∈ I, fi,i = idGi

• For all i ≤ j ≤ k ∈ I, fi,k = fi,j ◦ fj,k
Then, the projective limit (or inverse limit) of the projective (or in-
verse) system ((Gi)i∈I , (fi,j)i≤j∈I) is a subset of the potentially infinite
direct product of all the Gi’s, denoted here by G∞

G∞ = lim←−
i∈I

Gi =

{
g⃗ ∈

∏

i∈I
Gi

∣∣∣∣∣ gi = fi,j(gj) for all i ≤ j in I
}

If the Gi’s are groups, and the fi,j ’s are homomorphisms, then G∞ is a
group with the group operation defined pointwise.

In order to lighten the notations, we might write π1(SB, x0) for π1(SB, (x0|B,0)) where
0 = (0, . . . , 0) ∈ Rd.

Lemma 3.25

If B′ ⊆ B ⊂ Rd and p ∼B p′ are homotopic paths in SB, then
restrB′,B(p) ∼B′ restrB′,B(p

′). In other words, for any x0 ∈ X,
restrB′,B : π1(SB, x0)→ π1(SB′ , x0) is well-defined.

Proof. ItH is a homotopy between p, p′ then restrB′,B◦H is a homotopy between restrB′,B(p)
and restrB′,B(p

′).

Definition 3.26: Projective Fundamental Group

Let X be a Zd subshift, and (Bn)n∈N an increasing sequence of subsets of
Rd, so that

⋃
n∈NBn = Rd.

We define the projective fundamental group of X based at x0 ∈ X as
the inverse limit of the system (π1(SBn), (restrBn,Bm)0<m<n):

πproj1 (X,x0) = lim←−
i∈N

π1(SBn , (x0,0))

3.2. PROJECTIVE FUNDAMENTAL GROUP: ADAPTATION TO SUBSHIFTS 97

The next proposition shows that the actual sequence of supports (Bn)n∈N used in Def-
inition 3.26 does not matter, as long as it is increasing and eventually covers the entire
space Rd. This is a special case of a very general statement about inverse limits:

Proposition 3.27

Let (Bn)n∈N and (B′
n)n∈N be two increasing sequences of Rd subsets, sat-

isfying
⋃
nBn =

⋃
nB

′
n = Rd. Then

lim←−
n∈N

SBn = lim←−
n∈N

SB′
n

Remark. Proposition 3.27 also implies that it is only necessary to specify the maps fn,n+1

in order to entirely define the projective limit. Indeed, we can obtain map fm,n for m < n
by composing these ones. In particular, in order to show that an element (x1, x2, . . .)
belongs to the projective limit, it suffices to check that fn,n+1(xn) = xn+1 for all n.

Just as the fundamental group is a homeomorphism invariant (Proposition 3.15), we
can show that the projective fundamental group is a conjugacy invariant for subshifts:

Theorem 3.28

Let X,Y be two subshifts and ϕ : X → Y be a conjugacy map. Then, for
any x0 ∈ X, πproj1 (X,x0) = πproj1 (Y, ϕ(x0)).

We defer the proof of this theorem to Section 3.3, in which we introduce and study in
more details an equivalent to the path-connectedness property. In the meantime, we simply
give an intuition as to why the projective fundamental group is a conjugacy invariant, while
the Conway’s tiling group (Definition 3.1) is not. The idea is that because we are looking
at a limit of groups, which are defined using paths which “see” larger and larger patterns,
the small-scale irregularities eventually disappear.

In this chapter, we will often use the “projective P” terminology for some object P
(a path, a homotopy class ...). In our setting, this has to be understood as a sequence
(Pn)n>0, where each Pn or is an element of SBn , and restrn,n+1(Pn+1) = Pn. In particular,
a projective path class (or projective loop class) is a sequence of paths (or loops) that are
all homotopy-equivalent after applying the suitable restriction map.

A combinatorial point of view

We keep the terminology introduced in Section 3.2.2, but use different definitions adapted
to the case of Zd subshifts. We will show that this is legitimate, as the notions coincide.

Definition 3.29: Path - subshifts

Let B ⊂f Zd a finite subset called aperture window. A B-path is a finite
sequence (Pt,vt)0≤t≤N such that for any t with 0 ≤ t ≤ N :

• Pt is an extensible pattern of X of support B + vt,

• vt is adjacent to vt+1, i.e., dt = vt+1−vt has euclidean norm exactly

98 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

1,

• Pt(u) = Pt+1(u) for any u ∈ B ∩ σdt(B), i.e., consecutive patterns
overlap,

• the pattern Pt ∪ Pt+1 obtained by merging Pt and Pt+1 is extensible
in X.

The first and last element of the sequence are respectively called the start-
ing point and the ending point of the path. If they are equal, the path
is called a loop. The path (PN−t,vN−t)0≤t≤N is called its inverse path,
denoted by p−1.
We call trajectory of the path the sequence (vt)0≤t≤N .

This construction is similar to another, classical definition in symbolic dynamics, of
the Rauzy graphs (see for example [Ber+15, Section 4] or [Pel+09]): keeping the notations
of Definition 3.29, it is the graph whose vertices are patterns Pt, and there is an edge
between two “coherent” patterns Pt and Pt+1 labelled by Pt+1 \Pt. It is mainly used when
studying one-dimensional subshifts, and in our notion of path, we also keep track of the
position of the patterns within Zd.

In the remainder of this chapter, we let Bn = J−n, n− 1K2. Note that Bn ⊊ Bn. The
reason we choose this support if for symmetry reasons when dealing specifically with the
fundamental group: the point (0, 0) ∈ R2 is at the center of the square (−n, n)2, which is
the area covered by (open) unit tiles whose bottom-left corners are placed on the positions
of Bn. This makes computations easier in the remainder of the chapter. Unless stated
otherwise, all the aperture windows considered will be of this form.

The canonical restriction maps have the same definition as in the case of tilings of the
euclidean plane:

Notation. For 0 < n ≤ m, we write restrn,m the map

restrn,m : ABm → ABn

P 7→ P
∣∣
Bn

Two paths may be composed when the first one ends where the second one starts:

Definition 3.30: Path composition

Given p = (Pt,vt)0≤t≤N and p′ = (P ′
t ,v

′
t)0≤t≤N ′ two paths such that

(PN ,vN) = (P ′
0,v

′
0) we denote by p ∗ p′ the path

p ∗ p′ = (P0,v0) . . . (PN ,vN)(P ′
1,v

′
1) . . . (P

′
N ′ ,v′

N′).

This gives a quantitative way to look at paths, which will be useful in later proofs:

Definition 3.31: Coherent path

A path p = (Pi,vi)i≤N is coherent if all its patterns are equal on the points
where their supports overlap, and furthermore, the pattern obtained by
merging all the Pi is globally admissible in X. In that case, for any x ∈ X

3.2. PROJECTIVE FUNDAMENTAL GROUP: ADAPTATION TO SUBSHIFTS 99

containing
⋃
i≤N Pi, we say that p can be traced in x.

Definition 3.32: Coherent path decomposition

A coherent decomposition of a path p is a sequence p1, . . . , pL of coher-
ent paths such that p = p1 ∗ p2 . . . ∗ pL, and L is called the length of the
decomposition.

We can now define a corresponding homotopy notion, using this notion of coherent
path:

Definition 3.33: Elementary deformation

Let p = p1 ∗ p2 ∗ p3 be a path and suppose that p2 is coherent and can be
traced in some configuration x ∈ X. Then, for any p′2 traced in x with
the same starting and ending point as p2, the path p1 ∗ p′2 ∗ p3 is called an
elementary deformation of p.

Note that as paths might be empty or consist of a single point, they can be deformed
by inserting or removing loops traced in a single configuration at any step.

Using those elementary deformations, we define a general notion of homotopy:

Definition 3.34: Homotopy - subshifts

Two paths p, p′ are said to be homotopic if there exists a finite sequence of
elementary deformations from p to p′. This defines an equivalence relation
between paths, and we denote by [p] the equivalence class of p. If p and p′

are paths with an aperture window B ⊂ Zd, we denote by p ∼B p′ the fact
that they are homotopic.

Remark. By definition, when two paths are homotopic, they necessarily have the same
starting and ending points. This coincides with Definition 3.10. When B is clear from the
context, we will simply write p ∼ p′.

We give in Figure 3.4 an illustration of a projective path between x, y ∈ X.
With this definition of a path and of homotopy, we can define a fundamental group for

each possible aperture window B ⊂ Zd.

Definition 3.35: Fundamental Group - subshifts

Let X be an SFT, B ⊂ Zd an aperture window, x0 ∈ X and v ∈ Zd.
The fundamental group of X based at (x0,v) for the aperture window
B, denoted by πB1 (X, (x0,v)), is the group of all the equivalence classes
of loops starting and ending at (x0|B,v) for the homotopy equivalence
relation, along with the ∗ operation.

100 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

x y

Bn Bn
pn

Bn+1 Bn+1

pn+1

restrn,n+1(pn+1)

Figure 3.4: An illustration of two paths between the central patterns of two configurations
x and y, along with a restriction map.

In other words, an element of πproj1 (X) is a sequence of paths (pn) (in the sense of Def-
inition 3.29) such that for any n > 0, restrn+1,n(pn+1) ∼Bn pn.

It is important to note that in the inverse system that we consider here to define
πproj1 (X,x0), as in any inverse system, the maps play a major role, and we cannot know
what the inverse limit is simply by independently computing the groups πBn

1 (x0,0) – an
exception being the case where they are all trivial groups, in which case the inverse limit
is also trivial.

We now show that the topological definitions of Section 3.2.2 and the more combinato-
rial point of view presented in Section 3.2.2 coincide. In particular, calling homotopy and
deformations the operations defined in Definition 3.33 or Definition 3.34 is not an abuse
of terminology:

Proposition 3.36

For a subshift X ⊆ AZd , n ≥ 1, and x0 ∈ X,v ∈ Zd,

π
Bn(Zd)
1 (X, (x0

∣∣
Bn(Zd)

,v)) ≃ π1(SBRd
, (x̃0

∣∣
Bn(Rd)

,v))

Proof. Fix n > 0. For convenience, we prove the case Z2, although the proof is identical
for other dimensions. The idea is to show that the loop classes are the same for both
definitions Definition 3.10 and Definition 3.34 – in fact, this holds whether or not the path
is a loop. Notice that given a path p in the scene space SB(X) = (X̃ × R2)/ ∼Bn(R2), we
can always homotopically deform it into p′ so that the trajectory of p′ only uses points of
R×Z∪Z×R, that is, it consists of straight segments of length 1 between the points of Z2.
We can furthermore ensure that the trajectory is never constant on any non-trivial interval.
We can then associate with this path p′ an equivalent path (defined as in Definition 3.29)
easily, by simply considering the sequence of timesteps 0 ≤ t1 < t2 < · · · < tN ≤ 1 such
that {ti, 0 ≤ i ≤ N} = {t ∈ [0, 1], p′(t) ∈ (·,Z)2}, and the path (p′(ti))0≤i≤N , with each
p(ti) satisfying p(ti) ∈ Ln(X)×Z2. The only subtlety is that N is indeed a finite number,
and that we cannot have infinitely many timesteps t at which p′(t) ∈ (·,Z2). This is simply
because if p′ is continuous, then the trajectory must also be continuous.

3.2. PROJECTIVE FUNDAMENTAL GROUP: ADAPTATION TO SUBSHIFTS 101

3.2.3 First examples and properties

In order to compute the projective fundamental groups of some subshifts, one more lemma
from [GP95] is useful. Of course, Proposition 3.27 tells us that we can choose any suitable
sequence of supports making computations easier, as long as they eventually cover Zd, but
we can make some additional assumptions. The definitions are given for the case d = 2
but easily generalize to higher dimensions:

Definition 3.37: Straight path

Let n > 0. We say that a path (Pt,vt)0≤t≤N is n-straight if for 0 ≤ t ≤ N ,
vt ∈ (Z × nZ) ∪ (nZ × Z), and vt ̸= vt+2 for t ≤ N − 2, and moreover
(v0),vt ∈ (nZ)2.

In other words, an n-straight path moves between points of the nZ× nZ sublattice of
Z2, the trajectory being a straight non-backtracking path between two closest such points.

Lemma 3.38: Straightening lemma [GP95]

LetX be a Z2 subshift and ([pn])n>0 a projective path class between (x,vx)
and (y,vy), and let m > 0 be such that vx,vy ∈ (mZ2). Let n > 0. Then
[pn] contains an m-straight path.

Proof. The idea is to use a large aperture window M compared to m. Then, each step
of the corresponding path will pM contains several points of the (nZ)2 sublattice. We
can then use those points to determine another homotopic path, and use the fact that
n|M (pM) ∼ pn.

Consider the path pn+m+1 = (Pt,vt)0≤t≤N . For each step 0 ≤ t ≤ N , let ut be a point
in (nZ)2 which minimizes {∥vt −w∥∞ | w ∈ (nZ)2}. As Pt is a pattern of support Bn+m+1,
we have that ut+Bn ⊆ dom(Pt)∩dom(Pt+1). We can then completely define a path p′n for
the aperture window Bn using those new points (ut): let p′n be the path whose trajectory
consists of straight paths between ut and ut+1 for any t < N , its patterns being the
corresponding subpatterns of Pt. Then by definition of p′n we have p′n ∼ n|n+m+1(pn+m+1),
and as ([pk]n∈N) is a projective path-class, n|n+m+1(pn+m+1) ∼Bn pn. We can always
assume that p′n is not backtracking: indeed, if for some t we have ut = ut+2 then the
corresponding portion of the path can be entirely traced within Pt+1, and in particular,
can be homotopically contracted to the trivial path. Therefore, p′n is m-straight, and is
homotopic to pn.

Note that this lemma only applies when we consider (classes of) paths which we know
appear in projective path classes: in particular, we do not say anything about an arbitrary
loop-class in πBn(Z2)

1 (X, (x0|Bn
,v)), which might not admit any preimage by restrn,n+1 in

π
Bn+1(Z2)
1 (X, (x0|Bn+1

,v)).

Example 12. We will compute the projective fundamental group of an SFT extension of
the Z2 sunny-side up subshift,

X = {x ∈ {0, 1}Z2
, |x|1 ≤ 1}

The example of the sunny-side up X itself is implicitly considered in [GP95, Section
2]. However, an SFT extension of X is more complicated, as it is not a covering (in the

102 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

sense of Definition 3.18) or even a constant-to-one extension. The specific extension we
consider here is the one illustrated in Figure 3.5.

T =
{

, , , ,
}

Figure 3.5: An SFT extension of the sunny-side up subshift, defined by a Wang tileset.
The projection map sends to 1 and all the other tiles to 0.

We do not show projective connectedness for now, and defer to Section 3.3 for a gen-
eral argument showing that this kind of subshift is necessarily projectively connected. In
any case, we prove now that the projective path component of (□Z2

, (0, 0)) has a trivial
projective fundamental group, and proving projective connectedness will then ensure that
this component is in fact the only one.

We show that for any n > 1, and any projective loop class ([pn])n>0 based at (□Bn , (0, 0)),
[pn] is trivial.

Let us call the tile the corner tile. We write x(i,j) for the unique configuration
of X such that x(i,j)(i,j) = . We first claim that any loop p = (Pt,vt)0≤t≤N based at
(□Bn , (0, 0)) can be homotopically deformed so as not to contain any pattern containing
the corner tile. Indeed, let t1 = mint{ ⊑ Pt} and t2 = mint>t1{ ̸⊑ Pt}. Then,
there must exist some (i, j) ∈ Z2 such that for all t1 ≤ t ≤ t2, we have Pt,(i,j) = ,
and therefore the path (Pt,vt)t1−1≤t≤t2 must be traced in a single configuration x(i,j). In
particular, we can perform an elementary deformation of p into any other path p ∼Bn

(Pt,vt)t<t1 ∗ p′ ∗ (Pt,vt)t≥t2, where p′ is traced in x(i,j) and avoids . Repeating this
process, we can remove all occurrences of from p.

Let us assume then that p does not contain . Note that for geometric reasons, as our
aperture window is a square Bn, a pattern which does not contain cannot contain both
tiles and . We can therefore split the path p into p = p1 ∗ p2 ∗ . . . ∗ pk where each pk
is of the following form:

• Its endpoints are ■Bn or □Bn. They are equal if and only if pk can be traced in □Bn

or ■Bn.

• It does not contain any or it does not contain any .

3.3. PROJECTIVE CONNECTEDNESS 103

• For each i, writing pi = (Pt,vt)si≤ti≤Ni , the set of timesteps {t ∈ Jsi, NiK, Pt contains or }
is a single interval. In particular, all the tiles in such a path are on the same row
Z× {j}, and all the tiles are on the same column {i} × Z.

Now, the idea is to show how to deform each such path p in order to obtain a path that
can be traced in a single configuration (in fact, in □Z2). If p itself is coherent then it is
homotopic to the trivial path, so suppose that it is not, so that k ≥ 2. Consider the path
q = p1 ∗ p2. We show how to deform it to a coherent path; we can then repeat the process
and eventually obtain a contractible path. Without loss of generality, we can assume that
p1 starts in □Bn and ends in ■Bn after having seen tiles , at some height j ∈ Z:

• If p2 is such that appears in some of its patterns, then let i be the column at which
they appear. We can then deform p1 ∗ p2 homotopically as follows: we concatenate
a path r from the endpoint of p1 to (■Bn , (i+ n, j + n)) traced entirely in ■Z2, and
concatenate r−1 before p2. Let t1 = min{t ≤ N1, ⊑ Pt} and t2 = max{N1 + 1 ≤
t ≤ N2, ⊑ Pt}. Then:

– The paths (Pt,vt)0≤t<t1 and (Pt,vt)t>t2 can be traced in □Z2.

– The path (Pt,vt)t1−1≤t≤t2+1 can be traced in x(i,j), but its starting and ending
patterns are both □Bn. We can therefore deform it so that it doesn’t see any tile
besides □, and so we it can be traced in □Z2 after this deformation.

Finally, we get a path that can be traced in □Z2 .

• Otherwise, p2 also contains a tile , let j′ be the height at which they all appear in p2.
Let (ox, oy) = vN1 be the final position of p1. We can homotopically deform p1 ∗p2 as
above, by inserting a path r ∗ r−1 between p1 and p2. Let r be the straight path traced
in x(i,j) for some sufficiently small i between (■Bn ,N1) and (□Bn , (i − n, oy)). In
particular, r and r1 do not contain any or . Hence, the paths p1 ∗ r on the one
hand, r−1 ∗ p2 on the other hand, are as in the first case, and so can independently
be deformed to be traced in □Z2. Their concatenation can therefore also be deformed
to be traced in □Z2.

Repeating this argument k − 1 times, we finally obtain that p is contractible, and so
πproj1 (X) = {e}.

3.3 Projective connectedness

Just as in the case of the usual fundamental group for a topological space X, where path-
connectedness implies that the group π1(X,x0) does not depend on the basepoint x0 ∈ X,
we can define an analogous notion for the projective fundamental group. Naturally called
projective path connectedness, we can think of it as a kind of mixing property, as already
observed in [GP95]. In this section, we try to give a few conditions ensuring that a
subshift is projectively connected, to highlight the differences between Z and Zd subshifts,
and relate projective connectedness with other more classical mixing notions.

We leave open an important question, about which we will say a few words later in
this section. First, define a natural decision problem:

Decision Problem Projective-Connectedness

Input: An effective subshift X ⊆ AZd .
Output: Whether X is projectively connected.

104 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

The main question not answered here is the following:

Question 1. What is the computational complexity of Projective-Connectedness,
and is it in the arithmetical hierarchy ?

The question is still open even if we restrict it to the case of subshifts of finite type.
We will briefly investigate this question in Section 3.3.4, and highlight a few reasons why
the answer is still unknown to us.

3.3.1 Definition and basepoint independence

The definition is pretty straightfoward:

Definition 3.39: Projective connectedness

Let X be a Zd subshift. We say that X is projectively connected if for any
x, y ∈ X, there exists a projective path class between (x,0) and (y,0), i.e.

∃(pn)n>0,∀n > 0,

{
pn is a path in SBn between (x|Bn

,0) and (y|Bn
,0)

restrn,n+1(pn+1) ∼Bn pn

It is then easy to see that the following proposition holds, using Proposition 3.17 for
each space Bn:

Proposition 3.40

Let X be a projectively connected Zd subshift. Then, for any x, y ∈ X, we
have πproj1 (X,x) ≃ πproj1 (X, y). In this case, we simply write πproj1 (X) for
the projective fundamental group of X (up to isomorphism).

Furthermore, this notion behaves as expected with respect to factor maps:

Lemma 3.41: Factor Lemma [GP95]

If ϕ : X → Y is a factor map between Zd subshifts, and if X is projectively
connected then so is Y .

Proof. Let r = radius(ϕ). Then, for any n ≥ 0, we can naturally define a map ϕn : SBn+r(X)→
SBn(Y), by sending (x|Bn+r+v,v) to (ϕ(x)|Bn+v,v). As ϕ : X → Y is a factor map, it is
in particular surjective, so ϕn is surjective. Moreover, it is easy to check that for any n,
ϕn commutes with the canonical restriction maps, in the sense that restrn,n+1 ◦ ϕn+1 =
ϕn ◦ restrn+r,n+r+1, where the restriction maps in the previous equality are respectively
maps SBn+1(Y) → SBn(Y) and SBn+r+1(X) → SBn+r . Therefore, ϕ induces a surjective
map Φ: lim←−n∈N SBn(X) → lim←−n∈N SBn(Y) between the respective projective limits, and
in particular sends projective path classes to projective path classes, so Y is projectively
connected.

Using similar ideas, we can now prove the important Theorem 3.28:

3.3. PROJECTIVE CONNECTEDNESS 105

Proof of Theorem 3.28. We keep the notations of the proof of Lemma 3.41. Let r =
radius(ϕ) and r′ = radius(ϕ−1). We still have for all n ≥ 0 that restrn,n+1 ◦ ϕn+1 =
ϕn ◦ restrn+r,n+r+1. Moreover, it is easy to check that the induced map π1(SBn+r(X), x0)
and π1(SBn(Y), y0) where y0 = ϕ(x0). In fact, for all n ≥ m ≥ k ≥ r′, we have morphisms
π1(SBn+r(X), x0) → π1(SBm(Y), y0) → π1(SBk−r′ (X), x0). The idea is now to consider a
new, single inverse system, indexed by I = N× {X,Y }, with a partial order

(n, b) ≥ (m, b′) ⇐⇒





b = b′, n ≥ m or
b = X, b′ = Y, n ≥ m+ r or
b = Y, b′ = X,m ≥ n+ r′

with the restriction maps being either the canonical restriction maps restrm,n, or the maps
induced by ϕ, ϕ′ described above. As in Proposition 3.27, the inverse limit of this system
is isomorphic to the inverse limit of either of π1(SBn(X), x0))n∈N, π1(SBm(X), y0))m∈N, as
any element of either subsystem is eventually dominated by an element of the order for
the partial order described above.

We immediately obtain the following result:

Proposition 3.42

If X is a projectively connected subshift and Y is conjugate to X, then
πproj1 (X) ≃ πproj1 (Y).

Proof. This is simply Theorem 3.28 and Lemma 3.41.

An important remark, which partially explains the difficulty of deciding whether a
subshift is projectively connected or not, is the fact that the definition of projective con-
nectedness (Definition 3.39) requires to construct a sequence of “consistent” paths (in the
sense that they are homotopic after applying the canonical restriction maps). It is a priori
not enough to ensure that for all n > 0, there exists a path pn between (x|Bn

,0) and
(y|Bn

,0). We will say a few words about this problem in Section 3.3.4.

3.3.2 Projective connectedness as a mixing property

There are some easy examples of subshifts which are not projectively connected. The
simplest such example is the following:

Proposition 3.43

If X ⊂ AZ2 is a periodic subshift, then it is not projectively connected,
unless X = {aZ2} for some a ∈ A.

Proof. Suppose that X is not reduced to a single configuration, let n be larger than the
period of X, and let P ∈ Ln(X) a pattern that is not (1, 0)-periodic – this is without loss
of generality, up to rotating X by a quarter-turn. Then, there is a single configuration
x ∈ X such that x|Bn

= P . In particular, any path in SBn starting from P must be traced
in x, and so (P, (0, 0)) cannot be linked by any path to (P, (1, 0)).

We get the immediate corollary:

106 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

Corollary 3.44

Let X be a Z2 subshift. If X admits a non-trivial periodic factor, then it
is not projectively connected.

Proof. This is Proposition 3.43 and Lemma 3.41.

Projective connectedness is a strong mixing notion, but quite hard to fully characterize.
We give in this section an overview of how it might relate to other mixing notions in higher-
dimensional subshifts. We first give a condition which ensures that a subshift is projectively
connected.

Cones and cone-connected subshifts

We will see in later sections that most of the usual mixing properties do not imply projective
connectedness. We give here a new kind of mixing property, inspired by [Sch95], based on
cones. This property will be used in particular to prove the projective connectedness of a
large class of subshifts in Section 3.4.

Let us start with a weaker result, which will nonetheless be useful to understand the
later ideas of what we call the cone-connected property:

Definition 3.45: Strong irreducibility

Let X be a Z2 subshift, and d the distance induced by the infinite norm
∥∥∞ on Z2. We say that X is strongly irreducible if there exists N ∈ N
such that for any x, y ∈ X and A,B ⊂ Z2 (not necessarily finite) with
d(A,B) ≥ N , there exists z ∈ X such that z|A = x|A, z|B = y|B.

Proposition 3.46

If X is strongly irreducible then it is projectively connected.

Proof. Let x, y ∈ X. We construct explicitly a projective path-class between (x, (0, 0))
and (y, (0, 0)). By strong irreducibility of X, there exists N > 0 and z ∈ X such that:

• z|−N×Z = x|−N×Z.

• z|(N+N)×Z = y|(N+N)×Z.

For n > 0, we define a path pn between in (x|Bn
, (0, 0)) and (y|Bn

, (0, 0)) as follows:

• Starting from (x|Bn
, (0, 0)), move to the left in the configuration x to (−n − 1, 0),

and let p1n be this path.

• As x|Bn−(n+1,0) = z|Bn−(n+1,0), we can continue this path in z: move straight to the
right in the configuration z, until the point (N + n, 0). We call this path p2n?

• As y|Bn+(N+n,0) = z|Bn+(N+n,0), we can continue this path in y: move straight to
the left in the configuration z, until the point (0, 0). We call this path p3n

3.3. PROJECTIVE CONNECTEDNESS 107

y

x

z

(0,Z)

(N,Z)

p1n

p3n

Figure 3.6: Path pn. For visualization purposes, the trajectory does not remain on the
{Z} × {0} row. The configurations x and y are respectively represented in blue and red,
one above the other; the configuration z has overlaps with both, and is distinct on the
J0, NK× Z stride.

Finally, define pn = p1n ∗ p2n ∗ p3n.
This path is illustrated in Figure 3.6.
It is now easy to see that for all n > 0, restrn,n+1(pn+1) ∼Bn pn. Indeed, notice that

restrn,n+1(p
1
n+1) can be obtained by adding a single step at the end to pn, moving to

(−n− 2, 0) in x, and restrn,n+1(p
1
n+1) can be obtained by prepending an extra step to p2n,

moving from (−n− 2, 0) to (−n− 1, 0) in x. As those two additions are inverse from one
another, this is a loop, and so can be contracted homotopically. Similarly, one can modify
the end of p2n and the start of p3n to achieve the same deformation on the second half of
the path, and so restrn,n+1(pn+1) ∼Bn pn.

Hence, (pn)n>0 is a projective path-class between x and y.

This argument does not actually require us to be able to “glue” arbitrary parts of
configurations of X, as in the strong irreducibility property. In fact, it suffices to be able
to glue cones:

Definition 3.47: Cone

Let α ∈ R,u ∈ Z2. We define the cone C(α,u) as:

C(α,u) = {v ∈ Z2, ⟨u,v⟩ ≥ α ∥u∥2 ∥v∥2}

where ⟨·, ·⟩ is the standard euclidean scalar product.

Definition 3.48: Cone-connected

Let X be a Z2 subshift. We say that X is cone-connected if there exists
x ∈ X such that for any y ∈ X, there exists α, β ∈ R,u,v,o ∈ Z2 and
z ∈ X such that z|C(α,u) = x|C(α,u) and z|C(β,v)+o = y|C(β,v)+o.

108 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

This is a rather strong mixing condition, but we still have some margin: we do not ask
for any cones C(α,u) and C(β,v) to be able to be glued in a common configuration, and
furthermore, we only require the cones of a single specific configuration x to be glued to
cones of other configurations of X. Nevertheless, this is a sufficient condition to ensure
projective connectedness:

Proposition 3.49

Let X be a cone-connected Z2 subshift. Then X is projectively connected.

Proof. The proof is the same as in Proposition 3.46. We show how to define a projective
path class between x and any configuration y. Let z be as in Definition 3.48, and define
for n > 0 a path pn between (x|Bn

, (0, 0)) and (y|Bn
, (0, 0)) as follows:

• Start by moving in x from (0, 0) to a point wn ∈ C(α,u) such that wn+Bn ⊂ C(α,u)
– such a point wn exists, as C(α,u) is a cone.

• Now, move in z to a point w′
n so that w′

n + Bn ⊂ C(β,v).

• Come back in y.

It is then easy to see that (pn)n>0 is a projective path class. Indeed, restrn,n+1(pn+1)
is homotopic to pn, as it suffices to remove the paths in z from wn to wn+1 and back, and
from w′

n to w′
n+1 and back.

In particular, for subshifts having any kind of “safe symbol” – i.e. a symbol ∗ such that
for any x ∈ X, changing xu = ∗ at any u ∈ Z2 produces a configuration that is still valid
in X – even with restriction such as the ones considered in [Jen01], we can show that they
are projectively connected using cone-connectedness, even if they might not be strongly
irreducible due to some non-isotropic properties of the subshift.

Chain-mixing properties

We first recall a few classical definitions from the theory of dynamical systems. The defi-
nitions are not specific to subshifts, but are given in the case of a topological space (X,T)
with T : X → X. In particular, for higher-dimensional subshifts, we need to consider
slightly different versions of the usual definitions. A longer introduction to these proper-
ties and their relative implications can be found in [Kur03, Section 2.1].

Definition 3.50: Chain

Let (X,T) be a dynamical system, and let d be a distance on X. For
x, y ∈ X and ε > 0, an ε-chain between x and y is a sequence
(x0 = x, x1, . . . , xN = y) of elements of X such that for 0 ≤ i < N ,
d(T (xi), xi+1) < ε.

In other words, an ε-chain can be viewed as almost being an orbit, where at each
new application of the map T , we only know the image up to a precision ε. This easily
generalizes to the case of Zd-actions.

3.3. PROJECTIVE CONNECTEDNESS 109

Definition 3.51: Chain transitive

A dynamical system (X,T) is chain-transitive if for all x, y ∈ X and
ε > 0, there exists an ε-chain between x and y.

In the case of subshifts, the definition of chains is very similar to the notion of path
defined in Definition 3.29, and the next result is not surprising:

Proposition 3.52

Let X be a projectively connected SFT. Then X is chain transitive.

Proof. Let ε > 0, and n such that 2−n < ε
2 . Let x, y ∈ X. We show that there exists an

ε-chain between x and y.
X is projectively connected, so there is a path pn = (Pk,vk)0≤k≤r between x|Bn

and
y|Bn

, and each Pk is a pattern of support Bn – see Figure 3.7 for an illustration. By
definition of a path, each Pk is globally admissible, so there exists zk ∈ X so that zk|Bn

= Pk.
For k < r, let ek = vk+1 − vk. By definition,

σek(z
k
|Bn−1

) = zk+1
|Bn−1

i.e. d(σek(z
k), zk+1) < 2−(n−1) ≤ ε and so (zk) is an ε-chain between x and y in X.

Pk

Pk+1

(0, 0)

Pk

zk

(0, 0)

Pk+1

zk+1

Figure 3.7: Illustration of the ε-chain between x and y

As already observed by [GP95] (which prove it for mixing subshifts, but the exact same
proof gives the result for a weakly mixing subshift (see Definition 1.42), already present
in [Piv07, Prop. 3.3]), we have the following proposition:

Proposition 3.53

Let X be a weakly mixing subshift. Then for any n ∈ N, SBn is path-
connected.

Proof. Let x, y ∈ X, and let P ∈ Ln(X) be any globally admissible pattern of X. Let
P ∈ Ln(X) be an arbitrary pattern of X. As X is weakly mixing, there exists u ∈ Z2 and
zx, zy ∈ X such that:

110 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

• zx|Bn
= x|Bn

, zy|Bn
= y|Bn

• zx|u+Bn
= zy|u+Bn

= P .

We can then find a path in SBn between (x|Bn
, (0, 0)) and (y|Bn

, (0, 0)) by considering
any path traced in zx with a trajectory from (0, 0) to u, concatenated with a path from
(P,u) to (y|Bn

, (0, 0)) traced in zy.

Transitivity

On the other hand, there are examples of SFT that are projectively connected but not
mixing – and in fact, not even transitive.

Proposition 3.54

For any d ≥ 1, there exists a non-transitive projectively connected Zd
subshift

Proof. We construct an example for d = 1, and the same example works for arbitrary
dimension by considering the lifts X↑, X↑↑ . . . and so on.

Consider the one-dimensional SFT X on the alphabet {0, 1, 1′, 2′} defined by the fol-
lowing adjacency graph:

0 1

2’1’

Figure 3.8: Graph giving the horizontal adjacency rules for X. An edge (u, v) indicates
that the colour v can be placed to the right of u.

This SFT is obviously non-transitive, as the patterns 01′ and 02′ can never belong to
the same configuration, but it is projectively connected. Indeed, we show how to make a
projective path from any configuration to x0 = 0Z

2 . This implies projective connectedness.
Let x ∈ X.

• If x contains a 0, then we define a path for any aperture window by simply moving to
the left far enough in x so as to only see 0, and coming back in the x0 configuration.
This obviously defines an inverse system of paths.

• Otherwise, let n be such that J−n, nK2 is an aperture window large enough to see
all the colours of x. For m > n, define a path pn for this window as follows. If x
contains at least two colours, or is constantly some i′:

– Start by moving 3n steps to the right in x

– Move left for 6n steps in the configuration containing 0 on the negative columns,
and the rightmost colour of x on the positive columns.

– Move right for 3n steps in x0.

If x is constantly 1, then:

3.3. PROJECTIVE CONNECTEDNESS 111

– Start by moving 3n steps to the left.

– Move right for 6n steps in the configuration containing 1 on the negative
columns, 2′ on the positive columns.

– Move left for 6n steps in the configuration containing 2′ on the positive columns,
0 on the negative ones.

– Move right for 3n steps in x0.

This defines an inverse system of paths, hence X is projectively connected but not even
transitive.

Instead of considering X↑ as a Z2 example, we can also perform some minor modifica-
tions: the same argument showing projective connectedness works even we allow columns
to be non-constant, but e.g. if we can shift each row one cell to the left or to the right
compared to the one below it. This becomes an uncountable subshift with no isolated
points, which is still not transitive but projectively connected.

Contractibility

Denote I = {0, 1}Z2 the binary full shift, and 0̄ = 0Z
2
, 1̄ = 1Z

2 its two fixed points.
Following [PS24], we define a contractibility notion for subshifts:

Definition 3.55: Contractible subshift

A Z2 subshiftX is contractible if there exists some block map h : I×X×X
such that for any x, y ∈ X:

• h(0̄, x, y) = x

• h(1̄, x, y) = y

This definition closely mirrors Definition 3.10: this is in fact an analogous, for subshifts,
of the general property of a space (rather than a path), namely, having the homotopy type
of a point.

In the case where X is an SFT with a fixed point, contractibility implies that we can
even take h to be such that h(·, x, x) = x for all x, see the original article [PS24] for more
details.

We now try to see the link of this property with the projective fundamental group of the
subshift X. Links between contractibility and other classical notions from the literature
are explored in more details in the original paper [PS24]:

Lemma 3.56

Any contractible subshift is projectively connected.

Proof. Contractibility implies strong irreducibility. It is even one the motivations behind
the introduction of the notion of a contractible subshift, which can be seen a strengthening
of strong irreducibility where the configuration containing the required patterns can be
obtained by a block map: let r be the radius of the map h given by Definition 3.55, and
let P,Q be two patterns of X. Let x, y ∈ X and v ∈ Z2 be such that:

• x|dom(P) = P .

112 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

• y|u+dom(Q) = Q.

• d(dom(P),u+ dom(Q)) > 2r.

Then, we claim that there exists z ∈ X containing P at (0, 0) and Q at u, and as r
does not depend on P,Q, this implies strong irreducibility. Let b ∈ {0, 1}Z2 be such that
bv = 0 ⇐⇒ d(v,dom(P)) ≤ r. Then, for any v ∈ dom(P), h(b, x, y)v = h(0̄, x, y)v = xv,
and similarly for v ∈ dom(Q) we have h(b, x, y)v = h(1̄, x, y)v = yv.

However, it is unclear what this implies for the value of the fundamental group. Classi-
cally, and by definition, contractible spaces have trivial fundamental group. There exists,
however, spaces with trivial π1 which are not contractible: indeed, contractibility implies
that all the homotopy groups are trivial – we did not formally define these groups in this
chapter, but they are defined using “higher-dimensional equivalents” to paths, i.e. contin-
uous maps from higher-dimensional spheres rather than S1 to the space X. In particular,
the 2-sphere is an example of such a space, which has trivial fundamental group but e.g.
π2(S

2) = Z.

Proposition 3.57

Let X be a Z2 SFT. If X is contractible and has a fixed point, it has trivial
projective fundamental group.

Proof. To show this, we prove that X is in fact cohomologically trivial (in the sense
of [Sch98]), which is a priori stronger. We do not need to introduce the general definitions
here, and will simply state the relevant results that we need in this proof.

We use a condition implying triviality of all the cocycles from [Sch95], namely, the
u-specification property. More precisely:

• We prove that X satisfies a specification property, introduced in [Sch95, Definition
2.2] that we recall below.

• This property implies that X is cohomologically trivial by [Sch95, Corollary 3.3].

• We do not give precise definition of cohomological triviality, but use another result
from Klaus Schmidt, [Sch98, Corollary 5.8] which implies that πproj1 (X) = {e}.

It then suffices to prove that X indeed satisfies the required specification property. Let
x̄ = 0Z

2 be the fixed point of X, and let ∆ = {x ∈ X | |u ∈ Z2, x̄u ̸= xu| < +∞} be
the set of configurations differing from x̄ in finitely many places. We say that X has the
specification property if:

• ∆ is dense in X: for all n > 0 and P ∈ Ln(X), there exists x ∈ X and m > n such
that x|Bn

= P and for u ∈ Z2 \ Bm we have xu = 0.

• There exists a direction u ∈ Z2 and an angle α > 0, and parameters s ≥ 1, t ≥ 0
such that for all x, y ∈ ∆ and n ≥ 0, if x|sn+t = y|sn+t, there exists z ∈ ∆ such that:

– z|C(α,u)+Bn
= x|C(α,u)+Bn

– z|C(α,−u)+Bn
= y|C(α,−u)+Bn

Said differently, if x, y agree on a sufficiently large ball (of size sn + t > r), we can
glue a cone of x and a cone of y with no gap between them, see the illustration
in Section 3.3.2.

3.3. PROJECTIVE CONNECTEDNESS 113

Bn
Bsn+t u

Bn + C(α,u)

Bn + C(α,−u)

Only contains 1s

Only contains 0s

Let h the map given by Definition 3.55 for X, and let r = radius(h). We prove that X
has the specification property with u = (1, 1), α = 1

2 , s = 1, t = 2r + 1

By strong irreducibility, ∆ is dense. Now, pick n ≥ 0, and any two points x, y differing
on finitely many positions from x̄, and equal on positions of Bn+2r+1.

We define a configuration b of I = {0, 1}Z2 as follows: for v ∈ Z2, bv = 0 if and only if
⟨u,v⟩ ≥ 0.

Define z = h(b, x, y) ∈ X. By definition of h:

• For v ∈ Bn+r+1, zv = h(·, x, y) depends only on b, x, y restricted to Bn+2r+1, and as
x, y coincide there, and so zv = xv = yv.

• For v ∈ (Bn + C(α,u)) \ Bn+r+1, zv = h(1̄, x, y)v so by definition of h zv = xv.

• The same arguments prove that z|Bn+C(α,−u) = y|Bn+C(α,−u).

The reciprocal is unclear:

Question 2. Does having a trivial fundamental group and a fixed point imply contractibil-
ity ?

We will see in Section 3.4 what could be a likely counterexample, using Hom-shifts.

114 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

3.3.3 One-dimensional SFT

The projective fundamental group of one-dimensional subshifts is not necessarily a partic-
ularly interesting object, as the main idea of homotopically deforming paths is rendered
trivial here by the fact that a contractible path is essentially a sequence of (possibly nested)
backtracking paths. Nevertheless, we say a few words about the projective connectedness
of Z-SFTs.

Consider a Z-SFT X over some alphabet A. Without loss of generality, we see X as
bi-infinite walks on a graph G with vertices V (G) = A. In this section, we always assume
that graphs are connected whenever we consider them as non-directed graphs, that is,
when each edge can be traversed in both directions – if G is disconnected even for this
notion, X is clearly not projectively connected.

Proposition 3.58

Let X be a Z-SFT defined by some directed graph G = (V,E). Suppose
that G has at least two (not necessarily simple or disjoint) cycles of rela-
tively prime lengths, which are in the same strongly connected component.
Then, X is projectively connected.

Proof. The proof is a simple generalization of the procedure already highlighted in the
proof of Proposition 3.54. Most ideas are already present in [Kur03, Chapter 3.6.1] in
which the author studies attractors of one-dimensional SFTs.

For a vertex v ∈ G, we denote scc(v) its strongly connected component in G. Let
Cp = (u0, . . . , up−1), Cq = (v0, . . . , vq−1) be the two cycles of relatively prime length p, q
of G. As we assumed that those cycles were in the same strongly connected component
of G, there exists a path between u0 and v0 of length kpq, and a path between vi and
uj of length kqp. Let C be the strongly connected component containing Cp, Cq, that is
C = scc(u0) = scc(v0).

u0

u1
u2

u3
u4

v0

v1 v2

k5,3

k3,5

Figure 3.9: An example with p = 5, q = 3

Let k be the length of the path u0 → v0 → vi → uj → u0. Then, starting from u0
and taking a times the Cp cycle, b times the Cq cycle, gives a loop of length k + ap+ bq.
Finding a, b so that the result is any sufficiently large integer is always possible, as p, q
are coprime: this problem is classically known as the Frobenius problem (and in that
particular case, it simply derives from Bézout’s identity). In the example of Figure 3.9, we
have p = 5, q = 3, k = k5,3 + k3,5 + 5; any number greater or equal k + 8 can be obtained
with suitable non-negative a, b.

Consider the directed acyclic graph G′ = (V ′, E′) whose vertices V ′ are the non-trivial
strongly connected components of G, (i.e., components not reduced to a single vertex
which has no self-loops), with an edge (v, v′) ∈ E′ ⊆ V ′ × V ′ if and only if there is a
directed path between some vertices of the components in the original graph G. We can

3.3. PROJECTIVE CONNECTEDNESS 115

then define a partial order ≤scc using G′, by defining v′ ≤scc v if there is a (directed) path
from v to v′ in G′.

Now, define:

l : X → V ′ r : X → V ′

x 7→ sup
i≤0

scc(xi) x 7→ inf
i≥0

scc(xi)

By definition of X and of G′, and because G is finite, it is clear that for each x ∈ X,
the function i 7→ scc(xi) is non-increasing and so e.g. r(x) = lim

i→+∞
scc(xi).

Fix x ∈ X, with l(x) = r(x) = C, and let y ∈ X be arbitrary. This is always possible,
as C is a non-trivial strongly connected component and so it contains a cycle.

Let then γ be a path in G′ between l(x) = C and l(y), when G′ is viewed as a non-
directed graph. We show by induction on p how to find a projective path between x and y.
Without loss of generality, we can assume that scc(y0) = l(y), and therefore scc(yi) = l(y)
for any i ≤ 0, up to shifting both x and y by the same and sufficiently large amount.

If l(x) = l(y) = C In that case, we use the remarks made at the beginning of the proof.
We define the path pn for the window Bn. Start by moving 2n steps to the right in x. It
is then sufficient to show that there exists i < 0 such that there exists a path γ′ of length
i in G between x0 and yi. But such an i always exist, by Frobenius theorem. We can then
trace the second part of the path in the configuration z equal to x on N, to y on i−N, and
to the above path between i and 0. Note that i does not depend on n, the width of the
current aperture window, nor does it depend on y, but only on G′ and C more specifically,
and so z does not depend on n. In particular, restrn,n+1(pn+1) ∼ pn.

If γ’s last edge in G′ is taken with the correct orientation, i.e. γ = γ′ · (w, l(y)) with
(w, l(y)) ∈ E′. Then we show that we can find a projective path between y and some
configuration z with l(z) = w. By induction hypothesis, we know how to construct a
projective path between x and z, and so this would be enough to conclude. By definition
of E′, there exists a path η = (η−k, η−k+1, . . . , η0 = y0) in G between some vertex η−k
with scc(η−k) = w, and y0. Let (λ0 = η−k, λ1, λm−1) be a cycle in w = scc(η−k). Define z
as:

z : Z→ V

i 7→





yi if i > 0

ηi if i ∈ J−k, 0K
λ(i+k) mod m otherwise

Then we can define the path pn as follows: starting from (y|Bn
, 0), move to the right

in y for 2n steps, and come back to 0 by moving to the left for 2n steps in z. This defines
a projective path-class between y and z.

If γ’s last edge in G′ is taken with the opposite orientation, i.e. γ = γ′ · (w, l(y)) with
(l(y), w) ∈ E′. This case is completely symmetrical to the previous one. We construct
z ∈ X with l(z) = w in the same way, and there is a projective path between y and z –
taking its inverse and using the induction hypothesis, we get a path between x and y.

This shows that any y ∈ X is connected to some fixed x ∈ X, and so X is projectively
connected.

116 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

This shows that bearing some trivial “parity-like” restrictions, of the kind already men-
tioned in Corollary 3.44, any irreducible SFT is in fact projectively connected. Moreover,
we have quantitative bounds on the number of different configurations needed to trace a
path – said differently, we can (uniformly) bound for any n the decomposition length of pn
for pn a path of minimal length between any two points x, y ∈ X in the scene-space SBn

(more precisely, between any two pairs (x|Bn
, 0) and (y|Bn

, 0)).

3.3.4 Deciding projective connectedness

As mentioned in Section 3.3.1, in order to ensure that a subshift is projectively connected,
it is a priori not enough to ensure the following:

∀n > 0, ∃pn a path between (x
∣∣
Bn
,0) and (y

∣∣
Bn
,0).

In fact, we do not know whether this implies projective connectedness, and we do not
have any counter-examples. We first prove the easy fact that the problem of whether a
subshift a projectively connected is already undecidable; the above discussion is simply a
way to show that we have no clear idea of the actual difficulty of this problem, that is,
where it falls in the arithmetical hierarchy (see Section 1.2.2).

Proposition 3.59

The problem Projective-Connectedness is Σ0
1-hard.

Proof. The proof is a simple reduction to the domino problem Theorem 1.77. Let Y be
the one-point subshift (which is obviously projectively connected), and let Z be any non-
projectively connected subshift, such as non-trivial periodic subshift (see Proposition 3.43).
Then, for any SFT X, the subshift X × Z ⊔ Y is projectively connected if and only if X
is empty.

This proof is not particularly insightful, and similar easily-shown-to-be-undecidable
results can be proven using the general machinery developed in [Car24].

Let us now highlight a few reasons, or counter-intuitive examples, for why we do not
know whether it is enough to ensure path connectedness of all the individual scene spaces
SBn(X) in order to have projective connectedness.

Example 13 (Solenoid). Consider the solenoid X obtained as the inverse limit of the
following system:

• For all n > 0, let Sn = S1 = [0, 1]/(0 ∼ 1) be the circle.

• For m ≥ n > 0, let fm,n : x ∈ S1 7→ 2m−nx ∈ S1, and so in particular fn+1,n : x ∈
S1 7→ 2x ∈ S1.

Then the solenoid X is defined as X = lim←−n>0
(Sn, fm,n)0<n≤m. This is a well-known

object, initially introduced in [Vie27]. It is known to be a connected, compact, metrizable
topological space, but not path-connected. However, each one of the “intermediate” space
Xn = {(xi)1≤i≤n ∈

∏n
i=1 S

1,∀i < n, 2xi+1 = xi} is homeomorphic to a circle S1, via
the map (xn, 2xn, . . .) ∈ Xn 7→ xn. Hence, any space Xn is clearly path-connected, as it
is a circle. In fact, Xn can be visualized as a closed coil, with 2n “spirals”, the first and
last spirals being connected to one another. However, the solenoid itself is not projectively
connected. To show this, consider the point x = (0, 0, . . .) ∈ X, and the point y =
(12 ,

1
4 ,

5
8 , . . .), where for all i > 0, yi+1 is the only preimage of yi by x 7→ 2x in [14 ,

3
4). In

3.3. PROJECTIVE CONNECTEDNESS 117

particular, the distance (in S1) between xi = 0 and any yi is at least 1
4 for any i. Suppose

that there exists an inverse system of paths (pn)n>0 between x and y, that is, pn is a path
in Xn ≃ S1 between 0 and yi, and 2pn+1 = pn. But this is impossible: for any n, the
path pn must be of length at least 1

4 by the previous remark, and we can assume that it
is non-backtracking. As for any m ≥ 0, 4mpn+2m ∼ pn, we get that pn is homotopic to
a non-backtracking path in S1 of length 4m−1. By Example 11, all those paths cannot be
homotopic, so we have a contradiction.

This example shows that even for compact metrizable connected spaces, the fact that
the intermediate spaces in the inverse limit are all path-connected is not enough to guaran-
tee projective connectedness. On the other hand, this is obviously not enough to conclude
for the specific construction considered in the fundamental group of subshifts.

Let us give an additional example, this time using subshifts:

Example 14 (Balanced subshift). Let Z be the one-dimensional subshift consisting of all
the infinite balanced words (considering this set as a single subshift, rather than studying
individual Sturmian subshifts, is not a new idea, and was already done in [BK98] under
the name Grand Sturmian subshift). Let z0 = 0Z. As z0 is balanced, it is a point of Z.
We show that the scene-space SBn of Z is path-connected, by showing that for any balanced
word u ∈ L(Z), there exists a path between (z0|Bn

,0) and (u,0). We do not provide the
complete computations, and only give the general idea. There might exist simpler proofs,
using more advanced results on Sturmian subshifts (see [Pyt+02, Chapter 6] for example),
but we simply use elementary ideas.

Clearly, Z is far from being transitive: for any n, if u, v ∈ Ln(Z) are such that |v|1 ≥
|u|1 + 2, by definition of balanced words there exist no configuration z ∈ Z such that
u, v ∈ L(Z).

However, any finite balanced word is a subword of a “mechanical word”, so there exists
parameters αu, βu such that the mechanical word xu given by the line x 7→ αux+βu satisfies
xu|Bn

= u, and we can even take α irrational. The key remark is that because u is finite,
there exists several such pairs (α, β) (more precisely, by [PR12, Proposition 1], u is a factor
of an infinite balanced word of slope α if and only if |w|1 − 1 < α|w| < |w|1 + 1 for all
w ⊑ u), see Figure 1.7.

The idea is now the following:

• Within an infinite aperiodic balanced word, there exists some k such that factors of
length |u| contain k or k + 1 symbols 1.

• Using the previous remark, for any given finite balanced word u, we can find a con-
figuration z containing u such that factors of z of length |u| contain |u|1 or |u|1 − 1
symbols 1.

• Therefore, “moving” within the configuration z, we can find another factor z of weight
|u|1 − 1.

• We can then repeat to find patterns with less and less weight, until we reach the
pattern 0Bn ⊑ z0.

This process is illustrated in the Figure 3.10.
However, by definition of balanced words, we have the following property: for n > 1,

for any path (in the sense of Definition 3.29) p between (1n,0) and (0n,0), any coherent
decomposition of p must be of length at least n

2 . In particular, for any projective path class
([pn])n>0 between 0Z and 1Z – the existence of which has not been proven ! – there does
not exist any finite set of configuration z0, z1, . . . , zN such that pn can be decomposed in
paths pn = q0 ∗ q1 ∗ . . . ∗ qN , with qi traced in zi for all i.

118 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

1101 0100

Figure 3.10: A path between (1101,0) and (0100,0), using an extra configuration. The
red and cyan lines induce mechanical words which are equal on the interval J4, 7K, and the
blue and purple lines, words which are equal on J−7,−4K. Note that there exists no single
configuration containing both 1101 and 0100.

To sum up: if Z is projectively connected, then any projective path class between 0Z

and 1Z must be non-trivial, in the sense that it cannot be obtained using a finite number
of configurations x1, . . . , xN , in which every path pn could be decomposed as coherent paths
q1, . . . , qN , which could respectively be traced in x1, . . . , xN . On the other hand, if Z is
not projectively connected, it is a counter-example to the fact that having each scene-space
path-connected implies projective connectedness.

Considering the subshift X = Z↑ shows that this behaviour also exists in Z2 subshifts.

3.4 Hom-shifts

We now turn our attention to a specific class of subshifts, the Hom-shifts. Hom-shifts are
a subclass of higher-dimensional subshifts of finite type, introduced in [Cha16], that are
defined using graphs.

3.4.1 Definition and first results

In this section and unless specified otherwise, all graphs are assumed to be finite, connected,
undirected, simple, but can have self-loops (that is, an edge {v, v}). For a general overview
of the terminology used in this section, see Section 4.3.1.

Definition 3.60: Hom-shift

Let G = (V,E) be an undirected graph. The Zd Hom-shift XG ⊂ V Zd is
defined by

XG = {x ∈ V Zd | ∀u,v ∈ Zd, ∥u− v∥∞ = 1 =⇒ (xu, xv) ∈ E}

In other words, XG is the set of V -colourings of Zd where adjacent cells of Zd must
respect the constraints given by the edges of G: this can be seen as a generalization of
proper colourings (colourings of Zd where adjacent cells must not coloured with the same
colour), as the set of proper n-colourings is XKn , the Hom-shift associated with the n-
clique Kn. We will only consider the case d = 2 in this section, and we write XG for the
Z2 Hom-shift associated with G.

3.4. HOM-SHIFTS 119

Hom-shifts also correspond exactly to the SFTs where the constraints (or forbidden
patterns) are the same in any direction. In particular, for any graph G, if x ∈ XG then its
rotations are also inXG, for example, ((i, j) 7→ x(j,−i)) ∈ XG. The name “Hom-shift” comes
from the fact that the corresponding configurations of XG are graph homomorphisms, from
Zd to G, where Zd is viewed as a graph with vertex set Zd and edges between adjacent
vertices.

Most of the ideas presented in this section can be found, although sometimes in a
slightly different form, in the original article [Cha16], or in continuations of this work on
Hom-shifts [HGO22]. Some ideas are already implicit in [GP95, Theorem 3] and [Sch98,
Section 7], in the special case of proper 3-colourings of the plane, which is the Hom-shift
associated with the cyclic graph C3. We prove a few additional results, and apply those
ideas to compute the projective fundamental group of some Hom-shifts.

We start with a proposition about the projective connectedness of Hom-shifts:

Proposition 3.61

Let G be any connected graph. Then, XG is projectively connected if and
only if it is not bipartite. If G is bipartite, it admits exactly two projective
path components, X = Y ⊔ σ(1,0)(Y).

Proof. If G is bipartite, it is easy to see that it is not projectively connected, for example
using Corollary 3.44 and the block map ϕ : XG → {0, 1}Z2 sending each vertex to its
bipartite component in G. Then, ϕ(XG) is the 2-points subshift containing the two proper
2-colourings of Z2, which is periodic.

Suppose then that G is not bipartite. By Proposition 3.49, it suffices to show that
XG is cone-connected. Let u, v be adjacent vertices of G, and define a configuration

x : (i, j) ∈ Z2 7→
{
u if i+ j = 0 mod 2

v otherwise
. It is clear that x ∈ XG. Let now y ∈ XG

be arbitrary. Let u0 = u = x(0,0), u1, . . . , uN = y(0,0) be a path in G of even length –
such a path exists as G is not bipartite. Then, consider the configuration z presented
in Figure 3.11:

As N is even, it contains the cone (−N, 0)+C(12 , (−1, 0)) of x, and the cone C(12 , (1, 0))
of y. All the other cells are obtained by repeating in the suitable diagonal the value of
the border of the cone C(12 , (1, 0)) in y. Hence, XG is cone-connected, and so projectively
connected. Note that this construction can also be performed when G is bipartite, provided
that the chosen vertex u and y(0,0) are in the same bipartite component, so that there exists
a path of even length between them.

The case of trees

We start with the simplest possible graphs, namely, trees, which are graphs without cycles.
In fact, those results will be useful when studying more general Hom-shifts, as we will
show in Section 3.4.1 how we can relate the projective fundamental group of graphs to
those computations on trees. In order to study paths and their deformation in Hom-
shifts, we introduce an operation on configurations, that we call the pivot operation
following [Cha18]. This is a well-known operation of the literature, also mentioned for
example in [Rém05, Section 4.1] in the case of tilings by rectangles. We do not study this
operation in depth, and simply state what is necessary in our context.

Notation. For G a graph and u ∈ V (G), we note N(u) = {v ∈ V (G), (u, v) ∈ E(G)} the
neighbourhood of u in G.

120 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

y(0,0) y(1,0) y(2,0) y(3,0) y(4,0) y(5,0) y(6,0) y(7,0) y(8,0) y(9,0)

y(1,1)

y(1,−1)

y(2,1)

y(2,−1)

y(3,1)

y(3,−1)

y(4,1)

y(4,−1)

y(5,1)

y(5,−1)

y(6,1)

y(6,−1)

y(7,1)

y(7,−1)

y(8,1)

y(8,−1)

y(9,1)

y(9,−1)

y(2,2)

y(2,−2)

y(3,2)

y(3,−2)

y(4,2)

y(4,−2)

y(5,2)

y(5,−2)

y(6,2)

y(6,−2)

y(7,2)

y(7,−2)

y(8,2)

y(8,−2)

y(9,2)

y(9,−2)

y(3,3)

y(3,−3)

y(4,3)

y(4,−3)

y(5,3)

y(5,−3)

y(6,3)

y(6,−3)

y(7,3)

y(7,−3)

y(8,3)

y(8,−3)

y(9,3)

y(9,−3)

y(4,4)

y(4,−4)

y(5,4)

y(5,−4)

y(6,4)

y(6,−4)

y(7,4)

y(7,−4)

y(8,4)

y(8,−4)

y(9,4)

y(9,−4)

y(5,5)

y(5,−5)

y(6,5)

y(6,−5)

y(7,5)

y(7,−5)

y(8,5)

y(8,−5)

y(9,5)

y(9,−5)

y(6,6)

y(6,−6)

y(7,6)

y(7,−6)

y(8,6)

y(8,−6)

y(9,6)

y(9,−6)

y(7,7)

y(7,−7)

y(8,7)

y(8,−7)

y(9,7)

y(9,−7)

y(8,8)

y(8,−8)

y(9,8)

y(9,−8)

y(9,9)

y(9,−9)

uvuvuvuvuv

u

u

v

v

u

u

v

v

u

u

v

v

u

u

v

v

u

u

u

u

v

v

u

u

v

v

u

u

v

v

u

u

v

v

u

u

v

v

u

u

v

v

u

u

v

v

u

u

u

u

v

v

u

u

v

v

u

u

v

v

u

u

v

v

u

u

v

v

u

u

u

u

v

v

u

u

v

v

u

u

v

v

u

u

u

u

v

v

u

u

u1 u2 u3 u4

u1

u1

u2

u2

u3

u3

u4

u4

u1

u1

u2

u2

u3

u3

u4

u4

u1

u1

u2

u2

u3

u3

u4

u4

u1

u1

u2

u2

u3

u3

u4

u4

u1

u1

u2

u2

u3

u3

u4

u4

u1

u1

u2

u2

u3

u3

u4

u4

u1

u1

u2

u2

u3

u3

u4

u4

u1

u1

u2

u2

u3

u3

u4

u4

u1

u1

u2

u2

u3

u3

u4

u4

y(1,0)

y1,0

y(1,0)

y1,0

y(1,0)

y1,0

y(1,0)

y1,0

y(1,0)

y1,0

y(1,0)

y1,0

y(1,0)

y1,0

y(1,0)

y1,0

y(1,0)

y1,0

y(2,1)

y2,−1

y(2,1)

y2,−1

y(2,1)

y2,−1

y(2,1)

y2,−1

y(2,1)

y2,−1

y(2,1)

y2,−1

y(2,1)

y2,−1

y(2,1)

y2,−1

y(3,2)

y3,−2

y(3,2)

y3,−2

y(3,2)

y3,−2

y(3,2)

y3,−2

y(3,2)

y3,−2

y(3,2)

y3,−2

y(3,2)

y3,−2

y(4,3)

y4,−3

y(4,3)

y4,−3

y(4,3)

y4,−3

y(4,3)

y4,−3

y(4,3)

y4,−3

y(4,3)

y4,−3

y(5,4)

y5,−4

y(5,4)

y5,−4

y(5,4)

y5,−4

y(5,4)

y5,−4

y(5,4)

y5,−4

y(6,5)

y6,−5

y(6,5)

y6,−5

y(6,5)

y6,−5

y(6,5)

y6,−5

y(7,6)

y7,−6

y(7,6)

y7,−6

y(7,6)

y7,−6

y(8,7)

y8,−7

y(8,7)

y8,−7

y(9,8)

y9,−8

y1,1

y1,−1

y1,1

y1,−1

y1,1

y1,−1

y1,1

y1,−1

y1,1

y1,−1

y1,1

y1,−1

y1,1

y1,−1

y1,1

y1,−1

y1,1

y1,−1

y2,2

y2,−2

y2,2

y2,−2

y2,2

y2,−2

y2,2

y2,−2

y2,2

y2,−2

y2,2

y2,−2

y2,2

y2,−2

y2,2

y2,−2

y2,2

y2,−2

y3,3

y3,−3

y3,3

y3,−3

y3,3

y3,−3

y3,3

y3,−3

y3,3

y3,−3

y3,3

y3,−3

y3,3

y3,−3

y3,3

y3,−3

y3,3

y3,−3

y4,4

y4,−4

y4,4

y4,−4

y4,4

y4,−4

y4,4

y4,−4

y4,4

y4,−4

y4,4

y4,−4

y4,4

y4,−4

y4,4

y4,−4

y4,4

y4,−4

y5,5

y5,−5

y5,5

y5,−5

y5,5

y5,−5

y5,5

y5,−5

y5,5

y5,−5

y5,5

y5,−5

y5,5

y5,−5

y5,5

y5,−5

y5,5

y5,−5

y6,6

y6,−6

y6,6

y6,−6

y6,6

y6,−6

y6,6

y6,−6

y6,6

y6,−6

y6,6

y6,−6

y6,6

y6,−6

y6,6

y6,−6

y6,6

y6,−6

y7,7

y7,−7

y7,7

y7,−7

y7,7

y7,−7

y7,7

y7,−7

y7,7

y7,−7

y7,7

y7,−7

y7,7

y7,−7

y7,7

y7,−7

y7,7

y7,−7

y8,8

y8,−8

y8,8

y8,−8

y8,8

y8,−8

y8,8

y8,−8

y8,8

y8,−8

y8,8

y8,−8

y8,8

y8,−8

y8,8

y8,−8

y8,8

y8,−8

y9,9

y9,−9

y9,9

y9,−9

y9,9

y9,−9

y9,9

y9,−9

y9,9

y9,−9

y9,9

y9,−9

y9,9

y9,−9

y9,9

y9,−9

y9,9

y9,−9

= y(0,0)

Figure 3.11: A configuration containing a cone of x (the u-Teal/v-Red checkerboard pat-
tern) and a cone of y (the purple dashed cells). The path u0, u1, . . . , u4 between u and
y(0,0) in G is represented with other colours.

Definition 3.62: Pivot

Let X be a subshift. A pivot from x ∈ X is a configuration y differing
from x in at most a single point.

Lemma 3.63 [Cha18]

Let G be a graph, and let u, v ∈ V (G) be vertices such that N(u) ⊆ N(v).
Then, for x ∈ XG, replacing any occurrence of u in x by v produces a pivot
y in XG.

This property will be important to understand how we can deform paths in Hom-shifts:

3.4. HOM-SHIFTS 121

Proposition 3.64: Projective Fundamental Group - trees

Let T be a finite tree. Then XT has exactly two projective path components, each
of those having a trivial projective fundamental group.

Proof. The strategy used here is the same as the one of [GP95, Sections 5 and 6], in the
specific case of 3-colourings and their universal covering, the infinite line graph. Indeed,
those ideas are easily generalized to the case of any Hom-shift XT when T is a tree.

Let r be an arbitrary vertex of T , which we call the root of T . Write dT : T 2 → N the
distance in T , and prevT : T → T the map associating with each vertex its father in the
rooted tree (T, r), with prevT (r) being an arbitrary neighbour of r, say r′ ∈ T . Let X(T,r)

the set of configurations of the Hom-shift XT whose value at the origin is a vertex at an
even distance of r in T , i.e. X(T,r) = {x ∈ XT | dT (r, x(0,0)) is even}. By Proposition 3.61,
X(T,r) is one of the two projective path components of X, the other one being X(T,r′).
Let x̄ ∈ X(T,r) be the configuration containing only r and r′ with r at the origin. We
show that X(T,r) has a trivial fundamental group. To do this, it suffices to show that for
any projective loop class (pn)n>0 where Bn is a loop in SBn based at (x̄|Bn

,0), the path
pn is homotopic to the trivial path. Fix then some projective loop-class ([pn])n>0, and
n > 0. By Lemma 3.38, we can assume that pn is N -straight, for some N >> n and
N >> diam(T) where diam(T) = maxu,v∈V (T)(dT (u, v)). For a rectangle R ⊂ Z2, we
define a map ϕR : LR(X(T,r))→ X(T,r) as follows:

ϕR(x)i,j =




x(i,j) if (i, j) ∈ R
prevk(xv∗) otherwise, with k = d((i, j), R), v∗ = argmin

v∈R
d((i, j), v)

where d is the distance induced by the norm ∥∥∞ in Z2. We write ϕn for ϕBn , and we
extend ϕR to X(T,r) by defining ϕR(x) = ϕR(x|R) for x ∈ X(T,r).

Claim 22. ϕR is well-defined.

Proof. As R is a rectangle, for any u ∈ Z2, there exists a single v ∈ R minimizing d(u, v).
In particular, ϕR(x) is indeed a map. We now need to check that if P ∈ LR(X(T,r)), then
ϕR(P) ∈ X(T,r). This holds if and only if for any u,v ∈ Z2 such that ∥u− v∥∞ = 1
then (xu, xv) ∈ E(G). Let then u,v be neighbouring cells in Z2, u∗,v∗ be the respective
projections in R, and du = d(u,u∗), dv = d(v,v∗) be the respective distances. We are
then in one of the following cases:

• If u∗ = v∗, then du = dv ± 1. Without loss of generality, we then have ϕR(u) =
prevdu(Pu∗) = prevdv+1(Pu∗) = prev(ϕR(v)).

• Otherwise, then u∗ − v∗ = u− v and du = dv, so prevdu(Pu∗) and prevdv(Pv∗) are
also neighbours in G.

■

The idea of the proof is illustrated in Figure 3.12. Let us call “segment” of the path pn
a part of the path where the trajectory is comprised between two consecutive points of the
(NZ)2 sublattice. As XG is a Hom-shift, the concatenation of the patterns seen along a
horizontal (resp. vertical) segment is a globally admissible rectangular pattern of support
a rectangle (N+2n+1)×(2n+1) (resp. (2n+1)×(N+2n+1)). We now show how to use
ϕR to deform each segment independently to a path which can almost be traced in x̄. Fix
a segment s of pn, with starting point ss = (Ps, (0, 0)) and ending point se = (Pe, (N, 0))

122 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

without loss of generality, and let P be the corresponding pattern of support R as defined
above. Let y0 = ϕR(P), and let S = dom(Ps)∪ dom(Pe) be the support of the two ending
points of this segment.

Claim 23. s is homotopic to a segment s′ covering a pattern P ′ of support R, such that
for all u ∈ R, if d(u, S) > diam(T), then P ′(u) ∈ {r, r′}.

The proof of this claim is illustrated in Figure 3.12.

Proof. For any leaf u in T , we have N(u) = {prev(u)} ⊆ N(prev2(u)). Denote T̊ the tree
obtained by removing the leaves of T , except r and r′. We can then apply Lemma 3.63,
and replace any occurrence of any leaf of T in ϕR(P) outside of S to obtain a configuration
y0 ∈ XT . Now, y0|Z2\S ⊑ XT0 . Repeating this operation, we can define for any 1 ≤ k <
maxu∈V (T)(dT (r, u)) a tree Tk and a configuration yk such that:

• Tk = T̊k−1, in particular XTk ⊂ XT .

• yk ∈ XT .

• yk|S = P |S
• yk|Z2\(Bn+k∪((N,0)+Bn+k))

⊑ XTk , that is, outside of a “thickened ball” around S, the
support of the endpoints of s, yk contains only vertices of T that are “close” to the
root r.

Moreover, by definition of ϕR, for any u in (J−n, nK ∪ JN − n,N + nK) × Z2, yk(u)
depends only on yk|S = P |S . In particular, the path traced in yk with the following
trajectory is homotopic to s1, as it can also be traced in ϕR(P):

• Starting from (0, 0), move down to (0,−N).

• Then move right to (N,−N).

• Then move up to (N, 0).

Therefore, the path traced in ymaxu∈T (dT (r, u)) with the same trajectory as s1 from Bn
to (N, 0) + Bn satisfies the claim.

■

Consider now the two first segments s1 and s2. The goal will be to deform s1 ∗ s2 into
a path which also verifies Claim 23, in the sense that it is a chessboard on r, r′ sufficiently
far from the ending point of s2:

Claim 24. The path s1 ∗ s2 is homotopic to a path s′1 ∗ s′2, where s1 and s′1 (resp. s2 and
s′2) have the same trajectory, such that s′1 can b traced in x̄.

This is enough to prove that pn is contractible: we can indeed inductively repeat the
argument on s′2 and s3 and so on, and finally get a path traced entirely in x̄.

Sketch of the proof of Claim 24. The figure to keep in mind is Figure 3.13. There are in
fact three cases to consider, or two up to symmetry, depending on whether s2 ends at
the point (N,N) or (2N, 0), the former being the harder case depicted in Figure 3.13:
otherwise, we can just apply Claim 23 to the path s1 ∗ s2.

The key observation is that as T is a tree, the sequence of vertices encountered between
the “chessboard part” of sn and the “chessboard part” of sn+1 is itself a contractible path
in the tree T , that is, it is essentially a backtracking walk in T – in Figure 3.13, this is the
sequence (r, v0, v1, v2, v1, v2, v1, v0, r). This implies that s1 ∗ s2 can in fact be traced in a
single configuration, which contains only r and r′ except at a bounded distance from the

3.4. HOM-SHIFTS 123

a
root

b c

d e

f

g

(a) An example of a tree T , rooted in a. We define prev(a) = b.

a

b a

b a

c a

cf

d c

d

S

(b) An original segment in some path of X(T,a), covering a pattern P of support some
rectangle R.

a

b a

b a

c a

cf

d c

d

ab b ad c

c aa b a b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

ba

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

(c) Part of ϕR(P), and a path taking another trajectory in this configuration.

a

b a

b a

c a

c

d c

dfc

d c

dc

(d) The deformed segment, where f does not appear anymore.

1

Figure 3.12: Example of a pivot used to remove occurrences of a leaf of some tree T in a
path of XT .

ending points of s1 and s2. In particular, in this configuration, the path whose trajectory
starts from (0, 0) and goes straight up to (0, N) can be traced in x̄. Repeating this process,
we can deform this path back so that it has the same trajectory as the original s1 ∗ s2. ■

We can even extend this to infinite trees. Note that the definitions of the fundamental
group (Definition 3.26), projective connectedness (Definition 3.39) or of Hom-shifts (Defi-

124 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

r′

r

r

r′

r′

r

r

r′

r′

r

r

r′

r′

r

r

r′

r′

r

r

r′

r

r′

r′

r

r′

r

r′

r

r′

r

r′

r

r′

r

r′

r

r′

r

r

r′

r

r′

r

r′

r

r′

r

r′

r

r′

r′

r

r

r′

r′

r

r

r′

r′

r

r

r′

r′

r

v0 v1 v2 v1

v2

v1

v0

v1v0

v0

r

r′

r

r′

r

r′

u0

u0

u0

u0

u0

u1

u1

u1

sn

sn+1

S

Initial trajectoryDeformed trajectory

Only r, r′ vertices

Figure 3.13: Deformation of a path sn ∗sn+1 into one which uses only two symbols, except
in a bounded neighbourhood around its endpoints.

nition 3.60) also make sense for infinite graphs G, and for the associated Hom-shifts XG.
We can then prove the following:

Proposition 3.65

Let T be an infinite tree. Then XT has exactly two projective path com-
ponents, each of those having a trivial projective fundamental group.

Proof. The proof of the fact that XT has two projective path components is the same
as in Proposition 3.64. For triviality of the projective fundamental group, it suffices to
notice the following: for a projective loop class ([pn])n>0, any specific path pn is finite.
In particular, it is a valid path in XT ′ for some finite subtree T ′ ⊑ T . We can now
apply Proposition 3.64 and deduce that [pn] is trivial in XT ′ , and therefore in XT itself.

Universal graph coverings

The main tool to study Hom-shifts for graphs other than trees is the universal covering:
this is a general tool in the study of fundamental groups, as already explained in Sec-
tion 3.2.1, but in the specific case of Hom-shifts, those coverings take a specific form. For
the general, abstract point-of-view linking the more combinatorial notions explored here
to the classical definitions of algebraic topology, we refer to [Sta83]. The point-of-view
adopted here is the same as the one of [HGO22].

For simplicity, we will restrict ourselves to a specific subclass of graphs, and therefore
of Hom-shifts. This restriction is the same as in [Cha16] and [CM18], and the technical
tools required to generalize the main constructions to any graph are developed in [HGO22].
As we do not know how to adapt those additional techniques to our specific problem of

3.4. HOM-SHIFTS 125

computing projective fundamental groups, we stick to the easier case of four-cycle free
graphs:

Definition 3.66: Four-cycle free

Let G be a graph. We say that it is four-cycle free if for any cycle
(v1, v2, v3, v4 = v1), we have v1 = v3 or v2 = v4.

This restriction is not standard from a graph-theoretic point-of-view, and is mainly
useful when looking at homomorphisms from Z2 to a graph; the concrete reason for why
this restriction is needed will be given below, but a more abstract reason for it is still
unclear, in the sense that we do not know what the corresponding condition would be for
Hom-shifts on groups other than Zd. Most of the definitions and lemmas already appear
in [Cha16, 6.Universal Covers].

Definition 3.67: Universal covering [HGO22, Def. 4.1]

Let G = (V,E) be a four-cycle free graph, and fix v ∈ V . The universal
covering of G is the undirected graph UG(v) whose vertices are the non-
backtracking walks in G starting from v, and whose edges are the pairs
(p, q) such that p = qu or q = pu for some u ∈ V (G).
We denote by Φ: UG(v)→ G the map sending each non-backtracking walk
to its last vertex.

We will abuse notation and also write Φ: XUG
→ XG which simply applies Φ: UG → G

pointwise.

We state without proofs a number of easy lemmas:

Lemma 3.68 [HGO22, Lem. 4.4]

For G a connected graph, the graphs UG(v), v ∈ V (G) are all isomorphic.

We then simply denote by UG the universal covering of a graph G. The next lem-
mas Lemma 3.69 and Lemma 3.71 are well-known:

Lemma 3.69

If G is a tree, then UG ≃ T .

Corollary 3.70

If G = (V,E) is a tree with a single self-loop (v, v) ∈ E, then let G1, G2 be
disjoint copies of G, with v1, v2 their respective vertices with a self-loop.
Then UG = (V1 ⊔ V2, E1 ⊔ E2 ⊔ {(v1, v2)})

126 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

Lemma 3.71

If G admits a non-trivial cycle, then UG is infinite.

Proof. Let (v1, v2, . . . , vn) be a simple cycle, i.e. that for all 1 ≤ i, j < n, vi ̸= vj and
v1 = vn. Then the walks (v1, . . . , vn, v1, . . . , vn, . . .)︸ ︷︷ ︸

k times

are all non-backtracking for k ∈ N, so

they are different vertices in UG.

a

b c

C3

a0 b1 c2 a3 b4 c5.

UC3

Figure 3.14: The universal covering of the cyclic graph with 3 vertices C3

The construction of this universal covering is important due to the following property:

Proposition 3.72 [Cha16, Prop. 6.2]

Let G be a four-cycle free graph. For all x ∈ XG, and ṽ ∈ Φ−1(x(0,0)), there
exists a unique configuration x̃ ∈ XUG

such that x̃(0,0) = ṽ and Φ(x̃) = x.

a a

a

a

b

b

b

b

c

c

c

c

∈ XC3

a0 a3

a3

a3

b1

b1

b4
b4

c2
c2
c2

c5

∈ XUC3

Figure 3.15: Lifting a pattern from XC3 to a pattern XUC3
. Note that cells that were

coloured with the same vertex of C3 are not necessarily coloured with the same colour of
UC3 .

Proposition 3.72 is false if we consider graphs that have four-cycles, and we need to
consider a slightly different construction than universal coverings to obtain an equivalent
result.

Fundamental group of graphs

The results and definitions of Section 3.4.1 are motivated by a simple observation: given
a graph G = (V,E), there is a natural way to view it as a topological space. Indeed, one
can consider the usual topology on [0, 1] ⊂ R, and then consider the following space:

• For each edge e = (u, v), consider a distinct space Xe ≃ [0, 1], with endpoints
xe,u, xe,v ∈ Xe.

• Define an equivalence relation ∼G on
⊔
e∈E Xe by xe,u ∼G xe′,u for all e, e′ ∈ E such

that u ∈ e ∩ e′.

• Then, G =
⊔
e∈E Xe/ ∼G, with the quotient topology.

3.4. HOM-SHIFTS 127

For more details on this construction, see [Hat00, 1.A Graphs and Free Groups]. In this
setting, the universal covering of G defined in Definition 3.67 is a covering (in the sense
of Definition 3.18) of G considered as a topological space. In particular, when viewed as
a topological space, one can wonder what the fundamental group of a given graph is. In
fact, this group is very easy to compute, and at least in the case of four-cycle free graphs,
we will see that it is the same as the projective fundamental group of the corresponding
Hom-shift.

Definition 3.73: Spanning Tree

Let G be a graph. A spanning tree of G is a tree included in G which is
maximal for inclusion.

Lemma 3.74

Let G = (V,E) be a graph. Then, any spanning tree of G has exactly |V |
vertices and |V | − 1 edges.

Proposition 3.75 [Hat00, Prop. 1.A.2]

Let G = (V,E) be a graph. Then, π1(G) is a free group on |E| − |V | + 1
generators.

We do not give a proof of Proposition 3.75, which can be formally proven using the
traditional tools from algebraic topology (see [Hat00, Prop. 1.A.2]), but try to give an
interpretation of this result. Fix any spanning tree T of G, and consider the m = |E| −
|V |+1 edges of E \T . Now, consider a cycle p in G, based at some arbitrary vertex v. As
T is a tree, this cycle either uses only edges from T , in which case it is homotopic to the
trivial path as it contains only backtracking subpaths, or uses edges from E \T . As for any
edge e = (s, t) ∈ E \ T , there exists a unique path γe in T (up to homotopy) from v to s,
and another unique path γ′e from t to v. One can then prove that those are non-homotopic
paths, and that any path can be obtained by concatenating paths of the form γ′eeγe or
their inverse. We get that π1(G, v) = ⟨[γ′eeγe], e ∈ E⟩, and in particular π1(G, v) ≃ Fm.

Theorem 3.76

Let G = (V,E) be a non-bipartite four-cycle free graph. Then, XG is
projectively connected and πproj1 (XG) = π1(G) = F|E|−|V |+1.

Proof. The high-level idea is to use Lemma 3.71 and Proposition 3.72 to lift loops in XG to
paths in XUG

, and then Proposition 3.65 and Proposition 3.75 to understand the structure
of those paths, and what they imply on the original loops. Projective connectedness comes
from Proposition 3.61, and we only need to compute the projective fundamental group.

Fix some vertex v ∈ V , and let T = UG be the universal cover of G. By Lemma 3.71,
T is infinite. Let Φ: XT → XG be a covering map. From this point on, T is seen as a tree
rooted in ṽ, with Φ(ṽ) = v.

By Proposition 3.72, each configuration of XG lifts to a configuration of XT . By Propo-

128 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

e

a

b

c

d

e0a0

b0

c0

d0

a1

b1 c1

d1

e1

e2

e3

e4

a2

c2

d2

b2

c3

d3

a3

b3

d4

a4

b4

c4

Figure 3.16: Example of a graph G and a part its universal covering, which is infinite as
G has cycles. The fundamental group of G is F2, obtained from Proposition 3.75, or from
a direct computation using π1(S1) = Z.

sition 3.65, we know that each projective path-class of XT has a trivial fundamental group.
Consider an arbitrary configuration x ∈ XG with x(0,0) = v, and p a projective loop-class
based on x, the components of which are the [pn] for n > 0, with pn a loop in SBn(XG).
Fix n > 0. Then, pn lifts to paths in SBn(XT), and let p̃n be such a path, i.e. Φ(p̃n) = pn.
Note that p̃n is not necessarily a loop. Let y0, y1 ∈ XT be respectively configurations
containing the starting point and the ending point of p̃n, i.e. p̃n(0) = (y0

∣∣
Bn
, (0, 0)). Let

c̃ = restr0,n(pn) be the path from y0(0,0) to y1(0,0) in T obtained by only looking at the
central cell of the pattern seen by pn at each timestep. Now, by definition of Φ, we have
that Φ(y0)

∣∣
Bn

= Φ(y1)
∣∣
Bn

= x|Bn
and so in particular c = Φ(c̃n) is a cycle in G.

We need to prove that this cycle is independent from the choice of y0 and y1 when
considered as an element of the free group π1(G), to obtain a result which is similar
to Proposition 3.21. Consider another lift p̃n′ of pn, with endpoints y0′ and y1′ defined as
above, and let c̃′n be the corresponding path in T . We claim that Φ(c̃n) = Φ(c̃′n). Indeed,
by definition of UG and Φ, for any u ∈ V (G) and w ∈ N(u), and any ũ ∈ Φ−1(u), there
exists a unique vertex w̃ ∈ N(ũ) ∩ Φ−1(w). In particular, c̃n is entirely determined by its
starting point, after which there is a unique lift at each timestep.

Moreover, as restr0,n+1(pn+1) = restr0,n(restrn,n+1(pn+1)) ∼ restr0,n(pn), we have that
c̃n+1 ∼T c̃n, and therefore Φ(c̃n) does not depend on n up to homotopy in G. This induces
an injective morphism between projective loop-classes inXG and π1(G, x(0,0)), sending each
projective path-class to the associated Φ(c̃n) for any n described above; this morphism is
also easily seen to be surjective, by constructing an explicit set of configurations and a
projective path in XT between any two lifts of x in XT , and so πproj1 (XG) ≃ π1(G) ≃
Fm.

This result was already obtained in the specific case of 3-colourings, that is, to the case
of XC3 , in [GP95], but combining the original ideas with the observation of Section 3.4 in
general allow us to extend this to a much larger class of subshifts.

We give another informal way to understand why the projective fundamental group
πproj1 (XG) is isomorphic to π1(G), using the example G of Figure 3.16, with an example
configuration in Figure 3.17. A point x ∈ XG can be seen as a “sea of vertices e in positions
S ⊆ Z2”, where connected components Z2 \ S are “patches” of XC3 , or more concretely,
of XG1 or XG2 where G1 is the three-cycle on vertices a, b, e ∈ V (G), while G2 is the

3.4. HOM-SHIFTS 129

three-cycle on vertices c, d, e ∈ V (G). A path inside this configuration can therefore be
viewed as a list of paths, each staying inside its “XC3 component” of the configuration X.
This representation is illustrated in Figure 3.17.

c/d

a/b

a/b

c/d

ee

e

Figure 3.17: Representation of a configuration of XG. Dashed lines represent e symbols

A similar construction has already been used in Section 2.4.2. More precisely, we can
define an analogous of free products for subshifts:

Notation. For any pair of subshifts X,Y with disjoint alphabets AX ,AY , define the
subshift X ∗ Y as the subshift on A = AX ⊔ AY with forbidden patterns L(X) ⊔ L(Y).

This construction is part of a more general group-subshift analogy, developed in par-
ticular in [Van19, Chapter 4, Section 3.3]

Question 3. Under what conditions do we have πproj1 (X ∗ Y) = πproj1 (X) ∗ πproj1 (Y) ?

3.4.2 Non-contractible Hom-shifts

We say a few words about a possible counter-example to Question 2, in the form of any
Θ(log)-block-gluing Hom-shift (such examples exist, see [HGO22, Theorem 7.1]). By recent
but still unpublished work of Nishant Chandgotia, it has trivial cohomology and therefore
trivial projective fundamental group, using the arguments highlighted in Proposition 3.57,
but it is not contractible as it is not strongly irreducible (as there exists some non-constant
block-gluing examples). As the main argument is not ours and still unpublished, we
formulate this as a conjecture rather than a proposition. We also state and prove lemmas
only on the specific graph depicted in Figure 3.18, but a more general characterizations of
graphs with the same properties exist and can be found in [HGO22, Section 4], with the
important results about those graphs in [HGO22, Section 6].

Conjecture 1. There exists subshifts with a fixed point with trivial projective fundamental
group which are not contractible.

An example of a probable example of such a subshift is the Hom-shift associated to
the graph depicted in

We would need a few additional definitions and lemmas to answer Question 2 by the
negative:

Definition 3.77: Block-gluing [HGO22, Def. 2.17]

Let X be a Z2-subshift, f : N∗ → N and k ∈ N. We say that X is (f, k)-
phased block gluing if for n > 0 and any P, P ′ ∈ Ln(X), for any u ∈ Z2

with ∥u∥∞ ≥ f(n) + n, there exists v ∈ Z2 and x ∈ X such that:

130 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

Figure 3.18: Ken-Katabami graph from [HGO22, Section 7], with an additional self-loop.
We use the name “Ken-Katabami” for the graph without the self-loop.

• ∥v∥∞ < k

• x|Bn
= P

• x|Bn+u+v = P ′.

We say that X is f -block-gluing if it is (f, 1)-phased block gluing.

A (f, k)-block gluing subshift is a subshift in which any n× n square patterns can be
glued together, provided they are at distance at least f(n), with possibly a small “phase
correction” which is an offset of norm at most k.

Theorem 3.78 [HGO22, Thm. 7.1]

The Hom-shift associated with the Ken-Katabami graph is (Θ(log n), 2)-
phased-block gluing.

Using the non-trivial result of Theorem 3.78, we can obtain an interesting result about
projective fundamental groups of Hom-shifts:

Lemma 3.79

Let G be any graph obtained by adding a self-loop to the Ken-Katabami
graph, as depicted in Figure 3.18. Then XG is (Θ(log n), 1)-block gluing.

Proof. We give a sketch of the proof. WriteK for the original Ken-Katabami graph without
the self-loop. Clearly, XG is O(log n)-block gluing, as K is already O(log n)-(phased).
block gluing. We show that if XG is f -block gluing then XK is (O(f), 2)-phased block
gluing, which then proves that XG is Θ(f)-block gluing. It suffices to consider patterns
of rectangular n × 1 rather than full n × n squares to compute the gluing functions of
XG, XK .

3.5. FINITELY PRESENTED GROUPS AND SFTS 131

Suppose XG is f -block gluing for some f : N∗ → N. Without loss of generality, assume
that f only takes even values. For a sufficiently large n, consider two n × 1 “rows” rn, r′n
which can only be glued at distance Θ(log n) in XK – such patterns exist by Theorem 3.78.
We also only consider rows with rn(0, 0), r

′
n(0, 0) in the same bipartite component of K.

As K ⊑ G, those patterns are also globally admissible in XG. As we assumed that XG is
f -block gluing, we can then consider a rectangular pattern P of size f(n) × n, such that
P |J0,n−1×{0}K = rn and P |J0,n−1K×{f(n)−1} = r′n. Let v be the unique vertex of G with a
self-loop, and define ÛG = (V1⊔V2, (E1⊔E2⊔{(v1, v2)})) where (V1, v1) = (V2, v2) = (V, v),
and E1 = E2 = E (this is two copies of K with an extra, single edge between the two). Let
Φ: ÛG → G be the obvious projection map. The notation ÛG is chosen for the following
reason:

Claim 25. For any P ∈ L(XG), and ṽ ∈ ÛG with Φ(ṽ) = P(0,0), there exists a unique
pattern P̃ ∈ XÛG

such that Φ(P̃) = P and P̃(0,0) = ṽ.

Proof. Write ÛG = G1⊔G2 withG1 ≃ G2 ≃ G, and Ψ1 : G→ G1 ⊑ ÛG, Ψ2 : G→ G2 ⊑ ÛG
the two sections of Φ. Suppose without loss of generality that ṽ ∈ G1. Consider the pattern
P̃ defined by:

P̃ : dom(P)→ V (ÛG)

u 7→
{
Ψ1(Pu) if ∥u∥∞ = dG(P(0,0), Pu) mod 2

Ψ2(Pu) otherwise

One can check that it is a valid pattern of XÛG
. ■

AsK contains no self-loops, r̃n = P̃
∣∣∣
J0,n−1K×{0}

on the one hand, and r̃′n = P̃
∣∣∣
J0,n−1K×{f(n)−1}

on the other hand, must be coloured entirely with either G1 or G2. Suppose without loss
of generality that r̃n ∈ GJ0,n−1K×{f(n)−1}

1 . For
parity reasons, we must also have r̃′n ∈ G

J0,n−1K×{f(n)−1}
1 . Fix i ∈ J0, n − 1K. Let

jmin = min{j ∈ J0, f(n) − 1KP̃(i,j) ∈ G2} and jmax = max{j ∈ J0, f(n) − 1KP̃(i,j) ∈ G2}.
Let u ∈ N(v1) ∩ V (G1). Replace all the vertices of {i} × Jjmin, jmaxK in P̃ alternatively
by v1 ∈ V (G1) and u. Because there is a single edge (v1, v2) between the G1, G2 ⊑ ÛG,
one can check that the resulting pattern is valid in XÛG

. This new pattern is mapped by
Φ to a pattern of XK , whose first and last rows are rn, r′n. Hence, XK is (O(f), 2)-phased
block gluing.

Corollary 3.80

Let G be the graph of Figure 3.18. Then XG is projectively connected, has
a fixed point, but is not contractible.

Proof. The addition of the self-loop means that G is no longer bipartite, and there-
fore Proposition 3.61 shows that it is projectively connected. If the self-loop is the edge
(v, v) ∈ E(G), then vZ

2 ∈ XG so XG has a fixed point, and the fact that XG is not
constant-block gluing by Lemma 3.79 shows that it is not strongly irreducible, hence not
contractible.

3.5 Finitely presented groups and SFTs

We are now going to prove our main result: any finitely presented group is the fundamental
projective group of some SFT. This section closely follows the article [PV23].

132 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

Theorem 3.81

Let G = ⟨S | R⟩ be a finitely presented group. Then, there exists an SFT
X such that:

• X is projectively connected.

• πproj1 (X) ≃ G

3.5.1 The construction

The subshift X that we construct will informally consist of oriented wires, drawn on
an empty background, each wire corresponding to a generator s ∈ S of the group G =
⟨S,R⟩. This idea had also been used in [Ein01], in a slightly different context – the author
studied so-called fundamental cocycles, see [Sch98] – which are closely related to projective
fundamental groups, to realize free groups as “groups in which the fundamental cocycles
take their values”. Unfortunately, we need to modify its construction to realize more general
groups, and we prove our results using a more combinatorial and less algebraic approach.

We only authorize the wires to go up, perhaps in some kind of “zigzag” manner, but
never down or horizontally. More precisely, we define the following tiles: first of all, a tile
that we call empty, visually represented by , and we denote by Tempty the singleton
containing this tile. We denote by x□ ∈ X the configuration which only contains empty
tiles, and its patterns are called empty patterns. Then, for each element s ∈ S̄ =
S ∪ {s−1|s ∈ S}, we also consider the set Ts of the 5 following tiles:

If s ̸= s′, then Ts∩Ts′ = ∅. Distinct Ts will be represented by wires of different colours in
the figures. These tiles will, intuitively, be used to represent generators of the group in valid
configurations of X. Finally, we use some other tiles that will play the role of representing
the group relations. We can always assume that R contains the trivial relators ss−1 and
s−1s for all s ∈ S. Now, for each relator r = r1r2 . . . rn ∈ R, we let Tr be the tiles described
by Figure 3.19.

r1

r1

(a) Start

Ri−1 Ri

ri

(b) For 2 ≤ i < n

Rn−1

rn

(c) End

Figure 3.19: The relation tiles.

The wire exiting from the right side of the tile Figure 3.19a does not have the same
colour as the one exiting from the top. The former colour is denoted by r1, to differentiate
it from the actual r1 wires. In the other tiles, Ri = r1r2 . . . ri. Hence, for each relator
r1 . . . rn, we have one tile of type Figure 3.19a and one of type Figure 3.19c, and n− 2 tiles
of type Figure 3.19b. Tiles belonging to some Tr are called relation tiles. Note that if u ∈ R
is such that it is the prefix of two different relators, i.e., there exists v, v′ ∈ S̄∗ such that
uv ∈ R, uv′ ∈ R then the colours u are shared by the tiles used to represent those relators
and so Tuv∩Tuv′ ̸= ∅. X is the subshift generated by the tileset T = Tempty∪

⋃
s∈S̄
Ts∪

⋃
r∈R
Tr

along with the obvious adjacency rules: any wire must be extended, by a wire with the
same orientation given by the arrows – e.g., and are forbidden patterns, but is

3.5. FINITELY PRESENTED GROUPS AND SFTS 133

allowed (assuming the two tiles contain a wire of the same colour). Note that the tiles
defined here are not Wang tiles, although they define a nearest-neighbour SFT.

We now formalize what we really mean by a wire.

Definition 3.82: Wire

A wire is a sequence U = (Tt,vt)t∈I , I ⊆ Z a non-necessarily finite interval,
of pairs of non-empty tiles and Z2 points, such that

• ∥vt+1 − vt∥∞ = 1,

• The tile Tt+1 in position vt+1 extends the wire of tile Tt in position
vt: placing a tile above or below another tile does extend it,
while placing it on its right or left side does not, although they are
valid patterns of X.

• U does not contain two consecutive relation tiles.

Remark. We do not prevent a wire from moving back and forth: it is possible to have
(Tt,vt) = (Tt+2,vt+2).

Definition 3.83: Coherent wire

We say that a wire is coherent if there exists a configuration x ∈ X such
that for any tile (Ti,vi) of the wire, xvi

= Ti.

Remark. Valid configurations of X can contain non-intersecting infinite wires, and pos-
sibly some relation tiles with wires originating from them. Any relation tile belongs to one
horizontal line of k relation tiles, corresponding to a valid relator r1 . . . rk.

One important concept associated to paths on this subshift is the idea that paths can
cross wires. Informally, this is what happens when the window, and in particular, its
center, moves from one side to the other of a given wire in a path.

Definition 3.84: Crossing a wire tile

Let n > 0, and let v,v′ ∈ Z2 be two adjacent points, and P, P ′ two patterns
of respective support v + Bn,v

′ + Bn such that (P,v), (P ′,v′) is a valid
path. For (i, j) ∈ Bn, let T(i,j) be the tile whose bottom-left corner is on
(i, j) in P . We say that this path crosses a wire tile if

• v′ − v = e0 = (1, 0) (resp. −e0) and the tile Tv (resp. Tv−e0) was of
one of the following forms:

• v′−v = e1 = (0, 1) (resp. −e1) at the next step t+1 and the tile Tv
(resp. Tv−e1) was of one of the following form:

134 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

Definition 3.85: Seeing a wire

A path p = (Pi,vi)i≤N sees a wire U if there exists a timestep i ≤ N , and
(Tj ,vj) ∈ U such that the tile in position vj in Pi is Tj .

Definition 3.86: Crossing a wire

A path crosses a wire if it crosses one of its tiles.

3.5.2 Only Crossed Wires Matter

Our final goal is to prove that the projective fundamental group of this subshift X is the
group G = ⟨S|R⟩. To do so, the idea will be to associate an element of the group to
each path, according to the wires that it crosses. The following lemmas can be seen as
a procedure to put paths in some kind of normal form via homotopies, depending only
the sequence of crossed wires, regardless of the underlying geometry of the path. All the
lemmas consider paths that both start and end in empty patterns, but this is not really a
restriction as we will later prove that the subshift X is projectively connected, and so we
will only consider loops based at x□. Unless stated otherwise, all the considered paths are
using some Bn as aperture window. We start with some easy statements about patterns
of support Bn, and the wires they may contain.

Lemma 3.87: Wire Order Lemma

Let x ∈ X, and let U ,V be two infinite wires in x. Suppose that U ,V do
not contain relation tiles.

• For all z ∈ Z, there exists between one and two z0U ∈ Z such that U
passes through the position (z0U , z). If there are two such z0U , then
they are necessarily adjacent, e.g., side-by-side.

• Let z ∈ Z, and z0U , z
0
V ∈ Z as in the previous point respectively for

U and V. If z0U < z0V , then for all zU , zV , z ∈ Z such that (zU , z) ∈
U , (zV , z) ∈ V, we have zU < zV . Intuitively, this means that wires
can globally be ordered from left to right.

If U or V contains a relation tile, then the previous claims are true only for
z large enough.

Remark. Note that the previous lemma is true because we consider wires U ,V belonging
to some configuration. It is clearly false for arbitrary wires.

Lemma 3.88

Let P be a globally admissible pattern of support Bn for some n > 0. Let
U be a wire in P without relation tiles. Suppose that U passes to the right
(resp. left) of (0, 0) in P . Then, U neither enters nor exits P on its left
(resp. right) edge.

3.5. FINITELY PRESENTED GROUPS AND SFTS 135

Proof. This directly follows from the fact that no tile contains a horizontal wire, and that
Bn is a square.

Corollary 3.89

If P is a globally admissible pattern that sees a wire U with no relation
tiles, and x ∈ X is such that x|Bn

= P , then σ4n(0,1)(x)|Bn
and σ−4n

(0,1)(x)|Bn

do not see U .

In order to show that the homotopy class of a path p is indeed only determined by the
wires it crosses, we will need several lemmas in which the proof will always be similar: an
induction on the length L of a coherent decomposition (Definition 3.32) of p:

• for L = 1 (i.e. p is coherent), we explicitly show how to deform p to obtain the
required property.

• for L = 2 we use the Corollary 3.94 to “normalize” both coherent subpaths of p using
the base case L = 1.

• In general, if p = p1∗. . .∗pN , we can deform both p1 and p2 so that p ∼ p′1∗p′2∗. . .∗pN ,
in such a way that we can apply the base case to p′1, and the induction case to
p′2 ∗ . . . ∗ pN .

The key step is therefore to properly show how to deal with the case L = 2; this is the
purpose of the Corollary 3.94 that we now show, after some preliminary results.

Lemma 3.90: Finite Extension Lemma

Let P be an extensible finite pattern of X, there exists x ∈ X containing
P , such that x contains a finite number of wires.

The next lemma is especially important: it will be useful to prove projective connected-
ness of the subshift X, and to understand how we can deform paths that are not coherent,
which is necessary to prove most of the lemmas in Section 3.5.3.

Lemma 3.91: Extensibility Lemma

Let n > 0, u = (0,±1) and v = −u. There exists o ∈ Z2 such that for any
y ∈ X, there exists z ∈ X with:

• z|C(1
2
,u)+o = y|C(1

2
,u)+o

• z|C(1
2
,v) = x□|C(1

2
,v)

Proof. We prove the case u = (0, 1), the case u = (0,−1) being similar. The picture to
keep in mind in this proof is Figure 3.20.

Let r be the length of the longest relator in the finite presentation of G = ⟨S,R⟩, and
let o = (0, r). Let W ⊂ Z2 be the set of positions of tiles that are part of a wire of y that:

• either passes by C(12 ,v)

136 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

• or originates from a relation tile which is itself part of a relator intersecting C(12 ,v).

Let C̄ = C(12 ,v) + (J−r, rK × {0}). This is a “thickened” version of the cone C(12 ,v).
As in Definition 2.13, we denote ∂C̄ the points of C̄ adjacent to Z2 \ C̄.

Now, construct z as follows:

• for (i, j) ∈ C̄ ∩W , set z(i,j) = y(i,j). The other tiles of C̄ are empty.

• for (i, j) ∈ (∂C̄) ∩W if i < 0, or and if i ≥ 0.

• all the other tiles are empty.

Then, z is a valid configuration of X and:

• By definition of W , z, y coincide on C(12 ,v).

• ∂C̄ contains no relation tile, by definition of W and r.

• C(12 ,u) + o is empty, see for example Figure 3.20 or Figure 3.22 for an illustration.

r

C(1
2
,v)

x□

r

C(1
2
,v)

C(1
2
,u) + o

Figure 3.20: Construction of z (on the right) from y (on the left).

As an immediate corollary, we get:

Corollary 3.92

X is cone-connected.

More importantly, we obtain the following:

Lemma 3.93: Projective connectedness

X is projectively connected.

Proof. This is an immediate consequence of Proposition 3.49 and Corollary 3.92.

We can say something a bit more precise on paths and their homotopy classes:

3.5. FINITELY PRESENTED GROUPS AND SFTS 137

Corollary 3.94: Path Co-extensibility Lemma

Let p = ((Pt,ut))t≤Np and q = ((Qt,vt))t≤Nq be two paths with the same
aperture window Bn, satisfying:

• Both p and q are coherent paths

• (PNp ,uNp) = (Q0,v0) (equivalently, p ∗ q is well-defined)

• u10 = v1Nq
(i.e. q ends at the same height as p starts)

Then, there exists p′, q′, r paths such that:

• r ends on an empty pattern

• p′ ∗ r and r−1 ∗ q′ are well-defined and are both coherent paths.

• p ∼ p′ and q ∼ q′

Proof. We may assume that u10 ≤ u1Np
, i.e. the ending point of p is higher than its starting

point, the other case being similar. We can also assume that u1Np
is the highest point

in the entire trajectory of both p and q (we can always homotopically deform p and q
so that this is true), and up to some shift, we can assume that uNp = (0, 0). Consider
now P ⊂ Z2 so that P contains all the Pt and Qt. Let xp, xq be configurations in which
p, q can respectively be traced. Take N large enough so that P ⊂ C(12 , (0,−1)) + (0, N).
Then, applying the Lemma 3.91 to xp on one hand, xq on the other hand, we obtain two
configurations zp, zq ∈ X. With o as in Lemma 3.91, let r be the path obtained by moving
up to (0, 2N + 1) + o in either zp or zq, starting from the origin, which is the same path
in both cases. Then r satisfies the conditions of Corollary 3.94.

3.5.3 A normal form for paths

We are now ready to prove the main lemmas needed to show Theorem 3.81.

Lemma 3.95: No Relation Tile

Let p be a path starting and ending on an empty pattern. Then there
exists p′ ∼ p that does not contain any relation tile.

Proof. As explained above, the proof is by induction on the length of a coherent path
decomposition of p. Figure 3.21 is an illustration of the base case, when p is a coherent
path.

Let L be the minimal length of a path decomposition of p.

Base case: L = 1 p can be traced entirely in a configuration x ∈ X.
We can assume that x contains a finite number of wires. p being finite, such a configu-

ration exists by the Lemma 3.90. Let (PN ,vN) be the final point of p. Up to a translation
of both p and x we can always assume that p starts at (0, 0), and without loss of gener-
ality, suppose that vN is on the right, i.e., it has a non-negative x-coordinate. This is a
legitimate assumption, up to considering the path p−1 instead of p, which also starts and
ends with empty patterns. Deform p into a path p′ in x, whose trajectory only consists
of moving right, and then up or down, depending on whether vN is above or below (0, 0).

138 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

p p′

Deformation of p into an L-shaped
path p′.

p′′

p′

Deformation of p′ into p′′ to pass
above relation tiles.

Figure 3.21: A coherent path deformed so as not to see relation tiles

Let imin (resp. imax) be the leftmost (resp. rightmost) position of a relation tile in x, the
topmost one. We can deform p′ as follows:

• Move left until the position imin − 2n (or don’t move if imin − n ≥ 0).

• Move up until the position j + 2n

• Move right until imax + 2n

• Finally, move to vN, by moving vertically first and then horizontally.

Let p′′ be the resulting path. Then, p′′ does not see any relation tile. Figure 3.21 shows
this process in a simple case, with the first and third steps being trivial, and how deforming
p into p′ simplifies the analysis by bounding the positions of the possible relation tiles seen
by p′, that p′′ can then avoid.

Base case: L = 2 p = p1 ∗ p2
Let (Pt,vt) be the endpoint of p1 and the starting point of p2, with vt = (v0t , v

1
t).

Suppose that v0t ≥ 0, v1t ≥ 0. Let vN be the Z2 point at which p ends – by assumption, the
associated pattern PN is only made of empty tiles. Let x1, x2 ∈ X be two configurations
such that p1, p2 can respectively be traced entirely within them, and containing a finite
number of wires using the Lemma 3.90.

In order to be able to use the previous case L = 1, we modify the path as follows:
consider the path q, traced in x2, that:

• starts from (Pt,vt)

• follows the inverse trajectory to p1

• upon reaching (0, 0), continues horizontally until it sees an empty pattern (which
always eventually happens, as x2 contains a finite number of wires)

Let p′1 = p1 ∗ q be and let p′2 = q−1 ∗ p2, so that p = p′1 ∗ p′2. By construction, p′2 can
be traced entirely within x2, and so can be appropriately deformed according to the case
L = 1.

Like p, p′1 has a decomposition of length 2, but we can further simplify it. Indeed,
using the Corollary 3.94, we obtain a loop r = r1 ∗ r−1

1 , based at (Pt,vt), such that r1

3.5. FINITELY PRESENTED GROUPS AND SFTS 139

ends in an empty pattern and each of p1 ∗ r1 and r−1
1 ∗ q−1 can be traced within a single

configuration. This is enough to prove the case L = 2, using three times the case L = 1.
The construction is shown in Figure 3.22.
Finally, we have that

p ∼Bn p1 ∗ r1︸ ︷︷ ︸
coherent

∗ r−1
1 ∗ q︸ ︷︷ ︸

coherent

∗ q−1 ∗ p2︸ ︷︷ ︸
traced in x2

x1
x2vt

v0

vN

p1

p2

q

q−1

After inserting q and q−1 into p = p1∗p2

(Pt,vt)

v0

r1

p1

The x′1 configuration.

Figure 3.22: Red paths are traced in x1, purple ones in x2. Wires are drawn in black.

General case: L > 2 p = p1 ∗ . . . ∗ pL.
Consider the timestep t at which p1 ends and p2 starts. By definition of a coherent

decomposition, there exists x2 ∈ X such that p2 can be entirely traced within x2. Using
the Lemma 3.90, we can suppose that x2 contains finitely many wires. Consider a loop
r = r1 ∗ r−1

1 that moves to an empty pattern in x2 by moving left (this is always possible
according to Lemma 3.88) and then comes back. We have

p = p1 ∗ p2 . . . ∗ pL = p1 ∗ r1︸ ︷︷ ︸
p′1

∗ r−1
1 ∗ p2 . . . ∗ pL︸ ︷︷ ︸

p′

p′1 and p′ are then respectively paths of length 2 and L− 1, and so using the induction
hypothesis, they can be deformed so at to avoid any relation tile.

Lemma 3.96: Single Wire

Let p = (Pi,vi)0≤i≤N be a path starting and ending with empty patterns.
There exists a path p′, homotopic to p, such that the union of any two
consecutive patterns in p′ contains at most a single wire.

Proof. The result is also proved by induction on the length L of a path decomposition of
p. As for the Lemma 3.95, we illustrate in Figure 3.23 the case where p is itself coherent.

140 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

Initial path p

p′

Uk U0
2n

4n

Figure 3.23: Deformation of p into p′ in a single configuration to see only one wire per
pattern.

Base case: L = 1 p can be traced entirely in a configuration x ∈ X. Using the
Lemma 3.95, we may assume that p does not see any relation tile. Without loss of general-
ity, we may assume that x does not contain any wire that is not seen by p and that p starts
at (0, 0) and ends at vN = (v0N , v

1
N), with v0N ≥ 0, v1N ≥ 0. For simplicity, we assume that

the trajectory is made out of two straight segments, so that p first moves horizontally from
(0, 0) to (v0N , 0) and then vertically to vN. Let U0, . . . ,Uk be the wires seen from right to
left by p (so p sees Uk first, then Uk−1 and so on until U0).

Now consider a configuration x′ satisfying (see Figure 3.23):

• x′ does not contain any other wire than the Ui’s

• for 0 ≤ i ≤ k, let (zi,−n) be the position of the only tile of Ui whose second coordinate
is −n, and whose wire enters it from its bottom edge. Then, for −n−4ik ≤ z ≤ −n,
we define x′(zi, z) to be a tile of the form , and all the tiles of Ui below that are of
the form and . This uniquely determines all the Ui’s below p.

For z ∈ Z, no pattern of support Bn centered at (z,−4n(k+1)) can see tiles belonging
to two different wires at the same time in x′. Therefore, we can deform p in x′ into p′,
where p′ starts by moving down for 4n(k+1) steps, then right until crossing U0, and finally
up and either right or left as needed to reach vN. Any two consecutive patterns on this
path see at most one wire.

Base case: L = 2 The proof works in exactly the same way as in the proof of the
Lemma 3.95.

General case: L > 2 p = p1 ∗ . . . ∗ pL.
As before, consider the timestep t at which p1 ends and p2 starts. As p2 is coherent,

there exists x2 ∈ X such that p2 can be entirely traced within x2, and we can assume that
x2 contains finitely many wires. Let r1 be any path that reaches to an empty pattern in
x2 by moving horizontally left (this always eventually happens, according to Lemma 3.88).
We have

p = p1 ∗ p2 . . . ∗ pL = p1 ∗ r1︸ ︷︷ ︸
p′1

∗ r−1
1 ∗ p2 . . . ∗ pL︸ ︷︷ ︸

p′

p′1 and p′ are respectively paths of length 2 and L − 1, and the induction hypothesis
ensures that they can be homotopically deformed so at not to see U . The resulting path
then only sees one wire at a time.

3.5. FINITELY PRESENTED GROUPS AND SFTS 141

Lemma 3.97: No Uncrossed Wire

Let p be a path starting and ending with empty patterns, and U some wire
seen but not crossed by p. There exists a path p′, homotopic to p, which
does not see U .

Proof. The idea is that using the previous Lemma 3.96, we can deal with each wire inde-
pendently. In particular, the uncrossed wire U is the only wire seen by some subpath p′ of
p, and is not seen by p neither before nor after p′. Hence, it suffices to show the result for
paths seeing a single wire overall. In that case, one observes that U has to stay in the same
“side” of the aperture window along p′, that can therefore be deformed without crossing U
by moving sufficiently far in the opposite direction.

We proceed by induction on the length L of a coherent decomposition of the path, and
we assume that U is on the right side of the patterns. Using the Lemma 3.96, we can
assume that all the patterns of p contain at most a single wire.

Base case: L = 1 p can be traced entirely in a configuration x ∈ X.
In that case, we can simply deform p in x by changing its trajectory so that it always

stays more than n units left from U . This path can then be traced in the configuration x′,
equal to x except for the tiles of U in x that are empty tiles in x′.

Base case: L = 2 p = p1 ∗ p2
Let (Pt,vt) be the final point of p1 and the first one of p2. We also assume that the

second coordinate of vt = (v0t , v
1
t) is non-negative. Let vN = (v0N , v

1
N) be the final point

of the path.
Let x1 ∈ X (resp. x2) be a configuration, containing a minimal number of wires (which

exists according to the Lemma 3.90), such that p1 (resp. p2) can entirely be traced within
it. Let U be the uncrossed wire. We can always assume that U appears in Pt, otherwise,
we could consider p1 and p2 separately and apply twice the case L = 1.

We deform p1 into p′1 inside x1:

• Starting from (0, 0), it first moves to the right, until U appears on the central tile of
the pattern seen by p1.

• It then moves up, left or right, following U : up if the central tile is , left then up if
it is , and so on.

• Finally, once it attains the height v1t , it moves left until vt if needed, which takes at
most n steps.

We can also deform p2 into another path p′2 as follows:

• Starting from vt, move left for max(2n, (v0t − v0N)) steps. This ensures that we are
far enough so as to not see U anymore.

• Then, move vertically to height v1N .

• Finally, move right until vN.

Let w1 be the last point of p′1 before seeing U , and w2 the first point of p′2 after having
seen U for the last time. The Lemma 3.96 ensures that the patterns seen at both w1 and
w2 are empty. This gives a decomposition

p ∼ p′1 ∗ p′2 ∼ pstart ∗ pU ∗ pend

142 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

where pstart ends at w1, pU is the part of the path between w1 and w2, and pend starts at
w2.

pU can be traced entirely in a configuration x3 whose only wire is U . In this configu-
ration, it can be homotopically deformed to p′U which never sees U according to the case
n = 1.

The final path p′ = pstart ∗ p′U ∗ pend does not see U .

General case: L > 2 p = p1 ∗ . . . ∗ pL
In that case, the proof is exactly the same as in the Lemma 3.95 and the Lemma 3.96:

we insert a loop before p2 starts that extends it, and from a decomposition of length
L we obtain two decompositions of length respectively 2 and L − 1, which are solved
inductively.

Lemma 3.98: Cross Anywhere

Let p be a path starting and ending with empty patterns. If p sees no
relation tiles, but sees and crosses a single wire U exactly once, then for all
v = (v0, v1) ∈ Z2, p is homotopic to a path p′ which crosses U exactly on
v.

Proof. The idea is that if U exits the aperture window Bn of p in position (i, j) ∈ Z2, it can
be extended using tiles and , or and , to pass anywhere inside (i, j) +C(12 , (0, 1))
or (i, j) + C(12 , (0,−1)) (see Lemma 3.91 for an explanation of where those cones come
from). The path p can then be deformed to cross it anywhere in those two cones. Using
several such deformations, we can deform p so that it crosses U anywhere in the plane.
Note that even if p is initially coherent, it might happen that p′ is not, depending on v
and where p initially crossed U .

Let p = (Pi,vi)0≤i≤N be such a path, and let t be the timestep at which p crosses U .
Without loss of generality, we can then assume that the wire is crossed from left to right,
i.e. U is on the right side of Pt−1 and on the left side of Pt.

Let x be any configuration containing Pt−1 ∪Pt. We can suppose that vt = e0 +vt−1,
by deforming p in x if needed, and that vt−1 = (0, 0). Let r1 be the path starting from
(Pt−1, (0, 0)) which moves left for 4n + 2|v0| steps in x, and let r = r1 ∗ r−1

1 . Let q1 be
the path starting from (Pt, (1, 0)) which moves right for 4n + 2|v0| steps in x, and let
q = q1 ∗ q−1

1 .
We can deform p in x by inserting the loops r and q respectively at the timesteps t− 1

and t. Using the the Lemma 3.97 twice, this path can itself be deformed into pstart∗p′∗pend
with p′ = r−1

1 ∗ (Pt, (0, 0)) ∗ q1, and pstart, pend paths that only see empty patterns. The
trajectory of p′ is a straight horizontal line on the x−axis of length 8n+ 2|v0|+ 1.

Let x′ be the configuration obtained by extending U as seen by p′ using only tiles of the
form . Without loss of generality, suppose that v1 ≤ 0. We can deform p′ in x′ so that
it moves up for 8n+2|v0| steps, then right for 8n+2|v0|+1 as before and finally down to
the endpoint of p′. Call p′′ the horizontal part of this path. There exists a configuration
x′′ in which U passes by v and in which p′ can be traced. Then, p′′ can be deformed in x′′

to cross U on v. This finally gives the result.

3.5.4 Computing the projective fundamental group

We can now compute πproj1 (X), which is independent of the basepoint since X is pro-
jectively connected. Hence, unless stated otherwise, all the loops in this proof are based

3.5. FINITELY PRESENTED GROUPS AND SFTS 143

at (x□, (0, 0)). With any such loop p, we associate a word JpK on the alphabet S̄ in the
following way, illustrated in Figure 3.24:

• If p does not cross any wire, we associate the empty word with it, JpK = ε.

• If p crosses a single wire U , then:

– If U is not a horizontal wire found on a relation tile, and s ∈ S̄ is the generator
corresponding to U (see Section 3.5.1)

∗ if p crosses it from left to right, or from top to bottom on a tile shaped as
, or from bottom to top on a tile , then JpK = s ∈ S̄.

∗ if p crosses it in any other direction, we set JpK = s−1 ∈ S̄
– Otherwise, U is a horizontal wire on a relation tile. Let Ri = r0 . . . ri be its

colour.

∗ If it is crossed from top to bottom, then JpK = r−1
i . . . r−1

0 ∈ S̄∗

∗ Otherwise, JpK = Ri = r0 . . . ri

• If p = p1 ∗ p2, then JpK = Jp1K · Jp2K ∈ S̄∗ where · represents the concatenation in S̄∗.

a b c

The word associated with this loop
is bb−1a−1abcc−1b−1 =G 1G.

a ab

(1)
(2)

(3)

(4)

Relation tiles
Widget for the relator abc = 1G. From
top to bottom, the words associated
with the paths (1) to (4) are respectively
abc = 1G, aa

−1(ab)c = 1G, (ab)c = 1G and
1G. For clarity, the relation tiles are not
adjacent on the figure.

Figure 3.24: Examples of words associated to coherent paths.

As in Section 1.3.1, for any two words w,w′ on S̄, we write w ≡ w′ if they are equal as
words on this alphabet, and w =G w′ if they represent the same element of the group G.

In order to prove that the projective fundamental group of this subshift is G, we will
prove that the operation JpK entirely characterizes a loop up to homotopy, in the sense
that loops associated with the same element of G are exactly a projective loop-class:

Lemma 3.99: Homotopic Implies Equal

For n > 0 and any two loops pn, p′n starting at
(
x□|Bn

, (0, 0)
)
,

pn ∼Bn p
′
n =⇒ JpnK =G

q
p′n

y

144 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

Proof. As any two homotopic loops can be obtained from one another by a sequence of
elementary deformations, we can restrict ourselves to the special case of a single deforma-
tion that is a loop based at (Pt,vt). By definition, this deformation is made in a single
configuration x ∈ X. We consider two disjoint cases, according to the presence of relation
tiles in x.

• Suppose that x does not contain any relation tile. Any bi-infinite wire splits the space
in two disjoint regions (a “left” one and a “right” one). Each time a loop crosses such
a wire, it has to cross it in the other direction to come back to its initial region.
Because wires do not intersect, the associated word will be some kind of Dyck word,
where each s ∈ S̄ can act as an opening or a closing bracket (in which case, the
associated closing (resp. opening) bracket is s−1), so it is clearly equal to 1G in G.
This is the simple case depicted in Figure 3.24.

• Now, suppose that x does contain some relation tiles. In this case, notice that any
two relation tiles are either part of the same relator and are therefore linked by a
finite sequence of horizontal relation tiles, or they are independent (not linked by
any wire).

Hence, we can consider each one of those patterns separately. Consider such a pat-
tern, with relation tiles that implement a relator r = r0 . . . rk ∈ R, and a configuration
x′ that only contains this pattern. Figure 3.24 represents this in a configuration cor-
responding to relation abc = 1.

We show that, due to how J·K has been defined, all the homotopy-equivalent paths
in x′ are associated with the same element of G. Let U0, . . . ,Uk be the wires cor-
responding respectively to r0, . . . , rk, and suppose that the relation tiles in x′ are
placed on (0, 0), . . . , (k, 0). We will show that for any p joining (0, 0) to (k + 1, 0) in
x′, JpK =G 1G. Let R ⊂ Z2 be the set of points above the (Z, 1) line and between
U0 and Uk. We can always suppose that no wire is crossed consecutively in opposite
directions, as the word associated to a path that crosses a wire in a direction and
immediately crosses it in the other direction is ss−1 =G 1G for some s ∈ S̄∗. We can
also suppose that p only enters and then leaves R once. Otherwise, we can simply
split it into several such paths and prove the claim for each of them independently.

– If p crosses U0, . . . ,Uk, then JpK ≡ r0 . . . rk =G 1G by definition.

– If p crosses U0, . . . ,Ui,Ur0...ri , where Ur0...ri is a wire of a relation tile which is nec-
essarily crossed from top to bottom, by definition, JpK ≡ r0 . . . ri(r

−1
i . . . r−1

0) =G

1G

– Otherwise, p crosses Ur0...ri ,Ui+1, . . . ,Uj ,Ur0...rj , the first relation tile being crossed
from bottom to top to enterR and the last one being crossed from top to bottom
to exit it. By definition, JpK ≡ (r0 . . . ri)ri+1 . . . rj(r

−1
j . . . r−1

0) =G 1G

This shows that all the paths traced in a single configuration are associated with the same
element of the group G. As all homotopies are deformations in a given configuration, this
implies that for any homotopically equivalent paths p, p′, we have JpK =G Jp′K.

Lemma 3.100: Equal Implies Homotopic

For any window Bn, and for any pair of loops pn, p′n starting at
(x□|Bn

, (0, 0)),
JpnK =G

q
p′n

y
=⇒ pn ∼Bn p

′
n.

3.5. FINITELY PRESENTED GROUPS AND SFTS 145

Proof. Using the Lemma 3.95, we can always start by deforming pn and p′n so that they
do not see any relation tile. As each elementary deformation is by definition occurring in
some given configuration, Lemma 3.99 ensures that we still have JpnK =G Jp′nK. We will
first prove that JpnK ≡ Jp′nK =⇒ pn ∼Bn p

′
n, which is a stronger assumption. Next, we

prove that given pn and p′n with JpnK =G Jp′nK, there exists a loop p′′n such that pn ∼Bn p
′′
n

and Jp′′nK ≡ Jp′nK. We then have that p′′n ∼Bn p
′
n according to the first part of the proof,

and so pn ∼Bn p
′
n.

• We show that JpnK ≡ Jp′nK =⇒ pn ∼Bn p
′
n. The paths pn and p′n can be deformed

using the Lemma 3.97 so that they cross all the wires that they see. The Lemma 3.96
can then be used to deform them so that there is at most one of those wires per
pattern. Let p̂n and p̂′n be the resulting paths, which by assumption cross the same
wires. Using the Lemma 3.98 for each of those crossed wires, we can finally deform
p̂n into p̂′n, and so pn ∼Bn p

′
n.

• Now, we show the existence of a loop p′′n satisfying pn ∼Bn p
′′
n and Jp′′nK ≡ Jp′nK. By

definition of =G, there exists a finite sequence (ui)0≤i≤N of words on the alphabet S̄
such that JpnK ≡ u0, Jp′nK ≡ uN, and for all i < N , ui ↔ ui+1. To prove the result, it
is therefore enough to show that for any word v such that JpnK↔ v, we can deform
pn in another loop pvn such that JpvnK ≡ v.

Suppose that v is obtained from JpnK by deleting a relator. More formally, there
exists words u1, u2 and a relator r ∈ R such that v ≡ u1u2 and JpnK ≡ u1ru2. Using
the Lemma 3.96 followed by the Lemma 3.97, we obtain a loop q ∼ pn, such that q
crosses exactly wires of the same type as pn, but it only ever sees one wire at a time,
and crosses all the wires that it sees. The Lemma 3.98 then ensures that we can
deform q into a loop that crosses wires corresponding to the letters of u1ru2, in order,
on a horizontal line. Let pu1 (resp. pr, pu2) be the part of this path which crosses the
wires corresponding to u1 (resp. r, u2), starting and ending with empty patterns. Let
xr ∈ X be such that pr can be traced in xr, and in which all those wires originate
from the same set of relation tiles (see Figure 3.24). We can then deform pr in xr into
a path p′r that passes below the relation tiles. The resulting path pvn = pu1 ∗ p′r ∗ pu2
is then a solution.

We can finally prove the main result of this chapter, Theorem 3.81:

Proof of Theorem 3.81. Let n > 0 and let Φn : p ∈ πBn
1 (X, (x□, (0, 0))) 7→ JpK ∈ G be the

function which associates with a loop-class with aperture window Bn the corresponding
element of G. The Lemma 3.99 and Lemma 3.100 show that it is well-defined and injective.
Let [p], [p′] be two loop-classes based at (x□|Bn

, (0, 0)). We have shown that [p] ∼Bn

[p′] ⇐⇒ Φn([p]) =G Φn([p
′]). Now notice that Φn([p ∗ p′]) =G Φn(p) ·G Φn(p

′), i.e., Φn is
a group morphism. To show that it is surjective, let g ∈ G any element, and u1 . . . un ∈ S̄∗

such that u1 . . . uℓ =G g. Let xg the following configuration:

• For 1 ≤ i ≤ ℓ and j ∈ Z, xg(i, j) is a tile of type and of colour ui

• Otherwise, xg(i,j) =

Now, consider the following loop: define pn as the loop based at (x□|Bn
, (0, 0)), which:

• moves left for n steps in x□

• moves right for 2n + ℓ steps in xg – at this point, it sees an empty pattern, after
having crossed all the wires of xg

146 CHAPTER 3. THE PROJECTIVE FUNDAMENTAL GROUP OF SUBSHIFTS

• comes back to (0, 0) in x□.

By definition, JpnK ≡ u1 . . . un =G g.
Furthermore, notice that for any loop-class [pn+1] based at (x□|Bn+1

, (0, 0)), if pn+1

projects down to p then Φn+1([pn+1]) =G Φn([p]). This shows that πproj1 (X, (x□, (0, 0))) is
isomorphic to G, and the final result follows from the fact that X is projectively connected.

3.5.5 Open questions: beyond finitely presented groups

Besides the open questions about projective connectedness presented in Section 3.3, we
also give a few problems that we have not successfully solved, regarding the possible
fundamental groups of SFTs and sofic subshifts.

Infinitely generated groups

In this chapter, we only presented groups whose projective fundamental group was finitely
generated. This is not always the case, and we do not give any characterization of when
this holds. For an example of such a subshift, consider the one-dimensional subshift X
on {□,■}, whose only forbidden pattern is {■□}. Configurations of X are then of the
form ∞□■∞, and so the configurations of X↑ are either monochromatic or contain two
monochromatic half-planes. As X↑ is easily seen to be cone-connected, it is also projec-
tively connected by Proposition 3.49. To see that it is infinitely generated, consider any
path pi crossing the “frontier” between the two half-planes at some point (i, j) ∈ Z2. Such
a path can only ever be deformed to cross this frontier □■↑ in the same horizontal column
{i} × Z. We can also explicitly construct projective loop class containing all those paths,
which must therefore all be distinct. In particular, πproj1 (X↑) is infinitely generated.

Recursively presented groups

Using Theorem 1.87, one might expect to realize recursively presented groups as funda-
mental groups of sofic subshifts. Given a recursively but not finitely presented group
G = ⟨S | R⟩, one can indeed try to define a subshift XG as in Section 3.5.1, where the
relations are not directly imposed using the matching rules of an SFT but are enforced by
a Turing Machine enumerating R. We could even hope to simplify all the proofs of Sec-
tion 3.5.2 and Section 3.5.3: as we are defining a sofic subshift, we can easily enforce
that at most one sequence of relation tiles appears in any given configuration, using e.g.
a sunny-side-up layer. However, as the relations of R can be arbitrarily long (and must
in fact be, for otherwise G would be finitely presented), we need to make sure that we
cannot have “limit configurations”, corresponding to meaningless relations, appearing by
compactness of the subshift. Although similar difficulties are routinely encountered in the
literature when considering subshifts with specific recursive properties, all the techniques
known by the author to solve this issue fail here, mainly because they all drastically change
the value of the fundamental group, an object which is more geometric than recursive in
nature.

Chapter 4

Substitutive subshifts on graphs

4.1 Substitutions . 149
4.2 Substitutive subshifts are sofic . 150

4.2.1 The discrete grid . 151
4.2.2 The euclidean plane . 153

Matching rules for euclidean substitutive tilings 153
Combinatorial point-of-view on euclidean tilings 154

4.2.3 Beyond the geometry . 154
Soficity relative to substitutive discrete subshifts 154
Substitutions on groups . 156
Other combinatorial notions of substitutions 157

4.3 Graph subshifts . 158
4.3.1 Basic graph theory . 159
4.3.2 A specific class of graphs . 160
4.3.3 Graph subshifts and SFTs . 161
4.3.4 Substitutive graphs and Lindenmayer systems 166

Skeletons, borders, meta-tiles . 170
Sheets and subgraphs . 175

4.3.5 Sofic graphs and coloured substitutions 178
Coloured substitutions on graphs . 178
Sofic graph subshifts . 179

4.4 An equivalent to Mozes theorem . 181
4.4.1 Self-simulation in graphs . 181
4.4.2 Construction of a self-simulating graph SFT 184

The decorations . 185
Matching rules . 187

4.4.3 Self-simulation . 193
Substitutive graphs can be decorated 194
Decorated graphs are sheeted-substitutive 195

4.4.4 Some consequences of the construction 197
Link between the two substitutive subshifts 197
Removing sheets . 198
A monotonicity result . 199

In this chapter, we take a step back from the tilings of the grid that we have studied
so far and from purely computational aspects of subshifts. The goal of this chapter is to
propose a formalism which encompasses several similar results of the literature, that we
call the Mozes theorem:

147

148 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

Meta-Theorem : Meta Mozes Theorem

Substitutive subshifts are sofic.

Thus stated, the theorem is only very loosely specified and informal. Even within the
specific setting of tiling of Z2, several definitions of “substitutive subshifts” exist, and on
more exotic spaces, the definition of a sofic subshift might not be as clear as what was done
in Section 1.1.4. Nonetheless, we will see that this informal statement can be made precise
and holds in a number of cases: Section 4.2.1 presents the original and simplest case of
Zd tilings as proven in [Moz89], which in particular explains why we refer to Chapter 4 as
“Mozes” theorem, Section 4.2.2 focuses on the Rd case studied by [Goo98] or [FO10], and
more combinatorial structures will be considered in Section 4.2.3, for which results have
already been obtained for example in [BS16] and [Sil20]. This section will try to show that
despite this diversity, the arguments used to prove the “soficness” of the relevant subshifts
are often very similar, and rely on a kind of fixpoint argument. More precisely, the general
idea, initiated by Mozes in the case of Z2 tilings [Moz89], is based on the following ideas:

• One can associate to a substitutive tiling a hierarchical, inductive structure, which
partitions the tiles into larger and larger “meta-tiles”, corresponding to successive
applications of the substitution rule.

• In order to ensure that tilings by the considered tileset do indeed respect this substi-
tutive structure, it is therefore enough to ensure that each tile belongs to a meta-tile,
itself belonging to a larger meta-tile and so on.

• The key observation is that it is enough for each tile to remember a finite amount of
information, locating it in this hierarchical structure. Part of this information is used
to ensure the consistency of a given meta-tile, and part of it is used to guarantee it at
the “next step” of the hierarchy. With some additional bookkeeping, this is enough
to guarantee, in an inductive-like fashion, the consistency of the entire tiling.

The major technical difficulty therefore lies in ensuring that all the necessary informa-
tion is communicated and synchronized, both between meta-tiles of a same level of the
hierarchical structure, and to the meta-tiles of higher level. This restriction can be for-
malized as a combinatorial condition, and can be studied without actually looking at the
geometry of the tiling, when embedded in Zd or Rd. For this reason, we introduce in Sec-
tion 4.2.3 a notion of substitutive graph, and prove that under some conditions on the
connectivity of the graph, Mozes theorem holds in this combinatorial setting: the key idea
is to show that “nice” graphs are connected-enough so that the problem highlighted in the
above paragraph, synchronizing the information of all the tiles, can be solved. We will say
that a substitution has the Mozes property if the meta-Mozes theorem holds for this
substitution:

Meta-Definition : Mozes property

A substitution s satisfies the Mozes property if the meta Mozes theorem
holds for s-substitutive subshifts.

The goal of this chapter is then to find some sufficient combinatorial conditions for
substitutions to satisfy the Mozes property. One of the main motivations is to provide a
framework that recovers at least some of the results of the literature, but which could also
be generalized to tilings for which no general satisfactory notion of “substitution” exists,

4.1. SUBSTITUTIONS 149

the main example being graphs of algebraic origin such as Cayley or Schreier graphs. In
particular, we would like to find a general way to represent some classes of finitely presented
groups in our setting, and although we do not give any general class of examples, this
still motivates our definitions and explains some of the choices made when defining our
notion of combinatorial substitution. This is still an exploratory idea, and the results and
constructions of this chapter should be understood as a step in this general direction of
research.

This chapter tries to be consistent with the terminology used in [BS16]. It is organised
as follows:

• Section 4.1 tries to present the main ideas behind the numerous notions of substitu-
tions that exist in the literature.

• Section 4.2 is a review of those various definitions, with an emphasis put on the ones
for which an equivalent to Chapter 4 is known.

• Section 4.3 defines graph subshifts following [ADG23], proves some properties of
those subshifts, and proposes a definition of substitutive graph subshifts.

• Finally, Section 4.4 proves the main result of this section, which is a partial Mozes
theorem for the case of substitutive graph subshifts:

Theorem: Mozes theorem - graphs

Let s be a graph substitution, and sc a coloured s-substitution. Sup-
pose that s is quasi-connected. Then, there exists a sofic graph sub-
shift Ysc which is X∞

sc -sheeted and contains X∞
sc .

The notion of of “sheeted graph” is presented in Section 4.3.4, and is necessary in our
case, as we consider tilings on graphs which do not belong to a larger ambient space
such as Zd or Rd, and so this assumption can be dropped when considering the usual
tilings on a given, fixed space. The quasi-connected condition mirrors the usual
required conditions on substitutions to satisfy the Mozes property, as highlighted
in Section 4.2.

4.1 Substitutions

The modern study of substitutive, or self-similar structures, originates in the work of
Berger [Ber66] who proved that the Domino Problem was undecidable: the proof strategy
was to show that Wang’s Algorithm had no chance to terminate, as seen in Section 1.2.3,
because there exists aperiodic tilings. The construction of this aperiodic tiling relies on
enforcing via local rules a hierarchical structure, similar to what is now called a substitutive
tiling. A general survey of properties of self-similar tilings in various settings can be found
in [AA20], and in particular the chapters 2.1 to 2.4 of this book are especially relevant to
our approach here. We give the main ideas underlying how substitutions are to be thought
of in all those settings (discrete grids, euclidean planes, Cayley graphs ...), and will state
more formal definitions in the next sections.

The main idea behind a substitution is to replace each tile t ∈ τ by a larger patch
s(t), that is, a set of tiles. Starting from one tile, we can then repeat this replacement
process by successively replacing each tile t′ from each path s(t) by its corresponding path
s(t′). The difficulty in this approach lies in deciding how patches s(t1), s(t2) coming from
adjacent tiles t1, t2 should be “merged”, or “glued” together. This is sometimes referred to

150 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

as the compatibility problem, and is studied for example from a categorical standpoint
in [Fer22] and [MS15], or as a decision problem in [JK12].

Another point-of-view, preferred for example in [Bar22], is to define the image s(t) of a
tile t by partitioning t using smaller versions of the tiles of τ . This process can be iterated
by inflating the patch obtained at each step, and subdividing each tile in the way specified
by s.

Both points of view can informally be summarized as follows:

Meta-Definition : Meta-substitution

A substitution on a set of tiles τ and a structure set G, consists of:

• A map s : τ → τP(G), sending a tile t ∈ τ to a patch, that is, a set of
tiles along with some structure given by a part of G (e.g. a discrete
rectangle, a finite graph, a topological disk)

• An iteration rule (or gluing rule, or induction rule ...), which extends
s to a map s′ : τG → τG. We usually denote it by s too.

Barring some technical difficulties, this allows one to define, given a suitable substitu-
tion s, a tiling space, consisting in all the tilings obtained by iterating this process starting
from some tile t ∈ τ . Once again, one needs to be careful in order to properly define the
resulting subshift:

• We can consider the set of all the tilings x ∈ τG that admit arbitrarily many preim-
ages by s, i.e., there exists for any n > 0 a configuration yn such that sn(yn) = x.
This is a dynamical point-of-view, where substitutions act on entire configurations
and the final subshift is viewed as a limit space.

• We can also consider the set of tilings x whose patterns are all contained in some
finite patch obtained by iterating s on some tile t. This is a more combinatorial
approach, and is in particular reminiscent of the definition of subshifts by allowed,
or locally admissible, patterns.

In general, those spaces are different, and might not share all their dynamical prop-
erties, in particular mixing properties. However, in simple cases, the distinction usually
does not matter when trying to prove that either one is sofic. The formal definitions will
be given in Section 4.2.1 for completeness.

In Section 4.2.3, we will define substitutions on graphs, and we will not talk at all about
the compatibility problem. Our purpose is indeed to show that a sufficiently connected
structure is enough to ensure global self-similarity properties of the limit space using only
local constraints. In particular, some difficulties encountered in similar works can be
avoided, as we explicitly avoid talking about e.g. an embedding in the euclidean plane.
In this sense, our point-of-view is closer to the one [BS16] or even [Bar22] than the one
of [BH13] or [Pri03] – they will all be presented in Section 4.2.3.

4.2 Substitutive subshifts are sofic

The definition of sofic subshifts given in Section 1.1.4 is not sufficient for our purposes.
Nevertheless, we can adapt it quite easily to more general settings, combining the following
ideas:

• A sofic subshift is the image under a local map of an SFT.

4.2. SUBSTITUTIVE SUBSHIFTS ARE SOFIC 151

• An SFT is a set of tilings given by local, matching rules.

The idea of matching rules can quite readily be generalized to tilings on arbitrary
structures on which we can define a notion of “neighbouring tiles”. In all the cases studied
below, we believe that one gets a good understanding of what we mean by a sofic subshift
by considering that each tile comes with an additional set of extra colours, thought of
as decorations, that are used to build configurations of an SFT, and which are then all
forgotten, simultaneously and independently, to give a configuration of the sofic subshift.

We fix some general terminology, which will need to be adapted to the concrete cases
studied in the later sections, but which should act as a general framework: for a given set
of tiles T and a substitution s, we say that s(t) is a patch. Starting from any tile t and
iterating the substitution, we obtain meta-tiles: the n-meta-tiles, or meta-tiles of level n,
are the patterns {sn(t), t ∈ T}. In general, we will use a somewhat standard genealogical
terminology: if G ⊑ H are respectively n and n + 1 meta-tiles, we will call H the parent
of G, and G will then be a child of H; if G′ ⊑ H is another child of H, G and G′ will be
siblings.

4.2.1 The discrete grid

We first present the simplest case, in a slightly simplified version compared to what was
originally proven in [Moz89]. The differences will be highlighted below, and we only give
the simpler definition for the time being.

Definition 4.1: Rectangular substitution

Let n > 0, and A some finite alphabet. We define an m× n rectangular
substitution as a map s : A → Am×n.
We extend s to entire Z2 configurations as follows: for any (i, j) ∈ Z2, 0 ≤
k < m, 0 ≤ l < n, we set s(x)(ni+k),(mj+l) = s(xi,j)(k,l).

It is easy to see that this definition gives a colour to every point of the grid, that
one can determine using the euclidean division of its coordinates by the size of the initial
rectangle. With this definition, there is no compatibility problem and we can easily iterate
the substitution. We can therefore look at the limit space obtained when iterating the
substitution infinitely often, and define two subshifts:

Definition 4.2: Substitutive Z2 subshift

Let s be a rectangular substitution on alphabet A. We define:

Xs =
{
x ∈ AZ2 | ∀w ⊑ x,∃a ∈ A, n ∈ N, w ⊑ sn(a)

}

and

X∞
s =

⋃

i∈Z2

σi
({
x ∈ AZ2 | ∀n ∈ N, ∃yn ∈ AZ2

, sn(yn) = x
})

For a given substitution s, Xs is defined locally, via admissible patterns, while X∞
s

is defined implicitly as the of configurations that can be “desubstituted” infinitely many
times. It is easy to show that Xs ⊆ X∞

s , and we will prove it in the more general setting
of Section 4.3.4, and we show that the converse might not hold with Figure 4.1:

152 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

s s
sn

2n

Figure 4.1: An example of substitution for which Xs ̸= X∞
s [AS11, Example 1]. Xs

contains a single point, □Z2 , but X∞
s also contains all the configurations containing a

single ■.

Remark. The definitions given here can be generalized in several ways, a few of which we
briefly mention:

• All the definitions can easily be generalized to higher-dimensional subshifts, although
we choose to focus on the two-dimensional case for simplicity.

• Instead of considering substitutions with a single rectangle, one can study substitu-
tions in which the domain of the patches s(a) might depend on the letter a ∈ A. In
that case, one needs to take some care when iterating the substitution, as it is no
longer straightforward to extend s to entire Z2 configurations.

• Even more generally, one can consider a sequence of substitutions (sn)n∈N. Once
again, the definitions get significantly messier, but under some suitable compatibility
conditions, most results that we will state in this chapter can be shown to hold in that
case, see for example [AS11].

In this setting, as we are working with Z2 subshifts, we can still use the same definition
of sofic subshifts. In particular, we have the following version of the meta-Mozes theorem:

Theorem 4.3: Mozes theorem [Moz89]

Let A be a finite alphabet, m,n ≥ 2 and s : A → Am×n be a rectangular
substitution. Then, Xs and X∞

s are sofic subshifts.

This is the first version of the meta-Mozes theorem, actually proven in a more general
way by Mozes in [Moz89]. We give a very short outline of the proof:

Proof. Let R = J0,m− 1K× J0, n− 1K. In order to create an SFT which is an extension of
X∞

s , the idea is to define a tileset, in which every tile will remember some extra information,
on top of the symbol it should be mapped to in X∞

s :

• Each tile will remember the rectangle s(a) it belongs to, as well as its position (i, j)
in this rectangle.

• If (i, j) is a corner of this rectangle s(a), then the tile also remembers another rect-
angle s(a′) and a position (i′, j′), such that s(a′)(i′,j′) = a.

• Some other tiles, which are not in the corner of their own rectangle s(a), will also
carry and propagate some “signals” which are used to ensure that neighbouring meta-
tiles are consistent (that is, to the right of some meta-tile which thinks it is s(a)(i,j),

4.2. SUBSTITUTIVE SUBSHIFTS ARE SOFIC 153

we make sure that we have a meta-tile which thinks it is s(a)(i+1,j), assuming (i, j)
itself is not on the right border of R).

There are various signals of this form, depending on some minor differences in the
specific information that needs to be propagated. The main point is that they are sufficient
to identify a meta-tile T of some arbitrary level k, and propagate this information to an
arbitrary distance in Z2, required to check the consistency of the level k. Some signals
ensure that T itself is well-formed (that is, it can be decomposed in k− 1 meta-tiles), and
some other ones are used to ensure that its neighbourhood is well-formed (that is, it is
correctly aligned with n meta-tiles, which carry consistent information regarding the n+1
meta-tile they might collectively belong to).

The key observation is that a meta-tile needs only finitely many “active sites”, collecting
the information of this tile (which substitution s(a) does it originate from, what is its
position in the image ...) and checking consistency with the neighbouring meta-tiles, and
with the parent meta-tile. The difficulty lies in transmitting this information from the
children tiles to those specific active sites.

4.2.2 The euclidean plane

We now say a few words about another well-studied case in the literature, which is the case
of euclidean substitutions: tiles are no longer finite subsets of Zd, but subsets of Rd, usually
homeomorphic to a closed ball – sometimes, only compactness of the tiles is required. In
this setting, a substitution over some tileset A is usually defined as an expanding linear
map s, such that for any a ∈ A, s(a) is a union of isometric copies of tiles of A with disjoint
interiors. The specific set of isometries being considered varies, but is usually assumed to
consist of translations and rotations. A simple example of this kind of substitutions over
R2 is presented in Figure 4.2.

Figure 4.2: The Sphinx substitution. Figure taken from [Goo16], in which this specific
substitution is studied in detail.

In the following, we call “sofic subshift” a subshift (or set of tilings) on the set of tiles A
that can be enforced by adding some decorations on top of A: each tile a ∈ A is endowed
with (possibly several) decorations on its border ∂a, and the tiling is valid if adjacent tiles
carry the same information on the common part of their borders (which is non-empty, as
tiles are closed subsets of Rd).

Matching rules for euclidean substitutive tilings

For our purposes of determining conditions under which the Mozes theorem holds, the
main result about this kind of euclidean tilings is due to Goodman-Strauss in [Goo98]. We
reproduce this article’s main theorem here, and comment it briefly afterwards:

154 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

Theorem 4.4: Mozes theorem - Euclidean [Goo98]

If s is a substitution in Rn which is “hereditary” and “sibling edge-to-edge”,
then Xs is sofic.

The hereditary and sibling edge-to-edge conditions are technical restrictions, which
more or less require that the edges of the meta-tiles are concatenations of edges of the initial
tiles, and that adjacent meta-tiles must touch along entire edges. We refer to [Goo98] for
a precise description of those conditions, which are considered to be very mild.

This is a very general result, which nevertheless relies on an embedding of the tiles in
the euclidean space.

Combinatorial point-of-view on euclidean tilings

Following [Goo98], the authors of [FO10] prove a similar result. They consider tiles that
are polytopes in Rd, with finitely many facets, and define a combinatorial substitution
as a map s sending a tile a ∈ A to a finite tiling, i.e. a tiling of a bounded region of Rd
by A. In particular, a tile a need not be similar to s(a) (said differently, s need not be an
expanding linear map). A large number of known tilings from the literature fall under this
definition, for example the Rauzy tilings (see [AI01] or [Fer07] for a discussion), or even
more famously the Penrose tilings (see [GS87]). We restate the main result of [FO10] with
our notations:

Theorem 4.5: Mozes theorem - combinatorial euclidean[FO10, Thm. 1.1]

If s is a good combinatorial substitution, then X∞
s is sofic.

As is Theorem 4.4, we need an additional assumption on the substitution for the
theorem to hold: a combinatorial substitution s is called good if it satisfies some conditions,
which ensure that each image s(a) is “connected enough”, and that a valid tiling by the
1-meta-tiles {s(a) | a ∈ A} is the image of an actual tiling by A. More details on these
conditions can be found in the original article, but deciding whether a given substitution
is “good” or not is still an open problem.

Both the definition of a “combinatorial substitution”, and the proof of Theorem 4.5,
are indeed much more combinatorial in nature. However, the tilings are ultimately still
tilings of Rd, and it is unclear how this approach could be generalized to settings with
a completely different (or absent) geometry, for example in the case of tilings on groups
(see Section 1.3.3).

4.2.3 Beyond the geometry

Soficity relative to substitutive discrete subshifts

In order to study the boundary between sofic and non-sofic subshifts, at least from the
point-of-view of substitutions, has been explored in [BS16]. The original question asked
by the authors was about the difficulty of solving the Domino problem over self-similar
structures, and they tried to find criteria to distinguish whether the domino problem was
solvable or not. However, they also prove that an equivalent to Mozes theorem holds
over various such self-similar structures, independently from the solvability of the Domino
problem. The self-similar structures they consider are still defined relative to the discrete
grid Z2, and this is one of the generalizations we try to study later on. The results

4.2. SUBSTITUTIVE SUBSHIFTS ARE SOFIC 155

and definitions also hold for higher dimensions, we restrict ourselves to the Z2 case for
simplicity.

Definition 4.6: Self-similar colouring [BS16]

Let s be a rectangular m×n substitution, with binary alphabet {0, 1}, and
such that s(0) = 0m×n. A substitution sc is compatible with s if it has
the same shape, and is defined over A ⊇ {0}, such that sc(0) = 0m×n and
for all 0 ≤ i < m, 0 ≤ j < n, and a ∈ A\{0}, sc(a)i,j = 0 ⇐⇒ s(1)i,j = 0.
The set of sc-self-similar colourings is

Xsc =
{
x ∈ AZ2 | ∀w ⊑ x,∃a ∈ A, n ∈ N, w ⊑ snc (a)

}

The definition can be considered to be in two steps: in a first step, we define a structure
using a binary substitution s, which has a blank symbol; over this structure, we can define
other substitutions, provided they produce blank symbols exactly at the same positions
than s.

We can then define SFTs relative to this structure, and state a general property:

Definition 4.7: Relative Mozes property [BS16, Def. 1]

A binary rectangular substitution s has the Mozes property if for every
compatible substitution sc over A, there exists an alphabet B ⊃ {0}, and
SFT XF ⊆ BZ

2 and a factor map ϕ : B → A such that Φ−1(0) = {0} and
Φ: XF ↠ AZ2 defined by Φ(x)(i,j) = ϕ(x(i,j)) is surjective onto Xsc .

In other words, a substitution has the Mozes property if every compatible substitutive
colouring of the “binary self-similar structure” it generates is sofic in a strong sense: there
is an SFT factoring onto it, which furthermore places 0-tiles on top of the zeros of the
structure.

Figure 4.3: The first five iterations of the grid-Sierpinski substitution.

The authors then demonstrate that a few substitutions have the Mozes property, in
particular:

156 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

Proposition 4.8 [BS16, Th.4]

The grid-Sierpinski substitution (see Figure 4.3) has the relative Mozes
property.

We do not detail the proof here, as it is quite similar, although in a simpler setting, to
the proof we do in Section 4.4. In particular, we will use the terminology of this article to
present the general ideas in our proof.

Substitutions on groups

One of the motivations behind our definitions of Section 4.3 is to understand how one could
define substitutions on groups, and use classical results about Z2 substitutions in this new
setting, although a general, satisfying definition of substitution on groups remains open.
We give an example of a case where Mozes theorem has successfully been adapted to a
class of finitely-presented, non-abelian groups, namely the Baumslag-Solitar groups:

Definition 4.9: Baumslag-Solitar groups [BS62]

Let m,n ≥ 1. The Baumslag-solitar group BS(m,n) is defined by

BS(m,n) = ⟨a, b | anb = bam⟩

For N > 1, the group BS(1, N) is non-abelian but amenable.

We do not give a definition of amenability here, as our focus is not solely algebraic,
and it suffices to say that this class of group is particularly interesting for symbolic dy-
namics (see for example [AK13] or [EM22]), as it exhibits many “nice” properties while
being significantly more general than Z2 = BS(1, 1), being for example non-abelian. We
show in Figure 4.4 part of the Cayley graph of BS(1, 2) for the presentation given in Def-
inition 4.9 – this is also [Sil20, Figure1.1], from which we present an important result.

It so happens that there exists a recursive decomposition of the Cayley graph of
BS(1, N) into what the author of [Sil20] calls rectangles ([Sil20, Definition 3.1]), which
are finite subgraphs, defined by Rm = {ajbk | 0 ≤ j < Nm, 0 ≤ k < m} form ≥ 1. A visual
representation of the corresponding graph, and the decomposition, is shown in Figure 4.5.

Using this decomposition, one can define a notion of substitution, the limit graph of
which is the Cayley graph of BS(1, N) for any N ≥ 2. To the best of our understanding,
this substitution is defined in a rather ad hoc way, and in particular one needs to differ-
entiate multiple cases when iterating a substitution, depending on which “vertex” is being
substituted. Nevertheless, we have the following result:

Theorem 4.10: Mozes theorem - BS(1, N) [Sil20, Thm. 3.20]

For m ≥ 2, s : A → ARm a substitution on BS(1, N), the subshift Xs ⊂
ABS(1,N) is sofic.

The proof follows the same ideas as the other versions of the Mozes theorem. As
mentioned above, the definition of the substitution uses a rather fortunate decomposition
of the group into specific sets, and some care still needs to be taken when specifying how one

4.2. SUBSTITUTIVE SUBSHIFTS ARE SOFIC 157

Figure 4.4: Part of the Cayley graph of BS(1, 2) =
〈
a, b | a2 = bab−1

〉
. Red arrows corre-

spond to the generator b, purple arrows to a. The convention is the one of Definition 1.91.

(a) The first four rectangles of the group
BS(1, 2) ([Sil20, Figure 3.1])

(b) Decomposition of R4 into 8 copies of R1

([Sil20, Figure 3.2])

Figure 4.5: The recursive decomposition of the right Cayley graph of BS(1, 2) in rectangles
Rm.

should iterate the substitution. See [Sil20, Section 3.2, Section 3.4] for more details. The
approach we take in Section 4.3 is different, as it defines substitutions on spaces which are
more general than Cayley graphs. On the other hand, it is unclear which kinds of groups
fit into our definition, and for those who do, whether there is an effective procedure to
derive appropriate substitutions from e.g. a finite presentation.

Other combinatorial notions of substitutions

We give a few additional examples of various notions of substitutions which try to give a
purely combinatorial description of the objects they consider, and try to highlight the main
differences with our approach. A survey of similar constructions can be found in [Pri08],

158 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

as well as some general results about substitutive subshifts which are out of the scope of
this chapter.

Planar graphs Another definition of combinatorial substitutions using graphs, which
inspires the one used in [FO10] described in Section 4.2.2, was proposed in [Pri03]. We
do not describe it fully there, as a lot of definitions are similar to the ones we use in Sec-
tion 4.3.4. The general idea is to consider planar graphs (informally, graphs that can be
drawn in a plane without any two edges intersecting). Now, the substitution s simply
replaces each vertex v, each edge e, and each facet f of the graph by another graph, using
additional maps which ensure that if v ∈ e ∈ f , we have s(v) ⊑ s(e) ⊑ s(f). We high-
light one important difference: in Section 4.2.2, the author’s goal is to model euclidean
substitutions using more combinatorial objects, and as such, uses facets of the graph to
iterate the substitution. A definition that could be suitable for groups must not reference
any kind of planar embedding, as Cayley graphs need not be planar. Moreover, even if the
substitution s is defined on planar graphs, it is unclear whether the image of any planar
graph Γ by s remains planar.

Topological substitution Finally, we briefly describe the approach taken in [BHJ18], in
which the authors define substitution from a topological point-of-view. The question they
try to answer is the following, using a reformulation in terms of the objects introduced
so far: given a substitutive subshift Xs ⊂ AR2 defined by an expanding linear map s,
is there a topological substitution s′ such that Xs, Xs′ are “equivalent” ? The notion of
topological substitution was introduced in [BH13]: the actual definition uses the notion of
CW-complex, which has not been introduced in this thesis, and we rely on a more informal
description.

We call n-polygon the cyclic graph Cn. A tileset is then a set A = {t1, . . . , tn} where
each ti is an ni-polygon for some ni ≥ 3. An A-patch is then a graph G such that there
exists a decomposition of G = (V,E) as tiles, that is, V =

⋃
i Vi, E =

⋃
iEi where for each

i, we have (Vi, Ei) ∈ T and moreover each edge e ∈ E belongs to at most two distinct
(Vi, Ei) ⊑ G – there are some additional restrictions, as the authors consider complexes
which can be embedded in the plane, but we skip over those for conciseness purposes. A
substitution is then defined as a map s sending each tile ti to a patch. Some care needs
to be taken to define how a patch itself should be substituted, that is, to ensure that one
can “glue” the images of each tile computed separately in order to obtain another patch –
an important part of [BHJ18] is devoted to the description of combinatorial conditions for
a substitution to be iterated infinitely many times, which can effectively be checked from
the images of the ti’s – see Section 3 of the article for more details.

Although very general, this definition of substitution suffers from the same drawbacks
for our purposes than the ones already highlighted in Section 4.2.3: as the author’s main
goal is to study and model euclidean substitution, the setting emphasizes the fact that
each patch must be planar. This is once again not suitable for modeling substitutions on
groups, or graphs of algebraic origin, and we relax this condition later on.

4.3 Graph subshifts

In this section, we will try to propose yet another definition of substitution, which avoids
any explicit reference to the geometry of an ambient space, solely relying on combinatorial
objects, namely graphs. In particular, and contrary to most of the examples described
in Section 4.2, substitutive subshifts will not simply be a specific class of colourings of
some space (whether Zd or Rd) obtained by iterating a “substitutive” map s, but the space

4.3. GRAPH SUBSHIFTS 159

itself will be obtained in the same way. We therefore need to define what a subshift is in
this context:

• Section 4.3 will define graph subshifts, which are families of graphs respecting some
local constraints.

• Section 4.3.4 will introduce or notion of substitution on graphs, and explain how
they can be iterated.

• Section 4.3.5 will define what it means for a subshift to be sofic in this context, and
more generally, adapt some of the definitions of Section 1.1.2 and Section 1.1.4 in
particular.

4.3.1 Basic graph theory

Among the previous examples, we especially try to generalize the substitutive subshifts
defined in [BS16], as it tries to only look at the combinatorial aspects of the graph under-
lying a discrete limit space generated by substitutions. In particular, a discrete structure,
akin to a graph, is initially defined, and despite being subshifts on Z2, the subshifts studied
by the authors on this structure behave as if they were defined on the underlying graph
only. Nevertheless, it is possible to eliminate the grid from the intermediary step, by only
considering easy-to-iterate substitutions directly defined on graphs.

We give here the main additions to the definitions that were already presented in Sec-
tion 1.1.4:

• G′ is a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G)

• If furthermore E(G′) = E(G)∩ V (G′)2, we say that G′ is an induced subgraph of
G, that we denote G|V (G′).

• For a graph G that are oriented and edge-labeled with directions D, we say that some
vertex u is adjacent to a d-edge if there exists e = (u, v) ∈ E(G) with λE(e) = d. It
is adjacent to a d−1-edge if there exists an edge e = (v, u) with direction d.

• In the case of labeled graphs G = (V,E, λV , λE), the notation G|V ′ also implies
that the labeling function is now defined on the new vertices and edges sets, i.e.
G|V ′ = (V ′, E′ = E ∩ V ′2, λV |V ′ , λE |E′).

• For labeled graphs G1 = (V1, E1, λV1 , λE1), G2 = (V2, E2, λV2 , λE2), with λ,1, λ,2

taking values in some common sets C and D, we call disjoint graph union of G1

and G2 the graph G = (V1 ⊔ V2, E1 ⊔ E2, λV : V1 ⊔ V2 → C), λE : E1 ⊔ E2 → D),
the labeling functions having the obvious definition. We might also use the notation
G ⊔ E′ for some set of edges E′ ⊆ V (G)2, in which case we mean that the edges of
E′ are not already in E(G).

• A graph morphism ϕ : G → Γ is a map satisfying that for all e = (u, v) ∈ E(G),
(ϕ(u), ϕ(v)) ∈ E(Γ′). We will usually consider labeled graph morphisms, in which
case G,Γ′ have the same types and directions sets, and that ϕ preserves types and
directions.

• Unless explicitly mentioned, we use labeled graph for vertices and edge-labeled
graphs, that is, a graph G = (V,E) along with some maps λV : V → C and λE : E →
D. The sets of labels C and D are always assumed to be disjoints. We respectively
refer to them as the set of vertices types and edges directions. In what follows, it is
useful to think of those as structural properties of the vertices or edges, rather than

160 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

as colourings. This distinction is purely conceptual, but later on, when talking about
subshifts on graphs, we will add another layer of colouring to the vertices. In this
setting, the vertices types will be used to determine the “shape” of the substitution,
regardless of their colour.

• In some problems, (possibly labeled) graphs G = (V,E) that we define might natu-
rally be directed, but it will sometimes be convenient to consider them as undirected.
What we mean by this is that we instead consider the graph the undirected graph
G′ = (V,E′), where E′ = {(u, v) ∈ V 2, (u, v) ∈ E or (v, u) ∈ E}. If G was labeled,
we give both edges in E′ the label of the original edge in E. In order for this to
be well-defined, we will ensure that this operation is only ever performed on graphs
G = (V,E, λE) in which (u, v), (v, u) ∈ E =⇒ λE(u, v) = λE(v, u).

4.3.2 A specific class of graphs

We will consider graphs up to isomorphism. This will induce some difficulty later on, when
trying to refer to some specific vertices in the graph, or when trying to define a topology on
the space of graphs. We will therefore fix some restriction on the set of graphs considered
in the rest of the chapter. The next definitions are simply a way to explicit some of the
conditions imposed in [ADG23]. We adopt a slightly different presentation: rather than
using a set of “ports” on each vertex, with edges potentially joining two vertices using
arbitrary ports, we enforce a priori the fact that an edge uses the same port on both
vertices, and edges are now oriented. This is an equivalent point of view, but it will be
more suited to our definition of substitution later on. A graph is always assumed to be
defined as in Section 4.3.1:

Definition 4.11: Pointed graph

A pointed graph is a pair (G, v) where v ∈ V (G). We denote
basepoint((G, v)) the vertex v, called the base-point of (G, v).

From now on, all the graphs are considered up to isomorphism. We say that a (Γ, u) and
(Γ′, u′) are isomorphic as pointed graphs if Γ and Γ′ are isomorphic via some isomorphism
ϕ, and furthermore ϕ(u) = u′. When talking about pointed graphs Γ,Γ′, we will write
Γ = Γ′ when they are isomorphic as pointed graphs, and Γ ≃ Γ′ if they are isomorphic as
non-pointed graphs. Equivalently, (Γ, u) ≃ (Γ′, v) ⇐⇒ ∃w ∈ V (Γ), (Γ, w) = (Γ′, v).

Definition 4.12: Graph class

Let C and D be finite sets of directions and types respectively. The graph
class defined by C,D is the set GC,D of pointed, connected, possibly infinite
graphs, with vertices labeled by C and edges labeled by D, where each
vertex is adjacent to at most a single edge of each given direction and
orientation.

In particular, the degree of any vertex of a graph GC,D is bounded by 2|D|, both the
in-degree and out-degree being independently bounded by |D|.

As in Section 1.1.3, we can define a few topological notions on those graphs:

4.3. GRAPH SUBSHIFTS 161

Definition 4.13: Shift

Let (Γ, u) be a pointed graph, and d ∈ D a direction. The shift of (Γ, u)
in direction d is the pointed graph σd(Γ, u) = (Γ, v) where v is the unique
vertex such that (u, v) ∈ E(Γ) and (u, v) has direction d if it exists, or
v = u otherwise.

Definition 4.14: Ball

Let (Γ, u) be a pointed graph and n ≥ 0. The ball of radius n is the
subgraph Br(Γ, u) of Γ induced by the vertices {v ∈ Γ, dΓ(u, v) ≤ n},
pointed in u.

Given this notion of ball, we can derive the usual notion of distance for configurations,
just as in the Zd case: configurations will be close to each other if they agree on a large
central ball.

Definition 4.15: Distance

Let (Γ, u) be a pointed graph, A a finite alphabet and x, y ∈ AV (Γ) two
colourings of V (Γ). The distance between x and y is

d(x, y) =

{
0 if x = y

2−minn{x|Bn
̸= y|Bn

} otherwise

We use the notation Br(GC,D) for the set of all the finite pointed graphs of GC,D con-
taining only vertices at distance at most r from u.

4.3.3 Graph subshifts and SFTs

As mentioned above, in order to talk about individual vertices in a pointed graph up to
isomorphism, we need some kind of addressing scheme. Whenever we restrict ourselves
to the case of connected pointed graphs, any vertex can be designed by a path from the
base-point of the graph to it. Note however that this path is not necessarily unique.

Notation. We will D̄ = D̄.

Definition 4.16: Path address

Let (Γ, u) ∈ GC,D. Then, for any finite sequence D = (Di)1≤i≤n, Di ∈
D̄, called path address, we write path(Γ,u)(D) the vertex obtained by
following the edges labeled by D1, . . . , Dn in this order starting from u in
Γ, if this vertex exists.
We denote Paths(Γ, u) the set of valid path addresses of Γ starting from u.

Note that in any given pointed graph (Γ, u), the map path(Γ,u) : D̄∗ → V (Γ) is not a
total map, is generally not injective, but is surjective as Γ ∈ GC,D is connected.

Some more discussion about the property of this addressing scheme can be found
in [ADG23].

162 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

In order to define subshifts, we need to define what a pattern is. A natural idea would
be to define patterns as finite (labeled) graphs, and say that a larger graph Γ avoids a
pattern F if it contains no subgraph H isomorphic to F – one would also need to properly
study the difference between enforcing H to be induced or not. However, such a definition
lacks expressive power: as mentioned in [ADG23, Remark 6], this makes it impossible to
specify that a subgraph must appear: one could reasonably argue that, for example, it is
natural to be able to enforce conditions of the kind “every vertex of type c ∈ C has to be
the starting point of an edge of direction d ∈ D. We therefore need to have a slightly more
general definition of what a pattern is, in order to be able to express this kind of condition.
We will first give the original definitions of the authors of [ADG23], and then give some
equivalent characterizations, some of which can already be found in this article.

Definition 4.17: Prefix-stable language

Let D be a finite set of directions. A language is a set L ⊂ D̄∗ of finite
words. It is prefix-stable if uv ∈ L =⇒ u ∈ L for any u, v ∈ D̄∗.

Using Definition 4.16, we can therefore use languages to designate sets of vertices in a
pointed graph. The condition of being prefix-stable then implies that the set of vertices
thus considered is a connected subgraph of Γ.

Definition 4.18

Let L be a prefix-stable language, and Γ ∈ GC,D. We denote Γ|L the
induced subgraph of Γ given by the path addresses of L:

Γ
∣∣
L = Γ

∣∣{path(Γ,u)(D)|D∈Paths(Γ,u)∩L}

We can now give the definition of a pattern and of a subshift in terms of forbidden
patterns. This detour by languages is required in order to express some natural conditions,
as explained above. The difference with e.g. subshifts on Zd can be understood as follows:
in Zd subshifts, the underlying “geometry” is fixed, and does not depend on the subshift:
we colour each cell of the d-dimensional grid, but each cell will always have the same
2d adjacent cells. In our case, graphs are not a priori regular, that is, vertices might
neighbourhoods of different sizes; this relaxation is useful in several examples that we deal
with – for example, our substitutive graphs (see Section 4.3.4 will not be regular in general)
– but we therefore need a way to express some new kind of conditions, such as explicitly
requiring the presence of some edge in some specific subgraphs.

Definition 4.19: Graph pattern - Language

A (language-)pattern is a pair ((Γ, u),L) where (Γ, u) ∈ GC,D and L is a
prefix-stable language. It is finite if Γ and L are finite.

We can now define what containing or avoiding a pattern means:

4.3. GRAPH SUBSHIFTS 163

Definition 4.20: Pattern avoidance

Let Γ ∈ GC,D, and let (F,L) be a pattern. We say that Γ contains (F,L)
in position v ∈ V (Γ) and write (F,L) ⊑ Γ if (Γ, v)|L = F . If Γ does not
contain (F,L) in any position, we say that it avoids (F,L).

Although the role of L in the previous definition might still be unclear, one can think
of it as a way of imposing, or preventing, the presence of specific edges, on some vertices of
F . In particular, L cannot be completely arbitrary: the following proposition shows that
we can consider only languages that designate actual vertices of the underlying graph F ,
or possibly neighbouring ones:

Proposition 4.21

Let ((F, u),L) be a finite pattern, and define the language M ={
D = (D1, . . . , Dn) ∈ D | path(F,u)(D1, . . . , Dn−1) ∈ V (F)

}
.

Then, for any Γ ∈ GC,D, (F,L) ⊑ Γ ⇐⇒ (F,M) ⊑ Γ.

Proof. Let Γ ∈ GC,D. For the direct implication, suppose that Γ contains (F,L) in position
v, i.e. (Γ, v)|L = F . In what follows, we consider that Γ is pointed at v. It is clear
that Γ|M ⊑ Γ|L, as M ⊂ L. We show that the other inclusion also holds, showing that
Γ|M = F . By contradiction, suppose that there is path D ∈ L of minimal length such that
path(Γ,v)(D) ∈ Γ|L \Γ|M. As D is of minimal length and L is prefix-stable, denoting D′ =
D1, . . . , D|D|−1, we have D′ ∈ L. As Γ|L = F , we obtain path(Γ,v)(D

′) = path(F,u)(D
′),

and so D ∈M, which is a contradiction.
For the other inclusion, suppose that Γ|M = F . We show that Γ|L = F . As above, the

inclusion Γ|M ⊂ Γ|L is clear. Let D ∈ L such w = path(Γ,v)(D) ∈ Γ|L. By assumption, we
get that path(F,u)(D) ∈ V (F). By definition of M and L being prefix-stable, we obtain
D ∈M, and so w ∈ Γ|M. Hence, Γ|L = Γ|M = F .

If ((F, u),L) is such that for anyD = (D1, . . . , Dn) ∈ L, we have path(F,u)(D1, . . . , Dn−1) ∈
V (F), we say that the pattern (F,L) is reduced.

Definition 4.22: Graph subshift [ADG23, Def. 3]

Let F be a set of finite patterns. The graph subshift forbidding F is

X = {Γ ∈ GC,D | ∀(F,L) ∈ F , (F,L) ̸⊑ Γ}

It is a graph subshift of finite type if F can be chosen finite.

We will give below a few examples of graph subshifts, and try to illustrate why we
needed to use prefix-stable languages in the definition of patterns and pattern avoidance.
Before that, we give a few equivalent definitions of a graph SFT. The first reformulation
is easy, and says that SFTs can be defined using allowed patterns instead of forbidden
patterns.

164 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

Proposition 4.23 [ADG23, Remark 4]

The following are equivalent:

1. X is a subshift of finite type on GC,D.

2. There exists a finite family of allowed patterns A such that

X =
{
Γ ∈ GC,D | ∀v ∈ V (Γ), ∃(A,L) ∈ A, (Γ, v)

∣∣
L = A

}

As the link between the language L and the graph F used to define a language-pattern
(F,L) might be hard to grasp, we give an equivalent and hopefully clearer definition of
subshifts, and a way to pass from one presentation to the other:

Definition 4.24: Annotated graph

An annotated graph is a graph Γ ∈ GC,D with a (partial) map A : V (Γ)×
D̄ → {required, forbidden}, where A(v, d) might be defined only if v is
not already adjacent to a d-edge in Γ.

Definition 4.25

Let ((G, v), A) be an annotated graph, and Γ ∈ GC,D. We say that
G appears in Γ in position u as an annotated graph if there exists an
injective graph morphism ϕ : (G, v) ↪→ (Γ, u) and furthermore, for all
(w, d) ∈ V (G)× D̄:

• If A(w, d) = required then ϕ(w) must be adjacent to some d-edge
in Γ.

• If A(w, d) = forbidden then ϕ(w) must not be adjacent to a d-edge
in Γ.

Proposition 4.26

For any finite pattern (F,L), there exists a finite annotated graph (F ′, A)
such that for any Γ ∈ GC,D, (F,L) ⊑ Γ if and only if (F ′, A) appears in Γ
as an annotated graph.

Proof. Let (F,L) be a finite pattern. Suppose that it is reduced, that is, L is such that for
D = (D1, . . . , Dn) ∈ L, we have path(F,u)(D1, . . . , Dn−1) ∈ V (F). We define an annotation
function A on F . Let D ∈ L be such that D = (D1, . . . , Dn) is not a valid path address
in (F, u). Noting D′ = (D1, . . . , Dn−1), this means that w = path(F,u)(D

′) is not adjacent
to an edge with direction Dn ∈ D̄. For all such pairs (w,Dn), set A(w,Dn) = forbidden.
We claim that (F,L) ⊑ Γ if and only if Γ contains (F,A) as an annotated graph.

Suppose that (Γ, v)|L = F . Then, for any D = D′ ·Dn ∈ L, if D is not a valid path
address for (Γ, v), then D′ is a valid path address as we assumed that (F,L) is reduced,
and by construction A(path(F,u)(D

′), Dn) = forbidden. Moreover, (Γ, u)|L = F implies
that path(Γ,v)(D

′) is not adjacent to a Dn-edge. Therefore, (F,A) appears in Γ as an

4.3. GRAPH SUBSHIFTS 165

annotated graph.
On the other hand, suppose that ((F, u), A) appears in Γ in position v. In particular,

there is a injective graph morphism ϕ : F ↪→ Γ sending u to v. Let D = D′ ·Dn ∈ L. As L
is reduced, path(F,u)(D′) is a valid path address, and so w = path(Γ,v) is also a valid path
address. Now, for any direction d, if A(path(F,u)(D′), d) = forbidden, we know that w is
not adjacent to any d-edge in Γ. In particular, path(Γ,v)(D) is not a valid path address,
and therefore we have (Γ, v)|L = F .

As an immediate corollary, we get:

Corollary 4.27

The following are equivalent:

• X is a graph subshift of finite type.

• There exists a finite family of annotated patterns F such that

X =
{
Γ ∈ GC,D | ∀v ∈ V (Γ),∃(F,A) ∈ F , (Γ, v)

∣∣
L = (F,A)

}

In particular, we can define graph subshifts in a more informal way, talking about edges
or vertices forcing or preventing some other edges of vertices from appearing.

We also define an operation on graphs and their subgraphs, which will be useful to
define patterns in a clearer way later on:

Definition 4.28

Let G be an induced subgraph of some Γ ∈ GC,D. We define AnnotΓ(G)
the annotated graph (G,A), where A is the following annotation function.
For any v ∈ G and d ∈ D̄ such that v is not adjacent to a d-edge in G,

• If v is adjacent to a d-edge in Γ, set A(v, d) = required.

• Otherwise, set A(v, d) = forbidden.

The next lemma shows that it is not abusive those spaces subshifts, as they satisfy
the same topological conditions than what we usually call subshifts on Zd or on arbitrary
groups:

Lemma 4.29

For any finite alphabet A and family F , the subshift XF is closed for the
topology induced by d, and invariant by any σd, d ∈ D.

Proof. The shift invariance is clear from the definition: the fact that no graph H ∈ F
appears as a subgraph of (Γ, u) does not depend on the base point u. It is also closed
for the same reason that Zd subshifts are closed: let (Γi, ui)i∈N be a converging sequence
of pointed graphs of XF , with limit (Γ, u) ∈ GA,D. Suppose that there is some H ∈ F
such that H ⊑ Γ, and let then r be large enough so that Br((Γ, u)) contains H. Then, by
definition of (Γ, u), there exists n so that Br(Γn, un) = Br((Γ, u)). In particular, H ⊑ Γn,
which is a contradiction.

166 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

We stop here for now our discussion about graph subshifts, and turn to the second
major component object of this chapter, namely substitutions.

4.3.4 Substitutive graphs and Lindenmayer systems

The presentation adopted here for substitutions is the one of [Kna24], and is based on
Lindenmayer systems. The goal of this section is not to make an overview of the rich liter-
ature about Lindenmayer systems, but to present this specific new and general framework,
encompassing other graph-rewriting systems, and show how the subshifts defined on this
kind of graph exhibit strong similarities with the more classical definition of substitutive
subshifts exposed in Section 4.1 and Section 4.2.3. In particular, we will show that in
some cases, the graphs generated by this kind of Lindenmayer system can be viewed as
particular cases of graph subshifts as defined in Section 4.3.2.

Substitutions will be denoted s. As before, we consider graphs with labels on their
vertices and edges, respectively in Cs and Ds, and that edges are oriented. We distinguish
a special vertex type, called the axiom of s and denoted by •s ∈ Cs. We also identify this
type with the graph containing a single vertex of type •s and no edges.

We now explain how one defines a substitution operation on graphs. The general idea
is that vertices are to be replaced by disjoint graphs, depending only on the type of the
vertex; and edges between two vertices u, v are to be replaced by a set of edges between
the two graphs obtained by substituting u and v independently, where this set depends
only on the direction of the edge and on the types of its endpoints u and v.

Definition 4.30: Vertex substitution

A vertex substitution is a set of pairs, or rules, (v,G) where v ∈ C and
G ∈ GC,D. We also denote v ⇝ G the pair (v,G). If for all v ∈ C there is
a single G ∈ GC,D such that v ⇝ G, we say that this vertex substitution is
vertex deterministic.

Definition 4.31: Edge substitution

An edge substitution is a set of rules of the form ((u ⇝ Gu, d, v ⇝
Gv),E), where:

• u⇝ Gu and v ⇝ Gv are vertex substitution rules

• d ∈ D is a direction

• E ⊆ V (Gu) × V (Gv) × D̄, is to be viewed as a set of labeled edges
between Gu and Gv, both orientations being possible.

We denote this rule by (u ⇝ Gu)
d−→ (v ⇝ Gv) ⇝ E. If for all pairs of

vertex rules P1, P2 and direction d, there is a single edge substitution rule
P1

d−→ P2 ⇝ E, we say that this substitution is edge deterministic.

Notation. We use a few notations to lighten the presentation:

• We note sV the multi-valued map C ⇒ GC,D such that v ⇝ sV (v) is a vertex substi-
tution rule. We call left-hand side and right-hand side of this rule respectively v and
sV (v).

4.3. GRAPH SUBSHIFTS 167

• We note sE the multi-valued map such that P1
d−→ P2 ⇝ sE(P1, P2, d) is an edge

substitution rule. We call left-hand side and right-hand side of this rule respectively
P1

d−→ P2 and sE(P1, P2, d).

• If the substitutions is vertex deterministic, we write sE(u, v, d) for sE((u⇝ sV (u)), (v ⇝
sV (v)), d). If furthermore there is a single vertex type, |C| = 1, then we write sE(d).

In order to simplify the exposition, we will assume from now on that the right-hand
side of the vertex rules are always graphs with no non-trivial automorphism. This will
be useful to explain how the edges E,E′ arising from substituting two intersecting edges,
(u ⇝ Gu)

d−→ (v ⇝ Gv) ⇝ E and (u ⇝ Gu)
d′−→ (v′ ⇝ Gv′) ⇝ E′, are to be chosen

consistently and without ambiguity in the graph Gu originating from the substitution of
u. Another solution, chosen in [Kna24], is to work with concrete graphs, with vertices being
subsets of a fixed universe. One can then without ambiguity refer to particular vertices, and
“forget” the concrete labeling later on. In practical cases, this will not make a difference
for us. In particular, this is not in contradiction with e.g. the case of substitutions in
Z2. Indeed, although substitutions defined in Section 4.2.1 use squares as supports, which
clearly have automorphisms such as rotations and reflections, the substitutions themselves
are not defined up to rotation: in a sense, every point in the square can tell apart its up
neighbour from its right one: in order to model Z2 substitutions in this framework, we
would need to use edge directions (typically up and right), see for example Figure 4.10
for a variant on the usual Z2 substitution which uses more than those two directions.

We are ready to give the definition of a graph substitution. This is a restriction
of a slightly more general class, known as “0L graph grammars” – the “L” stands for
Lindenmayer, and the 0 indicates that the substitution rule is context-free, in other words,
vertices and edges are all substituted independently. In all the statement and unless
specified otherwise, we do not assume that substitutions are vertex or edge deterministic.
However, in order to lighten the notations, we might sometimes talk about “the” image of
some vertex or graph by s and state properties about it. In that case, the statement must
be understood as a universal quantification, and what we really mean is that any such
graph satisfies the property:

Definition 4.32: Graph substitution [Kna24]

A graph substitution s on GC,D is a triplet (sV , sE , •s), such that:

• For all G ∈ sV (C), G admits no-non trivial automorphism and is
connected.

• For every edge substitution E = sE(c⇝ Gc, c
′ ⇝ Gc′ , d), the vertices

πV (Gc)×D(E) only depend on d and c ⇝ Gc, and πV (Gc′)×D(E) only
depend on d and c′ ⇝ Gc′ .

• For any c, c1 ̸= c2 ∈ C, d, d1 ̸= d2 ∈ D, any vertex rule c ⇝ G, c1 ⇝

G1, c2 ⇝ G2, any u ∈ V (G), and any edge rule (c ⇝ G)
d1−→ (c1 ⇝

G1)⇝ E1, (c⇝ G)
d2−→ (c2 ⇝ G2)⇝ E2, there is at most one d-edge

adjacent to u in all of G, E1, and E2.

• For any edge c ⇝ Gc, c
′ ⇝ Gc′ , d ∈ D, there is an edge substitution

rule (c⇝ Gc)
d−→ (c′ ⇝ Gc′)⇝ E.

168 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

The second item means that in some sense, each edge could be cut in two, and substi-
tuted separately on both ends. In the case of a single image in each sE , that is, sE is a
deterministic map, this would correspond in the language of [Kna24] to a slight restriction
of complete eD0L grammars, but we do not need to restrict ourselves to edge-deterministic
graph substitutions. The consequence is that in the proof of Mozes theorem, instead of
being able to hardcode some value, we will need to perform extra checks which roughly
correspond to the finite state automaton constructed in e.g. [Goo98, Section 1.2]. The
lengthy third condition ensures that we can always compute the image of a graph, as a
consequence of Lemma 4.36, as will be shown below. For now, we still need to explain how
to actually use those graph substitutions to substitute a graph.

In fact, in most of our examples, the substitution will indeed be edge-deterministic.
We first give an example of a classical graph substitution in Figure 4.6, called the

Sierpinski triangle graph substitution. This example is an easy one, as it has a single
vertex type (and therefore Cs = {•s}) and is completely deterministic with a single edge
per edge substitution. In our figures, we will usually represent the type of a vertex by a
geometrical shape, and the type of an edge by its colour.

1 2

3

u v

u

v

u

v

u1 u2

u3

v1 v2

v3

sE

u1 u2

u3

v1 v2

v3

sE

u1 u2

u3

v1 v2

v3

sE

u11 u12

u13

u21 u22

u23

u31 u32

u33

Figure 4.6: Example of the Sierpinski triangle graph substitution

The third sub-figure of Figure 4.6 shows an additional iteration of the substitution,
which we have not yet defined. Hopefully, one gets from this picture an intuitive idea of
the “semantics” of graph substitutions. We now properly define what it means to apply a
substitution s to a graph, and how we can then iterate to define sn for n > 0.

Definition 4.33: Substitution application

Let Γ = (V,E, λV , λE) ∈ GC,D and s = (sV , sE , •s) be a graph substitution on GC,D.
We define the graph Γ′ = (V ′, E′, λV ′ , λE′) = s(Γ) as follows:

4.3. GRAPH SUBSHIFTS 169

• V ′ =
⊔
v∈V V (sV (λV (v)))

• E′ =
⊔

v∈V
E(sV (λV (v)))

⊔
⊔

((u,v),d)∈E

{
x

d′−→ y | (x, y, d′) ∈ sE(u, v, d)
}

• λV ′ , λE′ are inherited from the labeling obtained from the choices of rules
made for sV and sE .

We note Γ ⇝ Γ′ to denote the fact that Γ′ is obtained from Γ by applying the sub-
stitution rule. Moreover, as the substitution is computed by replacing independently each
vertex and adding edges between the resulting graphs using sE , for u ∈ V (Γ), assuming
Γ′ has no automorphisms, we can refer to the subgraph sV (u) ⊑ Γ′.

In the definition of the edge set of s(Γ), we can distinguish two parts:

• The first set corresponds to the edges of the graphs obtained by substituting the
vertices V (Γ). Following the terminology of [Kna24], we call those edges innate.

• The second set of edges corresponds to the ones obtained from substituting an edge
u

d−→ v already present in Γ. Those edges are called inherited.

As an easy lemma, we have the following result:

Lemma 4.34: Increasing substitutions

Let G ∈ GC,D be a finite graph and s a graph substitution on GC,D. Then
|V (G)| < |V (s(G))|.

Proof. This is simply a consequence of Definition 4.32: as the substitution is applied
separately on each vertex, we have |V (s(G))| = ∑

v∈V (G)|sV (λV (v))|. But by definition,
the image of a vertex cannot be reduced to a single vertex.

Corollary 4.35

Let G ∈ GC,D be a finite graph, s a graph substitution on GC,D, and u, v ∈
V (G). Denote G′ = s(G). Then, for any u′ ∈ sV (u) ⊑ G′, v′ ∈ sV (v) ⊑ G′,
we have dG′(u′, v′) ≥ dG(u, v).

An important consequence of Definition 4.32 is that those substitutions can be iterated.
This is an immediate consequence of the following lemma:

Lemma 4.36: Local finiteness

For any Γ ∈ GC,D, d ∈ D and any vertex u ∈ V (s(Γ)), u is adjacent to
at most one incoming edge with direction d, and to at most one outgoing
edge with direction d. In particular, s(Γ) ∈ GC,D.

170 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

Proof. Let v ∈ Γ and consider a vertex u ∈ sV (v) ⊑ V (s(Γ)). Then u is adjacent to two
types of edges: inherited edges, coming from edge substitution of an edge (v, w) ∈ E(Γ),
and innate edges in E(s(v)). We explicitly required in Definition 4.32 that edge substitution
rules could never add an inherited edge with the same direction as an already-existing
innate edge, and moreover, no two inherited edges adjacent to a given vertex u could
arise from the substitution of edges with distinct directions d, d′. In particular, as v is
adjacent to at most one edge of each direction and orientation, this property is preserved
for u ∈ sV (v).

Corollary 4.37: Substitution iteration

For any graph substitution s over GC,D, and any graph Γ ∈ GC,D, the graphs
(sn(Γ))n≥0 are well-defined and all in GC,D.

We also provide another point of view on graph substitutions, using annotated graphs
(see Definition 4.24):

Definition 4.38

Let s = (sV , sE , •s) be a graph substitution on GC,D. We define the associ-
ated annotated graph substitution sA, the map sending an annotated
graph (Γ = (V,E, λV , λE), A) to the graph (G′, E′, λ′V , λ

′
E , A

′) defined by:

• (G′, E′, λ′V , λ
′
E) = s(Γ), that is, we apply s as usual on the non-

annotated graph.

• For v ∈ V (Γ), d ∈ D̄ with sV (v) = G ⊑ Γ′, if A(v, d) = required

then for any edge (e = (v′,_, d′)) ∈ sE(v ⇝ G,_, d) we set
A′(v′, d′) = required.

The map sA is well-defined: indeed, by Definition 4.32, if e is an edge adjacent to v,
the endpoints and direction of the edges obtained by substituting e adjacent to s(v) do not
depend on the other endpoint of e. In particular, we can substitute an “annotated edge”.

Skeletons, borders, meta-tiles

In order to prove our variant of Mozes theorem, we will follow the general strategy of
e.g. [Moz89], [Goo98] or [FO10]: we partition the edges of the meta-tiles in two sets,
that we call, in accordance with [BS16], borders and skeletons. Skeletons are used to
synchronize the information between the siblings in a common meta-tile, while borders
will be part of higher-level skeletons. If the graphs are sufficiently connected, and if the
skeletons and borders are well-defined, each edge will be used to synchronize a finite number
of meta-tiles and a fixed-point argument then shows that the entire tilings must obey the
recursive structure given by the substitution.

Definition 4.39: Skeletons and borders

For each derivation rule of the form c⇝ Γ′ ⇝ Γ:

• For each v ∈ Γ′, fix an arbitrary vertex meta(v) =

4.3. GRAPH SUBSHIFTS 171

meta(v,Γ′, sV (v)) ∈ sV (v) ⊑ Γ, depending only on Γ′, sV (v) but
not on the entire Γ.

• For each edge e = (v, v′) ∈ Γ′, fix an arbitrary simple path
meta(e) = meta(e,Γ′, sE(e)) ⊂ E(Γ) from meta(v) to meta(v′), such
that meta(e)∩ sV (v) (resp. meta(e)∩ sV (v′)) depends only on v and
Γ′ (resp. v′ and Γ′).

We then call border of this 2-derivation the set of paths Bc,Γ′,Γ =⋃
e∈E(Γ′)meta(e), and skeleton the graph obtained by deleting the edges

of Bc,Γ′,Γ from Γ,
Sc,Γ′,Γ = Γ \Bc,Γ′,Γ

We will simply write B,S in the case of a single vertex type, the axiom •s, and de-
terministic substitution. This is the case for the Sierpinski triangle of Figure 4.6 and the
weak-grid of Figure 4.7.

Figure 4.7 shows the skeleton of the weak-grid substitution. The border is obtained by
considering only the edges that do not belong to S.

s2(•s) =s(•s) =

0 21

6

5

3

4

Skeleton S
Border B
Meta-vertices

Figure 4.7: The 2-meta-tile, its skeleton S2 and its meta-vertices. Note that the dashed
edge (46, 35) does not belong to the skeleton, but to the border. Indeed, if we were to
consider this edge as part of the skeleton (this would require another definition than the
one given in Definition 4.39), this edge could then belong to infinitely many skeletons of
“higher-order meta-tiles”, which means that we would need graph subshifts with infinite
alphabets in our proof of Mozes theorem.

We also need the notion of facet. A facet will be the analogous of edges, for meta-tiles,
or more precisely the edges endpoints.

Definition 4.40: Facet

Let s be a graph substitution on GC,D, and c ⇝ G a vertex substitution
rule of s. Let (c⇝ G)

d−→ (c′ ⇝ G′)⇝ E be an edge substitution rule of s.

172 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

We call d-facet of G the set

Fd(G) = πV (G)(E)

the endpoints in G of inherited edges obtained from substituting d.

The facets are well-defined: indeed, by Definition 4.32, the set Fd(G) only depends on
c and d in the previous definition, and not on c′ or on the specific edge substitution rule.

Let G1, G2 ∈ GC,D be two finite graphs, such that (c ⇝ G)
d−→ (c′ ⇝ G′) ⇝ E is an

edge substitution rule, and Γ ∈ GC,D containing both G1 and G2. We say that G1 and
G2 match along a d-facet (in Γ) if the subgraph induced by Γ|G1∪G2

is isomorphic to

s(c
d−→ c′). For annotated graphs (G1, A1), (G2, A2), they match along their d-facet if any

edge e of s(c
d−→ c′) is either induced in Γ|G1∪G2

, or there exists v1 ∈ G1, v2 ∈ G2 such
that A1(v1, λE(e)) = A2(v2, λE(e)

−1) = required (that is, there are annotations on both
“sides” of the missing edge).

In order to see how facets relate to the previously defined skeletons and borders, we
need to impose some conditions on how we choose to determine a substitution’s skeleton.
Indeed, facets are well-defined for any substitution, but there are multiple options for
borders, and therefore skeletons.

Definition 4.41: Quasi-connected substitution

Let s be a graph substitution on GC,D. We say that it is quasi-connected
if we can define all the borders Bc,Γ′,Γ in such a way that:

• the skeleton Sc,Γ,Γ′ is a connected graph, up to the inherited edges.
That is, the union of Sc,Γ,Γ′ and all the inherited edges is a connected
subgraph of Γ.

• For any v ∈ V (Γ′), the skeleton intersects each G = sV (v) ⊑ Γ along
at least an edge.

• For any u, v ∈ E(Γ′), the border meta(e) ⊂ E(Γ) intersects sV (v) ⊑
Γ along at least an edge.

• For any edge substitution (c⇝ Γ′)
d−→ _⇝ E, for any v ∈ Fd(Γ′) and

(v
d′−→ _) ∈ E, for any G = sV (v), we have meta(v,Γ′, G)∩Fd′(G) ̸=

∅.

The last condition informally ensures that in any meta-tile Γn = sn(v) with Γ1 = s(v),
for each vi ∈ Γ1, we can uniquely identify a vertex whose neighbourhood in Γn “looks like”
the one of vi in Γ1. We give in Figure 4.8 an example of a choice of meta-vertices for which
the graph substitution does not respect the last condition of Definition 4.41.

The quasi-connectivity condition implies in particular that for any v′ ∈ V (Γ′) and any
direction d of an edge adjacent to v′ in Γ′, Fd(s(v′)) ∩ Sc,Γ′,Γ ̸= ∅. In Figure 4.7, this
quasi-connectivity property can be seen with the dashed edge, which form a connected
graph together with the plain red edges of the skeleton.

4.3. GRAPH SUBSHIFTS 173

c
d

v

∈ Fd(Γ
′)

Γ′ = s(c)

d′

meta(v,Γ′, G)
G = s(v)

Fd′(G)

...

. . .

Figure 4.8: An example of substitution, where the images of individual vertices are not
deterministic, which is not quasi-connected for this choice of meta-vertices.

Lemma 4.42

Let s be a quasi-connected substitution. Then for any derivation c⇝ Γ′ ⇝
Γ, and for any v ∈ V (Γ′), there exists u ∈ sV (v) ∩ Sc,Γ′,Γ ∩Bc,Γ′,Γ.

Proof. This is immediate by the definition of the skeleton: by definition, every edge of sV (v)
is either in the skeleton or in the border. There exists both an edge eB ∈ sV (v) ∩ Bc,Γ′,Γ

and eS ∈ sV (v)∩Sc,Γ′,Γ by quasi-connectivity, and so there must an edge with an endpoint
in both subgraphs, for otherwise they would be disconnected but sV (v) is connected.

The last point of Definition 4.41 will be useful for the following reason:

Lemma 4.43

Let s be a quasi-connected substitution on GC,D, and c d−→ c′ some edge for
c, c′ ∈ C, d ∈ D. Then, for any G = s2(c

d−→ c′), there exists meta-vertices
v ∈ s2(c) ⊑ G, v′ ∈ s2(c

′) ⊑ G, and an edge e′ = (v, v′).

Proof. Consider any edge e1 of direction d′ between v1 = s(c) and v2 = s(c′). It suffices
to consider the edge obtained in the last point of Definition 4.41 applied to (c⇝ s(c))

d−→
(c′ ⇝ s(c′)) and v1

d′−→ v2.

This might seem like a restrictive condition, but it is in fact satisfied in many cases.
We say that a graph G is k-vertex-connected (resp. k-edge connected) if for any vertices
v1, . . . , vk ∈ V (G) (resp. edges e1, . . . , ek ∈ E(G)), the graph G \ {v1, . . . , vk} remains
connected (resp. G \ {e1, . . . , ek} remains connected). It is easy to see that being k-vertex
connected implies being k-edge connected: intuitively, this is because it is “worse”, as far
as paths are concerned, to remove an entire vertex and therefore all its adjacent edges,
than simply removing a single edge.

While apparently not very restrictive for small values of k, this property implies strong
conditions on the structure of the graph:

174 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

Theorem 4.44: Menger Theorem

Let G be a k-edge-connected graph, and u, v ∈ V (G). Then there exists k
edge-disjoint paths between u and v.
If G is k-vertex-connected, and u, v are not adjacent, then there exist k
vertex-disjoint paths between u and v.

This property is in fact sufficient in numerous cases for a substitution to be quasi-
connected. More precisely:

Proposition 4.45

For any 2-vertex connected graph G, there exists an edge substitution sE
such that s = (sV : •s 7→ G, sE , {•s}) is quasi-connected.

Proof. For any edge (u, v) ∈ E(G), set sE(u
d−→ v) = (Gu ⊔ Gv ⊔ (v ∈ Gu, u ∈ Gv)), i.e.

replace the d-edge (u, v) by a d-edge from the copy of v in sV (u) to the copy of u in sE(v).
Defining the meta-vertices of Definition 4.39 as the vertices u ∈ sV (u) for all u ∈ V (G),
and the border by the set of edges (u, v) ∈ E(sV (u)) and the inherited edges, we now have
the conditions of Definition 4.41. Indeed, removing the single vertex meta(u) in sV (u)
does not disconnect the graph, which is 2-vertex-connected.

This is in general not the only way to define the edge substitution in order to obtain a
quasi-connected substitution. For example, Figure 4.9 shows a deterministic variant of the
grid substitution, which produces non-isomorphic graphs (for example, there exist adjacent
vertices of degree 3, which is not the case for the grid substitutions considered until here).

1 2

34

u v

u v

u

v

u1 u2

u3u4

v1 v2

v3v4

sE

u1 u2

u3u4

v1 v2

v3v4

sE

u1 u2

u3u4

v1 v2

v3v4

sE

u11 u12

u13u14

u21 u22

u23u24

u31 u32

u33u34

u41 u42

u43u44

Figure 4.9: A variant of the grid substitution: the last subfigure shows the skeleton, which
is connected up to the inherited dashed edges.

4.3. GRAPH SUBSHIFTS 175

It is in fact a subgraph of the dual graph of the (informally defined) substitution
pictured in Figure 4.10, where cells are considered adjacent if they share a vertex.

s−→ s−→

Figure 4.10: A substitution on Z2, a combinatorial version of which is presented in Fig-
ure 4.9

A more systematic study of this kind of constant-shape substitution, mainly from the
point of view of dynamical systems, can be found in [Cab23], where the author characterizes
many properties of such substitutive systems (directions of determinism, their periodicity
properties, algebraic representations ...).

Sheets and subgraphs

An unavoidable difficulty that we will encounter is that, using graph subshifts of finite
type, we are unable to distinguish between a graph and some of its quotients, in a sense
that can be made precise. Intuitively, as the graphs are only defined by forbidding (or
allowing) graphs smaller than a certain uniform size, whenever we follow a path p starting
from some vertex u ∈ V (Γ) which is longer than this bound, we cannot detect if p is a cycle
(and therefore path(Γ,u)(p) = u), or if it simply ends on a vertex whose neighbourhood is
the same as u’s. As we will not be studying Cayley graphs in the following sections, we
define a weaker notion than the quotient defined in [ADG23, Section 5], and work in a less
algebraic but more combinatorial setting. We define a notion of sheet, and of sheeted
graph: this is the kind of graph on which we will be able to ensure that the meta-Mozes
theorem (Chapter 4) holds, rather than precisely the substitutive graph subshifts defined
in Definition 4.50.

Definition 4.46: Sheet

Let Γ, G ∈ GC,D. We say that G contains a Γ-sheet at u ∈ V (G) if there
exists a connected subgraph H ⊑ G containing u, and ψ : H → Γ an
injective graph morphism, with ψ(V (H)) = V (Γ) and such that for any
u

d−→ v ∈ E(Γ), there exists ψ−1(u)
d−→ _ ∈ E(G) and _ d−→ ψ−1(v) ∈ E(G)

(but not necessarily in E(H)).
For a class G ⊂ GC,D, we say that G is G-sheeted if for any u ∈ V (G), there
exists Γ ∈ G such that G contains a Γ-sheet at u.

Another equivalent definition is given by the following proposition:

176 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

Proposition 4.47

G contains a Γ-sheet at u ∈ V (G) if and only if there exists a spanning
tree T ⊑ Γ and an injective morphism ϕ : T → G such that for u d−→ v ∈
E(Γ) \ E(T), ϕ(u) is adjacent to some edge with direction d in G.

Proof. Suppose that G contains a Γ sheet at some vertex u. Let H,ψ : H ↪→ Γ be as
in Definition 4.46. Then, let T ⊑ Γ be any spanning tree of ψ(H). It is clear that T
satisfies the required conditions.

For the other direction, suppose that we have T ⊑ Γ, ϕ : T ↪→ G as in Proposition 4.47.
Then H = ϕ−1(T), ψ : u = ϕ−1(v) 7→ v satisfy Definition 4.46.

This notion is weaker than the one of covering (see Definition 3.18 for a general def-
inition): indeed, if G is G-sheeted, although each vertex u ∈ G has to belong to some
sheet Γu, there is no reason for Γu,Γv ∈ G containing distinct u, v to be isomorphic. In
particular, we cannot always define a single morphism ψ∗ : G→ Γ, and there need not be a
global section. The condition that if u d−→ v ∈ E(Γ), there is an edge ψ−1(u)

d−→ _ ∈ E(G),
ensures that all the vertices of H have the same neighbourhoods in G as their image in
Γ. In particular, a graph G minus some of its edges cannot have a G-sheet. An exam-
ple of graph admitting (finite) sheets at every point which are all isomorphic is depicted
in Figure 4.11.

Figure 4.11: Part of a graph admitting a s2(•s)-sheet at every point, where s is the
Sierpinski substitution of Figure 4.6. An example of a sheet, represented as a spanning
tree of s2(•s), is represented on the right for the large purple vertex. The morphism is
shown as dashed black edges on the left picture.

We give another definition of sheets, using languages as in Definition 4.17. A Γ-sheet
in G can then be viewed as a way to consistently pick a path to each vertex of Γ from its
base-point, the sheet in G then being the subset of V (G) reached by following these paths.

4.3. GRAPH SUBSHIFTS 177

Lemma 4.48: Sheets and languages

Let Γ, G ∈ GC,D be two pointed graphs, u ∈ V (G). Then, G contains a Γ-
sheet at u if and only if there exists a prefix-stable language L ⊆ Paths(Γ),
such that:

• For any v ∈ Γ, there exists p ∈ L such that pathΓ(p) = v.

• For each path p ∈ L and pathΓ(p)
d−→ _ ∈ E(Γ), there exists an edge

pathG(p)
d−→ _ ∈ E(G).

• For p1, p2 ∈ L, p1 is a valid path in (G, u) and pathΓ(p1) =
pathΓ(p2) ⇐⇒ pathG(p1) = pathG(p2)

• For any p = p′ · d ∈ L with d ∈ D̄, λV (pathG(p)) = λV (pathΓ(p))
and λE(pathG(p′),pathG(p)) = λE(pathΓ(p

′), pathΓ(p)).

Proof. Suppose that G contains a Γ-sheet H at u, with ψ : H ↪→ Γ the corresponding
injective morphism. Let L = Paths(H,u), and let p = p′ · d ∈ L. Let e ∈ E(H) =
(pathH(p

′),pathH(p)). Then, as ψ is a morphism, we immediately have λV (pathG(p)) =
λV (pathΓ(p)) and λE(e) = λE(pathΓ(p

′),pathΓ(p)). For p1, p2 ∈ L such that pathΓ(p1) =
pathΓ(p2), as ψ is injective we also have pathH(p1) = pathH(p2). Let now v ∈ V (Γ). As
ψ(V (H)) = V (G) by definition of a sheet, there exists v′ ∈ H with ψ(v′) = v. Pick any
path p such that pathH(p) = v′. Then by the previous point we have pathΓ(p) = v.

For the other direction, suppose that we have a prefix-stable language L satisfying the
properties of Lemma 4.48. Let H ⊑ G be the graph:

• V (H) = {pathG(p), p ∈ L}

• E(H) = {(pathG(p′),pathG(p)) ∈ V (H)2, p = p′ · d ∈ L, d ∈ D̄}

Then we claim that H is a Γ-sheet containing u. We define the morpsism ψ as
ψ(pathH(p)) = pathΓ(p). We first need to show that ψ is well-defined, that is, it does not
depend on the path p chosen to describe a vertex v ∈ H. Let then p, p′ ∈ L be such that
pathH(p) = pathH(p

′). By definition of H, if p is a valid path in H, it is also valid in
Γ. By assumption on L, we have pathΓ(p) = pathΓ(p

′). Injectivity and vertex-surjectivity
follow.

This is where the geometry, that we conveniently removed from the picture when
defining substitutions in Definition 4.32, can help us in some cases. This is for example the
case if we are studying the substitutions as defined by [BS16] and presented in Section 4.2.3:
indeed, the fact that they are defined on the Z2 grid effectively means that for many
properties P , in a Z2 graph G where all sheets satisfy P , there will in fact be a single sheet
and so the graph G itself satisfies P due to the geometry of Z2. In the formalism of [BS16],
this can be seen as the fact that the structure of the substitution is given by a binary,
rectangular substitution over Z2 (which happens to be sofic by the classical Theorem 4.3),
and then proving that substitutive subshifts defined using this structure are “sofic” in a
stronger sense, relative to this structure, without referring to the “soficity” of the structure
itself. This is akin to studying the properties of a single sheet, itself belonging to a graph
on which we cannot guarantee global properties.

178 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

4.3.5 Sofic graphs and coloured substitutions

Coloured substitutions on graphs

The previous results showed how the substitutive graphs could be recursively decomposed
in meta-tiles, in which one can define several objects, such as the skeletons of these meta-
tiles, that admit nice recursive properties. In this sections, we explain how one can adapt
the usual notions of symbolic dynamics to the case of graph colourings, and how we can
use the notion of substitutive graphs to define substitutive subshifts, as well as subshifts
of finite type. For now, let us focus on the definition of a coloured substitution:

Definition 4.49: Coloured graph substitution

Let A be a finite alphabet of colours, and s = (sV , sE , •s) a graph sub-
stitution on some class of graphs GC,D. A coloured graph substitution
based on s is a graph substitution ŝ on GC×A,D such that πC ◦ ŝ = s ◦ πC .
In other words, for any u ∈ C × A, πC(ŝV (Gu)) = sV (πC(Gu))

This definition can be understood as follows: the vertices’ labels of a coloured graph
substitution can be decomposed in two parts, a “structural” part and a “colour” part.
The structural part of the image of any vertex by the substitution only depends on the
structural part of the vertex, while the colours in the image also depend on the original
colour.

As before, this definition relies on the absence of non-trivial automorphisms of G: the
colouring of the vertices is not ambiguous, and so we can iterate the coloured substitu-
tions just as we did for the purely combinatorial ones: a coloured substitution is a graph
substitution, and so all the definitions and propositions of Section 4.3.4 still apply.

We can now define the set of all the substitutive colourings associated to a coloured
substitution sc using annotated graphs (see Definition 4.28):

Definition 4.50: Substitutive subshift

Let A be a finite alphabet of colours, s = (sV , sE , •s) a graph substitution on some
class of graphs GC,D, and sc a coloured graph substitution on GC×A,D based on s.
We define:

Xsc =
{
x ∈ GC×A,D

∣∣∀G ⊑ x,∃ca ∈ C × A, n ≥ 0,Γ ⊑ snc (ca),

G = Annotsn+1
c (ca)

(Γ)
}

X∞
sc = {x ∈ GC×A,D | ∀n ≥ 0, ∃yn ∈ GC×A,D, x ≃ snc (yn)}

Note that in the definition of X∞
sc , we do not care about the base point of x or its

preimages yn by snc : this is the same condition as the one given in Definition 4.2, in which
we consider the orbits of the points admitting arbitrarily many preimages to define X∞

s .
There is a subtlety in our definition of Xsc : for an arbitrary subgraph G ⊑ x, the

natural restriction would be to require that there exists ca, n,Γ with G ⊑ Γ, or even
Γ|Paths(G) = G. As discussed in Section 4.3.3, such a definition is not always satisfying.
In that case, this would in fact mean that all the finite subgraphs of all the graphs of snc

4.3. GRAPH SUBSHIFTS 179

would be in the subshift Xsc . This is not a suitable property, and is more an artifact of the
structure at hand. In particular, this behaviour does not occur when considering Cayley
graphs of groups. The problem is not solved by requiring x to be infinite: for example,
when considering the Z2 grid, the infinite line isomorphic to Z would also have all its finite
subgraphs contained in some iteration of sc.

Note that for a given substitution s, there might exist several non-isomorphic infinite
substitutive graphs in the subshift, even when considering isomorphism of non-pointed
graphs. Moreover, even if all the meta-tiles Gn admitted no non-trivial automorphisms, it
is possible that the points of a substitutive graph subshift do admit some.

Proposition 4.51

For any graph substitution s, we have Xs ⊆ X∞
s .

Proof. Let (x, u) ∈ Xs be a pointed substitutive graph for s and N ∈ N. We construct a
graph y such that sN (y) ≃ x.

For n ≥ 0, let f(n) be such that Bn(x) ⊑ sf(n)(ca,n) for some ca ∈ C × A. More
precisely, let (Γn, un) ⊑ sf(n)(ca,n) be such that Bn(x, u) = (Γn, un). Up to extracting, as
C × A is finite, we can suppose that (ca,n)n∈N is constant equal to some ca. For n large
enough, let vn ∈ V (sf(n)−N (ca)) be such that un ∈ V (sNV (vn)) ⊑ sf(n)(ca). Said differently,
we set vn the specific vertex of the Nth preimage of sf(n)(ca) whose substitution generates
the graph containing un, the base point of Γn in sf(n)(ca).

Let yn = s
f(n)−N
V (ca). We have by construction BM (sN (yn, vn)) ≃ BM (x, u), and by

compactness, (yn, vn) converges to some graph y ∈ GC×A,D. Up to another extraction, we
can assume that Bn(y) = Bn(yn) for all n. We claim that y satisfies the required properties.

To show this, fix M ∈ N, and show that BM (sN (y)) ≃ BM (x). By definition,
BM (x, u) ≃ BM (sN (yM), uM), and as BM (yM) = BM (y), we have BM (s(yM)) = BM (s(y))
and therefore BM (x) ⊑ BM (sN (ym)) = BM (sN (y)).

The following corollary derives immediately from Proposition 4.51 and Lemma 4.34:

Corollary 4.52

For any graph substitution s, Xs contains no finite graph.

Sofic graph subshifts

Just as we were able to generalize the class of SFTs over Zd by considering their images by
factor maps, we can do the same thing for graph subshifts. Our definition will conceptually
only be meaningful for coloured graph substitutions: the factor maps will recolour the
vertices, but will not modify the underlying graph structure.

Definition 4.53: Graph factor map

Fix some class of graphs GC,D, A,B finite alphabets and r ≥ 0. A (graph)
block map of radius r is a map ϕ : Br(GC×B,D)→ A.
A factor map of radius r is a map Φ: GC×B,D → GC×A,D, such that there
exists a block map ϕ : Br(GC×B,D)→ A, such that for any x ∈ GC×B,D:

180 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

• πC(x) = πC(Φ(x)) as pointed graphs in GC,D.

• ∀D,πA(pathΦ(x)(D)) = ϕ(Br(σD(x)))

In other words, the colour of the point at position D in the image of x depends only
on the r-ball around the position D in x, and the graph structure is unchanged. We can
think of Φ as recolouring the “colour” part of the vertices’ type, according to some sliding
window of finite radius around the vertex being considered.

This corresponds to the usual definition of factor map. Indeed, we have an equivalent of
the Curtis-Hedlund-Lyndon theorem. We say that a map Φ: GC,D → GC,D is shift-invariant
if for all (Γ, basepoint(Γ)) ∈ GC,D and d ∈ D̄, d ∈ Paths(Γ, basepoint(Γ)) ⇐⇒ d ∈
Paths(Φ(Γ),basepoint(Φ(Γ))), and Φ(σd(Γ,basepoint(Γ))) = σd(Φ(Γ),basepoint(Φ(Γ))).

Proposition 4.54

Factor maps are exactly the shift-invariant continuous maps on GC,D.

Proof. The proof is the same as in the case of tilings on groups, see for example [CC10],
or more simply Section 1.1.2.

Definition 4.55: Sofic graph subshift

Let X ∈ GC×A,D be a graph subshift. We say that X is a sofic graph
subshift if there exists Y ⊂ GC×B,D a graph SFT and Φ: GC×B,D → GC×A,D
a factor map such that X = Φ(Y).

This is the usual definition of sofic subshifts, given our definition of factor map.

Example 15. Define the sunny-side up subshift on some class G ⊆ GC,D the subshift
X ⊂ GC×{0,1},D such that πC(X) = G and for x ∈ X, there is at most one vertex of x with
type in C × {1}.

Let D = {a}, c = {•}, and A = {0, 1},B = {1, 0L, 0R}. We define an SFT Y in
GC×B,D by requiring that:

• every vertex is adjacent to two non-loop edges a and a−1.

• every 0 or 1R vertex is connected via its a-edge to a 0R vertex

• every 0 or 1L vertex is connected via its a−1-edge to a 0L vertex.

The first condition ensures that the valid graphs are either isomorphic to Z or to some
cycle, when only looking at their projection onto C. Then, for x ∈ X:

• If it contains a vertex of type (•, 1), then it must only see vertices of type (•, 0R)
when following the a-edges, and (•, 0L) when following the a−1-edges; in particular,
the graph cannot be a cycle.

• Otherwise, it is a monochromatic configuration, and the graph can be a cycle.

The block map ϕ : 1→ 1, 0L → 0, 0R → 0 then sends Y to a sunny side-up subshift.

4.4. AN EQUIVALENT TO MOZES THEOREM 181

4.4 An equivalent to Mozes theorem

4.4.1 Self-simulation in graphs

The goal of this section is to prove the main theorem of this chapter:

Theorem: Mozes theorem - graphs

Let s be a graph substitution, and sc a coloured s-substitution. Suppose
that s is quasi-connected. Then, there exists a sofic graph subshift Ysc
which is X∞

sc -sheeted and contains X∞
sc .

In order to prove this result, we roughly follow the proof of [FO10], although we need
to make some modifications as our notions of skeleton and border are slightly different and
satisfy other conditions than the networks and facets used in this article. The general idea
is as follows:

• We define a notion of s-simulation, and an associated property of being a self-
simulating graph subshift. This property consists of a few conditions which ensure
that any valid configuration of a subshift can be “desubstituted” infinitely many times
by s.

• For a sufficiently nice graph substitution s, we construct a set of coloured graphs
which generate a self-simulating graph subshift.

• A few lemmas then show that up to decorations, the graph subshifts associated to
them are in fact exactly the s-substitutive graph subshifts.

Definition 4.56: Annotated partition

Let Γ = (V,E,A) ∈ GC,D be an annotated graph. An annotated par-
tition of Γ is a family of annotated graphs (Gi = (Vi, Ei, Ai))i∈I such
that:

•
⊔
i∈I Vi = V

• For any edge e ∈ E of direction d ∈ D̄, either there exists a unique i ∈
I such that e ∈ Ei, or there exists distinct i, j ∈ I and vi ∈ Vi, vj ∈ Vj
such that Ai(vi, d) = Aj(vj , d

−1) = required and e = vi
d−→ vj .

• For any direction d ∈ D̄ and v ∈ V , if A(v, d) is defined then there
exists a unique i ∈ I and vi ∈ Vi such that Ai(vi, d) is defined and
Ai(vi, d) = A(v, d).

We say that a (possibly annotated) pointed graph (G, u) is a nearest-neighbour
annotated graph if contains a single vertex u, and possibly some annotations. In the
following lemma, for a family of graphs M, we denote XM the subshifts whose allowed
patterns areM.

182 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

Definition 4.57: Self-simulation [FO10, Def. 4.1]

Let s be a graph substitution on GC,D, let A be a finite alphabet, and let
X be a subshift of GC×A,D. Let λV be the usual vertex-labeling map.
We say that X is s-self-simulating if there existsM,M′ finite sets of fi-
nite annotated graphs of GC×A,D, whereM contains only nearest-neighbour
annotated graphs, and a ϕ :M′ →M such that:

1. For any G′ ∈ M′, there is a graph G ∈ M such that s(πC(G)) =
πC(ϕ(G

′)).

2. X = XM ⊆ XM′ .

3. For x ∈ XM′ , there exists an annotated partition (Γi =
(Vi, Ei, Ai))i∈I of x such that for all i, j ∈ I:

• πC(Γi) is isomorphic to some G′
k ∈M′.

• Γi,Γj match along their facet d if and only if ϕ(Γi), ϕ(Γj) anno-
tations respectively require an edge in direction d, d−1.

We briefly explain the idea behind the definition:

• M,M′ are to be thought of respectively as vertices and their image by s, with some
of their neighbours.

• The first point ensures that the elements ofM′ do in fact contain meta-tiles of s, up
to the decorations.

• The second point ensures that a tiling which is “locally valid for M” enforces the
structure one step further for s, that is, it is also a valid tiling by the meta-tiles of
M′.

• The third point ensures that this tiling can be desubstituted.

This property of self-simulation is somewhat harder to define in the case of graph
subshifts, compared to the original case of planar geometric tilings studied in [FO10].
Indeed, the difficulty here is that we do not have a fixed “geometry” at all: the underlying
structure is GC×A,D, and so it is less obvious what we mean by “valid tiling” for some set
of tiles, and what we really need to specify as matching conditions. In particular, the
third condition ensures that the familyM′ is not arbitrary, and actually induces a proper
decomposition of the tilings of XM′ . We can adapt this key proposition of [FO10]:

Proposition 4.58: Self-simulation [FO10, Prop 4.2]

If X is s-self-simulating, then πC(X) ⊆ X∞
s .

Proof. Let x ∈ X. By Definition 4.57, Item 2, we know that x ∈ XM′ . Let (Γi)i∈I be the
graphs obtained by Definition 4.57, Item 3. Consider the following graph y:

• Its vertices are {vi, i ∈ I}, with vi being the of the type of the only vertex of πC(ϕ(Γi))
according to Item 1 of Definition 4.57.

• There is an edge vi
d−→ vj if and only Γi and Γj match along their facets d and d−1

respectively.

4.4. AN EQUIVALENT TO MOZES THEOREM 183

By construction, y ∈ XM = X. Indeed, all the vertices u ∈ y are adjacent exactly
to their required neighbours, thanks to Definition 4.57, Item 3, which enforces it at the
level of the Γis. Repeating the argument, we obtain by induction an infinite sequence
(yn) ∈ X−N with y0 = x such that s(yn) ≃ yn+1, and so x ∈ X∞

s .

Note that in the original setting of [FO10], there is an additional condition on s, which
ensures that we can always construct a pre-image of a “valid tiling by meta-tiles”. Said
differently, there are additional conditions to ensure that a tiling that can be locally de-
substituted produces a valid pre-image when de-substituting independently all the meta-
tiles. This condition is not required here: the original need for it is to prevent some
geometric obstructions to taking a pre-image of the entire tiling by meta-tiles; in our case,
our only “geometric” condition is for graphs to satisfy a local finiteness condition expressed
in Lemma 4.36: it is here a consequence of meta-tiles matching along facets. However, in
all generality, we cannot construct M,M′ satisfying Definition 4.57 for a graph subshift
Xsc , for reasons highlighted in Section 4.3.4. We therefore need a weaker version of the
definition, and consequently, of Proposition 4.58.

Definition 4.59: Sheeted self-simulation

Let s, X, M,M′ and ϕ be as in Definition 4.57. We say that X is s-
sheeted self-simulating if:

1. For any G′ ∈ M′, there is a graph G ∈ M such that s(πC(G)) =
πC(ϕ(G

′)).

2. XM is XM′-sheeted.

3. For x ∈ XM′ , there exists an annotated partition (Γi =
(Vi, Ei, Ai))i∈I of x such that for all i, j ∈ I:

• πC(Γi) is G′
k-sheeted for some G′

k ∈M′.

• Γi,Γj match along their facet d if and only if ϕ(Γi), ϕ(Γj) anno-
tations respectively require an edge in direction d, d−1.

Proposition 4.60

If X is s-sheeted self-simulating, then πC(X) is X∞
sc -sheeted.

Proof. Let X be a s-sheeted self-simulating graph subshift, and let then M,M′, ϕ be as
in Definition 4.59. Let x ∈ X = XM, and let u ∈ V (x). Our goal is to construct a y-sheet
at u for some y ∈ X∞

sc , that is, a subgraph z ⊑ x and a morphism ϕ : z → y satisfying a
few conditions.

We know that X is XM′-sheeted, so there exists u ∈ z0 ⊑ x and ψ0 : z0 ↪→ y0 an
injective vertex-surjective morphism for some y0 ∈ XM′ by Definition 4.46. As in the
proof of Proposition 4.58, we can define another graph x1 ∈ XM using ϕ, such that
s(x1) ≃ y1. Repeating the argument with y1, we obtain inductively an infinite sequence

x = x0 ⊑z0 ψ0−→ y0
ϕ−→ x1 ⊑z1 ψ1−→ y1

ϕ−→ x2 . . .

where the zis are defined as the sheets at u and its images, or more precisely, zi is a sheet
at ϕ ◦ ψi−1 ◦ ϕ . . . ψ0(u) ∈ V (xi). For all i > 0, by definition of ϕ, we have s(xi) ≃ yi−1

184 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

and so s(zi) ⊑ yi−1. Now, as ψi is injective and vertex-surjective, we can slightly abuse
notation and define ψ−1

i : yi → zi, the map sending each vertex to its pre-image (this
is well-defined), and which is a partial but well-defined and injective map on the edges
by Lemma 4.48. We then have ψ−1

i−1(s(zi)) ⊑ zi−1. Define wi = ψ−1
0 ◦ s . . . ψ−1

i−1 ◦ s(zi) ⊑ x.
It is clear that for any i, wi is an infinite connected graph containing u, and wi+1 ⊑ wi by
the previous remark, so we can define w = ∩n∈Nwi ⊑ x. By compactness, w is an infinite
connected graph containing u. We claim that w is a Xs-sheet at u in x. It suffices to prove
that ψ0 : w → y0 satisfies the properties of the sheet morphism, that is, it is injective,
vertex-surjective, and every edge of y0 has corresponding edges in x0 ⊑w. Injectivity is
clear as w ⊑ z0, but we still need to prove vertex-surjectivity; in other words, we need to
show that V (w) = V (z0). But that is also clear, as each of the ψi is vertex-surjective, and
so for all i, we have V (wi) = V (z0).

4.4.2 Construction of a self-simulating graph SFT

We are now ready to prove Theorem 4.68. The main tool to prove the theorem will
be Proposition 4.60. In order to apply this proposition, we need to define a set of decora-
tions As for a substitution s so that it satisfies Definition 4.59. We will start by defining
precisely this set of decorations, and Section 4.4.3 will prove the fact that using these
decorations, we define an s-sheeted self-simulating subshift.

Let s be a substitution on GC,D. We describe a set of coloured vertices and coloured
meta-tiles which self-simulate for s. To do this, we will need to consider skeletons and
borders of the meta-tiles (see Definition 4.39): as these are defined on the meta-tiles of
order 2, most decorations will depend on graphs s2(v) for v ∈ C.

Let us first recall that we always assumed that the meta-tiles of s had no non-trivial au-
tomorphism. We can therefore fix an ordering on the graphs of ∪c∈Cs2(c) = {G1, . . . , GN}
and in each Gi, an ordering of its vertices {vi,1, . . . , vi,Ni} = V (Gi) and of its edges
{ei,1, . . . , ei,Mj} = E(Gi). This is in fact a multiset, as in the case of non-unique deriva-
tions, there might exist several isomorphic graphs Gi ≃ Gj , and each graph Gi comes with
an implicit derivation of length 2 from some vertex type c ∈ C.

We do not attempt in any way to give a minimal set of decorations: in particular, there
is some clear redundancy in the vertices’ decorations, but we believe that it helps to see
the general idea, and how various decorations serve different purposes. The general idea
behind the decorations, and the matching rules between them that we discuss below, are
the following:

• In a decorated graph, each vertex will be part of a well-formed Gi-sheet for some
i. This is done by “hardcoding” in the decorations the position of each individual
vertex and edge in all these graphs.

• The meta-vertices of each Gi will carry additional meaningful information, namely,
a position vjk in another Gj . This corresponds to the fact that this meta-vertex is
part of some higher-level meta-tile obtained by substituting Gj several times.

• According to this “meta” decoration, meta-vertices will perform some other checks, to
ensure that they are actually part of the meta-tile Gj the believe to be a meta-vertex
of: if vjk ∈ Gj is adjacent to some vertex vjℓ, then the meta-vertex will send “signals”
via its decorations to its edges to ensure that there is indeed some vertex which is
also decorated by vjℓ. As the skeleton is sufficiently connected thanks to the quasi-
connectivity condition, we can make sure that the entire meta-tile is well-formed, by
checking each neighbourhood individually.

• We need quite a few extra decorations, to ensure that every single edge that ought
to appear in a graph of X∞

s is present in the graph: indeed, the decorations are not

4.4. AN EQUIVALENT TO MOZES THEOREM 185

only enforcing a “substitutive colouring” on an already-defined space, but they must
ensure that the graph itself is substitutive.

Section 4.4.2 will precisely define the decorations, and Section 4.4.2 the matching rules
we impose on them. We prove in Section 4.4.3 that this defines a self-simulating graph
subshift, and we deduce Theorem 4.68. We give in Section 4.4.4 some additional results
which follow from the main result.

The decorations

Let us define precisely the set of decorations that we use in our construction. We decorate
each vertex with the following extra colours:

• Each vertex carries two derivations (c1, v1,Γ1), (c2, v2,Γ2) such that for i ∈ {1, 2},
ci ⇝ Γi is a valid derivation for s, vi ∈ V (Γi), and the vertex v2 ∈ V (Γ2) has type
c1. This decoration represents the pair of derivations c2 ⇝ Γ2 ∋ v2 of type c1, and
c1 ⇝ Γ1 ∋ v1.

• Each vertex carries a position in one of the 2-meta-tiles Gi, that is, a vertex vi,j for
some 1 ≤ j ≤ Ni.

• Each vertex carries an annotation function Av : Γ1 × D̄ → {required, forbidden},
with |A−1(required)| ≥ 1, i.e. there it at least annotated required edge.

If Γ is a graph thus decorated, a vertex v ∈ V (Γ) decorated with ((c1, v1,Γ1), (c2, v2,Γ2), vi,j , A)
will in fact be the vertex v1 of some meta-tile Γ1 ⊑ Γ, itself in position v2 ∈ V (Γ2) in some
meta-tile of order 2. The decoration vi,j is used in order to ensure that the graph Γ is
well-formed for arbitrary levels of meta-tiles, and not only the first two. We discuss the
annotation function Av below.

We also decorate edges with the following colours (remember that this is legitimate in
our framework: this is a way to lighten the notation, and could be implemented directly
in the vertices’ decorations with a larger alphabet):

• Each edge carries a derivation (ce, ve,Γe), with ve ∈ V (Γe) and ce ⇝ Γe a valid
substitution rule.

• Each edge also carries a position, that is, an edge em,n ∈ E(Gm) for some 1 ≤ n ≤
Mm.

• Each edge will also carry an annotation function Ae : V (Γ)×D̄ → {required, forbidden},
where Γ is such that ve ⇝ Γ is a valid derivation rule, and as for vertices, we force
|A−1

e (required)| ≥ 1.

• Each edge will also carry a map of meta-positions Metae : Γ →
⊔
i V (Gi), with

dom(Metae) = dom(Ae). This map represents the position carried by each meta-
vertex of some meta-tile.

• Edges might carry no decoration at all.

There are finitely many such decorations: in particular, there are finitely many anno-
tation functions, as the sets of vertices types and edge directions are finite.

In a decorated graph Γ, an edge e ∈ E(Γ) carrying such a set of decorations has to
be viewed as follows: e is part of a skeleton of some meta-tile; in this skeleton, it plays
the role of the edge em,n, and the meta-vertices of this meta-tile are decorated according
to Metae. This entire meta-tile itself comes from the substitution of the vertex ve ∈ Γe,
where Γe ∈ sC(ce).

186 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

As for why we need an extra annotation function, Figure 4.12 shows an example of
why the necessary information required to enforce the presence or absence or some edges
cannot be available by looking only at the skeleton or border of a graph. In some sense, the
information flows in two different directions: the other decorations are used to ensure that
siblings meta-tiles can correctly and consistently be glued to form the parent meta-tile,
while the annotation function contains information transmitted from the parent to their
children. A very informal high-level description of its purpose is as follows: in a given 2-
meta-tile Gi given by c⇝ Γ⇝ Gi, this function will be shared between all the vertices of
Gi, and be of the form Ae : Γ2×D, where each direction dk such that Ae(c, dk) = required

was already adjacent to the vertex of type c ∈ Γ2 from which Gi originates by Γ2 ⇝ Gi.
This is a slight difference with the other constructions of Section 4.2: in all these examples,
the geometry of the ambient space meant that we did not need to think about this problem
at all. For example, if two rectangles of R2 are placed next to one another with two adjacent
corners, they will necessarily share an entire, common side. On the other hand, we need to
compute by ourselves the entire set of edges linking two adjacent meta-tiles of any order,
and this can no longer be done simply by ensuring that they share a predetermined set of
common “meta-vertices”.

1 2

34

u v

u v

u

v

u1 u2

u3u4

v1 v2

v3v4

sE

u1 u2

u3u4

v1 v2

v3v4

sE

u1 u2

u3u4

v1 v2

v3v4

sE

u11 u12

u13u14

u21 u22

u23u24

u31 u32

u33u34

u41 u42

u43u44

?

G

G
?

Figure 4.12: An example of non-deterministic substitution, whose iterates are subgraphs of
Z2. The presence of the edge marked by a ? depends on information not directly available
in G, and might depend on choices made arbitrarily far in the derivation sequence.

Formally, let us define the vertices decorations as

DecV =
{
((c1, v1,Γ1), (c2, v2,Γ2), vi,j , A)

∣∣Γb = sV (cb), vb ∈ V (Γb), for b = 1, 2,

λV (v2) = c1, vi,j ∈ V (Gi),

A : Γ1 × D̄ → {required, forbidden}
}

and the edge decorations as

4.4. AN EQUIVALENT TO MOZES THEOREM 187

DecE =
{
((ce, ve,Γe), em,n, Ae)

∣∣Γe ∈ sV (ce), ve ∈ V (Γe),

em,n ∈ E(SGm),

Ae : s(ve)× D̄ → {required, forbidden}
Metae : s(ve)→

⊔

i

V (Gi)
}

∪{∅}

These are the decorations more informally described above. The element ∅ ∈ DecE
corresponds to undecorated edges. Now, in order to get a nearest neighbour SFT where
vertices carry the decorations, we need to decorate the vertices with Dec, defined by:

Dec = DecV × Dec
(D̄)
E

where Dec
(D̄)
E is the set of partial functions from D̄ to DecE . The first component

corresponds to the decorations of the vertex itself, and the second component contains the
decorations of each possible edge adjacent to the vertex itself. Let πvertex, πedges be the
respective projections.

Matching rules

We impose a set of rules on these decorations, split in several categories depending on
which part of the hierarchical structure they enforce. We use the terminology of [BS16,
Theorem 4]:

• The structure rule will ensure that the each vertex belongs to some sV (c), obtained
from a derivation c⇝ Γ.

• The base rule implements a way to synchronize the information of the 1-meta-tiles
sV (c) with the meta-tiles of the next order, each isomorphic to some Gi. The skeleton
edges contain all the information of this meta-tile.

• The pasting rule is used to ensure that siblings meta-tiles are carrying consistent
information. Said differently, the analogous of the skeleton in the higher-order meta-
tiles is well-formed, and all its edges have the same decorations.

• Finally, the extension rule ensures that the information of a child meta-tile is
passed to its parent.

Example. The Figure 4.13 shows part of a valid tiling for the weak-grid substitution, see
also Figure 4.7 for how the skeleton is defined

These rules are not optimal, in the sense that some of the matching rules might not
be needed as they are implied by others. We choose to present an admittedly complex
decoration scheme and set of rules, in hope that the proof of self-simulation becomes
easier: any constraint on the decorations that is explicitly required need not be derived
as a consequence of the other rules, using e.g. structural and geometrical properties of a
well-decorated graph.

More formally, for a vertex v carrying the derivations (c1, v1,Γ1), (c2, v2,Γ2), a position
vi,j , and an annotation function A:

188 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

6

47 46

45

44
43

42

41

5’ 39

38

3736

35

34

33 4’

31

30
29

28

27

26 25

3’

2322
21

20

19 18

17

2’1514

13

12 11

10

91’7

6

5 4

3

21

A B C

D

E
F

G

h

v

h

v

v
d

h

“Meta-border”

“Meta-skeleton”

Annotated edges

Figure 4.13: Part of a valid tiling for the weak-grid (see also Figure 4.7), assuming it
is in the bottom-left corner of the higher-order substitution. Numbers correspond to the
position vi,j in the decoration. The red edges are checked by the base rule, the plain purple
edges are checked by the pasting rule, and the dashed purple edges are enforced by the
annotation functions.

Structure rule: We always require that:

1. v has the same type as v1 in Γ1.

2. For each edge (v1, vk) ∈ E(Γ1) of some direction d, v is adjacent via a d-edge to
some vertex u which carries the derivations (c1, vk,Γ1), (c2, v2,Γ2) and the annotation
function A.

3. For d ∈ D̄, v is adjacent to an edge in direction d if and only if A(v1, d) = required.

Example. On the Figure 4.13, this means that e.g. the vertices numbered from 7 to
13, and the purple meta-vertex between 7 and 9, are all carrying the same derivations
(•s, v,Γ), (•s, B,Γ) except for v, and also the same annotation function A.

Lemma 4.61

If Γ satisfies the structure rule, then for any u ∈ Γ decorated by
((c1, v1,Γ1), (c2, v2,Γ2),_, A) ∈ DecV , Γ has a (Γ1, A)-annotated sheet at
u. These sheets can moreover be chosen to form an annotated partition of
Γ.

We do not have uniqueness of the decomposition. However, starting from any vertex
u, decorated with (c1, v1,Γ1), and as the sc(ci) are connected, we can pick any graph
traversal of Γ1 starting from v1 ∈ V (Γ1) (or equivalently a spanning tree of Γ1) and we
obtain a prefix-stable language corresponding to the traversal, which in turns guarantees
the existence of the Γ1-sheet at u in Γ by Lemma 4.48.

4.4. AN EQUIVALENT TO MOZES THEOREM 189

Corollary 4.62

If Γ satisfies the structure rule, then for any u ∈ Γ decorated by
((c1, v1,Γ1), (c2, v2,Γ2),_, A) ∈ DecV , the vertices of the Γi-sheet given
by Lemma 4.61 are all decorated with ((c1,_,Γ1),_,_, A).

This is an immediate consequence of Item 2 and the fact that Γ1 is connected.

Base rule: Suppose that, according to the derivations appearing in its decorations, v is
not a meta-vertex for the derivation c2 ⇝ Γ2 ⇝ Gi as defined in Definition 4.39, and the
vertex v1 ∈ Γ1 ⊑ Gi belongs to Sc2,Γ2,Gi . Then:

4. vi,j is the position of the vertex v1 ∈ Γ1 ⊑ Gi in the graph Sc2,Γ2,Gi .

5. Moreover, for each edge e = (vi,j , vi,k) ∈ Sc2,Γ2,Gi with direction d, we require:

(A) v is adjacent to some vertex u via a d-edge, and u carries derivations _, (c2, v2,Γ2).

(B) This edge has to carry the position given by the edge (vi,j , vi,k) ∈ Sc2,Γ2,Gi .

(C) All such innate (not inherited) edges adjacent to v have to carry the same anno-
tation function Ae, the same Metae function, and the same derivation (ce, ve,Γe),
where the vertex ve ∈ V (Γe) is of type c2.

(D) If vi,j is moreover adjacent to some vi,k ∈ Sc2,Γ2,Gi via an inherited d-edge in Gi,
then we require that there is some d-edge (v, u) adjacent to v, and moreover,
the skeleton edges adjacent respectively to vi,j and vi,k in Gi are all present and
carry the same derivations and annotation functions.

In Gi ? vi,j vi,k ?
d1

∈ S
d

inherited
d2

∈ S

Restriction on v ? v u ?
d1 d d2

(E) Moreover, v also enforces some conditions on the annotation function of the
edges. Recall that A is the annotation function carried by the vertex v itself.
We require that dom(Ae) = dom(Meta) = Γ2 = sV (ce), and that the annotated
graph (Γ1, A) (which is well-defined by Lemma 4.61) is the annotated substitu-
tion s({v2}, Ae|v2}). In other words, for d such that Ae(v2, d) = required, we

require that {(v′ de−→ _) | A(v′, de) = required} = ∪d∈D̄sE(A(v2, d)).

6. If v does not belong to the skeleton Sc2,Γ2,Γi but is not a meta-vertex either, we instead
simply require that all the edges adjacent to it carry exactly the same information.

On the other hand, if v is a meta-vertex according to the two derivations it is decorated
with:

7. Let e be an edge of Γ1∩Sc2,Γ2,s(Γ2), carrying a meta-position Metae : Γ2 →
⊔
k V (Gk)

(by Item 5(C) and Item 5(E), this is well-defined and does not depend on e). Then
vi,j = Metae(v1).

Example. On the Figure 4.13, this means that e.g. the vertex 10, which belongs to the
skeleton, checks that the edges (9, 10) and (10, 11) which belong to the skeleton carry the
same annotation function A and meta-positions Meta, and the same derivation (•s, A,Γ).

190 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

The base rule enforces the presence of the inherited edge (10, 20), and checks that the
derivation carried by the edges (14, 20) and (20, 19) is also (•s, A,Γ).

Vertices with no labels simply propagate the information on all their adjacent edges.

Lemma 4.63

If Γ satisfies the structure and base rules, V (Γ) can be partitioned in graphs
Gi, each one being a s2c(ci)-sheet for some ci ∈ C. Each vertex v of Gi is
decorated by (c1,_,Γ1), (c2, v2,Γ2),_,_) such that c2 ⇝ Γ2 ⇝ Gi is a
valid derivation.

This holds because in each derivation c2 ⇝ Γ2 ∋ v2 ⇝ Γ1, there is at least one non-
meta vertex in Γ1; by Lemma 4.61, it enforces the consistency of the graph Γ1 = sc(c1)
given by the structure rule. As the skeleton is quasi-connected, this vertex also enforces
by Item 4 the consistency of some of the adjacent subgraphs Γ′

1 ⊑ Γ2. As in Lemma 4.61,
a sheet at a vertex u carrying decorations (c1, v1,Γ1), (c2, v2,Γ2) can then be obtained by
fixing a graph traversal of Gi obtained by the two derivations c2 ⇝ Γ2 ⇝ Gi starting from
v1 ∈ Γ1 ⊑ Γ2.

Corollary 4.64

If Γ satisfies the structure and base rule, then for any u and Gi-sheet given
by Lemma 4.63, the second derivation carried by all the vertices of Gi is
constant, and the edges of SGi all carry the same derivation and annotation
function.

This is imposed by Item 5(C) on the 1-meta-tiles, and Item 5(D), which synchronizes it
in adjacent 1-meta-tiles. By quasi-connectivity of s, all the 1-meta-tiles in SGi are therefore
synchronized.

Pasting rule: If v carries derivations telling it that it is a meta-vertex (that is, the
vertex v1 ∈ Γ1 ⊑ s(Γ2) is the vertex meta(v2)), then:

8. For each edge ei,n = (vi,j , vi,k) adjacent to vi,j in Sc2,i,Γ2,i,Gi of direction d, mirroring
the base rule, we require:

(A) v is adjacent to an edge in the direction given by meta((vi,j , vi,k),Γ2,i,Γ1).

(B) This edge carries the position ei,n.

(C) All these edges have to carry the same derivations (ce, ve,Γe), annotation func-
tion Ae and meta-positions Metae.

(D) If vi,j is adjacent to some vi,k ∈ Gi via an edge e ∈ E(Gi) of direction d1 which
is not in the skeleton, vi,k itself being adjacent to some edge e′ of direction
d2 in Gi’s skeleton, then as in Item 5(D) we moreover ensure the following:
Γ1 (containing v, given by Corollary 4.62) is adjacent via an edge of direction
given by meta(e) to a vertex u, itself adjacent to an edge of direction given by
meta(e′), carrying the same derivation (ce, ve,Γe) and annotation function.

4.4. AN EQUIVALENT TO MOZES THEOREM 191

In Gi ? vi,j vi,k ?
λE(e) = d1

∈ S
d

inherited

λE(e
′) = d2

∈ S

Restriction on v ? v′ ∈ Γ1 u ?
meta(e) meta(vi,j , vi,k) meta(e′)

9. Regardless of whether v is a meta-vertex or not, if vi,j ∈ Bc2,i,Γ2,i,Gi ⊑ Gi, then
we require the following: for any edge e ∈ E(Gi) adjacent to vi,j , we require that
all the decorated edges of meta(e,Γ2,i,Γ1) carry exactly the same information. In
particular, there cannot be a single decorated edge adjacent to v.

Considering the edges of meta(e,Γ2,i,Γ1) is simply a way to locally decide, in the
concrete graph Γ1 containing v given by the structure rule, which actual edges of the
border of Γ2 “represent” the meta-edges (vi,j , vi,k) that v has to enforce.

Example. On the Figure 4.13, this rule enforces that:

• The large purple vertices carrying the positions 1’, 2’, ... to 6’ have to check that
the purple edges – plain and dashed – are carrying the correct (edge) position; for
example, 2’ checks that the edge from 2′ going in direction v (up on the figure) carries
the position (2, 3), and some derivation (•s, v,Γ). We cannot tell from the picture
alone what v should be here.

• Moreover, the other vertices found along these purple edges have to transmit the
information: for example, the vertex 18 ensures that all these edges carry the same
derivation and position (2, 3).

• The Item 8(D) ensures that the decorations carried by the plain purple edge v starting
from 2’ are transmitted to the neighbouring macro-tile, at the ending point of the
dashed purple edge h starting from 2′.

Lemma 4.65

If Γ satisfies the structure, base and pasting rules, for any ver-
tex v ∈ Γ decorated by dec ∈ Dec such that πvertex(dec) =
((c1, v1,Γ1), (c2, v2,Γ2), vi,j , A), and for any edge ei,n = (vi,j , vi,k) ∈ SGi ,
there exists a path in Γ starting from v containing only edges carrying
the same decoration ((ce, ve,Γe), ei,n, Ae, Metae), which is either infinite or
ends in another meta-vertex v′ ∈ V (Γ).

Proof. Following the edges carrying the position ei,n starting from v (at least one exists,
by Item 8), we can either continue the path infinitely or the path ends in some vertex
v′ ∈ Γ. This path only uses edges from the border of the 2-meta-tiles given by Lemma 4.63:
indeed, by Item 8, the first edge of this path is a border edge, and so by Item 9, it must
be continued by another border edge carrying the same decorations. In particular, v′ is
necessarily decorated by some vj,ℓ which belongs to a skeleton, but not to a border. Hence,
v′ must be a meta-vertex in its own 2-meta-tile, for otherwise Item 4 imposes that vj,ℓ is
its actual position in this tile, which is a contradiction with the fact that it is not on a
border.

Extension rule: Suppose that vi,j is both in the border B and in the skeleton S of some
Gi, where Gi is the graph obtained as a derivation c2,i ⇝ Γ2,i ⇝ Gi, with furthermore
c2,i ⇝ Γ2,i ∋ v2,i ⇝ Γ1,i ∋ vi,j .

192 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

By the pasting rule, v is adjacent to the same (meta-)edges in Γ as vi,j is in Gi:

• By Item 8(C), all those belonging to S carry the same derivations (cs, vs,Γs), annota-
tion functionAS : ΓS×D̄ → {required, forbidden} and meta-positions MetaS : ΓS →⊔
i V (Gi).

• By Item 9, all those belonging to the border B carry the same information, i.e.
a derivation (cb, vb,Γb), a position eib,jb in some Gib ∈ s2(C), annotation function
AB : ΓB×D̄ → {required, forbidden} and meta-positions MetaB : ΓB →

⊔
i V (Gi).

10. v checks that the vertex vs ∈ Γs is of type c2,i.

11. As vi,j is in the border of Gi = s(Γ2,i), there exists an edge e ∈ Γ2,i such that vi,j ∈
meta(e,Γ2,i,Γ1,i). Consider e as being part of the graph e ∈ Γ2,i = s(c2,i) ⊑ s(Γs),
which is legitimate by Item 10. Suppose then that e ∈ Scs,Γs,s(Γs). In that case:

(A) v checks that the vertex vb of Γb is of type cs.

(B) v checks that Γs ⇝ Gib is a valid derivation rule.

(C) If the edge e ∈ Scs,Γs,Gib
is numbered em,n, then we enforce (m,n) = (ib, jb).

(D) Similar to Item 5(E), we require that ΓB = Γs, that is, dom(AB) = sV (cs), and
that the annotated graph (ΓS , AS) is the annotated substitution s({vs}, AB|vs}).
In other words, for any direction d such that AB(vs, d) = required, we require
that {(v′ de−→ _) | AS(v′, de) = required} = ∪d∈D̄sE(AS(vs, d)).

(E) Let u = meta(vs,Γs, G2,i) ∈ V (G2,i). We force MetaS(u) = MetaB(vs), and for
u′ ̸= u ∈ V (G2,i), we define MetaS(u

′) as the position of u′ ∈ G2,i ⊑ Gib .

The conditions on vi,j under which we impose the restrictions Item 11 on the edges
adjacent to v are necessary: a given meta-tile will have (meta-)borders which play different
roles in different level of other meta-tiles. In particular, not all such borders belong to the
skeleton of the parent meta-tile (they could belong to the skeleton of a meta-tile of an
arbitrarily large order): the conditions ensure that only the vertices vi,j of the “relevant”
border propagate the information from the “child” ’s skeleton to the parent meta-tile.

Γb ∋ vb

cs

Gib

Enforced by Item 11(A)

Γs ∋ vs

c2,i

Enforced by Item 10

Γ2,i ∋ v2,i

c1,i
Gi

Definition of vi,j ∈ Gi

Γ1,i ∋ vi,j

Figure 4.14: Summary of some of the relations enforced by the extension rule. The dashed
lines represent a “type” relation, e.g. λV (vS) = c2,i ∈ C, and squiggly lines are substitution
rules.

We show on Figure 4.15 an example of non-deterministic substitution, with a descrip-
tion of which graphs are described by the various notations used in the extension rule.

Example. On the Figure 4.13, the extension rule ensures that:

4.4. AN EQUIVALENT TO MOZES THEOREM 193

s(•s) =
, , . . .

?

?

v

Figure 4.15: Schematic and partial representation of a non-deterministic substitution. We
do not give a complete description of the skeletons and borders on the figure. For simplicity,
all the meta-tiles of a same level are obtained using the same graph in s(•s). Assuming
a valid decoration, the extension rule applied to the purple vertex denoted by v gives the
following (recall that Γ1,Γ2,Γs are elements of s(axioms) here): Γ1 is the “small square”
of which v is the bottom-left corner. As this square is contained in a “red triangle”, Γ2 is
a triangle. Moreover, v belongs to the border of the “square” containing the purple edges,
and to the skeleton of the large cyan triangle. The purple square is therefore the graph Γ2,i,
while Gi is the entire meta-tile containing the four red triangles. Γs is the blue triangle,
and we cannot determine Γb from the figure alone. The graph Gib would be obtained by
taking twice the preimage of the figure, as the cyan triangle whose bottom-left vertex as
been substituted by the purple square.

• The vertices belonging to B and S, for example 23, make sure that e.g. the edges
(18, 23) and (23, 3′) carry the same information.

• Moreover, they also check that the information carried by these edges is consistent
with the decorations of the edge (22, 23), in the case of the vertex 17, in particular
regarding the annotation function carried by these red edges and used in the base rule.

• These checks are only done by all the vertices: for example, 5 and 43, although they
belong to the skeleton and to the border of the 2-meta-tile, do not enforce Item 11.
On the other hand, the vertex 18 enforces it, as it belongs to the image of the edge
(C,D) by s, and (C,D) is the edge (2, 3) in the inclusion (C,D) ∈ s(A) ⊑ s2(•s).

• Item 11(E) is used to force the decoration of some meta-vertices: for example, the
vertex 18 ensures that the meta-positions MetaS carried by all the red edges is such
that MetaS(B) = 1′, · · · , MetaS(G) = 6′, and ensures that MetaS(A) is the same
value than the one given by the border edge (17, 18).

4.4.3 Self-simulation

Recall that we defined the decorations Dec as

Dec = DecV × Dec
(D̄)
E

so that each vertex carries “its own” decorations, and the ones of the edges it is adja-
cent to. It is straightforward to convert the structure, base, pasting and extension rules
into adjacency constraint on vertices decorated by Dec. Define then Ms as the set of
nearest-neighbour graphs appearing in some configuration of X∞

s , with vertices carrying
decorations of Dec that satisfy the previous rules (we show in Lemma 4.66 that this is not
an empty set).

194 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

Substitutive graphs can be decorated

To prove Theorem 4.68, we first explain how to decorate each element x ∈ X∞
s .

Lemma 4.66

For x ∈ X∞
s , there exists a decorated configuration y ∈ XMs such that

πC(y) = x.

Proof. As x ∈ X∞
s , there exist arbitrary pre-images x1, x2 . . . such that for any n ≥ 1,

s(xn+1) ≃ xn.
Using s(x1) ≃ x, we can partition x in 1-meta-tiles, and we obtain (part of) a decoration

DecV by decorating a vertex v ∈ sV (u) with (c1, v1,Γ1), where c1 = λV (u), Γ1 = sV (u)
and v1 the position of v within Γ1. In the same way, we obtain (c2, v2,Γ2) by applying
this decoration scheme to x1 ≃ s(x2). We obtain the annotation function by considering
A = s(Annotx1{u}). In this partition of x into 2-meta-tiles, we can decorate all the
vertices which are not meta-vertices in the sense of Definition 4.39 by the correct position
vi,j within this tile.

We decorate some of the edges of any Gi = s2(u) for u ∈ x2 by the appropriate
decorations: if e ∈ SGi , we decorate it by ((ce, ve,Γe), ei,j) where ei,j is its position in
Gi = s2(u), and ce, ve,Γe are obtained by considering u′ ∈ x3 such that u′ ∈ s(u′), with
Γe = s(u′), ce = λV (u

′) and ve the position of u in Γe ⊑ x2. For an edge e
Now, consider the position of the vertices of s(u) ⊑ x1 belonging to the skeleton of

s(Γe ∋ u) ⊑ x1. For each such vertex w, of some position vi,j , decorate the meta-vertex
v ∈ x of s(w) ⊑ x by the position vi,j , and define for the edges of the skeleton SGi part of
their meta-positions, Metae(w) = vi,j . This completely decorates some of the meta-vertices
of x, and partially defines Meta for some skeleton edges.

In order to obtain the decorations for larger parts of x, we proceed as follows. Say
that some graph x is 2-decorated if we decorated it with the previous process, so that
the skeleton edges of any 2-meta-tile are decorated. We define an n-decoration for n > 2
inductively, by decorating x using an n − 1-decoration of x1. Suppose that x1 is n − 1-
decorated. For any fully decorated meta-vertex u ∈ x1 (that is, which carries a position
vi,j and annotation function A, as we already determined the rest of the decorations given
by πvertex), we decorate the meta-vertex of s(u) ⊑ x with the same position vi,j and
annotation function A. For each decorated edge e = (u, u′) ∈ x1 which is the edge em,n in
the skeleton of some 2-meta-tile Gm ⊑ xi, we decorate the meta-edge meta(e) ⊑ x by the
same decoration as e itself.

By this process, we fully decorate an increasing subset of V (x) and E(x). This scheme
is increasing, in the sense that if v ∈ V (x) or e ∈ E(x) is n-decorated in some way, then it
will be similarly n+1-decorated. In particular, we can define our final decoration pointwise,
as the limit decoration given to the vertex or the edge by successive n-decorations.

If an edge remains undecorated by this process, we leave it as is, as we allow for
undecorated edges. If an edge e is only decorated by a partial meta-position function Meta,
then it must contain a (meta-)vertex v such that for any un ∈ xn such that v ∈ sn(un) ⊑ x,
un is a meta-vertex itself, which is not 2-decorated in xn. We can then simply consider
the meta-tile Gi of order 2 containing v in x, and set the position vi,j carried by x as the
position of v itself in x. We can then back-propagate this decoration to decorate the pre-
images un ∈ xn by the position vi,j , obtaining n-decorations of x1 with no undecorated
vertex. Using the same construction, we can then define the total meta-position maps
Metae for the edges, as no vertex remains partially decorated.

It is routine to check that this decoration scheme decorates x so that it belongs to

4.4. AN EQUIVALENT TO MOZES THEOREM 195

XMs , by checking that it satisfies the structure, base, pasting and extension rules which
have been defined exactly so that this is a valid decoration (the difficult part being to
check that they do not allow for non X∞

s -sheeted graphs).

Decorated graphs are sheeted-substitutive

The final step is to show that XMs is indeed self-simulating, using Proposition 4.60 to
conclude:

Lemma 4.67

Let s be a quasi-connected graph substitution. Then XMs is s-sheeted
self-simulating.

Proof. We need to construct a set of graphsM′
s and a map ϕ :Ms′ →Ms satisfying Def-

inition 4.59.
Definition of M′

s, ϕ: Define M′
s as the set of annotated pointed graphs (G′, v) sat-

isfying πC(G′) = s(M) for some (M,u) ∈ Ms, with G′ being furthermore locally valid for
Ms. Recall that by definition M is an annotated nearest-neighbour graphs so u is the only
vertex of M , so in particular we have v ∈ s(u) ⊑ G′. Consider (G′, v) ≃ s(M,u) a graph
ofM′

s. Our first step will be to define ϕ so that s(πC(M)) ≃ πC(G′) as annotated graphs –
in particular, ϕ must be a well-defined function, and even if G′ = s(M), we can obviously
not use properties of M itself when defining ϕ(G′).

Let dec be the decoration carried by v, πvertex(dec) = ((c1, v1,Γ1), (c2, v2,Γ2), vi,j , A).
Define then:

πC(ϕ(G
′, v)) = c1 (4.1)

We now need to define πDec(ϕ(G′, v)). As G′ satisfies the structure rule, by Corol-
lary 4.62 v is contained in a subgraph of G′ which is a Γ1-sheet, and all the vertices of
Γ1 ⊑ G′ carry the same ((c1,_,Γ1),_,_) on the πvertex part of their decoration. As s
is quasi-connected, the skeleton of the higher-order meta-tile containing Γ1 intersects it
along at least an edge e ∈ Γ1 ⊑ G′, but we do not know yet which edge it is. However,
by Definition 4.39, it only depends on Γ1. By Corollary 4.64, if there are several such edges,
they all carry the same derivation (ce, ve,Γe), annotation function Ae and meta-positions
Metae. For the same reason, we can also find the meta-vertex v′ of Γ1 ⊑ G′ (which might
be v itself), given by Definition 4.39. Let vi′,j′ be the position carried by this vertex (that
is, the third field of πvertex, which might be empty). We can now define some part of the
decorations of ϕ(G′, v):

πvertex(πDec(ϕ(G
′, v))) = ((c2, v2,Γ2), (ce, ve,Γe), vi′,j′ , Ae, Metae) (4.2)

We now try to define the edges decorations ϕ(G′, v), that is, πedges(πDec(ϕ(G′, v))).
Recall that (G′, v) ≃ s(M,u) for some M ∈ Ms. For each edge eB = (v2,_) ∈ Γ2 with
λE(e) = deB , we know by Lemma 4.65 that there exists a path of meta-edges meta(eB) ∈ G′

starting from v′ ∈ Γ1 ⊑ G′ containing edges that are labeled by the same deceB =
((ceB , veB ,ΓeB), em,n, AeB , MetaeB). We can therefore define for all these edges eB:

πedges(πDec(ϕ(G
′, v)))(deB) = deceB (4.3)

For any other decorated edge e of direction d′e adjacent to w ∈ Γ1 ⊑ G′ and decorated
by some dece, we know by definition of a graph substitution that there it a unique direction

de such that (w
d′e−→ _) is adjacent to Fde(Γ1). We therefore define:

πedges(πDec(ϕ(G
′, v)))(de) = dece (4.4)

196 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

ϕ is well-defined: It is clear from the definition that ϕ sends any graph G′ ∈ M′
s to

an annotated graph but we still need to check is that the decorations carried by ϕ(G′) are
valid, that is, belong to Dec:

• πvertex(πDec(ϕ(G
′, v))) = ((c2, v2,Γ2), (ce, ve,Γe), vi′,j′ , Ae) ∈ DecV . Indeed, we have

v2 ∈ Γ2 = sV (c2) as it was already part of the decoration of v, and ve ∈ Γe = sV (ce)
as it was part of a valid edge decoration. Moreover, λV (ve) = c2 by Item 5(C).
Finally, dom(Ae) = Γ2 by Item 5(E), and there is at least a required annotated edge,
because this is also required in the definition of DecE .

• For any d, πedges(πDec(ϕ(G′, v)))(d) belongs to DecE . This is obvious by Equa-
tion (4.3).

We need to ensure that ϕ(G′, v) thus defined still satisfies the structure, base rule,
pasting and extension rules:

• ϕ(G′, v) satisfies the structure rule because G′ satisfies the base rule: Item 1 is en-
sured by the fact that λV (v2) = c2, Item 2 is a consequence of the fact G′ satis-
fies Item 5 and Equation (4.3).We also obtain by Item 5(E) that for any d ∈ D̄,
Ae(ϕ(G

′, v), d) = required if and only πedges(πDec(ϕ(G
′, v)))(d) is defined, and so

ϕ(G′, v) also respects Item 3.

• For the base rule, suppose that for the derivation ce ⇝ Γe ⇝ Gi′ , the vertex
v2 ∈ s(ve) ⊑ G′

i is not a meta-vertex and belongs to SG′
i
. Let vext ∈ G′ satisfy-

ing the conditions of Item 11 (in Figure 4.13, this would be the case if G was the
meta-tile s(•s) containing the vertices 14 to 20, and vext would be the vertex 18).
By Item 11(E), we know the value of the meta-position MetaS carried by the skeleton
edges in G′, and Item 7 ensures that the position carried by v′, the meta-vertex in
G′, is correct. In particular, as by Equation (4.2) we have that the position ϕ(G′, v)
is the position carried by v′, we deduce that ϕ(G′, v) satisfies Item 4 and Item 7.

The conditions from Item 5(A) to Item 5(D) on ϕ(G′, v) are consequences of the
corresponding item from Item 8(A) to Item 8(D). Finally, the condition Item 6 on
ϕ(G′, v) is a consequence of the fact that G′ satisfies Item 9.

• For the pasting rule, Item 8 and Item 9 hold in ϕ(G′, v) because they hold in particular
at the vertex v′ ∈ G′, and from the definition of vi′,j′ as being a decoration by v′

itself, and by the construction of the edges made in Equation (4.3), as we obtain
them from the meta-edges adjacent to v′. In particular, Item 8(D) holds because the
substitution is quasi-connected, and so v′ being a meta-vertex means that it is itself
adjacent to the inherited edges that we need to check in this point (see Lemma 4.43).

• Item 10 and Item 11 are also derived from themselves applied toG′. Indeed, they only
depend on vi′,j′ and the decorations of its adjacent edges, which by Equation (4.2)
and Equation (4.3) are the same in ϕ(G′, v).

M′
s, ϕ define a sheeted-self-simulation: We now need to check that this map sat-

isfies Definition 4.59.

1. By definition, for any G′ ∈M′
s, there exists M ∈Ms such that s(M) = πC(G

′). Our
definition of ϕ, in particular Equation (4.1), implies that M ≃ ϕ(G′, v).

2. XM is X ′
M-sheeted. We show it using Proposition 4.47. Let x ∈ XMs and u ∈ x. Fix

any spanning tree T of x. We claim that T satisfies Proposition 4.47, with the obvious
injective morphism ψ : T ↪→ x. This is an immediate consequence of Corollary 4.64
and the definition ofM′

s.

4.4. AN EQUIVALENT TO MOZES THEOREM 197

3. Fix x ∈ XMs . By Corollary 4.62, we can find an annotated partition of x into
sV (C)-sheets, and we let (Γi, Ai)i∈I be this partition.

• Clearly, for each Γi we have πC(Γi) is s(c)-sheeted for some s ∈ C: it suffices to
take c = c1, following the notation of Corollary 4.62, with the additional remark
that the annotation function Ai is equal to the correct substituted annotation
function by Item 5(E). It is easy to decorate s(c) to ensure it is in M′

s (which
by definition is the set of all decorated graphs s(M) for M ∈ Ms, using for
example the strategy of Lemma 4.66.

• The fact that Gi and Γj match along their facets is given by the fact that the
only edges of x are those required by annotation functions in the decorations of
the vertices V (x) by Item 3, so Ai and Aj “match”, and Item 5(E) and Equa-
tion (4.2) ensure that this holds for ϕ(Γi) and ϕ(Γj) computed separately.

This is exactly what we needed to prove the theorem:

Theorem 4.68: Mozes theorem - graphs

Let s be a graph substitution, and sc a coloured s-substitution. Suppose
that s is quasi-connected. Then, there exists a sofic graph subshift Ysc
which is X∞

sc -sheeted and contains X∞
sc .

Proof. This is exactly Lemma 4.66 and Lemma 4.67.

4.4.4 Some consequences of the construction

Link between the two substitutive subshifts

We briefly explain how we can relate properties of X∞
s proven in Section 4.4.2 to the

smaller subshift Xs.

Definition 4.69: Locally invalid graph

Let sc be a coloured graph substitution on GC×A,D. We say that a finite
graph G ∈ GC×A,D is locally invalid if there exists H ∈ GC×A,D and n ≥ 0
such that:

• G ⊑ snc (H)

• For all n, G ̸⊑ snc (•s)

• There exists N ≥ 0 and an embedding H ⊑ sNc (H).

In general, one cannot assume that G itself can be found as a subgraph of one of its
iterate by sc. The kind of “periodicity” property of H ensures that one will be able to find
arbitrary many preimages to H, and therefore to G, but in the case of non-deterministic
substitutions, it is possible that different choices need to be made to go from H to G than
to H back to itself.

198 CHAPTER 4. SUBSTITUTIVE SUBSHIFTS ON GRAPHS

Proposition 4.70

Let sc be a coloured graph substitution on GC×A,D and x ∈ X∞
sc . Then

x ∈ Xsc if and only if there exists a finite locally invalid graph G and an
embedding G ⊑ x.

Proof. If there exists such a graph G then by definition x is not in Xsc . For the other
direction, suppose that x ∈ X∞

sc \Xsc , that is, x has arbitrary preimages by sc but contain
some connected G ⊑ x such that G ̸⊑ snc (•s) for any n. By definition, for all n ≥ 0,
there exists yn ∈ GC×A,D such that x ≃ snc (y), so let Hn be the smallest (for inclusion)
connected subgraph of y such that G ⊑ snc (Hn). By definition, we have Hn ⊑ sc(Hn+1),
and so (Hn)n∈N is a decreasing sub-sequence (by number of vertices, and then by number of
edges). In particular, it eventually contains only graphs with the same number of vertices
and edges. We claim that we can in fact take (Hn)n∈N eventually periodic (the choice
is because sc might not be vertex deterministic). This is immediate, as there are finitely
many such graphs, so we eventually find a pair Hn = Hn+N = H, so H = Hn+N is
therefore embedded in sNc (H).

Using this proposition, we can show that in some cases, there exists an additional set of
decorations that one could add to obtainXsc fromX∞

sc . The idea is that it suffices to ensure
that no locally invalid graph G is contained in a configuration x ∈ X∞

sc , as Proposition 4.70
then ensures that we in fact have x ∈ Xsc . For that, we need to check that these graphs
can be forbidden using decorations. A simple sufficient condition is to bound their size:

Definition 4.71: Bounded local invalidity

A coloured graph substitution sc is said to have N-bounded local inva-
lidity if any locally invalid graph G ⊑ X∞

sc \Xsc contains a locally invalid
subgraph G′ with at most N vertices. We simply say that it has bounded
local invalidity if there exists such an N > 0.

We immediately obtain the next theorem:

Theorem 4.72

Let sc be a graph substitution with bounded local invalidity. Then, there
exists a sofic graph subshift Ysc which is Xsc-sheeted.

Proof. Let N be such that sc has N -bounded local invalidity. It then suffices to forbid,
on top of the SFT Ysc of Theorem 4.68 the finitely many locally invalid subgraphs with N
vertices or less. By definition, this means that the resulting configurations do not contain
any locally invalid graph, and by Proposition 4.70 the valid configurations are then exactly
Xsc .

Removing sheets

In a number of settings, the discussion of Section 4.4 about sheets is not required. Indeed,
we have to work with this definition of Xs-sheeted subshifts for the sole reason that we
cannot in general impose that arbitrarily large paths are cycles, using graph subshifts of
finite type. Local consistency does not even always grant a covering, and we have to use

4.4. AN EQUIVALENT TO MOZES THEOREM 199

to this weaker notion of sheets. However, in several settings, we are not constructing the
“structure” – that is, the graphs πC(GC×A,D) – while we define its “colouring” – that is,
πA(graphclassC ×AD), which is what was explained in Section 4.3.4.

Following immediately from Theorem 4.68, we in fact have the following, possibly
stronger result:

Theorem 4.73: Mozes theorem - coloured graphs

Let s be a quasi-connected graph substitution on GC,D, and and sc a
coloured s-substitution on GC×A,D. Then, there exists a graph SFT Y
and a factor map Φ such that ϕ(Y) ∩X∞

s = X∞
sc .

Proof. It suffices to take Y = Ysc from Theorem 4.68 with the associated factor map, and
the intersection with X∞

s then simply ensures that there is a single sheet containing the
entire configurations.

This version of the theorem is probably the most useful one: for example, it recovers
the usual Theorem 4.3, as well as the results of [BS16].

A monotonicity result

We conclude this section with a proposition, which is an easy consequence of our definitions:

Proposition 4.74

Let s be a quasi-connected graph substitution on GC,D. For any other graph
substitution s′ such that for all u, v ∈ C, d ∈ D:

• V (sV (c)) = V (s′V (c))

• E(sE(u
d−→ v)) ⊆ E(s′E(u

d−→ v))

then s′ also satisfies Theorem 4.68.

Proof. s′ is also quasi-connected, as we obtain all its images by adding edges to the images
of s without adding any new vertex, and so we can define the borders in the same way.

This is not completely obvious a priori, as contrary to the other kinds of substitutions
described in Section 4.2, any “new” edge e in the image sV (v) must be explicitly enforced
by adding decorations, and its images by sE must also be hierarchically enforced. Still,
our construction shows that adding a finite number of decorations suffices to ensure that
this entire set of new edges is locally enforced.

References

[AA20] Shigeki Akiyama and Pierre Arnoux, eds. Substitution and Tiling Dynamics:
Introduction to Self-Inducing Structures: Cirm Jean-Morlet Chair, Fall 2017.
Springer International Publishing, 2020. isbn: 978-3-030-57666-0. doi: 10.
1007/978-3-030-57666-0.

[ABJ18] Nathalie Aubrun, Sebastián Barbieri, and Emmanuel Jeandel. “About the
Domino Problem for Subshifts on Groups”. In: Sequences, Groups, and Number
Theory. Cham: Springer International Publishing, 2018. Chap. 9, pp. 331–389.
isbn: 978-3-319-69152-7. doi: 10.1007/978-3-319-69152-7_9.

[ABM19] Nathalie Aubrun, Sebastián Barbieri, and Etienne Moutot. “The Domino
Problem is Undecidable on Surface Groups”. In: 44th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS 2019). Ed. by
Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen. Vol. 138. Leib-
niz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019, 46:1–46:14. isbn:
978-3-95977-117-7. doi: 10.4230/LIPIcs.MFCS.2019.46.

[ADG23] Pablo Arrighi, Amélia Durbec, and Pierre Guillon. “Graph Subshifts”. In:
CoRR (2023). arXiv: 2302.07249 [cs.DM]. url: http://arxiv.org/abs/
2302.07249v1.

[AI01] Pierre Arnoux and Shunji Ito. “Pisot Substitutions and Rauzy Fractals”. In:
Bulletin of the Belgian Mathematical Society-Simon Stevin 8.2 (2001), pp. 181–
207.

[AK13] Nathalie Aubrun and Jarkko Kari. “Tiling Problems on Baumslag-Solitar
Groups”. In: Electronic Proceedings in Theoretical Computer Science 128 (Sept.
2013). doi: 10.4204/EPTCS.128.12.

[AK21] Nathalie Aubrun and Jarkko Kari. “On the Domino Problem of the Baumslag-
Solitar Groups”. In: Theoretical Computer Science 894 (2021), pp. 12–22.

[And06] James A. Anderson. Automata Theory With Modern Applications. Cambridge
University Press, 2006. doi: 10.1017/CBO9780511607202.

[AS11] Nathalie Aubrun and Mathieu Sablik. Multidimensional Effective S-Adic Sys-
tems Are sofic. 2011. arXiv: 1103.0895v1 [cs.DM].

[AS13] Nathalie Aubrun and Mathieu Sablik. “Simulation of Effective Subshifts by
Two-Dimensional Subshifts of Finite Type”. In: Acta applicandae mathemati-
cae 126 (2013), pp. 35–63.

[Bar22] Laurent Bartholdi. “Monadic Second-Order Logic and the Domino Problem
on Self-Similar Graphs”. In: Groups, Geometry, and Dynamics 16.4 (2022),
pp. 1423–1459. doi: 10.4171/ggd/689.

201

https://doi.org/10.1007/978-3-030-57666-0
https://doi.org/10.1007/978-3-030-57666-0
https://doi.org/10.1007/978-3-319-69152-7_9
https://doi.org/10.4230/LIPIcs.MFCS.2019.46
https://arxiv.org/abs/2302.07249
http://arxiv.org/abs/2302.07249v1
http://arxiv.org/abs/2302.07249v1
https://doi.org/10.4204/EPTCS.128.12
https://doi.org/10.1017/CBO9780511607202
https://arxiv.org/abs/1103.0895v1
https://doi.org/10.4171/ggd/689

202 REFERENCES

[BDJ08] Alexis Ballier, Bruno Durand, and Emmanuel Jeandel. “Structural Aspects
of Tilings”. In: STACS 2008, 25th Annual Symposium on Theoretical Aspects
of Computer Science, Bordeaux, France, February 21-23, 2008, Proceedings.
Ed. by Susanne Albers and Pascal Weil. Vol. 1. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, Germany, 2008, pp. 61–72. doi: 10.4230/
LIPICS.STACS.2008.1334.

[Ben23] Firas Ben Ramdhane. “Symbolic Dynamical Systems in Topological Spaces
Defined Via Edit Distances”. PhD thesis. Aix Marseille Université (AMU),
Marseille, FRA.; University of Sfax, Tunisia, 2023.

[Ber+15] Valérie Berthé, Clelia De Felice, Francesco Dolce, Julien Leroy, Dominique
Perrin, Christophe Reutenauer, and Giuseppina Rindone. “Acyclic, Connected
and Tree Sets”. In: Monatshefte für Mathematik 176.4 (2015), pp. 521–550.

[Ber66] Robert L. Berger. “The Undecidability of the Domino Problem”. In: Mem-
oirs of the American Mathematical Society (1966). url: https : / / api .
semanticscholar.org/CorpusID:122079099.

[BH13] Nicolas Bédaride and Arnaud Hilion. “Geometric Realizations of Two-Dimensional
Substitutive Tilings”. In: The Quarterly Journal of Mathematics 64.4 (2013),
pp. 955–979. doi: 10.1093/qmath/has025.

[BHJ18] Nicolas Bédaride, Arnaud Hilion, and Timo Jolivet. “Topological Substitution
for the Aperiodic Rauzy Fractal Tiling”. In: Bulletin de la Société mathéma-
tique de France 146.3 (2018), pp. 575–612. doi: 10.24033/bsmf.2762.

[Bit24] Nicolás Bitar. “Subshifts of Finite Type on Groups: Emptiness and Aperiod-
icity”. PhD thesis. Université Paris-Saclay, 2024.

[BK98] François Blanchard and Petr Kůrka. “Language Complexity of Rotations and
Sturmian Sequences”. In: Theoretical computer science 209.1-2 (1998), pp. 179–
193.

[Boo58] William W Boone. “The Word Problem”. In: Proceedings of the National
Academy of Sciences 44.10 (1958), pp. 1061–1065.

[BS16] Sebastián Barbieri and Mathieu Sablik. “The Domino Problem for Self-similar
Structures”. In: Pursuit of the Universal. Pursuit of the Universal. Springer
International Publishing, 2016, pp. 205–214. doi: 10.1007/978- 3- 319-
40189-8_21.

[BS62] Gilbert Baumslag and Donald Solitar. “Some Two-Generator One-Relator
Non-Hopfian groups”. In: Bulletin of the American Mathematical Society 68.3
(1962), pp. 199–201.

[Cab23] Christopher Cabezas. “Homomorphisms Between Multidimensional Constant-
Shape Substitutions.” In: Groups, Geometry & Dynamics 17.4 (2023).

[Car24] Nicanor Carrasco-Vargas. Undecidability of Dynamical Properties of Sfts and
Sofic Subshifts on Z2 and Other Groups. 2024. arXiv: 2401.10347 [math.DS].
url: http://arxiv.org/abs/2401.10347v1.

[CC10] Tullio Ceccherini-Silberstein and Michel Coornaert. Cellular Automata and
Groups. Elsevier, Jan. 2010. isbn: 978-1-4614-1799-6. doi: 10.1007/978-3-
642-14034-1.

[Cha16] Nishant Chandgotia. “Four-Cycle Free Graphs, Height Functions, the Pivot
Property and Entropy Minimality”. In: Ergodic Theory and Dynamical Sys-
tems 37.4 (2016), pp. 1102–1132. doi: 10.1017/etds.2015.88.

https://doi.org/10.4230/LIPICS.STACS.2008.1334
https://doi.org/10.4230/LIPICS.STACS.2008.1334
https://api.semanticscholar.org/CorpusID:122079099
https://api.semanticscholar.org/CorpusID:122079099
https://doi.org/10.1093/qmath/has025
https://doi.org/10.24033/bsmf.2762
https://doi.org/10.1007/978-3-319-40189-8_21
https://doi.org/10.1007/978-3-319-40189-8_21
https://arxiv.org/abs/2401.10347
http://arxiv.org/abs/2401.10347v1
https://doi.org/10.1007/978-3-642-14034-1
https://doi.org/10.1007/978-3-642-14034-1
https://doi.org/10.1017/etds.2015.88

REFERENCES 203

[Cha18] Nishant Chandgotia. A Short Note on the Pivot Property. 2018. url: https://
nishantchandgotia.github.io/Research_files/Notes_files/Pivot.pdf.

[CK15a] Van Cyr and Bryna Kra. “The Automorphism Group of a Shift of Linear
Growth: Beyond Transitivity”. In: Forum of Mathematics, Sigma 3 (2015), e5.
doi: 10.1017/fms.2015.3.

[CK15b] Van Cyr and Bryna Kra. “The Automorphism Group of a Shift of Sub-
quadratic Growth”. In: Proceedings of the American Mathematical Society
144.2 (2015), pp. 613–621. doi: 10.1090/proc12719.

[CL90] John H. Conway and Jeffrey C. Lagarias. “Tiling With Polyominoes and Com-
binatorial Group Theory”. In: J. Comb. Theory, Ser. A 53.2 (1990), pp. 183–
208. doi: 10.1016/0097-3165(90)90057-4.

[CM18] Nishant Chandgotia and Brian Marcus. “Mixing Properties for Hom-Shifts
and the Distance Between Walks on Associated Graphs”. In: Pacific Journal
of Mathematics 294.1 (2018), pp. 41–69. doi: 10.2140/pjm.2018.294.41.

[CPV24] Antonin Callard, Léo Paviet Salomon, and Pascal Vanier. Computability of Ex-
tender Sets in Multidimensional Subshifts. 2024. arXiv: 2401.07549 [cs.DM].

[CV21] Antonin Callard and Pascal Vanier. “Computational Characterization of Sur-
face Entropies for Z2 Subshifts of Finite Type”. In: (2021).

[Die08] Tammo tom Dieck. Algebraic Topology. Vol. 8. European Mathematical Soci-
ety, 2008.

[Don+15] Sebastián Donoso, Fabien Durand, Alejandro Maass, and Samuel Petite. “On
Automorphism Groups of Low Complexity Subshifts”. In: Ergodic Theory and
Dynamical Systems 36.1 (2015), pp. 64–95. doi: 10.1017/etds.2015.70.

[Don+17] Sebastian Donoso, Fabien Durand, Alejandro Maass, and Samuel Petite. “On
Automorphism Groups of Toeplitz Subshifts”. In: Discrete Analysis (2017).
doi: 10.19086/da.1832.

[DR22] Julien Destombes and Andrei Romashchenko. “Resource-Bounded Kolmogorov
Complexity Provides an Obstacle to Soficness of Multidimensional Shifts”. In:
Journal of Computer and System Sciences 128 (2022), pp. 107–134.

[DRS12] Bruno Durand, Andrei Romashchenko, and Alexander Shen. “Fixed-Point Tile
Sets and Their Applications”. In: Journal of Computer and System Sciences
78.3 (2012), pp. 731–764. doi: 10.1016/j.jcss.2011.11.001.

[EGL23] Louis Esperet, Ugo Giocanti, and Clément Legrand-Duchesne. The Struc-
ture of Quasi-Transitive Graphs Avoiding a Minor With Applications to the
Domino Problem. 2023. arXiv: 2304.01823 [math.CO]. url: http://arxiv.
org/abs/2304.01823v2.

[Ein01] Manfred Einsiedler. “Fundamental Cocycles of Tiling Spaces”. In: Ergodic The-
ory and Dynamical Systems 21.03 (2001). doi: 10.1017/s0143385701001389.

[EM22] Solène J Esnay and Etienne Moutot. “Aperiodic SFTs on Baumslag-Solitar
Groups”. In: Theoretical Computer Science 917 (2022), pp. 31–50.

[Fer07] Thomas Fernique. “Local Rule Substitutions and Stepped Surfaces”. In: The-
oretical computer science 380.3 (2007), pp. 317–329.

[Fer22] Alexandre Fernandez. “Théorie et Pratique des Transformations Globales”.
s207008. PhD thesis. 2022.

[FO10] Thomas Fernique and Nicolas Ollinger. “Combinatorial Substitutions and
Sofic Tilings”. In: Computing Research Repository - CORR 13 (Sept. 2010).
arXiv: 1009.5167v2.

https://nishantchandgotia.github.io/Research_files/Notes_files/Pivot.pdf
https://nishantchandgotia.github.io/Research_files/Notes_files/Pivot.pdf
https://doi.org/10.1017/fms.2015.3
https://doi.org/10.1090/proc12719
https://doi.org/10.1016/0097-3165(90)90057-4
https://doi.org/10.2140/pjm.2018.294.41
https://arxiv.org/abs/2401.07549
https://doi.org/10.1017/etds.2015.70
https://doi.org/10.19086/da.1832
https://doi.org/10.1016/j.jcss.2011.11.001
https://arxiv.org/abs/2304.01823
http://arxiv.org/abs/2304.01823v2
http://arxiv.org/abs/2304.01823v2
https://doi.org/10.1017/s0143385701001389
https://arxiv.org/abs/1009.5167v2

204 REFERENCES

[FOP16] Thomas French, Nic Ormes, and Ronnie Pavlov. “Subshifts With Slowly Grow-
ing Numbers of Follower Sets”. In: Ergodic theory, dynamical systems, and the
continuing influence of John C. 506 Oxtoby 678 (2016), pp. 175–186.

[FP19] Thomas French and Ronnie Pavlov. “Follower, Predecessor, and Extender En-
tropies”. In: Monatshefte für Mathematik 188 (2019), pp. 495–510.

[Fre16a] Thomas French. “Characterizing Follower and Extender Set Sequences”. In:
Dynamical Systems 31.3 (2016), pp. 293–310.

[Fre16b] Thomas French. “Follower and Extender Sets in Symbolic Dynamics”. PhD
thesis. University of Denver, 2016.

[Gan18] Silvère Gangloff. “Algorithmic Complexity of Growth-Type Invariants of Sft
Under Dynamical Constraints”. PhD thesis. Aix-Marseille Université, 2018.
url: http://www.theses.fr/2018AIXM0231/document.

[Goo16] Chaim Goodman-Strauss. Matching Rules for the Sphinx Tiling Substitution.
2016. arXiv: 1608.07168 [math.CO]. url: https://arxiv.org/abs/1608.
07168.

[Goo98] Chaim Goodman-Strauss. “Matching Rules and Substitution Tilings”. In: The
Annals of Mathematics 147.1 (1998), p. 181. doi: 10.2307/120988.

[GP95] William Geller and James Propp. “The Projective Fundamental Group of a
Z2-shift”. In: Ergodic Theory and Dynamical Systems 15.6 (1995), pp. 1091–
1118. doi: 10.1017/s0143385700009810.

[GS21] Silvère Gangloff and Mathieu Sablik. “Quantified Block Gluing for Multidi-
mensional Subshifts of Finite Type: Aperiodicity and Entropy”. In: Journal
d’Analyse Mathématique 144.1 (2021), pp. 21–118. doi: 10.1007/s11854-
021-0172-5.

[GS87] Branko Grünbaum and Geoffrey Colin Shephard. Tilings and Patterns. Courier
Dover Publications, 1987.

[Hat00] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2000. url:
https://cds.cern.ch/record/478079.

[Hed69] G. A. Hedlund. “Endomorphisms and Automorphisms of the Shift Dynamical
System”. In: Mathematical Systems Theory 3.4 (1969), pp. 320–375. doi: 10.
1007/bf01691062.

[HGO22] Benjamin Hellouin de Menibus, Silvère Gangloff, and Piotr Oprocha. “Short-
Range and Long-Range Order: a Transition in Block-Gluing Behavior in Hom
Shifts”. In: (2022). doi: 10.48550/ARXIV.2211.04075.

[Hil35] David Hilbert. “Über Die Stetige Abbildung Einer Linie Auf Ein Flächen-
stück”. In: Dritter Band: Analysis· Grundlagen der Mathematik· Physik Ver-
schiedenes: Nebst Einer Lebensgeschichte (1935), pp. 1–2.

[HM10] Michael Hochman and Tom Meyerovitch. “A Characterization of the Entropies
of Multidimensional Shifts of Finite Type”. In: Annals of Mathematics 171.3
(2010), pp. 2011–2038. doi: 10.4007/annals.2010.171.2011.

[Hoc09a] Michael Hochman. “On the Automorphism Groups of Multidimensional Shifts
of Finite Type”. In: Ergodic Theory and Dynamical Systems 30.3 (2009),
pp. 809–840. doi: 10.1017/s0143385709000248.

[Hoc09b] Michael Hochman. “On the Dynamics and Recursive Properties of Multi-
dimensional Symbolic Systems”. In: Inventiones Mathematicae 176.1 (Apr.
2009), p. 2009.

http://www.theses.fr/2018AIXM0231/document
https://arxiv.org/abs/1608.07168
https://arxiv.org/abs/1608.07168
https://arxiv.org/abs/1608.07168
https://doi.org/10.2307/120988
https://doi.org/10.1017/s0143385700009810
https://doi.org/10.1007/s11854-021-0172-5
https://doi.org/10.1007/s11854-021-0172-5
https://cds.cern.ch/record/478079
https://doi.org/10.1007/bf01691062
https://doi.org/10.1007/bf01691062
https://doi.org/10.48550/ARXIV.2211.04075
https://doi.org/10.4007/annals.2010.171.2011
https://doi.org/10.1017/s0143385709000248

REFERENCES 205

[IYN12] Zaffar Iqbal, Shamaila Yousaf, and Sadia Noreen. “Growth Rate of Braid
MonoidsMBn+1, N < 5”. In: AIP Conference Proceedings. Vol. 1450. 1. Amer-
ican Institute of Physics. 2012, pp. 346–350.

[Jen01] Oliver Jenkinson. “Strong Cocycle Triviality for Z2 Subshifts”. In: Theoret-
ical Computer Science 262.1-2 (2001), pp. 191–213. doi: 10.1016/s0304-
3975(00)00189-4.

[JK12] Timo Jolivet and Jarkko Kari. “Consistency of Multidimensional Combinato-
rial Substitutions”. In: Theoretical Computer Science 454 (2012), pp. 178–188.
doi: 10.1016/j.tcs.2012.03.050.

[JV13] Emmanuel Jeandel and Pascal Vanier. “Characterizations of Periods of Multi-
Dimensional Shifts”. In: Ergodic Theory and Dynamical Systems 35.2 (2013),
pp. 431–460. doi: 10.1017/etds.2013.60.

[Kam+24] Mark Kambites, Carl-Fredrik Nyberg-Brodda, Nóra Szakács, and Richard
Webb. “The Growth of Free Inverse Monoids”. In: arXiv preprint arXiv:2407.10489
(2024).

[Kar96] Jarkko Kari. “A Small Aperiodic Set of Wang Tiles”. In: Discrete Mathematics
160.1 (1996), pp. 259–264. issn: 0012-365X. doi: 10.1016/0012-365X(95)
00120-L.

[KM13] Steve Kass and Kathleen Madden. “A Sufficient Condition for Non-Soficness of
Higher-Dimensional Subshifts”. In: Proceedings of the American Mathematical
Society 141.11 (2013), pp. 3803–3816.

[Kna24] Teodor Knapik. Lindenmayer Graph Languages, First-Order Theories and Ex-
panders. 2024. arXiv: 2405.17629 [cs.FL].

[Kur03] Petr Kurka. Topological and Symbolic Dynamics. Société mathématique de
France, 2003.

[LM21] Douglas Lind and Brian Marcus. An Introduction to Symbolic Dynamics and
Coding. Cambridge university press, 2021.

[Lot02] M Lothaire. Algebraic Combinatorics on Words. Cambridge University Press,
2002.

[May99] J Peter May. A Concise Course in Algebraic Topology. University of Chicago
press, 1999.

[MH38] Marston Morse and Gustav A Hedlund. “Symbolic Dynamics”. In: American
Journal of Mathematics 60.4 (1938), pp. 815–866.

[MKS04] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial Group
Theory: Presentations of Groups in Terms of Generators and Relations. Courier
Corporation, 2004. isbn: 9780486438306.

[Moz89] Shahar Mozes. “Tilings, Substitution Systems and Dynamical Systems Gener-
ated by Them”. In: Journal d’Analyse Mathématique 53.1 (1989), pp. 139–186.
doi: 10.1007/bf02793412.

[MRR01] Cristopher Moore, Ivan Rapaport, and Eric Rémila. Tiling Groups for Wang
Tiles. Research Report LIP RR-2001-32. Laboratoire de l’informatique du par-
allélisme, Sept. 2001, 2+14p. url: https://hal-lara.archives-ouvertes.
fr/hal-02101843.

[MS15] Luidnel Maignan and Antoine Spicher. “Global Graph Transformations.” In:
GCM@ ICGT. 2015, pp. 34–49.

[Myh57] John Myhill. “Finite Automata and the Representation of Events”. In: WADD
Technical Report 57 (1957), pp. 112–137.

https://doi.org/10.1016/s0304-3975(00)00189-4
https://doi.org/10.1016/s0304-3975(00)00189-4
https://doi.org/10.1016/j.tcs.2012.03.050
https://doi.org/10.1017/etds.2013.60
https://doi.org/10.1016/0012-365X(95)00120-L
https://doi.org/10.1016/0012-365X(95)00120-L
https://arxiv.org/abs/2405.17629
https://doi.org/10.1007/bf02793412
https://hal-lara.archives-ouvertes.fr/hal-02101843
https://hal-lara.archives-ouvertes.fr/hal-02101843

206 REFERENCES

[Ner58] Anil Nerode. “Linear Automaton Transformations”. In: Proceedings of the
American Mathematical Society 9.4 (1958), pp. 541–544.

[Nov55] P. S. Novikov. Über Die Algorithmische Unentscheidbarkeit des Wortproblems
in Der Gruppentheorie. Russian. Tr. Mat. Inst. Steklova 44, 140 S. (1955).
1955.

[Nov58] P. S. Novikov. “Algorithmic Unsolvability of the Word Problem in Group
Theory”. In: Journal of Symbolic Logic 23.1 (1958), pp. 50–52. doi: 10.2307/
2964487.

[OP16] Nic Ormes and Ronnie Pavlov. “Extender Sets and Multidimensional Sub-
shifts”. In: Ergodic Theory and Dynamical Systems 36.3 (2016), pp. 908–923.

[Pel+09] Edita Pelantová et al. “A Note on Symmetries in the Rauzy Graph and Factor
Frequencies”. In: Theoretical computer science 410.27-29 (2009), pp. 2779–
2783.

[Piv07] Marcus Pivato. Algebraic Invariants for Crystallographic Defects in Cellular
Automata. 2007. arXiv: math/0507167 [math.DS].

[PR12] Dominique Perrin and Antonio Restivo. “A Note on Sturmian Words”. In:
Theoretical Computer Science 429 (2012), pp. 265–272.

[Pri03] Natalie Priebe Frank. “Detecting Combinatorial Hierarchy in Tilings Using
Derived Voronoi Tessellations”. In: Discrete and Computational Geometry 29.3
(2003), pp. 459–467. doi: 10.1007/s00454-002-0758-3.

[Pri08] Natalie Priebe Frank. “A Primer of Substitution Tilings of the Euclidean
Plane”. In: Expositiones Mathematicae 26.4 (2008), pp. 295–326.

[Pro97] James Propp. “A Pedestrian Approach to a Method of Conway, or a Tale of
Two Cities”. In: Mathematics Magazine 70.5 (1997), pp. 327–340. doi: 10.
1080/0025570x.1997.11996571.

[PS24] Léo Poirier and Ville Salo. Contractible Subshifts. 2024. arXiv: 2401.16774
[math.DS]. url: http://arxiv.org/abs/2401.16774v1.

[PV23] Léo Paviet Salomon and Pascal Vanier. “Realizing Finitely Presented Groups
as Projective Fundamental Groups of SFTs”. In: 48th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS 2023). Ed.
by Jérôme Leroux, Sylvain Lombardy, and David Peleg. Vol. 272. Leibniz In-
ternational Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023, 75:1–75:15. isbn: 978-3-95977-292-1. doi: 10.
4230/LIPIcs.MFCS.2023.75.

[Pyt+02] N. Pytheas Fogg, Valérie Berthé, Sébastien Ferenczi, Christian Mauduit, and
Anne Siegel. Substitutions in Dynamics, Arithmetics and Combinatorics. Springer
Berlin Heidelberg, 2002. isbn: 978-3-540-44141-0. doi: 10.1007/b13861.

[Rém05] Eric Rémila. “Tiling a Polygon With Two Kinds of Rectangles”. In: Discrete
& Computational Geometry 34 (2005), pp. 313–330.

[Rob71] Raphael M Robinson. “Undecidability and Nonperiodicity for Tilings of the
Plane”. In: Inventiones mathematicae 12 (1971), pp. 177–209.

[Sal15] Ville Salo. “Groups and Monoids of Cellular Automata”. In: Cellular Automata
and Discrete Complex Systems. Cellular Automata and Discrete Complex Sys-
tems. Springer Berlin Heidelberg, 2015. Chap. 3, pp. 17–45. doi: 10.1007/
978-3-662-47221-7_3.

https://doi.org/10.2307/2964487
https://doi.org/10.2307/2964487
https://arxiv.org/abs/math/0507167
https://doi.org/10.1007/s00454-002-0758-3
https://doi.org/10.1080/0025570x.1997.11996571
https://doi.org/10.1080/0025570x.1997.11996571
https://arxiv.org/abs/2401.16774
https://arxiv.org/abs/2401.16774
http://arxiv.org/abs/2401.16774v1
https://doi.org/10.4230/LIPIcs.MFCS.2023.75
https://doi.org/10.4230/LIPIcs.MFCS.2023.75
https://doi.org/10.1007/b13861
https://doi.org/10.1007/978-3-662-47221-7_3
https://doi.org/10.1007/978-3-662-47221-7_3

REFERENCES 207

[Sal16] Ville Salo. “A Note on Subgroups of Automorphism Groups of Full Shifts”.
In: Ergodic Theory and Dynamical Systems 38.4 (2016), pp. 1588–1600. doi:
10.1017/etds.2016.95.

[Sch95] Klaus Schmidt. “The Cohomology of Higher-Dimensional Shifts of Finite Type”.
In: Pacific Journal of Mathematics 170.1 (1995), pp. 237–269. doi: 10.2140/
pjm.1995.170.237.

[Sch98] Klaus Schmidt. “Tilings, Fundamental Cocycles and Fundamental Groups of
Symbolic Zd-actions”. In: Ergodic Theory and Dynamical Systems 18.6 (1998),
pp. 1473–1525. doi: 10.1017/s0143385798118060.

[Sel20] Daniel Sell. “Simple Toeplitz Subshifts: Combinatorial Properties and Unifor-
mity of Cocycles”. PhD thesis. Friedrich Schiller University Jena, 2020. url:
https://arxiv.org/pdf/2006.15348.

[Sil20] Eduardo Alejandro Silva Müller. “Subshifts En Los Grupos de Baumslag-
Solitar Solubles No-Abelianos”. Master Thesis. Universidad de Chile, 2020.

[Soa16] Robert I. Soare. Turing Computability: Theory and Applications. Vol. 300.
Springer, 2016. doi: 10.1007/978-3-642-31933-4.

[Sta83] John R. Stallings. “Topology of Finite Graphs”. In: Inventiones Mathematicae
71.3 (Mar. 1983), pp. 551–565. issn: 1432-1297. doi: 10.1007/bf02095993.

[Thu12] Axel Thue. Über Die Gegenseitige Lage Gleicher Teile Gewisser Zeichenreihen.
1. Jacob Dybwad, 1912.

[Thu90] William P. Thurston. “Conway’s Tiling Groups”. In: The American Mathe-
matical Monthly 97.8 (1990), p. 757. doi: 10.2307/2324578.

[Tur+36] Alan Mathison Turing et al. “On Computable Numbers, With an Application
to the Entscheidungsproblem”. In: J. of Math 58.345-363 (1936), p. 5.

[Van19] Pascal Vanier. “Subshifts: Aperiodicity, Complexity and Groups”. Habilitation
à Diriger des Recherches. Université Paris-Est Créteil, 2019.

[Vie27] Leopold Vietoris. “Über Den höheren Zusammenhang Kompakter Räume Und
Eine Klasse Von Zusammenhangstreuen Abbildungen”. In: Mathematische An-
nalen 97.1 (1927), pp. 454–472.

[Wan61] Hao Wang. “Proving Theorems by Pattern Recognition-II”. In: Bell system
technical journal 40.1 (1961), pp. 1–41.

[Wei12] Klaus Weihrauch. Computable Analysis: an Introduction. Springer Science &
Business Media, 2012.

[Wei73] Benjamin Weiss. “Subshifts of Finite Type and Sofic Systems.” In: Monatshefte
für Mathematik 77 (1973), pp. 462–474. url: http://eudml.org/doc/177666.

[ZW01] Xizhong Zheng and Klaus Weihrauch. “The Arithmetical Hierarchy of Real
Numbers”. In: Mathematical Logic Quarterly: Mathematical Logic Quarterly
47.1 (2001), pp. 51–65.

https://doi.org/10.1017/etds.2016.95
https://doi.org/10.2140/pjm.1995.170.237
https://doi.org/10.2140/pjm.1995.170.237
https://doi.org/10.1017/s0143385798118060
https://arxiv.org/pdf/2006.15348
https://doi.org/10.1007/978-3-642-31933-4
https://doi.org/10.1007/bf02095993
https://doi.org/10.2307/2324578
http://eudml.org/doc/177666

Indécidabilité des invariants géométriques dans les pavages

Mots-clés: Invariants, Sous-décalages, Dynamique symbolique, Calculabilité

Résumé: Cette thèse est consacrée à l’étude des sous-décalages, et en particulier leurs
propriétés calculatoires. De façon générale, un sous-décalage est défini par un ensemble fini
de symboles, un ensemble de règles spécifiant les agencements valides et invalides de ces
symboles, et un espace ambiant que l’on cherche à paver: une configuration valide consiste
alors en un agencement de ces symboles couvrant l’espace entier et respectant toutes les
contraintes. Le sous-décalage est alors défini comme l’ensemble de toutes les configurations
valides. Dans le cas le plus simple, ces règles interdisent simplement à certains symboles
d’être placés côte-à-côte, et sont donc en nombre fini. Cependant, même dans ce cas
restreint, les pavages de Zd pour d > 1 sont étonnament complexes, cette complexité se
manifestant sous plusieurs aspects étudiés dans cette thèse.

Cette thèse est divisée en trois chapitres essentiellement indépendants, précédés d’une
introduction générale aux différents objets étudiés. Dans un premier temps, nous étudierons
l’entropie d’extension des pavages de Zd, un nombre réel associé à un sous-décalage qui
quantifie le nombre de motifs qui peuvent être librement interchangés dans n’importe quelle
configuration valide. Nous montrerons que les entropies d’extension possibles sont carac-
térisées par des restrictions calculatoires, et correspondent exactement à des niveaux de la
hiérarchie arithmétique, le niveau exact dépendant de la classe de sous-décalages consid-
érée. Dans un second chapitre, nous nous intéresserons au Groupe Fondamental Projectif
des pavages du plan Z2. Il s’agit d’un groupe associé à certains sous-décalages, qui permet
de classifier les obstructions possibles qu’ont certaines configurations partielles ne pouvant
être étendues en configurations valides sur tout l’espace. Nous montrerons là aussi que
des classes simples de pavages, notamment les sous-décalages de type fini, peuvent exhiber
un comportement complexe, et en particulier peuvent avoir comme groupe fondamental
n’importe quel groupe finiment présenté. Enfin, nous étudierons dans un troisième chapitre
les sous-décalages substitutifs, dans le contexte particulier des graphes. Nous proposerons
une définition de graphe substitutif, et de sous-décalage substitutif défini sur ces graphes,
et montrerons qu’une large classe de ces sous-décalages peuvent être obtenus à l’aide d’un
nombre fini de règles locales. Ce résultat généralise partiellement un résultat classique de
Mozes, dans un cadre plus combinatoire et moins géométrique.

Abstract: This thesis is devoted to the study of subshifts, and in particular their compu-
tational properties. A subshift is defined by a finite set of symbols, a set of rules specifying
authorized and forbidden arrangements of these symbols, and an ambient space that we
try to tile: a valid configuration is then an arrangement of these symbols, covering the
entire space and respecting all the rules. A subshift is then defined as the set of all the
valid configurations. In the simplest case, the rules are adjacency rules, which prevent
some symbols from being placed next to one another. However, even in this restricted
setting, tilings of Zd for d > 1 can be surprinsingly complicated, in several ways studied
in this thesis.

The thesis is divided in three independent chapters, with a preliminary chapter intro-
ducing all the relevant background knowledge for the various objects being considered.
In a first chapter, we study the extender entropy of Zd subshifts, a real number which
quantifies for any subshift the number of patterns that can freely be exchanged in all the
valid configurations. We show that the possible values of extender entropies are fully char-
acterized by computability restrictions, more precisely, they correspond exactly to levels in
the arithmetical hierarchy of real numbers, the precise level depending on the specific class
of subshifts being considered. In a second chapter, we study the Projective Fundamental
Group of Z2-subshifts, a group which aims at classifying the various kinds of obstructions
encountered when trying to extend a partial configuration to a complete, valid configura-
tion of the subshift. We show that even subshifts of finite type can have as fundamental
group any finitely presented group. Finally, we study in a third chapter a kind of substi-
tutive subshift defined on graphs. We propose a definition of substitutive graph, as well
as substitutive graph subshift, and show that an important class of these subshifts can be
obtained using only finitely many local rules. This partially generalizes a classical result
from Mozes, in a more combinatorial but less geometrical setting.

208

	Contents
	Acknowledgements
	Notations and conventions
	Introduction
	Tilings, colourings, decorations
	Some historical background
	Structure of the document

	First definitions
	Subshifts and tilings
	Subshifts: patterns and local rules
	Wang Tiles: an historical point of view
	From tilings to subshifts and forbidden patterns
	Some basic definitions
	Back to Wang tiles

	Factor maps, conjugacy and invariants
	Block maps
	Conjugacy and conjugacy invariants

	Topological aspects and some operations
	Dynamical systems
	Cylinders, compactness, continuity
	Dynamical and mixing properties

	Walks on graphs, regular languages, sofic subshifts
	Multidimensional sofic subshifts
	Interlude: some graph theory
	The one-dimensional case

	Computability
	Turing Machines and decision problems
	Arithmetical hierarchy
	Some natural links with subshifts
	The domino problem
	Effective subshifts
	Lifting constructions

	Some notions of group theory
	Group presentations
	Cayley graphs
	Tilings on groups

	Extender entropies
	Extender sets
	Regular languages
	Follower and predecessor sets
	Extender sets and syntactic monoids
	Extender sets and subshifts

	First examples and constructions

	Another kind of entropy
	Extender entropy: a conjugacy invariant
	Preliminary results on extender entropies

	Computability considerations
	Inclusion of extender sets
	Number of extender sets

	Characterizations of extender entropies
	Minimal subshifts
	Mixing properties
	One-dimensional effective subshifts
	Encoding integers into configurations
	Configurations with controlled density
	An auxiliary subshift
	Multiplying the number of patterns
	Counting patterns and extender sets

	Computable subshifts
	Multi-dimensional sofic subshifts
	Marked offsets instead of periods
	A sofic marking subshift
	Counting extender sets

	A short note about syntactic monoids

	Summary

	The projective fundamental group of subshifts
	Filling holes and patching defects
	Conway's tiling group
	Defects in tilings

	Projective fundamental group: adaptation to subshifts
	The classical fundamental group
	Paths and loops
	Homotopy and the fundamental group
	Covering spaces

	Definition of the group and links with other notions
	An actual fundamental group of scene spaces
	A combinatorial point of view

	First examples and properties

	Projective connectedness
	Definition and basepoint independence
	Projective connectedness as a mixing property
	Cones and cone-connected subshifts
	Chain-mixing properties
	Transitivity
	Contractibility

	One-dimensional SFT
	Deciding projective connectedness

	Hom-shifts
	Definition and first results
	The case of trees
	Universal graph coverings
	Fundamental group of graphs

	Non-contractible Hom-shifts

	Finitely presented groups and SFTs
	The construction
	Only Crossed Wires Matter
	A normal form for paths
	Computing the projective fundamental group
	Open questions: beyond finitely presented groups
	Infinitely generated groups
	Recursively presented groups

	Substitutive subshifts on graphs
	Substitutions
	Substitutive subshifts are sofic
	The discrete grid
	The euclidean plane
	Matching rules for euclidean substitutive tilings
	Combinatorial point-of-view on euclidean tilings

	Beyond the geometry
	Soficity relative to substitutive discrete subshifts
	Substitutions on groups
	Other combinatorial notions of substitutions

	Graph subshifts
	Basic graph theory
	A specific class of graphs
	Graph subshifts and SFTs
	Substitutive graphs and Lindenmayer systems
	Skeletons, borders, meta-tiles
	Sheets and subgraphs

	Sofic graphs and coloured substitutions
	Coloured substitutions on graphs
	Sofic graph subshifts

	An equivalent to Mozes theorem
	Self-simulation in graphs
	Construction of a self-simulating graph SFT
	The decorations
	Matching rules

	Self-simulation
	Substitutive graphs can be decorated
	Decorated graphs are sheeted-substitutive

	Some consequences of the construction
	Link between the two substitutive subshifts
	Removing sheets
	A monotonicity result

	References

