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Résumé

L’apprentissage automatique (machine learning) joue un rôle central dans la science des

données et l’informatique moderne, en particulier pour l’analyse de données structurées.

Parmi les différentes approches disponibles, les arbres de décision suscitent un intérêt con-

stant grâce à leur simplicité d’interprétation et à leurs performances solides dans de

nombreux scénarios. Un arbre de décision peut se représenter comme un organigramme

où chaque nœud correspond à une question portant sur une variable, et chaque branche

mène progressivement à une prédiction finale (classe, valeur numérique, etc.). Cette struc-

ture hiérarchisée confère aux arbres de décision une lisibilité appréciable, tant pour les

spécialistes que pour les acteurs métiers souhaitant comprendre les raisons sous-tendant

une prédiction.

Cependant, à mesure que les arbres grandissent et se complexifient, ils deviennent plus

difficiles à interpréter. Pour répondre à ce défi, des approches d’explicabilité avancées ont

émergé, notamment l’utilisation des valeurs de Shapley et de l’algorithme TreeShap. Ces

méthodes attribuent un score d’importance à chaque variable et chaque fraction de branche-

ment, permettant ainsi d’expliquer pourquoi un arbre de décision aboutit à une certaine

prédiction. Malgré leur intérêt, ces techniques exigent souvent des ressources de calcul

importantes, ce qui limite leur applicabilité à grande échelle ou sur des modèles très pro-

fonds. C’est dans ce contexte que nous proposons l’algorithme Linear TreeShap, qui offre

un compromis entre efficacité de calcul et qualité d’interprétation. L’objectif est de faciliter

l’analyse des modèles d’arbres même lorsqu’ils deviennent particulièrement complexes.
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En parallèle, la gestion des variables catégorielles dans les arbres de décision demeure

une problématique clé. Contrairement aux variables numériques, que l’on peut aisément

ordonner et segmenter (par exemple, séparer des âges en classes d’intervalle), les variables

qualitatives—telles que les couleurs, les catégories de produits ou les types d’événements—ne

possèdent pas d’ordre naturel. Lorsque le nombre de catégories devient important, le nom-

bre de partitions possibles explose, rendant les calculs coûteux et parfois sous-optimaux.

Les méthodes habituelles de conversion (par exemple, le one-hot encoding) peuvent fonc-

tionner dans le cas de la classification binaire, mais elles montrent leurs limites dans des

scénarios à classes multiples, comme prédire plusieurs couleurs (rouge, vert, jaune) ou

différents types d’objets.

Face à ce constat, nous présentons un cadre méthodologique permettant aux arbres de

décision—et plus particulièrement aux algorithmes de type CART (Classification and Re-

gression Trees)—d’exploiter directement les variables qualitatives lors des opérations de

scission, sans recourir systématiquement à la conversion numérique. Cette approche vise

non seulement à renforcer la précision du modèle lorsque plusieurs classes sont en jeu,

mais aussi à mieux refléter la logique intrinsèque des catégories (par exemple, le fait qu’il

n’y a pas de continuum numérique entre “rouge” et “vert”).

Pour répondre aux défis liés aux grands ensembles de catégories, nous introduisons égale-

ment la méthode BSplitZ, qui repose sur une approche stochastique pour scinder efficace-

ment des jeux de données contenant des variables catégorielles volumineuses. L’idée est

de réduire la complexité exponentielle tout en maintenant un niveau de performance élevé.

Cette méthode s’avère particulièrement adaptée aux applications à grande échelle, où le

nombre de catégories distinctes peut se chiffrer en dizaines, voire en centaines.

Un autre aspect déterminant dans la construction des arbres concerne la sélection des

critères de scission. Dans le cadre de la régression, plusieurs métriques peuvent être

utilisées, parmi lesquelles l’erreur absolue moyenne (MAE, Mean Absolute Error ). Cette

métrique est appréciée pour sa robustesse vis-à-vis des valeurs aberrantes et des distri-

butions fortement déséquilibrées. Toutefois, l’application de la MAE aux variables quali-
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tatives pose des problèmes non résolus, car la plupart des solutions pratiques s’appuient

sur des heuristiques (par exemple, un découpage median-based) qui ne garantissent pas

l’optimalité du modèle final. Notre travail apporte une contribution fondamentale en prou-

vant l’inexistence d’un encodage numérique parfaitement optimal pour les variables caté-

gorielles avec le critère MAE. Cette preuve représente une avancée notable, compte tenu

des efforts déployés pour trouver un encodage idéal adapté à la MAE et des multiples im-

plémentations d’encodage automatique dans des frameworks tels que XGBoost, LightGBM

ou CatBoost.

Par ailleurs, nous décrivons un nouvel algorithme qui résout efficacement le problème du

coût unimodal 2-median, problématique étroitement liée à la construction d’arbres de dé-

cision de type CART. Au-delà de son utilité immédiate dans le contexte de notre recherche,

cet algorithme s’avère pertinent pour d’autres applications en optimisation et en analyse de

données.

En définitive, cette thèse vise à améliorer à la fois la théorie et la pratique des arbres de

décision dans le domaine du machine learning. D’une part, nous répondons aux questions

d’interprétabilité via la proposition de l’algorithme Linear TreeShap, qui aborde les limites

computationnelles des méthodes d’explicabilité. D’autre part, nous explorons en profondeur

la gestion des variables catégorielles en proposant de nouvelles méthodes de scission et

en dévoilant des résultats théoriques fondamentaux quant à l’impossibilité d’obtenir un en-

codage optimal sous le critère MAE. Par ces contributions, nous espérons ouvrir la voie

à des arbres de décision plus flexibles, plus puissants et plus transparents, capables de

gérer efficacement une diversité de problèmes réels, qu’il s’agisse de la classification multi-

classe complexe ou de la régression robuste à grande échelle.

Notre ambition est donc de “favoriser une plus large adoption” des arbres de décision en tant

qu’outils d’apprentissage automatique, en soulignant leurs capacités à s’adapter à la com-

plexité croissante des données tout en maintenant une certaine lisibilité pour l’utilisateur

final. Ainsi, ce travail trouve une résonance non seulement dans la recherche académique

mais aussi dans le déploiement pratique des modèles de machine learning, afin de con-
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tribuer à des prises de décision plus éclairées et plus fiables dans des secteurs variés

(finance, santé, e-commerce, etc.). Les évolutions proposées ici constituent autant de

réponses aux défis actuels en matière de modélisation de données structurées et de traite-

ment de variables qualitatives, ouvrant la voie à de nouvelles perspectives pour l’interprétabilité

et l’efficacité computationnelle dans le domaine de l’intelligence artificielle.



Abstract

In the dynamic landscape of machine learning, where algorithms continuously strive to

outpace one another, decision tree models have consistently stood out for their efficiency

and transparency, particularly in handling structured data. These models excel in scenar-

ios where human interpretability is as crucial as predictive accuracy. Despite their enduring

appeal, decision trees face persistent challenges, notably in deciphering complex tree struc-

tures and efficiently managing categorical data.

Think of a decision tree model as a flowchart that systematically guides a sequence of

questions toward a final decision, such as predicting whether a person is likely to purchase

a product online based on their browsing behavior. Decision trees excel in this task because

they pose simple, intuitive questions like, "Did the person visit the homepage?" or "Did they

click on the ’Sale’ section?" However, as the model aims for higher predictive accuracy,

the tree becomes deeper, branching into more questions and mirroring a more intricate

decision-making process.

As these trees grow, their complexity increases, making it more challenging to interpret

why the model makes specific predictions. To address this complexity, recent advance-

ments have integrated decision trees with Shapley values and TreeShap, methodologies

that assign importance scores to each decision point in the tree. These techniques pro-

vide a clearer understanding of the rationale behind a decision tree’s predictions, even in

the context of highly complex models. This approach is akin to unraveling the layers of

the model’s decision-making process. However, these methods often come with significant

computational costs, which can hinder the efficiency of analyzing and interpreting tree-based

ix
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models. To overcome this challenge, we propose the "Linear TreeShap" algorithm, designed

to streamline the interpretation process and enable a more efficient understanding of deep

tree structures.

Another critical challenge faced by decision trees is their handling of categorical fea-

tures. In their predictive quest, decision trees must split features into distinct groups, akin

to separating apples from oranges. Numerical features can be split naturally into ordered

groups, making the task relatively straightforward. However, categorical features, such as

colors, present a unique challenge. Categories are discrete and lack inherent order, lead-

ing to a proliferation of potential splits. For example, if we categorize fruits by colors like

"red," "green," and "yellow," there is no natural sequence or hierarchy among these values.

As the number of categories increases, the number of possible splits grows exponentially,

complicating the decision tree’s ability to manage categorical data effectively.

These challenges highlight the need for innovative approaches to maintaining decision

trees’ strengths while addressing their limitations. By developing solutions like the "Linear

TreeShap" algorithm and exploring efficient categorical feature splitting methods, we aim to

enhance the interpretability and computational efficiency of decision tree models, ensuring

they remain valuable tools in the evolving field of machine learning.

This thesis delves into the challenges of handling categorical data within decision tree al-

gorithms, with a particular focus on Classification and Regression Trees (CART). Traditional

approaches often rely on numerical encoding methods, transforming categorical features

into numerical values. While effective in binary classification scenarios, these methods fre-

quently fall short in multi-class problems, where the task is to predict multiple outcomes,

such as different colors (e.g., red, green, yellow). We propose a comprehensive frame-

work enabling decision trees to directly split on categorical features, closing the accuracy

gap between binary and multi-class problems. This framework represents a sophisticated

solution, allowing decision trees to work with categories directly without necessitating their

conversion into numerical counterparts. By exploring the complexities of multi-class clas-

sifications, this framework offers deeper insights into the inherent challenges of predicting
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multiple outcomes.

To further enhance the efficiency of categorical feature handling, we introduce the "BSplitZ"

method, a stochastic approach tailored to simplify the splitting of large sets of categories.

This method effectively manages categorical data, even in scenarios with extensive and

diverse category sets, thereby streamlining the process for large-scale applications.

A critical aspect of this research addresses the binary splitting of categorical features

using the Mean Absolute Error (MAE) criterion. Binary splitting is a fundamental component

of tree learning algorithms, and it often serves as a bottleneck, particularly when dealing with

categorical features. The discrete nature of categorical features introduces an exponential

search space for potential binary splits, posing significant computational challenges. Vari-

ous numerical encoding methods have been developed to mitigate these, allowing popular

tree-based machine learning frameworks, such as XGBoost, LightGBM, and CatBoost, to

support categorical data through automatic numerical encoding techniques. While optimal

numerical encodings exist for certain splitting criteria, such as mean squared error and Gini

impurity, the MAE criterion—favored for its robustness against outliers and skewed distri-

butions—lacks a well-established optimal encoding method. The most common approach

for MAE employs a median-based heuristic, which, although computationally efficient, may

not yield optimal results, especially in the context of large, randomly generated datasets.

Proving the non-optimality of this heuristic has been particularly challenging, as verifying

optimality in extensive random datasets is practically unfeasible.

Addressing these challenges, our research provides the first conclusive proof of the non-

existence of optimal numerical encoding for categorical features when using the MAE crite-

rion. This significant finding has profound implications, especially considering the substantial

efforts devoted to identifying such encodings and the development of various unsupervised

numerical encoding methods.

Moreover, the research introduces a novel algorithm that efficiently resolves the uni-

modal cost 2-median problem. This algorithm is pertinent to the context of CART algorithms

and represents a valuable contribution to solving a broader computational problem with in-
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dependent significance.

Collectively, this work offers novel insights and solutions to the challenges associated

with handling categorical features in decision tree-based machine learning. By addressing

the optimality of numerical encoding, introducing innovative algorithms, and enhancing the

theoretical and practical aspects of decision tree modeling, this research advances both the

foundational understanding and the application of these models.

In summary, this thesis contributes significantly to decision tree-based machine learning

by presenting new algorithms, frameworks, and a deeper understanding of key issues such

as interpretability, categorical feature handling, and binary splitting. We aim to advance the

theoretical underpinnings of decision tree models and facilitate their practical applications

across diverse domains. By illuminating the complex interplay between decision trees and

structured data, this thesis aspires to bridge the gap between sophisticated algorithms and

their practical utility, benefiting both experts and newcomers to the field alike.
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Chapter 1

Introduction

1.1 Motivation

In machine learning, decision trees have become fundamental tools, widely used in

classification and regression tasks [9, 58]. Among these, the Classification and Regression

Tree (CART) algorithm, initially introduced by Breiman [9] and later refined by Rokach [58],

has established itself as a cornerstone. Its success has paved the way for a diverse range

of tree-based algorithms that form a critical component of modern machine learning.

Decision trees are valued for their interpretability and versatility in the current machine

learning landscape. They effectively model classification and regression tasks using intu-

itive, rule-based structures, making them applicable in a variety of fields such as financial

risk assessment and medical diagnosis [9, 62]. The appeal of decision trees lies in their

simplicity and transparency—features that are increasingly important as machine learning

models are applied in high-stakes domains, where understanding model decisions is crucial

[22, 37].

In industry, the practical applicability of decision trees has led to their widespread adop-

tion in real-time decision-making systems, where quick and interpretable decisions are es-

sential. Decision trees are used extensively to automate processes across various sectors,

1
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such as credit scoring in finance and fraud detection in e-commerce [11]. The integration

of decision trees into large-scale machine learning frameworks like XGBoost, LightGBM,

and CatBoost has enhanced their robustness and scalability, enabling them to handle large

datasets efficiently while maintaining high accuracy [13, 52].

In academia, decision trees continue to be both a practical tool and a subject of research.

Efforts are ongoing to improve their performance, scalability, and interpretability, particularly

in addressing the challenges posed by large and complex datasets. Recent advances have

focused on enhancing the computational efficiency of tree-based algorithms, handling high-

dimensional data, and integrating decision trees with other machine learning paradigms [22,

39]. However, challenges remain, such as improving the handling of categorical features,

enhancing the interpretability of ensemble methods, and refining the theoretical foundations

of certain decision tree practices.

Despite the widespread adoption of decision trees in academia and industry, several

challenges remain. As models increase in complexity, especially with ensemble methods

like Random Forests and Gradient Boosting Machines, the interpretability of individual trees

decreases, raising transparency concerns [11, 49]. Additionally, improving the computa-

tional efficiency of tree-based algorithms is crucial, particularly for environments that involve

large datasets or real-time processing [13, 33, 52]. There are also theoretical gaps, such

as the optimal encoding of categorical features, which need more rigorous exploration to

ensure best practices [39].

These challenges highlight the importance of ongoing research in decision tree meth-

ods, especially in balancing interpretability with computational efficiency. As the machine

learning field increasingly prioritizes accurate and explainable models, addressing the unre-

solved issues in decision tree applications becomes essential.

With this context in mind, this thesis addresses three key research challenges to ad-

vancing the state of the art in decision tree methods. These challenges include efficient

computation of decision tree Shapley values, developing novel methods for splitting cat-

egorical features using convex splitting criteria, and exploring non-convex splitting criteria
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such as the Mean Absolute Error (MAE).

1.2 Research Challenges

1.2.1 Research Challenge 1: Efficient computing of decision tree Shap-

ley value

The demand for explainability in machine learning has increased significantly, driven by

the needs of businesses, regulators, and society at large. Various methods have been de-

veloped to enhance the interpretability of complex tree models. Notable approaches include

sampling-based techniques like Local Interpretable Model-Agnostic Explanations (LIME)

[56] and game-theoretical methods such as the Shapley value [68]. The Shapley value,

particularly through its implementation as TreeShap [42], has been widely adopted due to

its consistency and efficiency in explaining model predictions both locally and globally.

The Shapley value provides a robust mathematical framework for quantifying the contri-

bution of each feature to a prediction, making it a key tool for achieving transparency and

fairness in decision-making processes. However, as its adoption grows, there is a pressing

need for more efficient implementations. Recent advancements, such as GPUTreeShap [48]

and FastTreeShap [77], have focused on accelerating TreeShap computations. GPUTree-

Shap utilizes the parallel processing capabilities of GPUs, while FastTreeShap improves

efficiency through caching mechanisms. Despite these improvements, the complexity of

these methods can pose challenges in understanding and implementation.

To address the need for both efficiency and transparency, we propose a bottom-up ap-

proach for reevaluating Shapley value computation. Our method deconstructs the com-

putation into smaller, understandable units called decision rules, leveraging the common

properties of edge-based Shapley value computation and the mathematical properties of

polynomial arithmetic. A key innovation in our approach is the introduction of a jump list

data structure, which facilitates the cancellation of common feature polynomials, even when

features appear with different edge polynomials. This leads to the development of the "Linear
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TreeShap" algorithm, which computes exact Shapley values in linear time while maintaining

memory efficiency. This approach provides a more straightforward and efficient method for

calculating feature contributions in decision trees.

1.2.2 Research Challenge 2: Efficient Splitting categorical features

with convex splitting criteria

Another significant challenge in decision tree algorithms is the handling of categorical

features. While splitting numerical features is straightforward, the complexity increases con-

siderably with categorical attributes [9, 58]. For numerical features, the number of potential

two-way splits is directly related to the number of unique values, making the process man-

ageable. In contrast, categorical features introduce a surge in complexity, often resulting in

an exponential increase in the number of possible splits relative to the number of unique

categories.

Modern machine learning frameworks, such as XGBoost, LightGBM, and CatBoost, are

highly effective at managing numerical features but typically require users to handle feature

encoding or use built-in methods that may not generalize well, especially in multi-class clas-

sification settings [13, 33, 52]. The transition from binary to multi-class classification often

reveals limitations in these encoding strategies, highlighting a gap that our research aims to

address.

Our goal is to reduce the complexity of multi-class categorical feature splitting. To this

end, we introduce a novel state space based on additive sufficient statistics, inspired by the

mathematical properties of Zonotopes, which are geometric objects extensively studied for

their useful characteristics in optimization. This approach allows us to redefine the optimiza-

tion landscape, thereby reducing the computational complexity associated with categorical

splits [12].

This led to the development of the "BSplitZ" method, which directly addresses the com-

plexities of multi-class categorical feature splitting while maintaining computational efficiency.

"BSplitZ" employs a stochastic approach to optimize the splitting process, providing bounds
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on the expected sample size. This ensures that the method remains efficient even when

applied to datasets with numerous classes.

"BSplitZ" represents a significant advancement in decision tree-based machine learning

by specifically addressing the complexities associated with multi-class categorical feature

splitting. By balancing precision and efficiency, it sets a new standard for handling categori-

cal data in decision tree models. This method not only enhances accuracy but also offers a

practical and accessible solution for both researchers and practitioners dealing with complex

categorical datasets.

1.2.3 Research Challenge 3: Efficient Splitting categorical features

with non-convex splitting criteria MAE

The Mean Absolute Error (MAE) criterion plays a significant role in decision tree model-

ing, particularly when dealing with data that includes outliers and skewed distributions due

to its robustness and reliability. While the MAE criterion is commonly utilized across vari-

ous statistical domains, a key challenge has been identifying an optimal numerical encoding

method for categorical features within this framework.

Our research investigates this challenge in depth, with a focus on understanding the

nuances of MAE criteria and numerical encoding. The most prevalent numerical encoding

method for MAE relies on a median-based heuristic, known for its efficiency with a time

complexity of O(n log n), where n is the size of the dataset. Despite its widespread use, this

heuristic is potentially sub-optimal for large, randomly generated datasets, a limitation that

has been difficult to prove due to the impracticality of exhaustive manual verification formally

[73].

In chapter 5, we demonstrate the non-optimality of the median-based heuristic and es-

tablish a significant result: no optimal numerical encoding method exists for splitting cate-

gorical features with the MAE criterion. This finding highlights the inherent complexity of the

problem and has important implications for decision tree modeling.

To address this challenge, we introduce an exact algorithm specifically designed for the
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binary splitting of categorical features under the MAE criterion. This algorithm offers high

accuracy and achieves computational efficiency comparable to leading heuristics, thereby

providing a practical solution to the challenges associated with MAE criteria and numerical

encoding. This contribution fills a critical gap in the understanding and application of decision

tree modeling, facilitating more accurate and efficient handling of categorical features in real-

world scenarios.

Our research extends beyond theoretical insights to provide actionable solutions to prac-

tical challenges in decision tree-based machine learning. Whether through the enhanced

efficiency of categorical feature splitting with "BSplitZ," the improved interpretability of deep

tree structures with "Linear TreeShap," or the identification of limitations in optimal numeri-

cal encoding for the MAE criterion, our work has the potential to make a significant impact

on the field. These contributions, spanning computational efficiency, interpretability, and

foundational encoding methods, are poised to benefit both researchers and practitioners,

advancing the application of machine learning in diverse real-world contexts.

1.3 Contributions

This section summarizes this thesis’s contributions to provide a clear understanding for

readers at different levels of familiarity with the subject matter.

1.3.1 Linear Tree Shap: A Path to Efficiency and Transparency

Our primary contribution is the development of the "Linear Tree Shap" algorithm, which

represents a significant advancement in model interpretability within machine learning. This

algorithm efficiently computes Shapley values, a crucial concept for assessing feature con-

tributions in decision trees.

The key innovation of the "Linear Tree Shap" algorithm is its enhanced computational

efficiency. While previous methods were constrained by a complexity proportional to the

square of the tree’s depth (D2), limiting their scalability, our approach reduces this complex-
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ity to linear with respect to the tree’s depth (D). This improvement makes Shapley value

calculations substantially faster and more feasible for large-scale models.

In addition to efficiency, "Linear Tree Shap" addresses the critical need for transparency

in machine learning, where the interpretability of models is as important as their accuracy.

By providing a clear understanding of feature contributions, the algorithm supports informed

decision-making and accountability in high-stakes applications, such as finance and health-

care [17].

The practical benefits of "Linear Tree Shap" are validated through rigorous empirical

studies, demonstrating that the theoretical efficiency gains are realized in practical appli-

cations. These studies confirm that the algorithm offers a reliable tool for practitioners,

balancing both efficiency and transparency in decision tree models.

1.3.2 Bridging the Gap in Binary Class and multi-class Classification

for Categorical Feature Splitting: The BSplitZ Method

Handling categorical features in decision tree learning presents notable challenges, es-

pecially when moving from binary to multi-class classification. Our research addresses this

gap by proposing efficient solutions to improve the handling of categorical features.

Contribution 1: A Novel Formulation for Categorical Feature Encoding

Our first contribution introduces a novel formulation that provides a clear and concise

proof of the numerical encoding mechanism for categorical features in the context of two-

class classification and regression. This formulation aims to simplify and clarify this impor-

tant aspect of machine learning, making it more accessible and understandable.

Contribution 2: Polynomial Complexity in Multi-Class Classification

We challenge the prevalent belief that splitting categorical features leads to exponential

complexity with the number of categories. Our research demonstrates that this complexity
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increases polynomially with respect to the number of categorical features. This insight has

important implications for decision tree modeling, facilitating more efficient and accurate

multi-class classification without overwhelming computational demands.

Contribution 3: The BSplitZ Method

The core contribution of our work is the "BSplitZ" method, which specifically addresses

the challenges of multi-class categorical feature splitting. BSplitZ employs a stochastic ap-

proach to optimize the splitting process in n-class classification, providing bounds on the

expected sample size to ensure computational efficiency.

Practically, "BSplitZ" offers an effective and precise solution for decision tree modeling

in multi-class scenarios. It addresses the complexities of categorical feature splitting, deliv-

ering a practical and scalable method suitable for datasets with a large number of classes.

This development enhances approaches to multi-class classification involving categorical

features, making the process more efficient and accessible to both practitioners and re-

searchers.

1.3.3 Unveiling the Mystery of Splitting Categorical Features with Mean

Absolute Error (MAE) Criteria

Mean Absolute Error (MAE) criteria are effective in decision tree modeling, particularly

when dealing with data containing outliers and skewed distributions. Known for their robust-

ness and accuracy, MAE criteria are widely used in various statistical domains. However, a

persistent challenge has been the development of an optimal numerical encoding method

for categorical features under MAE.
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Contribution 1: Exploring Numerical Encoding for Categorical Features with

MAE

Our research investigates this challenge in depth, revealing that no unsupervised numer-

ical encoding method is optimal for MAE. This finding highlights the inherent complexity of

the problem and suggests that the pursuit of an optimal encoding strategy may be inherently

limited by the nature of MAE itself.

Contribution 2: Development of an "Exact" Algorithm

To address the challenges associated with the MAE criterion, we developed an exact

algorithm tailored for the binary splitting of categorical features. This algorithm achieves

efficiency comparable to leading heuristics, offering a practical and reliable solution to the

challenges posed by MAE criteria and numerical encoding. It provides decision tree mod-

elers with a robust tool to navigate the complexities of datasets, enhancing their ability to

make informed, data-driven decisions.

Our contributions are not confined to theoretical exploration; they are designed with real-

world applicability in mind. We focus on delivering concrete solutions to decision tree mod-

elers that address the intricate challenges posed by the MAE criterion, ensuring practical

utility in complex decision-making scenarios.

In summary, our work offers practical advancements to key challenges in decision tree-

based machine learning. From improving the efficiency and transparency of Shapley value

calculations with "Linear Tree Shap" to enhancing multi-class categorical feature splitting

with "BSplitZ" and resolving the complexities of MAE criteria with our exact algorithm, our

contributions have the potential to significantly influence the field. These advancements pro-

vide valuable tools for both researchers and practitioners, advancing the practical application

of machine learning in diverse real-world contexts.
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1.4 Thesis Outline

This thesis is structured into six chapters, each addressing key challenges and con-

tributions in decision tree-based machine learning. Chapter 1 introduces the motivations

behind the research and outlines the primary challenges, including efficient computation of

decision tree Shapley values, splitting categorical features with convex criteria, and handling

non-convex splitting with the MAE criterion. It also details the thesis’s main contributions,

such as the development of the Linear Tree Shap algorithm, the BSplitZ method for multi-

class categorical splitting, and novel solutions for the MAE criterion.

Chapter 2 reviews the relevant literature, covering advances in Shapley value compu-

tation, optimal decision tree methods, and the complexities of categorical feature splitting.

Chapter 3 to chapter 5 delve into the core contributions: chapter 3 focuses on the Linear

Tree Shap algorithm, chapter 4 introduces the BSplitZ method for efficient multi-class fea-

ture splitting, and chapter 5 addresses the MAE criterion, providing new insights and an

innovative algorithm for binary splitting. Chapter 6 concludes the thesis by summarizing the

findings, highlighting the impact of the research, and suggesting future research directions.

The thesis also includes a list of related publications showcasing the dissemination of the

research findings.

1.4.1 Publications

The research work presented in this thesis has been published in scientific venues in

the corresponding field. In the following, we provide a list of selected publications:

— Peng Yu, Albert Bifet, Jesse Read, Chao Xu. "Linear tree shap" In: 2022 Advances

in Neural Information Processing Systems, pp. 25818–25828

The following papers have been submitted to journals in the field of machine learning

and are under review:

— Peng Yu, Albert Bifet, Jesse Read. "Improved Binary Splitting of Categorical Fea-

tures in Decision Tree Learning" In: (2023). Submitted
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— Peng Yu, Chao Xu, Albert Bifet, Jesse Read. "Binary Split Categorical feature with

Mean Absolute Error Criteria in CART" In: (2023). Submitted



12 CHAPTER 1. INTRODUCTION



Chapter 2

Background and Related Work

Chapter Overview for Non-Experts. This chapter aims to equip readers with both

conceptual and methodological tools needed to understand the subsequent contributions of

this thesis. We begin by establishing essential definitions and theoretical underpinnings for

decision tree explainability (Section 2.1), then proceed to discuss how categorical data is

handled in tree-based models with convex splitting criteria(Section 2.2) and introduce Mean

Absolute Error (MAE) as a more challenging non-convex criterion (Section 2.3). Throughout,

we provide illustrative examples and concise mathematical formulations to ensure a clear

foundation for non-expert readers.

2.1 Related Work on Linear Complexity Algorithms for Tree-

SHAP

Efficient computation of Shapley values [68] for decision trees is a critical focus in in-

terpretable machine learning. Shapley values offer a principled framework for quantifying

the contribution of individual features to model predictions. This methodology, while orig-

inally conceived for cooperative game theory, has proven valuable in interpreting machine

learning models, especially in complex scenarios involving deep or ensemble decision trees.

13
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Understanding feature contributions is particularly crucial in high-stakes applications such

as finance and healthcare, where model transparency and trustworthiness are paramount

[60].

Despite the theoretical robustness of Shapley values, their computation is often resource-

intensive, requiring the evaluation of all possible feature combinations to estimate contribu-

tions accurately [72]. This complexity is exacerbated in large decision trees, where po-

tential feature interactions grow exponentially. Consequently, a significant body of work has

emerged aiming to leverage the unique structure of decision trees to develop algorithms that

compute Shapley values with polynomial computational complexity. These advancements

balance computational efficiency and precision, making Shapley value estimation feasible in

large-scale machine learning systems [43].

2.1.1 Shapley Values and Their Role in Interpretability

Shapley values, grounded in cooperative game theory, provide a rigorous mathematical

framework for quantifying feature importance in machine learning models. In decision trees,

Shapley values measure the marginal contribution of each feature by comparing predictions

with and without that feature [65]. This method captures both individual and interactive ef-

fects, making it a powerful tool for interpretability, especially in complex models with intricate

feature interactions [14].

Their relevance extends beyond transparency to practical applications such as feature

selection and model debugging [71]. For example, Shapley values enable data scientists

to identify which features drive predictions, facilitating more informed decision-making dur-

ing model refinement. Additionally, the consistent and fair attribution of feature importance

makes them particularly suitable for sensitive applications, where accountability and fairness

are essential [22].
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2.1.2 Related Work on Optimal Decision Trees

Optimal decision trees have garnered attention for enhancing accuracy and interpretabil-

ity, contributing to the broader context of decision tree-based models. Although not the pri-

mary focus of this thesis, their development is relevant. Bertsimas and Dunn [5] introduced

optimal classification trees aimed at minimizing classification error while maintaining inter-

pretability constraints. This approach has shown that decision trees can be optimized to

achieve high predictive accuracy without sacrificing transparency, which is crucial in real-

world applications.

Other works have sought to balance model complexity and accuracy. For instance,

Blanquero et al. [6] proposed sparse optimal regression trees that incorporate regularization

techniques to enhance generalization while maintaining interpretability. Similarly, Verwer

and Zhang [75] developed optimal classification trees using binary linear programs, making

the models computationally feasible for larger datasets.

Despite these advancements, optimal decision trees often face challenges, such as in-

creased computational demands and the risk of overfitting [64]. Therefore, regularization

techniques and pruning strategies are essential to maintain the balance between accuracy

and interpretability. These considerations underscore the complexity of designing decision

tree models that are both optimal and practical for real-world use.

2.1.3 Importance of Shapley Values in Decision Trees

Shapley values enhance the interpretability of decision trees in several ways:

— Feature Selection: By quantifying each feature’s contribution, Shapley values sup-

port more informed feature selection, especially in high-dimensional datasets, where

selecting relevant features is crucial for both performance and interpretability [46].

— Model Explainability: Shapley values further enhance the explainability of decision

trees, particularly for complex or deep trees. They provide clear attribution of feature

contributions, helping communicate model behavior to non-experts, thereby fostering

trust and accountability [42].



16 CHAPTER 2. BACKGROUND AND RELATED WORK

— Bias and Fairness Assessment: Shapley values help assess decision tree fairness

by identifying features that disproportionately influence predictions, enabling the de-

tection and mitigation of biases—a growing concern in machine learning, especially

in sensitive domains like hiring or criminal justice [29].

Thus, Shapley values significantly contribute to making decision trees transparent and

reliable in practical applications.

2.1.4 Linear TreeSHAP: Achieving Linear Computational Complexity

A key advancement in the efficient computation of Shapley values is the Linear Tree-

SHAP algorithm [78]. Unlike traditional methods with exponential or quadratic complexity,

Linear TreeSHAP exploits the hierarchical structure of decision trees to achieve linear com-

plexity in the number of nodes. This breakthrough enables the application of Shapley values

to large, complex models without prohibitive computational costs.

By preserving the accuracy of Shapley value computations while dramatically reducing

computational time, Linear TreeSHAP makes Shapley-based interpretability feasible in real-

world applications, where both accuracy and efficiency are critical [42]. This represents

a significant leap in making Shapley values a viable tool for large-scale machine learning

systems.

2.1.5 The Evolution of TreeSHAP Algorithms

Before the development of Linear TreeSHAP, several TreeSHAP variants were proposed

to improve computational efficiency. Notably, GPU TreeSHAP [48] and FastTreeSHAP [77]

introduced optimizations that leveraged hardware and algorithmic improvements to acceler-

ate Shapley value computations. While these methods contributed to reducing computation

time, the linear complexity achieved by Linear TreeSHAP represents a substantial advance-

ment.



2.2. RELATED WORK ON SPLITTING CATEGORICAL FEATURES IN MULTI-CLASS CLASSIFICATION TASKS17

2.1.6 Sampling-Based Strategies: Balancing Speed and Precision

Sampling-based methods have been explored as an alternative solution to the compu-

tational burden of Shapley value computation. These techniques estimate Shapley values

through random sampling, significantly reducing computation time [79]. However, they in-

troduce a trade-off between speed and precision, as approximating Shapley values through

sampling sacrifices some accuracy. In scenarios where real-time performance is essential,

these strategies provide a practical alternative to exact computations.

2.1.7 Interpretable Decision Trees with Linear Complexity

The development of Linear TreeSHAP aligns with the broader goal of creating inter-

pretable decision trees with efficient computational properties. By ensuring Shapley values

can be computed efficiently, Linear TreeSHAP supports interpretability, even in large and

complex models. This advancement emphasizes the importance of developing methods

that prioritize both transparency and scalability, facilitating the deployment of interpretable

machine learning models in real-world applications [60].

In summary, Linear TreeSHAP represents a transformative step in the computation of

Shapley values, offering a linear complexity solution to a previously computationally in-

tractable problem. By balancing accuracy and efficiency, Linear TreeSHAP facilitates the

practical application of interpretable decision trees in modern machine learning systems.

2.2 Related Work on Splitting Categorical Features in Multi-

class Classification Tasks

Efficiently splitting categorical features in decision trees, particularly for multi-class clas-

sification, presents a significant challenge in machine learning. This section explores key

approaches and their evolution, analyzing traditional decision tree algorithms, the integration

of statistical tests, and modern innovations that address this complex task.
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2.2.1 Traditional Decision Tree Algorithms

Traditional decision tree algorithms, such as AID (Automatic Interaction Detection) [2],

THAID (Chi-squared Automatic Interaction Detection) [74], CART (Classification and Re-

gression Trees) [9], and C4.5 [54], have laid the groundwork for handling categorical fea-

tures. These algorithms aim to minimize impurity measures such as the Gini index or en-

tropy to determine optimal splits. While foundational, they were primarily designed for binary

or ordinal features and often struggle with high-dimensional, multi-class categorical data.

A well-documented limitation of traditional decision trees is their tendency to overfit, par-

ticularly with categorical data containing numerous distinct values [55]. Overfitting results in

overly complex trees that capture noise rather than the underlying data patterns, compro-

mising model generalization.

Another challenge is variable selection bias, where heuristic-based measures (e.g., Gini

index, entropy) tend to favor features with more categories, leading to suboptimal splits

[35]. This bias is problematic in datasets with categorical variables containing many unique

values, potentially masking the true predictive capabilities of the model.

Traditional decision trees also encounter difficulties with class imbalance, especially in

multi-class settings. They often skew towards the majority class, diminishing the model’s

ability to accurately capture minority class behaviors [18]. These limitations have driven the

development of more advanced techniques for categorical feature splitting.

2.2.2 Incorporating Statistical Tests in Splitting

To address these challenges, methods incorporating statistical tests have emerged as a

means to reduce biases in the splitting process. Algorithms such as FACT (Fast Algorithm

for Classification Trees) [41] and QUEST (Quick, Unbiased, Efficient Statistical Tree) [38]

leverage statistical tests, including the t-test and ANOVA F-test, to inform splitting decisions.

These methods aim to provide more statistically grounded and unbiased feature splits.

However, despite their advantages, FACT and QUEST rely on assumptions about the

underlying data distribution, often assuming normality, which is rarely met in real-world



2.2. RELATED WORK ON SPLITTING CATEGORICAL FEATURES IN MULTI-CLASS CLASSIFICATION TASKS19

datasets. While statistical tests reduce selection bias, they do not fully address the chal-

lenges of handling high-dimensional categorical data. Moreover, the computational cost of

applying these tests at each split can be prohibitive for large datasets [39].

2.2.3 Optimal Categorical Feature Splitting

The pursuit of optimal methods for splitting categorical features has led to various inno-

vative approaches, particularly for multi-class classification tasks. One approach involves

using clustering techniques, such as k-means clustering [32], to group similar categories,

reducing the complexity of the split.

While clustering-based methods offer scalability, they often sacrifice optimality. The ef-

fectiveness of k-means clustering, for example, heavily depends on selecting an appropriate

number of clusters (k) and struggles with non-spherical category distributions [21]. These

limitations are more pronounced in categorical data, where natural clusters might not exist,

leading to splits that fail to capture meaningful distinctions.

Encoding techniques, such as one-hot encoding [26] and target encoding [47], have

also been explored to represent categorical variables numerically. Target encoding, using

the mean target value of each category, can be useful for binary classification but faces

significant challenges in multi-class tasks. The risk of introducing noise and overfitting in-

creases in multi-class settings due to the complexity of category-class relationships.

2.2.4 Unified Framework for Multi-class Classification

A unified approach to categorical feature splitting in multi-class classification has gar-

nered interest. Breiman’s work [8] highlighted the importance of convexity in splitting criteria

for multi-class classification tasks, providing a theoretical foundation. However, practical

implementations that seamlessly integrate multi-class classification with categorical feature

splitting remain limited.

The complexity lies in effectively capturing relationships between categories across mul-

tiple classes. Existing methods often rely on domain-specific heuristics or oversimplified
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models that fail to generalize effectively. Without a robust, generalizable framework, splitting

categorical features in multi-class tasks remains challenging [3].

2.2.5 The BSplitZ Method: Leveraging Convex Zonotopes for Categor-

ical Feature Splitting

The BSplitZ method, a key contribution of this thesis, introduces an innovative approach

to categorical feature splitting in multi-class classification by leveraging the geometric prop-

erties of convex Zonotopes. Zonotopes, a subclass of polytopes characterized by symmetry

and centrality, have been utilized in various fields such as computational geometry and op-

timization [34].

BSplitZ builds upon these properties to address the challenges of high-dimensional,

multi-class categorical feature splitting. Unlike traditional methods, BSplitZ efficiently navi-

gates the complex solution space by utilizing the symmetry inherent in Zonotopes, reducing

computational complexity without sacrificing accuracy. This novel approach offers significant

advantages in handling large, diverse datasets, where other methods often fall short.

By adapting the geometric properties of Zonotopes, BSplitZ ensures a more structured

and principled exploration of categorical feature splits, making it a scalable and efficient

solution for multi-class classification tasks. This method represents a substantial advance-

ment in the field, demonstrating that leveraging geometric insights can lead to more effective

categorical feature splitting.

2.2.6 Vertex Enumeration of Zonotopes and its Role in BSplitZ

Recent advances in vertex enumeration algorithms have provided a computational foun-

dation for applying Zonotopes in categorical feature splitting, and BSplitZ harnesses these

developments. Avis’s reverse search algorithm [4] offers an efficient method for enumer-

ating the vertices of a Zonotope, which is crucial for the BSplitZ method’s implementation.

This algorithm has been refined and applied in various domains, including optimization and
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computational geometry [10].

Building on this foundation, BSplitZ incorporates vertex enumeration techniques to effec-

tively determine optimal splits in high-dimensional, multi-class datasets. Stinson et al. [70]

introduced probabilistic methods that further reduce the computational overhead of vertex

enumeration, enabling BSplitZ to operate efficiently even with large datasets.

2.2.7 Summary

In conclusion, categorical feature splitting in multi-class classification remains an active

research area. While traditional decision tree methods provide a foundational understand-

ing, their limitations have necessitated more advanced techniques. Statistical tests, clus-

tering, and encoding strategies have offered partial solutions, but optimality and scalability

are still challenging. The introduction of geometric approaches, particularly those utilizing

convex Zonotopes and vertex enumeration algorithms, represents a promising direction, of-

fering a more principled and efficient way to handle the inherent complexity of multi-class

categorical feature splitting.

2.3 Related Work on Splitting Categorical Features with

the MAE Task

Binary splitting in decision tree construction is crucial for determining the structure and

performance of tree-based models. When applied to categorical features, this process

introduces unique challenges due to the discrete nature of the data. The Mean Abso-

lute Error (MAE) criterion, while widely recognized for its robustness in regression tasks,

presents unique challenges when applied to splitting categorical features due to its non-

convex nature. Unlike most traditional approaches that rely on convex splitting criteria, the

non-convexity of MAE complicates the optimization process, making it more difficult to iden-

tify optimal splits for categorical features. This adds an additional layer of complexity to
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the task, requiring more sophisticated techniques to achieve effective splitting in decision

tree models. . This section reviews the extensive literature on this topic, encompassing the

challenges, methodologies, and ongoing advancements in the field.

2.3.1 Binary Splitting Challenges

Binary splitting is foundational in decision tree algorithms, where features are recursively

split to construct a tree structure that captures the data distribution. For numerical features,

algorithms such as CART [9] employ impurity measures like the Gini index or entropy to

identify optimal split points. However, this complexity increases significantly when handling

categorical features, particularly those with high cardinality.

A categorical feature with k unique categories has 2(k−1)−1 potential binary splits, mak-

ing exhaustive search computationally infeasible for large k. Loh and Shih [40] highlighted

that this exponential increase in potential splits introduces significant computational chal-

lenges. Traditional algorithms, like C4.5 [54] handles categorical features by treating each

category as a potential split point, effectively splitting the data into multiple branches—one

branch for each category present in the feature. This means that for a categorical feature

with k unique values, the split results in k branches, each corresponding to a specific cate-

gory. While this approach allows C4.5 to handle categorical features directly, it can lead to

challenges when the feature has high cardinality, resulting in a large number of branches.

This can increase the risk of overfitting, as the model might create overly complex trees that

fail to generalize well on unseen data [55].

Integrating the MAE criterion provides a more robust alternative by minimizing the aver-

age absolute error between predicted and actual values, making it less sensitive to outliers.

However, effectively incorporating MAE into categorical feature splitting requires careful con-

sideration of how categories are grouped and encoded to ensure accurate splits.

Example of MAE with Tree Splitting. To illustrate how Mean Absolute Error (MAE)

influences a split, consider a small dataset where a categorical feature City has three cate-
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gories: {A, B, C}, and the target is a numerical value (e.g., housing price). Suppose category

A has target values {100, 110}, B has {90}, and C has {130, 135}. A binary split might group

{A, B} on one branch and {C} on the other. Under MAE, each branch seeks to minimize the

sum of absolute deviations from its mean prediction. For {A, B}, the optimal prediction is the

median(100, 110, 90)= 100; for {C}, the median(130, 135)= 132.5. Hence the MAE for this

split is
∑ |y − 100| over {A,B} plus

∑ |y − 132.5| over {C}. A different grouping, say {A} vs.

{B, C}, yields another total MAE, and the best split is the one with the lowest overall MAE.

This example highlights the added complexity when categories must be grouped optimally

under MAE, as neither group membership nor median-based predictions are straightforward

for large or diverse categories.

2.3.2 Encoding Categorical Data

A variety of encoding techniques have been developed to transform categorical features

into numerical representations, facilitating their integration into decision tree algorithms. Be-

low is a summary of some popular methods and their relevance to MAE-based splitting:

— One-Hot Encoding: Transforms each category into a binary vector [26]. While ef-

fective for preserving categorical nature, one-hot encoding leads to high-dimensional

feature spaces, especially for features with many unique categories, which can be

computationally intensive for decision tree algorithms.

— Binary Encoding: Offers a more compact representation by converting categories

into binary codes [47]. This approach reduces dimensionality but may introduce

difficulties in interpreting splits, as the binary representation doesn’t capture inherent

relationships between categories.

— Ordinal Encoding: Maps categories to integer values based on an arbitrary order

[66]. Although computationally efficient, it imposes artificial ordering, potentially bi-

asing the model, especially for categories without a natural sequence.

— Frequency-Based Encoding: Utilizes the frequency of categories in the dataset

[24]. It aims to incorporate statistical properties but doesn’t always align well with the
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MAE criterion, as category frequencies may not correlate with the target variable’s

distribution.

— Target Encoding: Replaces categories with the mean target value [47]. Effective

for capturing category-target relationships in binary classification, but prone to over-

fitting in multi-class tasks, especially when categories have few observations.

— Hybrid Encoding Approaches: Combine strengths of multiple methods, such as

integrating one-hot encoding with feature hashing to manage dimensionality [69].

These methods have shown potential in improving decision trees’ performance in

MAE-based splitting but require careful calibration to prevent introducing noise.

Integrating these encoding techniques with the MAE criterion remains an active research

area, as the choice of encoding directly impacts the decision tree’s ability to accurately split

categorical features.

Illustrative Example. To clarify how these encoding methods transform categorical fea-

tures, consider a toy dataset with a single categorical feature Color {“Red”, “Green”, “Blue”}

and a regression target. Table 2.1 summarizes how each encoding (One-Hot, Binary, Or-

dinal, etc.) converts the categories into numerical form. For instance, One-Hot generates

three binary columns (IsRed, IsGreen, IsBlue), while Ordinal assigns integer labels (e.g.,

Red→ 1, Green→ 2, Blue→ 3) that may or may not reflect real semantic ordering. Such

visualization helps to see how these encodings impact subsequent splits, especially under

criteria like MAE.

Table 2.1 – Illustration of various encoding methods for a categorical feature Color.

Color One-Hot Encoding Binary Encoding Ordinal Encoding Target Encoding

Red (1, 0, 0) 00 1 µRed

Green (0, 1, 0) 01 2 µGreen

Blue (0, 0, 1) 10 3 µBlue
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2.3.3 Comparison with Other Splitting Criteria

While MAE is valued for its robustness and interpretability, other Splitting Criteria such

as Mean Squared Error (MSE) and Huber loss are also commonly used. MSE emphasizes

high-magnitude errors [28], leading to splits that may be more influenced by outliers. In con-

trast, Huber loss balances the sensitivity between MAE and MSE, offering robustness while

maintaining differentiability [30]. However, integrating these alternative loss functions into

splitting tasks for categorical features remains less explored compared to MAE, particularly

in high-cardinality scenarios.

2.3.4 Median-Based Heuristic Encoding

Median-based heuristic encoding has been proposed as an approach to integrate the

MAE criterion into decision trees [73]. By assigning numerical values based on the median

relationship with the target variable, it aims to align splits with MAE’s focus on minimizing

absolute errors.

While this heuristic is computationally efficient, it does not always capture the true distri-

bution of categorical features, potentially leading to suboptimal splits. Recent work, such as

[59], introduced weighted median encoding to address this limitation, enhancing alignment

with the MAE criterion by considering category importance relative to the target variable.

2.3.5 Ongoing Research and Advancements

The pursuit of more effective methods for MAE-based splitting continues, with recent

research focusing on several key areas:

— Unsupervised Numerical Encoding: Techniques such as those introduced by [45]

generate numerical representations without labeled data, leveraging feature distribu-

tions to create encodings suitable for MAE-based splitting. These approaches show

promise but require further validation across diverse datasets.

— Hybrid Encoding Methods: By combining the strengths of different encoding strate-
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gies, hybrid methods aim to balance dimensionality reduction, interpretability, and

alignment with the MAE criterion [69]. This approach has shown potential in en-

hancing decision trees’ ability to handle high-cardinality features.

— Algorithmic Developments: Sampling-based strategies, as explored by [61], offer a

way to approximate optimal split points, providing a balance between computational

efficiency and split quality. Dynamic programming techniques, like those proposed

by [16], also contribute to optimizing the split selection process under the MAE crite-

rion.

— Deep Learning Approaches: Techniques such as entity embeddings [23] have

emerged as a novel way to encode categorical features, potentially capturing com-

plex relationships missed by traditional encoding methods. These neural network-

based encodings present opportunities for enhancing MAE-based decision tree mod-

els.

2.3.6 Summary

In summary, splitting categorical features using the MAE criterion presents a complex

challenge. Despite significant advancements in encoding techniques and optimization strate-

gies, no one-size-fits-all solution has emerged. The ongoing exploration of hybrid encod-

ing methods, unsupervised approaches, and integration with deep learning demonstrates a

commitment to developing robust and effective solutions. This thesis builds on this founda-

tion, presenting new insights into encoding strategies and their implications for decision tree

construction using the MAE criterion.



Chapter 3

Linear TreeShap

3.1 Introduction

Machine learning in the industry has played more and more critical roles. The need for

explainability has increased dramatically for both business and fairness purposes. As one of

the most popular machine learning models, the tree-based model attracted much attention.

Several methods were developed to improve the interpretability of complex tree models,

such as sampling-based local explanation model LIME[56], game-theoretical based Shap-

ley value[68], etc. Shapley value gained particular interest due to both local and globally

consistent and efficient implementation: TreeShap[42]. With the broad adoption of Shap-

ley value, the industry has been seeking a much more efficient implementation. Various

methods like GPUTreeShap[48] and FastTreeShap[77] were proposed to speed up Tree-

Shap. GPUTreeShap primarily focuses on utilizing GPU to perform efficient parallelization.

And FastTreeShap improves the efficiency of TreeShap by utilizing caching. All of them are

empirical approaches lacking a mathematical foundation, thus making them hard to under-

stand.

We solve the exact Shapley value computing problem based on polynomial arithmetic.

By utilizing the properties of polynomials, our proposed algorithm, Linear TreeShap, can

27
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compute the exact Shapley value in linear time. And there is no compromise in memory

utilization.

3.1.1 Contrast with previous result

We compare the running time of our algorithm with previous results for a single tree in

Table 3.1, since all current algorithms for the ensemble of trees apply the same algorithm

to each tree individually.

Let S be the number of samples to be explained,N the number of features, L the number

of leaves in the tree, and D is the maximum depth of the tree. We assume every feature is

used in the tree for simplicity, and therefore N = O(L). Also, D ≤ L.

Algorithm Time Complexity Space Complexity

Original
TreeSHAP [42] O(SLD2) O(D2 +N)

Fast
TreeSHAP v1 [77] O(SLD2) O(D2 +N)

Fast
TreeSHAP v2 [77] O(L2DD + SLD) O(L2D)

Linear
TreeSHAP O(SLD) O(D2 +N)

Table 3.1 – Comparison of both computational and space complexity

Applicability to Deep Learning Models. While our polynomial-based approach is

highly effective for decision trees, extending it directly to deep learning models is not straight-

forward. Deep networks can, in principle, be represented as collections of piecewise linear

rules, but they typically exhibit a combinatorial explosion in the number of these rules. This

complexity makes it challenging to reuse overlapping computations, which is the foundation

of Linear TreeShap. Nevertheless, approximate solutions—such as distilling neural networks

into compact tree ensembles—may benefit from our approach by then applying Linear Tree-

Shap on the distilled models.
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Figure 3.1 – An example decision tree Tf shows chances of rain

3.2 Methodology

3.2.1 Notation & Background

Elementary symmetry polynomials are widely used in our paper. R[x] denotes the set

of polynomials with coefficient in R. R[x]d are polynomials of degree no larger than d. We

use ⊙ for polynomial multiplication. For two polynomials a and b,
⌊
a
b

⌋
is the quotient of the

polynomial division a/b.

For two vectors x, y ∈ Rd, ⟨x, y⟩ is the inner product of x and y. We abuse the notation,

so when a polynomial appears in the inner product, we take it to mean the coefficient vector

of the polynomial. Namely, if p, q are both polynomials of the same degree, then ⟨p, q⟩ is the

inner product of their coefficient vectors. We use · for matrix multiplication.

We refer to x ∈ X ⊂ Rm as an instance and f : X → R as the fitted tree model in a

supervised learning task. Here, m denotes the number of all features, M is the set of all

features, and |.| is the cardinality operation, namely |M | = m. We denote x[i] as the value

of feature i of instance x.

We have to start with some common terminologies because our algorithm is closely

involved with trees. A rooted tree T = (V,E) is a directed tree where each edge is oriented
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away from the root r ∈ V . For each node v, Pv is the root to v path, i.e. the set of edges from

the root to v. L(v) is the set of leaves reachable from v. L(T ) = L(r) is the set of leaves of

T . T is a full binary tree if every non-leaf node has two children. If an edge e goes from u to

v, then u and v are the tail and head of e, respectively. We write h(e) for the head of e.

A tree is weighted if there is an edge weight we for each edge e. It is a labeled tree if

each edge has a label ℓe. For a labeled tree T , let Ei be all the edges of the tree with label

i. Similarly, define Pi,v = Pv ∩Ei, the set of edges in the root to v path with label i. The last

edge of any subset of a path is the edge furthest away from the root.

For our purpose, a decision tree is a weighted labeled rooted full binary tree. There is a

corresponding decision tree for the fitted tree model Tf . The internal nodes of the tree are

called the decision nodes, and the leaves are called the end nodes. Every decision node

has a label of feature i, and every end node contains a prediction v. The label of each edge

is the feature of the head node of the edge. We will call the label on the edge of the feature.

Every edge e contains weight we, the conditional probability based on associated splitting

criteria during training.

When predicting a given instance, x, decision tree model f sends the instance to one of

its leaves according to splitting criteria. We draw an example decision tree in Fig 3.1. Each

leaf node is labeled with an id and prediction value. Every decision node is labeled with the

feature. We also associate each edge with conditional probability w and splitting criteria of

features in the parenting node.

To represent the marginal effect, we use fS(x) : X → R, S ⊆M to denote the prediction

of instance x of the fitted tree model using only the features in active set S, and treat the

rest of features of instance x as missing. Using this representation, the default prediction

f(x) is a shorthand for fM (x).

The Shapley value of a decision tree model f is the function φ(f, i) : X → R,

φ(f, i)(x) =
1

|M |
∑

S⊆M\{i}

1(|M |−1
|S|

)fS∪{i}(x)− fS(x). (3.1)
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The Shapley value φ(f, i)(x) quantifies the marginal contribution of feature i in the tree

model f when predicting instance x. The problem of computing the Shapley values is the

following algorithmic problem.
The Tree Shapley Value Problem

Input: A decision tree Tf for function f : X → R over m features, and x ∈ X.

Output: The vector (φ(f, 1)(x), . . . , φ(f,m)(x)).
Meanwhile, decision nodes cannot split instances with missing feature values. A com-

mon convention is to use conditional expectation. When a decision node encounters a

missing value, it redirects the instance to both children and returns the weighted sum of

both children’s predictions. The weights differ between decision nodes and are empirical

instance proportions during training: wl, wr. Here wl + wr = 1 and 0 < wl < 1. A similar

approach is also used in both Treeshap[42], and C4.5 [63] to deal with missing values. Any

instance would result in a single leaf with no missing feature. In contrast, an instance might

reach multiple leaves with a missing feature.

Here, we use an example instance x =(temperature: 20, cloudy: no, wind speed: 6)

with tree f in Fig 3.1 to show the full process of Shapley value computing. Following the

decision nodes of Tf , the prediction f(x) is leaf C: 0.4 chance of raining. Now we compute

the importance/Shapley value of feature (temperature: 18) among x for getting a prediction

of 0.4 chance of rain.

The importance/Shapley value of feature (temperature: 18) is

φ(f, temperature)(x) =
1

3
(
1(
2
2

) (f{temperature, cloudy, wind speed}(x)− f{cloudy, wind speed}(x))

+
1(
2
1

) (f{temperature, wind speed}(x)− f{wind speed}(x) + f{temperature, cloudy}(x)− f{cloudy}(x))

+
1(
2
0

) (f{temperature}(x)− f∅(x)))

To elaborate more, a term f{cloudy, wind speed}(x) with x =(temperature: 20, cloudy: no,

wind speed: 6) is equivalent to f(cloudy: no, wind speed: 6). When traversing the first

decision node, temperature, the current feature’s value is considered unspecified. We sum

over children leaves with empirical weights and get 0.5 ·D + 0.5 · C as the prediction.
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On the other hand, decision tree f can be linearized into decision rules [53]. A decision

rule can be seen as a decision tree with only a single path. A decision rule Rv : X → R for

a leaf v can be constructed by starting from the root node, following all the conditions along

the path to the leaf v. We use F (R) to represent the set of all features specified in decision

rule R, namely, F (R) = {i|Pi,v ̸= ∅}.

The linearization of the decision tree f to decision rules is the relation f(x) =
∑

v∈L(Tf )
Rv(x).

Example tree in Fig 3.1 can be linearized into four rules:

1. RA: if (temperature> 19) and (is cloudy) then predict 0.7 chance of rain else predict

0 chance of rain

2. RB : if (temperature > 19) and (is not cloudy) and (wind speed > 8) then predict 0.6

chance of rain else predict 0 chance of rain

3. RC : if (temperature > 19) and (is not cloudy) and (wind speed ≤ 8) then predict 0.4

chance of rain else predict 0 chance of rain

4. RD: if (temperature ≤ 19) then predict 0.5 chance of rain else predict 0 chance of

rain

For a decision rule R, we also introduce prediction with active set S, RS : X → R.

When features are missing, leaf value further weighted by their conditional probability, is

provided as the prediction. Here, we introduce the definition recursively. First, we define the

prediction of rule R associated with leaf value V with empty input:

Rv
∅ = Rv

∅(x) = V
∏
e∈Pv

we (3.2)

Wherewe is the conditional probability/proportion of instances, when splitting by decision

node at the source of edge e, the proportion of instances belong to the current edge. V is

the prediction of the leaf node v that defines that decision rule.

∀a, b ∈ R, φ(af + bg, i) = aφ(f, i) + bφ(g, i)
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We say x ∈ πi(R) if x[i] is satisfied by every splitting criteria concerning feature i in

decision rule R. For a given instance x and leaf v, we use a new variable qi,v(x) to denote

the marginal prediction of Rv when adding feature i to active set S.

qi,v(x) :=


∏

e∈Pi,v

1
we

x ∈ πi(Rv)

0 x /∈ πi(R
v)

(3.3)

The empty product equals 1, hence if Pi,v = ∅, qi,v(x) = 1. We omit the super/subscript

v if there is no ambiguity on the leaf node. So, with i /∈ S, we can write:

R{i}∪S(x) = qi(x)RS(x) (3.4)

Since ∅ is a subset of any set S, we can get RS(x) via products of weights:

RS(x) = R∅
∏
j∈S

qj(x) (3.5)

With RS , fS can also be linearized into the sum of rule predictions:

fS(x) =
∑

v∈L(Tf )

Rv
S(x). (3.6)

3.2.2 Some special functions and their properties

Definition 3.2.1. Define the reciprocal binomial polynomial to be Bd(x) =
∑d

i=0

(
d
i

)−1
xi.

Definition 3.2.2. The function ψd : R[x]d → R is defined as

ψd(A) :=
⟨A,Bd⟩
d+ 1

. (3.7)

We write ψ(p) = ψd(p) where d is the degree of p.
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The function ψd has two nice properties: additive for same degree polynomial and

"scale" invariant when multiplying binomial coefficient.

Proposition 3.2.1. Let p, q ∈ R[x]d, and k ∈ N.

— Additivity: ψd(p) + ψd(q) = ψd(p+ q).

— Scale Invariant: ψ(p⊙ (1 + y)k) = ψ(p).

3.2.3 Summary polynomials and their relation to Shapley value

Consider we have a function f represented by a decision tree Tf . We want to explain

a particular sample x; in the later sections, we abuse the notation and let g to mean g(x)

whenever g : X → R, e.g. qi,v = qi,v(x). Our polynomials always have the formal variable y

to avoid confusing readers.

Since tree prediction can be linearized into decision rules, and the Shapley value also

has Linearity property, we decompose the Shapley value of a tree as the sum of the Shapley

value of decision rules.

φ(f, i) =
∑

v∈L(Tf )

φ(Rv, i) (3.8)

Now, for each decision rule, we define a summary polynomial.

Definition 3.2.3. For a decision tree Tf and an instance x. For a decision rule associated

with leaf v in Tf , the summary polynomial Gv is defined as

Gv(y) = Rv
∅

∏
j∈F (Rv)

(qj,v + y) (3.9)

Next, we study the relationship between the summary polynomial and the Shapley value

of the corresponding decision rule.



3.2. METHODOLOGY 35

Lemma 3.2.2. Let v be a leaf in Tf , then

φ(Rv, i) = (qi,v − 1)ψ

(
Gv

qi,v + y

)
.

Proof. Since everything involved in the proof is related to the leaf v, we drop v from the

super/subscripts for simplicity. First, we simplify the Shapley value of rule R into:

φ(R, i) =
1

m

∑
S⊂M\{i}

1(
m−1
|S|
)RS∪{i} −RS =

R∅(qi − 1)

m

∑
S⊂M\{i}

1(
m−1
|S|
) ∏

j∈S

qj (3.10)

When feature i does not appear in R, qi − 1 returns 0, and the Shapley value on feature

i from rule R is 0. Let |F (R)| = d, the number of features in R. The Shapley value of R

further reduces to:

φ(R, i) =
R∅(qi − 1)

d

d−1∑
k=0

1(
d−1
k

) |S|=k∑
S⊂F (R)\{i}

∏
j∈S

qj (3.11)

We observe that R∅
∑|S|=k

S⊂F (R)\{i}
∏

j∈S qj is precisely the coefficient of yk in G
qi+y .

We obtain the weighted sum of all subsets’ decision rule prediction using the inner prod-

uct:

R∅
∑

S⊂F (R)\{i}
1/

(
d− 1

|S|

) |S|=k∑
S⊂F (R)\{i}

∏
j∈S

qj = ⟨
G

qi + y
,Bd−1⟩ (3.12)

Shapley value for R has a compact form as shown in Eq.3.13.

φ(R, i) =
R∅(qi − 1)

d

∑
S⊂F (R)\{i}

1(
d−1
|S|
) ∏

j∈S

qj

=
(qi − 1)

d
⟨ G

qi + y
,Bd−1⟩

= (qi − 1)ψ

(
G

qi + y

) (3.13)
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3.2.4 Computations

Even though we have simplified the Shapley value of a decision rule in a compact form

using polynomials, it is still not friendly in computational complexity. In particular, the values

qi,v are flat aggregated statistics and do not necessarily share terms between different rules.

This makes it difficult to share intermediate results across different rules. We develop an

edge-based polynomial representation to benefit from the fact that decision rules overlap.

For every edge e with feature i, we use e↑ to denote its closest ancestor edge that

shares the same feature. In cases such edge does not exist, e↑ = ⊥. We also use x ∈ πu to

represent the x[i] is satisfied by all splitting criteria on feature i associated with all edges in

Pi,u.

pe :=


∏

e′∈Pi,h(e)

1
we′

x ∈ πh(e)

0 x /∈ πh(e)

(3.14)

We also define additionally that p⊥ = 1.

If e is the last edge in Pi,v then pe = qi,v. This is the key to completely avoiding qi,v and

instead switching to pe. Our analysis will ensure that any pe that does not correspond to qi,v

for any v and i gets canceled out.

We show a relation between the Shapley value of a decision rule and the newly defined

pe’s.

Consider an operation ⊕d1,d2
: R[x]d1

×R[x]d2
→ R[x]max(d1,d2). The subscript is omitted

when d1, d2 is implicit.

G1 ⊕G2 := G1 +G2 ⊙ (1 + y)d1−d2 , (3.15)

We extend the summary polynomial to all nodes in the tree. Let Gu =
⊕

v∈L(u)G
v.

Denote de as the degree of Gu, where h(e) = u.



3.2. METHODOLOGY 37

Proposition 3.2.3. Let v be a leaf in Tf , and dv be the degree of Gv then

φ(Rv, i) =
∑

e∈Pi,v

(pe − 1)ψ

(⌊
Gv ⊙ (y + 1)de−dv

y + pe

⌋)
− (pe↑ − 1)ψ

(⌊
Gv ⊙ (y + 1)de↑−dv

y + pe↑

⌋)
.

Proof. Let e∗ be the last edge of Pi,v. We note a few facts. pe∗ = qi,v, y + qi,v divides Gv,

and the sum is a telescoping sum. Put them together.

∑
e∈Pi,v

(pe − 1)ψ

(⌊
Gv ⊙ (y + 1)de−dv

y + pe

⌋)
− (pe↑ − 1)ψ

(⌊
Gv ⊙ (y + 1)de↑−dv

y + pe↑

⌋)

=(pe∗ − 1)ψ

(⌊
Gv ⊙ (y + 1)de∗−dv

y + pe∗

⌋)
=(qi,v − 1)ψ

(⌊
Gv ⊙ (y + 1)de∗−dv

y + qi,v

⌋)
=(qi,v − 1)ψ

(
Gv

y + qi,v
⊙ (y + 1)de∗−dv

)
=(qi,v − 1)ψ

(
Gv

y + qi,v

)
=φ(Rv, i)

The following theorem establishes the relation between Shapley values, the summary

polynomials at each node, and pe for each edge e.

Theorem 3.2.4 (Main).

φ(f, i) =
∑
e∈Ei

(pe − 1)ψ

(⌊
Gh(e)

y + pe

⌋)
− (pe↑ − 1)ψ

(⌊
Gh(e) ⊙ (y + 1)de↑−de

y + pe↑

⌋)

Proof. Based on linearity of Shapley Value, φ(f, i) =
∑

v∈L(Tf )
φ(Rv, i).

For each rule Rv, we can scale their summary polynomial Gv to the degree of Gh(e).

Based on Proposition 3.2.3,
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φ(f, i) =
∑

v∈L(Tf )

∑
e∈Pi,v

(pe−1)ψ
(⌊

Gv ⊙ (y + 1)de−dv

y + pe

⌋)
−(pe↑−1)ψ

(⌊
Gv ⊙ (y + 1)(de−dv)+(d

e↑−de)

y + pe↑

⌋)

Observe that for any (e, v) pair, we have e ∈ Ei and v ∈ L(h(e)) if and only if v ∈ L(Tf )

and e ∈ Pi,v. Hence, can order the summation by summing through the edges.

φ(f, i) =
∑
e∈Ei

∑
v∈L(h(e))

(pe−1)ψ
(⌊

Gv ⊙ (y + 1)de−dv

y + pe

⌋)
−(pe↑−1)ψ

(⌊
Gv ⊙ (y + 1)(de−dv)+(d

e↑−de)

y + pe↑

⌋)

Observe that at each edge e, all summary polynomial G is scaled to the same degree de.

According to Proposition 3.2.1, we can add the summary polynomials before evaluating

using ψ(.). Now, focus on the first part of the sum.

∑
e∈Ei

∑
v∈L(h(e))

((pe − 1)ψ(⌊Gv ⊙ (y + 1)de−dv

y + pe
⌋) =

∑
e∈Ei

(pe − 1)ψ

 ∑
v∈L(h(e))

⌊
Gv ⊙ (y + 1)de−dv

y + pe

⌋
=
∑
e∈Ei

(pe − 1)ψ(⌊
∑

v∈L(h(e))Gv ⊙ (y + 1)de−dv

y + pe
⌋)

=
∑
e∈Ei

(pe − 1)ψ(⌊
⊕

v∈L(h(e))Gv

y + pe
⌋)

=
∑
e∈Ei

(pe − 1)ψ

(⌊
Gh(e)

y + pe

⌋)

Using the same proof, we can also obtain

∑
e∈Ei

∑
v∈L(h(e))

(pe↑−1)ψ
(⌊

Gv ⊙ (y + 1)(de−dv)+(d
e↑−de)

y + pe↑

⌋)
=
∑
e∈Ei

(pe↑−1)ψ
(⌊

Gh(e) ⊙ (y + 1)de↑−de

y + pe↑

⌋)
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Algorithm 1 Obtain the summary polynomial for each node.

1: function COMPUTESUMMARYPOLYNOMIALS(x, v, C)
2: if node v is leaf then
3: G[v]← C ·Rv

∅
4: else
5: if v is not the root then
6: e← edge with v as head
7: C ← C ⊙ (y + pe(x))
8: if e↑ ̸= ⊥ then
9: C ← C

y+p
e↑ (x)

10: end if
11: end if
12: l, r ← children of v
13: COMPUTESUMMARYPOLYNOMIALS(x, l, C)
14: COMPUTESUMMARYPOLYNOMIALS(x, r, C)
15: G[v]← G[l]⊕G[r]
16: end if
17: Return: G[v]
18: end function

Algorithm 2 Obtain the Shapley value vector.

1: function AGGREGATESHAPLEY(x, v,G)
2: if v has children then
3: l, r ← children of v
4: AGGREGATESHAPLEY(x, l, G)
5: AGGREGATESHAPLEY(x, r,G)
6: end if
7: if v is not the root then
8: e edge with v as head
9: i feature of edge e

10: S[i]← S[i] + (pe(x)− 1)ψ(
⌊

G[v]
y+pe(x)

⌋
)

11: if D(e) ̸= ∅ then

12: S[i]← S[i]− (pe↑(x)− 1)ψ(

⌊
G[v]⊙(y+1)

d
e↑−de

y+p
e↑ (x)

⌋
)

13: end if
14: end if
15: end function
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Algorithm 3 The entire LINEARTREESHAP algorithm.

1: function LINEARTREESHAP(x, Tf )
2: G← an array indexed by the nodes
3: COMPUTESUMMARYPOLYNOMIALS(x, root(Tf ), 1)
4: S ← an array indexed by the features
5: AGGREGATESHAPLEY(x, root(Tf ), G)
6: Return: S
7: end function

3.2.5 Linear TreeSHAP and complexity analysis

We can obtain an algorithm in two phases by Theorem 3.2.4. Efficiently compute the

summary polynomial on each node(Algorithm 1) and then evaluate for φ(f, i) directly(Algorithm 2).

Both parts of the algorithm are straightforward, computing directly through definition and tree

traversal. The final value of S[i] is the desired value φ(f, i)(x) after running Algorithm 3.

To analyze the running time, one can see each node is visited a constant number of

times. The operations are polynomial addition, multiplication, division, inner product, or

constant-time operations. All those polynomial operations take O(D logD) time for degree

D polynomial [7]. This shows the total running time is O(LD logD).

However, we never need the coefficients of the polynomials. So, we can improve the

running time by storing the summary polynomials in a better-suited form, the multipoint

interpolation form. Namely, we evaluate the polynomials G on a set of predefined unique

points Y = (y0, y1, y2, · · · , yD) ∈ RD+1, and store G(Y ) = (G(y0), . . . , G(yD)) instead. In

this form, addition, product, and division take O(D) time [15]. The evaluation function ψ(G)

also takes O(D) time but needs more explanation.

Denote V(Y ) ⊂ RD+1×D+1 as the Vandermonde matrix of Y , where vi,j ∈ V(Y ) = yji is

the jth power of yi.

Lemma 3.2.5. Let p, q ∈ R[x]d, and its coefficients A and B, respectively, then we have

⟨p, q⟩ = ⟨A,B⟩ = ⟨p(Y ),V(Y )−1B⟩.

Proof. Polynomial evaluation can be considered as the inner product of the coefficient and
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Vandermonde matrix of input Y . Namely p(Y ) = A · V(Y ). Therefore ⟨p(Y ),V(Y )−1B⟩ =

⟨A · V(Y ),V(Y )−1B⟩ = ⟨A,V(Y ) · V(Y )−1B⟩ = ⟨A,B⟩ completes the proof.

In order to compute the inner products ⟨G,Bd⟩ in O(D) time, we have to precompute

Nd = V(Y )−1Cd, where Cd is the coefficient of Bd, for all 0 ≤ d ≤ D. This can be done

simply in O(D) time for each d, so a total of O(D2) time.

By storing the polynomial in interpolation form, all our polynomial operations on each

node take O(D) time. Therefore, the total running time is O(LD).

Besides the summary polynomials, the algorithm uses constant space to store informa-

tion on nodes and edges. Each summary polynomial takes O(D) space to store. Therefore,

the algorithm takes O(LD) space. Nevertheless, we can save space by realizing the al-

gorithms only need a single top-down and bottom-up step. The algorithm consumes the

summary polynomials on the spot by joining two steps into one. Hence, the total space

usage will be bounded by O(D) times the stack size, bounded by D, the depth of the tree.

The final total space usage is improved to O(D2).

Remark Even though Y can be arbitrarily chosen based on the maximum depth of the

tree D, it is shown that Chebyshev points are near-optimal in numerical stability [76]. In our

Linear TreeShap implementation, we used the Chebyshev points of the second kind.

3.3 Experiments

Computational Platform. All experiments were run on a single workstation with an Intel

Xeon (8-core) @ 2.20GHz CPU and 64GB of RAM, using Ubuntu 20.04 (64-bit) and Python

3.9. To ensure fair comparisons, we restricted the algorithms to use a single CPU core,

including those (e.g., FastTreeShap) that can exploit parallel execution.

Practical Run Times. In typical use cases, we have observed that Linear TreeShap

takes a few milliseconds per instance per tree when D ≤ 20 (a typical maximum depth

for tree-based models in practice). For example, on a tree with a depth of 10 and around
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Figure 3.2 – Speed up comparison

Datasets # Instances # Attributes Task Classes
adult [36] 48,842 64 Classification 2

conductor [25] 21,263 81 Regression -

Table 3.2 – Datasets

1,000 leaves, Linear TreeShap often runs in 2–3 milliseconds per instance, whereas the

original TreeShap might require an order of magnitude more time. Thus, Linear TreeShap

significantly speeds up real-world random forests or gradient-boosted trees of moderate

depth without sacrificing exactness.

We run an experiment on both regression dataset adult and classification dataset con-

ductor(summary in Table 3.2) to compare our method and two popular algorithms, TreeShap

and Fast TreeShap. We explain Trees with depths ranging from 2 to 18. To align the per-

formance across different depths of trees, we plot the ratio between the time of Tree Shap

and the time of all methods in Figure 3.2. We run every algorithm on the same test set 5

times to get both average speeds up and the error bar. And for fair comparison purposes,

all methods are limited to using a single core.

Linear TreeShap is the fastest among all setups. Due to heavy memory usage, Fast

TreeShap V2 falls back to V1 when the tree depth reaches 18 for the dataset conductor.

Since the degree of the polynomial is bounded by the tree’s depth and the number of unique

features per decision rule, with deeper depth, the dataset Conductor has much more speed-

up gains thanks to a higher number of features. We can conclude that the Linear TreeShap
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is more efficient than all state-of-the-art Shapley value computing methods in theory and

practice.

Code Availability. A reference implementation of Linear TreeShap, along with Python

scripts for reproducing our experiments and benchmarks, is publicly available on GitHub 1.

We encourage the community to explore, contribute, and adapt the code to a variety of

tree-based models.

1. https://github.com/yupbank/linear_tree_shap

https://github.com/yupbank/linear_tree_shap
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Chapter 4

Improved Binary Splitting of

Categorical Features in Decision

Tree Learning

4.1 Introduction

Decision trees are widely used for classification and regression tasks in machine learn-

ing. The CART decision tree induction method with binary splits in [9, 58] has become the

foundation for most modern tree family algorithms. However, categorical feature splitting is

still understudied despite decision trees’ success and widespread use. With any (feature,

label)-pair, the objective for the binary split in decision tree learning is to find the split that

maximizes impurity improvement. Given a feature with K unique elements, if the feature

type is numerical, K − 1 possible two-way splits are linear in K. This is why binary split in

decision learning is traditionally considered a trivial optimization problem. If the feature type

is categorical, there are 2K−1 − 1 possible two-way splits, which is exponential in K. Then

the complexity of obtaining the exact solution depends on the number of possible splits,

45
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which is exponential.

Most popular frameworks like XGBoost [13] leave categorical feature input for the user

to deal with. It treats the feature encoding problem as part of preprocessing and does not

approach the issue. Another well-known framework LightGBM [33], supports numerical en-

coding for categorical features, as suggested in [20]. The Catboost framework [52] comes

with more sophisticated options for numerical transformation by utilizing various types of tar-

get statistics. They propose to use different target statistics validated with a holdout dataset

to do the numerical encoding, which is data-dependent and does not necessarily generalize

well.

Most of the categorical features supported implementation use the method proposed in

[20], which preprocesses categorical features by numerical encoding. The original method

uses the mean target value to encode a categorical feature. It was first developed for the

regression tree with the mean least squares objective. Later on, both in [9] and [57] gener-

alize a similar mechanism to the 2-class classification problem. However, as in [57] stated,

this does not extend beyond the 2-class classification problem. For more than 2-class clas-

sification, [41] proposed various approximations. It thus appears that, for binary splitting

categorical feature, there is a gap between 2-class and n-class classification.

The gap between 2-class classification and more than 2-class classification motivated

us. Intuitively, the binary split of categorical features in 3-class classification should not

be as hard as in 30-class classification. Since the binary split of categorical features in 2-

class classification has a linear subspace, The 3-class classification should also have some

subspace with low-order polynomial complexity instead of exponential.

Intuition aside, the binary splitting of categorical features is a nontrivial optimization prob-

lem. For n-class classification tasks, the complexity of obtaining the exact maximum impurity

improvement is exponential among existing solutions. All the previous approximated binary

splitting methods were compared from a decision tree learning perspective. Classification

accuracy and generalization errors were used to measure the goodness of binary splitting.

We would argue that over-fitting or generalization of decision trees depends on multiple
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factors, such as the tree’s depth, the dataset’s property, and more. On the other hand, in

n-class classification task, n ≥ 2, if binary splitting on categorical features can guarantee

optimal. Generalization or overfitting of the decision tree is not different from the 2-class

classification decision tree. The goodness of approximation of binary split should be studied

in a much self-contained setup, optimization alone.

We propose a novel state space for the binary split to bridge the gap. The state space

is based on additive sufficient statistics. Additive sufficient statistics is splitting a categorical

feature with K unique values F = {F1, · · · , Fi, · · · , FK}. We use G = {g1, · · · , gi, · · · , gK} ∈

Rn to capture the impurity of having single value Fi in one partition. Namely, we can get the

impurity improvement of a partition having only F1 via some function f(g1). By definition,

sufficient statistics is also additive. When having both F1, F2 in one partition, the partition

statistics is g1 + g2. And the impurity of such partition can be obtained by f(g1 + g2).

All possible splits of F are also its power set. Thus we can embed all possible splits using

a power set of sufficient statistics G. The powerset of G forms an n-dimension discrete state

space

Z = {
∑
i∈S

gi : S ⊂ F} ⊂ Rn.

The complexity of our state space is still exponential. Meanwhile, popular splitting criteria

(e.g., Gini impurity, entropy impurity, variance reduction) are in the regime of convex objec-

tives. The maximum of convex objectives can be obtained on the boundary of the convex

domain. In our paper, we study the property of the convex hull of Z, which is central in

reducing complexity towards the optimal partition. By definition, the convex hull of set Z is a

very well-studied geometric object: Zonotope.

Using the property of Zonotopes, we give new proof of the linearity of computing Gini/Entropy/Variance

impurity improvements for 2-class classification and regression. For more than 2-class clas-

sification, we also provide a randomized Zonotope vertex enumeration algorithm BSplitZ.

We empirically study the performance using real-world datasets. And we limit the scope to

an optimization problem.
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4.2 Methodology

This section presents our state-space model on the binary splitting categorical features.

Firstly, using the Gini impurity as a specific splitting criteria for 2-class classification, we

demonstrate the basis of our formulation. Secondly, we present an integer programming

formulation and generalize it to all convex splitting criteria. Thirdly, we prove the linearity in

computing for categorical feature binary split for 2-class classification. Finally, we introduce

an asymptotically optimal solution – BSplitZ – for the categorical feature splitting for more

than 2-class classification.

4.2.1 Preliminaries

In an n-class classification setting, the dataset for the problem of binary splitting a cate-

gorical feature typically can be summarized as m (feature, (label, weight))-tuples:

(x1, (y1, w1)), · · · , (xi, (yi, wi)), · · · , (xm, (ym, wm)); where xi ∈ X, (yi, wi) ∈ Y , ∥X∥ = K

(cardinality of the feature), ∥{yi : (yi, wi) ∈ Y }∥ = n (number of classes), and wi ∈ R+ is the

weight, being wi = 1 if not specified. The goal is to find a two-way partition that maximizes

some splitting criteria.

Now we use 2-class classification with Gini impurity splitting criteria, for example, yi ∈

{0, 1}. To find an optimal binary split, one needs to maximize the objective function: Gini

impurity improvement I. Gini impurity GI(Y ) of the dataset is defined as:

GI(Y) = 1−
(∑m

i=1 wiyi∑m
i=1 wi

)2

−
(∑m

i=1 wi − wiyi∑m
i=1 wi

)2

(4.1)

which captures the idea that class distribution should be as different as possible in one

partition. We use l, r to represent the partition index set for the left and right sides for a

given split. Gini impurity improvement I(Y, Yl, Yr) can be expressed as:

m∑
i=1

wi GI(Y ) −
∑
i∈l

wi GI(Yl) −
∑
i∈r

wi GI(Yr). (4.2)
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Figure 4.1 – Unnormalized Decision surface of all possible binary splits

4.2.2 Parameterizing Impurity Maximization

With some simplifications, from Eq 4.2, we have I(Y, Yl, Yr) as:

(∑
i∈l wiyi

)2∑
i∈l wi

+

(∑
i∈r wiyi

)2∑
i∈r wi

− (
∑m

i=1 wiyi)
2∑m

i=1 wi
. (4.3)

By denoting p⃗l = (
∑

i∈l wiyi,
∑

i∈l wi), p⃗r = (
∑

i∈r wiyi,
∑

i∈r wi) and

c⃗ = (
∑m

i=1 wiyi,
∑m

i=1 wi), the objective function I(Y, Yl, Yr) can be further simplified as:

(−→pl [0])2
−→pl [1]

+
(−→pr [0])2
−→pr [1]

− (−→c [0])2
−→c [1] (4.4)

where p⃗l[0], p⃗l[1] simply refer to the first and second element of p⃗l. Since c⃗ is a constant

about the dataset, and p⃗r = c⃗− p⃗l, we can parameterize the Gini impurity improvement with

only p⃗l:

I(Y, Yl, Yr) = f(p⃗l) (4.5)

Therefore, finding the optimal split is equivalent to finding the p⃗∗l that maximizes function

f(p⃗l). For example, for a dataset with c⃗ = (10, 100), we can visualize the decision surface

f(p⃗l) in Fig 4.1. The x and y axis correspond to the first and second dimensions of p⃗l

respectively. The Gini impurity improvement is on the z axis.
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4.2.3 Generalize the state space to both classification and regression

splitting criteria

Both Gini and Entropy impurity are functions of class distribution. It is easy to see

that p⃗l contains sufficient statistics to compute the Entropy impurity too. Variance reduc-

tion can adopt similar parameterization with a slight change in definition: yi ∈ R. With

this parameterization, the objective of Variance reduction has a similar form to the Gini

impurity. We will refer to both regression and 2-class classification as binary task in the

remainder of this paper. And it is easy to see for binary tasks, p⃗l ∈ R2, because it is

sufficient to quantify the impurity of any partition with only two numbers. Meanwhile, for

n-class classification, the dimension of p⃗l is the same of the number of classes n, specif-

ically: p⃗l = (
∑

i∈l1
wi, · · · ,

∑
i∈lj

wi, · · ·
∑

i∈ln−1
wi,
∑

i∈l wi). Here lj stands for the set of

left-side instances with class j. To unify the terminology, we will refer to a more than 2-class

classification task as a high-dimensional task in the remainder of this paper.

4.2.4 Constructing the Domain of Interest

Even though we can parameterize the binary split with p⃗l and obtain the objective func-

tion f , the domain of interest of f : Z → R is only a subset of R2. It is constrained by all

possible splits we can get from the dataset. For different features with different types, the

domain of f varies. We construct the domain of interest in two steps:

1. For the feature F with cardinality K (K unique values: {F1, · · · , Fi, · · · , FK}),

we get G = {g⃗1, . . . , g⃗i, . . . , g⃗K}, where g⃗i =
(∑

j∈Fi
wjyj ,

∑
j∈Fi

wj

)
. We use the

notation for matrix and set interchangeably, with indexing across elements and rows,

respectively. Namely, we slightly abuse the notation of Fi such that it is also used as

an index set for data with feature value Fi.

2. Enumerate statistics for all possible splits using G. With a powerset index matrix

M ∈ {0, 1}(2K−1−1)×K , the domain of f is Z =M ·G.

To visualize the full process, we generate some random G with feature cardinalityK = 5.
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And enumerate all the possible splits Z using G: the order of G does not matter since Z

contains all possible combinations. Recall that both G and Z are discrete sets in R2, so we

use a scatter-plot to demonstrate G, and Z in Fig 4.2 respectively.

To summarize, the optimal splitting finding is a 0-1 integer programming problem:

argmax
i

f(Mi ·G) s.t. i ∈ Z ∩ [0, 2K−1 − 1) (4.6)

Recall, here M is a powerset index matrix M ∈ {0, 1}(2K−1−1)×K . We use Mi to rep-

resent the ith row of M . According to step 2, the row number of M is exponential with the

feature cardinality. And in this case, brute-force enumeration would have exponential com-

plexity. For example, for a feature with cardinality K = 20, the complexity is proportional

to 220, which is not accessible both computationally and memory-wise. Meanwhile, it has

been proven by [8] that common splitting criteria (Entropy, Gini, and Variance) are convex

functions defined on p⃗l. We can leverage the property of the convex function and the convex

set: the maximum of a convex function defined on the convex domain can be obtained on

the extreme points/vertices of the convex domain. The best split p⃗∗l (where f is maximized)

stays on the convex boundary and among extreme points V . We are interested in a method

that produces the extreme points of the convex hull of Z directly from G (since the optimal

solution only lies on the boundary of the hull). This is a well-studied subject in geometry,

called Zonotope vertex enumeration, which focuses on enumerating all vertices of a Zono-

tope Z. We also plot the optimal split p⃗∗l in Fig 4.2, which is on the convex boundary V as

expected.
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The domain of interest in binary splitting categorical features reduces from exponential

powerset to vertex of some Zonotope. If we can efficiently generate all vertices, we can also

find the optimal binary split efficiently. We can partially answer the complexity difference

between 3-class- and 30-class classification problems. In a 3-class classification, we need

to enumerate the vertex of a Zonotope in dimension 3. And in the 30-class classification,

the Zonetope is in dimension 30. The properties of Zonotope and its vertex enumeration

complexity will fulfill the gap between 2-class classification and n-class classification.

4.2.5 Zonotopes

The domain of interest Zonotope Z is a convex, centrally symmetric polytope, that is, the

n-dimensional linear projection of a K-dimensional hypercube. More precisely, let G ∈ Rn×K

with n < K, the Zonotope Z is defined as

Z = Z(G) = {G · x : x ∈ [0, 1]K} (4.7)

The Minkowski sum of line segments P and Q is P
⊕
Q = {p⃗ + q⃗ : p⃗ ∈ P, q⃗ ∈ Q}. The

Zonotope has an equivalent representation as a Minkowski sum of K line segments in Rn,

allowing us to write:

Z = {xg⃗1 : x ∈ [0, 1]}
⊕
· · · {xg⃗i : x ∈ [0, 1]} · · ·

⊕
{xg⃗K : x ∈ [0, 1]}

where g⃗i ∈ Rn is the i-th column of G. These vectors G = {g⃗1, . . . , g⃗i, . . . , g⃗K} are the

generators of Z. The center of the Zonotope is
∑K

i=1 g⃗i
K . Each vertex has a symmetric sibling

with respect to the center. If G does not contain any zero vector and no two generators

are scalar multiples of each other, this implies that the Zonotope is in general position.

There exist 2
∑n−1

i=0

(
K−1

i

)
= O(Kn−1) vertices of a general positioned Zonotope [19]. The

solution of the maximum convex function, defined on a convex set, has to be among the

extreme points of this convex set, namely the vertices V . Our optimization problem can now
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be solved on a subdomain V ⊂ Z. In [50], the authors give an algorithm for enumerating

extreme points of Z. However, it requires exponential complexity O(|Z|·|V |) = O(2K ·Kn−1).

It is even worse than enumerating all possible splits, which requires only O(2K).

For a categorical feature with cardinality K, in n-class classification, there are O(Kn−1)

vertices from its domain of interest. Namely, binary split categorical features with 2-class

classification have a subspace with O(K) complexity, with 3-class has a subspace with

O(K2) complexity, and with 30-class has a subspace with O(K29) complexity. So indeed,

the 3-class classification is not as complex as the 30-class. Yet, knowing the complexity is

not enough; being able to enumerate them is what matters.

4.2.6 Zonotope Vertex Enumeration in Dimension Two

After showing both the domain of interest in a Zonotope and the properties of a Zono-

tope, we can have:

Theorem 4.2.1. For a binary task with convex splitting criteria (e.g., Gini impurity, Entropy

impurity, Variance reduction), there exists a linear subspace of splits for the maximum binary

split finding of a categorical feature.

Proof. In the 2-class classification task, all possible, sufficient statistics of binary splits from

a categorical feature are enclosed in a 2d Zonotope. And there are 2K extreme points

(vertices) for 2d Zonotope from [4]. Thus the vertices of such Zonotope are the linear sub-

space.

In two dimensions, when all generators G are in the first and second quadrants, ∀g ∈

G, g[1] ≥ 0, a fast algorithm enumerates all vertices of Z. It consists of sorting the generators

based on their angles in increasing order and then adding them in a clockwise manner. The

resulting trace forms a 2d convex closure, where all endpoints of the line segments are ver-

tices. Since all the generators are in the first and second quadrants, (0, 0) is obviously going

to be a vertex. Following Jarvis’s march [31] method of finding a convex hull, the rightmost

point is the generator with the largest angle(arctan(g[1], g[0])). And since all the generators
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are in the first quadrant, the angle of the sum of two generators is in between them. This

second-largest vertex is the sum of the largest and second-largest angle generators. Thus

we can recursively find the rest of the vertices by following the order by angle. There is also

another proof provided by Property 9 in [44].

Thus encoding the categorical feature with target statistics by [20] is equivalent to the

special case 2d Zonotope vertex enumeration algorithm (generators in the first and second

quadrant). Since all the vertex of the convex hull is an optimal subspace for the exponential

space, such encoding is optimal. This encoding can be extended to data with weights, gra-

dients, or hessian for convex objectives such as Gini, Entropy impurity, variance reduction,

or any convex combination.

Meanwhile, such a short-cut algorithm is not generally applicable to 2d Zonotope vertex

enumeration. Namely, we need to ensure the weights are positive in every instance. Recall

the second component. A generator is the sum of weights, g⃗i =
(∑

j∈Fi
wjyj ,

∑
j∈Fi

wj

)
.

With negative weights, the popular algorithm cannot produce the corresponding vertex. Neg-

ative weights might not be common, but evaluated hessian are used as weights in the gra-

dient boosting algorithm. And they can be negative.

4.2.7 Zonotope Vertex Enumeration in High Dimensions

For a high-dimensional task, the simple algorithm for the binary task is not suitable.

There are more advanced methods, such as reverse search, that provide the time complexity

O(n ·K · LP (K,n)|V |) [4]. Here LP (K,n) stands for the complexity of linear programming

with K variables, and n constraints |V | stands for the number of vertices. The size of the

set of vertices |V | dominates its complexity, yielding O(Kn−1). Collecting all vertices would

require exponential complexity, making it nonideal. Conveniently, there is an algorithm using

randomized enumeration proposed in [70]. We adopted the idea within our method: BSplitZ.

The vertex enumeration is shown in Algorithm 4.

By setting a fixed number of samples, one can sample potential optimal splits from V

in a controllable manner. The probability of obtaining a given sample vertex is proportional
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Algorithm 4 Randomized algorithm to enumerate the vertices of the Zonotope
Input: Empty set V and generators G
Parameter: number of samples s
Output: V

1: k = 2 ·∑n−1
i=0

(
K−1
i

)
2: while |V | < k or s > 0 do
3: Draw x⃗ independently from 0 centered, I covariance Gaussian in Rn

4: Compute v⃗ = G · sign(GT · x⃗)
5: Put v⃗ and −v⃗ into V
6: Set s = s− 1
7: end while
8: return V

to the angle of the normal cone at that vertex over the normal fan (the union of all normal

cones) of the Zonotope. In high dimensional space, the angle of a normal cone can be

extended to the solid angle enclosed by the normal vectors of facets.

The probability of sampling any given vertex is given by the cumulative density function

of a degenerated zero mean, multivariate normal distribution evaluated at the given vertex.

For example, the probability of obtaining vertex (0, 0, . . . , 0) is the orthant probability: P (X <

0), X ∼ N(0, G ·GT ). This degenerated distribution guarantees that not all 2K samples are

possible or have a probability greater than 0. The cumulative density function of arbitrary

dimension multi-variate normal distribution does not have an analytical form. To achieve an

optimal result, we have to enumerate all vertices. We also put effort into determining the

expected number of samples required to enumerate all vertices. We can treat every vertex

as a coupon. Sampling the Zonotope vertex until we visited all the vertices is analogous to

drawing coupons until we have collected all the coupons. Calculating the expected number

of draws/samples required to collect/enumerate all coupons/vertex is another well-studied

problem, the nonuniform coupon collection problem. Different coupon/vertex have different

weights that correspond to the orthant probability. Based on Theorem 3.5 from [67], the

expected number of draws is bounded by O(β · |V | · log(|V |)) and O( 1β · |V | · log(|V |)), where

β is the ratio of angles between the minimum angle normal cone and the maximum angle

normal cone, and recall |V | =∑n−1
i=0

(
K−1

i

)
= O(Kn−1) in our case. In practice, the number

of draws is usually fixed as a constant. Therefore, the running time complexity is low.
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Feature cardinality Number of classes

3-8 10-59

2-10 52 16

Table 4.1 – Number of optimization problems grouped by the range of feature cardinality
and the number of classes.

4.3 Experimental Evaluation

Without making further data assumptions, we use various real-world datasets from

OpenML 1 to study the effectiveness and efficiency of BSplitZ in practice. All classifica-

tion datasets on the Openml platform containing more than 10k instances, three classes,

and one categorical feature are used. The datasets are tami with id 1505, kropt with id

184, settle_crime with id 41960, pokerhand with id 155, nursery with id 1568, kddcup with id

1113, fars with id 40672 and dibetes with id 4541. We first focus on the optimization prob-

lem alone and compare the optimization ranking of BSplitz with other methods. And then,

we pick a subset of feasible feature encoding methods to compare in a standard machine

learning setting.

Computational Platform. All experiments presented in this chapter were conducted on

a workstation equipped with an Intel Xeon CPU (8-core) @ 2.20GHz and 64GB of RAM,

running Ubuntu 20.04 (64-bit) with Python 3.9. We ensured all baseline methods and our

method ran in a single-threaded mode unless otherwise specified.

We extract all the categorical features in those data sets and form 68 optimization prob-

lems. 11 categorical features with more than ten values are omitted from the comparison

because we need to include brute force in the baseline. We summarize the problems’ distri-

bution in Table 4.1.

We run a comparison with both a collection of state-of-the-art categorical feature encod-

ing methods such as M-probability estimate of likelihood(m), James-Stein estimator(james),

CatBoost coding(cat), Target encoding(target), Encodes categorical features as ordinal(ordinal),

1. https://www.openml.org/

https://www.openml.org/
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Count encoding(counts), Base-N encoder(base), Binary encoding(binary) (from 2) and direct

splitting methods such as One hot encoding(one hot), One-Versus-All by Class(one vs all),

Principal Component-Based Partitioning based(pca), Pull Left by Purity based methods(pull

left)(from 3) using both Gini and Entropy impurity improvement.

Underlying Model. Throughout our experiments and comparisons, we primarily used

CART trees as the underlying model to evaluate the practical performance of our proposed

splitting approaches. This choice aligns with the observation that encoding the categorical

feature with target statistics [20] is effectively a special case of the 2d Zonotope vertex

enumeration in the context of CART trees.

Figure 4.3 – Ranking of Gini impurity improvement for all 65 optimization problems. Where
the ranks higher, the better.

Using all the methods, we rank the Entropy and Gini impurity improvement for every (fea-

ture, label) pair. Since some methods are stochastic, ten rounds of impurity reduction rank

comparison are conducted to estimate the standard deviation. The maximum rank is used.

Thus the higher rank, the better the model. As 23 methods are used in our comparison, the

best model will rank 23, which is also brute force.

Integer Programming as a Baseline. We also considered directly solving the asso-

ciated 0-1 integer programming (IP) problem to find the optimal split as another potential

2. https://contrib.scikit-learn.org/category_encoders/
3. https://www.mathworks.com/help/stats/splitting-categorical-predictors-for-multiclass-

classification.html
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Figure 4.4 – Ranking of Entropy impurity improvement for all 65 optimization problems.
Where the ranks higher, the better.

baseline. However, we found that generic IP solvers became intractable for even moderate

feature cardinalities (e.g., K > 15), due to the exponential number of possible partitions.

Thus, while IP could serve as an exact baseline on very small categorical features, our fo-

cus remained on randomized and other heuristic methods for larger K, which aligns with the

scope of bridging exponential complexity in practice.

The number of samples for BSplitZ is also explored in our experiment. We add a suffix

of the number of samples to BSplitZ in the method name. We report both Gini and Entropy

result in Fig 4.3 and Fig 4.4. As expected, as we increase the number of samples for BSplitZ,

the ranking performance also improves. BSplitZ outperforms all other methods(except for

brute force) with around 256 samples.

And we also study the efficiency of different methods. As shown in Fig 4.5 Only a few

encoding-based methods(base, binary) have significantly slower speeds. And the brute

force method is the second slowest, as expected. The rest of the methods have more or

less similar speeds.

We also conduct a second experiment with standard train/test accuracy evaluation to

assess the practical impact on machine learning tasks. We implement BSplitZ as a feature

encoding mechanism to compare with other popular feature encoding methods.

As all the features and limitations of the available implementation of encoding methods

are used in the previously mentioned datasets, we only compare nine methods for accuracy.
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Figure 4.5 – Speed comparison of different methods in seconds over different feature car-
dinality

In this comparison, we also set a fixed sample size of 256 for BSplitZ. Ten rounds of accuracy

ranking are performed. We first split the dataset into train/test(7:3 ratio) folds in every round.

Then categorical features are encoded into numerical. We also vary the depth of trees in

1, 5, 10, and 15. We rank the accuracy obtained in each setting across all tree depths,

then aggregate them and report in Figure 4.6 and Figure 4.7. Similarly, we use max rank in

comparison. Thus the higher method ranks, the better the encoding method. And the best

rank is 9.

BSplitZ is ranked among the top 3 across all datasets. And particular, the BSplitZ

method outperforms the rest in training and testing accuracy on large datasets.

4.4 Conclusions

We proposed a new general framework for binary decision tree splitting. We generalized

the framework to process the categorical features directly. And we give further insight into

the binary split in the decision tree and add new proof to some empirical encoding meth-

ods. We also presented BSplitZ, an asymptotic optimal algorithm, for categorical feature

splitting within this new framework. We evaluated the new algorithm across several different

datasets. Our novel methodology outperforms other state-of-art methods.
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Figure 4.6 – We rank the training accuracy for different methods, the higher, the better



4.4. CONCLUSIONS 61

Figure 4.7 – We rank the testing accuracy for different methods, the higher, the better
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Chapter 5

Binary Split Categorical feature

with Mean Absolute Error Criteria

in CART

5.1 Introduction

The CART family of algorithms (random forest, gradient boosting tree) is well-known for

its top performance on tabular data. Real-world tabular data often contains not only nu-

merical but also categorical features. The CART algorithm recursively partitions the input

dataset with a binary split optimization step and terminates when reaching a minimum num-

ber of instances. While traditional machine learning models only work with numerical data,

the CART family of algorithms can process categorical features directly. This flexibility is

because the binary split optimization step in the CART algorithm only requires feature data

types that allow different subsets.

The binary split step is recognized as a major bottleneck regarding the computational

efficiency of tree learning algorithms [12]. Specifically, when processing categorical fea-

63
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tures, the associated discrete set topology can result in an exponential search space for

binary splits. As a result, various numerical encoding methods have been developed to

address this limitation. Consequently, many popular tree-based machine learning software

packages (such as XGBoost [13], LightGBM [33], and Catboost [52]) only support numerical

data or include automatic numerical encoding methods for categorical data. On the other

hand, only a subset of splitting criteria (such as mean squared error and Gini impurity) have

optimally guaranteed numerical encodings for categorical data [27]. The splitting criterion

MAE (Mean Absolute Error) lacks a proven optimal numerical encoding. MAE is more robust

when dealing with outliers and skewed distributions and is widely adopted in various statis-

tical domains. This criterion’s most successful and practical numerical encoding method is

median-based heuristic numerical encoding. This highly efficient heuristic takes O(n log n)

time, where n is the dataset size. However, the heuristic may not be optimal for large,

randomly generated examples. Nonetheless, a simple proof of its non-optimality remained

elusive, as verifying the optimality of large random examples by hand is impractical [73].

To address this, we first prove there do not exist optimal numerical encoding. While

the proof itself is relatively straightforward, the significance of this result is reflected in the

substantial effort invested in seeking the optimal numerical encoding method. For instance,

dozens of unsupervised numerical encoding methods are under development [45]. And then

we introduce our new algorithm, which may also hold independent interest as it efficiently

solves the unimodal cost 2-median problem.

5.2 Preliminaries

In regression tree learning, during a node split computation, the goal is to find a binary

partition S, Sc of Y ∈ Rn, based on some feature X. Here, Sc is the complement of S with

respect to Y . When X is categorical, the goal can be further simplified as finding a binary

partition of Y = {Y1, Y2, . . . Yk}, where Yi ⊆ R is the subset of the target data points with

category i in feature X.
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Depending on the splitting criteria, the partition must maximize or minimize an objective

function. For a given set S ⊆ Y, the MAE is defined as

MAE(S) =
∑
x∈∪S

|x−M(∪S)|. (5.1)

Here, M(·) represents the median function, and | · | denotes the absolute value. When using

MAE as the splitting criterion, we define the objective value as:

λ := min
S⊂Y,S̸=∅

MAE(S) + MAE(Sc). (5.2)

The problem of computing the split S, Sc that achieves the minimum is referred to as the

MAE split problem.

To solve for the minimum, one can enumerate all subsets of Y, resulting in an unde-

sirable O(2k) search space. On the other hand, the community has developed numerous

heuristic numerical encoding methods.

Unsupervised Numerical Encoding Rather than enumerating all subsets, one can

employ a numeric encoding/set function e : 2R → R to establish an ordering ⪯e and select

sets based on this ordering.

A numerical encoding function is considered unsupervised if specified independently of

the data, meaning it is determined without observing the input.

The numerical encoding provides a natural ordering over the elements of Y, where A ⪯e

B if e(A) ≤ e(B). We define the downward closed sets of Y as D′(Y, e), which consists of

sets of the form {A | e(A) ≤ x,A ∈ Y} for some x.

Numerical encoding has been used as a heuristic to identify the optimal partition within

the downward closed sets. Specifically, let D(Y, e) = D′(Y, e)\{Y, ∅}, and our goal is to find

S ∈ D(Y, e) that minimizes λ. This modified problem leads to a more favorable O(k) search

space, though optimality is not guaranteed.

For instance, the median heuristic employs the encoding function e = M by arranging
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sets based on their medians. It then enumerates the downward closed sets and their com-

plements as potential splits. Consequently, this approach yields only k − 1 potential splits.

Piecewise-linear functions We also introduce a few useful functions and their proper-

ties. A function f : R → R is unimodal, if there exists a c such that for any x ≤ y ≤ c, we

have f(x) ≥ f(y), and for c ≤ x ≤ y, f(x) ≤ f(y).

A function h : R × R → R is totally monotone, if for any x1 ≤ x2 ≤ y1 ≤ y2, h(x1, y1) ≥

h(x1, y2) then h(x2, y1) ≥ h(x2, y2). A positive linear combination of totally monotone func-

tions is totally monotone. A matrix is totally monotone if the function h(i, j) = Mi,j is totally

monotone. The main property of a totally monotone matrix is the index for row minimum

is non-decreasing. That is, if Mi,ai
is the minimum value of the ith row, then we have

a1 ≤ a2 ≤ . . . ≤ an [51].

We use B(f) to denote the set of breakpoints for a piecewise linear function. Recall the

median function M(S) is an element y ∈ S, such that
∑

x∈S |x− y| is minimized.

5.3 No unsupervised optimal numerical encoding for MAE

Is there a numerical encoding that can be used to find the optimal binary split for MAE?

Specifically, is there an encoding function e such that the following equality holds: λ is equal

to minS∈D(Y,e) MAE(S) + MAE(Sc)?

Even though target mean-based numerical encoding for categorical features has been

proven optimal in decision tree regression with mean squared error (MSE) in [9], the same

heuristic does not work with MAE. Empirically, it has been shown that the median numerical

encoding works most of the time for MAE splitting criteria [73]. The conclusion is made

based on experiments on limited datasets. The median encoding result in sub-optimal splits

was only observed through some rare, randomly generated datasets.

Still, this does not rule out the existence of other unsupervised numerical encodings that

work for MAE. We prove there does not exist any unsupervised optimal numerical encoding.

Suppose a unique optimal partition of a dataset minimizes the MAE. In that case, any
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encoding that works for MAE must have the encoding of all elements in one partition strictly

smaller or greater than the encoding of the other partition. Formally, let {A,B} forms the

unique optimum partition of dataset Y, and e is a encoding that works for MAE, then either

e(A) < e(B) for all A ∈ A and B ∈ B, or e(A) > e(B) for all A ∈ A and B ∈ B. If the

encoding e works for MAE, then the optimal partition is in D(Y, e).

Theorem 5.3.1. No numerical encoding function works for binary split with MAE splitting

criteria.

Proof. Assume such encoding e exists and prove by contradiction via constructing a counter-

example. Let ϵ > 0 be some small and fixed value, say 0.01.

Let a1 = 0, a2 = 2, a3 = 3, a4 = 5. We defineAi = {ai−ϵ, ai, ai+ϵ}, A′
i = {ai−ϵ, ai+ϵ, a1}

if i ∈ {3, 4}, otherwise A′
i = {ai − ϵ, ai + ϵ, a4}.

1. The unique optimum partition of {A1, A
′
1, A4, A

′
4} is {A1, A

′
1}, {A4, A

′
4}, without loss

of generality, let e(A1) < e(A4).

2. The unique optimum partition of {A2, A
′
1, A3, A

′
4} is {A2, A

′
1}, {A3, A

′
4}, hence e(A′

1) <

e(A′
4).

3. The unique optimum partition of {A2, A
′
2, A3, A

′
3} is {A2, A

′
2}, {A3, A

′
3}, hence e(A2) <

e(A3).

4. The unique optimum partition of {A1, A
′
2, A

′
3, A4} is {A1, A

′
3}, {A′

2, A4}, hence e(A4) <

e(A1), a contradiction.

5.4 Methodology

Knowing no unsupervised numerical encoding e works for MAE, there might still be

efficient algorithms that don’t use any encoding. In the following section, we propose such

an algorithm.

We first transform the MAE split problem into a more manageable version, which avoids

the median function.
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Proposition 5.4.1. Let Y be a family of disjoint sets, and define

MAE(S) = min
a∈R

∑
i∈⋃S

|i− a|

for any nonempty S ⊆ Y. Then

λ = min
∅⊊S⊊Y

(
MAE(S) + MAE(Sc)

)

can be equivalently written as

λ = min
a,b∈R

∑
S ∈Y

min
(∑
i∈S

|i− a|,
∑
j ∈S

|j − b|
)
.

Proof. By definition,

MAE(S) = min
a∈R

∑
i∈⋃S

|i− a|.

Hence, for any subset S ⊆ Y with complement Sc, we have

MAE(S) + MAE(Sc) = min
a∈R

∑
i∈⋃S

|i− a| + min
b∈R

∑
j∈⋃Sc

|j − b|.

Note that
⋃S and

⋃Sc partition all elements in
⋃Y. We may reorganize the sums set by

set (i.e., over each S ∈ Y), introducing two real parameters a and b. Gathering the terms for

each S and observing that the choice

min
(∑
i∈S

|i− a|,
∑
j∈S

|j − b|
)

corresponds to placing S into S or its complement Sc, respectively, yields

min
∅⊊S⊊Y

(
MAE(S) + MAE(Sc)

)
= min

a,b∈R

∑
S ∈Y

min
(∑
i∈S

|i− a|,
∑
j∈S

|j − b|
)
.
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This confirms the claimed equivalence, completing the proof.

After the transformation, we consider the following optimization problem.

Problem 1 (Median split problem). Given Y, a family of subsets of R, find a, b ∈ R, such that∑
S∈Y min(

∑
i∈S |i− a|,

∑
j∈S |j − b|) is minimized.

Define fS(x) =
∑

i∈S |i − x| and hS(x, y) = min{fS(x), fS(y)}. Let c = M(S), when

x < c, fS is monotonically decreasing and when x > c, fS is monotonically increasing.

Hence, fS is a unimodal function. Observe that we try to optimize h(a, b) =
∑

S∈Y hS(a, b).

The function is piecewise-linear convex, and the optimum can be achieved when a and b are

breakpoints of the function.

One can compute h(a, b) for each a and b and pick the minimum. There are O(n2) points

to evaluate. Evaluating h takes O(n) time; hence the total running time is O(n3).

However, we note that each fS is a piecewise-linear convex function. We use this prop-

erty to design a slightly faster algorithm. To this end, we introduce a much more general

problem.

Problem 2 (Unimodal Cost 2-Median). Let f1, . . . , fk : R → R be k piecewise-linear uni-

modal functions with a total of n breakpoints. Let g(a, b) =
∑k

i=1 min{fi(a), fi(b)}. Find

a, b ∈ R such that it minimizes g.

Theorem 5.4.2. Problem 1 reduces to Problem 2 in linear time.

Proof. Let fS =
∑

i∈S |i − x|. Let the input to the Problem 1 be Y = {S1, . . . , Sk}. This

reduces to Problem 2 with input functions fS1 , . . . , fSk
.

Therefore, we shift gear and try to solve Problem 2 in the remainder of the paper.

5.5 Algorithm for Unimodal Cost 2-Median

For a piecewise-linear function f of n breakpoints, the representation consists of the

sorted list of breakpoints x1, . . . , xn, and the corresponding values f(x1), . . . , f(xn). Addi-

tionally, the initial slope and the final slope are also stored. Given i, one can find xi, and
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evaluate f , the right slope of f , and the change of slope of f at xi, all in O(1) time. If we are

interested in finding the value of f(x) by giving x instead of any index, it takes O(log n) time

by doing a binary search over the list and then interpolating adjacent breakpoints.

5.5.1 Properties of the problem

Let f1, . . . , fk be the input of Problem 2, and g(x, y) =
∑k

i=1 min{fi(x), fi(y)}. Evaluate

g for all x, y takes O(k) time each if we look at x, y in order. Hence, Problem 2 has an O(n2k)

time algorithm.

This algorithm is extremely naive, looking through all possible input pairs. One might

guess that if we fix a, then the function ga(b) = g(a, b) is a unimodal function, and then a

binary search like procedure can be applied to find the minimum b for ga. Unfortunately, this

is false; ga can have many local minimums. Fortunately, g is a totally monotone function.

Theorem 5.5.1. Let f : R→ R be an unimodal function. The function g : R2 → R defined as

g(x, y) = min(f(x), f(y)) if x ≤ y, and g(x, y) =∞ if x > y, is a totally monotone function.

Proof. Consider for any x1 ≤ x2 and y1 ≤ y2.

In order to show h is totally monotone, we have to show that if min(f(x1), f(y1)) ≤

min(f(x1), f(y2)), then min(f(x2), f(y1)) ≤ min(f(x2), f(y2)).

If we do not have x1 ≤ x2 ≤ y1 ≤ y2, we will obtain an infinity case, and one can see the

inequalities hold.

Hence we assume x1 ≤ x2 ≤ y1 ≤ y2.

There are two cases.

Case 1. If f(y1) ≤ f(y2), then min{f(x2), f(y1)} ≤ min{f(x2), f(y2)}.

Case 2. Otherwise, assume f(y1) > f(y2). Because f(y1) > f(y2) but y1 ≤ y2, so

we must have y1 is in the decreasing part of the function f . Therefore, we must have

f(x1) ≥ f(x2) ≥ f(y1) > f(y2). Hence, f(y1) = min{f(x1), f(y1)} ≤ min{f(x1), f(y2)} =

f(y2) < f(y1), a contradiction.

By Theorem 5.5.1, and the fact sum of totally monotone function is totally monotone [51],
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the function we try to optimize in Problem 2 is a totally monotone function. Let x1, . . . , xn be

all the breakpoints of all the functions ordered from small to largest. Consider the matrix M ,

such that Mi,j = g(xi, xj), where xi is the ith breakpoint of g, then M is a totally monotone

matrix. It is useful for us to consider the index-based version of the breakpoint instead of the

breakpoint itself.

For a totally monotone matrix M , the SMAWK algorithm finds the row minima of each

row of M in O(n) evaluations of entries in M [1]. Each evaluation takes O(k log k) time.

Therefore, we obtain a O(nk log k) time algorithm.

On the other hand, the median encoding method performs k evaluations. If the same

search type is performed, the median encoding method will exhibit a time complexity of

O(k2 log k). But each search does not have to be independent. In practice, by arranging

the order of evaluation with better data structure, O(n log n) time complexity is achieved.

Drawing inspiration from this, the subsequent section presents an accelerated algorithm

that marginally increases the evaluation count while enhancing individual evaluation speed.

5.5.2 Slowing down to speed up

Recall that we are interested in finding the x and y such that g(x, y) is minimized, where

x, y is from a lattice grid and g(x, y) evaluated on the grid results in a totally monotone matrix.

We can make the evaluation dependent on predecessors through an alternative divide-and-

conquer algorithm other than the SMAWK. This new divide-and-conquer algorithm will take

a total of O(n log n) evaluations of the matrix, so a slow down in the number of evaluations.

However, a total speed up is obtained by speeding up each individual evaluation.

We outline the idea as follows: for a fixed i, let j be the value that minimizes Mi,j .

The optimum of the entire matrix must be either Mi,j , or of the form Mi′,j′ where i′ < i

and j′ ≤ j, or i′ > i and j′ ≥ j [51]. Hence, this gives us a natural divide-and-conquer

algorithm: find the row minimum of the center row and recursively solve the new problem on

the two smaller matrices. Observe the total number of evaluations of a n ×m matrix would

be T (n,m) = T (n/2,m1)+T (n/2,m2)+O(m) = O(m log n). Since, in our case, n = m, we
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get an algorithm taking O(n log n) evaluations.

Naively, this would give us an O(nk log n log k) time algorithm, which is even worse than

the SMAWK algorithm. The realization is this form actually helps us reason about the result

in the following sense. Instead of the number of evaluations, we can show that the running

time follows a similar recursion, and thus we obtain a O(n log n+k log k log n) time algorithm.

Naturally, we have to describe how to solve the two parts of the problem: Finding the

row minimum and divide-and-conquer.

5.5.3 Find the minimum over a single row

Finding a minimum of a given row in the matrix M , is equivalent to answer the following

question: Given functions f1, . . . , fk, and an fixed index a, how to find minb
∑k

j=1 min(fj(xa), fj(xb))

quickly?

For a fixed a, define the active set at index b to be the set of function indices j, such

that fj(xa) > fj(xb). Let A1, . . . , An be the sequence of active sets at 1, . . . , n, respectively.

Each function fj moves out of the active set only once. That is, for an index j ∈ [k], there

exists an index qj , such that for each i ≥ qj , we have j ∈ Ai, and j ̸∈ Ai otherwise.

Define fA =
∑

i∈A fi. If we can quickly evaluate fA, and update A, then we can quickly

evaluate g. Indeed, in order to evaluate g(xa, xb), the idea is to break it down into evaluating

fĀ(xa) + fA(xb) where A is the active set at index b.

It’s not hard to describe a data structure that maintains the value of fA(xa) under updates

of A and a; this is precisely the evaluation data structure in Theorem 5.5.4. However, we

must also decide which function has to be added or removed from A. This is done through

a useful transformation. Let f be an unimodal function with the local minimum at c, define

f† : R → R to be f†(x) = max{x′ | f(x′) ≤ f(x)} if x ∈ (−∞, c] and −∞ otherwise.

Intuitively, this means for any x ≤ c, if we have x ≤ x′ ≤ f†(x), then we know f(x′) ≤ f(x).

Namely, one can quickly observe if f(x) ≤ f(x′) by checking if x′ ≤ f†(x). See Figure 5.1.

If f is a piecewise-linear unimodal function of n breakpoints, then f† is a piecewise-linear

decreasing function in (−∞, c] of n breakpoints and can be computed from f in O(n) time.
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We can find the value of f†(x) in O(log n) time. Since f† can be computed in linear time

when f is created, we always assume that f† is computed when we use f .

Knowing f†i (xa) for each i, then we know precisely when i moves out of the active set:

i moves out of the active set when xb > f†i (xa) for the first time. See Algorithm 5 for

implementation of ROWMINIMA.

Theorem 5.5.2. If the input is k functions with a total of n breakpoints, row minima can be

found in O(n+ k log k) time.

Proof. We analyze the running time of ROWMINIMA. Ordering the functions by evaluation of

f†j (xa) for each j, which takes
∑k

j=1 nj log nj = O(k log n
k ) time, where nj is the number of

breakpoints of fj . Sorting the k functions by their † value takes O(k log k) time. The linear

scan takes O(n) time. Hence, going through each breakpoint takes O(n) time. Note k =

O(n), hence O(k log n
k ) = O(n). The total running time of RowMinima is O(n+ k log k).
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Figure 5.1 – Intuition of the † transform.

5.5.4 Divide-and-conquer

In the divide-and-conquer step, we split the problem into evaluations over 2 smaller

submatrices, which are almost disjoint.

Observe that once we are searching for the optimum in a submatrix where the row index

ranges from amin to amax and the column index ranges from bmin to bmax. All the values of
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the functions outside this range are irrelevant. Hence we can safely assume we process all

the functions passed into the recursive call by removing the breakpoints outside the ranges.

In practice, this is not explicit but done through implicit bookkeeping. This allows us to bound

the running time related to traversing the functions byO((bmax−bmin)+(amax−amin)) inside

each recursive call. See the recursive algorithm OPTIMUM in Algorithm 5.

The main observation is the sequence of functions is also split into two subproblems.

Let Ma,b be the optimum value on the row a. We consider the functions in two classes,

L = {i|fi(xa) ≤ fi(xb)}, and R = {i|fi(xa) > fi(xb)}. The algorithm would be correct

if we pass down all functions. However, when we pass the function to the left recursion,

during the evaluating values Ma′,b′ where a′ ∈ [amin, a] and b′ ∈ [bmin, b], the contribu-

tion of the function fi where i ∈ R is apparent: min(fi(xa′), fi(xb′)) = fi(xb′). Namely,∑
i∈R min(fi(xa′), fi(xb′)) =

∑
i∈R fi(xb′). A similar result holds for right recursion. There-

fore, there is no need to pass down all the functions; instead, we sum the functions and pass

them down. This ensures the sequence of functions passed down is partitioned in two, each

with one more function appended.
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<latexit sha1_base64="fWU8koobvBf6acpZImatk/x9tck=">AAAB7nicbVDJSgNBEK0xLjFuUfHkZTAInsKM4HIMePEYwSyQDKGnU5M06e4ZunuEMOQjvHhQxKu/4S94EDz5KdpZDpr4oODxXhVV9cKEM20879NZyi2vrK7l1wsbm1vbO8XdvbqOU0WxRmMeq2ZINHImsWaY4dhMFBIRcmyEg6ux37hDpVksb80wwUCQnmQRo8RYqUE6mWBy1CmWvLI3gbtI/BkpVXIf328HX1jtFN/b3ZimAqWhnGjd8r3EBBlRhlGOo0I71ZgQOiA9bFkqiUAdZJNzR+6xVbpuFCtb0rgT9fdERoTWQxHaTkFMX897Y/E/r5Wa6DLImExSg5JOF0Upd03sjn93u0whNXxoCaGK2Vtd2ieKUGMTKtgQ/PmXF0n9tOyfl89ubBoeTJGHQziCE/DhAipwDVWoAYUB3MMjPDmJ8+A8Oy/T1iVnNrMPf+C8/gA9cJPi</latexit>amin

<latexit sha1_base64="c/VDdnLJ6nar8S/a13HjXyhqbJ0=">AAAB7nicbVDJSgNBEK1JXGLcouLJS2MQPIUZweUY8OIxglkgCaGm05M06ekZunvEMOQjvHhQxKu/4S94EDz5KdpZDpr4oODxXhVV9fxYcG1c99PJZJeWV1Zza/n1jc2t7cLObk1HiaKsSiMRqYaPmgkuWdVwI1gjVgxDX7C6P7gc+/VbpjSP5I0ZxqwdYk/ygFM0VqpjJw3xbtQpFN2SOwFZJN6MFMvZj++3/S9W6RTeW92IJiGThgrUuum5sWmnqAyngo3yrUSzGOkAe6xpqcSQ6XY6OXdEjqzSJUGkbElDJurviRRDrYehbztDNH09743F/7xmYoKLdsplnBgm6XRRkAhiIjL+nXS5YtSIoSVIFbe3EtpHhdTYhPI2BG/+5UVSOyl5Z6XTa5uGC1Pk4AAO4Rg8OIcyXEEFqkBhAPfwCE9O7Dw4z87LtDXjzGb24A+c1x9AcpPk</latexit>amax
<latexit sha1_base64="c/VDdnLJ6nar8S/a13HjXyhqbJ0=">AAAB7nicbVDJSgNBEK1JXGLcouLJS2MQPIUZweUY8OIxglkgCaGm05M06ekZunvEMOQjvHhQxKu/4S94EDz5KdpZDpr4oODxXhVV9fxYcG1c99PJZJeWV1Zza/n1jc2t7cLObk1HiaKsSiMRqYaPmgkuWdVwI1gjVgxDX7C6P7gc+/VbpjSP5I0ZxqwdYk/ygFM0VqpjJw3xbtQpFN2SOwFZJN6MFMvZj++3/S9W6RTeW92IJiGThgrUuum5sWmnqAyngo3yrUSzGOkAe6xpqcSQ6XY6OXdEjqzSJUGkbElDJurviRRDrYehbztDNH09743F/7xmYoKLdsplnBgm6XRRkAhiIjL+nXS5YtSIoSVIFbe3EtpHhdTYhPI2BG/+5UVSOyl5Z6XTa5uGC1Pk4AAO4Rg8OIcyXEEFqkBhAPfwCE9O7Dw4z87LtDXjzGb24A+c1x9AcpPk</latexit>amax

<latexit sha1_base64="7S0YzzEZoV9EkYQOkk6W+ybRGAQ=">AAAB7nicbZDJSgNBEIZrjEuMW1Q8eRkMgqcwI7gcA148RjALJEPo6dQkTbp7hu4eIQx5CC8eFPHqa/gKHgRPPop2loMm/tDw8f9VdFWFCWfaeN6ns5RbXlldy68XNja3tneKu3t1HaeKYo3GPFbNkGjkTGLNMMOxmSgkIuTYCAdX47xxh0qzWN6aYYKBID3JIkaJsVYj7GSCyVGnWPLK3kTuIvgzKFVyH99vB19Y7RTf292YpgKloZxo3fK9xAQZUYZRjqNCO9WYEDogPWxZlESgDrLJuCP32DpdN4qVfdK4E/d3R0aE1kMR2kpBTF/PZ2Pzv6yVmugyyJhMUoOSTj+KUu6a2B3v7naZQmr40AKhitlZXdonilBjL1SwR/DnV16E+mnZPy+f3filigdT5eEQjuAEfLiAClxDFWpAYQD38AhPTuI8OM/Oy7R0yZn17MMfOa8/P0qT5A==</latexit>

bmin

<latexit sha1_base64="7S0YzzEZoV9EkYQOkk6W+ybRGAQ=">AAAB7nicbZDJSgNBEIZrjEuMW1Q8eRkMgqcwI7gcA148RjALJEPo6dQkTbp7hu4eIQx5CC8eFPHqa/gKHgRPPop2loMm/tDw8f9VdFWFCWfaeN6ns5RbXlldy68XNja3tneKu3t1HaeKYo3GPFbNkGjkTGLNMMOxmSgkIuTYCAdX47xxh0qzWN6aYYKBID3JIkaJsVYj7GSCyVGnWPLK3kTuIvgzKFVyH99vB19Y7RTf292YpgKloZxo3fK9xAQZUYZRjqNCO9WYEDogPWxZlESgDrLJuCP32DpdN4qVfdK4E/d3R0aE1kMR2kpBTF/PZ2Pzv6yVmugyyJhMUoOSTj+KUu6a2B3v7naZQmr40AKhitlZXdonilBjL1SwR/DnV16E+mnZPy+f3filigdT5eEQjuAEfLiAClxDFWpAYQD38AhPTuI8OM/Oy7R0yZn17MMfOa8/P0qT5A==</latexit>

bmin

<latexit sha1_base64="qB6kKDX2JH3pDghOE74gDgzQgnw=">AAAB7nicbZDJSgNBEIZrEpcYt6h48jIYBE9hRnA5Brx4jGAWSELo6dQkTbp7hu4eMQx5CC8eFPHqa/gKHgRPPop2loMm/tDw8f9VdFUFMWfaeN6nk8kuLa+s5tby6xubW9uFnd2ajhJFsUojHqlGQDRyJrFqmOHYiBUSEXCsB4PLcV6/RaVZJG/MMMa2ID3JQkaJsVY96KSC3I06haJX8iZyF8GfQbGc/fh+2//CSqfw3upGNBEoDeVE66bvxaadEmUY5TjKtxKNMaED0sOmRUkE6nY6GXfkHlmn64aRsk8ad+L+7kiJ0HooAlspiOnr+Wxs/pc1ExNetFMm48SgpNOPwoS7JnLHu7tdppAaPrRAqGJ2Vpf2iSLU2Avl7RH8+ZUXoXZS8s9Kp9d+sezBVDk4gEM4Bh/OoQxXUIEqUBjAPTzCkxM7D86z8zItzTiznj34I+f1B0JMk+Y=</latexit>

bmax

<latexit sha1_base64="qB6kKDX2JH3pDghOE74gDgzQgnw=">AAAB7nicbZDJSgNBEIZrEpcYt6h48jIYBE9hRnA5Brx4jGAWSELo6dQkTbp7hu4eMQx5CC8eFPHqa/gKHgRPPop2loMm/tDw8f9VdFUFMWfaeN6nk8kuLa+s5tby6xubW9uFnd2ajhJFsUojHqlGQDRyJrFqmOHYiBUSEXCsB4PLcV6/RaVZJG/MMMa2ID3JQkaJsVY96KSC3I06haJX8iZyF8GfQbGc/fh+2//CSqfw3upGNBEoDeVE66bvxaadEmUY5TjKtxKNMaED0sOmRUkE6nY6GXfkHlmn64aRsk8ad+L+7kiJ0HooAlspiOnr+Wxs/pc1ExNetFMm48SgpNOPwoS7JnLHu7tdppAaPrRAqGJ2Vpf2iSLU2Avl7RH8+ZUXoXZS8s9Kp9d+sezBVDk4gEM4Bh/OoQxXUIEqUBjAPTzCkxM7D86z8zItzTiznj34I+f1B0JMk+Y=</latexit>

bmax

<latexit sha1_base64="0BC+6LFSIm9Z2wkHM3zQvtXlubk=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8YgeAozgsvNgAc9JmAWSIbQ06lJ2vQsdPcIccgTePGgiFcfwJNP4s2jb2JnOWjiDw0f/19FV5UXC660bX9ZmYXFpeWV7GpubX1jcyu/vVNTUSIZVlkkItnwqELBQ6xqrgU2Yok08ATWvf7lKK/foVQ8Cm/0IEY3oN2Q+5xRbawKbecLdtEei8yDM4XCxcf999X7Xlpu5z9bnYglAYaaCapU07Fj7aZUas4EDnOtRGFMWZ92sWkwpAEqNx0POiSHxukQP5LmhZqM3d8dKQ2UGgSeqQyo7qnZbGT+lzUT7Z+7KQ/jRGPIJh/5iSA6IqOtSYdLZFoMDFAmuZmVsB6VlGlzm5w5gjO78jzUjovOafGkYhdKNkyUhX04gCNw4AxKcA1lqAIDhAd4gmfr1nq0XqzXSWnGmvbswh9Zbz/lFJCr</latexit>a<latexit sha1_base64="0BC+6LFSIm9Z2wkHM3zQvtXlubk=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8YgeAozgsvNgAc9JmAWSIbQ06lJ2vQsdPcIccgTePGgiFcfwJNP4s2jb2JnOWjiDw0f/19FV5UXC660bX9ZmYXFpeWV7GpubX1jcyu/vVNTUSIZVlkkItnwqELBQ6xqrgU2Yok08ATWvf7lKK/foVQ8Cm/0IEY3oN2Q+5xRbawKbecLdtEei8yDM4XCxcf999X7Xlpu5z9bnYglAYaaCapU07Fj7aZUas4EDnOtRGFMWZ92sWkwpAEqNx0POiSHxukQP5LmhZqM3d8dKQ2UGgSeqQyo7qnZbGT+lzUT7Z+7KQ/jRGPIJh/5iSA6IqOtSYdLZFoMDFAmuZmVsB6VlGlzm5w5gjO78jzUjovOafGkYhdKNkyUhX04gCNw4AxKcA1lqAIDhAd4gmfr1nq0XqzXSWnGmvbswh9Zbz/lFJCr</latexit>a

<latexit sha1_base64="aq4TMjHSk+ST5L3+zrsck3SDE08=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8YgeAozgsvNgAc9JmAWSIbQ06lJ2vQsdPcIccgTePGgiFcfwJNP4s2jb2JnOWjiDw0f/19FV5UXC660bX9ZmYXFpeWV7GpubX1jcyu/vVNTUSIZVlkkItnwqELBQ6xqrgU2Yok08ATWvf7lKK/foVQ8Cm/0IEY3oN2Q+5xRbayK184X7KI9FpkHZwqFi4/776v3vbTczn+2OhFLAgw1E1SppmPH2k2p1JwJHOZaicKYsj7tYtNgSANUbjoedEgOjdMhfiTNCzUZu787UhooNQg8UxlQ3VOz2cj8L2sm2j93Ux7GicaQTT7yE0F0REZbkw6XyLQYGKBMcjMrYT0qKdPmNjlzBGd25XmoHRed0+JJxSmUbJgoC/twAEfgwBmU4BrKUAUGCA/wBM/WrfVovVivk9KMNe3ZhT+y3n4A5uiQrQ==</latexit>

b
<latexit sha1_base64="aq4TMjHSk+ST5L3+zrsck3SDE08=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8YgeAozgsvNgAc9JmAWSIbQ06lJ2vQsdPcIccgTePGgiFcfwJNP4s2jb2JnOWjiDw0f/19FV5UXC660bX9ZmYXFpeWV7GpubX1jcyu/vVNTUSIZVlkkItnwqELBQ6xqrgU2Yok08ATWvf7lKK/foVQ8Cm/0IEY3oN2Q+5xRbayK184X7KI9FpkHZwqFi4/776v3vbTczn+2OhFLAgw1E1SppmPH2k2p1JwJHOZaicKYsj7tYtNgSANUbjoedEgOjdMhfiTNCzUZu787UhooNQg8UxlQ3VOz2cj8L2sm2j93Ux7GicaQTT7yE0F0REZbkw6XyLQYGKBMcjMrYT0qKdPmNjlzBGd25XmoHRed0+JJxSmUbJgoC/twAEfgwBmU4BrKUAUGCA/wBM/WrfVovVivk9KMNe3ZhT+y3n4A5uiQrQ==</latexit>

b

<latexit sha1_base64="I19gC5Z37BOtz25ulxUoQOh/Y9c=">AAAB/3icbVDJSgNBEK1xjXGLCl68NAbBU5gJuBwDuXgRopgFkhB6Oj1Jk16G7h4lxBz8FS8eFPHqb3jzb+wkc9DEBwWP96qoqhfGnBnr+9/e0vLK6tp6ZiO7ubW9s5vb268ZlWhCq0RxpRshNpQzSauWWU4bsaZYhJzWw0F54tfvqTZMyTs7jGlb4J5kESPYOqmTO7xVD+iaSSYwKisRJzY18n7BnwItkiAleUhR6eS+Wl1FEkGlJRwb0wz82LZHWFtGOB1nW4mhMSYD3KNNRyUW1LRH0/vH6MQpXRQp7UpaNFV/T4ywMGYoQtcpsO2beW8i/uc1ExtdtkdMureoJLNFUcKRVWgSBuoyTYnlQ0cw0czdikgfa0ysiyzrQgjmX14ktWIhOC+c3RTzJT+NIwNHcAynEMAFlOAKKlAFAo/wDK/w5j15L9679zFrXfLSmQP4A+/zB73qleM=</latexit>

Row Minima Computation
<latexit sha1_base64="I19gC5Z37BOtz25ulxUoQOh/Y9c=">AAAB/3icbVDJSgNBEK1xjXGLCl68NAbBU5gJuBwDuXgRopgFkhB6Oj1Jk16G7h4lxBz8FS8eFPHqb3jzb+wkc9DEBwWP96qoqhfGnBnr+9/e0vLK6tp6ZiO7ubW9s5vb268ZlWhCq0RxpRshNpQzSauWWU4bsaZYhJzWw0F54tfvqTZMyTs7jGlb4J5kESPYOqmTO7xVD+iaSSYwKisRJzY18n7BnwItkiAleUhR6eS+Wl1FEkGlJRwb0wz82LZHWFtGOB1nW4mhMSYD3KNNRyUW1LRH0/vH6MQpXRQp7UpaNFV/T4ywMGYoQtcpsO2beW8i/uc1ExtdtkdMureoJLNFUcKRVWgSBuoyTYnlQ0cw0czdikgfa0ysiyzrQgjmX14ktWIhOC+c3RTzJT+NIwNHcAynEMAFlOAKKlAFAo/wDK/w5j15L9679zFrXfLSmQP4A+/zB73qleM=</latexit>

Row Minima Computation

<latexit sha1_base64="gD93dE1/yJHp2LF/CvN0tIINXtc=">AAAB9XicbVC7SgNBFL3rM8ZX1NJmMAhWYTfgowzYWFhEMA9I1jA7uZsMmZ1dZmaVEPIfNhaK2Povdv6Nk80Wmnhg4HDOucy9J0gE18Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6Hrmtx5RaR7LezNO0I/oQPKQM2qs9HCLoSEKWZoleqWyW3EzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcx/oQqw5nAabGbakwoG9EBdiyVNELtT7Ktp+TUKn0Sxso+aUim/p6Y0EjrcRTYZETNUC96M/E/r5Oa8MqfcJmkBiWbfxSmgpiYzCogfW4vNmJsCWWK210JG1JFmbFFFW0J3uLJy6RZrXgXlfO7arnm5nUU4BhO4Aw8uIQa3EAdGsBAwTO8wpvz5Lw4787HPLri5DNH8AfO5w+N25KB</latexit>

Left recursion
<latexit sha1_base64="gD93dE1/yJHp2LF/CvN0tIINXtc=">AAAB9XicbVC7SgNBFL3rM8ZX1NJmMAhWYTfgowzYWFhEMA9I1jA7uZsMmZ1dZmaVEPIfNhaK2Povdv6Nk80Wmnhg4HDOucy9J0gE18Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6Hrmtx5RaR7LezNO0I/oQPKQM2qs9HCLoSEKWZoleqWyW3EzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcx/oQqw5nAabGbakwoG9EBdiyVNELtT7Ktp+TUKn0Sxso+aUim/p6Y0EjrcRTYZETNUC96M/E/r5Oa8MqfcJmkBiWbfxSmgpiYzCogfW4vNmJsCWWK210JG1JFmbFFFW0J3uLJy6RZrXgXlfO7arnm5nUU4BhO4Aw8uIQa3EAdGsBAwTO8wpvz5Lw4787HPLri5DNH8AfO5w+N25KB</latexit>

Left recursion
<latexit sha1_base64="LNkBHFZ2PpbviNqyNMJ8k3rs53E=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiQFH8uCG5dV7APaUCbTSTt0MgnzEGrol7hxoYhbP8Wdf+M0zUJbDwwczjmXufeEKWdKe963s7a+sbm1Xdop7+7tH1Tcw6O2SowktEUSnshuiBXlTNCWZprTbiopjkNOO+HkZu53HqlULBEPeprSIMYjwSJGsLbSwK3cs9FYI0mJyUMDt+rVvBxolfgFqUKB5sD96g8TYmIqNOFYqZ7vpTrIsNSMcDor942iKSYTPKI9SwWOqQqyfPEZOrPKEEWJtE9olKu/JzIcKzWNQ5uMsR6rZW8u/uf1jI6ug4yJ1GgqyOKjyHCkEzRvAQ2ZvVjzqSWYSGZ3RWSMJSbadlW2JfjLJ6+Sdr3mX9Yu7urVhlfUUYITOIVz8OEKGnALTWgBAQPP8ApvzpPz4rw7H4vomlPMHMMfOJ8/3wyTLw==</latexit>

Right recursion
<latexit sha1_base64="LNkBHFZ2PpbviNqyNMJ8k3rs53E=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiQFH8uCG5dV7APaUCbTSTt0MgnzEGrol7hxoYhbP8Wdf+M0zUJbDwwczjmXufeEKWdKe963s7a+sbm1Xdop7+7tH1Tcw6O2SowktEUSnshuiBXlTNCWZprTbiopjkNOO+HkZu53HqlULBEPeprSIMYjwSJGsLbSwK3cs9FYI0mJyUMDt+rVvBxolfgFqUKB5sD96g8TYmIqNOFYqZ7vpTrIsNSMcDor942iKSYTPKI9SwWOqQqyfPEZOrPKEEWJtE9olKu/JzIcKzWNQ5uMsR6rZW8u/uf1jI6ug4yJ1GgqyOKjyHCkEzRvAQ2ZvVjzqSWYSGZ3RWSMJSbadlW2JfjLJ6+Sdr3mX9Yu7urVhlfUUYITOIVz8OEKGnALTWgBAQPP8ApvzpPz4rw7H4vomlPMHMMfOJ8/3wyTLw==</latexit>

Right recursion

Figure 5.2 – A demonstration of one step of the recursion algorithm.
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Algorithm 5 Algorithm for finding unimodal 2 medians. For each one of the proce-
dures, the input f is a sequence of piecewise-linear unimodal functions.

1: function UNIMODAL2MEDIAN(f )
2: Compute the global list of breakpoints x1, . . . , xn
3: Compute the † transform for each function
4: return OPTIMUM(1, n, 1, n, f )
5: end function
6:
7: function OPTIMUM(amin, amax, bmin, bmax, f )
8: a← (amax + amin)/2
9: v, b← ROWMINIMA(a, bmin, bmax, f)

10: if amin = amax then
11: return v
12: end if
13: L← {i|fi(xa) ≤ fi(xb)}
14: R← {i|fi(xa) > fi(xb)}
15: fL ← {fi|i ∈ L} ∪ (

∑
i∈R fi)

16: fR ← {fi|i ∈ R} ∪ (
∑

i∈L fi)
17: vL ← OPTIMUM(amin, a, bmin, b, f

L)
18: vR ← OPTIMUM(a, amax, b, bmax, f

R)
19: return min(vL, vR, v)
20: end function
21:
22: function ROWMINIMA(a, bmin, bmax, f )
23: f1, . . . , fk are renumbered such that f †j (xa) ≤ f

†
j+1(xa)

24: p← 1
25: A← {1, . . . , k}
26: for i from bmin to bmax do
27: while f †p(xa) < xi do
28: A← A \ {p}
29: p← p+ 1
30: end while
31: v ← fĀ(xa) + fA(xi)
32: if v is smallest seen value then
33: b← i
34: end if
35: end for
36: return b
37: end function
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Theorem 5.5.3. Finding the optimum of Problem 2 for the input of k function of a total n

breakpoints takes O((n+ k log k) log n) time.

Proof. Define T (n,m, k) to be the running time of the procedure OPTIMUM(amin, amax, bmin, bmax, f)

when amax − amin + 1 = n, bmax − bmin + 1 = m and f is a sequence of k input functions.

Inside each recursive step, we spend O(n+m+k log k) time to find the row minima using

Theorem 5.5.2. Additionally, we spend O(m + n + k) time in total to partition the functions

into left and right parts. Assume k1 and k2 are the number of functions in the left and right

pieces of the recursion, then k1+k2 = k+2. Also, the number of breakpoints on the left and

right is at most m+2, as we duplicate at most 1 more breakpoints into the left and the right.

Hence, the running time satisfies the following recursive relation.

T (n,m, k) = max
m1+m2=m+2
k1+k2=k+2

T (n/2,m1, k1) + T (n/2,m2, k2)

+O(m+ n+ k log k).

Which solves to T (n,m, k) = O((m+ n+ k log k) log n). Since m = n in the top level of

the recursion, we obtain a O((n+ k log k) log n) running time algorithm.

Some additional optimization can be done that does not change the asymptotic worst-

case running time but improves the running time in practice. For example, in the recursion,

if at some point, the only function remaining is the function that came from a sum of original

functions, then the recursion can stop earlier.

5.5.5 Data structure for piecewise-linear functions

We describe data structure over a set of piecewise-linear functions, and it can return the

sum quickly. This data structure is required to implement ROWMINIMA, where two dynamic

sums of piecewise-linear functions need to be maintained, and also OPTIMUM, where the

sum of piecewise-linear function has to be computed and passed down.
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Let f1, . . . , fk be piecewise-linear functions with a total of n distinct breakpoints. Al-

though our algorithms can handle the case when breakpoints are not distinct, describing

them does not provide additional insights.

Let fA =
∑

i∈A fi. Let a global set of points x1, . . . , xn contain all the breakpoints of each

fi. We want to maintain a data structure that maintains a set A and an index a, allowing fast

evaluation of fA(xa).

Formally, the data structure should have the following operations.

1. INITIALIZE(f1, . . . , fk): Process the functions f1, . . . , fk, and return a data structure

for f∅ and a = −1.

2. ADD(i): Update A into A ∪ {i}.

3. REMOVE(i): Update A into A \ {i}.

4. EVALUATE(): Return fA(xa).

5. NEXT(): Update a to a+ 1.

Such data structure is standard, but we sketch it here for completeness.

Theorem 5.5.4. Assuming all the breakpoints have been sorted, the data structure takes

O(n) time to construct, and any sequence of O(n) queries takes O(n) time.

Proof. Initialization takes O(n) time by merging the breakpoints of the functions.

Let sA(x) be the right slope of fA at position x. The data structure will maintain fA(xa)

and sA(xa) at all times.

EVALUATE() takes O(1) time, since it just output fA(xa) for the current value a.

ADD(i). There is no change in a but in A. Let’s say we inserted i into A, and then

we need to update the current information for fA(xa), which is precisely adding fi(xa) and

updating sA(xa) by adding si(xa). It is similar to deletion. Hence can be done in O(1) time.

NEXT(). No change in A, but a change in a. The new fA(xa+1) = fA(xa) + (xa+1 −

xa)sA(xa). The slope of sA(xa+1) either stays the same or changes if it is the breakpoint of

a function indexed by A.
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Since we process the breakpoints in order, there is no need to binary search, as we can

always maintain a pointer to the largest breakpoint of fi no larger than xa for each i, so the

total running time is O(n).

Theorem 5.5.5. Problem 2 can be solved in O((n+ k log k) log n) time.

Theorem 5.5.6. The median split problem on k categories and n data points can be solved

in O((n+ k log k) log n) time.

5.6 Experiments

Our result is a theoretical exploration on the asymptotic complexity of solving the me-

dian split problem. However, we still experimented to see how it work in practice. We im-

plemented the algorithm in C++ and ran it on an 8 Core AMD Ryzen 7 5800H with 16GB of

ram. The input of each instance of the experiments are k sets, each contains 100 uniformly

random integers, therefore n = 100k. n ranges through 106 to 3× 107. We recorded the run-

ning time in the number of milliseconds. The result can be seen in Figure 5.3. Surprisingly,

the time it takes looks linear. This can be partially explained by having optimizations that

stop the recursion execution earlier.
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Figure 5.3 – Running time in ms vs number of data points.



Chapter 6

Conclusions and Perspectives

In this chapter, we conclude our exploration of improved and explainable decision tree-

based models by reflecting on our key contributions, their implications, and the potential

future directions for extending this work. In this work we have addressed complex challenges

in model interpretability, particularly in handling categorical features with both convex and

non-convex splitting criteria. Beyond summarizing our findings, this chapter offers reflections

on the impact of our work, considerations of what might have been done differently, and

thoughts on the path forward.

6.1 Summary of Contributions

We have introduced three key innovations that advance the field of decision tree learning

and model interpretability:

— Linear TreeSHAP: A novel algorithm that computes Shapley values with linear time

complexity, significantly improving the feasibility of interpreting large decision tree

models, as compared to pre-existing work.

— BSplitZ: An innovative approach to integrating categorical features into decision tree

models, utilizing the convex Zonotope framework to enhance both performance and

79



80 CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

interpretability, especially in multiclass classification tasks.

— Binary Splitting with MAE: A novel approach to handling the lack of optimal nu-

merical encodings for categorical features, addressing a longstanding challenge in

decision tree research by providing a new perspective on splitting criteria.

6.2 Reflections on Real-World Applicability and Impact

While this thesis primarily focuses on theoretical advancements and algorithmic devel-

opments, the potential real-world applications of our contributions are noteworthy. Linear

TreeSHAP, for instance, holds promise for diverse domains where interpretability is crucial.

Although direct application to fields like healthcare and marketing was beyond the scope of

this research, the algorithm’s efficiency and scalability make it a strong candidate for such

applications. Providing transparent feature attributions could support informed decision-

making in diagnosing medical conditions or understanding customer preferences.

BSplitZ, with its capacity to handle complex categorical data in multiclass classification

tasks, offers a versatile tool for practical applications in domains such as customer segmen-

tation, text classification, and beyond. Its ability to improve decision tree splitting speed and

accuracy makes it a valuable addition to the machine learning toolkit.

The work on binary splitting with MAE introduces a new perspective on handling cate-

gorical data in decision trees. While primarily theoretical, it lays the groundwork for further

exploration into how categorical features can be effectively integrated into machine learning

models, potentially influencing future research and applications.

Beyond the production of new methodologies for decision tree learning and interpreta-

tion, in this manuscript we have attained new perspectives, that highlight several key poten-

tial lessons and important considerations for the research community, notably:

— Balancing Complexity and Interpretability: One of the central challenges was

achieving a balance between computational efficiency and model interpretability.

The development of Linear TreeSHAP, for instance, required careful consideration
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to ensure that the algorithm remained both practical for real-world applications and

capable of providing meaningful insights.

— Handling Categorical Data: The process of developing BSplitZ and the binary split-

ting with MAE algorithm underscored the complexities inherent in working with cat-

egorical features in decision trees. This experience emphasized the importance of

exploring innovative frameworks like the convex Zonotope to address these chal-

lenges effectively.

6.3 Alternatives, Future Directions and Perspectives

While the research has achieved its primary objectives, there are areas where different

approaches could have been explored:

— Extended Empirical Validation: Conducting more extensive empirical validation

across various domains could have provided a more robust demonstration of the

practical applicability of the proposed algorithms. Deploying the algorithms in real-

world settings would have offered deeper insights into their performance and impact.

— Exploring Alternative Frameworks: In developing BSplitZ, investigating alterna-

tive mathematical frameworks beyond the convex Zonotope could have yielded ad-

ditional insights into handling categorical data. This might have uncovered other

efficient methods for feature integration.

— Incorporating User Feedback: Engaging with end-users and stakeholders during

the development process could have provided valuable feedback, especially for al-

gorithms like Linear TreeSHAP, where interpretability plays a pivotal role. Such in-

teraction might have influenced the design to better align with user needs and pref-

erences.

Building on the foundations laid in this thesis, several avenues for future research are

evident:

— Expanding Linear TreeSHAP: Future work could explore extending Linear Tree-
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SHAP to other complex models, such as neural networks, to enhance interpretability

across a wider range of machine learning models.

— Advanced Handling of High-Cardinality Features: Further research is needed

to enhance the handling of high-cardinality categorical features within the BSplitZ

framework. Incorporating statistical bound techniques could automate hyperparam-

eter tuning, potentially improving performance.

— MAE in Ensemble Methods: Extending the application of MAE-based binary split-

ting to ensemble methods like gradient boosting machines could provide insights into

its impact on model performance and interpretability in more complex architectures.

— Ethical AI: Investigating the ethical implications of model interpretability, particularly

in ensuring fairness and mitigating bias in decision tree-based models, remains a

crucial area for future exploration. Emphasizing how interpretability can contribute

to more equitable AI systems is especially relevant.

6.4 Final Word

In conclusion, this work set out to deepen understanding of decision tree models and

further, uncover insights into the complexities of machine learning and the importance of in-

terpretability and ethical considerations in AI, and thus contribute to the ongoing dialogue in

the field of explainable machine learning. Concretely, this manuscript offered novel solutions

and perspectives, which give way to new paths of further exploration and innovation. These

paths are filled with opportunities to enhance our understanding and application of machine

learning models.
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Titre : Améliorer l’apprentissage des arbres décisionnels

Mots clés : Arbres de décision, Interprétabilité, Données catégorielles, Machine learning

Résumé : La modélisation par arbres de décision
est reconnue pour son efficacité et sa lisibilité, no-
tamment pour les données structurées. Cette thèse
s’attaque à deux défis majeurs : l’interprétabilité des
arbres profonds et la gestion des variables catégo-
rielles. Nous présentons l’algorithme Linear Tree-
Shap, qui facilite l’explication du processus décision-
nel en attribuant des scores d’importance à chaque
nœud et variable. Parallèlement, nous proposons un
cadre méthodologique pour traiter directement les va-
riables catégorielles, améliorant à la fois la précision

et la robustesse du modèle. Notre approche inclut la
méthode stochastique BSplitZ, conçue pour simplifier
la répartition d’un grand nombre de catégories, et ex-
plore l’emploi du critère Mean Absolute Error (MAE).
Nous démontrons notamment l’inexistence d’un en-
codage optimal pour le MAE et résolvons un pro-
blème d’optimisation (le coût unimodal 2-median) es-
sentiel aux opérations de scission. Ces travaux contri-
buent à la conception de modèles d’arbres de déci-
sion plus robustes et plus explicables, ouvrant de nou-
velles perspectives pour l’apprentissage automatique.

Title : Improving Decision Tree Learning

Keywords : Decision trees, Interpretability, Categorical data, Machine learning

Abstract : Decision tree models are widely recogni-
zed for their efficiency and interpretability, particularly
when working with structured data. This thesis ad-
dresses two main challenges: improving the interpre-
tability of deep tree-based models and handling cate-
gorical variables. We introduce the Linear TreeShap
algorithm, which illuminates the model’s decision pro-
cess by assigning importance scores to each node
and feature. In parallel, we propose a methodological
framework enabling decision trees to split directly on
categorical variables, enhancing both accuracy and

robustness. Our approach includes the stochastic BS-
plitZ method, designed to efficiently handle large sets
of categories, and provides a thorough investigation of
the Mean Absolute Error (MAE) criterion. In particular,
we prove that no optimal numerical encoding exists
under MAE and solve a related optimization problem
(the unimodal cost 2-median) central to tree splitting.
Our contributions advance the theoretical foundations
and real-world applicability of decision tree models,
paving the way for more robust and interpretable so-
lutions in machine learning.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Challenges
	Research Challenge 1: Efficient computing of decision tree Shapley value
	Research Challenge 2: Efficient Splitting categorical features with convex splitting criteria
	Research Challenge 3: Efficient Splitting categorical features with non-convex splitting criteria MAE

	Contributions
	Linear Tree Shap: A Path to Efficiency and Transparency
	Bridging the Gap in Binary Class and multi-class Classification for Categorical Feature Splitting: The BSplitZ Method
	Unveiling the Mystery of Splitting Categorical Features with Mean Absolute Error (MAE) Criteria

	Thesis Outline
	Publications


	Background and Related Work
	Related Work on Linear Complexity Algorithms for TreeSHAP
	Shapley Values and Their Role in Interpretability
	Related Work on Optimal Decision Trees
	Importance of Shapley Values in Decision Trees
	Linear TreeSHAP: Achieving Linear Computational Complexity
	The Evolution of TreeSHAP Algorithms
	Sampling-Based Strategies: Balancing Speed and Precision
	Interpretable Decision Trees with Linear Complexity

	Related Work on Splitting Categorical Features in Multi-class Classification Tasks
	Traditional Decision Tree Algorithms
	Incorporating Statistical Tests in Splitting
	Optimal Categorical Feature Splitting
	Unified Framework for Multi-class Classification
	The BSplitZ Method: Leveraging Convex Zonotopes for Categorical Feature Splitting
	Vertex Enumeration of Zonotopes and its Role in BSplitZ
	Summary

	Related Work on Splitting Categorical Features with the MAE Task
	Binary Splitting Challenges
	Encoding Categorical Data
	Comparison with Other Splitting Criteria
	Median-Based Heuristic Encoding
	Ongoing Research and Advancements
	Summary


	Linear TreeShap
	Introduction
	Contrast with previous result

	Methodology
	Notation & Background
	Some special functions and their properties
	Summary polynomials and their relation to Shapley value
	Computations
	Linear TreeSHAP and complexity analysis

	Experiments

	Split categorical feature with Multi-class
	Introduction
	Methodology
	Preliminaries
	Parameterizing Impurity Maximization
	Generalize the state space to both classification and regression splitting criteria
	Constructing the Domain of Interest
	Zonotopes
	Zonotope Vertex Enumeration in Dimension Two
	Zonotope Vertex Enumeration in High Dimensions

	Experimental Evaluation
	Conclusions 

	Split categorical feature with MAE
	Introduction
	Preliminaries
	No unsupervised optimal numerical encoding for MAE
	Methodology
	Algorithm for Unimodal Cost 2-Median
	Properties of the problem
	Slowing down to speed up
	Find the minimum over a single row
	Divide-and-conquer
	Data structure for piecewise-linear functions

	Experiments

	Conclusions and Perspectives
	Summary of Contributions
	Reflections on Real-World Applicability and Impact
	Alternatives, Future Directions and Perspectives
	Final Word


