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Résumé : La gestion des données est souvent

réalisée par des objetsmathématiques tels que

lesmatrices et les tenseurs, qui sont la générali-

sation des matrices à plus de deux dimensions.

Certains domaines d’application nécessitent de

stocker trop d’éléments, créant des tenseurs

trop grands ; ce problème est connu sous le

nom de curse of dimensionality. Des méthodes

mathématiques telles que les approximations

de rang faible ont été développées pour ré-

duire la dimensionnalité de ces objets malgré

un coût très élevé en temps de calcul. De plus,

de nouvelles architectures informatiques telles

que les GPU nous permettent d’effectuer des

calculs rapidement, notamment lors de calculs

en faible précision. Combiner ces nouvelles ar-

chitectures avec l’approximation de rang faible

est une solution malgré la qualité des résultats

altérée par la faible précision. Cette thèse vise à

proposer des algorithmes d’approximation de

rang faible stables en faible précision tout en

conservant l’accélération inhérente au calcul en

faible précision, ce qui est réalisable grâce au

calcul en précision mixte.

Nous avons développé une méthode gé-

nérale d’approximation de tenseurs en préci-

sion mixte en calculant d’abord une approxi-

mation en faible précision et en l’affinant ité-

rativement avec une précision supérieure pour

maintenir la qualité du résultat. Sachant que

cette accélération provient principalement des

architectures GPU, plus précisément d’unités

de calcul spécialisées appelées tensor cores,

nous avons développé une méthode générale

d’approximation matricielle pour les architec-

tures GPU en précision mixte utilisant ces ten-

sor cores. Notre méthode maintient la qua-

lité du résultat, mais au prix d’une approxima-

tion de dimension supérieur à celle des appli-

cations standards. Pour compenser cet écart,

des méthodes de recompression de dimen-

sion existent pour différents formats de ten-

seurs. Notre contribution finale propose un

cadre pour l’analyse de stabilité des opérations

de réseaux tenseurs communs, qui nous guide

également vers une méthode de recompres-

sion stable.
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Abstract : Data management is often done by

mathematical objects such asmatrices and ten-

sors, which are the generalization of matrices

to more than two dimensions. Some applica-

tion domains require too many elements to

be stored, creating tensors too large ; this pro-

blem is known as the curse of dimensionality.

Mathematical methods such as low-rank ap-

proximations have been developed to reduce

the dimensionality of these objects despite a

very high cost in computation time. Moreover,

new computer architectures such as GPUs al-

low us to perform computations quickly, espe-

cially when computing with low precision. Com-

bining these new architectures with low-rank

approximation is a solution despite the quality

of the results being impaired by low precision.

This thesis aims to propose low-rank approxi-

mation algorithms that are stable in low pre-

cision while maintaining the speedup inherent

in low-precision computation, which is feasible

thanks to mixed-precision computation.

We have developed a general method for

mixed-precision tensor approximation by first

computing a low-precision approximation and

iteratively refining it with higher precision to

maintain the quality of the result. Knowing that

this speedup comes mainly from GPU architec-

tures, more precisely from specialized compu-

ting units called tensor cores, we have develo-

ped a general matrix approximation method

for mixed-precision GPU architectures using

these tensor cores. Our method maintains the

quality of the result but at the expense of a

higher-dimensional approximation than stan-

dard applications. To compensate for this gap,

dimension recompression methods exist for

different tensor formats. Our final contribution

proposes a framework for the stability analysis

of common tensor network operations, which

also guides us towards a stable recompression

method.

iii



iv



Remerciements

Acknowledgements

Tout d’abord je voudrais remericier mes encadrants, à commencer par mon directeur de thèse

Marc Baboulin qui m’a montré de bien des façons les responsabilités d’un doctorant et les charges

administratives afférentes. Je remercie également mon co-encadrant Oguz Kaya qui a été mon tuteur

principal durant ces trois années et qui m’a aidé à comprendre les enjeux de nos contributions visant

simultanément le domaine informatique et mathématique. Il a permis de m’ouvrir à de nouveaux

horizons en acceptant deme recruter pour cette thèse qu’il a financée et aussimedonner la possibilité

de créer mon avenir professionnel en me laissant faire de l’enseignement hors contrat. However, je

ne peux pas oublier de remercier mon dernier encadrant, Théo Mary qui malgré la distance a su me

guider avec brio sur les aspects mathématiques de mes travaux. Il m’a initié à de nouvelles méthodes

de calculs et d’enseignement. Mes encadrants m’on conforté dans l’idée que la recherche est aussi

une expérience sociale enme présentant à nombreux de leurs collègues et amis, tout aussi passionés

qu’eux. Mention spéciale à Simplice Donfack, un ingénieur de recherche du CEA qui nous a permis de

travailler sur les performances de nos codes avec le cluster JeanZay. J’espère que l’avenir fera qu’on se

recroisera pour de nouveaux projets, aussi agréable que celui que nous venons de finaliser ensemble.

Je remercie aussi les membres du jury qui ont accepté de lire et d’évaluer ce manuscrit. Donc un

grand merci à eux, à savoir : Sylvie Boldo en tant que présidente du jury, Rio Yokota et Anthony Nouy

en tant que rapporteurs, et enfin, Mariya Ishteva et Emmanuel Agullo en tant qu’examinateurs.

J’aimerais aussi remercier un bon nombre de collègues de bureaux que ce soit tant sur le plan

administratif que matériel ou simplement de la recherche. Donc pour ne pas faire de jaloux et pour

n’oublier personne, je les remercie par Equipe en commencant par l’Equipe ParSys bien évidemment.

Ensuite dans les Equipes les plus proches on a A&O et GALaC avec qui on a pu créer le Séminaire Sé-

PAG, qui est une démarche des plus passionnantes pour le développement inter-équipe. Je remercie

aussi l’Equipe Ex-Situs pour leur bienvaillance et nos amitiés crées bien qu’ils étaient un étage au-

dessus. Je ne peux pas oublier de remercier l’Equipe SAMI, SPIL, GRAFH et Hasard pour tout ce qui

est lié à la partie administrative de la thèse. Enfin, je remercie l’Equipe PEQUAN du Lip6 pour m’avoir

accueilli comme l’un des leurs à Jussieu et avoir pu présenter et écouter des présentations de qualité.

Oté ! Le moment lé venu de remercier la famille ! Merci à zot ! Tou la ban famille là, avec moman,

papa, dada, nénène, kouzin et autres. Mi aime à zot ! Sans zot, mi noré pas pu arrivé là où mi lé.

Pour fermer la marche et m’épauler comme ils l’ont toujours fait, je remercie mes amis, mes

proches, mes sangs, mes rheys comme dirait les jeuns. Beaucoup trop nombreux pour les citer, ils

se reconnaitront en lisant ce message : Merci beaucoup à vous ! On a encore beaucoup de chemin à

faire ensemble malgré les distances et que ce soit par nos hobbies, passions, ou mentalités, ce sera

toujours un bon moment à partager x).

v



vi



Table of contents

List of Figures xiii

List of Tables xiii

List of Algorithms xv

List of Acronyms xvii

Introduction 1

1 Background 5

1.1 Basic notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Low-rank approximation arithmetic for matrices . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Singular value decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 QR decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Randomized methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Low-rank approximation arithmetic for tensors . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Tree tensor networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Kernels for low-rank approximation on tensors . . . . . . . . . . . . . . . . . . . 16

1.4 Floating point arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 Commonly available floating point arithmetic . . . . . . . . . . . . . . . . . . . . 20

1.5 Mixed precision for low-rank approximations . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.1 Mixed precision for low-rank approximation for matrices . . . . . . . . . . . . . 22

1.5.2 Mixed precision for low-rank approximation for tensors . . . . . . . . . . . . . . 22

2 Mixed precision iterative refinement for low-rank approximations 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Iterative refinement for low-rank approximations . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Application to matrix low-lank approximation . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Truncated QRCP decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Randomized SVD decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Application to tensor low-rank approximation . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Discussion of the error and complexity . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vii



2.5.3 Role of θ` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.4 Results on real-life data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.5 Estimation of the time cost and role of ω` . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Mixed precision randomized low-rank approximation with GPU tensor cores 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Randomized LRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Mixed precision randomized LRA on GPU tensor cores . . . . . . . . . . . . . . . . . . . 55

3.3.1 GEMM kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 QR kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Randomized LRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Performance and accuracy of kernels . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.3 Mixed precision randomized LRA . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.4 Iterative refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Numerical stability of tree tensor network operations, and a stable rounding algorithm 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 The framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Definitions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Operations on tree tensor networks . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 α-normalized networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.2 Local errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.3 Global error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Examples of stable tensor computations . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 full . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 compress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.3 orthog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 A general stable rounding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 The proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.2 Comparison with existing tensor rounding algorithms . . . . . . . . . . . . . . . 85

4.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6.2 Validating the stability of Algorithme 4.4 . . . . . . . . . . . . . . . . . . . . . . . 87

4.6.3 Comparison with Gram SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

viii



5 Conclusion 91

5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Publications 95

6.1 Submitted articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Published articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Conference communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Appendix 97

7.1 Résumé en français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 103

ix



x



List of Figures

1.1 Standard representation of data structure. . . . . . . . . . . . . 5

1.2 Concatenation of two tensorsX ∈ Rm1×m2×m3 , andY ∈ Rn1×n2×n3

along thediagonal ofZ ∈ R(m1+n1)×(m2+n2)×(m3+n3) (top). Conca-

tenation of two tensors X ∈ Rn1×n2×n3 , and Y ∈ Rn1×n4×n3

along the commondimensionn1 andn3 to obtainZ ∈ Rn1×(n2+n4)×n3

(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Application of reshape kernels on X ∈ Rn1×n2×n3 (as matri-

cize kernel) to obtain a matrixX ∈ Rn1×n2n3 (left) ; then apply a

reshape kernel onX (as tensorize kernel) to bring back X . . . 7

1.4 Low-rank approximation of amatrixX ∈ Rm×n into factorsU ∈
Rm×r, V ∈ Rn×r. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 SVD decompositionof amatrixX ∈ Rm×n into factorsU ∈ Rm×r,Σ ∈
Rr×r, and V ∈ Rn×r where U and V are orthogonal (line inside). 9

1.6 Representation of QR orthogonalization of X ∈ Rm×n into fac-

tors Q ∈ Rm×n, R ∈ Rn×n (top) and QR approximation of X ∈
Rm×n into factors Q ∈ Rm×r, R ∈ Rr×n (bottom), where Q is

orthogonal (line inside). . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Randomizedpart of randomized low-rank approximation ofA ∈
Rm×n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.8 Tensor network diagram of data object. . . . . . . . . . . . . . . 13

1.9 Tree tensor network representation . . . . . . . . . . . . . . . . 14

1.10 A d-order tensor (left) and its representation in Tucker, tensor-

train (TT), andhierarchical Tucker (HT) decomposition (right) using

tensor network diagram. . . . . . . . . . . . . . . . . . . . . . . 15

1.11 Floating point representation with a example of single precision. 19

1.12 Floating point precision comparison. . . . . . . . . . . . . . . . 20

1.13 Low precision floating point representation. . . . . . . . . . . . . 21

2.1 Illustration of the LRA algorithm. . . . . . . . . . . . . . . . . . . 29

2.2 Three types of singular value distributions used in the experi-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Convergence of Algorithme 2.1 for three types of matrices (with

different singular value distributions, see Figure 2.2) and for two

different lra kernels (QRCP or randomized SVD). The number

next to each marker indicates the rank of Fi after recompres-

sion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xi



2.4 Convergence of Algorithme 2.1 for three types of tensors (de-

pending on the singular value distribution, see Figure 2.2) and

with Tensor-Train Singular ValueDecomposition (TTSVD) or high-

order singular value decomposition (HOSVD) as lra kernel. The

numbers next to each marker indicate the rank vector of Fi af-

ter recompression.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Convergence of Algorithme 2.1 for three types of tensors (de-

pending on the singular value distribution, see Figure 2.2) and

with hierarchical Tucker singular value decomposition (HTSVD)

as lra kernel. The numbers next to each marker indicate the

rank vector of Fi after recompression. . . . . . . . . . . . . . . 47

2.6 Convergence of Algorithme 2.1 for a real-life matrix (Poisson) of

size 253 × 252, for different lra kernels. The numbers next to

each marker indicate the rank of Fi after recompression. . . . 50

2.7 Convergence of Algorithme 2.1 for a real-life tensor (H2CO) of

size 17 × 17 × 13 × 13 × 9 × 9, for different lra kernels. The

numbers next to each marker indicate the rank of Fi after re-

compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Performance of the GEMM and QR kernels. . . . . . . . . . . . 61

3.2 Performance and accuracy of randLRA without refinement. (In

(b), tgemm32|32 and tgemm16|32 completely overlap both for Hou-

seholder QR and Cholesky QR). . . . . . . . . . . . . . . . . . . 63

3.3 Performance and accuracy of randLRA with refinement. (In (b),

tgemm32|32 and tgemm16|32 completely overlap both for House-

holder QR and Cholesky QR). . . . . . . . . . . . . . . . . . . . . 65

4.1 Illustration of the matricize and tensorize kernels. . . . . . . 70

4.2 Illustration of the split and merge kernels. . . . . . . . . . . . 70

4.3 Illustration of full and compress. . . . . . . . . . . . . . . . . . 79

4.4 Accuracy of Algorithme 4.4 depending on the truncation thre-

shold τ and the floating-point precision u. The text labels next

to the markers indicate the compression ratio between a given

variant in lower precision and the reference compression obtai-

ned in double precision, for the same value of τ (if this ratio is

equal to 1 we omit the label). . . . . . . . . . . . . . . . . . . . . 87

4.5 Comparison between Algorithme 4.4 and Gram SVD depending

on the truncation threshold τ and the floating-point precision

u. The text labels next to the markers indicate the compression

ratio between a given variant and the reference compression

obtained with Algorithme 4.4 in double precision, for the same

value of τ (if this ratio is equal to 1 we omit the label). . . . . . 89

xii



List of Tables

2.1 Relative error ηi and rank(Fi) at different steps i and for dif-

ferent values of θ`, for TTSVD (using fp16 as u` and exponential

distribution of singular values). . . . . . . . . . . . . . . . . . . . 48

2.2 Relative error ηi and rank(Fi) at different steps i and for dif-

ferent values of θ, for QRCP decomposition (using fp16 as u`
and exponential distribution of singular values). . . . . . . . . . 49

xiii



xiv



List of Algorithms

1.1 QRCP decomposition. . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Randomized low-rank approximation fixed-rank variant. . . . . 11

1.3 Randomized SVD fixed-accuracy decomposition. . . . . . . . . 12

1.4 lra algorithm for a tensor. . . . . . . . . . . . . . . . . . . . . . 17

1.5 full algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 orthog algorithm for tensor . . . . . . . . . . . . . . . . . . . . 18

2.1 Iterative refinement for Low-rank approximations (LRA). . . . . 28

2.2 recompress algorithm using truncated QRCP decomposition. . 38

2.3 Randomized SVD decomposition. . . . . . . . . . . . . . . . . . 39

2.4 decompress algorithm for a tensor decomposition. . . . . . . . 41

3.1 Randomized low-rank approximation fixed-rank variant. . . . . 54

3.2 Randomized LRA with iterative refinement. . . . . . . . . . . . . 56

3.3 Cholesky QR kernel implementation on GPU. . . . . . . . . . . 58

3.4 Mixed precision randLRA on GPU tensor cores. . . . . . . . . . 58

3.5 Mixed precision randLRA on GPU tensor cores, with iterative re-

finement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 full() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 compress() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 orthog() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 round . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 truncate(U) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xv



xvi



List of Acronyms

ARF approximation de rang faible

CP CANDECOMP/PARAFAC

CPU Central Processing Unit

FMA Fused Multiply-Add

FPGA Field-Programmable Gate Array

GEMM GEneral Matrix Multiplication

GMRES Generalized Minimal Residual

GPU Graphics Processing Unit

HOSVD high-order singular value decomposition

HT hierarchical Tucker

HTSVD hierarchical Tucker singular value decomposition

IEEE Institute of Electrical and Electronics Engineers

IR Iterative Refinement

LRA Low-rank approximations

QRCP QR Column Pivoting

SVD singular value decomposition

TFLOPS number of Tera floating-point operations per second

TPU Tensor Processing Unit

TT tensor-train

TTN Tree Tensor Network

TTSVD Tensor-Train Singular Value Decomposition

xvii



Introduction

Linear algebra is a fundamental tool in many scientific domains such as

physics, chemistry, biology, and engineering [1, Part IV]. In computer science,

its importance is even more pronounced with matrices, as it is the founda-

tion of many algorithms and data structures. In recent years, the amount of

data to be processed has grown exponentially, leading to new data structures

such as tensors, which generalize matrices to orders higher than two. Recent

research domains such as signal processing, image processing, quantum che-

mistry, and machine learning use tensors extensively [2, 3, 4, 5, 6, 7]. This

increasing amount of data has led to a significant challenge in data compu-

ting : the curse of dimensionality that can be tackled via a method called Low-

rank approximations (LRA). Our work will focus on the development of new

algorithms for computing LRA in low precision arithmetic, which is a new and

promising direction for accelerating linear algebra computations on modern

hardware.

LRA is a powerful tool used in many scientific applications to reduce the

dimension of large-scale data [7, 8, 9, 10]. For example, an n × n matrix X

may be approximated by a low-rank product UV T of n× rmatrices U and V ,

reducing the initial storage cost fromO(n2) toO(nr). For tensors this storage

cost is even more critical [7, 6, 8]—O(nd) for a dth order tensor. Tensor LRA

methods decompose the full tensor as a product of tensors of lower order

and lower rank ; several low-rank tensor formats have been proposed like the

Tucker [11, 12], the tensor-train (TT) [9] and the hierarchical Tucker (HT) [13,

14] formats.

However, computing matrix or tensor low-rank decomposition is a com-

putationally intensive task ; it represents the bottleneck of many LRA-based

applications. Therefore, developing efficient algorithms for computing LRA is

a crucial problem that has been the subject of many studies [15, 7, 8, 6].

A new possibility to accelerate the computation of LRA is to use low pre-

cision arithmetic, which provides significant performance benefits on modern

hardware [16]. Especially half precision floating-point arithmetic such as the

Institute of Electrical and Electronics Engineers (IEEE) fp16 and bfloat16 for-

mats achieve very high speed on Graphics Processing Unit (GPU) accelerators

with speed-up of up to 4× compared to double precision (fp64) [17]. However,

low precision degrades the accuracy of the computations ; for example, half

precision arithmetic provides, at best, between 3 and 4 digits of accuracy, de-

pending on the format. Many applications require computing LRA with higher

accuracy [15, 8].

This motivates the need for mixed precision algorithms, which combine

multiple precision formats with the goal of achieving the high performance
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of the low precision while preserving the high accuracy of the higher preci-

sion [18, 19]. Contrary to other linear algebra routines such as the solution

of linear systems, there has been relatively little work on designing mixed (or

even low) precision algorithms for LRA.

Thus, the main objective of this thesis is to develop mixed precision algo-

rithms for LRA that are both accurate and efficient. This objective has been

achieved by three main contributions, which are explained below.

LRAwith iterative refinement As first contribution, we propose a newme-

thod for computing LRA in mixed precision arithmetic defined in Chapter 2.

Our approach is applicable to basically any LRA algorithm, involving eitherma-

trices or tensors. It is reminiscent of the iterative refinement framework used

for solving linear systems [20] : the idea is to first compute a LRA in low preci-

sion, then evaluate the error (or residual) from this first LRA, and re-apply the

same LRA kernel to this error term to obtain a correction term that is used

to refine the accuracy of the LRA. This can be repeated iteratively to reach

any level of desired accuracy. The refined LRA is obtained as the sum of the

original low precision LRA and the correction term, and is thus of larger yet

still of low-rank. In order to contain the rank growth andmaintain the optimal

rank throughout the iterations, our method employs a “recompression” stra-

tegy [14, 21] that is performed in high precision but whose cost stays asymp-

totically smaller than that of LRA and become also a subject of our work as

last contribution in Chapter 4. We carry out an error analysis of our method

based on a general parameterized error model that only assumes that we

have numerically stable implementations of the basic kernels used in our al-

gorithm (LRA, matrix multiplication, and recompression). We show that the

precision used for the LRA kernel—which is the computational bottleneck of

the whole method—only affects the convergence speed of the process, but

not its attainable accuracy. In order to assess under which conditions we can

expect our method to be beneficial, we perform a complexity analysis that

measures the cost of the method as a function of the numerical rank of the

input aswell as the speed ratio between the low andhigh precision arithmetic.

We identify two situations where our method has a strong potential. The first

is when the numerical rank of the input is small at low accuracy levels, which

means that the singular values of thematrix or tensor are rapidly decaying ; in

this case, the first iterations of our method becomes inexpensive. The second

is when the hardware provides fast low precisionmatrix multiply–accumulate

units [17], which allows computing the low precision LRA at a very high speed.

Mixed precision randomized LRA on GPU Randomprojectionmethods are

simple and robust techniques for reducing the dimensionality of data while

preserving data structure [22]. Moreover, the matrix operations at the heart

of these methods make them highly suitable for exploiting accelerators such

as GPUs [23]. Hence, we investigate to what extent these very fast low preci-
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sion units can be exploited for accelerating randomized projection methods,

especially in matrix case. The new contribution is the design of a new mixed

precision randomized LRAmethod, with a performance and accuracy analysis

showing that the proposed method is able to exploit GPU tensor cores relia-

bly and efficiently. Our method is based on three key ideas : The first idea

consists in performing the matrix–matrix products (GEneral Matrix Multiplication

(GEMM) kernel) in mixed precision arithmetic using the tensor cores, since these

operations represent the asymptotic bottleneck of the method. We compare

several GEMM variants depending on how the conversions between fp32 and

fp16 are handled, and identify one variant in particular that achieves the best

performance–accuracy trade-off. Then, having significantly accelerated the

GEMM operations, we observe that the orthonormalization step (QR kernel),

despite requiring an asymptotically negligible number of flops, becomes the

new performance bottleneck. Then the second idea is to switch the ortho-

normalization method from the standard Householder QR to a CholeskyQR algo-

rithm [24], whichmainly relies on GEMM and is therefore muchmore efficient

on GPUs. We mitigate the inherent instability of CholeskyQR by performing it

in fp64 rather than fp32 arithmetic. This leads to a mixed precision randomi-

zed LRA method employing three precisions (fp16, fp32, and fp64). We show

that this method can be up to 8× faster than the standard randomized LRA

method [22] in fixed precision fp32 arithmetic and achieves an average accu-

racy of order 10−2, which may be sufficient for some applications. Then the

third idea is to use our iterative refinement method for LRA proposed in the pre-

vious contribution above to improve the accuracy of the method. We show that

with refinement, the accuracy of this method improves significantly to an ave-

rage of order 10−5, while still being up to 2.2× faster than the standard LRA

method in fp32 arithmetic.

Stability of operations on low-rank tensor decomposition The LRA with

iterative refinement proposed in the first contribution requires stable kernels,

including a recompression kernel. This assumption motivates us as the last

contribution to study the stability of tensor kernels computation, which has

not been studied. This lack of analysis can be explained by mainly two rea-

sons : first, the truncation errors tend to dominate the rounding errors when

high precision is used, so that the latter have been traditionally neglected ; and

second, there is a wide range of different tensor formats, and their associa-

ted algorithms can be very complex to analyze. Importantly, the first reason

is becoming less and less valid due to the growing prevalence of low preci-

sion arithmetic, which offer significant performance benefits onmodernhard-

ware. And the second reason makes it even more critical to develop a roun-

ding error analysis precisely to identify which tensor algorithms are stable and

which will become problematic in low precision. Our contribution towards ta-

ckling these questions is two-fold. First, we propose a general framework ba-
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sed on a tree tensor network format that encompasses the most important tensor

formats (TT, Tucker, and HT) and we define the essential operations that are

needed to express some of the most common computations of interest. We

then carry out an error analysis of an abstract computation in this framework

and identify conditions to guarantee its stability. In particular, a key condition

is that the norm of the tensor should be tightly concentrated around a single

node of the network, a property that we will formalize in Chapter 4. This pro-

perty is notably satisfied when all nodes of the network except one are semi-

orthogonal. Our analysis shows that if this property is maintained throughout

the computation then the error introduced by each operation is controlled in

terms of the norm of the global tensor. This first work can thus be used to

establish the stability of a wide range of tensor computations that can be ex-

pressed in our framework. Our secondwork is to use our framework to propose

a general rounding algorithm. In view of the conclusions of our error analysis,

the algorithm is careful tomaintain the semi-orthogonality of all nodes except

one throughout the computation, and is thus guaranteed to be stable. The al-

gorithm works for any tree topology of tensor and can thus be applied to a

wide range of tensor formats. We compare this rounding algorithm with the

existing Gram SVD-based rounding for hierarchical Tucker tensors proposed

in [14], which is unstable [25]. We show that our algorithm can significantly

improve the accuracy of the rounding in finite precision arithmetic, and can

thus more reliably exploit the low precision arithmetic available on modern

hardware.

The thesis is organized as follows. In Chapter 1 we define basic concepts

onmatrix and tensor LRA and the related work on this topic. Then, Chapters 2

to 4 are dedicated to the three main contributions of the thesis, respectively.

Finally, we conclude with a summary of the contributions made in this thesis

and their possible perspectives in Chapter 5.
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1 - Background

This chapter provides all elements that will be used in this thesis and work

related to the subject of computing Low-rank approximations (LRA) on both

matrices or tensors.

1.1 . Basic notations and definitions

Tensors denoted X along this chapter are the generalization of matrices,

where a matrix is a two-dimensional array of data, and a tensor is a multidi-

mensional array of data with several dimensions greater than two. The order

of a tensor is its number of dimensions, and the size of a dimension is the

number of elements it contains. Figure 1.1 represents tensors from the lowest

order (scalars, on the left) to the highest order (tensors, on the right). Tensors’

elements are indexed by the order they have (as matrices) ; for example, the

element xi,j,k is the element at the ith row, jth column, and kth depth of the

tensor X .

scalar vector matrix tensor

Figure 1.1 – Standard representation of data structure.

The standard norm associated with tensor is the Frobenius norm, defined

as

‖X‖F =

√√√√ n1,n2,...,nd∑
i1,i2,...,id=1

x2i1,i2,...,id . (1.1)

We omit the subscript F when the context is clear, e.g. ‖ · ‖ = ‖ · ‖F , and apply

this norm also for matrices. Frobenius norm has some additional properties

like the sub-multiplicative property : ‖XY‖ ≤ ‖X‖‖Y‖ ; moreover we have

‖In‖ =
√
n, where In is the identity matrix of order n. This thesis will use the

Frobenius norm to measure our error’s approximation ; especially the relative

error will be used, which measures the quality of the approximation, where Y
is an approximation of X and is defined as

Err(Y) = ‖X − Y‖
‖X‖

. (1.2)
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The main reason for using relative error is the “scale independent”, meaning

scaling X and Y by a factor α ∈ R will not change the error.

Addition of tensors are done element-wise such that X + Y = Z implies

Zi1,...,id = Xi1,...,id + Yi1,...,id , (1.3)

where X ,Y , and Z are in Rn1×n2×···×nd . It is straightforward to consider sub-

traction to be the inverse operation of addition.

Multiplication of tensors, also called contraction, can be done along one

or more common dimensions to generate a new tensor without dimensions

contracted. Given X ∈ Rm1×···×r1×···×md , and Y ∈ Rn1×···×r1×···×nf two ten-

sors with a common dimension r1, the contraction of them along the dimen-

sion r1 is denoted ×{r1} and produces a new tensor Z = X ×{r1} Y , where
Z ∈ Rm1×···×md×n1×···×nf . Each element of the new tensor Z is computed as

Zi1,...,id,j1,...,jf =

r1∑
k=1

Xi1,...,id,kYk,j1,...,jf . (1.4)

If the dimension of the contraction is evident from the context, we omit the

symbol, e.g., Z = XY .
The orthogonality of a tensor is defined along one or more dimensions of

the tensor ; for example if the tensorX is orthogonal along the ith dimension,

then the contraction of the tensor with a tensor Y along the ith dimension

gives ‖XY‖ = ‖Y‖.
Another operation is the concatenation of tensors, which is the opera-

tion to concatenate two tensors along a subset of dimensions. Figure 1.2

top represent this concatenation where the tensor X ∈ Rm1×···×md can be

concatenated with Y ∈ Rn1×···×nd along the diagonal of the tensor Z ∈
R(m1+n1)×···×(md+nd) (for d = 3). For each dimension ik = mk + nk,∀k ∈
{1, . . . , d}, elements of the tensor Z is computed as

Zi1,...,id =


Xi1,...,id , if ik ≤ mk,∀k ∈ {1, . . . , d}
Yi1−m1,...,id−md

, if ik > mk,∀k ∈ {1, . . . , d}
0, otherwise

(1.5)

If X and Y have common dimensions, the concatenation can be done along

those dimensions instead, as shown at the bottom of Figure 1.2.

The reshape operation modifies the shape of a tensor along given dimen-

sions as illustrated in Figure 1.3. From left to right, the tensor X ∈ Rn1×n2×n3

is reshaped into a matrix X ∈ Rn1×n2n3 by permutation of data ; this applica-

tion also represents the matricize method. The matricize operation of tensor

X ∈ Rm1×···×md×n1×···×nf into X ∈ Rm×n, where m = m1 × · · · × md and

n = n1 × · · · × nf , is defined as :

Xi,j = Xi1,...,id,j1,...,jf , where

{
i = 1 +

∑d
k=1(ik − 1)

∏k
l=1ml

j = 1 +
∑f

k=1(jk − 1)
∏k

l=1 nl

(1.6)
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+
n 3diagonal concatenation

n2

n1

n3

X

n4

n1

n3

Y Xn
1

n2 + n4

Y

Z

n 3concatenation along n1, n3

Figure 1.2 – Concatenation of two tensors X ∈ Rm1×m2×m3 , and Y ∈
Rn1×n2×n3 along the diagonal of Z ∈ R(m1+n1)×(m2+n2)×(m3+n3) (top). Conca-

tenation of two tensors X ∈ Rn1×n2×n3 , and Y ∈ Rn1×n4×n3 along the com-

mon dimension n1 and n3 to obtain Z ∈ Rn1×(n2+n4)×n3 (bottom).

Xn1

n2

n3

Xn1

n2n3reshape(X , [n1, n2n3])

reshape(X, [n1, n2, n3])

Figure 1.3 – Application of reshape kernels on X ∈ Rn1×n2×n3 (as matricize

kernel) to obtain a matrixX ∈ Rn1×n2n3 (left) ; then apply a reshape kernel on

X (as tensorize kernel) to bring back X .

In the other direction, the matrixX is reshaped into the tensor X by another

permutation of data ; this application also represents the tensorize method.

The tensorize operation of matrix X ∈ Rm×n into X ∈ Rm1×···×md×n1×···×nf ,

wherem = m1 × · · · ×md and n = n1 × · · · × nf , is defined as :

Xi1,...,id,j1,...,jf = Xi,j , where


ik =

⌊
i∏k−1

l=1 ml

⌋
mod mk,

jk =

⌊
j∏k−1

l=1 nl

⌋
mod nk.

(1.7)

1.2 . Low-rank approximation arithmetic for matrices
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The rank of matrixX ∈ Rm×n is defined by the smaller integer r such they

exist factors U ∈ Rm×r, and V ∈ Rn×r, such as X = UV T . This definition of

the rank, denoted rank(X), is the non-numerical (or exact) rank of a matrix

X [26]. On the other hand, for any relative accuracy ε > 0, the numerical rank

of X is the smallest integer rε such that they exist factors U ∈ Rm×rε , and

V ∈ Rn×rε , such that

‖X − UV T ‖ ≤ ε‖X‖. (1.8)

Hereinafter we denote rε simply as r when ε is clear from the context.

Low-rank approximation is themethod to decompose amatrixX ∈ Rm×n

into smaller factors U ∈ Rm×r, V ∈ Rn×r with the smallest numerical rank r

possible, as shown in Figure 1.4.

X U

V T

LRA
m

n

m

r

n

Figure 1.4 – Low-rank approximation of a matrix X ∈ Rm×n into factors U ∈
Rm×r, V ∈ Rn×r.

1.2.1 . Singular value decomposition

A first tool to compute the LRA of a matrix is the singular value decom-

position (SVD), which is a well-known method to compute the optimal LRA of

a matrix. The SVD of a matrix X ∈ Rm×n is defined as X = UΣV T , where

U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and Σ ∈ Rm×n is a rec-

tangular diagonal matrix with the singular values of X . The singular values

are ordered in decreasing order on the diagonal of Σ. For any unitarily in-

variant norm, “the” optimal LRA algorithm for matrices is to compute their

SVD and truncate it to the desired accuracy, a result known as Eckart-Young

theorem [27]. Specifically, given the SVD X = UΣV T , the optimal rank-k ap-

proximation ofX is

arg min
M∈Rm×n

rank(M)=k

‖X −M‖ = UkΣkV
T
k , (1.9)

where UkΣkV
T
k is the truncated SVD of X , formed by the first k singular vec-

tors and values only, Figure 1.5 represent this decomposition.

Even if the SVD is optimal, the computation is expensive with a cost

O(mn2) flop.
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X
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Σ
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SVD
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m

r

r

n

Figure 1.5 – SVD decomposition of a matrix X ∈ Rm×n into factors U ∈
Rm×r,Σ ∈ Rr×r, and V ∈ Rn×r where U and V are orthogonal (line inside).

X Q

R

QR orthogonalization
m

n

m

n

n

X Q

R

QR approximation
m

n

m

r

n

Figure 1.6 – Representation of QR orthogonalization ofX ∈ Rm×n into factors

Q ∈ Rm×n, R ∈ Rn×n (top) and QR approximation of X ∈ Rm×n into factors

Q ∈ Rm×r, R ∈ Rr×n (bottom), where Q is orthogonal (line inside).

1.2.2 . QR decomposition

On the other hand, a cheaper approximation alternative to the SVD are

the QR methods, which are also well-known for LRA on matrices with bet-

ter performance in terms of computational speed. QR decomposition encom-

passes various different methods, in this thesis we focus on Householder QR

one [26]. It decomposes a matrix X ∈ Rm×n into factors Q ∈ Rm×n and

R ∈ Rn×n whereQ is an orthonormal matrix andR a upper triangular matrix

(Figure 1.6).

In the context of LRA, it is beneficial to add a column pivoting phase in

HouseholderQRdecomposition to obtain aQRColumnPivoting (QRCP)method

such as

XP = QR, (1.10)
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where P ∈ Rn×n is a permutation matrix [28, 29]. Thanks to pivoting, the

QRCP decomposition can be used as a rank-revealing algorithm because

the norm of the trailing submatrix at each step k of the QR factorization,

‖XP − QkRk‖, is monotonically decreasing. Therefore, we can stop the QR

factorization as soon as this norm becomes smaller than the target tolerance

ε. We obtain

X ≈ QkV
T
k , Qk ∈ Rm×k, Vk = PRT

k ∈ Rn×k, (1.11)

where k = rank(X, ε). To avoid the need to apply the permutation P each

time we need to applyX , we form and store Vk = PRT
k .

Algorithm 1.1 QRCP decomposition.

Input : X ∈ Rm×n, a target accuracy ε.
Output : Qk ∈ Rm×k and Vk ∈ Rn×k such that X ≈ QkV

T
k .

1 : for j = 1 : n do

2 : colnorm(j) = ‖X(:,j)‖
3 : end for

4 : for k = 1 : min(m,n) do
5 : if

√
colnorm(k : n)2 ≤ ε then

6 : k = k − 1
7 : break

8 : end if

9 : p = max(colnorm(k : n))
10 : Swap columns k and p of R and colnorm
11 : v = R(k : n, k)
12 : σ = sign(v(1))‖v‖
13 : v(1) = v(1) + σ;
14 : v = v/‖v‖;
15 : Q(:,k:n) = Q(:,k:n) − 2Q(:,k:n)vv

T

16 : R(k:n,:) = R(k:n,:) − 2vvTR(k:n,:)

17 : colnorm(k + 1 : n) =
√

colnorm(k + 1 : n)2 −R(k, k + 1 : n)2

18 : end for

19 : Qk = Q(:,1:k)

20 : Vk = PRT
(1:k,:)

Algorithm 1.1 describes theQRCP decomposition of amatrixX ∈ Rm×n at

a target accuracy ε. First, we compute the norm of each column of the matrix

X in Lines 1 and 3 as a shutoff parameter. Then, for each iteration k, we verify

if the norm of the trailing submatrix is smaller than the target accuracy ε. If

this is the case, we stop the algorithm and return the factors Qk and Vk by

taking k = k − 1 as the previous iteration larger than ε (Line 6). Otherwise,

we compute the Householder vector (that corresponds to the Householder
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reflector I−2vvT ) v in Lines 9 and 14 to update the matrixQ andR as shown

in Line 15 and Line 16. The Line 17 updates the colnorm variables from k+1 to

n ; note that in practice Line 17 can suffer from severe numerical cancellation

and should be implemented in a more careful way as advised in [30].

The performance of the QRCP method turn around 4mnk + o(mnk)

flops [24], where k is the rank of the matrix.

1.2.3 . Randomized methods

Algorithm 1.2 Randomized low-rank approximation fixed-rank va-

riant.
Input : A ∈ Rm×n, the target rank k, the oversampling p.
Output : X ∈ Rm×k and Y ∈ Rn×k such that A ≈ XY T .

1 : Ω← randn(n, k + p)
2 : B ← AΩ
3 : Q← qr(B)
4 : Y ZT ← lra(ATQ, k)
5 : X = QZ

Among the many possible methods to compute LRA, randomized ones

have encounteredmuch success due to their ability to mainly rely on efficient

matrix-matrix products. In this thesis, we focus on randomized LRA based on

Gaussian sampling [22], as outlined in Algorithm 1.3. This method generates

a random Gaussian matrix Ω ∈ Rn×` and projects the matrix A onto it by

computing the matrix-matrix product B = AΩ (line 2). The dimension ` is

equal to k + p, where p is a small oversampling parameter (typically, p ≤ 10).

Then, the matrix B is orthonormalized using the QR factorization and only

keeps the orthonormal part Q (Line 3). This matrix Q satisfies A ≈ QQTA.

And therefore, the LRA of A can be computed by decomposing the matrix

ATQ (Line 4). Indeed, if we compute Y ZT ≈ ATQ then A ≈ QQTA ≈ XY T ,

where X = QZ (Line 5). The kernel lra in Line 4 can be any standard LRA

method such as SVD or QRCP method.

We note that many alternative variants of Algorithm 1.2 are possible ; for

example, the sampling may be performed differently (e.g., via a fast Fourier

transform), or we may compute specific types of LRA (e.g., SVD) by further

decomposing inside the lra kernel. In addition, while Algorithm 1.2 is a fixed-

rank algorithm, fixed-accuracy variants have also been proposed [22, 31], in

which an accuracy threshold ε is prescribed and the rank k is adaptively dis-

covered by the algorithm.

Algorithm 1.3 is such an adaptive algorithm—increasing the rank until the

prescribed accuracy ε is reached—proposed by Martinsson and Voronin [31].

The algorithm consists of two phases. The first phase (Lines 3 to 11) itera-

tively builds a QB decomposition of the matrix such that ‖A − QB‖ ≤ ε‖A‖,
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Figure 1.7 – Randomized part of randomized low-rank approximation of A ∈
Rm×n.

Algorithm 1.3 Randomized SVD fixed-accuracy decomposition.

Input : A ∈ Rm×n, a target accuracy ε, and a block size b.
Output : X ∈ Rm×k and Y ∈ Rn×k such that A ≈ XY T .

1 : Initialize Q and B to empty matrices.

2 : nA = ‖A‖
3 : repeat

4 : Draw a random Gaussian matrix Ω ∈ Rn×b.

5 : Y = AΩ
6 : Qb = qr(Y −Q(QTY ))
7 : Bb = QT

b A
8 : Q← [Q Qb]

9 : B ←
[
B
Bb

]
10 : A← A−QbBb

11 : until ‖A‖ ≤ εnA

12 : [X, Y ]← Svd(B, ε).
13 : X = QX

whereQ ∈ Rm×k has orthonormal columns and where the dimension k is ho-

pefully close to rank(A, ε). To do so, a random Gaussian matrix Ω ∈ Rn×b is

drawn for a given block size b and used to sample the matrix Y = AΩ (Line 5).

Then Y is added to the basisQ while preserving the orthonormality : this can

for example be accomplished using the Gram-Schmidt algorithm (Line 6). This

process is repeated until the columns ofQ are a sufficiently good approxima-

tion of the column space of A, that is, until ‖A − QQTA‖ is small. In order

to efficiently compute this quantity, the matrix B = QTA is formed block by

block (Line 7). Then, in the second phase (Lines 12 and 13), a truncated SVD

of A can easily be obtained by computing the truncated SVD of the lower di-

mensional matrix B ∈ Rk×n : if B = XΣV T , then A = XY withX = QX and

Y = ΣV T . In Line 12, we have chosen the SVD as the LRA kernel ; in practice,

12
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Figure 1.8 – Tensor network diagram of data object.

any LRA kernel with truncation at accuracy ε can be used.

1.3 . Low-rank approximation arithmetic for tensors

Thenumber of elements to store in a tensor is exponential in its order,ma-

king it challenging to compute, O(nd) elements for a d order tensor. This pro-

blem called curse of dimensionality is tackled by tensor decomposition that pro-

vide a LRA of a tensor, which separates a high dimensional tensor into lower-

dimensional tensors (called factors) with outer dimensions—representing the

dimension of the original tensor—and inner dimensions—common dimen-

sions between factors to generate the original tensor once contracted.

Usually, we use a cubic representation to represent a high-order tensor, as

shown in Figure 1.1, but this representation is unsuitable for a very high-order

tensor. The tensor network diagram solves this problem, where a circle (na-

med node) represents a tensor, and lines represent the dimensions, named

edges ; thus, a node’s degree is the order of the associated tensor. Figure 1.8

show the tensor network diagram of data structure in Figure 1.1.

[TODO]Emm. Ag. (E.A.) : Peut-être expliquer pourquoi on ne parle pas de

CP?

1.3.1 . Tree tensor networks

The Tree Tensor Network (TTN) X represents X as a tree—denoted

with bold calligraphic upper case letters—, a connected acyclic undirected

graph [32], as shown in Figure 1.9. There are two types of edges in a TTN :

inner edges that connect two nodes and outer (or “dangling”) edges that are

only connected to one node. Tree nodes can have both inner and outer edges.

Two nodes connected by an inner edge represent the contraction of the cor-

responding tensors along the dimension that connects them. We define in-

ner nodes as nodes connected to at least two other nodes and outer nodes as

nodes connected to only one node with at least one outer dimension. There-

fore, the whole network represents a full tensorX ∈ Rn1×···×nd of order d, the

13
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Figure 1.9 – Tree tensor network representation

number of dangling edges of X . This representation can also express all the

other tensor formats we investigated during this thesis.

We define ‖A‖ = ‖A‖, that is, the norm of the network is the norm of

the full tensor it represents. As a result the usual submultiplicativity of the

Frobenius norm is preserved for tensor networks :

‖AB‖ = ‖AB‖ ≤ ‖A‖‖B‖ = ‖A‖‖B‖. (1.12)

Like this, we can define the semi-orthogonality of a node in a TTN as the ortho-

gonality of the tensor along a set of specific dimension.

Tucker format The Tucker format represents a tensor X ∈ Rn1×···×nd as

a core tensor G ∈ Rr1×···×rd linked with d matrices U (1) ∈ Rn1×r1 , . . ., U (d) ∈
Rnd×rd representing the leaves of the network with orthonormal columns.A

standard application is to have all matrices U (i) orthonormal and keep the

non orthogonal part in the core tensor G. Each element of a Tucker tensor is

given by

Xi1,...,id =

r1,...,rd∑
α1,...,αd

Gα1,...,αd
U

(1)
i1,α1

. . . U
(d)
id,αd

. (1.13)

In TTN representation, the Tucker format is a tree with one inner nodes

and d outer nodes, where the outer nodes are connected to the core tensor

along their inner dimension ri, represented in top-right part of Figure 1.10.

Tensor Train format The TT format [9] represent a tensor X ∈ Rn1×···×nd

as a sequence of 3rd-order tensors U (1) ∈ Rr0×n1×r1 , . . ., U (d) ∈ Rrd−1×nd×rd

where r0 = rd = 1. The first and third dimensions represent the ranks of the
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Figure 1.10 – A d-order tensor (left) and its representation in Tucker, tensor-
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tensor (inner dimension), and the second dimension is the outer dimension.

Each element of a TT tensor is given by

Xi1,...,id =

r0,...,rd∑
α0,...,αd

U
(1)
α0,i1,α1

U (2)
α1,i2,α2

. . .U (d−1)
αd−2,id−1,αd−1

U
(d)
αd−1,id,αd

. (1.14)

In TTN representation, the TT format is a “degenerate” binary tree with a

single path, and nodes connect only with two other nodes (except for bound

nodes), represented in middle-right part of Figure 1.10.

Hierarchical Tucker format TheHT format [13, 14] is a specific TTN [32]wi-

thout outer dimension in inner nodes, represented in bottom-right part of Fi-

gure 1.10. Thanks to its tree structure, the exponential growth of the Tucker

format is reduced to a polynomial growth where the degree of the polyno-

mial depends on the tree’s arity. The arity of the tree can be arbitrarily high,

but in this thesis, we will focus on binary trees, which means a node can be

connected up to three other nodes. In this case, leaf nodes of the tree are

matrices U (1) ∈ Rn1×rd−1 , . . ., U (d) ∈ Rnd×r2d−2 and the rest are 3rd-order ten-

sors G(1) ∈ Rr0×r1×r2 , . . . ,G(d−1) ∈ Rrd−2×r2d−3×r2d−2 , where G(1) is the root

and r0 = 1. Each element of a HT tensor is given by

Xi1,...,id =

r0,...,r2d−2∑
α0,...,α2d−2

G(1)α0,α1,α2
. . .G(d−1)

αd−2,α2d−3,α2d−2
U

(1)
i1,αd−1

. . . U
(d)
id,α2d−2

. (1.15)

Each format has its own advantages and disadvantages, and the choice of

the format depends more on the application and the tensor’s properties the

user wants. In terms of storage cost, the Tucker format represents a node of

order dwith small dimensions r andmatrices of shape n×r ; thus the storage

is O(dnr + rd) instead of O(nd) from the full tensor. The TT format is more

efficient in terms of storage, with a cost of O((d− 2)nr2 + 2nr), compared to

HT which is the heavier when d > 2, with a total of O(dnr + (d − 2)r3 + r2)

elements to store.

1.3.2 . Kernels for low-rank approximation on tensors

Full tensor to LRA The LRA on the tensor is a generalization of the LRA

on the matrix, with the decomposition specification providing a tensor for-

mat different from the original tensor. A LRA on a tensor X ∈ Rn1×n2×···×nd

reduces the tensor into smaller factors U (1) ∈ Rn1×r1 , U (2) ∈ Rn2×r2 , . . . ,

U (d) ∈ Rnd×rd , where ri ≤ ni is the rank of X , which will be detailed later. The

number of factors is at least equal to the order of the tensor d, and the num-

ber of inner dimensions r depends on the decomposition. The high-order sin-

gular value decomposition (HOSVD) [12, 33], Tensor-Train Singular Value De-

composition (TTSVD), and hierarchical Tucker singular value decomposition

(HTSVD) are decomposition methods to represent the Tucker format [11], TT

format [9], and HT format [14, 34] respectively.
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Algorithm 1.4 lra algorithm for a tensor.

Input : a tensor X and a target accuracy ε.
Output : X = U1, . . .Um : a low-rank tensor decomposition of X .
1 : ε̄← ε/

√
d

2 : for each node Ui = U1, . . .Um−1 of the prescribed structure do

3 : X = reshape(X , r) {for a suitable dimension r}
4 : UY = lra(X, ε̄)
5 : Ui = reshape(U)
6 : X = reshape(Y )
7 : end for

8 : Um = X {The remaining X is the root node.}

Algorithm1.4 is a high-level pseudocode of a fixed-accuracy LRA algorithm

for a tensorX . Knowing the algorithms are independent of the tensor format,

we use the TTN format to represent all the above-mentioned algorithms. It en-

compasses the three decomposition formats HOSVD [12, 33], TTSVD [9], and

HTSVD [13, 14] with adjusted arrangements on kernels reshape and lra to

obtain the desired format. In particular, Line 3 is equivalent to the matricize

kernel for the tensor X , and Lines 5 and 6 are tensorize kernels. Figure 1.10

represent each decomposition starting from a tensor X with the TTN repre-

sentation (left part), where the corresponding lra method yields a network

of core tensors (right part). This thesis also calls the lra kernel the compress
kernel in a TTN environment.

The definition of the numerical rank explained in Section 1.2 extends

to the Tucker, TT, and HT representations with rank(X, ε) and rank(X) as

the vector of length m whose coefficients correspond to the inner dimen-

sions connecting the underlying matrices and/or tensors in the decomposi-

tion, where m is the number of inner dimension of the corresponding for-

mat. Thus, the rank vector is determined by a vector of error tolerances εi,

i = 1: m, whose sum yields the target accuracy ε =
√∑m

i=1 ε
2
i . In practice, we

use εi = ε/
√
m.

LRA to full tensor To reconstruct the full tensorX from factorsFX , we use

the full method which is a sequence of contractions of all factors along their

inner dimensions to generate the full tensor X , as shown in Algorithm 1.5. In

a TTN environment we call the full as decompress kernel.

OrthogonalizationWe need to orthogonalize all factors except one to qui-

ckly analyze the results of the LRA on a tensor. Hence, we possess a orthog
kernel for a TTN, where all nodes except one become orthogonal along a pres-

cribed dimension. Algorithm 1.6 is a high-level pseudocode of the orthogo-

nalization algorithm for a TTN. The orthogonalization is performed by a QR

factorization on the matricized tensor in the direction of the parent node, as
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Algorithm 1.5 full algorithm

Input : FX : factors.

Output : X : the full tensor.

1 : Choose a node U .
2 : while U is not the only node left do

3 : Let V be a node adjacent to U .
4 : U = U ×{r} V {for a suitable dimension r}
5 : end while

shown in Line 7. Then, the orthogonal part is tensorize to update the node U
(Line 8). The non-orthogonal part R is contracted with the parent node P to

transfer the non-orthogonal part to the parent nodeP until we reach the root

(Line 9).

Algorithm 1.6 orthog algorithm for tensor

Input : X : a tensor.

Output : X : the tensor orthogonalized.

1 : for each node U from leaves to root do

2 : if U is the root then

3 : return

4 : else

5 : P = parent(U)
6 : U = reshape(U ,P) {Matricize in the direction of the parent}
7 : QR = qr(U) {QR factorization ; Q is semi-orthogonal}

8 : U = reshape(Q)
9 : P = R×{r} P {Contraction non-orthgonal part with parent for a

suitable dimension r}

10 : end if

11 : end for

Low rank arithmetic on TTN Addition in TTN format is C = A + B where

the network represents the tensor C = A+B ; note that its nodes are not the

sum of the nodes of A and B, but rather their diagonal concatenation along

the dimensions corresponding to inner edges.

An important case where the addition is simplified is whenA and B only

differ by one node : ifA = X 1CX 2 and B = X 1DX 2, then

A+B = X 1CX 2 +X 1DX 2 = X 1(C +D)X 2. (1.16)

Rounding Some applications require a rounding method to reduce the in-

ner dimensions of tensor networks by respecting an error threshold ε, just

like the compress algorithm, yet without forming the full tensor [14, 34, 9,
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Figure 1.11 – Floating point representation with a example of single precision.

21]. An algorithm for TTN further discussion on its stability will be detailed

in Chapter 4.

1.4 . Floating point arithmetic

In computer science, the floating point arithmetic is a tool to represent real

numbers in a computer. Compared to exact arithmetic, floating point arithme-

tic approximates real numbers because it is limited by the number of bits it

can use to represent real numbers.

We focus on the Institute of Electrical and Electronics Engineers (IEEE) 754

standard representation of numbers, where we outline its interest in repre-

senting numbers in low precision and how the low precision can benefit LRA

methods.

1.4.1 . Properties

A floating point number x is represented as

x = (−1)sm× βe−t, (1.17)

where s is the sign bit, e is the exponent (a range between [emin, emax]), β is the

base, t the precision, and m is the mantissa (also call significand). Figure 1.11

gives an example of a representation of floating point arithmetic for 32 bits

(single precision) with IEEE 754 representation (explain below). We work on

binary representation, so β = 2, and consider noramlized system such that

βt−1 ≤ m ≤ βt−1, to obtain a range of [βemin−1, βemax(1−β−t)] possible values.

In particular, try to represent a number x outside its possible value range

provide a specific behavior dependent on the rounding rule. The rounding rule

is a rule to approximate the value of a number to the nearest representable

number, whichwill introduce rounding error corresponding to the inexactness

of the value compared to exact arithmetic.

The accuracy represents how good the approximation is in terms of rela-

tive error (Section 1.1), whereas the precision is accuracy obtained by standard

operations (addition, subtraction, multiplication, division) [26]. For example,
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Name Range Precision Exponent bits Mantissa bits
Performance (Tflops/s)

on NVIDIA GPU A100 1

fp64 double 10±308 1× 10−16 11 52 19.5

fp32 single 10±38 6× 10−8 8 23 19.5

fp16 10±5 5× 10−4 5 10

bfloat16
half

10±38 4× 10−3 8 7
312

fp8 (e4m3) 10±2 6× 10−2 4 3

fp8 (e5m2)
quarter

10±5 1× 10−1 5 2
NA

1 Details in Section 1.4.2

Figure 1.12 – Floating point precision comparison.

taking an infinitely long value, such as π = 3.14159265358979323846 . . ., de-

fining a “good” accuracy of π is a tricky question depending on multiple fac-

tors. The definition strongly depends on the user and its domain, where 4

digits can be enough for some applications, or 10 digits cannot be enough for

others. As seen in the previous section, the truncation threshold ε represents

this require precision by the user. It also depends on the precision of the com-

putation controlled by the rounding errors, notates u = 1
2β

1−t and calls unit

roundoff.

We need to know the error of the approximation to control the compu-

tation and generate algorithms. We denote x̂ the approximation of x in the

floating point arithmetic, also call computed x, such that

x̂ = x(1 + δ), with |δ| ≤ u, (1.18)

where u is the unit roundoff. Moreover, doing operations on floating point

numbers can also generate errors like

ẑ = x op y = (x op y)(1 + δ), with |δ| ≤ u, (1.19)

where op represents any standard operation (addition, subtraction, multipli-

cation, division).

We can increase the number of bits in themantissa or the exponent, which

increases the number of representable numbers, but it also increases the sto-

rage space and the computational cost. Hence, choosing the number of bits

without considering hardware restriction is challenging depending on the ap-

plication for the best trade-off between accuracy and cost.

1.4.2 . Commonly available floating point arithmetic

The IEEE 754 standard [35] defines the floating point arithmetic used

in most modern computers, with much precision available, illustrated in Fi-

gure 1.12. The difference between precision is the number of bits used in the

exponent and themantissa, represented in Figure 1.13. Most commonly used
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Figure 1.13 – Low precision floating point representation.

are the single precision (fp32) and double precision (fp64) formats, which res-

pectively use 32 and 64 bits and are considered in high precision domain.

Most computations are done in high precision arithmetic, i.e. double pre-

cision or single precision, to increase the accuracy of the computation. In

contrast, recent technological advances allow for significant speedups using

low precision arithmetic [18]. Low precision arithmetic is not a fixed term to

describe a specific format, but rather a range of formats that use fewer bits

than the “standard” high precision of the application we treat.

Recent hardware such as Graphics Processing Unit (GPU)s (NVIDIA, AMD,

or Intel) performs well in low precision. Equip with so-called tensor core units

that can perform matrix multiplication in low precision fp16 arithmetic up

to 16.4 faster than in standard fp32 arithmetic [17], as shown in Figure 1.12.

Central Processing Unit (CPU)s also benefit from low precision arithmetic, but

it is less relevant than the speed-up from the tensor core unit. Other hard-

ware like Tensor Processing Unit (TPU) [36] or Field-Programmable Gate Array

(FPGA) [37] can also use low precision, but they are rarely present in standard

hardware. If the above hardware is unavailable, low precision can be simula-

ted with higher precision and still obtain interesting results [38].

Keeping low precision throughout the computation will reduce storage

costs and improve performance, but the approximation error will also in-

crease. This motivates the use of mixed precision arithmetic, which is a tech-

nique to combine both high and low-precision arithmetic inside computation

to tackle the loss of accuracy obtained by the low precision computation. The

emergence of low precision onmodern hardware has generatedmuch recent

interest in mixed precision algorithms, with many successful examples in nu-

merical linear algebra ; the survey [18] gives an overview of this field. In this

thesis, we review specifically the state-of-the-art on using mixed precision for

LRA.

1.5 . Mixed precision for low-rank approximations

In this section, we highlight the application of mixed precision arithmetic

to LRA methods in two folds.
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1.5.1 . Mixed precision for low-rank approximation for matrices

Contrary to other linear algebra routines such as the solution of linear

systems, there has been relatively little work on designing mixed (or even

low) precision algorithms for LRA. Amestoy et al. [39] describe a mixed pre-

cision matrix LRA that partitions the low-rank factors into several block co-

lumns stored in different precision depending on the singular values of the

matrix ; this approach can make use of low precision for matrices with rapidly

decaying singular values. A similar approach is proposed by Ooi et al. [40] for

H-matrices.

It is especially natural to seek to exploit the high-speed low precision avai-

lable on GPU hardware to accelerate randomized LRA, which mainly rely on

matrix multiplications. However, the literature on these methods has mainly

focused on either exact arithmetic or fixed precision arithmetic, where all the

operations are performed in the same precision. To the best of our know-

ledge, only three recent papers depart from an exact or fixed arithmetic

context to propose mixed precision variants of randomized LRA : Connolly,

Higham, and Pranesh [41], Ootomo and Yokota [42], and Buttari, Mary, and

Pacteau [43].

Connolly, Higham, and Pranesh [41] propose a mixed precision variant of

the adaptive randomized SVD algorithm of Martinsson and Voronin [31]. This

variant relies on the observation that the norm of the matrix deflated with

the current LRA may rapidly decrease, which makes it possible to switch the

computation to lower precision. This observation is linked to the decay of the

singular values of the matrix, which is also exploited by Amestoy et al. [39].

Similarly, Buttari, Mary, and Pacteau [43] propose amixed precision truncated

QRCPwith either classical or randomized pivoting, which is based on the same

principle of exploiting singular value decay. In this article, we do not consider

adaptive (fixed-accuracy) variants of randomized LRA and do not assume any

decay of the singular values of the matrix.

Ootomo and Yokota [42] propose a mixed precision variant of fixed-rank

randomized SVD (Algorithm 1.3). This variant relies on the observation that

the randomGaussianmatrixΩ can be represented in fp16 arithmetic without

endangering the stability of the computation. As a result, the matrix products

B = AΩ can be efficiently performed using GPU tensor cores by computing

B = A1Ω+A2Ω, where A ≈ A1 +A2 and both A1 and A2 are stored in fp16.

This approach exploits multiword arithmetic to emulate fp32 arithmetic using

fp16 computations, see also Fasi et al. [44] for further details aboutmultiword

arithmetic.

1.5.2 . Mixed precision for low-rank approximation for tensors

There have also been very few attempts to develop mixed precision LRA

for tensors. We can mention a recent work by Yang et al. [45] that proposes
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an iterative CANDECOMP/PARAFAC (CP) decomposition usingmixed precision

stochastic gradient descent.

In a context different from LRA, the recent work of Agullo et al. [46] is

worth mentioning : they consider the solution of linear systems Ax = b via

Generalized Minimal Residual (GMRES), where A can be approximated under

tensor format [47]. This approach can then benefit from a mixed precision

implementation of GMRES.
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2 - Mixed precision iterative refinement for

low-rank approximations

2.1 . Introduction

In this chapter, we propose a new method for computing Low-rank ap-

proximations (LRA) in mixed precision arithmetic. Our approach is applicable

to basically any LRA algorithm, involving either matrices or tensors. It is re-

miniscent of the Iterative Refinement (IR) framework used for solving linear

systems : the idea is to first compute a LRA in low precision, then evaluate the

error (or residual) from this first LRA, and re-apply the same LRA kernel to this

error term to obtain a correction term that is used to refine the accuracy of

the LRA. This can be repeated iteratively to reach any level of desired accu-

racy. The refined LRA is obtained as the sum of the original low precision LRA

and the correction term, and is thus of larger yet still of low-rank. In order to

contain the rank growth and maintain the optimal rank throughout the itera-

tions, our method employs a “recompression” strategy that is performed in

high precision but whose cost stays asymptotically smaller than that of LRA.

We carry out an error analysis of our method based on a general para-

meterized error model that only assumes that we have numerically stable

implementations of the basic kernels used in our algorithm (LRA, matrix mul-

tiplication, and recompression). Under this model, we prove that the method

can reach a high accuracy while performing most of the operations in low

precision. In particular, we show that the precision used for the LRA kernel—

which is the computational bottleneck of the whole method—only affects the

convergence speed of the process, but not its attainable accuracy. In order

to assess under which conditions we can expect our method to be beneficial,

we perform a complexity analysis that measures the cost of the method as a

function of the numerical rank of the input as well as the speed ratio between

the low and high precision arithmetic. We identify two situations where our

method has a strong potential. The first is when the hardware provides fast

low precision matrix multiply-accumulate units [17] (see Section 1.4.2), which

allow for computing the low precision LRA at very high speed. The second is

when the numerical rank of the input is small at low accuracy levels, which

means that the singular values of the matrix or tensor are rapidly decaying ;

in this case, the first iterations of our method becomes inexpensive.

We apply our method to various low-rank matrix and tensor decompo-

sition : singular value decomposition (SVD), QR, Tucker, hierarchical Tucker

(HT),and tensor-train (TT). We perform someMATLAB experiments to confirm

that our method is able to compute a LRA at any desired level of accuracy,
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while mostly using the low precision arithmetic.

The rest of this chapter is organized as follows. In Section 2.2, we describe

our main algorithm of IR for LRA and provide the corresponding error and

complexity analysis. Then we apply this method to various LRA algorithms,

namely QR Column Pivoting (QRCP) and randomized SVD for matrices, and

high-order singular value decomposition (HOSVD), Tensor-Train Singular Va-

lue Decomposition (TTSVD), and hierarchical Tucker singular value decompo-

sition (HTSVD) for tensors in Section 2.3 and Section 2.4, respectively. We vali-

date ourmethod experimentally in Section 2.5. Finally, we provide concluding

remarks in Section 2.6.

2.1.1 . Notations

In this chapter we will denote X the object of interest, a matrix or a ten-

sor, and as F its low-rank factors that we seek to compute. Note that our

main IR method described in the next section does not require any specific

knowledge or property of the tensor decomposition, and simply denotes its

low-rank factors as F for either Tucker, TT, HT formats.

Two types of parameters are used to control the accuracy of the LRA : ε

and u. Actually, in our IR method, we will have four parameters ε, u, ε`, and u`,

where ε` and u` denote the truncation threshold and unit roundoff used by

the low precision LRA, whereas ε and u denote the truncation threshold and

unit roundoff used by the rest of the operations performed in high precision,

and correspond to the final target accuracy. Hence, ε` ≥ ε and u` ≥ u.

2.2 . Iterative refinement for low-rank approximations

Considering the problem of computing low-rank factors F of a matrix or

tensor X satisfying a relative accuracy ε, that is, ‖X − F‖ ≤ ε‖X‖. In finite

precision arithmetic, wemust carefully select the precision in order to achieve

this accuracy. In a uniform precision context (where we perform all computa-

tions in the same precision), we must use a precision whose unit roundoff u

is safely smaller than ε, that is, u = θε, with θ ≤ 1 some parameter. Indeed,

we may then expect the computed factors F̂ to satisfy

‖X − F̂‖ ≤ (ε+ cu)‖X‖ = (1 + cθ)ε‖X‖ (2.1)

for some constant c, where the term cθ accounts for the effect of rounding

errors and can be made as small as needed by decreasing θ (decreasing u,

that is, increasing the precision).

For applications requiring a relatively high accuracy (small values of ε),

this uniform precision approach therefore cannot make use of lower preci-

sion. This motivates us to propose amixed precisionmethod, outlined below,

which uses low precision to compute a first approximate set of factorsF0, and

then refines them into more accurate factors F1 as follows.
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1. Compute low-rank factors F0 of X at low accuracy ε` and in low preci-

sion u` = θε`.

2. Compute the error E = X − F0 in high precision u.

3. Compute low-rank factors FE of E at low accuracy ε` and in low preci-

sion u` = θε`.

4. Update the low-rank factors ofX to F1 = F0 + FE in high precision u.

This approach is based on the observation that, while the first factors F0

will achieve a low accuracy ε` relative to ‖X‖,

‖X − F0‖ ≤ ε`‖X‖, (2.2)

the factors FE of the error E will achieve a low accuracy ε` relative to ‖E‖,

‖E − FE‖ ≤ ε`‖E‖. (2.3)

Neglecting for now the effect of rounding errors, we have ‖E‖ = ‖X −F0‖ ≤
ε`‖X‖, and therefore the combined factors F0+FE will satisfy an accuracy of

about ε2` :

‖X−F1‖ = ‖X−F0−FE‖ = ‖E−FE‖ ≤ ε`‖E‖ ≤ ε`‖X−F0‖ ≤ ε2`‖X‖. (2.4)

This idea is therefore based on computing additive updates F0 + FE in

mixed precision. This is reminiscent of the IR for linear systemsAx = b, which

is also based on additive updates of the solution x. Indeed, for Ax = b, step 1

corresponds to computing an initial solution x0, step 2 corresponds to com-

puting the residual r = b−Ax0, step 3 corresponds to solving another linear

system Ad = r for a correction term d, and step 4 updates x1 = x0 + d. The

term “iterative refinement” is most commonly used for the solution of linear

systems, but is also found in the least squares, singular value, or eigenva-

lue problems. Therefore, we believe that the method proposed in this article

should be called “iterative refinement for LRA”.

One of the crucial insights that makes this method effective is that the er-

ror E has a low numerical rank whenever X has one too, since it is the sum

of X and F0, which is low-rank by construction. To be specific, we will prove

in Section 2.2.2 that rank(E, ε`) is at most 2 rank(X, ε2` ) and, for the same rea-

son, the rank of the refined factorsF1 is bounded by 3 rank(X, ε2` ). The factors

F1 can then be cheaply recompressed into factors of optimal rank rank(X, ε2` )

in high precision u by exploiting their (suboptimal) low-rank structure.

If accuracy higher than ε2` is needed, we can apply the method again on

F1 to obtain an accuracy of ε3` , and so on ; we obtain Algorithm 2.1, which re-

peats this process until the desired accuracy is achieved. An iteration of the

algorithm is illustrated in Figure 2.1. Algorithm 2.1 is described within a gene-

ral IR framework that uses an arbitrary LRA algorithm : lra(X, ε) returns low-

rank factors F ofX at accuracy ε. We also require a decompress kernel which
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transforms low-rank factors F back to a full-size object, and a recompress
kernel which takes low-rank factors F and ε as input, and computes their op-

timal LRA at accuracy ε (that is, the LRA of the smallest rank that achieves an

accuracy of at least ε). We consider these three abstract kernels in order for

algorithm 2.1 to be as general as possible. In particular, this will allow us to

apply it to different LRA methods, both for matrices and tensors. However, to

be concrete, we will also discuss specific examples in sections 2.3 and 2.4. Na-

mely, we will consider five different lra kernels : QRCP and randomized SVD

for matrices, and HOSVD, TTSVD, and HTSVD for tensors. For matrices, the

decompress kernel is simply a matrix-matrix product ; for tensors, it is simi-

larly a contraction of the low-rank tensor along all inner dimensions. Finally,

the recompress kernel depends on the lra kernel : for each case, wewill show
how to adapt the lra kernel (which takes as input a full object) to obtain the

recompress kernel (which takes as input a low-rank object) ; see sections 2.3

and 2.4 for more details.

Algorithm 2.1 Iterative refinement for LRA.

Input : X , the matrix or tensor of interest ;

ε, the desired relative accuracy for the approximation ;

nit, the maximum number of iterations ;

lra, a low-rank approximation algorithm;

decompress, recompress : decompression and recompression

algorithms.

Output : F , the low-rank factors X .

1 : Compute F = lra(X, ε`) in precision u`.

2 : for i = 1 to nit do

3 : Compute E = X − decompress(F ) in precision u.
4 : Compute α = ‖E‖ in precision u.
5 : If α ≤ ε‖X‖, exit.
6 : Scale E ← α−1E in precision u.
7 : Compute FE = lra(E, ε`) in precision u`.

8 : Scale back FE ← αFE in precision u.
9 : Compute F = recompress(F + FE, ε

i+1
` ) in precision u.

10 : end for

Algorithm 2.1 incorporates two additional steps to make the method ef-

fective. First, the error E is scaled by the inverse of its norm (Line 6) before

computing its low-rank factors FE , and then scaled back after (Line 8). This

is done to prevent the elements of E from underflowing when converted to

the lower precision, in the case where the arithmetic uses not only a redu-

ced number of bits in the significand but also in the exponent, such as is the

case for the Institute of Electrical and Electronics Engineers (IEEE) half pre-
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Figure 2.1 – Illustration of the LRA algorithm.

cision fp16 arithmetic. We also note that the elements of X itself are also

susceptible to underflow or overflow; in this case, a similar scaling should be

applied toX . Second, the factors F are recompressed (Line 9) to their optimal

low-rank representation to prevent the rank from growing out of control du-

ring the iterations. Indeed, as mentioned above, the rank of F is bounded by

3 rank(X, ε2` ) after one iteration. Therefore, in the absence of recompression,

the rank would grow as 3k rank(X, ε2` ) after k iterations, and quickly make

the method unaffordable. This recompress kernel can be implemented for

an asymptotically negligible cost for many LRA algorithms, including all those

considered in this article—has done in Chapter 4.

Algorithm 2.1 has four parameters that control its accuracy : ε, ε`, u, and

u`.

• ε indicates the target accuracy for the final factors, and is prescribed by

the user as input to Algorithm 2.1.

• u is the unit roundoff of the high precision, which should be taken to

be the lowest possible such that u is still safely smaller than ε : u = θε,

θ ≤ 1.

• u` is the unit roundoff of the low precision, which is used to perform the

most expensive parts of the computation, the calls to lra. Its choice de-
pends onboth the available arithmetics on the target hardware, and the
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target accuracy ε. Indeed, lowering the precision makes each iteration

faster but requires more of them.

• Finally, ε` is the tolerance usedby the lra kernel ; since lra is performed

in precisionu`, ε` should be set such thatu` is safely smaller than ε`, that

is, ε` = u`/θ`, θ` ≤ 1. We note that this is necessary because using a ε`
too close to u` preventsmost lra algorithms from reliably detecting the

correct rank, due to the noise introduced by rounding errors.

In the rest of this section, we first perform an error analysis to determine

the attainable accuracy and convergence rate of Algorithm 2.1. We then per-

form a complexity analysis to determine under which conditions the algo-

rithm can be expected to be faster than a standard uniform precision lra
performed entirely in high precision u.

2.2.1 . Error analysis

In order to carry out the error analysis of Algorithm 2.1, we will use

the standard model of floating-point arithmetic defined in Section 1.4.1 [26,

sect. 2.2]. In addition, we also need to make the following three assumptions

on the numerical behavior of the lra, decompress, and recompress kernels.

First, we assume that computing F = lra(X, ε`) in precision u` yields com-

puted factors F̂ satisfying

‖X − F̂‖ ≤ (ε` + b1u`)‖X‖ = (1 + b1θ`)ε`‖X‖. (2.5)

Second, we assume that computing F = decompress(F ) in precision u yields

computed factors F̂ satisfying

‖F − F̂‖ ≤ b2u‖F‖ = b2θε‖F‖. (2.6)

Third, we assume that computing F = recompress(F, ε) in precision u yields

computed factors F̂ satisfying

‖F − F̂‖ ≤ (ε+ b3u)‖F‖ = (1 + b3θ)ε‖F‖. (2.7)

In (2.5)–(2.7), the error bounds are parameterized by the constants b1, b2, and

b3, which will usually depend on the dimensions ofX .

For simplicity, we ignore any rounding errors associated with the scaling

by α = ‖E‖, which are negligible and can in fact be prevented by rounding α

to the nearest power of two (in binary floating-point arithmetic).

We are now ready to prove the following result.

Theorem 2.1. If Algorithm 2.1 is applied to X with lra, decompress, and
recompress kernels satisfying Equation (2.5)–Equation (2.7), then after k itera-

tions, the computed factors F̂ satisfy

‖X − F̂‖ ≤ (φk+1 + ξ +O(ε`ε))‖X‖, (2.8)

with φ = (1 + b1θ`)ε` + (b2 + 1)θε and ξ =
(
1 + (b2 + b3 + 2)θ

)
ε.
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Proof. Defining F̂i as the computed factors after i iterations, our goal is to

obtain a bound of the form

‖X − F̂i+1‖ ≤ φ‖X − F̂i‖+ ξ‖X‖, φ < 1, (2.9)

which will allow us to conclude that the error contracts by a factor φ at each

iteration, until it converges to its maximum attainable accuracy ξ.

Given F̂i, the first step is to decompress it and compute E at Line 3 ; by

Equation (2.6), the computed Ê satisfies

‖X − F̂i − Ê‖ ≤ θε
(
(b2 + 1)‖F̂i‖+ ‖X‖

)
, (2.10)

with an extra term θε(‖F̂i‖ + ‖X‖) on the right-hand side coming from

the rounding error incurred by the subtraction. Using the triangle inequality

‖F̂i‖ ≤ ‖X − F̂i‖+ ‖X‖, we can rearrange Equation (2.10) as

‖X − F̂i − Ê‖ ≤ θε
(
(b2 + 1)‖X − F̂i‖+ (b2 + 2)‖X‖

)
. (2.11)

Then we compute lra(Ê, ε`) at Line 7 ; by Equation (2.5) the computed F̂E

satisfies

‖Ê − F̂E‖ ≤ (1 + b1θ`)ε`‖Ê‖. (2.12)

By using Equation (2.11) and the triangle inequality, we rearrange Equa-

tion (2.12) as

‖Ê − F̂E‖ ≤ (1 + b1θ`)ε`
(
‖X − F̂i‖+ ‖X − F̂i − Ê‖

)
(2.13)

= (1 + b1θ`)ε`‖X − F̂i‖+O(ε`ε), (2.14)

where we do not keep track explicitly of high order terms in O(ε`ε) for the

sake of readability. Finally, we obtain the next iterate Fi+1 by recompressing

F̂i + F̂E at Line 9 ; by Equation (2.7), the computed F̂i+1 satisfies

‖F̂i + F̂E − F̂i+1‖ ≤ (1 + b3θ)ε‖F̂i + F̂E‖. (2.15)

By using Equation (2.11), Equation (2.14), and the triangle inequality, we rear-

range Equation (2.15) as

‖F̂i + F̂E − F̂i+1‖ ≤ (1 + b3θ)ε
(
‖X − F̂i − Ê‖+ ‖Ê − F̂E‖+ ‖X‖

)
(2.16)

= (1 + b3θ)ε‖X‖+O(ε`ε). (2.17)

Using the triangle inequality together with Equation (2.11), Equation (2.14),

and Equation (2.17), we obtain

‖X − F̂i+1‖ = ‖X − F̂i − Ê + Ê − F̂E + F̂i + F̂E − F̂i+1‖ (2.18)

≤ ‖X − F̂i − Ê‖+ ‖Ê − F̂E‖+ ‖F̂i + F̂E − F̂i+1‖ (2.19)

≤ φ‖X − F̂i‖+ ξ‖X‖+O(ε`ε), (2.20)
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with

φ = (1 + b1θ`)ε` + (b2 + 1)θε (2.21)

and

ξ =
(
1 + (b2 + b3 + 2)θ

)
ε. (2.22)

Noting that the first factors F̂0 computed at Line 1 satisfy by Equation (2.5)

‖X − F̂0‖ ≤ (1 + b1θ`)ε`‖X‖ ≤ φ‖X‖ (2.23)

concludes the proof.

Theorem 2.1 states that the approximation error ‖X − F̂‖ contracts by
a factor φ = O(ε`) at each iteration, until it reaches its maximum attainable

accuracy ξ = O(ε). Thus, after k iterations, the error is of order εk+1
` +ε, which

means that we can actually estimate in advance approximately how many

iterations are needed to achieve the desired accuracy ε (up to constants) :

nit = log(ε)/ log(ε`)− 1. (2.24)

It is worth noting that, unlike IR for linear systems, there is no dependence

on the condition number of X and thus the only condition for Algorithm 2.1

to converge is that φ < 1, which should always be the case as long as θ` is suf-

ficiently small. This is explained by the fact that the speed of convergence of

Algorithm 2.1 depends on the backward error ‖A−XY T ‖, rather than the for-
ward one. Therefore, Algorithm 2.1 is extremely general : it can be applied to

any matrix or tensor of low numerical rank, and it can make use of potentially

very low precisions.

From a numerical perspective, Algorithm 2.1 is therefore quite appealing.

We next discuss under which conditions it is also attractive from a computa-

tional perspective.

2.2.2 . Complexity analysis

The cost of Algorithm 2.1 will mainly depend on two factors : the relative

speed for computing in different precisions on the target hardware, and the

numerical ranks of the objects encountered during the iterations (X ,E, and

F ).

We begin by bounding these ranks solely as a function of the numerical

ranks of X at given accuracies. In order to do so, we will need to bound the

numerical rank ofA+B as a function of that ofA andB by using the following

lemma. In what follows, recall that when X is a tensor, rank(X, ε) is a vector

(see Section 2.1.1) and all the (in)equalities involving this quantity should be

interpreted component wise.

Lemma 2.1.

rank(A+B, ε) ≤ rank(A,
ε‖A+B‖
2‖A‖

) + rank(B,
ε‖A+B‖
2‖B‖

). (2.25)
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Proof. For the purpose of this proof only, we introduce an alternative defini-

tion of numerical rank that measures accuracy in an absolute sense, rather

than a relative one. Let rankabs(X, ε) be the smallest integer rε such that

there exists F of rank rε satisfying ‖X − F‖ ≤ ε. The rankabs operator satis-

fies

rankabs(X, ε‖X‖) = rank(X, ε) (2.26)

and

rankabs(A+B, ε) ≤ rankabs(A, ε/2) + rankabs(B, ε/2) (2.27)

by the triangle inequality. Therefore, we have that

rank(A+B, ε) = rankabs(A+B, ε‖A+B‖) (2.28)

≤ rankabs(A, ε‖A+B‖/2) + rankabs(B, ε‖A+B‖/2)
(2.29)

= rank(A, ε‖A+B‖/2‖A‖) + rank(B, ε‖A+B‖/2‖B‖).
(2.30)

Let us consider the ith iteration of Algorithm 2.1. Using Equation (2.25),

we can bound the rank of E = X − F as

rank(E, ε`) ≤ rank(X, ε`‖E‖/2‖X‖) + rank(F ). (2.31)

Since F is the low-rank factorization of X after i iterations, it achieves an ac-

curacy of εi` and so

rank(F ) = rank(X, εi`) (2.32)

(we assume here that εi` ≤ ε as otherwise the method would be stopped).

After i iterations, ‖E‖ ≤ εi`‖X‖ and so overall Equation (2.31) becomes

rank(E, ε`) ≤ rank(X, εi+1
` /2) + rank(X, εi`). (2.33)

Since rank(X, ε′) ≤ rank(X, ε) for ε ≤ ε′, assuming that ε ≤ εi+1
` /2, we can

obtain a simpler but weaker version of Equation (2.33),

rank(E, ε`) ≤ 2 rank(X, ε). (2.34)

Thus, the rank of E at any iteration is at most twice as large as the numerical

rank ofX at accuracy ε.

With a similar argument, the rank of the refined factorsF+FE is bounded

by

rank(F + FE) ≤ rank(F ) + rank(FE) (2.35)

= rank(F ) + rank(E, ε`) (2.36)

≤ rank(X, εi+1
` /2) + 2 rank(X, εi`), (2.37)
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where Equation (2.37) follows from Equation (2.32) and Equation (2.33). Again,

a simpler but weaker bound is

rank(F + FE) ≤ 3 rank(X, ε), (2.38)

showing that at any iteration the rank of the factors before recompression is

at most three times the numerical rank ofX at accuracy ε.

Now that we have bounded the ranks of the objects appearing in Algo-

rithm 2.1, we are ready to analyze its cost. We denote as p and s the product

and the sum of the dimensions ofX , respectively. Thus, ifX ∈ Rm×n is a ma-

trix, p = mn and s = m+ n ; if X ∈ Rn1×···×nd is a tensor of order d, p =
∏

ni

and s =
∑

ni. For readability, we only report the dominant term for the cost

of each assumption/line, and assume a large scale setting, so that p� s.

We make the following assumptions on the flops (floating-point opera-

tions) cost of the different kernels :

Flops lra(X, ε) = c1p rank(X, ε)1 + o(p), (2.39a)

Flops decompress(F ) = c2p rank(F )1 + o(p), (2.39b)

Flops recompress(F, ε) = o(p). (2.39c)

For tensors, the cost of lra and decompress depends on the order in which

the dimensions are treated (see Section 2.4). Here we assume they are trea-

ted in the natural order, without loss of generality since the dimensions

can be arbitrarily reordered. In this case, the dominant cost of lra and

decompress is proportional to the first coefficient of the rank vectors, de-

noted as rank(X, ε)1. Note that for matrices, the rank is a scalar so that

rank(X, ε)1 = rank(X, ε).

Let us now measure the flops cost of the ith iteration of Algorithm 2.1.

• Line 3 : c2p rank(X, εi`)1 flops.

• Line 4 : 2p flops (for the Frobenius norm).

• Line 6 : p flops.

• Line 7 : c1p
(

rank(X, εi+1
` /2)1 + rank(X, εi`)1

)
flops.

• Line 8 : o(p) flops.

• Line 9 : o(p) flops.

The dominant steps are the calls to lra (Line 7), which is performed in

low precision, and to decompress (Line 3), which is performed in high preci-

sion. The computation of α and the scaling by α (Lines 4 and 6) could also be

significant if the ranks are very small.
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Summing the costs of these dominant steps across all nit iterations, plus

the cost of the initial lra (Line 1), gives a total flops cost of

Flops IR = c1p rank(X, ε`)1 + p

nit∑
i=1

(
c1 rank(X, εi+1

` /2)1

+ c1 rank(X, εi`)1 + c2 rank(X, εi`)1 + 3
)
.

(2.40)

Since some of these flops are performed in low precision and some in high

precision, we must account for the different speeds of different arithmetics.

To do so, we ponderate the low precision flops by a weight ω` < 1 which indi-

cates the relative performance ratio between the low and the high precision.

We obtain

Time IR ∝ ω`c1p rank(X, ε`)1 + p

nit∑
i=1

(
ω`c1 rank(X, εi+1

` /2)1

+ ω`c1 rank(X, εi`)1 + c2 rank(X, εi`)1 + 3
)
,

(2.41)

where the “Time” formula should be taken as a rough estimator of the time

performance of the algorithm, although in practice the actual execution time

depends on a number of other complex factors such as the arithmetic inten-

sity of the operations, the data locality, and the parallelism.

This cost is to be compared with the cost of simply computing lra(X, ε)

in the high precision u, given by

Time Ref. ∝ c1p rank(X, ε)1. (2.42)

This complexity analysis reveals two situations where Algorithm 2.1 can

outperform the uniform precision approach.

Numerical ranks rank(X, εi`) rapidly decreasing as ε` increases The first

situation is when the numerical ranks ofX at accuracy lower than the final tar-

get ε aremuch smaller than rank(X, ε). This can certainly be the case in some

applications. For example, in the case of matrices, the numerical rank ofX at

any given accuracy is determined by its singular values : r = rank(X, ε`) is

the number of singular values that need to be kept for the truncated SVD to

approximateX with accuracy at least ε`. Thus, if the singular values decay ra-

pidly, rank(X, ε`) will in general be significantly smaller than rank(X, ε). The

most extreme example is a matrix with one large singular value and all the

remaining rank(X, ε) − 1 singular values just above ε‖X‖. In this extreme

case, all the iterations except the last will only need to compute on rank-1

matrices, so the overall cost of the method will be dominated by that of the

last iteration, which is roughly ω`c1p rank(X, ε), and so is always smaller than

Equation (2.42). In a more realistic setting where the singular values decay

exponentially, we may still expect Equation (2.41) to be smaller than Equa-

tion (2.42) even for reasonably traditional values of ω`.
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This situation also extends to tensors, although we do not have such a

simple characterization as one based on singular values. Essentially, if the un-

derlying matrices used in the tensor representation exhibit rapidly decaying

singular values, then the rank vectors rank(X, ε`) will take much smaller va-

lues than rank(X, ε) when ε` � ε.

Very fast lowprecision arithmetic (or very slowhigh precision arithmetic)

The second situation is when the low precision arithmetic is much faster than

the high precision one, that is, when ω` � 1. This is becoming increasingly

common for low precisions onmodern hardware, especially accelerators. For

example, the fp16 and bfloat16 arithmetics can be up to 16 times faster than

fp32 arithmetic on recent NVIDIA Graphics Processing Unit (GPU)s. Similarly,

fp16 arithmetic can be up to 8 times faster than fp32 on the AMD Instinct

MI250X GPUs.

Moreover, such hardware provides another crucial feature which allows

the decompress kernel to also be performed in low precision. Indeed, while Al-

gorithm 2.1 requires the decompress kernel Line 3 to be performed in high

precision, this kernel has the particularity of taking as input the factors F ,

which are stored in low precision. Therefore, what we really need is to com-

pute in high precision with low precision numbers ; this happens to be an ea-

sier task than the more general problem of computing in high precision with

high precision numbers. In fact, an increasing range ofmodern hardware pro-

vides the capability to perform this task inexpensively. For example, the NVI-

DIA GPUs are equipped with so-called tensor core units that can carry outma-

trixmultiplication with half precision (16-bit) matrices at the accuracy of single

precision (fp32) arithmetic but at the much higher speed of half precision

arithmetic. Similar instructions are available on several other architectures,

which have been analyzed by Blanchard et al. [17] under a common frame-

work called block Fused Multiply-Add (FMA). In our context, a block FMA unit

therefore allows all the dominant operations to be performed at the speed

of the low precision, which is much higher than that of the high precision. In

this situation, the time cost of Algorithm 2.1 can be much lower than Equa-

tion (2.42), even in the worst case scenario where the ranks of all objects

throughout the iterations attain their upper bound of 2 rank(X, ε) for E. In-

deed, in this case, we have

Time IR ∝ ω`p rank(X, ε)1
(
c1(2nit + 1) + nitc2

)
+ 3p. (2.43)

Neglecting the 3p term, Equation (2.43) is smaller than Equation (2.42) if

ω`(2nit + 1 + nitc2/c1) ≤ 1. (2.44)

For many LRA algorithms, including all those considered in this article, the

cost of compressing (lra kernel) a full object is higher than the cost of decom-

pressing it (decompress kernel), that is, c1 > c2. Therefore, Equation (2.44) is

certainly satisfied if ω`(3nit + 1) ≤ 1.

36



To illustrate this cost analysis, let us take the NVIDIA GPU tensor cores

as an example, for which fp16 arithmetic (u` ≈ 3 × 10−4) is up to 16 times

faster (ω` = 1/16) than fp32 arithmetic (u ≈ 6 × 10−8). Since u2` ≈ u, a single

refinement step (nit = 1) suffices to recover fp32 accuracy. Thus, the term

ω`(3nit + 1) is equal to 4/16 = 1/4, which suggests that a speedup of up to a

factor 4× could be expected.

Clearly, the two situations discussed above are not exclusive, so in practice

it is very possible that we have both smaller ranks and a fast low precision. To

further assess under which condition Algorithm 2.1 can outperform the stan-

dard approach, we now specialize it to specific matrix or tensor algorithms

in Section 2.3 and Section 2.4.

2.3 . Application to matrix low-lank approximation

In this section we specialize Algorithm 2.1 to the case where X ∈ Rm×n

is a matrix. We focus on two widely popular choices : the truncated QR de-

composition with column pivoting (QRCP, Section 2.3.1), and the randomized

SVD (Section 2.3.2). For each algorithm, we discuss their use as lra kernel in

our mixed precision IR approach (Algorithm 2.1) : in particular, we check that

the algorithm satisfies the assumptions Equation (2.5)–Equation (2.7) of the

error analysis and the assumptions Equation (2.39a)–Equation (2.39c) of the

complexity analysis. We also explain how to perform the recompress kernel

based on the specific lra choice.

2.3.1 . Truncated QRCP decomposition

Our first choice of lra algorithm is a truncated QRCP decomposition. As

explained in Section 1.2.2, QRCP decomposes the original matrix X ∈ Rm×n

as

XP = QR (2.45)

whereQ ∈ Rm×n is amatrix with orthonormal columns,R ∈ Rn×n is an upper

triangular matrix, and P ∈ Rn×n is a permutation matrix.

We can implement a suitable recompress algorithm using this trunca-

ted QRCP decomposition. Several versions are possible ; we describe in Algo-

rithm 2.2 the one that we will use in this article. Given a (non-optimal) trunca-

ted QRCP decomposition QinV
T
in , Algorithm 2.2 recompresses it into an opti-

mal LRA as follows. First, a thin QR factorizationQR of Vin is computed. Then,

the productQinR
T is formed and a truncated QRCP decompositionQoutV

T is

computed at the desired target accuracy ε. This yields the recompressed left

factor Qout ; the recompressed right factor Vout is obtained by forming QV .

We now check that the assumptions Equation (2.5)–Equation (2.7) of the

error analysis are satisfied for truncated QRCP and determine the value of

the constants in the error bounds. For Equation (2.5), we can analyze the
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Algorithm 2.2 recompress algorithm using truncated QRCP decompo-

sition.

Input : a truncated QRCP decomposition QinV
T
in of the form Equa-

tion (1.11) ;

ε, the target accuracy.
Output : a recompressed QRCP decomposition QoutV

T
out.

1 : Compute the thin QR factorization QR = Vin.

2 : Compute the truncated QRCP decomposition QoutV
T = QinR

T .

3 : Vout ← QV

truncated QRCP by separating the truncation and rounding errors. As explai-

ned above, we can control the size of the truncation error by stopping the

QRCP decomposition once the approximation error falls below the desired

threshold ε`, so that in exact arithmetic we obtain

QkRk = XP + E, ‖E‖ ≤ ε`‖X‖. (2.46)

To account for the rounding errors, we use standard analysis of QR decom-

position [26, p. 361], which shows that the computed QR factors satisfy the

backward error bound

Q̂kR̂k = XP +∆X + E, ‖∆X‖ ≤
√
kγ̃mk‖X‖, (2.47)

where γ̃mk = cmku`/(1 − cmku`) ' cmku`, for a modest constant c inde-

pendent of the dimensions of the problem. Note that this bound is valid even

with column pivoting, since computing the QRCP decomposition XP = QR

ofX is equivalent to computing the unpivoted QR decomposition ofXP . As-

sumption Equation (2.5) is thus satisfied with b1 ' cmk
√
k. The decompress

kernel is a standardmatrix multiplication between the low-rank factorsQ and

V hence assumption Equation (2.6) is satisfied with b2 = k by [26, p. 71]. Fi-

nally, to bound the error introduced by the recompress kernel we must ana-

lyze Algorithm 2.2. Since the algorithm simply consists of standard QR, QRCP,

and matrix multiplication operations, this analysis is straightforward and re-

lies on standard error bounds from the literature. Although we omit it here

for the sake of conciseness, we have performed this analysis and found that

Equation (2.7) is satisfied with b3 ' cn(k3/2 + k̃3/2) + k, where k is the rank of

QinV
T
in before recompression and k̃ is the rank of QoutV

T
out after recompres-

sion.

Finally, we discuss the cost of Algorithm 2.1 when using truncated QRCP

decomposition. The truncated QRCP decomposition Equation (1.11) can be

computed in 4mnk + o(mnk) flops [24], so that assumption Equation (2.39a)

is satisfied with c1 = 4. The decompress kernel is amatrixmultiplication which

requires 2mnk flops, so that assumption Equation (2.39b) is satisfiedwith c2 =
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2. For the recompress kernel, Algorithm 2.2 requires (6m+ 2n)k2 + o(mk2 +

nk2) flops, so that assumption Equation (2.39c) is satisfied since (m+ n)k2 =

o(mn).

2.3.2 . Randomized SVD decomposition

Our second choice of LRA algorithm is the randomized SVD decomposi-

tion. Several variants have been proposed ; in this chapter we use the one

described in Algorithm 1.3 in Section 1.2.3, which was proposed by Martins-

son andVoronin [31]. For the sake of commodity, we recall the algorithmagain

in Algorithm 2.3.

Algorithm 2.3 Randomized SVD decomposition.

Input : X ∈ Rm×n, a target accuracy ε`, and a block size b.
Output : a truncated SVD UΣV T decomposition of X .

1 : Initialize Q and B to empty matrices.

2 : nX = ‖X‖
3 : repeat

4 : Draw a random Gaussian matrix Ω ∈ Rn×b.

5 : Y = XΩ
6 : Qb = qr(Y −Q(QTY ))
7 : Bb = QT

b X
8 : Q← [Q Qb]

9 : B ←
[
B
Bb

]
10 : X ← X −QbBb

11 : until ‖X‖ ≤ ε`nX

12 : Compute the truncated SVD decomposition B ≈ UΣV T at accu-

racy ε`.
13 : U = QU

We chose to use this specific randomized SVD variant because it presents

several advantages. It is blocked, which allows for an efficient implementa-

tion on modern hardware. Moreover, it provides a cheap yet reliable error

estimation. Thanks to blocking and error estimation, Algorithm 2.3 can adap-

tively reveal the numerical rank of the matrix at the requested accuracy ε` ;

no a priori knowledge on the rank is thus necessary. Finally, we have experi-

mentally observed Algorithm 2.3 to be more accurate than other randomized

SVD variants that we have tested.

In order to perform the recompress operation using randomized SVD, Al-

gorithm 2.3 needs to be slightly adapted. The algorithm takes as input a (non-

optimal) low-rank matrix X = UΣV T and seeks to recompress it, without

forming the full X . Lines 5 and 7 of Algorithm 2.3 are matrix products and
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can thus exploit the low-rank structure ofX . Line 10 is a subtraction between

two low-rankmatrices, which requires no operations (the low-rank factors can

simply be concatenated). The only difficulty lies on Line 11, which requires

computing ‖X‖ to control the error and stop the algorithm. In order to com-

pute ‖X‖without formingX , we orthonormalize one of the two low-rank fac-

tors and compute the norm of the other one.

We now check if the assumptions Equation (2.5)–Equation (2.7) of the er-

ror analysis are satisfied for the randomized SVD. To do so, we rely on the

error analysis of Connolly, Higham, and Pranesh [41], which determines error

bounds for Algorithm 2.3 in floating-point arithmetic. Note that their analysis

assumes that the deterministic SVD on Line 12 is computedwith a numerically

stable algorithm. By [41, Corollary 2.4], assumption Equation (2.5) is satisfied

with b1 '
√
nmk. Assumption Equation (2.6) is satisfied with b2 = k + 1 since

decompressing UΣV T can be achieved with a matrix-matrix product and a

scaling. Finally, the analysis of [41] does not directly apply to the recompress
version of the algorithm discussed above, but we expect its numerical beha-

vior to be similar to the original algorithm.

Next, we discuss the cost of Algorithm 2.3. If X is a full m × n matrix, Al-

gorithm 2.3 costs 6mnk + o(mnk) flops [31, Eqn. (25)], so that assumption

Equation (2.39a) is satisfied with c1 = 6. It is easy to extend [31, Eqn. (25)]

to the case where X = UΣV T is represented under low-rank form to check

that the recompress variant of Algorithm 2.3 described above has a cost in

O((m + n)k2) = o(mn) flops, so that assumption Equation (2.39c) is indeed

satisfied. Finally, assumption Equation (2.39b) is satisfiedwith c2 = 2 since the

decompress kernel is simply a matrix-matrix product.

2.4 . Application to tensor low-rank approximation

In this section, we explore the application of ourmethod to three different

tensor decompositions, namely Tucker [33], TT [9], and HT [14]. All three de-

compositions provide directmethods for the lra and recompress kernels that
can guarantee a prescribed accuracy ε, as well as fast decompress routines,

rendering them amenable to Algorithm 2.1. Description of the decomposi-

tions and their corresponding lra, recompress, and decompress kernels are

given in Chapter 1. We will more discuss on an error and complexity analy-

sis with respect to the assumptions Equation (2.5)–Equation (2.7) and Equa-

tion (2.39a)–Equation (2.39c).

The HOSVD [33], TTSVD [9], and HTSVD [14] algorithms can be used as

lra kernels to compute the Tucker, TT, and HT decompositions of a given full

tensorX , respectively. All three are direct methods that can achieve any pres-

cribed accuracy ε in exact arithmetic. To the best of our knowledge, the effect

of rounding errors on these methods in finite precision arithmetic has not
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been analyzed in the literature.While thesemethods are therefore not known

to be stable, empirical experiments suggest that they still reliably achieve an

accuracy of order ε when run in a finite precision with a unit roundoff u suf-

ficiently smaller than ε. Formally proving this result is a further contribution

done in Chapter 4 for a specific framework that encompasses rounding me-

thods for both decompositions.

Algorithm 2.4 decompress algorithm for a tensor decomposition.

Input : a low-rank tensor decomposition FX .

Output : the full tensor X corresponding to FX .

1 : X ← FX [1]
2 : for i = d̄ to 1 in reverse order do

3 : X ← X ×{ri} FX [i+ 1]
4 : end for

As the lra kernel isolates the cores through a series of d̄ SVDs on X , the
decompress kernel performs successive tensor contractions on neighboring

cores of FX through the inner dimensions that link them to obtain the full

tensor X . In Algorithm 2.4, we provide a generic decompress kernel that per-

forms these contractions in the reverse order of SVDs in Algorithm 1.4 for

simplicity. This is done on Line 3 where×{ri} represents the contraction/mul-

tiplication across the inner dimension of size ri. In practice, these contractions

could be performed in an arbitrary order among the d̄ inner dimensions as

tensor contraction is associative. But in terms of performance, the order may

have an impact on the time computation for some formats, e.g. TT formats.

Finally, for the TT format we use the standard recompress kernel (called

“rounding” in the tensor literature) which relies on a sequence of QRs and

SVDs on the matricizations of the cores (we refer to [9] for a detailed descrip-

tion). For HT and Tucker decompositions, we employ an adaptation of this

TT recompress kernel to these formats, instead of the standard recompress
kernel proposed in [14] mainly to avoid the Gram matrix formation therein.

2.4.1 . Discussion of the error and complexity

For the error analysis, as previously mentioned, tensor computations are

experimentally observed to behave stably in finite precision arithmetic, but

a formal proof of this fact is not known. The lra kernel is based on a chain

of SVDs, the decompress kernel is based on a chain of matrix multiplies, and

the recompress kernel on a chain of QRs, SVDs, and matrix multiplies. Des-

pite the fact that all of these basic linear algebra building blocks have stable

implementations, it is not sufficient to directly conclude on the stability of the

overall tensor computation, because the composition of stable algorithms is

not necessarily stable [48]. Therefore, the stability of tensor algorithms is an

open problem that deserves a dedicated study.
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For the complexity analysis of the lra step, we assume that the first SVD

reduces the size of the tensor significantly, that is, to o(p), which renders the

cost of subsequent SVDs negligible. In this case, we can use the same constant

c1 = 6 as in the case of randomized SVD in Section 2.3.2. With the same as-

sumption, the cost of decompress in Algorithm 2.4 will also be dominated by

the last contraction, which is essentially a matrix multiplication on permu-

ted tensors across the first inner dimension. Thus, we can similarly use the

constant c2 = 2 as in Section 2.3.2, since the cost of the previous contrac-

tions is in o(p) in this case as well. Even without this assumption, we can find

constants c1 = 6t and c2 = 2t with the same t > 1, since intermediate tensor

sizes in each SVD and contraction steps in Algorithm 1.4 and Algorithm 2.4

stay the same. This keeps the cost ratio of these two steps constant across

all d̄ dimensions yielding the same t for c1 and c2 ; we skip further details for

brevity. Finally, the cost of recompress remains in o(p) as it involves QRs and

SVDs on the matricizations of 2nd or 3rd order cores in the decomposition,

whose size is in o(p) by the low-rank assumption. Therefore, we satisfy the

assumptions Equation (2.39a)–Equation (2.39c) of the complexity analysis in

the tensor case.

2.5 . Numerical experiments

2.5.1 . Experimental setting

We now test our IR approach experimentally. We developed a MATLAB

code that implements Algorithm 2.1 and can use as lra kernel any of the

matrix and tensor LRA algorithms discussed in the previous two sections :

QRCP, randomized SVD, HOSVD, TTSVD, and HTSVD.

For the matrix algorithms (QRCP and randomized SVD), we use our own

implementation. For the tensor algorithms (HOSVD, TTSVD, and HTSVD), we

rely on the implementations from the libraries described in [49], [50], and [51],

respectively, with some adjustments. We use MATLAB version R2019a throu-

ghout the experiments.

In the experiments, the high precision u is set to double precision (fp64

arithmetic, with unit roundoff u = 2−53 ≈ 1×10−16) and the use of various low

precisions u` is simulated with the chop library of Higham and Pranesh [38] :

single precision (fp32 arithmetic, with unit roundoff u` = 2−24 ≈ 6×10−8) and

half precision (fp16 and bfloat16 arithmetics, with unit roundoff u` = 2−11 ≈
5× 10−4 and u` = 2−8 ≈ 4× 10−3, respectively).

For the low-rank truncation thresholds, we set ε = 10−13 and ε` = θ`u`,

where θ` ≤ 1 is a scaling factor necessary to control the effect of rounding er-

rors on the ability of the LRA to detect the correct numerical rank. We analyze

in detail the role of this parameter θ` in Section 2.5.3 ; based on the conclu-

sions of this analysis, we have set θ` = 2−1 for all LRA kernels except ran-
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Figure 2.2 – Three types of singular value distributions used in the experi-

ments.

domized SVD and QRCP, for which we have used θ` = 2−2 and θ` = 2−3,

respectively.

To test the algorithms, we use randomly generated matrices and tensors

with various singular value distributions. More precisely, we compare three

types of distributions for the singular values σi :

σi = max(σ̂i, 10
−16), σ̂i =


1/i (linear)

i−10 (power)

e−i (exponential)

. (2.48)

These three distributions are illustrated in Figure 2.2. All randommatrices are

square and of size 100 × 100. All random tensors are of fourth order (d = 4)

and of size 100× 100× 100× 100. We generate the matrices asQ1ΣQ2 where

Q1, Q2 are random orthogonal matrices and Σ is a diagonal matrix with the

specified singular values as coefficients. For the tensor experiments involving

Tucker and TT decompositions, we generate the low-rank tensor in the Tucker

format withQ(1), …,Q(d) random orthonormal matrices and a dth-order core

tensor G whose coefficient Gi1,...id is given by σmax(i1,...,id) in Equation (2.48).

For the experiments involving the HT format, we generate the low-rank tensor

in the HT format whose leaf nodes arematrices with orthogonal columns, and

each element G
(t)
i,j,k of its internal cores is set to σmax(i,j,k).

In addition to these random data sets, we also report results for data sets

coming from two real-life applications in Section 2.5.4.

2.5.2 . Experimental results

In the first experiment, we analyze the behavior of Algorithm 2.1 for the

matrix case, which is provided in Figure 2.3. We consider three types of ma-

trices based on their singular value distribution (linear, power, and exponen-
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tial) and two lra kernels (QRCP and randomized SVD). In each case, we plot

the relative error

ηi =
‖X − Fi‖
‖X‖

(2.49)

where Fi is the computed low-rank factor ofX after i refinement steps (F0 is

thus a standard LRA of X in precision u`). The number next to each marker

indicates the rank of Fi after recompression.

Figure 2.3 shows that for all three matrices and for both QRCP and rando-

mized SVD, Algorithm 2.1 behaves as expected : the error ηi is roughly equal

to εi+1
` = (θu`)

i+1 after i refinement steps. Thus, using single precision as the

low precision u`, we can achieve an accuracy close to double precision with

only one refinement step. Naturally, since for QRCP θ = 2−3 is relatively small,

(u`/θ)
2 is noticeably larger than the accuracy achieved by a standard double

precision LRA; the refined factors are thus not completely as accurate as if

computed directly in double precision. This gap can be filled by performing

a second refinement step, although this would likely be unnecessary in most

practical scenarios.

Similar results are obtained using half precision as the low precision for-

mat (fp16 or bfloat16 arithmetic). An error close to the single precision accu-

racy can be achieved in just one or a few steps. Moreover, we can even reach

double precision accuracy if needed, which illustrates an attractive property

of algorithm 2.1 : it can reach an accuracy which is only limited by the high

precision, but not by the low precision, despite this low precision being used

to perform most of its operations.

Finally, we discuss the rank behavior of Fi across IR steps. We see that it is

roughly equal to rank(X, ηi), the numerical rank ofX at accuracy ηi. Thus, for

matrices with rapidly decaying singular values such as the exponential case

in Figure 2.2, these ranks tend to be much smaller at the early steps in low

precision. Reflecting on the cost of the algorithm, we can expect the use of low

precision plus refinement to be particularly cost-efficient for such matrices.

Figure 2.4 shows similar plots for the tensor decompositions (TTSVD,

HOSVD, and HTSVD). The results for tensors follow the same trend, and lead

to the same conclusion as for matrices. The main difference is that the rank

of Fi (text labels) is now a vector instead.

Overall, our experiments confirm that Algorithm 2.1 is able to rapidly

converge to a high accuracy, while using low precision for the LRA kernel. This

observation is valid for all types of matrices and tensors in our test set, and

all five lra kernels that we tested, which shows that Algorithm 2.1 is robust

and can work in a wide variety of settings.

2.5.3 . Role of θ`

There is a trade-off in choosing the scaling factor θ` : the larger it is, the

faster the convergence (since the error is reduced by a factor roughly equal
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(a) QRCP (exponential). (b) Randomized SVD (exponential).

(c) QRCP (power). (d) Randomized SVD (power).

(e) QRCP (linear). (f) Randomized SVD (linear).

Figure 2.3 – Convergence of Algorithm 2.1 for three types of matrices (with

different singular value distributions, see Figure 2.2) and for two different lra
kernels (QRCPor randomized SVD). The number next to eachmarker indicates

the rank of Fi after recompression.
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(a) TTSVD (exponential). (b) HOSVD (exponential).

(c) TTSVD (power). (d) HOSVD (power).

(e) TTSVD (linear). (f) HOSVD (linear).

Figure 2.4 – Convergence of Algorithm 2.1 for three types of tensors (depen-

ding on the singular value distribution, see Figure 2.2) and with TTSVD or

HOSVD as lra kernel. The numbers next to each marker indicate the rank

vector of Fi after recompression.

to θ`u` at each refinement step), but if it is too large, the rank will no longer

be correctly detected and this will lead to a significant rank growth.

We illustrate this in Table 2.1 and Table 2.2, wherewe compare the conver-

gence of Algorithm 2.1 for different values of θ`. Table 2.1 is for the TTSVD
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(a) HTSVD (exponential).

(b) HTSVD (power).

(c) HTSVD (linear).

Figure 2.5 – Convergence of Algorithm 2.1 for three types of tensors (depen-

ding on the singular value distribution, see Figure 2.2) and with HTSVD as lra
kernel. The numbers next to each marker indicate the rank vector of Fi after

recompression.

kernel and Table 2.2 is for the QRCP kernel ; fp16 arithmetic is used as the
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Table 2.1 – Relative error ηi and rank(Fi) at different steps i and for

different values of θ`, for TTSVD (using fp16 as u` and exponential dis-

tribution of singular values).

Relative error ηi rank(Fi)

i|θ` 20 2−1 2−2 2−3 2−4 20 2−1 2−2 2−3 2−4

0 6e-04 8e-04 9e-04 2e-03 5e-03 23,39,16 7, 7, 6 6, 6, 6 5, 5, 5 4, 4, 4

1 3e-07 1e-06 4e-06 1e-05 9e-05 14,14,15 12,12,12 11,11,11 10,10,10 8, 8, 8

2 2e-10 1e-09 8e-09 7e-08 6e-07 21,21,21 19,19,19 17,17,17 15,15,15 13,13,13

3 9e-14 8e-13 2e-11 4e-10 4e-09 29,29,29 26,26,26 23,23,23 20,20,20 18,18,18

4 6e-14 6e-14 1e-12 4e-11 28,28,28 28,28,28 26,26,26 22,22,22

5 6e-14 3e-13 28,28,28 27,27,27

6 6e-14 28,28,28

low precision u` in both cases. The tables show that the method converges

faster as θ` increases, as expected : the error ηi is smaller for larger values of

θ`. For TTSVD (Table 2.1), this faster convergence is achieved without compro-

mising the correct rank detection, which remains contained throughout the

iterations and for all values of θ` ≤ 1. Thus, in this case, a large value of θ`
is recommended. The situation is different for QRCP (Table 2.2), for which a

too large value of θ` (here θ` ≥ 2−2) prevents the rank from being correctly

detected, thus leading to a rank explosion.

We therefore conclude that the optimal choice of θ` depends on the LRA

algorithm, and more specifically, on its sensitivity to rounding errors when

detecting the numerical rank. Empirically, we have observed QRCP to be the

most sensitive of the LRA kernels, and to a lesser extent the randomized SVD

kernel ; the other kernels behavedwell even for large θ`. For this reason, in our

experimentswehave set θ` = 2−1 for all kernels exceptQRCPand randomized

SVD, for which we have set θ` = 2−3 and θ` = 2−2, respectively. This setting

allows to keep the ranks contained except for a few sporadic caseswhen using

half precision. It must be noted that the sensitivity to rounding errors is also

matrix (or tensor) dependent ; however, we donot tune θ` individually for each

matrix/tensor, because this would not be representative of a realistic scenario

where it is unknown in advance how sensitive the data at hand actually is.

2.5.4 . Results on real-life data

Finally, we also experiment our method on data sets (one matrix and one

tensor) coming from real-life applications. The matrix corresponds to a sub-

domain in the discretization of the Poisson equation. It is of size 253 × 252

and its singular values decay relatively rapidly (not shown). The tensor comes

from a quantum chemistry application and corresponds to an eigenfunc-

tion of the Hamiltonian operator for computing the vibrational spectrum

of the H2CO molecule [52]. Here, the tensor is 6th-order (d = 6), of size
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Table 2.2 – Relative error ηi and rank(Fi) at different steps i and for

different values of θ, for QRCP decomposition (using fp16 as u` and

exponential distribution of singular values).

Relative error ηi rank(Fi)

i|θ` 20 2−1 2−2 2−3 2−4 20 2−1 2−2 2−3 2−4

0 2e-03 2e-03 2e-03 2e-03 3e-03 13 9 9 7 6

1 2e-05 1e-05 1e-05 5e-05 1e-04 25 18 13 10 9

2 5e-08 8e-08 7e-08 1e-07 1e-06 72 43 20 16 14

3 2e-10 2e-10 4e-10 8e-10 8e-09 95 86 36 21 19

4 2e-12 2e-12 3e-12 2e-12 4e-11 27 27 29 27 24

5 7e-13 7e-13 7e-13 7e-13 1e-12 28 28 28 28 27

6 7e-13 28

17 × 17 × 13 × 13 × 9 × 9, and obtained from an eigenvalue computation in

which both the operator and vectors are compressed in the TT format throu-

ghout (and we obtain the full tensor with decompress in high precision in the

end), and the precision is set to 10−9 to prevent rank explosion.

We report the results for these two problems in Figure 2.6-Figure 2.7 with

all the corresponding LRA kernels, using the same legend andmethodology as

for the random data experiments. Overall, the results lead to the same trends

and conclusions as the previous experiments ; ranks progressively increase

with the IR steps, and our methodmanages to achieve high precision levels in

all cases. In the TT case, ranks stop increasing around the compute precision

of the application (10−9), whereas in HOSVD and HTSVD cases we still observe

a significant rank increase beyond this threshold. This ismostly due to the fact

that the underlying tensor decomposition of this tensor is TT by construction,

and this topology mismatch results in higher ranks.

2.5.5 . Estimation of the time cost and role of ω`

Based on the results obtained in the previous experiments, we can also

obtain a rough estimation of the time cost of each method, using the formu-

las (2.41) (for classical hardware) or (2.44) (for hardware with block FMA units).

This estimation depends on the number of iterations needed to converge to

the desired accuracy, the ranks at each iteration, and the relative speed of the

low precision arithmetic ω`.

We illustrate how this estimation can be obtained by using the case of ran-

domized SVD with the Poisson matrix (Figure 2.6b) as an example. We consi-

der two possible settings :

• Setting 1 : classical (Central Processing Unit (CPU)) hardware, where the

relative speed of each arithmetic is proportional to the number of bits.

For this setting we target an accuracy of ε = 10−12, and we use fp64 as
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(a) QRCP (Poisson matrix).
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(b) Randomized SVD (Poisson matrix).

Figure 2.6 – Convergence of Algorithm 2.1 for a real-life matrix (Poisson) of

size 253 × 252, for different lra kernels. The numbers next to each marker

indicate the rank of Fi after recompression.

the high precision and fp32 as the low precision (hence ω` = 0.5).

• Setting 2 : GPU hardware with tensor core units (a type of block FMA).

We target an accuracy of ε = 10−5, and we use fp32 as the high preci-

sion and fp16 as the low precision. On most tensor core architectures

(A100 and H100 in particular), fp16 arithmetic is 16 times faster than

fp32, hence we take ω` =
1
16 = 0.0625.

In setting 1, our IR method (red curve in Figure 2.6b) converges in 2 itera-

tions to an accuracy of ε = 10−12. We use formula (2.41) with rank(X, 10−6) =

14, rank(X, 10−12) = 42, c1 = 6, and c2 = 2 to obtain an estimated cost of

p×
(
0.5× 6× (14 + 14 + 42) + 2× 14 + 3

)
= 241p. (2.50)

This is to be comparedwith simply computing the LRAdirectly in fp64 arithme-

tic, for which formula (2.42) gives an estimated time cost of 6× 42× p = 252p.

Hence, we can expect a time reduction of about 4%. This example illustrates

that even with classical hardware where the low precision is “only” twice as

fast as the high precision, our IR method can still achieve moderate speedups

in the case where the ranks decrease rapidly at low accuracies, such as for

this Poisson matrix. This is however not the case for other matrices, including

the random synthetic ones used previously.

In setting 2, our IR method (yellow curve in Figure 2.6b) converges

in 2 iterations to an accuracy of ε = 10−5. We use formula (2.44) with

rank(X, 10−3) = 5, rank(X, 10−5) = 11, c1 = 6, and c2 = 2 to obtain an

estimated cost of

p×
(
0.0625×

(
6× (5 + 5 + 11) + 2× 5

)
+ 3
)
= 11.5p. (2.51)

This is to be comparedwith simply computing the LRAdirectly in fp32 arithme-

tic, for which formula (2.42) gives an estimated time cost of 6× 11× p = 66p.
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(a) TTSVD (H2CO tensor).

(b) HOSVD (H2CO tensor).

(c) HTSVD (H2CO tensor).

Figure 2.7 – Convergence of Algorithm 2.1 for a real-life tensor (H2CO) of size

17× 17× 13× 13× 9× 9, for different lra kernels. The numbers next to each

marker indicate the rank of Fi after recompression.
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Hence, we can expect a significant time reduction by a factor of almost 6×.
This example illustrates that our IR method is particularly attractive on hard-

ware with very fast low precision arithmetic.

The above examples are onlymeant to illustrate the trends that onemight

expect on different types of hardware and for different target accuracies and

low precisions. This analysis can be similarly applied to the other matrices,

LRA algorithms, and to tensors.

2.6 . Conclusion

Wehave presented a newmixed precision IR algorithm for computing low-

rank matrix and tensor approximations. The algorithm first computes a LRA

in low precision, and then computes another LRA of the error term, also in low

precision, to refine the accuracy of the approximation. The process can be re-

peated to further refine the accuracy, and we ensure the rank of the approxi-

mation remains bounded by using inexpensive recompression operations.

We have performed the error analysis of this algorithm, which proves that

the low precision determines the convergence speed, whereas the attainable

accuracy only depends on the high precision. Therefore, any desired level of

accuracy can be attained, even though most of the operations are performed

in low precision. This makes the algorithm computationally attractive, and we

have performed a complexity analysis to determine specific conditions under

which we can expect it to be cheaper than simply computing a LRA directly

in high precision. We have applied our algorithm to various matrix and ten-

sor LRAs algorithms, and performed MATLAB experiments that confirm its

robustness and convergence in a wide range of settings. Our error analysis is

based on a general model that assumes the use of numerically stable imple-

mentations for the basic kernels (in particular, LRA and recompression). For

tensors, such computations are experimentally observed to behave stably in

practice, but formally proving their stability remains an open problem that we

will tackle in Chapter 4 of this thesis.

As evidenced by our complexity analysis, the potential of this IR method

is especially high on modern architectures with very fast low precision arith-

metic, such as GPU accelerators. Developing a high performance implemen-

tation of this method on such architectures is the goal of the next chapter

(Chapter 3).
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3 - Mixed precision randomized low-rank ap-

proximation with GPU tensor cores

3.1 . Introduction

Random projection methods are simple and robust techniques for redu-

cing the dimensionality of data while preserving its structure [22]. These me-

thods are widely used in machine learning and signal processing for tasks

such as factorization [53]. Moreover, the matrix operations at the heart of

these methods make them highly suitable for exploiting accelerators such

as Graphics Processing Unit (GPU)s [23]. As explained in Section 1.4, modern

GPUs provide extremely fast low precision arithmetics. The goal of this chap-

ter is therefore to investigate towhat extent these very fast low precision units

can be exploited for accelerating randomized projection methods.

Specifically, in this chapter, we consider the fixed-rank randomized Low-

rank approximations (LRA) algorithm from [22, Alg. 4.1] and describe in Algo-

rithm 3.1. The main contribution of this chapter is the design of a new mixed

precision version of this randomized LRA method, with a performance and

accuracy analysis showing that the proposed method is able to exploit GPU

tensor cores reliably and efficiently [54].

Our method is based on three key ideas :

• The first idea consists in performing the matrix-matrix products (GEne-

ral Matrix Multiplication (GEMM) kernel) in mixed precision arithmetic using

the tensor cores, since these operations represent the asymptotic bottle-

neck of themethod. We compare several GEMM variants depending on

how the conversions between fp32 and fp16 are handled, and identify

one variant in particular that achieves the best performance-accuracy

trade-off.

• Then, having significantly accelerated the GEMM operations, we ob-

serve that the orthonormalization step (QR kernel), despite requiring

an asymptotically negligible number of flops, becomes the new perfor-

mance bottleneck. Then the second idea is to switch the orthonormaliza-

tionmethod from the standard Householder QR to a CholeskyQR algorithm,

which mainly relies on GEMM and is therefore much more efficient on

GPUs.Wemitigate the inherent instability of CholeskyQR by performing

it in fp64 rather than fp32 arithmetic.

• This leads to a mixed precision randomized LRA method employing

three precisions (fp16, fp32, and fp64). We show that this method can

be up to 8× faster than the standard randomized LRA method in fixed

precision fp32 arithmetic and achieves an average accuracy of order
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10−2, whichmay be sufficient for some applications. Then the third idea

is to use the iterative refinement method for LRA proposed in the previous

chapter, Chapter 2 to improve the accuracy of the method. We show that

with refinement, the accuracy of this method improves significantly to

an average of order 10−5, while still being up to 2.2× faster than the

standard LRA method in fp32 arithmetic.

This chapter is structured as follows. In Section 3.2, we provide the neces-

sary technical background on randomized LRA methods and discuss related

work. In Section 3.3, we describe the proposed mixed precision method and

its implementation using GPU tensor cores. In Section 3.4, we perform some

experiments to analyze the performance and accuracy of our method. We

finally provide our concluding remarks in Section 3.5.

3.2 . Background

3.2.1 . Randomized LRA

Algorithm 3.1 Randomized low-rank approximation fixed-rank va-

riant.
Input : A ∈ Rm×n, the target rank k.
Output : X ∈ Rm×k and Y ∈ Rn×k such that A ≈ XY T .

1 : Ω← randn(n, k)
2 : B ← AΩ
3 : [X,∼]← qr(B)
4 : Y ← ATX

Given a matrix A ∈ Rm×n, we want to approximate A as a low-rank pro-

duct XY T of smaller matrices X ∈ Rm×k and Y ∈ Rn×k, where the rank k is

(much) smaller than min(m,n).

Among the many possible methods to compute LRA, randomized ones

have encountered much success due to their ability to mainly rely on effi-

cient matrix-matrix products. In this chapter, we focus on randomized LRA

based on Gaussian sampling [22], as outlined in Algorithm 3.1. Commonly, an

oversampling parameter is added to the rank k (e.g., l = k + p, p small over-

sampling) to ensure that the matrix B in line 2 is full rank, to do a final LRA

after Line 4 to be more accurate. In our case, we set p = 0 to optimize the

computation performance by avoiding a last LRA and assume the rank to be

still small enough for analysis with the state-of-the-art.

We note that many alternative variants of Algorithm 3.1 are possible ; for

example the sampling may be performed differently (e.g., via a fast Fourier

transform), or we may compute specific types of LRA (e.g., singular value
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decomposition (SVD)) by further decomposing QTA. In addition, while Algo-

rithm3.1 is a fixed-rank algorithm, fixed-accuracy variants have also been pro-

posed [22, 31] and considered in Section 1.2.3 Algorithm 1.2, in which an ac-

curacy threshold ε is prescribed and the rank kε is adaptively discovered by

the algorithm. In this chapter, we focus on the fixed-rank case, which is sim-

pler to implement. Extending our high performance implementation to the

fixed-accuracy case is left for future work.

Algorithm 3.1 relies on two computational kernels : matrix-matrix pro-

ducts (GEMMkernel) andQR factorization (QR kernel). Importantly, the GEMM

kernel performs 4mn` flops whereas the QR kernel only performs cqrm`2

flops (where cqr is a small constant that depends on the specific QR facto-

rization method that is used). Therefore, the performance of the overall me-

thod should be guided by the GEMM kernel, which can be performed very

efficiently on modern computer architectures and especially on GPU accele-

rators.

As mentioned in Section 1.5.1, only Connolly, Higham, and Pranesh [41],

Ootomo and Yokota [42], and Buttari, Mary, and Pacteau [43], start from an

exact or fixed arithmetic context to propose mixed precision variants of ran-

domized LRA. However, Connolly et al. methods do not exploit the high-speed

low precision arithmetic available on GPU tensor cores to accelerate randomi-

zed LRA; these are more MATLAB experiments. Our method proposed in the

next section and its GPU implementation should, therefore, be most directly

compared to the method of Ootomo and Yokota [42].

As explained in Section 1.5.1, their method does not reduce the accuracy

of the LRA thanks to the emulation of fp32 arithmetic in the first GEMM and

the use of fp32 arithmetic in the remaining kernels (QR and second GEMM).

However, this limits themaximumspeedupobtainable by this approach, since

a large part of the computations is still executed in fp32 arithmetic ; Ootomo

and Yokota [42] thus report a speedup of 1.28× compared with randomized

SVD entirely in fp32 arithmetic.

In contrast, our approach is more performance-driven : we use tensor

core arithmetic in both GEMM kernels (without emulating fp32 arithmetic),

obtaining speedups at the price of a lesser accuracy ; we then implement the

iterative refinement method defined on the Chapter 2 on GPUs to improve

the accuracy while retaining a good speedup.

To hold the line of this chapter, we recall an iterative refinement scheme

Algorithm 3.2, which roughly sketches the work done in the previous chapter.

3.3 . Mixed precision randomized LRA on GPU tensor cores

In this section, we propose a mixed precision variant of randLRA, the ran-
domized LRA method outlined in Algorithm 3.1, and describe its GPU imple-
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Algorithm 3.2 Randomized LRA with iterative refinement.

Input : A ∈ Rm×n, the target rank k, the oversampling p.
Output : X ∈ Rm×3k and Y ∈ Rn×3k such that A ≈ XY T .

1 : [X1, Y1] = randLRA(A, k, p) {in low precision}

2 : E = A−X1Y
T
1 {in high precision}

3 : [X2, Y2] = randLRA(E, 2k, p) {in low precision}

4 : X = [X1, X2]
5 : Y = [Y1, Y2]

mentation. Asmentioned, randLRA relies primarily on two kernels : thematrix-

matrix product (GEMM kernel) and the QR factorization (QR kernel).

3.3.1 . GEMM kernel

The GEMM kernel C = AB can be executed up to 16× faster using GPU

tensor core units. However, these units require the input matrices A and B

to be represented in fp16 which necessitates a conversion when they are

originally stored in fp32. We can distinguish several variants depending on

which matrices are converted (A and B only, or also C), and on whether

these conversions are handled explicitly or implicitly. Indeed, a first option

is to handle conversions implicitly by keeping the matrices in the input fp32

format and letting cuBLAS itself perform the conversions to fp16 ; the advan-

tage of this approach lies in the simplicity of the code and the efficiency of

the conversion which is handled by the optimized library. In the explicit ap-

proach, on the other hand, we convert the input matrices to fp16 ourselves

before calling the cuBLAS tensor core GEMM; even though our own conver-

sion routine might be less efficient, the advantage of this approach is that

matrices that were already converted to fp16 can be reused in other calls to

tensor core GEMM without the need for further conversions (note that this

however requires extra storage to store the explicitly converted matrix).

In summary, we evaluate three variants of the GEMM kernel. We denote

these variants as tgemm (to indicate the use of tensor cores) and use the sub-

scripts “32|32”, “16|16”, “16|32” to indicate the precision type of the input (A and

B) and output (C). Note that if the input type is fp32, an implicit conversion

to fp16 is performed, whereas, if the output type is fp32, no conversion to

fp16 is required because tensor cores have the ability to accumulate directly

in fp32 [17].

• tgemm32|32 :A,B, C are all stored in fp32 ; the GEMM implicitly converts

A and B to fp16 during the computation but keeps C in fp32.

• tgemm16|16 :A,B, C are all explicitly converted from fp32 to fp16 before

the computation of the GEMM, which does not need any conversions.

• tgemm16|32 : A and B are explicitly converted to fp16 but C is kept in
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fp32 ; the GEMM accumulates the computation in C in fp32 arithmetic

and thus requires no further conversions.

We will compare the performance-accuracy trade-off achieved by each of

these three variants in our benchmarks in the next section.

3.3.2 . QR kernel

The second main kernel of randLRA is the QR factorization kernel. Several

methods exist that achieve different trade-offs between efficiency and sta-

bility, for example, classical or modified Gram-Schmidt, or Householder QR.

The most stable approach is the Householder QR factorization, which is im-

plemented in GPU libraries such as MAGMA and cuSOLVER. Unfortunately,

Householder QR is also inefficient on GPUs due to its limited parallelism, and

current implementations do not exploit tensor core arithmetic. As a result, in

the context of randLRA on GPU tensor cores, even though the GEMM kernel

requires in theory an asymptotically dominant number of flops, in practice the

QR kernel becomes the performance bottleneck. This is because the GEMM

kernel strongly benefits fromGPUs and especiallymixed precision tensor core

units, whereas the QR kernel is less efficient on GPUs and cannot exploit ten-

sor core units.

Motivated by these observations, we propose to use instead the Cholesky

QR factorization, a much faster variant of QR which mainly relies on matrix-

matrix products and can thus exploit GPUs much more efficiently. Cholesky

QR orthonormalizes a tall-skinny matrix A by computing the Gram matrix

B = ATA, computing its Cholesky factorization RTR = B, and obtaining

the orthonormal factor by the triangular solve Q = AR−1. Unfortunately, the

condition number of the Grammatrix κ(B) = κ(A)2 is large even for modera-

tely ill-conditioned A, which makes Cholesky QR unstable due to the possible

breakdown of the Cholesky factorization of B if B is singular in the working

precision.

In fp32 arithmetic such breakdowns are expected to occur when κ(A) &
104. In order to address this issue, we switched the Cholesky QR factorization

from fp32 to fp64 arithmetic ; in this case, breakdowns can only occur when

κ(A) & 108. Since in the context of randLRA the input matrix is stored in fp32

arithmetic, breakdowns should thus never occur with Cholesky QR in fp64

arithmetic. The resulting algorithm is outlined in Algorithm 3.3. We note that

the final triangular solution step (line 4) could be performed in fp32 without

affecting stability [55] ; this is an improvement that wewill investigate in future

work.

3.3.3 . Randomized LRA

Having discussed the implementation of the GEMM and QR kernels on

GPUs, we can now present the implementation of randLRA, outlined in Algo-

rithm 3.4.
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Algorithm 3.3 Cholesky QR kernel implementation on GPU.

Input : A32 ∈ Rm×n.

Output : Orthonormal factor Q32 ∈ Rm×n of A32.

1 : A64 = fp64(A32)
2 : B64 = AT

64A64

3 : R64 = chol(B64)
4 : Q64 = A64R

−1
64

5 : Q32 = fp32(Q64)

Depending on the GEMM variant used, randLRA takes different forms ; in

Algorithm 3.4, we describe the case where tgemm16|32 is used, which allows for
explicitly converting A to fp16 only once (line 3) and reusing it in both GEMM

calls (lines 3 and 6). The QR kernel (line 4) can be either standard Householder

QR in fp32 arithmetic, or the mixed precision Cholesky QR kernel presented

previously (Algorithm 3.3).

Algorithm 3.4Mixed precision randLRA on GPU tensor cores.

Input : A32 ∈ Rm×n, the target rank k.
Output : X16 ∈ Rm×k and Y16 ∈ Rn×k such that A32 ≈ X16Y

T
16.

1 : Ω16 = randn(n, k) {in fp16}

2 : A16 = fp16(A32)
3 : B32 = tgemm16|32(A16,Ω16) {with fp16/fp32 tensor cores}

4 : Q32 = qr(B32)
5 : X16 = fp16(Q32)
6 : Y32 = tgemm16|32(A

T
16, X16) {with fp16/fp32 tensor cores}

7 : Y16 = fp16(Y32)

Finally, we describe in Algorithm 3.5 our implementation of the iterative

refinement approach [56] on GPU tensor cores, using Algorithm 3.4 as the low

precision randLRA method.

Algorithm 3.5Mixed precision randLRA on GPU tensor cores, with ite-

rative refinement.
Input : A32 ∈ Rm×n, the target rank k.
Output : X16 ∈ Rm×3k and Y16 ∈ Rn×3k such that A32 ≈ X16Y

T
16.

1 : [X16, Y16] = randLRA(A32, k)
2 : E32 = A32 − tgemm16|32(X16, Y

T
16)

3 : [X ′
16, Y

′
16] = randLRA(E32, 2k)

4 : X16 = [X16, X
′
16]

5 : Y16 = [Y16, Y
′
16]
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3.4 . Experiments

3.4.1 . Experimental setting

All experiments have been carried out on the Jean Zay supercomputer

located at IDRIS 1. Each node is equipped with 2 Intel Cascade Lake 6240R

processors and 8 NVIDIA A100 PCIe 40 GB GPUs, for a total memory of 768

GB. Although each node has several GPUs, we use a single GPU for these ex-

periments. On both architectures, we use CUDA 12.0.0. The CUDA package

provides access to the libraries cuBLAS, cuSOLVER and cuRAND.

Thematrices used in our experiments are randomly generated. Given the

specified rank k, we generate two random Gaussian matricesX ∈ Rm×k and

Y ∈ Rn×k and define A = XY T . In all experiments we do not use any over-

sampling (p = 0).

We measure the performance of our algorithms in number of Tera

floating-point operations per second (TFLOPS), that is,

Performance =
Nflops

1012 · time
. (3.1)

To measure the “effective” performance of the algorithms, we use the same

reference number of flops Nflops for all of them, regardless of their actual

number of flops. Specifically we use

Nflops = 4mnk + 2nk2 − 2

3
k3 +O(mn), (3.2)

which corresponds to the number of flops of the baseline version, which per-

forms only two GEMMs and one QR factorization.

3.4.2 . Performance and accuracy of kernels

In this section, we evaluate the performance of the building blocks of our

randLRA algorithm : the GEMM and QR kernels.

GEMM kernel

We begin by comparing in Figure 3.1a the performance of the standard

GEMM in fp32 arithmetic (sgemm) with the three tgemm variants that use the

tensor cores described previously. The figure shows the performance for

computing C = AB where A ∈ Rm×n and B ∈ Rn×k, where m = n = 35840

are fixed and where k varies from 8 to 1024. (This shape of matrices corres-

ponds to the two GEMMs performed by randLRA).
For the tgemm16|16 and tgemm16|32 variants, we plot their performance both

with and without including the time taken by the explicit conversion of the

1. http://www.idris.fr/eng/jean-zay/index.html
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matrices to fp16. For the tgemm32|32 the implicit conversion is always perfor-

med and thus always included. The figure shows that, as expected, the im-

plicit conversion performed by tgemm32|32 is more efficient than the explicit

one performed by our own implementation, so that this variant is faster than

tgemm16|16 and tgemm16|32 if we include the time for explicit conversion. In-

terestingly, the relative cost of the conversion decreases as the dimension k

increases, so that the performance of tgemm16|16 and tgemm16|32 including the
conversion eventually becomes comparable to that of tgemm32|32 for a suffi-

ciently large k. More importantly, if we do not need to perform this conversion

(because the input matrix is already stored in fp16), then the tgemm16|16 and
tgemm16|32 variants become significantly faster than the tgemm32|32 one.

We will investigate the difference in accuracy of these three variants di-

rectly in the context of their use in randLRA.

QR kernel

Wenow turn to the performance of the QR kernel, reported in Figure 3.1b.

The figure compares the performance for orthonormalizing a matrix B ∈
Rn×k where n = 35840 is fixed and where k varies from 8 to 1024. (Again,

this corresponds to the shape of matrix arising in the QR kernel in randLRA).
We compare the classical Householder QR algorithm implemented in cu-

SOLVER using fp32 arithmetic (sgeqrf) with the Cholesky QR algorithm, using

either fp32 or fp64 arithmetic (scholQR and dcholQR, the latter corresponding
to Algorithm 3.3). At the time of these experiments, the only GPU implemen-

tation of Cholesky QR that we found is the one available in theMAGMA library.

However, we foundMAGMA’s implementation not to be efficient for the target

sizes in our context, and therefore we made our own implementation.

Regarding the risk of Cholesky breaking down, in experiments with

randLRA using Cholesky QR in fp32 (not shown), we found a significant frac-

tion (about 14%) of breakdowns, which disappeared by using fp64 arithmetic

instead. In comparison, Householder QR is robust (even in fp32 arithmetic),

but extremely slow, as expected. Overall, our implementation of Cholesky QR

in fp64 can be more than 20× faster than Householder QR in fp32.

3.4.3 . Mixed precision randomized LRA

We now evaluate the performance and accuracy of randomized LRA, wi-

thout iterative refinement to begin. We compare eight different variants. Two

of them correspond to Algorithm 3.1 with the GEMM in standard fp32 arith-

metic (sgemm), andwith either fp32Householder QR (sgeqrf) or fp64 Cholesky
QR (dcholQR). The other six variants correspond to Algorithm 3.4, using one of

the three tgemm variants for GEMM and again either fp32 Householder QR or

fp64 Cholesky QR. Figure 3.2a plots the performance of these eight variants,
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Figure 3.1 – Performance of the GEMM and QR kernels.
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and Figure 3.2b plots their relative accuracy, measured as ‖A − XY T ‖/‖A‖,
where ‖ · ‖ denotes the Frobenius norm.

As a general preliminary observation, note that the use of Householder or

Cholesky QR does not impact the accuracy for any of the variants (and so the

latter is preferable since it is faster).

Let us first analyze the baseline variant using sgemm (fp32 arithmetic wi-

thout tensor cores). This is the most accurate variant, with an average error

of order 10−4. However, this is also the slowest variant since it does not bene-

fit from tensor cores : its performance is almost constant as soon as k ≥ 256

and is limited to only 14 TFLOPSwith Householder QR. The use of CholeskyQR

slightly improves its performance but still remains limited to only 17 TFLOPS.

Then, let us nowanalyze the variants using tgemm (mixed precisionGEMMs

with tensor cores). Regardless of the choice of tgemm variant, using Househol-

der QR limits the attainable performance to at best 50 TFLOPS. In this case,

the GEMM performs well, but performance is limited by the performance of

Householder QR, which is extremely slow as previously analyzed, and thus

becomes the bottleneck, even though it requires an asymptotically negligible

number of flops compared with GEMM. Therefore, for these tgemm variants,

using Cholesky QR significantly improves performance by moving the bottle-

neck back to the GEMM.

Let us finally compare the three different tgemm variants to determine

which is preferable. We can see in Figure 3.2b that tgemm16|16 is much less

accurate than both tgemm32|32 and tgemm16|32, with an average error of order

10−1 instead of 10−2. This comes from C being stored in fp16 : indeed, even

though the tensor cores accumulate the operations in fp32 arithmetic, writing

them in a matrix C stored in fp16 generates fp16 rounding errors which lead

to a significant loss of accuracy. This effect has been well characterized in the

literature, see in particular Blanchard et al. [17] for an error analysis and Lopez

and Mary [57] for the consequence of this observation on LU factorization.

The choice of GEMM variant therefore comes down to which of tgemm32|32
and tgemm16|32 is faster. As Figure 3.2a shows, this depends on the rank k.

When k is small the relative cost of the conversion with respect to the com-

putation is large and so tgemm32|32 is faster than tgemm16|32. As k increases the
conversion becomes less and less costly with respect to the computation so

eventually (here for k & 256) tgemm16|32 becomes faster, reaching up to 140

TFLOPS for large values of k. Therefore, randLRA and tgemm16|32 is up to 8×
faster than randLRA with sgemm, at the price of a lesser accuracy in this case

without iterative refinement.

3.4.4 . Iterative refinement

Finally, we conclude by evaluating the performance and accuracy of

randLRA using Iterative Refinement (IR). We compare the same eight variants
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Figure 3.2 – Performance and accuracy of randLRA without refinement. (In (b),

tgemm32|32 and tgemm16|32 completely overlap both for Householder QR and
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as in the previous section, except that the variants that exploit mixed preci-

sion tensor cores (tgemm) now use IR (Algorithm 3.5) ; the two variants using

sgemm do not use IR, since their accuracy is already satisfactory ; we keep them

as a reference point. Figure 3.3a plots the performance and Figure 3.3b plots

the relative accuracy.

In terms of accuracy, Figure 3.3b confirms that the use of IR significantly

improves the accuracy of all mixed precision variants. Specifically, the variants

using tgemm16|16 achieve an average error of order 10−2 instead of 10−1 and,

more interestingly, the variants using tgemm32|32 or tgemm16|32 achieve an ave-

rage error of order 10−5 instead of 10−2. Thus, IR makes randLRA with these

variants of tgemm at least as accurate, and in many cases even more accurate,

than the standard randLRA with sgemm.
It remains to evaluate the impact of IR on performance. Note that the use

of IR increases the number of flops by about a factor 4 (two GEMMs with rank

k and three GEMMs with rank 2k, instead of two GEMMs of rank k). For large

values of k (for which the maximum performance is attained), the use of IR

makes randLRA with tgemm32|32 about 3.8× slower and randLRA with either

tgemm16|16 or tgemm16|32 about 3.5× slower. The fact that the relative perfor-

mance of tgemm32|32 comparedwith tgemm16|16 and tgemm16|32 decreaseswhen
IR is used is explained by the fact that the relative weight of the conversions

decreases with IR. In any case, the important conclusion is that the tgemm16|32
variant with IR remains much faster than the variant with sgemm and no IR,

with a speedup of up to a factor 2.2×. We therefore have obtained a method

that is both faster and more accurate than the fp32 randLRA baseline.

3.5 . Conclusion

We have proposed a new randomized LRA method that efficiently and re-

liably exploits mixed precision GPUs. Our method, outlined in Algorithm 3.5,

combines three key ideas. First, we use theGPU tensor core units to accelerate

thematrix-matrix products (GEMM kernel) while minimizing the accuracy loss

by usingmixed precision arithmetic (matrices are converted to fp16, but com-

putations are accumulated in fp32). Second, we replace the standard Hou-

seholder QR by Cholesky QR, which is much more efficient on GPU, and we

mitigate its inherent instability by performing it in fp64 arithmetic. Third and

lastly, we implement the iterative refinement approach proposed in Chapter 2

to recover full fp32 accuracy. Overall, our method achieves an accuracy that

is at least as good and inmany cases even better than a standard randomized

LRA in fp32 arithmetic, while being up to 2.2× faster.

Our work illustrates the convergence of approximate computing tech-

niques by combining LRAs, randomization, mixed precision arithmetic, and

GPU acceleration. Our results not only highlight the effectiveness of using
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Figure 3.3 – Performance and accuracy of randLRA with refinement. (In (b),

tgemm32|32 and tgemm16|32 completely overlap both for Householder QR and

Cholesky QR).
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mixed precision GPUs for accelerating randomized LRA while preserving a sa-

tisfying accuracy, but also pave the way toward exploring other similar GPU-

based approximate methods in linear algebra and beyond.
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4 - Numerical stability of tree tensor net-

work operations, and a stable rounding al-

gorithm

4.1 . Introduction

This chapter is concerned with tensor computations in finite precision

arithmetic and aims to answer the following questions :

1. What are the key properties that guarantee the stability of tensor com-

putations in finite precision arithmetic ?

2. How can we design tensor algorithms that are guaranteed to be stable

in low precision?

Our contribution towards tackling these questions is two-fold. First, we

propose a general framework based on a tree tensor network format that

encompasses the most important tensor formats (tensor-train (TT), Tucker,

and hierarchical Tucker (HT)) and we define the essential operations that are

needed to express some of the most common computations of interest. We

then carry out an error analysis of an abstract computation in this framework

and identify conditions to guarantee its stability. In particular, a key condition

is that the norm of the tensor should be tightly concentrated around a single

node of the network, a property that we will formalize in definition 4.2 of our

framework. This property is notably satisfied when all nodes of the tensor

except one are semi-orthogonal. Our analysis shows that if this property is

maintained throughout the computation then the error introduced by each

operation is controlled in terms of the norm of the global tensor. This first

contribution can thus be used to establish the stability of a wide range of

tensor computations that can be expressed in our framework.

Our second contribution is to use our framework to propose a general

rounding algorithm : tensor rounding [21, p. 8] is key operationwhich consists

in finding the optimal ranks for a prescribed tensor structure and a prescribed

accuracy. In view of the conclusions of our error analysis, the algorithm is

careful tomaintain the semi-orthogonality of all nodes except one throughout

the computation, and is thus guaranteed to be stable. The algorithm works

for any tree topology of tensor and can thus be applied to a wide range of

tensor formats. We compare this rounding algorithm with the existing Gram

SVD-based rounding for hierarchical Tucker tensors proposed in [14], which

is unstable [25]. We show that our algorithm can significantly improve the

accuracy of the rounding in finite precision arithmetic, and can thus more

reliably exploit the low precision arithmetics available on modern hardware.
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The rest of this chapter is structured as follows. In Section 4.2 we present

our general framework for tensor computations. Then, in Section 4.3, we carry

out the error analysis of tensor computations based on our framework and

identify conditions to guarantee their stability. We then exploit our frame-

work to establish the stability of some common tensor computations in Sec-

tion 4.4. We propose a tensor rounding algorithm in Section 4.5 that is gua-

ranteed to be stable. In Section 4.6, we perform some numerical experiments

that illustrate the stability of our rounding algorithm and compare it to the

unstable Gram SVD-based one. Finally, we provide our concluding remarks in

Section 4.7.

4.2 . The framework

In this section we present the framework that we will use to develop our

analysis and algorithms. First, in Section 4.2.1, we introduce somebasic defini-

tions and notations. Then, in Section 4.2.2, we define the four key kernels that

operate locally on a tree tensor network. Finally, in Section 4.2.3, we define a

key property of the network that our analysis will require.

4.2.1 . Definitions and notations

Our framework is based on tree tensor networks [58, 59] already defined

in Section 1.3.1, and illustrated in Figure 1.9. Given two tensor networks A
and B, we define the network C = AB as the contraction of A and B along

one or multiple specified dimensions (which are left implicit as they will be

apparent from the context).

In the following, to clearly distinguish the objects under consideration, we

will use the following notation :

• scalars are denoted with lower case letters (in particular, we will denote

the inner edges as ri and the outer edges as ni) ;

• matrices are denoted with upper case letters (e.g.,X , U ) ;

• tensors (nodes of a tensor network) are denotedwith calligraphic upper

case letters (e.g., X , U ) ;
• and tensor networks are denoted with bold calligraphic upper case let-

ters (e.g., X ).

We define ‖A‖ = ‖A‖, that is, the norm of the network is the norm of

the full tensor it represents. As a result the usual submultiplicativity of the

Frobenius norm is preserved for tensor networks :

‖AB‖ = ‖AB‖ ≤ ‖A‖‖B‖ = ‖A‖‖B‖. (4.1)

Moreover, we extend the definition of semi-orthogonality to tensors as

follows : given two adjacent nodes A and B, we call A semi-orthogonal in the
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direction ofB if thematricizationA ofA in the direction ofB is amatrix with or-

thonormal columns (when considering the contractionAB) or with orthonor-

mal rows (when considering the contraction BA). The invariance of the Frobe-
nius norm is preserved with this extended definition : ifA is semi-orthogonal

in the direction of B then

‖AB‖ = ‖B‖. (4.2)

Finally, we defineA+B as the network that represents the tensorA+B ;
note that its nodes are not the sum of the nodes ofA and B, but rather their
concatenation. An important case where this simplifies is whenA andB only

differ by one node : ifA = X 1CX 2 and B = X 1DX 2, then

A+B = X 1CX 2 +X 1DX 2 = X 1(C +D)X 2. (4.3)

4.2.2 . Operations on tree tensor networks

In order to express various computations of interest in our framework, we

define four key kernels that operate locally on a tree tensor network. These

four kernels are matricize, tensorize, split, and merge.

• matricize(U , r) matricizes the tensor U along the dimension r (which

may be an inner or outer edge). This operation is illustrated in Fi-

gure 4.1, where U3 is a tensor of dimensions r1 × r2 × r3 that is ma-

tricized along the dimension r2. This results in matrix U3 of dimensions

r2×r1r3. To leave the representation of the entire network unchanged,

we add a “phantom node” representing the identity tensor I ; note that
this node is purely conceptual and never actually stored. In the case

where r is an inner edge, we will also write matricize(U ,V), where V
is the node connected to U by edge r.

• tensorize(U) is the inverse operation of matricize : it reshapes the

matrix U into its tensor form U by contracting it with the phantom core

I (note that this contraction is conceptual and does not require any

operation). This operation is also illustrated in Figure 4.1 (going from

right to left).

• split(A) decomposes a matrix node A into the product of two ma-

tricesB andC. This operation is illustrated in Figure 4.2, where the node

U2 ∈ Rn1×r1 is split into the productBC ofB ∈ Rn1×r0 and C ∈ Rr0×r1 .

• merge(B, C) is the inverse operation of split : given two tensors B and

C, it merges them into a single node A representing their contraction

BC along the dimension that connects them. This operation is also illus-

trated in Figure 4.2 (going from right to left).

Note that since these kernelsmodify the network, formally we should pass

X as input/output, that is, we should write X = matricize(U , r,X ) and so
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on. To keep the notation light, we instead consider these kernels to be mem-

ber functions of the network, so that it is implicit that theymodify the network.

The merge kernel allows us to express contractions and, more specifically,

matrix–matrix products when its input are matrix nodes. The split kernel

allows us to express various types of matrix decompositions, such as QR or

truncated singular value decomposition (SVD) decompositions. Together with

matricize and tensorize, these four kernels are sufficient to express a wide

range of tensor computations of interest. We will provide some examples in

Section 4.4.

U1

U2

n1

U3

U4

n2

U5

n3

r1 r2

r3 r4

matricize(U3, r2)

tensorize(U3)

U1

U2

n1

U3

I

U4

n2

U5

n3

r1 r2

r3r4

r3 r4

Figure 4.1 – Illustration of the matricize and tensorize kernels.

U1

U2

n1

U3

U4

n2

U5

n3

r1 r2

r3 r4

split(U2)

merge(B,C)

U1
B

C
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U3
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r3 r4

Figure 4.2 – Illustration of the split and merge kernels.

4.2.3 . α-normalized networks

Bounding the error introduced by each of the kernels in terms of the local

node to which they are applied is not sufficient to obtain an error bound in

terms of the global network.
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Definition 4.1. Given two nodes Ui, Uj of a network X , Ui is said to be αi-

normalized in the direction of Uj if there exists a constant αi > 0 such that the

matricization Ui of Ui in the direction of Uj satisfies, for any matrix M of compa-

tible dimensions, ‖UiM‖ ≤ αi‖M‖.

Definition 4.2. Consider a networkX composed of n nodesU1, . . . ,Un.X is said

to be α-normalized with respect to a node Uj if there exists a vector of constants

α = (α1, . . . , αn) ∈ Rn such that ‖Uj‖ ≤ αj‖X‖ and all the other nodes Ui,
i 6= j, are αi-normalized in the direction of Uj .

This abstract definition reflects the fact that in several contexts the norm

of the networkX is tightly concentrated in a single node Uj , while the remai-

ning nodes satisfy some Lipschitz-like condition meaning that their contrac-

tion approximately preserves the norm. In particular, there are two important

cases where the network X is α-normalized with small αi values.

The first case is when the matricization of any node Ui in the direction of

Uj is semi-orthogonal. Indeed, in this case, ‖X‖ = ‖Uj‖ and the network is

e-normalized where e is the vector of all ones, that is, αi = 1 for i = 1: n. Note

that in this case, e-normality is equivalent to other definitions discussed in the

literature, under the name of r-orthogonality [60, Definition 24] or t-frame [14,

Definition 3.5].

The second case is when the network is obtained as the sum of two e-

normalized networks. Indeed, in this case, the nodes with at least two inner

dimensions remain semi-orthogonal. The other nodes arematrices since they

are of degree two : one inner dimension and one outer dimension (since any

node can be reshaped to only have one outer dimension). These nodes be-

come the concatenation of two semi-orthogonal matrices. Let U = [U1 U2] be

such a node, where U1 and U2 are semi-orthogonal. Then we can prove that

‖UM‖ ≤
√
2‖M‖ for any matrixM of compatible dimensions. Indeed, deno-

ting M =

[
M1

M2

]
the partition of M corresponding to the partition of U , we

have

‖UM‖ = ‖U1M1 + U2M2‖ ≤ ‖U1M1‖+ ‖U2M2‖ = ‖M1‖+ ‖M2‖. (4.4)

Thus

‖UM‖2 ≤ (‖M1‖+‖M2‖)2 = ‖M1‖2+‖M2‖2+2‖M1‖‖M2‖ = ‖M‖2+2‖M1‖‖M2‖.
(4.5)

The term ‖M1‖‖M2‖ = ‖M1‖
√
‖M‖2 − ‖M1‖2 is maximized when ‖M1‖2 =

‖M‖2/2, in which case it attains its maximum value

‖M‖√
2

√
‖M‖2

2
=
‖M‖2

2
. (4.6)

71



Hence, overall

‖UM‖2 ≤ ‖M‖2 + 2‖M1‖‖M2‖ ≤ ‖M‖2 + 2
‖M‖2

2
= 2‖M‖2 (4.7)

which proves that ‖UM‖ ≤
√
2‖M‖. In conclusion the sum of two e-

normalized networks is an α-normalized network where αi =
√
2 for the ma-

trix nodes and αi = 1 for the nodes of higher order.

We can derive the following useful properties of normalized networks.

Lemma 4.1. If a networkX with n nodes is α-normalized with respect to a node

Uj , then

‖X‖ ≤
n∏

i=1, i 6=j

αi‖Uj‖. (4.8)

Proof. The proof is by induction on the number of nodes n of X . If n = 1

then Uj is the only node of X , so that ‖X‖ = ‖Uj‖ and thus (4.8) holds (with

the convention that empty products are equal to 1). Assume (4.8) holds for

any network with n − 1 nodes. Then let Ui be any node adjacent to Uj and
define Y the network which is obtained from X by replacing the nodes Ui
and Uj by their contraction UiUj . This network has n− 1 nodes and it satisfies

‖Y‖ = ‖X‖. By induction, we therefore have

‖X‖ = ‖Y‖ ≤
n∏

k=1, k 6=i,j

αk‖UiUj‖. (4.9)

Since Ui is αi-normalized in the direction of Uj we have ‖UiUj‖ ≤ αi‖Uj‖,
which concludes the proof.

Lemma 4.2. If a network X is α-normalized with respect to a node Uj , then for

any node Ui, i 6= j, we have

‖Ui‖ ≤ αi
√
ri, (4.10)

where ri is the dimension of Ui in the direction of Uj .

Proof. Let Ui be the matricization of Ui in the direction of Uj ; Ui is a matrix

with ri columns. We have

‖Ui‖ = ‖Ui‖ = ‖UiIri‖ ≤ αi‖Iri‖ = αi
√
ri, (4.11)

where Iri is the ri × ri identity matrix.

4.3 . Stability analysis

In this section, we are interested in analyzing the effect of a network X
undergoing a sequence of inexact operations in finite precision arithmetic.

72



Denoting X̂ the resulting network after such a sequence of operations, we

ask how different is X̂ fromX ? To answer this question, we must first define

a measure of distance between tree tensor networks. The natural definition

is to measure the norm of the difference of the tensors that these networks

represent, that is :

‖X − X̂‖ = ‖X . full()− X̂ . full()‖ = ‖X − X̂‖. (4.12)

In order to upper bound ‖X − X̂‖, we divide our analysis into three parts.

First, in Section 4.3.1, wemake some assumptions on the accuracy of the four

kernels. Then, in Section 4.3.2, we analyze how a single local operation affects

the accuracy of the global network. Finally, in Section 4.3.3, we show that the

global error resulting from a sequence of such operations is bounded by the

sum of the local errors and conclude our analysis.

4.3.1 . Model

First, since the matricize and tensorize kernels only reshape data wi-

thout performing any numerical computations, it is natural to assume that

they do not incur any error. In other words, we have

tensorize(matricize(A, r)) = A. (4.13)

Consider now three matrices A, B, and C such that A = BC. Let B̂Ĉ

be the decomposition computed by the split(A) kernel. We assume that it

satisfies,

B̂Ĉ = split(A) = A+ E, ‖E‖ ≤ cε‖A‖, (4.14)

where c is a constant depending only on the dimensions of the matrices. This

amounts to assuming that the decomposition computed by split is back-

ward stable with respect to some precision parameter ε. This assumption is

certainly satisfied for standard matrix decompositions (QR, SVD, . . .) [26] that

are typically used in the computations of interest.

Finally, consider three tensors A, B, and C such that A = BC where the

productBC corresponds to their contraction along a common dimension, and

let Â be the contraction computed by the merge(B, C) kernel. We assume that

it satisfies

Â = merge(B, C) = BC + E , ‖E‖ ≤ cε‖B‖‖C‖. (4.15)

This assumption is certainly satisfied ifA,B, andC arematrices andA is com-

puted via a standard matrix-matrix product [26, (3.13)]. It is not hard to see

that the assumption is also satisfied for tensors if the contraction is perfor-

med by matricizing B and C along their common dimension and computing

their product via a standard matrix-matrix product.
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4.3.2 . Local errors

Let us now consider two networks X and X̂ , where X̂ is obtained by

applying a single instance of one of the four kernels of our framework. Our

goal is to bound ‖X − X̂‖. In fact, we only need to focus on the split and

merge kernels since, as mentioned in the previous section, the matricize and

tensorize kernels do not incur any error and thus ‖X − X̂‖ = 0.

Let us first consider the case where X̂ is obtained by applying split on a

given node Uk ≡ A of X . We define X 1 and X 2 the partial networks corres-

ponding to all nodes along either dimension of A, so thatX = X 1AX 2. Then

by (4.14) we have

X̂ = X 1B̂ĈX 2 = X 1(A+ E)X 2 = X +X 1EX 2 (4.16)

and so

‖X − X̂‖ = ‖X 1EX 2‖ ≤ ‖X 1‖‖E‖‖X 2‖ ≤ cε‖X 1‖‖A‖‖X 2‖. (4.17)

This shows that even a single operation can lead to instability if

‖X 1‖‖A‖‖X 2‖ � ‖X‖.
Stability can fortunately be guaranteed when the network is α-normalized

as defined in Definition 4.2. Indeed, assume that X is α-normalized with res-

pect to some node Uj , and let n be the number of nodes of X .

If j = k (that is, Uj = A), then the network X 1EX 2 is β-normalized with

respect to node E where βi = αi for all i 6= j (the value of βj is irrelevant).

Therefore, by Lemma 4.1 we obtain

‖X − X̂‖ = ‖X 1EX 2‖ ≤
n∏

i=1, i 6=j

αi‖E‖ ≤
n∏

i=1

αicε‖X‖ (4.18)

since ‖E‖ ≤ cε‖A‖ ≤ cεαj‖X‖.
If k 6= j (that is, Uj 6= A), assume that Uj ∈ X 2 (the case Uj ∈ X 1 is

analogous). Then the network X 1E is β-normalized with respect to node E

with βi = αi for all nodes i ∈ X 1 (the value of βk is irrelevant). Therefore, by

Lemma 4.1 we have

‖X 1E‖ ≤
∏
i∈X 1

αi‖E‖ ≤
∏
i∈X 1

αicε‖A‖ ≤
∏
i∈X 1

αiαk
√
rkcε (4.19)

where rk is the dimension of A = Uk in the direction of Uj by Lemma 4.2.

Moreover, the networkX 2 is ᾱ-normalized where ᾱ is a subset of α restricted

to the nodes in X 2, and therefore by Lemma 4.1

‖X 2‖ ≤
∏

i∈X 2, i 6=j

αi‖Uj‖ ≤
∏
i∈X 2

αi‖X‖. (4.20)
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By combining (4.19) and (4.20) we finally obtain

‖X − X̂‖ = ‖X 1EX 2‖ ≤ ‖X 1E‖‖X 2‖ ≤
n∏

i=1

αi
√
rkcε‖X‖. (4.21)

For the merge kernel, the analysis is very similar. Let merge(B, C) be ap-

plied to X where B ≡ Uk and C ≡ U`. Defining X 1 and X 2 such that

X = X 1BCX 2, by (4.15) we have

X̂ = X 1ÂX 2 = X 1(BC + E)X 2 = X +X 1EX 2. (4.22)

The goal is thus to bound ‖X 1EX 2‖ assuming that X is α-normalized with

respect to some node Uj .
If j = ` (that is, Uj = C) then X 1EX 2 is β-normalized with βi = αi for all

i 6= j, k. By Lemma 4.1 we have

‖X − X̂‖ = ‖X 1EX 2‖ (4.23)

≤
n∏

i=1, i 6=j,k

αi‖E‖ (4.24)

≤
n∏

i=1, i 6=j,k

αicε‖Uk‖‖Uj‖ (4.25)

≤
n∏

i=1, i 6=k

αicε‖Uk‖‖X‖ (4.26)

≤
n∏

i=1

αi
√
rkcε‖X‖ (4.27)

since ‖Uk‖ ≤ αk
√
rk by Lemma 4.2.

If j = k (that is, Uj = B) then we similarly have

‖X − X̂‖ ≤
n∏

i=1

αi
√
r`cε‖X‖. (4.28)

Finally, if j 6= k, ` (that is, Uj is neither B nor C), assume that Uj ∈ X 2 (the

case Uj ∈ X 1 is analogous). Then X 1E is β-normalized with respect to node

E with βi = αi for all nodes i ∈ X 1. Therefore, by Lemma 4.1 we have

‖X 1E‖ ≤
∏
i∈X 1

αi‖E‖ ≤
∏
i∈X 1

αicε‖Uk‖‖U`‖ ≤
∏
i∈X 1

αiαkα`
√
rkr`cε (4.29)

by Lemma 4.2. Moreover, by the same argument as before we also have

‖X 2‖ ≤
∏
i∈X 2

αi‖X‖. (4.30)
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By combining (4.29) and (4.30) we finally obtain

‖X − X̂‖ = ‖X 1EX 2‖ ≤
n∏

i=1

αi
√
rkr`cε‖X‖. (4.31)

We have thus bounded the error introduced by split(A) and merge(B, C)
assuming thatX is α-normalized. The bounds (4.21) and (4.31) are proportio-

nal to
∏n

i=1 αi, whichmust therefore be small to guarantee stability. They also

depend on at most
√
rkr`, which is certainly bounded by the largest inner di-

mension r of the network.

We summarize the conclusions of this local error analysis in the following

theorem.

Theorem 4.1. Let X̂ be obtained by applying either split(A) or merge(B, C)
to X . Under the assumptions (4.14) and (4.15), and assuming that X is α-

normalized as defined in Definition 4.2, we have

‖X − X̂‖ ≤ rc

n∏
i=1

αiε‖X‖, (4.32)

where r is the largest inner dimension of X and c is the constant in (4.14)

and (4.15).

4.3.3 . Global error

We now consider a network X̂ which is the result of a sequence of p local

operations (split or merge) applied toX . LetX k be the network after having

performed k operations, so that X 0 = X and X p = X̂ .

One technical difficulty is that the local errors incurred by each operation

lead to second-order error terms : the error incurred by the kth operation

depends on the errors incurred by the previous k − 1 operations. This effect,

however, only introduces an O(ε2) error term which is not particularly signi-

ficant but quite tedious to compute precisely. Therefore, in the following we

will not track explicitly these O(ε2) terms.

To bound the global error X̂ − X , we observe that it is bounded by the

sum of the local errors. Indeed, we have the telescopic sum

‖X̂ −X‖ = ‖X 0 −X p‖ (4.33)

= ‖X 0 −X 1 +X 1 −X p‖ (4.34)

= ‖X 0 −X 1 +X 1 − · · ·+X p−1 −X p‖ (4.35)

≤ ‖X 0 −X 1‖+ · · ·+ ‖X p−1 −X p‖ (4.36)

=

p−1∑
k=0

‖X k −X k+1‖. (4.37)
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Let nk be the number of nodes of X k. Assume that at each step k the

network X k is αk-normalized, where α(k) ∈ Rnk is a vector with elements

α
(k)
i , i = 1: nk. Define

ζk = rkc

nk∏
i=1

α
(k)
i , (4.38)

where rk is the largest inner dimension ofX k. Then by Theorem 4.1 we have

‖X k −X k+1‖ ≤ ζkε‖X k‖ = ζkε‖X‖+O(ε2). (4.39)

We therefore obtain

‖X − X̂‖ =
p−1∑
k=0

‖X k −X k+1‖ (4.40)

≤
p−1∑
k=0

ζkε‖X‖+O(ε2) (4.41)

(4.42)

We summarize our conclusions in the following theorem, which deter-

mines sufficient conditions for an abstract computation on X to be stable.

Theorem 4.2. Let X̂ be obtained by applying a sequence of p operations of the

form split(A) or merge(B, C) to X . Under the assumptions (4.14) and (4.15),

and assuming that at each step k of the computation, the intermediate network

X k is α(k)-normalized as defined in Definition 4.2 with α(k) ∈ Rnk , we have

‖X − X̂‖ ≤ sε‖X‖+O(ε2) (4.43)

with

s =

p−1∑
k=0

crk

nk∏
i=1

α
(k)
i , (4.44)

where rk is the largest inner dimension of X k and c is the constant in (4.14)

and (4.15).

The bound (4.43) can be simplified to

‖X − X̂‖ . prαncε‖X‖, (4.45)

where r = maxk rk, n = maxk nk, and α = maxi,k α
(k)
i . In other words, Theo-

rem4.2 shows that the error grows linearly with the kernel error cε, the largest

inner dimension r of the network, the number of operations p, and the term

αn, which is exponential in the number of nodes n. Therefore, if the kernels

are stable (small c), the main condition for the overall network computation

to also be stable is that α is small.
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Asdiscussed in Section 4.3.1, there are important practical caseswherewe

know the network to be α-normalized for small values of αi. In these cases,

stability is thus guaranteed. We discuss concrete examples in the next section

(Section 4.4). We also develop in the section after that (Section 4.5) a rounding

algorithm that exploits the conclusion of our analysis to guarantee stability.

4.4 . Examples of stable tensor computations

Our analysis in the previous section has identified conditions for an abs-

tract computation in our framework to be stable. Here, we aim to provide

some concrete examples of tensor computations that are proven stable by

our analysis. To do so, we need to achieve two things : 1) show that the com-

putation of interest can be expressed in our framework ; and 2) show that

throughout the computation the network remains α-normalized (ideally with

small values of α).

4.4.1 . full

We begin with the simple example of the full operator, which contracts a
tree tensor network into the full tensor it represents as illustrated in Figure 4.3

(going from left to right).

This operation can simply be expressed as a sequence of merge(U ,V) of
adjacent nodes U and V , until only one node X remains, as shown in Algo-

rithm 4.1.

Algorithm 4.1 full()

1 : Choose a node U .
2 : while U is not the only node left do

3 : Let V be a node adjacent to U .
4 : U = merge(U ,V)
5 : end while

Mathematically, the contractions may be performed in any order since all

orders lead to the same result X . However, some orders may computatio-

nally more efficient depending on the dimensions. Moreover, in finite preci-

sion arithmetic, different orders are not numerically equivalent. The following

result provides an error bound for α-normalized networks.

Corollary 4.1. Let Algorithm 4.1 be applied to a network X α-normalized with

respect to node Uj . If Uj is chosen as node U on line 1, then the computed X̂
satisfies

‖X − X̂‖ ≤ sε‖X‖ (4.46)

with s = (n − 1)cr
∏n

i=1 αi, where n is the number of nodes of X , r is its largest

inner dimension, and c is the constant in (4.14) and (4.15).
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Proof. Algorithm 4.1 consists of n − 1 merge operations where the interme-

diate networks X k at each step k are progressively more and more contrac-

ted : X k has nk = n − k nodes and its largest inner dimension rk is certainly

bounded by the largest inner dimension r of the original network X = X 0.

Assume (without loss of generality since the nodes can be relabelled) that

X is α-normalized with respect to Un and that the other nodes are mer-

ged with Un in the order Un−1, . . .U1. Then at step k X k is β(k)-normalized

with respect to Un where β(k) ∈ Rnk satisfies β
(k)
i = αi for i < nk and

β
(k)
nk =

∏n
`=nk

α` + O(ε). The O(ε) term accounts for the inexactness of the

operations whichmay slightly alter theα constants, andwhichwill only contri-

bute to the O(ε2) term in the final error bound. As a result at each step k we

have the relation
∏nk

i=1 β
(k)
i =

∏n
i=1 αi + O(ε). Therefore, by Theorem 4.2 we

obtain the bound (4.43) with

s =
n−2∑
k=0

crk

nk∏
i=1

β
(k)
i +O(ε2) ≤

n−2∑
k=0

cr
n∏

i=1

αi +O(ε2). (4.47)

Corollary 4.1 shows that if a networkX is α-normalized with small values

ofαi, it can be stably contracted into a full tensorX . Note that the assumption

that Uj is chosen as U on line 1 is required. Indeed, given two nodes Ui and
Uk that are respectively αi- and αk-normalized in the direction of Uj , we have
not assumed that their contraction UiUk is αiαk-normalized. If this were the

case, then the error bound (4.46) would hold for any order of contractions.

Importantly, this is the case when the nodes are semi-orthogonal (αi = αk =

1), because the product of two semi-orthogonalmatrices in the samedirection

is also semi-orthogonal.

U1

U2

n1

U3

U4

n2

U5

n3

r1 r2

r3 r4

full()

compress()

X nil

nil

nil

Figure 4.3 – Illustration of full and compress.

79



4.4.2 . compress

We can also express the inverse operation of the full operation, denoted
as compress : given a full tensor X , we seek to compress it into a tree tensor

networkX with a prescribed structure, as illustrated in Figure 4.3 (going from

right to left).

Algorithm 4.2 compress()

1 : for each node Ui = U1, . . .Un−1 of the prescribed structure do

2 : X = matricize(X , r) for a suitable dimension r
3 : UY = split(X) {Truncated SVD; U is semi-orthogonal}

4 : Ui = tensorize(U)
5 : X = tensorize(Y )
6 : end for

7 : Un = X {The remaining X is the root node.}

To minimize the inner dimensions of the network, we perform successive

Low-rank approximations (LRA)s, which are computed via truncated SVDs.

Thus, we can express compress as a sequence of matricize, split, and
tensorize kernels, as described in Algorithm 4.2. Note that Algorithm 4.2

computes the nodes of the network in the order U1, . . ., Un ; this is done wi-

thout loss of generality since the nodes can be relabelled. Note also that the

“suitable dimension r” on line 2 strongly depends on the network structure.

For example, for a Tucker tensor, the n − 1 = d matricizations will be done

along the d outer dimensions of the original full tensor X ∈ Rn1×···×nd . For

more general tree networks, the leaf nodes will similarly lead to matriciza-

tions along the outer dimensions ; the nodes in the upper levels will lead to

matricizations along the inner dimensions computed in the previous levels.

Importantly, the truncated SVD yields a semi-orthogonal factor U and

a non-orthogonal factor Y that we recursively compress. Therefore, Algo-

rithm 4.2 yields a network X where all nodes except the root are semi-

orthogonal in the direction of the root. Therefore,X is e-normalized where e

is the vector of all ones. This readily yields the following error bound.

Corollary 4.2. Let Algorithm 4.2 be applied to a tensor X to compress it into a

prescribed network structure X . The computed X̂ satisfies

‖X − X̂‖ ≤ (n− 1)crε‖X‖+O(ε2), (4.48)

where n is the number of nodes ofX , r is its largest inner dimension, and c is the

constant in (4.14) and (4.15).

Proof. Algorithm 4.2 consists of n−1 truncated SVD (split) operations where
the networks X k at each step k are progressively more and more compres-

sed :X k has k+1 nodes and its largest inner dimension rk is certainly boun-

ded by the largest inner dimension r of the final network X n−1 = X . Since
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each node Uk computed at step k is semi-orthogonal in the direction of the

root node X , the network X k at each step k is β-normalized with respect to

X (the only non-orthogonal node), where β = ek+1 + O(ε) is equal to the

vector of all ones of length k + 1, up to O(ε) inexactness due to the pre-

vious operations. Therefore, by Theorem 4.2 we have the bound (4.43) with

s = (n− 1)cr.

4.4.3 . orthog

Finally, we consider the orthog operation, which consists in orthogonali-

zing all nodes of a network except its root. As described in Algorithm 4.3, this

can be achieved by performing a QR factorization of each node (line 7), ma-

tricized in the direction of its parent (line 6) ; the node is then replaced by the

tensorized semi-orthogonal factor Q (line 8), while the non-orthogonal factor

R is merged with the parent node (line 9). At the end of this process, all the

nodes will be semi-orthogonal in the direction of the rootR, which will be the

only node that is not semi-orthogonal and which satisfies ‖R‖ = ‖X‖.

Algorithm 4.3 orthog()

1 : for each node U from leaves to root do

2 : if U is the root then

3 : return

4 : else

5 : P = parent(U)
6 : U = matricize(U ,P) {Matricize in the direction of the parent}

7 : QR = split(U) {QR factorization ; Q is semi-orthogonal}

8 : tensorize(Q)
9 : merge(R,P)
10 : end if

11 : end for

The following result provides an error bound for orthogonalizing α-

normalized networks.

Corollary 4.3. Let Algorithm 4.3 be applied to a network X α-normalized with

respect to its root. Then the computed X̂ satisfies

‖X − X̂‖ ≤ sε‖X‖+O(ε2) (4.49)

with s = 2(n− 1)cr
∏n

i=1 αi, where n is the number of nodes ofX , r is its largest

inner dimension, and c is the constant in (4.14) and (4.15).

Proof. Algorithm 4.3 consists of 2(n− 1) operations : n− 1 QR factorizations

(split) and n− 1 contractions (merge). Let us denoteX 2k the network after k
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split and k merge, andX 2k+1 the network after k+1 split and k merge, for
k = 0: n− 1. Then X 2k has n nodes and X 2k+1 has n + 1 nodes ; the largest

inner dimension of either of them is bounded by the largest inner dimension r

of the original network.X 2k corresponds to the original networkX where the

first k nodes have been orthogonalized ; therefore it is β-normalized where

β ∈ Rn = [ek αk+1: n] +O(ε), that is, the first k coefficients of β are 1 and the

rest are equal to the remaining coefficients of α, up to O(ε) inexactness from

the previous operations. Similarly, X 2k+1 is β-normalized where β ∈ Rn+1 =

[ek αk : n] + O(ε). Thus, in either case
∏

i βi ≤
∏

i αi + O(ε). By Theorem 4.2

we thus obtain (4.49).

orthog is particularly of interest when X is obtained as the sum of two

e-normalized networks. As explained in Section 4.2.3, in this case X is α-

normalized with αi ≤
√
2 ; we may use orthog to make the network e-

normalized again. Corollary 4.3 shows that this can be done stably since

αi ≤
√
2 is a small constant.

4.5 . A general stable rounding algorithm

Tensor rounding is a fundamental task that consists in finding the opti-

mal dimensions for each edge of the network while satisfying a prescribed

accuracy ε. In this section, we exploit the conclusions of our error analysis

in Section 4.3 to design a tensor rounding algorithm, that is both general and

stable. It is general, because it can handle any tree tensor network and only re-

lies on the four kernels defined by our framework ; it is stable, because it takes

care of preserving the semi-orthogonality of all nodes except one throughout

the computation.

Wefirst describe the proposed algorithm in Section 4.5.1, and thendiscuss

in Section 4.5.2 how it relates to existing tensor rounding algorithms.

4.5.1 . The proposed algorithm

Our rounding algorithm is outlined in Algorithm 4.4. It proceeds in two

phases. The first phase (orthog) orthogonalizes all nodes of the network ex-

cept its root as described and analyzed in Section 4.4.3. At the end of this first

phase, the root of the network is therefore the only node that is not semi-

orthogonal.

Algorithm 4.4 round

1 : orthog() (Algorithm 4.3)

2 : Let U be the root (which is the only node not semi-orthogonal).

3 : truncate(U) (Algorithm 4.5)
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The second phase (truncate) then proceeds from the root down to the

leaves and is implemented through the recursive function truncate outlined

in Algorithm 4.5. It is initially called on the root node U , which is the only node

that is not semi-orthogonal. Then it loops on each of its children C (line 2), and
we tighten the dimension connecting U and C by computing a truncated SVD

Y V of the matricized U (line 5). The semi-orthogonal factor V is tensorized

to replace U (line 6), while the non-orthogonal factor Y is merged with the

children C (line 7), which newly becomes the only node of the network that is

not semi-orthogonal. We can therefore recursively call truncate on C (line 8),
which will tighten all the dimensions in the subtree rooted at C. The recursion
terminateswhen the child C is a leaf node (lines 14 to 17) : in this case, we com-

pute a truncated SVD V Y (line 15) where the semi-orthogonal factor V is on

the left and is merged with C (line 16), whereas Y is tensorized (line 17) to re-

placeU which therefore remains non-orthogonal. Once the recursion on C has
terminated, all that remains to do is to transfer the non-orthogonality back to

the parent node U . This is achieved by performing a QR factorization (line 10)

of C matricized in the direction of its parent U (line 9). The semi-orthogonal

factorQ is tensorized (line 11) to replace C while the non-orthogonal factorR
is merged (line 12) with the parent U , which is therefore once again the only

node that is not semi-orthogonal.

The key idea of this rounding algorithm is to concentrate the non-

orthogonality in a single node of the network, which therefore carries the

entire norm of the network, and this information is transferred through the

network as the computation advances while keeping all the other nodes semi-

orthogonal. In other words, the orthogonalization phase makes the network

e-normalized, and then the network is maintained e-normalized throughout

the entire truncation phase. We therefore have the following key result.

Corollary 4.4. Let Algorithm 4.4 be applied to a network X α-normalized with

respect to its root. Then the computed X̂ satisfies

‖X − X̂‖ ≤ sε‖X‖+O(ε2) (4.50)

with

s = cr

(
2(n− 1)

n∏
i=1

αi + 4(n− 1)− 2`

)
,

where n is the number of nodes ofX , ` is its number of leaves, r is its largest inner

dimension, and c is the constant in (4.14) and (4.15).

Proof. The result is a direct consequence of Corollary 4.3, which bounds the

error for the orthogonalization phase, and of the fact that the network re-

mains e-normalized throughout the truncation phase. The 2(n − 1)
∏n

i=1 αi

accounts for the orthogonalization phase and comes from (4.49). The trun-

cation phase leads to an error pcr where p is the number of operations.
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Algorithm 4.5 truncate(U)
1 : {On input, U is the only node not semi-orthogonal}

2 : for all children C of U do

3 : U = matricize(U , C) {Matricize U in the direction of its child}

4 : if C is not a leaf then
5 : Y V = split(U) {Truncated SVD; V is semi-orthogonal}

6 : U = tensorize(V )
7 : C = merge(Y, C) {C is now the only node not semi-orthogonal}

8 : truncate(C) {Recursive call}

9 : C = matricize(C,U) {Matricize C in the direction of its

parent}

10 : QR = split(C) {QR factorization}

11 : C = tensorize(Q)
12 : U = merge(R,U)
13 : {U is back to being the only node not semi-orthogonal}

14 : else

15 : V Y = split(U) {Truncated SVD; V is semi-orthogonal}

16 : C = merge(V, C)
17 : U = tensorize(Y ) {U still is the only node not

semi-orthogonal}

18 : end if

19 : end for
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truncate requires four operations (two split and two merge) for each inter-

nal node (excluding the leaves and the root), and two operations (one split
and one merge) for the leaves. Therefore, we have p = 4(n − 1 − `) + 2` =

4(n− 1)− 2`.

In particular, Corollary 4.4 shows that the sumof two e-normalized tensors

can be stably rounded with Algorithm 4.4, since in this case αi ≤
√
2 (see

Section 4.2.3).

4.5.2 . Comparison with existing tensor rounding algorithms

Various tensor rounding algorithms have been proposed in the literature,

depending on the network topology.

For the TT format (which corresponds to a chain of nodes), a standard

implementation of the algorithm is provided in [9, Alg .2]. The algorithm is

divided in two steps. First, all the nodes are orthogonalized from right to left

except for the leftmost one. The second step starts from this leftmost non-

orthogonal node, tightens its inner dimension to the prescribed accuracy ε

via a truncated SVD, and merges the non-orthogonal factor with the node to

its right. The process is then recursively repeated on this second node until

all inner dimensions have been tightened. It is not hard to see that our Algo-

rithm 4.4, when applied to a tensor train topology, reduces precisely to this

very algorithm. In particular, this proves that the tensor train rounding algo-

rithm from [9] is stable in finite precision arithmetic.

For the Tucker format, to the best of our knowledge, no rounding al-

gorithm is described in the literature. However, the high-order singular va-

lue decomposition (HOSVD) algorithm described in [33], which implements

the compress kernel (computation of the Tucker tensor directly from the full

tensor), can be used to round a given Tucker tensor as follows. First, we

make all nodes semi-orthonormal except for the root (orthog) ; then, we use

HOSVD to compute a Tucker approximation of the root (compress) ; finally,
we contract the leaves of this Tucker root tensor with the leaves of the ori-

ginal tensor (merge) to obtain its tightened Tucker approximation. This me-

thod performs exactly the same operations as our round algorithm, but in a

different order : our algorithm would interlace the truncations (split) and
contractions (merge) along each successive dimension of the root, instead of

first performing all the truncations in compress with HOSVD and then all the

contractions. However, since these operations are independent the two or-

ders produce numerically equivalent results, and so we conclude that using

this HOSVD-based method is also stable.

A widely used algorithm is the Gram SVD, which was originally proposed

for the HT format [14] (which corresponds to a complete binary tree topo-

logy) and notably implemented in the MATLAB Htucker toolbox [51]. Gram

SVD has also been recently extended to the tensor train format [21]. For each
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node, Gram SVD computes its Gramian, a small square matrix whose eigen-

value decomposition can be used to recover the desired truncated SVD of the

node in exact arithmetic. This algorithm is quite efficient and is in particular

very suitable for parallelization. However, in finite precision arithmetic, this

algorithm is unstable due to the ill-conditioning of the Gramians : the error

analysis in [25] proves that an accuracy of the order of the square root of the

machine precision can be expected, which is quite limiting when considering

the use of low precision arithmetics. We will perform a detailed experimental

comparison between this algorithm and our Algorithm 4.4 in the next section.

Finally, we also mention the PhD thesis [61], which contains a rounding

algorithm for general tree topologies [61, Alg. 6]. This algorithm shares some

similarities with our Algorithm 4.4, but also some differences. In particular, it

performs the truncation from leaves to root instead of from root to leaves.

Nevertheless, this algorithm also has the property of preserving the semi-

orthogonality of all nodes except one throughout the computation, and so

based on our error analysis, we expect it to be numerically stable.

4.6 . Numerical experiments

We now present some numerical experiments to validate the numerical

stability of our rounding algorithm, Algorithm 4.4, and compare its accuracy

to the Gram SVD approach.

4.6.1 . Experimental setting

All experiments were performed with MATLAB R2019a.

We use a tensor Z obtained as the sum of two fourth-order tensors

X ,Y ∈ R100×100×100×100, where the nodes of X and Y are randomly gene-

rated with exponentially decaying elements. For these experiments, we use

the HT format (binary tree network), although we also tested other network

topologies and obtained similar results.

We evaluate the accuracy of the algorithms with the normwise relative

error

η = ‖Z − Ẑ‖/‖Z‖, (4.51)

where Ẑ is the computed rounded tensor.

We test the use of various floating-point arithmetics : double, single, and

half precisions, which correspond to a machine precision of u = 2−53 ≈
1 × 10−16, u = 2−24 = 6 × 10−8, and u = 2−11 = 5 × 10−4, respectively. Fur-

thermore, we simulate the use of lower precisions using the chop library [38].

For the orthonormalization operations (splitwithout truncation), we use
MATLAB’s qr function, which implements Householder QR factorization. Since

this is a stable operation, it satisfies assumption (4.14) with ε = u. For the

truncated SVD operations (split with truncation), we use MATLAB’s svd to
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Figure 4.4 – Accuracy of Algorithm 4.4 depending on the truncation threshold

τ and the floating-point precision u. The text labels next to the markers indi-

cate the compression ratio between a given variant in lower precision and the

reference compression obtained in double precision, for the same value of τ
(if this ratio is equal to 1 we omit the label).

compute the full SVD and then truncate the decomposition based on the spe-

cified truncation threshold τ . Since the SVD is also stable, this operation satis-

fies assumption (4.14) with ε = u + τ . Finally, for the contraction operations

(merge), we simply use standard matrix-matrix products, and so assumption

(4.15) is satisfied with ε = u. Overall, we therefore expect our round algo-

rithm to achieve an accuracy of order ε = u + τ , which we will validate in

Section 4.6.2.

We will also compare with Gram SVD in Section 4.6.3. For these experi-

ments, we use the MATLAB Htucker toolbox [51], with some modifications of

our own for the purpose of the experiments (such as plugging the chop func-

tion in order to simulate low precision arithmetic).

4.6.2 . Validating the stability of Algorithm 4.4

In Figure 4.4 we evaluate the accuracy of Algorithm 4.4 for various values

of the truncation threshold τ and for various precisions u. The numbered la-

bels next to the markers indicate the ratio between the size of the tensor

rounded at accuracy τ using double precision and the size of the tensor roun-

ded for the same τ but using a lower precision (single or half) ; when this ratio

is equal to one, we omit it for the sake of readability. This ratio measures the

potential loss of compression incurred when using low precision : indeed, the

numerical noise introduced by the use of low precision may negatively affect

the ability of the algorithm to tighten the dimensions to their optimal value if

the requested accuracy τ is too close to the machine precision u.
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Figure 4.4 confirms the numerical stability of Algorithm 4.4 : the relative

error (4.51) is of order ε = max(τ, u), whichmeans that if an accuracy of order

ε is requested, using a truncation threshold τ = ε and any precision u . τ will

deliver an error of order ε. Using a precision u that is too close to (or larger

than) τ is not desirable since it leads to a significant loss of compression ; ho-

wever, taking u safely smaller than τ leads to exactly the same compression

as if using double precision. To be precise, the figure shows that single pre-

cision arithmetic can be used without any loss of compression for τ ≥ 10−7,

whereas half precision arithmetic can be used for τ ≥ 10−3. In conclusion, Al-

gorithm 4.4 can be safely run in lower precision arithmetic, without degrading

neither the accuracy nor the compression. This is a very attractive property

that suggests that our algorithm should be able to take advantage of all the

performance benefits of lower precision arithmetics on modern hardware.

4.6.3 . Comparison with Gram SVD

Next, we compare the numerical behavior of Algorithm 4.4 with that of

the widely used Gram SVD.

As mentioned in Section 4.5.2, Gram SVD is computationally efficient and

in particular very suitable for parallelization. However, it is also numerically

unstable : the error analysis in [25] proves an error bound of order
√
uwhere

u is the machine precision.

Figure 4.5 compares the accuracy of our Algorithm 4.4 and of Gram SVD

when using double precision (Figure 4.5a), single precision (Figure 4.5b), or

half precision (Figure 4.5c). We compare two variants of Gram SVD : one that

uses a prescribed truncation threshold τ , and one that tightens the network

to prescribed dimensions that correspond to the dimensions obtained via our

Algorithm 4.4 with the corresponding τ .

The first Gram SVD variant with prescribed τ is unfortunately unable to

correctly tighten the dimensions of the tensor except for very large values of

τ , as indicated by the numbered labels that are greater than 1. This is due to

the numerical noise of size
√
u introduced by the instability of the algorithm,

which therefore requires τ to be safely smaller than
√
u. For example, even in

double precision, Gram SVD achieves a correct compression only when τ ≥
10−6. This effect is even worse when using single of half precisions, for which

Gram SVD is effective only when τ ≥ 10−3 and τ ≥ 10−1, respectively.

The second Gram SVD variant circumvents this issue by enforcing a trun-

cation to some predetermined dimensions ; this is not a realistic scenario in

general since the tightened dimensionsmay not be known in advance (in fact,

here, we are using our Algorithm 4.4 to determine the correct dimensions).

However, in some cases, itmay be acceptable to heuristically truncate to some

prescribed dimensions. In any case, Figure 4.5 shows that this variant of Gram

SVD achieves an accuracy of order
√
u as expected ; therefore, it achieves a
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(c) Half precision

Figure 4.5 – Comparison between Algorithm 4.4 and Gram SVD depending on

the truncation threshold τ and the floating-point precision u. The text labels

next to the markers indicate the compression ratio between a given variant

and the reference compression obtained with Algorithm 4.4 in double preci-

sion, for the same value of τ (if this ratio is equal to 1 we omit the label).
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comparable accuracy to that of Algorithm 4.4 only when τ ≥
√
u and is much

less accurate when τ �
√
u.

These results confirm that our Algorithm 4.4 is much more stable than

Gram SVD and is in particular more resilient to the use of low precisions ; the-

refore, it is better suited to exploit low precision arithmetics available on mo-

dern hardware.

4.7 . Conclusion

We have proposed a general framework for analyzing the stability of ten-

sor computations in finite precision arithmetic. Our framework is based on

tree tensor networks, which encompass a wide range of tensor formats. It

defines four key kernel operations that, when combined, allow for expres-

sing a wide range of tensor operations, such as compression, contractions,

orthogonalization, and rounding. Our framework formalizes a key property,

defined in Definition 4.2 and called α-normalization, that we have identified

as fundamental for stability. An example of an α-normalized network is when

all the nodes except one are semi-orthogonal (in this case α = e, the vector

of all ones).

We have performed an error analysis which leads to Theorem 4.2, our

main theoretical result. It proves that an arbitrary computation composed of

a sequence of local operations is stable provided that each local operation is

stable, and that the network remains α-normalized throughout the computa-

tion (with small values for α). We use this key result to establish the stability

of some common tensor computations in Corollaries 4.1 to 4.3.

Then, in Section 4.5, we have turned to the fundamental problemof tensor

rounding. One of the most widely used tensor rounding algorithms is based

on theGramSVD,which is unstable in finite precision arithmetic. In view of the

conclusions of our error analysis, we have defined a rounding algorithm that is

careful tomaintain the semi-orthogonality of all nodes except one throughout

the computation. As a result, it is guaranteed stable (Corollary 4.4). Our nume-

rical experiments have confirmed the stability of the algorithm in practice, and

shown that it is significantly more resilient to the use of low precisions than

Gram SVD. Thus, our algorithm is better suited to take advantage of all the

performance benefits of lower precision arithmetics on modern hardware.
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5 - Conclusion

5.1 . Contributions

In this last chapter, we summarize all our contributions. Each chapter ex-

ploits newmethods to improve the efficiency of low-rank approximationsme-

thods. Because low-rank approximations becomes increasingly important to

prevent the curse of dimensionality, it needs to be computationally efficient

and not being a bottleneck of application.

Since low precision accelerates computation on modern hardware, a first

idea was to generate a low precision version of low-rank approximation. The

algorithm first computes a low-rank approximation in low precision. Then, it

computes another low-rank approximation of the error term, also in low pre-

cision, to refine the accuracy of the approximation ; this process can be repea-

ted to refine the accuracy further. We ensure the rank of the approximation

remains bounded by using inexpensive recompression operations. The inter-

est of the method is that it can be applied to any low-rank approximations

method for either matrices or tensors. We have performed the error analy-

sis of this algorithm, which proves that low precision determines the conver-

gence speed, whereas attainable accuracy depends only on high precision.

Thus, the algorithm can reach the high precision target accuracy, while most

operations are done in low precision. We first validated the behavior of this

method in Chapter 2 with MATLAB experiments. These experiments suggest

that our method has an especially high potential when using hardware with

very fast low precision arithmetic, such as GPUs with tensor core units.

To confirm this potential, we have developed in Chapter 3 a new imple-

mentation of randomized low-rank approximation for matrices using GPU

tensor cores. We exploit mixed precision arithmetic to accelerate the compu-

tation of the matrix-matrix multiplication. Then, we accelerate the QR decom-

position with the Cholesky QR kernel with double precision to avoid break-

down. We compare with a standard randomized LRA entirely in fp32 arithme-

tic, which achieves an average accuracy of order 10−4. Our results show that

our approach without refinement is up to 8× faster, with an average accuracy

of order 10−2, which may be acceptable for some applications. Otherwise, we

show that using refinement significantly improves the accuracy to an average

of order 10−5, while remaining up to 2.2× faster than the standard fp32 ran-

domized LRA.

The last contribution in Chapter 4 studies the numerical stability of tree

tensor network operations. We develop an error analysis based on a general

framework which allows us to prove the stability of a wide range of opera-

tions. In particular, we investigate how to perform tensor rounding in a stable
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way, since the commonly used Gram SVD method is unstable. We propose

a rounding algorithm that is guaranteed to be stable. We test the algorithm

experimentally and confirm its better stability compared to the GramSVDme-

thod. Our algorithm is better suited to take advantage of all the performance

benefits of lower precision arithmetic on modern hardware.

5.2 . Perspective

All the above contributions presented open several perspectives for fu-

ture research.

Formatrices, the Chapter 3 highlights the speedup performance provided

by recent hardware on low-rank approximations, as studied in Chapter 2. Ho-

wever, it also opens the perspective to apply the mixed precision scheme on

the Cholesky QR [55] kernel used in Algorithm 3.4, which may exploit the ten-

sor core units for the triangular solve while preserving the numerical stability.

Moreover, Chapter 2 highlights many hardware fields to explore with this

iterative refinement scheme. For example, we can investigate an implementa-

tion on AMD GPU or Intel GPU rather than NVIDIA GPU. We can also consider

less common hardware like Field-Programmable Gate Array (FPGA) to see if

the method can be applied efficiently.

For tensors, Chapter 4 opens the perspective to apply our rounding me-

thod in a tree tensor network framework with parallelization to speed up the

computation and compare the practical performance with the Gramian me-

thod on various computer architectures. A parallelization can be performed

in the orthogonalization kernel orthog, where each factor at the same tree

level can process its orthogonalization simultaneously.

Chapter 3 provides good results onmatrices for mixed precision low-rank

approximations, so we can similarly investigate a high performance imple-

mentation on modern hardware for tensors to experimentally validate the

potential speedup.

During this thesis, we use direct methods to compute the low-rank approxi-

mation for tensors. However, we can also investigate the use of iterative me-

thods, such as alternating least squares, to compute the low-rank approxima-

tion with iterative refinement. Our preliminary results show that the impact of

using low precision in these iterativemethods is harder to control and predict

due to risk of being stuck at a local minimum.

Finally, wewould like to focus onhow the emergence of hardwarewith fast

low precision arithmetic can benefit our applications across various domains,

such as artificial intelligence or quantum computing, where large tensors are

commonly encountered. Since our method encompasses many tensor for-

mats, it will be applicable in many practical applications as a general way to

tackle the curse of dimensionality.
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7 - Appendix

7.1 . Résumé en français

L’algèbre linéaire est un outil fondamental dans de nombreux domaines

scientifiques tels que la physique, la chimie, la biologie et l’ingénierie [1, Part

IV]. En informatique, son importance est encore plus prononcée avec les ma-

trices, car elle est à la base de nombreux algorithmes et de structures de don-

nées. Ces dernières années, la quantité de données à traiter à augmenter

de manière exponentielle, conduisant à de nouvelles structures de données

telles que les tenseurs, qui sont la généralisation des matrices à des ordres

supérieurs à deux. Des domaines de recherche récents tels que le traitement

du signal, le traitement d’images, la chimie quantique et l’apprentissage au-

tomatique utilisent fréquemment les tenseurs [2, 3, 4, 5, 6, 7]. Cette quantité

croissante de données a conduit à un défi important en informatique : la curse

of dimensionality qui peut être abordé via une méthode appelée approxima-

tion de rang faible (ARF). Notre travail se concentrera sur le développement

de nouveaux algorithmes pour calculer une ARF en arithmétique à faible pré-

cision, qui est une nouvelle direction prometteuse pour accélérer les calculs

d’algèbre linéaire sur le matériel moderne.

L’ARF est unoutil puissant utilisé dans denombreuses applications scienti-

fiques pour réduire la dimension de données à grande échelle [7, 8, 9, 10]. Par

exemple, unematriceX ∈ Rn×n peut être approximée par un produit de rang

faible UV T de matrices U et V de taille n × r, réduisant le coût de stockage

initial deO(n2) àO(nr). Pour les tenseurs, ce coût de stockage est encore plus

critique [7, 6, 8]—O(nd)pour un tenseur d’ordre d. Lesméthodes d’ARF de ten-

seurs décomposent le tenseur plein en un produit de tenseurs de plus faible

ordre et de plus faible rang ; plusieurs formats de tenseurs de faible rang ont

été proposés comme le format Tucker [11, 12], le format Tensor-Train [9] et

le format Tucker hiérarchique [13, 14].

Cependant, calculer les décompositions de matrices ou de tenseurs de

faible rang est une tâche intensive en calcul ; elle représente le goulot d’étran-

glement de nombreuses applications basées sur l’ARF. Par conséquent, dé-

velopper des algorithmes efficaces pour calculer une ARF est un problème

crucial qui a fait l’objet de nombreuses études [15, 7, 8, 6].

Une nouvelle possibilité pour accélérer le calcul de l’ARF est d’utiliser les

faible précision arithmétiques, qui offrent des avantages de performance signi-

ficatifs sur le matériel moderne [16]. En particulier, les arithmétiques en half

precision telles que les formats Institute of Electrical and Electronics Engineers

(IEEE) fp16 et bfloat16 atteignent une vitesse très élevée sur les accélérateurs

Graphics Processing Unit (GPU) avec un gain de vitesse allant jusqu’à 4× par
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rapport à la double précision (fp64) [17]. Cependant, la faible précision dégrade

la précision des calculs ; par exemple, l’arithmétique en half precision fournit,

aumieux, entre 3 et 4 chiffres significatifs, selon le format. De nombreuses ap-

plications nécessitent de calculer une ARF avec une précision plus élevée [15,

8].

Cela motive le besoin d’algorithmes de précision mixte, qui combinent plu-

sieurs formats de précision dans le but d’atteindre la haute performance de

la faible précision tout en préservant la haute précision des formats de haute

précision [18, 19]. Contrairement à d’autres routines d’algèbre linéaire telles

que la résolution de systèmes linéaires, il y a eu relativement peu de travaux

sur la conception d’algorithmes de précisionmixte (oumême faible précision)

pour l’ARF.

Ainsi, l’objectif principal de cette thèse est de développer des algorithmes

de précision mixte pour l’ARF qui soient à la fois précis et efficaces. Cet ob-

jectif a été atteint par trois contributions principales, qui sont expliquées ci-

dessous.

ARF avec raffinement itératif En tant que première contribution, nous

proposons une nouvelle méthode pour calculer une ARF en précision mixte

définie dans Chapter 2. Notre approche est applicable à pratiquement n’im-

porte quel algorithme d’ARF, impliquant des matrices ou des tenseurs. Elle

rappelle le cadre de raffinement itératif utilisé pour résoudre des systèmes

linéaires [20] : l’idée est de d’abord calculer une ARF en faible précision, puis

évaluer l’erreur (ou le résidu) de cette première ARF, et réappliquer le même

noyau d’ARF à ce terme d’erreur pour obtenir un terme de correction qui est

utilisé pour affiner la précision de l’ARF. Cela peut être répété de manière ité-

rative pour atteindre n’importe quel niveau de précision souhaité. L’ARF affi-

née est obtenue comme la somme de l’ARF en faible précision d’origine et du

terme de correction, et est donc de rang plus grand, mais toujours de faible

rang. Afin de contenir la croissance du rang et de maintenir le rang optimal

tout au long des itérations, notre méthode utilise une stratégie de “recom-

pression” [14, 21] qui est effectuée en haute précision, mais dont le coût reste

asymptotiquement plus petit que celui de l’ARF et devient également un sujet

de notre travail comme dernière contribution dans Chapter 4. Nous effec-

tuons une analyse d’erreur de notre méthode basée sur un modèle d’erreur

paramétré général qui suppose seulement que nous avons des implémen-

tations numériquement stables des noyaux de base utilisés dans notre algo-

rithme (ARF, multiplication de matrices et recompression). Nous montrons

que la précision utilisée pour le noyau d’ARF—qui est le goulot d’étrangle-

ment de l’ensemble de la méthode—n’affecte que la vitesse de convergence

du processus, mais pas sa précision atteignable. Afin d’évaluer dans quelles

conditions nous pouvons nous attendre à ce que notre méthode soit béné-

fique, nous effectuons une analyse de complexité qui mesure le coût de la
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méthode en fonction du rang numérique de l’entrée ainsi que du rapport

de vitesse entre l’arithmétique de faible et haute précision. Nous identifions

deux situations dans lesquelles notre méthode à un fort potentiel. La pre-

mière est lorsque le rang numérique de l’entrée est petit, en faible préci-

sion, ce qui signifie que les valeurs singulières de la matrice ou du tenseur

décroissent rapidement�; dans ce cas, les premières itérations de notre mé-

thode deviennent peu coûteuses. La seconde est lorsque le matériel fournit

des unités demultiplication–accumulation dematrices en faible précision très

rapides [17], ce qui permet de calculer l’ARF en faible précision à une vitesse

très élevée.

ARF aléatoire en précision mixte sur GPU Les méthodes de projection

aléatoire sont des techniques simples et robustes pour réduire la dimension-

nalité des données tout en préservant la structure des données [22]. De plus,

les opérations matricielles au cœur de ces méthodes les rendent très adap-

tées pour exploiter des accélérateurs tels que les GPUs [23]. Ainsi, nous étu-

dions dans quelle mesure ces unités de calcul très rapides en faible précision

peuvent être exploitées pour accélérer les méthodes de projection aléatoire,

en particulier dans le cas desmatrices. La nouvelle contribution est la concep-

tion d’une nouvelleméthode d’ARF aléatoire en précisionmixte, avec une ana-

lyse de performance et de précision montrant que la méthode proposée est

capable d’exploiter les unités tensor cores des GPU de manière fiable et effi-

cace. Notre méthode repose sur trois idées clés : La première idée consiste

à effectuer les produits de matrices–matrices (noyau GEneral Matrix Multiplica-

tion (GEMM)) en précision mixte en utilisant les unités tensor cores, car ces opé-

rations représentent le goulot d’étranglement asymptotique de la méthode.

Nous comparons plusieurs variantes deGEMMen fonction de lamanière dont

les conversions entre fp32 et fp16 sont gérées, et identifient une variante en

particulier qui offre le meilleur compromis performance–précision. Ensuite,

ayant considérablement accéléré les opérations de GEMM, nous observons

que l’étape d’orthonormalisation (noyau QR), bien qu’exigeant un nombre né-

gligeable de flops asymptotiques, devient le nouveau goulot de performance.

Ensuite, la deuxième idée est de passer laméthode d’orthonormalisation House-

holder QR standard à un algorithme CholeskyQR [24], qui repose principalement

sur les GEMM et est donc beaucoup plus efficace sur les GPUs. Nous atté-

nuons l’instabilité inhérente de CholeskyQR en le réalisant en arithmétique

fp64 plutôt qu’en fp32. Cela conduit à une méthode d’ARF aléatoire en préci-

sion mixte utilisant trois précisions (fp16, fp32 et fp64). Nous montrons que

cette méthode peut être jusqu’à 8× plus rapide que la méthode d’ARF aléa-

toire standard [22] en arithmétique à précision fixe fp32 et atteint une pré-

cision moyenne de l’ordre de 10−2, ce qui peut être suffisant pour certaines

applications. Ensuite, la troisième idée est d’utiliser notre méthode de raffine-

ment itératif pour l’ARF proposée dans la contribution précédente ci-dessus pour
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améliorer la précision de la méthode. Nous montrons qu’avec le raffinement, la

précision de cette méthode s’améliore significativement pour atteindre une

précision moyenne de l’ordre de 10−5, tout en restant jusqu’à 2.2× plus ra-

pide que la méthode d’ARF standard en arithmétique fp32.

Stabilité des opérations sur les décompositions tensorielles de faible

rang L’ARF avec raffinement itératif proposée dans la première contribution

nécessite des noyaux stables, y compris un noyau de recompression. Cette

hypothèse nous motive comme dernière contribution à étudier la stabilité du

calcul des noyaux de tenseurs, qui n’a pas été étudiée. Ce manque d’analyse

peut s’expliquer principalement par deux raisons : d’une part, les erreurs de

troncature ont tendance à dominer les erreurs d’arrondi lorsque la haute pré-

cision est utilisée, de sorte que ces dernières ont été traditionnellement né-

gligées ; et d’autre part, il existe une grande variété de formats de tenseurs

différents, et leurs algorithmes associés peuvent être très complexes à analy-

ser. Il est important de développer une analyse d’erreur précise pour identifier

quels algorithmes de tenseurs sont stables et lesquels deviendront probléma-

tiques en faible précision. Notre contribution pour aborder ces questions est

double. Premièrement, nous proposons un cadre général basé sur un format

de réseau tensoriel arborescent qui englobe les formats de tenseurs les plus im-

portants (Tensor-Train, Tucker et Tucker hiérarchique) et nous définissons les

opérations essentielles nécessaires pour exprimer les algorithmes qui nous

intéressent. Nous effectuons ensuite une analyse d’erreur d’un algorithme

abstrait dans ce cadre et identifions des conditions pour garantir sa stabi-

lité. En particulier, une condition clé est que la norme du tenseur doit être

étroitement concentrée autour d’un seul nœud du réseau, une propriété que

nous formaliserons dans Chapter 4. Cette propriété est notamment satisfaite

lorsque tous les nœuds du réseau, sauf un, sont semi-orthogonaux. Notre

analyse montre que si cette propriété est maintenue tout au long du calcul,

alors l’erreur introduite par chaque opération est contrôlée en termes de la

norme du tenseur global. Ce premier travail peut donc être utilisé pour établir

la stabilité d’une large gamme de calculs de tenseurs qui peuvent être expri-

més dans notre cadre. Notre deuxième travail est d’utiliser notre cadre pour

proposer un algorithme de recompression général. Compte tenu des conclu-

sions de notre analyse d’erreur, l’algorithme est attentif à maintenir la semi-

orthogonalité de tous les nœuds, sauf un tout au long du calcul, et est donc

garanti d’être stable. L’algorithme fonctionne pour n’importe quelle topologie

d’arbre de tenseur et peut donc être appliqué à une large gamme de formats

de tenseurs. Nous comparons ce nouvel algorithme de recompression avec

l’algorithme de recompression basé sur le Gram SVD pour les tenseurs Tu-

cker hiérarchiques proposé dans [14], qui est instable [25]. Nous montrons

que notre nouvel algorithme peut améliorer significativement la précision de

la recompression en arithmétique à précision finie, et peut ainsi exploiter de
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manière plus fiable les arithmétiques à faible précision disponibles sur le ma-

tériel moderne.
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