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Résumé

Titre: Imagerie multimodale simultanée des paramètres métaboliques et fonction-
nels des tumeurs : hétérogénéité tumorale, prédiction de l’efficacité de la médecine de
précision par algorithmes d’apprentissage automatique.

Mots clefs: Imagerie multimodale, Apprentissage automatique, Paragangliome, Réponse au

traitement, Tomographie par émission de positons dynamique (TEP), Doppler ultrasonore ultrara-

pide, Regroupement hiérarchique, Hétérogénéité intra-tumorale, Réseau de neurones U-Net.

Résumé: Traditionnellement, l’évaluation

de l’efficacité des traitements s’est principale-

ment appuyée sur les caractéristiques macro-

scopiques des tumeurs, telles que la taille ou

la glycolyse, ce qui n’offre qu’un aperçu in-

direct des effets des thérapies de précision sur

la biologie des tumeurs. Les modalités d’im-

agerie avancées offrent de nouvelles possibil-

ités de visualiser des caractéristiques tumorales

distinctes et d’extraire des descripteurs, amélio-

rant ainsi notre compréhension de la réponse

au traitement. En particulier, l’imagerie mul-

timodale joue un rôle clé en permettant l’inté-

gration de diverses techniques pour obtenir une

vue d’ensemble détaillée du comportement de la

tumeur.

Notre étude présente un nouveau cadre

d’apprentissage automatique qui exploite les

caractéristiques d’imagerie métabolique, mor-

phologique et vasculaire obtenues par tomogra-

phie par émission de positrons (TEP), échogra-

phie Doppler ultrarapide (UUDI) et tomoden-

sitométrie (TDM). Ces caractéristiques ont été

extraites et analysées à l’aide d’une analyse

hiérarchique des grappes (HCA) dans unmodèle

murin de paragangliome traité avec le médica-

ment anti-angiogénique sunitinib. Le modèle

comprenait des souris traitées au sunitinib et

des souris traitées au placebo, imagées à in-

tervalles réguliers pour surveiller la réponse

au traitement. Le HCA a classé les réponses

en trois étapes, validées à l’aide d’un ensem-

ble de données indépendantes. Le classificateur

gaussien naïf de Bayes s’est avéré être le classifi-

cateur d’apprentissage automatique le plus per-

formant, atteignant une précision d’apprentis-

sage remarquable de 98,7%. Ces résultats soulig-

nent le potentiel de la combinaison des mar-

queurs métaboliques, morphologiques et vascu-

laires pour redéfinir les trajectoires de réponse

au traitement.

Au-delà de l’évaluation du traitement,

notre recherche explore le paysage complexe

de l’hétérogénéité intra-tumorale. Les tumeurs

présentent diverses sous-régions avec des carac-

téristiques distinctes, ce qui nécessite des tech-

niques d’imagerie non invasives. Notre ap-

proche implique un regroupement au niveau de

l’individu et de la population, guidé par les car-

actéristiques réalistes de la dynamique molécu-

laire multimodale (TEP) et de l’imagerie vas-

culaire UUDI. En outre, un réseau neuronal

3D U-Net a identifié de manière autonome les

sous-régions liées à la résistance au sunitinib,

catégorisant avec succès les tumeurs en qua-

tre sous-régions intra-tumorales distinctes, cha-

cune présentant des profils métaboliques et vas-

culaires uniques. L’une de ces sous-régions a

permis de prédire la résistance au traitement à

un stade avancé avec une précision moyenne du

coefficient de Dice de 85,37 %. Cette méthodolo-

gie innovante automatise l’identification des
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sous-régions prédictives, ce qui nous
permet de mieux comprendre l’impact de
l’hétérogénéité intra-tumorale sur l’évalua-
tion des traitements. L’analyse radiomique
a été utilisée pour redéfinir les stades de
réponse au traitement dans les groupes de con-
trôle et les groupes traités par le sunitinib et
pour extraire les marqueurs des régions asso-
ciées à la réponse au traitement. Les carac-
téristiques radiomiques ont permis de mieux
comprendre les caractéristiques métaboliques
et vasculaires, offrant une vision globale de
l’hétérogénéité intra-tumorale au-delà des
mesures traditionnelles. Par conséquent, l’-
analyse radiomique enrichit notre compréhen-
sion des réponses au traitement, positionnant

la radiomique comme un complément pré-
cieux dans la médecine de précision pour les
paragangliomes..

En conclusion, cette recherche fait pro-
gresser notre compréhension de la réponse au
traitement du cancer, en tirant parti de l’im-
agerie avancée et de l’apprentissage automa-
tique pour obtenir des informations précises.
Elle identifie des sous-régions prédictives au
sein des tumeurs et s’avère ensuite promet-
teuse pour les thérapies anticancéreuses per-
sonnalisées, faisant le lien entre la médecine
conventionnelle et la médecine de précision
afin d’améliorer potentiellement les résultats
pour les patients.
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Abstract: Traditionally, evaluating treat-
ment efficacy has relied mainly on gross tu-
mor features like size or glycolysis, offering
only indirect insights into the effects of pre-
cision therapies on tumor biology. Advanced
imaging modalities present novel opportuni-
ties to visualize distinct tumor characteristics
and extract descriptors, enhancing our com-
prehension of treatment response. Specifi-
cally, multimodal imaging plays a key role, al-
lowing the integration of diverse techniques
for a detailed overview of tumor behavior.
Our study presents a novel machine learn-
ing framework that exploits metabolic, mor-
phological and vascular imaging features ob-
tained from positron emission tomography
(PET), ultrafast Doppler ultrasound (UUDI)
and computed tomography (CT). These fea-
tures were extracted and analyzed using hi-
erarchical cluster analysis (HCA) in a mouse
model of paraganglioma treated with the anti-
angiogenic drug sunitinib. The model in-
cluded sunitinib-treated and placebo-treated
mice, imaged at regular intervals to moni-
tor response to treatment. The HCA classi-
fied responses into three stages, validated us-
ing an independent data set. Notably, Bayes’
naive Gaussian classifier proved to be the
best-performing machine-learning classifier,
achieving a remarkable learning accuracy of
98.7%. These results underline the potential of
combining metabolic, morphological and vas-
cular markers to redefine treatment response
trajectories. Beyond treatment evaluation, our
research delves into the complex landscape
of intra-tumoral heterogeneity. Tumors are
not uniform entities; they contain diverse sub-
regions with varying characteristics. To un-
ravel this complexity, we used the same non-

invasive imaging techniques as above. Our
method involves grouping at individual and
population levels, driven by realist features ex-
tracted from multimodal molecular dynamics
(PET) and vascular UUDI imaging. Addition-
ally, a 3D U-Net neural network automatically
identified subregions responsible for sunitinib
resistance. We successfully divided tumors
into four distinct intra-tumoral subregions,
each characterized by a unique metabolic and
vascular profiles. One of the 4 subregions was
predictive of late-stage treatment resistance,
identified with an average Dice coefficient ac-
curacy of 85.37%. This innovative methodol-
ogy automates the identification of predictive
subregions within tumors, enhancing our un-
derstanding of intra-tumoral heterogeneity’s
impact on treatment evaluation.

Beyond treatment assessment, our re-
search explores intra-tumoral heterogeneity’s
intricate landscape. Tumors exhibit diverse
subregions with distinct characteristics, re-
quiring non-invasive imaging techniques as
mentioned. Our approach involves individual
and population-level grouping, guided by re-
alist features from multimodal molecular dy-
namics (PET) and vascular UUDI imaging. Ad-
ditionally, a 3D U-Net neural network au-
tonomously identified subregions linked to
sunitinib resistance, successfully categorizing
tumors into four distinct intra-tumoral subre-
gions, each with unique metabolic and vascu-
lar profiles. One of these subregions predicted
late-stage treatment resistance with an aver-
age Dice coefficient accuracy of 85.37%. This
innovative methodology automates predictive
subregion identification, advancing our un-
derstanding of intra-tumoral heterogeneity’s
impact on treatment evaluation.
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Radiomics analysis was employed to rede-
fine treatment response stages in both con-
trol and sunitinib-treated groups and to ex-
tract markers from the regions assosciated
with treatment response.Radiomic features
provided rich insights into metabolic and vas-
cular characteristics, offering a comprehen-
sive view of intra-tumoral heterogeneity be-
yond traditional metrics. Therefore, radiomics
analysis enriches our understanding of treat-
ment responses, positioning radiomics as a

valuable addition in precision medicine for
paragangliomas. In conclusion, this research
advances our understanding of cancer treat-
ment response, taking advantage of advanced
imaging and machine learning to obtain pre-
cise information. It identifies predictive sub-
regions within tumors and subsequently holds
promise for personalized anticancer therapies,
bridging conventional and precision medicine
to potentially improve patient outcomes.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Tumor Definition

A tumor is an irregular cluster of tissue that emerges when abnormal cells in the body un-
dergo uncontrolled growth and division. Typically, cells follow a well-regulated cycle of
growth, replication, and eventual death to maintain the body’s functions. However, in the
case of tumors, this orderly process is disrupted, resulting in the formation of a mass of tis-
sue referred to as a tumor. Tumors can occur in various tissues and organs throughout the
body and can be broadly categorized into two types: benign and malignant. Benign tumors
are not cancerous and do not invade nearby tissues or spread to other parts of the body. Ma-
lignant tumors, on the other hand, are cancerous and have the ability to invade surrounding
tissues and spread to distant parts of the body through a process called metastasis.

Cancer can occur in virtually any tissue or organ in the body, and it is classified based
on the type of tissue it originates from. Different types of cancer can have distinct behav-
iors, growth rates, and responses to treatment. Common risk factors for cancer include
genetic predispositions, exposure to carcinogens (cancer-causing substances), family his-
tory of cancer, and certain lifestyle factors such as smoking, poor diet, lack of physical
activity, and excessive sun exposure [4].

Cancer can have serious health consequences and may require various treatments, in-
cluding surgery, radiation therapy, chemotherapy, targeted therapy, immunotherapy, and
other specialized approaches. Early detection and prompt treatment can significantly im-
prove the chances of successful outcomes for individuals diagnosed with cancer [5, 6].
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1.1.2 Tumor Microenvironment (TME) composition

The TME refers to the complex and dynamic ecosystem that exists within and around a tu-
mor mass. It consists of various components, including cancer cells, immune cells, fibrob-
lasts, blood vessels, Extracellular Matrix (ECM), and signaling molecules. The interactions
between these components play a crucial role in tumor growth, progression, and response
to therapies. Key components of the TME include Fig.5.1 [7]:

1. Cellular Components:

• Cancer Cells: The primary cells that make up the tumor mass. They have
altered genetic andmolecular characteristics that drive uncontrolled growth [8].

• Immune Cells: These include various types of immune cells, such as T cells, B
cells, macrophages, and dendritic cells. Immune cells can have both pro-tumor
and anti-tumor effects depending on their activation state and interactions with
cancer cells [9].

• Fibroblasts: Cancer-associated fibroblasts (CAFs) are stromal cells that play
a role in tissue repair and wound healing. CAFs can support tumor growth
by producing growth factors that promote angiogenesis (the formation of new
blood vessels) and remodeling the ECM [10].

• Endothelial Cells: These form blood vessels and play a role in angiogenesis,
supplying nutrients and oxygen to the tumor [7].

• Stem Cells: Multipotent cells that have the potential to differentiate into vari-
ous cell types and contribute to tumor heterogeneity [8].

2. ECM: is a complex network of proteins and carbohydrates that provide structural
support to cells. It influences cell behavior, migration, invasion, and signaling. In the
TME, the ECM can be altered, affecting tumor cell behavior and promotingmetastasis
[11].

3. Signaling Molecules: Various signaling molecules, such as cytokines, growth fac-
tors, and chemokines, are present in the TME. These molecules mediate interactions
between different cell types and influence tumor progression and immune responses
[8].

4. Hypoxia: Many tumors have regions of low oxygen (hypoxia) due to inadequate
blood supply. Hypoxic conditions can promote tumor aggressiveness, resistance to
therapy, and angiogenesis [12].

The TME is now recognized as a critical factor in cancer development and treatment.
Therapies that target components of the TME, such as immune checkpoint inhibitors [13],
anti-angiogenic agents [14], and drugs that inhibit specific signaling pathways [15], have
shown promise in treating certain types of cancer. Understanding the intricate interactions
within the TME is essential for developingmore effective and personalized cancer therapies.
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Figure 1.1: TME of cancer. Adapted from [7].

1.1.3 Hallmarks of Cancer

Cancer hallmarks are a set of distinct characteristics or biological traits that collectively de-
fine the behavior of cancer cells. These hallmarks were originally proposed by researchers
Douglas Hanahan and Robert Weinberg in a seminal paper published in 2000, and they
have since been expanded and refined. The hallmarks of cancer provide insights into the
underlying mechanisms that drive the development and progression of malignancies. The
Hallmarks of Cancer currently embody eight hallmark capabilities and two enabling char-
acteristics [7] Figure 1.2.

• Sustaining Proliferative Signaling: Cancer cells often acquire mutations that al-
low them to continuously receive signals for growth and division, enabling them to
proliferate uncontrollably.

• Evading Growth Suppressors: Cancer cells can evade the body’s mechanisms that
normally inhibit cell growth, allowing them to bypass natural checks on their prolif-
eration.

• Resisting Cell Death (Apoptosis): Cancer cells can evade programmed cell death
(apoptosis), a process that eliminates damaged or abnormal cells, thereby enabling
their survival.

• Enabling Replicative Immortality: Cancer cells can maintain their ability to di-
vide indefinitely, which is typically not possible for normal cells.

• Inducing Angiogenesis: Cancer cells can stimulate the formation of new blood
vessels (angiogenesis) to ensure a sufficient supply of nutrients and oxygen to support
their rapid growth.
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• Activating Invasion and Metastasis: Cancer cells can invade surrounding tissues
and spread to distant sites in the body (metastasis), enabling the establishment of
secondary tumors.

Additional Emerging Hallmarks:

• Deregulating Cellular Energetics: Cancer cells often undergo metabolic changes,
favoring pathways that support their energy demands and growth.

• Avoiding Immune Destruction: Cancer cells can evade detection and destruction
by the immune system, allowing them to thrive despite the body’s defenses.

• Tumor-Promoting Inflammation: Chronic inflammation in the TME can con-
tribute to cancer development and progression.

• Genome Instability and Mutation: Cancer cells frequently exhibit genetic insta-
bility and mutations, contributing to their adaptability and heterogeneity.

Figure 1.2: Hallmarks of cancer. Adapted from [7].

These hallmarks are interconnected processes that collectively contribute to the devel-
opment and progression of malignancies. These interrelationships create a complex web
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of interactions within cancer cells and their microenvironment. Understanding these in-
terconnections is crucial for devising effective strategies to diagnose, treat, and manage
cancer. Several examples highlight the intricate relationships between different hallmarks
of cancer. One example, Tumor promotes angeogenesis. To illustrate, TME, composed of
various cell types and extracellular components, plays a role in angiogenesis. Stromal cells
can secrete factors that promote blood vessel formation, supporting tumor growth. The
same factors that promote angiogenesis can also enhance invasion and metastasis forming
another example of cancer hallmarks interrelationship. The last mentioned interrelation
facilitates the spread of cancer cells to distant sites. Another important example, is the re-
lationship between tumor vascularization (angiogenesis) and metabolism [7]. For cancer
cells to multiply, they rely on the nourishment and oxygen supplied through tumor blood
vessels. However, any reduction in the availability of blood vessels results in a shortage of
nutrients and the onset of oxidative stress, ultimately giving rise to a condition of hypoxia
[16]. Cancer cells have the capability to adjust their metabolic processes in response to
stress conditions [17]. The interconnected nature of these hallmarks underscores the com-
plexity of cancer biology and emphasizes the need for comprehensive andmultidisciplinary
approaches to understanding and treating cancer.

Role of intra-tumor (metabolic and vascular) heterogenity in cancer progression

Metabolic and vascular heterogeneity are two interconnected aspects of the TME that play
critical roles in cancer progression, treatment response, and overall disease outcome. Both
metabolic and vascular heterogeneity contribute to the complex and dynamic nature of
tumors.

Metabolic Heterogeneity:

Metabolic heterogeneity refers to the variations in metabolic processes and pathways
within different regions of a tumor. Tumor cells often adapt their metabolism to meet the
demands of rapid proliferation and survival [7]. Key metabolic alterations include shifts
in glucose metabolism (Warburg effect [18]), changes in amino acid utilization, and al-
terations in lipid metabolism. Metabolic heterogeneity can arise due to factors such as
differences in nutrient and oxygen availability, mutations, and microenvironmental con-
ditions. Metabolic heterogeneity highly contributes to resistance against cancer therapies.
Cells with distinct metabolic profiles might respond differently to treatments, leading to the
survival of therapy-resistant subpopulations. Additionaly, novel treatment strategies arises
targeting specific metabolic vulnerabilities. For example, drugs that disrupt metabolic path-
ways essential for tumor growth and survival are being investigated as potential therapeutic
options.

Vascular Heterogeneity:

Vascular heterogeneity refers to variations in blood vessel structure, function, and dis-
tribution within tumor . Tumors often develop abnormal blood vessel networks due to
rapid growth and inadequate oxygen/nutrient supply [19]. These vessels can be leaky, tor-
tuous, and poorly organized, leading to heterogeneous blood flow and oxygen levels across
different tumor regions.
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Vascular heterogeneity can directly affect the tumor development [20, 21]. It affects the
availability of nutrients and oxygen to tumor cells. Regions with poor blood supply may
experience hypoxia (low oxygen levels), which can influence tumor cell behavior, including
resistance to therapies. Additionally, regular blood vessel networks can limit the effective
delivery of cancer treatments, such as chemotherapy and immunotherapy, to all parts of the
tumor. This can result in inadequate drug exposure and treatment resistance. Furthermore,
Abnormal blood vessels contribute to the spread of cancer cells by providing pathways for
metastatic cells to enter the bloodstream and reach distant sites.

Interplay between Metabolic and Vascular Heterogeneity:

Metabolic and vascular heterogeneity are interconnected. For instance, regions of hy-
poxia can influence metabolic adaptations, such as increased glycolysis, to generate energy
in the absence of oxygen [22]. Additionally, metabolic factors, such as lactate production,
can affect the TME and contribute to angiogenesis (formation of new blood vessels).

Understanding the interplay between metabolic and vascular heterogeneity is crucial
for developing effective therapeutic strategies. Combining treatments that target bothmetabolic
vulnerabilities and vascular abnormalities may enhance treatment responses and improve
patient outcomes. Personalized approaches that consider the specific metabolic and vascu-
lar characteristics of individual tumors hold promise for more precise and impactful cancer
therapies.

1.1.4 Importance of early detection and accurate staging in improv-
ing cancer treatment outcomes and survival rates

The early detection and accurate staging plays a pivotal role in cancer management. Im-
mense impact could be well explained in cancer treatment.

Optimal Treatment Planning: Early detection allows for the identification of cancer at
an earlier, more treatable stage. When cancer is detected early, it is often smaller in size and
has not yet spread to nearby lymph nodes or distant organs. This makes it more amenable
to localized treatments such as surgery, radiation therapy, or targeted therapies. Accurate
staging helps determine the extent of the cancer’s spread and guides the selection of the
most appropriate treatment approach.

Less Aggressive Treatments: Early-stage cancers often require less aggressive treat-
ments compared to cancers that are diagnosed at advanced stages. This can lead to reduced
side effects, better quality of life during and after treatment, and quicker recovery.

Preservation of Organ Function: Early detection and treatment can help preserve the
normal function of affected organs. For example, a smaller tumor may be easier to remove
surgically without causing significant damage to surrounding tissues or organs.

Higher Success Rates: Cancers detected at an early stage generally have better treat-
ment outcomes and higher survival rates. The chances of successful treatment, complete
remission, and long-term survival are significantly improved when cancer is identified be-
fore it has a chance to grow extensively or metastasize (spread to other parts of the body).
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Reduced Risk of Recurrence: Treating cancer at an early stage reduces the risk of recur-
rence. When cancer is caught and treated early, there is a higher likelihood of eliminating
all cancer cells from the body, which reduces the chances of the cancer coming back.

Improved Prognosis: Accurate staging provides important prognostic information, help-
ing healthcare providers predict the likely course of the disease and the patient’s chances of
survival. This information is valuable for making informed treatment decisions and setting
realistic expectations.

Access to Targeted Therapies: Early detection and accurate staging allow for the timely
use of targeted therapies. These therapies are designed to specifically target cancer cells
based on their unique characteristics, minimizing damage to healthy cells and improving
treatment effectiveness.

1.2 Paraganglioma (PGL)

1.2.1 Definition

PGL and Pheochromacytoma (PCC) are rare neuroendocrine tumors arising from the adrenal
medulla, situated on top of the kidneys, and the extra-adrenal paraganglia, respectively
[23]. PCCs are tumors of the sympathetic system that frequently secrete catecholamines
like noradrenaline and/or adrenaline. PGLs are categorized based on their origin within the
autonomic nervous system ganglia, being either parasympathetic or sympathetic.

Parasympathetic PGLs do not secrete catecholamines. PGLs of the sympathetic type
often exhibiting elevated levels of noradrenaline release [23]. The majority of PCCs and
PGLs can be effectively treated through surgical intervention [24]. However, around 15-
20% of these tumors have the potential to metastasize. The World Health Organization
(WHO) acknowledges that all PCCs and PGLs possess the potential for distant spreading
and therefore recommends avoiding the term ’malignant’ in such cases. Instead, the use
of ’metastatic tumor’ is preferred over ’malignant tumor’ [23]. The presence of metas-
tases is relatively rare, occurring in less than 10% of parasympathetic PGLs, up to 25% of
PCCs, and ranging from 40-70% in sympathetic PGLs ([25], [26], [27]). Patients diagnosed
with metastatic tumors often exhibit advanced disease, leading to a compromised lifespan.
Metastatic pheochromocytomas and paragangliomas commonly metastasize to the lymph
nodes, skeletal framework, pulmonary tissues, and the liver, exhibiting varying degrees
of aggressiveness. The occurrence of metastases can be detected upon initial diagnosis or
subsequently following the identification of the primary tumor ([28], [29] & [27]).

1.2.2 PGL Localization

PCCs and PGLs are distributed throughout the paraganglia, spanning from the neck to the
pelvis as illustrated in Figure 1.3 [30, 31]. The primary location for parasympathetic para-
ganglia is the head and neck area, particularly highlighted in Figure 1.3-A. Tumor formation
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is closely related to specific nerves, such as the glossopharyngeal nerve in the carotid bod-
ies, as well as the jugular and tympanic paraganglia situated in the middle ear (known as
glomus jugulare and glomus tympanicum). Sympathetic paraganglia, on the other hand,
are situated within the chest, abdomen, or pelvis, depicted in Figure 1.3-B.

PGLs are commonly found within the prevertebral and paravertebral connective tis-
sues, along the inferior hypogastric plexuses, and within the urinary bladder wall. Notably,
the larger instances of PGLs include the bilateral adrenal medullas and the organ of Zuck-
erkandl. These growths may alsomanifest in various locations such as the gallbladder, liver,
specific branches of the abdominal vagus nerve, and even in unexpected areas like the orbit,
mandible, paranasal sinuses, thyroid gland, parathyroid gland, mediastinum, lungs, heart,
gastrointestinal tract, pancreas, and mesentery.

Figure 1.3: Localization of parasympathetic (A) and sympathetic (B) paragangliomas.
Adapted from ([30], [31]).

1.2.3 Genetic PGL

Pheochromocytoma and Paraganglioma (PPGL) is recognized as a tumor that is heavily in-
fluenced by genetic factors. To date, research has unveiled the identification of over 20 sus-
ceptibility genes associated with this condition ([32], [33], [34], and [35]). Changes in cer-
tain autosomal genes responsible for encoding Succinate Dehydrogenase (SDH) enzymes
have emerged as the predominant contributors to hereditary PHEO/PGL. These genes con-
sist of succinate dehydrogenase complex subunit A (SDHA), subunit B (Succinate Dehy-
drogenase complex subunit B (SDHB)), subunit C (SDHC), subunit D (SDHD), and succi-
nate dehydrogenase complex assembly factor 2 (SDHAF2). These genetic alterations are
now acknowledged as potentially accounting for around half of the genetic mutations in
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phaeochromocytomas and PGLs, as indicated in Figure 1 ([36], [37], [38] and [39]). The
subsequent most prevalent germline mutations are associated with conditions such as von
Hippel-Lindau syndrome (VHL), multiple endocrine neoplasia type 2 (RET), and neurofi-
bromatosis type 1 (NF1).

Recent insights reveal that mutations in numerous other genes, though individually
infrequent, can also give rise to hereditary tumor syndromes exhibiting PCC/PGL. Exam-
ples of these genes include MDH2 [40], GOT2 [41], SLC25A11 [42], DLST [33], MET [43],
MERTK [43], H3F3A [43] , DNMT3A [32].

SDHB mutations

Mutations in the SDHB gene contribute to a heightened risk of metastatic progression
in PPGL, thereby serving as a key predictor of malignancy in affected patients ([44], [45]).
Approximately half of individuals with SDHB-mutated PPGL experiencemetastatic disease,
and a germline SDHBmutation is identified in 36% of those with metastatic PGL ([44], [37],
and [46]). Initial investigations suggested that metastatic PPGL cases with SDHBmutations
had a more unfavorable prognosis compared to non-SDHB cases ([47], [48]). However, a
large international study involving 169 patients with metastatic PPGL has challenged this
concept. This recent study revealed that the SDHB status was no longer a prognostic indica-
tor for worse outcomes [49]. This shift in perspective could be attributed to the significant
increase in follow-up care and surveillance established for individuals carrying SDHB mu-
tations over the past decade ([50], [49]).

1.2.4 Tumorigenesis of PGL

Tumorigenesis of PGLs with SDHB mutations is a complex process [51]. The SDH enzyme
complex, also known as Complex II of the mitochondrial respiratory chain, plays a critical
role in cellular respiration. It is responsible for converting succinate to fumarate in the cit-
ric acid cycle (Krebs cycle) and also participates in the electron transport chain. Mutations
in the SDHB gene disrupt the normal function of the SDH complex. These mutations are
typically inherited in an autosomal dominant manner, meaning that individuals with one
mutated SDHB allele have an increased risk of developing PGLs. The loss of function of
SDHB leads to various cellular changes that contribute to tumorigenesis. The inhibition
of Hypoxia-Inducible Factor (HIF) prolyl hydroxylases by succinate leads to the stabiliza-
tion and accumulation of proteins, particularly HIF-2α [52]. HIF is a transcription factor
that regulates the expression of genes involved in angiogenesis, cell proliferation, and glu-
cose metabolism in response to hypoxia (low oxygen levels). Elevated HIF levels in cells
with SDHB mutations drive the expression of genes that promote angiogenesis and cell
proliferation. These pathways are critical for tumor growth and survival. The dysregula-
tion of HIF and other downstream signaling pathways, along with additional genetic and
epigenetic alterations, can lead to the formation of PGLs. The stabilization of HIF-2α in
SDHB-associated PGLs results in the upregulation of pro-angiogenic factors, such as Vas-
cular Endothelial Growth Factor Receptor (VEGF). VEGF is a key regulator of angiogenesis
and plays a central role in the formation of new blood vessels. The increased expression
of VEGF in these tumors stimulates the growth of blood vessels within the tumor. These
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tumors are typically highly vascularized, which is a hallmark of their biology. PGLs with
SDHB mutations are associated with an increased risk of metastasis, particularly to lymph
nodes and distant organs.

In summary, the vascularization of SDHB-associated PGLs is closely linked to the ac-
cumulation of succinate, the stabilization of HIF-2α, and the subsequent upregulation of
pro-angiogenic factors like VEGF. This vascularization pattern contributes to the aggres-
sive behavior of these tumors, including their propensity for metastasis. Understanding the
molecular mechanisms underlying vascularization in SDHB-associated PGLs is important
for the development of targeted therapies and improved management of these tumors.

The highly vascularized nature of SDHB-associated PGLs has led to investigations into
anti-angiogenic therapiessuch as sunitinib as potential treatment options. Sunitinib is a ty-
rosine kinase inhibitor that targets multiple receptors involved in angiogenesis and tumor
growth. It primarily inhibits receptors like VEGF and platelet-derived growth factor recep-
tor (PDGFR). These receptors are crucial for the formation of new blood vessels, making
sunitinib an anti-angiogenic therapy.

1.3 Non-Invasive Imaging

In the course of this thesis, we delve into the intricacies of PGL tumors, specifically focusing
on their unique characteristics and the advancements in medical imaging techniques that
play a crucial role in assessing the treatment response of PGL tumors to the antiangiogenic
drug sunitinib. To embark on this comprehensive exploration, we first establish a foun-
dational understanding of the physics behind the non-invasive medical imaging modalities
that are particularly pertinent to the context of PGL tumors under the influence of sunitinib
treatment. This section helps us grasp the fundamental principles of the current imaging
technologies with a major focus on the ones employed in this thesis.

1.3.1 Computed Tamography

Computed Tomography (CT) is a medical imaging technique that uses X-rays to create de-
tailed cross-sectional images of the body’s internal structures. A CT scanner consists of an
X-ray source and a detector array. The X-ray source emits a controlled and narrow beam of
X-rays, which passes through the body. As the X-ray beam passes through the body, it is at-
tenuated (absorbed or scattered) to varying degrees by different tissues and structures. The
detector array on the opposite side of the patient records the intensity of the X-rays that
have passed through. This creates a set of one-dimensional X-ray projections. The gantry
containing the X-ray source and detector rapidly rotates around the patient. During this
rotation, multiple sets of X-ray projections are acquired from different angles around the
body. Modern CT scanners can acquire hundreds of these projections in amatter of seconds.
The acquired X-ray projections are sent to a computer. In a process called reconstruction,
sophisticated mathematical algorithms (usually filtered back-projection or iterative recon-
struction) are used to combine the projections and reconstruct a two-dimensional image
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(slice) of the body at each angle. The reconstructed images consist of small units called
voxels (volumetric pixels), which represent tiny volume elements in the body. Each voxel
corresponds to a specific position in three-dimensional space.The CT scanner continues
to rotate and acquire slices at different depths within the body. These slices are stacked
together to create a three-dimensional volume dataset. The resulting three-dimensional
dataset can be visualized in various ways, including axial (cross-sectional), coronal (frontal),
and sagittal (side) views. Radiologists and healthcare professionals use these images to di-
agnose medical conditions, plan surgeries, and monitor treatment progress.

1.3.2 Positron Emission Tomography (PET) imaging

PET is a cutting-edge molecular imaging technique that employs radiotracers to observe
and measure the distinctive biological properties of tumors. The underlying principle of
PET is rooted in the emission of positrons by radionuclides during their decay process.
These emitted positrons then combine with electrons, leading to the generation of two
gamma rays with an energy of 511 keV, positioned at a 180° angle from each other [53]. To
capture these emitted gamma rays, a circular array of detectors is utilized. Radionuclides
suitable for PET imaging are found in both clinical and research contexts, encompassing
fluorine-18 [18F], carbon-11 [11C], zirconium-89 [89Zr], gallium-68 [68Ga], and copper-64
[64Cu]. Notably, for clinical purposes, 18F is the most prevalent choice due to its advanta-
geous half-life (T1/2 = 1.8 h), efficient production of positrons, and heightened detection
sensitivity, thus making it highly favored [54].

Thanks to advancements in nuclear medicine, a diverse range of radiopharmaceuticals
are now accessible for clinical use to assess the distinct biological characteristics of tu-
mors. For instance, 18F-Fluorodeoxyglucose (FDG) is employed to gauge tumormetabolism
[53], 18F-FMISO examines hypoxia [55], 18F-FLT probes tumor cell proliferation [56], 18F-
labeled amino acids delve into protein synthesis [57], and 15O–water studies blood flow
within tumors [58]. Moreover, the scope of PET imaging has expanded through its in-
tegration with tumor-specific monoclonal antibodies, known as immune-PET. This amal-
gamation has spurred the exploration of numerous monoclonal antibodies and radionu-
clides, paving the way for the development of immune-PET tracers [59]. Additionally,
novel avenues involve utilizing peptides and other compounds that target receptors, such
as nanobodies or bispecific antibodies, to craft innovative immune-PET tracers [59]. This
approach holds great potential by dynamically tracking the expression of tumor antigens,
thereby offering a promising method to evaluate the effectiveness of targeted cancer ther-
apies.

The inherent strengths of PET imaging encompass its exceptional sensitivity and mea-
surable imaging factors, like the Standardized Uptake Value (SUV). Through the fusion of
anatomical and functional imaging data in PET-CT, the evaluation of tumors’ molecular
characteristics becomes achievable, accompanied by meticulous corrections for anatomical
structures.
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1.3.3 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is a medical imaging technique based on the principles
of nuclear magnetic resonance. Operating within a strong magnetic field, MRI captures
detailed cross-sectional images of the body’s internal structures. The process involves the
alignment of hydrogen nuclei, predominant in the human body, through exposure to the
magnetic field. Subsequent application of radiofrequency pulses causes these nuclei to ab-
sorb and release energy, generating signals that are captured by radiofrequency coils. The
incorporation of gradient coils introduces spatial variations, facilitating the localization of
signals in three-dimensional space. Computer algorithms then reconstruct these signals
into highly detailed images, providing exceptional soft tissue contrast. MRI finds exten-
sive applications, encompassing neuroimaging for brain and spinal assessments [60, 61],
musculoskeletal imaging for orthopedic evaluations [62, 63], and cardiac imaging for heart
assessments [64, 65]. Its non-ionizing radiation, versatility, and ability to offer unparalleled
soft tissue visualization contribute to its pivotal role in diagnostic medicine. Despite its ad-
vantages, MRI is associated with challenges, including prolonged scan durations, the lack
of portability in equipment, high associated costs, vulnerability to movement artifacts, and
constraints in achieving real-time scanning capabilities. Therefore, Ultrafast Ultrasound
Doppler is preferred over MRI in scenarios requiring real-time assessment of dynamic pro-
cesses like blood flow, primarily due to its cost-effectiveness and accessibility.

1.3.4 Ultrafast Ultrasound Doppler

Ultrafast Doppler [66] uses high-frequency sound waves, or ultrasound, to create images
and assess blood flow. These ultrasound waves are emitted by a transducer, which is placed
on the patient’s skin. multiple transducer elements are organized in a two-dimensional
array. This array allows for the simultaneous emission and reception of ultrasound waves
from multiple locations on the patient’s body [67]. The ultrasound beams are emitted and
directed toward the region of interest, such as a blood vessel. When the ultrasound waves
encounter moving red blood cells within the vessel, they undergo a change in frequency
due to the Doppler effect. The key innovation in Ultrafast Doppler is its ultrafast data
acquisition capability. It can acquire a large number of data points or samples in very
short time intervals (on the order of microseconds). The received ultrasound signals, which
contain information about the velocity and direction of blood flow at various locations
within the imaging plane, are processed in parallel. Each element of the transducer array
processes its own data. The processed data is then used to create real-time color Doppler
images. In these images, blood flow is color-coded to indicate its velocity and direction.
For example, blood flow toward the transducer may be displayed in red, while flow away
from the transducer may be displayed in blue. Ultrafast Doppler can be integrated with
B-mode ultrasound imaging, which provides anatomical context. This fusion of functional
and structural information enhances the diagnostic value of the imaging.

This technique offers numerous benefits, includingwide availability, absence of radioac-
tivity, and cost-effectiveness. These advantages make it highly suitable for repeated uti-
lization in clinical settings. Through the Doppler technique, ultrasound becomes capable
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of evaluating blood flow within tumors. Notably, by introducing contrast agents like mi-
crobubbles, dynamic contrast-enhanced ultrasound can track changes over time in both
hemodynamic factors (like perfusion and flow velocity) and morphological factors (such
as blood volume and vascular variations) within a specific tumor, relative to its condition
before treatment. The potential significance of these parameter changes in monitoring the
response to anti-angiogenic therapies has been the subject of investigation [68, 69].

1.3.5 Multi-modal Imaging

Definition

Multi-modal medical imaging refers to the integration of information from two or more
different imaging techniques in the field of medicine to provide a more comprehensive and
accurate assessment of a patient’s condition. By combining data from various imaging
modalities, medical professionals can obtain a more detailed understanding of anatomical
structures, physiological processes, and disease progression. For example, PET is often
combined with CCT to provide both metabolic and anatomical information. PET detects
radioactive tracers that highlight areas of high metabolic activity (such as cancer cells),
while CT provides detailed structural images.

Significance of Multimodal Imaging in Cancer

Multimodal imaging plays a crucial role in the field of oncology by providing a more com-
prehensive and accurate assessment of cancer [70, 69]. Cancer is a complex disease with
varying anatomical, functional, and molecular characteristics, and utilizing multiple imag-
ing modalities can greatly enhance our understanding of the disease. Here’s how multi-
modal imaging improves cancer diagnosis, staging, treatment planning, and monitoring:

• Accurate Diagnosis: Different imaging modalities capture different aspects of can-
cerous tissues. Combining modalities like CT, Magnetic Resonance Imaging (MRI),
and PET allows clinicians to see both anatomical details and metabolic activity. This
aids in distinguishing between benign and malignant tumors and provides a more
accurate diagnosis.

• Staging and Localization: Multimodal imaging helps stage the extent of cancer spread.
For instance, combining PET with CT or MRI can provide information about the pri-
mary tumor as well as the presence of metastases in other parts of the body, aiding
in accurate cancer staging.

• Characterization of Tumor Heterogeneity: Tumors can have varying cell types, struc-
tures, and activity levels within them. Multimodal imaging allows for the identifica-
tion and characterization of these heterogeneous regions, which is crucial for per-
sonalized treatment planning.
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• Treatment Planning: By integrating information from various modalities, clinicians
can better plan cancer treatments. For instance, combining MRI and PET data can
guide the precise targeting of radiation therapy or aid in surgical planning by identi-
fying critical structures to avoid.

• Monitoring Treatment Response: Multimodal imaging enables real-time monitoring
of treatment response. By comparing images before and after treatment, clinicians
can assess changes in tumor size, metabolism, and blood flow, helping to determine
the effectiveness of the chosen treatment regimen.

• Predicting TreatmentOutcome: The combination of anatomical, functional, andmolec-
ular information allows clinicians to predict how a tumor might respond to specific
treatments. This aids in selecting the most appropriate therapeutic approach for in-
dividual patients.

• Early Detection and Recurrence Monitoring: Integrating different modalities can en-
hance the sensitivity of cancer detection, especially for small lesions or early-stage
cancers. Additionally, multimodal imaging aids in monitoring for cancer recurrence
after initial treatment.

• Research and Drug Development: Multimodal imaging is invaluable in preclinical
research for studying cancer in animal models and evaluating potential new treat-
ments. It allows researchers to track disease progression and treatment effects in a
comprehensive manner

1.4 Artificial Intelligence (AI) for Cancer Imaging and
Multimodal imaging

1.4.1 Define AI

AI refers to the simulation of human intelligence processes by computer systems [71]. It en-
compasses the development of algorithms, software, and machines that can perform tasks
that typically require human intelligence, such as understanding natural language, rec-
ognizing patterns, solving complex problems, and making decisions. AI aims to replicate
human cognitive functions in a way that enables machines to learn from experience, adapt
to new situations, and perform tasks autonomously. AI technologies are built on various
principles and techniques, including:

Machine Learning (ML): is a subset of artificial intelligence that focuses on the de-
velopment of algorithms and models that enable computers to learn from data and make
predictions or decisions without being explicitly programmed for every specific task [72].
ML systems aim to improve their performance over time through experience, much like
how humans learn from their experiences.

ML can be categorized into several types, each with its own characteristics and appli-
cations Figure1.4:
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1. Supervised Learning: In supervised learning, the algorithm is trained on a labeled
dataset, where the input data is paired with corresponding correct output labels. The
algorithm learns to map input data to the correct output by identifying patterns and
relationships. It can then make predictions on new, unseen data. Examples include
image classification, spam email detection, and medical diagnosis. Supervised learn-
ing algorithms could be Linear and Logestic Regression, Decision Trees, Random For-
est (RF), Support Vector Machine (SVM), Naive Bayes, Gradient Boosting Algorithms,
etc... Within the scope of this thesis, we will only provide an overview of the applied
supervised algorithms:

• RF: is an ensemble learning method based on decision trees. It constructs multi-
ple decision trees and combines their predictions to provide a final output. This
ensemble approach helps to improve the overall accuracy and robustness of the
model. RF creates a "forest" of decision trees by training each tree on a ran-
dom subset of the dataset, allowing for diverse models [73]. The randomness is
introduced in two main ways: bootstrapping, which involves sampling with re-
placement to create multiple subsets of the data, and random feature selection,
which involves selecting a subset of features for each tree.
(a) Tree Construction: Each decision tree in the RF is grown independently. At

each node of the tree, a subset of features is randomly selected, and the best
split is determined based on criteria such as Gini impurity or information
gain. This process continues until a stopping criterion is reached, usually
defined by a maximum tree depth or a minimum number of samples in the
nodes. The trees aim to create partitions that best segregate the data in each
subset.

(b) Prediction Aggregation: For classification tasks, the final prediction in a RF
is determined through a voting process, where the most popular predic-
tion among the individual trees is selected. In regression tasks, the average
prediction from each tree is considered as the final output. This ensemble
approach reduces overfitting and variance by combining predictions from
multiple diverse trees, leading to a more accurate and robust model.

(c) Feature Importance: RF assesses the importance of features by calculating
the information gain or decrease in impurity at each split in the trees [74].
It measures how much each feature contributes to improving the model’s
predictions. This feature importance information can help identify themost
relevant features for making accurate predictions and provide insights into
the dataset.

(d) Advantages: RF offers various advantages, including its ability to handle
high-dimensional data, resistance to overfitting, robustness against noise
and outliers, and ease of interpretability due to its intuitive nature [75]. Ad-
ditionally, the ensemble approach makes it a powerful and widely used al-
gorithm across various fields, including finance, healthcare, and e-commerce,
for tasks such as classification, regression, and feature selection.

RF’s ability to aggregate predictions from diverse decision trees, its robustness
against overfitting, and its feature importance evaluation make it a valuable tool
in predictive modeling across a range of applications.
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• SVM: is a robust and versatile machine learning algorithm designed for both
classification and regression tasks. At its core, SVM seeks to find the optimal
hyperplane that effectively separates data points of different classes in feature
space. The key distinguishing factor of SVM is its emphasis on maximizing
the margin, which is the distance between the hyperplane and the nearest data
points of each class.
The workflow of SVM involves defining a hyperplane that acts as a decision
boundary. This hyperplane is positioned to maximize the margin, providing the
algorithm with better generalization capabilities when dealing with new, un-
seen data. The data points that lie closest to the hyperplane, known as support
vectors, play a crucial role in determining the optimal hyperplane.
SVM is not limited to linear decision boundaries. It employs the kernel trick,
a technique that transforms the input space into a higher-dimensional space,
allowing SVM to find nonlinear decision boundaries. This flexibility is partic-
ularly valuable when dealing with complex, nonlinear relationships within the
data.
In practical applications, SVM has proven effective across various domains. In
image classification, SVM excels in tasks such as facial recognition [76]. In can-
cer detection [77] and classification [78]. In radiology, SVM can analyze images
from modalities like X-rays, CT scans, and MRIs to distinguish between healthy
and cancerous tissues [79]. Its capacity to handle high-dimensional data is cru-
cial when dealing with the intricate structural details inherent in medical im-
ages.
Despite its strengths, SVM does come with considerations. It can be compu-
tationally intensive, especially with large datasets. Careful parameter tuning,
particularly regarding the choice of kernel parameters, is crucial for optimal
performance. Furthermore, SVM lacks a natural probabilistic interpretation in
its classification decisions.
In summary, SVM is a powerful algorithm recognized for its ability to handle
both linear and nonlinear relationships in data. Its emphasis on maximizing
the margin, support for complex decision boundaries, and versatility in various
applications make SVM a valuable tool in the machine learning landscape.

• Gaussian naive Bayes (GNB): is a probabilistic classification algorithm based
on Bayes’ theorem, named after the Reverend Thomas Bayes [80]. It assumes
that the features used to describe an observation are conditionally independent,
given the class label. Bayes’ Theorem calculates the probability of a hypothesis
(class - A) given the observed evidence (features - B):

P (A/B) =
P (B/A)× P (A)

P (B)
(1.1)

GNB works as follows: First, we calculate the prior probability by determining
the probability of each class occurringwithout considering the features. Second,
we calculate the Likelihood for each feature given the class by calculating the
probability of observing that feature. Third, we multiply both the prior proba-
bility of the class and the likelihood of each feature given that class. Finally, we
assign the class with the highest product as the predicted class.
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GNB simplicity and speed make it particularly suitable for various applications,
including text classification (spam filtering, sentiment analysis) [81], medical
diagnosis [82], and recommendation systems [83]. Notably, it excels with high-
dimensional data and requires a relatively small amount of training data to pro-
duce effective results. However, it has limitations, such as the assumption of
feature independence, which may not hold in all cases, and sensitivity to irrel-
evant features. Despite these constraints, Naive Bayes stands as a versatile and
efficient algorithm, especially valued in natural language processing tasks.

2. Unsupervised Learning: Unsupervised learning involvesworkingwith unlabeled data.
The algorithm’s goal is to find inherent patterns or structures within the data, such
as clustering similar data points together. Common techniques include clustering
and dimensionality reduction, which are used in customer segmentation, anomaly
detection, and data visualization. Examples of unsupervised algorithms could be K-
means, Hierarchical clustering, Principal Component Analysis, Self-OrganizingMaps
(SOMs), Generative Adversarial Networks (GANs), etc ...
In the context of this thesis wewill provide a coincise explanation of the unsupervised
techniques used:

• Hierarchical Clustering (HCA) is a technique used in unsupervised ML and sta-
tistical analysis to group data points into clusters based on their similarities [84].
This method is particularly useful when you want to discern natural groupings
within a dataset without any prior information about the groups. The process
organizes the data into a tree-like hierarchical structure known as a dendro-
gram. There are two primary types of HCA: agglomerative and divisive. In our
thesis we focus on the agglomerative type.
Agglomerative Clustering: This method starts with each data point as an in-
dividual cluster and then merges the closest clusters iteratively until all data
points belong to one single cluster [84]. The steps involved in agglomerative
clustering are:
(a) Distance Calculation: Initially, the algorithm computes the pairwise dis-

tances between all data points. These distances can be measured using var-
ious methods, such as Euclidean distance, Manhattan distance, or correla-
tion distance, depending on the nature of the data.

(b) Initialization: Each data point is treated as an individual cluster.
(c) Merge Closest Clusters: The algorithm identifies the closest clusters based

on the chosen distance metric and merges them into a single cluster. This
process continues until all data points are within a single cluster.

(d) DendrogramConstruction: Throughout themerging process, the algorithm
constructs a dendrogram, which represents the merging process and can
help in visualizing the cluster hierarchy.

The choice of the distance metric and linkage method significantly impacts the
final clustering results. Common linkage methods include single linkage (based
on the minimum distance between clusters), complete linkage (based on the
maximumdistance between clusters), and average linkage (based on the average
distance between clusters).
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HCA’s key advantage is its ability to show the relationship between clusters at
different levels of granularity. The dendrogram provides a visual representation
that can help determine the optimal number of clusters, aiding in the interpre-
tation and analysis of the data’s inherent structure [85].
Once the clusters are formed, further analysis can be performed to understand
the characteristics of each cluster, enabling insights into natural groupings and
patterns within the data, which can be invaluable in various fields like biology,
marketing, and social sciences.

• K-means [86] is a popular unsupervised ML algorithm used for clustering data
into groups based on similarity. It is an iterative algorithm that partitions a
dataset into K distinct clusters, where K is a predetermined number. Here’s a
detailed explanation of the K-means algorithm:
(a) Initialization: The algorithm starts by randomly selecting K data points

from the dataset as the initial centroids of the clusters. These centroids
represent the centers of the clusters.

(b) Assignment of Data Points to Clusters: Each data point in the dataset is
then assigned to the nearest centroid based on a chosen distance metric,
commonly using Euclidean distance. The distance is calculated between
each data point and the centroids, and the data point is assigned to the
cluster with the nearest centroid.

(c) Update Centroids: After assigning all data points to clusters, the algorithm
recalculates the centroids for each cluster. The new centroids are calculated
as the mean of all data points assigned to that cluster. This step aims to
reposition the centroids at the center of the data points within each cluster.

(d) Iterative Process: Steps 2 and 3 are repeated iteratively, with data points
reassigned to the nearest centroids and centroids recalculated based on
the new assignments. This process continues until the centroids no longer
change significantly or until a predetermined number of iterations is reached.

(e) Convergence: The algorithm converges when the centroids stabilize, mean-
ing that the assignment of data points to clusters and the positions of cen-
troids no longer change significantly between iterations.

K-means clustering aims tominimize the sum of squared distances between data
points and their respective cluster centroids. However, the initial selection of
centroids can impact the final clustering result. Consequently, the algorithm
might produce different clusterings with different initializations. To mitigate
this, multiple runs with different initializations can be performed, and the best
result in terms of clustering can be selected based on a defined criterion, such
as minimizing intra-cluster distance and maximizing inter-cluster distance. K-
means is widely used for various applications in data analysis, including image
segmentation [87, 88], customer segmentation [89], and document clustering
[90]. It is computationally efficient and relatively easy to implement, making it
one of the most commonly used clustering algorithms in practice

3. Semi-Supervised Learning: This is a combination of supervised and unsupervised
learning [91]. It utilizes a small amount of labeled data along with a larger amount of
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unlabeled data for training. Semi-supervised learning is useful when obtaining large
amounts of labeled data is difficult or expensive.

4. Reinforcement Learning: Reinforcement learning involves training agents to make
a sequence of decisions in an environment to maximize a cumulative reward [92].
The agent learns by receiving feedback based on its actions. This type of learning
is applied in areas like robotics, game playing (e.g., chess or Go), and autonomous
systems.

5. Deep Learning: Deep learning is a subset of ML that uses neural networks with many
interconnected layers to learn intricate patterns from data [93]. Deep learning has
achieved remarkable success in tasks such as image and speech recognition, natural
language processing, and autonomous driving.

Figure 1.4: Various categories of machine learning and a range of algorithms. Adopted from
[94]

ML processes typically involve these steps [72]:

1. Data Collection: Collect relevant data that the algorithmwill learn from. High-quality
data is essential for building accurate models.

2. Data Preprocessing: Clean, preprocess, and transform the data into a suitable format
for training. This can involve tasks like handling missing values, normalization, and
feature engineering.

3. Feature Selection/Extraction: Choose relevant features (input variables) that will con-
tribute to the model’s performance. In some cases, feature extraction techniques au-
tomatically derive informative features from the data.

4. Model Selection: Choose an appropriate ML algorithm or model architecture based
on the problem at hand and the characteristics of the data.
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5. Training: Feed the algorithm with the training data and the corresponding labels (if
applicable). The algorithm learns to adjust its internal parameters to minimize the
difference between predicted outputs and actual labels.

6. Validation and Hyperparameter Tuning: Evaluate the model’s performance on vali-
dation data and fine-tune hyperparameters (parameters that are not learned during
training) to optimize performance.

7. Testing and Deployment: Test the trained model on new, unseen data to assess its
generalization capability. Once satisfied with the performance, deploy the model to
make predictions on real-world data.

ML has had a transformative impact across various industries, including healthcare,
finance, marketing, and more. However, successful implementation requires careful con-
sideration of data quality, model selection, validation, and ethical considerations, as well as
ongoing monitoring and maintenance of the deployed models.

1.4.2 Growing importance of AI in various healthcare domains

In the context of medical imaging, AI and ML technologies have become increasingly im-
portant and impactful. AI algorithms can automate time-consuming and repetitive tasks in
medical imaging, such as image analysis and segmentation. This not only saves time for
radiologists and clinicians but also reduces the risk of human error.

• Automation and Efficiency: AI algorithms can automate time-consuming and repeti-
tive tasks inmedical imaging, such as image analysis and segmentation. This not only
saves time for radiologists and clinicians but also reduces the risk of human error.

• Enhanced Diagnosis: AI can aid in early and accurate disease detection by analyzing
large amounts of imaging data. ML algorithms can learn patterns associatedwith spe-
cific diseases, helping identify subtle abnormalities that might be missed by human
observers.

• Quantitative Analysis: AI can provide quantitative measurements of various anatom-
ical and pathological features, enabling more precise and standardized assessments.
This is especially useful in tracking disease progression and treatment response.

• Personalized Treatment: AI can assist in tailoring treatment plans based on individual
patient characteristics. By analyzing patient data and medical images, AI can help
predict treatment outcomes and guide personalized therapeutic strategies.

• Image Enhancement and Reconstruction: AI algorithms can improve the quality of
medical images by reducing noise, enhancing contrast, and even reconstructing high-
quality images from low-quality or limited data.

• Radiomics and Feature Extraction: AI can extract and analyze a multitude of fea-
tures from medical images that might not be readily visible to the human eye. These
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features, known as radiomic features, can provide valuable insights into disease char-
acteristics and prognosis.

• Real-time Decision Support: AI systems can provide real-time decision support to
clinicians by quickly analyzing images and providing diagnostic suggestions or high-
lighting areas of concern.

• Integration of Multi-modal Data: AI can integrate data from various imaging modal-
ities and other patient information sources, offering a comprehensive view of the
patient’s condition and aiding in more informed decision-making.

• Research and Drug Development: AI can assist in drug development by analyzing the
effects of potential treatments on cell cultures or animal models, thereby accelerating
the process of identifying promising drug candidates.

• Reducing Variability: AI can help reduce inter- and intra-observer variability by pro-
viding consistent and standardized measurements and interpretations of medical im-
ages.

1.4.3 Role of AI in revolutionizing cancer imaging and patient care

AI is at the forefront of revolutionizing cancer imaging, significantly enhancing accuracy,
efficiency, and effectiveness in various aspects of cancer diagnosis, staging, treatment plan-
ning, and monitoring. In this context, AI is reshaping cancer imaging in several key ways:

AI algorithms analyze medical images like mammograms, CT scans [95], and MRIs to
detect subtle early signs of cancer [96], improving the prospects of successful treatment.
Computer-aided detection systems powered by AI assist radiologists in highlighting po-
tential abnormalities, ensuring no suspicious regions are overlooked. Additionally, AI can
automatically segment tumors [97], healthy tissues, and organs in medical images, provid-
ing precise and consistent measurements for diagnosis and treatment planning. AI-driven
image enhancement techniques also elevate image quality, facilitating the identification of
subtle features and anomalies.

Radiomics, another AI-driven approach, analyzes an extensive array of quantitative fea-
tures extracted from medical images to reveal patterns correlated with disease characteris-
tics, prognosis, and treatment response ([98], [99]). This empowers the prediction of dis-
ease outcomes and the creation of individualized treatment plans. AI combines imaging
data with genetic and clinical information to optimize tumor targeting while minimizing
harm to healthy tissues, and it assists in radiation therapy planning by determining the
ideal dose distribution for maximum treatment efficacy.

AI further assesses treatment response by analyzing sequential imaging data, enabling
clinicians to make timely adjustments to treatment plans. It rapidly detects changes in tu-
mor size, shape, and metabolic activity, providing early insights into treatment efficacy. AI
expedites drug discovery by analyzing vast datasets to identify potential drug candidates
and predict their effectiveness in targeting specific cancer pathways. It also optimizes pa-
tient selection for clinical trials by identifying thosemost likely to respond to new therapies.
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AI techniques enable 3D visualization and reconstruction of complex tumor structures,
aiding surgeons in planning minimally invasive procedures and optimizing surgical out-
comes. Additionally, AI-driven automation reduces human error and variability in image
interpretation, leading to more consistent and reliable diagnoses. It accelerates the analysis
of large volumes of medical images, allowing radiologists to focus on more complex cases
and provide faster turnaround times for patients.

AI supports researchers in analyzing large-scale imaging datasets to discover new in-
sights into cancer biology, progression, and treatment response. Successful AI integra-
tion into cancer imaging necessitates rigorous validation, continuous AI model training,
and close collaboration between radiologists, oncologists, and AI experts. Responsible im-
plementation ensures that AI technologies effectively contribute to improved patient out-
comes, reduced healthcare costs, and the advancement of our understanding of cancer.

1.5 Radiomics

1.5.1 Definition

Radiomics is a multidisciplinary field that sits at the intersection of medical imaging, com-
puter science, and statistics. Its primary objective is to rapidly extract comprehensive and
large number of quantitative features from medical images and subsequently analyze these
features to derive clinically relevant information ([98], [99]). These images are obtained
through various modalities like CT, MRI, PET, and others. Radiomics aims to uncover hid-
den information within these images that might not be apparent through visual inspection
alone. This information can provide insights into disease characteristics, progression, and
treatment response. While radiomics has the potential to be utilized across numerous med-
ical conditions, its most advanced state is within oncology, primarily due to the backing it
receives from initiatives such as the National Cancer Institute (NCI) Quantitative Imaging
Network and other endeavors under the NCI Cancer Imaging Program [99].

In the cancer imaging context Quantitative features extracted from images, encompass-
ing attributes such as intensity, shape, size or volume, and texture, provide insights into
the unique tumor characteristics and the microenvironment it resides in([99], [100]). These
insights are different from the information obtained from clinical reports, laboratory tests,
and genomic or proteomic analyses. By combining these features with other data sources,
they can be linked to clinical outcomes and utilized to enhance evidence-based clinical
decision-making support.

Radiomics seems to provide an abundant array of imaging biomarkers, which have the
potential to assist in various aspects of cancer-related tasks such as detection, diagnosis,
prognosis evaluation, treatment response prediction, and disease status monitoring.
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1.5.2 The radiomics process

The implementation of radiomics is often breaked down into several steps Figure1.5 [101,
102]:

1. Quantittative Imaging: Radiomics begins with the acquisition of high quality and
standardized medical images, which could be from various imaging modalities such
as CT, MRI, PET, and more. These images provide detailed information about the
internal structures of the human body. Radiomics research needs extensive data for
meaningful outcomes, like other data-driven approaches. That’s why many studies
use past data where images were taken with varying settings. These differences can
affect how dependable the extracted radiomics features are ([103]).

2. Region of Interest (ROI) Selection: The following step involves outlining tumor
boundaries (tumor segmentation), which can be done through automated algorithms
or by a skilled radiologist.

3. Feature Extraction: Once the ROIs are defined, a large number of quantitative fea-
tures are extracted from these regions. These features can be broadly categorized into
several groups:

• Intensity-based Features: These features are derived from the pixel or voxel in-
tensities within the ROI. They include statistics such as mean, median, standard
deviation, etc.

• Shape Features: These features describe the geometric characteristics of the ROI,
such as volume, surface area, compactness, and sphericity.

• Texture Features: Texture features capture the spatial arrangement of pixel in-
tensities within the ROI. They can describe patterns like smoothness, coarse-
ness, or contrast variations.

• Spatial Features: These features analyze the spatial relationships between dif-
ferent regions within the ROI, providing insights into how different structures
interact.

• Statistical Features: These features quantify statistical distributions and rela-
tionships within the ROI.

4. Feature Selection and Dimensionality Reduction: Since radiomic feature sets
can be quite large, not all featuresmight be relevant for a specific clinical task. Feature
selection and dimensionality reduction techniques are applied to identify the most
informative and reproducable features and reduce the risk of overfitting.

5. Statistical Analysis and Modeling: The extracted and selected features are then
analyzed using various statistical and ML methods. These analyses aim to uncover
correlations, patterns, and relationships between the features and clinical outcomes,
such as disease diagnosis, prognosis, and treatment response.

6. Model Development: Radiomics can be used to develop predictive models that use
the quantitative features to predict specific clinical outcomes. Thesemodels can range
from simple regression models to more complex ML algorithms.
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7. Clinical Applications: The insights gained from radiomics analyses can aid clin-
icians in making more informed decisions. For example, radiomics-based models
might help differentiate between benign and malignant tumors, predict patient sur-
vival rates, assess treatment response, and guide personalized treatment plans.

Figure 1.5: Radiomics Process [102]

1.5.3 Role of radiomics in providing valuable information about tu-
mor characteristics and patient outcomes

Radiomics plays a crucial role in providing valuable insights into tumor characteristics
and predicting patient outcomes [101, 104]. On the level of tumor characterization ra-
diomics allows for a comprehensive analysis of the quantitative features extracted from
medical images, such as CT scans or MRIs. These features capture various aspects of the
tumor’s appearance, shape, and texture that might not be discernible to the naked eye.
By quantifying these subtle characteristics, radiomics can aid in differentiating between
tumor types, grading tumors, and identifying specific molecular or genetic traits associ-
ated with the tumor. Moreover, radiomics detects heterogenity assesement. Tumors often
exhibit internal heterogeneity, meaning different parts of the tumor have distinct charac-
teristics. Radiomics can quantify this heterogeneity by analyzing the spatial distribution of
pixel intensities within the tumor. This information is valuable for treatment planning, as
heterogeneous tumors may respond differently to therapies and have varying prognoses.
Additionaly, radiomics improves treatment response prediction. Radiomics features can
provide early insights into how a tumor is responding to treatment. Changes in these fea-
tures over time can indicate whether the tumor is shrinking, growing, or remaining stable.
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This helps clinicians make timely adjustments to treatment plans, optimizing patient care.
Radiomics improves personalized treatment planning as well. By combining radiomics data
with other patient-specific information (clinical history, genetics, etc.), clinicians can tailor
treatment strategies to each patient’s unique profile [105]. This leads to more precise and
effective therapies, minimizing potential side effects. Finally, radiomics features can serve
as non-invasive biomarkers that provide valuable information about the tumor’s biology
and behavior. This reduces the need for invasive procedures to obtain similar insights.

1.6 Research Problem and Specific Research Questions

The research problem at the core of this thesis is the imperative to enhance our under-
standing of the dynamic and multifaceted nature of sunitinib resistance in PGL tumors.
While sunitinib, an anti-angiogenic drug, offers promise as a treatment option, its effec-
tiveness varies among patients, and resistance often emerges. This specific issue highlights
the need to move beyond traditional growth characteristics of tumors. The central problem
is the insufficient comprehension of the intricate interplay between vasculature and other
metabolic parameters within PGL tumors, particularly in the context of anti-angiogenic
therapy. This knowledge gap hampers the development of personalized and effective treat-
ment strategies for PGL patients, necessitating a deeper exploration of the vascular and
metabolic dimensions of these tumors.

Research questions:

1. What vascular and metabolic parameters within PGL tumors are associated with the
development of resistance to sunitinib, and how can these parameters be reliably
quantified through multi-modal imaging techniques?

2. How do the identified tumor sub-region(s) driving resistance to sunitinib, particu-
larly those with distinct vasculature and metabolic characteristics, impact the overall
prognosis and treatment response of PGL patients receiving sunitinib therapy?

3. Can ML algorithms be effectively trained to automate the classification of treatment
response and tge identification of high-risk subregions within PGL tumors based on
vasculature and metabolic data, and how does this automation impact the precision
and efficiency of analysis?

4. How can radiomics-based features extracted from multi-modal medical imaging data
(e.g., PET, Ultrafast Ultrasensitive Doppler (UUDI)) be utilized to quantify and char-
acterize the tumor’s heterogeneity, vasculature, metabolic attributes, and other char-
acteristics, andwhich of these radiomic features are most indicative of sunitinib treat-
ment response in PGL patients?

Now that we have established the fundamental concepts encompassing TME specifi-
cally metabolic and vascular characteristics, specifically focusing on PGL, as well as the
pivotal role of multimodal imaging, AI, ML and radiomics in cancer treatment, it is crucial
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to shift our attention towards the primary objectives of this thesis. The integration of these
interdisciplinary fields forms the bedrock of our research, aiming to explore the potential
applications of ML algorithms in studying treatment response of PGLL tumors.
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Thesis Objectives

Main Objective:

This thesis is dedicated to providing a thorough examination of the responses exhib-
ited by paraganglioma (PGL) tumors to precision treatment with sunitinib, with a primary
emphasis on incorporating advanced machine learning techniques. Employing molecular-
dynamic PET, vascular UUDI, and morphological CT images, the research navigates the in-
tricate interplay between metabolic heterogeneity and vasculature, aiming to pinpoint key
subregions responsible for driving resistance to sunitinib. The central objective is to un-
ravel the nuanced dynamics of how PGL tumors evolve over time in response to sunitinib
therapy, moving beyond conventional growth metrics. By gaining a deeper understand-
ing of the tumor’s characteristics through multi-modal imaging and machine learning, the
study aspires to contribute transformative insights into the precision treatment landscape
for PGL.

Key Objectives:

Objective 1. Employ multi-modal tumor imaging and machine learning techniques to
track and understand how PGL tumors evolve over time in response to sunitinib therapy.
This includes exploring various imaging modalities, such as molecular-dynamic PET and
vascular UUDI, to gain a nuanced perspective of the tumor’s characteristics.

Objectif 2. Partition PGL tumors into metabolically consistent subregions using cluster-
ing algorithms. This objective aims to better understand tumor heterogeneity and identify
subregions driving resistance to sunitinib. Integration of this data enhances the accuracy
of pinpointing high-risk areas within PGL tumors.

Objective 3. Develop and apply a 3D-U-Net network tailored to the specific requirements
of PGL tumor analysis. This network will automate the identification of high-risk subre-
gions based on the complex interplay between metabolic and vascular characteristics, po-
tentially revolutionizing the precision of response assessment.

Objective 4. Explore the utility of radiomic features for predicting treatment response in
PGL tumors. Assess which radiomic features are most indicative of sunitinib treatment re-

27



Chapter 1

sponse and how these features correlate with changes in metabolic and vascular parameters
over time.

In summary, the thesis aims to bridge the knowledge gap regarding sunitinib resistance
in PGL tumors, with a focus on the intricate interplay between metabolic heterogeneity
and vascular parameters. The research aspires to lead to more effective and personalized
treatment strategies for individuals impacted by PGL, ultimately advancing the landscape
of precision treatment in the context of PGL.
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Review of Literature

2.1 Overview of Medical Imaging in Cancer Diagnosis

2.1.1 Review the differentmolecular imagingmodalities commonly
used in cancer diagnosis and their strengths and limitations
(e.g. PET, etc.)

Molecular imaging serves as a noninvasive medical imaging technique, facilitating the vi-
sualization, analysis, and quantification of biological activities occurring at the molecular
and cellular tiers within tumors ([106], [107]). Unlike conventional imaging methods that
primarily capture structural disparities in tissues or organs, molecular imaging unveils the
functional behaviors or manifestation status of particular molecules within a tissue or or-
gan. This is achieved by utilizing medical imaging technologies, whether with or without
the incorporation of tracers, substances that can spotlight distinct molecules. By employing
these methods, a deeper understanding of the complex molecular mechanisms that govern
physiological functions becomes evident. This provides a unique viewpoint into the pro-
gression of diseases, the reactions to treatments, and the efficiency of interventions.

Starting from the discovery of magnetic resonance spectroscopy in 1966 [108], moving
through the creation of the first Single Photon Emission Computed Tomography instru-
ment in 1976 [109], followed by the introduction of the first whole-body MRI scanner in
1977[110], and using luciferase as a tool to monitor gene expression in live organisms in
1986 [111], along with the development of Near-Infrared Fluorescence (NIRF) imaging in
1994 [112] – these milestones have paved the way. The culmination occurred when the
first PET-CT system, effectively combining functional and anatomical imaging, became a
clinical reality in 1998 [113]. Building upon this, human usage of photoacoustic imaging
was initiated in 2002 [114], followed by the proposal of NIR-II imaging in 2009 [115]. These
significant historical advancements collectively have propelled the evolution of molecular
imaging Fig.2.1.
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Figure 2.1: The historic steps in molecular imaging technology. Adopted from [1]

2.1.2 Imaging of PGL

Imaging is crucial in the evaluation of paraganglioma tumors due to their diverse locations
and potential hormonal activity. It plays a vital role in precisely locating and characterizing
these rare neuroendocrine tumors, staging them to guide treatment decisions, and moni-
toring treatment response and long-term outcomes. Imaging also aids in planning surgical
interventions, guiding procedures, and assessing the risk for familial paraganglioma syn-
dromes, ultimately improving patient care in the management of these tumors.

Anatomical vs. functional imaging

According to the clinical guidelines of the Endocrine Society, the primary method recom-
mended for investigating the localization of biochemically confirmed PPGL is a CT of the
abdomen and pelvis [24]. Existing literature suggests that both CT and MRI are suitable
for preoperative localization but are inadequate for diagnosing metastatic PPGL and are
therefore suboptimal for follow-up purposes.

In a study conducted byMaurea and colleagues, CT andMRI demonstrated significantly
higher sensitivity (100%) compared to the 82% sensitivity of 123I-Meta Iodo Benzyl Guani-
dine (MIBG) scintigraphy in the preoperative assessment. After surgery, the sensitivity of
MRI and 123I-MIBG scintigraphy was 85%, surpassing that of CT at 77%. Notably, 123I-
MIBG scintigraphy exhibited exceptional specificity, achieving 100% accuracy in both pre-
and postoperative evaluations [116].

However, inmore recent investigations that directly compared functional imagingmeth-
ods, 123I-MIBG scintigraphy was found to be less effective than other imaging techniques

– 30 –



Review of Literature

in detecting PGL ormetastatic disease, particularly in cases involving SDHx-related tumors.
Rufini et al. conducted a prospective study of 12 patients with known or suspected recur-
rent PGL after tumor resection. They found that 18F-DOPA PET-CT showed a sensitivity of
100%, in contrast to 123I-MIBG scintigraphy, which had a sensitivity of 75% [117]. Notably,
the sensitivity of 123I-MIBG scintigraphy was reported to be less than 50% in patients with
SDHx mutations, which presents a significant limitation [24, 118].

In a recent multicenter retrospective study by Rao et al., it was suggested that additional
123I-MIBG scintigraphy imaging, when added to CT or MRI, does not provide a benefit in
the preoperative setting and might even lead to incorrect clinical decisions. The authors
recommended reserving the use of 123I-MIBG scintigraphy for cases where treatment with
131I-MIBG is planned [119].

Customized Selection of Imaging Methods

Observations from clinical practice reveal that the sensitivity of functional imaging varies
depending on the underlying hereditary syndrome. In an extensive comparative study con-
ducted by Timmers and colleagues, various imaging techniques were evaluated for their
sensitivity. This study involved 52 patients, including 20 with non-metastatic PPGL, 28
with metastatic PPGL, and four patients in whom PPGL could be ruled out. Each patient
underwent a comprehensive set of anatomical and functional imaging assessments, with the
exception of a few cases. Specifically, three patients with metastatic PPGL did not undergo
123I-MIBG scintigraphy, and one patient with metastatic PPGL did not undergo 18F-FDG
PET/CT. The results of this study led the authors to propose specific imaging choices based
on the hereditary syndrome.

For cases of metastatic PGL with an unknown hereditary syndrome, the authors rec-
ommend 18F-FDA PET as the imaging modality of choice. In contrast, for SDHB mutation
carriers, they suggest using 18F-SDH or 18F-FDA PET. Additionally, for non-SDHB mu-
tation carriers, the authors advocate for the use of 18F-DOPA or 18F-FDA PET instead of
18F-FDG PET. In a separate study by Timmers and colleagues, various functional imaging
methods were compared in 30 patients with SDHB-associated PPGL. Notably, 18F-FDG-
PET/CT demonstrated a sensitivity of nearly 100% in patients with SDHB mutations, im-
plying that 18F-FDG PET is the preferred imaging approach for SDHB-associatedmetastatic
PGL [120, 31].

Imaging of Angiogensis (Ultrafast Doppler and Others)

Tumor growth relies on angiogenesis, and targeted anti-angiogenic therapies are essen-
tial for managing tumor progression and metastasis. To assess the efficacy of these treat-
ments, in vivo imaging techniques are employed, with three main categories of modalities:
non-optical methods (e.g., CT, MRI, ultrasound, and PET), optical methods (including flu-
orescence, multiphoton, and laser speckle contrast imaging), and hybrid methods (such as
photoacoustic imaging).
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Dynamic-enhanced CT and MRI (Dynamic Contrast Enhanced (DCE)-MRI)

CT relies on X-ray attenuation for visualization, allowing the imaging of large vessels
like the coronary artery [121] with resolutions down to 1 m [122]. Dynamic-enhanced
CT involves acquiring 3D volumes post-contrast injection, facilitating the calculation of
parameters like blood flow, blood volume, mean transit time, and capillary permeability
to explore tissue microcirculation [123]. Relationships between CT perfusion parameters
and tumor angiogenesis have been established, making it useful for diagnosing PGLs [124].
However, CT perfusion exposes patients to ionizing radiation.

MRI is based on proton behavior in a magnetic field, providing excellent soft tissue con-
trast. Dynamic contrast-enhanced MRI uses contrast agents to estimate angiogenesis by
measuring changes in blood volume. Quantification involves various parameters, includ-
ing Ktrans and incremental Area Under Curve (AUC), preferred for describing the effects
of antiangiogenic drugs in solid tumors [125]. While Dynamic contrast-enhanced MRI has
been less explored in PGLs, it has potential limitations such as lengthy scanning times,
non-portable equipment, cost, sensitivity to motion artifacts, and lack of real-time scan-
ning capabilities. Its application in a PPGL mouse model is currently under investigation.

Functional radiotracers of angiogenesis

In molecular imaging, targeted molecular approaches are used to characterize vessels
expressing VEGF receptors (Type 1, 2, and 3), integrins, and matrix metalloproteinases .
Receptors of Vascular Endothelial Growth Factor (VOI)1 and VOI2 play distinct roles in an-
giogenesis, with VOI2 being associated with cancer and poor prognosis [126, 127], making
it a target for specific radiotracers [128]. For example, radiolabeled bevacizumab has been
employed to study the impact of antiangiogenic treatments[129]. VOI-2 can also be linked
to microbubbles for enhanced sonography in angiogenesis visualization [130]. However,
these approaches are not widely adopted.

Integrin-specific radiotracers are more commonly used, especially those targeting αv
β3 integrins. These glycoproteins are expressed on growing vessel endothelial and tumor
cells [131]. Radiotracers containing the RGD domain, such as 18F-Galacto-RGD and 18F-
Fluciclatide, have been used to image angiogenesis [132]. However, the molecular mecha-
nism of radiotracer-integrin uptake is not fully understood and can be influenced by factors
like integrin activation status.

While nuclear imaging andMRI are effective, they are costly and can involve high doses
of contrast agents, which may be toxic. In contrast, ultrasound and optical methods are
more affordable, with ultrasound being readily available to clinicians and offering deeper
tissue penetration compared to optical methods.

Ultrasonography for Assessing Tumor Angiogenesis

Ultrasonography has a rich history in clinical practice, dating back to the 1970s, and has
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seen significant advancements, such as the introduction of Doppler imaging for blood flow
assessment and elastography for tissue stiffness visualization. While ultrasound imaging
was initially underestimated in oncology patient care due to its limitations compared to
techniques like CT and MRI [133], it has since gained recognition for its clinical utility.
These limitations included high inter-operator variability, a restricted field of view, and an
inability to provide information on lung and bone conditions. However, advances in US
technology, particularly with GPUs, have led to its reevaluation as a cost-effective, highly
available, and repeatable imagingmethod. Significant clinical progress has beenmade since
2012, particularly in contrast-enhanced Ultrasound (US), molecular US for diagnosis and
therapy monitoring, and focused US and sonoporation for therapy [66].

Before 2012, Doppler US was primarily used to visualize arterioles and venules, and
microbubbles in CEUS were essential to image capillaries. Imaging tumor vasculariza-
tion posed challenges due to tumor heterogeneity and variable arterial pressure. The first
Doppler US examination of tumor angiogenesis successfully differentiated between benign
and malignant breast tumors [134]. Doppler US allowed for non-invasive evaluations of
responses to anti-angiogenic drugs and therapeutic efficacy [135]. Correlations between
Doppler flow and microvascular density measured by histology established links between
functional and anatomical parameters under anti-angeogenic treatment [136], although
not consistently [137]. Recent developments in 3D vascularization imaging with high-
frequency US allowed for specific vascular measurements.

Doppler US is currently used for tumor diagnosis in various cancer types and mon-
itoring the effects of AA treatments in preclinical studies. Dynamic Contrast Enhanced
US has been successfully used in clinical settings to evaluate tumor responses to anti-
angiogenic therapy [138, 139].Dynamic Contrast Enhanced US provides functional and
quantitative information about solid tumor perfusion using microbubble agents. These
microbubbles can be targeted in preclinical studies and non-targeted in clinical practice.
DCE-US quantifies blood volume (BV), blood flow (BF), and Mean Transit Time (MTT =
BV/BF). DCE-US offers rapid acquisition compared to DCE-CT and DCE-MRI, with param-
eters like AUC at day 30 correlating with overall survival and freedom from progression
under anti-angiogenic treatment [140, 141]. Additionally, MTT has shown potential as
an early DCE-US biomarker, correlating with freedom from progression, particularly in
metastatic colon and breast cancer[141], possibly due to vessel normalization during which
vessels have shorter branches and shunts, theoretically enhancing drug delivery efficiency
[142].

2.1.3 Different criteria to evaluatemetabolic tumor response: PER-
CIST and RECIST

In the era of precision oncology, monitoring the tumor response, after anti-cancer treat-
ment, is a vital step to be early carried for taking the ’go’ vs ’no go’ decision. Monitoring
tumors is essential to detect drug resistance that can occur at any time during the treatment
and can vary from one patient to another. Various methods have been developed to assess
the response to treatments since 1976 where original reports were written by Moertel af-
ter the physical examination. In 1979 the first standard treatment response criteria: WHO
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criteria was developed [143]. It uses 2 dimensional measurement to measure the size of the
lesion by multiplying the longest diameter to its perpendicular diameter. It classifies the
response to complete, partial, no change and progressive disease. In spite of that, WHO
criteria didn’t succeed to have a fully standardized response assessment since it was not
explicit on the following factors: how small a lesion could be measured, how progression
should be defined, and howmany tumor foci should be measured. In 2000 the use of ’WHO’
criteria dropped with the arrival of the Response Evaluation Criteria in Solid Tumors (RE-
CIST) [144]. RECIST specified the number of lesions to assess (up to 10 target lesions, up to
5 per organ), it based the lesion measurement on 1 dimension of the long axis of the tumor,
and it specified the minimum size of the lesions to be assess (typically 1 cm using CT scan).
RECIST criteria got revised in 2008 to release its new version RECIST 1.1. By that time,
the use of imaging modalities got spread wider and new drug classes were developed based
on greater understanding of the tumor biology. On the light of this, it became clear that
there is no response criteria to be generalized for all tumors. For example, RECIST showed
low reliability in non-small cell lung cancer, prostate cancer, gastrointestinal stromal tumor,
soft tissue sarcoma [145]. In 2009 with the wider availability of PET scan, PET Response
Criteria in Solid Tumors (PERCIST) got released where the response to therapy is assessed
as a continuous variable and expressed as percentage change in SUL peak (or sum of lesion
SULs) between the pre- and post-treatment scans [146].

2.2 Artificial Intelligence (AI) in Medical Imaging

2.2.1 ReviewofAITechniques forMedical ImageProcessing inCan-
cer

AI refers to a branch of computer science that aims to replicate human-like intelligence
and capabilities in machines [147]. The origin of AI can be traced back to the early 20th
century, with significant developments occurring in subsequent decades. In 1943, the first
publication on AI surfaced, involving a neural network model applied to chess. The formal
establishment of AI as an academic discipline occurred in 1957, marking the beginning of
its evolutionary journey toward its contemporary understanding. However, the history of
AI has also been marked by periods of stagnation referred to as "AI winters." These were
characterized by reduced funding and enthusiasm for AI research due to unmet expecta-
tions and challenges. One such period occurred in the 1970s through the 1990s, primarily
attributed to setbacks in machine translation and the limitations of neural networks for
solving complex problems. Despite these setbacks, AI experienced a revival in the late
1990s and early 2000s, driven by advancements in computational power, algorithmic inno-
vations, and the availability of large datasets. During this period, machine learningmethods
like support vector machines gained prominence for various pattern recognition applica-
tions. However, the superior performance of neural networks in certain domains, as demon-
strated by ([148] and [149]), sparked renewed interest in AI’s potential. The convergence
of technological advancements, such as fast Graphics Processing Units (GPU)s, the devel-
opment of sophisticated AI models, and the rise of "big data," contributed to a resurgence
of interest and investment in AI ([148] and [150]) . It emerged as one of the pivotal tech-
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nologies with far-reaching applications across industries, including healthcare. Medicine
underwent a similar transformation, becoming more technology-driven, efficient, and dig-
itized. Within medicine, imaging experienced remarkable progress, with the integration of
AI technologies. The application of AI to medical imaging gained substantial attention, as
AI-powered tools could enhance diagnostic accuracy, streamline workflows, and support
clinical decision-making. Interestingly, AI’s integration into medical imaging began earlier
in radiology than in nuclear medicine Fig.2.2. This distinction can be attributed to sev-
eral factors. Radiology traditionally offered larger and more accessible datasets, making it
conducive to AI development. Additionally, the higher standardization in radiological pro-
cedures compared to the greater variability in nuclear medicine contributed to AI’s earlier
success in radiology.

Therefore, AI’s integration with medicine, particularly in medical imaging, highlights
its capability to reshape healthcare by enhancing diagnostics, tailoring treatments, and op-
timizing data handling. The growing use of AI in medical imaging is a dynamic field posi-
tioned to revolutionize patient care and elevate the precision of diagnostics.

Figure 2.2: Evolution of Research Publications in AI-Driven Applications for Radiology and
Nuclear Medicine Imaging over Time. Adopted from [2]

Machine learning can be employed in various ways to progress and enhance cancer
imaging. Fig. 2.3 outlines the typical clinical pathway for a cancer patient and emphasizes
specific perspectives of imaging where AI systems can make a beneficial difference [151].
In this thesis we will be focusing on the Disease progression block.
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Figure 2.3: In the usual course of events, a patient who initially shows no symptoms will
eventually develop cancer, manifesting signs that typically prompt the diagnosis of the dis-
ease. After undergoing proper disease staging, cancer treatment initiates, with the potential
for a favorable response or even a complete cure. Nevertheless, certain patients may experi-
ence a relapse or continued progression despite ongoing treatment, necessitating additional
therapeutic interventions. Sadly, some patients may ultimately lose their battle against the
disease. Adopted from [3]

Extracting and analyzing quantitative information from nuclear imaging data is a stan-
dard practice. Traditional semi-quantitative parameters like SUV, Metabolic Tumor Volume
(MTV), Total lesion glycolysis (TLG), and absolute quantitative values (e.g., glomerular fil-
tration rate, coronary blood flow) are obtained through the application of appropriate im-
age correction and reconstruction algorithms, combined with tracer kinetic modeling tech-
niques [152]. Features manually extracted from images can be incorporated into AI-based
systems, enhancing personalizedmedicine by supporting diagnosis and treatment guidance
[153].

2.2.2 AI Applications inMedical Imaging for Cancer Staging, Treat-
ment Response Prediction, and Targeted Therapy Assessment

AI is well-suited to address the challenges posed by modern targeted therapies, which of-
ten deliver significant clinical benefits not effectively captured by RECIST-based endpoints,
relying on the assumption of uniform tumor shrinkage. Targeted therapies produce unique
response patterns that confound these endpoints, contributing to high clinical trial failure
rates and drug development costs. AI’s capacity to quantify various biological response
processes, beyond tumor size, is pivotal in addressing this need. Artificial intelligence,
through advanced imaging and data analysis techniques, can capture and analyze a broader
spectrum of information from medical images. It can discern subtle alterations in tumor
morphology, texture, and density, providing a more comprehensive view of the tumor’s
response to treatment. This ability is especially valuable in scenarios where tumors may
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not shrink significantly but still exhibit positive responses, such as decreased vascularity,
increased necrosis, or alterations in cellular structure. Moreover, artificial intelligence has
been employed to forecast cancer outcomes, including local and distant control and sur-
vival, across various treatment modalities, such as radiotherapy, chemotherapy, targeted
molecular therapy, and immunotherapy.

In the context of predicting treatment response, [154] introduced a machine learning
algorithm to identify the optimal prognosis index for brain metastases, primarily in Non-
Small Cell Lung Cancer (NSCLC) patients. They employed seven clinical and qualitative
features and seven supervised machine learning algorithms to predict patient prognosis.
Their approach, Mutual Information and Rough Set with Particle Swarm Optimization,
outperformed conventional statistical methods, achieving the highest accuracy in survival
prediction with an AUC of 0.978 ± 0.06.

Furthermore, deep learning, including the U-Net segmentation algorithm, has been em-
ployed to identify numerous survival-related PET and CT features with significant prog-
nostic value. These features correlated strongly with 2- and 5-year overall survival and
disease-specific survival, and spatially corresponded with regions indicating a higher like-
lihood of metastasis or recurrence [155].

AI analysis of quantitative imaging data has the potential to enhance the evaluation of
responses to targeted therapy. For instance, in a study involving NSCLC tumors treated
with bevacizumab, a monoclonal antibody targeting VEGF, a reduction in fluorodeoxyglu-
cose uptake revealed a higher number of patients responding to treatment compared to
traditional CT criteria (73% vs. 18%). Remarkably, in this study, neither PET nor CT was
correlated with overall survival (PET, P = .833; CT, P = .557) [156].

Deep Learning (DL) can also be applied for the analysis of medical images across differ-
ent time points to forecast treatment response. For instance, Convolutional Neural Net-
works (CNNs) were employed in breast dynamic contrast-enhanced MRI (DCE-MRI) to
evaluate the response to neoadjuvant chemotherapy. In this application, the inputs encom-
passed variations across contrast time points and treatment examination times [157]. [158]
conducted research to investigate the potential of deep learning using CNNs with pre- and
post-treatment CT scans of patients with bladder cancer. Their aim was to aid in evaluat-
ing treatment response and, additionally, to enhance the prediction of a tumor’s prognosis,
which is valuable for making treatment decisions and estimating survival outcomes.

2.2.3 Assessing Intra-tumor Heterogeneity ThroughMedical Imag-
ing

Medical imaging also plays a crucial role in quantifying the intra-tumor characteristics.
Studies involving the sequencing of multiple, distinct samples from the same tumor have
revealed that Intra-Tumor Heterogeneity (ITH) is a common occurrence in solid tumor can-
cers. Intra-tumor spatial variations could involve different factors like cellularity, angio-
genesis, the extracellular matrix outside blood vessels, and regions of necrosis. Tumors
that have a lot of these variations tend to be associated with a worse outlook for patients,
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possibly due to their aggressive nature or resistance to treatment [159, 160]. Trying to un-
derstand these variations through random tissue samples or biopsies is challenging because
they don’t capture the full range of differences in how tumors look and behave. So, finding
a non-invasive way to study these differences within a tumor could be very useful in the era
of personalized medicine. This could help doctors identify patients with a poor prognosis
who might benefit from more aggressive treatments. Therefore, looking at the diversity
within tumors is a crucial aspect of medical imaging that could be measured and enhance
the way we typically report on tumors.

To date, several Computer Aided Diagnosis (CAD) for sub-regional analyses based on
radiology imaging features have shown to significantly improve diagnostic performance.
In breast cancer,[161], proposed an unsupervised clustering algorithm for 4-D imaging that
integrates Markov-Random Field image segmentation with time-series analysis to charac-
terize kinetic ITH. In sarcoma, [162] showed that heterogeneity analysis is a strong inde-
pendent predictor of patient outcome. In lung cancer,[163, 164] performed a multi-level
segmentation based on PET and CT images to identify high risk sub-region that better
improved the lung cancer prognosis. Additionally, [165] showed that sub-regional image
features analysis of PET/CT predicts patients survival better than those from the whole
tumor in nasopharyngeal carcinoma. However, to the best of our knowledge, to date, the
possibility that sunitinib resistance in PPGL could be conditioned by particular intra-tumor
regions rather than by a global action of the tumor has not been explored. In another study
of 54 patients with NSCLC undergoing PET-CT staging, a heterogeneous texture on the
non-contrast-enhanced CT component of the PET-CT was a predictor of poorer survival;
in particular, patients with coarse texture uniformity <0.624 did not survive more than 2.5
years [166]. Similarly, in a study of 21 patients with primary esophageal cancer undergo-
ing PET-CT staging, advanced stage tumors demonstrated greater heterogeneity at filter
values 1.5–2.0. Survival was also poorer for more heterogeneous tumors, particularly for
coarse texture uniformity < 0.8477 (odds ratio = 4.45, 95 % Confidence Interval 1.08–18.37,
p = 0.039) [166].

2.3 Radiomics in Cancer Imaging

The transition from traditional semi-quantitative parameters to radiomics in medical imag-
ing is driven by the pressing need for a more advanced and comprehensive approach to
image analysis. Traditional semi-quantitative parameters, while valuable, often provide a
limited and somewhat subjective perspective on the information contained within medi-
cal images. They typically involve manually assessing a few specific visual characteristics,
which can introduce interobserver variability and may not capture the full complexity of
the underlying tissue or pathology.

Radiomics, on the other hand, revolutionizes image analysis by harnessing the power
of advanced computational techniques. It enables the extraction of a multitude of quanti-
tative features from medical images, encompassing not just simple measurements but also
intricate textures, shapes, and statistical properties. This quantitative richness offers a far
more detailed and objective view of the imaged structures, making it an indispensable tool
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for improving diagnostic accuracy and treatment planning.

In metabolic imaging, textural features have shown superior performance in predict-
ing treatment outcomes compared to simple SUV measures like SUVmax and SUVmean,
as demonstrated by various studies [162, 167, 168]. For instance, [169] conducted a study
involving fifty-three NSCLC patients and compared the predictive capabilities of maximum
and mean SUV with four Neighboring Gray Tone Difference Matrix (NGTDM)-derived
textural features. They discovered that coarseness, busyness, and contrast, derived from
NGTDM, exhibited better discrimination between responders and nonresponders to chemora-
diotherapy compared to the aforementioned SUVmetrics. Furthermore, coarseness emerged
as an independent predictor of overall patient survival. In another study by [170] multi-
ple multivariate models were developed to forecast pathologic responses to preoperative
chemoradiotherapy in twenty esophageal cancer patients. Their findings revealed that
models incorporating combined radiomic features significantly enhanced pathologic re-
sponse prediction, surpassing models built solely on maximum SUV, metabolically active
tumor volume, and longest diameter.

In the context of anatomical imaging [100], the prognostic potential of 440 shape, inten-
sity, and textural features in CT imaging was assessed, focusing on survival prediction for
over 420 lung cancer patients within a discovery dataset. These features’ prognostic value
was subsequently validated across three independent datasets, encompassing one lung can-
cer cohort (225 patients) and two head-and-neck cancer cohorts (231 patients). The findings
not only affirmed the applicability of radiomic features in predicting outcomes and char-
acterizing intra-tumor heterogeneity but also indicated the transferability of prognostic
ability between different disease types, such as from lung to head-and-neck cancer.

In the context of vasculature imaging, Recent investigations have established a robust
link between the heterogeneity of tumor vasculature and contrast-enhanced (CE)-CT, as
documented in studies by [171, 172] identified a significant correlation between tumor
blood flow, assessed through CE-CT, and the metabolically active tumor volume. This high-
lights the potential of CE-CT radiomics in quantifying the intricate tumor phenotype influ-
enced by angiogenesis in cancer. For instance, [173] proposed that if the fractal dimension,
extracted from CE-CT, effectively characterizes tumor heterogeneity, it might also serve as
a predictor of patient survival in hepatocellular carcinoma. Their findings indicated that
patients with longer survival tended to exhibit lower fractal dimension values in the arte-
rial phase CE-CT images, suggesting its potential as a prognostic marker [173].

2.3.1 Radiomics for PGL tumor

While research on radiomics in patients with PPGL has been limited, recent studies have
demonstrated its potential in distinguishing subclinical pheochromocytoma from lipid-
poor adenoma, a challenging task for conventional imaging analysis [174, 175]. These
encouraging findings provide a robust basis for the utilization of radiomics in predicting
the metastatic potential of PPGL. Another study explored the utility of FDG-PET/CT-based
radiomics in characterizing and genetically orienting pheochromocytomas before surgical
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intervention. Radiomics, is employed to differentiate between subclinical pheochromocy-
tomas and lipid-poor adenomas. The study presents promising results, suggesting that
radiomics can help predict the metastatic potential of pheochromocytomas, providing a
valuable foundation for further applications in pre-surgical assessment and genetic guid-
ance for these tumors [176].

2.3.2 Radiomics Analysis of Intra-tumor Heterogeneity in Cancer
Imaging

Within the realm of radiomics for intra-tumor heterogeneity, these studies present com-
pelling perspectives. The investigation in esophageal cancer taps into textural features from
baseline 18F-FDG PET images, demonstrating their potential as robust predictors of treat-
ment response, surpassing traditional metrics like maximum SUV [ixier2011intratumor].
This advancement holds promise for refining tailored treatment strategies, ultimately en-
hancing outcomes. A parallel exploration in cervical cancer conducts a comprehensive
temporal analysis, particularly emphasizing textural features’ role in characterizing intra-
tumor metabolic heterogeneity [168]. By scrutinizing how metabolic patterns evolve over
time, the study uncovers valuable insights for predicting treatment responses and disease
progression, offering a tailored treatment approach. Meanwhile, a distinct study intro-
duces the concept of "Functional 4-D clustering," exploring intra-tumor heterogeneity in
dynamic medical imaging [161]. The focus lies on its application in FDG PET scans, assess-
ing whether these dynamic changes, when analyzed through radiomics, can serve as valu-
able prognostic biomarkers for breast cancer. This approach, by quantifying intra-tumor
variations, holds the potential to revolutionize breast cancer prognosis and therapy.

Nonetheless, a persistent challenge in radiomics pertains to the interpretability of these
features [153]. The interpretability of these features is profoundly influenced by the com-
putational method employed, whether it involves conventional parameters, first-order de-
scriptors, shape and size characteristics, or more advanced techniques such as Laplacian
or wavelet features. Another significant challenge is the quality and variability of medi-
cal imaging data, as even slight variations in acquisition parameters and image quality can
impact the reliability of radiomic features. Standardization is another issue, with the lack
of consistent protocols making it difficult to compare results across different studies and
institutions, hindering the establishment of universal benchmarks. Moreover, the need for
large datasets for training and validation poses a limitation, as smaller sample sizes can
lead to overfitting, reducing the generalizability of radiomic models. Additionally, the inte-
gration of radiomics into routine clinical practice faces regulatory, technical, and workflow
challenges. Ensuring data privacy and security and developing interpretable AI models
are other key considerations. Finally, the cost and resource requirements, as well as the
need for longitudinal data, are aspects that must be taken into account to fully harness the
potential of radiomics for improving patient care and advancing medical research
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2.4 Preceding Study

In a previous study led by Caterina Facchin, a former PhD student in our research team,
she utilized PET/CT/UUDI co-registration to delve into the intricate dynamics of Sdhb-
/- tumors [69]. The results unveiled a rapid expansion in these tumors, characterized by
heightened glycolysis and increased vascularization. The initial administration of sunitinib
showed promising outcomes, effectively restraining tumor growth, inhibiting vessel devel-
opment, and reducing FDG uptake during the early weeks (W1-2). However, subsequent
imaging painted a compelling picture of an observable escape from sunitinib treatment,
indicated by an increase in FDG uptake at W3, followed by a resurgence in both tumor
growth and vascular development at W4-5.

A notable finding was the concentration of blood vessels in the active, sugar-consuming
regions of the tumors, with their volume showing an increase during the escape from suni-
tinib. This observation implies a dynamic adaptation of the tumor vasculature in response
to treatment. Importantly, early alterations in total lesion glycolysis and maximum ves-
sel length at W1 emerged as crucial predictive indicators of resistance to sunitinib. These
findings shed light on the nuanced interplay between tumor metabolism, vascularization,
and therapeutic response, providing valuable insights into potential predictive markers for
treatment resistance.
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PETRUS and Database Generation

3.1 Database Generation

3.1.1 Animal Modal

The database utilized in this thesis is derived from experiments previously conducted by a
former Ph.D. candidate within my research team [69]. The animal experiments were con-
ducted in compliance with ethical guidelines and received approval from the French Eth-
ical Committee under reference number 16-098, following the regulations outlined in the
French law of animal experimentation, specifically n°2013-118. The allograft mouse model
was established by performing subcutaneous injections of immortalized mouse chromaffin
cells, which carried a homozygous knockout of the Sdhb gene (Sdhb−/−, clone 8). These
cells were propagated in the fat pad of nude female mice, totaling 27 mice from Janvier Labs
in France. The mice were housed and maintained under controlled conditions, including a
temperature of 24°C, relative humidity of 50%, and a 12/12-hour light/dark cycle. They had
unrestricted access to both food and water. Tumor volume was assessed daily using the
formula: ½ × long diameter × (short diameter)2. When the tumor volume reached 140 mm3,
mice bearing Sdhb−/− tumors were randomly allocated into two distinct groups (as depicted
in Figure 3.1). In one group (comprising 16 mice), an antiangiogenic treatment involving
sunitinib malate (CliniSciences, A10880-500) was administered. Sunitinib malate was pre-
pared by dissolving it at a concentration of 10 mg/mL in a mixture of Dimethyl Sulfoxide
(DMSO) and PBS (in a ratio of 1:4). For the control group (comprising 8 mice), a solution
of DMSO-Phosphate-Buffered Saline (PBS) (1:4) was prepared. The sunitinib-treated group
received a daily oral gavage of sunitinib at a dosage of 50 mg/kg for a continuous period
of 6 weeks, with each dose administered in a volume of 200 µL. The vehicle-treated group
received an equivalent volume of the DMSO-PBS solution through oral administration. In
cases where the tumor volume surpassed the recommendations set by United Kingdom
Coordinating Committee on Cancer Research (UKCCCR) or when indications of advanced
cancer disease became evident [177], humane euthanasia was carried out.
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Figure 3.1: Database generation process. Mice in the training group were divided into two
groups: sunitinib-treated and sham-treated. Eight mice from each group were scanned
with PETRUS before and after 1, 2, and 3 weeks of treatment. Sinitinib-treated mice were
also imaged at 4, 5, and 6 weeks of treatment. Mice of the independent validation set were
sunitinib-treated and scanned at baseline and at weeks: 1, 3, and 6 of the treatment (adopted
from [178]).

3.1.2 PETRUS acquisitions

The impact of sunitinib was assesed using PET Registered Ultrafast Sonography (PETRUS)
device [179, 180], 3.2. PETRUS allows for simultaneous acquisition of tissue metabolism
using [18F]FDG Positron Emission Tomography, Computed Tomography (CT) and Ultra-
fast Ultrasound Doppler Imaging (UUDI) [179]. Thus, it simultaneously reads the cellu-
lar metabolism activity alongside micro-vascular architecture within the tumor, ensuring
unimpaired physiological conditions for both sets of spatially co-registered features [69].
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Figure 3.2: The PETRUS imaging device during acquisition. (A) Photo of PETRUS Device,
(B) Schematic illustration of the setup employed for imaging mice with Sdhb

−/− tumors.
(adopted from [181]).

CT Acquisition

The CT scans were obtained in a semi-circular mode with the following parameters: 39kV
voltage, 720 projections in a full scan, 300 ms per projection, and 1:4 binning. Subsequently,
CT data were reconstructed using the filtered back projection technique (filter: Cosine;
Cutoff: 100%) [182], resulting in a pixel size and slice thickness of 0.23 mm.

PET Acquisition

PET acquisition started 30 seconds before injection of 10 MBq of 18F-FDG in 0.2 mL saline
into the mouse tail vein. List-mode PET data were collected during 60.5 min, binned us-
ing a 5-ns time window, a 400- to 600-keV energy window, and a 1:5 coincidence mode,
i.e. each detector associated with the five opposite detectors. Data were reconstructed
by the TeraTomo reconstruction engine (3D-OSEM based manufactured customized algo-
rithm, Mediso medical imaging systems, Hungary). A 31-frame dynamic sequence was
chosen with the following time sequence: exclusion of 20 s; 10 frames of 5 s, 5 frames of 10
s, 2 frames of 15 s, 3 frames of 60 s, 5 frames of 120 s, 3 frames of 5 min, 3 frames of 10 min.

UUDI Acquisition

The UUDI system utilizes in-house MATLAB scripts from The MathWorks in Natick, MA,
USA, to execute plane wave beamforming for both transmission and reception. UUI images
were captured as 2D planes measuring 12.8 x 20 mm2 , with each plane being spaced 0.1
mm apart, all while operating in Ultrafast Ultrasound Doppler mode. The complete tumor
volume image is formed by stacking together individual planes, ranging from 70 to 200
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planes in total. Each of these planes was generated by averaging 300 temporal frames ac-
quired at a frame rate of 500 frames per second. Each frame comprised images from 11 tilted
plane waves, evenly distributed between -10 and 10 degrees. The Ultrafast Power Doppler
volume represents the volume occupied by red blood cells flowing within the vessels. To
distinguish signals originating from the tissue and blood, a spatiotemporal filter based on
singular value decomposition was applied [183]. Subsequently, the power, which is equiva-
lent to the square of the signal amplitude, was integrated over the 300 frames for each slice.
Ultimately, this process yielded a 3D volume depicting vascularization, with a resolution
that varies depending on the ultrasound probe’s elevation focusing capability. To enhance
the image quality, we conducted deconvolution on the 3D volume using a blurring kernel
estimation. The kernel’s calculation involved the use of the blind deconvolution method
[184], applied to a B-mode 3D volume containing crossed 80-µm copper wires immersed in
water. This blurring kernel was then employed in a Lucy-Richardson deconvolution pro-
cess to achieve an isotropic spatial resolution of approximately 100 µm3 across the entire
tumor.

3.1.3 Image and Data Processing

Before conducting image analysis, a precise co-registration process was carried out to align
the 3D volumes of X-Ray CT, dynamic PET, and UUDI. This co-registration involved the
utilization of a phantom submerged in a water bath, featuring three 80 µm copper wires
that were visible in both CT and UUDI volumes, as detailed in [179].

The delineation of tumors on the CT images was carried out with reference to the fat
pad surrounding the tumor. To measure the glucose metabolism in a Volume of Interest
(VOI) in the PET image, we calculated the Standardized Uptake Value of Glucose (SUV)
using the following formuma:

StandardizedUptake V alue of Glucose (SUV ) =
Concentration of the radiotracer in the V OI (KBq

cc
)

Injected dose(KBq)/Bodymass(g)

Subsequently, PET and UUDI volumes were subjected to cropping based on a standard-
ized criterion derived from the segmentation of the PET image. The semi-automatic def-
inition of PET segmentation was accomplished using iso-contours at a 30% threshold of
the SUV peak [185], employing the last-time frame (50-60 minutes post-injection). The
cropping of UUDI volumes was performed utilizing the mask generated from the PET seg-
mentation. For quantifying 18F-FDG accumulation, both the mean SUV andmaximum SUV
(Max SUV)were calculated. Max SUVwas determined as the average SUV of the five hottest
pixels within the segmented tumor, a more precise criterion compared to maximum SUV
based on a single pixel [186]. The software employed for quantifying PET parameters was
the PMOD package (PMOD Technologies Ltd, Zürich, Switzerland).
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Machine Learning of Multi-Modal
Tumor Imaging Reveals Trajectories of
Response to Precision Treatment

In this chapter, we delve into the comprehensive research presented in the paper entitled
"Machine Learning of Multi-Modal Tumor Imaging Reveals Trajectories of Response to Pre-
cision Treatment." This paper represents a significant milestone in our quest to unravel
the intricacies of how tumors respond to precision treatments. The work outlined in this
chapter builds upon the key insights and methodologies introduced in the paper. The cen-
tral focus of this chapter is to provide an in-depth exploration of how advanced imaging
techniques, coupled with cutting-edge machine learning algorithms, can revolutionize our
understanding of treatment responses in the realm of precision medicine. The paper’s find-
ings have set the stage for this exploration by highlighting the potential of various imaging
modalities to offer unprecedented insights into the dynamic and multifaceted nature of
tumor responses to treatment.

Throughout this chapter, we will embark on a journey through the various imaging
modalities utilized in the study, such as Positron Emission Tomography (PET), Ultrafast Ul-
trasound Doppler (UUDI), and Computed Tomography (CT). These imaging techniques are
instrumental in capturing the complex interplay of metabolic, morphological, and vascular
aspects within tumors.Furthermore, we will delve into the novel Machine Learning (ML)
framework proposed in the paper, which plays a pivotal role in deciphering the wealth of
data generated by these imaging modalities. The framework’s ability to analyze and inter-
pret this multi-modal data is at the heart of our pursuit to redefine our understanding of
precision treatment responses.

In summary, this chapter represents a deep dive into the core findings, methodologies,
and implications of the paper titled "Machine Learning of Multi-Modal Tumor Imaging
Reveals Trajectories of Response to Precision Treatment." It is an essential component of
our ongoing efforts to advance the field of precision medicine by shedding light on the
intricate dynamics of tumor responses to treatment.
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4.1 Materials and Methods

Figure 4.1 shows the pipeline of the framework implemented in this study that progresses
from the acquisition of multi-modal image volumes to the definition of individual trajec-
tories of response to treatment. Each element of this diagram will be described in the
following sections.

Figure 4.1: Process diagram showing the framework pipeline. Images were co-registered
and processed to extract features describing the metabolic, vascular, and anatomical com-
ponents of tumor development. A Pearson correlation study was performed to remove re-
dundant features. Longitudinal features were combined, and hierarchical clustering HCA
analysis was applied to obtain clusters and classes representing different stages of tumor
evolution. The clusters and classes identified with HCA were used with 10 different su-
pervised machine-learning classifiers for model generalization and final validation. Finally,
time-wise concatenation of the identified stages was performed to form the individual tra-
jectories of tumor evolution for each animal.

4.1.1 Description of Database Formation

Each PETRUS acquisition comprised three image volumes registered in a common time and
space reference frame that defined a multiparametric cube surrounding the animal tumor.
The features describing the metabolic, vascular, and anatomical characteristics of the tumor
were extracted from the PET, UUDI, and CT images, respectively (Table 4.1). A Volume Of
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Interest (VOI) covering the whole tumor was defined on the PET images by segmenting
voxels with an FDG standard uptake value (SUV) greater than 30% of the tumor’s peak SUV
at 50–60 minutes post-injection [185]. This VOI was used to create a binary mask that was
applied to the three spatiotemporal registered volumes. From the masked PET image, the
following metabolic features were extracted: mean, coefficient of variance, minimum and
maximum of standard uptake values (MeanSUV , CVstdSUV , MinSUV , MaxSUV ), and
PET volume (PETVolume). The masked UUDI volume was filtered using a Hessian-based
vessel enhancement filter, and vessels were segmented using predefined thresholds [187]
and skeletonized using an iterative ordered thinning-based skeletonization method [188,
189]. The skeletonized mask of vessels was transformed into a graph of nodes and edges
representing the vascular network of the tumor. Using this graph, the following features
describing the topology of the tumor vascularization were calculated: mean, minimum and
maximumvessel length (MeanVesselsLength, MinVesselsLength, MaxVesselsLength), mean
vessels tortuosity (Tort), which is the shortest distance between nodes divided by the vessel
length), vessels length dispersion (VesselsLength-Disp), which is the standard deviation of
the vessels length divided by the mean of the vessels length, number of nodes (NumNodes),
density of nodes (DensityNodesinUSV), mean vessels diameter (MeanVesselsDiam) and ul-
trasound volume (USVolume), which is the number of voxels of the vascular skeleton mul-
tiplied by the voxel volume. The quantification of PETRUS images was performed using
MATLAB version R2021b. The CT volume (CTVolume) was delineated from the fat pad
surrounding the tumor.

The working database assembled all 15 features extracted from the imaging modalities,
as well as a unique record number that defined the mouse, the week of the imaging session
(where week zero (W0) is the pre-treatment imaging session and W1-6 is the rest of the
treatment weeks), and the treatment group assignment (CON for sham-treated mice; SUNI
for sunitinib-treated mice). Data were divided into 3 subgroups, (i)Dsuni

training containing the
SUNI mice in the training group, aggregating a total of 54 records (ii) Dcon

training contain-
ing the CON mice from the training group, forming a total of 27 records, and (iii) Dsuni

validat

containing the SUNI mice from the validation group forming a total of 28 records.

Table 4.1: PET/CT/UUDI extracted features.

Parameter Modality Abbreviation Unit Description
Mean
Standardized
Uptake Value

PET MeanSUV a.u. Average of the
Standardized
Uptake of FDG
in the VOI

Max
Standardized
Uptake Value

PET MaxSUV a.u. Average of the 5
hottest pixels in
the tumor VOI

Min
Standardized
Uptake Value

PET MinSUV a.u. Minimum
Standard Uptake
of FDG in the
VOI
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Standardized
Uptake Value of
FDG dispersion

PET CVstdSUV a.u. Coefficient of
variance of the
Standardized
Uptake Value

PET volume PET PETvolume mm3 Number of
voxels in the
VOI × volume of
a voxel

Computed
Tomography
Volume

CT CTVolume mm3 Tumor volume
defined by the
CT scan

Number of
Nodes

UUDI NumNodes nodes Sum of all
Nodes.

Number of
Nodes / Vessels
Volume

UUDI DensityNodesinUSV nodes/ mm3 Number of
nodes per unit
of vessel
volume.

Maximum
Vessels Length

UUDI MaxVesselsLength mm Average of the
maximum
length of all the
vessels

Mean Vessels
Length

UUDI MeanVesselsLength mm Average of the
length of all the
vessels

Minimum
Vessels Length

UUDI MinVesselsLength mm Average of the
min length of all
the vessels

Length Vessels
Dispersion

UUDI VesselsLengthDisp a.u. Coefficient of
variance of the
mean vessel
length

Mean Vessels
Tortuosity

UUDI Tort a.u. Average of all
tortuosities. The
tortuosity is the
ratio between
the length of a
vessel (as an arc)
and the
straight-line
length between
its initial and
final points

Mean Vessels
Diameter

UUDI MeanVesselsDiam mm Average of all
mean Diameter
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Vessels Volume UUDI USVolume mm3 Tumor blood
volume defined
by the
Ultrasound
Doppler scan

4.1.2 Feature Selection

Feature selection is an important pre-processing step that affects the accuracy and decreases
the training time of any classifier. By removing non-useful or redundant features, the di-
mensionality of the feature space can be reduced, an essential step to improve the perfor-
mance of a classifier [190]. In order to identify linear correlations between the different
features, we applied a Pearson correlation using a Pearson coefficient |r| > 0.9 (p-value <
0.05) to dete CT redundant features [191]. In addition, non-informative features with a low
coefficient of variation (CV < 0.1) were removed.

4.1.3 Unsupervised Classification: Hierarchical Clustering

One of the fundamental objectives of our study was the determination of phenotypically
representative clusters, each cluster being a representative combination ofmetabolic, anatom-
ical and vascular features associated with a stage of response to sunitinib. Clusters were
determined by the individual response of the subject, independently of the time of treat-
ment by assembling all the longitudinal features extracted. HCA, an unsupervisedmachine-
learning clustering approach [84], was used to stratify the tumor response by finding com-
mon metabolic, anatomical and vascular phenotypic patterns of the image descriptors se-
lected. The HCA was applied on each of the training datasets separately, Dsuni

training and
Dcon

training, in order to determine whether or not the treatment changes the time course of
tumor evolution. First, the input data were standardized using the z-score. Then, the in-
terrelationship between individual records was measured by computing the unweighted
average Euclidean distance. This was followed by computing the average link as a simi-
larity metric to define the closest pair of clusters. Finally, a heat map with dendrograms
was constructed to display the patterns observed and the clusters identified. The length of
the dendrogram branches connecting records and features is inversely proportional to the
similarity of their profiles. Gap statistics [192] was applied in order to evaluate the optimal
number of clusters, andWelch’s t-test was applied to identify significantly different clusters
[193]. The outcome of this analysis provided the optimal number of clusters corresponding
to a particular phenotype identified for each instance in the data-base. HCA and statis-
tical tests were implemented in MATLAB (version 2021-b) using the clustergram,
ttest2, and evalclusters functions, respectively.
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4.1.4 Supervised Classification: Model Building and Validation

To test the stability of themethod, we compared the clustering results applied on an external
population ( Dsuni

validation) to a classification produced as a generalization of the clustering
performed on our initial population (Dsuni

training). More precisely, we considered the clusters
of the initial population (Dsuni

training) as classes of a supervised classification algorithm to
predict the classes expected in the new population (Dsuni

validation).

Because our training dataset has an unbalanced number of instances per class, which
can undermine the predictability of the models, we performed oversampling through the
synthetic minority over-sampling technique (SMOTE), which balances the minority classes
[194]. This technique uses the k-nearest neighbors approach to synthesize new observa-
tions based on the existing records. We applied smote using the four nearest neighbors to
balance each of the four clusters (A, B1, B2, and C).

The selected features of our Dsuni
training were brought into ten machine learning classi-

fiers, including Decision Tree (DT), GNB, kernel naive Bayes (KNB), Linear SVM, quadratic
Quadratic SVM, k-nearest neighbors (KNN), weighted k-nearest neighbors (Weighted KNN),
RF, narrow Neural Network (NN), bilayered NN. The best-performing model was selected
by comparing the area under the receiver operating characteristic AUC Accuracy (ACC)
values. The control parameters of the best model were further optimized by Bayesian
optimization and five-fold cross-validation to evaluate the performance of the classifier.
All classifiers were trained and validated using the classification learner application imple-
mented in MATLAB version 2021-b.

In order to check the relative importance of each of themetabolic, vascular, and anatom-
ical features in the classification problem, we used the predictor importance attribute as-
sociated with the RF model. The predictor importance attribute is an implicit technique
performed using the RF model and is evaluated using the Gini impurity criterion index.
This index is based on the principle of impurity reduction to provide the power of each
feature in the classification [195].

4.1.5 Identification of Trajectories of Treatment Responses

We then tested whether the records assembled within each cluster, corresponding to a tu-
mor state with specific biomarkers, could represent a chronological stage of tumor evolu-
tion. By referring back to the time point of each record (the week after the beginning of
treatment) in both the CON and SUNI groups, the clusters were ordered chronologically,
and a time-dependent trajectory was obtained for each mouse. We applied anR2 test to the
states at each of the seven time points of the study (classes obtained from the HCA, consid-
ering A = 1, B1 = 2, B2 = 3, and C = 4) to determine if these states indicated temporal stages
of treatment response. Finally, the transitional matrix between clusters was analyzed.
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4.2 Results

4.2.1 Pearson Correlation

Figure 4.2 shows the cross-heatmap of the Pearson correlation values (r) of CT, vascular,
and metabolic features. In order to eliminate redundant features, a Pearson significance
of r > 0.9 and p-value < 0.05 were applied to all pairs of features of the four instances.
This reduced the number of vascular features from 11 to 8: MeanVesselsLength was corre-
lated with MeanVesselsDiameter, Tort, and VesselsLengthDisp; VesselsLengthDisp corre-
lated with MeanVesselsDiameter and Tort, and Tort correlated with MeanVesselsDiameter.
Hence, MeanVesselsLength, MeanVesselsDiameter and Tort were not considered further.
Applying the same Pearson r and p values reduced the metabolic features from 5 to 4:
MeanSUV correlated with MaxSUV , and MaxSUV was not considered further.

With respect to vascular–metabolic correlations, interestingly, the StdSUV was signifi-
cantly correlated with MeanVesselsDiam and MeanVesselsLength.

In addition, a low coefficient of variation (CV< 0.1) results in a non-informative dataset
from classifiers’ training. Thus, features having a high Pearson correlation and a low co-
efficient of variation were not considered further. Overall, 8 features, including 4 vascular
features, i.e., USVolume, NumNodes, DensityNodesinUSV, VesselsLengthDisp, 3 metabolic
features, i.e., StdSUV , PETVolume, MeanSUV , and the CT volume, were used for all three
curated databases (Dsuni

training, Dcon
training, Dsuni

validat).

4.2.2 Hierarchical Clustering Approach

Sham-treated Training set (Dcon
training)

Performing the hierarchical clustering on theDcon
training dataset identified twomajor clusters:

Clusters Ac and Cc (Figure 4.3a), where subscript c stands for the control group. They
showed the following characteristics (Table 4.2):

• Cluster Ac was characterized by significantly low volumes of CT, PET, and UUDI, a
high coefficient variance of the standard deviation of SUV , a low number of nodes,
and a low density of nodes. This corresponds to a small-sized tumor, with low vas-
cularization and metabolism, and a heterogeneous distribution of FDG uptake.

• Cluster Cc was characterized by high volumes of CT, PET, and UUDI, a significantly
lower coefficient of variation of the standard deviation of SUV , and a high number
of nodes. This cluster corresponds to a stage where the tumor has grown to a large
volume, with high metabolic and vascularization activities but a low heterogeneity
in the distribution of FDG uptake.
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Figure 4.2: Heatmap summarizing significant Pearson coefficient values for each pair of
metabolic (blue font), vascular (red font) and anatomical features (black font) used to ex-
clude redundant features (*,**,***, refer to p-value level of significance).

Table 4.2: Metabolic, vascular, and anatomical characteristics of the clusters of theDcon
training

dataset. The average values of each parameter of each cluster are represented. In black, the
mean values; in parenthesis, the standard mean errors; and in blue, the z-score means.

Features CVstd-
SUV

Density
Nodes
inUSV
(1/mm3)

Num-
Nodes

US
Vol-
ume
(mm3)

PET
Vol-
ume
(mm3)

CT
Vol-
ume
(mm3)

Mean
SUV

Vessels
Length
Disp
(mm2)

Cluster
Ac

45.07
(1.68),
0.42

36.27
(1.85),
−0.27

542.85
(32.84),
−0.81

15.31
(1.02),
0.82

236.43
(27.75),
−0.85

165.06
(23.80),
−0.85

1.96
(0.10),
−0.63

60.06
(1.89),
0.00

Cluster
Cc

35.74
(0.89),
0.42

38.79
(1.57),
−0.27

1549.29
(123.44),
−0.81

39.44
(2.50),
0.82

815.28
(69.49),
−0.85

584.29
(51.77),
−0.85

2.66
(0.08),
−0.63

59.60
(1.19),
0.00

Sunitinib-Treated Training set (Dsuni
training)

The same clustering approach applied to theDsuni
training dataset identified threemajor clusters

(Figure 4.3b): Clusters At, Bt, and Ct, where the subscript t stands for the treatment group.
Cluster Bt splitted into two subgroups: B1t and B2t (Table 4.3).
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((a)) Control

((b)) Sunitinib

Figure 4.3: Heatmap and hierarchical clustering performed (a) on the Dcon
training dataset and

(b) on the Dsuni
training dataset. Two clusters (Ac, Cc) were identified in (a) and 4 clusters (At,

B1t, B2t, and Ct) were identified in (b).
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• Cluster At was characterized by low volumes of CT, PET, and UUDI, a high coeffi-
cient of variation of the standard deviation of SUV , and low vessel length dispersion,
number of nodes, and density of nodes. This corresponds to a small-sized tumor with
low vascularization and heterogeneous distribution of FDG uptake value, features
that are similar to those of cluster Ac of the control group.

• Cluster Ct was characterized by high volumes of CT, PET, and UUDI, low coefficient
of variation of the standard deviation of SUV , high vessel length dispersion, and very
high number of nodes. This cluster corresponds to a tumor with a large volume, high
metabolism and vascularization, and low heterogeneity in the distribution of FDG
uptake, features that are similar to those of cluster Cc of the control group.

To compare the A and C clusters obtained with the SUNI and CON groups, respectively,
a Kruskal–Wallis test [196]was performed between theAt andAc clusters, and also between
theCt andCc clusters. The clusters were statistically similar (p-value < 0.05), indicating that
clusters At and Ac on the one hand, and clusters Ct and Cc on the other hand, correspond
to similar tumor states in the sunitinib-treated and sham-treated groups.

In the sunitinib-treated training set, the HCA algorithm identified two further clusters
not present in the CON group:

• Cluster B1t was characterized by low to moderate volumes of CT, PET, and UUDI,
low coefficient of variation of the standard deviation of the SUV, high vessel length
dispersion, and a very high density of nodes. This corresponds to a small tumorwith a
significant but moderate level of vascularization, and medium-to-high heterogeneity
in the distribution of FDG uptake.

• Cluster B2t was characterized by moderate volumes of CT and PET, high UUDI vol-
ume, lower coefficients of variation of the standard deviation of SUV, high vessel
length dispersion, and low density of nodes. This corresponds to a moderate to high
tumor volume and vascularization and low heterogeneity in the distribution of FDG
uptake.
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Table 4.3: Metabolic, vascular, and anatomical characteristics of the clusters from the
Dsuni

training dataset. The mean values of each parameter of each cluster are represented. In
black, the means; in parentheses, the standard means error; and in blue, the z-score means.

Features CVstd-
SUV

Density
Nodes
inUSV
(1/mm3)

Num-
Nodes

US
Vol-
ume
(mm3)

PET
Vol-
ume
(mm3)

Mean
SUV

CT
Vol-
ume
(mm3)

Vessels
Length
Disp
(mm2)

Cluster
At

52.01
(1.17),
0.81

28.99
(1.05),
−0.64

243.15
(18.20),
−0.90

5.58
(0.78),
−0.81

99.61
(9.73),
−0.73

1.73
(0.11),
−0.56

66.90
(8.22),
−0.60

55.68
(0.77),
−0.52

Cluster
B1t

47.68
(0.65),
0.12

44.08
(1.84),
1.46

527.4
(50.99),
0.16

11.84
(0.80),
−0.34

195.85
(18.44),
−0.09

1.79
(0.15),
−0.49

100.08
(15.36),
−0.29

57.33
(2.22),
−0.24

Cluster
B2t

43.93
(0.72),
−0.64

32.06
(1.02),
−0.07

583.64
(29.78),
0.61

18.11
(0.46),
0.78

228,16
(15.76),
0.50

2.56
(0.22),
−0.35

123.51
(11.52),
0.06

59.46
(1.40),
−0.25

Cluster
Ct

41.13
(0.58),
−0.92

31.78
(1.29),
−0.25

790.67
(39.46),
1.13

24.89
(0.73),
1.52

386.45
(29.66),
1.17

2.67
(0.12),
0.60

261.73
(17.84),
1.23

63.93
(2.01),
0.89

4.2.3 Robustness of Clusterization

An additional validation step was performed in order to ascertain that cluster formation
was reproducible and not a casuistic process. HCA clustering was repeated on subsets of
random instances of the Dsuni

training group, formed by randomly removing one mouse at a
time. The accuracy of each HCA was calculated by considering the clusters obtained for
all mice as ground truth and comparing it with the clusters of the new subset using the
following formula: Accuracy = Number ofcorreCTpredictions

TotalnumberofPredictions
. As shown in Table 4.4, the total

accuracy for each of the performed HCAs was greater than 95 percent for the three major
clusters (At, Bt, and Ct).

Table 4.4: Performance of each of the HCAs for subsets of theDsuni
training dataset. Data subsets

were obtained by removing all the time points of one mice at a time.

Mice Removed 1 2 3 4 5 6 7 8
Total Accuracy (%) 100 100 95 98 100 100 95 100
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4.2.4 Performance of Supervised Machine Learning Models

All 10 of the ML classifiers explored demonstrated good predictive performance, as demon-
strated by the evaluation indexes of performance presented in Figure 4.4a. GNB achieved
the best predictive performance (AUC: 100, ACC: 98.7), whereas DT exhibited the weak-
est (AUC: 96, ACC:94.8). The remaining classifiers achieved the following predicted per-
formance: Quadratic SVM (AUC: 100, ACC: 97.4), KNB (AUC:98, ACC: 94.8), Linear SVM
(AUC: 100, ACC: 97.4), KNN (AUC: 97, ACC: 98.7), RF (AUC: 100, ACC: 94.8), Narrow NN
(AUC:100, ACC: 96.1), BilayeredNN (AUC:98, ACC: 94.8) andWeightedNN (AUC:100, ACC:
97.4).

Applying the best classifier to the three records that had not been classified using HCA,
i.e., mouse1-week6, mouse3-week6, and mouse8-week5, allowed to classify these records
into clusters Ct, Ct, andAt, respectively (Table 4.5). This classification remained consistent
with the previous stages of the sunitinib training set Dsuni

training. The best-trained model
applied to the Dsuni

validat dataset assigned a state for each record and mouse (Table 4.6) that
was consistent with the states of the Dsuni

training dataset.

Table 4.5: Evolutionary path of sunitinib-treated mice of the training set. Items marked as *
indicate missing classification due to the absence of corresponding PETRUS data. Clusters
that were assigned by the RF model are underlined.

Mouse
Num-
ber

Baseline Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

mouse 1 At B1t B2t B2t Ct Ct Ct

mouse 2 B2t B2t B1t At At * Ct

mouse 3 B2t B1t B2t B2t Ct Ct Ct

mouse 4 B1t B1t B1t At * B2t Ct

mouse 5 At At At At At B2t B2t
mouse 6 At At At At At At At

mouse 7 B1t At B1t At B2t B2t Ct

mouse 8 At B2t B1t At At Ct B1t
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((a)) Classifiers Performance

((b)) Feature Importance

Figure 4.4: Performance of the supervised machine learning models (a) Scatter diagram of
machine learning classifiers prediction performance. The horizontal axis represents accu-
racy (ACC), the vertical axis represents the area under the curve (AUC); DT, decision tree;
GNB; Quadratic SVM, support vector machine (Quadratic); KNB, kernel naive Bayes; Linear
SVM, linear support vector machine; KNN, k-nearest neighbors; RF, random forest; NNN,
narrow neural network; Bilayered NN, bilayered neural network; Weighted KNN, weighted
k-nearest neighbors. (b) Contribution of anatomical, metabolic, and vascular features in the
discrimination of the 4 clusters of tumor evolution stages identified with RF.
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Table 4.6: Clusterization of the 11 sunitinib mice from the validation group. Items marked
as - indicate that the RF approach was unable to assign the record to one any of theAt,B1t,
B2t, Ct clusters. Items marked as * indicate no PETRUS data available.

Mouse
Number

Baseline Week 1 Week 3 Week 6

mouse 9 At B1t B1t *
mouse 10 At At B1t Ct

mouse 11 At B1 B2t *
mouse 12 At B1t Ct -
mouse 13 At At * Ct

mouse 14 At B2t * *
mouse 15 B1t B1t * *
mouse 16 B1t B1t * *
mouse 17 At At B1t *
mouse 18 B1t At * *
mouse 19 At * * *

Finally, using the RF classifier the relative importance of features used for training
showed that all three types of tumor features, i.e., metabolic, vascular, and anatomical fea-
tures, participated in the prediction of the four clusters (Figure 4.4b). This indicates that
the information provided by each of the three imaging modalities contributed in a balanced
way to define tumor stages for each imaging record.

Clusterization Reveals Tumor Progression

We then tested whether the different clusters would correspond to different time points
during the tumor follow-up, i.e., whether, for any record, there was a correlation between
assignment to one particular cluster and the time point at which imaging had been per-
formed for that record. Regarding the CON group, all except two records (mouse 3/week 2
andmouse 6/week 2) of clusterAc corresponded to the baseline or to the week-1 time point.
Conversely, all clusterCc records corresponded to week-2 or week-3 acquisitions. This con-
firms that cluster Ac represents an initial stage of the tumor, while cluster Cc represents an
advanced tumor stage.

In contrast, the correspondence between the time-point of acquisition and assignment
to the At or Ct cluster was much looser for the SUNI group than for the CON group. For
example, mouse 6 remained in cluster At at all time points until week 6. Moreover, at base-
line and week 1, a significant number of mice were not assigned to theAt cluster but either
to the B1t cluster (two mice at baseline and three at week 1) or to the B2t cluster (two at
each time point). Conversely, upon reaching the last observation time point (week 6), five
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mice from the SUNI group were in theCt cluster, while one was classified in theB1t cluster,
one in the B2t cluster, and one in the At cluster. Examples of trajectories for a mouse from
the sham-treated group and for two mice from the sunitinib-treated group are shown in
Figure 4.5a. We then investigated the influence of the vascular and metabolic features on
the clustering results. Removing PET and UUDI features from the SUNI datasets and basing
clustering only on the CT volume led to the co-clustering of [At;B1t] and [B1t;B2t] (see
boxplot in Figure 4.6a). This indicates that RECIST-like criteria using only CT did not iden-
tify intermediate clusters. When the same algorithm HCA was applied to the SUNI dataset
from which the vascular features obtained by ultrasound imaging had been removed, i.e.,
using only the PET metabolic features and the CT volume, only two significantly different
clusters were obtained using gap statistics: clusters APET/CT and BPET/CT . This indicates
that PERCIST-like criteria, using PET-CT only, did not identify intermediate clusters (Fig-
ure 4.6b). Therefore, the intermediate B stage (Bt) and its two sub-clusters B1t and B2t,
essentially refle CT changes concerning the vascular features of tumors under sunitinib
treatment.
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((a)) Visualization of Trajectories

((b)) Visualization of B1 vs B2 vessels

Figure 4.5: Maximum intensity projection renderings of PGL tumors, (a) mouse 1 from
the CON group, mouse 3 and mouse 6 from the SUNI group. Tumors in the CON group
are shown at baseline and from week 1 to week 3, while tumors from the SUNI group are
shown at baseline and at week 1 to week 6. (b) Comparison of PGL tumors at the B1t and
B2t stages.

4.2.5 Clusters Depict Responses to Sunitinib Treatment

To further understand how clusters reflect the response to sunitinib treatment, the evolu-
tionary trajectories (passage from one cluster to another over successive time points) were
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studied individually for each mouse of the SUNI group (Table 4.5). The progression from
clusterAt to Ct of sunitinib-treated mice was not direct as theAc to Cc in the sham-treated
animals but passed through intermediate Bt clusters. This was confirmed by a correla-
tion analysis performed on clusters At, Bt and Ct considered stages 1, 2 and 3, resulting in
R2 = 0.84. Calculation of the cluster transition matrix confirmed the relationship between
the clusters and the chronology of tumor evolution. Assuming a progression represented
by statesAt,Bt, and finallyCt, we obtained 29/46 (65.9%) stable phenotypes, i.e., remaining
in the same state; 10/46 (22.7%) one progression, i.e., advancing further to the next state;
and 5 (11.3%) regressions fromBt toAt (Appendix Table ??). Pooling the validation popula-
tion and the training population showed an asymmetry between "progression" (n = 15) and
"regression" (n = 6). Finally, Cluster Ct was an irreversible transition deriving essentially
from the B2t state that appeared as a mandatory intermediate stage to reach state Ct, and
the transition from Bt to At occurred only by the intermediary stage B1t, and not by B2t.
States At, B1t, B2t, and Ct are thus ordered in time, suggesting that they are in fact tumor
stages and that there is a progressive evolution of tumor stages from statesAt toCt through
Bt, and irreversibly between Ct and the other states.
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((a)) Visualization of Trajectories

((b)) Visualization of B1 vs B2 vessels

Figure 4.6: Contribution of the vascular features for cluster discrimination in the SUNI
group (a) CTVolume shows no significant difference betweenAt-B1t andB1t-B2t (p_value
> 0.05), indicating that RECIST criteria alone did not identify the intermediate B1 and B2

clusters. (b) Similarly, hierarchical clustering performed on the Dsuni
training dataset consid-

ering only the features derived from PET and CT scans did not identify the intermediate
stages B1t and B2t either.

In summary, multi-feature ML analysis of the sunitinib-treated animals showed that in-
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dividual trajectories, defined by the passage from one cluster to another, followed a discrete
number of rules:

• Irrespective of whether mice received sunitinib or vehicle, no mouse reversed from
the advanced tumor stage (cluster C) to a less advanced stage.

• In the sunitinib group, mice moved from the early tumor stage (cluster At) to either
one of the two intermediate stages (clusters B1t or B2t) but not directly to the ad-
vanced stage (cluster Ct).

• In the sunitinib group, micemoved from clusterB1t toB2t and back, and from cluster
B1t back to cluster At, but no passage from cluster B2t to cluster At was observed.

• In the sunitinib group, all mice reaching the advanced (cluster Ct ) stage originated
from cluster B2t.

The robust correlations between clusters and treatment duration, and the transition
matrix between clusters confirm that the A, B, and C clusters correspond to tumor stages.
Interestingly, transitions between sub-clusters B1t and B2t were less correlated with time
than transitions between At and B1t or B2t, and between B2t and Ct. This suggests that
the "reverse" transitions, i.e.,B2t toB1t andB1t toAt, could reflect the phenotype changes
associated with a positive response to sunitinib. Figure 4.7 summarizes the trajectories be-
tween tumor stages in sunitinib-treated mice. There was first an increase in the level of
tumor vascularization (At to B1t transformation), followed by a decrease in the hetero-
geneity of FDG distribution in the tumor (B1t to B2t ).

4.3 Discussion

Previous studies used ML to study the correspondence between gene expression and tu-
mor progression [197, 198], including PGL [199]. To the best of our knowledge, this is the
first application of ML based on HCA and supervised ML algorithms to noninvasive mul-
timodal imaging of PGL. PGL lesions may concern the whole sympathetic and parasym-
pathetic chains from the base of the skull to the pelvis. Germline mutations in one of the
SDHx genes are responsible for approximately 20% of cases of PGL and also in some other
tumors [24, 200]. PGL patients carrying SDHx mutations show a higher rate of metastatic
disease and a lower rate of survival than non-SDHx PGL patients. Surgery is not without
risk andmay be impractical for numerous ormisplaced lesions. Clinical trials with sunitinib
have reported modest results in SDHB mutation carriers [69, 25]. There is an international
consensus on the use of repeated non-invasive imaging for the screening, management and
follow-up of PGL patients [201], as well as for asymptomatic SDHx mutation carriers [202].
Our results show that unsupervised ML of serial noninvasive and multimodal imaging data
can define the phenotypic stages of mouse Sdhb-/- PGL tumors under anti-angiogenic treat-
ment. The main finding is that, although the records fed to the ML algorithm had not been
time stamped for the duration of treatment, unsupervised ML applied to multimodal mul-
tiparametric imaging features yielded clusters relevant to disease progression and to the
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Figure 4.7: Graphical and tabular representations of the trajectories highlighting the major
characteristic features of mice under sunitinib treatment.
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response to sunitinib. In the sham-treated group, all mice switched, generally in less than
three weeks, from cluster Ac, an early stage with small and poorly developed tumors, low
vascularization, and heterogeneous FDG uptake, to clusterCc, an advanced stage with large
tumors, large vessels, high and relatively homogeneous FDG uptake, corresponding to an
end-stage cancer disease. In the sunitinib-treated group, a given tumor from a given mouse
could, over time, move from one cluster to another, suggesting that the changes from one
cluster to another depicted trajectories of tumor evolution related to the response or the
escape from treatment. Some sunitinib-treated tumors showed a progression similar to
sham-treated tumors, which infers that sunitinib-treated mice entering the advanced-stage
Ct cluster have escaped sunitinib treatment.

Two other clusters, B1t, and B2t, representing intermediate tumor stages, were ob-
served only in the sunitinib-treated group, supporting the view that their phenotypes rep-
resent the effects of sunitinib on PGL tumors. The first one, B1t, encompassed small-sized
tumors with a significant but moderate level of vascularization and heterogeneity in the
distribution of glucose uptake. The second cluster, B2t, encompassed tumors of moderate
volume and vascularization, and low heterogeneity in the distribution of glucose uptake.
ML did not identify these two intermediate stages when the vascular features derived from
ultrafast ultrasound were removed from the analysis. Therefore, the B1t and B2t interme-
diate stages identified the effect of sunitinib on tumor vascularization, likely by inhibition of
vascular endothelial growth factors receptors (VEGFRs), the major pharmacological target
of the drug [203]. Previous studies have documented the relationship between tumor vas-
cular types and the malignancy of PGL or pheochromocytoma, which is the adrenal form of
paraganglioma. In a pioneering study, al.[19] divided pheochromocytomas into two groups
according to their vascular architecture. Tumors with short, straight vascular segments dis-
tributed regularly over large areas of tumoral tissue had a vascular density equivalent to
that observed in the normal adrenal medulla, while tumors with longer vascular segments
of irregular length and a lower density of vessels corresponded to themalignant form. These
regular and irregular patterns observed using in vitro stained sections of tumor tissue sam-
ples are remarkably similar to the states that we observed here in vivo, A and C [19]. A
few years later, a study attempted to use “Favier’s criteria” of the vascular patterns on his-
tological sections of pheochromocytomas and PGL for the prediction of clinical behavior
[204]. Again, malignancy was associated with an irregular vascular pattern; however, in
spite of the correct agreement between observers, sensitivity and specificity were relatively
modest and the authors concluded that vascular patterns, although useful, were not suffi-
cient as “stand-alone [. . . ] prognostic tool for the distinction between benign andmalignant
PCC. . . ”. Interestingly, we observed a difference in vascular morphology reminiscent of reg-
ular/irregular patterns under sunitinib treatment, tumor vessels being larger in diameter at
stage B2t than at stage B1t (see Figure 4.5b). Therefore, while the analysis of vasculariza-
tion may by itself not be sufficient, and notwithstanding the fact that the morphology of
vessels in fixed tissue may not reflect their in vivo morphology, there is good agreement
with changes in vessel morphology and the response to sunitinib, suggesting that the in
vivo exploration of vascular morphology may be useful for the management of PGL. In ad-
dition, the link between FDG heterogeneity and microvascular density was theorized using
a spatiotemporal computational model [205]. Our present results are in agreement with
the authors’ conclusion that “as microvascular densities increase [. . . ], the spatiotemporal
distribution of total FDG uptake by tumor tissue changes towards a more homogenous dis-
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tribution [205]”. Therefore, combined imaging of vascularization and metabolism could be
an advantage for the follow-up of PGL patients under treatment.

Interestingly, all of the three mice that pertained to a B cluster (B1t or B2t ) at base-
line ended up in the Ct cluster at the end of the 6-week sunitinib treatment, while only
one of the four mice pertaining to the At cluster at baseline ended up in the Ct cluster.
Although further studies are necessary to determine whether the tumor’s biology prior to
the administration of sunitinib could predict future escape from treatment, this may indi-
cate that tumors that have already developed a significant vessel network are less prone to
respond to sunitinib therapy. Thus, even though the switch fromB1t toB2t was reversible
under sunitinib treatment (B1t toB2t ), increased vascularization and decreased metabolic
heterogeneity defining the B2t stage were necessary features for passage to the Ct stage,
in other words, for escape from sunitinib treatment. From a cancer biology point of view,
this suggests that escape from sunitinib treatment involves both a metabolic and a vascular
switch.

From a statistical point of view, the analysis of each record independently without time
stamping allows to extraction of information regarding the rates of tumor evolution in a
small group of eight mice. This would not have been possible with conventional methods
based on time-stamped groups of individuals unless the number of individuals would have
been drastically increased. Considering the necessity to reduce the use of animals in re-
search, the unsupervised method for the analysis of multimodal imaging presented here is
an attractive alternative for the preclinical exploration of treatments in cancer models.

Moreover, cluster extraction using multiple features could allow gaining a better un-
derstanding of the sequence of events underlying drug response. The fact that cancer is a
multiform disease with multiple intermingled hallmarks has been extensively documented
and reviewed in the classical paper by Hanahan and Weinberg [7]. Therefore, it is unlikely
that assessing only one biomarker, even one that informs on the activity toward the phar-
macological target, may be sufficient to assess treatment response, and, even less so, to
identify complex escape mechanisms. All in all, our results support the recourse to multi-
modal imaging with the careful selection of relevant imaging biomarkers, ideally including
one or several biomarker(s) of the hallmark targeted by the treatment. In this respect, other
tumor variants could also benefit from similar approaches extracting biomarkers specific
to the tumor type and/or treatment. Finally, it may also be interesting to apply a radiomics
analysis in order to compile mathematically defined image features and determine whether
they represent phenotypic states predictive of tumor stage predictive of treatment response.

The main limitation of our study is that it is based on preclinical data. Serial imag-
ing sessions, even non-invasive, are difficult to envision in clinical settings. However, we
show that comprehensive longitudinal explorations in a patient-relevant animal model can
identify key imaging features leading to sunitinib resistance, and may inspire translational
methods for tumor follow-up in patients. ML analysis of multimodal hybrid imaging could
offer individual monitoring of the vascular and metabolic states of a tumor, thus providing
valuable information for personalized treatment decisions. Our results need to be further
validated on prospective cohorts and extended to the clinical situation.
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4.4 Conclusions

The combination of hierarchical clustering and supervised machine learning algorithms
provides remarkable insight into the progression of tumor development in a mouse model
of paraganglioma. Through the incorporation of multi-modal information, including the
vascular features of the tumor-targeted by sunitinib, our approach is successful in depict-
ing trajectories of response to treatment. This approach could set a basis for personalized
follow-up of tumors treated by targeted therapies.
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Intratumoral Heterogeneity by
Molecular-Vascular Profiling for
Predicting Drug Resistance

Continuing our exploration into the intricate dynamics of treatment response in paragan-
glioma, this chapter represents a significant evolution from our preceding work. In our
prior investigations, we identified distinct stages of treatment response in a paraganglioma
mice model treated with sunitinib. This initial groundwork provided a foundational under-
standing of the tumor’s behavior when subjected to therapeutic interventions.

In this current phase, our focus shifts toward an innovative hypothesis: the potential
existence of tumor subregion(s) that hold the key to predicting treatment response within
the same model. The identified subregion(s) could offer crucial insights into the varying
responses of the tumor to sunitinib treatment. This hypothesis has emerged from the com-
prehensive analysis of the stages we previously identified, prompting a deeper exploration
into the microenvironment of the tumor. By hypothesizing the existence of tumor subre-
gion(s), we aim to bridge the gap between the macro-level treatment response stages and
the nuanced micro-level characteristics within the tumor.

In the current study, we employed a machine learning framework that serves as a pow-
erful tool in unraveling the complexities of tumor heterogeneity. By harnessing machine
learning algorithms, our objective is to pinpoint and map the unique characteristics in-
herent within the tumor subregions, potentially revealing their significance in predicting
treatment response. The integration of machine learning not only broadens our analyt-
ical scope but also signifies a promising convergence of medical research with advanced
computational methodologies.

Furthermore, this chapter represents an integration of collaborative efforts that have
significantly influenced the trajectory of our study. The collaboration with Grupo de Física
Nuclear at the Facultad de Ciencias Físicas in Spain has been instrumental. It’s noteworthy
to mention that the work in this chapter is under consideration for publication. We have
submitted our findings to Medical Image Analysis, reflecting our commitment to sharing
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our discoveries with the scientific community. This chapter, with its combination of pre-
vious findings marks as a pivotal stage in our exploration of paraganglioma treatment re-
sponse.

5.0.1 Database Formation

Animal housing, tumor implantation, follow-up, imaging, and sunitinib administration
were as described in [Facchin]. Animal experiments were approved by the French Eth-
ical committee under reference No. 16-098. Briefly, 6-week-old adult female nude mice
weighing 30g (Janvier Labs, France) underwent implantation in the dorsal fat pad of tumors
derived from immortalized mouse chromaffin cells (imCC) carrying a homozygous knock-
out of the Sdhb gene (Sdhb−/−). When tumors had grown to a volume of 300 mm3, they
received through oral gavage a daily dose of 50 mg/kg of sunitinib malate (Clinisciences,
A10880-500) for six consecutive weeks. Imaging sessions were conducted before drug ad-
ministration and then weekly until the sixth week for mice treated with sunitinib (8 mice).
Two imaging sessions were discarded because of animal motion, and all in all 8 * 7 = 54
images constituted the input dataset, Fig. 5.1-A.

5.0.2 In vivo Imaging protocol

The hybrid in vivo imaging technology PETRUS (Positron Emission Tomography Registered
Ultrafast Sonography) [PETRUS] allows for simultaneous acquisition of tissue metabolism
using [18F]Fluorodeoxyglucose (FDG) dynamic PET, Computed Tomography (CT) and Ul-
trafast Ultrasound Doppler Imaging (UUDI) [PETRUS]. PETRUS simultaneously reads the
cellular metabolism activity alongside micro-vascular architecture within the tumor, en-
suring unimpaired physiological conditions for both sets of spatially co-registered features
[Facchin].

PET acquisition started 30 seconds before injection of 10 MBq of 18F-FDG in 0.2 mL
saline into the mouse tail vein. List-mode PET data were collected during 60.5 min, binned
using a 5-ns time window, a 400- to 600-keV energy window, and a 1:5 coincidence mode,
i.e. each detector associated with the five opposite detectors. Data were reconstructed by
the TeraTomo reconstruction engine (3D-OSEMbasedmanufactured customized algorithm,
Mediso medical imaging systems, Hungary). A 31-frame dynamic sequence was obtained
with the following time sequence: exclusion of 20 s; 10 frames of 5 s, 5 frames of 10 s, 2
frames of 15 s, 3 frames of 60 s, 5 frames of 120 s, 3 frames of 5 min, 3 frames of 10 min.

The UUDI system (Aixplorer, Supersonic Imaging, France) employed in-house MAT-
LAB (MathWorks in Natick, MA, USA) scripts for plane-wave beamforming and for the
implementation of Ultrasensitive Doppler Imaging (UUDI) [Demene]. UUDI images were
captured as 2D planes measuring 12.8 x 20mm2, with each plane spaced 0.1 mm apart. Each
plane resulted from averaging 300 temporal frames acquired at a frame rate of 500 frames
per second. These frames were composed of images from 11 tilted plane waves, evenly dis-
tributed between -10 and 10 degrees. The entire tumor volume image was reconstructed by
stacking individual planes that were spatially and temporally filtered [Demene] to extract
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the vascular information. The number of planes per volume ranged from 70 to 200.

5.0.3 Tumor segmentation using a two-level clustering method

Intra-tumor segmentation was performed in two successive steps illustrated in Fig. 5.1.
First, we performed individual tumor segmentation, where voxels exhibiting similarmetabolic
activity profiles were grouped into super-voxels. This step provided insights into distinct
metabolic sub-regions within each tumor. A second-level clustering was conducted to
group the related super-voxels by using information about the vascular patterns and ar-
chitecture based on UUDI.

Figure 5.1: Schematic pipeline of the study. A: Dynamic (31-time consecutive time frames,
see Materials and Methods section B) PET images from 8 mice acquired at seven separate
time points, before treatment and weekly during treatment in addition to the 3D UUDI
images, formed the input data for the study. B: K-means with calculated optimal k was
applied to obtain distinct metabolic regions for each tumor independently. Each sub-region
was outlined in supervoxels by averaging the PET values inside the sub-region and by
extracting distinct metabolic and vascular features from the voxels corresponding to the
sub-region. C: The resultant supervoxels were combined and used to perform intra-tumor
partitioning. HCA was applied on the supervoxels to locate common sub-regions in the
population. D. for each tumor a 3D volume with labeled sub-region(s) was produced to
form the output of the study. E: The PET and the UUDI images were thereafter fed to the
3D-UNet model along with the labeled volume of step D to train a supervised model.
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Individual-level tumor segmentation and definition of supervoxels

Voxels with common metabolic activities were clustered together applying K-means to the
dynamic PET of each tumor [kmeans]. In this step, the gap evaluation criterion was used
to calculate the optimal ’K’ level for the K-means algorithm in each tumor [gap_eval].
Subsequently, for each ’K’, a supervoxel on each PET frame was calculated by averaging
the PET value per sub-region. The PET values were expressed using the standard uptake
value (SUV) of FDG for each voxel, calculated as the ratio of the concentration of FDG in
the supervoxel (KBq

cc
) by the ratio of the injected dose (KBq) and the mouse body mass (g).

Vascular andmetabolic parameters of the supervoxels were extracted from co-registered
UUDI and dynamic PET data, respectively. Within each supervoxel, vascular structures
were delineated and skeletonized employing an interactive ordered thinning-based skele-
tonization methodology, as in [Babin]. For each supervoxel, the following vascular param-
eters were computed as previously described [Mansouri]: density and number of nodes,
mean, maximum and minimum vessel diameter, vessel length, vessel dispersion, and vessel
tortuosity. In the same supervoxels, the following metabolic parameters were computed:
carrier-mediated transport of FDG from the plasma to the tissue (K1) and tissue to plasma
(k2), rate constant of phosphorylation of FDG by hexokinase (k3), using COMKAT software
[Muzic]. The Pharmacokinetic Rate Constant Ki that measures the rate of FGD uptake in
tissue was also calculated using Patlak analysis [Patlak]. A comprehensive database of
metabolic and vascular parameters were subjected to the feature selection methodology
outlined in [Mansouri]. This allowed us to identify and retain the informative (coefficient
of variation > 10%) and non-redundant (pearson correletion coefficient threshold ≥ 70 %)
from the database, which were forwarded to the population level analysis.

Population-level tumor segmentation: Intra-tumor Partitioning

The selected features encompassing all supervoxels for each subject were subjected to Hi-
erarchical Cluster Analysis (HCA) (Fig. 5.1-C), a clustering method that explores the organ-
isation of samples into groups and between groups, representing a hierarchy [HCA]. The
HCA results were presented as dendrograms to show the organization of the samples and
their relationships in the form of a tree. Each row within the HCA matrix corresponded
to an individual supervoxel, and each column corresponded to a metabolic or vascular fea-
ture. HCA merging of supervoxels with common metabolic and vascular characteristics
then identified spatially congruent sub-regions across the entire tumor population. The
Euclidean distance was used as the distance metric (MATLAB version 2022-b) and inner
squared distance (minimum variance algorithm) was used as a metric for computing the
distance between clusters. Then, Kruskal-Wallis [Kruskal] analysis was performed on the
resulting tumor sub-regions to assess their statistical significance, with a threshold p-value
≤ 0.05. These regions defined the final tumor partitions.
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5.0.4 U-Net Construction for automatic partitioning

Previous results using the same dataset of the sunitinib treated mice group[Mansouri]
identified four distinct tumor development stages denoted as A, B (comprising sub-stages
B1 and B2), and C, corresponding to the initial, intermediate, and advanced tumoral states,
respectively. In order to automatically segment the region predicting treatment escape,
we employed a ”U-Net” machine learning approach [U-Nets] to perform segmentation on
three-dimensional PET and UUDI input images. The U-Net model was trained to assign
sub-region classifications to each voxel within the PET image in conjunction with HCA
label.

The U-Net architecture contains 2 major parts: the encoder network (contracting path)
and the decoder network (expansive path) connected together through a bridge. Both parts
are composed by a sequence of blocks. The encoder network has a typical Convolutional
Neural Network (CNN) architecture. Each encoder block consists of two 3x3 convolutions
followed by a ReLU activation unit and a max-pooling layer. The ReLu activation function
introduces non-linearity in the network and its output acts as a skip connection for the
corresponding decoder block. The max-pooling linear is important to reduce the training
cost by reducing the feature maps to half. The major role of the encoder part is to extract
features and learn an abstract representation of the input image.

The encoder and decoder networks are connected through a bridge explaining the arc
in the U letter. The bridge is made of two 3x3 convolutions, where each convolution is
followed by a ReLU activation function.

The novelty of the U-Net approach lies in its expansive path where each block up-
samples the feature map using 2 × 2 up-convolution. Each block is connected via skip
connection with the corresponding block in the contracting part. These skip connections
provide features from earlier layers that are sometimes lost due to the depth of the network.
At the final stage, an additional 1 × 1 convolution is applied to reduce the feature map to
the required number of channels and produce the segmented image.

We trained a 3DU-Net using 3D convolutions, 3Dmax pooling, and 3D up-convolutions.
We incorporated the pixel classification layer with the Dice pixel classification layer, in
order to optimize the segmentation of smaller tumor regions while mitigating the influ-
ence of larger background regions. Our training process employed input patches sized at
64×64×48, with a total of 10 training epochs, a MiniBatchSize of 12, and an initial learning
rate of 10e-3.

5.1 Results

5.1.1 Tumor Partitioning

The three following features: Ki, number of nodes, and density of nodes in cluster volume
were , in terms of non-redundancy the most robust features of the metabolic and vascular
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aspects of the tumor. The non-redundant parameters were selected using Pearson corre-
lation test and the informative parameters were selected by calculating the coefficient of
variation as described in [Mansouri]. Applied to the same three parameters across all su-
pervoxels, HCA identified four distinct tumor sub-regions denoted r1, r2, r3, and r4 (Fig.
5.2). Statistical analysis using the Kruskal-Wallis test validated the presence of significant
differences among the imaging features depicting the phenotype of the four sub-regions,
with a p-value ≤ 0.05. Each region exhibits distinctive metabolic and vascular characteris-
tics:

• region r1 has a high number and a low density of vessel nodes, and high Ki val-
ues. This reflects a region characterized by a large vascular network with multiple
branches and a high metabolic activity.

• region r2 displays a low number and low density of vessel nodes, and Ki values fluc-
tuate between high, moderate, and low. These characteristics are indicative of low
vascularization in a variable metabolic environment.

• region r3 has a low number and a high density of vessel nodes, and a lowmetabolism.
These features are the opposite of those of region r1 and indicate small tumor regions
with reduced metabolism and vascularization.

• region r4 is characterized by a moderate to high density and a high number of vessel
nodes, and a low metabolism. It combines a low glucose metabolism with a prolifer-
ative vascular network.
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Figure 5.2: Hierarchical Clustering Analysis (HCA) output using the three most robust
metabolic and vascular parameters (Ki, Number of Nodes, and Density of Nodes). The
vertical dendrogram illustrates the distance between the parameters, while the horizontal
dendrogram represents the distance between supervoxels. Resulting in the clustering of
supervoxels into four sub-regions: r1, r2, r3, and r4.

Figure 5.3 presents a comparative analysis of two tumor volumes corresponding to
mouse 3 (first column) and mouse 6 (second column) at week 5. The PET volume in the
first case reveals elevated metabolic activity, contrasting with the second case displaying
lower activity (first row) in both the full volume and the zoomed-in figure. Examination of
the skeletonized vascular networks in the middle row indicates a greater number of nodes
inmouse 3 compared tomouse 6. Upon zooming in, mouse 6 exhibits amore densely packed
network than mouse 3. The combined analysis of metabolic and vascular characteristics,
including metabolic activity (first row) and the number and density of nodes(second row),
results in the classification of 94% of mouse 3 as region 1, while 79% of mouse 6 is classified
as region 3. The zoomed-in figure in the third row reveals that the selected sub-volume pre-
dominantly represents r1 in mouse 3, whereas that of mouse 6 predominantly represents
r3. The dimensions of the zoom-in region in each axis are accurately indicated in the top
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right. This detailed visualization provides a clearer explanation of the selected parameters
(K1, number, and density of vessel nodes) in two cases: mouse 3, considered responsive,
and mouse 6, considered non-responsive, as discussed previously in [Mansouri].

Figure 5.3: Examples of two tumor volumes correspond tomouse 3 (first column) andmouse
6 (second column) at week 5. The PET volume indicates high metabolic activity in the first
case and lowmetabolic activity in the second (first row). In the middle row, the skeletonized
vascular networks reveal a higher number of nodes in mouse 3 compared to mouse 6. Upon
zooming in, mouse 6 displays a more densely packed network than mouse 3. The combined
metabolic and vascular characteristics, including the metabolic activity and number and
density of nodes, result in 94% of mouse 3 being classified as region 1, while 79% of mouse
6 is classified as region 3. The dimensions of the zoom-in region in each axis are indicated
in the top right.

5.1.2 Identification of sub-region predictive to treatment response

Fig. 5.4 shows, for each mouse imaged weekly at baseline (pre-treatment) until week 6 of
treatment, the ratio of each of the four sub-regions to the total tumor volume. Interestingly,
region r1 was not present at any time point inside the tumor of Mouse 6 that responded
very well to sunitinib [Mansouri]. Conversely, non-sunitinib-responding mice for which
tumors had progressed at week 6 of treatment to the B2 or C stages showed a high level of
r1 over the total tumor volume.
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Figure 5.4: The respective proportions of regions r1, r2, r3, and r4 inside the tumor over
the seven time points (spanning from pre-treatment to week 6 of treatment) acknowledge
individual treatment response trajectories for each mouse. Response stages A, B1, B2 and
C are those identified previously in [Mansouri]. Black dashes correspond to missing in-
formation due to mouse movement during the imaging session.

An overview of the different sub-regions’ proportions for the different tumor stages is
shown in Fig. 5.5. During the initial stage A, no r1 region was found in any of the mice,
whereas the highest occurrence of r1 was observed in the advanced stage C (100%). The
prevalence of r1 was low in stage B1 (10%) andmoderate in stage B2 (46%). This observation
suggests that the r1 region is a predictor of the response to sunitinib treatment. Conversely,
region 3 showed its highest occurrence in stage A (67%) but declined in stages B1 and B2
(20% and 8%, respectively), and was absent in stage C. Regions r2 and r4 were consistently
present across all stages. In summary, the absence of r1 corresponded to a less favorable
response to treatment, while a high level of r3 indicated a positive response to sunitinib
treatment.
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Figure 5.5: Frequency of appearance of each sub-region r1, r2, r3, r4, among the 4 tumor
development stages A, B1, B2 and C [Mansouri]. Percentages represent the occurrence of
a given sub-region in a given stage over the total number of cases containing the corre-
sponding region

5.1.3 U-Nets

Following the assignment of K-means labels and the identification of r1 as the sub-region
predicting treatment response, we proceeded to train a U-Net model specifically tailored
to distinguish r1 from the other regions. Subsequently, the model underwent testing on
random examples sourced from the entire database. The validation accuracy of the trained
model reached 88.8%.

Fig. 5.6-A shows the Dice coefficient of the discrimination between r1 and the other
regions. The testing accuracy for r1 achieved 86.7%, while the accuracy for the other sub-
regions reached 80.4%. Fig. 5.6-B shows an example of a tumor section predicted by the
U-Net model, compared to its corresponding ground truth segmented by K-means.
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Figure 5.6: A) Dice accuracy coefficient in the testing data set for sub-region r1 was 86.7
% while for the other regions it was 80.4 %. B) Example of a predicted case and of the
corresponding ground truth segmented by K-means. Sub-region r1 is shown in orange and
the other sub-regions r2, r3 and r4 are shown in grey for.
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5.2 Discussion

The present study aimed to explore a vascular-metabolic intricate landscape of intra-tumor
heterogeneity in PPGL-SDHB−/− mouse tumors, with a specific focus on identifying re-
gions associated with resistance to sunitinib treatment. Our work builds on previous re-
search, which highlighted the critical role of metabolic, vascular, and morphological fea-
tures in delineating the stages of the response of PPGL-SDHB−/− to sunitinib treatment. In
particular, metabolic heterogeneity defined as the coefficient of variation of SUV, a feature
linked to tumor heterogeneity, appeared as a robust biomarker for stage identification, in
line with findings from our previous research [Mansouri]. The present study sought to
investigate further the relevance of intra-tumor partitioning as an indicator of treatment
resistance.

We developed a two-level unsupervised machine learning framework to segment tu-
mors into distinct metabolic and vascular active sub-regions based on quantitative data
measured using dynamic PET images of glucose metabolism and UUDI-derived vascular
maps. It is worth noting that the segmentation process, based on the similarity between
voxel-wise metabolic profiles, could have been performed by aggregating all dynamic PET
data from all the tumors under investigation into a single-step K-means analysis. However,
this approach would require considerable computational power to accommodate the spa-
tial and temporal data from all voxels of all tumors, representing an unmanageable amount
of data. The two-level strategy used here, in which the first step condensed individual
voxels into super-voxels, greatly reduced the computational burden. Thus, it allowed the
second level of clustering analysis to be run on a manageable amount of data, making the
procedure computationally efficient. During the second level of clustering, we trained a
supervised model to automatically identify the tumor partitions. By combining two dif-
ferent modalities - FDG-PET and UUDI - we integrated complementary information that
revealed phenotypic changes induced by sunitinib treatment. Importantly, our approach
included both metabolic and vascular features, the latter being the main target of the anti-
tumor drug sunitinib. The utilization of U-Net, which is based on patch image extraction,
allowed us to expand our database and train our model to autonomously identify tumor
sub-regions. Our analysis yielded four distinct tumor sub-regions (r1, r2, r3, and r4), each
characterized by different metabolic and vascular characteristics. Interestingly, region r1
was predominant in advanced stage C, intermediate in stage B2, low in stage B1, and absent
in stage A. Thus, the proportion of region r1, characterized by high metabolic and vascular
conditions, appears as a predictor of treatment escape. Conversely, r3, characterized by
low metabolic and vascular activity, was prominent in stage A, less prevalent in stages B1
and B2, and absent in stage C, thus this sub-region was associated with a good response to
treatment.

These results suggest that the r1 and/or r3 could thus serve as biomarkers of the re-
sponse of PPGL to sunitinib treatment. Naturally, it remains to be demonstrated whether
the method described here can be useful for the management of human PPGL patients. One
advantage is that the two-step approach could be used to blindly investigate patient cohorts
retrospectively, as shown by Katiyar et al [206].
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Conclusion

In this studywe showed that the spatial characterization of intra-tumoral heterogeneity in a
mouse model of PPGL, using machine learning applied to non-invasive imaging, allows the
identification of tumor sub-regions that predict the response to anti-angiogenic treatment.
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Radiomics Analysis of the Effect of
Sunitinib Treatement on Sdhb−/−

Experimental Paraganglioma

In this chapter, we embark on a journey into the intricacies of radiomics as it relates to
Pheochromocytoma and Paraganglioma (PGL) tumors. Our objective unfolds in two dis-
tinct parts. Firstly, we aim to extract radiomic markers from the co-registered PET, CT, and
UUDI images, of the entire tumor. The methodology outlined in Chapter 4 will serve as our
guiding framework, and its application aims to ascertain the reproducibility of the distinct
stages identified using the extracted radiomics features.

Expanding our focus beyond the overall tumor landscape, our second objective narrows
in on specific regions labeled as r1 and r3. As revealed in Chapter 5, these regions exhibit
a significant correlation with treatment response stages. By extracting radiomics features
from the two delineated sub-regions separately, we aspire to unravel nuanced insights into
the intricate relationship between radiomic signatures and the effectiveness of treatments
for PGL tumors.

This dedicated chapter underscores our commitment to unraveling the radiomics com-
plexities inherent in PGL tumor images. Through meticulous analysis and the application
of our chosen methodology, we anticipate contributing valuable knowledge to the evolving
landscape of radiomics characterization for PGL tumors. Such insights hold the potential to
inform prognosis, guide treatment planning, and enhance personalized care for individuals
affected by PGL tumors.

6.1 Materials & Methods

Based on the 2 objective of this chapter this section will be divided into 2 parts:
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Part 1: Radiomics for Whole Tumor

The radiomics process explained in 1.5.2 is followed:

6.1.1 Quantittative Imaging

Co-registered PET/CT/UUDI images where acquired using PETRUS a prvious study by a
former PhD student presented in chapter 3.

6.1.2 Region of Interest (ROI) Selection

As previously explained in 3 PET and UUDI volumes were cropped based on standardized
criteria obtained from PET image segmentation, which was semi-automatically defined us-
ing iso-contours at a 30% threshold of the SUV peak in the last-time frame (50-60 minutes
post-injection). The cropping of UUDI volumes utilized the mask generated from the PET
segmentation. The CT volume was defined as the starting point, from which the tumors
were delineated on the CT images and their boundaries were established with reference to
the adjacent fat pad.

6.1.3 Feature Extraction

Radiomic features were derived using the SERA program, developed in MATLAB by Johns
Hopkins University [207], which calculates radiomic characteristics in accordance with the
Imaging Biomarker Standardization Initiative (IBSI) guidelines, ensuring their reproducibil-
ity. SERA is capable of extracting radiomics from CT, PET, MRI, and SPECTmedical images.
While UUDI images are not explicitly covered, they have been included as part of the CT
images due to their similar characteristics. SERA provides access to a comprehensive set
of 487 radiomic features, categorized into 29 morphology, 50 first-order, 150 second-order,
and 258 higher-order features. Additionally, it offers 10 moment invariant characteristics,
although these are not part of the IBSI guidelines and have not been utilized in this study.

SERA offers versatile options for configuring and modifying parameters prior to ra-
diomic extraction. To assess the robustness of radiomic parameters in the face of variations
in image settings, radiomic calculations were systematically repeated by altering the dis-
cretization of dynamic intensity range, voxel size, and interpolation method.

In terms of discretization, there is a choice between Fixed Bin Number (FBN), where a
specific number of bins is chosen for calculation regardless of the range of intensity values
in the image, and Fixed Bin Size (FBS), which employs a fixed bin size to group intensity val-
ues. With FBS, the bin width remains constant, and the number of bins may vary depending
on the intensity range of the image.

For CT, PET, and UUDI images, FBN utilized 16, 32, and 64 bins, while FBS employed bin
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sizes of 200, 400, and 600 for CT and UUDI, and 1, 2, and 3 for PET. The latter variation was
due to PET being converted to SUV (Standardized Uptake Value), a crucial uptake index in
18F-FDG PET studies, defined as the ratio between the activity concentration in the ROI
and the injected activity.

Voxel size was selected to match or be smaller than the spatial resolution of the imaging
techniques. For CT and PET, 0.5 and 1 mm were chosen since their spatial resolution is 1.5
mm. Regarding UUDI, the choice considered the UUDI probe’s 12 MHz frequency, which
allows the observation of blood vessels with a minimum diameter of 0.1 mm. Additionally,
the range of diameters observed in these tumors falls between 0.1-0.4 mm, thus warranting
voxel sizes of 0.2 and 0.1 mm.

The three available interpolation methods, namely linear, cubic, and nearest neighbors,
were employed for ROI resampling.

Through the radiomic calculations carried out with these diverse configurations, each
image modality was subjected to 16 distinct combinations for each vowel size. These com-
binations encompassed both voxel sizes of 0.5 mm and 1 mm, spanning the PET and CT
images. For UUDI, using voxel size 0.2 mm 16 combinations was also obtained. However,
for voxel size 0.1 mm only 3 combinations where obtained since since the calculation time
of each configuration was greater than two days, requiring the implementation of the cal-
culation in mode, which is left for further work. Therefore, making in total 32 configuration
for each of PET and CT images and 19 configuration for the UUDI images.

6.1.4 Feature Selection and Dimensionality Reduction

A total of 487 radiomic features were extracted using SERA for each imaging modality,
resulting in a combined count of 1461 radiomics. However, due to the relatively low number
of mice in the study, a notable imbalance exists between the number of parameters and the
quantity of independent data. This discrepancy can potentially lead to the generation of
erroneous predictions and findings.

In this context, it becomes imperative to mitigate the risk of overfitting by narrowing
down the selection of radiomic features to those that exhibit robustness. Overfitting, if
it occurs, can distort the analysis results as it endeavors to describe differences in images
resulting from the inherent noise rather than accurately capturing variations due to tumor
behavior or the specific data under examination.

Out of the 487 radiomics calculated for CT, PET, and UUDI, the focus is on identifying
those that demonstrate both reproducibility, meaning they can be consistently replicated
under different circumstances, and non-redundancy, as some image markers may exhibit
correlations that necessitate choosing one among them to avoid redundant outcomes.

This selection process is further refined by determining the most robust configuration
for each modality, a step that follows the evaluation of reproducibility. Additionally, ra-
diomics characterized by an exceptionally low coefficient of variance, signifying their uni-
formity across all mice and tumor stages, are excluded, as they lack sensitivity to the specific
information we aim to discern.

– 87 –



Chapter 6

1. Selecting most relevant configuration
A large number of combinations have been obtained by varying different parameters
with sera and the most robust configuration has to be selected, using the function
zscore from MATLAB.

2. Testing features reproduciblity:
To identify reproducible radiomics features, we employ a method that filters out
those which exhibit inconsistent behavior when varying image configuration op-
tions. In line with previous research [208], we utilize two correlation coefficients: the
Intraclass Correlation coefficient (ICC) and the Concordance Correlation coefficient
(CCC). The ICC is a statistical metric used to assess the reproducibility of radiomic
features across different segmentations. It provides a value between 0 and 1, where 0
signifies no reproducibility, and 1 denotes perfect reproducibility. Radiomic features
are categorized based on ICC values into three groups: highly reproducible (ICC ≥
0.8), moderately reproducible (0.5≤ ICC< 0.8), and poorly reproducible (ICC< 0.5).
On the other hand, CCC measures the agreement between two variables. Similar to
ICC, CCC also ranges from 0 to 1, with values of CCC ≥ 0.9 indicating high repro-
ducibility, and values below 0.9 indicating lower reproducibility. A radiomic feature
will be considered reproducible if it demonstrates high reproducibility with respect
to CCC and high or moderate reproducibility with respect to ICC simultaneously.

3. Testing features redundancy
The elimination of redundant radiomic features offers several advantages, including
enhanced precision in model results, reduced storage requirements, improved result
visualization and comprehension, and shorter training times for automated models.
To achieve this, a correlation matrix based on Spearman’s correlation coefficient is
employed, assessing the relationships between all variable pairs within the database.
The Spearman correlation coefficient (often represented as ρ) is a statistical metric
used to asses the strength of association between two sets of data. Its value falls
within the range of -1 to +1, signifying the degree of correlation between variables: a
value of r = +1 or -1 indicates a perfect positive or negative correlation, respectively,
while r = 0 signifies no correlation between the variables. In this study, we employ a
user-defined threshold of 0.9, categorizing radiomic features with |r| ≥ 0.9 as highly
correlated, thus offering redundant information.
Furthermore, the p-value is evaluated as a measure of correlation between random
variables. The p-value varies between 0 (0%) and 1 (100% probability). When ρ is
close to 1, the correlation likely occurred by chance, whereas when p is close to 0, the
correlation between radiomics is unlikely to be coincidental, indicating a genuine
correlation. A p-value of ≤ 0.05 suggests a true correlation between the variables.
Initially, redundancy between radiomics within each imaging modality is assessed
individually, followed by an exploration of correlations between radiomics from dif-
ferent imaging techniques.
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4. Testing features informativity:
In a further effort to decrease the quantity of radiomic features, we excluded those
exhibiting minimal variance. Specifically, we remove radiomic features that possess
a coefficient of variation below 0.3.

5. Elimination of atypical cases (Outliers)
The outliers, which refer to the exceptional cases significantly deviating from the
norm were removed, particularly in relation to the frequency of imaging sessions
conducted with PETRUS per week. In this context, we exclude weeks rather than
radiomic features. To achieve this, we employ the rmoutliers function in MAT-
LAB, utilizing the mean method, which effectively eliminates outlier cases from the
database that deviate more than three standard deviations from the mean.

6.1.5 Statistical Analysis and Modeling

The same protocol followed in 4 was followed. In summary, Hierarchical clustering (HCA),
was used to discover hidden patterns and relationships within the multi-modal radiomics
data. Without the need for predefined labels or time point information, HCA groups ra-
diomic features into clusters having commmon characteristics. This method effectively
identifies distinct tumor stages during precision treatment based on the patterns present in
the data. By grouping the obtained clusters per mouse and per week trajectories of tumor
responses to sunitinb treatment were revealed.

6.1.6 Model Development

As described in 4 Random forest model was employed to build predictive models that as-
sisted in understanding and predicting responses to precision treatment. In this approach,
themodels were trained using labeled data, which includes information about known tumor
responses to specific treatments. The supervised models use this labeled data to learn pat-
terns and relationships between radiomic parameters and treatment stages. Once trained,
these models can predict how new cases will respond to precision treatment based on the
radiomic features. This approach is valuable for tailoring treatment strategies to individual
patients, as it can provide insights into the most effective treatment options based on the
specific characteristics of the tumor.

6.1.7 Clinical Applications

In our study, this innovative approach was rigorously tested on a mouse model of SDHB
paraganglioma, demonstrating its effectiveness in deciphering tumor response trajecto-
ries through multi-modal imaging and machine learning techniques. While the results are
promising and hold significant potential for precision treatment in a research context, it is
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crucial to note that the application of this approach in clinical settings has been limited.
The primary reason for this limitation is the absence of comprehensive data from para-
ganglioma (PGL) patients, which is essential for validating and translating the findings to
human cases. Due to this data gap, the clinical application of our approach remains a future
objective, emphasizing the need for further research and data collection in the context of
PGL patients to realize the full clinical potential of this innovative methodology.

Part 2: Radiomics for Tumor sub-regions: r1 & r3

The radiomics feature extraction and selection steps outlined in part 1 were applied
to each tumor sub-region, namely r1 and r3. Subsequently, we examined shared features
within these two sub-regions to evaluate if they displayed significant differences.

6.2 Results

Part 1: Radiomics for Whole Tumor

6.2.1 Reduction of radiomics and elimination of outliers

Testing features reproducibility

As mentioned in the preceding materials and methods section, a critical feature selection
step is necessary to mitigate the risk of overfitting. This specific procedure is exclusively
applied to the Sunitinib group. The primary objective is to explore potential correlated
patterns between the Sunitinib group and the Control group. Subsequently, after the re-
duction of radiomic features, the chosen features are extended to the Control group for a
comprehensive examination of shared states between the two groups.

In the context of reproducibility analysis for each of the three modalities, namely PET,
CT, and UUDI, it’s important to note that among them, CT Volume exhibited a notably
low level of reproducibility for the CT modality. This outcome can be attributed to the
challenges encountered in PET/CT/UUDI images, where the positioning of the UUDI probe
over the tumor introduced significant noise and created shadows that adversely affected
the diagnostic quality of the CT scans. Consequently, the analysis was proceeded with
PET, UUDI radiomics, and CT Volume (mesh-based), with the exclusion of other CT ra-
diomics features. It’s worth mentioning that the CTVolume parameter provides valuable
information about the tumor size. For detailed results, please refer to Tables 1 and 2, which
present the findings using the ICC and CCC correlation coefficients for PET and UUDI.

For each of the PET and UDDI modalities the number of the radiomic features was
reduced as following Figure 6.1:
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PET UUDI
ICC<0.5 0.5≤ICC<0.8 ICC≥0.8 ICC<0.5 0.5≤ICC<0.8 ICC≥0.8

morphological0 (0.00%) 9 (1.85%) 20 (4.11%) 0 (0.00%) 8 (1.64%) 21 (4.31%)
first order 26 (5.34%) 3 (0.62%) 21 (4.31%) 31 (6.37%) 2 (0.41 %) 17 (3.49%)
second
order

145
(29.77%)

5 (1.03%) 0 (0.00%) 150
(30.80%)

0 (0.00%) 0 (0.00%)

Higher
order

252
(51.75%)

6 (1.23%) 0 (0.00%) 256
(52.57%)

0 (0.00 %) 2 (0.41%)

TOTAL 423
(86.86%)

23 (4.72%) 41 (8.42%) 437
(89.73%)

10 (2.05%) 40 (8.21%)

Table 6.1: The outcomes of the reproducibility investigation concerning PET and UUDI ra-
diomics, as assessed through the ICC, are presented. Within each imaging modality, we cat-
egorized radiomics into three groups: those with low reproducibility (ICC < 0.5), medium
reproducibility (0.5≤ ICC < 0.8), and high reproducibility (ICC ≤ 0.8). The distribution of
radiomics across these categories, including the total number of radiomics and the percent-
age extracted in each technique, is displayed. In total, 487 radiomics were examined per
modality.

• Number of radiomics with high ICC : PET 487→41, UUDI 487→40.

• Number of radiomics with average ICC : PET 487→23, UUDI 487→10.

• Number of radiomics with high CCC : PET 487→484, UUDI 487→472.

By applying the criterion that a radiomic is deemed reproducible when it exhibits both
a high CCC and medium or high ICC simultaneously, the following results are achieved:

• Total count of reproducible radiomics: PET→64, UUDI→49.

Selecting Best Configuration

Subsequently, an evaluation was conducted to determine the most stable configuration.
For PET, the most stable configuration was identified as one utilizing FBS discretization
with a bin size of 1, a voxel size of 1 mm, and cubic interpolation. Conversely, for UUDI,
the configuration demonstrating the highest stability employed FBN discretization with 16
bins, a voxel size of 0.2 mm, and near-neighbor interpolation (nearest).

Testing features redundancy

In the following stage, redundancy analysis is conducted individually for each modality
and in a combined manner. This analysis is visualized using the "plot corrmat" function in
MATLAB, with adjusted representation limits to exclusively display correlated instances.
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PET UUDI
CCC<0.9 CCC≥0.9 CCC<0.9 CCC≥0.9

morphological 0 (0.00%) 29 (5.95%) 0 (0.00%) 29 (5.95%)
first order 3 (0.62%) 47 (9.65%) 12 (2.46%) 38 (7.80%)

second order 0 (0.00%) 150 (30.80%) 0 (0.00%) 150 (30.80%)
Higher order 0 (0.00%) 258 (52.98%) 3 (0.62%) 255 (52.36%)

TOTAL 3 (0.62%) 484 (99.38%) 15 (3.08%) 472 (96.92%)

Table 6.2: The findings from the analysis of PET and UUDI radiomics reproducibility using
the CCC are presented. Within each imaging modality, radiomics were categorized into
two groups: those exhibiting low reproducibility (CCC < 0.9) and those with high repro-
ducibility (CCC ≥ 0.9). The distribution of radiomics among these categories, including
the count for each type and the total number categorized according to their CCC values, is
illustrated. The analysis encompasses a total of 487 radiomic features per modality.

Figure 6.1: Scheme representing the reduction in the number of features after performing
the reproducibility study for each of the PET and UUDI modalities.

• Intra-modality correlation: PET 64→36, UUDI 49→24. Along with CT radiomics,
there are 61 radiomics.

• Inter-modality cross-correlation: 61→57.

Inter-modality cross-correlation: This results in 61 correlations, which are further re-
duced to 57 after analysis.
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Figure 6.2: PET correlation matrices of the Sunitinib group.

Figure 6.3: Doppler correlation matrices of the Sunitinib group.

From the correlation matrices, we obtain the following results: - Correlation between
radiomics of the same imaging modality: PET 64→36, UUDI 49→24. Along with CT ra-
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Figure 6.4: Inter-correlation matrices between PET and Doppler features of the Sunitinib
group.

diomics, there are 61 radiomics. - Cross correlation:61→57

Outlier Removal

Regarding the removal of outliers, it’s important to note that this process entails the exclu-
sion of specific cases rather than radiomic features:

• Control Group: Out of the 29 available cases (originally 32, but 3 were not in the
database), 8 cases were omitted, leaving 21 cases for cluster formation.

• Sunitinib Group: Out of the 55 available cases (originally 56, but 1 was not in the
database), 12 cases were excluded, resulting in 43 cases for cluster formation.

Removal of Low Variance Features (Informativity test)

Furthermore, radiomics exhibiting low variance, whichwere deemed non-informative, were
also excluded from the analysis. Those with a coefficient of variation (cv) < 0.3 were re-
duced, resulting in a total reduction of radiomics from 57 to 19.

A comprehensive overview of all the steps involved in reducing features is depicted in
Figure 6.5. As a result of these feature reduction procedures, the count of radiomics within
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the Sunitinib group has been significantly decreased from 1461 to 19, a number deemed
suitable for performing hierarchical clustering.

Figure 6.5: Scheme representing the reduction in the number of features after performing
all the feature reduction steps for each of the PET and UUDI modalities.

6.2.2 Hierarchical clustering of the Sunitinib group

Upon the application of hierarchical clustering to the selected radiomics features of the
sunitinib group, the analysis revealed the formation of three primary clusters: Ars,Brt,
and Crs, along with two sub-clusters within group Brt: B1rt and B2rt. The visual repre-
sentation of this outcome is presented in Figure 6.6.

Based on the extracted radiomics and the biological insights they offer, these groups
exhibit distinct characteristics. For a more comprehensive description of each individual
radiomic feature, please refer to Annex A:

• Cluster Art is distinguished by the presence of small tumors, evidenced by their lim-
ited volumes in both CT and PET scans, along with minimal metabolic activity, de-
noted by low values of the Local Intensity Peak radiomic feature. Within this group,
these tumors exhibit notable metabolic heterogeneity, as indicated by a substantial
region with low values in metrics such as radiomics variance, non-uniformity of var-
ious orders, and high values of Skewness. In terms of vascularization, it displays
an early stage, characterized by heterogeneity and variable perfusion, a description
supported by metrics such as Doppler variance, volume, and fluctuating mean values.
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• Subcluster B1rt represents the initial sub-stage within cluster Brt, and it is in close
proximity to cluster Art, which denotes the most favorable stage of tumor develop-
ment. In this sub-stage, we observe a slight increase in both CT and PET volumes, in-
dicating the commencement of tumor growth. The metabolic activity is notably high,
evident through the elevated value of the Local Intensity Peak radiomic feature, and it
demonstrates heterogeneity, as there are concentrated areas with high values within
the radiomics that report heterogeneity in PET. Vascularization, on the other hand, is
characterized by low values, including low Volume Fraction at 90% Intensity, mean,
Integrated Intensity, and Local Intensity Peak for UUDI, while Variance reflects ho-
mogeneity with low values. This substage signifies a tumor in its early stages of size
and metabolic development. Glycolysis is beginning to exhibit heterogeneity, and
vascularization is slowing down, transitioning towards a more homogeneous state.

• Subcluster B2rt represents the final substage within cluster B, and it is situated in
close proximity toCrt, which denotes the least favorable stage of tumor development.
Within this substage, both CT and PET volumes are notably elevated, particularly
as the tumors approach Crt. Metabolic activity is exceptionally high and exhibits
marked heterogeneity, mirroring the state of vascularization. These characteristics
collectively point to a more aggressive and advanced stage of tumor development,
bearing greater similarity to stage Crt.

• TheCrt cluster is defined by its larger tumors, indicated by high CT and PET volumes,
and significant metabolic activity, as reflected in the elevated Local Intensity Peak ra-
diomic feature, which implies heightened glycolysis. These tumors are metabolically
homogeneous, as evidenced by the presence of very high values in radiomics related
to tumor heterogeneity, further confirmed by the low value of Skewness. Moreover,
vascularization within this cluster is notably high, demonstrated by the elevated val-
ues of Local Intensity Peak and Integrated Intensity. Additionally, radiomics related
to vascularization heterogeneity exhibit low values in this cluster.

As previously conducted in Chapter 4, to enhance our comprehension of the clusters
and to identify responses to Sunitinib treatment, we analyze the mice’s evolutionary tra-
jectories—observing the clusters in which they are categorized each week. The findings are
presented in Table 6.3
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Figure 6.6: Heatmap and hierarchical clustering performed on the Dsuni
training dataset. Four

clusters (Art, B1rt, B2rt, and Crt) were identified.

Table 6.3: Evolutionary path of sunitinib-treated mice of the training set. Items marked as *
indicate missing classification due to the absence of corresponding PETRUS data. Clusters
that were assigned by the RF model are underlined.

Mouse
Num-
ber

Baseline Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

mouse 1 Brt Brt Brt Brt Crt Crt outlier
mouse 2 outlier Brt Brt Brt Brt * Crt
mouse 3 Brt Brt Crt outlier Crt Crt outlier
mouse 4 Brt Brt Brt Brt * outlier Crt
mouse 5 outlier Art Art Art outlier Brt Brt
mouse 6 Art Art Art outlier Art Art Brt
mouse 7 Brt outlier Brt Art Brt Crt Crt
mouse 8 Brt outlier Brt outlier Brt Brt B1rt

Some of the rules explaining the passage from cluster to another were re-obtained by
the follwing the same protocol on the radiomics features:

• Mice found in cluster Artthey stayed in Art or moved to cluster Brt.
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• Mice within cluster Brt persist within the same cluster (Brt), transition to cluster
Art, or transition to Crt. Notably, the subclusters of Brt depicted in the dendrogram
offer valuable insights into the direction of these trajectories: indicating a direction
towards Art for cases classified as B1rt, or towards Crt for those identified as B2rt.

• All mice reaching the advanced (cluster Crt ) stage originated from cluster B2rt.

• nomouse reversed from the advanced tumor stage (cluster C) to a less advanced stage.

As observed, the mice in cluster Art are linked to either the baseline week or week 1,
signifying that this cluster represents the initial and most favorable tumor stage. How-
ever, some mice do not originate in cluster Art and are placed directly in the intermediate
stage Brt, indicating a more advanced tumor at the start of treatment. Within cluster Crt,
cases from later weeks are primarily located, except for mouse 2, which, by week 2 of treat-
ment, is already positioned in this cluster, denoting amore advanced and unfavorable tumor
stage.Conversely, mice 5, 6, and 8 display a positive response to Sunitinib treatment, as they
do not progress to the most advanced stage by the study’s end. Notably, their volumes in
PET and CT during the final treatment week are moderately to high, while their metabolic
and vascular evolution is moderate. This suggests a favorable response to antiangiogenic
treatment, as indicated by the clustergram.

Figure 6.7 illustrates the hierarchical clustering of the Control group, revealing the pres-
ence of two primary clusters: Arc and Crc.

Figure 6.7: Heatmap and hierarchical clustering performed on the Dcon
training dataset. Two

clusters (Arc, Crc) were identified.
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Part 2: Radiomics for Tumor sub-regions: r1 & r3

Testing feature reproducibility

For each of the PET and UDDI modalities the number of the radiomic features was reduced
as following 6.8-A for r1 :

• Number of radiomics with high ICC : PET 487→42, UUDI 487→41

• Number of radiomics with average ICC : PET 487→26, UUDI 487→3.

• Number of radiomics with high CCC : PET 487→481, UUDI 487→312.

By applying the criterion that a radiomic is deemed reproducible when it exhibits both
a high CCC and medium or high ICC simultaneously, the following results are achieved: —
Total count of reproducible radiomics: PET→68, UUDI→37

For each of the PET and UDDI modalities the number of the radiomic features was
reduced as following 6.8-B for r3 :

• Number of radiomics with high ICC : PET 487→42, UUDI 487→50

• Number of radiomics with average ICC : PET 487→26, UUDI 487→6.

• Number of radiomics with high CCC : PET 487→484, UUDI 487→417.

By applying the criterion that a radiomic is deemed reproducible when it exhibits both
a high CCC and medium or high ICC simultaneously, the following results are achieved: —
Total count of reproducible radiomics: PET→68, UUDI→47

Figure 6.8: Scheme representing the reduction in the number of features after performing
the reproducibility study for each of the PET and UUDI modalities: A) for tumor sub-region
r1 and B) for tumor sub-region r3.
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Testing feature redundancy

In the following stage, redundancy analysis is conducted individually for each modality
(PET and UUDI) and in a combined manner 6.9.

1. For r1:

• Intra-modality correlation: PET 68→37, UUDI 37→19. Alongwith CT radiomics,there
are 56 radiomics.

• Inter-modality cross-correlation: 56→49.

2. For r3:

• Intra-modality correlation: PET 68→33, UUDI 47→26. Alongwith CT radiomics,there
are 59 radiomics.

• Inter-modality cross-correlation: 59→50.

Removal of Low Variance Features (Informativity test)

As discussed earlier, featureswith low variance, considered non-informative, were excluded
from the analysis. Those with a coefficient of variation (cv) less than 0.3 were pruned,
leading to a substantial reduction in radiomics—from 49 to 11 in r1 and 50 to 18 in r3.

Figure 6.9 provides a comprehensive overview of the steps taken to reduce features.
These reduction procedures notably decreased the count of radiomics within the Sunitinib
group, reducing it from 1461 to 11 in r1 and from 1461 to 18.

Figure 6.9: Scheme representing the reduction in the number of features after performing
all the feature reduction steps for each of the PET and UUDI modalities: A) for tumor sub-
region r1 and B) for tumor sub-region r3.
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Common Features between r1 and r3

List of the most robust and informative features is presented in Figure 6.10. 6 features were
common 1 from CT, 5 from PET and 1 from Doppler.

Figure 6.10: List of the most robust and informative radiomics features obtained after fea-
ture selection steps for each of tumor sub-regions: A) r1 and B) r3

We investigated potential significant differences for each common radiomics feature
between r1 and r3. Notably, the CT-Volume (mesh-based) and PET-Local intensity peak
emerged as the most significant features, demonstrating statistical significance with p-
values less than or equal to 1E-3. Additionally, the Dop-Centre of mass shift and PET-
Intensity difference between 10% and 90% volume exhibited significant differences, with
p-values less than or equal to 1E-2. The PET-10th percentile also showed a notable dif-
ference between the two regions, reaching statistical significance with a p-value of 0.05.
The only feature that did not demonstrate a significant difference between r1 and r3 was
PET-Centre of mass shift.

6.3 Discussion

In this chapter, we employed radiomics analysis as a powerful tool to first reevaluate and re-
define the treatment response stages within both the control and sunitinib-treated groups.
Second, to explore whether specific radiomics features could effectively describe the dis-
tinct characteristics of r1 and r3. These tumor sub-regions, as elucidated in Chapter 5, are
associated with positive and negative treatment responses, respectively.
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Figure 6.11: Boxplots for each of common radiomics features showing the level of signifi-
cance of each feature between r1 and r3. * represents p<=0.05, ** represents p<=1E-2, ***
represents p<=1E-3

One aspect of our radiomics analysis is the wealth of information it provides regarding
the metabolic and vascular characteristics of the tumors. Radiomic features, being quan-
titative descriptors of tumor texture, shape, and intensity patterns, offer a comprehensive
perspective on the intra-tumoral heterogeneity thatmay not be fully captured by traditional
imaging metrics alone.

The interpretation of these radiomic features, we gain access to finer details, allowing us
to identify variations in metabolic activity and vascularization within and across treatment
response stages. This enhanced insight could prove pivotal in understanding the underlying
biological processes at play during treatment.

In the second part of our analysis, we identified six common, reproducible, informative,
and redundant radiomic features between r1 (associated with positive treatment response)
and r3 (associated with negative treatment response), as established in Chapter 5. Notably,
five of these radiomic features have the potential to act as markers, with their levels serving
as predictors of treatment response

The ability to extract detailed information from radiomic features holds promising clini-
cal implications. Beyond confirming treatment response stages, the nuanced understanding
of metabolic and vascular characteristics opens avenues for more targeted and personal-
ized interventions. Future studies could explore the integration of radiomics into clinical
decision-making processes, potentially paving the way for tailored therapeutic strategies
based on the unique radiomic profile of each tumor.
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In conclusion, our radiomics analysis not only validates our previous findings but also
enriches our understanding of treatment responses by providing intricate details regard-
ing tumor metabolic and vascular characteristics. The potential clinical impact of these
insights positions radiomics as a valuable addition in the realm of precision medicine for
paragangliomas.
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Discussion and Perspectives

7.1 Discussion

Chapters 4 and 5 of our thesis introduced two distinct Machine Learning (ML) methodolog-
ical approaches aimed at delineating treatment response patterns in PGL (paraganglioma)
mice models. These approaches were designed to firstly pinpoint treatment response based
on the therapeutic target, specifically focusing on the vascular characteristics, in conjunc-
tion with metabolic and morphological hallmarks. The secondary objective was to identify
tumor subregions critical for predicting the observed treatment response stages. These
methodologies were thoroughly examined and validated in two pivotal studies. The first
study, "Machine learning of multi-modal tumor imaging reveals trajectories of response to
precision treatment" (Mansouri et al., 2023), highlighted the major results of our investiga-
tion. Furthermore, the second study, entitled "Intratumoral Heterogeneity by Molecular-
Vascular Profiling for Predicting Drug Resistance" whichwe are considering for publication,
emphasized our effective utilization of intratumor segmentation using a computationally
efficient ML framework. The segmentation revealed distinct subregions within the tumor,
and these specific areas were pivotal in accurately predicting different stages of treatment
response.

In the first study the study of treatment response in PGL mice led to the identifica-
tion and categorization of three distinct stages: Stage A, subdivided Stage B into B1 and
B2, and Stage C. Each stage exhibited unique characteristics in terms of metabolic, vas-
cular, and morphological features. Stage A was representative of an early stage, featur-
ing small and poorly developed tumors with low vascularization and heterogeneous FDG
(Fluorodeoxyglucose) uptake, forming cluster C. Stage C, on the other hand, represented
an advanced stage, showing large tumors, prominent vessels, and relatively homogeneous
FDG uptake, akin to end-stage cancer disease. Between the two intermediate stages, B1
and B2, there were distinctive differences. B1 included small-sized tumors with moder-
ate vascularization and heterogeneity in glucose uptake distribution. Conversely, B2 en-
compassed moderate-sized tumors with comparatively lower heterogeneity in glucose up-
take and moderate vascularization. The amalgamation of features extracted from the three
modalities - metabolic, vascular, and morphological - played a crucial role in defining these
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distinct stages. Our research highlighted the interdependency of these modalities in char-
acterizing and differentiating the stages of treatment response. Removing any one of these
modalities hindered the accurate identification of these stages, emphasizing the need for
a comprehensive multi-modal approach. Utilizing Amira software, we conducted a more
detailed analysis, revealing a pivotal distinction between the two intermediate stages, B1
and B2, primarily related to vascular morphology. In B1, vessels exhibited characteristics
of being short, thin, and proliferative. However, in B2, these vessels were notably larger
and longer. This variation in vascular morphology between the two sub-stages under Stage
B offered critical insights into the progressive changes occurring within the tumors dur-
ing the intermediate phases of treatment response. These detailed findings underscore
the significance of multi-modal analysis in understanding treatment response stages. The
collaboration and interplay of metabolic, vascular, and morphological features provided a
comprehensive understanding of the evolution and progression of the tumors, delineating
distinct stages crucial for assessing the response to treatments. The observations on vascu-
lar morphology within the intermediate stages further shed light on the dynamic changes
occurring during the treatment, offering a more nuanced understanding of the responses
to therapeutic interventions.

In the second study, the focus was on identifying and characterizing sub-regions within
the tumors, resulting in the determination of four distinct sub-regions. Each sub-region
displayed varying metabolic and vascular characteristics. What emerged as particularly
significant was the observation that one specific region, denoted as r1, was notably preva-
lent in the advanced Stage C, intermediate in Stage B2, less apparent in Stage B1, and
completely absent in Stage A. This pattern indicated that the presence and proportion of
region r1, characterized by heightened metabolic and vascular activity, could potentially
serve as a predictive marker for treatment resistance or escape. Conversely, another sub-
region, r3, characterized by diminished metabolic and vascular activity, was prominently
found in Stage A, less frequent in Stages B1 and B2, and completely absent in Stage C. This
sub-region, showing a lower metabolic and vascular profile, was strongly associated with
a favorable response to treatment. The distinct distribution and prevalence of r3 across
the different stages suggested its potential as a biomarker for a positive response of PPGL
(pheochromocytoma and paraganglioma) to sunitinib treatment. The findings from this
study suggest that the presence or absence of specific sub-regions within the tumor could
serve as predictive biomarkers for treatment response. Notably, the contrasting roles played
by regions r1 and r3 in predicting treatment outcomes highlight the potential utility of these
sub-regions as indicators of the tumor’s response to sunitinib therapy. These observations
signify a substantial advancement in the identification of specific tumor regions that could
potentially guide clinical decision-making, aiding in the prediction of treatment responses
and potentially facilitating more tailored and effective treatment strategies for PPGL.

Our research underscores the substantial importance of machine learning in extracting
and utilizing handcrafted features from images to predict treatment response. These fea-
tures allowed us to discern and comprehend treatment response patterns that were chal-
lenging to perceive through conventional observation methods. The application of ad-
vanced computational approaches in analyzing intricate data patterns was crucial in un-
covering these intricate nuances.

– 106 –



Discussion et perspectives

Our research underscores the substantial importance of machine learning in extracting
and utilizing handcrafted features from images to predict treatment response. These fea-
tures allowed us to discern and comprehend treatment response patterns that were chal-
lenging to perceive through conventional observation methods. The application of ad-
vanced computational approaches in analyzing intricate data patterns was crucial in un-
covering these intricate nuances.

In spite of utilizing a relatively lownumber ofmice (8 in the sunitinib-treated group), our
database was robust due to the longitudinal nature of the study. By consolidating data from
7 time points for each of the 8 mice, we amassed a total of 52 cases (with 2 missing cases).
Our methodological approach treated each of the 52 cases as an independent record, sig-
nificantly enriching the dataset. From a biological standpoint, the coherence achieved with
8 mice sharing the same tumor origin provided more cohesive insights compared to study-
ing 50 patients with diverse mutation origins. This comprehensive and focused approach
strengthened the validity and relevance of our findings, offering a profound understanding
of treatment response dynamics.

7.2 Perspectives

The applications of our findings open substantial avenues for future research and clinical
application. Firstly, the incorporation of machine learning in analyzing tumor character-
istics, specifically regarding treatment response, serves as a springboard for further ad-
vancements in precision medicine. This aligns with the current trend of leveraging compu-
tational methods to refine treatment strategies and improve patient outcomes. Moreover,
the emphasis on the therapeutic target, particularly in cancer treatment, holds immense
promise. By focusing on specific molecular or vascular aspects of tumors, the development
of tailored treatments based on these precise characteristics can revolutionize oncological
interventions.

The shift from a macroscopic evaluation of tumors to a finer-grained analysis of their
molecular and vascular profiles is an area ripe for further exploration. The use of machine
learning algorithms to detect, segment, and predict treatment response from these intricate
features is not only a substantial scientific leap but also a potential clinical breakthrough.
Further studies could expand the application of these methodologies in larger cohorts, in-
tegrating diverse modalities and tumor types to corroborate and broaden the findings es-
tablished in this thesis.

Additionally, the longitudinal nature of our study, despite its relatively smaller sample
size, underscores the significance of a more in-depth examination over time. This approach
can be extrapolated to larger populations, promoting more comprehensive and nuanced
understandings of treatment response dynamics.

In conclusion, our thesis underscores the promising potential of combining machine
learning methodologies with a focus on therapeutic targets in delineating treatment re-
sponse. The perspectives offered here indicate the wider applications and implications of
these findings, providing a robust foundation for further research and potential clinical
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à l’Université de Paris. Title: Radiomics Analysis of the Effect of Sunitinib Treatment on
SDHb-/- Experimental Paraganglioma;

Mentoring 2: Mentoringmaster 1 student-Miguel GONZÁLEZMÁRQUEZ - fromBiomed-
ical Physics (BME) program à Complutense University of Madrid. Title: Study of Tumor
Heterogenity by Radiomic Analysis

RESEARCH STAYS

Threemonths abroad collaborationwith nuclear physics group at the Complutense Uni-
versity of Madrid, Spain, (July, November, and December, 2022)

SOCIAL CONTRIBUTIONS

Organizer and board member of the first congress of the Early Career Research (ECR)
cardiovascular conference, December 2022
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Thesis Summary

La thèse s’articule autour de sept chapitres. Le chapitre 1 sert d’introduction, élucidant le
contexte et les objectifs de la recherche. Le chapitre 2 procède à un examen exhaustif de la
littérature, jetant les bases de l’exploration ultérieure. Le chapitre 3 décrit minutieusement
la base de données, en expliquant sa structure et sa méthode d’acquisition. Les chapitres
4, 5 et 6 portent respectivement sur le premier, le deuxième et le troisième projet, chacun
apportant un éclairage unique à l’ensemble du récit. Le dernier chapitre, le chapitre 7,
s’engage dans une discussion approfondie, combinant les principaux résultats et proposant
des orientations pour la recherche future. Cette partie fournit un résumé détaillé de chacun
de ces chapitres, dans le but de faciliter une compréhension approfondie de la structure
globale de la thèse.

Chapitre 1: Dans le paysage complexe de la recherche sur le cancer, les tumeurs, mar-
quées par une croissance et une prolifération cellulaires incontrôlées, deviennent le point
central. Définies par les chercheurs, les caractéristiques du cancer [7] sont des traits clés qui
éclairent la nature complexe de la tumorigenèse. En explorant les interconnexions entre ces
caractéristiques, nous nous intéressons plus particulièrement à la relation complexe entre
les caractéristiquesmétaboliques et vasculaires des tumeurs. Cette exploration ouvre la voie
à une étude approfondie de l’importance de l’hétérogénéité intra-tumorale (métabolique et
vasculaire) dans la progression du cancer. Dans le contexte de notre thèse, où l’accent est
mis sur les applications de l’IA, nous nous concentrons sur les tumeurs du paragangliome
(PGL), en mettant particulièrement l’accent sur le PGL SDHB. L’examen de l’hétérogénéité
métabolique et vasculaire au sein de ces tumeurs est crucial, compte tenu de son influence
profonde sur la progression du cancer. En parcourant les modalités d’imagerie que sont la
tomographie par émission de positons (TEP), la tomodensitométrie (TDM) et l’imagerie ul-
trasonique Doppler ultrarapide (UUDI) dans le contexte du PGL, nous reconnaissons l’im-
portance de chaque technique pour saisir les facettes uniques des caractéristiques de la
tumeur. Cependant, la véritable puissance réside dans la synergie de ces modalités, où la
combinaison de la tomodensitométrie, de la TEP et de l’UUDI fournit une vue d’ensemble
de la progression de la tumeur et de la réponse au traitement. Cette approche holistique
améliore notre capacité à identifier des détails complexes qui peuvent être insaisissables
lorsque l’on examine chaque modalité isolément.

À l’ère des progrès technologiques, le rôle de l’intelligence artificielle (IA) occupe une
place centrale. Grâce à sa capacité à traiter de grandes quantités de données d’imagerie,
l’IA joue un rôle essentiel dans la prédiction de la réponse au traitement. En exploitant
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les capacités de l’IA, nous visons non seulement à améliorer notre compréhension du com-
portement des tumeurs, mais aussi à anticiper et à optimiser les résultats des traitements.
L’intégration de l’IA dans le domaine de l’imagerie médicale représente une force de trans-
formation, offrant de nouvelles dimensions dans notre quête pour comprendre, surveiller et
combattre la progression du cancer. Dans les chapitres à venir, nous nous embarquons dans
un voyage qui combine de manière complexe ces éléments, en essayant de comprendre la
complexité de la dynamique du cancer dans le contexte de SDHB PGL.

Alors que nous nous penchons sur l’importance de l’IA, il est important de reconnaître
l’évolution du paysage de l’imagerie médicale avec l’émergence de la radiomique. La ra-
diomique, un domaine en plein essor de l’imagerie médicale, implique l’extraction et l’anal-
yse de caractéristiques quantitatives à partir d’images radiographiques, ce qui permet de
mieux comprendre les caractéristiques des tumeurs. En utilisant des techniques informa-
tiques avancées, la radiomique va au-delà de l’interprétation qualitative traditionnelle, en
quantifiant des modèles subtils dans les images médicales liés à la forme, à la texture et aux
relations spatiales de la tumeur. Cette analyse détaillée offre des informations précieuses
sur le microenvironnement et le comportement biologique de la tumeur. Les informations
dérivées de la radiomique sont prometteuses pour prédire les résultats des patients et les
réponses aux traitements, et pour contribuer au développement de stratégies thérapeu-
tiques personnalisées et ciblées dans le traitement du cancer.

Objectif de la thèse: Cette thèse est consacrée à un examen complet des réponses
présentées par les tumeurs du paragangliome (PGL) au traitement de précision par le suni-
tinib, en mettant l’accent sur les techniques avancées d’apprentissage automatique (ML).
L’objectif principal est d’utiliser l’imagerie tumorale multimodale et ML pour suivre et
comprendre comment les tumeurs PGL évoluent dans le temps en réponse au traitement
par le sunitinib. Le deuxième objectif consiste à diviser les tumeurs PGL en sous-régions
métaboliquement cohérentes à l’aide d’algorithmes de regroupement, dans le but d’identi-
fier les sous-régions qui entraînent une résistance au sunitinib. Le troisième objectif est de
développer et d’appliquer un réseau 3D-U-Net adapté aux exigences spécifiques de l’anal-
yse des tumeurs PGL, automatisant l’identification des sous-régions à haut risque sur la
base de l’interaction complexe entre les caractéristiques métaboliques et vasculaires. Enfin,
le quatrième objectif est d’explorer l’utilité des caractéristiques radiomiques pour prédire
la réponse au traitement dans les tumeurs PGL, en évaluant quelles caractéristiques sont
les plus indicatives de la réponse au traitement par le sunitinib et comment elles sont en
corrélation avec les changements dans les paramètres métaboliques et vasculaires au fil du
temps.

Chapitre 2: Dans ce chapitre, nous présentons une analyse documentaire couvrant
des sujets clés, y compris une vue d’ensemble de l’imagerie médicale dans le diagnostic du
cancer, avec un accent particulier sur le PGL. En outre, nous nous penchons sur l’intelli-
gence artificielle (IA) dans l’imagerie médicale et explorons l’application de la radiomique
dans l’imagerie du cancer. Nousmettons en lumière une étude fondamentale menée par une
ancienne étudiante en doctorat, Caterina Facchin, dans notre laboratoire, qui sert de pierre
angulaire à notre recherche. Utilisant un modèle murin de tumeurs PGL, l’étude a employé
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Thesis Summary (in french)

la co-registration PET/CT/UUDI pour examiner la dynamique des tumeurs Sdhb-/-. Les ré-
sultats ont révélé une réponse initiale au traitement par le sunitinib, inhibant efficacement
la croissance tumorale et réduisant l’absorption du FDG au cours des premières semaines
(W1-2). Cependant, l’imagerie ultérieure a indiqué un échappement au traitement par le
sunitinib, marqué par une augmentation de la captation du FDG à W3 et une reprise de la
croissance tumorale et du développement vasculaire àW4-5. L’étude a notamment identifié
une concentration de vaisseaux sanguins dans les régions tumorales actives, consommatri-
ces de sucre, avec un volume accru pendant la période d’échappement au sunitinib, ce qui
suggère une adaptation dynamique de la vascularisation tumorale. Les changements pré-
coces dans la glycolyse totale de la lésion et la longueur maximale des vaisseaux à W1 se
sont révélés être des indicateurs prédictifs cruciaux de la résistance au sunitinib, offrant des
indications précieuses sur les marqueurs potentiels de la résistance au traitement [69].

Chapitre 3: Les données de cette thèse proviennent d’expériences menées par un an-
cien candidat au doctorat au sein de notre équipe de recherche, détaillées dans [69]. Vingt-
sept souris ont été implantées avec des PGLs déficientes en sous-unité B de la succinate
déshydrogénase (Sdhb−/−) après avoir obtenu l’approbation sous le numéro de référence
16-098. Les souris porteuses de tumeurs Sdhb−/− ont été divisées au hasard en deux groupes
: CON et SUNI, le groupe SUNI recevant le médicament antiangiogénique sunitinib (50
mg/kg/jour) pendant 6 semaines. Dans le groupe SUNI, huit souris ont été affectées à la
formation et onze à la validation. Le groupe de formation, composé de 16 souris (8 CON et
8 SUNI), a fait l’objet d’une surveillance hebdomadaire des tumeurs à l’aide de l’instrument
PETRUS. PETRUS capture simultanément PET/CT/UUDI [179].

Chapitre 4: Ce chapitre explore les principaux résultats et méthodologies présentés
dans l’article "Machine Learning of Multi-Modal Tumor Imaging Reveals Trajectories of Re-
sponse to Precision Treatment". Dans cette étude, nous utilisons une combinaison d’analyse
de regroupement hiérarchique (HCA) et de classificateurs d’ML supervisé pour identifier
les différentes étapes de la progression de la tumeur et la réponse des PGL au sunitinib ou
aux traitements fictifs. Nous utilisons un ensemble limité de caractéristiques vasculaires,
moléculaires et anatomiques élaborées longitudinalement et interprétées directement sur
le plan biologique. Étant donné l’existence de plusieurs classificateurs ML classiques avec
des modèles simplifiés adaptés aux petites bases de données précliniques comme la nôtre,
nous explorons et évaluons plusieurs classificateurs afin de déterminer le plus efficace pour
identifier les réponses au traitement par le sunitinib dans les PGL en utilisant des descrip-
teurs multimodaux. Le classificateur sélectionné, sur la base d’une performance optimale,
est ensuite utilisé pour la classification généralisée des stades de progression de la tumeur.
L’amalgame de ces stades tout au long de la durée des traitements anti-angiogéniques ou
des traitements fictifs conduit à l’identification de trajectoires dans l’évolution de la tumeur.
De manière remarquable, sans horodatage explicite de la durée du traitement, l’algorithme
ML, utilisant des caractéristiques d’imagerie multimodales multiparamétriques, a réussi à
identifier des groupes en corrélation avec la progression de la maladie et la réponse au
sunitinib.

Dans le groupe traité par simulacre, deux stades de réponse au traitement sont identi-
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fiés : Ac et Cc. Ac représente un stade précoce caractérisé par des tumeurs petites et peu
développées, une faible vascularisation et une captation hétérogène du FDG, tandis que Cc
indique un stade avancé avec des tumeurs de grande taille, des vaisseaux bien développés
et une captation élevée et relativement uniforme du FDG, ressemblant à un cancer en phase
terminale. Les souris passent rapidement, généralement en trois semaines, du groupe Ac
au groupe Cc.

Dans le groupe traité au sunitinib, quatre stades de réponse au traitement sont identifiés
: At et Ct, significativement similaires à Ac et Cc, et deux stades tumoraux intermédiaires
distinctifs - B1t et B2t - qui n’ont pas été observés dans le groupe traité par sham. B1t com-
prend des tumeurs de petite taille avec une vascularisation modérée et une hétérogénéité
dans la distribution de l’absorption du glucose, tandis que B2t comprend des tumeurs de
volume et de vascularisation modérés, avec une faible hétérogénéité dans la distribution
de l’absorption du glucose. Ces stades révèlent les effets du sunitinib sur les tumeurs PGL,
l’importance des caractéristiques vasculaires étant soulignée par leur absence lorsque les
caractéristiques vasculaires dérivées de l’échographie ultrarapide sont exclues de l’anal-
yse. Les tumeurs peuvent passer d’un groupe à l’autre au fil du temps, ce qui indique des
trajectoires dans l’évolution de la tumeur liées à la réponse ou à l’évasion du traitement.
Certaines tumeurs traitées au sunitinib ont montré une progression similaire à celle des
tumeurs traitées par sham, ce qui suggère que les souris entrant dans le groupe Ct au stade
avancé pourraient avoir échappé à l’impact prévu du traitement au sunitinib.

En résumé, nos résultats soulignent non seulement la puissance de laML non supervisée
dans la caractérisation de la dynamique tumorale, mais éclairent également l’impact nuancé
du traitement anti-angiogénique, en particulier le sunitinib, sur les aspects vasculaires et
métaboliques des tumeurs PGL.

Chapitre 5 Dans ce chapitre, nous poursuivons nos recherches sur la dynamique de la
réponse au traitement du paragangliome, en nous appuyant sur nos travaux antérieurs qui
ont permis d’identifier des stades de réponse distincts dans un modèle de souris traitées au
sunitinib. L’accent est maintenant mis sur l’exploration de l’hypothèse de sous-régions tu-
morales potentielles qui pourraient avoir une valeur prédictive de la réponse au traitement.
Les images TEP dynamiques, composées de 31 images temporelles consécutives provenant
de 8 souris à sept moments distincts avant le traitement et chaque semaine pendant le
traitement, ainsi que les images 3D d’imagerie ultrasonore Doppler (UUDI), ont constitué
les données d’entrée de cette étude. L’algorithme K-means avec des valeurs k optimisées
a été appliqué pour dériver des régions métaboliques distinctes pour chaque tumeur in-
dépendamment. Les supervoxels délimitant chaque sous-région ont été générés en calcu-
lant la moyenne des valeurs TEP dans la sous-région et en extrayant les caractéristiques
métaboliques et vasculaires spécifiques des voxels correspondants. Les supervoxels résul-
tants ont été combinés pour le partitionnement intra-tumoral, et l’analyse de regroupement
hiérarchique (HCA) a été employée pour identifier les sous-régions communes dans la pop-
ulation. Ensuite, un volume 3D avec des sous-régions étiquetées pour chaque tumeur a été
généré, servant de résultat à l’étude. Les images TEP et UUDI, ainsi que le volume éti-
queté, ont ensuite été introduits dans le modèle 3D-UNet pour l’entraînement d’un modèle
supervisé.

– 114 –



Thesis Summary (in french)

Notre examen a permis d’identifier quatre sous-régions distinctes au sein de la tumeur
(r1, r2, r3 et r4), chacune présentant des caractéristiquesmétaboliques et vasculaires uniques.
Notamment, la région r1 était principalement présente au stade avancé C, intermédiaire au
stade B2, faible au stade B1 et absente au stade A. Par conséquent, la prévalence de la région
r1, caractérisée par des conditions métaboliques et vasculaires accrues, apparaît comme un
facteur prédictif potentiel de la résistance au traitement. À l’inverse, la région r3, carac-
térisée par une faible activité métabolique et vasculaire, était prédominante au stade A,
moins répandue aux stades B1 et B2, et absente au stade C, ce qui indique une association
avec une réponse favorable au traitement. Ces résultats suggèrent que les sous-régions
r1 et/ou r3 pourraient potentiellement servir de biomarqueurs pour prédire la réponse des
PPGL au traitement par le sunitinib.

Chapitre 6 Dans ce chapitre, nous explorons la radiomique dans les tumeurs du phéochro-
mocytome et du paragangliome (PGL), avec une double approche, chacune se concentrant
sur des objectifs distincts mais interconnectés. Tout d’abord, nous extrayons des carac-
téristiques radiomiques à partir d’images TEP, TDM et UUDI co-registrées. Cette initiative
vise non seulement à valider la reproductibilité des stades de réponse au traitement identi-
fiés, mais aussi à examiner la corrélation entre ces signatures radiomiques et l’efficacité du
traitement des tumeurs PGL. Dans la phase initiale du projet, le programme SERA appa-
raît comme un outil crucial, offrant un accès à un riche répertoire de 487 caractéristiques
radiomiques provenant de chaque modalité, à savoir CT, PET et UUDI. Le test méticuleux
de paramètres tels que la discrétisation, la taille du voxel et la méthode d’interpolation est
systématiquement entrepris pour discerner la configuration la plus robuste. Cette config-
uration, identifiée à travers une multitude de combinaisons, devient le pivot des analyses
ultérieures. L’évaluation approfondie de la reproductibilité des caractéristiques se fait par
le biais de mesures statistiques, à savoir la corrélation intra-classe (ICC) et le coefficient de
corrélation de concordance (CCC). Ces mesures classent les caractéristiques radiomiques en
groupes sur la base de leurs seuils de reproductibilité, ce qui permet de mieux comprendre
leur fiabilité dans différentes configurations d’imagerie. La redondance au sein des carac-
téristiques est traitée au moyen d’une matrice de corrélation complète, où le coefficient de
corrélation de Spearman sert d’arbitre. Les caractéristiques fortement corrélées sont iden-
tifiées et considérées comme redondantes, ce qui ouvre la voie à un processus de sélection
affiné. La rationalisation de l’ensemble des caractéristiques se poursuit par l’élimination de
celles dont la variance est minimale, comme l’indique un coefficient de variation inférieur
à 0,3. Ce processus judicieux de réduction des caractéristiques permet d’obtenir une sélec-
tion de caractéristiques radiomiques informatives et non redondantes, susceptibles d’offrir
un aperçu nuancé de la dynamique tumorale du PGL et de la réponse au traitement. Nous
avons pu reproduire nos quatre étapes de réponse au traitement, mais cette fois avec des
caractéristiques radiomiques.

La deuxième facette du projet se concentre sur des régions spécifiques, r1 et r3, recon-
nues pour leur corrélation avec les stades de réponse au traitement. Les caractéristiques
radiomiques de ces sous-régions sont extraites indépendamment à l’aide du programme
SERA. Le processus ultérieur de réduction des caractéristiques appliqué à chaque sous-
région vise à distiller des informations clés. L’identification de caractéristiques communes
entre r1 et r3 ouvre une nouvelle dimension d’exploration. Ces caractéristiques communes,
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au nombre de six au total, sont soumises à des tests rigoureux pour détecter les différences
significatives, révélant ainsi leur potentiel en tant que marqueurs. Notamment, cinq de ces
caractéristiques radiomiques sont prometteuses en tant que prédicteurs de la réponse au
traitement, dévoilant une couche de granularité qui peut améliorer de manière significa-
tive notre compréhension du comportement des tumeurs PGL dans différents scénarios de
traitement.

Chapitre 7: Les chapitres 4 et 5 de la thèse présentent deux approches distinctes d’ap-
prentissage machine (ML) pour délimiter les schémas de réponse au traitement dans les
modèles murins de paragangliome (PGL). La première méthode se concentre sur les car-
actéristiques vasculaires, métaboliques et morphologiques, tandis que la seconde identi-
fie les sous-régions tumorales critiques pour prédire les étapes de la réponse au traite-
ment. Validées dans deux études fondamentales, ces approches révèlent des stades distincts
de réponse au traitement, soulignant l’interdépendance des caractéristiques métaboliques,
vasculaires et morphologiques. Les résultats soulignent le potentiel d’une approche mul-
timodale, qui permet de comprendre les changements dynamiques survenant au cours du
traitement.

La première étude catégorise trois stades de réponse au traitement (A, B1/B2, C) chez les
souris PGL, soulignant l’importance des caractéristiques métaboliques, vasculaires et mor-
phologiques dans la caractérisation précise des stades. La deuxième étude identifie quatre
sous-régions (r1-r4), en mettant l’accent sur les régions r1 et r3 en tant que biomarqueurs
potentiels de la résistance au traitement et de la réponse favorable, respectivement. Il s’agit
d’une avancée substantielle dans la prédiction des résultats du traitement et dans l’adapta-
tion de stratégies thérapeutiques efficaces pour le phéochromocytome et le paragangliome.

La recherche souligne l’importance de l’apprentissage automatique dans l’extraction des
caractéristiques des images pour prédire la réponse au traitement. Malgré la petite taille
de l’échantillon, la base de données robuste de l’étude longitudinale renforce la validité des
résultats. La cohérence avec 8 souris partageant la même origine tumorale donne un aperçu
cohérent de la dynamique de la réponse au traitement.

Pour l’avenir, les résultats ouvrent des pistes pour la médecine de précision, où l’ap-
prentissage automatique peut affiner les stratégies de traitement sur la base de caractéris-
tiques moléculaires ou vasculaires spécifiques. Les études futures pourraient étendre ces
méthodologies à des cohortes plus importantes, intégrant diverses modalités et types de
tumeurs. La nature longitudinale de l’étude encourage des examens plus approfondis au fil
du temps, favorisant une compréhension globale de la dynamique de la réponse au traite-
ment. En conclusion, la thèse met en évidence le potentiel de la combinaison de l’apprentis-
sage automatique avec un accent sur les cibles thérapeutiques, offrant des perspectives pour
la poursuite de la recherche et la mise en œuvre clinique dans la médecine de précision.
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