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GENERAL INTRODUCTION

Context

0.1 Introduction

0.1.1 General informations

Suspended particles come in diverse sizes and shapes. Moreover, they can be categorized as either
passive or active particles in nature. Passive particles lack the ability to self-propel within a
fluid. They simply move with the flow of the fluid that they are suspended in. Examples
of passive particles include many common materials such as fibers and dust in addition to
other materials used in nanotechnology, such as gold, silver, titanium dioxide nanoparticles
and crystalline nanocarbons. In contrast, active particles have the ability to move or propel
themselves through a fluid, typically by converting chemical or other forms of energy into motion.
This motion can be self-propelled, meaning that the particle moves independently, or it can be
directed by an external force. Examples of active nanoparticles include bacteria, which propel
themselves using flagella, and synthetic nanoparticles designed to move through fluids for medical
or environmental applications.
Active particles, such as bacteria, microalgae, and zooplankton, play an important role in bio-
fouling in marine engineering. Biofouling is the accumulation of microorganisms, plants, and
animals on submerged surfaces, such as ship hulls, buoys, and offshore structures [1]. Biofoul-
ing can have negative impacts on the performance and efficiency of these structures, and can
also lead to increase maintenance and cleaning costs [2]. Active particles can contribute to
biofouling in several ways. For example, bacteria and microalgae can attach to surfaces and
produce extracellular polymeric substances (EPS) [3], which can form a matrix that adheres to
the surface and provides a substrate for other microorganisms to attach to (see Fig. 1 a). These
microorganisms can also produce enzymes and chemicals that can degrade the surface and make
it more susceptible to biofouling [4]. Zooplankton, such as barnacles (see Fig. 1 b) and mussels,
can also attach to submerged surfaces and form complex communities. These organisms use
a range of mechanisms to attach to surfaces, including adhesion, cementation, and secretion
of byssal threads. Once attached, they can also produce EPS and other substances that can
promote biofilm formation and create a complex and durable fouling community. The study of
active particles in biofouling is an active area of research in marine engineering. Scientists are
developing new methods to prevent and control biofouling, such as antifouling coatings, surface
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Figure 1 – Images show (a) fouling by the green algae (seaweed) Ulva and (b) barnacles [1].

modifications, and biological control agents that target specific microorganisms. Understanding
the role of active particles in biofouling is essential for developing effective strategies to prevent
and manage biofouling in marine environments.
Particles with an anisometric structure are even more intriguing, because they can control not
only their shape but also their functionality. It has seen an almost unbelievable revolution in
science, especially in the study of nano- or micro-sized anisometric particles. The self-assembly
of particles has become an increasingly important area of research in recent years, as it offers
a powerful approach for designing and controlling the properties of materials at the nanoscale.
Anisometric particles are those that have a non-spherical shape, such as rods, plates, or stars,
and they can exhibit a wide range of unique properties, such as tunable plasmonic resonances,
enhanced magnetic or optical properties, and improved catalytic activity. By carefully control-
ling the synthesis and assembly of these particles, researchers can create materials with tailored
properties and functionalities, such as a high surface area for catalysis, strong plasmonic coupling
for sensing or imaging, or tunable optical properties for energy applications.
The study of anisometric particles has opened up new avenues for research in areas such as
nanophotonics, nanoelectronics, and nanomedicine, among others. This broad term consists
of various of biological and physical systems, including suspensions of self-propelled microor-
ganisms such as motile bacteria and microscopic algae [5–7], swarming of self-propelled polar
granular rods [8] and vibrated polar disks [9]. Because of their importance in ecology, medicine,
biofouling in marine structures and a variety of technological applications, there is a growing in-
fluence in studying their behavior in biophysics, colloidal science, fluid mechanics, and statistical
physics [10–16]. The study of the mechanical properties of such substances requires rheological
measurements. A rheological measurement perturbs (slightly or significantly) the substance out
of equilibrium and measures the stress responses. Thus, the study of the dynamics of the non-
equilibrium state of materials is crucial to understanding the rheology of these materials.
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When an active particle swims through a fluid, it generates a propulsive force, Fp, that is bal-
anced by a resistive drag, Fd, from the surrounding fluid. The magnitude of the propulsive force
depends on the specific swimming mechanism and the properties of the fluid, while the magni-
tude of the drag force depends on the size and shape of the particle, as well as the properties of
the fluid. In general, the balance between the propulsive and drag forces determines the velocity
and direction of the particle’s motion.
When an active particle swims through a fluid, it generates a flow field in the surrounding fluid
that is characterized by a force dipole. The magnitude and sign of the force dipole depend on the
swimming mechanism of the particle. For pusher-type particles, such as E. coli and B. subtilis,
the force is generated near the tail of the particle, which pushes the fluid backward, resulting in
a negative force dipole [17]. This means that the flow field generated by a pusher-type particle
is such that the fluid is being pulled towards the particle’s head, and pushed away from its tail
[18]. On the other hand, for puller-type particles, such as Chlamydomonas Reinhardtii, the force
is generated near the head of the particle, which pulls the fluid forward, resulting in a positive
force dipole [17]. This means that the flow field generated by a puller-type particle is such that
the fluid is being pulled towards the particle’s tail, and pushed away from its head [19].
The magnitude of the force dipole, depends on the details of the swimming mechanism and the
properties of the particle and fluid. However, to leading order, the force dipole is proportional
to the propulsive force generated by the particle, and it provides a useful way to characterize
the particle’s swimming behavior and its interaction with the surrounding fluid [17].

0.1.2 Thesis presentation

Surprisingly, despite the different ways they move, the mathematics describing how passive
Brownian particles behave shows striking similarities to the equations that explain the actions
of active particles. This thesis presents a comprehensive exploration of both suspended Brow-
nian rods and active Brownian particles within fluid flow systems. It starts with investigating
the intricate behaviors of suspended Brownian rod-like particles within fluid flow systems. A
kinetic macro-model based on the Fokker-Planck equation is developed to unravel the coupling
between rod concentration and orientation. This model serves as a foundational framework for
understanding the complex dynamics of the system. Subsequently, the investigation is extended
to encompass active Brownian particles, where the developed kinetic macro-model is adapted to
address the distinctive characteristics of these self-propelled entities. The research commences
by elucidating the coupling between rod concentration and orientation within the context of
fluid flows. Numerical simulations across diverse flow configurations uncover the profound im-
pact of rod presence on flow characteristics, resulting in concentration gradients and altered
migration patterns. Furthermore, the role of translational diffusion is established as pivotal
in influencing migration behavior and alignment with flow direction. Building upon this foun-
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dation, the investigation transitions to active Brownian particles is inspired by natural motile
systems. The kinetic macro-model is extended and adapted to encapsulate the unique dynamics
of these active particles. The resulting insights shed light on the distinctive behaviors arising
from self-propulsion, offering a deeper understanding of the interplay between activity, orienta-
tion, and fluid flow. Through the development and extension of this model, the study unveils
the complexities underlying these systems.

0.1.3 Organisation of the report

This manuscript is built according to several chapters, the bibliographic study and the numerical
models. Chapter 1 is a state of art for the suspension of passive and active particles. It describes
the types of anisometric particles and their dynamics. Then the mathematical models of the
suspension and the rheology of anisometric particles with numerical solutions are presented.
After that, it shows the experimental studies on the rheology and cross-stream migrations. A
summary of the numerical work is presented in Chapter 2 to allow a better structuring of the
scientific work produced around the numerical modeling of Brownian rod suspensions. This
chapter is a published article in the Journal of Physical Review Fluids [20]. It derivates a new
kinetic macro-model based on the moments of the probability distribution function to study the
flow of rodlike Brownian particle suspensions. This model is verified by comparing the results
with the solution of the associated Fokker-Planck equation. In Chapter 3, this model is used
to study the rheological behavior of Brownian rod suspensions in flow systems. This chapter
is an article that will be submitted to the Journal of Physical Review Rheology. Chapter 4
explores the dynamics of active particles in complex flow systems, focusing on the active particles
accumulation induced by anisotropic translational diffusion. The study is done by solving the
Fokker-Planck equation for the active particles. Chapter 5 discusses the effect of active particles
on the rheology of the flow systems. Finally, the thesis is finished with a general conclusion and
some perspectives for future work.
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Chapter 1 – State of art

1.1 Brief historical overview

The study of non-Brownian particle suspensions also has a long history, dating back to the early
20th century. One of the earliest studies was carried out by Hagen and Poiseuille in 1837, they
developed the law that describes laminar flow of Newtonian fluids through a cylindrical pipe.
Einstein, building on the work of Reynolds, developed a theoretical framework for the study of
small particle suspensions, known as the Einstein equation [21]. This equation relates the diffu-
sion coefficient of the particles to the size and volume fraction of the particles and the viscosity
of the fluid. When particles are suspended, the properties of non-spherical, axisymmetric parti-
cles such as ellipsoids or rods become more difficult to study. Jeffery developed an equation for
the viscosity of infinitely dilute suspensions using Einstein’s hydrodynamic method [22]. This
equation provides an analytical solution for the orientation dynamics of these particles in shear
flows. The Jeffery’s equation takes into account the effects of both rotational and translational
motions of the particles, as well as the effects of deformation rate and particle geometry. Mason
and co-workers [23, 24] conducted pioneering work in studying the behavior of single particles
in dilute suspensions. Their studies were aimed at validating Jeffery’s equation, which describes
the orientation dynamics of non-spherical particles in shear flows. They analyzed the motion of
single particles in diluted suspensions in detail, using a combination of experimental techniques
and theoretical models. They were able to show that the motion of the particles in shear flow
was consistent with Jeffery’s equation, thereby validating the equation for use in predicting
the behavior of suspensions of non-spherical particles. A particle sample can cause interaction
between these particles and affect the motion. Several studies have explored the orientation
and behavior of particle suspensions in different flow conditions and geometries. For example,
Batchelor and Green [25] studied the orientation of particles in simple shear flow. Dinh and
Armstrong [26] investigated the rheology of suspensions of rigid particles, in semi-concentrated
regimes. They derived a constitutive equation for the total stress in the suspension as a func-
tion of the particle concentration, aspect ratio, and orientation distribution function. They also
showed that the effect of particle-particle interactions becomes significant as the concentration of
particles increases, and that the constitutive equation is sensitive to the form of the interaction
potential. Folgar and Tucker [27] investigated the behavior of particle suspensions in semi-dilute
and concentrated regimes. They demonstrated that the critical volume fraction, above which
the particles begin to interact and align with each other, decreases as the aspect ratio of the
particles increases. To deal with a particle population instead of a single particle, the orientation
distribution function is introduced and it is calculated by solving the Fokker-Planck equation.
Advani and Tucker [28] introduced the concept of orientation tensors to describe the average
particle orientation. The orientation tensors are mathematical quantities that capture informa-
tion about the orientation of a population of particles in a suspension. These tensors can be
used to calculate various rheological properties, such as viscosity and elasticity, and are also used
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in computational models to predict the behavior of particle suspensions under different condi-
tions. The orientation tensors provide a way to describe the complex orientation of particles in
a suspension, which can be difficult to visualize and understand using other methods.

1.2 Single particle

The analysis of the dynamics of suspending particles includes looking at factors like shape and
size that have an impact on the orientation and distribution of their centers of mass within the
fluid medium. Particle can be considered as a rigid and symmetric in Cartesian coordinates
(x1, x2, x3), described as shown in Fig.1.1. A single particle’s orientation can be characterized
by a unit vector p oriented along its primary axis, or by the spherical coordinates θ and ϕ. The
relation between the Cartesian and the spherical components of the particle is

p1 = sinθcosϕ, p2 = sinθsinϕ, p3 = cosθ, (1.1)

where (p1, p2, p3) are the Cartesian components of p. It is noted that the particles are symmetric,
so the "head" of the particle is identical to its "tail", this gives

p → −p, (1.2)

or equivalent to
θ → π − θ and ϕ → ϕ+ π. (1.3)
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Figure 1.1 – Orientation of a single axisymmetric slender particle which is described by the two
angles θ and ϕ, or by a unit vector p.

Particle is generally characterised with the shape factor λ, which is a scalar parameter related
to the particle aspect ratio ar = L/d, where L is the particle’s length and d is the particle’s
diameter, such as

λ = a2
r − 1
a2

r + 1 . (1.4)

For spherical particles, λ = 0, while for slender particles λ → 1, and for ellipsoidal particles
0 < λ < 1.
Particle position in space is determined by a vector rc where this vector defines the position of
center of mass of the particle with respect to the center of the coordinates system (see Fig. 1.2),
and translational velocity vector ṙc in the Cartesian system.
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Figure 1.2 – Position presentation of single particle and particle orientation in a Cartesian system
(X1, X2, X3).

1.3 Particle Sample

1.3.1 Particle Sample: Concentration regimes

The rheological behavior of a particle in a suspension depends on the amount of particles in the
solution. This particle concentration can be represented by

— the volume fraction of the particles ϕf which is the ratio between the volume occupied by
the particles and the volume of the suspension,

— or n is the number of particles per unit volume.

For example, for cylindrical particles of length L and diameter d, ϕf is written

ϕf = nπ
Ld2

4 . (1.5)

Particle concentration regimes are classified according to the volume fraction of solid particles
in the fluid. Consider a sample of particles suspending in a flow. Depending on the particle
volume fraction, suspension is called a dilute regime when the distance between the particles is
significant so the particle can suspend freely without encountering other particles. This regime
is defined by

ϕf << 1/a2
r or n << 1

L3 . (1.6)

When the distance between the particles is reduced, the semi-dilute regime is defined, for this
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case, ϕf and n are written

1/a2
r << ϕf << 1/ar or 1

L3 << n <<
1
L2d

. (1.7)

Particle interactions take place, these interactions affect the orientation of each particle in the
sample.
Finally, if the distance between two particles becomes of the order of d, the particles can no
longer move without interacting with each other, which leads to intersections of particles between
them [29]. In this case, the suspension is in the concentrated regime,

ϕf >> 1/ar or n >> 1
L2d

. (1.8)

Figure 1.3 illustrates the concentration regimes in the function of concentration ϕf and aspect
ratio ar. This graph makes it possible to locate the concentration regime of a suspension by
knowing ϕf and ar. For example, taking ar = 20, the volume fraction must be less than 0.004
for a solution to be dilute and greater than 0.067 for it to be concentrated.

Figure 1.3 – Concentration regimes of volume fraction and aspect ratio [30].
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1.3.2 Particle Sample: Distiribution function

In reality, the particles in a suspension will have different orientations and positions, and their
distribution may not be homogeneous. Therefore, to study the behavior of a particle sample, it
is necessary to consider the orientation and position of each particle in the suspension.
To describe the orientation state and specific location of monodispersed particles in the suspen-
sion, a probability distribution function is used, denoted by Ψ(rc,p, t). This function provides
a broad description of the distribution of particles with a specific length and diameter in terms
of their orientation and location. It is defined such that the number of particles with a center
of mass vector rc and orientation vectors p, at time t is equal to

Ψ(rc,p, t)drcdp. (1.9)

In homogeneous flows, where the flow properties do not vary with position, the distribution
function Ψ(rc,p, t) can be factored as the product of two separate functions [26]

Ψ(rc,p, t) = c(rc, t)ψ(p, t), (1.10)

where c(rc, t) is the particle concentration function and represents the probability of finding a
particle at a particular position at a given time [17]

c(rc, t) =
∫

p
Ψ(rc,p, t)dp, (1.11)

and ψ(p) or ψ(θ, ϕ), describes the orientation state of a set of particles. The probability of
finding a particle lying in the range between θ1 and θ1 + dθ1, and between ϕ1 and ϕ1 + dϕ1 is

P (θ1 ≤ θ ≤ θ1 + dθ1, ϕ1 ≤ ϕ ≤ ϕ1 + dϕ1) = ψ(θ1, ϕ1)sinθ1dθdϕ. (1.12)

Due to normalization conditions, the integral of this function over oriented space must equal
unity ∫ 2π

ϕ=0

∫ π

θ=0
ψ(θ, ϕ)sinθdθdϕ =

∫
p
ψ(p)dp = 1. (1.13)

For symmetric particles, ψ(p, t) must be periodic or, in other words, it must satisfy the following
relation

ψ(p) = ψ(−p). (1.14)

and

ψ(θ, ϕ) = ψ(π − θ, ϕ+ π). (1.15)

When particles are isotropic in 3D, ψ = 1/(4π), when particles are planar ψ = 1/(2π) over all
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the domain (see Fig. 1.4a), while when particles are aligned in the flow direction, Ψ/c is a Dirac
function (see Fig. 1.4b).

(a) (b)

Figure 1.4 – Representation of ψ with respect to ϕ for (a) random planar, (b) aligned particles
in 2D orientation.

1.3.3 Particle Sample: Orientation tensors

Orientation tensors are used to represent the orientation state of particles in a more compact
and convenient manner. They are mathematical objects that describe the statistical distribution
of particle orientations within a given volume or region of space.
The definition of an orientation tensor depends on the order of the tensor. For example, the
second-order tensor is often used to represent the orientation of particles in a suspension. It is
defined as

a2 =
∫

p
ppdpψ(p) =

∫ 2π

ϕ=0

∫ π

θ=0
ppψ(θ, ϕ)sinθdθdϕ (1.16)

Similarly, the fourth-order orientation tensor can be defined as

a4 =
∫

p
ppppdpψ(p) =

∫ 2π

ϕ=0

∫ π

θ=0
ppppψ(θ, ϕ)sinθdθdϕ (1.17)

If the distribution function ψ is even for axisymmetric particles (i.e., p = −p ), then all odd-order
tensors will be zero. This is because odd-order tensors describe asymmetry in the distribution
of particles, which is not present in an axisymmetric distribution. Symmetric properties are
expressed as

aij = aji, (1.18)

aijkl = ajikl = akijl = alijk... (1.19)
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Normalization properties are expressed as

∑
aii = 1, (1.20)

∑
aijkk = aij . (1.21)

Due to symmetry and normalization conditions (Eqs. 1.18-1.21), the second-order orientation
tensor has only 5 independent components, while the fourth-order orientation tensor has 15
independent components.

Figure 1.5 – Representation of the particle orientation with the related orientation tensor a2 in
a representative elementary volume [31].

The components of the orientation tensor (aij) have a physical explanation. The diagonal terms
aii represents the degree of alignment of particles along the xi direction, the larger the value of aii,
the more aligned the particles are in the corresponding direction. The off-diagonal components
aij (i ̸= j) represent the correlation between the orientation of particles along different principal
axes. Fig. 1.5a shows an isotropic orientation distribution, with a2 a diagonal matrix of aii = 1

3 .
If all particles lie in the x1x2 plane (Fig. 1.5b), then a2 is a diagonal of a11 = a22 = 1

2 related to
Fig. 1.4a while a33 = 0. If the particles are perfectly aligned in the direction of x1 (Fig. 1.5c)
related to Fig. 1.4b, then a11 = 1 and a22 = a33 = 0.
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1.4 Suspension of anisometric particles

1.4.1 Single particle

The translation motion is due to the fluid forces acting on the particle, which can be described
by the drag force. In a fluid flow, the drag force acting on the particle will cause it to move
with the fluid. The orientation motion of the particle is due to the torque resulting from the
velocity gradient of the flow. The velocity gradient induces a difference in the fluid flow on
different parts of the particle, resulting in a net torque that tends to align the particle with
the flow direction. The value of this torque is dependent to the particle’s aspect ratio and the
orientation of the particle, it will change with time as the particle rotates and aligns with the
flow. Both translation and orientation motion are important in understanding the behavior of
particle suspensions in fluid flows. The translation motion establishes the overall motion and
transport of the particles, while the orientation motion determines the alignment and structure
of the particles in the flow.
For a motion of particle in a moving fluid given by the velocity vector u, the classical analysis by
Jeffery [22] treats a single, rigid particle in an infinite body of Newtonian fluid. The unperturbed
fluid velocity is assumed to be a linear function of position, inertia and body forces are assumed
to be negligible. The solution from Jeffery indicates that at that point, the centroid of the
particle translates with the unperturbed fluid velocity. His solution for the time derivation of
centroid position vector rc is

ṙc = u, (1.22)

while the rotational motion of the particle, written as an expression for the time derivative of
the orientation vector p is

ṗj = −1
2ω · p + 1

2λ(γ̇ · p − γ̇ : ppp), (1.23)

where ω and γ̇ are the vorticity and the deformation rate tensors, respectively.
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(a) Sphere particle λ = 0. (b) Ellipsoidal particle λ = 0.5. (c) Slender particle λ = 1.

Figure 1.6 – Particle orientation as a function of strain using Jeffery’s equation for different
values of λ (a) λ = 0, (b) λ = 0.5 and (c) λ = 1 of initial value p⃗0 = ( 1√

3 ,
1√
3 ,

1√
3). The particles

are initially isotropic and subjected to a simple shear flow with γ̇ = 1s−1.

Solving the equation of particle orientation as a function of the deformation γ = γ̇t in a simple
shear flow with a flow direction parallel to x1, and velocity gradient parallel to x3 for different
values of λ gives the results in Fig. 1.6, which shows that for a spherical particle (see Fig. 1.6a)
the values of p1 and p3 is changing periodically with deformation while p2 is constant. The
spherical particle goes constant rotation around x3 axis. Ellipsoidal particle (see Fig. 1.6b)
undergoes a periodic rotation in the x3 direction but different amplitudes, p3 has the lowest
amplitude, while p1 has the highest amplitude and, p1 and p2 has approximately the same
period. For a slender particle (see Fig. 1.6c) p1 increased to 1 and, p2 and p3 decreased to 0
meaning that the particle aligns in the direction of x1, the direction of the flow.
Fig. 1.7 provides an explanation for these results in 2D. For slender particle when the particle
is aligned vertical the torque "T11"(see Fig.1.7) will cause the particle to rotate rapidly, and as
time passes and the particle rotates, the torque magnitude will decrease due to the cross-section
affected by the fluid flow is becoming smaller "T11 > T12 > T13 > T14", when the particle
aligns with the flow, the torque T14 is negligible because the width of the slender particle d
is negligible, as a result the particle will stop rotating. For the ellipsoidal particle, the same
concept "T21 > T22 > T23 > T24" but the torque acting on a horizontally aligned particle will
not be zero "T24 ̸= 0" because the ellipsoidal width d is not negligible, this gives continuous
rotation of the particle with different rotating velocity. For spherical particle, L = d this will
keep the torque rotating the particle constant independent on the orientation of the particle
"T31 = T32 = T33 = T34", which will cause constant rotation in both directions x1 and x2.
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Figure 1.7 – Schemes representing how particle orients in a simple shear flow for different values
of λ.

1.4.2 Particle interactions

Folgar and Tucker [27] represented a general version of the particle orientation equation for
three dimensional flow fields, based on Jeffery’s equation, which describes the complete orien-
tation of the particles in a semi-concentrated regime, where particle-particle interaction occurs.
The rotary diffusion Dr = CI γ̇ is introduced, where CI is the interaction coefficient, γ̇ is the
generalized shear rate defined as γ̇ =

√
1
2 γ̇ : γ̇.

ṗ = −1
2ω · p + 1

2λ(γ̇ · p − γ̇ : ppp) + CI γ̇∇plog(Ψ) (1.24)

Depending on the particle concentration, there are many models of CI . Bay [32] conducted
significant experimental work and proposed the following fitting curve for CI as a function of
ϕfL/D:

CI = 0.0184exp(−0.7148ϕfL

d
) (1.25)

This research demonstrates the particle interaction’s screening impact in concentrated suspen-
sions. Ranganathan and Advani [33] presented the following theoretical model based on Doi-
Edwards theory:

CI = K

ac/L
(1.26)

where K is a proportionality constant and ac is the average interparticle spacing.The particle
interaction in this model is influenced by the orientation states via ac. Particularly, for particle
suspension in a viscoelastic media, Ramazani et al. [34] modified the work of Ranganathan and
Advani as follows:

CI = K

ac/L

1
(a : c)n

(1.27)
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where n is a constant and c is the polymer conformation tensor. According to this theory,
the particle interaction decreases as the polymers are stretched in the direction of the particle
orientation. The work of Ramazani et al. [34] was also used by Park and Kwon [35] in developing
a rheological model for a particle suspension in a viscoelastic media, and the coupling effect
between particle and polymer in CI was found to be dominant only at the high shear rate
regime.
Also there had been several anisotropic diffusivity models developed in the literature [36–38].
The anisotropic diffusivity model could fit the experimental data better than the isotropic model
particularly for a long particle composite [38].

1.4.3 Fokker-Planck equation

A mathematical model known as the Fokker-Planck equation is used to explain how the proba-
bility distribution of particles in a system varies over time, offering important insights into their
collective behavior. The time evolution of the probability distribution function ψ(p) (Fokker-
Planck Equation) is

∂ψ

∂t
= −∇p · (ψṗj) + CI γ̇∇2

pψ. (1.28)

The particle orientation distribution function ψ is a convected quantity because it moves with
the bulk motion of the fluid due to the advection of the particles. However, the evolution of
ψ is also affected by the particle-particle interactions and the fluid flow field, which can cause
changes in the particle orientation distribution. The convective term in the transport equation
for ψ represents the advection of ψ due to the fluid flow (the first term of the right-hand side
of Eq. 1.28), while the diffusive term represents the rotary diffusion of the particles and their
interactions with neighboring particles in the suspension (the second term of the right-hand
side of Eq. 1.28). The balance between advection and diffusion of particles in the suspension
determines the evolution of the orientation distribution function.∇2

p represents the Laplacian
operator in the configurational space.
Distribution function calculation (DFC) is the process of solving the orientation states using the
probability distribution function ψ. Although numerical approaches may be used to calculate
DFC necessitates high computing effort. Thus one needs a more compact and efficient descrip-
tion of the orientation state to be used. For this case, orientation tensors were derived.

The Fokker-Planck equation of evolution of ψ(rc,p, t) is

∂ψ

∂t
+ u · ∇x(ψ) = −∇p · (ψṗj) + CI γ̇∇plog(ψ). (1.29)

Fig. 1.8 shows the influence of the parameter CI on the orientation distribution function calcu-
lated from Eq. 1.28, in the stationary case. It is observed that
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- as long as the interaction coefficient is non-zero, the particles are not perfectly aligned in the
direction of flow,
- an exacerbation of the value of the interaction coefficient has the effect of flaring the proba-
bility distribution function ψ. In other words, an increase in the CI coefficient has the effect of
increasing the average misalignment of the particles.

Figure 1.8 – Influence of CI parameter on the distribution function of orientation (ψ) or (ψϕ),
as a function of the orientation angle ϕ in a shear flow (γ̇ = 1/s) [27].

To conclude, the flow tends to orient the particles in a certain direction, while the diffusion via
CI tends to bring the particles back to an isotropic distribution. The orientation distribution
reaches a steady-state resulting from these two conflicting influences. Moreover, the addition
of a coefficient of diffusion makes it possible to account for the irreversible character of the
orientation in shear flow for example, in agreement with experimental observations.

1.4.4 Orientation tensor: Closure approximations

The second-order tensor evolution is determined from the single particle evolution equation
described by Jeffery [22], which is correct only for dilute regimes. In a filled system, the particles
will interact with each other during a flow and thus modify the evolution of the orientation tensor.

Da2
Dt

+ 1
2(ω · a2 − a2 · ω) = 1

2λ(γ̇ · a2 + a2 · γ̇ − 2γ̇ : a4) + 2Dr(δ − 3a2). (1.30)

40

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



1.4. Suspension of anisometric particles

Eq. 1.30 for the evolution of tensor of order 2 involves the orientation tensor of order 4. Generally
speaking, the resolution of the evolution equation of order 2k requires knowledge of the tensor
of order 2k + 2. To get a solution, we focus on finding a relation between a2 and a4. To get
around this difficulty, a closure approximation is introduced to allow for example to calculate
the tensor of order four as a function of the tensor of order two.

— Linear closure
Hand [39] is one of the pioneers to propose a so-called linear closure equation. This
closure approximation is exact for a population of randomly oriented particles. However,
for other types of flow, it can sometimes provide non-physical results. The linear closure
approximation suggested by Hand [39] is a linear combination of the tensor of order two
and identity tensor. It is written

aijkl = c1(δijδkl +δikδjl +δilδjk)+c2(aijδkl +aikδjl +ailδjk +aklδij +ajlδik +ajkδil). (1.31)

c1 and c2 are in case of 3D

c1 = −1
35 and c2 = 1

7 , (1.32)

while in case of 2D
c1 = −1

24 and c2 = 1
6 . (1.33)

— Quadratic closure
For flows that orient particles in one direction, the use of the quadratic closure approxi-
mation is correct [40]. The latter is simple and is written as follows

aijkl = aijakl. (1.34)

The quadratic closure approximation is widely used, but it does not respect all the sym-
metry conditions of the order tensor 4. Indeed, writing a1122 = a11a22 or a1212 = a12a12

gives very different results [41].

— Hybrid closure
To set up a closing equation with a wider range of validity, Hinch and Leal [42] sought
an approximation for the doubly contracted product γ̇ : a4, in the case of an isotropic
distribution and a perfectly aligned orientation of the particles. Then, Advani and Tucker
[28] developed a new so-called hybrid closure approximation, based on the idea of a simple
mixing law. This approximation is used in many numerical simulations. Writing this ap-
proximation combines two approximations described above (linear and quadratic closures)
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which results in 3D

aijkl = f(aijakl) + (1 − f)[− 1
35(δijδkl + δikδjl + δilδjk)

+ 1
7(aijδkl + aikδjl + ailδjk + δijakl + δikajl + δilajk)], (1.35)

where
f = 1 − 27det(a2). (1.36)

The hybrid closure performance is good in the equations of change for planar orientation,
while in the three-dimensional version it is poor.

— IBOF closure
Other more advanced closure approximations exist, for example, the natural approxima-
tion (NAT) suggested by Verleye and Dupret [43] and the orthotropic closure approxima-
tions proposed by Cintra and Tucker [44]. Both seek a precise approximation by fitting
particular solutions for the distribution function Ψ. The natural exhibits good transient
behavior, but slightly overestimates the equilibrium state of orientation concerning the
exact solution of the probability of orientation distribution. However, peculiarities exist
when applying the native approximation [45]. To circumvent these difficulties, Chung and
Kwon [46] developed a closure approximation based on the adjustment of the invariants
of the 2-order orientation tensor, called Invariant-Based Optimal Fitting (IBOF). This
approximation improves the precision of the natural approximation by addressing the sin-
gularity problems. The IBOF approximation is written as follows

aijkl =β1S(δijδij) + β2S(δijakl) + β3S(aijakl)+

β4S(δijakmaml) + β5S(aijakmaml) + β6S(aimamjaknanl).
(1.37)

S is an operator which transforms a tensor of order four into a symmetric tensor satis-
fying the complete conditions of symmetry. The six coefficients, βi, are represented by
polynomial expansions as a function of the second and third invariants of the two-order
orientation tensor, similar to the natural closure approximation. The unknown parameters
in the polynomial expansions are determined by following the method introduced by the
orthotropic closure approximation, which is a least squares-optimized adjustment tech-
nique of various flow data generated from solutions of the probability of the distribution
function.

Figure 1.9 shows a comparison between the quadratic, linear, hybrid and IBOF closures with
the distribution function calculation (DFC) solution of ψ for Dr = 0.01/s in a simple shear flow
(γ̇ = 1/s).
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(a) a11 (b) a12

Figure 1.9 – Comparing orientation tensor components for different closures with the DFC
solution for Dr = 0.01 for initially random planar particles (γ̇ = 1/s).

1.5 Brownian motion

Brownian particles are small particles suspended in a fluid medium, these particles are often on
the nanoscale or microscale and can consist of various materials, such as colloids, nanoparticles or
biological molecules. Due to the random collisions between the particles and the fluid molecules,
these particles exhibit continuous, erratic motion known as Brownian motion. Brownian motion
is a physical phenomenon discovered by the Scottish botanist Robert Brown in 1827 [47]. Brown
observed that small particles suspended in a fluid undergo a random motion, which he attributed
to the motion of the fluid molecules. The random motion observed in Brownian motion is a
consequence of the diffusion phenomenon [48]. However, it was not until the work of Einstein in
1905 that the theory of Brownian motion was fully explained [21]. Einstein’s theoretical work
showed that the motion of the particles was a result of the random collisions with the fluid
molecules. He derived an expression for the mean squared displacement of a Brownian particle,
which is now known as the Einstein-Smoluchowski equation. This equation relates the diffusion
coefficient of the particle to its size, shape, and viscosity of the fluid.
The study of Brownian motion has since become a fundamental topic in statistical physics and
has led to important insights into the behavior of materials at the nanoscale.
The mathematical description of Brownian motion is based on the theory of stochastic processes.
In particular, Brownian motion is modeled as a continuous-time random walk, where the position
of the particle at any given time is a random variable. The statistical properties of Brownian
motion can be described by the Wiener process, which is a continuous-time stochastic process
that has independent and identically distributed Gaussian increments. The Wiener process is
a mathematical model for the random walk of a particle undergoing Brownian motion, and is

43

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



Chapter 1 – State of art

named after Norbert Wiener, who first introduced the process in his paper "Differential Space"
[49].
Brownian motion can be mathematically described using stochastic differential equations known
as Langevin equations. The Langevin equation for a particle in one dimension is given by

m
d2x

dt2
= −γf

dx

dt
+ F (t), (1.38)

where m is the mass of the particle, γf is the friction coefficient, F (t) is the random force due
to collisions with the surrounding fluid molecules, and x is the position of the particle.
The random force F (t) is modeled as a Gaussian white noise process, which has the properties

⟨F (t)⟩ = 0, (1.39)

⟨F (t)F (t′)⟩ = 2Dδ(t− t′). (1.40)

⟨·⟩ denotes the ensemble average, D is the diffusion coefficient, and δ(t) is the Dirac delta
function.

1.5.1 Suspension of Brownian particles

Particles fluctuate because of a large number of collisions with fluid molecules [50]. Hydro-
dynamic forces compete with thermal and interparticle interactions to set the structure and
dictate attributes when an external driving force, such as shear, is applied. Brownian motion
plays a role in determining particle orientation, and one would expect that as the suspension
becomes more dilute, this effect will become more important than particle-particle interactions.
The case of strong Brownian motion acting on axisymmetric particles has been treated in detail
by Burgers [51]. Leal et al. [52] derived an expression for the equilibrium distribution of orbit
constants when the effect of Brownian motion is everywhere suitably small, but dominant over
inertial and particle-particle interaction effects. A rheological theory for a dilute suspension
of Brownian, non-spherical, axisymmetric particles, such as rods and disks, was proposed by
Brenner [53]. Based on this research, it was shown that non-spherical particles had anisotropic
macroscopic transport characteristics due to their sensitivity to particle orientation. Gallily
and Cohen [54] investigated the dynamic interaction of non-spherical particles’ translation and
Brownian rotation, demonstrating a strong connection between the translational and rotational
movements for particles with large aspect ratios. Gentry et al. [55] determined the diffusion
coefficients of chrysotile fibers by comparing the fractional penetration and size distribution of
the test fibers before and after a diffusion battery.
The Brownian rotary diffusion is Dr = kBT

Rw
[56], where kB is Boltzman constant, T is the tem-

perature, the resistance coefficient Rw = πηL3

log(L/2d) , and η is the viscosity. Brownian diffusion
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also plays an important role in the particle translation velocity [57], where the translational
diffusivity is Dt = D∥pp + D⊥(δ − pp). D∥ and D⊥ are the translation diffusion coefficients
parallel and perpendicular to the particle orientation, respectively. They are equal to D∥ = kBT

ζ∥

and D⊥ = kBT
ζ⊥

, ζ|| is the friction coefficient in the parallel to the particle direction, ζ|| = 2πηL
log(L/d)

, while ζ⊥ is the friction coefficient in the perpendicular to the particle direction.
Therefore, the equation of translation of Brownian particles is [40]

ṙc = u − Dt · ∇xlog(Ψ), (1.41)

while the equation of orientation is

ṗ = −1
2ω · p + 1

2λ(γ̇ · p − γ̇ : ppp) −Dr∇plog(Ψ), (1.42)

where ∇x and ∇p are the gradient operators in the spatial and configurational spaces, respec-
tively.

1.5.2 Fokker-Planck of Brownian particles

By accounting for both the hydrodynamic forces, and the stochastic effects of Brownian motion,
the Fokker-Planck equation offers insights into the particles diffusion behavior. Knowing that
the particle-particle interactions are negligable in the case of Brownian particles and based on
the equations of motion of the Brownian particles (Eqs. 1.41 and 1.42), the FP equation for
Brownian particles is

∂Ψ
∂t

+ u · ∇x(Ψ) = ∇x · (Dt · ∇xΨ) − ∇p · (Ψṗj) +Dr∇2
p(Ψ). (1.43)

The term translational diffusion term ∇x · (Dt · ∇xΨ) appears in the Fokker-Planck equation
for Brownian particles.

1.5.3 Effect of Brownian rotary diffusion

To study the effect of Brownian motion on particle orientation, a simple test is done, on initially
2D planar oriented particles, initially oriented particles of a11 = 0.6 and a12 = 0, and initially
perfectly aligned particles in the flow direction. Solving the equation of evolution of a2, using
quadratic closure, for 50 seconds, where we have a simple shear flow for the first 25 seconds, and
then we stop the flow for the next 25 seconds (in other words γ̇ = 1/s for 0s ≤ t ≤ 25s then
γ̇ = 0/s for 25s ≤ t ≤ 50s ) for CI = 0.1 for non-Brownian particles and Dr = 0.1/s for Brownian
particles. Then the behavior of the particles rotation is compared for both Brownian particles
(Figs. 1.10a,1.11a, and 1.12a) and a non-Brownian particles (Figs. 1.10b, 1.12b, and 1.12b).
We found that after stopping the flow, non-Brownain particles remain at their final orientation
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while Brownian particles returns to be 2D planar independent of the initial orientation. This
gives evidence that Brownian diffusion plays an important role in particles orientation, even in
the absence of the flow, in taking particles to the isotropic situation.

(a) Brownian particles. (b) Non-Brownian particles.

Figure 1.10 – Evolution of second-order orientation tensor components a11 and a12 as a function
of time, for a particles initially 2D planar, in a simple shear flow (γ̇ = 1/s) and then stopping
the flow (γ̇ = 0/s).

(a) Brownian particles. (b) Non-Brownian particles.

Figure 1.11 – Evolution of second-order orientation tensor components a11 and a12 as a function
of time, for a particles initially oriented particles of a11 = 0.6 and a12 = 0, in a simple shear
flow (γ̇ = 1/s) and then stopping the flow (γ̇ = 0/s).
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(a) Brownian particles. (b) Non-Brownian particles.

Figure 1.12 – Evolution of second-order orientation tensor components a11 and a12 as a function
of time, for a particles initially perfectly aligned in the flow direction, in a simple shear flow
(γ̇ = 1/s) and then stopping the flow (γ̇ = 0/s).

1.6 Active particles

1.6.1 Single particle

Active particles are microscopic particles that possess self-propulsion mechanisms, allowing them
to move autonomously within a fluid medium, with a particle swimming velocity Vs. Their
motion is driven by internal energy sources, differentiating them from traditional Brownian
particles that rely solely on thermal fluctuations. They generate a propulsive force, Fp that is
balanced by the drag force, Fd, from the surrounding fluid [17]. These particles are not fully
symmetric in shape, the "head" of the particle can be differentiated form the "tail", so p ̸= −p.
This fundamental asymmetry, coupled with variations in propulsion mechanisms, categorizes
active particles into "pushers" and "pullers" (see Fig. 1.13). Pusher particle exerts a thrust with
its tail (such as B.subtilis and E. coli), while puller particle is a head-actuated particle (such as
C. reinhardtii).
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Figure 1.13 – Schematic diagrams of pusher and puller particles, of which E. coli and C. rein-
hardtii are paradigmatic examples [17].

1.6.2 Suspension of active particles

Several models have been proposed to describe the behavior of suspensions of active particles.
One of the earliest and most widely used models is the Vicsek model (VM [58–63]) , introduced
by Vicsek et al. in 1995 [64]. This model accounts for perturbations by adding a random angle
to the average direction, which are thought to be a natural result of the numerous stochastic and
deterministic factors influencing the motion of the flocking organisms. The units move with a
fixed absolute velocity Vs and take on the average direction of others within a specified distance
in this self-propelled particle approach that resembles a cellular automaton. The equations of
motion for the velocity (vi) and position (xi) of particle i having neighbors labelled with j are

vi(t+ 1) = Vs
⟨vj(t)⟩
|⟨vj(t)⟩| + perturbation, (1.44)

xi(t+ 1) = xi(t) + vi(t+ 1). (1.45)

It should be noted that the processes that such an alignment rule can account for can have
very different origins (stickiness, hydrodynamics, pre-programmed, information processing, etc.).
There are numerous ways to account for perturbations. The way they are represented in the
standard version is by adding a random angle to the angle corresponding to the average direction
of motion in the neighborhood of particle i. The angle of the direction of motion ϑi(t + 1) at
time t+ 1, is obtained from ϑi(t) = arctan

[
⟨vj,x⟩
⟨vj,y⟩

]
, as

ϑi(t+ 1) = ϑi(t) + ∆i(t), (1.46)

where vj,x and vj,y are the x and y coordinates of the velocity of the jth particle in the neighbor-
hood of particle i, and the perturbations are represented by ∆i(t), which is a random number
taken from a uniform distribution in the interval (i.e., the final direction of particle i is obtained
after rotating the average direction of the neighbors with a random angle). The normalized
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average velocity is , φ ≡ 1
Nv0

∣∣∣∑N
i=1 vi

∣∣∣, where N is the number of particles.
A generic model of a self-propelled spherical particle with dynamics is described by the over-
damped Langevin equations [65, 66]. Hydrodynamic models have also been developed previously
[67–69].
The most general model is developed by Saintillan [70], which is based on Fokker-Planck equa-
tion and similar to the passive particles models. It can be shown that the translational equation
of the active particles is

ṙc = u − Dt · ∇x(logΨ) + Vsp, (1.47)

while the orientation equation is

ṗ = −1
2ω · p + 1

2λ(γ̇ · p − γ̇ : ppp) −Dr∇plog(Ψ). (1.48)

In Eq. 1.47, the velocity of the particle’s center of mass is expressed as the sum of its swim-
ming velocity Vsp, the local fluid velocity u induced on the particles in the suspension and the
translational diffusion term. Eq. 1.48 shows that the swimming velocity does not have a direct
effect on the evolution of particle orientation.

1.6.3 Fokker-Planck equation of active particles

Taking into consideration the particle velocity (Vs) and based on Eqs. 1.47 and 1.48 and the
work of Saintillan [70], the FP equation of the active particles is

∂Ψ
∂t

+ u · ∇x(Ψ) = −∇x · (VspΨ) + ∇x · (Dt · ∇xΨ) − ∇p · (Ψṗj) +Dr∇2
p(Ψ). (1.49)

In the case of active particles, the particle velocity term ∇x·(VspΨ) appears in the Fokker-Planck
equation.

1.6.4 Issues for active systems

The mentioned closure approximations are based on certain assumptions that does not work
with non-symmetric particles. When dealing with these particles, it is important to consider
more advanced closure approximations or numerical techniques that can handle the complex-
ities introduced by the active particles. Recently, closures have been used for computational
models applied to active fluids [71–73]. Theillard and Saintillan [74] introduced a novel frame-
work designed for the efficient simulation of active fluid dynamics within intricate two- and
three-dimensional microfluidic geometries. They employ a continuum mean-field model that
integrates partial differential equations. These equations govern the evolution of concentration,
polarization, and nematic tensor fields. They implemented a level-set method coupled with
an adaptive mesh refinement scheme utilizing Quad-/Octree grids. This combination enables
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the accurate representation of complex domain shapes while efficiently refining solutions near
boundaries or areas of sharp gradients. The Bingham closure, introduced by Chaubal and Leal
in the context of liquid crystal polymers [75], has been found to agree well with the underlying
kinetic theory; yet the closure is non-trivial to compute, requiring the solution of an often nearly-
singular nonlinear equation at every spatial discretization point at every timestep. Weady et
al. [76] presented a robust, accurate, and efficient numerical scheme for evaluating the Bingham
closure, with a controllable error/efficiency tradeoff. Conducting simulations at high resolu-
tion, Weady et al. [76] explored a coarse-grained continuum model applied to an active particle
suspension within parameter regimes that lie beyond the reach of conventional kinetic theories.
Examination of these simulations brought to light a notable insight: inaccuracies in closure com-
putation can significantly constrain the achievable spatial resolution within the coarse-grained
fields.

1.7 Stress tensor and flow problem

As a result of the particles motion, it is necessary to express the stress field.

1.7.1 Stress contribution: Non-Brownian particles

It is interesting to have the general constitutive equation, which represents the behavior of the
material for different flows (shear, elongation or combination of both) and particular regimes
(stationary, transient). The total stress generic form is

Σ = −pδ + Σm + Σf , (1.50)

where −pδ is the hydrostatic part. Σm and Σf are the contribution of the fluid and the particles,
respectively.
Batchelor [77] proposed a rheological constitutive law for rigid particles of ellipsoid shapes in a
Newtonian fluid. He calculated the contribution of particles with the same orientation in the
case of a dilute solution. Then Eq. 1.50 becomes

Σ = −pδ + 2ηγ̇ + 2ηNpa4 : γ̇, (1.51)

where η is the viscosity and Np is the coupling coefficient which depends on the volume function
of the particles ϕf and their aspect ratio ar such as

Np = 8ϕfa
2
r

3log(ar) . (1.52)

Batchelor [78] extended his work from the case of a diluted regime to a case of a semi-diluted
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one. He models the stresses in elongational flow with particles aligned in the direction of fluid
flow. The proposed relation for Np is

Np = ϕfa
2
r

9[log(2ar) − log(1 + 2ar

√
ϕf/π) − 1.5]

. (1.53)

Dinh and Armstrong [26] took into account the hydrodynamic interactions by calculating the
stress field at the surface of a particle of negligible diameter compared to its length. Their value
of Np is

Np = ϕfa
2
r

3log(2hr/d) , (1.54)

where hr represents the characteristic distance between two neighboring particles. This distance
then depends on the orientation of the particles and takes the value

— hr = d
√
π/ϕf/2 for aligned particles

— hr = πd/(2ϕfar)/2 for isotropic oriented particles

This value of Np has given rise to several approaches to have a better prediction of the flow
of a suspension [79–81]. However, experimental works have been carried out to determine this
parameter [80, 82, 83].

1.7.2 Stress contribution: Brownian particles

The contribution of Brownian motion to the stress in a fluid can be modelled by considering
the momentum transfer between the Brownian particles and the fluid. The fluid experiences a
force due to the random motion of the Brownian particles, which contributes to the stress in the
fluid.
The total stress tensor Σij can be expressed as the sum of the Newtonian stress tensor ΣN

ij and
the Brownian stress tensor ΣB

ij is
Σ = ΣN

ij + ΣB
ij . (1.55)

The Newtonian stress tensor is given by [84]

ΣN
ij = −pδij + µ

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (1.56)

The Brownian stress tensor ΣB
ij can be written as

ΣB
ij = 1

V

N∑
k

F i
kx

j
k. (1.57)

where N is the number of Brownian particles, V is the volume of the fluid, F i
k is the i-component
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of the force on the k-th Brownian particle, and xj
k is the j-component of the position of the k-th

Brownian particle.
According to Brenner [53], the stress generated by a group of Brownian particles depends on
their orientation.

Σf = 2µ0γ̇ + µ1(γ̇ : a2) + µ2γ̇ : a4 + 2µ3(a2 · γ̇ + γ̇ · a2) + 2µ4Dr(3a2 − δ), (1.58)

where µi are five material coefficients that rely on the aspect ratio of the particles ar and their
volume fraction. This equation allows for a more detailed description of the stress generated by
Brownian particles, taking into account their orientation distribution.
Concentrated suspensions, according to Phan-Thien [85, 86] are made up of doublets of nearby
particles. Their theoretical development results in a constitutive equation for particle stress is

Σp = η(ϕ) [(1 − ξ)γ̇ : a4 + γ̇ (K · a2 + a2 · K + tr(K)a2 − 2K : a4)] . (1.59)

ξ is a scalar value that depends on the separation distance of the sphere pairs. The authors left
part of the definition of K, a dimensionless tensor that represents a measure of anisotropy in
particle self-diffusion, open. Phan-Thien et al. [37] propose a model for K is

K = K3δ + (K1 −K3) 2a(1) · a(1)

tr
(
a(1) · a(1)) + (K2 −K1) a(2) · a(2)

tr
(
a(2) · a(2)) , (1.60)

where a(1) = 2γ̇ and a(2) = D
Dta

(1) + ∇v · a(1) + a(1) · (∇v)T are the first two Rivlin-Ericksen
tensors. Ki, (i = 1, 2, 3), are constants that have certain restrictions for K to be positive
semidefinite. Even so, different sets of Ki greatly influence the computed normal stress differ-
ences, including their sign. The model has proven quite good, at least qualitatively ([37, 87]).
Mason and Weitz [88] used video microscopy to measure the orientation distribution function
of Brownian particles in sheared suspensions. They discovered that the Brownian stress makes
a significant contribution to the total stress, especially at low shear rates and high particle
concentrations. Crocker and Grier [89] used dynamic light scattering to measure the diffusion
coefficient of Brownian particles in sheared suspensions. It is shown that the diffusion coefficient
is affected by the shear rate and the particle concentration, and they used their results to esti-
mate the Brownian stress contribution to the suspension viscosity. Dhont and Briels [90] used
computer simulations to investigate the Brownian stress in sheared suspensions of hard spheres.
They found that the Brownian stress is sensitive to the particle size and the interparticle poten-
tial, and they showed that the stress can be decomposed into contributions from different length
scales.
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1.7.3 Stress contribution: Active particles

A microswimmer’s form can be complicated, with flagella connected to a rigid body similar to
bacteria. The drag force created by the rotating flagella is compensated by the drag force at
the rigid body’s surface, according to the motion’s force-free and torque-free features. Then,
depending on the orientation of the force dipoles concerning the swimming direction, a micro-
swimmer at low Reynolds number can be considered as a dipole of forces in the far-field limit
and dubbed a pusher or a puller [14] (see Fig. 1.14). A pusher generates a force dipole that
points away from its swimming direction, while a puller generates a force dipole that points
towards its swimming direction. Pusher particles move fluid towards their sides as they swim
by creating a flow field away from their body along the swimming axis. However, pullers repel
fluid along their sides while drawing it in along their swimming axis.

Figure 1.14 – The flow fields produced by pusher and puller particles are as follows: (a) pusher
particles produce a flow field that is directed away from the cell along their swimming axis and
towards the cell along their side; (b) puller particles produce a flow field that is the opposite of
that of pusher particles, i.e., a flow field that is directed towards the cell along their swimming
axis and away from the cell along their sides; (c) two pusher particles have a tendency to align
with the local forcing of the cell on the surrounding fluid is shown by the red solid arrows, and
the induced flow direction is shown by the blue dotted arrows (d) two pullers on a diverging
course reorient each other, tending toward a configuration in which the cells are antiparallel,
swimming away from each other. [91].

By taking into account the dynamics of two swimmers, it is possible to gain a deeper knowledge
of these numerous body systems. Assume that cell A and cell B are two swimming organisms.
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In general, cell A’s flow field will result in two different passive hydrodynamic interactions with
its neighbour (cell B). The disturbance velocity field that cell A has produced will first be felt
by cell B, which will then be carried along by this flow. Additionally, cell B’s orientation is
prone to change due to the gradients of the cell A-created induced disturbance velocity field,
which could impact how it swims in the future. Different rotational behaviors are therefore
anticipated, depending on the type of induced velocity, such as in suspensions of pusher and
puller particles. Two pullers tend to swim away from each other as they approach each other
while two pushers tend to align and swim side by side, as shown in Fig. 1.14.
Some micro-swimmers, to propel themselves, do not move or deform their bodies. They are
subjected to tangential stresses across their entire surface, as are purely spherical swimmers like
droplets propelled by Marangoni stresses [92]. Microswimmers are known as squirmers in this
situation.
A stresslet is a mathematical description of the flow created by a dipole of hydrodynamic forces
and is presented as [91]

v(r) = σ0
8πηr3

[
3 cos2 ϕ− 1

]
r, (1.61)

Figure 1.15 – Force dipole structure of the flagellated bacterium E. coli, measured experimentally
in the bulk [18]

where r is the position with respect to the hydrodynamic dipole’s center and σ0 is the magnitude
of the force dipole. σ0 is the energy expended by the swimmer to propel himself.
As a result, local stress is created σa(r, t). Let us donate by rα(t) the position of the centers of
the force dipoles. The forces are then applied at positions rα ± ℓpα where ℓ is the half-distance
between the two points where the forces are applied and pα is the normalized orientation of the
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force dipole. The stress σa(r, t) created locally by the swimmer’s assembly is defined as

−∇ · σa ≡ f(r, t), (1.62)

where f(r, t) is the local results of the force exerted by the swimmers on the fluid, which reads

f(r, t) = f
N∑

α=1
pα [δ (r − rα(t) − ℓpα(t)) − δ (r − rα(t) + ℓpα(t))] . (1.63)

f is the magnitude of the force involved in the force dipoles and δ is the Dirac function. By
expanding the Dirac function δ (r − rα(t) ± ℓpα(t)) about rα(t), it is possible to show that the
expression of the shear stress, to the leading order neglecting gradients, is [93]

(σa)i,j (r, t) = ℓfn(r, t)
(
pipj − 1

3δij

)
. (1.64)

This expression is a coarse-grained version of the shear stress, considering a local density of
swimmers n(r, t) with the same orientations. The active shear stress is crucial in rheology and
has been used to build the first predictive theory for the rheology of active particles [94].

According to Saintillan et al. [70], the total stress of active particles is decomposed as the sum
of the Newtonian stress and a particle extra stress,

Σ = −pI + 2ηγ̇ + Σp. (1.65)

The particle extra stress Σp is calculated in the dilute regime as a configurational average of a
particle’s force dipole S(p) on the fluid.

Σp(x, t) =
∫

Ω
S(p)Ψ(x,p, t)dp. (1.66)

The dipole S(p) is the result of several contributions, including resistance to stretching of the
external flow, Brownian torques, and the permanent dipole due to self-propulsion [42, 79, 95],
Sf (p),Sb(p),Ss(p) respectively. It is equal to

S(p) = Sf + Sb + Ss. (1.67)

The hydrodynamic stress can be expressed as

Sf (p) = A(pp : γ̇)
[
pp − δ

3

]
. (1.68)

where A is a constant depending on the particle shape. For a slender particle, it can be obtained
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from slender-body theory as A = πµL3

6log(2/ar) [42, 77]. The contribution arises from Brownian
motions can be expressed as

Sb(p) = 3kBT

[
pp − δ

3

]
. (1.69)

Finally, the permenant dipole arises from self propulsion is expressed as

Ss(p) = σ0

[
pp − δ

3

]
, (1.70)

where the dipole or stresslet strength σ0 is a constant that can be regarded as a measure of
activity depending on the method used to swim (as mentioned before).

1.8 Numerical solutions of particle suspensions

In light of recent developments and research, this section explores the use of computational
approaches to solve.

1.8.1 Finite volume method and Finite element method for the distribution
function

(a) Control volume used to perform flux balances
for the probability distribution function. The faces
of the control volume labelled as e, w, n and s refers
to east, west, north and south directions.

(b) Schematic representation of the periodic bound-
ary conditions on the total meshed domain.

Figure 1.16 – Representation of the schematic model used by Férec et al. [96] to solve the Fokker
Planck equation using FVM.
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(a) Evolution of a11 with respect to strain for Per =
1, 10, 100 and 1000.

(b) Evolution of a1212 with respect to strain for
Per = 1, 10, 100, 1000 and 10000.

Figure 1.17 – Comparison of a11 and a1212 components obtained by solving orientation distri-
bution function in simple shear flow by Férec et al. [96] and previous work from literature.

Figure 1.18 – Calculation CPU time for different spatial schemes, time schemes and Peclet
numbers [96].

Férec et al. [96] solved the Fokker-Planck equation using finite volume method (FVM) for non-
brownian particles. They tested different time and spatial schemes to reduce considerably the
computational time and to cover a wide range of the rotary Peclet (Pe = γ̇

Dr
) number. They

compared the results for Pe ≤ 103 with the data available in the literature and for Pe ≥ 103.
Excellent agreement was observed and the method allowed them to describe the evolution of the
fourth-order orientation tensor components of particles in transient simple shear (forward and
reverse) flows, and they compare with the predictions of an orthotropic closure approximation.
Fig. 1.16a depicts the control volume used to perform the flux balance and Fig. 1.16b shows
the periodic boundary conditions applied to calculate the distribution function. Fig. 1.17a
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shows the comparison between the results obtained from solving the FVM by Férec et al. [96]
and the work of Advani [97] and Bay [32]. The components in Fig. 1.17b are determined
by the computation of the probability distribution function for reverse simple shear flows (a
negative constant shear rate was considered). For these, the initial orientation is set by the
final orientation reached during the previous forward flow. The results are reported for different
values of the Peclet number and as functions of strain. Fig. 1.18 shows the required CPU times
for various combinations for a total flow time for different schemes.
Following the work of Férec et al. [96], the numerical approach has been updated by Mezi et
al. [98] to deal with a two-dimensional representation of particle orientation state (i.e., planar
orientation state) (see Fig. 1.19a ), solved using COMSOL Multiphysics. These results where
verified with a previous work (see Fig. 1.19b ). A numerical study is presented for particle
suspension flows through a parallel plate channel and a planar 4:1 contraction. The suggested
method addresses the macroscopic scale by describing the particle orientation state with the
probability distribution function (PDF), as opposed to using orientation tensors for the macro-
scopic constitutive modeling. As the numerical scheme solves the PDF in both the spatial and
configurational spaces, it enables them to eliminate the error caused by the closure approxima-
tion when using orientation tensor description. This makes it possible to apply expressions for
the particle extra stress correctly.

(a) Generalized shear rate distribution of fluid do-
main in the xy-plane for a Newtonian fluid. Ellip-
soids represent the average particle orientation and
eigenvalues are scaled with 1/10 for better visual-
ization.

(b) Comparison of the FE to single-point calcula-
tions (SPC) of the orientation components in par-
allel plate channel for the streamlines along the line
y/H = 0.85. Predictions obtained with the IBOF
closure approximation are also shown.

Figure 1.19 – Representation of the results obtained by the work of Mezi et al. [98].

Assaad et al. [99] developed numerical model to analyze the dynamic behavior of particles. The
foundation of this model lies in a direct solver approach for the Fokker-Planck equation for a 2D
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probability density function. The implementation of this numerical model takes place within a
finite element framework. They conducted a study to assess the impact of mesh refinement, time
scheme, and time stepping on the computational modeling of PDF evolution. The objective of
this investigation is to strike a balance between model accuracy and computational efficiency.
Fig. 1.20a shows the effect of change of time step ∆t on the evolution of a11, while Fig. 1.20b
illustrates the effect of mesh on the numerical solutions.

(a) Effect of decreasing time step ∆t with constant
mesh size.

(b) Effect of mesh refinment with a constant time
step.

Figure 1.20 – Convergence study: Effect of (a) decreasing time step ∆t with constant mesh
size (b) mesh refinment with a constant time step on the numerical solution of the orientation
component axx [99].

Wegener et al. [100] used an efficient numerical solution of the Fokker-Planck equation for
the orientation probability density of particle suspensions using physics-conforming FEM. They
utilized the continuous Galerkin method to obtain a numerical solution. This solution is repre-
sented in terms of Lagrange basis functions associated with nodes in a computational mesh in
3D physical space, as well as nodes on the surface of a unit sphere representing the configuration
space. Fig. 1.21a shows the geometry and the mesh used to solve the problem , they used coarse
mesh in 3D. Fig. 1.21b shows the values of the maximum eigen values of a2 (a11). These results
are in good agreement with those obtained by Lohmann [101] using a physics compatible FE
discretization of the Folgar-Tucker equation.
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(a) Axisymmetric contraction geometry in 3D,
coarse mesh for the spatial domain [100].

(b) Axisymmetric contraction, orientation compo-
nent a11 [100].

Figure 1.21 – Representation of (a) mesh of the axisymmetric contraction geometry (b) orien-
tation component a11 by the work of Wegener et al. [100].

1.9 Experiments on anisometric particles

1.9.1 Rheological features for different concentration regimes

Mangesana et al. [102] studied the effect of high solids concentration and coarse particle sizes
of different average diameters (d50 = 90µm, 180µm and 300µm) on the viscosity of a suspension
of water and silica sand. They found that the apparent viscosity and yield stress increased
with solids concentration and particle size at the different pseudo shear rates. Fig. 1.22 shows
how the apparent viscosity of the three size fractions varies with shear rate and different solids
concentrations. As can be seen, the apparent viscosity increases as the solids concentration
increases.
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(a) Apparent viscosity of d50 = 90µm sand as a
function of shear rate.

(b) Apparent viscosity of d50 = 180µm sand as a
function of shear rate.

(c) Apparent viscosity of d50 = 300µm sand as a
function of shear rate.

Figure 1.22 – Comparing the effect of solid concentrations on the viscosity as a function of shear
rate [102].

Shafiei et al. [103] examined the rheological properties and microstructure of nanocrystalline
cellulose (NCC) aqueous suspensions. It has been investigated at different concentrations. They
showed in Fig. 1.23 that the variation of viscosity with respect to the shear rate is affected
with the concentration of the particles in the medium. As concentration increases, the viscosity
increases. These results agree with the work of Li et al. [104], who studied the rheology of
aqueous suspensions of chitin crystallites. It is also consistent with the work of Jia et al. [105],
who worked on the amorphous cellulose suspension.
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Figure 1.23 – Comparison of the viscosity as a function of shear rate of NCC samples of different
concentrations [103].

1.9.2 Rheology of active systems

While swimming, an active particle suspended in a fluid creates a local flow. This flow can be
captured by a far-field force dipole, as shown in Eq. 1.61, and it contributes to the particle’s
stress on the outer fluid. The swimmer’s shear flow is super imposed on the imposed shear flow,
causing a rheological response that is dependent on the swimmer’s mean orientation with the
shear flow. The phenomenology of active particle rheology can be captured by imposing shear
flows similar to those produced by the particles. The use of extremely precise experimental
setups capable of generating flows with shear rates of γ̇ ≤ 1/s is then required. Micro-rheology
setups [106], microfluidic rheometers [107], and low-shear Couette rheometers [108, 109] have all
been developed for this purpose. The findings of these studies reveal some interesting aspects
of the rheology of active particles of the puller and pusher types.
Solomon et al. [110] show the relationship between shear rate and viscosity for concentrated rod
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suspensions with an aspect ratio of 8.4 and an ionic strength of 0.002M . As the concentration
of the rods increases, three qualitative effects become apparent (as shown in Fig. 1.24). First,
the magnitude of viscosity increases. Second, the characteristic shear rate for the onset of shear
thinning behavior decreases. Third, the severity of shear thinning, as characterized by the
power-law exponent, increases. These observations were consistent across all the concentrated
suspensions studied, regardless of their ionic strength or aspect ratio. For pushers, Sokolov et
al. [106] have demonstrated the effect of viscosity reduction in Bacillus subtilis suspensions for
the first time (Fig 1.25). Bacillus subtilis is a flagellated elongated pusher bacterium, similar to
E. coli. Gachelin et al. [107] later demonstrated a similar behavior for E. coli suspension using a
microfluidic setup (Fig. 1.26) that allowed them to vary the shear rate of the imposed flow (Fig.
1.27). Fig. 1.27(a) shows the relative viscosity of suspensions of motile and non-motile bacteria
as a function of the maximum shear rate for a concentration of 0.8%. The relative viscosity is
plotted as a function of the maximum shear rate. The plot reveals that the relative viscosity of
the motile bacteria is non-monotonic, with a minimum value below 1 at small shear rates, an
increase in viscosity with increasing shear rate (shear-thickening), and then shear-thinning at
higher shear rates. The viscosity of the non-motile bacteria does not show a decrease in viscosity
below one or shear-thickening behavior. Fig. 1.27(b) illustrates that the qualitative behavior of
the relative viscosity is the same for all concentrations. Fig. 1.27(c) demonstrates changes in
relative viscosity as a function of the volume fraction for various shear rates. The plot reveals
that a decrease in viscosity below one is observed for the small shear rates. With increasing
concentration, a sharp increase in viscosity takes place for all shear rates, corresponding to a
semi-dilute regime.
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Figure 1.24 – Shear-thinning rheology of colloidal hematite rods. The shear viscosity, normalized
by the viscosity of the carrying fluid, is plotted as a function of the shear rate for different rods
concentrations [110]

Figure 1.25 – Reduction of viscosity in Bacillus subtilis suspensions. Ratio of the effective shear
viscosity over the viscosity of the bacteria medium, measured for a suspension of Bacillus subtilis
(pusher bacteria) at different cell concentration n [106]
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Figure 1.26 – Microfluidic rheometer to measure the viscosity of bacteria suspensions [107]
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Figure 1.27 – Non-Newtonian behavior of E. coli suspensions [107]
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Figure 1.28 – Superfluid state of E. coli suspensions [109]

Figure 1.29 – Viscosity of puller swimmers : the example of Chlamydomonas reinhardtii [108]

Lopez et al. [109] carried out these experiments in a low-shear rheometer, which allowed them
to apply Couette flows at shear rates as low as γ̇ = 0.04/s. They discovered that, under certain
medium conditions and at a fixed shear rate, E. coli viscosity drops to zero for a wide range of
cell concentrations, resembling a superfluid regime (Fig.1.28).
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For pullers, using a Couette rheometer, Rafai et al. [108] determined the effective viscosity of
Chlamydomonas reinhardtii. Their findings show an increase in viscosity at low shear rates,
with a minimum of γ̇ = 4/s being investigated. When compared to non-motile algae, activity
also plays an important role in the increase of effective shear viscosity depending on the rotary
diffusion (Fig.1.30).

Figure 1.30 – Rheology of non-tumblers (smooth) and slender (λ = 1) swimmers (pushers and
pullers) [70]

1.9.3 Cross-stream migration in non-rheological flow

Experimental investigations were carried out in Newtonian liquids by Karnis et al. [111], em-
ploying single rigid spheres, rods, and disks. These particles were characterized by densities
matching those of the liquids. The flow conditions subjected them to particle Reynolds numbers
ranging between 3 × 10−6 and 7 × 10−3. Notably, the rods and disks exhibited the same tubu-
lar pinch effect that was previously observed with rigid spheres at these particular Reynolds
numbers. During the experiments, particles initially positioned near the tube wall displayed
an inward migration phenomenon, while particles situated closer to the tube axis underwent
an outward movement. This dynamic persisted until an equilibrium radial position (r) was
attained, approximating one-half of the tube radius (R), as depicted in Fig. 1.31.
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Figure 1.31 – Radial migration to the equilibrium position r/R = 1/2 approximately, exhibited
by spheres, rods and disks at high Reynold number when suspended in polyglycol oils flowing
through a tube of radius R = 0.2cm [111].

Nitsche and Hinch [112] addressed the cross-stream migration of rigid rods undergoing diffusion
and advection in parabolic flow between flat plates. Clear and unequivocal findings regarding the
observable concentration profiles across the channel are extracted through the implementation
of a finite-difference solution for the full Fokker-Planck equation in the lateral position y and
azimuthal angle θ dimensions. Notably, this analysis excludes the influences of steric confinement
and hydrodynamic wall effects, which predominantly manifest within narrow boundary layers.
The computational outcomes strongly suggest the propensity for rods to undergo migration
towards the channel walls (see Fig. 1.32).
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Figure 1.32 – Steady-state angle-averaged probability density functions at Per = 10 [112].

Schiek and Shaqfeh [113] considered slender particle migrations across streamlines in a sus-
pension under plane Poiseuille flow. They considered the weak flow limit such that Brownian
motion strongly affects the particle position and orientation. They found that at steady state
the particles centre-of-mass distribution function shows a net migration of particles away from
the centre of the channel and towards the channel walls.
The tendency of swimming particles to accumulate near boundaries distinguishes confined active
suspensions. Rothschild [114] measured the concentration of swimming bull spermatozoa in a
glass chamber and reported a nonuniform distribution across the channel with a significant
concentration spike near the walls, as seen in Fig. 1.33. This was the first study to demonstrate
this.
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Figure 1.33 – Distribution of swimming bull spermatozoa (semen diluted 1/30) in a Hawksley
hremocytometer chamber 200µm [114].

When Berke et al. [115] carried out the same experiment again with Escherichia coli suspensions
in microchannels, they also noticed bacterial buildup at the channel walls (see Fig. 1.34).

Figure 1.34 – Experimental data: number of swimming cells n as a function of the distance to
the bottom cover slip y when the distance between the surfaces is H = 200µm [115].

Sartori et al. [116] conducted empirical investigations into the concentration profiles of bacte-
rial suspensions constrained within slits characterized by heights h comparable to the typical
persistence length of the cells. Specifically, they focused on MG1655 E. coli and wild-type P.
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aeruginosa bacteria. These experimental observations were complemented by numerical simula-
tions employing a simplified model of self-propelling particles. In both the experimental studies
and numerical simulations, a consistent pattern emerges that the concentration profiles exhibit
similarity, regardless of the specific motility pattern (see Fig. 1.35). This accumulation is an
effect of a longer detention time close to the walls which is due to the cells alignment induced
by steric interactions with solid walls.

Figure 1.35 – Experimental concentration profiles obtained for MG1655 E. coli (full squares) and
wild-type P. aerugionosa (full circles). The corresponding results from the simulations of the
Run and Tumble [117] (RT) (empty squares) and Run and Reverse [118] (RR) (empty circles)
models are reported for comparison. In this case the slit height h = 100µm and 75% of the
bacteria are motile [116].

1.10 Conclusion of the chapter

This chapter presents a state of the art on the suspension of active particles. However, the
various questions, several parts are presented to allow the suspension of non-Brownian and
Brownian particles in the flow. Firstly, the interest is focused on understanding the anisometric
particle properties, its orientation and its position. Also, in this part, the difference between a
Brownian and non-Brownian particle and a passive and active particle are introduced. Then,
the description of particle movement in fluid flows is made clearer. Jeffery’s equation gives a
description of particle orientation in the case of a diluted fiber solution. Thus, this model is
a base for the evolution of the orientation of the particles by adding other terms. The second
part of this chapter is dedicated to describing the different concentration regimes, in addition
to introducing the probability distribution function and its moments that are used to depict the
suspension of particles sample. After that, the Fokker-Planck equation is introduced to solve
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the evolution of the probability density function before explaining the stress tensor generated by
the presence of particles in the flow. In the third part, the various numerical methods employed
to model the flow of particles are shown, including the finite volume and finite element methods
used for solving the Fokker-Planck equation and the closure approximations used for solving the
evolution of the second-order orientation tensors. Final part of this chapter gives a background of
the experimental studies done on the anisometric particles. It starts with showing the rheological
features for different concentration regimes, then it sheds light on the rheology of active particles.
Finally, it displays cross-stream migrations in non-rheological flows.
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Chapter 2 – Modeling and numerical simulations of Brownian rodlike particles with anisotropic
translational diffusion

A new kinetic macromodel based on moments of the probability distribution function is pro-
posed to investigate the flow of rodlike Brownian particle suspensions. The rods concentration-
orientation coupling is taken into account. A numerical study is presented for rods through
the planar channel, with and without introducing a circular obstacle which develops a nonho-
mogeneous flow. To verify this macromodel, the results are compared with the solution of the
associated Fokker-Planck equation taking into consideration an anisotropic translational diffu-
sion tensor. This tensor depends on the local orientation of the rod. Low (smaller than 103 )
Brownian translational Peclet number causes rod migrations across the flow streamlines.
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Un nouveau macromodèle cinétique basé sur les moments de la fonction de distribution de
probabilité est proposé pour étudier l’écoulement de suspensions de particules browniennes en
forme de bâtonnets. Le couplage concentration-orientation des bâtonnets est pris en compte.
Une étude numérique est présentée pour des tiges à travers un canal planaire, avec et sans
introduction d’un obstacle circulaire qui développe un écoulement non homogène. Pour vérifier
ce macromodèle, les résultats sont comparés à la solution de l’équation de Fokker-Planck associée
qui prend en compte un tenseur de diffusion translationnelle anisotrope. Ce tenseur dépend de
l’orientation locale de la tige. Un nombre de Peclet brownien de translation faible (inférieur à
103) provoque des migrations de la tige à travers les lignes de courant.
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translational diffusion

2.1 Introduction

Mechanical, thermal, or electrical properties are influenced significantly by the concentration
and orientation distributions of nanoparticles in composite materials. Thus, predicting and
controlling the concentration and orientation state of particle suspensions is critical for designing
a successful manufacturing process of advanced materials [119–121].
Researchers have theoretically studied the evolution of the orientation of anisotropic particles ho-
mogeneously suspended during flow. Jeffery [22] derived the equation of motion of one isolated,
inertialess, and axisymmetric particle in a Newtonian fluid with a uniform velocity gradient.
When a dilute fiber suspension is exposed to a constant shear flow, fibers tend to align in the
flow direction [122, 123]. Folgar and Tucker [27] modified Jeffery’s equation by introducing
a scalar diffusion term to capture phenomenologically the interactions between non-Brownian
particles in nondilute regimes. According to additional research, various perturbations inherent
in flowing channels can have an impact on the reproducibility and endurance of rotations. Small
deviations from a perfect axisymmetric rod shape, for example, can result in doubly periodic and
chaotic orbits, which have been investigated both theoretically and experimentally [124–126].
Jeffery’s orbits are perturbed by the proximity of channel walls [127–131], inertia [126], and the
viscoelasticity of the shearing fluid [132, 133]. The Fokker-Planck equation (FP) for Brownian
particles is derived from the work of Kirkwood and Auer [134] by Doi and Edwards [40]. Rheo-
optical techniques have been used to measure rod distributions [135, 136], and these results were
compared to theoretical expectations and Brownian dynamics simulations [137–140]. Brownian
fluctuations and their effect on orbits of individual Brownian rods in a microchannel flow have
been studied theoretically [141]. In both the spatial and configurational spaces, some numeri-
cal strategies have been developed to solve the Fokker-Planck equation directly [98, 142–147].
Park and Park [148] and Férec et al. [149] provided thorough reviews of the fundamentals and
numerical simulations for predicting fiber orientation during the injection molding of polymer
composites.
When dispersed in a Newtonian liquid, isolated particles may exhibit cross-stream migration.
Schiek and Shaqfeh [113] considered fiber migration across streamlines in a suspension under a
plane Poiseuille flow in the weak flow limit, such that Brownian motion strongly affects the fiber
position and orientation. At steady state, the center-of-mass distribution of fibers shows a net
migration of fibers away from the center of the channel and toward the channel walls. Nitsche
and Hinch [112] addressed the cross-stream migration of rigid rods undergoing diffusion and ad-
vection in a parabolic flow between flat plates. Results are obtained from using a finite-difference
scheme for the solution of the Fokker-Planck equation. The results indicate that rods migrate
toward the walls and toward the higher shear zone. Park et al. [150] used a kinetic theory to
study the cross-stream migration of a rigid polymer undergoing rectilinear flow in the vicinity of
a wall. In a simple shear flow, polymers migrate away from the wall, while in a pressure-driven
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flow, the center-of-mass distribution has an off-center maximum. This is because of the com-
petition between the hydrodynamic interactions with the wall and the anisotropic diffusivity
induced by the inhomogeneous flow field. Sharaf et al. [151] established that Brownian motion
plays a significant role in the deposition of nanoparticles on the channel walls at low Reynolds
number.
Solving a multidimensional Fokker-Planck equation has high computational costs. Developing
an equivalent kinetic macromodel is a strategy to render the numerical solution of detailed
physics overall more accessible. There is a large amount of published literature showing the use
of macromodels for predicting particle orientation or concentration. Advani and Tucker [152]
used a set of even-order tensors related to the coefficients of a Fourier series expansion of the
probability distribution function to describe fiber orientation in suspensions containing short
rigid fibers. Phillips et al. [153] proposed a constitutive equation for computing particle con-
centration and velocity fields in concentrated monomodal, spherical suspensions. Shapley et
al. [154] compared the predictions of several models of particle migration to laser Doppler ve-
locimetry measurements in various concentrated suspensions of noncolloidal spheres in a Couette
flow. The models predict the observed macroscopic shear rate and concentration profiles well
at moderate bulk particle concentration but diverge from one another at high concentrations.
These models are either used to predict the orientation or the concentration, without studying
the correlation between both. Saintillan and Shelley [12] derived a basic kinetic model for a
suspension of self-propelled rodlike particles and discussed its stability and nonlinear dynamics.
Weady et al. [76] restated and coarse grained a continuum kinetic model for an active suspen-
sion. These two models approximate the translational diffusion to a constant, while in fact,
this diffusion is anisotropic and depends on the orientation of the particle. A macromodel that
considers the coupling of concentration and orientation of Brownian rods is not yet available in
the literature. This mutual coupling is especially interesting in the context of active nematic
suspensions. Typical models of active nematic suspensions assume isotropic diffusion, and there-
fore uniform concentration; however many physical systems show significant fluctuations [155].
This work aims to build a new macromodel to solve the motion of suspended rodlike particles
in flows in a nonhomogeneous system taking into consideration the coupling of particle concen-
tration and orientation. To verify this model, a new numerical strategy is developed to solve
the configurational and spatial Fokker-Planck equation of suspension of Brownian particles in
a Newtonian viscous fluid. Particle suspensions are studied in a planar channel, and with the
presence of a circular obstacle. The structure of this article is as follows. Sec. 2.2 focuses on
the theoretical modeling. Then Sec. 2.3 describes the flow problem used to solve the rodlike
particle suspensions. Finally, before the conclusion, Sec. 2.4 shows the numerical results in the
two geometries, planar channel with and without a circular obstacle, and the verification of the
macromodel.
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translational diffusion

2.2 Theoretical model

2.2.1 Hypotheses

Let us consider a suspension of Brownian rodlike particles of length L and width d. The particles
are monodisperse, neutrally buoyant, and rigid. The suspension is considered in the dilute regime
of concentration, where c << (d/L)2. Each particle is described with a position vector of the
particle’s centroid rc and an orientation unit vector p.

2.2.2 Kinetic model equation

A suspension of Brownian particles can be described via a probability distribution function
Ψ(rc,p, t). It represents the probability to find a particle at location rc, at the level of elementary
volume [see Fig. 2.1a], with orientation p at time t. In the dilute regime, a single-particle
Smoluchowski equation can be obtained as follows [22, 26, 27, 40]:

∂Ψ
∂t

= −∇x · (ṙcΨ) − ∇p · (ṗΨ) . (2.1)

The evolution of the position of a Brownian particle with respect to time, ṙc, is

ṙc = u − Dt · ∇x log Ψ, (2.2)

and the evolution of its orientation with respect to time, ṗ, can be written as

ṗ = ṗj −Dr∇p log Ψ, (2.3)

where ṗj is the Jeffery’s equation and it is given by

ṗj = −1
2ω · p + λ

2 (γ̇ · p − γ̇ : ppp) . (2.4)

Dr and Dt are the rotary diffusion coefficient and translational diffusion tensor, respectively. The
latter for nonspherical, rigid particles are defined by Dt = D∥pp +D⊥ (δ − pp), where D∥ and
D⊥ are constants that characterize the diffusion parallel and perpendicular to the particle axis.
The rotary diffusion can also have a tensorial form similar to Dt. However, the scalar product
of p with ∇p equals zero, which reduces the rotary diffusion to a scalar [40]. u is the external
flow velocity vector at location rc. ∇p and ∇x denote the gradient operators in configurational
and spatial spaces, respectively. ω, γ̇, and δ are the vorticity, strain rate, and identity tensors,
respectively. λ is a constant form factor as a function of the rod aspect ratio ar = L/d. Hence,
the expanded version of Eq. (2.1), by taking into account the fluid incompressibility condition,
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is
DΨ
Dt

= ∇x · (Dt · ∇xΨ) − ∇p · (ṗjΨ) +Dr∇2
pΨ, (2.5)

where D(...)
Dt = ∂(...)

∂t + u · ∇x(...) is the material derivative operator and ∇2
p is the Laplacian

operator in configurational domain. In what follows, we derive an equivalent evolution equation
based on the second-order moment of Ψ.

2.2.3 Second-order moment of Ψ

The second-order moment of Ψ, A2, contains information on the local concentration and orien-
tation of particles and is defined as

A2 = 1
V

∫
p

∫
rc

ppΨdrcdp. (2.6)

The trace of A2 is the concentration field c, which represents the mean number density in the
suspension, it is the zeroth-order moment of Ψ

c = 1
V

∫
p

∫
rc

Ψdrcdp. (2.7)

V represents the volume, which is large enough to contain a statistically significant number of
particles but smaller than the characteristic length scale of the macroscopic properties of the
system under consideration. Figure 2.1 provides two-dimensional (2D) examples on how A2 can
describe the particle concentration and orientation in the elementary volume. It represents A2

for two concentrations c1 and c2, with c2 ≥ c1. At the macroscopic level, A2 = A2(x, t), where
x is the position vector of the elementry volume.
The evolution of A2 is obtained by premultiplying Eq. (2.5) with the tensor pp/V and integrating
it over the spatial and configurational spaces. We focus here on the first term on the right-hand
side of Eq. (2.5), since the material derivative of the orientational divergence part of Eq. (2.5)
is similarly derived in the literature [152]. First, the divergence operator is expanded to obtain

1
V

∫
p

∫
rc

∇x · (Dt · ∇xΨ) ppdrcdp = 1
V

∇x · ∇x ·
∫

p

∫
rc

DtppΨdrcdp

= D⊥∇2
xA2 +

(
D∥ −D⊥

)
∇x∇x : A4,

(2.8)

Where A4 = 1
V

∫
p
∫

rc
ppppΨdrcdp is the fourth-order moment of Ψ. After the full derivation,

the evolution of the tensor A2 is obtained

DA2
Dt

= − 1
2 (ω · A2 − A2 · ω) + λ

2 (γ̇ · A2 + A2 · γ̇ − 2A4 : γ̇)

+ 2Dr (cδ − αA2) +D⊥∇2
xA2 +

(
D∥ −D⊥

)
∇x∇x : A4.

(2.9)

81

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



Chapter 2 – Modeling and numerical simulations of Brownian rodlike particles with anisotropic
translational diffusion

(a) Two-dimensional random rods with concen-
tration c1.

(b) Perfectly aligned rods in the x direction
with concentration c1.

(c) Two-dimensional random rods with concen-
tration c2.

(d) Perfectly aligned rods in the x direction
with concentration c2.

Figure 2.1 – Representation of A2 in an elementary surface for different concentrations and
orientations.

where α equals 2 in 2D and 3 in 3D. The full derivation of Eq. (2.9) is reported in Appendix A.1.
It can be noticed that the time evolution of the tensor A2 depends on higher-order moments
of Ψ. Hence, the problem requires a closure approximation. Fortunately, the standard closure
approximations [44, 46, 156] can be applied for this case, where the particles are axisymmetric,
by being careful to normalize the tensor A2 by c to maintain the condition of having a unitary
trace. The Tucker and coworkers model is recovered from Eq. (2.9) by setting the translational
diffusion to zero (i.e., D⊥ = D∥ = 0) and then dividing by the trace of A2 [152]. The last
term in Eq. (2.9) is the Hessian operator and the last two terms of Eq. (2.9) show implicitly
the coupling between the local concentration and the local orientation of Brownian particles. It
is explained in Sec. 2.2.4. The last two terms have been omitted in recent works but they can
change drastically the obtained microstructures as we will discuss below [76, 153, 157, 158].
The derived macromodel enables one to solve a set of partial differential equations (PDEs) rather
than a full 5D Fokker-Planck equation [Eq. (2.5)], to be discussed below, drastically simplifying
the problem.

82

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



2.2. Theoretical model

2.2.4 Concentration field of Brownian rods

The concentration field c is represented by the trace of A2. So the evolution of concentration of
the Brownian rods in a suspending fluid can be derived from Eq. (2.9)

Dc

Dt
= D⊥∇2

xc+ (D∥ −D⊥)∇x∇x : A2. (2.10)

The last term in Eq. (2.10) (Hessian operator) shows the coupling between the concentration
and the local orientation of the Brownian rods and it requires knowledge of A2, while A2 does
not appear in the concentration equation when diffusion is isotropic (i.e., D∥ = D⊥) .

2.2.5 Dimensionless formulation of the problem

The problem identified by Eq. (2.5) or by Eq. (2.9) in its tensor form, describes the evolution of
spatial and orientational configurations of a suspension of Brownian rodlike particles in a flow
field. These systems of equations will be analyzed numerically in the following sections. Choosing
the particle length L as the characteristic length and the characteristic strain rate |γ̇| = Uavg/L,
where Uavg is the average flow velocity, the definitions of the dimensionless variables for the
problem, denoted with an asterisk, are

t∗ = t |γ̇| , (2.11)

u∗ = u
L |γ̇|

, (2.12)

Per = |γ̇|
Dr

, (2.13)

ṗj
∗ =

ṗj
|γ̇|
, (2.14)

and
D∗ = Dt

L2 |γ̇|
= 1
Pe∥

pp + 1
Pe⊥

(δ − pp) . (2.15)

The rotary Peclet number (Per) appears, which measures the distortion of the suspension orien-
tation state from the anisotropic equilibrium orientation configuration, i.e., changing Per tends
to affect the final orientation. It also shows the two translational Brownian Peclet numbers
(Pe∥ = L2 |γ̇| /D∥) and (Pe⊥ = L2 |γ̇| /D⊥), along and orthogonal to the long axis of the rod,
respectively. The dimensionless form of the Fokker-Planck equation becomes after dropping the
asterisk

DΨ
Dt

= ∇x ·
{[

1
Pe∥

pp + 1
Pe⊥

(δ − pp)
]

· ∇xΨ
}

− ∇p · (ṗjΨ) + 1
Per

∇2
pΨ. (2.16)
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For very long and thin rodlike particles, the relation Pe⊥ = 2Pe∥ applies [40], and Eq. (2.15)
simplifies as D = 1

P e⊥
(pp + δ) and λ = 1. Equation (2.16) is written as

DΨ
Dt

= ∇x ·
{[ 1
Pe⊥

(pp + δ)
]

· ∇xΨ
}

− ∇p · (ṗjΨ) + 1
Per

∇2
pΨ. (2.17)

Using the same dimensionless variables, the evolution equation for the second-order moment of
the probability distribution function in dimensionless form is

DA2
Dt

= − 1
2 (ω · A2 − A2 · ω) + 1

2(γ̇ · A2 + A2 · γ̇ − 2γ̇ : A4)

+ 2
Per

(cδ − αA2) + 1
Pe⊥

∇2
xA2 + 1

Pe⊥
∇x∇x : A4.

(2.18)

2.3 Flow problem

Under the assumptions of a Newtonian, isothermal, steady and incompressible fluid, the gov-
erning equations for the pressure, P , and velocity fields in the dimensionless form are

∇x · u = 0, (2.19)

∇2
xu − ∇xP = 0. (2.20)

For simplicity, we do not consider here the coupling between flow and the extra stresses induced
by rods since the goal is first to verify the obtained macromodel predictions and compare them
with the full numerical solution of Eq. (2.16). This coupling will be explored in future works.
This hypothesis is acceptable here in the assumption of dilute concentration regimes. Hence the
problem is fully characterized by two Peclet numbers, Per and Pe⊥.
The work is performed in a planar channel [Fig 2.2(b)] of width 2H and length W = 3H, except
for the case of the homogeneous inlet in a planar channel (Sec. 2.4.2), where W = 9H. These
dimensions do not affect our conclusions. H/L = 106 (H >> L). In the second part of the work,
a circular obstacle of radius R = 0.5H is introduced [Fig. 2.2(b)], the center of the obstacle is at
x = H. Four types of boundary conditions, marked by BC1 to BC4, are defined for this model.
BC1 is the inlet velocity profile condition U/Umax = 1 − (y/H)2 and the Dirichlet boundary
conditions for Ψ; BC2 is the no slip condition at walls (u = 0 ); BC3 is the outlet condition
where the relative pressure is set to zero, (−Pδ + ∇xu) : nn = 0, where n is the normal vector
to the surface; and BC4 is the symmetry boundary condition (u · n = 0 and γ̇ − (γ̇ · n)n = 0).
Due to BC4, half of the domain is considered in simulations to reduce computational efforts
[see Fig. (2.2)]. The homogeneous Neumann boundary conditions (zero flux) is applied for the
probability density function Ψ in method 1 (n · ∇xΨ = 0 for spatial BCs (BC2, BC3 and BC4)
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(a) Rectangular planar channel.

(b) Planar channel with circular obstacle.

Figure 2.2 – FE mesh for a planar channel. BC1,laminar inflow; BC2,pressure outlet; BC3,zero-
slip condition; BC4,symmetry condition.

85

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



Chapter 2 – Modeling and numerical simulations of Brownian rodlike particles with anisotropic
translational diffusion

and n · ∇pΨ = 0 for configurational BCs [all the surfaces in Fig. A.1b except BC5)]. It is also
used for A2 and c in method 2 (n · ∇x · Aij = 0. Where Aij are the components of A2 and
n · ∇xc = 0).

2.4 Numerical results

The steady state form of Eq. (2.17) is

u · ∇xΨ = ∇x ·
{[ 1
Pe⊥

(pp + δ)
]

· ∇xΨ
}

− ∇p · (ṗjΨ) + 1
Per

∇2
pΨ, (2.21)

and of Eq. (2.18) is

u · ∇xA2 = − 1
2 (ω · A2 − A2 · ω) + 1

2(γ̇ · A2 + A2 · γ̇ − 2γ̇ : A4)

+ 2
Per

(cδ − αA2) + 1
Pe⊥

∇2
xA2 + 1

Pe⊥
∇x∇x : A4.

(2.22)

Equations (2.19), (2.20) and (2.21), and Eqs. (2.19), (2.20) and (2.22) are solved numerically
using method 1 and method 2, respectively [see Appendix (A.2)]. Both methods use the finite-
element method (FEM). The numerical solutions are tested at steady state and for 2D flows
to reduce computational time. Method 1 is based on the linear extrusion of 2D flow channel,
represents the spatial distribution in xy plane, to a third dimension, which stands for the prob-
ability of finding a rod of orientation angle with the x axis ϕ. Method 2 is based on solving the
set of equations of evolution of A11, A12, and A22 in the flow.

2.4.1 Method 1 verification

Homogeneous systems

To verify the numerical solution of the model, we compare the model with published data in
the case of an homogeneous system [96, 98]. The flow field is assumed to be at steady state.
In this case, the streamlines are parallel to each other and parallel to the wall. No Brownian
translational diffusion is taken into consideration. The flow inside the channel is described
as a planar Poiseuille flow in the direction of x. These assumptions allow us to study the
rod orientations in the flow channel, since the shear rate in the Poiseuille flow is constant
along each streamline. Rods are assumed to have a random-planar distribution of homogeneous
concentration at the inlet, which means a Dirichlet boundary condition of Ψ = 1/2π.
To verify the results of the FEM in a homogeneous system, rod orientations at a chosen stream-
line is compared with the results found in the literature [see Fig. (2.3)]. Equation (2.21) is solved
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using a homogenous numerical diffusion to stabilize the numerical scheme, which gives

u · ∇xΨ = 1
Penum

∇2
xΨ − ∇p · (ṗjΨ) + 1

Per
∇2

pΨ. (2.23)

Penum is an artificial diffusion Peclet number, set to value 109, which has no physical effect
except for stabilizing the numerical scheme. The study is done for values of rotary Peclet
number Per= 1, 10, 100, and 1000. The orientation state of the rods is represented by the
components of the second-order orientation tensor a2 (a2 =

∫
p ppψdp, where ψ is the probability

distribution function of finding a rod of orientation p at time t in a homogeneous systems [152])
[see Fig. (2.3)]. In addition, these quantities are traced spatially along the channel for Per = 100
and compared with the results in the literature (Fig 2.4).
The a11 and a12 components are directly computed from the FP equation for planar orientations
and compared with the results obtained by Férec et al. [96] solving the configurational part of
Eq. (2.5) with a finite-volume method approach. Figure 2.3 shows the very good agreement
between the two methods. Figure 2.4 shows that rods along the fixed wall become highly
oriented and reach its final orientation almost instantly, whereas rods further downstream must
travel quite a distance to reach the steady state. These results (Fig 2.4) show agreement with
the work done by Mezi et al. [98], where we get A2/c = a2.

Nonhomogeneous systems

A concentration gradient is imposed at the inlet along the y axis. The Dirichlet boundary
condition is set to be Ψ = c0

2π , where c0 = 1 − 0.6 (y/H)2 is the concentration at the inlet.
This parabolic concentration gradient is chosen to have a nonzero concentration in the domain
(c0 = 0.4 at the walls and c0 = 1 at the center). Rod orientations are planar random at the inlet
and no Brownian translational diffusion is considered. BC1, BC2, BC3, and BC4 are taken into
account. In these conditions, the rods are affected by pure translational convection of the flow,
and no rod migration across the streamlines is expected. The effect of concentration gradients
on rod orientation distribution is a major concern. A11/c and A12/c components are directly
computed from the FP equation in the channel for Per = 1, 10, 100, and 1000. The results are
similar to the previous part when homogeneous concentration along the channel is examined
[see Figs. (2.3 )and (2.4)].

2.4.2 Effect of translational diffusion

We aim now to study the effect of the anisotropic translational diffusion on rod suspensions in a
planar channel. Equations (2.19), (2.20) and (2.21) are solved based on method 1. Three regimes
of translational and orientational diffusions are studied. The first regime, Pe⊥ ≪ Per, explores
the case when the timescale for translational diffusion is longer than the rotational diffusion
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(a) Evolution of orientation component a11 as a function of strain |γ|.
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(b) Evolution of orientation component a12 as a function of strain |γ|.

Figure 2.3 – a11 and a12 versus strain for the streamline along the line y = 0.9H in a planar
channel, with |γ̇| = 1.8/s. Method 1 is verified with the work of Férec et al. [96]

.
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(a) Distribution of the orientation component A11/c in the xy plane of a planar channel.

(b) Distribution of the orientation component A12/c in the xy plane of a planar channel.

Figure 2.4 – (a) A11/c and (b) A12/c components of the orientation tensor, A2, along the channel
in a homogeneous system, where concentration equals 1 at the inlet and no rod migrations occur.
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one. The second regime, Pe⊥ = Per, considers the case where both timescales are equal, and
the third regime, Pe⊥ ≫ Per, investigates the case where the rotary diffusion is faster than the
translational diffusion. A local rotary, perpendicular, and parallel Peclet numbers are introduced
depending on the local strain rate, γ̇l =

√
1
2(γ̇ : γ̇), Perlocal

= |γ̇l| /Dr, Pe⊥local
= (|γ̇l|H2)/D⊥,

and 2Pe∥local
= Pe⊥local

, respectively. In a planar channel, the local Peclet numbers are constant
along the flow direction (x axis). The variation of local rotational and perpendicular Peclet
numbers along the y axis are shown in Figs. 2.5a and 2.5b. The rod suspensions are affected by
the global and local Peclet numbers.

Homogeneous concentration and planar random orientation at the inlet

The rod concentration and orientation predictions are examined for a Dirichlet boundary con-
dition Ψ = 1/2π. Figures (2.6) and (2.7) show that Brownian rods exhibit an inhomogeneous
orientation through the channel. This is because of the competition between shear flow, which
tends to align the rods in the flow direction, and Brownian motion, which tends to randomize
their orientations [123, 138, 159]. The overshoot in the rod orientations before reaching the final
orientation [see Fig. (2.3)] is noticed in the channel. Depending on the rotary Peclet number,
rods near the wall reaches their final orientation faster than the rods at the center due to the
higher value of Perlocal

near the wall. For all the studied cases, A12/c range between 0 and 0.25,
which means that the angle between the rod and x axis ranges from 0 to π

2 . Figure (2.8) shows
that rods tend to migrate toward the walls, where Pe⊥local

is high.
This phenomenon was also predicted by Schiek and Shaqfeh [113], and by Nitsche and Hinch
[112]. In Fig. 2.8(a) (where the high translational Peclet number, Pe⊥ = 103, and low rotary
Peclet number, Per = 10, are considered), rods migrate toward the wall. While in Fig. 2.8(b)
(where the high translational Peclet number, Pe⊥ = 103, and high rotary Peclet number, Per =
103, are considered) a high concentration is observed at the wall after the inlet. After a distance,
rods accumulate between the center and the wall (0.3 ≤ y/H ≤ 0.8). This accumulation is due
to the overshoot in rod orientations. Rods higher alignment leads to low migrations across the
streamlines. At lower Pe⊥, rod migration is more evident. In Fig. (2.8c), rod migration occurs
and a concentration gradient is observed at the outlet. In this case, rods are less aligned, mainly
in the center, which enhances rod migration toward the wall (higher local Peclet numbers). For
the case of low translational Peclet number and high rotational Peclet number ( Pe⊥ = 10 and
Per = 103), rods are highly aligned at the outlet and almost homogeneous [Fig 2.6(d)]. Since
the rod orientations tend to equilibrate significantly at lower strain than their center of mass
translate in the flow direction. While the values of A11/c is low near the wall [comparing with
Fig. 2.6(b)] due to the migration of less aligned rods toward the wall.
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(a) Evolution of the local rotary Peclet number, Perlocal
, with respect to the normalized channel width,

y/H, independent on the translational Peclet number.
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(b) Evolution of the local translational Peclet number, Pe⊥local
, with respect to the normalized channel

width y/H independent on the rotary Peclet number.

Figure 2.5 – Variation of local Peclet numbers with respect to the normalized channel width in
a planar channel for the global Peclet numbers Pe⊥ = 10, 103 and Per = 10, 103.
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Figure 2.6 – Orientation component A11/c using method 1, across the planar channel, where
homogeneous concentration and random orientation of the rods are prescribed at the inlet for a)
Per = 10, P e⊥ = 103, b) Per = 103, P e⊥ = 103, c) Per = 10, P e⊥ = 10, d) Per = 103, P e⊥ =
10.

Figure 2.7 – Orientation component A12/c using method 1, across the planar channel, where
homogeneous concentration and random orientation of the rods are prescribed at the inlet for a)
Per = 10, P e⊥ = 103, b) Per = 103, P e⊥ = 103, c) Per = 10, P e⊥ = 10, d) Per = 103, P e⊥ =
10.
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Figure 2.8 – Concentration distribution c using method 1, across the planar channel, where
homogeneous concentration and random orientation of the rods are prescribed at the inlet for a)
Per = 10, P e⊥ = 103, b) Per = 103, P e⊥ = 103, c) Per = 10, P e⊥ = 10, d) Per = 103, P e⊥ =
10.

Effect of concentration gradient at the inlet

A concentration gradient is introduced with a planar random orientation at the inlet Ψ =
ci/(2π) to study its effect on the final rod suspension microstructures. Four different parabolic
concentration profiles at the inlet are tested according to ci = −10−2i

10 (y/H)2 + 1 for i = 1, 2, 3,
and 4. Same effect of translational and rotational Peclet numbers is figured qualitatively as the
previous section (Sec. 2.4.2). No notable effect of concentration gradient on the orientation is
shown. Rods are oriented similar to the case where homogeneous concentration is applied at
the inlet (same plots for A11/c and A12/c in Figs. 2.6 and 2.7). This agrees with the results in
Sec. 2.4.1. However, concentration gradient at the inlet has a significant effect on rod migration
rates. The relative changes in concentration ( |c−ci|

average(ci)) are plotted at the outlet for Pe⊥ = 10
and Per = 103 in Fig. 2.9. Figure 2.9 shows that rod migrations are higher near the wall, where
the concentration is the lowest for the four cases explored, and the gradient of local translational
Peclet number is the highest. As concentration gradient increases, rods migrate at higher rates
due to rod migration from low to high translational Pe⊥local

regions.

2.4.3 Effect of rod orientations gradient at the inlet

To study the effect of rod orientations on its migration across streamlines, an orientation gradient
is introduced at the inlet, where the Dirichlet boundary condition is Ψ = [ 1

2π

(
eβ sin2ϕ+ e−βcos2ϕ

)−1
]/2,
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Figure 2.9 – Relative change in concentration with respect to the normalized channel width,
y/H, at the outlet, for Per = 103 and Pe⊥ = 10, for the four concentration gradients c1, c2, c3
and c4.

and β = 5y
2H , where rods are planar random at the center of the channel and highly aligned in

the direction of the flow near the walls [see Fig. (2.10)] for A11, and A12 = 0]. The concentra-
tion is homogeneous and equals one at the inlet. Figure 2.11 shows that rods migrate toward
the wall, where higher Pe⊥local

. Comparing with the case of homogeneous concentration and
planar random orientation at the inlet (Sec. 2.4.2), the concentration at the center is almost the
same, while near the wall, rods are more accumulated in the case of planar random at the inlet
(comparing the case Per = 103, P e⊥ = 103 directly after the inlet. c = 1.02 where rods are per-
fectly aligned [Fig 2.11(b) ] and c = 1.06 where rods are planar random [Fig 2.8(b)]. For lower
translational Peclet number, Pe⊥ = 10, rods are accumulated at the upper part [Figs. 2.11(c)
and 2.11(d)]. In this zone, the migration of aligned particles is difficult.
Qualitatively, the effect of orientation gradient at the inlet with the presence of the circular
obstacle is similar to its effect in the absence of the obstacle.

2.4.4 Results of flow in a channel with a circular obstacle

Modeling the interaction between suspended rods and obstacles encountered in their flow is crit-
ical for understanding particulate suspension transport in various engineering applications [160,
161]. A complex flow field is also interesting to explore here because of the expected variation of
both local Peclet numbers along and perpendicular to the flow direction. The velocity magnitude
with some streamlines Fig. 2.12 depicts the variation of local Peclet numbers along a horizontal
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Figure 2.10 – Orientation component A11/c with respect to the normalized channel width, y/H,
at the inlet.
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Figure 2.11 – Concentration distribution c using method 1, across the planar channel, where
homogeneous concentration and random orientation of the rods are at the inlet for a) Per =
10, P e⊥ = 103, b) Per = 103, P e⊥ = 103, c) Per = 10, P e⊥ = 10, d) Per = 103, P e⊥ = 10.
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line at y = 0.7H. It shows that the local Peclet numbers have minima above the center (x = H)
of the obstacle, and maxima around the level of the extremities of the obstacle (x = 0.5H and
x = 1.5H). Figure 2.13 shows the variation of local Peclet numbers along a vertical line x = H.
It shows that the local Peclet numbers have maxima near the wall and the obstacle, where the
highest shear rate is found. Simulations are performed to study the effect of circular obstacles
in the channel on the concentration and orientation.
In the presence of circular obstacle, rods are highly concentrated at the back of the obstacles and
depleted in the front [162] as seen in Fig. 2.14. Even in the presence of the obstacle, rods have
higher tendency to migrate toward the wall. Rods are more aligned at the back of the obstacle,
as in Fig. 2.15 than at the front. This was also found by Phan-Thien and Graham [163], who
used a single falling sphere in semiconcentrated systems, and by Kumar and Natale [164], who
studied at low Reynolds values, two settling non-Brownian rigid spheres in a dilute suspension
of Brownian rods. At the front of the obstacle, we find that the local orientation of the rods
are aligned in the y direction (A11/c ≤ 0.5, and A12/c ≤ 0 ), as in Figs. (2.15) and (2.16).
This is caused by the high shear rate zone, located above the obstacle. There, rods are less
concentrated and less aligned because lower local Peclet numbers [see Fig. (2.13)]. Also, we see
that rods have high alignment near the wall, even in the presence of circular obstacle due to the
high local rotational Peclet numbers.

2.4.5 Macromodel

Although solving the Fokker-Planck equation is precise and general, it requires high computa-
tional effort. The second-moment tensor evolution [Eq. (2.22)] provides a concise description
requiring less computational power. It is necessary to utilize a closure approximation to re-
late the fourth-order moment tensor with the second-order moment tensor to solve Eq. (2.22).
Closure approximations found in the literature can be applied for this model. The numerical
method 2 mentioned in Appendix A.2 is used to solve Eq. (2.22), using quadratic [156] and
IBOF [46] closures. We applied the quadratic closure for its simplicity, while the IBOF for its
precision. This macromodel is tested for homogeneous concentration, and planar random rod
orientations at the inlet (Dirichlet BC6 A11/c = A22/c = 0.5 and A12/c = 0 ). Figures (2.17)
and (2.19) show the concentration results of rods in the channel for quadratic and IBOF clo-
sures, respectively. Figures (2.18) and (2.20) show the orientation component A11/c using the
mentioned closures. These figures show a quantitative agreement between the full solution of
the FP equation and the macromodel nevertheless the use of the closure approximations. Tables
2.1 and 2.2 show the maximum and mean absolute error percentage values along the channel
for concentration c and orientation component A11/c, respectively. The IBOF closure provides
an excellent agreement for the concentration and orientation, better than the quadratic. For
IBOF, the errors with respect to the solutions obtained solving the FP equation [Eq. (2.16)]
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(a) Evolution of the local translational Peclet number, Pe⊥local
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Figure 2.12 – Variation of local Peclet numbers with respect to the normalized channel width
at the streamline y = 0.7H in a planar channel with the presence of circular obstacle.
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(b) Evolution of the local rotary Peclet number, Perlocal
, with respect to the normalized channel width,

y/H, independent on the rotary Peclet number.

Figure 2.13 – Variation of local Peclet numbers with respect to the normalized channel length
at x = H in a planar channel with the presence of circular obstacle.
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Figure 2.14 – Concentration distribution c using method 1, across the planar channel with the
presence of circular obstacle, where homogeneous concentration and random orientation of the
rods are prescribed at the inlet for a) Per = 10, P e⊥ = 103, b) Per = 103, P e⊥ = 103, c)
Per = 10, P e⊥ = 10, d) Per = 103, P e⊥ = 10.
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Figure 2.15 – Orientation component A11/c using method 1, across the planar channel with
the presence of circular obstacle, where homogeneous concentration and random orientation of
the rods are prescribed at the inlet for a) Per = 10, P e⊥ = 103, b) Per = 103, P e⊥ = 103, c)
Per = 10, P e⊥ = 10, d) Per = 103, P e⊥ = 10.
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Figure 2.16 – Orientation component A12/c orientation component using method 1, across the
planar channel with the presence of circular obstacle, where homogeneous concentration and
random orientation of the rods are prescribed at the inlet for a) Per = 10, P e⊥ = 103, b)
Per = 103, P e⊥ = 103, c) Per = 10, P e⊥ = 10, d) Per = 103, P e⊥ = 10.
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Figure 2.17 – Concentration distribution c results using a quadratic closure approximation,
across the planar channel, where homogeneous concentration and random orientation of the
rods are prescribed at the inlet for a) Per = 10, P e⊥ = 103, b) Per = 103, P e⊥ = 103, c)
Per = 10, P e⊥ = 10, d) Per = 103, P e⊥ = 10.

across the channel does not exceed 5% for both concentration and orientation component A11/c

for the tested cases (Tables 2.1 and 2.2 ), while the mean absolute errors are much lower than
the error values obtained using the quadratic closure. These results further demonstrate the
validity of the derived macromodel also for nonhomogeneous systems. The mean absolute error
is affected by Per and Pe⊥. The tested cases using the quadratic closure show that the mean
absolute errors for both orientation and concentration increase with decreasing the rotary and
the perpendicular Peclet numbers. While for IBOF, the relation between the Peclet numbers
and the mean absolute errors is unclear.
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Figure 2.18 – Orientation component A11/c results using a quadratic closure approximation,
across the planar channel, where homogeneous concentration and random orientation of the
rods are prescribed at the inlet for a) Per = 10, P e⊥ = 103, b) Per = 103, P e⊥ = 103, c)
Per = 10, P e⊥ = 10, d) Per = 103, P e⊥ = 10.
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Figure 2.19 – Concentration distribution c results using the IBOF closure approximation, across
the planar channel, where homogeneous concentration and random orientation of the rods are
prescribed at the inlet for a) Per = 10, P e⊥ = 103, b) Per = 103, P e⊥ = 103, c) Per = 10, P e⊥ =
10, d) Per = 103, P e⊥ = 10.
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Figure 2.20 – Orientation component A11/c results using the IBOF closure approximation, across
the planar channel, where homogeneous concentration and random orientation of the rods are
prescribed at the inlet for a) Per = 10, P e⊥ = 103, b) Per = 103, P e⊥ = 103, c) Per = 10, P e⊥ =
10, d) Per = 103, P e⊥ = 10.
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Tableau 2.1 – Values of the maximum percentage error and the mean absolute percentage error
for concentration c, CEmax and CEmean, respectively, using the IBOF and quadratic closures
with respect to the results in method 1.

Percentage error of concentration c (CE)
IBOF closure Quadratic closure

CEmax CEmean CEmax CEmean

Per = 10
Pe⊥ = 103 4.89% 2.45% 7.08% 3.94%

Per = 103

Pe⊥ = 103 4.62% 0.42% 5.88% 0.46%

Per = 10
Pe⊥ = 10 4.14% 1.39% 6.38% 2.46%

Per = 103

Pe⊥ = 10 4.24% 0.28% 5.27% 0.44%

Tableau 2.2 – Values of the maximum percentage error and the mean absolute percentage
error for orientation component A11/c, OEmax and OEmean, respectively, using the IBOF and
quadratic closures with respect to the results in method 1.

Percentage error of orientation A11/c (OE)
IBOF closure Quadratic closure

OEmax OEmean OEmax OEmean

Per = 10
Pe⊥ = 103 3.07% 1.31% 16.01% 6.62%

Per = 103

Pe⊥ = 103 3.17% 0.29% 14.92% 5.3%

Per = 10
Pe⊥ = 10 1.7% 0.78% 14.45% 7.32%

Per = 103

Pe⊥ = 10 2.21% 0.84% 13.51% 6.56%
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2.5 Conclusion

The major contribution of this work is the derivation of a macromodel to investigate the flow
of Brownian particle suspensions taking into account the coupling between the concentration
and the orientation of particles. Such macromodel reduces drastically the computational time
required to numerically solve a full FP equation for the 2D case explored here. The effect of
anisotropic translational diffusion, depending on the orientation, is studied in a planar channel
with and without the presence of a circular obstacle. The Brownian translational diffusion favors
the rod migrations toward the walls. The concentration gradient does not affect the orientation
of rods, but it favors their migration. Aligned rods are slower to migrate than planar random
ones. These results are in qualitative agreement with the results in the literature. A circular
obstacle in a planar channel causes complexity in the flow field which affects the rod suspensions.
The macromodel is verified based on the solution of the Fokker-Planck equation. Future works
will focus in exploring the effect between particle and Brownian stresses, the stress terms will
be developed and added to Stokes equation as in the work of Saintillan and Shelley [12]. On the
other hand, the effect of anisotropic translational diffusion in the case of active particles will be
investigated.
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coupling

This study investigates the behavior of Brownian rod suspensions in flow systems, focusing on
rod-fluid interactions and concentration gradients induced by anisotropic translational diffusion.
Numerical simulations, based on a kinetic macro-model following the work of Issa et al. [20], are
used to analyze these results. In simple shear flow, the presence of rods does not significantly
impact the flow, and translational diffusion does not influence the mechanism. However, in
Poiseuille flow, the rods cause a flattening of the velocity profile and the formation of concen-
tration variations. The coupling between the flow field and the rods influences their orientation,
migration behavior, and rheological properties. In Couette flow, rod-fluid coupling results in
outward flow in the vicinity of a fixed cylinder. The translational diffusion plays a crucial role,
as higher Peclet numbers lead to pronounced migration of rods towards the channel walls and
increased alignment with the flow direction. This coupling effect also affects the velocity profile
in Couette flow. The findings of this study provide valuable insights into the complex behavior
of suspended Brownian rods in different flow regimes.
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Cette étude examine le comportement des suspensions de bâtonnets Browniens dans les systèmes
d’écoulement, en se concentrant sur les interactions bâtonnets-fluide et les gradients de concen-
tration induits par la diffusion translationnelle anisotrope. Des simulations numériques, basées
sur un macro-modèle cinétique suivant le travail d’Issa et al. [20], sont utilisées pour analyser ces
résultats. Dans un écoulement de cisaillement simple, la présence de tiges n’a pas d’impact signi-
ficatif sur l’écoulement, et la diffusion translationnelle n’influence pas le mécanisme. Cependant,
dans un écoulement de Poiseuille, les tiges provoquent un aplatissement du profil de vitesse et la
formation de variations de concentration. Le couplage entre le champ d’écoulement et les bâton-
nets influence leur orientation, leur comportement migratoire et leurs propriétés rhéologiques.
Dans l’écoulement de Couette, le couplage tige-fluide entraîne un écoulement vers l’extérieur à
proximité d’un cylindre fixe. La diffusion translationnelle joue un rôle crucial, car des nombres
de Peclet plus élevés entraînent une migration prononcée des bâtonnets vers les parois du canal
et un alignement accru avec la direction de l’écoulement. Cet effet de couplage affecte également
le profil de vitesse dans l’écoulement de Couette. Les résultats de cette étude fournissent des
indications précieuses sur le comportement complexe des bâtonnets Browniens en suspension
dans différents régimes d’écoulement.
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3.1 Introduction

Predicting and controlling the local configuration (i.e., concentration and orientation) state of
particle suspensions is critical to design advanced materials manufacturing processes [119–121].
Simulating suspensions of colloids is a difficult undertaking that requires resolving particle-
particle interactions, thermal fluctuations, and long-range many-body hydrodynamic interac-
tions that lead to complex suspension microstructures [165, 166].
The evolution of the orientation of anisometric particles homogeneously suspended during flow
has been theoretically studied by researchers. Jeffery [22] was the pioneer who derived the
equation of motion for a single isolated, inertialess, ellipsoidal, non-Brownian particle in a New-
tonian fluid with a uniform velocity gradient. In a specific case where a dilute slender fiber
suspension is subjected to constant shear flow, particles orient in the flow direction and spent
most of their time aligned in this latter direction [122, 123]. This phenomenon has similarities
with the behavior of Brownian particles, for which Doi and Edwards [40] gave the associated
Fokker-Planck equation (FP) for Brownian particles. Dhont and Briels [167] focused on ex-
tending the Doi-Edwards framework to account for the dynamical correlations and to better
understand the behavior of suspensions of rod-like particles under shear flow conditions. Férec
et al. [96] examined the rheological behavior of a short fiber-filled polypropylene in simple shear
flow using the Folgar-Tucker-Lipscomb (FTL) model without any closure approximation. They
discussed the accuracy of commonly used closure approximations and highlights the aspects of
the FTL model that requires further improvement. Natale et al. [168] developed a new set of
rheological equations to explain the shear-thinning behavior of attractive rod suspensions in
a Newtonian matrix. The particle-particle interactions were modeled by a nonlinear lubrica-
tion force, a function of the relative velocity at the contact point and weighted by the contact
probability.
In recent years, researchers have been developing numerical techniques to predict and experi-
mental methods to observe particle orientation and concentration. Rheo-optical studies have
been used to investigate the effect of Brownian motion on sheared suspensions, as reported by
Frattini and Fuller [135]. The findings provided experimental evidence for evaluating closure
approximations and understanding the orientation dynamics of rigid, axisymmetric particles in
dilute suspensions subjected to simple shearing flow. Schiek and Shaqfeh [113] studied the cross-
streamline migration of slender Brownian rods in plane Poiseuille flow. It provides insights into
the occurrence of migration and the distribution patterns of particles on scales comparable to
the particle length within the channel. Nitsche and Hinch [112] investigated the shear-induced
lateral migration of Brownian rigid rods in parabolic channel flow, and quantitatively confirmed
the accumulation of rods at the channel walls. Xie et al. [136] used experimental techniques
to study the shear-induced alignment of low aspect ratio gold nanorods in Newtonian fluids.
Their observations highlight the alignment phenomenon and numerical simulations support the
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understanding of the nanorods’ behavior, including the impact of Brownian motion even at high
Peclet numbers.
Hinch and Leal [137] reveals the intricate interplay between shear flow alignment and Brown-
ian disorientations in a dilute suspension of axisymmetric particles. The rheological behavior
exhibits oscillatory features tied to particle rotation and a fading memory effect due to Brow-
nian diffusion. Hijazi and Zoaeter [138] used Brownian dynamics simulations to study rod-like
particles in dilute flowing solution. Their results demonstrated the impact of the hydrodynamic
shear rate and rotational Brownian diffusion on the average orientations, with the maximum
orientation angle exhibiting a strong dependence on the flow conditions. Leahy et al. [139] ex-
amined the effect of shear flow on the rotational diffusion of a single axisymmetric particle. Their
study provided new insights into the time-dependent rheological properties of suspensions con-
taining non-spherical Brownian particles. The study highlights the complex interplay between
shear-induced rotations and diffusion, revealing the importance of particle shape and orienta-
tion dynamics in determining the behavior and properties of such suspensions. Palanisamy and
den Otter [140] developed an efficient Brownian dynamics simulation method for rigid colloids
in linear flow fields based on the grand mobility matrix. This study on suspensions of non-
spherical Brownian particles revealed that the rheological properties in continuous shear flow
is influenced by two distinct diffusive time scales, which depend on the particle aspect ratio.
Kumar and Natale [164] investigated the settling dynamics of two spheres in a suspension of
Brownian rods using numerical simulations. They found that the presence of Brownian rods
introduces non-Newtonian contributions, resulting in repulsive interactions between the settling
spheres that depend on the Peclet number and the distance between their centers.
Fokker-Planck-like equations in multiple dimensions are computationally expensive to solve.
The creation of an equivalent kinetic macro-model is a tactic used to make the numerical so-
lution of complex physics problems more accessible. Macro-models have been used extensively
in the literature to forecast particle concentration or orientation. To describe fiber orientation
in suspensions containing short rigid fibers, Advani and Tucker [152] used a set of even-order
moments of the probability distribution function. In concentrated monomodal, spherical suspen-
sions, Phillips et al. [153] proposed a constitutive equation for computing particle concentration
and velocity fields. Shapley et al. [154] compared the predictions of various particle migration
models to laser Doppler velocimetry measurements. At moderate bulk particle concentrations,
the models accurately predict the macroscopic shear rate and concentration profiles, but at high
concentrations, they start to diverge. Without considering the correlation between the two,
these models are either used to predict the orientation or the concentration. Saintillan and
Shelley [12] developed a fundamental kinetic model and discussed the stability and nonlinear
dynamics of a suspension of self-propelled rod-like particles. For an active suspension, Weady
et al. [76] restated and coarse-grained a continuum kinetic model. Although the translational
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diffusion is anisotropic and depends on the particle’s orientation, these two models roughly rep-
resent it as a constant. That is why Issa et al. [20] derived a new kinetic macro-model based
on moments of the probability distribution function to investigate the flow of Brownian parti-
cle suspensions with taking into account the anisotropic translational diffusion. This is a key
element in predicting the rheological behavior of particle suspensions in a flow inside complex
geometries while addressing the coupling between the flow field and the particle orientations and
concentrations distribution [98, 169–171].
In a series of influential papers [77, 172, 173], Batchelor and coworkers established that micro-
structural asymmetry, not just distortion, is required to produce non–Newtonian rheology. They
established expressions for the average suspension stress in diluted colloidal dispersion, as well
as the non-equilibrium Smoluchowski framework that governs the evolution of a flowing micro-
structure under the influence of thermodynamic and hydrodynamic forces.
Several studies have confirmed that particles alter the flow pattern of suspensions. Bagnold [174]
reported the appearance of normal stresses during shear flow on flow-induced non-Newtonian
rheology of suspensions of noncolloidal spherical particles. He proposed that non-Newtonian rhe-
ology was caused by the presence of a particle microstructure and shear-flow-induced changes
in its shape. The existence of a shear-induced structure in concentrated noncolloidal suspen-
sions was conclusively suggested by several studies after this innovative work [175, 176]. Mezi
et al. [98] developed a numerical simulation for 2D planar flows for fiber suspension with a
Newtonian and a power-law suspending fluids. Then, they extended this model to examine a
2D axisymmetric capillary die swell for fiber suspensions, which occurs in 3D printing extrusion
processes [170]. The particles extra stress effect flattens the velocity profile but has little effect
on the distribution of fiber orientation in the suspension flow. Yasuda et al. [177] measured
the velocity profile of short fibers in a Newtonian matrix flow inside a channel with a rectan-
gular cross-section. They observed that the velocity profile becomes flatter as the fiber volume
fraction increases. Mazahir et al. [178, 179] used slow orientation kinetics such as the reduced
strain closure model [180] to conduct coupled transient simulations to predict fiber orientation
in a center-gated disc. They discovered that the numerical data of the coupling effect is very
small when compared to experimental data measured in the shell, transition, and core layers,
but there is an improvement in the frontal flow region. A two-way coupled, which refers to the
mutual influence between the fluid flow and the suspended particles, direct simulation technique
is proposed by Moosaie and Manhart [144] for the numerical solution of Brownian rod suspen-
sion flows in complex geometries. They observed that, in the case of channel flow, the bulk
velocity in the channel decreases by the effect of extra stress generated by the rods. Krochak
et al. [145] examined the effect of two-way coupling between the flow field and the orientation
state of rigid-fiber suspensions flowing through a tapered channel with an orientation distribu-
tion function that evolves according to a Fokker-Planck-type equation. They demonstrated that
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when the two-way coupling is present, the orientation anisotropy changes significantly.
The objective of this work is to investigate the effect of flow/Brownian rod micro-structure cou-
pling in non-homogeneous systems while considering the particle concentration and orientation.
The study employs a kinetic macro-model derived in a previous work [20] and examines particle
suspensions in a planar infinite channel during transient study.
The article is organized as follows: Section 3.2 focuses on theoretical modeling and the flow
problem for rod suspensions. Finally, section 3.3 presents the numerical results, including the
effect of particle extra stresses, the effect of translational diffusion, and the effect of both initial
concentration and orientation gradients, before the conclusion.

3.2 Governing equations

Let’s consider a suspension of Brownian rod-like particles of length L, circular cross-section of
diameter d and an aspect ratio ar = L/d. The particles are assumed to be rigid, monodisperse,
neutrally buoyant, and immersed in a Newtonian fluid. The rod suspension is supposed to be
diluted in a volume of interest V . Hence the mean number of rods per unit volume n verified
that nL3 << 1 (this corresponds to a volume fraction ϕp << (d/L)2). The fluid is presumed
to be isothermal and incompressible. Below are presented the equations that describe the flow
problem and the kinetic macro-model of the suspending rods. Subsequently, these equations are
written in dimensionless form for further analysis and simplification.

3.2.1 Flow problem

The problem is governed by the continuity and Cauchy momentum equations in the limit of
creeping flow (low Reynolds number)

∇x · u = 0, (3.1)

∇xP − η0∇2
xu = ∇x · Σ. (3.2)

In the above equations, ∇x and ∇2
x are the gradient and Laplacian operators in the spatial

space, respectively. u is the velocity vector of the suspension, P denotes the pressure, η0 is the
Newtonian dynamic viscosity of the suspending fluid and Σ represents the particle extra stress
tensor. Indeed, the presence of particles in a Newtonian medium develops extra stress contribu-
tions, which are obtained by configurational averages of force dipoles exerted by the particle on
the fluid. In a dilute regime, the particle extra stress tensor arises from two contributions [12]

Σ = ΣB + ΣF . (3.3)
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The first contribution is due to the fact that particles are Brownian

ΣB = kBT (3A2 − A2 : δδ), (3.4)

where kB and T are the Boltzmann constant and the absolute temperature, respectively, and δ

is the identity tensor. The second contribution comes from the inextensibility condition of the
particles and is expressed as

ΣF = σF

[(
A4 − 1

3δA2

)
: γ̇

]
, (3.5)

where σF = πη0L
3/6 log (2ar) from slender body theory, and γ̇ is the strain-rate tensor. A2 and

A4, which will be defined below, represent the second and fourth-order conformation tensors,
respectively.

3.2.2 Kinetic based model

In a local volume, which is large enough to contain a statistically significant number of particles
but smaller than the characteristic length scale of the macroscopic properties of the system under
consideration, a Brownian particle suspension can be characterized by a distribution function
Ψ(rc,p, t). It reflects the probability of finding a particle at position rc with orientation p, at
time t. Therefore, Ψ(rc,p, t)drcdp represents the number of particles with center of mass and
orientation vectors in a range drcdp about rc and p at the current time t.
A single particle Smoluchowski equation can be obtained in the dilute regime as follows [40, 98]

∂Ψ
∂t

= −∇x · (ṙcΨ) − ∇p · (ṗΨ) , (3.6)

where ∇p is the gradient operator in the configurational space. The time-dependent evolution
of the position of a Brownian particle, ṙc, is

ṙc = u − Dt · ∇x log Ψ, (3.7)

and the time-dependent evolution of its orientation, ṗ, can be written as

ṗ = ṗj −Dr∇p log Ψ, (3.8)

where ṗj is the Jeffery’s equation such as

ṗj = −1
2ω · p + λ

2 (γ̇ · p − γ̇ : ppp) . (3.9)

The rotational diffusion coefficient and translational diffusion tensor are denoted by Dr and Dt,
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respectively. The latter is defined for non-spherical, rigid particles as Dt = D∥pp+D⊥ (δ − pp),
where D∥ and D⊥ are constants that characterize the diffusion parallel and perpendicular to the
particle axis, respectively. The vorticity tensor is denoted by ω and λ is a constant shape factor
as a function of the rod aspect ratio ar. The combination of the above equations, with the help
of the continuity equation, leads to

DΨ
Dt

= ∇x · (Dt · ∇xΨ) − ∇p · (ṗjΨ) +Dr∇2
pΨ, (3.10)

where D(...)/Dt = ∂(...)/∂t + u · ∇x(...) is the material derivative. Based on the distribution
function, some moments can be derived. Specifically, the fourth-order the second-order and the
zeroth-order moments of Ψ are respectively defined as [20]

A4 =
∫

p
ppppΨdp, (3.11)

A2 = A4 : δ =
∫

p
ppΨdp, (3.12)

c = A2 : δ =
∫

p
Ψdp, (3.13)

where c represents to the local number density of the suspension, which is directly linked to
the trace of A2. The moments A4 and A2 contain information on the local concentration and
orientation of particles. For instance, a local population of rods oriented randomly with a number
density c1 is given by A2 = c1δ/3, whereas a group of rods having the same direction with a
number density c2 leads that A2 has only one non-zero component in the alignment direction
equals to c2. Therefore, it is found that the distribution function Ψ is normalized such as

1
V

∫
x

∫
p

Ψdpdx = n. (3.14)

After some straightforward algebraic manipulations, an evolution equation of the tensor A2 can
be derived [20]

DA2
Dt

= − 1
2 (ω · A2 − A2 · ω) + λ

2 (γ̇ · A2 + A2 · γ̇ − 2A4 : γ̇) + 2Dr (cδ − 3A2)

+D⊥∇2
xA2 +

(
D∥ −D⊥

)
∇x∇x : A4.

(3.15)

Since Eq. (3.15) involves on A4, it requires a closure approximation to express A4 in terms of
A2. Fortunately, standard closure approximations [44, 46, 156] can be used for this case, where
the particles are axisymmetric, by being cautious to normalise A2 by c in order to maintain
the unitary trace condition. In our previous investigation [20], the IBOF closure was tested
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and yielded more than 95% accurate results as compared to the exact solution obtained by
solving the Fokker-Planck equation given by Eq. (B.2). Hence, all the cases presented in this
work involved the IBOF closure [46] for the analysis. Eq. (3.15), called macro-model, allows
for solving of a set of partial differential equations (i.e., 6 PDEs in 3D, which are the evolution
of A11, A22, A33, A12, A13 and A23) rather than a full 6D Fokker-Planck equation (i.e., 3D in
spatial space, 2D in configurational space and 1D in time), greatly simplifying the numerical
simulation.

3.2.3 Dimensionless formulation of the problem

.
To render the problem dimensionless, the particle length L and the Newtonian viscosity of the
suspending fluid η0 are chosen as the characteristic length and viscosity, respectively. Therefore,
the characteristic strain rate is γ̇ = Uavg/L, where Uavg is the average flow velocity. We also
introduce a dimensionless mean number density such as c∗ = c/n, where n is the mean number
density. The dimensionless form of the Cauchy equation can be written as

∇∗
xP

∗ − ∇∗2
x u∗ = ∇∗

x ·
{
c∗
[
Np

(
A∗

4 − 1
3δA∗

2

)
: γ̇∗ +Nb (3A∗

2 − δ)
]}

. (3.16)

As a result, the dimensionless form of the stress tensor is

Σ∗ = c∗
[
Np

(
A4 − 1

3δA2

)
: γ̇∗ +Nb (3A∗

2 − δ)
]
, (3.17)

where Np = πnL3

6log(ar) is the particle coupling coefficient, and Nb = nkBT
η0γ̇ is the Brownian coupling

coefficient.
Following the previous work [20], Per = |γ̇| /Dr, Pe⊥ = L2 |γ̇| /D⊥ and Pe∥ = L2 |γ̇| /D∥ are the
rotary, perpendicular and parallel Peclet numbers, respectively. For very long and thin rod-like
particles, λ = 1 and the relation Pe⊥ = 2Pe∥ applies [40]. The evolution equation for A2 in
dimensionless form becomes

DA∗
2

Dt∗
= − 1

2 (ω∗ · A∗
2 − A∗

2 · ω∗) + 1
2(γ̇∗ · A∗

2 + A∗
2 · γ̇∗ − 2γ̇∗ : A∗

4) + 2
Per

(δ − 3A∗
2)

+ 1
Pe⊥

∇∗2
x A∗

2 + 1
Pe⊥

∇∗
x∇∗

x : A∗
4,

(3.18)

where t∗ = tγ̇. The evolution equation of concentration c is

Dc∗

Dt∗
= DA∗

2
Dt∗

: δ = 1
Pe⊥

∇∗2
x c

∗ + 1
Pe⊥

∇∗
x∇∗

x : A∗
2. (3.19)

Eqs. 3.18 and 3.19 show the coupling between the concentration and the local orientation of the
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Brownian rods. This coupling clearly appears in the last term of Eq. 3.19. In what follows the
asterisks indicating the non-dimensional quantities have been dropped for clarity.

3.3 Numerical results

In this work, three flow problems (simple shear flow, Poiseuille flow and Couette flow) are
tested using the kinetic macro-model with the IBOF closure, Eqs. 3.1, 3.16 and 3.18 are solved.
The accuracy of this model has been verified in Appendix B.1 with comparing the results with
the solution of the full Fokker-Planck equation for simple shear flow (uncoupled model). The
dimensionless first and second normal stress differences N1 and N2 are, respectively,

N1 = Σ∗
11 − Σ∗

22 (3.20)

N2 = Σ∗
22 − Σ∗

33 (3.21)

and the dimensionless shear viscosity is Σ∗
12.

Actually, the indices 1, 2 and 3 represent the flow direction, the velocity gradient direction and
the vorticity direction, respectively. Therefore in a simple shear flow and Poiseuille flow, they
refer to x, y and z, respectively, while in the Couette flow, they refer to θ, r and z, respectively.

3.3.1 Simple shear flow

First, it is considered a suspension flow between two moving parallel plates. The geometry is a
2D square channel of side H, where H/L = 106. A simple shear flow is imposed in the xy-plane,
where the upper wall at y = H/2 translates at γ̇H/2 = 0.5 in the x-direction whereas the lower
wall at −y = H/2 translates in the opposite direction. It results that the x, y and z axes denote
the flow direction, the velocity gradient direction and the vorticity direction, respectively. Due to
the symmetric conditions along the y = 0 axis, all results in the rectangular channel are plotted
for 0 < y/H < 0.5. Periodic flow conditions with ∆P = 0 at (x = 0 and x = H) are used to
simulate the flow in an infinite channel. Initial conditions for the conformation tensor (unless
otherwise mentioned) are Aii = c0/3 and Aij = 0 for i ̸= j, where c0 is the initial concentration.

Homogeneous systems

Under the one-way coupling assumption (Np = 0 and Nb = 0), we first explore the flow-
microstructure coupling for a homogeneous system in a simple shear flow. Numerical simulations
are performed for Pe⊥ = 0.01, 0.1, 1 and 10, with a fixed value of Per = 10. It is observed that
there is no effect of translational diffusion on the system, where no rod migrations occur and
no effect on the rod orientation dynamics, normal stress differences, and shear viscosity (results
not shown). This is confirmed by the fact that the right-hand side of Eq. 3.19 is always null.
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We then examine the flow-microstructure coupling coefficients for Nb = 0, 10, 100, 250 and 1000
and Np = 0, 10, 100 with Pe⊥ = Per = 10. It is found that the two-way coupling does not
change the velocity profile in simple shear flows and does not modify the rod orientations as
well as the rheological properties (shear viscosity and normal stress differences).

Non-homogeneous systems - Effect of concentration gradient

We now investigate the effect of various initial concentration on the transient rheological prop-
erties of Brownian rod suspensions. As depicted in Fig. (3.1), six initial concentration gra-
dient cases along the y-direction are examined, c1 = 0.7, c2 = −1.8(y/H)2 + 0.85, c3 =
−2.4(y/H)2 + 0.9, c4 = −3.6(y/H)2 + 1, c5 = 0.9995 for 0 < y/H < 0.35 else c5 = 0.001
and c6 = 1.998 for 0 < y/H < 0.1755 else c6 = 0.001. The average concentration in the
channel is kept constant to 0.7 for all the cases. Particles are initially isotropically oriented.
Two ways coupling assumptions are taken into consideration. In order to examine the impact
of concentration, it is necessary to keep the other parameters influencing the study constant,
such as maintaining fixed values for Nb = 250, Np = 10, and Per = Pe⊥ = 10. In these cases,
the presence of an initial concentration gradient leads to a non-uniform distribution of parti-
cles within the channel. As a result, particle migration occurs across the streamlines due to
translational diffusion. The presence of a concentration gradient in the y−direction leads that
the term 1

P e⊥
∇x in Eq. 3.19 becomes non-zero, which subsequently induces particle migrations.

Indeed, since t increases, the concentration gradient gradually changes as reported in Fig. 3.2,
until reaching an uniform concentration distribution c = 0.7 at the steady state at t = 0.2. How-
ever, in these cases it is worth mentioning that the migration of rods have a minimal impact on
their orientation dynamics. As a result, the transient rheological properties, which is specifically
related to the orientation distributions of the rods, remains unaffected by rod migrations.

Non-homogeneous systems - Effect of orientation gradient

In order to explore the influence of orientation along the y-direction, an orientation gradient
is imposed in a simple shear flow keeping the concentration constant and homogeneous. Four
initial orientation gradient cases are examined, as shown in Fig. 3.3, for which Ayy/c = Azz/c

and Axy/c = 0. The first case is referred as "ISO", where the rods are isotropic, i.e., A2 = δ/3.
In the second case "ALI", particles are perfectly aligned in the flow direction (Axx/c = 1). "LIN"
corresponds to the situation, where the orientation gradient has a linear profile. Axx/c = 1 and
Ayy/c = 0 at the walls (y/H = 0.5), whereas Axx/c = 0 and Ayy/c = 0.5 at center-line y = 0.
The latest case called "QUA" considers a quadratic form for the orientation gradient, where rods
are aligned in the flow direction at centerline y = 0, Axx/c = 1 and Ayy/c = 0 while at walls
y/H = 0.5, Axx/c = 0 and Ayy/c = 0.5 . In order to isolate the effect of orientation, parameters
are fixed to Nb = 250, Np = 10, and Pe⊥ = Per = 10. No cross-streamline migrations of the
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Figure 3.1 – Initial concentration gradients c1 = 0.7, c2 = −1.8y2 + 0.85, c3 = −2.4y2 + 0.9,
c4 = −3.6y2 + 1, c5 = 0.9995 for 0 < y/H < 0.35 else c5 = 0.001 and c6 = 1.998 for 0 < y/H <
0.1755 else c6 = 0.001.

Figure 3.2 – Evolution of concentration distribution along the y-direction for various initial
concentration gradients at t = 0.025 and 0.05.
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rods are observed. Furthermore, the various initial orientations of rods does not modify their
final orientation distributions and consequently the final rheological properties of the system.
However, it does influence the transient rheological properties of the system.

(a) The initial distribution of Axx along
the y-direction.

(b) The initial distribution of Ayy along
the y-direction.

Figure 3.3 – The initial rod orientations, "ISO", "LIN", "ALI", and "QUA" for (a) Axx/c and
(b)Ayy/c in the y-direction.

Evaluated at x/H = 0, Fig. 3.4, Fig. 3.5, and Fig. 3.6 depict the time evolution along the
y-direction for the shear stress Σxy, the first normal stress difference N1 = Σxx − Σyy and the
second normal stress difference N2 = Σyy − Σzz, respectively. These figures provide valuable
information about how the rheological properties of the system evolve over time in response to
changes in the initial orientation of the rods. The study reveals that rheological properties are
strongly linked with rod orientation distributions.

3.3.2 Poiseuille flow

The work is now focused on the planar Poiseuille flow problem. The geometry consists in a 2D
square of side H and, therefore, the flow occurs in the xy-plane, x denotes the flow direction,
y is the velocity gradient direction and z corresponds to the vorticity direction. The two fixed
walls are located at y±H/2. Periodic flow conditions of constant flow rate are used to simulate
an infinite flow in the channel. The prescribed initial condition for velocity is parabolic with
U/(γ̇H) = 1 − 4(y/H)2), where γ̇H = 1. Initial conditions for the conformation tensor are
Aii = c0/3 and Aij = 0 for i ̸= j, where c0 is the initial concentration.

Effect of particle extra stress

By taking into account the two-way coupling effects in homogeneous systems, it is known that
the presence of particles in the fluid causes a flattening of the standard parabolic velocity profile
in a Poiseuille flow [170]. However, in our study, we focus on non-homogeneous systems, where
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Figure 3.4 – Evolution of the shear stress along the y-direction for various initial rod orientations
at t = 0.2, 0.6, 2 and 30.

migrating rods lead to the formation of concentration variations, thus deviating from homogene-
ity. Hence, in order to investigate the impact of particle extra stress on the system, we keep
constant the translational and rotational Peclet numbers at a value of 10 (i.e., Per = Pe⊥ = 10).
This allows us to isolate and analyze the specific influence of the additional stress on the system
(i.e., the effect of two-way coupling).
Fig. 3.7a presents the numerical results obtained by investigating the coupled flow field and rod
micro-structures, in particular the effect of Brownian stress contribution through Nb. Starting
from a prescribed parabolic velocity profile with an isotropic orientation distribution and c0(t =
0) = 1, the velocity profile tends to flatten out with time (results not shown). The system is
fully developed at t = 30. As increasing Nb, the velocity profile tends to be more flatten. For
Nb = 10, the effect on the velocity profile is relatively small. However, as Nb increases, particle
stresses increase leading to a more significant deviation from the standard parabolic profile.
Fig. 3.7b depicts the effect of Brownian stresses on the concentration profile at t = 30 (i.e.,
at steady-state). Particle stress hinders the rod orientations toward the flow direction in the
channel. It also favours the migration of rods toward the walls as aligned rods have less tendency
to migrate across the streamlines [20].
Then, the effect of hydrodynamic stress contribution through Np is tested. Values of Np up
to 100 shows no significant modifications on the velocity profile and concentration distribution.
Note that the limit of convergence of this numerical model is Np = 100, for higher values the
numerical model diverges.
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Figure 3.5 – Evolution of the first normal stress difference along the y-direction for various initial
rod orientations at t = 0.2, 0.6, 2 and 30.

Effect of translational diffusion

In our previous work [20], the effect of translational diffusion in a limited planar channel is
studied without flow coupling. We aim now to explore the effect of translational diffusion in
an infinite channel by taking into account the two ways coupling effects in a transient study.
Therefore, the coupling coefficients and the rotary Peclet number are maintained at fixed values,
such as Nb = 250, Np = 10 and Per = 10 with varying the values of Pe⊥.
Fig. 3.8a shows the effect of translational diffusion on the velocity profile compared with the
initial velocity. It is found that extra stress has a more pronounced impact on the velocity profile
at higher translational diffusion Peclet numbers.
Fig. 3.8b illustrates the influence of translational diffusion on the concentration distribution of
the rods. At high values of Pe⊥, there is a notable migration of the rods towards the walls
of the channel. However, as Pe⊥ decreases, this migration becomes less pronounced. When
Pe⊥ drops below 10−1, the rods tend to remain more uniformly distributed along the channel
without significant concentration variations. It is also observed that the rods tend to maintain
an isotropic distribution at low values of Pe⊥ (results not shown). Consequently, the rheological
properties of the suspension are closed to the ones of the suspending fluid when Pe⊥ becomes
low (for more details, see Appendix B.2).
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Figure 3.6 – Evolution of the second normal stress difference along the y-direction for various
initial rod orientations at t = 0.2, 0.6, 2 and 30.

Effect of concentration gradient

A concentration gradient is now introduced with keeping the rod orientation distribution isotropic.
The same concentration gradient cases are considered as in 3.3.1. The numerical simulations
are performed with Nb = 250, Np = 10 and Per = Pe⊥ = 10. No significant effect on the rod
orientation are observed.
Figs. 3.9, 3.10, 3.11, and 3.12 show that the initial concentration gradients change the transient
behavior of the velocity profile, shear stress and both normal stresses differences. In a suspension
of Brownian rods, the shear stress and normal stress differences can undergo transient changes.
These variations are caused by the presence of a concentration gradient within the suspension,
which in turn affects the generation of extra stress on the fluid. However, it is crucial to
emphasize that these transient changes do not impact the final steady-state values. As the
rods migrate across streamlines, the concentration gradient gradually diminishes, leading the
system to reach a steady-state characterized by a well-developed and consistent concentration
distribution. In this steady-state condition, the system achieves a stable equilibrium, with final
shear stress and normal stress difference values that are the same across the channel for all
the studied cases. Once the concentration becomes homogeneously distributed and the system
reaches this equilibrium state, the rheological properties no longer exhibit transient changes and
maintain their steady-state values throughout the channel.
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(a) Velocity profiles along the y-direction for
Np = 0 and for various values of Nb at t = 30.

(b) Concentration distributions along the y-
direction for Np = 0 and for various values of
Nb at t = 30.

Figure 3.7 – Effect of Brownian stress contribution on the (a) velocity profile and the (b) con-
centration distribution along the y-direction for Nb = 0, 10, 100, 250 and 1000 at t = 30 at t = 30
with Np = 0.

3.3.3 Couette flow

The Couette flow is commonly used to study fluid dynamics and transport phenomena in cylin-
drical geometries. Fig. 3.13 shows the Couette flow geometry studied in this section, which
consists of two concentric cylinders with radii H and 0.8H. The outer cylinder is fixed, while
the inner cylinder is rotating at angular velocity U/(γ̇H) = 0.36. Fig. 3.13 also displays the
magnitude of the velocity field between the coaxial cylinders, which varies with the radial dis-
tance. All the results in this section are plotted at the "Baseline"(see Fig. 3.13), at this line
the velocity vector has only one component in the direction of θ. Using a cylindrical coordinate
system (r, θ, z) is suitable to present the results.

Small gap

We first consider a flow between two concentric cylinders with a very small gap, known as
Taylor-Couette flow (Rin/Rout = 0.99). The difference in shear rates between the inner and
outer cylinders is found to be around 2.8% (γ̇ = 1 ± 2.8%s−1). The rotary diffusion is fixed to a
value of Per = 10 and the coupling coefficients are fixed to a values of Np = 10 and Nb = 250. We
observed that even a small difference in the shear rates between the inner and outer cylinders can
have a significant effect on the system. The particles do not introduce any noticeable alterations
to the flow field, and there is no migration of particles across the streamlines (Homogeneous
concentration). However, the orientation of the rods in the Taylor-Couette flow is influenced by
the translational Peclet number, as shown in Fig. 3.14. The changes in particle orientation have
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(a) Velocity profiles along the y-direction for
various Pe⊥ at t = 30 compared with velocity
profile with no coupling.

(b) Concentration along the y-direction for var-
ious Pe⊥ at t = 30

Figure 3.8 – Effect of the translational Peclet number on the (a) velocity profile and the (b)
concentration distribution along the y-direction for Pe⊥ = 10−2, 10−1, 100 and 101 at t = 30.

notable consequences on the rheological properties of the system, as depicted in Fig. 3.15. The
isotropic distribution of rods at these conditions led to a minimal value of the shear viscosity
comparable to the case of aligned rods, as well as for both normal stress differences. This
behavior highlights the significant impact of rod orientation on the rheological properties of
the suspension. The findings provide valuable insights into the interplay between translational
diffusion, particle orientation, and the flow behavior of Brownian particle suspensions in Taylor-
Couette flow.

Effect of particle extra stresses

Fig. 3.16a illustrates the effect of Brownian stress contribution on the velocity profile in a Couette
flow with suspended rods. It shows that as the Brownian coupling increases, the velocity profile
becomes more flattened. This is because the orientation of the elongated particles affects the
stress contributions, which in turn changes the shear viscosity. As a result, the velocity profile
deviates from the initial profile observed in a Couette flow

vθ/(γ̇Rout) = 1
R2

out −R2
in

[
(−0.45R2

in)r + 0.45R2
inR

2
out

r

]
. (3.22)

When Nb = 100 or 250, the coupling between the flow-field and rod orientation is strong enough
to cause the formation of a reverse flow near the fixed cylinder. This occurs because the ori-
entation of the rods affects the flow field, leading to the formation of a pressure gradient that
opposes the initial flow direction (last term in Eq. 3.16). As a result, the velocity near the fixed
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Figure 3.9 – Effect of the initial concentration on the velocity profile along the y-direction at
t = 0.2, and 0.6.

cylinder becomes negative.
Fig. 3.16b depicts the effect of Brownian coupling on the concentration of the rods. It

indicates that as Nb increases, the concentration of rods near the fixed wall decreases and
becomes more concentrated near the moving wall. This is due to the change in the velocity
profile mentioned earlier.

Effect of translational diffusion

The effect of translational diffusion on the behavior of Brownian particles in the Couette flow
is investigated by simulating the flow for various values of Pe⊥. The results show that the
behavior of the suspension in the Couette flow is qualitatively similar to that observed in the
Poiseuille flow. Fig. 3.17a reports the velocity profile between the coaxial cylinders at t = 30.
As expected, the velocity profile changes as the coupling between the particles and the flow
increases. Furthermore, the effect of coupling decreases as the translational Peclet number
decreases. Fig. 3.17b depicts the concentration distribution between the coaxial cylinders at
t = 30. It demonstrates that at high values of Pe⊥, the rods exhibit a migration towards the
walls. Conversely, as Pe⊥ decreases, this migration becomes less pronounced.
At low values of Pe⊥, the rods tend to maintain an isotropic distribution. This isotropic behavior
significantly influences the rheological properties. The concentration distribution and migration
of the rods play a crucial role in determining the overall rheology and behavior of the suspension
in a Couette flow.
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Figure 3.10 – Effect of the initial concentration on the shear viscosity along the y-direction at
t = 0.2, 0.6, 2 and 30.

3.4 Conclusion

This numerical work investigates the rheological behavior of Brownian rod suspensions in a
simple shear flow, a Poiseuille flow, and a Couette flow. The effects of rod-fluid coupling,
concentration gradients, and translational diffusion are explored based on a kinetic macro-model.
The findings reveal that the presence of rods in simple shear flows does not significantly alter
the flow behavior, and translational diffusion has minimal impact on the system. However, in
Poiseuille flows, the rods cause deviations from the standard parabolic velocity profile, leading to
a flattened profile and the formation of concentration gradients. The coupling between the flow-
field and rod orientation affects their orientation, migration behavior, and rheological properties,
which have implications for the overall flow dynamics. In Couette flows, the rod-fluid coupling
leads to an interesting phenomenon of inverse flow near the fixed cylinder, driven by the interplay
between rod orientation and flow field.
Also, this study highlights the influence of translational Peclet numbers on the behavior of
Brownian rod suspensions in flow systems. The findings reveal that low values of the translational
Peclet number hinder the effects of rod-flow couplings, resulting in minimal alterations to the
flow behavior. However, as the translational Peclet number increases, pronounced migration of
rods towards the channel walls and increased alignment with the flow direction are observed.
These results have significant implications for various applications involving rod-like particle sus-
pensions. Understanding the influence of translational Peclet numbers can aid in the design and
optimization of microfluidic devices, biophysical processes, and industrial applications, where
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Figure 3.11 – Effect of the initial concentration on the first normal stress differences along the
y-direction at t = 0.2, 0.6, 2 and 30.

the control and manipulation of rod-like particles in flow systems are crucial. Further research
and experimental investigations are necessary to validate and expand upon these findings, ex-
ploring the interplay between translational diffusion and rod-flow couplings. Future works will
focus on exploring the effect of anisotropic translational diffusion in the case of active Brownian
particles as well as the effect of the stresses on the system.
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Figure 3.12 – Effect of the initial concentration on the second normal stress differences along
the y-direction at t = 0.2, 0.6, 2 and 30.

Figure 3.13 – Initial dimensionless velocity magnitude in the Couette flow. The red vertical line
will be referred to as "the base line" in this work
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(a) Evolution of Aθθ/c with respect to the strain. (b) Evolution of Arθ/c with respect to the strain.

(c) Evolution of Arr/c with respect to the strain.

Figure 3.14 – Effect of the translational Peclet number on the evolution of the orientation
components of (a) Aθθ/c, (b)Arθ/c and (c) Arr/c as a function of strain (γ) at r = (Rin +Rout)/2
(γ̇ = 1/s).
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(a) Evolution of the shear viscosity (Σrθ) with
respect to
the strain.

(b) Evolution of the first normal stress difference
(N1) with respect to the strain.

(c) Evolution of the second normal stress differ-
ence (N2) with respect to the strain.

Figure 3.15 – Effect of the translational Peclet number on the evolution of the normalized
rheological properties (a) shear viscosity (Σrθ), (b) first normal stress difference (N1) and (c)
second normal stresses difference (N2) as a function of strain (γ) at r = (Rin+Rout)/2 (γ̇ = 1/s).
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(a) Velocity profiles along the r-direction for
Nb = 0, 10, 100 and 250 at t = 30.

(b) Concentration distributions along the r-
direction for Nb = 0, 10, 100 and 250 at t = 30.

Figure 3.16 – Effect of Brownian stress contribution on the (a) velocity profile and (b) concen-
tration distribution along the r-direction for Nb = 0, 10, 100 and 250, and Np = 0 at t = 30.

(a) Effect of the translational Peclet number on
the velocity profile along the r-direction of the
base line for Pe⊥ = 10−2, 10−1, 100 and 101 at
t = 30.

(b) Effect of the translational Peclet number on
the concentration along the r-direction of the
base line for Pe⊥ = 10−2, 10−1, 100 and 101 at
t = 30.

Figure 3.17 – Effect of the translational Peclet number on ((a) velocity profile and (b) concen-
tration along the r-direction for Pe⊥ = 10−2, 10−1, 100 and 101 at t = 30.
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Chapter 4 – Suspension of active rod-like particles in complex flows

This study explores the dynamics of active rodlike particles in flow systems, focusing on the
active particles-fluid interactions and particles accumulation induced by anisotropic translational
diffusion. Numerical simulations based on the work of Mezi et al. [98] are used to analyse the
results. In Poiseuille flow, active rods are accumulated at the walls with high alignment in the
flow direction and nematic order in the wall directions. A circular obstacle is introduced in the
Poiseuille flow which develops non-homogeneous flow. The results of this study offer important
new understandings into the intricate behavior of suspended active rods under various flow
conditions.
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Cette étude explore la dynamique des particules actives en forme de bâtonnet dans les systèmes
d’écoulement, en se concentrant sur les interactions particules actives-fluide et l’accumulation
des particules induite par la diffusion translationnelle anisotrope. Des simulations numériques
basées sur les travaux de Mezi et al. [98] sont utilisées pour analyser les résultats. Dans
l’écoulement de Poiseuille, les tiges actives sont accumulées sur les parois avec un alignement
élevé dans la direction de l’écoulement et un ordre nématique dans les directions des parois. Un
obstacle circulaire est introduit dans l’écoulement de Poiseuille, ce qui entraîne un écoulement
non homogène. Les résultats de cette étude permettent de mieux comprendre le comportement
complexe des tiges actives en suspension dans diverses conditions d’écoulement.
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4.1 Introduction

The movement of active particles within confined spaces and their interaction with solid bound-
aries are crucial in various biological processes. Spermatozoa accumulate at surfaces [181], which
is important for sperm behavior and interactions during fertilization. Bacterias tend to gather
and interact with external flows near surfaces, significantly impacting their adhesion and biofilm
formation capabilities. Lecuyer et al. [182] found that Pseudomonas aeruginosa PA14 bacteria
stick to surfaces for longer time with increasing shear stress. Additionally, the concentration
of bacteria near surfaces affects how they interact with the gastrointestinal wall during diges-
tion, which has implications for a number of pathologies [183, 184]. The tendency of swimming
particles to accumulate near boundaries is the most noticeable characteristic of confined active
suspensions. This was first discovered by Rothschild [114], who examined the distribution of
swimming bull spermatozoa in a glass chamber and reported that there was a strong concen-
tration peak close to the walls. When Berke et al. [115] carried out the same experiment again
with Escherichia coli suspensions in microchannels, they also noticed a substantial accumulation
of bacteria on the channel walls. They also mentioned how bacteria tended to align parallel to
boundaries.
Hill et al. [185] conducted experiments tracking Escherichia coli trajectories near a rigid sur-
face in a microfluidic channel, proposing a complex mechanism for their upstream swimming
involving flagellar bundles chirality and hydrodynamic interactions. Subsequently, Kaya and
Koser [186] further characterized their hydrodynamic interactions, showing that Escherichia coli
cells undergo modified Jeffery orbits near walls [22]. Measuring and characterizing this hydro-
dynamic phenomenon has been a major objective of their work [186] as a first step in modeling
and understanding shear-assisted orientation and upstream migration. Yet more recent research
by Kaya and Koser [187], who methodically examined Escherichia coli motility near a surface
as a function of the local shear rate, provided a clearer understanding of this phenomenon.
They deduced that individual bacteria entering a flow system can rapidly migrate upstream.
As previously explained by Lauga et al. [188], circular trajectories were seen at low shear rates
because of the chirality of the cells. Positive rheotaxis was reported at higher shear rates, and
it was accompanied by swift and continuous upstream motility. The combined effects of surface
hydrodynamic interactions and orientation by the shear flow, which aligns the cells against the
flow, were used to explain this directional swimming. The majority of confinement-based ex-
perimental studies have concentrated on swimming dynamics and near-wall aggregation. Secchi
et al. [189] established that fluid flow predominantly governs the colonization of non-planar
surfaces by motile bacteria. This was demonstrated through microfluidic experiments on Pseu-
domonas aeruginosa and Escherichia coli bacteria. Velocity gradients on curved surfaces dictate
preferential attachment to specific regions. This is contrary to the case of nonmotile cells that
attach at namely the leeward side of cylinders and immediately below apexes on corrugated sur-
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faces [189]. Vennamneni et al. [190] investigated shear-induced migration of microswimmers in
a dilute suspension. They found thatThe steady state concentration profile is a function of the
rotary Peclet number and the particle aspect ratio. Hernandez-Ortiz et al. [191, 192] performed
direct numerical simulations of hydrodynamically interacting swimming particles contained in a
gap between two plates using a straightforward dumbbell model. They found a strong particle
accumulation at the boundaries in diluted systems. Elgeti and Gompper [193] introduced a
Fokker-Planck description of active Brownian suspensions. They observed excellent agreement
between analytical solutions and numerical results in simulations of self-propelled spheres in
limits of narrow channels or small propulsion velocities despite completely ignoring hydrody-
namic interactions. This study suggests that neither shape anisotropy nor wall hydrodynamic
interactions are necessary to understand migration. Lee [194] proposed a comparable contin-
uum model and derived analytical expressions for the ratio of particles in the bulk to those
in the near-wall region for weak and strong rotational diffusion limits. Li and Ardekani [195]
conducted direct numerical simulations of confined suspensions of spherical squirmers propelled
by an imposed slip velocity, observing substantial accumulation at the boundaries irrespective
of propulsion details. They also observed a tendency of particles to align perpendicularly to
the wall in the near-wall region. Saintillan and Shelley [196, 197] introduced a class of models
to elucidate the emergence of collective motion in semi-dilute suspensions. These models relie
on a conservation equation for the distribution function representing particle positions and ori-
entations. These models consider fluxes resulting from self-propulsion, advection, rotation by
the background fluid flow, and diffusive processes. Baskaran and Marchetti [198] derived a con-
tinuum description of a suspension of active organisms that includes fluid-mediated, long-range
hydrodynamic interactions among swimmers, showing that these interactions offer a straight-
forward, universal explanation for various nonequilibrium phenomena observed in the literature
[5, 199–202], independent of the microscopic physical model of individual swimmers. Forest et
al. [203] developed a kinetic model for active polar liquid crystalline polymers, which exhibits a
variety of excitable and stationary patterns in dilute regimes. Ezhilan and Saintillan [204] inves-
tigated the dynamics of confined suspensions of active particles subjected to pressure-driven flow
using a kinetic model that incorporates detailed treatment of boundary conditions. They found
peculiar dynamics, including wall accumulation, upstream swimming, centerline depletion, and
shear-trapping, and provide analytical expressions for concentration and polarization profiles,
demonstrating excellent agreement with numerical simulations and experimental observations.
In the previous numerical studies, the translational diffusion is addressed as an isotropic constant,
while in fact the translational diffusion is anisotropic that depends on particle orientations. This
work focuses on tackling the absence of consideration for anisotropic translational diffusion in
previous numerical researches regarding the active particles. A numerical method based on the
approach of Férec et al. [96] and Mezi et al. [98], utilizing the finite volume method, is updated,
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by changing the translational diffusion into an anisotropic tensor, to solve for the orientation
of active Brownian particles. The extra stress contributions exerted by the active particles are
not taken into consideration to clearly highlight the effect of the anisotropic diffusion on the
suspensions.
The structure of this chapter is as follows. Sec. 4.2 focuses on the theoretical modeling. Then
Sec. 4.3 describes the numerical model used to solve the active particle suspensions. Finally
before the conclusion, Sec. 4.4 shows the numerical results in two geometries, planar infinite
channel then a planar channel with introducing a circular obstacle.

4.2 Hypothesis

Consider a suspension of Brownian rodlike active particles of length L and width d. The active
rods are mono-dispersed, neutrally buoyant, and rigid. The suspension is considered in the
dilute concentration regime. Active rods are polar (the head of the rod is not identical to its
tail). A position vector rc and an orientation unit vector p describe each rod. For simplification,
the extra stress contribution is not considered in this work.

4.2.1 Kinetic model equation

A suspension of active Brownian particles can be described via a probability distribution function
Ψ(rc,p, t). It represents the probability to find particles at location rc with orientation p, at
the instant t. In a dilute regime, a single-particle Smoluchowski equation can be obtained as

∂Ψ
∂t

= −∇x · (ṙcΨ) − ∇p · (ṗΨ) . (4.1)

The evolution of the position of an active Brownian particle with respect to time , ṙc, is [197]

ṙc = u + Vsp − Dt · ∇x log Ψ, (4.2)

where Vs is the particle velocity. The evolution of its orientation with respect to time, ṗ, can
be written as

ṗ = ṗj −Dr∇p log Ψ, (4.3)

where ṗj is the Jeffery’s equation and it is given by [22]

ṗj = −1
2ω · p + λ

2 (γ̇ · p − γ̇ : ppp) . (4.4)

Dr and Dt are the rotary diffusion coefficient and translational diffusion tensor , respectively.
The latter for non-spherical, rigid particles is defined by Dt = D∥pp +D⊥ (δ − pp), where D∥
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and D⊥ are constants that characterize the diffusion parallel and perpendicular to the particle
axis [40]. u is the external flow velocity vector at location rc. ∇p and ∇x denote the gradient
operators in configurational and spatial spaces, respectively. ω, γ̇, and δ are the vorticity, strain
rate, and identity tensors, respectively. λ is a constant form factor as a function of the particle
aspect ratio ar = L/d, in the case of rods, λ = 1. Hence, the expanded version of Eq. 4.1, by
taking into account the fluid incompressibility condition, is

DΨ
Dt

= −∇x · (VspΨ) + ∇x · (Dt · ∇xΨ) − ∇p · (ṗjΨ) +Dr∇2
pΨ, (4.5)

where D(...)
Dt = ∂(...)

∂t + u · ∇x(...) is the material derivative operator, and ∇2
p is the Laplacian

operator in configurational domain. In what follows, we derive an equivalent evolution equation
based on the second-order moment of Ψ.

4.2.2 Flow problem

The problem is governed by the Stokes equations in the limit of creeping flow

∇x · u = 0, (4.6)

−η0∇2
xu + ∇xP = 0. (4.7)

In the above equations, ∇2
x is the Laplacian operator in the spatial space, η0 is the dynamic vis-

cosity of the Newtonian suspending fluid, P denotes the pressure. The extra stress contribution
by the particles and brownian motion is set to zero for simplicity and in order to highlight the
effect of the translational diffusion.

4.2.3 Dimensionless formulation of the problem

Choosing the active rod length L as the characteristic length and the characteristic strain rate
γ̇ = Uavg/L, where Uavg is the average flow velocity, and the dimensionless concentration c∗ = c

n ,
where n is the mean number density. The dimensionless form of FP equation (Eq. 4.5) is

DΨ
Dτ

= −Pes∇∗
x ·(pΨ)+∇∗

x ·
{[

1
Pe∥

pp + 1
Pe⊥

(δ − pp)
]

· ∇∗
xΨ
}

−∇p ·(ṗjΨ)+ 1
Per

∇2
pΨ, (4.8)

where Pes = V s
Lγ̇ is a dimensionless number that represents the relative velocity of the active rod

with respect to the flow velocity. This dimensionless number can provide insights into how active
rods respond to the applied shear flow. For example, if Pes is much smaller than 1, it suggests
that the active rod moves relatively slowly compared to the rate of deformation, indicating a less

141

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



Chapter 4 – Suspension of active rod-like particles in complex flows

responsive or less mobile active rod. Conversely, if Pes is close to or greater than 1, it suggests
that the active rod moves more rapidly in comparison to the flow velocity, indicating a more
mobile or responsive active rod. The dimensionless equation of flow is

−∇∗2
x u∗ + ∇∗

xP
∗ = 0 (4.9)

4.3 Numerical model

This study focuses on a 2D problem confining the active rod on a plane with one configurational
coordinate (θ), and two spatial Cartesian coordinates x and y. At each spatial node, this
multidimensional problem imposes a mesh for the active rod orientation angle θ domain. The
partial differential equation, Eq. 4.8, is discretized in the configurational space using the finite
volume technique (FVM). The FVM is known for having the local conservativeness property
required to satisfy the model formalized normalization constraint for the PDF. Following the
work of Férec et al. [96] and Mezi et al. [98] the model is updated to solve Eq. 4.8 for active
rods with an anisotropic diffusion tensor. In this context, all the possible orientations describe
a full circle of unit radius since an active rod is polar. As a result, the perimeter of the circle
has been divided into N equal intervals of length ∆θ = 2π/N . The convection-diffusion problem
is solved using an upwinding power-law approach in the configurational space [205]. Therefore,
the descritized form for nodal points P , E and W of the FP equation, Eq. 4.8, is

∆θ∂Ψp

∂τ
+ ∆θu · ∇xΨp − ∆θ∇x ·

{[ 1
Pe⊥

(pp + δ)
]

· ∇xΨp

}
+ ∆θPes∇x · Ψp + aP ΨP − aW ΨW − aEΨE = 0. (4.10)

COMSOL Multiphysics 6.1 is used, which enables coupling of the existing laminar flow inter-
face with partial differential equation (PDE) interfaces, which are necessary for simulating the
additional active rod stresses, the whole problem (i.e., flow field and fiber orientation) is solved
using this software with livelink with MATLAB R2022B to implement the equations. Given
that there are N nodal points involved in discretization of Ψ, the coupled system of PDEs is
represented by using the matrix coefficient forms.

4.4 Numerical results

We employ the Finite Volume method to investigate two flow problems, solving the problem
defined in Eqs. 4.6, 4.7 and 4.10. The indices 1 and 2 represent the flow direction and the
velocity gradient direction, respectively. In a simple shear flow and Poiseuille flow, they are

142

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



4.4. Numerical results

indicated with x and y, respectively.

4.4.1 Poiseuille flow

We conduct simulations within a square 2D channel with a side length of H, featuring a Poiseuille
flow between two stationary walls defined by (U/(γ̇H)) = 1−4(y/H)2). To simulate an infinitely
long channel, periodic flow conditions are employed with a constant flow rate (as depicted in
Fig. 4.1). The initial condictions are set to Ψ = 1/2π, where active rods are assumed to be
initially random planar and homogeneously distributed along the channel. This means that the
initial conformation tensor conditions are set as Aii = 1/3 and Aij = 0 for i ̸= j.

Figure 4.1 – Dimensionless velocity magnitude in the squared channel, of side H, for Poiseuille
flow with periodic BC. The vertical red lines represent the periodic conditions.

Effect of particles velocity

Based on the diffusion Peclet numbers (Per and Pe⊥) and the active rod self-propulsion Peclet
numbers (Pes), we investigate three different regimes. The first regime (Pes, P er, P e⊥) investi-
gates conditions in which the directed motion resulting from self-propulsion is only marginally
present. The second regime (Pes = Per = Pe⊥) corresponds to situations in which active
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motion and diffusion are in competition. The third regime (Pes > Per, P e⊥) examines circum-
stances in which active motion takes precedence over diffusion. In this instance, Pe⊥ = Per = 10
and Pes = 0, 5, 10, and 15 are the fixed Peclet numbers. No extra stress caused by active rods
is taken into account, and the flow issue is derived from Eq. 4.9. The concentration profiles,
as depicted in Figure 4.2a, shows active rod accumulation near the walls. This is particularly
evident at higher values of the self-propulsion Peclet number (Pes). This accumulation of active
rods near the walls is accompanied by a decrease in their alignment in the flow direction, as
indicated in Fig. 4.2b. Moreover, the nematic order parameter, as shown in Figs. 4.2c and 4.2d,
indicates a higher nematic alignment near the walls. In this context, the nematic director n2

shares the same direction as the wall-normal coordinate y and exhibits a substantially higher
absolute value near the walls, gradually diminishing towards the center of the channel.
Fig. 4.2b provides insight into the alignment of active rods along the y-direction at steady state.
Increasing the self-propulsion (Pes) results in a more alignment of the active rods in the direction
of the flow. This alignment phenomenon arises due to the interplay between self-propulsion and
fluid flow-induced shear. As the active rods exhibit stronger self-propelled motion with higher
Pes, this active motion enhances the rod orientations induced by the flow in the flow direction,
with higher alignment around the center of the channel. This alignment effect is particularly
pronounced due to the dominance of self-propulsion over diffusion, leading to organized patterns
of alignment parallel to the flow direction.
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(a) Effect of the particles self-propulsion Peclet
number, Pes, on the concentration distribution, c,
along the y direction.

(b) Effect of the particles self-propulsion Peclet
number, Pes, on the orientation component, A11/c,
along the y direction.

(c) Effect of the particles self-propulsion Peclet
number, Pes, on the orientation component, A12/c,
along the y direction.

(d) Effect of the particles self-propulsion Peclet
number, Pes, on the nematic order, n2/c, along the
y direction.

Figure 4.2 – Showing the effect of the particles self-propulsion Peclet number, Pes = 0, 5, 10 and
15, (a) on the concentration distribution, c, (b) on the orientation component, A11/c, (c) on the
orientation component, A12/c, (d) on the nematic order, n2/c, along the y direction at steady
state, in Poiseuille flow.

Effect of anisotropic translational diffusion

Here, we want to understand how directional diffusion affects the suspension active rods as
opposed to the isotropic translational diffusion. We fixed the particles self-propulsion Peclet
number Pes = 5 and the rotary Peclet number Per = 10. We compare a constant translational
Peclet number (replacing the diffusion tensor in Eq. 4.8) Pe = P e∥+P e⊥

2 (Pe⊥ = 10), with the
case when the translational diffusion is a tensor.
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In the case of anisotropic translational diffusion, the active rods experience various effective
diffusions depending on their orientations. Figs. 4.3a and 4.3b show the concentration results
examining an isotropic translational diffusion and an anisotropic translational diffusion, respec-
tively. Both cases predict the migration of active rods toward the fixed walls. Fig. 4.3b shows
strong accumulation of active rods at the wall, while Fig. 4.3a shows a moderate migration.
Anisotropic diffusion can also influence the alignment behavior of the active rods. Figs. 4.4a and
4.4b show the orientation of the active rods in the flow direction (x direction). The directional
dependence of diffusion contributes to a more pronounced alignment of active rods with the
flow direction. In the case of isotropic diffusion, the active rods experience the same diffusion
coefficient in all directions, resulting in a more uniform and isotropic exploration of the flow
field. While the active rods can still migrate towards low shear regions and align with the flow
direction, the isotropic nature of diffusion limits the migration enhancement compared to the
anisotropic case. The isotropic diffusion leads to a more moderate alignment of active rods the
flow direction, and the migration towards low shear regions is less pronounced compared to the
anisotropic case.

(a) Concentration distribution c at steady state
for isotropic traslational diffusion.

(b) Concentration distribution c at steady state
for anisotropic translational diffusion.

Figure 4.3 – Showing the effect of (a) isotropic translational diffusion and (b) anisotropic trans-
lational diffusion on the concentration distribution c along the channel at steady state.
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(a) Orientation component distribution A11/c
at steady state for isotropic translational diffu-
sion.

(b) Orientation component distribution A11/c
at steady state for anisotropic translational dif-
fusion.

Figure 4.4 – Showing the effect of (a) isotropic translational diffusion and (b) anisotropic trans-
lational diffusion on the orientation component A11/c along the channel at steady state.

Effect of rotary diffusion

We conducted simulations to explore the effects of varying rotary Peclet numbers (Per), focusing
on cases where Per values were set at 1, 10, 100, and 1000. To maintain consistency, we kept
the particle self-propulsion Peclet number is fixed at Pes = 5, and the translational diffusion
coefficient was maintained at a constant value represented by Pe⊥ = 10. As anticipated, the
outcomes revealed that higher rotary Peclet numbers tend to attenuate the alignment of active
rods in the direction of the flow. Moreover, our investigations unveiled an intriguing trend:
increasing in Per led to higher active rod accumulation toward the channel walls (see Fig.
4.5a). This trend mirrors the behavior observed in passive rod systems, where the migration
of actively aligned rods becomes less prominent as the value of Per increases. Additionally,
Fig. 4.5b indicates that the nematic order of active rods near the walls is influenced by rotary
diffusion. Notably, as the rotary Peclet number (Per) decreases, the nematic order exhibits a
discernible increase. This finding suggests that the interaction between rotary diffusion and the
fluid dynamics plays a crucial role in shaping the spatial distribution and alignment of active
rods in the channel. These results are in good agreement with the work of Matilla et al. [206],
where the increase of the rotary Peclet number leads to more accumulations at the walls.
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(a) Effect of the rotary diffusion, Per, on the con-
centration distribution, c, along the y direction.

(b) Effect of the rotary diffusion, Per, on the ne-
matic order, n2/c, along the y direction.

Figure 4.5 – Showing the effect of the rotary diffusion, Per = 1, 10, 100 and 1000, (a) on the
concentration distribution, c, (b) on the nematic order, n2/c, along the y direction at steady
state, in Poiseuille flow.

Effect of translational diffusion

In the context of parabolic flow, we are investigating the influence of translational diffusion on a
system of active rods. To examine this, we maintained a constant particles self-propulsion Peclet
number of Pes = 5 and a rotary diffusion coefficient of Per = 10, while systematically varying the
translational Peclet number with different values, Pe⊥ = 0.1, 1, and 10. Our findings illustrate
that at higher Pe⊥ values, active rods tend to accumulate near the channel walls. Conversely,
as Pe⊥ decreases, this wall accumulation tendency diminishes, eventually resulting in a more
uniform distribution of active rods along the channel. Notably, when Pe⊥ = 0.1, active rods
exhibit a nearly homogeneous distribution throughout the channel.
Fig. 4.6b shows that under higher Pe⊥ conditions, active rods exhibit a heightened orientation
preference aligned with the flow direction. In contrast, lower Pe⊥ values coincide with active
rod orientations that approach a more randomized distribution. This observation implies that
the translational Peclet number acts as a constraining factor on the self-propulsion dynamics of
active rods. Figs. 4.6c and 4.6d reveal that the quantity A12/c exhibits the same direction in
comparison to y/H, and n2/c aligns with the same direction as y/H. This alignment pattern
suggests that the active rods exhibit polarization towards the flow direction, accompanied by
nematic order directed towards the walls of the channel.
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(a) Effect of the particles self-propulsion Peclet
number, Pes, on the concentration distribution, c,
along the y direction.

(b) Effect of the particles self-propulsion Peclet
number, Pes, on the orientation component, A11/c,
along the y direction.

(c) Effect of the particles self-propulsion Peclet
number, Pes, on the orientation component, A12/c,
along the y direction.

(d) Effect of the particles self-propulsion Peclet
number, Pes, on the nematic order, n2/c, along the
y direction.

Figure 4.6 – Showing the effect of the translational diffusion, Pe⊥ = 0.1, 1 and 10, (a) on the
concentration distribution, c, (b) on the orientation component, A11/c, (c) on the orientation
component, A11/c, (d) the nematic order, n2/c, along the y direction at steady state, in Pois-
seuille flow.

4.4.2 Results of flow with a circular obstacle

To thoroughly validate and extend the applicability of this model [160, 161], it is imperative to
assess its performance in the context of active rods. This step will contribute significantly to en-
hancing our understanding of how active rods navigate through complex environments, shedding
light on their behavior in real-world situations.Indeed, incorporating a model that captures the
interaction between suspended rods and obstacles is crucial for comprehending the dynamics of

149

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



Chapter 4 – Suspension of active rod-like particles in complex flows

particulate suspensions in diverse engineering scenarios. In fact, biofilms formation on various
things, including industrial and maritime infrastructure, can be a serious issue. The prevention
methods can indeed be costly [207], and researchers are continuously exploring ways to address
this issue more efficiently and economically [208, 209]. Spoting the biofilms formation areas can
help in solving the problems. The study is conducted within a planar channel characterized by a
width of 2H and a length of W = 3H. To introduce complexity, a circular obstacle with a radius
of R = 0.5H is placed at the center of the channel (x = H) as depicted in Fig. 4.7. This work
is performed by Issa et al. [210] for passive rods. The study is conducted for Per = Pe⊥ = 10.

Figure 4.7 – Dimensionless velocity magnitude a rectangular channel, for the precence of circular
obstacle. The vertical green line represents the inlet, the horizontal yellow line represents the
symmetric and the vertical blue line represents the outlet.

In the context of a Poiseuille flow channel with the inclusion of a circular obstacle, we have
investigated the distribution of active rod concentration. The concentration profile, as depicted
in Fig. 4.8a, underscores intriguing spatial variations. Specifically, active rods exhibit heightened
concentration both near the channel walls and preceding the obstacle. However, there is a
substantial decline in active rod concentration downstream of the obstacle. Interestingly, the
behavior becomes more pronuanced as the self-propulsion (Pes) of the active rods increases. In
particular, with elevated Pes, active rods tend to accumulate more prominently along the channel
walls and in the region preceding the obstacle. This zone of accumulation becomes narrower
with higher active rod concentration. Moreover, Fig. 4.8b sheds light on the orientation of active
rods. Specifically, active rods are observed to align in the x direction at the rear of the obstacle
and in the upper part of the channel. Conversely, before and after the obstacle, particularly at
the center of the channel (y = 0), active rods adopt an orientation opposite to the flow direction.
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As shown in the study, biofilms are formed at the rear part of the obstacle. These findings are
in quantative agreement with the work of Mino et al. [211] were they found accumulation of
motile bacteria at the rear of a confined obstacle.
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(a) Effect of the particles self-propulsion Peclet
number, Pes, on the concentration distributon, c,
along the channel, at steady state.

(b) Effect of the particles self-propulsion Peclet
number, Pes, on the orientation component, A11/c,
along the channel, at steady state.

(c) Effect of the particles self-propulsion Peclet
number, Pes, on the orientation component, A12/c,
along the channel, at steady state.

(d) Effect of the particles self-propulsion Peclet
number, Pes, on the nematic order, n2/c, along the
channel, at steady state.

Figure 4.8 – Showing the effect of the particles self-propulsion Peclet number, Pes = 0, 5, 10
and 15, with the presence of a circular obstacle on (a) the concentration distribution, c, (b) the
orientation component, A11/c, (c) the orientation component, A12/c, (d) the nematic order,n2/c,
at steady state.
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Fig. 4.8c and Fig. 4.8d provide insights into the orientation characteristics of the active rods
within the channel containing a circular obstacle. Specifically, Fig. 4.8c depicts the values of the
orientation component A12/c, while Fig. 4.8d illustrates the nematic order n2/c. In the upper
region of the obstacle, extending to the walls, both A12/c and n2/c exhibit positive values. This
indicates that active rods are polarized in the positive x direction and oriented towards the
wall. Conversely, at the center of the channel, both A12/c and n2/c take on negative values.
This implies that active rods in this region are polarized in the positive x direction but oriented
towards the channel’s center.
A distinct behavior is observed immediately after the obstacle in a small area at the center.
Here, A12/c remains positive while n2/c takes on a negative value. This signifies that active
rods are polarized in the negative x direction and oriented towards the channel’s center in this
specific region.

4.5 Conclusion

In conclusion, this work explores the behavior of active rod suspensions in different flow systems,
Poiseuille flow in infinite channels, and introducing a circular obstacle in channel with Poiseuille
flow at the inlet. The study examines the dynamics of active rods including active rod migrations,
orientations and the nematic order through a numerical simulations based on the volume method
with taking into consideration an anisotropic translational diffusion.
The active rods favor the accumulation at the walls of the channel, in addition active rods are
more aligned in the flow direction than the passive rods. Although, randomly aligned active
rods at low rotary Peclet numbers Per have more tendency to migrate toward the walls than
the aligned active rods. It is shown that translational diffusion hinders the effect of the active
rods and at low translational Peclet numbers Pe⊥, the system returns to act as the case of the
passive rods. When a circular obstacle is presented, active rods are accumulated at the walls
and at the back of obstacle for active rods, while after the obstacle, they are more aligned in
the inlet flow direction (x direction) except in the center of the channel, they are aligned in the
velocity gradient direction y direction.
To confirm and build upon these findings, additional study and experimentation are required.
Future work will focus in expanding this work to 3D. In addition of developing a good closure
approximation for the kinetic model that can predict the orientation, concentration and the
rheological properties of the active rods with less computational effort.
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ACTIVE ROD-LIKE PARTICLES

SUSPENSION IN NON-HOMOGENOEUS

SYSTEM: THE EFFECT OF ACTIVE

MOTION AND FLOW/ROD COUPLING
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motion and flow/rod coupling

This study explores active Brownian rods in simple shear flow, examining the influence of self-
propulsion (Pes), rotary diffusion (Per), and translational diffusion (Pe⊥). We observe these
rods accumulating near walls, aligning with the flow direction, with more pronounced effects
at higher Pes and Pe⊥, and lower Per. Furthermore, we examine the impact of particle extra
stress in simple shear flows, observing shear banding and rheological changes. These findings
enhance our understanding of complex effect created by active particles.
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Cette étude explore les tiges browniennes actives dans un écoulement cisaillé simple, en exami-
nant l’influence de l’autopropulsion (Pes), de la diffusion rotative (Per) et de la diffusion trans-
lationnelle (Pe⊥). Nous observons que ces bâtonnets s’accumulent près des parois, s’alignant
avec la direction de l’écoulement, avec des effets plus prononcés pour des Pes et Pe⊥ plus élevés,
et des Per plus faibles. En outre, nous examinons l’impact de la contrainte supplémentaire des
particules dans les écoulements à cisaillement simple, en observant des bandes de cisaillement et
des changements rhéologiques. Ces résultats améliorent notre compréhension de l’effet complexe
créé par les particules actives.

157

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



Chapter 5 – Active rod-like particles suspension in non-homogenoeus system: The effect of active
motion and flow/rod coupling

5.1 Introduction

Several biological processes depend on the mobility of active self-propelled particles and their
interactions with solid boundaries. Numerous studies have looked into the mobility of biologi-
cal particles in confined spaces experimentally [114, 115, 185, 189] and numerically [190–192].
The accumulation of active particles on channel walls has been observed. In their additional
analysis of the hydrodynamic interactions, Kaya and Koser [186] demonstrated that Escherichia
coli cells undergo modified Jeffery orbits near walls [22]. Understanding the upstream migration
phenomenon requires knowing this specific information. A greater understanding of this phe-
nomena was offered by more recent study by Kaya and Koser [187], who carefully investigated
Escherichia coli motility near a surface as a function of the local shear rate. Swimming dynamics
and near-wall aggregation have been the main topics of most confinement-based experimental
research. To explain how collective motion emerged in semi-dilute suspensions, Saintillan and
Shelley developed a group of models [196, 197] to explain how collective motion emerged in
semi-dilute suspensions.In these models, the particle positions and orientations are represented
by a distribution function that is based on a conservation equation.The fluxes brought on by
diffusive, advective, rotating, and self-propelled processes are all taken into consideration by
these models. They examined the stability of aligned suspensions and showed that they are
consistently unstable to fluctuations, a finding that confirms earlier hypotheses by Simha and
Ramaswamy [93]. They also demonstrated that an instability for the particle stress occurs when
isotropic suspensions are taken into account. An active particle impose a net force dipole on
the surrounding fluid [191, 196] as it moves forward due to the balance between the propulsive
force and viscous drag on its body. This force dipole can take either a positive or a negative sign
depending on how the particle drives itself through the fluid: a pusher particle will produce a
negative dipole while a puller particle will produce a positive dipole. Hatwalne et al. [212], who
generalized liquid crystal kinetic equations to represent the rheology of active suspensions, dis-
covered that for pushers the effective viscosity would decrease and for pullers it would increase.
Ishikawa and Pedley [213] then carried out simulations of Stokesian dynamics of suspensions of
spherical ’squirmers’ that swim as a result of a specified slip velocity on their surface. They
discovered that swimming had no influence on effective viscosity in the dilute limit. A result of
the spherical shape, which generates an isotropic distribution of orientation. Haines et al. [214]
demonstrated through analytical calculations that swimming does definitely cause a change in
viscosity if the orientation distribution is considered to be anisotropic. Additionally, they saw
a reduction in the viscosity of pusher suspensions. Saintillan [70] discovered that tail-actuated
swimmers significantly reduce the fluid’s effective shear viscosity and that the rheology is char-
acterized by much higher normal stress differences than for passive suspensions. Recent research
has found that bacterial suspensions exhibit counter-intuitive behavior when subjected to ex-
ternal shear, including regimes of apparent superfluidity [109, 215]. By demonstrating a novel
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concentration-shear coupled mechanism, Vennamneni et al. [216] show how fluctuations in bac-
terial suspensions can grow and eventually reach banded steady states. In stark contrast to the
passive complex fluids [217–219] and active fluids [67, 220] studied earlier, the proposed mecha-
nism is shown to result in shear bands, with concentration inhomogeneities, in the dilute regime.
Previously, shear banding was only observed or predicted in the semi-dilute and concentrated
regimes.
Here we explore the effect of the active particles extra stress contribution in the simple shear
flow. After the introduction, the theoretical modeling and the flow problem for active rods are
derived in Sec. 5.2. Then, before conclusion Sec. 5.3 presents the numerical results in simple
shear flow including the effects of rotary and translational Peclet numbers, in addition to the
effect of extra stress generated by active particles.

5.2 Hypothesis

Consider a suspension of active particles that resemble Brownian rods and have length L and
width d. The active rods are rigid, neutrally buoyant, and mono-dispersed. The suspension is
taken into account in the regime of diluted concentration. Active rods are polar, meaning that
their heads and tails aren’t exactly the same. Each rod is described by a position vector rc and
an orientation unit vector p.

5.2.1 Kinetic model equation

A probability distribution function Ψ(rc,p, t) can be used to characterize a suspension of active
Brownian particles. It represents the probability that particles will be present at position rc and
orientation p at time t. A single-particle Smoluchowski equation can be derived in a diluted
state as

∂Ψ
∂t

= −∇x · (ṙcΨ) − ∇p · (ṗΨ) . (5.1)

The evolution of the position of an active Brownian particle with respect to time , ṙc, is [197]

ṙc = u + Vsp − Dt · ∇x log Ψ, (5.2)

where Vs is the particle velocity. The evolution of its orientation with respect to time, ṗ, can
be written as

ṗ = ṗj −Dr∇p log Ψ, (5.3)
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where ṗj is the Jeffery’s equation and it is given by [22]

ṗj = −1
2ω · p + λ

2 (γ̇ · p − γ̇ : ppp) . (5.4)

Dr and Dt are the rotary diffusion coefficient and translational diffusion tensor , respectively.
The latter for non-spherical, rigid particles is defined by Dt = D∥pp +D⊥ (δ − pp), where D∥

and D⊥ are constants that characterize the diffusion parallel and perpendicular to the particle
axis [40]. u is the external flow velocity vector at location rc. ∇p and ∇x denote the gradient
operators in configurational and spatial spaces, respectively. ω, γ̇, and δ are the vorticity, strain
rate, and identity tensors, respectively. λ is a constant form factor as a function of the particle
aspect ratio ar = L/d, in the case of rods, λ = 1. Hence, the expanded version of Eq. 5.1, by
taking into account the fluid incompressibility condition, is

DΨ
Dt

= −∇x · (VspΨ) + ∇x · (Dt · ∇xΨ) − ∇p · (ṗjΨ) +Dr∇2
pΨ, (5.5)

where D(...)
Dt = ∂(...)

∂t + u · ∇x(...) is the material derivative operator, and ∇2
p is the Laplacian

operator in configurational domain. In what follows, we derive an equivalent evolution equation
based on the second-order moment of Ψ.

5.2.2 Flow problem

The problem is governed by the continuity and Cauchy momentum equations in the limit of
creeping flow

∇x · u = 0, (5.6)

−η0∇2
xu + ∇xP = ∇x · Σ. (5.7)

In the above equations, ∇2
x is the Laplacian operator in the spatial space, η0 is the dynamic

viscosity of the Newtonian suspending fluid, P denotes the pressure and Σ represents the extra
stress tensor. Indeed, the presence of active particles in a Newtonian medium develops extra
stress contributions, which are obtained by configurational averages of force dipoles exerted
by the particle on the fluid. In the case of interest, the dipole arises from several contri-
butions, including hydrodynamic stress, Brownian stresses, and the permanent dipole due to
self-propulsion. The extra stress is calculated following the work of saintillan et al. [70].

Σ = Σs + ΣB + ΣF . (5.8)

The first contribution is resulting from the particle swimming and can be expressed as

Σs = σ0(A2 − A2 : δδ/3), (5.9)
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where σ0 is the dipole or stresslet strength, which depends on the swimming mechanism. It is a
constant and can be used to measure the particle activity. It should be noted that depending on
the type of swimmer, σ0 can be either positive or negative. For example, it can be demonstrated
that σ0 < 0 for most swimming bacteria (such as Escherichia coli and Bacillus subtilis) and
σ0 > 0 for head-actuated swimmers or pullers, such as the alga Chlamydomonas Reinhardtii
[197].
The second contribution is due to the fact that particles are Brownian. It is

ΣB = kBT (3A2 − A2 : δδ), (5.10)

where kB and T are the Boltzmann constant and the absolute temperature, respectively. The
third contribution comes from the inextensibility of the particles and is expressed as

ΣF = σF [(A4 − δA2/3) : γ̇] , (5.11)

where σF = πη0/6 log (2ar) from slender body theory.
Substituting Eqs. 5.9, 5.10 and 5.11 into Eq. 5.8 gives the detailed expression of the particle
extra stress

Σ = (σ0 + 3kBT )(A2 − A2 : δδ/3) + σF [(A4 − δA2/3) : γ̇] (5.12)

5.2.3 Dimensionless formulation of the problem

Choosing the active rod length L as the characteristic length and the characteristic strain rate
γ̇ = Uavg/L, where Uavg is the average flow velocity, and the dimensionless concentration c∗ = c

n ,
where n is the mean number number density. The dimensionless form of FP equation (Eq. 5.5)
is

DΨ
Dτ

= −Pes∇∗
x·(pΨ)+∇∗

x·
{[

1
Pe∥

pp + 1
Pe⊥

(δ − pp)
]

· ∇∗
xΨ
}

−∇p·(ṗjΨ)+ 1
Per

∇2
pΨ, (5.13)

where the dimensionless number Pes = V s
Lγ̇ denotes the active rod’s relative velocity to the flow

velocity. This dimensionless value can shed light on how active rods react to the shear flow that
is being applied.
The dimensionless of the continuity equation is

∇∗
x · u∗ = 0, (5.14)

The dimensionless form of the Cauchy equation can be written as
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∇∗
xP

∗ − ∇∗2
x u∗ = ∇∗

x ·
{
c∗
[
Np

(
A∗

4 − 1
3δA∗

2

)
: γ̇∗ + (Nb +Ns) (3A∗

2 − δ)
]}

. (5.15)

As a result, the dimensionless form of the stress tensor is

Σ∗ = c∗
[
Np

(
A4 − 1

3δA2

)
: γ̇∗ + (Nb +Ns) (3A∗

2 − δ)
]
, (5.16)

where Np = πnL3

6log(ar) is the particle coupling coefficient, Nb = nkBT
η0γ̇ is the Brownian coupling

coefficient and Ns = nσ0
η0γ̇ is the self propulsion coupling coefficient.

5.3 Numerical results

We employ the finite volume method to investigate two flow problems, solving the problem
defined in Eqs. 5.13, 5.14 and 5.15 . The indices 1 and 2 represent the flow direction and the
velocity gradient direction, respectively. In a simple shear flow and Poiseuille flow, they are
indicated with x and y, respectively.

5.3.1 Simple shear flow

A squared 2D channel with side length H undergoes a simple shear flow between opposing
moving walls. Here, the aspect ratio is defined as H/L = 106. To emulate an infinite flow
channel, periodic flow conditions with ∆P = 0 are employed (refer to Fig. 5.1). The initial
conditions for the conformation tensor are set as Aii = 1/3 and Aij = 0 for i ̸= j. The initial
concentration is homogeneous and equals to one.

Effect of self-propulsion

We examine three distinct regimes based on the active rods relative velocity Peclet number (Pes)
and the diffusion Peclet numbers (Per and Pe⊥). The first regime (Pes < Per, P e⊥) explores
scenarios where the directed motion due to self-propulsion is relatively weak. The second regime
(Pes = Per = Pe⊥) corresponds to cases where there is a competition between active motion
and diffusion. Lastly, the third regime (Pes > Per, P e⊥), investigates situations where active
motion dominates over diffusion. The Peclet numbers in this case are fixed to Pe⊥ = Per = 10
while the value of Pes equals 0, 5, 10 and 15. In this section, no active rods extra stresses is
taken into consideration and the flow problem is developed from Eq. 5.15.
With an increase in Pes, there is a noticeable accumulation of active rods near the moving walls
(see Fig. 5.2a). The stronger is the active rod self-propulsion velocity, the more pronounced is
the active rods clustering in regions where the flow velocity is higher. As depicted in Fig.5.2b,
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Figure 5.1 – Dimensionless velocity magnitude in the squared channel, of side H, for simple
shear flow with periodic BC.

active rods exhibit enhanced alignment in the flow direction at the center of the channel as the
self-propulsion Peclet number (Pes) increases. Conversely, active rods near the walls present
reduced alignment. This behavior illustrates that higher particle velocities promote stronger
alignment in the central region, while the alignment weakens towards the channel walls. Fig.
5.2c shows that A12/c is positive near the walls and negative at the center, while Fig. 5.2d
shows that n2/c has the same sign as y/H with maximum absolute values at the walls and zero
at the center. This means that at walls active rods are aligned in the direction of the flow with
nematic order toward the walls, while at the center active rods are aligned opposite to the flow
with nematic order toward the walls.
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(a) Effect of the The self-propulsion Peclet number,
Pes, on the concentration distribution, c, along the
y direction.

(b) Effect of the self-propulsion Peclet number, Pes,
on the orientation component, A11/c, along the y
direction.

(c) Effect of the self-propulsion Peclet number, Pes,
on the orientation component, A12/c, along the y
direction

(d) Effect of the self-propulsion Peclet number, Pes,
on the nematic order, n2/c, along the y direction.

Figure 5.2 – Showing the effect of the self-propulsion Peclet number, Pes = 0, 5, 10 and 15,(a) on
the concentration distribution, c, (b) on the orientation component, A11/c, (c) on the orientation
component, A12/c, (d) on the nematic order, n2/c, along the y direction at steady state, in simple
shear flow.

Effect of rotary diffusion

With fixed values of Pes = 5 and Pe⊥ = 10, we focus on the impact of rotary diffusion on
the migration behavior of active rods. As shown in Fig. 5.3a, a decrease in the rotary Peclet
number (Per) corresponds to a stronger tendency for active rods to accumulate at the walls.
This observation implies that, even in the case of active rods, isotropic active rods have more
tendency to migrate across streamlines than the aligned ones [210]. Fig. 5.3b demonstrates
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that active rods display a nematic ordering directed toward the walls, with varying degrees of
alignment corresponding to different rotary Peclet values. Remarkably, as the rotary Peclet
number (Per) decreases, the nematic order (n2) becomes increasingly prominent.

(a) Effect of the rotary diffusion, Per, on the con-
centration distribution, c, along the y direction.

(b) Effect of the rotary diffusion, Per, on the ne-
matic order, n2/c, along the y direction.

Figure 5.3 – Showing the effect of the rotary diffusion, Per = 1, 10, 100 and 1000, (a) on the
concentration distribution, c, (b) on the nematic order, n2/c, along the y direction at steady
state, in simple shear flow.

Effect of translational diffusion

For passive rods subjected to simple shear flow, the translational diffusion exhibits negligible
influence on both rod migration and orientation. However, for active rods experiencing simple
shear flows, distinct behaviors emerge. To isolate the effect of translational Peclet numbers on the
system, the other Peclet numbers are fixed at Per = 10 and Pes = 5. At higher translational
Peclet numbers, active rods tend to accumulate near the walls, whereas as the translational
Peclet number increases, active rod distribution becomes more uniform along the channel (see
Fig. 5.4a). Concerning active rod orientations, under high Peclet numbers, active rods align
predominantly in the flow direction at the center of the channel, while exhibiting a nearly
isotropic arrangement near the high-concentration walls. Decreasing the Peclet number leads to
a reduction in the gradient of active rod orientation along the y direction, as shown in Fig. 5.4b.
Translational diffusion dominates the behavior of passive rods in simple shear flows. This causes
an homogeneous distribution of passive rods in simple shear flow, while for active rods, when the
self-propulsion is dominant at high Pe⊥, active rods are accumulated near the walls and highly
aligned in the flow directions. As Pe⊥ increases, translational diffusion dominates and returns
the system to its homogeneous state. Figs. 5.4c and 5.4d shows that active rods exhibit a distinct
orientation toward the walls within the vicinity of the walls. However, as one moves towards
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the center of the channel, the orientation of active rods is more randomized. As the effect of
translational diffusion becomes increasingly dominant, active rods appear to lose any preferential
alignment along the flow direction. This shift towards a more homogeneous distribution of active
rod orientations highlights the role of diffusion in counteracting any alignment tendencies induced
by the active flow.

(a) Effect of the translational diffusion, Pe⊥, on the
concentration distribution, c, along the y direction.

(b) Effect of the translational diffusion, Pe⊥, on
the orientation component, A11/c, along the y di-
rection.

(c) Effect of the translational diffusion, Pe⊥, on the
orientation component, A12/c, along the y direc-
tion.

(d) Effect of the translational diffusion, Pe⊥, on the
nematic order, n2/c, along the y direction.

Figure 5.4 – Showing the effect of the translational diffusion, Pe⊥ = 0.1, 1 and 10, (a) on the
concentration distribution, c, (b) on the orientation component, A11/c, (c) on the orientation
component, A11/c, (d) the nematic order, n2/c, along the y direction at steady state, in simple
shear flow.
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Effect of particles extra stress

We examined the influence of particle stress in a simple shear flow. Specifically, we maintained
a fixed Peclet numbers of Per = Pe⊥ = 10 and a constant coupling coefficient of Np = 0. We
examine Pes = 0, 5, 10, and 15. Unlike the scenario with passive rods, where the simple shear
flow is not significantly affected by particle stress, our findings revealed that active particles do
exhibit alterations in response to particle stress. We focus on exploring the impact of Pes on
the rheological behavior of the system.

— Pusher rods
In the case of pusher active rods, the extra stress generated by the rod is positive, here
Nb + Ns = −10. Fig. 5.5 provides insights into this behavior by depicting the changes
in velocity profiles at the steady state for different Pes values. Considering only one half
of the simple shear flow profile, the results unveil the occurrence of a reverse flow in a
direction opposite to the moving wall. The system predicts shear banding, where shear
deformation occurs. This results have a good confirmation with the work of Vennamneni
et al. [216], where they observed shear bands with concentration inhomogeneities, in the
dilute regime.

Figure 5.5 – Effect of the self-propulsion Peclet number, Pes, on the velocity profile at steady
state, initially simple shear flow, for Nb = 10.

Fig. 5.6a illustrates the impact of self-propulsion Peclet number on the evolution of shear
viscosity with respect to strain. Notably, the results reveal a direct correlation between
the shear viscosity values and Pes. The decrease in shear viscosity with the increase of Pes

attributed to the complex interactions between the active rods and the surrounding fluid.
As a result, pushers tend to decrease the suspension viscosity. Fig. 5.6b illustrates the
impact of self-propulsion Peclet number on the evolution of the normal stress differences
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with respect to deformation at the moving wall. As the self-propulsion Peclet number (Pes)
increases, the values of the normal stress differences also increase. As the self-propulsion
(Pes) increases, the intensity of self-propulsion also increases. This enhanced activity
leads to more frequent and stronger active rod-fluid interactions, causing the suspension
to exhibit higher resistance to deformation. In essence, the active rods energetic motion
contributes to greater resistance to the flow, resulting in elevated viscosity values and
enhanced stress contributions. In this case, the orientation and concentration distributions
are qualitatively the same as the results in Sec. 5.3.1.

(a) Effect of self-propulsion Peclet number, Pes, on
the evolution of the shear viscosity with respect to
deformation.

(b) Effect of self-propulsion Peclet number, Pes, on
the evolution of the normal stresses difference with
respect to deformation.

Figure 5.6 – Showing the effect of the self-propulsion Peclet number, Pes, on the rheological
properties (a) shear viscosity, η, (b) the normal stress differences, N1, with respect to the
deformation, γ, in simple shear flow.

— Puller rods
In the case of puller active rods, the extra stress generated by the rod is negative, here
Nb + Ns = 10. Fig. 5.7 illustrates how the particle extra stress and changing Pes values
affect the velocity profiles at steady state. A small deviation from the typical linear profile
of standard simple shear flow is shown in the figure. Notably, higher Pes values are
associated with faster flow rates. It also shows shear banding opposite to the case of
pushers with less deformation.
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Figure 5.7 – Effect of self-propulsion Peclet number, Pes, on the velocity profile at steady state,
initially simple shear flow, for Nb = 10.

(a) Effect of self-propulsion Peclet number, Pes, on
the evolution of the shear viscosity with respect to
deformation.

(b) Effect of self-propulsion Peclet number, Pes, on
the evolution of the normal stresses difference with
respect to deformation.

Figure 5.8 – Showing the effect of the self-propulsion Peclet number, Pes, on the rheological
properties (a) shear viscosity, η, (b) the normal stress differences, N1, with respect to the
deformation, γ, in simple shear flow.

For the case of pullers, the effect of active suspension increases the shear viscosity of the sus-
pended flow as shown in Fig. 5.8a. As well as increasing the normal stress differences as shown
in Fig.5.8b. These results are in agreement with the work of Matilla et al. [206] which they
found that pushers tend to decrease the suspension viscosity whereas pullers enhance it. For
both pusher and puller active rods the effect of Pes on the concentration, orientation and the
nematic order are qualitatively the same as Sec. 5.3.1. As Pes increases, active rods are more
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accumulated to the walls and more aligned in the flow direction with nematic order toward the
walls.

5.4 Conclusion

In conclusion, this work explores the rheology of active rod suspensions in simple shear flow,
including simple shear flow. The study examines the dynamics of active rods including active rod
migrations, orientations and the nematic order in addition to effect of active rod-fluid coupling
in simple shear flow, through numerical simulations based on the volume method with taking
into consideration an anisotropic translational diffusion.
The active rods are more aligned with the flow direction than the passive rods, favoring accu-
mulation near the channel walls. However, compared to aligned active rods, randomly aligned
active rods with low rotational Peclet numbers Per have a stronger propensity to orient in the
direction of the walls. The action of the active rods is demonstrated to be hindered by transla-
tional diffusion, and for low translational Peclet numbers Peperp, the system resumes acting as
in the case of the passive rods.
In simple shear flow, the presence of active rods causes shear banding, a divergence from the
typical linear velocity profile. Rheological characteristics, viscosity, and normal stress differences
alter when active rods’ relative velocities and Peclet numbers increase. Additional research and
testing are needed to validate and expand upon these findings. Future work will concentrate on
studying the 3D cases in addition of expanding the rheological studies into more complex fluids.
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Conclusion

In conclusion, this thesis has examined the complex dynamics of particle suspensions in a va-
riety of flow systems, shedding light on their actions, interactions, and implications in various
contexts. Our understanding of the intricate interactions between particle concentration, orien-
tation, and fluid flow has been enriched by the unique yet connected findings presented in each
chapter.
After a general introduction, the first chapter made it possible to define the various studies to be
carried out in order to respond to the problem addressed. This thesis starts with decribing the
single anisometric particle and its dynamics including orientation and center of mass position ac-
cording to previous studies. Then, it goes through defining the Brownian passive particle before
extending to the active particles. After describing the suspension of anisometric particles and
defining the moments of the Fokker-Planck equation for the probability distribution function,
it goes on to discuss the stress tensor, the flow problem, and the numerical solutions used to
solve these problems. Afterwards, it shows some experimental previous researches including the
rheological features of active and passive particles in addition to the cross stream migrations of
non rheological systems.
In Chapter 2, it was shown how a novel macromodel could be developed and put into use while
still substantially reducing down on computation time and maintaining simulation fidelity. By
exploring Brownian rod suspensions using this novel method, it has become clear that anisotropic
translational diffusion is crucial for determining migration patterns and rod distributions. This
macromodel is verified by comparing to the results got by solving the Fokker-Planck equation
using finite element method in 2D. The orientations and migrations of Brownian particles are
examined in different flow systems. Further research is now possible thanks to these new under-
standings of particle transport in constrained geometries.
Chapter 3 extended this analysis to suspension rods focusing on the extra stress generated by
these rods, examining their behavior in different infinite flow systems. The combination of flow
and rod orientations emerged as a key determinant, highlighting the impact of translational
Peclets affecting migration development, rheological properties, and overall flow dynamics, and
providing important guidelines for management from microfluidic devices to industrial processes.
With the introduction of self-propulsion, the study of active particle suspensions in Chapter 4
revealed a deeper layer of complexity. The intricate alignment patterns of active particles and
their tendency to accumulate at channel walls have revealed the complex interplay between
particle activity, particle extra stress, flow, and confinement. The importance of translational
diffusion has been highlighted, clarifying its function in limiting the effects of active particles
and getting bqck passive-like behavior. The work is done by solving the Fokker Planck equation
for active particles in 2D using finite volume method.
These chapters have collectively improved the understanding of particle-fluid interactions by
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providing new information with broad implications. The conclusions made here offer helpful
direction for the design and optimization of a wide range of applications in addition to adding
to the basic understanding of complex flows.
This thesis has shed light on the complex interactions that control particle suspensions in various
flow environments while accounting for anisotropic translational diffusion. It proposes powerful
numerical models, which makes it possible to describe and to calculate the distribution of par-
ticles, the coupling between the flow of the fluid and the contribution of the particles. What’s
been added here represent a significant advancement in the field and encourage further research
and creativity to understand the complexities of multiphase flows and their numerous applica-
tions as these numerical models present a very good database to allow other work to study the
flow of suspensions in different processes.

Perspectives

As a result of this work, different perspectives are opening up in terms of numerical work. By
expanding the proposed numerical model to the 3D and study the behavior of the suspension
of particles in more real life applications systems represents a continuation of this work. Few
examples of these systems are pipelines, biological flows, porous media and etc, where numerical
simulations can give useful information about the interactions between fluid dynamics, particle
behavior, and both. Each system offers different problems to be solved and chances for research
and application. Materials with adaptive properties, such as self-healing materials that repair
damage on their own or materials that alter their stiffness or shape in response to environmental
factors, can incorporate active particles. These materials are 3D printed, and the properties of
the finished material depends on the suspensoion of the particles during the printing processes.
Modeling the 3D printing systems technology of Brownian and active particles will offer some an-
swers on how to optimise these systems and the printing conditions. This will provide a database
of the mechanical properties of the composite which will be then used. In addition to extending
this model to work in different concentration regimes such as modeling the particle-particle and
particle-walls interactions term. Furthermore, these models can be used in viscoelastic flows.
Also adapting this model to study the suspension of polydispersed suspensions is a huge jump
in the research work which will helps to understand more complicated systems. A periodic
sinusoidal flows can be simulated to model the mechanism of sea waves and tides in a medium
full of active particles and sediments. This study can help in understanding the mechanism of
formation of biofilms in the marine nature, which is a good step to prevent biofouling.
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Taylor dispertion

It is now broadly acknowledged that when exposed to a background shear flow, confined rod-
shaped particles have a propensity to migrate towards channel walls [112, 113, 221–224]. On
the other hand, Taylor [225] calculated the dispersion of spherical solute particles undergoing
Poiseuille flow in a cylindrical pipe in a seminal paper [225]. When a uniform patch of a solute
is injected in a laminar flow, according to Taylor’s original physical model, it spreads due to
the interaction of advection and diffusion. Early on, the solute patch mimics the parabolic flow
profile, causing lateral concentration gradients that fuel molecular diffusion to cause net lateral
transport. In the end, the shear flow facilitates the solute’s spreading, a process now known
as Taylor dispersion. In a two-dimensional Poiseuille flow with one degree of rotational free-
dom, Peng and Brady [226] explored the upstream swimming and dispersion of active Brownian
particles for spherical and rod-shaped particles. They found that the swimming of the active
Brownian particles increased the dispersion factor. Kumar et al. [227] studied the Taylor dis-
persion of Brownian elongated rods in a two-dimensional Poiseuille flow, the study demonstrates
that elongated rods exhibit an enhanced longitudinal dispersion. They found that when rota-
tional diffusion dominates, the classical Taylor dispersion result for the longitudinal spreading
rate is recovered using an orientationally averaged translational diffusivity for the rods. Taylor
dispersion arises due to the combined effects of rods diffusion and the velocity gradient across
the channel. As the rods are transported by the flowing fluid, their diffusion causes random
fluctuations in their positions. These fluctuations become amplified by the velocity gradient,
leading to the dispersion and spreading of the rods across the channel. Fig. 5.9 illustrates
the initial conditions of the concentration distribution in the channel. The rods concentration
c = 1 for 0.2 < x/H < 0.3, means that there is a localized region within the channel where
the concentration is elevated. Outside this region, the concentration is set to c = 0 indicating
a lack of rods. The rod orientations are isotropic initially, Pe⊥ = 10, Nb = 250 and Np = 10.
Fig. 5.10 shows the evolution of the concentration distribution in the channel over τ . During
the early stages, rods mimic the shape of the flow, indicating that they move and deform in a
manner similar to the fluid flow in the channel. The presence of a shear flow induces lateral
concentration gradients, meaning that there are variations in concentration across the channel
width. Later, rod advection continues longitudinal spreading of rods becomes prominent. This
refers to the dispersion of rods in the direction of the flow. At the final stage, the rods spread out
longitudinally until the concentration becomes homogeneous along each streamline. In addition
to the observed evolution of concentration in the flow direction, rods migrate toward the channel
walls in this study. Fig. 5.11 illustrates the concentration profile in the channel at a specific
time (τ = 0.6) for different rotary Peclet numbers. It shows that an increase in the rotary Peclet
number leads to a decrease in the velocity of the rods in the flow direction. This means that
rods with higher rotary Peclet numbers experience a slower motion in the direction of the flow
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compared to rods with lower rotary Peclet numbers. Additionally, it indicates that as the rotary
Peclet number increases, the rods tend to concentrate more toward the walls of the channel.
To investigate the dispersion behavior and rod velocity in the channel, the following governing
equation for Taylor dispersion was employed [227],

∂Cm

∂τ
+ PeUm

∂Cm

∂x
= κPe2∂

2Cm

∂x2 , (5.17)

where Cm represents the average lateral concentration, Um denotes the average rods velocity, and
κ corresponds to the Taylor dispersion coefficient. In our study, we considered the translational
Peclet number, Pe, as the average of the perpendicular Peclet number (Pe⊥) and the parallel
Peclet number (Pe∥). This equation describes the evolution of the average lateral concentration
with respect to time and position in the channel. The first term on the left-hand side represents
the temporal change of the concentration, while the second term accounts for the convective
transport along the flow direction. The right-hand side captures the effect of diffusion, quantified
by the Taylor dispersion coefficient and the second spatial derivative of the concentration. To
analyze the dispersion behavior and estimate the rod velocity, Eq. 5.17 was solved numerically.
Fig. 5.12 presents the variation of the Taylor dispersion coefficient (κ) as a function of the
rotary Peclet number (Per). It shows an increase in the rotary Peclet number corresponds to a
decrease in the dispersion coefficient. These results do not match with the work of Kumar et al.
[227]. It is good to model a mathmatical equation related to our marcomodel that calculates
the Taylor dispersion coefficient and the particle average velocity similar to the work of Kumar
et al. [227]. In addition, it is good to extend this work to 3D and study the Taylor dispersion
of active particles.

Closure approximation

In this work, the mathematical calculations of the kinetic macromodel is extended to the work
of active particles, although this macromodel needs closure approximations unlike the closures
used in the work of the passive particles. Constructing an accurate closure model for these
kinetic models is essential for preserving the multi-scale dynamics and capturing the correct
physics, as the equations of motion depend on unknown fields that require approximation [228].
Closures have a history of application in computational models for rheology and many-particle
systems [229], and more recently, they have been utilized in active fluids research [230–233].
These models not only provide efficient computational frameworks but also offer alternative
analytical approaches [234, 235]. Weady et al. [76] present a robust, accurate, and efficient
numerical scheme for evaluating the Bingham closure [236, 237] in a coarse-grained continuum
model for a suspension of active particles, enabling high-resolution simulations in parameter
regimes inaccessible to kinetic theories. Developing an accurate closure for this model will help
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Figure 5.9 – Initial concentration distribution in the channel, the red vertical lines represent the
flow periodic boundary conditions

in reducing the cost of the numerical simulations and the needed time. This will open the door
to extend the work into more complicated geometries.
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Figure 5.10 – Brownian rods concentration c in a Poiseuille flow, with τ increasing, demonstrating
the diffusive spread caused by Tayor dispersion

Figure 5.11 – Brownian rod concentration c in a Poiseuille flow, with the values of Per increasing,
demonstrating the diffusive spread caused by Tayor dispersion, at τ = 0.6

Figure 5.12 – Variation of Taylor dispersion coefficient (κ) as a function of rotary Peclet number
(Per)

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



BIBLIOGRAPHY

1. Callow, J. A. & Callow, M. E., Trends in the development of environmentally friendly
fouling-resistant marine coatings, Nature communications 2, 244 (2011).

2. Lacoste, E. & Gaertner-Mazouni, N., Biofouling impact on production and ecosystem
functioning: a review for bivalve aquaculture, Reviews in Aquaculture 7, 187–196 (2015).

3. Xiao, R. & Zheng, Y., Overview of microalgal extracellular polymeric substances (EPS)
and their applications, Biotechnology advances 34, 1225–1244 (2016).

4. Roager, L. & Sonnenschein, E. C., Bacterial candidates for colonization and degradation
of marine plastic debris, Environmental science & technology 53, 11636–11643 (2019).

5. Dombrowski, C, Cisneros, L, Chatkaew, S, Goldstein, R. & Kessler, J., Self-concentration
and large-scale coherence in bacterial dynamics, Physical review letters 93, 098103 (2004).

6. Cisneros, L., Kessler, J., Ganguly, S & Goldstein, R., Dynamics of swimming bacte-
ria: Transition to directional order at high concentration, Physical Review E 83, 061907
(2011).

7. Dunkel, J et al., Fluid dynamics of bacterial turbulence, Physical review letters 110,
228102 (2013).

8. Kudrolli, A, Lumay, G, Volfson, D & Tsimring, L., Swarming and swirling in self-propelled
polar granular rods, Physical review letters 100, 058001 (2008).

9. Deseigne, J, Dauchot, O & Chaté, H, Collective motion of vibrated polar disks, Physical
review letters 105, 098001 (2010).

10. Ramaswamy, S, The mechanics and statistics of active matter, Annu. Rev. Condens.
Matter Phys. 1, 323–345 (2010).

11. Marchetti, M. et al., Hydrodynamics of soft active matter, Reviews of Modern Physics
85, 1143 (2013).

12. Saintillan, D & Shelley, M., Active suspensions and their nonlinear models, Comptes
Rendus Physique 14, 497–517 (2013).

13. Purcell, E., Life at low Reynolds number, American journal of physics 45, 3–11 (1977).

14. Brennen, C & Winet, H, Fluid mechanics of propulsion by cilia and flagella, Annual Review
of Fluid Mechanics 9, 339–398 (1977).

179

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



15. Paxton, W. et al., Catalytic nanomotors: autonomous movement of striped nanorods,
Journal of the American Chemical Society 126, 13424–13431 (2004).

16. Villa, K et al., Chemical Microrobots as Self-Propelled Microbrushes against Dental
Biofilm, Cell Reports Physical Science 1, 100181 (2020).

17. Saintillan, D & Shelley, M., in Complex Fluids in biological systems 319–355 (Springer,
2015).

18. Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S. & Goldstein, R. E., Fluid dynamics
and noise in bacterial cell–cell and cell–surface scattering, Proceedings of the National
Academy of Sciences 108, 10940–10945 (2011).

19. Guasto, J. S., Johnson, K. A. & Gollub, J. P., Oscillatory flows induced by microorganisms
swimming in two dimensions, Physical review letters 105, 168102 (2010).

20. Issa, H., Natale, G., Ausias, G. & Férec, J., Modeling and numerical simulations of Brown-
ian rodlike particles with anisotropic translational diffusion, Phys. Rev. Fluids 8, 033302,
https://link.aps.org/doi/10.1103/PhysRevFluids.8.033302 (3 2023).

21. Einstein, A. et al., On the motion of small particles suspended in liquids at rest required
by the molecular-kinetic theory of heat, Annalen der physik 17, 208 (1905).

22. Jeffery, G., The motion of ellipsoidal particles immersed in a viscous fluid, Proceedings of
the Royal Society of London. Series A, Containing papers of a mathematical and physical
character 102, 161–179 (1922).

23. Trevelyan, B. & Mason, S., Particle motions in sheared suspensions. I. Rotations, Journal
of Colloid Science 6, 354–367 (1951).

24. Darabaner, C. & Mason, S., Particle motions in sheared suspensions xxii: Interactions of
rigid spheres (experimental), Rheologica Acta 6, 273–284 (1967).

25. Batchelor, G., Theoretical Introduction to Fluid Mechanics (Cambridge University Press,
1972).

26. Dinh, S. & Armstrong, R., A rheological equation of state for semiconcentrated fiber
suspensions, Journal of Rheology 28, 207–227 (1984).

27. Folgar, F & Tucker III, C., Orientation behavior of fibers in concentrated suspensions,
Journal of reinforced plastics and composites 3, 98–119 (1984).

28. Advani, S. & Tucker III, C., The use of tensors to describe and predict fiber orientation
in short fiber composites, Journal of rheology 31, 751–784 (1987).

29. Doi, M., Molecular dynamics and rheological properties of concentrated solutions of rod-
like polymers in isotropic and liquid crystalline phases, Journal of Polymer Science: Poly-
mer Physics Edition 19, 229–243 (1981).

180

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023

https://link.aps.org/doi/10.1103/PhysRevFluids.8.033302


30. Redjeb, A., Simulation numérique de l’orientation de fibres en injection de thermoplas-
tique renforcé PhD thesis (École Nationale Supérieure des Mines de Paris, 2007).

31. Dogossy, G., Morauszki, T. & Ronkay, F., Experimental investigation and applicability of
multi-stage simulations in the case of a thick-walled injection-moulded composite, Applied
Sciences 12, 8415 (2022).

32. Bay, R. S., Fiber orientation in injection-molded composites: a comparison of theory and
experiment PhD thesis (University of Illinois at Urbana-Champaign, 1991).

33. Ranganathan, S. & Advani, S., Fiber–fiber interactions in homogeneous flows of nondilute
suspensions, Journal of Rheology 35, 1499–1522 (1991).

34. Ramazani SA, A, Ait-Kadi, A & Grmela, M, Rheology of fiber suspensions in viscoelastic
media: Experiments and model predictions, Journal of Rheology 45, 945–962 (2001).

35. Park, J. M. & Kwon, T. H., Irreversible thermodynamics based constitutive theory for
fiber suspended polymeric liquids, Journal of Rheology 55, 517–543 (2011).

36. Koch, D. L., A model for orientational diffusion in fiber suspensions, Physics of Fluids 7,
2086–2088 (1995).

37. Phan-Thien, N., Fan, X.-J. & Zheng, R., A numerical simulation of suspension flow using
a constitutive model based on anisotropic interparticle interactions, Rheologica acta 39,
122–130 (2000).

38. Phelps, J. H. & Tucker III, C. L., An anisotropic rotary diffusion model for fiber orientation
in short-and long-fiber thermoplastics, Journal of Non-Newtonian Fluid Mechanics 156,
165–176 (2009).

39. Hand, G. L., A theory of anisotropic fluids, Journal of Fluid Mechanics 13, 33–46 (1962).

40. Doi, M & Edwards, S., The theory of polymer dynamics (oxford university press, 1988).

41. Altan, M., Advani, S., Güçeri, S. & Pipes, R., On the description of the orientation state
for fiber suspensions in homogeneous flows, Journal of Rheology 33, 1129–1155 (1989).

42. Hinch, E. & Leal, L., Constitutive equations in suspension mechanics. Part 2. Approximate
forms for a suspension of rigid particles affected by Brownian rotations, Journal of Fluid
Mechanics 76, 187–208 (1976).

43. Verleye, V, Couniot, A & Dupret, F, Numerical prediction of fibre orientation in complex
injection-moulded parts, WIT Transactions on Engineering Sciences 4 (1970).

44. Cintra Jr, J. S. & Tucker III, C. L., Orthotropic closure approximations for flow-induced
fiber orientation, Journal of Rheology 39, 1095–1122 (1995).

45. Verleye, V et al., in Rheology Series 1347–1398 (Elsevier, 1999).

181

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



46. Chung, D. H. & Kwon, T. H., Invariant-based optimal fitting closure approximation for
the numerical prediction of flow-induced fiber orientation, Journal of rheology 46, 169–
194 (2002).

47. Brown, R., XXVII. A brief account of microscopical observations made in the months of
June, July and August 1827, on the particles contained in the pollen of plants; and on the
general existence of active molecules in organic and inorganic bodies, The philosophical
magazine 4, 161–173 (1828).

48. Mörters, P. & Peres, Y., Brownian motion (Cambridge University Press, 2010).

49. Wiener, N, Differential space, Journal of Mathematics and Physics 2, 131–174 (1923).

50. Feynman, R, Leighton, R. B. & Sands, M, The brownian movement, The Feynman lectures
of physics 1, 41–1 (1964).

51. Burgers, J. M., On the motion of small particles of elongated form suspended in a viscous
liquid, Kon. Ned. Akad. Wet. Verhand.(Eerste Sectie) 16, 113–184 (1938).

52. Leal, L. & Hinch, E., The effect of weak Brownian rotations on particles in shear flow,
Journal of Fluid Mechanics 46, 685–703 (1971).

53. Brenner, H., Rheology of a dilute suspension of axisymmetric Brownian particles, Inter-
national journal of multiphase flow 1, 195–341 (1974).

54. Gallily, I. & Cohen, A.-H., On the stochastic nature of the motion of nonspherical aerosol
particles. I. The aerodynamic radius concept, Journal of Colloid and Interface Science
56, 443–459 (1976).

55. Gentry, J., Spurny, K. & Schörmann, J, The diffusion coefficients for ultrathin chrysotile
fibers, Journal of aerosol science 22, 869–880 (1991).

56. Lavenda, B. H., Brownian motion, Scientific American 252, 70–85 (1985).

57. Bird, R. B., Curtiss, C. F., Armstrong, R. C. & Hassager, O., Dynamics of polymeric
liquids, volume 2: Kinetic theory (Wiley, 1987).

58. Baglietto, G. & Albano, E. V., Finite-size scaling analysis and dynamic study of the critical
behavior of a model for the collective displacement of self-driven individuals, Physical
Review E 78, 021125 (2008).

59. Kulinskii, V. & Chepizhko, A., The kinetic regime of the Vicsek model, Mathematical and
Statistical Physics 1198, 25 (2009).

60. Chate, H., Ginelli, F., Grégoire, G., Peruani, F. & Raynaud, F., Modeling collective mo-
tion: variations on the Vicsek model, The European Physical Journal B 64, 451–456
(2008).

182

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



61. ZhiXin, L. & Lei, G., Connectivity and synchronization of Vicsek model, Science China
Series F: Information Sciences 51, 848–858 (2008).

62. Jadbabaie, A., Lin, J. & Morse, A., Coordination of groups of mobile autonomous agents
using nearest neighbor rules, IEEE Transactions on Automatic Control 48, 988–1001
(2003).

63. Ginelli, F., Peruani, F., Bär, M. & Chate, H., Large-scale collective properties of self-
propelled rods, Physical Review Letters 104, 184502 (2010).

64. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I. & Shochet, O., Novel type of phase
transition in a system of self-driven particles, Physical review letters 75, 1226 (1995).

65. Solon, A. P. et al., Pressure is not a state function for generic active fluids, Nature Physics
11, 673–678 (2015).

66. Bialké, J., Speck, T. & Löwen, H., Crystallization in a dense suspension of self-propelled
particles, Physical review letters 108, 168301 (2012).

67. Cates, M., Fielding, S., Marenduzzo, D, Orlandini, E & Yeomans, J., Shearing active gels
close to the isotropic-nematic transition, Physical review letters 101, 068102 (2008).

68. Giomi, L., Liverpool, T. B. & Marchetti, M. C., Sheared active fluids: Thickening, thin-
ning, and vanishing viscosity, Physical Review E 81, 051908 (2010).

69. Słomka, J. & Dunkel, J., Geometry-dependent viscosity reduction in sheared active fluids,
Physical Review Fluids 2, 043102 (2017).

70. Saintillan, D, The dilute rheology of swimming suspensions: A simple kinetic model, Ex-
perimental Mechanics 50, 1275–1281 (2010).

71. Woodhouse, F. G. & Goldstein, R. E., Spontaneous circulation of confined active suspen-
sions, Physical review letters 109, 168105 (2012).

72. Gao, T. & Li, Z., Self-driven droplet powered by active nematics, Physical Review Letters
119, 108002 (2017).

73. Chen, S., Gao, P. & Gao, T., Dynamics and structure of an apolar active suspension in
an annulus, Journal of Fluid Mechanics 835, 393–405 (2018).

74. Theillard, M. & Saintillan, D., Computational mean-field modeling of confined active
fluids, Journal of Computational Physics 397, 108841 (2019).

75. Chaubal, C. V. & Leal, L. G., A closure approximation for liquid-crystalline polymer
models based on parametric density estimation, Journal of Rheology 42, 177–201 (1998).

76. Weady, S., Shelley, M. J. & Stein, D. B., A fast Chebyshev method for the Bingham
closure with application to active nematic suspensions, Journal of Computational Physics
457, 110937 (2022).

183

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023

https://doi.org/10.1016/j.jcp.2021.110937


77. Batchelor, G., The stress system in a suspension of force-free particles, Journal of fluid
mechanics 41, 545–570 (1970).

78. Batchelor, G., The stress generated in a non-dilute suspension of elongated particles by
pure straining motion, Journal of Fluid Mechanics 46, 813–829 (1971).

79. Hinch, E. & Leal, L., The effect of Brownian motion on the rheological properties of a
suspension of non-spherical particles, Journal of Fluid Mechanics 52, 683–712 (1972).

80. Lipscomb II, G., Denn, M. M., Hur, D. & Boger, D. V., The flow of fiber suspensions in
complex geometries, Journal of Non-Newtonian Fluid Mechanics 26, 297–325 (1988).

81. Shaqfeh, E. S. & Fredrickson, G. H., The hydrodynamic stress in a suspension of rods,
Physics of Fluids A: Fluid Dynamics 2, 7–24 (1990).

82. Ausias, G., Etude de l’extrusion de tubes en polymeres thermoplastiques charges de fibres
courtes PhD thesis (Paris, ENMP, 1991).

83. Megally, A., Etude et modélisation de l’orientation de fibres dans des thermoplastiques
renforcés PhD thesis (École Nationale Supérieure des Mines de Paris, 2005).

84. Mazo, R. M., Brownian motion: fluctuations, dynamics, and applications (OUP Oxford,
2008).

85. Phan-Thien, N., Constitutive equation for concentrated suspensions in Newtonian liquids,
Journal of Rheology 39, 679–695 (1995).

86. Phan-Thien, N., Fan, X. J. & Khoo, B. C., A new constitutive model for monodispersed
suspensions of spheres at high concentrations, Rheologica Acta 38, 297–304 (1999).

87. Narumi, T. et al., Transient response of concentrated suspensions after shear reversal,
Journal of Rheology 46, 295–305 (2002).

88. Mason, T. G. & Weitz, D. A., Optical measurements of frequency-dependent linear vis-
coelastic moduli of complex fluids, Physical review letters 74, 1250 (1995).

89. Crocker, J. C. & Grier, D. G., Methods of digital video microscopy for colloidal studies,
Journal of colloid and interface science 179, 298–310 (1996).

90. Dhont, J. K. & Briels, W. J., Gradient and vorticity banding, Rheologica acta 47, 257–281
(2008).

91. Lauga, E. & Powers, T. R., The hydrodynamics of swimming microorganisms, Reports on
Progress in Physics 72, 096601 (2009).

92. Izri, Z., Van Der Linden, M. N., Michelin, S. & Dauchot, O., Self-propulsion of pure
water droplets by spontaneous Marangoni-stress-driven motion, Physical review letters
113, 248302 (2014).

184

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



93. Simha, R. & Ramaswamy, S, Hydrodynamic fluctuations and instabilities in ordered sus-
pensions of self-propelled particles, Physical review letters 89, 058101 (2002).

94. Hatwalne, Y., Ramaswamy, S., Rao, M. & Aditi Simha, R, Dynamics and Rheology of
Active-Particle Suspensions in APS March Meeting Abstracts 2004 (2004), L9–012.

95. Saintillan, D., Extensional rheology of active suspensions, Physical Review E 81, 056307
(2010).

96. Férec, J., Heniche, M., Heuzey, M. C., Ausias, G. & Carreau, P. J., Numerical solution
of the Fokker-Planck equation for fiber suspensions: application to the Folgar–Tucker–
Lipscomb model, Journal of non-Newtonian Fluid Mechanics 155, 20–29 10.1016/j.jnnfm.2008.04.004
(2008).

97. Advani, S. G., Prediction of fiber orientation during processing of short fiber composites
(University of Illinois at Urbana-Champaign, 1987).

98. Mezi, D., Ausias, G., Advani, S. G. & Férec, J., Fiber suspension in 2D nonhomogeneous
flow: The effects of flow/fiber coupling for Newtonian and power-law suspending fluids,
Journal of Rheology 63, 405–418 10.1122/1.5081016 (2019).

99. Assaad Al Ayoubi, N. et al., Simulation of the Fiber Orientation Through a Finite Element
Approach to Solve the Fokker-Planck Equation, https://dx.doi.org/10.2139/ssrn.4216630,
Hugues and Da Silva, Luisa Rocha and Binetruy, Christophe and Renault, Thierry and
Comas-Cardona, Sebastien, Simulation of the Fiber Orientation Through a Finite Element
Approach to Solve the Fokker-Planck Equation.

100. Wegener, K., Kuzmin, D. & Turek, S., Efficient numerical solution of the Fokker-Planck
equation using physics-conforming finite element methods, Journal of Numerical Mathe-
matics (2023).

101. Lohmann, C., Physics-compatible finite element methods for scalar and tensorial advection
problems (Springer, 2019).

102. Mangesana, N et al., The effect of particle sizes and solids concentration on the rheology
of silica sand based suspensions, Journal of the Southern African Institute of Mining and
Metallurgy 108, 237–243 (2008).

103. Shafiei-Sabet, S., Hamad, W. Y. & Hatzikiriakos, S. G., Rheology of nanocrystalline cel-
lulose aqueous suspensions, Langmuir 28, 17124–17133 (2012).

104. Li, J, Revol, J. & Marchessault, R., Rheological properties of aqueous suspensions of chitin
crystallites, Journal of Colloid and Interface Science 183, 365–373 (1996).

105. Jia, X. et al., Rheological properties of an amorphous cellulose suspension, Food Hydro-
colloids 39, 27–33 (2014).

185

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023

https://doi.org/10.1016/j.jnnfm.2008.04.004
https://doi.org/10.1122/1.5081016


106. Sokolov, A. & Aranson, I. S., Reduction of viscosity in suspension of swimming bacteria,
Physical review letters 103, 148101 (2009).

107. Gachelin, J. et al., Non-Newtonian viscosity of Escherichia coli suspensions, Physical re-
view letters 110, 268103 (2013).

108. Rafaï, S., Jibuti, L. & Peyla, P., Effective viscosity of microswimmer suspensions, Physical
Review Letters 104, 098102 (2010).

109. López, H. M., Gachelin, J., Douarche, C., Auradou, H. & Clément, E., Turning bacteria
suspensions into superfluids, Physical review letters 115, 028301 (2015).

110. Solomon, M. & Boger, D., The rheology of aqueous dispersions of spindle-type colloidal
hematite rods, Journal of Rheology 42, 929–949 (1998).

111. Karnis, A, Goldsmith, H. & Mason, S., Axial migration of particles in Poiseuille flow,
Nature 200, 159–160 (1963).

112. Nitsche, L. C. & Hinch, E. J., Shear-induced lateral migration of Brownian rigid rods in
parabolic channel flow, Journal of Fluid Mechanics 332, 1–21 (1997).

113. Schiek, R. L. & Shaqfeh, E. S. G., Cross-streamline migration of slender Brownian fibres
in plane Poiseuille flow, Journal of Fluid Mechanics 332, 23–39 (1997).

114. ROTHSCHILD, Non-random distribution of bull spermatozoa in a drop of sperm suspen-
sion, Nature 198, 1221–1222 (1963).

115. Berke, A. P., Turner, L., Berg, H. C. & Lauga, E., Hydrodynamic attraction of swimming
microorganisms by surfaces, Physical Review Letters 101, 038102 (2008).

116. Sartori, P. et al., Wall accumulation of bacteria with different motility patterns, Physical
Review E 97, 022610 (2018).

117. Elgeti, J. & Gompper, G., Run-and-tumble dynamics of self-propelled particles in con-
finement, Europhysics Letters 109, 58003 (2015).

118. Stocker, R., Reverse and flick: Hybrid locomotion in bacteria, Proceedings of the National
Academy of Sciences 108, 2635–2636 (2011).

119. Houshyar, S., Shanks, R. A. & Hodzic, A., The effect of fiber concentration on mechanical
and thermal properties of fiber-reinforced polypropylene composites, Journal of applied
polymer science 96, 2260–2272 10.1002/app.20874 (2005).

120. Thomason, J. L. & Groenewoud, W. M., The influence of fibre length and concentration on
the properties of glass fibre reinforced polypropylene: 2. Thermal properties, Composites
Part A: Applied Science and Manufacturing 27, 555–565 10.1016/1359–835X(96)00016–4
(1996).

186

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023

https://doi.org/10.1017/S0022112096003369
https://doi.org/10.1017/S0022112096003291
https://doi.org/10.1002/app.20874
https://doi.org/10.1016/1359\bibrangedash 835X(96)00016\bibrangedash 4


121. Li, M. et al., Stress induced carbon fiber orientation for enhanced thermal conductivity
of epoxy composites, Composites Part B: Engineering 208, 108599 (2021).

122. Rahnama, M., Koch, D. L., Iso, Y. & Cohen, C., Hydrodynamic, translational diffusion
in fiber suspensions subject to simple shear flow, Physics of Fluids A: Fluid Dynamics 5,
849–862 10.1063/1.858890 (1993).

123. Stover, C. A., Koch, D. L. & Cohen, C., Observations of fibre orientation in simple shear
flow of semi-dilute suspensions, Journal of Fluid Mechanics 238, 277–296 10.1017/S002211209200171X
(1992).

124. Hinch, E. J. & Leal, L. G., Rotation of small non-axisymmetric particles in a simple shear
flow, Journal of Fluid Mechanics 92, 591–607 (1979).

125. Yarin, A. L., Gottlieb, O. & Roisman, I. V., Chaotic rotation of triaxial ellipsoids in simple
shear flow, Journal of Fluid Mechanics 340, 83–100 (1997).

126. Einarsson, J. et al., Tumbling of asymmetric microrods in a microchannel flow, Physics
of Fluids 28, 013302 (2016).

127. Hijazi, A. & Khater, A., Brownian dynamics simulations of rigid rod-like macromolecular
particles flowing in bounded channels, Computational materials science 22, 279–290
(2001).

128. Zurita-Gotor, M., Bławzdziewicz, J. & Wajnryb, E., Motion of a rod-like particle between
parallel walls with application to suspension rheology, Journal of Rheology 51, 71–97
(2007).

129. Atwi, A., Khater, A. & Hijazi, A., Three-dimensional simulations for the dynamics of
dilute colloidal suspensions of ellipsoidal-like particles flowing in the bulk and near solid
boundaries, Polymer 54, 1555–1566 (2013).

130. Holmstedt, E., Åkerstedt, H. O., Staffan Lundström, T. & Högberg, S. M., Modeling
Transport and Deposition Efficiency of Oblate and Prolate Nano-and Micro-particles in
a Virtual Model of the Human Airway, Journal of Fluids Engineering 138 (2016).

131. Monjezi, S., Jones, J. D., Nelson, A. K. & Park, J., The effect of weak confinement on the
orientation of nanorods under shear flows, Nanomaterials 8, 130 (2018).

132. Gunes, D. Z., Scirocco, R., Mewis, J. & Vermant, J., Flow-induced orientation of non-
spherical particles: Effect of aspect ratio and medium rheology, Journal of non-Newtonian
Fluid Mechanics 155, 39–50 (2008).

133. Férec, J., Bertevas, E., Khoo, B. C., Ausias, G. & Phan-Thien, N., Rigid fiber motion in
slightly non-Newtonian viscoelastic fluids, Physics of Fluids 33, 103320 (2021).

187

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023

10.1016/j.compositesb.2020.108599
https://doi.org/10.1063/1.858890
https://doi.org/10.1017/S002211209200171X
https://doi.org/10.1017/S002211207900077X
https://doi.org/10.1017/S0022112097005260
https://doi.org/10.1063/1.4938239
https://doi.org/10.1016/S0927\bibrangedash 0256(01)00241\bibrangedash 5
https://doi.org/10.1122/1.2399084
https://doi.org/10.1016/j.polymer.2013.01.018
https://doi.org/10.3390/nano8030130
https://doi.org/10.1016/j.jnnfm.2008.05.003
https://doi.org/10.1063/5.0064191


134. Kirkwood, J. G. & Auer, P. L., The visco-elastic properties of solutions of rod-like macro-
molecules, The Journal of Chemical Physics 19, 281–283 10.1103/PhysRevLett.107.250603
(1951).

135. Frattini, P. L. & Fuller, G. G., Rheo-optical studies of the effect of weak Brownian rotations
in sheared suspensions, Journal of Fluid Mechanics 168, 119–150 (1986).

136. Xie, D., Lista, M., Qiao, G. G. & Dunstan, D. E., Shear induced alignment of low aspect
ratio gold nanorods in Newtonian fluids, The Journal of Physical Chemistry Letters 6,
3815–3820 (2015).

137. Hinch, E. J. & Leal, L. G., Time-dependent shear flows of a suspension of particles with
weak Brownian rotations, Journal of Fluid Mechanics 57, 753–767 (1973).

138. Hijazi, A. & Zoaeter, M., Brownian dynamics simulations for rod-like particles in dilute
flowing solution, European Polymer Journal 38, 2207–2211 (2002).

139. Leahy, B. D., Koch, D. L. & Cohen, I., The effect of shear flow on the rotational diffusion
of a single axisymmetric particle, Journal of Fluid Mechanics 772, 42–79 (2015).

140. Palanisamy, D. & den Otter, W. K., Efficient Brownian Dynamics of rigid colloids in linear
flow fields based on the grand mobility matrix, The Journal of Chemical Physics 148,
194112 (2018).

141. Zöttl, A. et al., Dynamics of individual Brownian rods in a microchannel flow, Soft Matter
15, 5810–5814 (2019).

142. Lozinski, A. & Chauviere, C., A fast solver for Fokker-Planck equation applied to vis-
coelastic flows calculations: 2D FENE model, Journal of Computational Physics 189,
607–625 10.1016/S0021–9991(03)00248–1 (2003).

143. Chauviere, C. & Lozinski, A., Simulation of complex viscoelastic flows using theFokker-
Planck equation: 3D FENE model, Journal of non-Newtonian Fluid Mechanics 122, 201–
214 10.1016/j.jnnfm.2003.12.011 (2004).

144. Moosaie, A. & Manhart, M., A direct numerical simulation method for flow of Brownian
fiber suspensions in complex geometries, Journal of dispersion science and technology 34,
427–440 10.1080/01932691.2011.634750 (2013).

145. Krochak, P. J., Olson, J. A. & Martinez, D. M., Fiber suspension flow in a tapered
channel: The effect of flow/fiber coupling, International journal of multiphase flow 35,
676–688 10.1016/j.ijmultiphaseflow.2009.03.005 (2009).

146. Ammar, A., Mokdad, B., Chinesta, F. & Keunings, R., A new family of solvers for some
classes of multidimensional partial differential equations encountered in kinetic theory
modeling of complex fluids, Journal of non-Newtonian Fluid Mechanics 139, 153–176
10.1016/j.jnnfm.2006.07.007 (2006).

188

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023

https://doi.org/10.1103/PhysRevLett.107.250603
https://doi.org/10.1017/S0022112086000319
https://doi.org/10.1021/acs.jpclett.5b01641
https://doi.org/10.1017/S0022112073001990
https://doi.org/10.1016/S0014\bibrangedash 3057(02)00130\bibrangedash 1
https://doi.org/10.1017/jfm.2015.186
https://doi.org/10.1063/1.5027063
https://doi.org/10.1039/C9SM00903E
https://doi.org/10.1016/S0021\bibrangedash 9991(03)00248\bibrangedash 1
https://doi.org/10.1016/j.jnnfm.2003.12.011
https://doi.org/10.1080/01932691.2011.634750
https://doi.org/10.1016/j.ijmultiphaseflow.2009.03.005
https://doi.org/10.1016/j.jnnfm.2006.07.007


147. Ammar, A., Mokdad, B., Chinesta, F. & Keunings, R., A new family of solvers for some
classes of multidimensional partial differential equations encountered in kinetic theory
modelling of complex fluids: Part II: Transient simulation using space-time separated rep-
resentations, Journal of non-Newtonian Fluid Mechanics 144, 98–121 10.1016/j.jnnfm.2007.03.009
(2007).

148. Park, J. M. & Park, S. J., Modeling and simulation of fiber orientation in injection molding
of polymer composites, Mathematical Problems in Engineering 2011 (2011 year).

149. Férec, J., Ausias, G., Heuzey, M. C. & Carreau, P. J., Modeling fiber interactions in
semiconcentrated fiber suspensions, Journal of Rheology 53, 49–72 (2009).

150. Park, J., Bricker, J. M. & Butler, J. E., Cross-stream migration in dilute solutions of rigid
polymers undergoing rectilinear flow near a wall, Physical Review E 76, 040801 (2007).

151. Sharaf, O. Z., Al-Khateeb, A. N., Kyritsis, D. C. & Abu-Nada, E., Numerical investigation
of nanofluid particle migration and convective heat transfer in microchannels using an
Eulerian-Lagrangian approach, Journal of Fluid Mechanics 878, 62–97 (2019).

152. Advani, S. G. & Tucker III, C. L., The use of tensors to describe and predict fiber ori-
entation in short fiber composites, Journal of Rheology 31, 751–784 10.1122/1.549945
(1987).

153. Phillips, R. J., Armstrong, R. C., Brown, R. A., Graham, A. L. & Abbott, J. R., A
constitutive equation for concentrated suspensions that accounts for shear-induced particle
migration, Physics of Fluids A: Fluid Dynamics 4, 30–40 10.1063/1.858498 (1992).

154. Shapley, N. C., Armstrong, R. C. & Brown, R. A., Laser Doppler velocimetry measure-
ments of particle velocity fluctuations in a concentrated suspension, Journal of Rheology
46, 241–272 10.1122/1.1427908 (2002).

155. Sanchez, T., Chen, D. T., DeCamp, S. J., Heymann, M. & Dogic, Z., Spontaneous motion
in hierarchically assembled active matter, Nature 491, 431–434 (2012).

156. Advani, S. G. & Tucker III, C. L., Closure approximations for three-dimensional structure
tensors, Journal of Rheology 34, (1990).

157. Tseng, H. C., Chang, R. Y. & Hsu, C. H., Cross-streamline migration of slender Brownian
fibres in plane Poiseuille flow, Journal of Rheology 62, 313–320 10.1122/1.4998520 (2018).

158. Ezhilan, B., Shelley, M. J. & Saintillan, D., Instabilities and nonlinear dynamics of con-
centrated active suspensions, Physics of Fluids 25, 070607 10.1063/1.4812822 (2013).

159. Chen, S. B. & Jiang, L., Orientation distribution in a dilute suspension of fibers subject
to simple shear flow, Physics of Fluids 11, 2878–2890 (1999).

160. Du, Y., Jiang, H. & Hou, Z., Study of active Brownian particle diffusion in polymer
solutions, Soft Matter 15, 2020–2031 (2019).

189

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023

https://doi.org/10.1016/j.jnnfm.2007.03.009
https://doi.org/10.1155/2011/105637
https://doi.org/10.1122/1.3000732
doi.org/10.1103/PhysRevE.76.040801
https://doi.org/10.1017/jfm.2019.606
https://doi.org/10.1122/1.549945
https://doi.org/10.1063/1.858498
https://doi.org/10.1122/1.1427908
https://doi.org/10.1122/1.550133
https://doi.org/10.1122/1.4998520
https://doi.org/10.1063/1.4812822
https://doi.org/10.1039/C8SM02292E


161. Ghernaout, D. et al., Brownian motion and coagulation process, American Journal of
Environmental Protection 4, 1–15 (2015).

162. Haddadi, H., Shojaei-Zadeh, S., Connington, K. & Morris, J. F., Suspension flow past a
cylinder: particle interactions with recirculating wakes, Journal of Fluid Mechanics 760
10.1017/jfm.2014.613 (2014).

163. Phan-Thien, N. & Graham, A. L., A new constitutive model for fibre suspensions: flow
past a sphere, Rheologica acta 30, 44–57 (1991).

164. Kumar, G. & Natale, G., Settling dynamics of two spheres in a suspension of Brownian
rods, Physics of Fluids 31, 073104 (2019).

165. Russel, W., Brownian motion of small particles suspended in liquids, Annual Review of
Fluid Mechanics 13, 425–455 (1981).

166. Ladd, A. & Verberg, R, Lattice-Boltzmann simulations of particle-fluid suspensions, Jour-
nal of statistical physics 104, 1191–1251 (2001).

167. Dhont, J. K. & Briels, W. J., Rod-like Brownian particles in shear flow, Soft Matter:
Complex Colloidal Suspensions, edited by G. Gompper, M. Schick 2 (2006).

168. Natale, G, Heuzey, M., Carreau, P., Ausias, G. & Férec, J, Rheological modeling of carbon
nanotube suspensions with rod–rod interactions, AIChE Journal 60, 1476–1487 (2014).

169. VerWeyst, B. E. & Tucker III, C. L., Fiber suspensions in complex geometries: Flow/orientation
coupling, The Canadian Journal of Chemical Engineering 80, 1093–1106 (2002).

170. Mezi, D., Ausias, G., Grohens, Y. & Férec, J., Numerical simulation and modeling of
the die swell for fiber suspension flows, Journal of Non-Newtonian Fluid Mechanics 274,
104205 (2019).

171. Férec, J., Mezi, D., Advani, S. G. & Ausias, G., Axisymmetric flow simulations of fiber sus-
pensions as described by 3D probability distribution function, Journal of Non-Newtonian
Fluid Mechanics 284, 104367 (2020).

172. Batchelor, G. & Green, J., The determination of the bulk stress in a suspension of spherical
particles to order c2, Journal of Fluid Mechanics 56, 401–427 (1972).

173. Batchelor, G., The effect of Brownian motion on the bulk stress in a suspension of spherical
particles, Journal of fluid mechanics 83, 97–117 (1977).

174. Bagnold, R. A., Experiments on a gravity-free dispersion of large solid spheres in a Newto-
nian fluid under shear, Proceedings of the Royal Society of London. Series A. Mathematical
and Physical Sciences 225, 49–63 (1954).

175. Gadala-Maria, F. A., The rheology of concentrated suspensions. (Stanford University,
1979).

190

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023

https://doi.org/10.11648/j.ajeps.s.2015040501.11
 https://doi.org/10.1017/jfm.2014.613
https://doi.org/10.1007/BF00366793
https://doi.org/10.1063/1.5108749


176. Gadala-Maria, F & Acrivos, A., Shear-induced structure in a concentrated suspension of
solid spheres, Journal of Rheology 24, 799–814 (1980).

177. Yasuda, K., Ohara, N. & Muguruma, M., Velocity profiles of suspension flows through
an abrupt contraction measured by magnetic resonance imaging, Chemical Engineering
& Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology
30, 1036–1044 (2007).

178. Mazahir, S., Vélez-García, G., Wapperom, P & Baird, D, Evolution of fibre orientation
in radial direction in a center-gated disk: Experiments and simulation, Composites Part
A: Applied Science and Manufacturing 51, 108–117 (2013).

179. Mazahir, S., Vélez-García, G., Wapperom, P & Baird, D, Fiber orientation in the frontal
region of a center-gated disk: Experiments and simulation, Journal of Non-Newtonian
Fluid Mechanics 216, 31–44 (2015).

180. Wang, J., O’Gara, J. F. & Tucker III, C. L., An objective model for slow orientation
kinetics in concentrated fiber suspensions: Theory and rheological evidence, Journal of
Rheology 52, 1179–1200 (2008).

181. Woolley, D., Motility of spermatozoa at surfaces, REPRODUCTION-CAMBRIDGE- 126,
259–270 (2003).

182. Lecuyer, S. et al., Shear stress increases the residence time of adhesion of Pseudomonas
aeruginosa, Biophysical journal 100, 341–350 (2011).

183. Lu, L. & Walker, W. A., Pathologic and physiologic interactions of bacteria with the
gastrointestinal epithelium, The American journal of clinical nutrition 73, 1124S–1130S
(2001).

184. Celli, J. P. et al., Helicobacter pylori moves through mucus by reducing mucin viscoelas-
ticity, Proceedings of the National Academy of Sciences 106, 14321–14326 (2009).

185. Hill, J., Kalkanci, O., McMurry, J. L. & Koser, H., Hydrodynamic surface interactions
enable Escherichia coli to seek efficient routes to swim upstream, Physical review letters
98, 068101 (2007).

186. Kaya, T. & Koser, H., Characterization of hydrodynamic surface interactions of Es-
cherichia coli cell bodies in shear flow, Physical review letters 103, 138103 (2009).

187. Kaya, T. & Koser, H., Direct upstream motility in Escherichia coli, Biophysical journal
102, 1514–1523 (2012).

188. Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A., Swimming in circles: motion
of bacteria near solid boundaries, Biophysical journal 90, 400–412 (2006).

189. Secchi, E. et al., The effect of flow on swimming bacteria controls the initial colonization
of curved surfaces, Nature communications 11, 2851 (2020).

191

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



190. Vennamneni, L., Nambiar, S. & Subramanian, G., Shear-induced migration of microswim-
mers in pressure-driven channel flow, Journal of Fluid Mechanics 890, A15 (2020).

191. Hernandez-Ortiz, J. P., Stoltz, C. G. & Graham, M. D., Transport and collective dynamics
in suspensions of confined swimming particles, Physical review letters 95, 204501 (2005).

192. Hernandez-Ortiz, J. P., Underhill, P. T. & Graham, M. D., Dynamics of confined suspen-
sions of swimming particles, Journal of Physics: Condensed Matter 21, 204107 (2009).

193. Elgeti, J. & Gompper, G., Wall accumulation of self-propelled spheres, EPL (Europhysics
Letters) 101, 48003 (2013).

194. Lee, C. F., Active particles under confinement: aggregation at the wall and gradient for-
mation inside a channel, New Journal of Physics 15, 055007 (2013).

195. Li, G.-J. & Ardekani, A. M., Hydrodynamic interaction of microswimmers near a wall,
Physical Review E 90, 013010 (2014).

196. Saintillan, D. & Shelley, M. J., Instabilities, pattern formation, and mixing in active
suspensions, Physics of Fluids 20 (2008).

197. Saintillan, D. & Shelley, M. J., Instabilities and pattern formation in active particle sus-
pensions: kinetic theory and continuum simulations, Physical Review Letters 100, 178103
(2008).

198. Baskaran, A. & Marchetti, M. C., Statistical mechanics and hydrodynamics of bacterial
suspensions, Proceedings of the National Academy of Sciences 106, 15567–15572 (2009).

199. Igoshin, O. A., Welch, R., Kaiser, D. & Oster, G., Waves and aggregation patterns in
myxobacteria, Proceedings of the National Academy of Sciences 101, 4256–4261 (2004).

200. Riedel, I. H., Kruse, K. & Howard, J., A self-organized vortex array of hydrodynamically
entrained sperm cells, Science 309, 300–303 (2005).

201. Nedelec, F. J., Surrey, T., Maggs, A. C. & Leibler, S., Self-organization of microtubules
and motors, Nature 389, 305–308 (1997).

202. Narayanan, V., Ramaswamy, S. & Menon, N., Long-lived giant number fluctuations in a
swarming granular nematic, Science 317, 105–108 (2007).

203. Forest, M. G., Wang, Q. & Zhou, R., Kinetic theory and simulations of active polar liquid
crystalline polymers, Soft Matter 9, 5207–5222 (2013).

204. Ezhilan, B. & Saintillan, D., Transport of a dilute active suspension in pressure-driven
channel flow, Journal of Fluid Mechanics 777, 482–522 (2015).

205. Versteeg, H. K. & Malalasekera, W., An introduction to computational fluid dynamics:
the finite volume method (Pearson education, 2007).

192

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



206. Alonso-Matilla, R., Ezhilan, B. & Saintillan, D., Microfluidic rheology of active particle
suspensions: Kinetic theory, Biomicrofluidics 10, 043505 (2016).

207. Xu, D, Jia, R, Li, Y & Gu, T, Advances in the treatment of problematic industrial biofilms,
World Journal of Microbiology and Biotechnology 33, 1–10 (2017).

208. Rasamiravaka, T., Labtani, Q., Duez, P., El Jaziri, M., et al., The formation of biofilms
by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering
with control mechanisms, BioMed research international 2015 (2015).

209. Saxena, P., Joshi, Y., Rawat, K. & Bisht, R., Biofilms: architecture, resistance, quorum
sensing and control mechanisms, Indian journal of microbiology 59, 3–12 (2019).

210. Issa, H., Natale, G., Ausias, G. & Férec, J., Modeling and numerical simulations of Brow-
nian rodlike particles with anisotropic translational diffusion, Physical Review Fluids 8,
033302 (2023).

211. Miño, G. L. et al., E coli accumulation behind an obstacle (2018).

212. Hatwalne, Y., Ramaswamy, S., Rao, M. & Aditi Simha, R, Rheology of active-particle
suspensions, Phys Rev Lett 92, 118101 (2004).

213. Ishikawa, T. & Pedley, T. J., The rheology of a semi-dilute suspension of swimming model
micro-organisms, J Fluid Mech 588, 399–435 (2007).

214. Haines, B. M., Aranson, I. S., Berlyand, L. & Karpeev, D. A., Effective viscosity of dilute
bacterial suspensions: a two-dimensional model, Phys Biol 5, 1–9 (2008).

215. Guo, S., Samanta, D., Peng, Y., Xu, X. & Cheng, X., Symmetric shear banding and
swarming vortices in bacterial superfluids, Proceedings of the National Academy of Sci-
ences 115, 7212–7217 (2018).

216. Vennamneni, L., Garg, P. & Subramanian, G., Concentration banding instability of a
sheared bacterial suspension, Journal of Fluid Mechanics 904, A7 (2020).

217. Cates, M. E. & Fielding, S. M., Rheology of giant micelles, Adv. Phys. 55, 799–879 (2006).

218. Olmsted, P. D., Perspectives on shear banding in complex fluids, Rheol. Acta 47, 283–300
(2008).

219. Divoux, T., Fardin, M. A., Manneville, S. & Lerouge, S., Shear banding of complex fluids,
Annu. Rev. Fluid Mech. 48, 81–103 (2016).

220. Loisy, A., Eggers, J. & Liverpool, T. B., Active suspensions have nonmonotonic flow curves
and multiple mechanical equilibria, Phys. Rev. Lett. 121, 018001 (2018).

221. Agarwal, U, Dutta, A & Mashelkar, R, Migration of macromolecules under flow: The
physical origin and engineering implications, Chemical engineering science 49, 1693–1705
(1994).

193

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



222. Jendrejack, R. M., Schwartz, D. C., De Pablo, J. J. & Graham, M. D., Shear-induced
migration in flowing polymer solutions: simulation of long-chain DNA in microchannels,
The Journal of chemical physics 120, 2513–2525 (2004).

223. Marcos, H. C., Fu, H., Powers, T. & Stocker, R, Separation of microscale chiral objects
by shear flow, Physical review letters 102, 158103 (2009).

224. Makino, M & Doi, M, Migration of twisted ribbon-like particles in simple shear flow,
Physics of Fluids 17, 103605 (2005).

225. Aris, R., On the dispersion of a solute in a fluid flowing through a tube, Proceedings of
the Royal Society of London. Series A. Mathematical and Physical Sciences 235, 67–77
(1956).

226. Peng, Z. & Brady, J. F., Upstream swimming and Taylor dispersion of active Brownian
particles, Physical Review Fluids 5, 073102 (2020).

227. Kumar, A. H., Thomson, S. J., Powers, T. R. & Harris, D. M., Taylor dispersion of
elongated rods, Physical Review Fluids 6, 094501 (2021).

228. Feng, J, Chaubal, C. & Leal, L., Closure approximations for the Doi theory: Which to
use in simulating complex flows of liquid-crystalline polymers?, Journal of Rheology 42,
1095–1119 (1998).

229. Levermore, C. D., Entropy-based moment closures for kinetic equations, Transport Theory
and Statistical Physics 26, 591–606 (1997).

230. Woodhouse, F. G. & Goldstein, R. E., Spontaneous circulation of confined active suspen-
sions, Phys. Rev. Lett. 109, 168105 (2012).

231. Gao, T. & Li, Z., Self-driven droplet powered by active nematics, Phys. Rev. Lett. 119,
108002 (2017).

232. Chen, S., Gao, P. & Gao, T., Dynamics and structure of an apolar active suspension in
an annulus, Journal of Fluid Mechanics 835, 393–405 (2018).

233. Theillard, M. & Saintillan, D., Computational mean-field modeling of confined active
fluids, Journal of Computational Physics 397, 108841 (2019).

234. Han, J., Luo, Y., Wang, W., Zhang, P. & Zhang, Z., From microscopic theory to macro-
scopic theory: a systematic study on modeling for liquid crystals, Archive for Rational
Mechanics and Analysis 215, 741–809 (2015).

235. Li, S., Wang, W. & Zhang, P., Local well-posedness and small deborah limit of a molecule-
based q-tensor system, Discrete and Continuous Dynamical Systems - B 20, 2611 (2015).

236. Chaubal, C. V. & Leal, L. G., A closure approximation for liquid-crystalline polymer
models based on parametric density estimation, Journal of Rheology 42, 177–201 (1998).

194

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



237. Bingham, C., An antipodally symmetric distribution on the sphere, Ann. Statist. 2, 1201–
1225 (1974).

238. Saintillan, D, Rheology of active fluids, Annual Review of Fluid Mechanics 50, 563–592
(2018).

239. Saintillan, D & Shelley, M., Instabilities and pattern formation in active particle suspen-
sions: kinetic theory and continuum simulations, Physical Review Letters 100, 178103
(2008).

240. Saintillan, D & Shelley, M., Instabilities, pattern formation, and mixing in active suspen-
sions, Physics of Fluids 20, 123304 (2008).

241. Aranson, I., Sokolov, A, Kessler, J. & Goldstein, R., Model for dynamical coherence in
thin films of self-propelled microorganisms, Physical Review E 75, 040901 (2007).

242. Stocker, R, Microorganisms in vortices: a microfluidic setup, Limnology and Oceanography:
Methods 4, 392–398 (2006).

243. Pahlavan, A. & Saintillan, D, Instability regimes in flowing suspensions of swimming
micro-organisms, Physics of Fluids 23, 011901 (2011).

244. Batchelor, G. K., Transport properties of two-phase materials with random structure,
Annual Review of Fluid Mechanics 6, 227–255 (1974).

245. Hinch, E. & Leal, L., Constitutive equations in suspension mechanics. Part 1. General
formulation, Journal of Fluid Mechanics 71, 481–495 (1975).

246. Chen, S. B. & Koch, D. L., Rheology of dilute suspensions of charged fibers, Physics of
Fluids 8, 2792–2807 (1996).

247. Koch, D. & Subramanian, G, Collective hydrodynamics of swimming microorganisms:
living fluids, Annual Review of Fluid Mechanics 43, 637–659 (2011).

248. Mazo, R., Brownian motion: fluctuations, dynamics, and applications 112 (Oxford Uni-
versity Press on Demand, 2002).

249. Bechinger, C. et al., Active particles in complex and crowded environments, Reviews of
Modern Physics 88, 045006 (2016).

250. Elgeti, J., Winkler, R. G. & Gompper, G., Physics of microswimmers—single particle
motion and collective behavior: a review, Reports on progress in physics 78, 056601 (2015).

251. Wensink, H. H. et al., Meso-scale turbulence in living fluids, Proceedings of the national
academy of sciences 109, 14308–14313 (2012).

252. Narayan, V., Ramaswamy, S. & Menon, N., Long-lived giant number fluctuations in a
swarming granular nematic, Science 317, 105–108 (2007).

195

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



253. Zhang, H.-P., Be’er, A., Florin, E.-L. & Swinney, H. L., Collective motion and density
fluctuations in bacterial colonies, Proceedings of the National Academy of Sciences 107,
13626–13630 (2010).

254. Wu, X.-L. & Libchaber, A., Particle diffusion in a quasi-two-dimensional bacterial bath,
Physical review letters 84, 3017 (2000).

255. Mino, G., Dunstan, J., Rousselet, A., Clément, E & Soto, R., Induced diffusion of tracers
in a bacterial suspension: theory and experiments, Journal of Fluid Mechanics 729, 423–
444 (2013).

256. Morozov, A. & Marenduzzo, D., Enhanced diffusion of tracer particles in dilute bacterial
suspensions, Soft Matter 10, 2748–2758 (2014).

257. Peng, Y. et al., Diffusion of ellipsoids in bacterial suspensions, Physical review letters 116,
068303 (2016).

258. Yang, O. et al., Dynamics of ellipsoidal tracers in swimming algal suspensions, Physical
Review E 94, 042601 (2016).

259. Haines, B. M., Sokolov, A., Aranson, I. S., Berlyand, L. & Karpeev, D. A., Three-
dimensional model for the effective viscosity of bacterial suspensions, Physical Review
E 80, 041922 (2009).

260. Ryan, S. D., Haines, B. M., Berlyand, L., Ziebert, F. & Aranson, I. S., Viscosity of bacterial
suspensions: Hydrodynamic interactions and self-induced noise, Physical Review E 83,
050904 (2011).

261. Moradi, M. & Najafi, A., Rheological properties of a dilute suspension of self-propelled
particles, EPL (Europhysics Letters) 109, 24001 (2015).

262. Bechtel, T. M. & Khair, A. S., Linear viscoelasticity of a dilute active suspension, Rheo-
logica Acta 56, 149–160 (2017).

263. Stokes, G. G. et al., On the effect of the internal friction of fluids on the motion of
pendulums (1851).

264. Navier, C., On the laws of motion of fluids taking into consideration the adhesion of the
molecules, Ann. Chim. Phys 19, 234–245 (1822).

265. Asgharian, B., Yu, C. & Gradon, L, Diffusion of fibers in a tubular flow, Aerosol science
and technology 9, 213–219 (1988).

266. Chen, Y. & Yu, C., Monte Carlo simulation of fiber orientation in a shear flow with
Brownian rotation, Aerosol science and technology 16, 255–264 (1992).

267. Tian, L., Ahmadi, G. & Tu, J., Brownian diffusion of fibers, Aerosol Science and Tech-
nology 50, 474–486 (2016).

196

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



268. Toner, J., Tu, Y. & Ramaswamy, S., Hydrodynamics and phases of flocks, Annals of
Physics 318, 170–244 (2005).

269. Redner, G. S., Hagan, M. F. & Baskaran, A., Structure and dynamics of a phase-separating
active colloidal fluid, Physical review letters 110, 055701 (2013).

270. Cates, M. E. & Tailleur, J., Motility-induced phase separation, Annu. Rev. Condens.
Matter Phys. 6, 219–244 (2015).

271. Wysocki, A., Winkler, R. G. & Gompper, G., Cooperative motion of active Brownian
spheres in three-dimensional dense suspensions, EPL (Europhysics Letters) 105, 48004
(2014).

272. Stenhammar, J., Marenduzzo, D., Allen, R. J. & Cates, M. E., Phase behaviour of active
Brownian particles: the role of dimensionality, Soft matter 10, 1489–1499 (2014).

273. Wysocki, A., Winkler, R. G. & Gompper, G., Propagating interfaces in mixtures of active
and passive Brownian particles, New journal of physics 18, 123030 (2016).

274. Stenhammar, J., Wittkowski, R., Marenduzzo, D. & Cates, M. E., Activity-induced phase
separation and self-assembly in mixtures of active and passive particles, Physical review
letters 114, 018301 (2015).

275. Digregorio, P. et al., Full phase diagram of active Brownian disks: From melting to
motility-induced phase separation, Physical review letters 121, 098003 (2018).

276. Fily, Y., Henkes, S. & Marchetti, M. C., Freezing and phase separation of self-propelled
disks, Soft matter 10, 2132–2140 (2014).

277. Fily, Y., Baskaran, A. & Hagan, M. F., Dynamics of self-propelled particles under strong
confinement, Soft matter 10, 5609–5617 (2014).

278. Wysocki, A. & Rieger, H., Capillary action in scalar active matter, Physical review letters
124, 048001 (2020).

279. Das, S., Gompper, G. & Winkler, R. G., Local stress and pressure in an inhomogeneous
system of spherical active Brownian particles, Scientific reports 9, 1–11 (2019).

280. Takatori, S. C., Yan, W. & Brady, J. F., Swim pressure: stress generation in active matter,
Physical review letters 113, 028103 (2014).

281. Winkler, R. G., Wysocki, A. & Gompper, G., Virial pressure in systems of spherical active
Brownian particles, Soft matter 11, 6680–6691 (2015).

282. Fily, Y., Kafri, Y., Solon, A. P., Tailleur, J. & Turner, A., Mechanical pressure and mo-
mentum conservation in dry active matter, Journal of Physics A: Mathematical and The-
oretical 51, 044003 (2017).

197

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



283. Pasquino, R., Snijkers, F., Grizzuti, N. & Vermant, J., The effect of particle size and mi-
gration on the formation of flow-induced structures in viscoelastic suspensions, Rheologica
Acta 49, 993–1001 10.1007/s00397–010–0466–5 (2010).

284. Rashedi, A. et al., Shear-induced migration and axial development of particles in channel
flows of non-Brownian suspensions, AIChE Journal 66, e17100 10.1002/aic.17100 (2020).

285. Perumal, V., Gupta, R. K., Bhattacharya, S. N. & Costa, F. S., Fiber migration in shear
flow: Model predictions and experimental validation, Polymer Composites 40, 3573–3581
10.1002/pc.25219 (2019).

286. Kang, C. & Mirbod, P., Shear-induced particle migration of semi-dilute and concentrated
Brownian suspensions in both Poiseuille and circular Couette flow, International Journal
of Multiphase Flow 126, 103239 10.1016/j.ijmultiphaseflow.2020.103239 (2020).

287. Frank, M., Anderson, D., Weeks, E. R. & Morris, J. F., Particle migration in pressure-
driven flow of a Brownian suspension, Journal of Fluid Mechanics 493, 363–378 (2003).

288. Jeong, J. T. & Yoon, S. H., Two-dimensional Stokes flow around a circular cylinder in a mi-
crochannel, Journal of Mechanical Science and Technology 28, 573–579 10.1007/s12206–
013–1162–z (2014).

289. Franceschini, A., Filippidi, E., Guazzelli, E. & Pine, D. J., Transverse alignment of fibers
in a periodically sheared suspension: an absorbing phase transition with a slowly varying
control parameter, Physical review letters 107, 250603 (2011).

290. Olla, P., Orientation dynamics of weakly Brownian particles in periodic viscous flows,
Physical Review E 73, 041406 10.1103/PhysRevE.73.041406 (2006).

291. Strednak, S., Shaikh, S., Butler, J. E. & Guazzelli, É., Shear-induced migration and
orientation of rigid fibers in an oscillatory pipe flow, Physical Review Fluids 3, 091301
10.1103/PhysRevFluids.3.091301 (2018).

292. Naillon, A. et al., Dynamics of particle migration in confined viscoelastic Poiseuille flows,
Physical Review Fluids 4, 053301 10.1103/PhysRevFluids.4.053301 (2019).

293. Li T.and Luyé, J. F., Flow-fiber coupled injection molding simulations with non-uniform
fiber concentration effects (2018 /hal-01958510).

294. Ozenda, O., Saramito, P. & Chambon, G., Shear-induced migration in concentrated sus-
pensions: particle mass conservation, contact pressure and jamming (2021 /hal-03331262).

295. Bahiraei, M., Particle migration in nanofluids: a critical review, International Journal of
Thermal Sciences 109, 10.1016/j.ijthermalsci.2016.05.033 (2016).

296. Einarsson, J., Candelier, F., Lundell, F., Angilella, J. R. & Mehlig, B., Effect of weak fluid
inertia upon Jeffery orbits, Physical Review E 91, 041002 (2015).

198

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023

https://doi.org/10.1007/s00397\bibrangedash 010\bibrangedash 0466\bibrangedash 5
https://doi.org/10.1002/aic.17100
 https://doi.org/10.1002/pc.25219
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103239
https://doi.org/10.1007/s12206\bibrangedash 013\bibrangedash 1162\bibrangedash z
https://doi.org/10.1007/s12206\bibrangedash 013\bibrangedash 1162\bibrangedash z
https://doi.org/10.1103/PhysRevE.73.041406
https://doi.org/10.1103/PhysRevFluids.3.091301
https://doi.org/10.1103/PhysRevFluids.4.053301
https://hal.archives-ouvertes.fr/hal-01958510
https://hal.archives-ouvertes.fr/hal-03331262
https://doi.org/10.1016/j.ijthermalsci.2016.05.033
https://doi.org/10.1103/PhysRevE.91.041002


297. Férec, J., Bertevas, E., Ausias, G. & Phan-Thien, N., in Flow-Induced Alignment in Com-
posite Materials 77–121 (Elsevier, 2022).

298. Chrit, F. E., Bowie, S. & Alexeev, A., Inertial migration of spherical particles in channel
flow of power law fluids, Physics of Fluids 32, 083103 (2020).

299. Fabrice, S., Understanding Stabilization Methods (accessed: 22.06.2022).

300. Lai, X., Shear Thickening of Silica Rod Suspensions PhD thesis (Georgetown University,
2020).

301. Bossis, G & Brady, J., The rheology of Brownian suspensions, The Journal of chemical
physics 91, 1866–1874 (1989).

302. Brady, J. F. & Morris, J. F., Microstructure of strongly sheared suspensions and its impact
on rheology and diffusion, Journal of Fluid Mechanics 348, 103–139 (1997).

303. Russel, W. B., The Huggins coefficient as a means for characterizing suspended particles,
Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics
80, 31–41 (1984).

304. Marrucci, G, The Doi-Edwards model without independent alignment, Journal of non-
Newtonian fluid mechanics 21, 329–336 (1986).

305. Rusconi, R., Guasto, J. S. & Stocker, R., Bacterial transport suppressed by fluid shear,
Nature physics 10, 212–217 (2014).

306. Durbin, P. A., Some recent developments in turbulence closure modeling, Annual Review
of Fluid Mechanics 50, 77–103 (2018).

307. Anand, S. K. & Singh, S. P., Behavior of active filaments near solid-boundary under linear
shear flow, Soft Matter 15, 4008–4018 (2019).

199

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023

https://doi.org/10.1016/B978\bibrangedash 0\bibrangedash 12\bibrangedash 818574\bibrangedash 2.00002\bibrangedash 6
https://doi.org/10.1063/5.0013725


Appendix A
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A.1 Derivation for the equation of change of A2

This part focuses on the derivation of Eq. (2.9). First, Eq. (2.5) is multiplying with the tensor
pp/V and integrating over all orientations and the spatial domain to give

1
V

∫
p

∫
rc

DΨ
Dt

ppdrcdp = 1
V

∫
p

∫
rc

∇x · (Dt · ∇xΨ) ppdrcdp

− 1
V

∫
p

∫
rc

∇p · (ṗjΨ)ppdrcdp + Dr

V

∫
p

∫
rc

∇2
pΨppdrcdp.

(A.1)

The left-hand side of the above equation is simply the material derivative of A2, i.e., DA2/Dt.
The first term on the right-hand side of Eq. (A.1) has already been addressed in Eq. (2.8). As
for the second term on the right-hand side of Eq. (A.1), application of the integration by parts
formula leads to [152]

− 1
V

∫
p

∫
rc

∇p · (ṗjΨ)ppdrcdp = −1
2 (ω · A2 − A2 · ω) + λ

2 (γ̇ · A2 + A2 · γ̇ − 2A4 : γ̇) .

(A.2)

In obtaining the above equation, the Jeffery’s equation [Eq. (2.4)] has been used. Finally, the
integration by parts formula is applied two times in the last term of Eq. (A.1) to yield [152]

Dr

V

∫
p

∫
rc

∇2
pΨppdrcdp = 2Dr (cδ − αA2) , (A.3)

where α equals 2 in 2D and 3 in 3D. Gathering these results together, we obtain the expression
for the material derivative of A2 given in Eq. (2.9).

A.2 Numerical method

For this work, two different numerical methods have been used. The first problem is to solve the
FP equation [Eq. (2.5)] in a direct numerical computation. This numerical model is referred by
method 1 in this article. While the other method is demonstrated to compute the macromodel
(A2) by solving the partial differential equation of evolution of A2 [Eq. (2.9)]. This numerical
model is referred by method 2 in this article. For both problems, the finite-element method
is applied. Utilized software is COMSOL Multiphysics 5.5 to solve the problems including the
fluid flow field, and the partial differential equations.
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A.2.1 Method 1

In order to solve the FP equation for Ψ [Eq. (2.16)] for particle orientation and concentration
in 2D, a numerical model is composed of two components (a model component in COMSOL
Multiphysics is a fundamental section of the model that includes a geometry, physics interface,
mesh, variables, and other definitions that are specific to that component), a 2D component
and a 3D component. Benefiting from the COMSOL advantage of linear extrusion coupling
operator which maps an expression defined on a source to an expression that can be evaluated
in the destination (mapping two different components), and general projection operator, which
integrates along curves defined via expressions that can be Cartesian coordinates. Component
1 is a 2D rectangular geometry, the creeping flow is defined by solving Eqs. 2.19 and 2.20 and
with the given boundary conditions, the spatial discretization of the pressure and velocity fields
are done on P1+P2 element. Component 2 is a 3D rectangular block, the base rectangle has the
dimensions as component 1, and the horizontal coordinates are defined as spatial coordinates,
where component 1 is extruded, while the vertical coordinate are defined as the discretization
of ϕ, considering ϕ is the angle of orientation of the particle. ϕ = 0 means the rod is aligned in
the direction of flow since the rods are symmetry, so the head of the rod is identical to its tail.
ϕ is discretized from 0 to π, respecting the periodic conditions of symmetric particles

Ψ (rc, ϕ, t) = Ψ (rc, ϕ+ π, t) . (A.4)

Equation (2.16) is then projected in the ϕ direction to yield for

DΨ
Dt

= ∇x · (Dt · ∇xΨ) − ∇ϕ · (pjΨ) + 1
Per

∇2
ϕΨ, (A.5)

knowing that ∇ϕ is the gradient operator in the direction of ϕ. Elements with Lagrangian shape
functions of order quadratic are used for Ψ.
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(a) Component 1

(b) Component 2

Figure A.1 – FE mesh for components 1 and 2 in method 1. BC1: creeping inflow, BC2: No slip
condition, BC3: pressure outlet, BC4: symmetry condition, BC5: Dirichlet condition for Ψ.

All the computations were carried out on a workstation Dell PowerEdge R930 with Intel Xeon
E7-8860 v4 @ 2.20 GHz CPU with 72 threads and 1TB RAM. The computation was around
3 h and 36 minutes in each case for the three Peclet regimes. The used mesh for component
1 is COMSOL’s predefined free triangular mesh of fine resolution of 3852 elements. While for
component 2, it is free tetrahedral of coarser size, with scale geometry of 9 in the x, y, and ϕ

direction of 552663and 17064 tetrahedral and triangular elements, respectively.
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Figure A.2 – FE mesh for model 2 BC2: No slip condition, BC3: pressure outlet, BC4: symmetry
condition, BC6: creeping inflow + Dirichlet BC for A2.

A.2.2 Method 2

The second model is composed of a 2D rectangular channel, with the given boundary conditions
BC2, BC3, and BC4, while BC6 is the inlet flow velocity in addition to the Dirichlet boundary
conditions for A2. The model is composed of two physics, one for solving the creeping flow,
and the other is a coefficient partial differential equations, for solving the evolution of A2 (A11,
A12 and A22 ). In this model, Eqs. (2.18), (2.19) and (2.20) are solved using quadratic and
IBOF closures [46, 156]. All the computations were carried out on a laptop HP EliteBook 8570p
with Intel core i7 and 8GB RAM. The computation was around 16 min in each case for the
three Peclet regimes. The used mesh is the COMSOL’s predefined free triangular mesh of fine
resolution of 3852 elements.

A.2.3 Numerical precision

The dimensionless Fokker-Planck equation can be written as

Pe⊥u · ∇xΨ − Pe⊥∇x · (Dt · ∇xΨ) + Pe⊥∇p · (ṗjΨ) − Pe⊥
Per

∇2
pΨ = 0. (A.6)

It is important to study the precision of a new numerical simulation. After each computation,
the normalization of the probability distribution function and the bulk concentration at the
outlet is obtained, and the error is calculated. Figure A.3 shows the error calculated from the
numerical normalization of Ψ with the exact one. It is found that at high and low translational
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diffusions, the error is between 1% and 2%, which is acceptable. The highest error is at Pe⊥ = 1.
Numerical instabilities in COMSOL Multiphysics occur when the element Peclet number exceeds
1. Element Peclet number relates the convective term, element mesh size and the diffusion term.
An element Peclet number greater than one is caused by either large convective or small diffusive
activity for an acceptable mesh element size. In this work, two element Peclet numbers are found,
spatial (relating the spatial diffusion with spatial convection) [299] and configurational (relating
the rotary diffusion with rotary convection).
For low Pe⊥, diffusion is dominant in this case, the model is stable, and element Peclet numbers
are less than 1. For high Pe⊥, spatial convection is dominant, in this case, stabilization in the
spatial domain is considered by COMSOL (streamline and crosswind diffusion). For Pe⊥ =
1, the spatial element Peclet number is less than 1, while the configurational 1 equals the
rotary Peclet number, which is greater than 1. In this case, the COMSOL’s stabilization is not
implemented.

A.3 Closure errors

The scale axis for the error using IBOF closure is from 0 − 5%, while using quadratic closure is
0 − 10%
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Figure A.3 – Percentage of the numerical errors calculated from the normalization of Ψ, for the
case of planar channel with homogeneous concentration and planar random orientation at the
inlet as a function of Peclet numbers.
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(a) Per = 10, P e⊥ = 103

(b) Per = 103, P e⊥ = 103

(c) Per = 10, P e⊥ = 10

(d) Per = 103, P e⊥ = 10

Figure A.4 – Percentage error of concentration c for IBOF closure with respect to method 1.
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(a) Per = 10, P e⊥ = 103

(b) Per = 103, P e⊥ = 103

(c) Per = 10, P e⊥ = 10

(d) Per = 103, P e⊥ = 10

Figure A.5 – Percentage error of orientation component A11/c for IBOF closure with respect to
method 1. 208
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(a) Per = 10, P e⊥ = 103

(b) Per = 103, P e⊥ = 103

(c) Per = 10, P e⊥ = 10

(d) Per = 103, P e⊥ = 10

Figure A.6 – Percentage error of concentration c for quadratic closure with respect to method
1. 209

Anisotropic translational diffusion in passive and active colloidal suspensions : Rheology and complex flows Hamza Issa 2023



(a) Per = 10, P e⊥ = 103

(b) Per = 103, P e⊥ = 103

(c) Per = 10, P e⊥ = 10

(d) Per = 103, P e⊥ = 10

Figure A.7 – Percentage error of orientation component A11/c for quadratic closure with respect
to method 1. 210
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B.1 Model validation

A single particle Smoluchowski equation can be obtained in the dilute regime as follows [22,
26, 27, 40]

∂Ψ
∂t

= −∇x · (ṙcΨ) − ∇p · (ṗΨ) . (B.1)

Eq. B.1 can be written by taking into account the fluid incompressibility condition as

DΨ
Dt

= ∇x · (Dt · ∇xΨ) − ∇p · (ṗjΨ) +Dr∇2
pΨ. (B.2)

The dimensionless form of FP equation (Eq. B.2) is

DΨ
Dt

= ∇∗
x ·
{[

1
Pe∥

pp + 1
Pe⊥

(δ − pp)
]

· ∇∗
xΨ
}

− ∇p · (ṗjΨ) + 1
Per

∇2
pΨ. (B.3)

To solve the FP equation for the probability distribution function of the particle orientation and
concentration in 3D (Ψ), a Finite Volume Method (FVM) is employed in the configurational
space to discretize the partial differential equation. Following the works of [96] and [98], the
numerical method is updated to deal with the 3D representation of Brownian particles in non-
homogeneous systems, Eqs. 3.1, 3.2 and B.3 are solved. This numerical solution is based
on discretizing the Fokker-Planck equation in FVM for NxN number of equations [96, 98].
The model is implemented using COMSOL Multiphysics 6.1 livelinked with MATLAB R2022B.
The particles/flow two ways coupling is modeled as a weak contribution in the flow physics.
The study of the numerical solution of the model is performed to verify the used model in a
simple shear flow. We compare the results with published data in the case of a homogeneous
system by performing steady single-point calculations (SPC) using FVM. SPC calculation is
performed by discretizing the half sphere of the unit radius into N = 120x120 area elements,
while for the FE scheme where only N = 20x20 element areas are considered. Starting from
the initially homogeneous concentration c0 = 1 and the initially isotropic orientation of the
particles, the orientation state is expressed as a function of total strain in Fig. B.1. A11/c and
A22/c are proportional to the magnitude of the alignment in the flow direction and velocity
gradient direction, respectively, while A12/c indicates the direction of alignment. The model is
simulated for Per = 10, Pe⊥ = 109 (which has no physical effect on translational diffusion except
for stabilizing the numerical scheme) in a transient study for γ = 30 without considering the
hydrodynamic and Brownian coupling effects. The concentration remains homogeneous (c = 1)
during the study. Fig. B.1 illustrates a comparison between SPC, FE and IBOF results. The
FE results and the macromodel provide accurate dynamics and the appropriate steady-state
values. This analysis confirms the well-implementation of the FE code and the IBOF accuracy
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in these studies.

Figure B.1 – Comparison of the IBOF closure approximation [46] with the FE and single-point
calculations (SPC) of the conformation tensor components in simple shear flow (γ̇ = 1) with
respect to strain |γ|.

B.2 Effect of translational diffusion on the rheological transient
behaviors in Poiseuille flow

Fig. B.2 shows the evolution of the shear stress profile along the y-direction for the mentioned
time steps at various Pe⊥ numbers. The results indicate that the shear stress Σxy of the
suspension is highest near the walls, where the shear stress and the alignment of the particles
are highest, and lowest at the center of the channel, where the shear stress and the alignment
of the particles are lowest. As Pe⊥ increases, Σxy increases.

Figs. B.3 and B.4 present the normal stress differences for the mentioned translational Peclet
numbers at the same time steps. Due to the higher rod alignment at higher translational Peclet
numbers, first normal stress differences increase with the increase of Pe⊥. For Pe⊥ = 10−1 and
10−2, N1 values are around zero. Second normal stress differences have negative values, they
have higher values around the center of the channel than near the walls. As time increases, N2

decreases till they reach the steady state. Increasing Pe⊥ leads to lower values of N2, at low
Pe⊥, N2 remains around zeros. Due to the anisotropic nature of the suspension, normal stress
differences develop. The particles initially take some time to align and arrange themselves in
the flow direction after the flow is initiated.
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Figure B.2 – Effect of the translational Peclet number on the shear stress Σxy along the y-
direction for various Pe⊥ numbers at different time t.

B.3 Effect of translational diffusion in Couette flow: Transient
plots

The dimensionless form of Cauchy equation in polar coordinates can be expressed as
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By removing the zero terms, Eq. B.4 becomes
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(B.5)

By taking a look on the second line of Eq. B.5, it shows that the extra stress term
3Nb

r

(
∂rcArθ

∂r

)
, affects velocity component in the θ. It is impossible to solve this term analyt-
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Figure B.3 – Effect of the translational Peclet number on the first normal stress difference N1
along the y-direction for various Pe⊥ numbers at different time t.

ically. But it can be shown that this term is responsible for the reverse flow in couette fow after
a critical value of Nb.
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Figure B.4 – Effect of the translational Peclet number on the second normal stress difference N2
along the y-direction for various Pe⊥ numbers at different time t.
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Appendix C

APPENDICES: SUSPENSION OF ACTIVE

ROD-LIKE PARTICLES IN COMPLEX

FLOWS
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C.1 Second-order moment of Ψ

The second-order moment of Ψ, A2, contains information on the local concentration and orien-
tation of particles and is defined as

A2 =
∫

p
ppΨdp, (C.1)

The trace of A2 is the concentration field c, which represents the mean number density in the
suspension, it is the zeroth-order moment of Ψ

c = A2 : δ =
∫

p
Ψdp, (C.2)

The first order moment of Ψ, n, represents the nematic order of the particles and it is defined
as

n =
∫

p
pΨdp, (C.3)

The third-order moment of Ψ, A3, is defined as

A3 =
∫

p
pppΨdp, (C.4)

while the fourth-order moment of Ψ, A4, is defined as

A4 =
∫

p
ppppΨdp, (C.5)

The evolution equation of the concentration of the active particles in a suspending fluid is

Dc

Dt
= D⊥∇2

xc+ (D∥ −D⊥)∇x∇xA2 + Vs∇x · (cn) (C.6)

V represents the volume, which is large enough to contain a statistically significant number
of particles but smaller than the characteristic length scale of the macroscopic properties of
the system under consideration. In the case of active particles, the odd-order tensors do not
equal zeros due to the non-symmetric shapes of the particles. Since the active particles are not
symmetric, unlike the passive particles, the orientation component A12/c is not enough to give
information about the polarisation of the particle. Fig. C.1 shows the different polarisation of
the particle depending on the signs of A12 and n2.
The evolution of A2 is obtained by premultiplying Eq. 4.5 with the tensor pp/V and integrating
it over the spatial and configurational spaces.
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Figure C.1 – Representation shows the meaning of the nematic order of a asymmetric particle.

DA2
Dt

= − 1
2 (ω · A2 − A2 · ω) + λ

2 (γ̇ · A2 + A2 · γ̇ − 2A4 : γ̇)

+ 2Dr (cδ − αA2) +D⊥∇2
xA2 +

(
D∥ −D⊥

)
∇x∇x : A4 + Vs∇x · A3.

(C.7)

α equals 2 in 2D and 3 in 3D. It can be noticed that the time evolution of the tensor A2 depends
on higher-order moments of Ψ. Hence, the problem requires a closure approximation. The last
term in Eq. C.7 is the Hessian operator and the last two terms of Eq. C.7 implicitly show the
coupling between the local concentration and the local orientation of Brownian particles. Unfor-
tunately, unlike the case of passive particles, the closure approximations found in the literature
do not work for non-symmetric particles. So the problem here requires closure approximations
for solving A4 and A3 as a function of A2.
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Titre : Diffusion translationnelle anisotrope dans les suspensions colloïdales passives et actives :
rhéologie et écoulements complexes.

Mot clés : Suspensions, particules actives, particules browniennes, orientation, concentration,
diffusion translationnelle anisotrope, modélisation numérique.

Résumé : Ce travail de recherche s’intéresse
aux écoulements de suspensions de parti-
cules cylindriques browniennes et actives dans
des géométries plus ou moins complexes.
Pour mieux comprendre la relation entre la
concentration et l’orientation de ces bâton-
nets, ainsi que leur dynamique complexe, un
macro-modèle basé sur l’équation cinétique de
Fokker-Planck est développé en introduisant
une diffusion translationnelle anisotrope. Pour
les suspensions de particules browniennes,
les simulations numériques, en considérant
un couplage faible, mettent en avant la rela-

tion entre l’orientation des particules et leur
concentration. Le couplage fort montre quant
à lui l’influence des particules sur les vitesses
d’écoulement et les propriétés rhéologiques du
système. Ce travail de recherche est ensuite
étendu aux particules actives en introduisant
une vitesse d’autopropulsion propre à ces sys-
tèmes mobiles. Les solutions numériques sont
obtenues en résolvant l’équation de Fokker-
Planck associée. Le couplage faible montre une
accumulation de particules actives près des pa-
rois tandis que la prise en compte du couplage
fort prédit une bande de cisaillement.

Title: Anisotropic Translational Diffusion in Passive and Active Colloidal Suspensions: rheology
and complex flows.

Keywords: Suspensions, Active particles, Brownian particles, Orientation, Concentration, Anisotropic
translational diffusion , Numerical modeling.

Abstract: This research work focuses on the
flow of Brownian and active rod-like particles
suspensions in more or less complex geome-
tries. To further understand the relationship
between rod concentration and orientation, as
well as their complex dynamics, a macro-model
based on the kinetic Fokker-Planck equation is
developed by introducing an anisotropic trans-
lational diffusion. For Brownian rod suspen-
sions, the numerical simulations reveal this re-
lation by considering the one-way coupling.

The two-way coupling shows the influence of
the rods on the flow velocity and the rheologi-
cal properties. The research work is then ex-
tended to active particles by incorporating the
self-propulsion velocity encountered in these
motile systems. The solutions are obtained by
solving the associated Fokker-Planck equation.
The one-way coupling show the wall accumu-
lation of active particles while two-way coupling
predicted a shear banding.
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