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Inès, Lauren, Zar, Reff, Baka, Kichot, Tokx, Dassy, Modjo, Trig. Je remercie particulièrement
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Résumé

Le rôle des mécanismes de rétroaction dans la création d’instabilités sur des marchés financiers a
largement été étudié dans la littérature. L’endogénéité de la volatilité et de l’activité des marchés
a effectivement conduit à plusieurs krachs notoires. Le plus connu, le flash crash du 6 mai 2010,
illustre comment les instabilités du marché découlent de ses caractéristiques intrinsèques. En
effet, c’est une exécution excessivement rapide d’ordres de vente qui a déclenché la chute rapide
suivie d’une remontée du S&Pmini en moins d’une heure. De plus, les instabilités des marchés
sont accentuées par leur nature multidimensionnelle et leur connectivité, comme le montre la
propagation de la volatilité à travers divers actifs financiers lors d’événements tels que le flash
crash mentionné ci-dessus. En effet, le 6 mai 2010, le flash crash du S&Pmini a affecté 300 autres
actifs. Cette thèse étudie empiriquement et théoriquement l’endogénéité des mouvements de prix
en multi-dimension.

Dans un premier temps, nous cherchons à caractériser les sauts de prix empiriques. Basés sur des
recherches interdisciplinaires montrant que l’asymétrie temporelle peut être utilisée pour classer les
sauts d’activité comme exogènes ou endogènes, nous développons une nouvelle méthode, non super-
visée, basée sur des coefficients d’ondelettes (particulièrement adaptés pour refléter l’asymétrie tem-
porelle) afin de mesurer la réflexivité des sauts de prix univariés. Par ailleurs, notre représentation
a révélé que le retour à la moyenne et l’alignement avec la tendance sont deux caractéristiques
supplémentaires, permettant d’identifier de nouvelles classes de sauts. Enfin, cette représentation
permet d’étudier les propriétés réflexives des co-sauts, définis par des sauts de prix simultanés
(au cours de la même minute) de plusieurs actifs. Il apparâıt qu’une fraction significative des co-
sauts résulte d’un mécanisme de contagion endogène. Ainsi, l’événement du 6 mai n’était pas un
incident isolé, et des dynamiques endogènes couplées avec une forte connectivité contribuent aux in-
stabilités des marchés. Parallèlement, nous étudions le modèle du Hawkes quadratique (QHawkes),
utilisé pour décrire la volatilité à haute fréquence. Les processus QHawkes sont des processus de
Poisson qui, par l’expression de leur intensité, décrivent l’influence du passé sur la probabilité de
l’activité future. Des travaux antérieurs ont montré que le modèle QHawkes univarié reproduit
plusieurs caractéristiques empiriques : les queues épaisses des distributions, le regroupement tem-
porel de la volatilité et l’asymétrie temporelle (effets de levier et effet Zumbach). En outre, des
résultats supplémentaires sur la stabilité des processus de QHawkes sont discutés, montrant que
la rétroaction quadratique peut induire des événements extrêmes tout en restant stable grâce à
l’équilibre les réalisations inhibitrices et excitatrices.

Pour étudier le caractère multidimensionnel des marchés, nous étendons le modèle QHawkes
à plusieurs dimensions, en considérant plusieurs actifs et leurs interactions croisées. Un cadre
multi-actifs nécessite la prise en compte de faits stylisés supplémentaires, tels que la prévalence
des co-sauts et les effets d’asymétrie temporelle croisés. En effet, ce travail met en lumière les
effets de levier et de Zumbach croisés. En développant deux modèles, nous montrons que le modèle
QHawkes multivarié (MQHawkes) peut reproduire les faits empiriques observés sur les marchés
financiers. La calibration du modèle sur des paires d’actifs confirme que les marchés sont au bord
de l’instabilité.

Pour compléter, un autre modèle multivarié de volatilité dépendante de la trajectoire est étudié :
le Nested Factor Model avec des processus log-SfBM comme volatilités. Ce modèle permet de
réconcilier les différences de rugosité entre les indices et les actions, offrant de nouvelles perspectives
sur les dynamiques de la volatilité multivariée.



Abstract

Past research has highlighted that feedback mechanisms underlie many financial markets instabil-
ities. Endogenous dynamics of markets volatility and activity have indeed led to various notable
crashes. Case in point: the events of May 6th, 2010, commonly referred to as the 2010 flash crash,
exemplify how market instabilities stem from intrinsic features of financial markets. As evidence,
an excessively rapid execution of sell orders triggered the rapid decline and subsequent recovery of
the S&Pmini within the span of an hour. Moreover, market instabilities are compounded by their
multidimensional nature and interconnectedness, as demonstrated by the propagation of volatility
across diverse financial assets during events like the aforementioned flashcrash. Indeed, on May
6th, 2010, the S&Pmini flash crash affected 300 other assets alongside the S&Pmini.

This thesis presents both a data-driven approach and a theoretical approach to investigate the
endogenous nature of price movements within a multivariate framework. Our data-driven approach
aims to characterize empirical price jumps. Leveraging interdisciplinary research suggesting that
the time-asymmetry of activity can be used to classify bursts of activity as exogenous or endoge-
nous, we develop a new unsupervised method based on wavelet coefficients (particularly suitable
to reflect time asymmetry) to measure reflexivity of univariate price jumps. On top of that, our
wavelet-based representation revealed that mean-reversion and trend are two additional key fea-
tures, permitting identification of new classes of jumps. Furthermore, this representation allows
to investigate the reflexive properties of co-jumps, defined by multiple stocks experiencing price
jumps within the same minute. We argue that a significant fraction of co-jumps results from an
endogenous contagion mechanism. Thus, May 6th event was not an isolated incident, and the
interplay of endogenous dynamics alongside high levels of interconnectedness contributes to the
instabilities observed within markets.

Concomitantly, our theoretical inquiry focuses on the quadratic Hawkes (QHawkes) framework,
originally introduced to describe volatility dynamics at tick-by-tick level. QHawkes processes are
Poisson processes, which, through the expression of their intensity, depict the influence of the
past on the probability of future activity. Previous work has proved that the univariate QHawkes
model replicates several empirical features of financial time series, including fat tails of the returns’
distribution, volatility clustering and the time asymmetry effects (leverage and Zumbach effects).
Indeed, the supplementary quadratic and leverage feedback allow to overcome the limitations of the
original (linear) Hawkes framework. Besides, additional results on the stability of QHawkes pro-
cesses are discussed, showing that the quadratic feedback can induce extreme events while staying
stable by balancing inhibitory and excitatory realizations. To explore market interconnectedness,
we extend QHawkes processes into multidimensional settings, encompassing several assets and
their cross-interactions. A multi-assets framework necessitates consideration of additional stylized
facts, such as the prevalence of co-jumps and cross time asymmetry effects. Indeed, this work sheds
light on the cross leverage and cross Zumbach effects. Developing two frameworks, we show that
the multivariate QHawkes (MQHawkes) can reproduce the empirical facts observed in financial
markets. Calibrating the model on asset pairs further confirms that markets operate on the brink
of instability.

To be thorough, another multivariate, path-dependent volatility model is studied: the nested
factor model with log-SfBM processes as volatilities. Our findings suggest that this framework
reconciles differences in roughness between indices and stocks, offering further insights into the
dynamics of multivariate volatility.
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Introduction

To succeed in a spectacular fashion you had to be spectacularly unusual.

Michael Lewis, The Big Short

Market crashes have been an enduring feature of financial markets. Early instances of financial
crises date back as early as 33 CE1 with the Ancient Rome credit crunch [1], while the “Black
Thursday” crash on October 24, 1929, set a precedent for the subsequent century as one of the
earliest major modern financial crises. Since then, financial markets have experienced significant
downturns such as the “Black Monday” on October 19, 1987, the subprime mortgage crisis marked
by the collapse of Lehman Brothers on September 15, 2008, and the 2020 COVID-19 crisis. These
events underscore the importance of understanding why markets are prone to such extreme price
movements. More broadly, this raises the fundamental question:

What drives financial price movements?

One school of thought supports the Efficient Market Hypothesis. Introduced by Eugene Fama
in the 70s [2], this theory posits that market prices incorporate all available public information and
therefore reflect the “true value” of an asset. Consequently, price movements are caused solely by
changes in the asset fundamental value, which are aligned with new public information.

Several empirical observations challenge the assumption that markets are efficient. A strik-
ing one is Shiller’s excess volatility puzzle [3] which demonstrates that price fluctuations are too
significant to be accounted for solely by changes in fundamental value. Moreover, comparing the
timing of significant price jumps with relevant news release times, numerous studies revealed that
many price jumps do not align with external news events [5, 6, 7, 4]. Notably, Joulin et al. (2008)
[7] found that 95% of their sample of price jumps (comprising over 800 US stocks from 2004 to
2006) were not news related. To illustrate this phenomenon, Figure 1 compares the occurrence
times of co-jumps (indicating simultaneous price jumps in multiple assets, to be further explored in
Chapter 5) with the times of news releases. The abundance of green points, representing co-jumps
that are not news-related, underscores that many extreme price movements are not induced by
external news events.

If news is not the main catalyst for prices,

What drives financial price movements then?

With external news excluded, it is logical to inquire into internal mechanisms to elucidate financial
price changes.

Previous literature has indeed demonstrated that markets exhibit strong endogeneity. The
concept of “market reflexivity”, introduced by Soros in 1994 [8] which posits that price movements
predominantly arise from feedback mechanisms within markets, has been widely studied [9, 10, 6,
4, 11], with empirical evidence supporting its validity. Notably, measuring the markets reflexivity,
Hardiman et al. (2013) showed that 80% of market volatility2 is endogenous [10]. This result was
subsequently corroborated by the findings of Chicheportiche et al. (2014) and Wehrli et al. (2022)
[12, 11].

1Common Era
2Volatility is a complex process which accounts for the liability of prices to change rapidly and significantly.

For example, an asset with high volatility is more likely to see its price suddenly drop or skyrocket (see Chap. 1 for
more details).
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Figure 1: Visualization of our co-jump dataset (295 US stocks over 8 years) (from [4]). The
horizontal axis corresponds to the day in the sample and the vertical axis gives the time of day.
The size of the circle encodes the number of stocks simultaneously jumping in a given minute (the
sizes of the co-jumps span from 2 to 245 assets). The circle’s color signifies whether a co-jump
coincided with news related to one of the involved stocks within a 3-minute window (blue), or in the
absence of reported news (green). Days with FED announcements were excluded (see Figure 3.1
in Chapter 3, which includes these days).

More broadly, in complex systems, extreme events, such as significant price jumps or crashes
in financial markets, often arise due to endogenous dynamics. In fact, endogenous occurrences of
extreme events and cascades of events are typical features not only of financial markets [13, 14]
but also of seismologic activity (earthquakes) [15], biological neural networks [16, 17], crime rates
[18], riot propagation [19], book sales shocks [20, 21], daily views of YouTube videos [22], etc.
Understanding how these phenomena form is essential to stabilizing their dynamics. Specifically,
to illustrate how feedback mechanisms can lead to instabilities in financial markets, we outline
several concrete examples extracted from Trades, Quotes and Prices by Bouchaud et al. (2008)
[23].

• The first feedback mechanism which leads to instabilities we review is the so-called trend
following behavior. Indeed, market participants who consider that past price behavior
contains information aim to join a trending market as early as possible. For instance, if
they observe a price trending downward, they need to join by selling as early as possible.
Consequently, this behavior accelerates the trend since selling further accelerates the price
drop.

• A trending market can lead to another form of instability: Market makers3 panic. Observ-
ing the emergence of a trend, market makers might assume that other participants possess
private information4, prompting them to avoid trading to prevent being “picked off”. Con-
sequently, they would cancel their orders on the opposite side of the trend, accelerating the
trend and potentially leading to a liquidity5 crisis, where one side of the market becomes too
scared to trade and thus vanishes. It is noteworthy that this scenario led to the infamous
2010 flash crash (see below and Figure 2).

3Market makers are particular market participants who facilitate trading in financial instruments by providing
liquidity to the market (see a subsequent footnote or the glossary for the definition of liquidity). Market makers
maintain an inventory of securities and are willing to buy or sell them at best quoted prices, thereby providing
liquidity to the market. Their primary role is to ensure that there is enough trading activity in a particular security
or asset so that buyers and sellers can transact at any time. Some exchanges also pay them to ensure enough
liquidity. Market makers gain money by selling high and buying low, faster than other participants.

4Note that this is called bearing the adverse selection risk.
5Liquidity is the ease of converting an asset or security into cash. A liquidity crisis is characterized by the

vanishing of market participants, when they are too afraid to trade, at any price.
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Cover of LIFE issue of June 8, 1962, following the market crash of May 1962, which ran with the
headline: “What went wrong in the wild stock market and what it means for the U.S.”.

• Trending markets can also give rise to deleveraging spirals. Some trading strategies have
thresholds on the asset prices they trade (such as a minimum price). Once the price falls
below this threshold, traders begin closing their positions (selling), which accelerates the
(downward) trend. This, in turn, prompts other traders with similar strategies to follow suit,
further amplifying the phenomenon.

• Finally, instabilities also stem from markets interconnectiveness, often leading to contagion
effects. For instance, a price drop can spread across assets and self-reinforce. If assets A and
B influence each other, a price change in asset A affects asset B, which in turn influences
asset A’s price again, and so on. Contagion mechanisms were notably at play during the 2010
flash crash: the crash originated on the E-mini6 index but affected more than 300 assets.
Moreover, some portfolios aim to replicate indices (such as the S&P500 index), which are
combinations of multiple stocks. Consequently, when one liquidates its entire portfolio, it
impacts all the stocks comprising the replicated index. This scenario occurred during the
quant crunch of August 2007 in ETF index trading.

It is worth noting that all the instabilities mentioned above are self-excited and arise from
dynamics that are inherent to markets. Concrete manifestations of these instabilities are numerous
throughout the last century. Besides, among the most striking and intriguing realisations of market
endogeneity are flash crashes.

A typical realisation of markets endogeneity: flash crashes

At 2:45 on May 6, 2010, for no obvious reason, the market fell six
hundred points in a few minutes. A few minutes later, like a drunk trying
to pretend he hadn’t just knocked over the fishbowl and killed the pet
goldfish, it bounced right back up to where it was before. If you weren’t
watching closely you could have missed the entire event—unless, of
course, you had placed orders in the market to buy or sell certain stocks.

Michael Lewis, Flash boys

The most famous flash crash, illustrated on the left figure of Figure 2, happened on May 6,
2010 in the US equity market.

On this day, the E-mini value dropped by nearly 9% and bounced back in less than 30 minutes.
Upon scrutiny, it appears that at 2.32pm, a large market participant initiated a sell order with a
high execution rate. At first, market makers (who trade at high frequency) absorbed the liquidity

6The E-mini index is the future contract on the S&P500 index which tracks the stock value of the 500 largest
companies listed on stock exchanges in the United States.
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and bought the orders. However, as more sell orders were submitted, market makers suspected that
the sellers had private information. Due to the risk of adverse selection (see above), they began
liquidating their positions, exacerbating the selling pressure on the market and accelerating the
price drop. At 2.45pm, trading on the E-mini was paused by the Chicago stock exchange (CME),
and resumed 5 seconds later, after which prices stabilised. At 3.08pm, prices had returned to their
pre-crash levels. This recovery was driven by lower-frequency traders who, recognizing that the
price was significantly below its “real” value, saw an opportunity for profit and began submitting
buy orders, replenishing the buy side and pushing prices back to their pre-crash levels. The crash
propagated to more than 300 other assets, mainly linked to the S&P500 index.
This episode has been extensively studied in academic literature [24, 25, 26] and investigated by
regulators such as the Securities and Exchange Commission (SEC) [27] and the Bank of England,
which subsequently provided an official definition of flash crashes.
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Figure 2: Left figure: Time series of the E-mini during the flash crash of May 6, 2010 (the crash
happened around 2.30pm). Middle figure: Time series of the E-mini during the flash crash of
August 24, 2015 (the crash happened around 9.30am, markets opening). Right figure: Time series

of the tbond7 future during the flash crash of October 15, 2014 (the crash happened around
9.32am, right after markets opening).

Definition 0.0.1 (flash crash, Bank of England, July 2019 Financial Stability Report). Large and
rapid change in the price of an asset that does not coincide with – or in some cases substantially
overshoots – changes in economic fundamentals, before typically retracing those moves shortly
afterwards.

The role of high frequency traders in the crash has been a key point of inquiry. More generally,
it is often suggested that high frequency trading is responsible for markets instabilities. Notwith-
standing high-frequency traders’ contribution to accelerating the crash, History shows that crashes
caused by internal market mechanisms did not require the presence of high-frequency trading to
occur. Indeed, other endogenous crashes happened prior to the era of high frequency trading, as
illustrated by the following examples.

• October 24, 1929 - “Black Thursday”: on this day, the market lost 11% of its value. This
date was followed by “Black Monday”, “Black Tuesday” and the Great Depression.

• May 28, 1962 - S&P500 flash crash: LIFE reported on the 1962 flash crash “Then suddenly,
around lunchtime on Monday, May 28, the sell-off swelled to an avalanche”.

• October 19, 1987 - “Black Monday”: on this single day, the market fell more than 20%. This
crash is attributed to the widely used models which underestimated the risk of large negative
returns (these models will be outlined in Chapter 1).

Despite investigations by the SEC and efforts to prevent a recurrence of the events of May 2010,
flash crashes persist. Indeed, recently, several notable flash crashes have occurred. We review some
of them subsequently.

• October 15, 2014 - US Treasury bond flash crash: in 12 minutes time at market opening, the
US Treasury bond market fell off and recovered from an extraordinary 1.6% movement, for
no apparent reason. The right figure of Figure 2 illustrates this bond flash crash by plotting
the time series of the rates of the “tbond”7 at the moment of the crash. Note that rates
and prices are inversely proportional which explain why the price drop is represented by a
rate spike in Figure 2.

7The tbond is the future contract on US 10 years Treasury bond.
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• August 24, 2015 - E-mini flash crash (middle figure of Figure 2): at market opening the
E-mini went down by 7%.

• October 7, 2016 - British Pound flash crash: on this day, the British currency fell by 9%.
Although there is no certainty as to the reasons for the crash, two leads are predominant:
the presence of a fat finger (like in 2010 on the E-mini) or concerns linked to the Brexit
negotiations.

• October 23, 2019 - Bitcoin flash crash: The crypto-money fell by 7% in less than 4 minutes
without explanation, but it is bitcoin... What would you expect?

In addition to the high-profile flash crashes that garner media attention, financial markets also
experience numerous instances of mini flash crashes. These events are characterized by sudden
sharp movements in prices in one direction, which are quickly reverted. The timescale of such
events is typically less than 1.5 seconds. Mini flash crashes’ detection [24, 28, 29] as well as their
origins [29, 30, 25] or their link with regulation and high frequency trading [26, 29, 30, 31, 32]
have been widely studied in the literature. Notably, Johnson et al. (2012) [29] revealed that there
were more than 18,000 mini flash crashes in the US equity market between 2006 and 2011. More
recently, Christensen et al. (2022) [28] found that mini flash crashes occur approximately every
other week on the E-mini index, and they are three times more frequent in the Crude Oil futures
and Gold futures markets. Additional examples of (mini) flash crashes can be found in [33]. The
frequent instances of (mini) flash crashes underscore the pervasive endogeneity of markets.

Outline of the manuscript

Given these observations and inquiries, we conducted this thesis with the aim of gaining deeper
insights into the feedback mechanisms inherent to financial markets. Specifically, drawing from ex-
isting research, we focused on scrutinizing the endogenous drivers of price movements and volatility,
within a multi-asset environment.

This manuscript is organised as follows. Chapter 1 serves as a literature review and presents
traditional volatility models while challenging their ability to replicate stylised facts inherent to
financial time series, which we need to incorporate.

Chapters 2, 3 and 4 are dedicated to our model of interest: QHawkes process. QHawkes
processes come in really handful to delineate the drivers of activity and thus are a relevant choice
for our study. Chapter 2 presents the model in one dimension and outlines its main properties.
Notably, it discusses the link between the self-excitation of the process (endogeneity level), its
stationarity and its explosiveness. Chapter 3 extends the QHawkes in multiple dimensions that is,
encompassing several assets and defining feedback loops that influence assets’ activities. Finally,
Chapter 4 implements a general method of moments to estimate the parameters of the model on
real data.

Chapter 5 conducts a more data driven analysis. It aims at investigating the nature of price
jumps and co-jumps. It presents a systematic method, which does not depend on labels, to assess
the endogeneity of price jumps and co-jumps and thus to evaluate the reflexivity of markets.

Finally, Chapter 6 investigates multivariate volatility with a different model: the Nested Fac-
tor model, incorporating log-Stationnary Brownian Motions. The goal is to show that this model
conciliates all stylized facts of financial markets, and notably, the differences of roughness between
the log-volatility of stocks and that of indices.

Kindly note that a glossary and a notation table are provided in Appendix. When terms from
the glossary are first introduced in the text, they are defined in a footnote.
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Chapter 1

Modelling financial price changes

Background and Literature Review

The models don’t have any idea of what this world has become...

Michael Lewis, The Big Short

In this initial chapter, we begin by introducing the concept of volatility and the methodologies
employed to assess it. We then review some of the most widely used frameworks for modeling
price changes. By highlighting empirical characteristics of financial time series that they fail to
replicate, we challenge those models. Acknowledging these model limitations is important as the
use of such models may contribute to instabilities in markets.

A subsequent chapter will elaborate on an additional model, the (Q)Hawkes process. For it
was the main focus of my PhD study, Chapters 2, 3 and 4 are dedicated to it and its extension to
multiple dimensions.

1.1 What is volatility?

Volatility is a complex process which represents the likelihood and amplitude of price fluctuations.
High volatility typically indicates the potential for significant price changes. Volatility is commonly
associated with the variance or the standard deviation of price movements.

1.1.1 Price changes, or returns

Within a time window between t and t + dt (where dt represents one day for daily data, or, for
instance, one minute for intraday data), the price of a financial asset changes from its value at the
beginning of the time window, P open

t , to its value at the end of the time window, P close
t . The price

change within the time window is then given by:

dPt = P close
t − P open

t

Hereafter, we denote Xt the value of the variable X related to the time window [t; t+ dt].

Price changes measure the performance of an asset over time, and are commonly referred to as
returns. Measuring the relative performance is often favored over using additive price returns, as
defined above, notably because, at large time scales, price changes are proportional to asset prices.
Thus, log-returns, defined as

dPt = log(
P close
t

P open
t

),

are frequently preferred to additive ones.
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Figure 1.1: Times series of daily financial log-returns (top) and Roger Satchell volatility from equa-
tion (1.1.2) (bottom) of the S&Pmini, between 2013 and 2023. Crisis periods, like COVID (2020)
are characterised by high volatility and extreme returns. Note that these periods of instabilities
are clustered in time.

1.1.2 Estimating volatility

The main challenge with the volatility process is that it is not directly observable; we can only work
with estimates. Various proxies of volatility exist (see [34] for a review). This section presents the
estimators we use in the subsequent empirical analysis. Some of these estimators require “intra-
bin” information, such as the highest and lowest value of the price within each bin, for estimating
volatility. Notwithstanding the potential difficulty in obtaining such data, those estimators often
provide a more robust valuation of volatility.

Definition 1.1.1 (Garman-Klass Volatility). The Garman-Klass volatility σGK in a time bin
[t; t+ dt] is defined as follow,

(σGK
t )2 = 0.5 log(

P high
t

P low
t

)2 − (2 log(2)− 1) log(
P close
t

P open
t

)2, (1.1.1)

where P high
t , respectively P low

t , is the highest, respectively lowest, price reached in the time bin
[t; t+dt], and P open

t , respectively P close
t , is the first, respectively last, value of the price in the time

bin [t; t+ dt].

The above definition does capture the idea that the volatility is null ((σGK
t )2 = 0) if there is

no price movement within the time bin [t; t+ dt] (i.e., P low
t = P high

t = P open
t = P close

t ).
The second estimator we introduce is the Roger Satchell estimator. The particularity of this

estimator is that it removes the drift from the price dynamics. The estimator is defined as follow.

Definition 1.1.2 (Rogers Satchell Volatility). The Roger-Satchell volatility σRS in a time bin
[t; t+ dt] is given by

(σRS
t )2 = log(

P high
t

P close
t

) log(
P high
t

P open
t

) + log(
P low
t

P close
t

) log(
P low
t

P open
t

), (1.1.2)

where P high
t , respectively P low

t , is the highest, respectively lowest, price reached in the time bin
[t; t+dt], and P open

t , respectively P close
t , is the first, respectively last, value of the price in the time

bin [t; t + dt]. Figure 1.1 depicts the time series of the Roger-Satchell volatility in the S&P500
index, along with its log-returns, from 2013 to 2023.

Note that, if the price goes on a direct line without oscillations (following a drift), from P open
t

to P close
t , increasingly for instance, then P open

t = P low
t and P close

t = P high
t rendering σRS

t = 0 to
signify that fluctuations were null even if the price changed.
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Figure 1.2: Time series of the S&P500 index log returns (grey, left axis) and of the VIX index
(blue, right axis) from 2013 to 2023.

An alternative proxy can be derived from Bachelier’s thesis [35]. Bachelier demonstrated that
for a random walk, the difference between the highest and the lowest values within a bin averages
twice the difference between the initial and final values of the bin. Therewith we can derive the
following estimator.

Definition 1.1.3 (Bachelier volatility). We define the Bachelier volatility σB in a time bin [t; t+dt]
as follows:

(σB
t )2 =

1

3
(P high

t − P low
t ) +

2

3
|P close

t − P open
t | (1.1.3)

where P high
t , respectively P low

t , is the highest, respectively lowest, price reached in the time bin
[t; t+dt], and P open

t , respectively P close
t , is the first, respectively last, value of the price in the time

bin [t; t+ dt].

As delineated earlier, “intra-bin” estimates require accessing “intra-bin” values, specifically the
highest and lowest values within each bin, to gauge volatility accurately. Obtaining such intra-bin
data can pose challenges, particularly with high-frequency data. Consequently, the sum of squared
returns is often used as a practical alternative. We define it below.

Definition 1.1.4 (Volatility with sum of square returns). The volatility in a time window [t; t+dt]
(for example the volatility of one day) is the sum of squared returns within that bin (for example,
the sum of all the 5min squared returns of the day):

(σSSR
t )2 =

∑

ti∈[t;t+dt]

(dPti)
2. (1.1.4)

Lastly, a notable proxy of volatility is the VIX index, which can be seen as the volatility of
the S&P500 index, and is occasionally utilized as an empirical indicator of market volatility. The
VIX index is commonly referred to as the “fear index”, as it represents the confidence of market
participants. Figure 1.2 depicts the VIX index from 2013 to 2023 alongside the log-returns of the
S&P500 index. It is worth noting that the dynamics of the VIX closely resemble those of the
Roger-Satchell volatility illustrated in Figure 1.1, and that, both Figures 1.1 and 1.2 demonstrate
that high volatility is associated with extreme return values.

Throughout this thesis, we will consistently employ these estimators, particularly in the em-
pirical calibration of the models under investigation.

The subsequent sections are dedicated to presenting and scrutinizing various volatility models.
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1.2 Volatility models with constant volatility

time

0

B
ac

h
el

ie
r

d
P

Figure 1.3: Example of dPt time series in Bache-
lier framework.

The first models we review, Bachelier and
Black-Scholes models, consider constant volatil-
ity dynamics.

1.2.1 Bachelier model

In his PhD thesis, Théorie de la spéculation,
published in 1900 [35], Louis Bachelier intro-
duced his pioneering model for price changes.
The concept posits that the change in price,
dPt, within a time window of size dt, follows
an arithmetic Brownian Motion1 Wt, i.e.

dPt = σdWt,

where σ is constant and represents the
volatility of the process (Pt)t. An example of such dynamics is illustrated in Figure 1.3. This
model laid the ground for price dynamics theory, and, in particular, for the Black-Scholes model
which we present subsequently.

1.2.2 Log-normal price (Black-Scholes model)

As in the Bachelier model, the Black Scholes model assumes constant the volatility, σ, and expresses
price changes, dPt, as related to a Brownian motion, Wt. However, within this framework, prices
adhere to a geometric Brownian motion, specifically:

dPt = σPtdWt.

This model was vastly employed by practitioners in the financial industry despite its simplifying
assumptions and is believed to be at the origin of many financial crises.

Fun fact : in 1997, R. C. Merton and M. S. Scholes obtained the Nobel price for their model (in
collaboration with F. Black), and a year later, their Hedge Fund, Long-Term Capital Management,
had to be bailed out after a huge loss.

1.2.3 Empirical observation: volatility is not constant

Both, Bachelier and Black-Scholes frameworks portray volatility as a constant. Nevertheless, nu-
merous empirical observations challenge this assumption.

Firstly, volatility is clustered in time. As illustrated in Figure 1.1, portraying the log-
returns of the S&P500 index from 2013 to 2024, certain periods display heightened agitation,
characterized by more elevated volatility and extreme return values, notably during events such
as the COVID-19 crisis or the Ukraine invasion. In contrast, returns generated by the Bachelier
model, in Figure 1.3, demonstrate monotonic behavior attributable to the model’s assumption of
constant volatility.

Secondly, upon examination at intraday level, another empirical evidence against constant
volatility emerges: the intraday pattern of volatility. Estimating intraday S&Pmini Roger-
Satchell volatility (Equation (1.1.2)) on 1-minute intervals over multiple days (utilizing 5 years
of data in this instance) and averaging across days yields Figure 1.4b. This figure illustrates
the intraday volatility pattern commonly referred to as the U-shape. In fact, there is typically
more activity/volatility during the market opening, attributed to reactions to overnight news, and
preceding market closure, driven by traders seeking to close positions before the end of day, often
after having waited for optimal timing throughout the day. The remainder of the trading day tends
to be relatively tranquil, except for a surge around 2 p.m., often prompted by news releases such
as FED announcements. This observation further contradicts the idea of constant volatility.

1a Brownian motion is a way to describe the seemingly random movement of particles or variables over time.
It follows a Normal distribution.
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It is noteworthy that the crash of 1987 is largely attributed to the assumption of constant
volatility within continuous time frameworks. In response to these limitations, more sophisticated
models incorporating time-varying and asset price-dependent volatility have been developed. We
delve into several of these models in the subsequent sections.

1.3 Models with time-varying and asset price-dependent
volatility

1.3.1 Stochastic volatility models

Stochastic volatility models define volatility as a function of time and asset price, σ = σ(t, Pt).
One of the most used stochastic volatility model is the Heston model [36], named after Steven

L. Heston. It describes the price of an asset Pt, and its squared volatility νt, via the following
stochastic processes: {

dPt =
√
νtPtdWt

dνt = κ(θ − νt)dt+
√
νtξdBt

,

where Wt and Bt are Brownian motions with correlation ρ and θ is the long time variance (the
value towards which νt is driven at a rate κ).

As for Bachelier and Black-Scholes models, the price dynamics within stochastic volatility mod-
els are driven by Brownian motions. Consequently, the Gaussian properties inherent in Brownian
motions also govern the dynamics of these models. Specifically, the thin-tailed distributions and
the time-reversal symmetry of Gaussian processes will manifest in the generated times series. We
discuss these two features in subsequent sections.

1.3.2 Empirical observation: price changes are not Gaussian

The market often underestimated the likelihood of extreme moves in
prices

Michael Lewis, The Big Short

Given that Bachelier, Black-Scholes, and stochastic volatility models are predicated on Brown-
ian motion dynamics, their resultant return time series adhere to Gaussian distributions2. However,
a comparison between the empirical distribution of the S&Pmini intraday returns, spanning from
2013 to 2023, and a theoretical Gaussian distribution, as depicted in Figure 1.4a, reveals that the
Gaussian distribution fails to encompass all empirical returns. Notably, all empirical returns lying
beyond the solid line represent values with a negligible probability of being generated by a Gaus-
sian model. Furthermore, neglecting these extreme values, signifying the most significant price
changes that occurred between 2013 and 2023, in a model implies disregarding risky movements.
The presence of fat tails in the empirical financial returns distribution stands as one of the most
prominent stylized facts observed in financial time series, underscoring the imperative for a robust
statistical model to account for them.

Remark 1.3.1. Stochastic volatility models can yield time series exhibiting fat tails when specific
parameter conditions are met [37]. However, these particular parameter regimes are not reflective
of the conditions observed in empirical financial time series.

Furthermore, the fat-tailed distribution derived from the stochastic volatility model presented
in [37] is based on a geometric representation of returns. This representation is deemed less realistic
at the intraday scale when compared to an additive representation [38].

1.3.3 Empirical observation: time-reversal asymmetry of financial time
series

Additionally, Gaussian time series also exhibit time-reversal symmetry. However, empirical finan-
cial time series manifest time-reversal asymmetry. Time asymmetry implies that traversing the

2The probability distribution is a statistical tool which represents the probability of occurrence of the different
outcomes.
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(a) Histogram of intraday returns, dP , on 1min
bins of the S&Pmini between 2013 and 2023.
The plain line represents the probability distri-
bution of a Gaussian. All empirical returns out-
side the Gaussian line, would not be reproduced
by a Gaussian model.

9:30 14:00 16:00
time (NY)

σ

(b) Average 1min bin volatility on the S&P500
futures (computed with Equation (1.1.3)) over
all trading days between 2013 and 2018. The
intraday pattern of volatility clearly appears as a
U-shape with a peak at 2pm due to market news
delivery (FED announcements for example).

Figure 1.4: Stylised facts of financial markets: fat tails of returns distribution and U-shape of
intraday volatility

time series from past to future is not equivalent to traversing it from future to past, as illustrated
in Figure 1.1. This time asymmetry is characterized by two phenomena: the Leverage effect and
the Zumbach effect.

Leverage effect

The leverage effect accounts for the one-way correlation between volatility and returns.

Definition 1.3.2 (Leverage effect). The leverage effect is defined, for τ > 0, as

|cov(dPt, σ
2
t−τ )| < |cov(dPt−τ , σ

2
t )|, (1.3.1)

where cov(dPt−τ , σ
2
t ) is the covariance between past returns and future volatility (lagged by τ)

and, conversely, cov(dPt, σ
2
t−τ ) is the covariance between past volatility and future returns.

Intuitively, the leverage effect can be understood by recognizing that large negative returns
induce market panic, thereby increasing future volatility, while, high volatility does not necessarily
lead to large future returns. This first asymmetry effect is illustrated for the S&Pmini and the
tbond in Figure 1.5. It is evident that for both the S&Pmini and the tbond, the correlation
between past returns and future volatility (for τ < 0 in Figure 1.5) is (negatively) stronger than
the correlation between past volatility and future returns (for τ > 0 in Figure 1.5).

While stochastic volatility models, as discussed in Section 1.3.1, may capture the leverage
effect, particularly through the correlation parameter ρ, they are unable to account for all forms
of time asymmetry. Specifically, they fail to reproduce the Zumbach effect, which we describe in
the following section.

Zumbach Effect

The Zumbach effect [39, 40] accounts for the asymmetry in the correlation between high frequency
volatility, σt, and low frequency volatility, (dPt)

2.

Definition 1.3.3 ((Self-)Zumbach effect). To highlight the Zumbach effect, we utilize aggregated
returns of day t defined as Rt,τ := P close

t−1 /P open
t−1+τ − 1 for τ < 0 and Rt,τ := P close

t+1+τ/P
open
t+1 − 1

for τ > 0. Low frequency volatility is then represented by R2
t,τ . Further, we note high frequency

volatility of day t, σt (which can be approximated by the sum of 5min squared returns of day t).
For τ > 0, the Zumbach effect is expressed by

cov(σ2
t , (Rt,τ )

2) < cov(σ2
t , (Rt,−τ )

2), (1.3.2)

that is, past low frequency volatility has more influence on future high frequency volatility than
conversely.
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Figure 1.5: Leverage effect for the US 10-years Treasury bond futures (“tbond”) (top) and the
S&P500 futures (“S&Pmini”) (bottom). The correlation between the high-frequency daily volatil-
ity σ2

t and the past and future returns Rt,τ on scale τ , shows a clear asymmetry between past and
future, specially from past S&Pmini volatility towards S&Pmini returns. The daily volatility σ2 is
computed as the mean of the square returns on 5 min windows over one day (overnight excluded).
Aggregated returns are defined as Rt,τ := P close

t−1 /P open
t−1+τ−1 for τ < 0 and Rt,τ := P close

t+1+τ/P
open
t+1 −1

for τ > 0. The lag τ is in days. The data covers the period 2013-2018.
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Intuitively, the Zumbach effect captures the notion that a trending market (characterized by an
increase of R2

t over several days) heightens market participants’ uncertainty, leading to increased
volatility, while increased volatility does not necessarily result in a trending market.

The Zumbach asymmetry for the S&Pmini and the tbond is illustrated in Figure 1.6. The
correlation from past trend to future volatility (τ < 0) is indeed stronger than conversely (τ > 0).
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Figure 1.6: Zumbach effect for the US 10-years Treasury bond futures (“tbond”) (top) and the
S&P500 futures (“S&Pmini”) (bottom) (after factoring in the dominant leverage effect). The
correlation between the volatility σ2

t and the squared returns R2
t,τ on scale τ , shows a clear asym-

metry between past and future, specially from past volatility towards future trends. The daily
volatility σ2 is computed as the mean of the square returns on 5 min windows over one day
(overnight excluded). Aggregated returns are defined as Rt,τ := P close

t−1 /P open
t−1+τ − 1 for τ < 0 and

Rt,τ := P close
t+1+τ/P

open
t+1 − 1 for τ > 0. The lag τ is in days. The data covers the period 2013-2018.
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Despite their limitations, mostly due to their Gaussian properties, stochastic volatility mod-
els are widely used by practitioners and researchers due to their analytical tractability, which
allows fast pricing and calibration. Besides, to account for recent empirical findings–specifically,
the observation that volatility paths are rougher than Brownian motions [41]–extensions such as
the rough Heston model have been developed, opening the way to more comprehensive models [42].

Moreover, there exists another class of time-varying and asset price-dependent volatility mod-
els that, unlike stochastic volatility models, generates time-reversal asymmetry by constructing
volatility trajectories based on past values. These so-called path-dependent models are presented
in the subsequent section.

1.3.4 Path-dependent volatility models

Path-dependent models explicitly describe the dependence of volatility on its past values. Those
models are particularly well-suited for capturing the long-range memory of volatility and volatility
clustering. In this section, we present two general path-dependent models: the GARCH process
and the Multifractal Random Walk.

GARCH model

The generalized autoregressive conditional heteroskedasticity (GARCH) model is widely favored
among practitioners and researchers because it replicates many of the stylized facts outlined previ-
ously, although it fails to accurately capture the fat tails observed in the distributions of returns.
In fact, it tends to overstate the extent of fat tails compared to empirical observations. The model
is defined as follows.

Definition 1.3.4 (GARCH). A price returns process (dPt)t, driven by a GARCH(p, q), is a
centered Gaussian process with volatility σt (i.e., dPt ∼ N (0, σ2

t )), where the dynamics of σt are
determined by

σ2
t = α0 +

q∑

i=1

αi(dPt−i)
2 +

p∑

i=1

βi(σt−i)
2,

where αi and βj are positive constants.

From the definition it becomes apparent that the influence of the past is directly embedded in
the coefficients αi, βj , allowing for the generation of activity clustering and the emergence of time
asymmetry.

Many versions of GARCH-(or ARCH-)type models have been introduced since the first version
of the ARCH/GARCH by Engle in 1982 [43] and Bollerslev (1986) [44]; for a detailed survey see
[45].

Multifractal Random Walk

In the 2000s, Bacry et al. introduced another path-dependent model: the Multifractal Random
Walk (MRW) [46, 47, 48, 49]. The MRW characterises price changes dPt such that

dPt = exp (ωT (t)) dWt, (1.3.3)

where (Wt)t is a Brownian motion and ωT is an autocorrelated Gaussian process defined with
its covariance structure:

cov (ωT (t), ωT (t+ τ)) =

{
−λ2 ln( τ

T ), if τ < T

0, otherwise
.

T is the time range of correlation and λ is the so-called intermittent parameter. Thus, the
path-dependency lies in the autocorrelation structure of the log-volatility ωT .

The MRW was introduced to capture the multifractal properties of financial time series [50, 51].
Fractals, introduced by Mandelbrot, are geometric shapes that can be separated into parts, each of
which is a reduced-scale version of the whole [52]. In the context of financial time series, fractal
properties imply that they exhibit similar characteristics across different time- or price- scales.
For instance, dynamics observed at daily or weekly time-scale are often similar, as illustrated by
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Figure 1.7 which depicts the S&Pmini log-returns series for various frequencies. The multi -fractal
property then captures the different regimes of the market: the volatility clustering. Intuitively, it
comes down to stretching or squeezing the time axis [52].

In 2022, Wu et al. [53] introduced the stationnary fractional Brownian Motion (SfBM) which
serves as a bridge between the rough (stochastic) volatility models and the MRW. Chapter 6
demonstrates how SfBM processes, within a specific framework and with appropriately chosen pa-
rameters allow to account for the observed roughness of volatility [41, 53]. For further details on
the SfBM, see also [53].

daily hourly per minute

Figure 1.7: S&Pmini log-returns times series for various frequencies. Left figure: daily log-returns
from 2013 to 2023. Middle figure: hourly log-returns from 2013 to 2020. Right figure: 1-min log-
returns from 2013 to 2017.

Remark 1.3.5. Definition 1.3.4 and Equation (1.3.3) show that both the GARCH model and
the MRW are related to Brownian motion. Although the Gaussian properties mentioned above
fail to replicate the fat-tailed returns distribution and time-reversal asymmetry of financial time
series, they do not limit the GARCH or MRW models. In fact, the “explosive” volatility structure
(exponential) and path-dependency of these models allow for the generation of extreme fluctuations
(fat tails) and time-reversal asymmetry.

Thus far, we have introduced frameworks and empirical characteristics for describing the price
dynamics of individual assets. However, the complexity of markets also stems from their multidi-
mensionality and the interactions among a multitude of traded assets. Given that asset managers
construct portfolios comprising multiple assets and that instabilities can propagate across assets, as
discussed in the Introduction, it is imperative to consider a multi-asset framework. The following
section is dedicated to introducing the additional considerations necessary for modeling volatility
across multiple assets.

1.4 Volatility dynamics of several assets

We now consider an environment encompassing multiple financial assets. From the previous sec-
tions, we already know that each individual asset exhibits the following characteristics within its
financial time series:

• volatility clustering

• fat tails of returns distribution

• multifractal properties

• time-reversal asymmetry.

But what empirical features arise in a multi-asset framework? This section introduces two key
features unique to multi-asset environments: co-jump occurrences and cross-time-reversal asym-
metry.

1.4.1 Co-jumps

Co-jumps refer to the simultaneous occurrence of jumps in the prices of multiple assets. It is
noteworthy that if price processes were driven by independent jump processes, the probability of
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simultaneous jumps would be negligible; however, such phenomena are observed frequently.

For instance, upon analyzing the returns time series of 300 US stocks between 2013 and 2022
at a 1-minute time-scale, we identify price jumps (defined as when the value of returns deviates by
4 standard deviations from its mean value) and visualize co-jumps (instances where at least two
assets experience a price jump in the same time window) in Figure 1.8. The size and color of the
points encode the number of assets experiencing simultaneous jumps within the same minute. As
in [54, 7], outcomes of Figure 1.8 are manifolds.

Firstly, note that individual price jumps occur frequently, as evidenced by the abundance of
data points and the rolling sum of the number of jumps over a 30-day period, depicted by the
solid line in the inset of Figure 1.8. In a Gaussian framework, as in Bachelier, Black-Scholes
and stochastic volatility models, such extreme movements (defined as deviations of 4 standard
deviations from the mean) would have a negligible probability of occurrence. Thus, Figure 1.8
further refutes Gaussian-based models.

Secondly, co-jumps also occur frequently, with some involving nearly the entire market. Specif-
ically, 2019 was very prone to large co-jumps attributed to the trading war between two world
leaders, D. Trump and Xi Jinping. However, notwithstanding those jumps and upon excluding
days when FED made announcements (those days were removed for Figure 1.8), no discernible
pattern emerges regarding the occurrence of co-jumps. It remains unclear whether co-jumps arise
due to external news events or through endogenous propagation. This question will be further
explored in Chapter 5.

Lastly, Figure 1.8 reveals that co-jumps are clustered in time, as evidenced by sequences of
successive co-jumps. This clustering might be the result of a propagation phenomenon through
time and across stocks.

Given the prevalence of co-jumps, it is imperative to acknowledge their existence when working
within a multi-asset environment.
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Figure 1.8: Visualization of the co-jumps dataset (295 US stocks, 8 years) (as in [54, 55, 56]). The
horizontal axis corresponds to the day of the co-jump and the vertical axis gives the time of day.
The size and color of the circle encode the number of stocks jumping simultaneously (in the same
minute). Inset: number of jumps on a rolling window of 30 days.

1.4.2 Cross-Time Asymmetry

The time asymmetry effects presented in Part 1.3.3, which were observed for individual assets, can
also be investigated across assets. Specifically, we investigate the cross-leverage and cross-Zumbach
effects. The cross-leverage effect reveals the asymmetry in the correlation between the returns of an
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asset (A) and the volatility of another asset (B). The upper plots of Figure 1.9 illustrate the cross-
leverage effect for the pair tbond and S&Pmini. Furthermore, the cross-Zumbach effect, depicted
in the lower figures of Figure 1.9 for the same pair, describes the asymmetry in the correlation
between the volatility of an asset (A) and the trend of another asset (B). Again, the asymmetry in
the correlations but also across assets is evident from Figure 1.9. For instance, as demonstrated in
the lower right plot of Figure 1.9, the past trend of the tbond exerts more influence on the future
volatility of the S&Pmini than vice versa.

Chapter 3 is devoted to the multivariate QHawkes model, which explicitly characterizes asym-
metry effects and directly addresses the modeling of co-jumps.
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Figure 1.9: Top: Cross asset leverage effect between the S&P500 futures (“S&Pmini”) and the US
10 years Treasury bond futures (“tbond”). We plot the correlation between the high-frequency
daily volatility σ2

t and the past and future returns Rt,τ on scale τ . Bottom: Cross-Zumbach effect
between the S&Pmini and the tbond (after factoring in the dominant leverage effect). We plot
the correlation between the volatility σ2

t and the squared returns R2
t,τ on scale τ , showing a clear

asymmetry between past and future, specially from past tbond trends towards S&Pmini volatility.
The daily volatility σ2 is computed as the mean of the square returns on 5 min windows over one
day (overnight excluded). Aggregated returns are defined as Rt,τ := P close

t−1 /P open
t−1+τ − 1 for τ < 0

and Rt,τ := P close
t+1+τ/P

open
t+1 − 1 for τ > 0. The lag τ is in days. The data covers the period 2013-

2018.

1.4.3 Additional stylised facts in a multi-asset framework

As co-jumps manifest, financial stocks exhibit joint dynamics, which are also connected to those
of indices, often referred to as the “market” directly. Here, we review some of the stylized facts
observed in previous research concerning the interconnected dynamics of assets.

Lillo et al. [57] observed that the skewness of stock returns distribution is dependent on market
(index) returns. Specifically, on days when the market has negative, respectively positive, returns,
then the distribution of all stocks returns tends to exhibit negative, respectively positive, skewness.

Furthermore, Cizeau et al. [58] and later Allez et al. [59] showed that not only does the returns
distribution depend on the market, but the idiosyncratic contributions of stocks–those components
remaining once the market dynamics are accounted for–also depend on the behavior of the indices.

Lastly, Chicheportiche et al. observed that the joint distribution of stock returns is not ellipti-
cal3 [60].

3Elliptic models describe return dynamics as dP i = σiϵi, with ϵi a random variable, allowing for the analytical
derivation of various properties.
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Introduced in [61], the Nested Factor model (NFM) establishes a multi-asset framework that
addresses these stylised facts and the fat-tailed distribution of returns. In Chapter 6, we revisit
the Nested Factor Model to show that it also accounts for the log-volatility roughness of stocks
and indices as observed in [53].

Conclusion

Modeling price changes poses numerous challenges due to the complex nature of financial time
series and the intricate dynamics of markets as complex systems. Extending beyond traditional
models such as Bachelier, Black-Scholes or stochastic volatility models, recent models have grown
increasingly sophisticated, progressively incorporating additional stylized facts of financial time se-
ries. Of particular interest are GARCH-type models, which effectively capture volatility clustering,
fat-tailed return distributions, and time asymmetry effects. In the following chapter, we introduce
(Q)Hawkes processes, which also delineate the influence of past activity on future activity while
providing a microstructure description of price dynamics.

The multi-dimensional nature of financial markets significantly contributes to the complexity of
the system, introducing new empirical characteristics to consider. Specifically, previous works have
highlighted the intricate relationship between stocks and indices [61, 58, 57, 59, 60]. Additionally,
we shed light on two empirical characteristics of multi-asset framework: co-jumps and cross-time
asymmetry.

Finally, it is worth mentioning that what most volatility models, including both the aforemen-
tioned traditional models and the (Q)Hawkes processes, which will be employed in the subsequent
chapters, fundamentally lack is a microstructure foundation wherein the resulting stochastic dy-
namics emerge from the aggregation of behaviors of a large number of agents.
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Take Home Message

• Volatility is a complex time process which represents the likelihood and amplitude of
a price change.

• Volatility cannot be observed and needs to be estimated.

• The main empirical characteristics of financial time series are:

– Fat tails of the returns distribution

– Volatility clustering

– Volatility intraday patterns

– Time asymmetries: Leverage & Zumbach effects.

• Bachelier and Black-Scholes models were pionneers in modelling price dynamics. Their
representations assume a constant volatility. Empirical observations show that this
assumption is wrong: volatility is clustered in time and it presents intraday patterns
(U- or J- shape).

• Stochastic volatility models build a stochastic, i.e. time dependent, volatility. Their
Gaussian properties, also presented by Bachelier and Black-Scholes models, neither
account for the time asymmetry, nor for the fat tails of financial time series.

• The interconnectivity and multidimensionality of markets make it necessary to extend
models in multiple dimensions and thus, to consider other stylised facts as co-jumps
and cross-time asymmetry.

• None of the volatility models presented above are micro-founded.
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Chapter 2

(Q)Hawkes processes

Time moves in one direction memory another.

William Gibson, Distrust That Particular Flavor

This chapter is partly based on [62, 63], written in collaboration with Michael Benzaquen and
Jean-Philippe Bouchaud.

Introduction

Hawkes processes have been used in various fields to model endogenous dynamics, where past
activity triggers more activity in the future. Indeed, Hawkes processes were found to be relevant to
capture the self-excited nature of the dynamics in biological neural networks [16, 17], in financial
markets [13, 14], in seismologic activity (earthquakes) [64, 65], and also in crime rates or riot
propagation [18, 19]. Standard linear Hawkes processes are basically akin to a branching process,
where each event generates on average nH “child” events. The process cannot be stable when
nH > 1, as events proliferate exponentially with time, and no stationary state can ever be reached.
When nH < 1, on the other hand, the average event rate reaches a finite constant that diverges as
(1−nH)−1 as nH → 11. Therefore, for standard Hawkes processes, the stability criterion coincides
with the condition that the event rate remains finite.

As argued by Kanazawa and Sornette in [68, 69], non-linear Hawkes processes allow one to com-
bine both excitatory and inhibitory effects, and can describe an even broader range of phenomena.
One special class of such non-linear processes, called Quadratic Hawkes Processes (QHawkes), were
introduced and studied in [70]. On top of the standard Hawkes feedback, a signed process (price
changes in the context of [70]) also contributes to the current activity rate, in a quadratic way
(see below for a more precise definition). On top of the nH child events triggered by the Hawkes
feedback, the new quadratic feedback contributes to nQ extra child events. What was shown in
[70] is that the average event rate now diverges when the total endogeneity ratio nH + nQ reaches
unity. From this result, it was concluded that the QHawkes is only stationary when nH + nQ < 1.

The aim of this chapter is to introduce Hawkes processes and their quadratic extension and
discuss their stationarity properties. Specifically, we claim that whenever nH < 1 the QHawkes
is always stationary, albeit with a diverging mean intensity in the case nH + nQ > 1. More pre-
cisely, the distribution density of the local intensity decays asymptotically as a power-law, with
an exponent that becomes smaller than 2 whenever nH + nQ > 1, such that the average intensity
diverges. Stationary processes with infinite mean intensity also appeared very recently in the con-
text of non-linear Hawkes processes in Refs. [68, 69]. Intuitively, the mixed excitatory/inhibitory
effects encoded by QHawkes allows one to avoid the exponential run-away of Hawkes processes
when nH > 1, while describing a highly intermittent process with divergent mean intensity.

1The case nH = 1 is special and can also reach a stationary state with finite mean intensity when the immigration
rate is zero, see [66], or infinite mean intensity but finite typical (or median) intensity, as shown in [67].
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Figure 2.1: Illustration of a Hawkes process with exponential kernel. The circles represent the
time of the jumps (dNt = 1), the black plain line (steps) (with y-axis on the left axis) represents
the count of events through time (Nt). The grey line (with y-axis on the right axis) represents the
intensity (λt), in this illustration the baseline is λ∞ = 0.1. At each event (each circle), intensity
increases and then exponentially releases and the number of events is incremented by 1. Note the
clustering of events, around 100 for instance.

2.1 Hawkes Processes: Definition

2.1.1 Linear Hawkes Process

Definition 2.1.1 (Hawkes processes). A Hawkes process (Nt)t≥0 is an inhomogenous Poisson
process (meaning that its intensity is time dependent), the intensity of which is defined with the
past realisations of the process according to the following equation:

λt = λ∞ +

∫ t

−∞
ϕ(t− u)dNu, (2.1.1)

where λt is the local intensity, i.e. probability that dNt is equal to 1 is λtdt; λ∞ is called the
baseline intensity and ϕ(·) the influence kernel, from which one obtains the endogeneity ratio nH
as the norm of ϕ:

nH = ||ϕ|| =
∫

R
ϕ(u)du < +∞. (2.1.2)

For an univariate linear Hawkes process to be stable, one needs nH < 1. In fact, this is the
necessary condition for the mean intensity λ̄ := E(λt) to be finite. Figure 2.1 gives an illustration
of Hawkes process.

The usual framework to describe financial markets using Hawkes processes is to use two pro-
cesses (N+

t , N
−
t )t to describe a change in the price Pt [13]. N+ counting the events “price is

going up” and N− the event “price is going down”. The price process can then be described with
Pt = ψ(N+

t −N−
t ), where ψ is the tick size2.

One of the main limitations of Hawkes processes for financial applications is that the station-
ary distribution of local intensities, P (λ), has “thin tails” [71] that cannot reproduce the fat tailed
distribution of activity/volatility observed in most financial time series (see Figure 1.4a). Further-
more, as noted in [70], linear Hawkes processes cannot reproduce the violations of time reversal
symmetry observed in financial time series [39] (see leverage and Zumbach effects, in Figures 1.5
and 1.6). Figure 2.2 gives intuitions on the stationary distribution and on the time continuous
limit of Hawkes process.

Hawkes process have then been developed quadratically in [70].

2The tick size is minimum increment between two price changes. It depends on the traded asset.
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Figure 2.2: Based on [13], the figure plots the process (N+
t − N−

t ) at different timescales T =
100, 500, 5000, where (N+

t , N
−
t ) are two independent linear Hawkes processes with exponential

kernels. It gives some intuition on the continuous time limit of Hawkes processes. Discrete jumps
are visible at small timescale, but becomes irrelevant in the scaling limit T −→ +∞. Time continuous
limit of Hawkes process is a fractional CIR Heston process [71], which is characterized by thin tails
and time reversal symmetry.
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Remark 2.1.2. The time continuous limit of a discrete process can be seen as if we run the process
for a long time, we first “dezoom” from the discrete realisation, and we look at it as if it was a
realisation of a continuous processes, which has then a value at every time t.

2.1.2 Quadratic Hawkes

To overcome the limitations of linear Hawkes processes, Blanc et al. [70] introduced a quadratic
extension of Hawkes processes for financial returns.

Definition 2.1.3 (QHawkes processes (QHawkes)). A quadratic Hawkes process ((Nt)t>0) is an
inhomogenous Poisson process. Its intensity is dependent on both past activity (dNt) and past
price returns defined as dPt := ϵtψdNt, where ϵt = ±1 is an unbiased random sign, independently
chosen at each price change, and ψ is the tick size (size of elementary price changes). The Quadratic
Hawkes process intensity is now defined as:

λt =λ∞ +
1

ψ

∫ t

−∞
L(t− s)dPs +

1

ψ2

∫ t

−∞

∫ t

−∞
Q(t− s, t− u)dPsdPu, (2.1.3)

where L(·) is called the leverage kernel (breaking the dPt → −dPt symmetry) and Q(·, ·) the
quadratic kernel. Note that L and Q must be such that the quadratic form in dPs is positive
definite, see [70].

Since dP 2
t = ψ2dNt, a purely diagonal Q (to wit: Q(t − s, t − u) = ϕ(t − s)δ(s − u)) recovers

the standard Hawkes kernel. New effects arise when considering non-diagonal contributions to Q,
see below.

Taking the expectation of Eq. (2.1.3) provides an exact equation for the mean intensity λ̄,
provided it exists. Noting that E[ϵs] = 0 and E[ϵsϵu] = δ(s− u), one readily obtains:

λ̄ = λ∞ + nλ̄; n :=

∫ +∞

0

Q(s, s)ds. (2.1.4)

Hence, λ̄ = λ∞/(1−n) is positive and finite whenever n < 1, but becomes formally negative when
n > 1 which was interpreted in [70] as a regime where the QHawkes becomes non-stationary, in
analogy with what happens in the case of standard linear Hawkes processes. As we shall see below,
this conclusion is not always warranted.

2.1.3 ZHawkes

As an interesting special case that captures the Zumbach effect (i.e. the correlation between future
volatility and past trends [39, 40]), Blanc et al. [70] proposed the following ZHawkes specification:

L(s) ≡ 0; Q(s, u) = ϕ(s)δ(s− u) + z(s)z(u), (2.1.5)

i.e. a quadratic kernel that is diagonal plus a rank-one contribution. In this case, the intensity of
the QHawkes becomes:

λt = λ∞ +Ht + Z2
t (2.1.6)

where

Ht =

∫ t

−∞
ϕ(t− s)dNs

represents the Hawkes component of the intensity whereas

Zt =

∫ t

−∞
z(t− s)dPs

represents the trend-induced (Zumbach) component. Correspondingly, one can then obtain the
endogeneity ratio n (defined in Eq. (2.1.4)) as the sum of the two terms: the Hawkes endogeneity
ratio nH := ||ϕ|| and the Zumbach endogeneity ratio nZ = ||z2||. Naively, the stability of the
ZHawkes process should read:

n = nH + nZ < 1. (2.1.7)
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Figure 2.3: Time Series of the Intensity of a simulated ZHP - Parameters: nZ = 2, T = 106,
ω = 0.03, nH = 0 λ∞ = 0.5. Note the log-scale on the y-axis.

However, our simulations show that one can have a non explosive process when n ≥ 1 provided
nH < 1. In this case, the QHawkes is stationary but with an infinite mean intensity λ̄. The
stability of the QHawkes for nZ + nH > 1 arises from the fact that the inhibiting realisations of
Zt (corresponding to locally mean-reverting behaviour of the price) are compensating the exciting
ones (corresponding to local trends), see the detailed discussion in [68].

In the following, we show the results of our simulations of an univariate ZHawkes process
(ZHP) with nH = 0 and nZ > 1, and an exponential Zumbach kernel z(·). We also simulate the
corresponding continuous limit of the ZHawkes process, as worked out in [70], and reinterpret the
analytical results of Blanc et al. in the context of the present discussion.

2.2 Univariate ZHP: Numerical Results
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Figure 2.4: The main figure shows the survival function E(Λ) = P[λ > Λ] in log-log, for several
subperiods t ∈ (n× 105, (n+1)× 105) of the total simulation, with n indicated in the legend. The
results fluctuate somewhat, but there is no systematic trend towards a fatter tail at longer times.
The inset shows (in log-log) the survival function for the whole period 105 ≤ t ≤ T = 106, together
with the theoretical prediction for the tail of the distribution (red line), as given by Eq. (2.2.1).
Parameters are: nZ = 2, T = 106, ω = 0.03, nH = 0 and λ∞ = 0.5.

In this section, we provide evidence that the intensity of a simulated ZHawkes Process with
nZ > 1 is stationary. In order to simulate a ZHP process, we adapt the thinning algorithm
presented by Ogata (1981) in [72]. The Zumbach kernel z(·) is chosen to be a pure exponential,
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such that Zt can be interpreted as an exponential moving average of past returns, i.e. a proxy for
the recent trend in prices. More precisely, we set

z(s) = γ e−ωs, γ :=
√
2nZω

with nZ = 2, ω = 0.03 and a total simulation time of T = 106. We also set nH = 0, i.e. no Hawkes
feedback, and choose the baseline rate to be λ∞ = 0.5.

Figure 2.3 represents the whole time series of the simulated intensity, which shows that the
process does not explode and looks stationary. More precisely, we find that the survival function of
the process E(Λ) := P[λ ≥ Λ] does not significantly evolve with time, see Figure 2.4. In particular,
the distribution does not become significantly “fatter” as time increases, as would be expected
if the process was on an explosive path. (Note that a formal Kolmogorov-Smirnov test of this
statement is not straightforward because the λt’s are correlated in time, see [73]). Finally, and
most importantly, the empirical distribution function very nicely matches the theoretical prediction
of [70], namely:

E(Λ) ∝
Λ≫λ∞

Λ
− 1

2 (1+
1

nZ
)
, (nH = 0) : (2.2.1)

see the inset in Figure 2.4. The expected slope −3/4 for nZ = 2 is indeed very close to the fitted
slope −0.77 in the range Λ ∈ [102, 105], beyond which finite size effects become visible.

2.3 Continuous Time Limit of the ZHawkes process

We now further assume that the Hawkes kernel ϕ(·) is also exponential and reads

ϕ(s) = nHβ e
−βs.

When the parameters ω, β in the kernels z(·) and ϕ(·) are sufficiently small, a continuous time
limit of the ZHP was derived in [70]. The corresponding two-dimensional SDE reads

{
dHt = β

[
− (1− nH)Ht + nH(λ∞ + (Zt)

2)
]
dt

dZt = −ωZtdt+ γ
√
λ∞ +Ht + (Zt)2dWt,

(2.3.1)

where dWt is a Wiener noise. Instead of simulating the original ZHP using the thinning method of
the previous section, one can simulate the above SDE, with results shown in Figure 2.5, this time
with a non zero Hawkes parameter nH = 0.2, and with ω = 0.1, β = 1, λ∞ = 0.5, nZ = 1.5; such
that n = 1.7 > 1 but nH < 1. The resulting time series of the process Zt and the intensity λt are
presented in Figure 2.5 and look, again, perfectly stationary, even though the criterion ensuring
that E[H] < +∞ and E[Z2] < +∞, namely nH + nZ < 1, is violated here.

In fact, the stationary pdf of the two-dimensional process Eq. (2.3.1) was studied in [70]. It
was shown that the tail of the distribution of the intensity λt is a power-law, given by an extension
of Eq. (2.2.1):

E(Λ) ∝
Λ≫λ∞

Λ
− 1

2 (1+
1

nZ (1+a)
)
, (2.3.2)

where a can only be computed in some limits:

a ≈ nH
1− nH

[
1− χ1− nH − nZ

(1− nH)2

]
(χ =

2ω

β
→ 0), (2.3.3)

and

a ≈ nH
χ(1− nZ)

(χ =
2ω

β
→∞). (2.3.4)

Note that the latter expression is in fact valid for arbitrary χ when nH → 0, provided nH ≪
χ(1− nZ). In particular, a = 0 when nH = 0, recovering Eq. (2.2.1).

The conclusion is that the ZHP, at least in the continuum limit, always reaches a stationary
distribution when nH < 1, albeit the tail of the distribution of λt is a power-law, with an exponent
that becomes smaller than unity when nH + nZ > 1, i.e. leads in that case to a divergent mean
intensity.
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Figure 2.5: Times Series of the Continuous Time Limit of a ZHawkes process according to Eq.
(2.3.1). Top: (Zt)t; Bottom: λt = λ∞ +Ht + Z2

t - Parameters: N = 105 ω = 0.1 β = 1, λ∞ = 0.5
nH = 0.2 nZ = 1.5. Note the log scale on the y-axis for λt.

Conclusion

In this chapter, we introduced Hawkes processes and their quadratic extension. Both models offer
a microstructure view of the price movements, i.e. the framework is discrete, events are described
at a tick-by-tick scale and it is not a time continuous process.

(Q)Hawkes processes are self-exciting processes for which the influence of the past is directly
encoded in the intensity definition. The main idea behind these processes is that the more past
events occurred, the more likely future events are going to happen. Hawkes processes are used in
various fields: biological neural networks [16, 17], financial markets [13, 14], seismologic activity
(earthquakes) [64, 65], crime rates or riot propagation [18, 19]... However, the Gaussian properties
of Hawkes’ time continuous limit make them unfit to describe financial time series. Consequently,
a quadratic extension of the process QHawkes, has been developed [70]. The latter allows to
reproduce the fat tails of financial time series and the leverage and Zumbach effects.

This chapter also revisited the properties of Quadratic Hawkes processes in the strong feedback
regime. Based on numerical simulations and analytical results, we have argued that a new regime
exists, where the process reaches a stationary state with an infinite mean intensity. Such a regime
is absent for standard (linear) Hawkes processes: the stability of the process requires the mean
intensity to be finite, except in the critical case [67]. As argued by Kanazawa & Sornette [68, 69],
non-linear Hawkes processes allow for a rich phenomenology, with inhibitory and excitatory effects
that can balance each other in a subtle way, resulting in a highly fluctuating, but non-explosive
process, for which they provide several other examples.

QHawkes processes naturally lead to a power-law tail distribution for the local intensity, with
an exponent that can become less than unity, in which case the mean intensity diverges. The
resulting price process then converges to a Lévy stable process with an infinite variance, in spite
of the fact that elementary price changes are strictly bounded (and, in our example, equal to ±ψ).
As such, this regime is not directly relevant to financial markets, since price returns, although
fat-tailed, have a finite variance. Notwithstanding, we believe that the possibility of creating Lévy
stable random walks based on a self-exciting mechanism is interesting in itself, and may have
applications in other fields.

Finally, our analysis is far from mathematically rigorous. Although the results of [70] for the
continuous time version of the Z-Hawkes process are suggestive (see section 2.3), a more formal
proof of the stationarity of Quadratic Hawkes processes with general kernels and in the infinite
mean intensity regime would be welcome.
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Take Home Message

• Originally developed for modeling earthquakes activity, Hawkes processes encode the
influence of past events on future activity and are applied in various fields. The main
idea of their dynamics is that the occurrence of more events increases the likelihood of
future events. A stationary linear Hawkes process is characterised by an endogeneity
ratio strictly less than 1, meaning that each event, on average, triggers fewer than one
subsequent event.

• Jaisson and Rosenbaum [71] demonstrated that the continuous-time limit of a (near-
critical) Hawkes process is a fractional CIR Heston process. This stochastic volatility
model generates time series with distributions that have thinner tails than empiri-
cal returns distributions and exhibit time-reversal symmetry, in contrast to empirical
financial time series.

• To alleviate the limitations of the linear Hawkes for financial prices, Donier, Blanc
and Bouchaud introduced the class of “Quadratic” Hawkes (QHawkes) processes [70],
which encodes a feedback between past price trends and future volatility, directly delin-
eating the time-asymmetry Zumbach effect [39]. Additionally, the QHawkes quadratic
feedback naturally generates extreme events and thus replicates the fat-tailed distri-
butions of financial time series (even in the continuous-time limit).

• The ZHawkes process is a particular QHawkes process where the quadratic kernel
is a sum of a diagonal and a rank-one component. Thus, the ZHawkes feedback
is characterised by the sum of a linear Hawkes feedback and a quadratic feedback.
ZHawkes processes have two stationary regimes:

– when the total endogeneity ratio is strictly less than 1 (n < 1), then the process
has a finite mean intensity.

– when the total endogeneity ratio is greater than 1 (n > 1) but the Hawkes com-
ponent endogeneity ratio is strictly less than 1 (nH < 1), then the process has an
infinite mean intensity.

Our results (see also [69]) suggest that the quadratic feedback produces both inhibitory
and excitatory outcomes, ensuring stability of the process even when the endogeneity
ratio exceeds 1.
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Chapter 3

Multivariate Quadratic Hawkes
processes

Someone’s sitting in the shade today because someone planted a tree a
long time ago.

Warren Buffett

This chapter is largely based on [63], written in collaboration with Michael Benzaquen and
Jean-Philippe Bouchaud.
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Figure 3.1: Time series of 1 minute bins co-jumps in a set of 295 US stocks over 5 years. The
horizontal axis corresponds to the day in the sample and the vertical axis gives the time of day.
The size and the color of the circle encodes the number of stocks simultaneously jumping in a
given minute (see color bar). The inset shows the cumulative distribution function of the number
of stocks in co-jumps for jumps that were classified as endogenous according to the methodology
developed in [6], the slope is −1.25.
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Introduction

QHawkes processes, introduced in [70] and presented in Chapter 2, provide an interesting alterna-
tive to more traditional models, while clearly highlighting the feedback loop at the origin of the
stylized facts characterizing financial prices.

In this chapter, we generalize the monovariate QHawkes process of Ref. [70] to the multivariate
case, allowing one to capture how the trend on one asset can impact the volatility of another asset.
Like for the univariate case, we expect the multivariate expansion to capture some stylised facts
that are not accounted for within a linear Hawkes framework. In order to motivate our study, we
illustrated in Figure 1.9 the existence of a cross-asset leverage and Zumbach effects, i.e. the fact
that past trends on the E-mini (resp. tbond) increases volatility of the tbond (resp. E-mini),
in a way that is asymmetric between past and future, much as the usual “self” Zumbach effect.
Additionally, Figure 3.1 (also discussed in Figure 1 and Chapter 5) reveals high activity episodes
across the whole stock market, with the number of simultaneous co-jumps being distributed as
a power-law. This suggests the existence of a propagation phenomenon similar to a branching
process, which requires a specific non-linear cross-asset interaction of the type considered in this
work.

3.1 Model presentation

3.1.1 MQHawkes Processes

Let us now consider N financial assets with prices (P i
t )t≥0,i=1,...,N . We associate such price pro-

cesses with jump processes (N i
t )t≥0, with:

dP i
t = ϵiψidN

i
t , (3.1.1)

where we set henceforth ψi ≡ 1, ∀i, without loss of generality. Each jump process (N i
t )t≥0 is a

conditionally independent1 Quadratic Hawkes process with intensity (λi,t)t≥0

λi,t =λi,∞ +

N∑

j=1

∫ t

−∞
Li
j(t− s) dP j

s +

N∑

j≤k

∫∫ t

−∞
Ki

jk(t− s, t− u) dP j
s dP k

u . (3.1.2)

Note that the superscript in the kernels indicates which asset is affected by the feedback, whereas
subscripts indicate which assets are responsible for it.

In the following we shall generically call Kd the “diagonal” feedback terms, i.e. the kernels Ki
jk

with j = k. These terms describe the quadratic feedback from two price changes of the same asset
j onto the activity of asset i. Similarly, K× describes cross effects, i.e. Ki

jk with j < k, from two

different assets j < k onto the activity of asset i. In order to guarantee that intensities λit remain
positive at all times, kernels L,Kd and K× need to verify some conditions, which are detailed in
Appendix A.1.

Although all these terms could in principle play a role, in the present paper we shall restrict
to cross terms Ki

jk such that either j or k are equal to i. The intuitive meaning of such terms
will become clear below in the context of ZHawkes processes; in particular, we shall see why terms
with j ̸= i and k ̸= i are not expected to play a large role in practice.

For the sake of clarity we will mainly focus on the bivariate case N = 2, for which the leverage
kernel and the diagonal quadratic kernel are 2× 2 matrices:

L :=

(
L1
1 L1

2

L2
1 L2

2

)
; Kd :=

(
K1

11 K1
22

K2
11 K2

22

)
,

whereas the cross quadratic kernel is a vector

K× :=

(
K1

12

K2
12

)
.

In the following 2 × 2 matrices and 2D vectors are respectively noted A and A, for example
λ := (λ1, λ2). We will also need to distinguish the “time diagonal” of a matrix A(τ1, τ2), by which
we mean A(τ, τ), from the “diagonal” of A, which refers to the diagonal components in asset space
Aii.

1This means that for given intensities λi,t, the inhomogeneous Poisson processes dN i
t are independent. See

further down for the case of correlated jump processes.
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3.1.2 ZHawkes Model

The multivariate generalisation of the ZHawkes model amounts to assuming that the quadratic
kernels Kd and K× can be written as arbitrary singular time-diagonal and time-rank-one contri-
butions, to wit:

Ki
jj(s, u) = (ϕd)

i
jj(s) δ(s− u) + kijj(s)k

i
jj(u)

Ki
ij(s, u) = (ϕ×)

i
ij(s) δ(s− u) + kiji(s)k

i
ij(u) (i < j).

However, as long as we consider independent Poisson processes, we can set ϕ× = 0. This is because
the two processes will almost never jump simultaneously, such that for all u, dP i

udP
j
u = 0 when

i ̸= j (see however Eq. (3.1.6) below when co-jumps are taken into account). Actually in the
so-called Thinning Algorithm ([72] and Appendix B.1) for multivariate processes, commonly used
to simulate inhomogenous Poisson process, at most one process can be jumping at each time step.

3.1.3 Endogeneity Ratio and Stationarity Condition

The endogeneity ratios indicate by how much, on average, the feedback loop contributes to the
future of the process, and thus, whether the process is stationary or not. To define them for the
MQHawkes we use analogies with univariate QHawkes and multivariate linear Hawkes.

Mean Intensity

Since price changes are centred and processes are assumed to be independent, we have E(dP ) = 0
and E(dP i

sdP
j
u) = δijδs,uλ̄

ids. Using this, we find that the vector of mean intensities λ̄, when
finite, writes:

λ̄ =

(
I−

∫ ∞

0

Kd(s, s)ds

)−1

λ∞. (3.1.3)

This expression must be interpreted with care when Kd(s, u) contains a singular time-diagonal
contribution φd(s) δ(s − u). In such a case, and throughout this paper, we will interpret Kd(s, s)
as Kd,reg.(s, s) + φd(s), where Kd,reg. is the regular part of the diagonal quadratic feedback. Equa-
tion (3.1.3) shows that the mean intensity diverges when the spectral radius2 of the matrix∫∞
0

Kd(s, s)ds tends to one from below.

Endogeneity Ratio

In the multidimensional case, the endogeneity ratio of a standard linear Hawkes process is defined
by the spectral radius of the kernel matrix φ involved in the expression of λ̄ [13]. More precisely,
introducing

∥f∥ :=
∫ +∞

0

f(s)ds

one constructs the matrix ∥(ϕ)ij∥ and determines its eigenvalue with largest modulus, which in turn
defines the dominant endogeneity ratio n. Thus, n = ρspectral(∥φ∥), where ρspectral is the spectral
radius and ∥φ∥ stands for the matrix ∥(ϕ)ij∥.

For a general univariate QHawkes model, one can always decompose the endogeneity ratio
n as the sum of the Hawkes endogeneity ratio nH associated with the singular time-diagonal
contribution to K(·, ·), and a regular contribution nQ:

n =

∫ +∞

0

ϕ(s)ds+

∫ +∞

0

Kreg.(s, s)ds := nH + nQ. (3.1.4)

In the special case of a ZHawkes quadratic kernel, the regular contribution reads:

nQ = nZ =

∫ +∞

0

k2(s)ds. (3.1.5)

2The spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues.
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For a general MQHawkes, the endogeneity ratio is then defined by the spectral radius of∫∞
0

Kd(s, s)ds, n = ρspectral(∥Kd∥). However, when decomposing the kernel as a singular time-
diagonal contribution and a regular contribution, one must be careful about the fact that the two
matrices Kd,reg.(s, s) and φd do not commute in general. Hence the spectral radius defining the
endogeneity ratio cannot be simply expressed as the sum of a Hawkes contribution nH (i.e. the
spectral radius of ∥φd∥) and of a regular or Zumbach contribution (i.e. the spectral radius of
∥Kd,reg.∥).

Stationarity Condition

For linear Hawkes processes to be stationary, the endogeneity ratio n needs to be strictly less than
one. Hence, only processes with finite mean intensity λ̄ can be stationary. In the presence of a
quadratic feedback, the situation is more intricate. In a previous communication [63] we found
that for a univariate Z-Hawkes process to be stationary one needs nH < 1, but not necessarily
n = nH + nQ < 1. When nH < 1 and n > 1 one has a stationary process with an infinite
mean. In the present multivariate framework, we conjecture that a similar situation holds, with
the following definitions: let nH be the spectral radius of ∥φd∥, and n = ρspectral(∥Kd∥), with in
general n ̸= nH + nQ. Then, there exists a value n⋆ such that:

• if nH < 1 and n < n⋆, the process is stationary with finite mean intensity;

• if nH < 1 and n > n⋆ the process is stationary with infinite mean intensity.

• if nH > 1, the process explodes and no stationary state can be reached.

We have performed numerical simulations (not shown) that support this conjecture. The value of
the critical point n⋆ is however difficult to compute in the general case, but in the specific case of a
weakly anisotropic two dimensional ZHawkes model, some progress can be made, see Section 3.3.4
and Eq. (3.3.11). In particular, in the isotropic case, the univariate result n⋆ = 1 is recovered.

3.1.4 Correlated Poisson Processes

One may wonder if the hypothesis of independence of the dN i
t for different i = 1, . . . , N is not too

strong to faithfully account for events happening in financial markets. In fact, as in [54], we find
that co-jumps (i.e. simultaneous jumps in the price of different assets within 1 minute bins) occur
fairly frequently, adding a new stylised fact to consider in this multivariate framework. In order
to investigate co-jumps empirically, we use a jump detection method (see [6]) on 295 large cap.
US stock prices from January 2015 to December 2020. We then count how many stocks display
anomalous price jumps in a given minute, and represented such counts in Figure 3.1. Co-jumps
are clearly seen to occur. On average, there are 4.5 co-jumps per day, and up to 68 co-jumps in
one day. Using [6] to classify each jump as endogenous or exogenous, we compute the cumulative
density function of number of stocks included in endogenous co-jumps which displays a power law
of slope −1.25 (see insert in Fig. 3.1).

Co-jumps may be due to either a common exogenous shock (like an external piece of news
affecting several stocks), or to some endogenous instability triggering a jump for one given stock,
which propagates to other stocks. The very interesting question of the exogenous/endogenous
nature of co-jumps clearly needs a more refined investigation, in the spirit of [6], and is left for
future work.

In [54], the authors show that multivariate linear Hawkes models with independent realisations
of the Poisson process do not satisfactorily reproduce co-jumps. Here we propose a way to enforce
correlations between Poisson processes, and allow one to account for co-jumps within bivariate
QHawkes processes.

Bivariate Poisson Processes

We focus on the bivariate case N = 2. The extension to N > 2 is also possible, although beyond
the scope of the present paper. In order to allow for the possibility of co-jumps, i.e. such that
dP 1

t dP
2
t ̸= 0, we consider three independent QHawkes counting processes (N1

t , N
2
t , N

c
t )t≥0 with

intensities (µ1,t, µ2,t, µc,t) defined from past returns:

µa,t =µa,∞ +
∑

j∈{1,2}

∫ t

−∞
La
j (t− s)dP j

s +
∑

j≤k∈{1,2}

∫∫ t

−∞
Qa

jk(t− s, t− u)dP j
s dP

k
u , (3.1.6)
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with a = 1, 2, c, and we model price moves as:

dP 1
t = ϵ1t (dN

1
t + dN c

t )

dP 2
t = ϵ2t (dN

2
t + dN c

t ),
(3.1.7)

where ϵit = ±1, with E(ϵit) = 0 and E(ϵ1t ϵ2t ) = ρt. While the sign correlation ρt could indeed be
time dependent, here we will assume that ρt = ρ is independent of time. Thus, price moves have
both an idiosyncratic part, represented by dN i, i ∈ {1, 2}, and a common part dN c, which make
co-jumps possible3 (hence the subscript c). In fact, because dN c

t ∈ {0, 1}, then (dN c
t )

2 = dN c
t ,

one now has:

dP 1
t dP

2
t = ϵ1t ϵ

2
tdN

c
t . (3.1.8)

We can then define the total intensities (λ1,t, λ2,t)t≥0 of the price jumps (P 1
t , P

2
t )t≥0, according to

the definition of Poisson processes:

{
λ1,t := µ1,t + µc,t

λ2,t := µ2,t + µc,t,
(3.1.9)

and notice that the structure of the equations governing the dynamics of intensities is conveniently
the same as in the independent case, with the following identifications:

Li
1 ←− Li

1 + Lc
1 Li

2 ←− Li
2 + Lc

2

Ki
11 ←− Qi

11 +Qc
11 Ki

22 ←− Qi
22 +Qc

22

Ki
12 ←− Qi

12 +Qc
12 λi∞ ←− µi

∞ + µc
∞.

Mean Intensity

Now correlations between instantaneous price changes are non-zero, i.e. E(dP 1
s dP

2
s ) = ρµcds ̸= 0

(see Appendix A.2), the expression for the mean intensity λ̄ is modified and reads, for regular
kernels:

λ̄ =
(
I−

∫ ∞

0

Kd(s, s)ds
)−1(

λ∞ + ρµc

∫ ∞

0

K×(s, s)ds
)
, (3.1.10)

with:

µc =
µc
∞ + λ̄⊤ ·

∫∞
0

Qc(s, s)ds

1− ρ
∫∞
0
Qc

12(s, s)ds
,

and

Qc =

(
Qc

11

Qc
22

)
.

In the presence of a singular contribution to the K’s, one should again take it into account by sub-
stituting all K(s, s) by the corresponding Kreg(s, s)+ϕ(s), and similarly for Q’s. The stationarity
conditions are now that:

1. The spectral radius of the Hawkes kernel ||φd|| is strictly less than 1

2. The time-diagonal of the co-jump kernel must be such that:

∣∣∣∣ρ
∫ ∞

0

Qc
12(s, s)ds

∣∣∣∣ < 1.

3Note that if we relax the assumption that dP can only be equal to one tick, one can build a more general model

dP 1
t = ϵ1t (dN

1
t + C1dN

c
t )

dP 2
t = ϵ2t (dN

1
t + C2dN

c
t )

which would lead to a richer correlation structure. Such a model would mean that co-jumps have a different size
than usual price changes.

37



3.2 Covariance Structure & Yule-Walker Equations

Of course, the feedback kernels L and K cannot be directly observed in data. However, as we now
show, they can be computed from covariance functions, which can easily be estimated from empir-
ical data. Here we introduce the covariance structures of a multivariate QHawkes process, thereby
establishing the matrix Yule-Walker equations (which link covariance structures and QHawkes
kernels).

In order to fully characterise the kernels Kd and K, we need covariance structures containing
information on both the diagonal part of the kernels ((τ1 = τ2) and their non diagonal part
τ1 ̸= τ2. When time is discretized on a grid up to lag q, the number of unknowns is, for N assets,
(q + q(q − 1)/2) × N2 for Kd and q(q − 1) × N(N − 1) unknowns for K (with i = j or i = k as
considered in this paper and without explicit co-jumps).

Now, Equation (3.2.5) below on two-point correlations can only provide q×N(N +1)/2 equa-
tions; three-point correlations are thus also needed to fully determine these kernels (see [12, 70] for
the corresponding univariate case).

3.2.1 Two- and Three-point Covariances

The first quantity of interest is the covariance of the activities of the process. For all τ ̸= 0:

Cij(τ) := E
(
dN i

t

dt

dN j
t−τ

dt

)
− λ̄iλ̄j . (3.2.1)

As for the univariate QHawkes, C is even, and its extension to τ = 0 can be worked out following
[15]. Thus, for i = j, the extension will be the same as in [70], with C⋆

ii(τ) := Cii(τ) + δτ,0λ̄i.
(Note indeed that E((dN i)2) = E(dN i) = λ̄idt, if we consider that events cannot overlap). For
i ̸= j, the extension must account for co-jumps and now reads C⋆

ij(τ) := Cij(τ) + δτ,0µ̄c. Without
co-jumps, one has C⋆

ij(τ) := Cij(τ) for i ̸= j.
We also define a relevant three-point correlation structure D as the following tensor:

Dijk(τ1, τ2) = E

[(
dN i

t

dt
− λ̄i

)
dP j

t−τ1

dt

dP k
t−τ2

dt

]
. (3.2.2)

Since price returns are assumed to be of martingales, Dijk(τ1, τ2) is only nonzero when τ1 > 0
and τ2 > 0. Note that when τ1 = τ2 and j = k, one has Dijj(τ, τ) = Cij(τ).

In the bivariate case, D defines again two types of 2 × 2 matrices: “diagonal” (j = k) and
“cross” (j ̸= k). We shall consistently use the following notations to distinguish them:

Dd(τ1, τ2) :=

(D111(τ1, τ2) D122(τ1, τ2)
D211(τ1, τ2) D222(τ1, τ2)

)
, (3.2.3)

and

D×(τ1, τ2) =

(D112(τ1, τ2) D121(τ1, τ2)
D212(τ1, τ2) D221(τ1, τ2)

)
. (3.2.4)

3.2.2 Two-point Yule-Walker Equations

In order to deduce kernels from empirical correlations, direct relations must be determined. The
method we use to find such relations is very similar to that used in Appendix 1 of [70]. Assum-
ing that prices are martingales,4 and without considering co-jumps, we find the following matrix
equation for C:

C(τ) = Kd(τ) λ +

∫ +∞

0+
Kd(u, u)C(τ − u)du

+ 2

∫ +∞

0+

∫ +∞

u+

Kd(τ + u, τ + r)Dd(u, r)drdu

+

∫ +∞

0+

∫ +∞

u+

K(τ + u, τ + v)(D)⊤(u, v)dvdu

+

∫ +∞

0+

∫ +∞

v+

K(τ + u, τ + v)(D)⊤(u, v)dudv,

(3.2.5)

4This assumption is often violated at high frequencies, and some amendments will need to be introduced when
calibrating the model on actual HF data – see Chapter 4.
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where λ is a 2× 2 matrix defined as

λ :=

(
λ̄1 0
0 λ̄2

)
. (3.2.6)

and where

D :=

(D112

D212

)
(3.2.7)

This Yule-Walker equation boils down to Eq. (8) of Ref. [70] in the univariate case.
The Yule-Walker equation for C accounting for co-jumps can be found in Appendix A.3.

3.2.3 Three-point Yule-Walker Equations

The full three-point Yule-Walker equations for the tensor D are quite intricate. In order to give a
simplified version of these equations we restrict here to the case with no co-jumps, i.e. µc ≡ 0. We
find that, for τ1 > τ2 > 0:

Dd(τ1, τ2) = 2Kd(τ1, τ2)Cd(τ2 − τ1)

+

∫ +∞

τ+
1

Kd(u)Dd(τ1 − u, τ2 − u) du

+ 2

∫ +∞

τ+
1

Kd(u, τ1)D0
d(u− τ1, τ2 − τ1) du

+

∫ +∞

τ+
1

K(τ1, u)(D
1)⊤(u− τ1, τ2 − τ1)du

+

∫ +∞

τ+
1

K(u, τ1)(D
2)⊤(u− τ1, τ2 − τ1)du,

(3.2.8)

where we have introduced the two following diagonal matrices:

Cd(τ) :=

(
C11(τ) + (λ̄1)

2 0
0 C22(τ) + (λ̄2)

2

)
, (3.2.9)

D0
d(τ1, τ2) :=

(D111(τ1, τ2) 0
0 D222(τ1, τ2)

)
, (3.2.10)

as well as the notation D for the 2-vectors:

D1 :=

(D121

0

)
, D2 :=

(
0
D212

)
.

For the corresponding Yule-Walker equation for D see Appendix A.3.

3.2.4 Asymptotic Behavior with Power Law Kernels

An interesting special case for which the Yule-Walker equations can be asymptotically solved is
when kernels are decaying as power-laws, as considered in [70]. Of special interest is the rela-
tionships between exponents governing the correlation functions and the kernel exponents when
τ −→ +∞.

The general analysis is quite cumbersome and is relegated to Appendix A.4.1. In the non-
critical case (n < 1), the calculations are not particularly difficult and generalise the results of [70]
to the multivariate case.

The critical case (n = 1), on the other hand, is much more subtle, in particular for the QHawkes
processes.5 In order to treat this case, we have generalised the method introduced by Hawkes in
[75], which combines the Yule-Walker equations in the Fourier domain with Liouville’s Theorem

5For the linear version, one can refer to [12] or to [74] where Bacry, Jaisson and Muzy use convolution to link
the Fourier transform of C with that of K.
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to find a direct relationship between exponents. This method is recalled in Appendix A.4.3, from
which the value of the exponents in the critical case can be derived, see Tables in Appendix A.5.
Some of the exponent values reported in [70] turn out to be incorrect; the correct values can be
inferred from our new results. Note that in the critical case the decay of the correlation functions
cannot be faster than τ−1, as in the case of linear Hawkes models without ancestors (see the work
of Brémaud & Massoulié [66]).

3.3 Power-Law Tails of the Volatility Distribution

Here we investigate the distribution of volatility of a MQHawkes process. We adapt the method-
ology of Ref. [70] to the multivariate setting, restricting for simplicity to the two assets case. Our
main goal is to establish that MQHawkes lead to fat (power-law) tails for the empirical intensity
distribution, which translates into fat tails in the distribution of returns [70]. We limit our study
to the ZHawkes specification with exponentially decaying kernels, that allow one to construct a
tractable continuous time limit.

3.3.1 ZHawkes Model with Exponential Kernels

We neglect the leverage feedback and set L = 0. We also neglect the possible presence of co-jumps,
i.e. set µc ≡ 0 hereafter. Within the ZHawkes specification, we can rewrite the intensities as
follows:

{
λ1 = H1

1 +H1
2 + (Z1

1 )
2 + (Z1

2 )
2 + Y 1

2

λ2 = H2
1 +H2

2 + (Z2
1 )

2 + (Z2
2 )

2 + Y 2
1

with

Hi
j :=

∫ t

−∞
(ϕd)

i
jj(t− s)dN j

s

and

Zi
j =

∫ t

−∞
kijj(t− s)dP j

s

Y i
j =

(∫ t

−∞
kiji(t− s)dP i

s

)(∫ t

−∞
kiij(t− u)dP j

u

)
.

To keep things tractable, we choose all kernels to be exponentials and consider that only four
“features” are important to describe all feedback effects, namely:

{
h1(t) = β1

∫ t

−∞ e−β1(t−s)dN1
s

h2(t) = β2
∫ t

−∞ e−β2(t−s)dN2
s ,

(3.3.1)

for activity feedback, and
{
z1(t) = ω1

∫ t

−∞ e−ω1(t−s)dP 1
s

z2(t) = ω2

∫ t

−∞ e−ω2(t−s)dP 2
s ,

(3.3.2)

for trend feedback, with ωi’s and βi’s positive constants. From such features, we construct the
quantities H,Z and Y as

Hi
1 = niH,1h1(t) Hi

2 = niH,2h2(t)

Zi
1 = aiZ,1z1(t) Zi

2 = aiZ,2z2(t)

Y 1
2 = a1Z,z1(t)z2(t) Y 2

1 = a2Z,z1(t)z2(t).

Under such hypotheses, the intensities write:

λ1,t =λ1,∞ + n1H,1h1(t) + n1H,2h2(t) + (a1Z,1z1(t))
2 + (a1Z,2z2(t))

2 + a1Z,z2(t)z1(t)

λ2,t =λ2,∞ + n2H,1h1(t) + n2H,2h2(t) + (a2Z,1z1(t))
2 + (a2Z,2z2(t))

2 + a2Z,z2(t)z1(t).
(3.3.3)
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3.3.2 Endogeneity Ratios

As mentioned earlier, the Hawkes endogeneity ratio nH is obtained as the spectral radius of the
2× 2 matrix of Hawkes coefficients, namely

NH :=

(
n1H,1 n1H,2

n2H,1 n2H,2

)
. (3.3.4)

The Zumbach endogeneity coefficient nZ is the spectral radius of the trend feedback kernel. In
the monovariate case, one finds nZ =

∫ +∞
0

k2(s)ds. From the features defined above, we now have
kijj(t) = aiZ,jωje

−ωjt. Noting that

ω2

∫ ∞

0

e−2ωs ds =
ω

2
,

we simply need, in the present case, to find the top eigenvalue of the following 2× 2 matrix:

NZ :=
1

2

(
(a1Z,1)

2ω1 (a1Z,2)
2ω2

(a2Z,1)
2ω1 (a2Z,2)

2ω2

)
. (3.3.5)

In the simplest case when all coefficients and decay rates are equal, one finds that nH is equal
to any of the coefficients niH,j (which are all equal), and nZ = a2Zω, where aZ := aiZ,j (again all
equal).

Note that in the general case, one needs to diagonalize the matrix NH + NZ , which leads to a
total endogeneity ratio that is in general different from nH + nZ .

3.3.3 Fokker-Planck Equation

As in [70], we consider the process on a time scale T > 0, that shall eventually tend to +∞, and
simultaneously take all decay rates β, ω → 0, but in such a way that ωT and βT remain finite.
For the Zumbach feedback not to disappear in this limit one needs to simultaneously scale up
both (aiZ,j)i,j∈{1,2} as ω−1/2 and (aiZ,)i∈{1,2} as ω−1. In this scaling regime, one can establish the
following Fokker-Planck equation for the time dependent probability density pt of (h1, h2, z1, z2)
(see Appendix A.6):

∂tpt =β1∂h1

(
(h1 − λ1,t)pt

)
+ β2∂h2

(
(h2 − λ2,t)pt

)

+ ω1∂z1
(
z1pt

)
+ ω2∂z2

(
z2pt

)

+
ω2
1

2
∂2z1z1

(
λ1,tpt

)
+
ω2
2

2
∂2z2z2

(
λ2,tpt

)
,

(3.3.6)

where pt is a shorthand for pt(h1, h2, z1, z2), λ1,t and λ2,t are given by Eq. (3.3.3), and where
we have disregarded co-jumps and direct correlations between the returns of asset 1 and asset 2,
meaning that E(dP 1dP 2) = 0. The inclusion of such correlations can be considered and adds
further cross-derivative terms ∂2z1z2 in the Fokker-Planck equation.

Solving for the stationary distribution p∞ of the Fokker Planck equation allows one to determine
the tail behaviour of the distribution of intensities (which translate into volatilities since E[(dPt)

2] =
λtdt). In the monovariate case, Ref. [70] established that p∞ decays as a power-law, with an
exponent α that depends on both nH and nZ . The general expression for α is however not available
in closed form, although asymptotic results in various regimes could be worked out, in particular
when nH → 0. The most important conclusion is that α →∞ when nZ → 0, i.e. power-law tails
disappear in the absence of a quadratic Zumbach coupling. Interestingly, the coupling between the
Hawkes feedback with nH ∼ 1 and even a small Zumbach effect (nZ ≪ 1) was shown to generate
an exponent compatible with empirical data.

3.3.4 ZHawkes without Hawkes (nH = 0)

To make further analytical progress, we now consider the case in which the Hawkes coupling is
absent (nH = 0), that is when h and z decouple, leading to a tractable two-dimensional Fokker-
Planck for z1 and z2. In the stationary regime, the Fokker Planck equation (3.3.6) becomes:

0 = ω1∂z1
(
z1p∞(z1, z2)

)
+ ω2∂z2

(
z2p∞(z1, z2)

)

+
ω2
1

2
∂2z1z1

(
λ1p∞(z1, z2)

)
+
ω2
2

2
∂2z2z2

(
λ2p∞(z1, z2)

)
.

(3.3.7)
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This equation describes the stationary measure of the stochastic path of the bivariate process
(Z1, Z2)t defined as:

dZ1 = −ω1Z1dt+ ω1

√
λ1,tdW

1
t

dZ2 = −ω2Z2dt+ ω2

√
λ2,tdW

2
t ,

with
λ1,t = λ1,∞ + a1Z,Z2Z1 + (a1Z,1Z1)

2 + (a1Z,2Z2)
2

λ2,t = λ2,∞ + a2Z,Z2Z1 + (a2Z,2Z2)
2 + (a2Z,1Z1)

2.
(3.3.8)

These equations allow one to simulate paths (Z1, Z2)t numerically, from which an empirical deter-
mination of p∞(z1, z2) can be confronted to our analytical solution of Eq. (3.3.7). Note that the
coefficients (aiZ,j)i,j∈{1,2} and (aiZ,)i∈{1,2} must satisfy the following inequalities for λ1,t and λ2,t
to remain positive at all times:

4(aiZ,1a
i
Z,2)

2 ≥ (aiZ,)
2, i = 1, 2.

How can one determine the tail exponent for such a two dimensional process? We first introduce
polar coordinates (r, θ), such that z1 = r cos θ and z2 = r sin θ. We then surmise that when
r2 ≫ max(λ1,∞, λ2,∞) the stationary distribution p∞(r, θ) factorizes into an angular component
F (θ) and a power-law contribution, to wit: p∞(r, θ) ≈

r→∞
F (θ)r−α, where α is the tail exponent.

Note that α should be strictly larger than 2 for p∞ to be normalisable, and strictly larger than
3 for the mean intensity to be non divergent. Injecting our factorized guess into Eq. (3.3.7) and
taking the limit r2 ≫ λ∞, we find a second order ODE on the function F , where α appears as a
parameter (see Appendix A.7, Eq. (A.7.1)).

The value of α is selected by the analogue of energy quantification in quantum mechanics:
only for some special values of α can one find a solution F of the above ODE that satisfies the
correct boundary conditions compatible with symmetries of the problem. Clearly, F must be
everywhere non-negative and, because of the symmetry z1 → −z1 and z2 → −z2, one must have
F (θ+ π) = F (θ) (see below for explicit examples). In principle, there can be more than one value
of α that allows one to find an acceptable solution F . This is the analogue of the energy spectrum
in quantum mechanics. The value of α that governs the tail behaviour of p∞(r, θ) is then the
smallest of all such acceptable values. Once the asymptotic tail behaviour of p∞(r, θ) is known,
it is easy to derive the tail behaviour of the marginals p∞(z1) and p∞(z2), which both behave as
z−1−µ with µ = α− 2. The volatility distribution then has the same tail behaviour.

In order to illustrate this general procedure on a simple example, we focus in the following on
the case where ajZ,i =

√
2nZ/ωi, ∀i, j = 1, 2, such that the two eigenvalues of NZ are equal to nZ

(the Zumbach endogeneity ratio) and 0. We also set aiZ, = 2γnZ/
√
ω1ω2, where γ is an arbitrary

coefficient ∈ (−2, 2) (such that λ1 and λ2 are always positive). When ω1 = ω2, Eq. (A.7.1)
considerably simplifies and reads:

[
(α− 2) (α− α0) + (α− 2)2γ cos(θ) sin(θ)

]
F (θ) + [(1 + γ cos(θ) sin(θ))F (θ)]

′′
= 0, (3.3.9)

where we have defined

α0 := 2 +
1

nZ
.

Note that for a given value of α this equation is invariant under the simultaneous change γ → −γ,
θ → −θ. Hence the value of α can only depend on |γ|.

The isotropic case γ = 0

When cross terms aiZ, are absent and ω1 = ω2, the problem becomes isotropic in the sense that the

dynamics of r2 = z21 + z22 decouple from that of θ. The problem then boils down to the univariate
ZHawkes model without Hawkes coupling, for which the value of α is known, and given by α0.

Furthermore, the evolution of θ is that of a free Brownian motion on the unit circle, leading to
a uniform distribution F (θ) = F0, which is indeed a solution of Eq. (3.3.9) in this case. Note that
other periodic solutions exist whenever

(α− 2)(α− α0) = 4ℓ2, ℓ = 0, 1, 2, . . .

but lead to larger values of α when ℓ > 0.
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The case γ ̸= 0

In order to make progress, we posit that α and F can be expanded as power series of γ, namely

α = α0 + α1γ + α2γ
2 + . . .

F (θ) = F0 + F1(θ)γ + F2(θ)γ
2 + . . .

where α0 = 2 + 1/nZ is the solution for γ = 0 and F0 is the constant solution found above. The
coefficient α1 must be zero for symmetry reasons.

γ

−0.025

0.000

α
−
α

0

nZ = 0.4

−0.50 −0.25 0.00 0.25 0.50
γ

0.00

0.01

α
−
α

0

nZ = 0.6

Figure 3.2: Plot of α−α0 as function of γ for nZ =
0.4 (above) and nZ = 0.6 (below). The α are
found numerically by looking for the smallest α
for a π-periodic and positive solution F . The solid
black line represents the theoretical prediction,
Eq. (3.3.10), that is α ≈ α0−0.18γ2 for nZ = 0.4
and α ≈ α0 + 0.06γ2 for nZ = 0.6.

Inserting this expansion in Eq. (3.3.9) and
imposing that all Fn(·) remain π-periodic, the
identification of terms of order γn finally leads
to

α = α0 +
γ2

32

(
4

nZ
− 1

n3Z

)
+O(γ4). (3.3.10)

Figure 3.2 displays the numerical values of
α as a function of γ for nZ = 0.4 and nZ = 0.6
in with the corresponding theoretical parabo-
las, see Eq. (3.3.10). Note that the γ2 correc-
tion changes sign when nZ = 1/2.

In this case (nZ = 1/2), finding an exact
solution of the associated Schrodinger solution
is possible [76], and leads to α = 4 for all val-
ues of γ.6 The corresponding solution for F is
also known in that case and is a constant inde-
pendent of θ, as can be directly checked from
Eq. (3.3.9). An expansion around the special
point nZ = 1/2 can in fact be performed and
leads to first order to

α = 4 +
16

4 + γ2

(
1

2
− nZ

)
+ o

(
1

2
− nZ

)
.

Finally, note that the condition α > 3 (ensuring that the mean activity is finite) reads, to first
order in γ:

nZ < n⋆ ≈ 1 +
γ2

8
+O(γ4). (3.3.11)

The isotropic case γ = 0 boils down to the univariate ZHawkes model, for which n⋆ = 1, see [63].

The case nZ −→ +∞
Equation (3.3.9) can be easily analysed when nZ −→ +∞, in which case α tends to the smallest
possible value, 2, corresponding to a maximally “fat” distribution. The only periodic solution to
Eq. (3.3.9) in that limit is

F∞(θ) =
C

2 + γ sin(2θ)
, (3.3.12)

where C is a constant. When nZ is very large but not infinite, we posit that the solution writes

F (θ) = F∞(θ) +
1

n2Z
G(θ) +O(

1

n4Z
), (3.3.13)

together with α = 2+ ζ/nZ , with G(·) and ζ to be determined. Inserting Eq. (3.3.13) in the ODE
on F Eq. (3.3.9), one obtains the ODE for G:

[(2 + γ sin(2θ))G(θ)]
′′
= −C 2ζ(ζ − 1) + γζ2 sin(2θ)

2 + γ sin(2θ)
. (3.3.14)

6The other exact solutions found in [76] unfortunately correspond to sub-dominant, larger values of α.
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Figure 3.4: Comparison between the numerical solution F of Eq. (3.3.9) (black lines) and the
results of simulating Eq. (3.3.8) (grey histogram) for several values of nZ , and γ = 1. The solid
line shows the numerical solution F found by looking for a solution couple (F, α) of a positive
π-periodic solution F of Eq. (3.3.9) and a value α. The the dashed line for nZ = 10 and nZ = 0.9
shows the solution F∞ for α = 2 (nZ −→ +∞). The upper right figure, obtained for nZ = 10,
matches very well the solution obtained when nZ −→ +∞ since corrections are O(n−2

Z ). Note that
when nZ = 1/2, the exact solution F (θ) is independent of θ for all values of γ.
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Figure 3.3: Plot of G(θ) for γ = 1, C = 0.6, see
Eq. (3.3.14).

Imposing G(·) to be π-periodic, that is im-
posing that the right hand side of Eq. (3.3.14)
integrates to zero between θ = 0 and θ = π,
sets the value of ζ:

ζ =

(
1− γ2

4

)− 1
2

, (3.3.15)

recovering ζ = 1 when γ = 0 and the small γ
expansion result above, see Eq. (3.3.10). The
function G(·) is plotted in Fig. 3.3 for γ = 1.

When comparing the solution above with
the histogram of simulated θ for nZ = 10 and
γ = 1, we find an excellent match with F∞,
without need of any correction, see Fig. 3.4.
This is expected since the correction term
G(θ)/n2Z is of the order of 1% in that case.
When nZ decreases, corrections become more pronounced. The numerically computed F is in
good agreement with the angular distribution obtained from a direct numerical simulation of the
two dimensional stochastic process (Eq. (3.3.8)).

The case nZ −→ 0

When nZ tends to zero, we expect that the exponent α of the power-law tail diverges. Looking
again for α of the form α = 2 + ζ/nZ , we find that Eq. (3.3.9) reads:

(
2ζ(ζ − 1) + ζ2γ sin(2θ)

)
F (θ) + n2Z [(2 + γ sin(2θ))F (θ)]

′′
= 0. (3.3.16)

When nZ −→ 0, this equation looks self-contradictory because the remaining term can only be
zero if F (θ) = 0. However, the second derivative term is a singular perturbation, so it must be
treated with care. The idea is to look for a solution F which is zero nearly everywhere, except
very close to some special values of θ where the second derivative diverges. It turns out that all
the action takes place close to θ = π/4 when γ > 0 and θ = −π/4 when γ < 0.
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tion (3.3.9). Solid black line: theoretical value
α = 2 + ζ/nZ with ζ given by Eq. (3.3.18)

Figure 3.5: Results when nZ −→ 0

Choosing γ > 0, θ = π/4+u
√
nZ , and nZ −→ 0, Eq. (3.3.16) becomes the Schrodinger equation

of a harmonic oscillator, up to terms O(n2Z):

[
−(2 + γ)

d2Ψ

du2
+ 2ζ2γu2Ψ

]
=

2ζ(ζ − 1) + ζ2γ

nZ
Ψ,

with

Ψ(u) := F
(π
4
+ u
√
nZ

)
.

The smallest α solution (or “ground state”) is

Ψ(u) = C ′e−κu2

+O(nZ), κ = ζ

√
γ

4 + 2γ
, (3.3.17)

where C ′ is another constant, together with

ζ =
2

2 + γ
+

√
2γ

2 + γ
nZ +O(n2Z). (3.3.18)

This solution is only accurate in a region of width ∼ √nZ around π/4, beyond which it quickly
goes to zero. This is in perfect agreement with the numerical solution of Eq. (3.3.9) for small
nZ , shown in Fig. 3.5a. The parabolic shape in a semi-log plot around θ = π/4 agrees with the
predictions of Eq. (3.3.17). Moreover, the value of α = 2+ ζ/nZ , with ζ given in Eq. (3.3.18), also
perfectly matches the numerical values reported in Fig. 3.5b. Note that for γ < 0, the same results
hold with |γ| replacing γ in the above equations.

3.3.5 The General Case

In the previous section, we have shown how to compute the power-law tail exponent in the case
where only the quadratic “ZHawkes” kernel is present. We also restricted to simple cases where the
frequencies ω and coupling constants aZ are symmetric. Although analytically more challenging,
the method outlined above can be implemented more generally, and amounts to solving a problem
akin to the quantification condition for the Schrödinger equation. Similarly to the monovariate
case, the volatility distribution develops a power-law tail for all values of the Hawkes feedback nH ,
as long as some amount of Zumbach feedback nZ is present. When nH ̸= 0, the equation setting
the tail in the bivariate case is a three dimensional partial derivative equation generalizing the
equation written in the appendix of Ref. [70]. We expect that even a tiny amount of Zumbach
feedback coupled to the standard Hawkes effect brings the exponent α into the empirical range, as
found in the monovariate case [70].
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Conclusion

Let us summarise what we have achieved in this study. Building on the work of Blanc et al. [70], we
extended the Quadratic Hawkes model to a multivariate framework (MQHawkes). We emphasized
that in the multivariate case, both idiosyncratic and common jumps must be considered in the
general case, leading to a quite complex framework that we only detailed in the bivariate case.

We defined the endogeneity ratio of MQHawkes, as well as the associated conditions for the
process to be stationary. Within the ZHawkes approximation – where quadratic kernels write
as a sum of a time diagonal component, reproducing a linear Hawkes feedback, and a rank one
component – we gave a deeper understanding of the roles of the different feedback terms in the
stationarity condition. We found that, in particular, the spectral radius of the Hawkes component
needs to be strictly inferior to 1, as for the 1D case. The rank one component contains both exciting
and inhibiting realisations and is not involved in the condition, although such a contribution can
lead to a divergence of the average intensity of the process, see [63].

We further defined the covariance structures for MQHawkes processed and established the
associated Yule-Walker equations. The latter allow one to fully determine the quadratic kernels
from data, and thereby pave the way for their empirical calibration.

Finally, we studied the volatility distribution of a 2D MQHawkes process. Restricting our
study to ZHawkes without Hawkes (nH = 0), with exponential kernels and in symmetric cases, we
were able to characterize exactly the tail of the joint probability density function of the ZHawkes
intensity terms. We found that it displays a power law behavior, in line with the observed fat
tails of financial returns. Note that, interestingly, the coupling between assets imposes that the
exponent α is the same for all assets – a mechanism that may explain the apparent universality of
the power-law tail observed in financial markets.

In the forthcoming Chapter (Chapter 4), we shall calibrate the model on empirical data. On
the theoretical side, while expected to be quite heavy, it would be interesting to further develop
the analysis in the presence of co-jumps and correlations. Note that for the sake of clarity most of
our explicit expressions are given in the 2D case. Expanding them further in the N -dimensional
case will be necessary in order to calibrate the model on a large number of assets, say a pool of
stocks.

Also, in the present analysis of the volatility distribution, we restricted to symmetric coefficients
and exponential kernels. Confirming that our conclusions are qualitatively robust against changes
in symmetry and kernel functionnals, and studying its quantitative implications would also be of
interest. Furthermore, we have focused on the specific case of the quadratic Hawkes model because
of its ability to reproduce multiple financial stylised facts, but it would also be interesting to con-
sider the multivariate generalisation of other non-linear Hawkes models, following the interesting
insights and methods presented in Ref. [69].
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Take Home Message

• Modeling multivariate volatility requires accounting for cross-time-reversal asymme-
try effects and co-jumps occurrences, in addition to the characteristics of univariate
financial time series.

• The QHawkes model is a suitable choice for modeling multivariate volatility as it inher-
ently generates the characteristics of univariate financial time series. Additionally, its
ability to explicitly delineate the influence of the past on future activity is particularly
relevant for understanding cross-time-reversal asymmetry effects.

• To account for the frequent occurrence of co-jumps, two frameworks employing the
QHawkes model can be considered:

– Independent QHawkes processes:

{
dP a

t = ±dNa
t

dP b
t = ±dN b

t

,

– Bivariate QHawkes processes – where price dynamics are driven by both idiosyn-
cratic components and a common component, modeled using QHawkes processes:

{
dP a

t = ϵat (dN
a
t + dN c

t )

dP b
t = ϵbt(dN

b
t + dN c

t )
, where ϵa,b = ±1.

In both cases, intensity processes governing the volatilities of P a and P b are influenced
by feedback from the activities of all QHawkes processes.

• Multivariate QHawkes processes seem to consistently extend the relevant features of
the univariate QHawkes:

– Fat tails of the returns distribution

– Volatility clustering

– (Cross)-time-reversal asymmetry
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Chapter 4

Calibration of Quadratic Hawkes
on Empirical Data

Modern portfolio theory poses a danger to those who believe in it too
strongly and is a powerful challenge for the theoretician.

Benôıt Mandelbrot, A Multifractal Walk down Wall Street

This chapter builds upon the work of the previous chapter by attempting to calibrate the
MQHawkes model on real data. The research presented herein is the result of collaboration with
Jean-Philippe Bouchaud. We extend our gratitude to Michael Benzaquen and Marcello Rambaldi
for insightful discussions.

Introduction

The increasing amount of high frequency data in financial markets has made it possible to study and
calibrate microstructure models. An increasingly renowned one is the Hawkes process. Initially
introduced for modeling seismic activity, its adaptability and interpretability have rendered it
highly appealing for financial data, as it distinctly emphasizes the feedback loop underlying the
stylized facts that characterize financial prices. In the previous chapter (Chapter 3), we introduced
a multivariate version of the quadratic Hawkes. The present chapter aims at introducing a non-
parametric calibration method of this multivariate QHawkes (MQHawkes) on empirical data.

Whether using binned events in a regular time grid or successive time events, many methods
exist to calibrate Hawkes processes and their extensions on empirical data. A good review is
presented in Appendix C of [13]. Methods fall into two categories: parametric and non-parametric.

Among the frequently employed parametric approaches, the maximum likelihood [77, 78] and
Expectation Maximisation (EM) method [79] stand out as prominent examples.

Non-parametric methods offer the advantage of agnostic kernel forms, as they do not impose
specific shapes. The primary non-parametric approaches include the Expectation Maximisation-
based method [80, 81], the minimisation of contrast function [82, 83], and the method of moments
or Wiener-Hopf-based method [74, 84, 85, 14, 86]. Additionally, the method of cumulants, a non
parametric method [87, 88], allows to assess the average endogeneity of the process without having
to fully estimate the feedback kernels.

In this study, to remain agnostic regarding the kernel’s shape, we implement the method of
moments on binned data for several pairs of assets. The outline of the chapter is as follows. The
first section describes the data and the pre-processing methods we apply to it. The second section
presents the key ingredients for the calibration: the approximation in discrete time, the covariance
structures and the calibration method. Finally, the last sections are dedicated to our calibration
results on empirical data.

For the sake of simplicity and numerical stability, we work with a 2-dimensions framework as it
is enough to characterise all the feedback contributions of Chapter 3’s model. Along the chapter, we
use the pair E-mini vs tbond as an illustrative example for the method. Calibration on synthetic
data is also demonstrated in Appendix B.8. We would like to point out that, although a lot of
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work has already been done and we are well advanced, the calibration proposed here is not the final
version, as there are still some points to be reworked, as discussed in Section B.8.2 of Appendix B.8.

Notations stay consistent with the ones introduced previously and are presented in the nota-
tions table.

4.1 Data

For all of the assets pairs considered hereafter, we applied the following methodology prior to
calibration, unless stated otherwise.

4.1.1 Data description

For each studied asset i, we collect the opening (o), closing (c), highest (h) and lowest (l) prices of
each 1-minute interval on every trading day from 2013 to 2023. We only consider the bins between
10 am and 3 pm to exclude the high activity at market openings (as participants react to overnight
news) and at market closings (as participants close positions before the market session ends).

From these price time series, we compute the two quantities needed for the calibration for each
1-minute bin: the log-returns rit,d and the volatility σi

t,d as follows:

rit,d = log

(
cit,d
oit,d

)
(4.1.1)

σi
t,d =

1

3

hit,d − lit,d
oit,d

+
2

3

|cit,d − oit,d|
oit,d

(4.1.2)

where d accounts for the day and t for the 1-minute bin within day d.

4.1.2 Data pre-processing

After collecting the log-returns (rit,d)t,d,i and the volatility (σi
t,d)t,d,i time series, we proceed with

two steps of data pre-processing: the normalisation and the “martingalisation”. The first step
removes the intraday pattern of the volatility and standardises the volatility across the entire
studied period. The “martingalisation” process allows us to transform the returns to martingales,
meaning that E(rtrt−τ ) = 0. We detail the two steps subsequently.

Normalisation

10h 14h
time

(a) E-mini intraday squared volatility profile

10h 14h
time

(b) tbond intraday squared volatility profile

Figure 4.1: Average intraday profiles of the squared volatility Bachelier estimates, as defined by
Equation (4.1.2), for a period spanning from 2013 to 2023 for the E-mini (left panel) and the
tbond (right panel).

The objectives of these normalization procedures are twofold: first, to make the time series
stationary over time, and second, to standardise the activity throughout the day.
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To achieve stationarity, each intraday value, that is, the value of each 1-minute bin, is divided
by its average value over the past 100 days as described in Equations (4.1.3) and (4.1.4):

rit,d ←
rit,d√

1
100

∑d
k=d−100(r

i
t,k)

2
, (4.1.3)

σi
t,d ←

σi
t,d√

1
100

∑d
k=d−100(σ

i
t,k)

2
. (4.1.4)

To normalize the activity throughout the day, each intraday value, that is again, the value of
each 1-minute bin, is divided by its average value over all days, as described in Equations (4.1.5)
and (4.1.6). Without this normalization, the daily activity profile exhibits a U-shape or even a
J-shape, as it is the case for the E-mini and the tbond as demonstrated in Figure 4.1 (see also
[23]).

σi
t,d ←

σi
t,d√

⟨(σi
t,d)

2⟩t
(4.1.5)

rit,d ←
rit,d

⟨(σi
t,d)

2⟩t
(4.1.6)

“Martingalisation”

Upon examining empirical data, it appears that at the 1-minute time scale, returns are not un-
correlated. Specifically the correlation between rt and rt−1 is revealed to be non zero. However,
in the QHawkes framework presented in Chapter 2, price returns are assumed to be martingales,
and other properties stem from this assumption. Therefore, we perform a “martingalisation” of
the returns time series, meaning that the component of the returns at time t that is predictable
from time t − 1 is removed to isolate the return’s “surprise” component, as follows (see also [14]
and Appendix B.4 for more details):

rit,d ← rit,d − E(rit,d/Ft−1,d).

The data pre-processing is completed by centering and normalising the returns by their standard
deviation (which accounts for considering ψ = 1 in Chapter 3).

The subsequent section describes the calibration method to be applied on the returns and
volatility time series.

4.2 Calibration method

This section outlines the calibration method we implemented. For the sake of clarity, we present
here the main elements and Appendices B.5, B.7 and B.6 provide more comprehensive details.

To stay agnostic on the shape of the kernels, we chose to implement a method of moments. This
method relies on linear relationships between the kernels we want to recover and quantities that
we can compute from data, that are covariance structures. These linear relationships, the so-called
Yule-Walker equations, were introduced in Equations (3.2.5) and (3.2.8) for the MQHawkes model
as defined in Chapter 3. The discretization of data imposes these equations to be adapted, however
they are still a key ingredient to the calibration. A second key ingredient is the set of covariance
structures, indeed they compose the linear system required to recover the kernels. In Chapter 3, we
introduced C and D in Equations (3.2.1) and (3.2.2). As for the Yule-Walker system of equations,
the covariance structures need to be adapted to account for the discretization of data. Since it
obviously has a lot of consequences on the calibration, this chapter starts by discussing the data
binning and the modifications that follow.

50



4.2.1 Approximation for discrete data – toward the MQGARCH model

The advantage of the method of moments is that it is non-parametric, unlike the Maximum Like-
lihood method for instance, hence it allows to remain agnostic on the kernel’s shape. The method
of moments relies on the computation of covariance structures, such as those introduced Equa-
tions (3.2.1) and (3.2.2) in Chapter 3. The estimation of these covariance structures can be done
directly using the times of events, that are the times of price changes in the QHawkes model,
which necessitates working with high frequency data. However, high frequency data is sometimes
difficult to obtain or heavily impacted by microstructure noise [89]. Furthermore, high frequency
price changes strongly reflect the bid-ask bounce effect (strong mean reversion), which is not of
interest in this study. Therefore, we choose to work with aggregated data.

Specifically, relying on the work of Blanc et al. [70] on the univariate QHawkes, the QHawkes
intensity λt can be approximated by the squared volatility as follows:

(σ
(dt)
t )

2

dt
−−−−→
dt→0+

λt, (4.2.1)

where σ
(dt)
t is a volatility estimate over the time bin of size dt.

Thus, the Hawkes continuous point process dN can be approximated by the discrete volatility
process σ(dt) over a time bin of size dt. This approximation critically depends on the choice of
the time bin size dt, which then significantly influences the calibration of the underlying QHawkes
model.

Indeed within this limit, the QHawkes relation between the event and the price change, dPt =
±dNt, might no longer valid, particularly if dt ≫ 1/λ̄. Consequently, some of the terms in Yule-
Walker equations would need to be modified and the ZHawkes model would no longer be properly
defined. Indeed, if we decompose the quadratic kernel into a diagonal component and a regular
one (Kd(s, s) = Kd,reg.(s, s) + φd(s)), the diagonal component would no longer replicate the linear
Hawkes feedback, but includes a feedback loop on (dP )2.

Additionally, the choice of dt highly influences the estimation of the covariance values that
determine the Yule-Walker equations. For a small dt, say dt ≪ 1/λ̄, consecutive events are rare
potentially leading to an underestimation of correlations. Conversely, with a large dt (dt≫ 1/λ̄),
numerous consecutive events occur, potentially resulting in an overestimation of correlations. Ap-
pendix B.8-Section B.8.1 discusses this aspect in details (see also Appendix B.2 which discusses
data binning).

Following [70], we alleviate these difficulties by approximating the MQHawkes model by a
MQGARCH model. Relying on the QGARCH framework introduced in [12, 90], we defined the
MQGARCH model for 2 assets, A and B, which defines the squared volatility of asset j, σ2

j , as
follows (note that thereafter, we swap (A,B) and (1, 2) whichever makes the writing clearer):

σ2
j,t =σ

2
j,∞

+

2∑

i=1

+∞∑

τ=1

Lj
i (τ)ri,t−τ

+

2∑

i=1

+∞∑

τ1=1

+∞∑

τ2=1

Kj
i (τ1, τ2)ri,t−τ1ri,t−τ2

+

+∞∑

τ1=1

+∞∑

τ2=1

Kj
×(τ1, τ2)rA,t−τ1rB,t−τ2 .

(4.2.2)
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For better interpretability, the model can be rewritten by decomposing the kernels K and K×
into their time-diagonal and off-time-diagonal components as follows

σ2
j,t =σ

2
j,∞

+

2∑

i=1

+∞∑

τ=1

Lj
i (τ)ri,t−τ

+

2∑

i=1

+∞∑

τ=1

ϕji (τ)r
2
i,t−τ + 2

2∑

i=1

+∞∑

τ1=1

+∞∑

τ2=τ1+1

Kj
i (τ1, τ2)ri,t−τ1ri,t−τ2

+

+∞∑

τ=1

ϕj×(τ)(rA,t−τrB,t−τ − rArB)

+

+∞∑

τ1=2

τ1−1∑

τ2=1

Kj
×(τ1, τ2)rA,t−τ1rB,t−τ2 +

+∞∑

τ1=1

+∞∑

τ2=τ1+1

Kj
×(τ1, τ2)rA,t−τ1rB,t−τ2 .

(4.2.3)

In this framework, the returns (ri,t)t>0,i∈{A,B} are not defined at microscale anymore, and are
related to the volatility such that ri,t = σi,tξi,t where ξi,t ∼ N (0, 1). It is interesting to notice that
the MQGARCH framework is more consistent with the data format presented in Section 4.1, since
it is discrete quantities. Under this formulation of the (MQ)GARCH model, kernels and covariance
structures are now independent of the parameter dt and only depends on the discretized quantities.

Additionally, the mean squared volatility is then determined through Equation (4.2.4):

(
σA,∞2

σB,∞2

)
=

(
I2 −

(
+∞∑

τ=1

(
ϕ11 ϕ12
ϕ21 ϕ22

)
(τ)

))(
σA2

σB2

)
. (4.2.4)

The subsequent section introduces the “adapted” covariance structures needed to characterise
the kernels of Equation (4.2.3), that are (Li

j)i,j∈{1,2}, (ϕ
i
j)i,j∈{1,2}, (K

i
j)i,j∈{1,2}, (ϕ

i
×)i∈{1,2} and

(Ki
×)i∈{1,2}.

4.2.2 Covariance structures

The calibration aims at determining the feedback kernels (Li
j)i,j∈{1,2}, (ϕ

i
j)i,j∈{1,2}, (K

i
j)i,j∈{1,2},

(ϕi×)i∈{1,2} and (Ki
×)i∈{1,2} and baseline values (σi,∞)i∈{1,2} of Equation (4.2.3) which cannot be

directly observed in data. The method of moments relies on the fact that kernels can be deduced
from covariance functions, which can easily be estimated from empirical data. Given the new
model delineated in Equation (4.2.3), we must consider adapting the covariance structures and the
corresponding Yule-Walker system.

Let us detail the number of unknowns to determine in this model. Considering a time grid up
to lag q,

• (Li
j(τ))i,j∈{1,2},1≤τ≤q and (ϕij(τ))i,j∈{1,2},1≤τ≤q bring each q × 2× 2 unknowns

• (Ki
j(τ1, τ2))i,j∈{1,2},1≤τ1<τ2≤q brings q(q−1)

2 × 2× 2 unknowns. Indeed, since (Ki
j)i,j∈{1,2} are

time-symmetric, it is sufficient to only determine the upper triangle entries.

• (ϕi×(τ))i∈{1,2},1≤τ≤q and (Ki
×(τ1, τ2))i∈{1,2},1≤τ1,τ2≤q,τ1 ̸=τ2 bring together q × q × 2 × 1 un-

knowns.

Additionally, given the form of the model, we need covariance structures containing information
on both the time-diagonal of the kernels (τ1 = τ2) and their off-time-diagonal τ1 ̸= τ2. The first
quantity of interest is the covariance of the activities of the process, for all τ > 0, for i, j ∈ {1, 2},

Cij(τ) := E(σ2
i,tr

2
j,t−τ )− σ2

i r
2
j . (4.2.5)

(Cij(τ))i,j∈{1,2},1≤τ≤q allow to fix q × (2 × 2) equations and predominantly shape the kernels

(ϕji )i,j∈{1,2}.
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Figure 4.2: 2-points correlation Cij(τ), as defined in Equation (4.2.5), calculated for the pair E-
mini vs tbond. The scatter points represent the empirical points, whereas the solid black line
represents the fit used for the calibration. The subplots are in log-log scale.

Consistently, we also define two relevant three-point correlation structures, for 0 < τ1 < τ2,

Dij(τ1, τ2) := E
((
σ2
i,t − ⟨σ2

i,t⟩t
)
rj,t−τ1rj,t−τ2

)
(4.2.6)

and, for 0 < τ1, τ2,

D×j(τ1, τ2) := E
((
σ2
j,t − ⟨σ2

j,t⟩t
)
rA,t−τ1rB,t−τ2

)
. (4.2.7)

Dij is time-symmetric and allows to fix q(q−1)
2 × (2×2) equations. It mainly shapes the kernels

(Ki
j)i,j∈{1,2}. D×j fixes q × q × (2× 1) equations, and mainly forms (ϕi×)i∈{1,2} and (Ki

×)i∈{1,2}.

The above covariance structures enable to characterise the kernels (ϕij)i,j∈{1,2}, (K
i
j)i,j∈{1,2},

(ϕi×)i∈{1,2} and (Ki
×)i∈{1,2} up to a lag q, after which the covariance structures and kernels are

considered negligible. Moreover, Equation (4.2.4) enables to retrieve the baseline values from
(ϕij)i,j∈{1,2}.
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Figure 4.3: 3-points correlation (D×j) for the pair E-mini vs tbond, as defined by Equation (4.2.7).
The scatter points represent the empirical points, whereas the solid black line represents the fit
used for the calibration.

Finally, to recover the leverage feedback which weight the influence of past returns on future
activity, we define an additional two-point correlation:

Vij(τ) := E
(
σ2
i,trj,t−τ

)
. (4.2.8)

(Vij(τ))i,j∈{1,2},1≤τ≤q allows to fix q× (2× 2) equations and predominantly shapes the kernels

(Lj
i )i,j∈{1,2}.
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Figure 4.4: 2-points correlation (Vij)i,j∈{1,2}, as defined in Equation (4.2.8), calculated for the pair
E-mini vs tbond. The scatter plots represent the empirical points, whereas the solid black line
represents the fit used for the calibration.

Let us note that some of the aforementioned covariance structures involve the fourth moments
of financial returns which, due to their fat-tailed distribution, might be undefined and could lead
to numerical instability. An interesting alternative would be to use mixed moments as employed
in Chicheportiche et al. (2014) [12].

So as not to confuse or weigh down the explanation, the adapted Yule-Walker equations link-
ing the feedback kernels to these covariance structures are presented and demonstrated in Ap-
pendix B.5.

As the calibration relies on these four covariance structures, to eliminate the noise, the covari-
ance functions computed on empirical data are approximated (“smoothed”) the following way:

• (Cij)i,j∈{1,2} and the time-diagonal of (Dij)i,j∈{1,2} and (D×j)j∈{1,2}, i.e. τ −→ (Dij(τ, τ))i,j∈{1,2}

and τ −→ (D×j(τ, τ))j∈{1,2}, are replaced by their best fit of τ −→ n exp(−βτ)
(1+γτ)α .

Figure 4.2 and Figure 4.3 illustrate the approximation of (Cij)i,j∈{1,2} and (D×j(τ, τ))j∈{1,2},
respectively, for the pair E-mini vs tbond (note that the time-diagonal of (Dij)i,j∈{1,2} is
directly (Cij)i,j∈{1,2}). Additionally, Figure 4.2 and Figure 4.3 show that (Cij)i,j∈{1,2} and
the time-diagonal of (D×j)j∈{1,2} exhibit long-range correlations (note the log-log scale in
Figure 4.2). This observation justifies the use of a power law function to smooth the empirical
values; it also means that volatility movements that happened early in the day still have
influence on the end-of-day volatility. Moreover, Figure 4.3 demonstrates that the diagonals
of (D×,j)j∈{E-mini, tbond} are negative for the pair E-mini vs tbond which could potentially
indicate that, since the returns of the E-mini and the tbond are negatively correlated for the
studied period (correlation coefficient is -0.15), when past returns covariance is, in absolute
value, greater than its average value, then it tends to increase future volatility, and conversely,
when the returns of the E-mini and the tbond become less negatively correlated, i.e. when
their covariance tends to zero, then it tends to decrease the asset’s volatility. However, the
time-diagonals of (D×j)j∈{A,B} also incorporate volatility effects which could explain such
negative values as we know that volatility begets volatility. In fact, an increase variance
in either the E-mini or the tbond returns, would increase, in absolute value, the returns
covariance, and be associated with an increase future volatility.

• Observing that, for all i, j ∈ {1, 2}, the largest eigenvalue of the off-time-diagonal of Dij and
(D×j), i.e. the off-diagonal of the matrices (Dij(τ1, τ2))1≤τ1,τ2≤q and
(D×j(τ1, τ2))1≤τ1,τ2≤q, is a lot more significant that the subsequent ones, we approximate, for
all i, j ∈ {1, 2}, (Dij(τ1, τ2))1≤τ1,τ2≤q,τ1 ̸=τ2 and (D×j(τ1, τ2))1≤τ1,τ2≤q,τ1 ̸=τ2 by their rank-one
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approximation, where the first eigenvector is replaced by its best fit of τ −→ exp(−βτ). For
instance, Figure 4.5 presents the first eigenvector and its fit of the 3-points correlation Dij

for the pair E-mini vs tbond. Let us note that, the “martingalisation” process described
in Section 4.1.2 facilitates this exponential fit. Indeed, without applying the “martingal-
isation” process, the first eigenvector of the 3-point correlation matrix Dij would reflect
the strong mean-reversion observed at this scale–a property not pertinent to the current
analysis–characterized by the first two points having opposite signs. At this stage, we also
observe that the off-time-diagonal of (D×j)j∈{1,2}, that is (D×j(τ1, τ2))1≤τ1,τ2≤q,τ1 ̸=τ2,j∈{1,2},
is mostly noise, hovering around zero, giving us an hint on the off-time-diagonal of the kernels
(Kj

×)j∈{A,B}.
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Figure 4.5: First eigenvector of the 3-points correlation Dij , as defined in Equation (4.2.6), for the
pair E-mini vs tbond. The scatter plots are the empirical values and the solid black line is the fit
used in the rank-one approximation of Dij .

• (Vij)i,j∈{1,2} is approximated by the best fit of τ −→ a exp(−bτ). Figure 4.4 presents the
approximation of (Vij)i,j∈{1,2} for the pair E-mini vs tbond. Figure 4.4 also shows that the
feedback effect of the tbond returns on the E-mini volatility (upper right panel) is very noisy
and close to zero, conversely to feedback effects from the E-mini on its own volatility and on
that of the tbond (left panels). Moreover, the lower panels show that E-mini negative past
returns and, consistent with the negative correlation between the E-mini and tbond returns,
tbond positive past returns tend to increase tbond future volatility. It is also notable that
the tbond self-leverage feedback (lower right panel) seems to diminish very fast.

4.2.3 4-stage calibration with the method of moments

This section aims at delineating the calibration method and Appendices B.7 and B.5 provide fur-
ther details.

In practice, the calibration is performed within a two-dimensional (2D) framework, encompass-
ing two assets, and is decomposed into several steps. This approach is chosen to maintain numerical
stability and is sufficient to capture all leverage, linear, quadratic, and cross feedback effects. All
steps rely on linear relationships between the covariance and the kernels, the so-called Yule-Walker
system (Appendix B.5 develops such system for the model delineated in Equation (4.2.3)). Solving
these linear systems of equations is achieved by considering that after a lag q the kernels and the
covariance structures are negligible (see Appendix B.7 for details on the implementation of the
Yule-Walker systems for the 2D-QGARCH of Equation (4.2.3)). We now outline the main steps
of the calibration.
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To accurately distinguish leverage feedback from quadratic and cross feedback effects, we ini-
tially estimate the linear, quadratic, and cross kernels using symmetric data. Subsequently, we
estimate the leverage kernels on the original dataset, excluding from V the contributions accounted
for by the linear feedback.

Specifically, to completely eliminate the leverage effect, we transform our datasets as follows

{
r∗ ← [r,−r]
σ∗ ← [σ, σ]

Thus, the leverage effect, characterised by, for τ > 0, |E(σtrt−τ )| > E(σtrt+τ ) ≈ 0, is no longer
present since E(σ∗

t r
∗
t−τ ) = E(σtrt−τ ) − E(σtrt−τ ) = 0. The linear, quadratic and cross kernels

are then estimated from (r∗, σ∗) in a three-step procedure and a fourth step is implemented to
determine the leverage kernels. Specifically, the steps are structured as follows.

1. Since it is numerically stable, as shown in Appendix B.8, the univariate QHawkes feedback
kernels of each asset are estimated up to a certain lag q. Thus, from this first step, we obtain
(ϕii(τ))i∈{1,2},1≤τ≤q and (Ki

i (τ1, τ2))i∈{1,2},1≤τ1<τ2≤q.

2. Considering the cross contributions null (ϕ× = k× = 0), we estimate the cross linear and
quadratic contributions characterised by the values (ϕij(τ))i,j∈{1,2},i̸=j,1≤τ≤q

and (Ki
j(τ1, τ2))i,j∈{1,2},i̸=j,1≤τ1<τ2≤q. After this second step, the estimation of the baseline

activity σ2
A,∞ and σ2

B,∞ can be achieved using Equation (4.2.4).

3. Accounting for the contributions of the kernels obtained in steps 1 and 2, we estimate the
cross feedback components up to a certain lag q, i.e., (ϕi×(τ))i∈{1,2},1≤τ≤q and
(Ki

×(τ1, τ2))i∈{1,2},1≤τ1,τ2≤q,τ1 ̸=τ2 .

4. Once these three steps are completed, the leverage kernels, (Lj
i (τ))i,j∈{1,2},1≤τ≤q, can then

be estimated up to a lag q on the original dataset (r, σ) while removing the contributions of
the quadratic kernels (we refer to Section B.7.7 of Appendix B.7 for further details).

At this stage, it is worth noticing some empirical observations.

First, observing the empirical covariance structures and calibrating the 2D-QGARCH on vari-
ous pairs of assets demonstrated that D×j(τ1, τ2) is mostly null for τ1 ̸= τ2. Notably, the correlation
between the returns of two assets is significant only when computed for returns occurring simulta-
neously; otherwise, it is null. This observation, which justifies further the martingale hypothesis,
leads to Kj

×(τ1, τ2) = 0 when τ1 ̸= τ2. Consequently, only the time-diagonal ϕ× is to be charac-
terised hereafter.

Second, consistently with the empirical findings of [70], the calibration of the off-time-diagonal
of Kj

i reveals that these kernels can then be represented by a rank-one approximation kji , such

that Kj
i (τ1, τ2)1≤τ1,τ2≤q,τ1 ̸=τ2 = kji (τ1)k

j
i (τ2). Indeed, the first eigenvalue of the matrices

(Kj
i (τ1, τ2)1≤τ1,τ2≤q)i,j∈{1,2} with a diagonal of zeros, is larger than the subsequent ones. Besides,

the time-diagonal of these kernels is directly represented by (ϕji (τ))1≤τ≤q.

Remark 4.2.1. Note that the calibration by Maximum Likelihood estimation, whose implemen-
tation is detailed in Appendix B.3, has also been implemented and provides similar results as the
method of moments. Notably, the Maximum Likelihood estimation is particularly efficient when
the GMM outcome is used as an initial guess.

4.2.4 Calibration of the 2D-QGARCH for the pair E-mini vs tbond

Implementing the above procedure on the time series of the E-mini and the tbond resulted in the
kernels presented Figure 4.6. For clearer representation, Figure 4.6b presents the rank-one approx-
imation of the off-time-diagonal of the quadratic kernels (Kj

i )i,j∈{E-mini,tbond}. Let us comment
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on the results.

It appears that the covariance structures forms, C, D, D× and V (see Figures 4.2, 4.5, 4.3
and 4.4, respectively), shape the resulting kernels. Notably, (Cij)i,j∈{E-mini,tbond}’s long-range

correlations are reflected in the kernels (ϕji )i,j∈{E-mini,tbond} shown in Figure 4.6a.
Moreover, the left panels of Figure 4.6c show that the negative exponential shape of the E-mini’s

past returns influence on its volatility and that of the tbond (see the left panels of Figure 4.4) is
well-captured by the kernels (Li

E-mini)i∈{E-mini,tbond}. Additionally, the leverage kernel capturing
the tbond’s returns feedback on its own volatility, depicted in the lower right panel of Figure 4.6c,
exhibits a positive shape that rapidly decays to zero. This observation is consistent with Vtbond’s
shape in Figure 4.4, and with the negative correlation between the E-mini and the tbond returns.
Consistently with the observation of Figure 4.4, the leverage kernel representing the feedback of
the tbond returns on the E-mini volatility mainly consists of noise around zero and, therefore,
is not represented in Figure 4.6. Stronger leverage signal is expected at larger time scale, as the
leverage effect predominantly manifests at the daily scale, as demonstrated by Figure 1.5.

Furthermore, the left panels of Figure 4.6d delineate the profiles of the returns covariance
feedback kernels (ϕj×)j∈{E-mini,tbond} whose values indicate that when the absolute value of the
covariance between the tbond and the E-mini, which is negative for the studied period, be-
comes stronger, in absolute value, it tends to decrease the tbond’s volatility while it increases
the E-mini volatility. Note that, this is not exactly the effect that was previously discussed for
(D×j)j∈{E-mini,tbond} in Figure 4.3. In fact, the kernels (ϕj×)j∈{E-mini,tbond} reveal solely the ef-
fect of past returns covariance, while (D×j)j∈{E-mini,tbond} also reflect feedback effects from the
quadratic kernels.

Finally, the exponential shape of the rank-one approximation of the off-time-diagonal of
(Kj

i )i,j∈{E-mini,tbond} is inherent to the exponential smoothing of the covariance structure D.
The subsequent section presents the calibration of the 2D-QGARCH obtained with this method

on various pairs of assets.
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Figure 4.6: Results of the 2D QGARCH calibration on the pair E-mini vs tbond.

4.3 2D-QGARCH on futures on indices

Following the methodology explained in Sections 4.1 and 4.2, we calibrate 2D-QGARCH on all the
pairs composed by the following futures on indices: E-mini, E-mini-3 (3months futures), futures
contracts on nasdaq, futures contracts on dow jones, futures contracts on crude oil and
tbond. Note that, with the exception of the futures contracts on crude oil and the tbond
which are futures on a commodities-index and futures on a bond-index respectively, all of these
futures contracts are futures on stock-indices.

Figure 4.7 presents the norm-L1 of the resulting kernels and Appendix B.9 presents their full
profiles.

Volatility feedback kernels ϕji

The primary observation from Figure 4.7 concerns the kernels characterising the influence of
past volatility on future volatility, (ϕji )i,j∈{1,2}, shown in Figure 4.7a. The strong diagonal of Fig-
ure 4.7a indicates that most of the system endogeneity originates from the feedback of the asset’s
own volatility on itself. Additionally, Figure 4.7a demonstrates that the system operates near crit-
icality, as the diagonal values are all above 0.6 and the largest eigenvalues of the pariwise matrices
are between 0.73 and 0.90.

Subsidiary observations regarding the other kernels are worth noting.

Quadratic trend feedback kernels kji

The norms of the rank-one approximations kji of the off-time-diagonal of the the quadratic
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Figure 4.7: Norms of the kernels from the calibration of 2D-QGARCHs on pairs of futures on
indices. For the four sub-figures, the x-labels determine the index providing feedback and the
y-labels determine the index receiving the feedback, i.e., for a kernel Kj

i , i is labelled on the x-axis
while j is labelled on the y-axis.

kernels Kj
i , in Figure 4.7b, are consistent with their profiles in Appendix B.9. The strong diag-

onal of Figure 4.7b shows that the trend self-quadratic feedback is quite strong compared to the
other quadratic feedback, meaning that the futures contracts past trends tend to increase their
own volatility. Furthermore, some futures contracts present particular trend quadratic feedback.
Notably, the first column of Figure 4.7b demonstrates that the quadratic feedback of the E-mini
on futures on indices is quite strong compared to the other cross quadratic feedback, meaning
that the S&P500 index past trends predominantly increase the volatility of the other futures on
indices. Similarly, the last column of Figure 4.7b shows that the quadratic feedback of the tbond
on futures on stock-indices is quite strong and consistent across contracts, meaning that the trend
of the futures contracts on the US-10Y-Treasury-bond increases uniformly the volatility of the
futures on stock-indices. It is also interesting to note that futures contracts on the crude oil and
on the 10Y-Treasury bond appear to be the most impacted by these trend quadratic feedback, as
demonstrated by the two last rows of Figure 4.7b.

Leverage feedback kernels Lj
i

It appears that leverage kernels are not always relevant, as evidenced by the many zeros in
Figure 4.7c and exemplified by the pair E-mini vs tbond. When present, except in the case of
the tbond as discussed above, the leverage feedback is negative, consistent with the idea that
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large negative returns trigger increased volatility. Notably, the dow jones futures1 seems to be
particularly affected by the leverage effect from both itself and other futures on indices. We also
point out that the model is calibrated intraday, whereas the leverage effect predominantly appears
on a daily scale.

Returns covariance feedback kernels ϕj×

Figure 4.7d reports on the influence of the past covariance of the returns of the two assets
involved in each pair on the volatility of both assets in the pair.

The pair E-mini vs E-mini-3 exhibits a particularly strong returns covariance feedback com-
pared to the other pairs (see the upper left 2×2 matrix of Figure 4.7d), which signifies that an
increase past covariance between the returns of the E-mini and those of the E-mini-3 tends to
increase the volatility of both futures contracts.

Additionally, the volatility of the futures on bond-indices (tbond) and on commodities-indices
(crude oil) appears to be significantly impacted by the past covariance of their returns with
the returns of futures on stock-indices, as demonstrated by the last two rows of Figure 4.7d.
Specifically, for all the pairs combining the crude oil futures with futures on stock-indices, the
returns covariance feedback kernels, ϕ×, exhibit a negative norm, while the pairs combining a
future on stock-index with the tbond, display a positive returns covariance feedback. During
the studied period, the crude oil futures contracts and futures on stock-indices were positively
correlated while stocks and bonds were negatively correlated. Therefore, the sign of the norm of
the returns covariance feedback kernels (||ϕj×||)j for pairs combining futures on stock-index with
the tbond and for pairs combining futures on stock-index with the crude oil conveys the same
meaning in both cases: when the absolute value of the past returns covariance increases, it tends
to decrease future volatility. Conversely, when the two involved assets, generally in phase (or in
opposite phase in the case of the tbond), decouple, it tends to increase future volatility.
While this effect appear to be symmetric, albeit slightly down, for pairs combining future on
stock-index with the crude oil futures, meaning that an increase past covariance between the
crude oil returns and those of a stock-index tends to decrease the stock-index volatility. It
is, nevertheless, different for pairs combining future on stock-index with the tbond. Notably,
an increase, in absolute value, covariance between the tbond returns and a stock-index returns
tends to increase the stock-index volatility. As for the pair crude oil futures vs tbond itself,
an increase, in absolute value, past returns covariance tends to decrease tbond volatility while it
increases crude oil volatility.

1US index.
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4.4 MQGARCH×factor-model calibration on pairs of type
Index × stocks

To calibrate on a large scope of stocks, while accommodating for the significant feedback effect
from indices, specifically from the S&P500 index, we calibrate the 2D-QGARCH model coupled
with a factor model. The framework is outlined below.

4.4.1 MQGARCH×factor – Model framework

The starting point of this framework is a 1-factor model. Specifically, as described by Equa-
tion (4.4.1), the returns of stock i are decomposed into a sum of their market exposure, represented
by the factor component f0, with an exposure coefficient βi, and a residual component ei,t, which
is idiosyncratic to the stock’s dynamics.

rit = βif0,t + ei,t. (4.4.1)

Empirically, f0 represents the market mode and is directly sourced from the E-mini returns
while (βi)i is estimated with the correlations between the returns of stock i and f0.

The particularity of such framework, and our main interest, lies in the dynamics of f0 and
(ei)i. Specifically, we consider here that f0 dynamics are those of a 1D-QGARCH, while (ei)i
follow a 2D-QGARCH model with self-feedback and market feedback to account for the empirical
observations that the stock idiosyncratic dynamics depends on those of the market [57, 58, 59].

Thus, the volatility of f0 is driven by

σ2
f0,t = σ2

f0,∞ +

+∞∑

k=1

L0(k)f0,t−k +

+∞∑

k1=1
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K0(k1, k2)f0,t−k1
f0,t−k2

,

while the volatility dynamics of (ei)i are characterised by

σ2
i,t =σ

2
i,∞ +

+∞∑

k=1

Li(k)ei,t−k +

+∞∑

k=1
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+
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k1=1
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k2=1
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×(k1, k2)f0,t−k1

f0,t−k2
.

(4.4.2)

Scrutinizing this later expression, we see that the idiosyncratic term’s volatility, (σi,t)i,t, is influ-
enced by the past returns of both the factor and the residual, characterised by the leverage kernels
L× and Li respectively, and by the past trends of both the factor and the residual, characterised
by the quadratic kernels K× and Ki respectively. As before, we can decompose the quadratic
kernels to highlight the diagonal feedback (feedback of the activity), which primarily characterizes
the endogeneity of the system, and the off-diagonal feedback (feedback of the trends) as follows:
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(4.4.3)

Note that in this framework, relying on empirical observations, cross-trend feedback are no
longer present.

The goal of this section is to investigate the values of (σi,∞)i and the features of the vari-
ous feedback mechanisms on the residual’s future activity for US stocks. Notably, we want to
characterise the kernels of the residual and index leverage feedback ((Li)i and (Li

×)i), the kernels
weighting the influence of the residual and index past volatility ((ϕi)i and (ϕi×)i) and the kernels
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outlining the influence of the past trends of the residual and of the index (the off-diagonal of (Ki)i
and (Ki

×)i).
The subsequent section is dedicated to presenting the data employed in this study, followed by

a discussion of the results obtained.

4.4.2 Data

Our initial dataset contains 1-minute returns (ri)i=1,...,317 of 317 US stocks spanning from 2013
to 2023 and the 1-minute E-mini returns, f0, for the same period. We consider only stocks which
belonged to the S&P500 index for the whole studied period.

This initial dataset is then used to deduce the time series (ei)i according to Equation (4.4.1)
and taking, for all i, βi as the covariance coefficients between the returns of stock i and the returns
of the E-mini. The squared volatility time series, σ2

i,t and σ2
f0,t

, are then approximated by the

squared 1-minute returns, e2i,t and f
2
0,t respectively.

At this stage, we thus end up with two time series for the E-mini and for each stock of our
317 US stocks sample: one characterising the returns and the second one representing the squared
volatility. These times series are then processed as before by the steps described in Section 4.1.2.

The method of moments is then used to calibrate the 1D-QGARCH on the E-mini, resulting
in the values of σ2

f0,∞, (L0(k))1≤k≤q and (K0(k1, k2))1≤k1,k2≤q, where q is the lag after which the
feedback is considered negligible.

Finally, the calibration of the 2D-QGARCH on the 317 stocks residuals, adapting the method
described in Section 4.2 and Appendix B.7, is performed and the results are presented in the
subsequent section.

4.4.3 MQGARCH×factor – Calibration Results

The kernels L0, ϕ0 and k0, where ||ϕ0|| and k0 are the time-diagonal and the rank-one approxima-
tion of the off-time-diagonal of K0 respectively, result from the calibration of a 1D-QGARCH on
the E-mini, and are therefore identical to those shown in Figure 4.6.

Figure 4.8 presents the average profiles of the quadratic kernels shaping the volatility of the
stock idiosyncratic dynamics, being the volatility feedback kernels (ϕi)i and (ϕi×)i, and the rank-
one approximation of the off-time-diagonal of the feedback kernels (Ki)i and (Ki

×)i.
Interestingly, on average, the norm of the residual’s volatility feedback kernel is close to one

(⟨||ϕi||⟩i = 0.94), supporting the aforementioned results that suggest endogeneity primarily stems
from the self-volatility feedback. Additionally, the profiles of the kernels characterising the residual
volatility feedback on itself exhibit a long-range scale, as demonstrated by the log-log scale of the
left panel of Figure 4.8, meaning that the idiosyncratic activity that occurred early in the day,
continue to influence the idiosyncratic component’s volatility throughout the entire day. Besides,
these profiles are quite uniform across our stock sample as delineated by the thin grey area on the
left panel of Figure 4.8.

Moreover, the average endogeneity arising from the market contribution is not negligible, reach-
ing up to ||ϕi×||max = 0.12, with values hovering around ⟨||ϕi×||⟩i = 0.02. Notably, the past volatility
of the market appears to predominantly influence the residual volatility of stocks in the Financials,
Real Estate, and Industrials sectors. Additionally, the log-log scale of the second panel from the
left of Figure 4.8 seems to exhibit long-range index influence on some stocks idiosyncratic activity.

As previously found, the off-time-diagonal of the trend feedback kernels, characterised by their
rank-one approximation, have lower values than the diagonal feedback kernels with a norm aver-
aging at ⟨||k2i ||⟩i = 0.012, which is consistent with the results of the calibration of the QHawkes
on stocks in [70]. The average profile of kis does not reflect the differences between stocks as
demonstrated by the large grey area in the second panel from the right of Figure 4.8. Specifically,
we find that for all stocks, the rank-one approximation ki exhibits a decaying exponential shape,
whose characteristic time and amplitude depend on the specific stock. Notably, the higher the
residual activity, the longer the range of the residual trend feedback. Additionally, the Real Estate
and Utilities sectors, which show the highest average levels of idiosyncratic activity, consistently
present trend feedback kernels with the highest norms and longer ranges on average, specifically,
⟨||k2i ||⟩i∈real estate = 0.017 and ⟨||k2i ||⟩i∈utilities = 0.018. The kernels characterising the market’s
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past trends contribution to future residual’s volatility exhibit smaller values, with a norm averag-
ing ⟨||(ki×)2||⟩i = 4.7 10−4, but they still demonstrate a discernible signal, as shown by the profile
in the right panel of Figure 4.8. Once again, the Real Estate and Utilities sectors stand out as
having the most significant trend index feedback.
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Figure 4.8: Average profiles of kernels for the dynamics of the residuals ei. The solid black line
represents the average profile and the grey area indicates the range of one standard deviation across
the stocks.
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Furthermore, we found highly disparate results across our sam-
ple of stocks for the self-leverage kernels, which characterise the
influence of past residual returns on the residual’s future volatility.
In fact, some stocks demonstrate a positive leverage feedback that
is difficult to interpret. These results are somewhat expected, as
leverage effect predominantly manifests at the daily scale.
Nevertheless, the leverage feedback of the index on the volatility of
the idiosyncratic term of stocks is quite stable across stocks and its
average profile is represented in Figure 4.9. The negative exponen-
tial shape of the index leverage feedback on the stock idiosyncratic
component’s volatility indicates that E-mini negative past returns
increase stock residual volatility. This result appears to hold for
most the stocks of our sample as demonstrated by the thin grey area of Figure 4.9.

Finally, the endogeneity ratios of these 2D-QGARCH×factor systems2 are very close to 1,
with all values exceeding 0.955 and an average of 0.96, indicating that the systems operate
near criticality. Correspondingly the baseline values of the stock idiosyncratic activity average
at ⟨σ2

i,∞⟩i = 0.04.
To recap, this study yields two main results. First, most of the system’s endogeneity stems

from the long-range feedback of the idiosyncratic term’s volatility, consistent with previous findings
on the calibration of futures on indices; Second, the past volatility and negative returns of the
index impact the stock’s residual activity, supporting empirical findings that stock’s idiosyncratic
dynamics depend on those of the market [57, 58, 59].

A natural extension of this framework is to investigate a factor model with more than one factor,
thereby characterising the influence of the index not only on the stock’s idiosyncratic component
but also on the various industrial sectors, whose dynamics would be accounted for by the additional
factors.

Conclusion

Let us summarise the findings of this chapter.
Building upon the work of Blanc et al. [70] and the theoretical work presented in Chapter 3,

we presented a non-parametric calibration method to characterise the feedback mechanisms that
influence the dynamics of future volatility. To overcome the challenges associated with estimating
an underlying MQHawkes process from aggregated data, the micro-scale QHawkes framework is
approximated by a discrete QGARCH framework. The key to this transformation is assimilating
the Hawkes intensity as the squared volatility divided by a time constant characteristic of the
discretisation time scale.

We introduced the key ingredients and steps required to calibrate the 2D-MQGARCH frame-
work using the method of moments, employing the pair E-mini vs tbond as a pedagogical example.

2The endogeneity ratio of the 2D-QGARCH×factor model for stock i is the largest eigenvalue of

(
||ϕ0|| 0
||ϕi

×|| ||ϕi||

)
,

and is then directly max(||ϕ0||, ||ϕi||).
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To recap, the primarily idea of the calibration is to build a linear system of equations using the
covariance structures, which are directly observable in real data, to deduce the kernel functions.

Utilising this calibration method on pairs of futures on indices revealed that the strongest
feedback effect on future volatility originates from the past volatility itself. Moreover, this analysis
demonstrated that the past trends and returns of the E-mini significantly contribute to the activity
of other futures contracts, compared to other cross-feedback effects.

Additionally, to investigate the feedback mechanisms on stock volatility while distinguishing
market dynamics from stock idiosyncratic dynamics, we combined the 2D-QGARCH framework
with a 1-factor model. Thus, the studied feedback mechanisms directly report on the influence of
the past events on the stock idiosyncratic activity. Calibrating the 2D-QGARCH×1-factor model
on 317 US stocks, over a period spanning from 2013 to 2023, and sourcing the factor from the
E-mini, proved to be quite stable across stocks. Notably, this calibration demonstrated that while
most of the system endogeneity stems from the influence of past residual activity on itself, the past
returns and past volatility of the factor still impact the future volatility of the stock idiosyncratic
component. In the present analysis, we noted some disparities among industrial sectors, and it
would be interesting to further develop a MQGARCH×multi-factor framework to investigate the
feedback loops between the market, the industrial sectors and the stock idiosyncratic component.
We leave such study for future research.

Finally, it would be interesting to undertake a more detailed study of the calibration method
to find an implementation that would allow the underlying QHawkes process at the microstructure
level to be reconstructed from the aggregated data.

Take Home Message

• Approximating the (M)QHawkes process with the (M)QGARCH model provides a
framework compatible with aggregated data and less prone to the microstructural
noise of financial time series.

• Using a non-parametric method, such as the method of moments, to calibrate the
model enables to remain agnostic on the kernel’s shape.

• The method of moments relies on a linear system of equations, built from covariance
structures that are empirically observable, and yields the kernel functions up to a fixed
lag q.

• The calibration consistently demonstrates that most of the endogeneity stems from
the asset’s own volatility.

• Empirical endogeneity ratios exhibit values close to 1, suggesting that market activity
operates near criticality.

• The past trends and negative past returns of the E-mini, futures contracts on the
S&P500 index, significantly contribute to the increased activity of other assets, in-
cluding both stocks and futures on indices.

• Coupling the MQGARCH with a factor model representation enables the study of the
feedback mechanisms influencing the stock volatility while removing most of the mar-
ket dynamics. Investigating the feedback kernels in this 2D-QGARCH×factor model
framework demonstrated that, although most of the index dynamics were filtered out
from the stock idiosyncratic dynamics, the index’s negative past returns and past
volatility still tend to increase the volatility of the stock idiosyncratic component.
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Chapter 5

Riding Wavelets: A Method to
Discover New Classes of Price
Jumps

It is as if price changes themselves are the main sources of news

J.-P Bouchaud, J. Bonart, J. Donier, M. Gould, Trades, Quotes and Prices

This chapter is largely based on [4], written in collaboration with Rudy Morel, Michael Benza-
quen and Jean-Philippe Bouchaud.

Introduction

Extreme events and cascades of events are widespread occurrences in both natural and social
systems [91]. Examples include earthquakes, volcanic eruptions, hurricanes, epileptic crises [16, 17],
epidemic spread, financial crashes [9, 10, 87], economic crises [92, 93], book sales shocks [20, 21],
riot propagation [18, 19] or failures in socio-technical systems [94]. Understanding the origin of
such events is essential for forecasting and possibly stabilizing their dynamics.

A widely studied question is the reflexive nature of those shocks – the concept of financial
market reflexivity was introduced by Soros in [8], to describe the idea that price dynamics are
mostly endogenous and arise from internal feedback mechanisms, as was first surmised by Cutler,
Poterba and Summers in 1988 [5] (see also [95]). Extreme events, in particular, are considered to be
endogenous when they arise from feedback mechanisms within the system’s structure [96, 97, 91].
Quantifying the extent of reflexivity in a complex system and distinguishing events caused by
external shocks from those provoked endogenously, and more generally identifying different classes
of events, are crucial questions.

−60 0 60
t (min)

−60 0 60
t (min)

Figure 5.1: Examples of different asymmetry pro-
files in price jumps. Plain black lines are power
law fits from [6] described in Equation (5.1.1).

Prior research has proposed to differentiate
between endogenous and exogenous dynamics
by analyzing the profile of activity around the
shock [98, 20, 21, 22], in particular in the con-
text of financial markets [99, 6]. It has been ob-
served that endogenous shocks are preceded by
a growth phase mirroring the post event power-
law relaxation, in contrast to exogenous shocks
that are strongly asymmetric, as Figure 5.1 ex-
emplifies. The universality of this result is quite
intriguing as they have been observed in vari-
ous contexts: intraday book sales on Amazon
[20, 21], daily views of YouTube videos [22] and
intraday financial market volatility and price jumps [99, 6]. Besides, Wu et al. [100] differenti-
ate exogenous and endogenous bursts of comment posting on social media using the analysis of
collective emotion dynamics and time-series distributions of comment arrivals.
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Figure 5.2: Visualization of our co-jumps dataset (295 US stocks, 8 years) (as in [54, 55, 56]). The
horizontal axis corresponds to the day of the co-jump and the vertical axis gives the time of day.
The size and color of the circle encode the number of stocks jumping simultaneously (in the same
minute). Inset: number of jumps on a rolling window of 30 days.

Furthermore, in complex systems, occurrences can propagate along two directions: temporally
and towards the other elements of the system. Financial markets offer an attractive setting for
studying multi-dimensional shocks due to the abundance of available data, the frequent occurrence
of financial shocks and price jumps and the inter-connectivity of markets. In fact, a recent study
by Lillo et al. [54, 55] demonstrates the frequent occurrence of “co-jumps”, defined as simultaneous
jumps of multiple stocks (as illustrated in Figure 5.2) and establishes a correlation between their
prevalence and the inter-connectivity of different markets.

In this paper, we address the problem of classifying financial price jumps (and co-jumps), in
particular measuring their reflexivity, by analyzing their time-series using wavelets. We introduce
an unsupervised classification based on an embedding Φ(x) of each jump time-series of returns
x(t) into a low dimensional-space more appropriate to clustering. Such embedding, composed of
wavelet scattering coefficients (see [101] and below), relies on wavelet coefficients Wx(0) of the
time-series at the time of the jump t = 0 and wavelet coefficients of volatility W |Wx|(0). Such
coefficients are particularly suitable to characterize (among other properties) the asymmetry of
time-series at multiple scales.

Through a Principal Component Analysis we retrieve the fact that time-asymmetry of volatility
indeed plays an important role for classification. However, our analysis identifies two further crucial
features for characterizing the nature of price jumps: mean-reversion and trend. Specifically, mean-
reverting jumps are such that pre-jump and post-jump returns are of opposite signs, whereas trend-
aligned and trend-anti-aligned jumps occur on a sequence of returns of same sign before and after
the jump, but either aligned with the jump itself, or of opposite sign.

For each jump, our analysis provides a measure of the volatility asymmetry, the mean-reversion
and the trend. We propose a visualization of our dataset of price jumps in the form of two
2D projections. For both projections, one direction characterizes price jumps based on volatility
asymmetry, or “reflexivity level”. The second direction characterizes jumps either in terms of
mean-reversion, or in terms of alignement with the local trend behavior. One can then measure
the endogeneity of price co-jumps, revealing that many jumps/co-jumps are not related to news and
arise only due to endogenous dynamics. This is consistent with the observed power-law distribution
of the number of firms affected by a co-jump, indeed predicted by a simple branching (or contagion)
process.
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(a) Synthetic examples
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(b) Observed examples

Figure 5.3: Classes of price jumps: synthetic (top) and observed (bottom) examples. Each column
shows an example of a class of jumps (price and log-return time-series). The three first classes (an-
ticipatory, endogenous, exogenous) are separated by measuring volatility asymmetry. The three last
classes (mean-reverting, trend-anti-aligned, trend-aligned) are identified by analyzing the signed
returns around the jump.

Surprisingly, we uncover that a significant number of large co-jumps (affecting a large number of
stocks), which might have been assumed to be caused by a common factor and thus share analogous
dynamics, actually have uncorrelated returns both pre- and post-jump. This again suggests that
such jumps are mostly of endogenous origin.

The outline of our paper is as follows. Section 5.1 describes our dataset of price jumps resulting
from Marcaccioli et al. [6], reviews their supervised classification method based on news labels, and
investigates its limitation. Section 5.2 presents our unsupervised classification of univariate jump
time-series based on wavelet coefficients. Such classification identifies three main directions in the
dataset, the time-asymmetry, the mean-reversion and the trend. Finally, section 5.3 is devoted to
the characterization of the endogeneity of co-jumps.

5.1 Supervised classification through reflexivity

Prior work has identified reflexivity as an important feature for the classification of jumps in
financial markets [6]. Given the time-series of a jump, the main challenge is to efficiently measure
such reflexivity.

One can for example look at contemporaneous news labels to determine whether a jump is
exogenous. Indeed, news labels may serve as ground truth to learn a classification model on the
activity profile around a shock. To exemplify, Figure 5.1, from the work of Marcaccioli et al. [6],
illustrates the time asymmetry difference between endogenous and exogenous jumps.

In this section, we first introduce the jump detection method, which allows us to build our
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dataset. Then, we present the supervised classification based on news labels introduced in [6] and
show its limitations. This will motivate an alternative approach in section 5.2.

5.1.1 Jump detection

We refer to [99, 6, 102] for a detailed description of the method to detect price jumps. The
detection relies on an estimator of “jump-score” x(t) = r(t)/(f(t)σ(t)), which is the ratio of
1-minute returns time-series r(t) and de-seasonalized local volatility f(t)σ(t) where σ(t) is an
estimator of local volatility and f(t) an estimator of the intraday periodicity (the so-called “U-
shape”). Throughout this paper, our statistical analyses will focus on x(t), or on its “jump-aligned”
version x(t) := x(t)sign(x(0)), where x(0) is the return corresponding to the jump. In other words,
x(t) is the rescaled return profile in the direction of the jump.

Under the null hypothesis of Gaussian residuals (no jump hypothesis) |x(t)| converges towards
a Gumbel distribution. A statistical test then allows us to reject the null hypothesis. The resulting
method comes down to detecting price movements where the z-score deviates by more than 4-sigma
from their average value (here equal to zero).

The jump detection is performed on time-series describing individual stocks dynamics but also
on averaged time-series across stocks belonging to the same sector. Hence, we obtain price jumps
of individual stocks but also sectoral price jumps.

Similarly to Marcaccioli et al. [6], we find that price jumps are clustered in time. We assume
that jumps taking place within the same “time-cluster” subsequent to an initial jump are merely
replicas of the initial jump. They are likely to be either of the same dynamics (as they occurred
for the same reason) or endogenously induced by the first jump of the cluster. We thus discard all
the jumps that follows an initial jump. This leads to the same detection method as in [6] which
allows to retrieve an exponential distribution for the inter time between two consecutive initial
jumps (see part II.D of [6]).

From such a collection of price jumps, we can then extract “co-jumps”. A co-jump is simply
defined as a set of jumps occurring in the same minute. Here we avoid tackling the question of
lagged jumps and consider only simultaneous jumps (up to the minute resolution).

The price behavior before and after a jump can be used to classify the jump. In light of
Marcaccioli et al.’s findings [6], which indicate that volatility can begin to rise up to 75 minutes
prior to the jump, we adopt a time window of 2 hours centered around the jump occurrence at
time t = 0. Consequently, for each jump we extract a time-series of 119 rescaled returns x(t),
corresponding to 1 hour preceding the jump and 1 hour following the jump.

We implement such detection on 301 US stocks from January 2015 to December 2022, consid-
ering only what happened between 10:30 and 15:00 in order to avoid special jumps due to the high
activity at the beginning (due to people reacting to the overnight news/movement) and at the end
of the day (due to market closing). In order to discard major market shocks, we also remove all
co-jumps involving more than 250 stocks, and days on which the FED made an announcement (1
per month1). We end up with 37 452 jumps, of which 16 127 belong to one of the 2534 co-jumps,
and the remainder (21 325) are single jumps.

5.1.2 Classification based on news labels

In an attempt to characterize the reflexivity of a jump, one can gather the date and time of news
associated to each stocks we consider2 and of the main US announcements3. According to such
news labels, we might label as “news-related” a jump which happened within 3 minutes of a news
and label as “non-news-related” any other jump. That would lead to a puny ≈ 4.3% of the jumps
being classified as “news-related” and is illustrated in Figure 1. Hence, as previously argued in
[99, 54, 6], it appears that individual price jumps and more surprisingly co-jumps are often not
related to news announcements.

However, it is clear that some news may affect a whole economic sector and lead to a co-jump
without appearing in our considered set of news. An example would be an OPEC announcement
that affects oil prices and in turn ricochets onto stocks prices, without any of them explicitly
showing up in the news feed. Another vivid example is the impeachment of the US president D.

1see FOMC Calendars
2source: Bloomberg
3source: economic-calendar
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Trump in September 20194. Our “news-related” label is blind to such events. One objective of our
study will be to propose a possible classification of co-jumps that does not rely on the news feed,
see section 5.3.

5.1.3 Classification based on the volatility profile

In [6], Marcaccioli et al. built a supervised classification of univariate jumps into exogenous and en-
dogenous classes. The classification relies on parameters derived from fitting |x(t)| to the following
functional form [21]:

|x(t)| = 1t<tc

N<

|t− tc|p<
+ 1t>tc

N>

|t− tc|p>
+ d (5.1.1)

and on a measure of the asymmetry of the jump, defined as:

Ajump =
A> −A<

A> + A<
(5.1.2)

where A</> :=
∑

t<0/t>0 |x(t)−mint<0/t>0(x(t))|. Such an indicator means that when the activity

is stronger before (resp. after) the jump, one has Ajump < 0 (resp. Ajump > 0). The classification is
then obtained as a logistic regression of the news label (endogenous/exogenous) by the parameters
(Ajump, p<, p>, N<, N>, tc). Exogenous jumps appear as strongly asymmetric jumps with little
activity ahead of the jump, i.e. Ajump > 0, whereas self-exciting endogenous jumps are much more
symmetric with Ajump ≈ 0 [6].

The above approach, based on news labels, presents several limitations:

• The classification partly relies on the goodness of fit of a power-law function (5.1.1), which
is not assured. As a consequence, Marccacioli et al. [6] restrict their study to only ∼ 5000
jumps out of the ∼ 37000 in the dataset, for which such a fit is acceptable.

• As discussed above, news labels might miss some relevant economic news, so the resulting
price jumps might be wrongly labeled as “non news-related”.

• Exogenous jumps could have two types of dynamics: if the exogenous shock is a complete
surprise, there should indeed be no activity before the jump. However, if the announcement
is planned or if there was some news leakage, there might be a growth of activity before the
jump. In this case, one would wrongly classify a news-related jump as endogenous based on
its approximately symmetric activity profile.

In light of such limitations and in order to uncover new classes of jumps, beyond the sole study of
their reflexivity, we opt in the rest of the paper for an unsupervised classification which significantly
improves upon the method of [6] while still leaving open some ambiguities, as we will see below.

In the following, although news labels do not reveal the whole truth about the reflexive nature
of a jump, we will still call “news-related” jumps that occurred within 3 minutes of a news present
in our database and “non news-related” all the others.

5.2 Classification of single jumps using wavelets

The rescaled return time-series around a jump x(t) ∈ RT is inherently noisy. Relevant features
Φ(x) ∈ Rq must be extracted to effectively distinguish different classes of jumps. Such features
should be selected carefully, in particular, they should include time-asymmetry measures. Indeed,
authors in [98, 20, 21, 22, 6] show that the jumps mostly differ in their time-asymmetry: endogenous
jumps tend to be more symmetric around the jump than exogenous ones. But what are the other
possibly relevant features? In this section, we embrace a signal processing approach to discover
important features of univariate jumps and unveil new classes of jumps that are prevalent in the
data.

4For example, the largest co-jump is related to Nancy Pelosi announcement of a formal impeachment inquiry
into US President Donald Trump. On 2019-09-24, at 14:13, 248 stocks saw their price jump in the same minute.
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5.2.1 Some intuition first

Before delving into the technical formulation, we aim to provide some intuition on why wavelets
are particularly well-suited for capturing the asymmetry of a signal. Figure 5.4 offers a simplified
representation of the computation of wavelet coefficients, with the imaginary part of the Battle-
Lemarié wavelet (in blue), for two types of jumps (whose volatility profiles are presented in black):
a symmetric jump (left) and an asymmetric jump (right).

The computation of a wavelet coefficient relies on the convolution between the jump and the
wavelet. Specifically, the wavelet coefficients at time t = 0 are computed by multiplying the jump
time-series and the wavelet centered at t = 0 and by summing the result.

Given the form of the Battle-Lemarié wavelet, the areas which contribute the most to the
integration are those around t = 0. Focusing on these areas, Figure 5.4 highlights the positive
contributions in green and the negative contributions in red. For a symmetric jump, the wavelet
coefficient will be zero, as the positive and negative contributions cancel each other out. In con-
trast, for an asymmetric jump, the positive contributions will significantly outweigh the negative
contributions, resulting in a positive wavelet coefficient.

t t

Figure 5.4: Illustration of reflexivity score computed with wavelets. The black plain lines represent
the volatility profile of a jump (symmetric in the left figure and asymmetric in the right figure).
The blue line is the imaginary Battle-Lemarié wavelet (see Figure 5.5). The green (red) hashed
areas represent the positive (negative) contributions to the convolution between the wavelet and
the jump at time t = 0. Adding the red and green areas shows that the imaginary part of the
wavelet coefficient detects time-asymmetry around t = 0.

We now give a formal presentation of the concept of wavelet coefficients.

5.2.2 Wavelet and scattering coefficients

Wavelet filters have been used to analyze and classify transient events, see e.g. [103, 104, 105, 106].

A complex wavelet filter ψ(t) is a filter whose Fourier transform ψ̂(ω) =
∫
ψ(t) e−iωt dt, is real. It

is localized both in time and Fourier domains, see Figure 5.5.
It has a fast decay away from t = 0 and a zero-average

∫
ψ(t) dt = 0. We write ψ(t) =

Reψ(t)+i Imψ(t) where Reψ(t) and Imψ(t) are its real and imaginary parts. They are respectively
even and odd functions:

Reψ(−t) = Reψ(t) and Imψ(−t) = −Imψ(t). (5.2.1)

The wavelet coefficients Wjx(t) compute the variations of the signal x around t at scale 2j , for
j = 1, . . . , J with

Wjx(t) := x ⋆ ψj(t) where ψj(t) = ψ(2−jt). (5.2.2)

where ⋆ denotes the convolution: x ⋆ y(t) :=
∫
x(t− u)y(−u) du.

The sign of the jump sign(x(0)) and its amplitude |x(0)| vary, but they are not necessarily
informative for their classification. To remove this source of variability we consider the jump-
aligned time-series

x(t) = sign(x(0))x(t) (5.2.3)

and we further normalize the wavelet coefficients (5.2.2) by the corresponding “volatility” σj of
the full time-series, defined as σ2

j =
〈
|x ⋆ ψj(t)|2

〉
t
, where ⟨·⟩t denotes the empirical average over

time t.
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Figure 5.5: Filter used to analyze jump time-series. Left: complex Battle-Lemarié wavelet ψ(t) as

a function of t. Right: Fourier transform ψ̂(ω) as a function of ω.

From Equation (5.2.1), one can see that if x is an even signal i.e. x(−t) = x(t) then ImWx(t, j) ≡
0. This property is key to detect asymmetry of a signal at different scales.

Volatility information can be extracted by taking a modulus. The time-series |Wjx(t)| provides
the volatility of the signal at scale 2j . This volatility can be asymmetrical in t = 0. In order to
quantify it, we again consider the wavelet coefficients at t = 0

Wj2 |Wj1x|(t) := |x ⋆ ψj1 | ⋆ ψj2(t). (5.2.4)

Our representation for univariate jumps in this paper is thus composed of wavelet coefficients
(5.2.2) at t = 0 and scattering coefficients (5.2.4) at t = 0

Φ(x) =

(
Wjx(0) , Wj2 |Wj1x|(0)

)
. (5.2.5)

For a time-series of size T , it contains less than (log2 T )
2/2 coefficients which represents few

coefficients. In our case, T = 119 and we chose J = 6, which yields 42 coefficients (21 real parts
and 21 imaginary parts). The normalized scattering features Φ(x) (Equation (5.2.5)) are invariant
to sign change and to dilation

Φ(−x) = Φ(x) and Φ(λx) = Φ(x).

which means we do not aim at discriminating jumps neither based on their sign nor on their
amplitude.

In order to classify price jumps, we are interested in Principal Component directions of the
42-dimensional vector Φ(x) in the dataset. This method, called kernel PCA [107], relies on the
linear separation power of our scattering coefficients Φ(x). We considered several directions, i.e.
combinations of scattering coefficients, and found three salient features: the time-asymmetry of
the volatility, the mean-reversion and the trend behavior of the price around the jump.

5.2.3 First Direction D1: Volatility asymmetry

Three types of jumps

The first PCA direction (called D1 henceforth) is a linear combination of the 15 coefficients
ImWj2 |Wj1x|(0) in Equation (5.2.5), which characterizes time-asymmetry of the volatility profile
at multiple scales 2j2 , confirming previous analysis that postulated this asymmetry to be relevant.
Such a linear combination allows one to embed each jump time-series into a one dimensional space,
which quantifies the reflexive nature of each jump. In fact, Figures 5.6 and 5.13 display average
profiles |x(t)| along the “reflexive direction” D1. One can visually verify that such a representation
discriminates jumps according to the asymmetry of their profiles as measured by Ajump (Equa-
tion (5.1.2)): the D1 direction continuously separates asymmetric jumps with dominant activity
before the shock from asymmetric jumps with dominant activity after the shock; see Figs. 5.6,
5.13 and 5.17.

From this analysis, three types of jumps can thus be defined:

• Asymmetric jumps with dominant activity before the shock. This type of jumps, which we
call “anticipatory”, was quite unexpected and was not discussed in [6].
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Figure 5.6: Average absolute profiles |x(t)| of jumps along direction D1 (sliced into five bins,
delimited by quantiles 0.1, 0.25, 0.35, 0.9). From left to right: anticipatory jumps, endogenous
jumps and exogenous jumps.

• Symmetric jumps, with an pre-shock excitation activity that approximately mirrors the post-
shock relaxation activity. These were called “endogenous jumps” in [6]: increased activity
before the jump is in fact responsible for the jump itself, with some decay of activity there-
after. The symmetry of the profile for endogenous jumps is in fact predicted by a Hawkes
process description of the self-exciting mechanism, see [21, 6].

• Asymmetric jumps with dominant activity after the shock. These were called “exogenous
jumps” in [6]: the market reacts after unexpected news, but not before.

In order to validate the above analysis, we created synthetic time-series with volatility profiles of
varying time-asymmetry and applied our classification method. Results of this benchmark case are
shown in Appendix C.1, and fully confirm that the D1 direction indeed separates jumps according
to their asymmetry Ajump.

Discussion

Using the above classification, we find that a large proportion (∼ 50%) of our sample exhibit posi-
tive asymmetry and should naively be considered as exogenous jumps. This seems in contradiction
with the results of [6], where exogenous jumps were found to be a minority, and with a fraction
of jumps associated to a news found to be 4.3%, as already quoted above. Several arguments can
explain such a difference.

• The main one is the fact that our analysis includes all jumps involved in a sector jump
(corresponding to 24% of all jumps) whereas those jumps were discarded in [6]. Sector jumps
are such that many stocks of the same industry jump simultaneously. While some of these
jumps are likely due to major exogenous shocks – like macro-economic announcements –
that affect a whole economic sector or even the whole market, we argue in section 5.3 that
these jumps can actually be induced by a jump of one particular stock of the sector, which
is deemed as “news” in and by itself. In any case, taking these sector jumps into account
mechanically increases the count of jumps with a positive D1 score. In the present study, we
chose to keep these co-jumps and study their statistics, to which we will specifically turn in
section 5.3.

• As already noted above, the classification of single jump profiles in [6] relies on the goodness
of fit of power law function (5.1.1), and as such, was only conducted on a smaller sample for
which such a fit is acceptable (∼ 5000 jumps out of ∼ 37000 jumps).

The appearance of “anticipatory jumps”, where the asymmetry parameter Ajump (see Equa-
tion (5.1.2)) is negative, came somewhat as a surprise to us. One possible interpretation is that
these jumps are in fact also endogenous, with a pre-shock self-exciting dynamics and very little
“after-shocks”. Indeed, if such jumps are immediately deemed endogenous by the market, it might
make sense that activity quickly reverts back to normal. This would simply mean that the Hawkes
framework predicting a symmetric profile is not adapted to describe all endogenous shocks.

Another possibility is that such events correspond to news/exogenous events whose timing is
expected by the market, which leads to increased activity before the actual release time. But if
the actual news content turns out to be insignificant, it would again make sense that the market
activity quickly wanes off. We in fact find a very small fraction of news-related jumps with D1 < 0,
see in Figure 5.10, bottom graph.
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5.2.4 Second Direction D2: Mean-Reversion

Capturing Mean-Reversion

We observed that coefficients ImWj1x(0) (5.2.5) for fine scales, i.e. small j1, are consistently chosen
by the leading PCA directions. They amount to multiplying the jump-aligned time-series x(t) by
the imaginary filter Imψ1(t) (see Figure 5.5) and averaging over t. Such coefficients capture the
asymmetry of the return profile shortly before and shortly after the jump, and define what we will
call below direction D2.

A typical time-series that maximizes this coefficient is thus characterized by a positive value of
x(−1) and a negative value of x(1). In other words, large positive values along the D2 coordinate
capture mean-reverting return profiles, i.e. positive (resp. negative) returns before a positive (resp.
negative) jump that become negative (resp. positive) immediately after the jump.

Large negative values along the D2 coordinate, on the other hand, also capture mean-reverting
return profiles, but in this case mean-reversion starts with (or is triggered by?) the jump itself,
and not after the jump.
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Figure 5.7: Handcrafted filters for measuring the mean-reversion (filter ψMR) or the trend (filter
ψTR) character of a jump. Average profiles along resulting mean-reversion and trend directions
are shown in Figure 5.8 and Figure 5.14.

Now that we identified a potentially discriminating direction using PCA, we transition to a
simpler filter tailored to capture short time mean-reversion, depicted in Figure 5.7. This filter is
then applied to the jump-aligned time-series x(t)

D̃2(x) := x ⋆ ψMR(0), (5.2.6)

where the tilde indicates that we have simplified the true second PCA direction and only retained
the component spanned by ψMR.
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Figure 5.8: Mean-reverting profiles. Average jump-aligned return profiles x(t) = sign(x(0))x(t)

along the mean-reverting direction D̃2 (sliced into four bins, delimited by quantiles 0.1, 0.5 & 0.9).
Left-most graph: price jumps mean-revert on previous trends. Right-most graph: prices mean-
revert after the jump.

In order to illustrate the discriminating power of such coefficient, Figure 5.8 displays the average
profiles of x(t) along the D̃2 axis. One can see that jumps with a high coefficient D̃2 (rightmost
graph) are characterized by a strong pre-jump trend aligned with the jump, followed by a change
of sign in the next minute after the jump.

The leftmost graph, on the other hand, shows relatively mild pre-jump trends opposite to the
jump, followed by stronger trends in the direction of the jump, not very different from the cases
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corresponding to quantiles between 0.1 and 0.5. In our dataset, 60% of the jumps have a positive
mean-reversion score D2 > 0; we refer to Figure 5.15 for the full distribution of D2.

−60 0 60
t (min)

(a) Jump-aligned
return profile
x(t) = sign(x(0))x(t). (b) Respective LOB illustration.

Figure 5.9: LOB illustration of the jump which occurred on stock HCA (Hospital Corporation of
America), on the 2017-3-21 at 11h37. mean-reverting score: 2.61.

To confirm this observation and ascertain that it is not attributable to spurious effects in
the data processing, we looked deeper into these jumps. To get a better understanding of the
mechanisms at play, we investigated what happens at tick-by-tick scale in the Limit Order Book.
Figures 5.9 shows an illustrative example, where the right figure depicts the profile of the jump,
and the left one the respective Limit Order Book illustration (for the left plot, each colored square
represents an order in the LOB whose price is referred on the y-axis. The x-axis describes the
time. Red is for the ask side, blue for the bid side. The color bar depicts the size of the order and
is in log scale). We again observe, at a different time resolution, a strong mean-reversion behavior
induced by order placement.

Note finally that mean-reversion is characterized by a V-shape price profile (see Figure 5.9),
which has recently been used as a criterion to detect price jumps in time-series [24].

A 2D representation of jumps

Based on the first volatility asymmetry direction D1 and the mean-reversion direction D̃2, we are
in a position to propose the 2D representation of jumps shown in Figure 5.10 (top), in which the

horizontal axis corresponds toD1 and the vertical axis corresponds to the mean-reversion index D̃2.
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Figure 5.11: Mean-reversion and trend scores
along reflexivity of a jump.

Average profiles of x̄(t) and |x(t)|, through the
grid are shown in Figure 5.12 and, respectfully,
Figure 5.13.

Visually, news-related jumps are mostly to
the right of the projection, corresponding to
increased volatility after the jump, as expected.

Note that both exogenous, or endogenous
jumps can have such mean reverting behavior,
as clear from the 2D representation Figure 5.10.
In fact, a mean reverting behavior can be ex-
pected both following an exaggerated response
to a news release, or after a self-initiated jump
with no discernible catalyst. This is confirmed
by Figure 5.11 which shows positive average
values of D̃2 for all levels of reflexivity D1, ex-
cept for strongly exogenous jumps (large values
of D1 > 0), where the mean-reversion disap-

pears (D̃2 ≈ 0).
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Figure 5.10: Top graph: Projection of jumps in our dataset onto the reflexive directionD1 (horizon-

tal axis) and mean-reverting direction D̃2 (vertical axis) Middle graph: Projection of our dataset

on the reflexive direction D1 (horizontal axis) and trend direction D̃3 (vertical axis). Each point
represents a jump, the blue color corresponds to news-related jumps according to the classification
of Section 5.1.2, the oranges are jumps involved in a co-jump of size greater than 2 and non news
related and the greens are all the other jumps. The vertical and horizontal lines represent the
following quantiles: 0.05, 0.35, 0.65, 0.95. Bottom graph: ratio of “news-related” jumps along the
reflexive direction D1, based on a direct classification using the news feed (rolling ratio every 2000
jumps).
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Figure 5.12: Average jump-aligned return profiles x(t) = sign(x(0))x(t). Each plot represents
the average over the jumps whose 2D projection falls in the respective box in the upper figure in
Figure 5.10.
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Figure 5.13: Average absolute profiles |x(t)|. Each plot represents the average over the jumps
whose 2D projection falls in the respective box in the upper figure of Figure 5.10.
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5.2.5 Third Direction D3: Trend

In the previous section, we have defined a filter ψMR that detects mean-reversion, but is by con-
struction orthogonal to trends, i.e. post-jump returns continuing in the same direction as pre-jump
returns. This feature can be naturally captured by the trend filter ψTR shown in Figure 5.7, which
is orthogonal to the mean-reversion filter ψMR. This filter is then applied to the jump-aligned
profile x(t) to get the following trend score

D̃3(x) := x ⋆ ψTR(0). (5.2.7)

A large positive value of D̃3(x) therefore describes a persistent trend aligned with the direction of
the jump. If such jumps exist, we refer to them as “trend-aligned” jumps. A large negative value
of D̃3(x) indicates that the jump goes against the pre- and post-jump trend. If such jumps exist,
we refer to them as “trend-anti-aligned” jumps.
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Figure 5.14: Trending profiles. Average jump-aligned return profiles x(t) = sign(x(0))x(t) along

the trend direction D̃3 (again sliced into four bins, delimited by quantiles 0.1, 0.5 & 0.9). Left-most
graph: anti-aligned trends. Right-most graph: aligned trends.

Figure 5.14 shows that both classes of jumps do indeed exist: the average profiles in the first and
last quantiles in Figure 5.14 do conform to expectations. Furthermore we directly observe many
stylized examples such as the one reported in Figure 5.3b. As for the mean-reversion indicator, we
can represent all jumps in 2D plane based on D1 and D̃3 (see the bottom graph in Figure 5.10).
Visually, trending news-related jumps appear to be mostly aligned with the jump (top-right corner),
although anti-aligned trends can also be spotted for moderate values of D1. Average profiles of
x(t) through to the grid of Figure 5.10 are shown in Figure 5.16.
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Figure 5.15: Distribution of reflexivity D1(x), mean-reversion D̃2 and trend D̃3 scores used in this
paper to identify classes of jumps. The red vertical lines indicate the quantiles used to delimit the
zones for the jumps taken into account when computing the average profiles in Figs. 5.6,5.8,5.14.
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Figure 5.16: Average jump-aligned return profiles x(t) = sign(x(0))x(t). Each plot represents
the average over the jumps whose 2D projection falls in the respective box in the lower figure of
Figure 5.10.

79



5.2.6 Preliminary Conclusions

Let us summarize the results obtained by our unsupervised approach so far. First, our proposed
2D projections provide an embedding of a jump according to three meaningful, intuitive properties:
its self-reflexive nature (along horizontal axis), its mean-reversion character or its trend character
(along vertical axis). On top of the separation between exogenous and endogenous jumps, our clus-
tering method revealed new classes of jumps, some of which we did not expect a priori: anticipatory
jumps, mean-reverting jumps, trend-aligned and trend-anti-aligned jumps. Identifying additional
interpretable classes of jumps might be possible by considering more expressive wavelet-based em-
beddings such as Scattering Spectra recently used in the context of financial time series [108, 109].
However, our attempts so far seemed to mostly recover directions which overlap with the volatility
time-asymmetry and mean-reverting directions.

Figure 5.17: The 2D projections where the color represents the asymmetry of the jump computed
with Equation (5.1.2).
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5.3 Classification of co-jumps

A “co-jump” is defined as a collection of jumps across several stocks, occurring in the same minute.
The number S of assets involved in the co-jump is referred to as the “size” of the co-jump. Co-jumps
reveal inter-connectivity and contagion in financial markets [110, 54, 55]. As such, studying them –
in particular their possible reflexive nature – is a crucial question for investors and regulators alike.
This section aims at investigating whether co-jumps are created through endogenous dynamics or
exogenous shocks.

To assemble our co-jump dataset we consider the same dataset of jumps as in the previous
section. We end up with 2534 co-jumps, the size of which varies from 2 stocks to 248 stocks. The
co-jumps cumulative size distribution, restricted to endogenous jumps, is shown in Figure 5.18a,
inset. Quite remarkably, the tail of this distribution is well fitted by a power-law S−τ with exponent
τ ≈ 1, with a cut-off for S ≳ 100. As we discuss in Appendix C.2, such a value for τ can be
rationalized within the framework of critical branching processes [111], as if co-jumps were the
result of a contagion mechanism. Such a power-law behaviour was already noted in previous
works: in Ref. [99] on a US data set from 2004 to 2006, in [55] from 2001 to 2013 and in [56] from
2013 to 2018.

The signs of the jumps involved in a co-jump are, most of the time, all aligned, i.e. different
stocks jump in the same direction, as shown in Figure 5.18b.

101 102

co-jump size

10−3

10−2

10−1

p
ro

b
ab

ili
ty

101 102

10−2

10−1

100

(a) Co-jump size

0 50 100 150 200 250

co-jump size

−1.0

−0.5

0.0

0.5

1.0

co
-j

u
m

p
av

er
ag

e
si

gn

(b) Co-jump sign

Figure 5.18: Statistics on co-jumps. (a) Main: Distribution of co-jumps size i.e. number of
stocks involved in a co-jump. Inset: Cumulative distribution of co-jumps size for co-jumps with
min(D1) < 0 and min(D1) < D1−1σ, defining the LL and LR regions in Figure 5.22. The slope of
the fit in log-log coordinate (plain line in blue) is −τ = −0.95. Notice that the data bends down
faster for large S. (b) Average sign of jumps involved in a co-jump, showing that most co-jumps
are composed of jumps in the same direction.

The first stage of co-jump characterization is to classify jumps according to their reflexivity
coordinate along the D1 direction. In Figure 5.19, we highlight the coordinates of three particular
co-jumps in the 2D projections introduced in the previous section. Each color point is a stock
involved in one of the three co-jumps. Let us comment on each of these three cases in turn:

• The purple co-jump, with 29 stocks involved, has most of its elements in the right side of
the 2D projection, suggesting an exogenous, news driven shock. However, one of the jump is
below the 0.35 quantile and therefore appears endogenous. This might be a mis-classification
because of the inherent noise in our D1 reflexivity score. An alternative interpretation might
however be that this particular stock jumped for no particular reason and this created a
surprise to which other stocks reacted.

• The pink co-jump, with 19 stocks involved, staunchly belongs to the anticipatory class –
which we believe to be of endogenous nature, as explained above. Co-jumps with a negative
or positive but moderate maximum value of the D1 score can thus be deemed endogenous.

• The yellow co-jump, with 9 stocks involved, has most of its elements in the intermediate
“endogenous” region, except one which is classified as exogenous. This might be either again
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a mis-classification because of the inherent noise in our D1 reflexivity score, or else a stock
that was not part of the anomalous pre-jump activity but is drawn into the jump through
contagion.

Figure 5.19: Projections of 3 co-jumps along our 2D projections. Yellow co-jump: one jump is
exogenous and the others are more endogenous. Pink co-jump: all jumps of the co-jumps are
endogenous and are trend-aligned. Purple co-jump: Most jumps appear to be exogenous except
one. Those jumps are also trend-anti-aligned.

From these cursory observations, one may propose three natural indicators for classifying co-
jumps:

1. The average value of the individual reflexivity score D1 over all jumps belonging to a given
co-jump, see Figure 5.20.

2. The maximum value of the individual reflexivity score D1 over all jumps belonging to a
given co-jump: if the most exogenous jump is still deemed endogenous, the whole co-jump is
classified as endogenous (see distribution in Figure 5.21b).

3. The minimum value of the individual reflexivity score D1 over all jumps belonging to a
given co-jump: if the most endogenous jump is still deemed exogenous, the whole co-jump is
classified as exogenous (see distribution in Figure 5.21a).

Figure 5.22 represents the normalized minimum value of reflexivity score D1 over all jumps of
a given co-jump as a function of the normalized average value of reflexivity score D1 over all jumps
of a given co-jump (co-jump indicator 3 as a function of co-jump indicator 1). The normalization
is such that Figure 5.22 can be read in units of standard deviation of the reflexivity score D1 for
co-jumps of same size, i.e. σ is the average of the standard deviation of the score D1 over co-jumps
with same size. The size and color of a point depict the size of the co-jump. The gray shaded
region represents jumps with insignificant differences between the mean and the minimum value
of the D1 score.

Co-jumps with negative minimum and average values of reflexivity score D1 (lower left quad-
rant of Figure 5.22, LL) can be deemed endogenous, whereas co-jumps with positive minimum and
average values of reflexivity score D1 (upper right quadrant of Figure 5.22, UR) can be deemed
exogenous.
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Figure 5.20: Reflexive score D1 of co-jumps in our dataset, obtained by averaging the reflexive
score D1 of each jump involved in a co-jump. Large co-jumps tend to have a higher average score
(in red) but, surprisingly, there many large co-jumps with pale color that would be classified as
endogenous. See discussion in the text.
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(a) Distribution of the D1 score of the most en-
dogenous jumps of each co-jump (the leftmost
jump in our 2D projections (see Figure 5.10) of
all jumps belonging to a same co-jumps).
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(b) Distribution of the D1 score of the most ex-
ogenous jumps of each co-jump (the rightmost
jump in our 2D projections (see Figure 5.10) of
all jumps belonging to a same co-jumps).

Figure 5.21: Statistics on co-jumps from the reflexive direction on co-jumps.
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Figure 5.22: Minimum value of reflexivity scoreD1 over all jumps of a given co-jump as a function of
the average value D1 of reflexivity score D1 over all jumps of a given co-jump (co-jump indicator
3 as a function of co-jump indicator 1). Both indicators have been normalized by the average
standard deviation of the reflexivity score D1 of co-jumps with the same size σ. The size and color
of a point depict the size of the co-jump. The grey area represents the zone between min(D1) = D1

and min(D1) = D1−1, corresponding to co-jumps where the difference between the minimum and
the average D1 score is less than 1σ. Here, we only consider co-jumps with a size strictly greater
than 2. LL, LR & UR stand for lower left, lower right and upper right.

The lower right quadrant (LR) represent more intriguing co-jumps. Indeed, according to their
average score D1 those co-jumps should naively be classified as exogenous, however they contain
at least one strongly endogenous co-jump. It might be that those endogenous jumps, whose pre-
activity starts while most other stocks are still quiet, are interpreted in and by themselves as news.
This surprise triggers all other jumps – which therefore appear as exogenous, with no special
pre-jump activity but without being related to any news!

Note that the largest co-jumps are in the LR region; our interpretation in terms of a conta-
gion mechanism would then naturally explain the power-law distribution of size S−τ shown in
Figure 5.18a.

There are obviously also large sector wide co-jumps that are truly news-related – upper-right
quadrant of Figure 5.22. For instance, the significant co-jumps highlighting the year 2019 mostly
exhibit a negative average (exogenous) and are related to the announcements during the US vs
China trade war.

Conversely, some co-jumps (20% of our sample) involve only jumps exhibiting a symmetric or
anticipatory profile (LL region of Figure 5.22). Those co-jumps are usually S = 2 stocks co-jumps
(76%), but their size can go up to S = 87 stocks.

Hence, the most striking conclusion of this section is that many large co-jumps are in fact
explained by endogenous dynamics and propagate across stocks, rather than being due to impactful
external news. A (in)famous example of such propagation is the flash crash of May 6th 2010,
where the S&Pmini crashed in less than 30min, due to a sell algorithm set with an excessively high
execution rate. This crash triggered a price drop in other US stocks. Here, our results suggest
that this synchronization phenomenon is not such a rare event and actually happens quite often
[110, 54].

This finding is further supported by examining the correlation of the individual jump time-series
composing a co-jump. Naively, one would expect large co-jumps to be exogenous, i.e. induced by
news. As a result, the stocks involved in the co-jump should all share the same profile around
the jump, as in Figure C.3a for example. In fact, Figure C.2 shows that there remain many co-
jumps whose constituting univariate jump profiles are weakly correlated (see Appendix C.3 for
more details).
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A word on “sector jumps”

As discussed in Section 5.2.3, “sector jumps” are such that many stocks of the same industry jump
simultaneously. Hence, all “sector jumps” are co-jumps. To be thorough, we also analyzed the
sectoral price jumps through the scope of our projection. Those “sector jumps” are obtained by
averaging all time series of stocks belonging to the same sector and detecting “sector jumps” using
the method presented in Section 5.1.1. One can then compute a reflexive score for each of those
“sector jumps” (along with a mean reversion score and a trend score). We present the results in
Figure 5.23. The gray points represent the 2D projections of individual jumps of individual stocks.
The blue points represent the projection of the “sector jumps” time-series. It appears that the
sector jumps are indeed not all exogenous, as discussed in Section 5.2.3.

Figure 5.23: Projection of sector jumps in our 2D projections. The gray points represent the 2D
projections of individual jumps of individual stocks. The “sector jumps” are obtained by averaging
time-series across socks of a same sector. The blue points represent the projection of those sector
jumps time-series.

85



Conclusion

Thanks to an unsupervised approach based on wavelet scattering coefficients, we have identified
three main directions along which price jumps can be classified. The first, well-known direction
relates to the time-asymmetry of the volatility of the price around the jump and results in three
classes of jumps, endogenous, exogenous and anticipatory.

We also evidenced that mean-reversion and trend are important features for classification.
This allowed us to identify three additional classes of jumps, “mean-reverting”, “trend-aligned”
and “trend-anti-aligned” which concerns a significant portion of the dataset. Thanks to this clas-
sification we have shown that a large portion of the jumps are endogenous or anticipatory jumps,
confirming – but also making much more precise – the main conclusions of [99, 6].

Extending our analysis to co-jumps, we have gathered several pieces of evidence that a large
proportion of these co-jumps should also, quite surprisingly, be classified as endogenous in the sense
that they seem to originate from the contagion of one single endogenous jump triggering the jump
of possibly many others. One striking signature of such a scenario is the power-law distribution of
co-jump sizes, which is indeed close to that predicted by a critical branching (contagion) process.
Such a broad, power-law distribution of co-jump sizes was noted previously for different datasets
in [99, 55, 56]. Further work should focus on higher frequency data that would allow one to dissect
more precisely the contagion mechanism and ascertain that many large co-jumps are indeed not
triggered by exogenous news, but related to the close-knit nature of financial markets that brings
them close to critical fragility, as argued many times in the past, see e.g. [97, 112, 113, 94] and
refs. therein.

Unlike parametric fit of the time-series, the wavelet scattering embedding is defined and can
be computed for any time-series. As such, our study could be transposed to other fields as well.

Take Home Message

• The reflexive nature of price jumps, or more generally of bursts of activity, can be
measured by the degree of time asymmetry around the burst. This time asymmetry
can be quantified using wavelet coefficients.

• The empirical study of price returns of 300 US stocks over an 8 years period yielded
many results:

– additionally to the jump reflexive nature, we uncovered two additional features
to characterise price jumps: mean-reversion strength and trend alignment;

– we retrieved that not all price jumps are news related (see also [5, 7, 6]);

– we identified a new class of financial price jumps: anticipatory jumps, character-
ized by the majority of activity occurring before the jump;

– co-jumps, even market-wide ones, are not always news related and seem to occur
because of contagion mechanisms across stocks.

• Technical outcomes: unsupervised classification method to characterised bursts of
activity based on their level of reflexivity, their mean-reversion strength and their
alignment with the trend.
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Chapter 6

Why is stock volatility so much
rougher than index volatility?

It is a rough road that leads to the heights of greatness.

Lucius Annaeus Seneca

This chapter delves into the exploration of multivariate volatility from a different perspective,
shedding light on the complex interplay between indices and individual stocks. The research pre-
sented herein is the result of collaboration with Othmane Zarhali, Jean-François Muzy, Emmanuel
Bacry, and Jean-Philippe Bouchaud. We extend our gratitude to Rudy Morel and Samy Lakhal
for their valuable assistance with numerical simulations.

Introduction

To properly introduce this chapter, we would like to first give some intuitions on the concept
of signal roughness/smoothness. This characteristic is quantified by the Hurst exponent (H) of a
signal, which ranges between 0 and 1. To illustrate the influence of H, Figure 6.1 depicts fractional
Brownian motions for various values of H. It is evident from the visualization that lower values of
H correspond to signals exhibiting greater roughness.

H = 0. H = 0.2 H = 0.9

Figure 6.1: Some intuitions on the characterisation of roughness with the Hurst exponent. Reali-
sations of fractional Brownian motions (Equation (6.0.1)) for different Hurst exponents: from left
to right H = 0.01, H = 0.2, H = 0.9 (see Appendix D.3 for simulation method).

In particular, a H-fractional Brownian motion WH , where H denotes the Hurst exponent, is
characterised by its correlation structure:

E
(
WH

t W
H
s

)
=

1

2

(
t2H + s2H − (t− s)2H

)
(6.0.1)

Of notable interest is the case when H = 1
2 , which yields the classic Brownian motion en-

countered in Black-Scholes and stochastic volatility models (as discussed in Chapter 1). Rougher
(H < 1

2 ) or smoother (H > 1
2 ) dynamics than Brownian motion can enhance volatility models

by introducing new features. For instance, pioneering work by Comte and Renaud in 1998 [114]
proposed a smooth volatility process withH > 1

2 to account for the long-range memory of volatility.
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Figure 6.2: Hurst exponents estimation of 503 stocks (in black) and 49 indices (in blue) using the
calibration method of Wu et al. [53] on daily Garman-Klass estimation of the log-volatility from
2013 to 2023 (see Garman-Klass estimator Definition 1.1.1).

In 2016, empirical work on the roughness of log-volatility in financial market by Gatheral et al.
in [41] (see also [115]) demonstrated that volatility is rough (less smooth than a Brownian motion).
Indeed measuring the roughness of the log volatility of major indices such as the S&P500 and the
DAX1, they find Hurst components (H) ranging between 0.06 and 0.2. Since then, rough volatility
models have gather momentum [41, 116, 117, 118].

Furthermore, recent empirical investigations into volatility roughness have revealed that log
volatility may exhibit even greater roughness than previously observed by Gatheral et al., with
equity indices showing a Hurst exponent below 0.05 [119, 120]. These findings are particularly
interesting given that the behavior of rough volatility when H −→ 0 aligns with the multifractal
random walk (MRW) models introduced in 2000 in [121, 48, 47] and designed to capture the
multifractal properties of asset prices [50, 51]. Although the MRW was actually the first model to
replicate the empirical roughness of volatility, it was only after the 2016 work of Gatheral et al.
that this topic gained significant traction among academics.

Seeking to build a framework that interpolates between MRW and rough volatility models
(meaning that it conciliates the observed Hurst exponent of H = 0.14 with the asymptotic be-
havior where H −→ 0), P. Wu, E. Bacry and J.-F Muzy introduced the logarithmic Stationary
Brownian Motion (log-SfBM) in their 2022 work [53] (see also [122, 123, 124, 125] for alternative
approaches). Calibrating their model on real world data, they found intriguing results. Specifi-
cally, their research shows that while individual stocks exhibit greater roughness (H ≈ 0), indices,
despite being composed of these stocks, tend to display a lower level of roughness (H ≈ 0.1), as
illustrated in Figure 6.2 (and Figure 10 of [53]).

This chapter is dedicated to elucidating the captivating empirical findings of Wu et al. which
highlights disparities in the roughness of log-volatility between individual stocks and indices.

Our reasoning is derived from the intuition that the roughness exhibited in a composite signal,
composed of several signals with varying degrees of roughness, tends to reflect the roughest com-
ponent present (see Figure 6.1 for more intuition). Consequently, given empirical observations of
Figure 6.2 showing that indices log-volatility is less rough than that of stocks, exceedingly rough
signals are unlikely to contribute significantly to index dynamics, or at the very least, would need
to be “smoothed out” within the averaging process of stock dynamics. The rougher component,
characterized by H ≈ 0., is thus expected to be associated with an idiosyncratic component of
individual stocks. Factor models offer a suitable framework for investigating such a hypothesis, as
they delineate stock returns as the summation of a factor component (common to all stocks) and
an idiosyncratic component (specific to each stock).

In particular, we opt to revisit the Nested Factor model proposed by Chicheportiche et al. [61]
to accommodate additional stylized facts of financial volatility. Notably, the Nested Factor model

1DAX: German stock index.
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holds significant relevance in describing the volatility dynamics of stocks, as it replicates several
empirical characteristics observed in financial time series. It not only captures the presence of fat
tails in the distribution of returns but also overcomes the limitations of elliptical models by repro-
ducing the anomalous copula structure among stocks (see [60]). Moreover, it explicitly formulates
the shared dynamics between the market mode and the residual components of individual stocks
[58, 59].

In this chapter, we will see how the factor-residuals framework inherent in the Nested Factor
model accommodates the empirical findings of Wu et al.: the log-volatility of individual stocks can
indeed be rougher than that of indices, although indices are made of stocks.

The outline of the chapter is as follows. Sections 6.1 and 6.2 are dedicated to the presentation
the models of interest: the log-SfBM of Wu et al. [53] and the Nested Factor model of Chichepor-
tiche et al. [61]. Section 6.3 exposes our intuitions on how the Nested Factor model can reconcile
the difference of roughness between the log volatility of stocks and of indices and is supported by
Section 6.4 which presents numerical experiments. Section 6.5 presents our analytical analysis and
Section 6.6 our empirical results.

6.1 Log Stationary fractional Brownian Motion model

In an attempt to reconcile empirical observations of Hurst exponents greater than 0.1 for indices
[41] and tending towards 0 for stocks [119, 120], Wu et al. introduced the Stationary fractional
Brownian Motion model (SfBM) in 2022. We outline the main characteristics of this model and
provide key information for its calibration on empirical data. For comprehensive details, we refer
to [53].

6.1.1 Model

Definition 6.1.1 (Stationary fractional Brownian Motion (S-fBM)). Introduced in [53], for Hurst
exponent H > 0, the Stationary fractional Brownian Motion (S-fBM) (ωH,T (t))t is a stationary
Gaussian process defined by its mean and covariance function:

CωH,T
(τ) = cov(ωH,T (t), ωH,T (t+ τ)) =

{
ν2

2

(
1− ( τ

T )
2H
)
, when |τ | < T

0 otherwise

where ν is a dimensionless parameter that controls the amplitude of the process, and T is the time
range of correlations.

Still for H > 0, Wu et al. then define the log S-fBm random measure (MH,T (t))t as

MH,T (dt) = exp(ωH,T (t))dt (6.1.1)

Interestingly, Wu et al. show that, when H goes to 0, (MH,T (t))t converges toward a Mul-
tifractal Random Measure (MRM), previously introduced in [121, 49, 48, 47]. Specifically, for a
Multifractal Random Walk (MRW) (ωT (t))t, one has:

CωT
(τ) = cov(ωT (t), ωT (t+ τ)) =

{
−λ2 ln( τ

T ), when |τ | < T

0 otherwise

where λ2 is the intermittency coefficient that is a dimensionless positive parameter and is
related to ν2 with λ2 = H(1− 2H)ν2. Hence, this framework harmonizes the cases where H > 0
and where H −→ 0, which were both observed in real data. Wu et al. complete their model by
proposing financial price dynamics to be described with the log-SfBM, such that returns dP i

t of
stock i write:

dP i
t = exp(ωi

H,T (t))dW
i
t =

M i
H,T (dt)

dt
dW i

t

where (ωi
H,T (t))t>0 is a SfBM of Hurst exponent H, and (W i

t )i,t is a Brownian motion.
For more intuitions on these models, we refer to simulation algorithms in Appendix D.3 and

references herein. The next section discusses the empirical estimation of the roughness on financial
times series.
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6.1.2 Empirical Estimation of the roughness (estimation of H)

In light of the discoveries by Gatheral et al., numerous estimators for the roughness of log-volatility,
namely the Hurst exponent, have been introduced in the literature [41, 115, 119, 120]. Here, we
briefly outline two methodologies which will be employed in the empirical and numerical investiga-
tions. The first method, as employed in Gatheral et al. [41], relies on analyzing the increments of
log-volatility, while the second method, introduced by Wu et al. [53], involves calibrating log-SfBM
to estimate the Hurst exponent H alongside other parameters.

To estimate the Hurst exponent, Gatheral et al. utilize the observation that the moments of
the increments of log-volatility σ, denoted as mσ hereafter, follow a power law of qH, i.e.

mσ(q, τ) = E(| log(σt+τ )− log(σt)|q) = Kqτ
qH (6.1.2)

where Kq is a constant. Consequently, measuring the increments of the log-volatility mσ(q, τ) for
a fixed q (e.g., q = 2), one can estimate H by regressing log (mσ(2, τ))) against 2 log(τ). Although
this method has proven effective with high-frequency data, notwithstanding noise, it has demon-
strated less robustness with larger time scales (e.g., daily data), prompting the development of
alternative estimators [115, 119, 120, 117].

To calibrate the log-SfBM using empirical data, Wu et al. introduced two General Methods of
Moments. These methods rely on estimating the autocovariance of MH,T and ln (MH,T ) at a fixed
set of lags, where MH,T is the Multifractal Random Measure defined in Equation (6.1.1). Thus,
one needs to compute E(MH,T (t)MH,T (t+τ)) or E (ln (MH,T (t)) (MH,T (t+ τ))) ([53], Proposition
6 provides detailed information). By applying their calibration method to daily volatility Garman-
Klass estimates from 2013 to 2023 for 503 US stocks and 49 indices, results depicted in Figure 6.2
were obtained (also see Figure 10 of Wu et al., 2022). Notably, the discrepancy in the order
of magnitude between the Hurst exponents of indices (in blue) and individual stocks (in black) is
puzzling. Indeed, stocks log-volatility are rougher (H ≈ 0.) than that of indices (H ≈ 0.1), although
indices are made of stocks. To investigate such result, we structure the log-volatility dynamics
combining the log-SfBM and the Nested factor model, which we delineate in the subsequent section.

6.2 Nested Factor model

Introduced in [61], the Nested Factor model seeks to replicate the dynamics of stocks returns
and their interplay with market dynamics. This section aims at describing the model and its
advantages.

6.2.1 Motivations

The development of the Nested Factor model stemmed from the observation that joint distribution
of stock returns is not elliptical [60]. Elliptic models describe return dynamics as dP i = σiϵi,
with ϵi a random variable, allowing for the analytical derivation of various properties. Specifically,
in elliptical models, the linear correlation coefficient ρ between two stock returns is given by
ρ = cos(2πC( 12 ,

1
2 )), where C(

1
2 ,

1
2 ) denotes the median point of bivariate copulas. By comparing

empirical measures with the expected outcomes of an elliptic model, Chicheportiche et al., in [60],
demonstrated that ρ −→ −ρ − cos(2πC( 12 ,

1
2 )) is actually non zero for stocks, thereby refuting the

suitability of elliptic models for describing the common dynamics of stock returns.
Additionally, the Nested Factor model intends to explicitly delineate the intriguing link between

the distribution of stock returns and market (indices) returns. Previous research [57] has observed
that the skewness of stock returns distribution was dependent of market returns: on average, on
days when the market has negative, respectively positive, returns, then the distribution of all stocks
returns has negative, respectively positive, skewness. As demonstrated in Cizeau et al. [58], this
dependency is not captured by a “simple” factor model describing returns of stock i at time t, dP i

t

as:

dP i
t = βif0,t + ϵi,t (6.2.1)

where f0,t represents the market returns (indices returns), ϵi,t is a residual component indepen-
dent of f0,t and βi signifies the exposure of the stock i to the market (f0,t). Furthermore, Cizeau
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et al. [58] and later Allez et al. [59], showed that not only does the returns distribution depend on
the market, but the idiosyncratic term, ϵ from Equation (6.2.1), also depends on the market mode
(f0 in Equation (6.2.1)).

In addition to the correlation structures of stocks and the relationship between stock returns
distribution and the market mode, Chicheportiche et al. [61] constructed their model in such a
way as to generate fat-tailed return series. The subsequent section provides an introduction to the
Nested Factor model as presented in Chicheportiche et al. (2015) [61].

6.2.2 Model

In light of these observations, Chicheportiche et al. established the Nested Factor model such
that, returns dP i of stock i are composed of two components: a factor and a residual part. The
innovation lies in the structure of the log-volatilities which consist of both a common and a residual
component, as elucidated below.

Definition 6.2.1 (Nested Factor model). Nested Factor model with M factors describes the
returns dP i

t of stock i at time t as

dP i
t =

M−1∑

k=0

βi
kfk,t + ei,t with

{
fk,t = ηk,t exp(A0kΩ0(t) +A1kΩ1(t) + ωk(t))

ei,t = ξi,t exp(B0iΩ0(t) +B1iΩ1(t) + ω̃i(t))
(6.2.2)

where

• the M time series (fk,t)k∈J0,M−1K,t>0 are the factors, serving as “benchmarks” derived from
the market. The series f0,t represents the market itself, and is frequently materialized as the
returns of the S&P500 index. Conversely, for k > 0, fk,t may depict returns from a specific
industrial sector. These time series (fk,t)k∈J0,M−1K,t>0 are uncorrelated;

• βi
j represents the exposure of asset i to a factor fj ;

• the time series (ei,t)i,t>0 represent the residuals of each asset’s returns, signifying the por-
tion of the asset’s returns not accounted for by market movements. These residuals are
uncorrelated with the factors and are idiosyncratic to the asset itself;

• Ω0, Ω1 are log-volatility stochastic factors involved in the dynamics of both the factors
(fk,t)k∈J0,M−1K,t>0 and the residuals (ei,t)i,t>0. ωk denotes the stochastic idiosyncratic log-
volatility of factor fk, while ω̃i is the stochastic idiosyncratic log-volatility of residual ei;

• parameters As and Bs quantify the contribution of each factor volatility mode. They can be
estimated using correlation functions (denoted Cff and Crr in [61], note that, their dominant
eigenvector provide a reliable initial estimate);

• finally, η and ξ are Brownian motions, independent of all the other time series.

For the sake of simplicity and to reduce the number of parameters, in the numerical and
empirical investigations, we will use simplified versions of the Nested Factor model, which we
introduce subsequently, keeping the same notations.

6.2.3 Simplified versions

One common mode of log volatility and M factors

For the empirical investigation (Section 6.6), which involves calibrating the NFM on real data, we
use the Nested Factor Model with one dominant volatility mode Ω0, such that:

dP i
t =

M−1∑

k=0

βi,kfk,t + ei,t with

{
fk,t = ηk,t exp(Ak0Ω0(t) + ωk(t))

ei,t = ϵi,t exp(Bi0Ω0(t) + ω̃i(t))
, (6.2.3)

which comes down to set Ω1 to zero.
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One common mode of log volatility and a unique factor (the market mode)

To simplify further for our numerical simulations (Section 6.4), we implement the Nested Factor
Model with one factor and with one dominant volatility mode, such that:

dP i
t = βif0,t + ei,t with

{
f0,t = ηt exp(A0Ω0(t) + ω0(t))

ei,t = ϵi,t exp(Bi0Ω0(t) + ω̃i(t))
, (6.2.4)

which comes down to set Ω1 to zero and M to 1. The only factor f0 represents the market
mode and, for US stocks for instance, can directly be estimated using the returns of the S&P500
index.

In the rest of the chapter, we revisit the Nested Factor model by considering that the log-
volatilities (Ω0, ωk, ω̃i) follow a Stationary fractional Brownian Motion (SfBM). Subsequently, we
investigate their roughness to elucidate the empirical findings of Wu et al. (2022) [53].

6.3 Conjectures & Investigation

The primary aim of this chapter is to demonstrate how the Nested Factor model can elucidate
the discrepancy in magnitudes between Hindices(≈ 0.14) and Hstocks(≈ 0.), despite indices being
composed of stocks. Specifically, we inquire into 2 conjectures:

• Subsidiary conjecture (“Minimal Roughness Dominance conjecture”): We postulate that
the amalgamation of two signals characterized by differing levels of roughness yields a signal
whose roughness closely resembles that of the signal with the higher roughness level (lower
value of Hurst exponent H). This can be visualized by referring to Figure 6.1: when summing
the signal with the lowest roughness and the one with the highest roughness, the resulting
signal would primarily reflect the roughness of the latter.

• Main conjecture (“Log S-fBM Nested factor model”): We propose a Nested Factor model
with SfBM as log-volatilities (i.e., Ω0, (ωk)k and (ω̃i)i are SfBM), with well chosen parameters.
We postulate that such model could reconcile the empirical findings of Wu et al. ([53] and
Figure 6.2). Specifically, we anticipate that selecting parameters satisfying:

– HΩ0
≳ 0.1,

– Hω0
≳ 0.1,

– Hω̃i ≈ 0 for all stocks i,

could replicate the empirical observations of Figure 6.2.

This second conjecture stems from the notion that, within the Nested Factor model, the
roughness of the log-volatility of an individual stock i is contingent upon the roughness of
Ω0, (ωk)k, and ω̃i, whereas the roughness of indices is determined by Ω0 and ω0. This occurs
as idiosyncratic components offset each other when averaging the financial returns dP i to
derive the financial returns of an index (market mode f0). From the “Minimal Roughness
Dominance conjecture”, we expect that the roughest component of each time series, for both
stocks and indices, will prominently manifest.

Given that the roughness of stock log-volatility exceeds that of indices (Hstocks ≈ 0 <
Hindices ≈ 0.1), we infer that the roughest component must originate from the idiosyncratic
part of the stock ω̃i, while indices’ log-volatilities, Ω0 and ω0, are presumed to exhibit lesser
roughness (≳ 0.1).

We explore these conjectures along three dimensions: numerical simulations allow to assess the
aforementioned hypotheses; analytical study establishes the validity of our hypothesis within a
specific regime; and finally, empirical analysis through the calibration of the Nested Factor Model
(NFM) using real-world data and the investigation of the log-volatilities roughness confirms our
main conjecture.
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6.4 Investigation via Numerical Simulation

To test our conjectures from the previous section, we implement numerical simulations. The
method to simulate log-SfBM, and more generally Gaussian processes defined through their auto-
correlation structure, is described in Appendix D.3.

6.4.1 Test of the subsidiary conjecture: Minimal Roughness Dominance
hypothesis

Simulation

In this first part, we test by numerical simulations our subsidiary hypothesis which postulates (see
Section 6.3) that the amalgamation of two signals characterized by differing levels of roughness
yields a signal whose roughness closely resembles that of the signal with the higher roughness level.
For this first hypothesis, we implement 500 simulations of the following framework.

We consider 100 stocks/trajectories whose returns dynamics are defined by:

dP i
t = σf exp(ωH(t))dW βi

t + σ̃ exp(ω̃i(t))dB
i
t. (6.4.1)

The log-volatility ωH is a shared volatility mode across all trajectories. Its dynamics conform
to that of a SfBM with intermittent parameter λ = 0.079 and Hurst exponent HωH

= 0.14.
Additionally, each trajectory i is characterised by an idiosyncratic log-volatility ω̃i which is a rough
SfBMs (MRW) with intermittent parameter λ = 0.079 and Hurst exponent Hω̃i = 0. Moreover the

values of σf and σ̃ are determined such that the variance of the factor term (V(σf exp(ωH(t))dW βi

t ))
approximately accounts for 30% of the total variance, as observed empirically for the S&P500.

(W βi

t )t>0,i∈J0,99K are Brownian motions, satisfying E(dW βi

t dW
βj

t ) = βiβjdt, where (βi)i∈J0,99K are
normally distributed, as observed empirically. Finally, (Bi

t)t>0,i∈J0,99K are independent Brownian

motions, also independent of (W βi

t )t>0,i∈J0,99K. Section 6.5.1 provides an analytical study of an
analogous framework.

Results
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Figure 6.3: Results derived from the simulation of Equation (6.4.1). Left histogram: Roughness

estimation of average path ⟨dP ⟩ = 1
100

∑100
i=1(dP

i) across the 500 simulations. Middle histogram:

Roughness estimation of individual log-volatility of each of the 100 stock returns dP i for the 500
simulations. Right histogram: variance proportion of the factor term f = σf exp(ωH(t))dW βi

t on
total variance across the 500 simulations.

We commence by confirming that the factor component indeed accounts for approximately 30%
of the overall variance, aligning with empirical observations. The histogram on the right-hand side
of Figure 6.3 demonstrates the consistency of this assertion within our simulation set.

For each simulation, we then corroborate our secondary conjecture by estimating the roughness
of each individual trajectory (dP i

t )t>0,i∈J0,99K using the General Method of Moments proposed by
[53]. The outcomes are depicted in the middle histogram of Figure 6.3. It is evident that all
individual trajectories exhibit highly rough paths (Hω̃i

< 0.06 for all i). Hence, the roughness of
each trajectory (dP i

t ) is primarily influenced by its roughest component ω̃i, thereby substantiating
our subsidiary hypothesis. This holds true even when the factor term explains a substantial
proportion of the variance. As indicated in the rightmost figure, the factor term consistently
explains at least 20% of the total variance and sometimes up to 50%. However, even in the
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latter scenario, the roughness of the resulting signal remains below 0.06. This finding is further
corroborated by the analytical results presented in Section 6.5.1.

To be thorough, we also assess the roughness of the average trajectory ⟨dP ⟩ = 1
100

∑100
i=1(dP

i).
The results of this estimation, across our 500 simulations, are depicted in the leftmost histogram
of Figure 6.3. Our simulations reveal that when the individual trajectories are averaged, as would
be done to reconstruct the index trajectory, the individual idiosyncrasies vanish, and the resulting
averaged trajectory exhibits the same Hurst exponent as the factor term (Ĥ⟨dP ⟩ ≈ 0.14 = HωH

).
Consequently, at this stage, the simple factor model outlined in Equation (6.2.1) already aligns with
the empirical findings of [53]. However, this version of the model would not adequately account
for other stylised facts as the relationship between the volatility and skewness of stock returns and
the market returns [59, 58, 57]. Therefore, we proceed to examine a more sophisticated model, the
Nested Factor model.

6.4.2 Main conjecture: log SfBM Nested Factor Model to reconcile
rough stock and less rough indices

Section 6.4.1 demonstrated that a “simple” factor model, where the factor term and the idiosyn-
cratic term each have their own volatility mode (Ω0 = Ω1 = 0 in the NFM), replicates the empirical
results reported by Wu et al. [53]. This second numerical investigation seeks to examine whether
the Nested Factor model with a common volatility mode (Ω0 ̸= 0) as described in Equation (6.2.4)
can also reproduce the differing levels of roughness between stocks and indices observed by Wu et
al. [53].

Simulation

The implementation involves simulating, as detailed in Appendix D.3, the Nested Factor model
with 1 common volatility mode, 1 factor and 100 trajectories/stocks i (as outlined in Equa-
tion (6.2.4)). The common volatility component Ω0 follows a SfBM with intermittent parameter
λ = 0.079 and Hurst exponent HΩ0

= 0.11. The residual log-volatility of the factor, ω0, is also a
SfBM of intermittent parameter λ = 0.079 and Hurst exponent Hω0

= 0.14. Thus, we expect the
combination of these two trajectories, Ω0 and ω0, to replicate the roughness observed in indices
(Hindices ≈ 0.1).

The residual log-volatilities ω̃i associated with the idiosyncratic term ei are rough SfBMs
(MRWs) with intermittent parameter λ = 0.079 and Hurst exponent Hω̃i

= 0. We anticipate
that this rough component will dominate in the individual trajectories, thereby mirroring the
behavior of stocks log-volatility (Hstocks ≈ 0).

Coefficients A0 and B0 are selected in accordance with the values documented in [61]. Similarly,
as in the preceding simulation, the coefficients (βi)i∈J0,99K are normally distributed. Additionally, to
maintain consistency with empirical observations, we restrict our simulations set to instances where
the factor term explain approximately 30% of the total variance, as illustrated in the rightmost
histogram of Figure 6.4. This criterion yields 68 simulations comprising 100 trajectories each.

Results

In each simulation, we employ the General Method of Moments introduced by [53] to estimate the
roughness of the 100 individual trajectories. The resulting outcomes are illustrated in the middle
histogram of Figure 6.4. It is evident that all individual trajectories, representing the returns of
individual stocks, manifest highly rough paths, with all Hurst exponents falling below 0.07 and
averaging 0.04. Consequently, the roughness of the individual signal remains predominantly in-
fluenced by the roughest component ω̃i, which characterizes the idiosyncratic dynamics of each
trajectory. This initial finding supports with our main hypothesis, suggesting that the Nested Fac-
tor model, when the residual log-volatility of the idiosyncratic term is highly rough, can reproduce
the notably rough paths observed in individual stocks.

Furthermore, we estimate the roughness of the log-volatility of the simulation’s average path,
⟨dP ⟩ = 1

100

∑100
i=1(dP

i), which would reconstruct the index trajectory. The leftmost histogram of
Figure 6.4 displays the resulting Hurst exponent values. It clearly appears that the average trajec-
tory exhibits a less rough path compared to individual trajectories, with Hurst exponents hovering
around 0.12. Thus, as anticipated, the idiosyncratic terms offset each other during averaging, and
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the roughness of the average path is mostly driven by the log-volatility components of the factor
term, Ω0 and ω0.
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Figure 6.4: Results derived from the simulation of Equation (6.2.4). Left histogram: Roughness

estimation of log volatility of the average path ⟨dP ⟩ = 1
100

∑100
i=1(dP

i) across our set of simulations.
Middle histogram: Roughness estimation of individual log-volatility of each of the 100 stock returns
i for all the simulations. Right histogram: variance proportion of the factor term f0 on total
volatility across our set of simulations.

Those results confirm that the NFM enables the replication of the empirical observations from
Wu et al. ([53] and Figure 6.2). This conclusion is further supported by the analytical results
presented in the subsequent section.

6.5 Analytical Investigation

To validate our conjectures, we also conduct an analytical investigation. We study two combina-
tions of SfBMs with differing degrees of roughness. First combination consists in a factor model
with 2 independent log-SfBMs following the traditional form of factors models. The second com-
bination is a log-SfBM with 2 volatility modes, i.e. two SfBMs.

6.5.1 Sum of two log-SfBMs

First, we investigate the roughness of the following signal:

dPt = exp (Ω (t)) dWt + exp (ω̃ (t)) dBt, (6.5.1)

where Ω and ω̃ are independent SfBM defined by their Hurst exponents, respectively, H and h̃,
such that h̃≪ H, and intermittent parameters respectively, ν and ν̃. Wt and Bt are independent
Brownian motions.

Based on the characterisation in Equation (6.1.2), to inquire into the roughness of the resulting

signal, we want to find ĥ such that

m(2,∆) =E
(
|log (exp (2Ω(∆)) + exp (2ω̃(∆)))− log (exp (2Ω(0)) + exp (2ω̃(0)))|2

)

=K2∆
2ĥ with K2 constant

Leveraging the replica trick [126] and some combinatory analysis (see Appendix D.1), we obtain

(up to order ∆2h̃):

m(2,∆) = 4ν̃2E
(
exp(2ω̃t)

2
)
E
(
(exp(2Ω) + exp(2ω̃t))

−2
)
∆2h̃ + o(∆2h̃)

and, if we develop up to order ∆2H :

m(2,∆) = 4E
(
(exp(2Ω) + exp(2ω̃t))

−2
)(

ν̃2∆2h̃E
(
exp(2ω̃t)

2
)
+ ν2∆2HE

(
exp(2Ω)2

))
+ o(∆2H)

We see that asymptotically, when ∆→ 0, the roughest signal (with the smaller Hurst exponent
H) is predominant in the resulting signal.
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6.5.2 log-SfBM with 2 modes of volatility

Secondly, we investigate the roughness of the log-volatility of a signal defined by:

dPt = exp (A0Ω(t) + ω̃(t))dWt

where Ω and ω̃ are two SfBMs characterised by their Hurst exponents, respectively H and h̃
with h̃≪ H, and their intermittent parameter ν and ν̃. (Wt)t>0 is a Brownian motion. As before,

to characterize the roughness of such signal, one’s aim is to find ĥ such that

m(2,∆) =E
(∣∣ log

(
exp (2A0Ω(∆) + 2ω̃(∆))

)
− log

(
exp (2A0Ω(0) + 2ω̃(0))

)∣∣2
)

=K2∆
2ĥ with K2 constant

We obtain (see Appendix D.2 for details):

m(2,∆) =4
(
A2

0K2ν
2∆2H + k2ν̃

2∆2h̃
)

We see that asymptotically, when ∆→ 0, the roughest signal (with the smaller Hurst exponent,
h̃) is again predominant in the resulting sum.

Although partial, analytical results tend to confirm our conjectures. We now intend to empiri-
cally measure the roughness of the Nested Factor model volatility components.

6.6 Investigation of roughness of empirical NFM compo-
nents

To test our conjecture from Section 6.3, we calibrate the Nested Factor Model with a single common
mode of volatility and 10 factors (M = 10 in Equation (6.2.3)) on empirical data. Using several
estimation methods, we investigate the roughness of the log-volatility components.

6.6.1 Data description

We calibrate the Nested Factor model using data from 323 US stocks spanning the period from
2013 to 2023. Our selection is limited to stocks that are constituents of the S&P500 throughout the
entire study period. We analyze both daily and intraday data, as roughness estimation tends to be
more effective with higher frequency data. The datasets consist of close-to-close returns that are
standardized by centering and normalization. This dataset is sufficient for calibrating the Nested
Factor model and obtaining time series for Ω0, ω0, (ωk)k∈J1,9K, and (ω̃i)i∈J1,323K. The calibration
procedure of the Nested Factor model using real-world data is delineated below (for comprehensive
details, see [61]).

6.6.2 Calibration of the NFM on data
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Figure 6.5: Illustration of the NFM calibration on empirical data, with 10 factors on 323 stocks
from 2013 to 2023. Left plot: the market mode |f0| and common volatility mode exp(A0Ω0)
time series. Middle plot: the market mode |f0| and its residual volatility exp(ω0) time series.
Right plot: the idiosyncratic time series of Marathon Oil stock |eMRO| and the common volatility
mode exp(BMROΩ0) time series (with the relevant coefficient Bi).
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Figure 6.6: Illustration of the “Gaussianization” procedure applied to the time series (ω̃MRO(t))t.
Left figure: distribution of the values of the original time series before the “Gaussianization”. The
best theoretical distribution to describe (ω̃MRO(t))t is a log-gamma distribution, plotted in red
with appropriately chosen parameters. The inset shows the original time series as a function of
time. Right figure: distribution of the values of the “Gaussianized” time series in red superimposed
with the distribution of the original time series values in black. The inset displays both the original
and “Gaussianized” time series as functions of time.

Guided by [61], we calibrate the Nested Factor model depicted in Equation (6.2.3), for M = 10
with 323 stocks. The calibration relies on the following steps:

1. The exposure coefficients (βi,k) are obtained by minimizing the off diagonal of ||X⊤X−β⊤β||
for β, where X⊤X is the correlation matrix of stock returns (dP i

t )i∈J1,323K,t>0.

2. Then, fk,t and ei,t are obtained by regressing dP i
t on (βi,k).

3. A method of moments allow then to obtain (Ak0)k and (Bi0)i (see the correlation structures
in Appendix B of [61]).

4. Finally, regressing log(|fk,t|)−⟨log(|fk,t|)⟩ and log(|ei,t|)−⟨log(|ei,t|)⟩ on Ak0 and Bi0 permit
to obtain the time series of Ω0,t, (ωk,t)k∈J0,9K and (ω̃i,t)i∈J1,323K. Figure 6.5 illustrates the
Nested Factor model decomposition into factors f , residuals e and common volatility mode
Ω0 by juxtaposing those time series.

5. (mostly for daily data) Before estimating the roughness of Ω0,t, (ωk,t)k∈J0,9K and (ω̃i,t)i∈J1,323K,
it is prudent to address the pronounced skewness evident in the idiosyncratic time series
(ω̃i,t)i∈J1,323K. This skewness arises from the logarithmic transformation, which tends to
amplify the impact of lower return values. Such skewness subsequently propagates into the
log-volatility components, contravening the Gaussian assumption of the SfBM model and
adversely affecting the estimation of the Hurst exponent, particularly with daily data. To
adhere to this assumption, we undertake a “Gaussianization” procedure for the time series
(ω̃i,t)i∈J1,323K for the daily dataset. Note that this procedure could also be done before
step 4, on the time series ei,t. The “Gaussianization” procedure, illustrated Figure 6.6,
involves two main steps. The first step entails identifying the best theoretical distribution
and its parameters to describe the values of the time series (ω̃t)t. For our data sample, the
residual log-volatility modes of stock idiosyncratic terms are best described by the log-gamma
distribution. For example, for Marathon Oil stock, the log-gamma fit is illustrated in red in
the left panel of Figure 6.6. Given the most appropriate log-Gamma distribution with scale
γ and cumulative distribution function FΓ, the “Gaussianization” is then achieved using the

transformation F
(−1)
N ◦ FΓ where F

(−1)
N is the inverse cumulative function of the Gaussian

distribution with mean 0 and scale γ. The right panel of Figure 6.6 displays the distributions
of the data before (in black) and after the procedure (in red) for (ω̃MRO(t))t, demonstrating
that the skewness is corrected.

The resulting time series of Ω0 and ω0 are illustrated Figure 6.7 (left and middle figures re-
spectively). As an illustrative example, the residual log-volatility of the idiosyncratic component
for the Marathon Oil stock is depicted in the leftmost plot of Figure 6.7. Note that the residual
log-volatility of the idiosyncratic component is less skewed than the residual log-volatility of the
factor component, ω0, thanks to the “Gaussianization” procedure.
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Figure 6.7: Resulting daily log-volatilities from calibration of NFM with 10 factors on 323 stocks
from 2013 to 2023. Left plot: common log-volatility mode Ω0 time series. Middle plot: mar-
ket residual log-volatility ω0 time series. Right plot: idiosyncratic residual log-volatility of the
Marathon Oil stock ω̃MRO.

6.6.3 Roughness estimation of the empirical NFM components

We proceed with the empirical estimation of the roughness for various log-volatility components
within the model. The goal is to empirically validate our main conjecture by estimating the
roughness of the following components: the common log-volatility component Ω0, the residual
log-volatility of the market mode ω0 and more generally, the residual log-volatility modes of the
factors (ωk)k∈J1,9K and of the idiosyncratic terms (ω̃i)i∈J1,323K.

As a reminder, our subsidiary conjecture posits that when two signals with differing levels
of roughness are combined, the resulting signal’s roughness is predominantly influenced by the
roughest component. Hence, observing that stocks log-volatility is rougher than that of indices, our
main conjecture postulates that the heightened roughness stems from the idiosyncratic component
of the stocks. This idiosyncratic roughness vanishes when averaging stock returns to reconstruct
index trajectories, consequently imposing a lower roughness on index log-volatility (Hindices ≳ 0.1).

Hence, for the Nested Factor model to align with the empirical results of Wu et al. (see
Figure 6.2), we expect to find log-volatility components with the following Hurst exponents:

• HΩ0 ≳ 0.1

• Hω0
≳ 0.1

• for all stocks i, Hω̃i
≈ 0

Estimation of the roughness on daily data

To assess the roughness of the log-volatility components within the NFM, we analyze the log-
volatility times series of Ω0, ω0, (ωk)k∈J1,9K and (ω̃i)i∈J1,323K, derived from the calibration of the
Nested Factor model, by calibrating SfBMs on these time series with the GMM from Wu et al.
[53]. Results are presented in Figure 6.8.

The analysis of the idiosyncratic residual log-volatility roughness, Hω̃i
, depicted in the leftmost

histogram of Figure 6.8, reveals that these components tend to be highly rough (Hω̃i ≈ 0), which
is consistent with our conjecture. Some of them, however, seem to demonstrate a greater Hurst
exponent (Hω̃i

≳ 0.2). This discrepancy might stem from noise present in our data, as the intraday
estimation does not yield such values (see below). Nonetheless, this finding remains consistent with
the general Hurst exponent patterns depicted in Figure 6.2, where higher H values (greater than
0.1, for instance) are observed for certain individual stocks, predominantly from the energy and
real estate sectors.

Additionally, the factor residual log-volatilities, (ωk)k∈J0,9K, whose estimated Hurst exponents
are depicted in the right histogram of Figure 6.8, exhibit trajectories with less roughness, as their
Hurst exponent values mostly exceed 0.2. In particular, the residual log-volatility of the market
mode ω0 demonstrates a Hurst exponent of Hω0

= 0.28. Since ω0, along with the common log-
volatility mode Ω0, determines the roughness of indices log-volatility, the value Hω0 = 0.28 > 0.1
is consistent with our conjecture. Some factor residuals, however, appear to exhibit very rough
trajectories. Specifically, residual modes associated with the Information Technology, Consumer
Goods, and Materials sectors have Hurst exponents close to 0 (see the right histogram of Fig-
ure 6.8). Despite some indices in Figure 6.2 exhibiting high roughness, which could explain these
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low Hurst values for certain factor residuals, future research could explore the roughness in relation
to industrial sectors.

Finally, applying the GMM calibration of [53] on the common log-volatility mode, Ω0, we obtain
HΩ0 = 0.09 (which is close to 0.1). This result further aligns with our main conjecture.
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Figure 6.8: Hurst exponent estimation using GMM calibration from Wu et al. [53] on the times
series of the idiosyncratic residuals (ω̃i)i∈J1,323K (left plot) and of the factor residuals (ωk)k∈J0,9K
(right plot) derived from thecalibration of NFM with 10 factors on daily data, on 323 US stocks,
from 2013 to 2023.

Sourcing f0 as the S&P500

To mitigate uncertainties and noise from the calibration process, one can leverage the known
roughness of S&P500 from prior research [41] by specifying that the market factor f0 is directly
sourced from the S&P500 returns time series. It is worth noticing that the calibration procedure,
explained and implemented above, yields a time series f0 that exhibits a high correlation with
S&P500 returns (with a correlation coefficient of 0.93). Additionally, the time series of Ω0 and
ω0 derived from the S&P500 returns are also correlated with the time series obtained from the
calibration, with correlation coefficients of 0.78 and 0.61, respectively. The roughness of Ω0 and
ω0 derived from the S&P500 is then similar to those estimated above. Indeed, using the GMM
from Wu et al., we find HΩS&P

0
= 0.16 and HωS&P

0
= 0.35 which remain consistent with our main

conjecture since both values are greater than 0.1.
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Figure 6.9: Estimation of the roughness of the market log-volatility modes Ω0 and ω0 using the
increments second moments (see Equation (6.6.1)). The scatter plots depict the log-volatility
increments second moments (τ −→ log

(
E(| log(σt+τ )− log(σt)|2)

)
) for daily estimation of the log-

volatility modes σ = Ω0 (left plot) and σ = ω0 (right plot). Ω0 and ω0 were derived from the
NFM calibration on daily data, imposing f0 to be the S&P500 returns. The plain line is the fit of
Equation (6.6.1), τ −→ log(Aτ2H +2C), where H is the Hurst exponent reporting on the roughness.

Given that these time series derived from the S&P500 exhibit less noise, we also attempted to
estimate the roughness following the method of Gatheral et al.. As explained in Section 6.1.2, this
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method estimates the roughness of a log-volatility σ by regressing linearly log (E(| log(σt+τ )− log(σt)|q))
against log(τ). Considering the persistent noise in our data, we opted to fit the parameters
(A,H,C) to the increments of the log-volatility using the following model:

log
(
E(| log(σt+τ )− log(σt)|2)

)
= log(Aτ2H + 2C) (6.6.1)

where H is the Hurst exponent reporting on the roughness of log-volatility σ. The estimation of
HΩ0

and Hω0
, illustrated in Figure 6.9, yields HΩ0

= 0.3 and Hω0
= 0.2. These findings align

with our main conjecture and are in agreement with the results obtained using the GMM, albeit
slightly higher. Using Gatheral et al. method, we also estimated the roughness of the factor
residuals (ωk)k∈J0,9K and the idiosyncratic residuals (ω̃i)i∈J1,323K. The resulting histograms are
shown in Figure 6.10. Similar to previous observations, the idiosyncratic residuals log-volatility,
(ω̃i)i∈J1,323K, generally appear to be highly rough, although some instances exhibit higher Hurst
exponents. Regarding the factor residuals (ωk)k∈J0,9K, except for the residual log-volatility of the
market mode ω0, their roughness estimation leads to very low Hurst exponent. We attribute these
results to the fact that while some factor residuals are indeed highly rough, the lack of intraday
insights in daily data may hinder a robust estimation. In the subsequent section, we assess log-
volatility roughness using intraday data to potentially address this limitation.
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Figure 6.10: Hurst exponent estimation using the calibration method of Equation (6.6.1) on
the time series of the idiosyncratic residuals (ω̃i)i∈J1,323K (left plot) and of the factor residuals
(ωk)k∈J0,9K (right plot) derived from the calibration of NFM on daily data, on 323 US stocks, from
2013 to 2023, imposing f0 to be the S&P500 returns.

Estimation of the roughness on intraday data with GMM from Wu et al.

The assessment of log-volatility roughness often necessitates intraday evaluations of volatility,
which can be facilitated by estimators like the Roger Satchell estimator (see Equation (1.1.2)) or
the Garman-Klass estimator (see Equation (1.1.1)). For example, employing Wu et al. GMM,

absolute daily returns of the S&P500 yield a Hurst exponent of H
|r|
S&P500 = 0.04, whereas both the

Roger-Satchell and Garman-Klass estimators yield H
RS/GK
S&P500 = 0.1, aligning with previous findings

(HS&P500 ∼ 0.14 as reported in [41]). To be thorough, we thus calibrated the Nested Factor
model on intraday data, at the minute time scale. Subsequently, we estimated, using the General
Method of Moments from Wu et al. [53], the roughness of the resulting log-volatility components.
Especially, as before, we examined the roughness of the common log volatility component Ω0, the
residual log-volatility of the market mode ω0, the factor residual log-volatility modes (ωk)k∈J1,9K
and the idiosyncratic residual log-volatility modes (ω̃i)i∈J1,323K.

The Hurst exponent estimation of the factor residual log-volatility modes, (ωk)k∈J0,9K, and of
the idiosyncratic residuals, (ω̃i)i∈J1,323K, are presented in Figure 6.11. The analysis reveals that
the Hurst exponent of the residual log-volatilities stemming from the idiosyncratic component is
nearly 0, with all values falling below 0.05. This result is in line with our conjecture and the
observation that individual stocks exhibit high roughness. Furthermore, certain factor residual
log-volatility modes also demonstrate considerable roughness. Specifically, with the exception of
the modes linked to the market, the Communication sector and the spread between the Financials
and Energy sectors, all factor modes exhibit Hurst exponents below 0.008. These findings are
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still consistent with our overarching investigation, as we expect only the market modes Ω0 and
ω0 to exhibit Hurst exponents around or above 0.1. We defer the exploration of the relationship
between industrial sectors and roughness to future research. Besides, notably, the roughness of
the residual log-volatility of the market mode is found to be Hω0 = 0.13 > 0.1, aligning with
our conjecture. Additionally, we assess the roughness of the common log-volatility mode and find
HΩ0

= 0.3 > 0.1. Consequently, conversely to the previous estimations, the roughness of the index
appears to be attributed to the residual log-volatility of the market mode, as it is rougher than
the common volatility mode. This observation adds further evidence to the difficulty of estimating
Hurst exponents.
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Figure 6.11: Hurst exponent estimation using the GMM of Wu et al. [53] on the time series of the
idiosyncratic residuals (ω̃i)i∈J1,323K (left plot) and of the factors residuals (ωk)k∈J0,9K (right plot)
derived from the NFM calibration on intraday data (1min bin), on 323 US stocks, from 2013 to
2023.

Discussion

Let us summarize the key findings obtained from the empirical calibration of the Nested Factor
model incorporating SfBM components.

Our investigation indicates that the residual log-volatility modes of the stock idiosyncratic
terms generally demonstrate a highly rough trajectory, characterized by a Hurst exponent close
to 0. This observation remains consistent across both daily and intraday data. This finding
supports the conjecture that the idiosyncratic residual mode largely contributes to the roughness
for individual stock trajectories. However, it is noteworthy that our analysis also identifies specific
idiosyncratic residual modes with a Hurst exponent exceeding 0.1, predominantly from the energy
and real estate sectors. Nonetheless, these findings remain consistent with the empirical results
depicted in Figure 6.2 which shows that not all stocks exhibit H ≈ 0.

Estimating the roughness of the factor residual modes proves to be particularly challenging,
displaying notable variability across different estimations or data frequencies. However, a key find-
ing emerges regarding the roughness of the market mode residual, ω0. Across all our estimations,
this component consistently demonstrates a Hurst exponent greater than 0.1. Additionally, to
provide a comprehensive analysis of the market mode, we estimated the roughness of the common
log-volatility mode Ω0, which consistently manifests a Hurst exponent greater than 0.09. Thus, our
estimation the roughness of the market log-volatility modes align with both our main conjecture
and with empirical findings of Wu et al..

In Table 6.1, we compile the various Hurst exponent values for the market mode components:
HΩ0

and Hω0
. It is evident that, in all our experiments, both market modes exhibit a Hurst

exponent exceeding 0.09.
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Data sample Estimation method HΩ0
Hω0

Daily data GMM from Wu et al. [53] 0.09 0.28
Daily data sourcing f0 from S&P500 GMM from Wu et al. [53] 0.16 0.35

Daily data sourcing f0 from S&P500
Log-volatility increments moments (Equa-
tion (6.6.1))

0.3 0.2

Intraday data GMM from Wu et al. [53] 0.3 0.13

Table 6.1: Estimation of the Hurst exponent of the common log volatility component Ω0 and of
the residual log-volatility of the market mode ω0 for different methods and different data sample.

Conclusion

Starting from the intriguing observation that, although indices are made of stocks, indices log-
volatility are less rough than stocks log-volatility and building on the idea that the mixture of
several signals with different roughness would report on the roughest component, we postulate
that the roughness of the stocks has to come from an idiosyncratic component.

Revisiting the Nested Factor model with Stationary fractional Brownian Motion as log-volatilities,
we investigated our conjecture concomitantly via analytical study, numerical simulations and em-
pirical calibration.

Already proven to reproduce many of empirical characteristics of joint stock returns, and no-
tably the dependence of stock returns volatility on market returns, the Nested Factor model also
proves here that it reconciles the difference of roughness between the log-volatility of indices and
that of stocks.

The calibration of the model on empirical data and the estimation of the roughness of each
log-volatility component of the model corroborate that the roughness of the log-volatility of stocks
primarily originates from the residual log-volatility of the stock returns idiosyncratic component.
Specifically, we observe that the log-volatility components driving the market mode are less rough
(H ≳ 0.1) compared to the residual log-volatility modes of the stock idiosyncratic terms (H ≈ 0).
Consequently, the empirical roughness of indices is well-accounted for by the components of the
market mode (H ≳ 0.1), as the rougher idiosyncratic contribution diminishes when averaging
across stocks to reconstruct the indices trajectory.

Take Home Message

• Empirical findings indicate that the log-volatility of individual stocks is rougher (H ≈
0.) compared to that of indices (H ≳ 0.1) (see also Wu et al. (2022)).

• Initial intuition: the roughness of the combination of two signals with differing levels
of roughness reflects the rougher signal.

• Main conjecture: factor models in which the idiosyncratic component exhibits sig-
nificant roughness, while the factor terms are comparatively smoother, could replicate
the empirical findings of Wu et al. (2022). Specifically, we conjecture that the rougher
idiosyncratic component would manifest in individual trajectories but would be aver-
aged out in the index trajectory, which would then predominantly reflect the factor’s
roughness.

• Due to its established advantages, we chose to investigate the ability of the Nested
Factor model, incorporating SfBM as log-volatility modes, to replicate the empirical
observations of differing levels of roughness between stocks and indices.

• Investigation, which involved concomitantly numerical simulations, analytical devel-
opments and empirical studies, consistently supports our main conjecture.

• Notably, empirical calibration shows

– market mode roughness HΩ0
and Hω0

greater than 0.09

– idiosyncratic residual roughness (generally) Hω̃i ≈ 0.
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Conclusion

To succeed, jump as quickly at opportunities as you do at conclusions.

Benjamin Franklin

Overview of the results

This thesis aimed to advance the field of multivariate volatility modeling by examining the stylized
facts that emerge when multiple assets are considered and by proposing frameworks to repli-
cate these phenomena. To achieve this, we conducted concurrent empirical and theoretical work.
Despite the fact that our approach involved going back and forth between data and model devel-
opment, this section delineates the main empirical findings and the key theoretical contributions
separately for enhanced clarity.

In addition to the goal of replicating, in a multidimensional context, the well-established stylized
facts of financial time series –such as fat-tailed distributions, volatility clustering, and univariate
time reversal asymmetry– our work was further motivated by the identification of two additional
empirical characteristics: the time-reversal asymmetry between pairs of assets (discussed in Chap-
ter 1) and the intriguing nature of price (co-)jumps (outlined in Chapter 5).

Indeed, our study elucidated the cross-leverage and cross-Zumbach effects observed between
assets. These cross-time-reversal asymmetry effects further prompted the adoption of a path-
dependent model to delineate cross-asset feedback.

Additionally, our data-driven study of financial price jumps of 300 US stocks over an 8-year
period, employing an unsupervised classification method based on wavelet coefficients that we
developed, yielded multifaceted results. Specifically, our method enables investigation into the
reflexive nature, the mean-reversion strength and the trend-aligned behavior of price jumps and
co-jumps. Consistently with prior research [5, 7, 6], we found that not all price jumps are related
to news events. In fact, we demonstrated that a majority of price jumps and co-jumps, including
significant instances, originate from endogenous mechanisms and contagion effects. The temporal
clustering of co-jumps, observed in Chapters 1 and 5, further supports the notion of propagation
across stocks.

These empirical findings further motivated the development of volatility models in multiple
dimensions. Given their ability to replicate the majority of stylized facts observed in single-asset
financial time series, QHawkes models were a relevant choice for investigating multivariate volatil-
ity and thus constituted the main focus of our analysis.

Chapter 2 provided a comprehensive overview of the model and of its principal properties.
Notably, the analysis of the stationary properties in one dimension revealed that the quadratic
feedback loop of the QHawkes model achieves a balance between inhibiting and exciting realisations,
thereby generating extreme events while maintaining stability (see also [69, 63]).

Subsequently, we extended the QHawkes process to multiple dimensions, encompassing several
assets. We specifically outlined the feedback mechanisms wherein activity in one asset triggers
increased activity in others. These feedback mechanisms were formulated to replicate the cross-
time-reversal asymmetry observed in Chapter 1. Moreover, considering the significant occurrence
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of co-jumps and their often endogenous nature, we developed two frameworks: a multivariate
independent QHawkes process, which remains tractable but may have limitations in replicating
co-jump occurrences, and a bivariate QHawkes process that ensures multiple processes move si-
multaneously at the cost of increased complexity. We compiled our theoretical results in Chapter 3,
demonstrating that our frameworks enable the replication of empirical characteristics of financial
time series, particularly the fat-tailed returns distribution.

The empirical calibration of the model, detailed in Chapter 4, focused on characterizing the
linear and quadratic kernels of the QHawkes. The findings consistently indicated that endogeneity
primarily stems from the long-range self-linear feedback. In the case of a factor model encompassing
MQHawkes, our calibration demonstrated that, although most of the index dynamics were filtered
out from the stock idiosyncratic dynamics, the index’s past negative returns and past volatility
still tend to increase the stock’s idiosyncratic activity.

Finally, to be thorough, in Chapter 6, we delved into multivariate volatility through the lens
of a specific factor model: the Nested Factor Model. This model offered a suitable framework
to comprehend the empirical observations by Wu, Bacry and Muzy [53], that stock log-volatility
tends to exhibit more roughness compared to that of indices. Our analysis of the Nested Factor
Model, employing Stationary Fractional Brownian Motions as log-volatilities, through theoretical,
numerical, and empirical scrutiny, revealed that the roughness of stocks emanates from the residual
log-volatility of the idiosyncratic term of returns. The roughness of the idiosyncratic log-volatility
of the stock is apparent when it is juxtaposed with smoother paths, like indices contributions, but
vanishes when averaged across stock paths to construct that of the index (market). Correspond-
ingly, the log-volatility modes of “market” (indices) exhibit smoother paths, a characteristic that
emerges only when the rough idiosyncratic components of individual stocks are averaged out.

Main Results

• Main empirical results

– Time-reversal asymmetry effects manifest not only within individual asset, but
also across assets.

– Many co-jumps, even large ones, seem to arise due to contagion mechanisms and
endogenous feedback.

• Main theoretical results

– The quadratic extension of the Hawkes processes allows for the generation of
extreme events while maintaining the stability properties of the linear Hawkes
model, even in regimes where the endogeneity ratio exceeds 1.

– In multi-dimensions, the QHawkes model preserves the notable properties of the
univariate model that are, the volatility clustering, the generation of extreme
events (fat-tailed distribution) and the (cross)-time reversal asymmetry.

– The calibration of the MQHawkes revealed that memory kernels exhibit long-
range memory and that a significant portion of endogeneity originates from the
linear feedback of the asset’s volatility on itself.

– The Nested Factor Model, incorporating Stationary fractional Brownian motions
as log-volatility modes, offers a well-suited framework for investigating multivari-
ate volatility, particularly, the intricate relationship between stocks and indices.
Indeed, this model replicates all empirical characteristics of multivariate financial
returns, including the differing levels of roughness observed between stocks and
indices.

• Technical outcomes: We introduced an unsupervised approach to investigate the na-
ture of bursts of activity. While it was applied to financial price jumps in this context,
it can be adapted to study bursts of activity in other fields (for more comprehensive
details, refer to Morel’s GitHub tutorial [127]).
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Future directions

Throughout the chapters, we have identified several questions and limitations that remain unre-
solved. This final section highlights the most intriguing remaining inquiries.

This thesis investigated the reflexive nature of co-jumps. However, scrutinizing at higher fre-
quency co-jumps identified as endogenous would enhance our understanding of these dynamics and
facilitate the identification of pivotal stocks driving contagion. Additionally, investigating whether
multivariate processes with independent QHawkes processes can accurately replicate the observed
occurrence of co-jumps and their clustering would provide further insights into the micro-structural
origins of co-jumps. Future research endeavors could address this question by replicating the ex-
periments conducted by Lillo et al. [54]. This investigation would determine whether independent
jump processes are sufficient or if a dedicated “co-jumps” process is necessary.

Besides from a technical standpoint, implementing the calibration of MQHawkes has proven
to be particularly challenging and non-robust, especially when attempting to calibrate for more
than two assets simultaneously. In this thesis, we focused on pairs of assets, as this approach
still allowed us to characterize all the main feedback mechanisms. Nevertheless, the development
of a robust calibration method (potentially using Fourier domain techniques) would undoubtedly
enhance the applicability of this model which exhibits intriguing properties.

Main Remaining Questions

• Understand further the microstructure of co-jumps

– How do they originate at the microstructural level, on an event-by-event scale?

– Can independent QHawkes processes replicate the empirical abundance co-jumps?

• Technical improvements can be engineered
Implementation of a robust calibration method for the (M)QHawkes model, enabling
recovery of the underlying (M)QHawkes dynamics from aggregated data.
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[66] Pierre Brémaud and Laurent Massoulié. Hawkes branching point processes without ancestors.
Journal of applied probability, 38(1):122–135, 2001.

[67] A Saichev and Didier Sornette. Superlinear scaling of offspring at criticality in branching
processes. Physical Review E, 89(1):012104, 2014.

[68] Kiyoshi Kanazawa and Didier Sornette. Exact and robust asymptotic solutions to nonlinear
hawkes processes: power law exponents of intensity distributions and methods. arXiv preprint
arXiv:2110.01523, 2021.

[69] Kiyoshi Kanazawa and Didier Sornette. Ubiquitous power law scaling in nonlinear self-excited
hawkes processes. Physical review letters, 127(18):188301, 2021.

[70] Pierre Blanc, Jonathan Donier, and J-P Bouchaud. Quadratic hawkes processes for financial
prices. Quantitative Finance, 17(2):171–188, 2017.

[71] Thibault Jaisson, Mathieu Rosenbaum, et al. Limit theorems for nearly unstable hawkes
processes. Annals of Applied Probability, 25(2):600–631, 2015.

[72] Yosihiko Ogata. On lewis’ simulation method for point processes. IEEE transactions on
information theory, 27(1):23–31, 1981.
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[92] Per Bak, Kan Chen, José Scheinkman, and Michael Woodford. Aggregate fluctuations from
independent sectoral shocks: self-organized criticality in a model of production and inventory
dynamics. Ricerche economiche, 47(1):3–30, 1993.
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Glossary

tbond is the 10 years future contract on US Treasury bond. 9

Brownian motion is a way to describe the seemingly random movement of particles or variables
over time. It follows a Normal distribution. 14

E-mini index is the future contract on the S&P500 index which tracks the stock value of the 500
largest companies listed on stock exchanges in the United States. 8

Elliptic models describe return dynamics as dP i = σiϵi, with ϵi a random variable, allowing for
the analytical derivation of various properties. 22

Liquidity is the ease of converting an asset or security into cash. A liquidity crisis is characterized
by the vanishing of market participants, when they are to afraid to trade, at any price. 7

Market makers are particular market participants who facilitate trading in financial instruments
by providing liquidity to the market (see a subsequent footnote or the glossary for the defini-
tion of liquidity). Market makers maintain an inventory of securities and are willing to buy
or sell them at best quoted prices, thereby providing liquidity to the market. Their primary
role is to ensure that there is enough trading activity in a particular security or asset so
that buyers and sellers can transact at any time. Some exchanges also pay them to ensure
enough liquidity. Market makers gain money by selling high and buying low, faster than
other participants. 7

SEC is the Securities Exchange Commission. 9

tick size is minimum increment between two price changes. It depends on the traded asset. 26
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Notations

For all chapters

A Matrix

A⊤ Matrix transpose

A(τ, τ) Matrix time diagonal

Aii Matrix diagonal

X Vector

(N i
t )t≥0 Quadratic Hawkes process describing the time of the price changes of asset i

(Nc
t )t≥0 Quadratic Hawkes process describing the times of co-jumps

for 2 price processes in the correlated case

(P i
t )t≥0 Price process of the asset i at time t

(dP i
t )t≥0 Price returns process of the asset i at time t

σt Volatility process at time t

σRS
t Roger Satchell estimation of the volatility process at time t

σGK
t Garman Klass estimation of the volatility process at time t

σB
t Bachelier estimation of the volatility process at time t

ψ Tick size

C two-point covariance

W,B fractional Brownian motions of Hurst exponent H = 1/2

Li
j Leverage kernel of intensity i reflecting the feedback of the price changes of asset j

Ki
jk Quadratic kernel of intensity i reflecting the feedback of the price changes of assets j and k

Ki
j ≡ Ki

jj

kijk Rank one contribution of Ki
jk

kij Rank one contribution of Ki
jj

For Chapters 1, 2 and 3

λi,t Intensity of the QHawkes process N i at time t

λi,∞ Baseline intensity of the QHawkes process N i

µi,t Intensity of the QHawkes process N i at time t in the correlated case

µi,∞ Baseline intensity of the QHawkes process N i in the correlated case

n/nH/nQ/nZ Endogeneity ratio of the process/Hawkes contribution/regular contribution/Zumbach contribution

ϵt Sign of the price change at time t, ϵt ∈ {−1, 1}

Qi
jk Same as Ki

jk for the correlated case

ρ Correlation of the signs of the price changes dP 1 and dP 2 in the correlated case

Kd Kernel matrix such that Kdij = Ki
jj

K× Kernel vector representing cross feedback, composed by Ki
jk with j < k

λ̄ Mean Intensity

δ·,· Kronecker delta: δx,y = 1, when x = y and δx,y = 0 otherwise

δ(·) Dirac mass

Cij Covariance Cij(τ) := E
(
dN i

t

dt

dN j
t−τ

dt

)
− λ̄iλ̄j
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Dijk 3 points correlation structure Dijk(τ1, τ2) := E
(
dN i

t

dt

dP j
t−τ1

dt

dP k
t−τ2

dt

)
D× Square (2x2) correlation matrix such that D×i = Diij

Dd Square (2x2) correlation matrix such that D×ij = Dijk with j ̸= k

(ϕd)
i
jj Time diagonal contribution of (Kd)

i
jj

ϕ Kernel from the linear feedback loop of (Q)Hawkes process, in 1D

Hi
j Hawkes component of intensity i from feedback j; Hi

j = ni
H,jhj(t)

ni
H,j Endogeneity ratio of Hawkes component Hi

j

Zi
j Quadratic component of intensity i from feedback j

aiZ,j Amplitude of the quadratic component Zi
j ; a

j
Z,i =

√
2nZ/ωi

Y i
j Cross component of intensity i; Y i

j = aiZ,z1z2

aiZ, Amplitude of the cross component of intensity i

γ Anisotropy coefficient γ ∈ (−2, 2), such that aiZ, = 2γnZ/
√
ω1ω2

p∞(r, θ) ≈
r→∞

F (θ)r−α Joint pdf of (z1, z2) in polar coordinates in the case ZHawkes without Hawkes

with exponential kernels.

For Chapter 4

rit,d Returns of asset i of the minute t of day d

σi
t,d Volatility of asset i of the minute t of day d

ri,t Returns of asset i at time t

σi,t Volatility of asset i at time t

σj,∞ Baseline volatiltiy of asset j

Kj
× In a 2D-QGARCH model, kernel reflecting the cross correlation of the two returns feedback

on future volatility of asset j

ϕj
× Time-diagonal of Kj

×

ϕj
i Time-diagonal of Kj

i

Cij Covariance Cij(τ) = E(σ2
i,tr

2
j,t−τ )− σ2

i r
2
j

Dij Three-point correlation structures Dij(τ1, τ2) := E
((
σ2
i,t − ⟨σ2

i,t⟩t
)
rj,t−τ1rj,t−τ2

)
D×j Three-point correlation structure D×j(τ1, τ2) := E

((
σ2
j,t − ⟨σ2

j,t⟩t
)
rA,t−τ1rB,t−τ2

)
Vij Covariance Vij(τ) := E

(
σ2
i,trj,t−τ

)
βi Exposure of stock i to the market

f0,t Market (E-mini) returns at time t

ei,t Idiosyncratic returns component of stock i at time t

σf0,t Volatility of the market (E-mini) at time t

σi,t Volatility of the idiosyncratic returns component of stock i at time t

σf0,∞ Baseline volatility of the market (E-mini) at time t

σi,∞ Baseline volatility of the idiosyncratic returns component of stock i at time t

L0 Leverage kernel of index volatility reflecting the feedback of the index returns

K0 Quadratic kernel of index volatility reflecting the feedback of the index returns

Li Leverage kernel of the volatility of the stock idiosyncratic component reflecting

the feedback of the residual returns

Ki Quadratic kernel of the volatility of the stock idiosyncratic component reflecting

the feedback of the residual returns

ϕi Time-diagonal of Ki

ki Rank-one approximation of the off-time-diagonal of Ki

Li
× Leverage kernel of the volatility of the stock idiosyncratic component reflecting

the feedback of the index returns

Ki
× Quadratic kernel of the volatility of the stock idiosyncratic component reflecting

the feedback of the index returns
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ϕi
× Time-diagonal of Ki

×

ki× Rank-one approximation of the off-time-diagonal of Ki
×

Additionally, for Chapter 6

βi Exposure of stock i to the market

f0,t Market (or index) returns at time t

fk,t Returns of factor term k at time t

ϵi,t Idiosyncratic returns component of stock i at time t

Ω0,1(t) Common volatility modes between factors and idiosyncratic terms, at time t

ωk(t) Residual volatility mode of factor k, at time t

ω̃i(t) Residual volatility mode of stock i, at time t

Hω Hurst exponent of the log-volatility ω

116



Appendix A

Appendix of Chapter 3:
MQHawkes definition

A.1 Condition to Guarantee Positive Sign of QHawkes In-
tensities in 2D Case

Inspired by the method in [90], we detail here sufficient conditions for the intensity of the process
i to be positive, when considering N assets. We first consider the simple case L ≡ 0. First,
considering that the kernels are negligible up to a value q, and using a discrete approximation of
the integration, we rewrite the intensity associated with asset i:

λi,t =λi,∞ +

N∑

j≤k

∫∫ t

−∞
Ki

jk(t− s, t− u) dP j
s dP k

u ≃ λi,∞ +

N∑

j≤k

q∑

u=1

q∑

s=1

dP j
t−uK

i
jk(s, u)dP

k
t−s

So we can write:

λi,t = λi,∞ + r⊤t Kirt

where

Ki =




Ki
11(1, 1) . . . Ki

11(1, q) . . . 1
2K

i
1N (1, 1) . . . 1

2K
i
1N (1, q)

...
. . .

...
...

. . .
...

Ki
11(q, 1) . . . Ki

11(q, q) . . . 1
2K

i
1N (q, 1) . . . 1

2K
i
1N (q, q)

...
. . .

...
1
2K

i
1N (1, 1) . . . 1

2K
i
1N (1, q) . . . Ki

NN (1, 1) . . . Ki
NN (1, q)

...
. . .

...
...

. . .
...

1
2K

i
1N (q, 1) . . . 1

2K
i
1N (q, q) . . . Ki

NN (q, 1) . . . Ki
NN (q, q)




, rt =




dP 1
t−1
...

dP 1
t−q
...

dPN
t−1
...

dPN
t−q




SoKi is a symmetric blocs matrix where the bloc j of the diagonal is blocjj =



Ki

jj(1, 1) . . . Ki
jj(1, q)

...
. . .

...
Ki

jj(q, 1) . . . Ki
jj(q, q)




and the bloc (k, j) when k < j is blockj = 1
2



Ki

kj(1, 1) . . . Ki
kj(1, q)

...
. . .

...
Ki

kj(q, 1) . . . Ki
kj(q, q)


 (when j < k the cross

kernels is Ki
jk).

Thus, in this case, where L ≡ 0, sufficient condition to keep the intensity positive is to have Ki

positive semi-definite.

If we now consider the case where L ̸= 0, following the same method, we can write:
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λi,t = λi,∞ + Lirt + r⊤t Kirt

where rt and Ki are the same as before and Li is

Li =
(
Li
1(1) . . . Li

1(q) . . . Li
N (1) . . . Li

N (q)
)⊤

Assuming Ki is invertible, one can complete the square by writing:

λi,t =λi,∞ + Lirt + r⊤t Kirt

=λi,∞ +

(
rt +

1

2
K−1

i Li

)⊤

Ki

(
rt +

1

2
K−1

i Li

)
− 1

4
L⊤
i K

−1
i Li

In conclusion, a sufficient condition for intensities to stay positive when L ̸= 0 is to have all
kernels Ki positive definite and

λi,∞ ≥
1

4
L⊤
i K

−1
i Li, ∀i
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A.2 Stationary Condition in Bivariate Case

In the bivariate case, we no longer have E(dP i
udP

j
u) = 0 when i ̸= j. Thus, when computing E(λt)

to find the mean intensity and thus the stationary condition, we need to compute the mean of
cross feedback.

We first introduce m(dt,dξ1,dξ2) the joint Punctual Poisson Measure associate to the jump
processes of the prices (P 1, P 2). So it is a pure jump process with i.i.d jump sizes (ξ1ξ2) of common
law p on (R,B(R)). We assume

∫
R
ξ1ξ2p(dξ1,dξ2) = ψ1ψ2.

1

ψ1ψ2
E
(∫ t

−∞

∫ t

−∞
K12(t− s, t− u)dP 1

s dP
2
u

)
=

1

ψ1ψ2
E
(∫ t

−∞
K12(t− u, t− u)dP 1

udP
2
u

)

=
1

ψ1ψ2
E
(∫

R

∫ t

−∞
K12(t− u, t− u)s1us2uξ1uξ2um(du,dξ1,dξ2)

)

=
1

ψ1ψ2
E
(∫

R

∫ t

−∞
K12(t− u, t− u)s1us2uξ1uξ2uµc

udup(dξ
1,dξ2)

)

=
1

ψ1ψ2
E
(∫ t

−∞
K12(t− u, t− u)s1us2uµc

udu
)
E
(∫

R

ξ1uξ
2
up(dξ

1,dξ2)
)

=

∫ t

−∞
K12(t− u, t− u)E(s1us2u)E(µc

u)du

= ρµc

∫ t

−∞
K12(t− u, t− u)du
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A.3 Yule-Walker Equations: Complement

We write the Yule-Walker equations for the matrix and one for D×, the calculations can be made
as in Appendix 1 of [70]:

D×(τ1, τ2) =

∫ +∞

τ+
1

Kd(u)D×(τ1 − u, τ2 − u)du

+ 2

∫ +∞

τ+
1

Kd(u, τ1)

(D112(u− τ1, τ2 − τ1) 0
0 D221(u− τ1, τ2 − τ1)

)
du

+

∫ +∞

τ+
1

K×(u, τ1)

(
0

D211(u− τ1, τ2 − τ1)

)⊤

du+

∫ +∞

τ+
1

K×(τ1, u)

(D122(u− τ1, τ2 − τ1)
0

)⊤

du

(A.3.1)
In the bivariate case, we need to consider dN c. Thus, C becomes a 3×3 matrix, and the three-

point correlation now also considers the components Dcij . With this in mind, we can calculate the
Yule-Walker equation for C in the bivariate case:

C(τ) = λQd(τ) +

∫ +∞

0

Qd(u, u)C(τ − u)du+ 2

∫ +∞

0

∫ +∞

u+

Qd(τ + u, τ + v)Dd(u, v)dvdu

+

∫ +∞

0

∫ +∞

u+

Q×(τ + u, τ + v)



D112

D212

Dc12




⊤

(u, v)dvdu+

∫ +∞

0

∫ +∞

u+

Q×(τ + u, τ + v)



D112

D212

Dc12




⊤

(u, v)dudv

+ ρ

∫ +∞

0



Q1

12

Q2
12

Qc
12


 (u)



Cc1
Cc2
Cc3




⊤

(τ − u)du+

∫ +∞

0



Q1

11

Q2
22

Qc
cc


 (u)



Cc1
Cc2
Cc3




T

(τ − u)du

where λ is a 2× 2 matrix defined as

λ :=

(
λ̄1 µ̄c

µ̄c λ̄2

)
.
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A.4 Asymptotic Behavior of Decaying Power Law Kernels

A.4.1 Asymptotic Forms

We consider decaying power law kernels, such that:

Kd(τ) ∼
τ−→+∞

(
kd1τ

−1−ϵd k12τ
−1−ϵo

k21τ
−1−ϵo kd2τ

−1−ϵd

)
Kd(τv1, τv2) ∼

τ−→+∞

(
K̃11(v1, v2)τ

−2ρd K̃12(v1, v2)τ
−2ρo

K̃21(v1, v2)τ
−2ρo K̃22(v1, v2)τ

−2ρd

)

K×(τ) ∼
τ−→+∞

(
kx1τ

−1−ϵ×

kx2τ
−1−ϵ×

)
K×(τv1, τv2) ∼

τ−→+∞

(
K̃1

12(v1, v2)τ
−2ρ×

K̃2
12(v1, v2)τ

−2ρ×

)

Where K̃11, K̃12, K̃21, K̃22, K̃
1
12 and K̃2

12 are bounded. Given the Yule-Walker equations of
Section 3.2.2, we expect the correlation structure to have a similar form. So we look for them as
decaying power law functions with parameters defined such as:

C(τ) ∼
τ−→+∞

(
cd1τ

−βd c12τ
−βo

c21τ
−βo cd2τ

−βd

)
Dd(τv1, τv2) ∼

τ−→+∞

(D̃111(v1, v2)τ
−2δd D̃122(v1, v2)τ

−2δo

D̃211(v1, v2)τ
−2δo D̃222(v1, v2)τ

−2δd

)

D×(τ) ∼
τ−→+∞

(
d112τ

−β×
d d121τ

−β×
o

d212τ
−β×

o d221τ
−β×

d

)
D×(τv1, τv2) ∼

τ−→+∞

(D̃112(v1, v2)τ
−2δ× D̃121(v1, v2)τ

−2δ×

D̃212(v1, v2)τ
−2δ× D̃221(v1, v2)τ

−2δ×

)

As in [70], we make the following hypothesis on the exponents: ρd >
1
2 , ρo >

1
2 , ρ× > 1

2 , so the
first and second moments are finite. Moreover, we focus on the cases:

• Non critical case (nH < 1), where we assume 0 < ϵd < 1, 0 < ϵo < 1,

• Critical case (nH = 1), where we assume 0 < ϵd <
1
2 , 0 < ϵo <

1
2 ,

In the non-critical case (n < 1), the method consists in replacing Kd, K×, C, Dd and D× by
their asymptotic expressions presented above in the Yule-Walker equations (Equations. (3.2.5),
(3.2.8) and (A.3.1)) and study the limit τ −→ +∞.

The rest of this section is organised as follow. Section A.4.2 serves as a pedagogical tool and
introduce, for a univariate linear Hawkes, the methods to derive the relationship between the
exponents of the correlation structures and the exponents of the kernels in both the non critical
and the critical case. Section A.4.3 describes the extension of the methods for a quadratic Hawkes
in the critical case (non critical case being more natural to derive from the linear one). Finally,
Appendix A.5 gives the resulting relationships for both the critical and non critical case for a
quadratic Hawkes.

A.4.2 Asymptotic behavior of auto-covariance structures - Methods for
critical and non critical linear Hawkes

As a pedagogical tool, we derive here the method to study asymptotic behavior of the auto-
covariance structure in the simple case of univariate linear Hawkes. Those methods are then derived
to obtain the results for the multivariate quadratic case, one of which is detailed in Appendix A.4.3
for the univariate quadratic case.

Let’s consider a univariate Hawkes process with kernel ϕ, baseline intensity λ∞ and define
the covariance C as in Equation (3.2.1). In the univariate lienar case, we assume the following
asymptotic forms:

ϕ(τ) ∼
τ−→+∞

c0τ
−1−ϵ and C(τ) ∼

τ−→+∞
c1τ

−β

where

• in the non critical case (nH < 1), 0 < ϵ < 1

• in the critical case (nH = 1), 0 < ϵ < 1
2
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Non Critical case - Time domain

We recall the Yule-Walker equation for linear Hawkes,

C(τ) = λ̄ϕ(τ) +

∫ +∞

0

ϕ(u)C(τ − u)du

C(τ) = C1(τ) + C2(τ)
with: C1(τ) = λ̄ϕ(τ)

C2(τ) =
∫ +∞

0

ϕ(u)C(τ − u)du

So, we have:

C1(τ) = λ̄ϕ(τ) = λ̄c0τ
−1−ϵ + o(τ−1−ϵ)

Then, the second term, we assume the integral is dominated by u with big values (u ∼ τ), thus:

C2(τ) =
∫ ∞

0

ϕ(u)C(τ − u)du =

∫ ∞

0

ϕ(u)c1(τ − u)−βdu

=

∫ ∞

0

ϕ(u)c1(1−
u

τ
)−βτ−βdu

−→
τ−→∞

τ−βc1

∫ ∞

0

ϕ(u)du

We know
∫∞
0
K(u, u)du is finite, so we did extract the asymptotic behavior.

In the end, we have:

c1τ
−β + o(τ−β) = κλ̄c0τ

−1−ϵ + o(τ−1−ϵ)

+ c1τ
−β

∫ +∞

0

ϕ(u, u)du+ o(τ−β),

from which we directly read the result β = 1 + ϵ .

Critical case with Fourier relation from Hawkes-1971-Point Spectra of Some Mutually
Exciting Point Processes

In critical case, when nH = 1, the relationship between auto-correlation structures exponents and
kernel exponents can not be determined by looking at the limit τ → +∞. Thus, to overcome this
difficulty, we use a second method to investigate asymptotic behavior using Fourier-domain.

We define the Fourier transform of a function f such as:

f̂(ω) =

∫

R
f(t)e−iωtdt

Step 1: Find the regularity of the Yule-Walker terms
Let’s recall the Yule-Walker equation for the covariance C defined in Equation (3.2.1) for a

linear Hawkes process with kernel ϕ:

C(τ) = ϕ(τ)λ̄+

∫ +∞

−∞
ϕ(τ − u)C(u)du. (A.4.1)

As in [15], C’s extension in 0, in Fourier domain, gives:

Ĉ∗(ω) = λ̄+ Ĉ(ω). (A.4.2)

We introduce B̂ such that:

Ĉ(ω) = (1− ϕ̂(ω))−1(ϕ̂(ω)λ̄− B̂(ω)),

122



thus,

Ĉ(ω) = (1− ϕ̂(ω))−1(ϕ̂(ω)λ̄− B̂(ω)). (A.4.3)

By definition, B(τ) = 0 for τ > 0 so that the Fourier transforms B̂(ω) is regular1 in the upper

half plane Im(ω) > 0. Similarly from the condition ϕ(u) = 0 for u < 0 it follows that ϕ̂(ω) is
regular in the lower half-plane Im(ω) < 0.

Using Ĉ⊤(ω) = Ĉ(−ω), we obtain:

(ϕ̂(ω)λ̄− B̂(ω))⊤(1− ϕ̂⊤(ω))−1 = (1− ϕ̂(−ω))−1(ϕ̂(−ω)λ̄− B̂(−ω)),

which gives:

(1− K̂(−ω))B̂⊤(ω) + K̂(−ω)D = B̂(−ω)(1− K̂⊤(ω)) + K̂⊤(ω)D.

On the left side we have (1−K̂(−ω))B̂⊤(ω)+K̂(−ω)D, which is regular on Im(ω) > 0, whereas
on the right side we have B̂(−ω)(1 − K̂⊤(ω)) + K̂⊤(ω)D which is regular on Im(ω) < 0. So, as
in [75], we can say that both side are equal to zero and find B̂(ω) = −K̂⊤(−ω)D(1− K̂(−ω))−1.
Plugging the later in Equation (A.4.3), one eventually gets:

Ĉ(ω) =(1− ϕ̂(ω))−1(ϕ̂(ω)λ̄− B̂(ω))

=(1− ϕ̂(ω))−1(ϕ̂(ω)λ̄+ ϕ̂⊤(−ω)λ̄(1− ϕ̂(−ω))−1)

=(1− ϕ̂(ω))−1ϕ̂(ω)λ̄+ (1− ϕ̂(ω))−1ϕ̂⊤(−ω)D(1− ϕ̂(−ω))−1

=(1− ϕ̂(ω))−1ϕ̂(ω)λ̄(1− ϕ̂(−ω))(1− ϕ̂(−ω))−1 + (1− ϕ̂(ω))−1ϕ̂⊤(−ω)λ̄(1− ϕ̂(−ω))−1

=(1− ϕ̂(ω))−1ϕ̂(ω)λ̄(1− ϕ̂(−ω))(1− ϕ̂(−ω))−1 + (1− ϕ̂(ω))−1ϕ̂⊤(−ω)λ̄(1− ϕ̂(−ω))−1

=(1− ϕ̂(ω))−1ϕ̂(ω)D(1− ϕ̂(−ω))−1 − (1− ϕ̂(ω))−1ϕ̂(ω)Dϕ̂(−ω)(1− ϕ̂(−ω))−1

+ (1− ϕ̂(ω))−1ϕ̂⊤(−ω)D(1− ϕ̂(−ω))−1

=(1− ϕ̂(ω))−1(ϕ̂(ω)λ̄+ λ̄ϕ̂⊤(−ω)− ϕ̂(ω)λ̄ϕ̂⊤(−ω))(1− ϕ̂(−ω))−1.

Equation (A.4.6) allows to obtain:

Ĉ∗(ω) = (1− ϕ̂(ω))−1λ̄(1− ϕ̂(−ω))−1 . (A.4.4)

We then develop the expressions of ϕ̂ and Ĉ∗.
Step 2: Fourier transform of the kernel ϕ̂

ϕ̂(ω) =

∫ +∞

−∞
e−iωτϕ(τ)dτ

=

∫ +∞

−∞
ϕ(τ)dτ −

∫ +∞

0

(1− e−iωτ )ϕ(τ)dτ

=nH −
∫ +∞

0

(1− e−iωτ )ϕ(τ)dτ

assuming the integral is dominated by τ large,

=nH −
∫ +∞

0

(1− e−iωτ )c0τ
−1−ϵdτ

with the change of variablex = ωτ

=nH − c0ωϵ

∫ +∞

0

(1− e−ix)x−1−ϵdx

with an integration by parts:

1We say a function f is regular in a space if, when considering ω = ωR + iωim, f̂ =
∫
R f(t)eωimte−iωRtdt is well

defined. For instance, for ωim > 0, one needs to pay attention to the limit lim
t→+∞

eωimt = +∞.
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=nH − c0ωϵ
(
[(1− e−ix)

x−ϵ

−ϵ ]
+∞
0 +

i

ϵ

∫ +∞

0

e−ixx−ϵdx
)

=nH −
c0ω

ϵi

ϵ

∫ +∞

0

e−ixx−ϵdx

Then, we study
∫ +∞
0

e−ixx−ϵdx. Since ϵ < 1, the integral is well defined in 0, and in the limit

+∞, we have
∫ +∞
1

e−ixx−ϵdx = [ e
−ix

−i x
−ϵ]+∞

1 − 1
i

∫ +∞
1

e−ixx−ϵ−1dx which is finite. Introducing,

k− = c0i
ϵ

∫ +∞
0

e−ixx−ϵdx, one then as K̂(ω) = nH − ωϵk− .

Step 3: Fourier transform of the covariance Ĉ(τ)
Similarly, we have

Ĉ∗(ω) =
∫ +∞

−∞
e−iωτC(τ)dτ

=

∫ 0

−∞
e−iωτC(τ)dτ +

∫ +∞

0

e−iωτC(τ)dτ

C being even,

=2

∫ +∞

0

cos(ωτ)C(τ)dτ

assuming the integral is dominated by τ large,

=2

∫ +∞

0

cos(ωτ)c1τ
−βdτ

the change of variable x = ωτ gives

=2c1ω
β−1

∫ +∞

0

cos(x)x−βdx

Introducing A =
∫ +∞
0

cos(x)x−βdx, one obtains Ĉ∗(ω) = 2c1Aω
β−1 .

Conclusion
We can finally conclude, with Equation (A.4.4), when nH → 1, β = 1− 2ϵ . (Note that this result

with the hypothesis 0 < ϵ < 1
2 also garantee the well definition of

∫ +∞
0

cos(x)x−βdx).

A.4.3 Method for the Asymptotic Study in the Critical Case of QHawkes
process

We present now the method for the critical quadratic Hawkes process. For the sake of simplicity
we limit ourselves to the 1D case here, the multivariate case can be worked out similarly.

The definitions of the autocorrelation structures in the 1D case can be found in [70] and are
substantially similar to those used here.

As above, we define the Fourier transform of a function f such as:

f̂(ω) =

∫

R
f(t)e−iωtdt

Step 1: Find the regularity of the Yule-Walker terms
As for the linear case, we start from the Yule-Walker equation on C for τ ̸= 0 (see equation (9)

in [70]):

C(τ) = K(τ)λ̄+

∫ +∞

0

K(τ − u)C(u)du+ 2

∫ +∞

0+

∫ +∞

u+

K(τ + u, τ + r)D(u, r)drdu, (A.4.5)

and its extension in 0 in Fourier domain gives:

Ĉ∗(ω) = λ̄+ Ĉ(ω). (A.4.6)
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To use the Fourier transform, we need to extend K and D for τ, τ1, τ2 < 0. Thus, we consider
the function K defined on R with K(τ) = 0 for τ < 0 similarly for D. Thus, we expect to have

K̂(ω) and D̂(ω) regular in the half plan Im(ω) < 0.

The 2 first terms of Eq. (A.4.5) are the same as in the Yule-Walker equation for the linear case.
Hence, the regularity arguments are the same as in [75].

However, we need to study the last term of Eq. (A.4.5), C3(τ) = 2
∫ +∞
0+

∫ +∞
u+

K(τ + u, τ +
r)D(u, r)drdu.

In order to study the regularity we decompose ω into ω = ωR+iωI . Then, switching integration
order and using Chasles relation we obtain:

Ĉ3(ω) =2

∫ +∞

0

∫ +∞

u+

∫ −u

−∞
e−iωRτeωIτK(τ + u, τ + r)D(u, r)dτdrdu

}
Ĉ31(ω)

+ 2

∫ +∞

0

∫ +∞

u+

∫ 0

−u

e−iωRτeωIτK(τ + u, τ + r)D(u, r)dτdrdu
}

Ĉ32(ω)

+ 2

∫ +∞

0

∫ +∞

u+

∫ +∞

0

e−iωRτeωIτK(τ + u, τ + r)D(u, r)dτdrdu
}

Ĉ33(ω)

We study each term Ĉ31 , Ĉ32 and Ĉ33 separately. We first have:

Ĉ31(ω) = 2

∫ +∞

0

∫ +∞

u+

∫ −u

−∞
e−iωRτeωIτK(τ + u, τ + r)D(u, r)dτdrdu

Here τ < −u so τ + u < 0, so K(τ + u, τ + r) = 0, so Ĉ31(ω) = 0.

For the second term, we switch integration order, and we obtain:

Ĉ32(ω) = 2

∫ 0

−∞

∫ +∞

−τ

∫ +∞

u+

e−iωRτeωIτK(τ + u, τ + r)D(u, r)drdudτ

In this case, we have τ ≥ −u, so τ + u ≥ 0, and r ≥ u+ ≥ −τ , so K(τ + u, τ + r) > 0. We are
only interested in τ −→ −∞, so Ĉ32(ω) is regular in the half plan ωI > 0.

For Ĉ33(ω), we have τ +u > 0 and τ + r > 0, so K(τ +u, τ + r) ≥ 0. Since we are only worried
about τ −→ +∞. Ĉ33(ω) is regular in half plan ωI < 0.

With those results, we now introduce the Yule-Walker equation A.4.5 in Fourier domain and,
as in [75], the function B̂:

{
Ĉ(ω) = K̂(ω)D + K̂(ω)Ĉ(ω) + Ĉ32(ω) + Ĉ33(ω)

B̂(ω) = K̂(ω)D + K̂(ω)Ĉ(ω) + Ĉ32(ω) + Ĉ33(ω)− Ĉ∗(ω)
(A.4.7)

Thus,

Ĉ(ω) = (1− K̂(ω))−1(K̂(ω)D − B̂(ω) + Ĉ32(ω) + Ĉ33(ω)) (A.4.8)

Since C is even, we have (Ĉ⊤(ω) = Ĉ(−ω)) and Eq. (A.4.8) becomes:

(K̂(ω)D + Ĉ32(ω) + Ĉ33(ω)− B̂(ω))⊤(1− K̂⊤(ω))−1 = (1− K̂(−ω))−1(K̂(−ω)D + Ĉ32(−ω) + Ĉ33(−ω)− B̂(−ω))

Multiplying by 1− K̂⊤(ω) on the right side and by 1− K̂(−ω) on the left side, we then develop
the expression and mark the regularity propriety below each term.
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DK̂⊤(ω)︸ ︷︷ ︸
Im(ω)<0

+ Ĉ32

⊤
(ω)︸ ︷︷ ︸

Im(ω)>0

+ Ĉ33

⊤
(ω)︸ ︷︷ ︸

Im(ω)<0

− B̂⊤(ω)︸ ︷︷ ︸
Im(ω)>0

− K̂(−ω)Ĉ32

⊤
(ω)︸ ︷︷ ︸

Im(ω)>0

−K̂(−ω)Ĉ33

⊤
(ω) + K̂(−ω)B̂⊤(ω)︸ ︷︷ ︸

Im(ω)>0

=

K̂(−ω)D︸ ︷︷ ︸
Im(ω)>0

+ Ĉ32(−ω)︸ ︷︷ ︸
Im(ω)<0

+ Ĉ33(−ω)︸ ︷︷ ︸
Im(ω)>0

− B̂(−ω)︸ ︷︷ ︸
Im(ω)<0

− Ĉ32(−ω)K̂⊤(ω)︸ ︷︷ ︸
Im(ω)<0

−Ĉ33(−ω)K̂⊤(ω) + B̂(−ω)K̂⊤(ω)︸ ︷︷ ︸
Im(ω)<0

We notice we have a problem with Ĉ33(−ω)K̂⊤(ω) and K̂(−ω)Ĉ33

⊤
(ω). In fact, for each of

them one factor is regular for Im(ω) > 0 and the other one for Im(ω) < 0... If we still reorder the
terms to have the left side of the equality regular in the half plan Im(ω) < 0 and the right side of
the equality regular in the half plan Im(ω) > 0, without defining the regularity plan for the two
problematic terms, we obtain the following:

DK̂⊤(ω) + Ĉ33

⊤
(ω)− Ĉ32(−ω) + B̂(−ω) + Ĉ32(−ω)K̂⊤(ω)− B̂(−ω)K̂⊤(ω)︸ ︷︷ ︸

Im(ω)<0

−K̂(−ω)Ĉ33

⊤
(ω) =

K̂(−ω)D + Ĉ33(−ω)− Ĉ32

⊤
(ω) + B̂⊤(ω) + K̂(−ω)Ĉ32

⊤
(ω)− K̂(−ω)B̂⊤(ω)︸ ︷︷ ︸

Im(ω)>0

−Ĉ33(−ω)K̂⊤(ω)

(A.4.9)

We now need to study in details the regularity of the problematic terms.

Step 2: Expand Ĉ33(−ω)K̂⊤(ω) and K̂(−ω)Ĉ33

⊤
(ω)

We have

K̂(−ω)Ĉ33

⊤
(ω) =2

∫ +∞

0

∫ +∞

u+

∫ +∞

0

(
K̂(−ω)e−iωτ

)
D⊤(u, r)K⊤(τ + u, τ + r)dτdrdu

and

Ĉ33(−ω)K̂⊤(ω) =2

∫ +∞

0

∫ +∞

u+

∫ +∞

0

K(τ + u, τ + r)D(u, r)
(
eiωτ K̂⊤(ω)

)
dτdrdu

We look at K̂(−ω)e−iωτ with the change of variables ϕ(t) = t+ τ and the Chasles relation:

K̂(−ω)e−iωτ =

∫ +∞

0

∫ +∞

−∞
eiωtK(t+ τ, t+ τ)dtdτ =

∫ +∞

0

∫ −τ

−∞
eiωtK(t+ τ, t+ τ)dtdτ

(A.4.10)

+

∫ +∞

0

∫ 0

−τ

eiωtK(t+ τ, t+ τ)dtdτ

(A.4.11)

+

∫ +∞

0

∫ +∞

0

eiωtK(t+ τ, t+ τ)dtdτ

(A.4.12)

The first term, (A.4.10),
∫ +∞
0

∫ −τ

−∞ eiωtK(t+ τ, t+ τ)dtdτ is null, because K(t+ τ) is null for

t ≤ −τ . If we switch the integration order in the second term, (A.4.11), we have
∫ +∞
0

∫ 0

−τ
eiωtK(t+

τ, t+ τ)dtdτ =
∫ 0

−∞
∫ +∞
−t

eiωtK(t+ τ, t+ τ)dτdt and then, we need to have a convergent exponen-

tial eiωt when t −→ −∞, so the second term is regular in half plan Im(ω) < 0. And the last term,

(A.4.12),
∫ +∞
0

∫ +∞
0

eiωtK(t+ τ, t+ τ)dtdτ is regular in half plan Im(ω) > 0.
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We now need to consider the term eiωτ K̂⊤(ω), similarly, we have:

eiωτ K̂⊤(ω) =

∫ +∞

0

∫ +∞

−∞
e−iωtK⊤(t+ τ, t+ τ)dtdτ =

∫ +∞

0

∫ −τ

−∞
e−iωtK⊤(t+ τ, t+ τ)dtdτ

(A.4.13)

+

∫ +∞

0

∫ 0

−τ

e−iωtK⊤(t+ τ, t+ τ)dtdτ

(A.4.14)

+

∫ +∞

0

∫ +∞

0

e−iωtK⊤(t+ τ, t+ τ)dtdτ

(A.4.15)

For same reasons as before, first term, (A.4.13), is null, second term, (A.4.14), is regular in half
plan Im(ω) > 0, and last term, (A.4.15), is regular in half plan Im(ω) < 0.

Wrapping up those results, we have

K̂(−ω)Ĉ⊤
33(ω) =2

∫ +∞

0

∫ +∞

u+

∫ +∞

0

∫ 0

−τ

eiωtK(t+ τ, t+ τ)dtD⊤(u, r)K⊤(τ + u, τ + r)dτdrdu
}

F1(ω)

+ 2

∫ +∞

0

∫ +∞

u+

∫ +∞

0

∫ +∞

0

eiωtK(t+ τ, t+ τ)dtD⊤(u, r)K⊤(τ + u, τ + r)dτdrdu
}

F2(ω)

=F1(ω) + F2(ω)

with F1(ω) being regular for Im(ω) < 0 and F2(ω) for Im(ω) > 0.
Similarly,

Ĉ33(−ω)K̂⊤(ω) =2

∫ +∞

0

∫ +∞

u+

∫ +∞

0

K(τ + u, τ + r)D(u, r)
∫ 0

−τ

e−iωtK⊤(t+ τ, t+ τ)dtdτdrdu
}
E1(−ω)

+ 2

∫ +∞

0

∫ +∞

u+

∫ +∞

0

K(τ + u, τ + r)D(u, r)
∫ +∞

0

e−iωtK⊤(t+ τ, t+ τ)dtdτdrdu
}
E2(−ω)

=E1(−ω) + E2(−ω)

with E1(−ω) being regular for Im(ω) > 0 and E2(−ω) for Im(ω) < 0.

Step 3: Wrap up

We can now go back to Eq. (A.4.9) which becomes:

DK̂⊤(ω) + Ĉ33

⊤
(ω)− Ĉ32(−ω) + B̂(−ω) + Ĉ32(−ω)K̂⊤(ω)− B̂(−ω)K̂⊤(ω)− F1(ω) + E2(−ω) =

K̂(−ω)D + Ĉ33(−ω)− Ĉ32

⊤
(ω) + B̂⊤(ω) + K̂(−ω)Ĉ32

⊤
(ω)− K̂(−ω)B̂⊤(ω)− E1(−ω) + F2(ω)

We then have the left side regular in half plan Im(ω) < 0 and the right one in half plan
Im(ω) > 0. So as in [75], we can say that the lower side is null, and obtain an expression for B̂:

0 = K̂(−ω)D + Ĉ33(−ω)− Ĉ32

⊤
(ω) + B̂⊤(ω) + K̂(−ω)Ĉ32

⊤
(ω)− K̂(−ω)B̂⊤(ω)− E1(−ω) + F2(ω)

=⇒




B̂⊤(ω) = −

(
K̂(−ω)D + Ĉ33(−ω)− Ĉ32

⊤
(ω) + K̂(−ω)Ĉ32

⊤
(ω)− E1(−ω) + F2(ω)

)⊤
(1− K̂⊤(−ω))−1

B̂(ω) = −
(
DK̂⊤(−ω) + Ĉ⊤

33(−ω)− Ĉ32(ω) + Ĉ32(ω)K̂
⊤(−ω)− E⊤

1 (−ω) + F⊤
2 (ω)

)
(1− K̂⊤(−ω))−1

Then we inject the expression of B̂ in Ĉ∗, and after some manipulations where we use Ĉ33(ω)K̂
⊤(−ω) =

E1(ω) + E2(ω):

Ĉ(ω) =(1− K̂(ω))−1
(
K̂(ω)D + Ĉ33(ω)− K̂(ω)DK̂⊤(−ω)− E1(ω)− E2(ω)

+DK̂⊤(−ω) + Ĉ⊤
33(−ω)− E⊤

1 (−ω) + F⊤
2 (ω)

)
(1− K̂⊤(−ω))−1.
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Note that in 1D, the transpose and commutative operations do not really matter. However, in
order to use this method in the multivariate case we presented the method paying attention to it.

In 1D, we have F1(ω) = E1(ω) and F2(ω) = E2(ω), the transpose are equal the element itself,
and the products are commutative, thus:

Ĉ(ω) =(1− K̂(ω))−1
(
K̂(ω)D + Ĉ33(ω)− K̂(ω)DK̂(−ω)− E1(ω) + K̂(−ω)D + Ĉ33(−ω)− E1(−ω)

)
(1− K̂(−ω))−1.

Finally, using Eq. (A.4.6), we obtain for QHawkes in 1D:

Ĉ⋆(ω) = (1− K̂(ω))−1
(
D + Ĉ33(ω) + Ĉ33(−ω)− E1(ω)− E1(−ω)

)
(1− K̂(−ω))−1.

For the multivariate case the matrices we integrate in C33 , E1, E2, F1 and F2, will be a mix of
Dd, D, Kd and K.
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A.5 Asymptotic Study- Results Tables

Based on the notations in Appendix A.4.1, we give here the results of the asymptotic behavior of
covariance structures when considering power law decaying kernels.

In both non critical and critical case, we have the same result for the exponent of non time
diagonal parts δ = ρ + δo − 1

2 and δo = ρo. The exponent δd = ρd can take 2 values:

1. δd = ρd

2. δd = 2ρ + δo − 1
2

From empirical observations, we see that it makes sense if the diagonal terms persist longer
in time than the non diagonal terms. Hence, we expect δd < δo. Considering this hypothesis, we
would only keep the first case, δd = ρd < ρo.

For the time diagonal exponent (βd,βo,βd, βo), we need to make a difference between the
non critical case (nH < 1), and the critical case (nH = 1). We call ϵ = min(ϵd, ϵo) and ρ =
1
2 min(δd + ρd, δo + ρo, δd + ρo, δo + ρd, δ + ρ) = 1

2 min(ρd + ρo, 2ρo, 2ρ2, δ + ρ).

Non Critical

if 3+ϵd
4 < min(ρd, ρ + ρo

2 + 1
4 ) if 3+ϵd

4 > min(ρd, ρ + ρo

2 + 1
4 )

βd βd = 1 + ϵd βd = min(4ρ + 2ρo − 1, 4ρd − 2)

if 3+ϵo
4 < min(ρd+ρo

2 , ρ + ρo

2 + 1
4 ) if 3+ϵo

4 > min(ρd+ρo

2 , ρ + ρo

2 + 1
4 )

βo βo = 1 + ϵo βo = min(4ρ + 2ρo − 1, 2(ρd + ρo)− 2)

Critical

if ρ < 3
2 if ρ > 3

2

βd = βo = β β = 4ρ− 2− 2ϵ β = 1− 2ϵ

Table A.1: C exponents for both non critical and critical case, when using the following notations
ϵ = min(ϵd, ϵo) and ρ = 1

2 min(δd + ρd, δo + ρo, δd + ρo, δo + ρd, δ + ρ)

Non Critical

if ρ < 2ρd − 1
2 if ρ > 2ρd − 1

2

βd βd = 2ρ + ρo − 1 βd = 2ρd + δ − 1

if ρ < 2ρo − 1
2 if ρ > 2ρd − 1

2

βo βo = 2ρ + ρo − 1 βo = 2ρo + δ − 1

Critical

if 2ρ+δo
3 > 2

3 and 2ρd+δ×
3 > 2

3 else

βd βd = 1− ϵ βd = min(2ρd + δ − ϵ, 2ρ + δo − ϵ)
if 2ρ+δo

3 > 2
3 and 2ρo+δ×

3 > 2
3 else

βo βo = 1− ϵ βo = min(2ρo + δ − ϵ, 2ρ + δo − ϵ)

Table A.2: D ”time diagonal” exponents for both non critical and critical case, when using the
following notations ϵ = min(ϵd, ϵo) and ρ = 1

2 min(δd + ρd, δo + ρo, δd + ρo, δo + ρd, δ + ρ)
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A.6 Computation of the Infinitesimal Generator

A.6.1 For independent processes

We consider the processes, introducing a time scale T > 0 that will eventually diverge, we define
the processes h̄T1 (t) = h1(tT ), h̄

T
2 (t) = h2(tT ), z̄

T
1 (t) = z1(tT ) and z̄T2 (t) = z2(tT ), N̄

1T
t = N1

tT ,
N̄2T

t = N2
tT with the parameters (β1T , β2T ), (ω1T , ω2T ) and (γ1T , γ2T ) that may depend on T . In

the decaying exponential case, we have





d(h1)t = β1(−(h1)tdt+ dN1
t )

d(h2)t = β2(−(h2)tdt+ dN2
t )

d(z1)t = −ω1(z1)tdt+ γ1dP
1
t

d(z2)t = −ω2(z2)tdt+ γ2dP
2
t

=⇒





d(h̄T1 )t = −β1T ((h̄T1 )tTdt+ nHdN1T
t )

d(h̄T2 )t = −β2T ((h̄T2 )tTdt+ nHdN2T
t )

d(z̄T1 )t = −ω1T (z̄
T
1 )tTdt+ γ1TdP

1T
t

d(z̄T2 )t = −ω2T (z̄
T
2 )tTdt+ γ2TdP

2T
t

The intensity of, respectively, the first and second process are given by T [λ1∞+n1H,1h̄
T
1 +n

1
H,2h̄

T
2 +

(a1Z,1z̄
T
1 )

2+(a1Z,2z̄
T
2 )

2+a1Z,×z̄
T
1 z̄

T
2 ] and T [λ

2
∞+n2H,1h̄

T
1 +n

2
H,2h̄

T
2 +(a2Z,1z̄

T
1 )

2+(a2Z,2z̄
T
2 )

2+a2Z,×z̄
T
1 z̄

T
2 ].

Moreover, the price processes can either go up or down with same probability 1
2 .

Thus, the infinitesimal generator can be written using Theorem 1.22 of Oksendal and Sulem:

AfT (h1, h2, z1, z2) =− Tβ1Th1∂h1
f − Tβ2Th2∂h2

f − ω1TTz1∂z1f − ω2TTz2∂z2f

+ T [λ1∞ + n1H,1h1 + n1H,2h2 + (a1Z,1z1)
2 + (a1Z,2z2)

2 + a1Z,×z2z1]
(

1

2
f(h1 + βT1, h2, z1 + ω1T , z2) +

1

2
f(h1 + βT1, h2, z1 − γ1T , z2)− f(h1, h2, z1, z2)

)

+ T [λ2∞ + n2H,1h1 + n2H,2h2 + (a2Z,1z1)
2 + (a2Z,2z2)

2 + a2Z,×z2z1]
(

1

2
f(h1, h2 + βT2, z1, z2 − ω2T ) +

1

2
f(h1, h2 + βT2, z1, z2 + γ2T )− f(h1, h2, z1, z2)

)

As in [70], we use the scaling β1T = β̄1

T , β2T = β̄2

T , ω1T = ω̄1

T , ω2T = ω̄2

T , γ1T = γ̄1

T , γ2T = γ̄2

T
and the Taylor development when T → +∞ which result in:

AfT (h1, h2, z1, z2) =− β̄1h1∂h1f − β̄2h2∂h2f − ω̄1z1∂z1f − ω̄2z2∂z2f

+ T [λ1∞ + n1H,1h1 + n1H,2h2 + (a1Z,1z1)
2 + (a1Z,2z2)

2 + a1Z,×z2z1]
( β̄1
T
∂h1f +

(γ̄1)
2

2T
∂2z1z1f + o(

1

T
)
)

+ T [λ2∞ + n2H,1h1 + n2H,2h2 + (a2Z,1z1)
2 + (a2Z,2z2)

2 + a2Z,×z2z1]
( β̄2
T
∂h2

f +
(γ̄2)

2

2T
∂2z2z2f + o(

1

T
)
)

Thus, the infinitesimal generator is given by:

Af∞(h1, h2, z1, z2) =− β̄1h1∂h1f − β̄2h2∂h2f − ω̄1z1∂z1f − ω̄2z2∂z2f

+ [λ1∞ + n1H,1h1 + n1H,2h2 + (a1Z,1z1)
2 + (a1Z,2z2)

2 + a1Z,×z2z1]
(
nH β̄1∂h1f +

(γ̄1)
2

2
∂2z1z1f

)

+ [λ2∞ + n2H,1h1 + n2H,2h2 + (a2Z,1z1)
2 + (a2Z,2z2)

2 + a2Z,×z2z1]
(
nH β̄2∂h2

f +
(γ̄2)

2

2
∂2z2z2f

)

One can also include co-jumps, which would change the coefficients above and add a term of the
form ρ∂2z1z2f , where ρ is the correlation between the Poisson processes driving 1 and 2.

When considering only ZHawkes without Hawkes (nH = 0), we have h1 = h2 = 0, thus the
infinitesimal generator results in:

Af∞(z1, z2) =− ω̄1z1∂z1f − ω̄2z2∂z2f

+ [λ1∞ + (a1Z,1z1)
2 + (a1Z,2z2)

2 + a1Z,×z2z1]
(γ̄1)

2

2
∂2z1z1f

+ [λ2∞ + (a2Z,1z1)
2 + (a2Z,2z2)

2 + a2Z,×z2z1]
(γ̄2)

2

2
∂2z2z2f
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A.6.2 In the bivariate case

In this case, both processes have the same sign with probability ρ, and they are centered. So, their
behavior can be describe such that:

• both go down with probability 1+ρ
4

• both go up with probability 1+ρ
4

• first one goes up and second one goes down with probability 1−ρ
4

• first one goes down and second one goes up with probability 1−ρ
4

Thus, the infinitesimal generator can be written, we use Theorem 1.22 of Oksendal and Sulem:

AfT (h1, h2, z1, z2) =− Tβ1Th1∂h1f − Tβ2Th2∂h2f − ω1TTz1∂z1f − ω2TTz2∂z2f

+ T [λ1∞ + n1H,1h1 + n1H,2h2 + (a1Z,1z1)
2 + (a1Z,2z2)

2 + a1Z,×z2z1]
(

1 + ρ

4
f(h1 + nHβT1, h2 + nHβT2, z1 − γ1T , z2 − γ2T )

+
1 + ρ

4
f(h1 + nHβT1, h2 + nHβT2, z1 + γ1T , z2 + γ2T )

+
1− ρ
4

f(h1 + nHβT1, h2 + nHβT2, z1 + γ1T , z2 − γ2T )

+
1− ρ
4

f(h1 + nHβT1, h2 + nHβT2, z1 − γ1T , z2 + γ2T )

− f(h1, h2, z1, z2)
)

+ [λ2∞ + n2H,1h1 + n2H,2h2 + (a2Z,1z1)
2 + (a2Z,2z2)

2 + a2Z,×z2z1]
(

1 + ρ

4
f(h1 + nHβT1, h2 + nHβT2, z1 − γ1T , z2 − γ2T )

+
1 + ρ

4
f(h1 + nHβT1, h2 + nHβT2, z1 + γ1T , z2 + γ2T )

+
1− ρ
4

f(h1 + nHβT1, h2 + nHβT2, z1 + γ1T , z2 − γ2T )

+
1− ρ
4

f(h1 + nHβT1, h2 + nHβT2, z1 − γ1T , z2 + γ2T )

− f(h1, h2, z1, z2)
)

As before, we use the scaling β1T = β̄1

T , β2T = β̄2

T , ω1T = ω̄1

T , ω2T = ω̄2

T , γ1T = γ̄1

T , γ2T = γ̄2

T
and the Taylor development when T → +∞ which result in:

AfT (h1, h2, z1, z2) =− β̄1h1∂h1
f − β̄2h2∂h2

f − ω̄1z1∂z1f − ω̄2z2∂z2f

+ T [λ1∞ + n1H,1h1 + n1H,2h2 + (a1Z,1z1)
2 + (a1Z,2z2)

2 + a1Z,×z2z1]
(

nH
β̄1
T
∂h1

f + nH
β̄2
T
∂h2

f +
(γ̄1)

2

2T
∂2z1z1f +

(γ̄2)
2

2T
∂2z2z2f + ρ

γ̄2γ̄1
T

∂z1z2f + o(
1

T
)
)

+ T [λ2∞ + n2H,1h1 + n2H,2h2 + (a2Z,1z1)
2 + (a2Z,2z2)

2 + a2Z,×z2z1]
(

nH
β̄1
T
∂h1f + nH

β̄2
T
∂h2f +

(γ1)
2

2T
∂2z1z1f +

(γ̄2)
2

2T
∂2z2z2f + ρ

γ̄2γ̄1
T

∂z1z2f + o(
1

T
)
)
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Thus, the infinitesimal generator is given by:

Af∞(h1, h2, z1, z2) =− β̄1h1∂h1
f − β̄2h2∂h2

f − ω̄1z1∂z1f − ω̄2z2∂z2f

+ [λ1∞ + n1H,1h1 + n1H,2h2 + (a1Z,1z1)
2 + (a1Z,2z2)

2 + a1Z,×z2z1]
(

nH β̄1∂h1
f + nHβ2∂h2

f +
(γ̄1)

2

2
∂2z1z1f +

(γ̄2)
2

2
∂2z2z2f + ργ̄2γ̄1∂z1z2f

)

+ [λ2∞ + n2H,1h1 + n2H,2h2 + (a2Z,1z1)
2 + (a2Z,2z2)

2 + a2Z,×z2z1]
(

nH β̄1∂h1
f + nH β̄2∂h2

f +
(γ1)

2

2
∂2z1z1f +

(γ̄2)
2

2
∂2z2z2f + ργ̄2γ̄1∂z1z2f

)

When considering only ZHawkes without Hawkes (nH = 0), we have h1 = h2 = 0, thus the
infinitesimal generator results in:

Af∞(z1, z2) =− ω̄1z1∂z1f − ω̄2z2∂z2f

+ [λ1∞ + (a1Z,1z1)
2 + (a1Z,2z2)

2 + a1Z,×z2z1]
( (γ̄1)2

2
∂2z1z1f +

(γ̄2)
2

2
∂2z2z2f + ργ̄2γ̄1∂z1z2f

)

+ [λ2∞ + (a2Z,1z1)
2 + (a2Z,2z2)

2 + a2Z,×z2z1]
( (γ̄1)2

2
∂2z1z1f +

(γ̄2)
2

2
∂2z2z2f + ργ̄2γ̄1∂z1z2f

)
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A.7 General ODE for F (θ)

We write here the general ODE on F (θ) for any parameters aZ ’s and ω’s:

(
ω1 + ω2 + (a1Z,1ω1)

2 + (a2Z,2ω2)
2 − α(ω1 + 2(a1Z,1ω1)

2) cos2(θ)− α(ω2 + 2(a2Z,2ω2)
2) sin2(θ)

− (a2Z,(ω2)
2 + a1Z,(ω1)

2)α cos θ sin θ

+
1

8
α(α+ (2 + α) cos(2θ))(ω1)

2
(
(a1Z,1)

2 + (a1Z,2)
2 + ((a1Z,1)

2 − (a1Z,2)
2) cos(2θ) + a1Z, sin(2θ)

)

+
1

8
α(α− (2 + α) cos(2θ))(ω2)

2
(
(a2Z,1)

2 + (a2Z,2)
2 + ((a2Z,1)

2 − (a2Z,2)
2) cos(2θ) + a2Z, sin(2θ)

) )
F (θ)

+
(
a2Z,(ω2)

2 cos2(θ)− a1Z,(ω1)
2 sin2(θ)− cos θ sin θ

(
ω1 − ω2 + 2(a1Z,1ω1)

2 − 2(a2Z,2ω2)
2
)

+
1

4
(1 + α)(ω1)

2 sin(2θ)((a1Z,1)
2 + (a1Z,2)

2 + ((a1Z,1)
2 − (a1Z,2)

2) cos(2θ) + a1Z, sin(2θ))

− 1

4
(1 + α)(ω2)

2 sin(2θ)((a2Z,1)
2 + (a2Z,2)

2 + ((a2Z,1)
2 − (a2Z,2)

2) cos(2θ) + a2Z, sin(2θ))
)
F ′(θ)

+
1

4

(
(ω1)

2 sin2(θ)((a1Z,1)
2 + (a1Z,2)

2 + ((a1Z,1)
2 − (a1Z,2)

2) cos(2θ) + a1Z, sin(2θ))

+ (ω2)
2 cos2(θ)((a2Z,1)

2 + (a2Z,2)
2 + ((a2Z,1)

2 − (a2Z,2)
2) cos(2θ) + a2Z, sin(2θ))

)
F ′′(θ) = 0

(A.7.1)
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Appendix B

Appendix of Chapter 4:
MQHawkes Calibration

B.1 Simulation of MQHawkes

This section aims at detailing the (M)QHawkes simulation. The first part outlines the thinning
algorithms used for the generation of (M)QHawkes processes, as introduced by Ogata (1981) [72].
The second part presents various results and methods that are useful when studying synthetic
(Q)Hawkes processes.

B.1.1 Generate synthetic MZHawkes – Thinning algorithm

The section specifies the thinning algorithm for (M)ZHawkes processes. Firstly, we detail the
steps for generating an univariate ZHawkes with exponential kernels. Secondly, we highlight the
modifications needed for generating multivariate processes.

Generate synthetic univariate ZHawkes with exponential kernels

We consider the ZHawkes process as defined in [70] and presented in Chapter 2. Hence, the
intensity λ of the ZHawkes process N with marks dP is defined as

λt = λ∞ +

∫ t

−∞
h(t− s)dNs +

(∫ t

−∞
k(t− s)dPs

)2

,

with h(t) = nHβ exp(−βt) and k(t) =
√
2nZω exp(−ωt).

In the following, the Hawkes feedback loop is denoted H and the quadratic feedback loop Z,
i.e.

Ht =

∫ t

−∞
h(t− s)dNs, Zt =

∫ t

−∞
k(t− s)dPs.

Generating a ZHawkes process requires tracking event times and marks to compute the feed-
back loops H and Z at each instance. For kernels with general form, it is usually necessary to
recalculate H and Z from the beginning at each step to determine the probability of a new jump,
resulting in significant time consumption during the generation process. Exponential kernels offer
the advantage1 of rendering the feedback loops Markovian (see Remark B.1.1 below). Therefore,
computing the probability of a new jump comes down to updating, from the previous jump, the
feedback loops H and Z, as illustrated subsequently and explained in Remark B.1.1.

We adopt the following notations in the algorithms below:

• t is the list of event times, i.e times ti such that dNti∈t = 1;

• M is the list of event marks, also denoted dPti∈t, at each event;

1Note that this advantage persists with power-law kernels, which better approximate empirically observed kernels,
as a power law can be approximated through a sum of exponentials as demonstrated in [128].
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To initiate the generation process, we assume no jumps have occurred yet. Therefore, the
algorithm begins with initializing the intensity λ to its baseline value λ∞, and setting the feedback
loops H and Z to 0. Moreover, the lists of events and marks are initialized empty.

Algorithm 1 Simulation of ZHawkes 1D - Initialisation

λ∗ ← λ∞
t← [] ▷ List of time of jumps
M ← [] ▷ List of marks
H ← 0 ▷ Hawkes component
Z ← 0 ▷ quadratic component

Next, a specific step is dedicated to generating the first jump, which follows a Poisson process
with a baseline intensity of λ∞. This initial jump initiates the feedback loopsH and Z and modifies
the intensity for future events. For each event, including this initial one, the marks are randomly
assigned as either plus or minus 1 with equal probability.

Algorithm 2 Simulation of ZHawkes 1D - First jump

λ∗ ← λ∞
Generate u ∼ U([0, 1])
s← − 1

λ∗ ln (u)
Ensure: s < T
t append (s)
Generate m = ±1
M append m
H ← nHβ
Z ← √2nZω ×m
λ← λ∞ +H + Z2

λ∗ ← λ+ nHβ + 2nZω

After the generation of the first event, the feedback loops become active and contribute to the
intensity, thereby influencing the probability of subsequent event occurrences. At each iteration,
a new event time is proposed for consideration, and its acceptance depends on the intensity with
and without the proposed event. The generation process yields a list of event times (t) along with
their corresponding marks (M).

Remark B.1.1. Exponential kernels have the advantage to render the feedback loops Markovian,
accelerating the generation of such point process. To understand the Markovian property let us
consider the feedback loop H at some event time tn:

1

nHβ
Htn =

∑

ti,i∈1,n

exp(−β(tn − ti))

1

nHβ
Htn =1 + exp(−β(tn − tn−1))

∑

ti,i∈1,n−1

exp(−β(tn−1 − ti)))

1

nHβ
Htn =1 + exp(−β(tn − tn−1))

1

nHβ
Htn−1

Htn =nHβ + exp(−β(tn − tn−1))Htn−1 .

Generate synthetic multivariate ZHawkes with exponential kernels

In multivariate environment, the algorithm operates similarly to generate each time jump, with
three notable exceptions:

• As discussed in Chapter 3, independent processes have a zero probability of jumping at the
exact same time. Therefore, for each “proposed” jump time, it is necessary to determine
which process, if any, is the more likely to jump. Below, we outline how Algorithms 2 and 3
can be modified to accommodate this requirement.
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Algorithm 3 Simulation of ZHawkes 1D - other jumps

while s < T do
Generate u ∼ U([0, 1])

v ← − log(u)
λ∗

s← s+ v
Htmp ← H exp(−β(s− t[−1]))
Ztmp ← Z exp(−2ω(s− t[−1]))
λtmp ← λ∞ +Htmp + Z2

tmp

Generate u ∼ U([0, 1])

if u ≤ λtmp

λ∗ then
t append (s)
Generate m = ±1
M append m
H ← Htmp + nHβ
Z ← Ztmp +

√
2nZω ×m

λ← λ∞ +H + Z2

λ∗ ← λ+ nHβ + 2nZω
else

λ∗ ← λtmp

end if
end while
Return t,M

• Since we deal with several assets, λ, H and Z are not scalars anymore but arrays. In
particular, in the case of 2 dimensions, λ is a 2×1 array (representing the intensities of the
two processes), and H and Z are 2×2 arrays (each intensity having both self-feedback and
cross feedback component). Additionally, it is necessary to track which process is jumping
at each event time. This is managed using the array jump which records the index of the
jumping processes for each event time in the list t.

• A new variable IK defined such that IK(t) =
∑K

i=1 λ
i(t), which represents the sum the K

first intensities at time t, is necessary for the extension.

We now proceed to describe the modifications made to the algorithm steps to accommodate a
multivariate process of size M , with intensities denoted as λii∈J1,MK.

The initialisation of the algorithm for generating MZHawkes is similar to that of the univariate
case, with the addition of the variable jump. As previously mentionned, jump records the indices
of the jumping processes for each event time in the list t. Since no jump have occurred at this
stage, jump, as t and M , is empty.

Algorithm 4 Simulation of MZHawkes – Initialisation

I∗ ←∑M
i=1 λ

i
∞

t← [] ▷ List of time of jumps
M ← [] ▷ List of marks
jump← [] ▷ List of index of the jumping process

At each step, the occurrence of a jump depends on the comparison between the sum of intensities
with (I∗) and without (IM ) a new jump. Subsequently, determining which process, if any, is

affected by the jump is managed by finding n0 such that In0−1(s)
I∗ < w < In0 (s)

I∗ , where w is a
random uniform variable. Thus, the generation of the first jump proceeds as follows.

At each event, the feedback loops H and Z are updated in line with the event that has just
occurred. It is important to note that not all components of H and Z undergo the same update
process at each step: the feedback loops of the jumping process will increase, while that of other
processes will decay exponentially. For instance, if process 1 jumps, only the feedback loops H1

and Z1 will be increased by a jump amplitude (which corresponded to nHβ and
√
2nZω in the 1D
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Algorithm 5 Simulation of MZHawkes – First jump

Generate u ∼ U([0, 1])
s← − 1

λ∗ ln (u)
Ensure: s < T
t append (s)
M append (±1 (generated with equal probability))
Generate w ∼ U([0, 1])

find n0 such that In0−1(0)
I∗ < w < In0 (0)

I∗

jump append n0

case), while the H0 and Z0 will decay exponentially. This method holds for each event, including
the first one.

Algorithm 6 Simulation of MZHawkes – other jumps

while s < T do
Generate u ∼ U([0, 1])

v ← − log(u)
λ∗

s← s+ v
I∗ ← IM (t[−1]) +∑M

i=1 n
i
Hβ

i + 2
∑M

i=1 n
i
Zω

i

Generate w ∼ U([0, 1])

if w ≤ IM (s)
I∗ then

t append (s)
M append (±1 (generated with equal probability))

find n0 such that In0−1(s)
I∗ < w < In0 (s)

I∗

jump append n0
else

I∗ ← IM (s)
end if

end while
Return t,M ,jump

The generation algorithm in the multivariate case results in 3 arrays t, M and jump, which
denote the time, mark of events and which process is affected by the jumps.
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Example
Let’s consider the following output

• t = [0.1, 0.5, 1.0, 2.1]

• M = [1,−1, 1, 1]

• jump = [0, 0, 1, 2]

Then, it means that the process i = 0 jumped at time 0.1 and 0.5 with marks 1 and −1, whereas
the process i = 1 jumped once at time 1.0 with mark 1 and the process i = 2 jumped once at time
2.1 with mark 1.
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B.2 Computation of 1rst order moments from linear Hawkes
simulation

This section addresses the computation of moments derived from the simulation of Hawkes pro-
cesses and their extensions ((M)QHawkes). Accurate computation of moments is crucial for im-
plementing non-parametric calibration of the model, making it pertinent to dedicate attention to
this aspect.

Specifically, to maintain clarity, we focus on the first-order moment defined as

C(τ) = 1

λ̄2

(
E
(
dNt

dt

dNt−τ

dt

)
− λ̄2

)
.

As evident from the definition of C, the computation of moments depends on the parameter dt,
which signifies the timescale for computing covariances. The selection of dt influences moment
calculations significantly. Specifically, for a small dt (dt ≪ 1/λ̄), consecutive events are rare, po-
tentially leading to underestimated correlations. Conversely, with a large dt (dt≫ 1/λ̄), numerous
consecutive events occur, potentially resulting in overestimated correlations.

Furthermore, the introduction of a timescale discretizes a continuous process, potentially af-
fecting some analytical results. In particular, below we derive the analytical form of C for both
continuous and discrete processes.

B.2.1 Correlation function in continuous time

For a linear Hawkes process, the Yule-Walker equation relating the first order moment C to the
feedback kernel ϕ is given by, for τ > 0,

C(τ) = 1

λ̄
ϕ(τ) +

∫ +∞

0

ϕ(u)C(τ − u)du. (B.2.1)

For an exponential kernel of the form ϕ(u) = nhβ exp(−βu), the covariance structure C is

expressed as C(τ > 0) = βnh(2−nh)
2ϕ0

exp(−(1 − nh)βt) [23]. The demonstration of this result is
given below.

Proof. We look for C with the form (C(t > 0) = a exp(−bt)), then the Yule Walker equation (B.2.1)
gives:

C(τ) =λ̄ϕ(τ) +
∫ +∞

0

ϕ(τ + u)C(u)du+

∫ τ

0

ϕ(τ − u)C(u)du

a exp(−bτ) =λ̄nhβ exp(−βτ) +
∫ +∞

0

nhβa exp(−β(τ + u)− bu)du+

∫ τ

0

nhβa exp(−β(τ − u)− bu)du

a exp(−bτ) =λ̄nhβ exp(−βτ) +
nhβa

β + b
exp(−βτ) + nhβa

b− β (exp(−βτ)− exp(−bτ)).

Thus, by writing down the equations on exp(−βτ) and on exp(−bτ), one obtains
{

0 = λ̄nhβ + anhβ
β+b + anhβ

b−β

a = −anhβ
b−β

⇐⇒
{
a = Φ0

1−nh

βnh(2−nh)
2(1−nh)

b = β(1− nh)
.

B.2.2 Approximation of the continuous exponential in discrete time
framework

Certain combination of parameters pose difficulties in recovering C in its continuous form as stated
above, primarily due to process discretization. Therefore, we derive the theoretical expression
of the autocorrelation structure C within a discrete framework. Specifically, we acknowledge the
approximation

lim
n−→+∞

(1 +
x

n
)n =exp(x),

then, Λτ =exp(τ ln(Λ)) ∼
Λ∼1

exp(τ(Λ− 1)).
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We can then write the discrete version of the exponential kernel as ϕ(τ) = k0Λ
τ . The link with

the continuous case, where the kernel is an exponential such that ϕcontinuous(τ) = nhβ exp(−βτ),
is then directly Λ− 1 ∼ −β and k0 ∼ nhβ.

As before, the form of the covariance structure is directly defined by that of the kernel. Hence,
in the discretized framework, C is fully characterised by parameters a, µ and λ̄ such that C(τ >
0) = aµτ and C(0) = 1

λ̄
, and where a and µ depends on k0, Λ and λ̄. Solving the discretized

Yule-Walker equation results in µ = Λ(k0 + 1) and a = 1
λ̄

( (1−Λµ)(1−Λ
µ )

1−2Λµ+Λ2

)
, as demonstrated below.

Proof. As before, we start from the Yule-Walker equation. The discretised version of Eq. (B.2.1)
writes

C(τ) =
+∞∑

u=1

Φ(u)C(τ − u).

Now we can develop the computation:

aµτ =

τ−1∑

u=1

Φ(u)C(τ − u) + Φ(τ)C(0) +
+∞∑

u=τ+1

Φ(u)C(u− τ)

aµτ =

τ−1∑

u=1

k0Λ
uaµτ−u + k0Λ

τ 1

λ̄
+

+∞∑

u=τ+1

k0Λ
uaµu−τ

aµτ =k0a(µ)
τ
τ−1∑

u=1

(
Λ

µ
)u + k0Λ

τ 1

λ̄
+ k0a(

1

µ
)τ

+∞∑

u=τ+1

(Λµ)u

aµτ =k0a(µ)
τ
( Λ

µ − (Λµ )
τ

1− Λ
µ

)
+ k0Λ

τ 1

λ̄
+ k0a(

1

µ
)τ
( 1

1− Λµ
− 1− (Λµ)τ+1

1− Λµ

)

aµτ =k0a
( Λµτ

µ− Λ

)
− k0a

( Λτ

1− Λ
µ

)
+ k0Λ

τ 1

λ̄
+ k0a

Λτ+1µ

1− Λµ
.

By writing down the equations on Λτ and µτ , we obtain

{
a = k0a

Λ
µ−Λ

0 = −k0a
(

1
1−Λ

µ

)
+ k0

1
λ̄
+ k0a

Λµ
1−Λµ

{
µ = Λ(k0 + 1)

0 = a
( −1
1−Λ

µ

+ Λµ
1−Λµ

)
+ 1

λ̄


µ = Λ(k0 + 1)

a = 1
λ̄

( (1−Λµ)(1−Λ
µ )

1−Λµ−Λµ(1−Λ
µ )

)

{
µ = Λ(k0 + 1)

a = 1
λ̄

( (1−Λµ)(1−Λ
µ )

1−2Λµ+Λ2

) .

We check that these results are consistent in the continuous limit

{
µ ∼ (−β + 1)(nhβ + 1)

a ∼ 1
λ̄

( β(2−nh)β
1−2(1−β(2−nh))+(1−β)2

)
{
µ = −nhβ2 + β(nh − 1) + 1

a ∼ 1
λ̄

( β(2−nh)β
1−2(1−β(2−nh))+(1−β)2

) ⇐⇒
{
µ ∼ β(nh − 1) + 1

a ∼ 1
λ̄

βnh(2−nh)
2(1−nh)

.
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B.2.3 Aggregate the data

In practice, obtaining data at a microscale with precise event times is rare or computationally
intensive. Often, aggregated data is used instead. Therefore, to consistently evaluate calibration
procedures on simulations, aggregation methods should be applied beforehand on the synthetic
processes.

In the case of QHawkes, where simulation results consist in lists of price changes with their
respective timestamps, one can reconstruct the price time series, bin them, and estimate the
volatility time series using one of the proxies detailed in Chapter 1.

Additionally, there are more simplistic aggregation methods, such as the approach outlined
in [86], or directly summing the events within each bin. As previously discussed, the bin size
significantly impacts the results and should be selected with care. Specifically, Bacry et al. [86]
recommend setting dt = 1/λ̄.
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B.3 Parametric Calibration - Maximum Likelihood

In this appendix, we describe a widely used parametric calibration method for (Q)Hawkes processes,
with intensity λ. The method relies on maximising the likelihood of jump times. We present here
two applications:

• maximum likelihood when exact jump times are available. Note, that it is the method used
in the package tick of Python to calibrate (multidimensional) linear Hawkes.

• maximum likelihood with proxies, when event-by-event data is not available.

B.3.1 With exact time of events

Log likelihood for point process

For this first method of likelihood maximisation, one needs to have access to the event times (ti)i.
The likelihood is then defined as the joint distribution of those time of events. Considering a
Hawkes process of intensity λ, we first give the probability of event occurring between time ti and
ti + dt, without any event happening between time ti−1 and ti.

Definition B.3.1 (probability of event between time ti and ti+dt but no event between ti−1 and
ti).

P (one event in [ti, ti + dt] but no event in [ti−1, ti]) = exp

(
−
∫ ti

ti−1

duλ(u|θ)
)
λ(ti|θ)dt

From definition B.3.1, one can then write the joint distribution of N events happening in [0, T )
at arrival times (ti)i, and deduce the log-likelihood.

Definition B.3.2 (Log Likelihood of 1D point process). For N events in [0, T ) at arrival times
(ti)i, then, the log-likelihood is:

ln(L(t1, t2, ..., tN , θ)) =

N∑

i=1

ln(λ(ti/θ))−
∫ T

0

duλ(u/θ) (B.3.1)

where λ is the intensity and θ the parameters we are looking to estimate.

Proof. From definition B.3.1, we write the joint distribution of N independent events happening
in [0, T ) at arrival times (ti)i

L(t1, t2, ..., tN , θ) =

(
N∏

i=1

exp

(
−
∫ ti

ti−1

duλ(u|θ)
)
λ(ti|θ)

)
exp

(
−
∫ T

tN

duλ(u|θ)
)

=

(
N∏

i=1

λ(ti|θ)
)
exp

(
−
∫ T

0

duλ(u|θ)
)
.

Taking the log gives the result.

Log likelihood for linear Hawkes process

For linear Hawkes processes, the intensity is defined as

λ(t/θ) =λ∞ +

∫ t

−∞
hθ(t− s)dNs = λ∞ +

∑

ti<t

h(t− ti)

where (ti)i are the times of the jumps.
Particularly, with exponential kernels, we have θ = (λ∞, nh, β), hθ(t) = nhβ exp(−βt). Then

the expression of the log-likelihood evolves to:

ln(L(t1, t2, ..., tN , θ)) = −Tλ∞ +

N∑

i=1

(
ln(ϕ0 + nHβHi)− nH(exp(−β(T − ti))− 1)

)
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with

Hi =

i−1∑

k=1

exp(−β(ti − tk))

Indeed, we have λ(ti/θ) = λ∞ + nHβHi. And

∫ T

0

duλ(u/θ) =λ∞T + nHβ

∫ T

0

∫ u

−∞
exp(−β(u− s))dNsdu

=λ∞T + nHβ

∫ T

−∞

∫ T

s

exp(−β(u− s))dudNs

=λ∞T + nHβ

∫ T

−∞

1

β
(1− exp(−β(T − s)))dNs

=λ∞T + nH
∑

ts<T

(1− exp(−β(T − ts)))

Log likelihood for ZHawkes process

For ZHawkes processes, one needs to add the quadratic term to the intensity, which then becomes:

λ(t/θ) =λ∞ +

∫ t

−∞
hθ(t− s)dNs +

( ∫ t

−∞
kθ(t− s)dPs

)2

=λ∞ +
∑

ti<t

h(t− ti) +
(∑

ti<t

k(t− ti)mti

)2

where (ti)i are the times of the jumps and m(ti)t the marks of the jump at time ti. Again, in
the particular case of exponential kernels, we have θ = (λ∞, nH , β, nZ , ω), hθ(t) = nHβ exp(−βt),
kθ(t) =

√
2nZω exp(−ωt). The log-likelihood can then entirely be defined by:

ln(L(t1, t2, ..., tN , θ)) = −Tλ∞ +

N∑

i=1

(
ln(λ∞ + nHβHi + 2nZωZ

2
i )− nH(exp(−β(T − ti))− 1)− 2nZωZ

2
i

)

with

Hi =

i−1∑

k=1

exp(−β(ti − tk)) and Zi =

i−1∑

k=1

exp(−ω(ti − tk))mtk

Log likelihood for multivariate point process (2D)

We consider a 2D process, with intensities (λ1, λ2) and events arrival times ((t1i )i∈J1,NK, (t
2
i )i∈J1,NK),

where (t1i )i∈J1,NK, respectfully (t2i )i∈J1,NK, are the times of events of process 1, respectfully process
2. The log likelihood consider the joint probability of the 2 jump processes, and thus results in:

Definition B.3.3 (Log likelihood in 2D). Log likelihood of two point processes with intensities
(λ1, λ2), the log-likelihood of N events from process 1 at times (t1i )i∈J1,NK, and N events of process
2 at times (t2i )i∈J1,NK, between 0 and time T is given by:

ln(L((t1i )i∈J1,NK, (t
2
i )i∈J1,NK, θ)) =

N∑

i=1

ln(λ1(t
1
i /θ)) +

N∑

i=1

ln(λ2(t
2
i /θ))−

∫ T

0

du(λ1(u/θ) + λ2(u/θ))

where θ is the vector of the parameters we are looking for.

B.3.2 Without exact times of events - Using an intensity estimate

Defining the (log) likelihood

It is sometimes impossible to access event times (ti)i (like in Chapter 4 for instance). However,
we can estimate λt for each time bin t. We can consider λt constant over the bin t, then the
probability to observe n events in the bin t:
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Definition B.3.4 (Probability of number of events in a bin).

P(nb of events in bin t = n) =
λnt
n!

exp(−λt)

The number of events we observe in bin t is our λ̂ (n = λ̂).
In the QHawkes framework, λt is defined by:

λt = λ0 +

∫ t

−∞
h(t− u)dNu + (

∫ t

−∞
k(t− u)dPu)

2

Using the approximation dNu ≡ E(dNu) = λ̂udt, we obtain:

λt = λ0 +

t∑

u=0

h(t− u)λ̂udu+ (

t∑

u=0

k(t− u)dPu)
2

where u = 0 represent the first bin of the day. Note that dPt is the returns over the bin t, which
is directly observable.

We can then define the log likelihood:

Definition B.3.5 (log likelihood of observing λ̂). We consider the joint density of observing the

events ((λ̂i)i∈J1,NK), where N represent the number of bins we have, then the log likelihood is given
by:

ln(L((λ̂i)i∈J1,NK, θ)) =

N∑

i=1

ln

(
λi(θ)

λ̂i

λ̂i!
exp(−λi(θ))

)
=

N∑

i=1

λ̂i ln(λi(θ))− ln(λ̂i!)− λi(θ)

∼
N∑

i=1

λ̂i ln(λi(θ))−
(
λ̂i ln(λ̂i)− λ̂i

)
− λi(θ)

ln(L((λ̂i)i∈J1,NK, θ)) =

N∑

i=1

λ̂i (ln(λi(θ))− ln(λ̂i)) + λ̂i − λi(θ)

Defining the (log) likelihood for multidimensionnal process

Definition B.3.6 (likelihood of observing (λ̂1, λ̂2)). We consider 2 processes, with intensities
(λ1, λ2). We observe those two processes over N bins, and the number of events from process j in

bin i is λ̂ji . Then, we can define the joint probability (likelihood), to observe (λ̂1i , λ̂
2
i )i∈J1,NK over

the N bins:

L((λ̂1i )i, (λ̂
2
i )i, θ) =

N∏

i=1

P(n1 events from process 1 in bin i)P(n2 events from process 2 in bin i)

=

N∏

i=1

(λ1i (θ))
n1

n1!
exp(−λ1i (θ))

(λ2i (θ))
n2

n2!
exp(−λ2i (θ))

=

N∏

i=1

(λ1i (θ))
λ̂1
i

λ̂1i !
exp(−λ1i (θ))

(λ2t (θ))
λ̂2
i

λ̂2i !
exp(−λ2i (θ))

where θ represent the vector of parameters we are trying to estimate.

Consequently, the log likelihood writes:

ln
(
L((λ̂1i )i, (λ̂

2
i )i, θ)

)
=

N∑

i=1

λ̂1i ln(λ
1
i (θ))− ln(λ̂1i !)− λ1i (θ) + λ̂2i ln(λ

2
i (θ))− ln(λ̂2i !)− λ2i (θ),
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which we rewrite as:

ln
(
L((λ̂1i )i, (λ̂

2
i )i, θ)

)
=

N∑

i=1

λ̂1i ln(λ
1
i (θ))−

(
λ̂1i ln(λ̂

1
i )−λ̂1i

)
−λ1i (θ)+λ̂2i ln(λ2i (θ))−

(
λ̂2i ln(λ̂

2
i )−λ̂2i

)
−λ2i (θ)

(B.3.2)
where:

• λ̂1,2i : the estimated intensities of processes 1,2 in bin i

• λ1,2i : the theoretical intensities of processes 1 & 2 which depend on both the observation of λ̂
and the parameters θ we are trying to estimate. In the case of a two dimensional ZHawkes,
intensities are defined such that:

λjt =λ
j
∞ +

∫ t

−∞
hj1(t− u)dN1

u +

∫ t

−∞
hj2(t− u)dN2

u + (

∫ t

−∞
kj1(t− u)dP 1

u)
2 + (

∫ t

−∞
kj2(t− u)dP 2

u)
2.

In our discrete environment, we have ordered bins (ti)i∈J1,NK, and thus we can write the
intensity of process j in bin M such that

λjtM =λj∞ +

M−1∑

i=1

hj1(tM − ti)λ̂1idt+
M−1∑

i=1

hj2(tM − ti)λ̂2idt+ (

M−1∑

i=1

kj1(tM − ti)dP 1
i )

2 + (

M−1∑

i=1

kj2(tM − ti)dP 2
i )

2.

In the case of exponential kernels, we write hji (t) = nji exp(−κji t) and kji (t) = njiq exp(−κjiqt),
and the intensity becomes:

λjtM =λj∞

+

M−1∑

i=1

nj1 exp(−κj1(tM − ti))λ̂1idt+
M−1∑

i=1

nj2 exp(−κj2(tM − ti))λ̂2idt

+ (

M−1∑

i=1

nj1q exp(−κj1q(tM − ti))dP 1
i )

2 + (

M−1∑

i=1

nj2q exp(−κj2q(tM − ti))dP 2
i )

2.

The parameters we want to estimate in this case are (nji )i,j∈J1,2K, (n
j
i,q)i,j∈J1,2K, (κ

j
i )i,j∈J1,2K

and (κji,q)i,j∈J1,2K.

Minimize the log-likelihood

To minimise − ln
(
L((λ̂1i )i, (λ̂

2
i )i, θ)

)
, we look at gradient descent methods. We need to calculate

the gradient of − ln
(
L((λ̂1i )i, (λ̂

2
i )i, θ)

)
according to the parameters.

Then, with expression (B.3.2), we can write the gradient:

∇
(
− ln

(
L((λ̂1i )i, (λ̂

2
i )i, θ)

))
=

N∑

i=1

−∇
(
λ̂1i ln(λ

1
i (θ))

)
+∇

(
λ1i (θ)

)
−∇

(
λ̂2i ln(λ

2
i (θ))

)
+∇

(
λ2i (θ)

)

=

N∑

i=1

−λ̂1i∇
(
ln(λ1i (θ))

)
+∇

(
λ1i (θ)

)
− λ̂2i∇

(
ln(λ2i (θ))

)
+∇

(
λ2i (θ)

)

=

N∑

i=1

−λ̂1i
∇
(
λ1i (θ)

)

λ1i (θ)
+∇

(
λ1i (θ)

)
− λ̂2i

∇
(
λ2i (θ)

)

λ2i (θ)
+∇

(
λ2i (θ)

)

=

N∑

i=1

∇λ1i (θ)
(
− λ̂1i
λ1i (θ)

+ 1
)
+∇λ2i (θ)

(
− λ̂2i
λ2i (θ)

+ 1
)
.

In practice, for financial time series, λ̂ ≡ σ2

dt where σ is the volatility, and dP are the returns.
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B.4 “Surprise price”

We know, for Gaussian variables:

E(X/Y ) = E(X) + ΣXY Σ
−1
Y (Y − E(Y ))

So, if we consider returns as Gaussian, and we consider only the lag-1 has influence on the next
return:

E(dPt/dPt−1) = E(dPt) + Σt,t−1Σ
−1
t−1(dPt−1 − E(dPt−1))

Since we centered/normalized the returns E(dPt) = E(dPt−1) = 0 and Σt−1 = 1
and Σt,t−1 = cov(dPt,dPt−1) = Γ(1). Now in multidimension:

E
((

dP 1
t

dP 2
t

)
/

(
dP 1

t−1

dP 2
t−1

))
= E

((
dP 1

t

dP 2
t

))
+Σt,t−1Σ

−1
t−1

[(
dP 1

t−1

dP 2
t−1

)
− E

((
dP 1

t−1

dP 2
t−1

))]

Similarly, thanks to the normalization and centralisation we have:

Σt−1 =

(
1 cov(dP 1,dP 2)

cov(dP 1,dP 2) 1

)

we note cov(dP 1, dP 2) = ν

Σt,t−1 =

(
cov(dP 1

t ,dP
1
t−1) cov(dP 1

t ,dP
2
t−1)

cov(dP 1
t−1,dP

2
t ) cov(dP 2

t ,dP
2
t−1)

)

So we should have:

{
dP̃ 1

t = dP 1
t − 1

1−ν2

((
cov(dP 1

t , dP
1
t−1)− νcov(dP 1

t , dP
2
t−1)

)
dP 1

t−1 +
(
− νcov(dP 1

t , dP
1
t−1) + cov(dP 1

t , dP
2
t−1)

)
dP 2

t−1

)
dP̃ 2

t = dP 2
t − 1

1−ν2

((
cov(dP 1

t−1,dP
2
t )− νcov(dP 2

t , dP
2
t−1)

)
dP 1

t−1 +
(
− νcov(dP 1

t−1,dP
2
t ) + cov(dP 2

t , dP
2
t−1)

)
dP 2

t−1

)
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B.5 Yule-Walker equations – MQGARCH framework

B.5.1 MQGARCH framework

This appendix details the calibration procedure for a Multivariate Quadratic GARCH (MQ-
GARCH) process. Consistently with the notations therein, we consider a MQGARCH process
with N = 2 assets, where the squared volatility of asset j, σ2

j , is defined by

σ2
j,t = σ2

j,∞ +

N∑

i=1

+∞∑

τ=1

Lj
i (τ)ri,t−τ +

N∑

i,k=1

+∞∑

τ1,τ2=1

Kj
ki(τ1, τ2)rk,t−τ1ri,t−τ2 . (B.5.1)

To ease the development of the Yule-Walker system, we separate the linear, quadratic and cross
kernels, then, σ2

j writes

σ2
j,t =σ

2
j,∞

+

N∑

i=1

+∞∑

τ=1

Lj
i (τ)ri,t−τ

+

N∑

i=1

+∞∑

τ=1

ϕji (τ)r
2
i,t−τ

+ 2

+∞∑

τ1=1

+∞∑

τ2=τ1+1

Kj
i (τ1, τ2)ri,t−τ1ri,t−τ2

+

+∞∑

τ=1

ϕj×(τ)(rA,t−τrB,t−τ − rArB)

+

+∞∑

τ1=1

+∞∑

τ2=τ1+1

kj×(τ1, τ2)rA,t−τ1rB,t−τ2

+

+∞∑

τ1=2

τ1−1∑

τ2=1

kj×(τ1, τ2)rA,t−τ1rB,t−τ2 ,

(B.5.2)

where A and B denote the first and second assets. In the following, we swap (A,B) and (1, 2)
whichever makes the writing clearer.

Proof. The transformation of the quadratic term (for k = i in Eq. (B.5.1)) goes as follows

+∞∑

τ1,τ2=1

Kj
i (τ1, τ2)ri,t−τ1ri,t−τ2 =

+∞∑

τ=1

ϕji (τ)r
2
i,t−τ

+
+∞∑

τ1=2

τ1−1∑

τ2=1

Kj
i (τ1, τ2)ri,t−τ1ri,t−τ2 +

+∞∑

τ1=1

+∞∑

τ2=τ1+1

Kj
i (τ1, τ2)ri,t−τ1ri,t−τ2

=

+∞∑

τ=1

ϕji (τ)r
2
i,t−τ +

+∞∑

τ1=2

τ1−1∑

τ2=1

Kj
i (τ1, τ2)ri,t−τ1ri,t−τ2 +

+∞∑

τ2=2

τ2−1∑

τ1=1

Kj
i (τ1, τ2)ri,t−τ1ri,t−τ2

thanks to the properties of symmetry,

=

+∞∑

τ=1

ϕji (τ)r
2
i,t−τ + 2

+∞∑

τ1=2

τ1−1∑

τ2=1

Kj
i (τ1, τ2)ri,t−τ1ri,t−τ2

Additionally, if we consider the formulation of Equation (B.5.2), then the mean volatility meets
the following condition

σ2 = σ2
∞ +

(
+∞∑

τ=1

(
ϕ11 ϕ12
ϕ21 ϕ22

)
(τ)

)
r2 ⇐⇒ σ2 = σ2

∞ +

(
+∞∑

τ=1

(
ϕ11 ϕ12
ϕ21 ϕ22

)
(τ)

)
σ2
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B.5.2 Yule-Walker equations for a 4-step calibration

For more stability, we undertake a calibration of the model Eq. (B.5.2) in 4 steps.
During the first three steps, we consider the leverage kernel to be null and aim to determine

the other kernels ((ϕji )i,j∈{A,B}, (K
j
i )i,j∈{A,B}, (ϕ

j
×)j∈{A,B} and (kj×)j∈{A,B}). Therefore, to ex-

clude the leverage effect from real data, we calibrate the linear, quadratic and cross kernels on
“symmetrised” data, meaning that we use the datasets [σ, σ] and [r,−r] where σ and r represent
our original datasets. Once step 3 is completed, we use the original datasets, in which the leverage
effect is present, to determine the leverage kernels. The calibration is thus decomposed as follows:

1. Determine the QGARCH 1D of the 2 processes ((ϕii)i{A,B} and (Ki
i )i{A,B})

2. Determine the QGARCH 2D cross linear and quadratic kernels ((ϕij)i,j{A,B},i̸=j and (Ki
j)i,j{A,B},i̸=j)

3. Determine the cross kernels of the QGARCH 2D ((ϕi×)i{A,B} and (ki×)i{A,B})

4. Determine the QGARCH 2D Leverage kernels ((Li
i)i{A,B}.

In order to stay agnostic on the shape of the kernels, for each step, we implement a general
method of moments. We rely on a system of Yule-Walker type equations which we describe
subsequently.

Covariance structure

The Yule-Walker system of equations and thus, the method of moments, rely on the following
covariance structures:

Cij(τ) = E(σ2
i,tr

2
j,t−τ )− σ2

i r
2
j (B.5.3)

Crij(τ) = E(r2i,tr2j,s)− r2i r2j (B.5.4)

Dijk(τ1, τ2) = E(σ2
i,trj,t−τ1rk,t−τ2) (B.5.5)

Dp,(ij)kl(τ) = E((ri,trj,t)rk,t−τ1rl,t−τ2) (B.5.6)

D×,jAB(τ1, τ2) = E
(
σ2
j,trA,t−τ1rB,t−τ2

)
(B.5.7)

Vij(τ) = E(σ2
i,trj,t−τ ) (B.5.8)

Vr
ij(τ) = E(r2i,trj,t−τ ) (B.5.9)

Remark B.5.1. By definition of the model and in simulation, Eq. (B.5.3) and Eq. (B.5.4) should
result in the same values. However in practice, there is a slight difference due to noise, which
influence the calibration. Hence, in order to give reproducible guidelines we note the difference in
what follows.

Yule-Walker system for QGARCH 2D without cross terms (steps 1 and 2)

For the first two steps of the calibration, we need equations linking C and D to the kernels
ϕ and K. The goal is to characterise (ϕji )i,j∈{A,B} and (Kj

i )i,j∈{A,B} up to a certain lag q.

Hence, we want to find the values of, for i, j ∈ {A,B}, ϕji (τ)τ∈J1,qK and Kj
i (τ1, τ2)1≤τ1<τ2≤q

(since K is symmetric, it is enough to find only its upper triangle entries). The Yule Walker
equations on (Cij(τ))i,j∈{A,B},τ∈J1,qK will give 4 × q equations and the Yule Walker equations on

(Dij(τ1, τ2))i,j∈{A,B},1≤τ1<τ2≤ will give 4×q q−1
2 equations, allowing to fully characterise (ϕji )i,j∈{A,B}

and (Kj
i )i,j∈{A,B} up to a certain lag q.

Without complicating things, we develop the general equations for N assets.

148



Lemma B.5.2 (Yule-Walker equation for C). for τ > 0, in the framework described by Eq. (B.5.2),
with ϕ× = k× = 0, the covariance C writes

Cjl(τ) =
N∑

i=1

+∞∑

k=1

ϕji (k)Cril(τ − k) + 2

N∑

i=1

+∞∑

k2=τ+1

+∞∑

k1=k2+1

Kj
i (k1, k2)Dp,lii(k1 − τ, k2 − τ)

Proof.

Cjl(t− s) =E(σ2
j,tr

2
l,s)− σ2

j r
2
l

=σ2
j,∞r

2
l +

N∑

i=1

+∞∑

k=1

ϕji (k)E(r
2
i,t−kr

2
l,s) + 2

N∑

i=1

+∞∑

k1=2

k1−1∑

k2=1

Kj
i (k1, k2)E(ri,t−k1ri,t−k2r

2
l,s)− σ2

j r
2
l

=σ2
j,∞r

2
l +

N∑

i=1

ϕji (t− s)r2i r2l +
N∑

i=1

+∞∑

k=1,k ̸=t−s

ϕji (k)(Cril(t− k − s) + r2i r
2
l )

+ 2

N∑

i=1

+∞∑

k1=2

k1−1∑

k2=1

Kj
i (k1, k2)E(ri,t−k1ri,t−k2r

2
l,s)− σ2

j r
2
l

=σ2
j,∞r

2
l +

N∑

i=1

ϕji (t− s)r2i r2l

+

N∑

i=1

+∞∑

k=1,k ̸=t−s

ϕji (k)Cril(t− k − s) +
N∑

i=1

+∞∑

k=1,k ̸=t−s

ϕji (k)r
2
i r

2
l

+ 2

N∑

i=1

+∞∑

k1=2

k1−1∑

k2=1

Kj
i (k1, k2)E(ri,t−k1ri,t−k2r

2
l,s)− σ2

j r
2
l

=σ2
j,∞r

2
l +

N∑

i=1

ϕji (t− s)r2i r2l

+

N∑

i=1

+∞∑

k=1,k ̸=t−s

ϕji (k)Cril(t− k − s) +
N∑

i=1

+∞∑

k=1

ϕji (k)r
2
i r

2
l −

N∑

i=1

ϕji (t− s)r2i r2l

+ 2

N∑

i=1

+∞∑

k1=2

k1−1∑

k2=1

Kj
i (k1, k2)E(ri,t−k1ri,t−k2r

2
l,s)− σ2

j r
2
l

by definition of the mean squared volatility,

=

N∑

i=1

+∞∑

k=1

ϕji (k)Cril(t− k − s) + 2

N∑

i=1

+∞∑

k2=1

+∞∑

k1=k2+1

Kj
i (k1, k2)E(ri,t−k1

ri,t−k2
r2l,s)

=

N∑

i=1

+∞∑

k=1

ϕji (k)Cril(t− k − s) + 2
N∑

i=1

+∞∑

k2=t−s+1

+∞∑

k1=k2+1

Kj
i (k1, k2)Dp,lii(s− t+ k1, s− t+ k2)

we set s = 0, t = τ , then

Cjl(τ) =
N∑

i=1

+∞∑

k=1

ϕji (k)Cril(τ − k) + 2

N∑

i=1

+∞∑

k2=τ+1

+∞∑

k1=k2+1

Kj
i (k1, k2)Dp,lii(k1 − τ, k2 − τ)

which concludes the proof.

Lemma B.5.3 (Yule-Walker equation forD). For τ1 < τ2, in the framework described by Eq. (B.5.2),
with ϕ× = k× = 0, the covariance D writes

Djll(τ1, τ2) =

N∑

i=1

τ1−1∑

k=1

ϕji (k)Dp,ill(τ1−k, τ2−k)+2

N∑

i=1

+∞∑

k2=τ1+1

Kj
i (τ1, k2)Dp,(il)il(−τ1+k2, τ2− τ1)

149



Proof. Considering s < u < t, then t− u < t− s and we have

Djll(t− u, t− s) =E(σ2
j,trl,url,s)

=

N∑

i=1

t−u−1∑

k=1

ϕji (k)E(r
2
i,t−krl,url,s) + 2

N∑

i=1

+∞∑

k1=2

k1−1∑

k2=1

Kj
i (k1, k2)E(ri,t−k1

ri,t−k2
rl,url,s)

=

N∑

i=1

t−u−1∑

k=1

ϕji (k)Dp,ill(t− k − u, t− k − s) + 2

N∑

i=1

+∞∑

k1=2

k1−1∑

k2=1

Kj
i (k1, k2)E(ri,t−k1ri,t−k2rl,url,s)

=

N∑

i=1

t−u−1∑

k=1

ϕji (k)Dp,ill(t− k − u, t− k − s) + 2

N∑

i=1

+∞∑

k1=1

+∞∑

k2=k1+1

Kj
i (k1, k2)E(ri,t−k1

ri,t−k2
rl,url,s)

here, t− k2 < t− k1 and s < u we need t− k1 = u

=

N∑

i=1

t−u−1∑

k=1

ϕji (k)Dp,ill(t− k − u, t− k − s) + 2

N∑

i=1

+∞∑

k2=t−u+1

Kj
i (t− u, k2)E ((ri,url,u) ri,t−k2

rl,s)

=

N∑

i=1

t−u−1∑

k=1

ϕji (k)Dp,ill(t− k − u, t− k − s)

+ 2

N∑

i=1

+∞∑

k2=t−u+1

Kj
i (t− u, k2)Dp,(il)il(u− t+ k2, u− s)

we set s = 0, t = τ2, and τ1 = t− u, then

Djll(τ1, τ2) =

N∑

i=1

τ1−1∑

k=1

ϕji (k)Dp,ill(τ1 − k, τ2 − k) + 2

N∑

i=1

+∞∑

k2=τ1+1

Kj
i (τ1, k2)Dp,(il)il(−τ1 + k2, τ2 − τ1),

which ends the proof.

Yule-Walker system for QGARCH 2D with cross terms (step 3)

The goal of the third step is to characterise (ϕj×)j∈{A,B} and (Kj
×)j∈{A,B} up to a certain lag q.

In this case, we need 2 × q equations to characterise (ϕj×)j∈{A,B} and 2 × q(q − 1) equations to

characterise (Kj
×)j∈{A,B}, as K

j
× is not symmetric so we need both the upper and lower triangle

entries. The equations on (Dj
×(τ1, τ2))j∈{A,B},1≤τ1,τ2≤q, developed subsequently, allow to fully

characterise the cross kernels (ϕj×)j∈{A,B} and (Kj
×)j∈{A,B}.

Lemma B.5.4 (Yule-Walker equation for D× for τ1 = τ2 = τ). for τ > 0, in the framework
described by Eq. (B.5.2), the covariance D× writes

D×,jAB(τ, τ) =σ
2
j,∞rArB

+

N∑

i=1

+∞∑

k=1

ϕji (k)Dp,(ii)AB(τ − k, τ − k)

+ 2

N∑

i=1

+∞∑

k1=τ+1

+∞∑

k2=k1+1

Kj
i (k1, k2)Dp,(AB)ii(k1 − τ, k2 − τ)

+

+∞∑

k=1

ϕj×(k)
(
Dp(AB)AB(τ − k, τ − k)− rArB2

)

+

+∞∑

k2=τ+1

+∞∑

k1=k2+1

kj×(k1, k2)Dp,(AB)AB(k1 − τ, k2 − τ)

+

+∞∑

k1=τ+1

+∞∑

k2=k1+1

kj×(k1, k2)Dp,(AB)AB(k1 − τ, k2 − τ)
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Proof. We take s < t, then

D×,jAB(t− s, t− s) =E
(
σ2
j,trA,srB,s

)

=σ2
j,∞E (rA,srB,s)

+

N∑

i=1

+∞∑

τ=1

ϕji (τ)E
(
r2i,t−τrA,srB,s

)

+ 2

N∑

i=1

+∞∑

τ1=1

+∞∑

τ2=τ1+1

Kj
i (τ1, τ2)E (ri,t−τ1ri,t−τ2rA,srB,s)

+

+∞∑

τ=1

ϕj×(τ)E ((rA,t−τrB,t−τ − rArB)rA,srB,s)

+

+∞∑

τ1=2

τ1−1∑

τ2=1

kj×(τ1, τ2)E (rA,t−τ1rB,t−τ2rA,srB,s)

+

+∞∑

τ1=1

+∞∑

τ2=τ1+1

kj×(τ1, τ2)E (rA,t−τ1rB,t−τ2rA,srB,s)

=σ2
j,∞E (rA,srB,s)

+

N∑

i=1

+∞∑

k=1

ϕji (k)Dp,(ii)AB(t− k − s, t− k − s)

+ 2

N∑

i=1

+∞∑

k1=t−s+1

+∞∑

k2=k1+1

Kj
i (k1, k2)Dp,(AB)ii(s− t+ k1, s− t+ k2)

+

+∞∑

k=1

ϕj×(k)
(
Dp(AB)AB(t− s− k, t− s− k)− rArB2

)

+

+∞∑

k2=t−s+1

+∞∑

k1=k2+1

kj×(k1, k2)Dp,(AB)AB(s− t+ k1, s− t+ k2)

+

+∞∑

k1=t−s+1

+∞∑

k2=k1+1

kj×(k1, k2)Dp,(AB)AB(s− t+ k1, s− t+ k2).

we set t = τ and s = 0,

D×,jjl(τ, τ) =σ
2
j,∞rArB

+

N∑

i=1

+∞∑

k=1

ϕji (k)Dp,(ii)AB(τ − k, τ − k)

+ 2

N∑

i=1

+∞∑

k1=τ+1

+∞∑

k2=k1+1

Kj
i (k1, k2)Dp,(AB)ii(k1 − τ, k2 − τ)

+

+∞∑

k=1

ϕj×(k)
(
Dp(AB)AB(τ − k, τ − k)− rArB2

)

+

+∞∑

k2=τ+1

+∞∑

k1=k2+1

kj×(k1, k2)Dp,(AB)AB(k1 − τ, k2 − τ)

+

+∞∑

k1=τ+1

+∞∑

k2=k1+1

kj×(k1, k2)Dp,(AB)AB(k1 − τ, k2 − τ),

which concludes the proof.

One of the difficulty in including the cross terms is the non-symmetry of the covariance structure
D× and of the kernels k×. Hence, we need to develop equations for D×,jAB(τ1, τ2) for τ1 < τ2 and
τ1 > τ2.

151



Lemma B.5.5 (Yule-Walker equation for D× for τ1 < τ2). for τ1 < τ2, in the framework described
by Eq. (B.5.2), the covariance D× writes

D×,jAB(τ1, τ2) =σ
2
j,∞rArB

+

N∑

i=1

τ1−1∑

k=1

ϕji (k)Dp,(ii)AB(τ1 − k, τ2 − k)

+ 2

N∑

i=1

+∞∑

k2=τ1+1

Kj
i (τ1, k2)Dp,(iA)iB(k2 − τ1, τ2 − τ1)

+

τ1−1∑

k=1

ϕj×(k)
(
D(AB)AB(τ1 − k, τ2 − k)− rArB2)

)

+

+∞∑

k1=τ1+1

kj×(k1, τ1)Dp,(BA)AB(k1 − τ1, τ2 − τ1)

+

+∞∑

k2=τ1+1

kj×(τ1, k2)Dp,(AA)BB(k2 − τ1, τ2 − τ1)

Proof. We consider u < s, then t− s < t− u, and we have

D×,jAB(t− s, t− u) =E
(
σ2
j,trA,srB,u

)

=σ2
j,∞E (rA,srB,u)

+

N∑

i=1

+∞∑

k=1

ϕji (k)E
(
r2i,t−τrA,srB,u

)

+ 2

N∑

i=1

+∞∑

k1=1

+∞∑

k2=k1+1

Kj
i (k1, k2)E (ri,t−k1

ri,t−k2
rA,srB,u)

+

+∞∑

k=1

ϕj×(k)E ((rA,t−krB,t−k − rArB)rA,srB,u)

+

+∞∑

k1=2

k1−1∑

k2=1

kj×(k1, k2)E (rA,t−k1rB,t−k2rA,srB,u)

+

+∞∑

k1=1

+∞∑

k2=k1+1

kj×(k1, k2)E (rA,t−k1
rB,t−k2

rA,srB,u)

=σ2
j,∞rArB

+

N∑

i=1

t−s−1∑

k=1

ϕji (k)Dp,(ii)AB(t− k − s, t− k − u)

+ 2

N∑

i=1

+∞∑

k1=1

+∞∑

k2=k1+1

Kj
i (k1, k2)E (ri,t−k1ri,t−k2rA,srB,u)

+

t−s−1∑

k=1

ϕj×(k)
(
D(AB)AB(t− k − s, t− k − u)− rArB2)

)

+

+∞∑

k1=2

k1−1∑

k2=1

kj×(k1, k2)E (rA,t−k1
rB,t−k2

rA,srB,u)

+

+∞∑

k1=1

+∞∑

k2=k1+1

kj×(k1, k2)E (rA,t−k1rB,t−k2rA,srB,u)

for the first quadratic term we need t− k1 = s

=σ2
j,∞rArB
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+

N∑

i=1

t−s−1∑

k=1

ϕji (k)Dp,(ii)AB(t− k − s, t− k − u)

+ 2

N∑

i=1

+∞∑

k2=t−s+1

Kj
i (t− s, k2)Dp,(iA)iB(s− t+ k2, s− u)

+

t−s−1∑

k=1

ϕj×(k)
(
D(AB)AB(t− k − s, t− k − u)− rArB2)

)

+

+∞∑

k1=2

k1−1∑

k2=1

kj×(k1, k2)E (rA,t−k1rB,t−k2rA,srB,u)

+

+∞∑

k1=1

+∞∑

k2=k1+1

kj×(k1, k2)E (rA,t−k1
rB,t−k2

rA,srB,u)

for the last term we also have t− k1 = s

=σ2
j,∞rArB

+

N∑

i=1

t−s−1∑

k=1

ϕji (k)Dp,(ii)AB(t− k − s, t− k − u)

+ 2

N∑

i=1

+∞∑

k2=t−s+1

Kj
i (t− s, k2)Dp,(iA)iB(s− t+ k2, s− u)

+

t−s−1∑

k=1

ϕj×(k)
(
D(AB)AB(t− k − s, t− k − u)− rArB2)

)

+

+∞∑

k1=2

k1−1∑

k2=1

kj×(k1, k2)E (rA,t−k1rB,t−k2rA,srB,u)

+

+∞∑

k2=t−s+1

kj×(t− s, k2)Dp,(AA)BB(s− t+ k2, s− u)

we need, in the last term to work on, t− k2 = s

=σ2
j,∞rArB

+

N∑

i=1

t−s−1∑

k=1

ϕji (k)Dp,(ii)AB(t− k − s, t− k − u)

+ 2

N∑

i=1

+∞∑

k2=t−s+1

Kj
i (t− s, k2)Dp,(iA)iB(s− t+ k2, s− u)

+

t−s−1∑

k=1

ϕj×(k)
(
D(AB)AB(t− k − s, t− k − u)− rArB2)

)

+

+∞∑

k1=t−s+1

kj×(k1, t− s)Dp,(BA)AB(s− t+ k1, s− u)

+

+∞∑

k2=t−s+1

kj×(t− s, k2)Dp,(AA)BB(s− t+ k2, s− u).

We now set t = τ2, t− s = τ1 and u = 0, then we have

D×,jAB(τ1, τ2) =σ
2
j,∞rArB

+

N∑

i=1

τ1−1∑

k=1

ϕji (k)Dp,(ii)AB(τ1 − k, τ2 − k)
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+ 2

N∑

i=1

+∞∑

k2=τ1+1

Kj
i (τ1, k2)Dp,(iA)iB(k2 − τ1, τ2 − τ1)

+

τ1−1∑

k=1

ϕj×(k)
(
D(AB)AB(τ1 − k, τ2 − k)− rArB2

)

+

+∞∑

k1=τ1+1

kj×(k1, τ1)Dp,(BA)AB(k1 − τ1, τ2 − τ1)

+

+∞∑

k2=τ1+1

kj×(τ1, k2)Dp,(AA)BB(k2 − τ1, τ2 − τ1),

which concludes the proof.

Lemma B.5.6 (Yule-Walker equation for D× for τ1 > τ2). for τ1 > τ2, in the framework described
by Eq. (B.5.2), the covariance D× writes

D×,jAB(τ1, τ2) =σ
2
j,∞rArB

+

N∑

i=1

τ1−1∑

k=1

ϕji (k)Dp,(ii)AB(τ1 − k, τ2 − k)

+ 2

N∑

i=1

+∞∑

k2=τ1+1

Kj
i (τ1, k2)Dp,(iB)iA(k2 − τ1, τ1 − τ2)

+

τ1−1∑

k=1

ϕj×(k)
(
D(AB)AB(τ1 − k, τ2 − k)− rArB2)

)

+

+∞∑

k1=τ2+1

kj×(k1, τ2)Dp,(BB)AA(k1 − τ2, τ1 − τ2)

+

+∞∑

k2=τ1+1

kj×(τ1, k2)Dp,(AB)BA(k2 − τ1, τ1 − τ2)

Proof. We take s < u < t, then t− u < t− s and we have

D×,jAB(t− s, t− u) =E
(
σ2
j,trA,srB,u

)

=σ2
j,∞rArB

+

N∑

i=1

t−u−1∑

k=1

ϕji (k)Dp,(ii)AB(t− k − s, t− k − u)

+ 2

N∑

i=1

+∞∑

k1=1

+∞∑

k2=k1+1

Kj
i (k1, k2)E (ri,t−k1ri,t−k2rA,srB,u)

+

t−u−1∑

k=1

ϕj×(k)
(
D(AB)AB(t− k − s, t− k − u)− rArB2)

)

+

+∞∑

k1=2

k1−1∑

k2=1

kj×(k1, k2)E (rA,t−k1
rB,t−k2

rA,srB,u)

+

+∞∑

k1=1

+∞∑

k2=k1+1

kj×(k1, k2)E (rA,t−k1rB,t−k2rA,srB,u)

for the first quadratic term we need t− k1 = u

=σ2
j,∞rArB

+

N∑

i=1

t−u−1∑

k=1

ϕji (k)Dp,(ii)AB(t− k − s, t− k − u)
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+ 2

N∑

i=1

+∞∑

k2=t−u+1

Kj
i (t− u, k2)Dp,(iB)iA(u− t+ k2, u− s)

+

t−s−1∑

k=1

ϕj×(k)
(
D(AB)AB(t− k − s, t− k − u)− rArB2)

)

+

+∞∑

k1=2

k1−1∑

k2=1

kj×(k1, k2)E (rA,t−k1
rB,t−k2

rA,srB,u)

+

+∞∑

k1=1

+∞∑

k2=k1+1

kj×(k1, k2)E (rA,t−k1rB,t−k2rA,srB,u)

for the last term we also have t− k1 = u

=σ2
j,∞rArB

+

N∑

i=1

t−s−1∑

k=1

ϕji (k)Dp,(ii)AB(t− k − s, t− k − u)

+ 2

N∑

i=1

+∞∑

k2=t−s+1

Kj
i (t− s, k2)Dp,(iB)iA(s− t+ k2, u− s)

+

t−s−1∑

k=1

ϕj×(k)
(
D(AB)AB(t− k − s, t− k − u)− rArB2)

)

+

+∞∑

k1=2

k1−1∑

k2=1

kj×(k1, k2)E (rA,t−k1
rB,t−k2

rA,srB,u)

+

+∞∑

k2=t−u+1

kj×(t− u, k2)Dp,(AB)BA(u− t+ k2, u− s)

we need, in the last term to work on, t− k2 = u

=σ2
j,∞rArB

+

N∑

i=1

t−s−1∑

k=1

ϕji (k)Dp,(ii)AB(t− k − s, t− k − u)

+ 2

N∑

i=1

+∞∑

k2=t−s+1

Kj
i (t− s, k2)Dp,(iB)iA(s− t+ k2, u− s)

+

t−s−1∑

k=1

ϕj×(k)
(
D(AB)AB(t− k − s, t− k − u)− rArB2)

)

+

+∞∑

k1=t−u+1

kj×(k1, t− u)Dp,(BB)AA(u− t+ k1, u− s)

+

+∞∑

k2=t−s+1

kj×(t− s, k2)Dp,(AB)BA(s− t+ k2, u− s)

We now set t = τ1, t− u = τ2 and s = 0, which results in

D×,jAB(τ1, τ2) =σ
2
j,∞rArB

+

N∑

i=1

τ1−1∑

k=1

ϕji (k)Dp,(ii)AB(τ1 − k, τ2 − k)

+ 2

N∑

i=1

+∞∑

k2=τ1+1

Kj
i (τ1, k2)Dp,(iB)iA(k2 − τ1, τ1 − τ2)

155



+

τ1−1∑

k=1

ϕj×(k)
(
D(AB)AB(τ1 − k, τ2 − k)− rArB2)

)

+

+∞∑

k1=τ2+1

kj×(k1, τ2)Dp,(BB)AA(k1 − τ2, τ1 − τ2)

+

+∞∑

k2=τ1+1

kj×(τ1, k2)Dp,(AA)BB(k2 − τ1, τ1 − τ2),

which concludes the proof.

Appendix B.7 gives more details on who to concretely implement those systems of linear equa-
tions between kernels and covariance structures.

Yule-Walker system for QGARCH 2D for Leverage kernel (step 4)

Finally, once the linear, quadratic and cross kernels are determined, we can work on the original
dataset (not symmetrised) and characterised the leverage kernels. To achieve this, additional Yule-
Walker equations are required relying on V (defined in Equations (B.5.8) and (B.5.9)), we derive
them subsequently. The goal is to characterise (Lj

i )i,j∈{A,B} up to a certain lag q. Hence, we need
4× q equations which are obtained using (Vjl(τ))j,l∈{A,B},1≤τ≤q.

Lemma B.5.7 (Yule-Walker equation for V). for τ > 0, in the framework described by Eq. (B.5.2),
the covariance V writes

Vjl(τ) =Lj
i (τ)rirl

+

N∑

i=1

τ∑

k=1

ϕji (k)Vr
il(τ − k)

+ 2

+∞∑

k2=τ+1

Kj
i (τ, k2)Vr

(il)j(k2 − τ)

+

τ∑

k=1

ϕj×(k)Vr
(AB)l(τ − k)

+

+∞∑

k2=τ+1

kj×(τ, k2)Vr
(Al)B(k2 − τ)

+

+∞∑

k1=τ+1

kj×(k1, τ)Vr
(Bl)A(k1 − τ)

Proof. we consider s < t,

Vjl(t− s) =E(σ2
i,trl,s)

=σ2
j,∞E(rl,s)

+

N∑

i=1

+∞∑

k=1

Lj
i (k)E(ri,t−krl,s)

+

N∑

i=1

+∞∑

k=1

ϕji (k)E(r
2
i,t−krl,s)

+ 2

+∞∑

k1=1

+∞∑

k2=k1+1

Kj
i (k1, k2)E(ri,t−k1

ri,t−k2
rl,s)

+

+∞∑

k=1

ϕj×(k)E ((rA,t−krB,t−k − rArB) rl,s)
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+

+∞∑

k1=1

+∞∑

k2=k1+1

kj×(k1, k2)E(rA,t−k1
rB,t−k2

rl,s)

+

+∞∑

k1=2

k1−1∑

k2=1

kj×(k1, k2)E(rA,t−k1
rB,t−k2

rl,s)

=Lj
i (t− s)rirl

+

N∑

i=1

t−s∑

k=1

ϕji (k)Vr
il(t− k − s)

+ 2

+∞∑

k2=t−s+1

Kj
i (t− s, k2)Vr

(il)i(s− t+ k2)

+

t−s∑

k=1

ϕj×(k)Vr
(AB)l(t− k − s)

+

+∞∑

k2=t−s+1

kj×(t− s, k2)Vr
(Al)B(s− t+ k2)

+

+∞∑

k1=t−s+1

kj×(k1, t− s)Vr
(Bl)A(s− t+ k1)

we set t = τ and s = 0, and we obtain

Vjl(τ) =Lj
i (τ)rirl

+

N∑

i=1

τ∑

k=1

ϕji (k)Vr
il(τ − k)

+ 2

+∞∑

k2=τ+1

Kj
i (τ, k2)Vr

(il)i(k2 − τ)

+

τ∑

k=1

ϕj×(k)Vr
(AB)l(τ − k)

+

+∞∑

k2=τ+1

kj×(τ, k2)Vr
(Al)B(k2 − τ)

+

+∞∑

k1=τ+1

kj×(k1, τ)Vr
(Bl)A(k1 − τ)
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B.6 Dealing with Multivariate Yule Walker Equations – ex-
ample with the 2D linear case

This appendix is dedicated to give some insights on the calibration of a Multivariate (2D) GARCH
(or Hawkes) from the Yule-Walker system. Specifically, we derive the system of Yule-Walker type
equations for a 2D linear GARCH, meaning that we considerK = ϕ× = k× = 0 in Equation (B.5.2).
Thus, we only need to characterise (ϕji )i,j∈{A,B}. In multidimensions, for N assets, the Yule-Walker
equation on C gives (see Lemma B.5.2), for τ > 0,

Cjl(τ) =
N∑

i=1

+∞∑

k=1,k ̸=τ

ϕji (k)Cril(τ − k).

We can then deduce a system on the matrices C and φ, defined as

C(τ) =
(C11 C12
C21 C22

)
, and φ(τ) =

(
ϕ11 ϕ12
ϕ21 ϕ22

)
,

which results in




C⊤(1)
C⊤(2)

...
C⊤(q)


 =




C⊤(0) C⊤(−1) . . . C⊤(−(q − 1))
C⊤(1) C⊤(0) . . . C⊤(−(q − 2))

... C⊤(−1)
C⊤(q − 1) C⊤(q − 2) . . . C⊤(0)







φ⊤(1)
φ⊤(2)

...
φ⊤(q)


 . (B.6.1)

Such “tensors” system is not really straight forward to implement in python. One solution is
to flatten the equation which results in 2 systems (in 2D):




C11(1)
C12(1)

...
C11(q − 1)
C12(q − 1)




= A




ϕ11(1)
ϕ11(2)

...
ϕ11(q − 1)
ϕ12(1)
ϕ12(2)

...
ϕ12(q − 1)




and




C21(1)
C22(1)

...
C21(q − 1)
C22(q − 1)




= A




ϕ21(1)
ϕ21(2)

...
ϕ21(q − 1)
ϕ22(1)
ϕ22(2)

...
ϕ22(q − 1)




with

A =




C11(0) C11(1) . . . C11(q − 1) C21(0) C21(−1) . . . C21(−(q − 1))
C12(0) C12(1) . . . C12(−(q − 1)) C22(0) C22(−1) . . . C22(−(q − 1))

...
C11(q − 1) C11(q − 2) . . . C11(0) C21(q − 1) C21(q − 2) . . . C21(0)
C12(q − 1) C12(q − 2) . . . C12(0) C22(q − 1) C22(q − 2) . . . C22(0)




(Cij(τ))i,j∈{1,2} for τ ∈ J1, qK can be computed from data and is enough to characterise the

linear kernel (ϕji )i,j∈{1,2} up to the lag q.

Remark B.6.1. The thought process leading to the linear system between C and ϕ that is pre-
sented above is my own and is by evidence not unique.
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B.7 Calibration Matrices - QGARCH

The goal of the calibration up to step 3 is to deduce the kernels (ϕij)i,j∈{1,2}, (Ki
j)i,j∈{1,2},

(ϕi×)i∈{1,2} and (ki×)i∈{1,2} that weight the contributions of the past on the squared volatility as
defined in Eq. (B.5.2), from the observation of the covariance structures defined in Appendix B.5.2.
The link between the kernels and the covariance structures is established by the Yule-Walker equa-
tions developed in Appendix B.5. To implement this Yule-Walker system of equations, we propose
here a matricel environment. The calibration matrices to deduce the leverage kernels are described
in a subsequent section.

B.7.1 2D QGARCH – framework

Consistently, we present a matricel system for the 2D QGARCH, considering the two assets (1 or
A) and (2 or B). The goal is to link the kernels

φ =

(
ϕ11 ϕ12
ϕ21 ϕ22

)
, K =

(
K1

1 K1
2

K2
1 K2

2

)
, ϕ× =

(
ϕ1×
ϕ2×

)
, and k× =

(
k1×
k2×

)

to the observable covariance structures

C =

(C11 C12
C21 C22

)
, Dd =

(D111 D122

D211 D222

)
and D× =

(D112

D212

)
.

The goal of this appendix is to describe a system of tensors which describes the relationship
between the kernels and the covariance structures up to a certain lag q. We construct the following
system:




A1d A2d 0 0
A3d A4d 0 0
A1d× A2d× A1× A2×
A3d× A4d× A3× A4×







φ(τ)
K(τ1, τ2)τ1<τ2

ϕ×(τ)
k×(τ1, τ2)τ1<τ2

k×(τ1, τ2)τ1>τ2




=




C(τ)
Dd(τ1, τ1)τ1<τ2

D×(τ, τ)
D×(τ1, τ2)τ1<τ2

D×(τ1, τ2)τ1>τ2



. (B.7.1)

Another way to comprehend the system is to see that φ is the time-diagonal of K and thus,
one can separate the cross components from the linear and quadratic components, as follows:

(
Ad 0
Ad× A×

)(
Kd

K×

)
=

(
Dd

D×

)
.

Let us describe the tensors system above:

• Covariance structures: Represented by the right hand in Eq. (B.7.1), the covariance
tensors are composed of observable elements.

– The red matrices are correlation tensors of size q × 2× 2 (or more generally q ×N ×N
if N is the number of assets). They represent the covariance of the squared volatility
and the covariance between the volatility and the past trends.

– The magenta tensors are also covariance structures, capturing the influence of the past
cross trends on future volatility. The time-diagonal D×(τ, τ), with τ ∈ J1, qK, is a tensor
of 2D vectors with shape q × 2 × 1. Conversely to Dd, D× is non-time-symmetric, i.e,
D×(τ1, τ2) ̸= D×(τ2, τ1), thus, we need to consider D×(τ1, τ2) for both τ1 < τ2 and
τ2 < τ1, both of which shape q q−1

2 × 2× 1.

• Kernels: The kernels weight the feedback of past realisations on the future square volatility
and characterise the process. These kernels are the unknowns we want to recover.

– The blue tensors represent the linear and quadratic we want to calibrate (steps 1 and 2

of Appendix B.5). The shape of Kd is, consistently with Dd, q +
q(q−1)

2 × 2 × 2 (φ has

shape q × 2× 2 and K has shape q(q−1)
2 × 2× 2).
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– The cyan tensors are the lags of the kernels weighting the feedback of the cross trend.
Consistently with D×, their shape is q + q(q − 1)× 2× 1.

• Yule-Walker matrices: These matrices are built upon observables according to the Yule-
Walker system of equations developed in Appendix B.5. We explain briefly here their role,
but the subsequent sections are dedicated to describe them precisely.

– The violet calibration matrices relate the linear and quadratic kernels represented by
Kd to the correlations structure Dd.

– The teal calibration matrices relate the kernel of the cross trends K× to the cross
correlations D×.

– the olive components relate the linear and quadratic kernel Kd to the cross correlations
D×.

The above system already considers a calibration in several steps, otherwise the upper right
bloc would not be 0 as K× could contribute to Dd. Thus, we first solve the upper bloc for Kd

using AdKd = Dd, and then we solve for K× using Ad×Kd + A×K× = D×. Let us note that
the first calibration step to determine Kd is also decomposed in two, as we first characterise the
self feedback (1D calibration) and then the cross-linear and quadratic feedback. The rest of this
appendix is dedicated to the description of the the Yule-Walker matrices which define the system.

B.7.2 Building the Yule-Walker Matrices

The Yule-Walker matrices Ad, Ad× and A× are built according to the Yule-Walker lemmas of
Appendix B.5. In fact, each matrix (A1d, A2d, A3d, A4d, A1d×, A2d×, A3d×, A4d×, A1×, A2×, A3×,
A4×) replicates one term of these equations. Upon scrutiny, it appears that some terms have the
same structure, and only the components, i.e. the kernels and the covariance involved in the term,
change. In particular, there are 4 different structures to implement: A1, A2, A3 and A4.

A1 A2 A3 A4

A1d A2d A3d A4d

A1d× A2d× A3d× A4d×
A1× A2× A3× A4×

Table B.1: Calibration matrices with similar structure

Specifically, restating the Equations of lemmas B.5.2, B.5.3, B.5.4, B.5.5 and B.5.6, we make
the link between the matrices and the term they represent.

From lemma B.5.2, we have

Cjl(τ) =
N∑

i=1

+∞∑

k=1,k ̸=τ

ϕji (k)Cril(τ − k)
︸ ︷︷ ︸

A1d∈Ad

+2

N∑

i=1

+∞∑

k2=τ+1

+∞∑

k1=k2+1

Kj
i (k1, k2)Dp,lii(k1 − τ, k2 − τ)

︸ ︷︷ ︸
A2d∈Ad

.

From lemma B.5.3, we have, for τ1 < τ2,

Djll(τ1, τ2) =

N∑

i=1

τ1−1∑

k=1

ϕji (k)Dp,ill(τ1 − k, τ2 − k)
︸ ︷︷ ︸

A3d∈Ad

+2

N∑

i=1

+∞∑

k2=τ1+1

Kj
i (τ1, k2)Dp,(il)il(−τ1 + k2, τ2 − τ1)

︸ ︷︷ ︸
A4d∈Ad
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From lemma B.5.4, we have, for, τ > 0

D×,jAB(τ, τ)− σ2
j,∞rArB =

N∑

i=1

τ−1∑

k=1

ϕji (k)Dp,(ii)AB(τ − k, τ − k)
︸ ︷︷ ︸

A1d×∈Ad×

+ 2

N∑

i=1

+∞∑

k1=τ+1

+∞∑

k2=k1+1

Kj
i (k1, k2)Dp,(AB)ii(k1 − τ, k2 − τ)

︸ ︷︷ ︸
A2d×∈Ad×

+

τ−1∑

k=1

ϕj×(k)
(
Dp(AB)AB(τ − k, τ − k)− rArB2

)

︸ ︷︷ ︸
A1×∈A×

+

+∞∑

k2=τ+1

+∞∑

k1=k2+1

kj×(k1, k2)Dp,(AB)AB(k1 − τ, k2 − τ)
︸ ︷︷ ︸

A2×∈A×

+

+∞∑

k1=τ+1

+∞∑

k2=k1+1

kj×(k1, k2)Dp,(AB)AB(k1 − τ, k2 − τ)
︸ ︷︷ ︸

A2×∈A×

From lemma B.5.5, we have, for, τ1 < τ2

D×,jAB(τ1, τ2)− σ2
j,∞rArB =

N∑

i=1

τ1−1∑

k=1

ϕji (k)Dp,(ii)AB(τ1 − k, τ2 − k)
︸ ︷︷ ︸

A3d×∈Ad×

+ 2

N∑

i=1

+∞∑

k2=τ1+1

Kj
i (τ1, k2)Dp,(iA)iB(k2 − τ1, τ2 − τ1)

︸ ︷︷ ︸
A4d×∈Ad×

+

τ1−1∑

k=1

ϕj×(k)
(
D(AB)AB(τ1 − k, τ2 − k)− rArB2)

)

︸ ︷︷ ︸
A3×∈A×

+

+∞∑

k1=τ1+1

kj×(k1, τ1)Dp,(BA)AB(k1 − τ1, τ2 − τ1)
︸ ︷︷ ︸

A4×∈A×

+

+∞∑

k2=τ1+1

kj×(τ1, k2)Dp,(AA)BB(k2 − τ1, τ2 − τ1)
︸ ︷︷ ︸

A4×∈A×

From lemma B.5.6, we have, for, τ1 > τ2

D×,jAB(τ1, τ2)− σ2
j,∞rArB =

N∑

i=1

τ1−1∑

k=1

ϕji (k)Dp,(ii)AB(τ1 − k, τ2 − k)
︸ ︷︷ ︸

A3d×∈Ad×

+ 2

N∑

i=1

+∞∑

k2=τ1+1

Kj
i (τ1, k2)Dp,(iB)iA(k2 − τ1, τ1 − τ2)

︸ ︷︷ ︸
A4d×∈Ad×
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+

τ1−1∑

k=1

ϕj×(k)
(
D(AB)AB(τ1 − k, τ2 − k)− rArB2)

)

︸ ︷︷ ︸
A3×∈A×

+

+∞∑

k1=τ2+1

kj×(k1, τ2)Dp,(BB)AA(k1 − τ2, τ1 − τ2)
︸ ︷︷ ︸

A4×∈A×

+

+∞∑

k2=τ1+1

kj×(τ1, k2)Dp,(AB)BA(k2 − τ1, τ1 − τ2)
︸ ︷︷ ︸

A4×∈A×

Table B.1 recaps the different categories. We now proceed to the description of the four struc-
tures.

B.7.3 A1 Structure

The matrices we call “A1-like” are the one making the calibration between the diagonal of the
observable (C and D×) and the diagonal of a kernel (ϕ or ϕ×). The characteristic equation is

EA1
(τ) =

+∞∑

u=1

K(s)D(τ − s), where K and D are a random kernel and covariance structure.

Example – A1 relation for q = 3
Up to the lag q = 3, we then have the following system





EA1
(1) = K(1)D(0) +K(2)D(−1) +K(3)D(−2)

EA1
(2) = K(1)D(1) +K(2)D(0) +K(3)D(−1)

EA1
(3) = K(1)D(2) +K(2)D(1) +K(3)D(0)

so the Yule-Walker matrix is

A1 =



D(0) D(−1) D(−2)
D(1) D(0) D(−1)
D(2) D(1) D(0)


 and when D is even, A1 =



D(0) D(1) D(2)
D(1) D(0) D(1)
D(2) D(1) D(0)




Generalizing to any q and for a any covariance D, we can define

fA1
(Dup,Ddown,Σ) =




Σ Dup(1) Dup(2) Dup(3) ... Dup((q − 1))
Ddown(1) Σ Dup(1) Dup(2) ... Dup((q − 2))
Ddown(2) Ddown(1) Σ Dup(1) ... Dup((q − 3))

...
Ddown(q − 1) Ddown(q − 2) ... Ddown(1) Σ




We now just need to determine (Dup,Ddown,Σ) for each of the “A1-like” matrices.

A1d

A1d is the same as for the linear GARCH model and we have

A1d = fA1
(C⊤,C,C(0)).

A1d×

A1d× makes the relation between D×(τ, τ) and φ. From the Yule-Walker equation in lemma B.5.4,
we have

A1d× = fA1
(D×, τ −→ D×(−τ),D×(0)).
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A1×

Similarly, A1× encodes the calibration between D×(τ, τ) and ϕ×, from lemma B.5.4, we have

A5× = fA1
(
(D(AB)AB − rArB2

)
), τ −→

(D(AB)AB(−τ)− rArB2
)
,
(D(AB)AB(0)− rArB2

)
)

B.7.4 A2 Structure

“A2-like” matrices encode the calibration between the diagonal of the observable (C and D×) and
the non diagonal of the kernels Kd and K×. The characteristic equation is

EA2
(τ) = 2

+∞∑

k2=τ+1

+∞∑

k1=k2+1

K(k1, k2)D(k1 − τ, k2 − τ),

where K and D are a random kernel and covariance structure.

Example – A2 relation for q = 3
Up to the lag q = 3, we then have the following system





EA2
(1) = K(1, 2)D(0, 1) +K(1, 3)D(0, 2) +K(2, 3)D(1, 2)

EA2
(2) = K(1, 2)D(−1, 0) +K(1, 3)D(−1, 1) +K(2, 3)D(0, 1)

EA3
(3) = K(1, 2)D(−2,−1) +K(1, 3)D(−2, 0) +K(2, 3)D(−1, 0)

.

Hence, we have the following matrix



E(1)
E(2)
E(3)


 =



D(0, 1) D(0, 2) D(1, 2)
D(−1, 0) D(−1, 1) D(0, 1)
D(−2,−1) D(−2, 0) D(−1, 0)





K(1, 2)
K(1, 3)
K(2, 3)




and if D is causal,


E(1)
E(2)
E(3)


 =



D(0, 1) D(0, 2) D(1, 2)

0 0 D(0, 1)
0 0 0





K(1, 2)
K(1, 3)
K(2, 3)




Generalizing for any lag q and for general structure D, we can define fA2(D) as following: if
we consider the matrix (D(i, j))i,j∈J−(q−1),(q−1)K then, the nth row of A2-like matrices is two times
the upper triangle of (D(i, j))i,j∈J−(q−1),(q−1)K[q − n : 2q − n, q − n : 2q − n]. Calling fA2

the
function performing the transformation A2 = fA2

(D), we now proceed to the definition of the
A2-like matrices.

A2d

For A2d, we use the link between C and the quadratic kernel K so

A2d = fA2
(D⊤

d ).

A2d×

For A2d×, we use the link between the time diagonal of D× and the off time-diagonal kernel
Koff-diagonal

d from lemma B.5.4, and we obtain

A2d× = fA2
(

(D1211

D1222

)
).
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A2×

A2× encodes the calibration between the time diagonal of D× and the kernel k×. Since k× is not
time-symmetric (conversely to K) we need to considered k× for both τ1 < τ2 and τ2 < τ1. This
phenomenon intervenes in several calibration matrices, as A2×. We set the left bloc being the one
encoding the calibration of k×(τ1, τ2)τ1<τ2 and the right bloc for k×(τ1, τ2)τ1>τ2 (consistently with
the framework developped above).

Then, from lemma B.5.4, and we obtain

Aleft bloc
2× = fA2(Dp(12)12) & Aright bloc

2× = fA2(Dp(12)21).

B.7.5 A3 structure

“A3-like” matrices are the one linking the off-time-diagonal of observable covariances (Dd and D×
with τ1 ̸= τ2) with the time-diagonal kernels (φ and ϕ×). The characteristic equation is

EA3(τ1, τ2) =

+∞∑

u=1

K(u)D(τ1 − u, τ2 − u)

where K and D are a random kernel and covariance structure.

Example – A3 relation for q = 3
Up to the lag q = 3, we then have the following system





DA3
(1, 2) = K(3)D(−2,−1) +K(2)D(−1, 0) +K(1)D(0, 1)

DA3
(1, 3) = K(3)D(−2, 0) +K(2)D(−1, 1) +K(1)D(0, 2)

DA3
(2, 3) = K(3)D(−1, 0) +K(2)D(0, 1) +K(1)D(1, 2)

.

Hence, we obtain the system:


DA3

(1, 2)
DA3

(1, 3)
DA3

(2, 3)


 =



D(0, 1) D(−1, 0) D(−2,−1)
D(0, 2) D(−1, 1) D(−2, 0)
D(1, 2) D(0, 1) D(−1, 0)





K(1)
K(2)
K(3)




and if D is causal, we have


DA3

(1, 2)
DA3(1, 3)
DA3(2, 3)


 =



D(0, 1) 0 0
D(0, 2) 0 0
D(1, 2) D(0, 1) 0





K(1, 1)
K(2, 2)
K(3, 3)


 .

The function to create “A3-like” matrices fA3 , has the same structure as A2, only transposed.
Hence, we define fA3

(D) = fA2
(D)⊤/2. We now detailed the definition of each “A3-like” matrix.

A3d

A3d encodes the feedback of φ on the time-off-diagonal of Dd. Using lemma B.5.3, we have

A3d = fA3(Dd)

Remark B.7.1. In python, one can use (A3=A2.transpose(1,0,3,2)/2).

A3d×

A3d× encodes the feedback of φ on the off-time-diagonal of D×. A3d× is then composed of two
blocs to capture the time asymmetry of D×. The upper bloc characterises the feedback of ϕ× on
D×(τ1, τ2) for τ1 < τ2 and the lower bloc for τ1 > τ2.

Using lemmas B.5.5 and B.5.6, we can write

Aupper
3d× = fA3

(

(Dp,(11)AB

Dp,(22)AB

)
) & Alower

3d× = fA3
(

(Dp,(11)BA

Dp,(22)BA

)
).

The second level is done with the symmetric of the first level.
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A3×

A3× encodes the feedback of ϕ× on the off-time-diagonal of D×. As for A3d×, we account for the
time asymmetry of D× by allocating the upper bloc of A3× to D×(τ1, τ2) for τ1 < τ2 and the lower
bloc for τ1 > τ2. Using lemmas B.5.5 and B.5.6, we have

Aupper
3× = fA3

(
(D(AB)AB

)
) & Alower

3× = fA3
(
(D(AB)BA

)
).

B.7.6 A4 structure

“A4-like” matrices are the one linking off-time-diagonal of observable (Dd and D× with τ1 ̸= τ2)
and the off-time-diagonal of kernels (K and k×). The characteristic equation is

EA4
(τ1, τ2) = 2

+∞∑

u=τ1+1

K(u, τ1)D(u− τ1, τ2 − τ1)

where K and D are a random kernel and covariance structure.

Example – A4 relation for q = 3
Up to the lag q = 3, we then have the following system for q = 3,





DA4
(1, 2) = 2(K(2, 1)D(1, 1) +K(3, 1)D(2, 1))

DA4(1, 3) = 2(K(2, 1)D(1, 2) +K(3, 1)D(2, 2))
DA4(2, 3) = 2K(3, 2)D(1, 1)

.

Hence, we obtain the system



DA4(1, 2)
DA4(1, 3)
DA4

(2, 3)


 =



D(1, 1) D(2, 1) 0
D(1, 2) D(2, 2) 0

0 0 D(1, 1)





K(1, 2)
K(1, 3)
K(2, 3)


 .

The function to create “A4-like” matrices from the correlation D can be deduced from the
example. It creates blocs of the matrix (D(i, j))i,j along the diagonal. We now detail the structure
of the A4-like matrices.

A4d

A4d encodes the link between K and Dd. From lemma B.5.3, we have

A4d = fA4
((D(ij)ij)ij).

A4d×

A4d× encodes the feedback of Kd on the off-time-diagonal of D×. To account for the asymmetry
of D×, we build A4d× with two blocs: the upper bloc being for D×(τ1, τ2) with τ1 < τ2 and the
lower bloc for τ2 < τ1. From lemmas B.5.5 and B.5.6, we have

Aupper
4d× = fA4(

(Dp(AA)AB

Dp(AB)BB

)
) & Alower

4d× = fA4(

(Dp(BA)AA

Dp(BB)BA

)
)

A4×

A4× encodes the feedback of k× on the off-time-diagonal of D×. For this particular matrix, one
has to account for the asymmetry of D× and of k×. As before, we thus build blocs for each case.
From lemmas B.5.5 and B.5.6, we have
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• upper left, D×(τ1 < τ2) VS k×(τ1 < τ2)

Aupper left
4× = fA4

(
(Dp(AA)BB

)
)

• upper right, D×(τ1 < τ2) VS k×(τ1 > τ2)

Aupper right
4× = fA4

(
(Dp(AB)AB

)
)

• lower left, D×(τ1 > τ2) VS k×(τ1 < τ2)

Alower left
4× = fA4(

(Dp(AB)BA

)
)

• lower right, D×(τ1 > τ2) VS k×(τ1 > τ2)

Alower left
4× = fA4(

(Dp(BB)AA

)
)

B.7.7 Calibration matrices for the leverage kernels

Leverage calibration - framework

We now explicate a method to determine the leverage kernels (Li
j)i,j∈{1,2}. For those last kernels,

we aim at building a linear system such that:




V(1)
V(2)
...

V(q)


 = AL




L(1)
L(2)
...

L(q)




where

L(τ) =
(
L1
1(τ) L1

2(τ)
L2
1(τ) L2

2(τ)

)
and V(τ) =

(V11(τ) V12(τ)
V21(τ) V22(τ)

)
.

As before, we rely on the Yule-Walker type equation to construct AL. As a reminder, lemma B.5.7
gives

Vjl(τ) =Lj
i (τ)rirl

+

N∑

i=1

τ∑

k=1

ϕji (k)Vr
il(τ − k)

+ 2

+∞∑

k2=τ+1

Kj
i (τ, k2)Vr

(il)i(k2 − τ)

+

τ∑

k=1

ϕj×(k)Vr
(AB)l(τ − k)

+

+∞∑

k2=τ+1

kj×(τ, k2)Vr
(Al)B(k2 − τ)

+

+∞∑

k1=τ+1

kj×(k1, τ)Vr
(Bl)A(k1 − τ).

The equation above demonstrates that Vjl not only depends on the leverage kernels (Li
j)i,j∈{1,2}

but also on the linear kernels (ϕij)i,j∈{1,2}, the quadratic kernels (K
i
j)i,j∈{1,2} and the cross kernels

(ϕi×)i∈{1,2} and (ki×)i∈{1,2} that we determined in steps 1, 2 and 3. Hence, the equation system
becomes:
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Ṽ(1)
Ṽ(2)
...

Ṽ(q)


 =




(
r1

2 r1r2
r1r2 r2

2

)
0

. . .

0

(
r1

2 r1r2
r1r2 r2

2

)







L(1)
L(2)
...

L(q)




where




Ṽ(1)
Ṽ(2)
...

Ṽ(q)


 =




V(1)
V(2)
...

V(q)


− A1L




φ(1)
φ(2)
...

φ(q)


− A1×L




ϕ×(1)
ϕ×(2)

...
ϕ×(q)


− AvL




K×(1, 2)
K×(1, 3)

...
K×(q − 1, q)


− Av×L




K×(1, 2)
K×(1, 3)

...
K×(q − 1, q)


 ,

and A1L, A1×L, AvL and Av×L are to be determined with the Yule-Walker equation of lemma B.5.7.
Notably, we have

Vjl(τ) =Lj
i (τ)rirl

+

N∑

i=1

τ∑

k=1

ϕji (k)Vr
il(τ − k)

︸ ︷︷ ︸
A1L

+ 2

+∞∑

k2=τ+1

Kj
i (τ, k2)Vr

(il)i(k2 − τ)
︸ ︷︷ ︸

AvL

+

τ∑

k=1

ϕj×(k)Vr
(AB)j(τ − k)

︸ ︷︷ ︸
A1×L

+

+∞∑

k2=τ+1

kj×(τ, k2)Vr
(Al)B(k2 − τ)

︸ ︷︷ ︸
Av×L left bloc

+

+∞∑

k1=τ+1

kj×(k1, τ)Vr
(Bl)A(k1 − τ)

︸ ︷︷ ︸
Av×L right bloc

.

Using the work above, we can already determine A1L and A1×L as they are “A1-like” matrices.
Hence, we have

A1L = fA1
(02×2, (Vr),

(
σ2
ArA 0

0 σ2
BrB

)
) and A1×L = fA1

(02×2,

(
Vr
(AB)A

Vr
(AB)B

)
,

(
0
0

)
).

A5 structure

Additionally, we need to define another type of matrices for AvL and Av×L. Both have the same
structure which we call “A5-like”. The characteristic equation is as follows

EA5(τ) =

+∞∑

k=τ+1

K(τ, k)D(k − τ).

where K and D are a random kernel and covariance structure.

Example – A5 relation for q = 3
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Up to the lag q = 3, we then have the following system





EA5(1) = K(1, 2)D(1) +K(1, 3)D(2)
EA5(2) = K(2, 3)D(1)
EA5

(3) = 0

so the Yule-Walker matrix is

A5 =



D(1) D(2) 0
0 0 D(1)
0 0 0




Hence, the generalisation of “A5-like” matrices comes down to writing each row i of A5 as
A5[i, q − i : 2q − 2i− 1]+ = D[: q − i− 1] and taking the other entries as zeros. Then, calling fA5

the function to build “A5-like” matrices such like A5 = fA5(D) we can define the last Yule-Walker
matrices as

AvL = fA5(

(
Vr
(AA)A Vr

(AB)A

Vr
(AB)B Vr

(BB)B

)
), Aleft bloc

v×L = fA5(

(
Vr
(AA)B

Vr
(AB)B

)
) and Aright bloc

v×L = fA5
(

(
Vr
(BA)B(−)
Vr
(BB)B(−)

)
).

Empirically, we observe that the contribution of these kernels is not significant, and so, in
practice for the sake of simplicity, we only consider A1L and A1×L in the calibration.
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B.8 Calibration - Proof of concept

This appendix provides a proof of concept for the proposed calibration method, demonstrating
its results using synthetic data. Notably, we discuss the challenges associated with accurately
retrieving the (Q)Hawkes process, an event-by-event point process, from aggregated data. These
difficulties justify our decision to approximate the QHawkes process with a QGARCH model, as
described by Equation (B.5.1), for the empirical study of Chapter 4.

This appendix is organised as follows. It begins by comparing the calibration of the univariate
(Q)Hawkes model with that of the univariate (Q)GARCH model. This comparison shows that, in
certain regimes, the calibration of the Hawkes becomes biased due to data binning whereas the
QGARCH remains stable across a wider range of parameters.

The second part focuses on calibrating the multivariate (Q)GARCH using the method of mo-
ments, providing evidence that the calibration method is reliable.

To compare the calibration of the (Q)Hawkes with the calibration on the (Q)GARCH, we
generate datasets in two ways:

• The thinning algorithm (see Appendix B.1) provide time and mark of events for the (Q)Hawkes,
enabling the construction of price time series, according to the definition of the QHawkes in
Chapter 2, i.e. dP = ±dN . These time series are then aggregated into 1 minute bins to
create the volatility time series σB and the 1-minute returns time series dP . These synthetic
time series are used to test the calibration of the (Q)Hawkes model.

• The simulation of the (Q)GARCH, as described in Equation (B.5.1), directly results in two
time series at 1 minute timescale: the volatility σ2 and the returns r. These time series are
used to test the calibration of the QGARCH.

In both cases, we use exponential feedback kernels with the general form:

ϕ(t) = nHβ exp(−βt) & k(t) =
√
2nZω exp(−ωt)

B.8.1 Univariate cases: comparison between the (Q)Hawkes and the
(Q)GARCH models

This first part is dedicated to show and discuss the calibration results of the univariate (Q)Hawkes
and of the univariate (Q)GARCH. It begins with the linear case and then deals with the quadratic
extension.

Univariate linear case

τ

φ

(a) In the case λ̄ = 0.03 min−1 (λ∞ =
0.01 min−1).

τ

φ

(b) In the case λ̄ = 1.7 min−1 (λ∞ =
0.5 min−1).

Figure B.1: Calibration of a 1D linear Hawkes with exponential kernel, for two different sets of
parameters. In both cases, nH = 0.7 and β = 0.04 min−1 and only the baseline varies. The scatter
plot is the kernel obtained by the method of moments and the plain line is the kernel used to
generate the synthetic data and that we want to recover.

As a reminder, the linear Hawkes process is a point process N , whose intensity is defined as
follows:
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λt = λ∞ +

∫ t

−∞
ϕ(t− s)dNs with returns defined as dPt = ±dNt.

In the case of a linear GARCH process, the squared volatility σ2 is driven by

σ2
t = σ2

∞ +

+∞∑

k=1

ϕ(k)r2t−k with returns defined as rt = σtξt, with ξt ∼ N (0, 1).

The connection between the two models lies in the relationship between the GARCH squared

volatility and the Hawkes intensity: σ2

∆ ≡ λt, where ∆ is the time bin used to compute σ [70]. It
is interesting to note that, by definition, the Hawkes model is a continuous process describing each
event of price change whereas the GARCH model is inherently discretized in time.

The objective of the calibration is to retrieve the kernel ϕ. Specifically, in the case of a expo-
nential kernel, ϕ = nHβ exp(−βt), we aim to determine the parameters nH , β and λ∞ (or σ2

∞).
When the shape of the kernel is unknown, as it is often the case with empirical data, adopting
a non-parametric method such as the general method of moments (GMM) allows us to remain
agnostic about the kernel’s shape. In this appendix, we implement the GMM on synthetic data to
test its validity.

τ

C

(a) In the case λ̄ = 0.03 min−1 (λ∞ =
0.01 min−1).

τ

C

(b) In the case λ̄ = 0.1.7 min−1 (λ∞ =
0.5 min−1).

Figure B.2: Illustration of the estimation of the covariance structure C(τ) = 1
λ̄

(
E(dNt

dt
dNt−τ

dt )− λ̄2
)

from the generation of a 1D linear Hawkes with exponential kernel, for 2 different sets of parameters.
In both cases, nH = 0.7 and β = 0.04 min−1 and only the baseline varies. The scatter plot is the
obtained covariance C, while the plain line is the theoretical covariance C derived in Appendix B.2.

Two key elements about the method of moments should be kept in mind. First, it relies
on autocovariance structure, and in particular in the linear case, on the autocovariance of the

process’s activity C(τ) = 1
λ̄

(
E(dNt

dt
dNt−τ

dt )− λ̄2
)

(for the GARCH, an equivalent expression is

C(τ) = E(σ2
t r

2
t−τ )− σ2r2). These values form the linear system of equations required to recover ϕ

(for more comprehensive details see [70] and Appendix B.7, in particular Section B.7.3). Secondly,
the method of moments yields the values (ϕ(τ))1≤τ≤q, where q is the lag after which the covariance
and kernels are considered null.

We now proceed to the presentation and discussion of the calibration results of the Hawkes
process.

Figure B.1 shows the estimations of the linear kernels ϕ calibrated on synthetic data generated
by linear Hawkes processes for two sets of parameters. Specifically, we compare the results obtained
from a simulation with λ̄dt = 0.03 to those from a second simulation with λ̄dt = 1.7. The
observations are manifolds. Firstly, although the calibration is noisy, the method of moments
successfully retrieves the exponential shape of the input kernel ϕ. Secondly, while the calibration
method remains consistent across both parameter sets, it appears to yield better results when
λ̄dt ≪ 1. In this regime, the data binning to obtain σB from N and P ensures that there is at
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most one event per bin, and so σB ≈ dN . However, when λ̄dt ≥ 1, there are more events within
each bin, leading to a overestimation of the activity.

For illustration, Figure B.2 compares the autocovariance, C, of the synthetic activity with
its theoretical values (derived in Appendix B.2). As shown in Figure B.2a, when λ̄dt ≪ 1, the
estimated autocovariance matched its theoretical values. In contrast, Figure B.2b demonstrates
that C is overestimated when λ̄dt = 1.7. These estimation errors in C result in a biased estimation
of the kernel ϕ as the Yule-Walker system to find ϕ relies solely on C.

For real data, due to the high activity of financial markets, we are situated in a regime where
λ̄dt ≥ 6. Hence, if the underlying process is a linear Hawkes, we expect the autocovariance C to be
significantly overestimated. For the linear Hawkes process, it is possible to determine a correction
to apply to C to retrieve the correct theoretical value and thus to correct the bias in the resulting
kernel ϕ. However, extending this correction to the quadratic case is challenging.

In comparison, as shown in Figure B.3, for instance, the calibration of the univariate linear
GARCH remains stable across a wide range of parameters, provided that an appropriate number
of lags q is chosen (see Appendix B.7). A consistent choice is to take q > 3

β .

τ

φ

Figure B.3: Proof of concept - Calibration of a 1D linear GARCH with exponential kernel. The
scatter plot is the kernel obtained by the method of moments and the plain line is the kernel
used to generate the synthetic data and that we want to recover. For this simulation nH = 0.7,
β = 0.1 min−1 and σ2

∞ = 0.1

Note also that the calibration is much less noisy for the GARCH model compared to the linear
Hawkes model.

We now turn our attention to the quadratic case.
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Univariate quadratic case

The quadratic case, for both the QHawkes and the QGARCH, is a lot more delicate.
Introduced in [70], the intensity of a QHawkes process is defined by

λt = λ∞ +

∫ t

−∞

∫ t

−∞
K(t− s, t− u)dPsdPs with returns defined as dPt = ±dNt.

In the case of a QGARCH process, as defined in [12], the square volatility, σ2, is driven by:

σ2
t = σ2

∞ +

+∞∑

i=1

+∞∑

j=1

K(i, j)rt−irt−j with returns defined as rt = σtξ, with ξ ∼ N (0, 1).

The connection between the two models remains the same as in the linear case, that is σ2

∆ ≡ λt.
In the quadratic cases, the kernel K can be understood as a matrix such that Kij = K(i, j).

The objective of the calibration is to estimate the entries of the matrix K up to a certain lag q;
these entries correspond to the values (K(i, j))1≤i,j≤q. Moreover, since K is symmetric, it is only
necessary to determine the upper triangle of K, specifically the values (K(i, j))1≤i≤j≤q.

Following the empirical observation of Blanc et al. [70], we adopt the ZHawkes framework
which expresses the kernels K as the sum of a diagonal contribution and a rank-one component,
meaning that K(τ1, τ2) = ϕ(τ1)δτ1−τ2 + k(τ1)k(τ2). For exponential kernels, ϕ and k take the form
defined above. Note that the ZHawkes framework also greatly simplifies the simulation and limit
the number of parameters to determine. Consistently with the explanation above, the method of
moments, as detailed in Appendix B.7, returns the estimated diagonal of K up to a certain lag
q, that is K(τ, τ)τ∈J1,qK, and its upper triangle values, K(τ1, τ2)1≤τ1<τ2≤q. Therefore, within the
ZHawkes framework, the diagonal of K (K(τ, τ)τ∈J1,qK) provides an an estimation of ϕ + k2, and
the upper triangle values of K (K(τ1, τ2)1≤τ1<τ2≤q) allow to rebuild the off-diagonal of K (since K
is symmetric) and approximate it with a rank-one representation, so called hereafter k̃. Figure B.4
shows the result of such calibration on synthetic data generated under the condition λ̄dt ≪ 1.
Similar to the linear Hawkes process, this regime ensures that there are very few events per bin,
thereby maintaining the relationship dP = ±dN and approximating σB ≈ dN .

τ

φ
+
k

2

τ

k̃
2

Figure B.4: Calibration of a 1D QHawkes with method of moments from a simulation with parame-
ters nH = 0.6, β = 0.04 min−1, nZ = 0.2, ω = 0.03 min−1, λ∞ = 0.003 min−1, hence λ̄dt = 0.015.
The left panel presents the diagonal of the kernel K(τ, τ) = ϕ(τ) + k2(τ) up to a lag q = 50.
The right panel presents the rank-one decomposition of the off-diagonal of K. In both panels the
scatter plot is the component from the method of moments, while the plain line is the theoretical
component we want to recover.

From the method of moments estimation, one can reconstruct the entire kernel matrix K up
to a lag q by combining the diagonal and the upper triangular entries, considering that K is a
symmetric q × q matrix. Subsequently, the parameters nH , nZ , β and ω can be retrieved by
minimizing [K̂(τ1, τ2) − ϕ(τ1)δτ1−τ2 − k(τ1)k(τ2)]

2, where K̂ is the estimated matrix from the
method of moments and ϕ and k are the parametric kernels defined above. The results of such
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φ

τ
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Figure B.5: Calibration of a 1D QHawkes with method of moments combined with a parametric
minimisation from a simulation with parameters nH = 0.6, β = 0.04 min−1, nZ = 0.2, ω =
0.03 min−1, λ∞ = 0.003 min−1, hence λ̄dt = 0.015. The left panel presents the kernel ϕ. The
right panel present the kernel k. In both panels the scatter plot is the optimised kernel obtained
from the method of moments, while the plain line is the theoretical kernel with input parameters,
we want to determine.

minimisation are illustrated in Figure B.5. Note that the obtained values of nH , nZ , β and ω
can then serve as initial guesses to perform an estimation by maximum likelihood as described in
Appendix B.3.

For the quadratic case, it is essential to remain in the regime where λ̄dt ≪ 1; otherwise, the
calibration results deviate significantly from the input values, and the method of moments, even
when combined with maximum likelihood estimation, does not yield reliable parameters. Since,
for real data at the 1-minute scale, we observe that λ̄dt ≫ 1, properly estimating the QHawkes
model as it stands is very challenging. Therefore, following the comparison and the approximation
made in [70], we have turned to the QGARCH model introduced in [12]. Indeed, the method of
moments to calibrate the QGARCH behaves properly for a large set of parameters as shown by
Figure B.6.
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(a) Calibration of a QGARCH for λ̄ = 0.7, obtained with σ2
∞ = 0.1
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(b) Calibration of a QGARCH for λ̄ = 12, obtained with σ2
∞ = 1.5

Figure B.6: Proof of concept - Calibration of a 1D quadratic GARCH with exponential kernels.
The scatter plot are the components obtained by the method of moments and the plain line are the
theoretical components used to generate the synthetic data and that we want to recover. The left
panel presents the diagonal of the kernel K = ϕ+ k2 up to a lag q = 50. The right panel presents
the rank one decomposition of K considering its diagonal has only zeros. For this simulation, we
set nH = 0.7, nZ = 0.2, β = 0.06, ω = 0.05 and σ2

∞ varies between the two sub-panels.

B.8.2 Calibration of the Multivariate QGARCH

Since retrieving the univariate QHawkes from aggregated data is already challenging, for the mul-
tivariate case, we present only the calibration results on synthetic data for the MQGARCH model
as a proof of concept. We first examine the 2D linear GARCH, followed by the 2D quadratic
GARCH model.

Calibration of 2D linear GARCH

We now consider 2 assets, A and B, with volatility σA and σB and returns rA and rB . The
MQGARCH volatility of the asset i ∈ {A,B} is driven by

σ2
i,t = σ2

i,∞+
∑

j∈{A,B}

+∞∑

k=1

ϕij(k)r
2
j,t−k with returns defined as ri,t = σi,tξi,t, with ξi,t ∼ N (0, 1).

In the case of exponential kernels, for all i, j ∈ {A,B}, the kernel ϕij takes the form ϕij(k) =
nHijβij exp(−βijk). The goal of the calibration is then to determine the eight parameters (nHij , βij)i,j∈{A,B}.
The method of moments works as before, and Appendix B.6 proposes a way to extend it intuitively
for the multivariate case. Figure B.7 shows our calibration results for the set of parameters pre-
sented in Table B.2. It clearly demonstrates that the method of moments enables to recover the
input kernels in the case of the 2D linear GARCH model.
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nH β
XA

A 0.8 0.2
XA

B 0.2 0.3
XB

A 0.3 0.3
XB

B 0.7 0.1

Table B.2: Input parameters to generate the synthetic 2D GARCH as defined above. Additionally,
we set σ2

A,∞ = 0.05 and σ2
B,∞ = 0.1.

φ
A A

φ
A B

τ

φ
B A

τ

φ
B B

Figure B.7: Proof of concept - Calibration of a 2D linear GARCH with exponential kernels. The
scatter plots are the kernels obtained by the method of moments and the plain lines are the
kernels used to generate the synthetic data and that we want to recover. For this simulation, the
parameters are set as defined in Table B.2.

Calibration of 2D quadratic GARCH (without cross trends feedback)

This last section focuses on our model of interest the multivariate quadratic GARCH. The goal is
to provide, in a simple case, a proof of concept that the method of moments can be extended to
this case and give consistent results.

Here, we consider two assets A and B whose volatility (σi)i∈{A,B} is driven by

σ2
i,t = σ2

i,∞ +
∑

j∈{A,B}

+∞∑

k1=1

+∞∑

k2=1

Ki
j(k1, k2)rj,t−k1rj,t−k2 ,

with returns defined as ri,t = σi,tξi,t, with ξi,t ∼ N (0, 1).
Note that, for the sake of simplicity, the leverage and cross-trends feedback (characterised by L

and K× in Equation (4.2.2)) are considered null in this framework. As for the univariate quadratic
case above (Section B.8.1), we can adopt the ZHawkes framework [70]. Therefore, each kernel
Ki

j for i, j ∈ {A,B} can be decomposed as the sum of a diagonal contribution and a rank-one

component, meaning that for all i, j ∈ {A,B}, Ki
j writes Ki

j(τ1, τ2) = ϕij(τ1)δτ1−τ2 + kij(τ1)k
i
j(τ2).

For better representation, as for the univariate case, each kernel Ki
j is considered as a matrix

defined by its lags, up to a certain lag q. Thus, Ki
j is represented by the symmetric matrix

(Ki
j(τ1, τ2))1≤τ1,τ2≤q, where, in the ZHawkes framework, the diagonal is (ϕij(τ) + (kij)

2(τ))1≤τ≤q

and the upper triangle entries are (kij(τ1)k
i
j(τ2))1≤τ1<τ2≤q. As before, the method of moments (see

Appendix B.7) returns, for all i, j ∈ {A,B}, the estimated diagonal and upper triangle values of
Ki

j up to a certain lag q. Subsequently, the off-diagonal of each kernel Ki
j can be approximated

with a rank-one representation, i.e. a vector k̃ij such that (Ki
j(τ1, τ2))1≤τ1,τ2≤q,τ1 ̸=τ2 = k̃(τ1)k̃(τ2).
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(a) Calibration of the diagonal of the kernels, for i, j ∈ {A,B}, Ki
j =

ϕi
j + (kij)

2 up to a lag q = 50.

k̃
A A

k̃
A B

τ
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τ
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(b) Calibration of the rank one decomposition of off-diagonal kernels, for
i, j ∈ {A,B}, (Ki

j(τ1, τ2))1≤τ1,τ2≤q,τ1 ̸=τ2 = k̃ij(τ1)k̃
i
j(τ2) up to a lag q = 50.

Figure B.8: Proof of concept - Calibration of a 2D quadratic GARCH with exponential kernels,
with no leverage or cross trend feedback. The scatter plots are the kernels obtained by the method
of moments and the plain lines are the kernels used to generate the synthetic data and that we
want to recover. For this simulation, the parameters are set as defined in Table B.3.

To provide a proof of concept of the calibration of the 2D QGARCH, we generate synthetic
time series of the QGARCH according to this framework, meaning that we generated two time
series of volatility along with two time series of returns such that

σ2
i,t = σ2

i,∞ +
∑

j∈{A,B}

+∞∑

k=1

ϕij(k)r
2
j,t−k +

+∞∑

k1=1

+∞∑

k2=1

kij(k1)k
i
j(k2)rj,t−k1rj,t−k2 ,

with returns defined as ri,t = σi,tξi,t and ξi,t ∼ N (0, 1), and where kernels take the form
ϕij(τ) = nHijβij exp(−βijτ) and kij(τ) =

√
2nZijωij exp(−ωijτ). The value of the parameters for

the simulation are described in Table B.3. Subsequently, the method of moments was applied as
described in Appendix B.7 considering L = ϕ× = k× = 0. The results of such calibration are
shown Figure B.8.

Several observations can be made. First, the calibration appears to successfully replicate the
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nH β (min−1) nZ ω (min−1)
XA

A 0.6 0.06 0.2 0.07
XA

B 0.1 0.1 0.15 0.1
XB

A 0.2 0.08 0.1 0.09
XB

B 0.4 0.04 0.21 0.06

Table B.3: Input parameters to generate the synthetic 2D QGARCH as defined above. Addition-
ally, we set σ2

A,∞ = 1.2 and σ2
B,∞ = 0.8.

exponential shape and amplitude of the input kernels. However, it is evident that the calibration
results do not perfectly align with the input kernels, indicating room for further improvement.
Enhancements could involve increasing the number of lags q set in the method of moments, as larger
values tend to yield more stable results but also require more computational time. Additionally,
another approach to improve the calibration results is to utilize the method of moments’ outcome
as the initial point for optimization by Maximum Likelihood, as detailed in Appendix B.3, similar
to the procedure used in univariate quadratic Hawkes calibration.

177



B.9 Kernels profiles from 2D-QGARCH Calibration on fu-
tures on indices
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Figure B.9: (ϕji ) profiles – the x-labels determine the index providing feedback and the y-labels

determine the index receiving the feedback, i.e., for a kernel ϕji , i is labelled on the x-axis while j
is labelled on the y-axis.
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2 profiles – the x-labels determine the index providing feedback and the y-labels

determine the index receiving the feedback, i.e., for a kernel (kji )
2, i is labelled on the x-axis while

j is labelled on the y-axis.
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Figure B.11: ϕj× profiles – the y-labels determine the index receiving the feedback while the x-
labels determine the index used for the correlation, i.e., the subplot (i, j) show the profile of the
kernel (ϕi×) for the correlation between asset i and asset j.
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Figure B.12: Li
j profiles – the x-labels determine the index providing feedback and the y-labels

determine the index receiving the feedback, i.e., for a kernel Lj
i , i is labelled on the x-axis while j

is labelled on the y-axis.
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Appendix C

Appendix of Chapter 5: Riding
Wavelets: A Method to Discover
New Classes of Price Jumps

C.1 Benchmark: Validation through synthetic

Figure C.1: Middle: Projection of our dataset on the reflexive direction D1 (horizontal axis)

and mean-reverting direction D̃2 (vertical axis). Benchmark jumps projection moves from left
(anticipatory) to right (exogeneous). Left and right figures show two extreme benchmark time-
series.

In order to verify that the D1 direction indeed measures reflexivity, we create synthetic time-
series with volatility profiles of varying time-asymmetry and apply our classification. Relying on
[6], we construct jump time-series using the power law representation of Equation (5.1.1), with
tc = −0.5min, and d = 0.5. We adjust the parameters (Nr, Nl, pr, pl) to render the asymmetry of
the signal. The time-series are then multiplied by a Gaussian noise (the same noise for all time-
series). We then compute the features Φ(x) of each time-series x and project it on the 2D space
formed by our time-asymmetry and mean-reversion directions. Fig. C.1 shows these projections,
the color code corresponds to the asymmetry parameter. It clearly appears that the D1 direction
measures the time-asymmetry of the volatility.
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C.2 Heterogeneous Near-Critical Branching Processes

Consider a simple branching process where a single event can trigger on average φ new events. It is
well known that when φ→ 1, very large “avalanches” of events can occur. In fact, the probability
that an avalanche of total size S is triggered by a single event takes, in the limit ε = 1 − φ → 0,
the following scaling form:

P (S|ε) ∝ S−3/2e−ε2S . (C.2.1)

Now suppose that the proximity to the critical point φ = 1 is itself random, reflecting the time
varying fragility of the market and/or the intrinsic propensity of a shock to propagate across stocks.
We will assume for simplicity that ε has uniform distribution between εmin and 1. The observed
distribution of avalanche sizes (in our case co-jump sizes) is then given by the following mixture:

P (S) =
1

1− εmin

∫ 1

εmin

dε P (S|ε) ∝ S−3/2

∫ 1

εmin

dε e−ε2S . (C.2.2)

After a change of variable, the integral over ε can be rewritten as

∫ 1

εmin

dε e−ε2S =
1√
S

∫ √
S

εmin

√
S

du e−u2

Now, in a intermediate regime where S ≫ 1 but εmin

√
S ≲ 1, the integral is close to

√
π/2, and

one finally finds
P (S) ∝ S−1−τF (εmin

√
S), τ = 1, (C.2.3)

with F (x) decreasing fast as x ↑. Hence this simple model predicts τ = 1 (i.e. a Zipf law) for co-
jump sizes, truncated beyond S ∼ ε−2

min. From the data shown in Fig 5.18, we estimate εmin ∼ 0.1.
In other words, the market does not have to be poised extremely close to criticality to explain a
broad power-tail for the co-jump size distribution.

Note finally that we could relax the hypothesis that the distribution of ε is strictly uniform.
In the scaling regime, one only needs this distribution to be constant in the vicinity of εmin. The
calculation above can be extended to cases where the distribution of ε is of a power law type close
to zero, i.e. behaves as εγ for ε→ 0. In this case, one finds P (S) ∝ S−1−τ with τ = 1 + γ/2.
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C.3 Correlation of jump profiles in a co-jump

In this appendix, we investigate to which extent the different price profiles in a co-jump are
correlated to each other. To achieve this, we consider the average correlation of the trend score
Eq. (5.2.7) among the jumps in a given co-jump of size S, defined as

ρ =

∑S
k ̸=k′=1 D̃3(xk)D̃3(xk′)

(S − 1)
∑S

k=1[D̃3(xk)]2
.
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Figure C.2: Correlation measure ρ of a co-jump.
Blue line represents average over bins of co-jumps
of roughly the same size. As expected, the larger
the co-jump the more correlated. Surprisingly,
there remain weakly correlated (ρ ≈ 0) large co-
jumps.

Fig. C.2 shows that the larger the co-jump,
the more correlated are its constituents, al-
though the effect is weak. Jumps affecting the
market in its entirety are more likely to have a
common external reason (exogenous) and lead
to the same profile. Strongly correlated co-
jumps come down to a single jump time-series
which can be accessed through the average of
normalized jumps:

⟨x⟩ (t) =
〈
σ−1
k xk(t)

〉
k

where σk =
〈
x2k(t)

〉 1
2

t
. Fig. C.3a shows an ex-

ample of co-jump, of size 83 with correlation
ρ = 0.96. We see that the average time-series
⟨x⟩ is non-zero for t ̸= 0.

In line with the discussion of section 5.3
about contagion-driven co-jumps, Fig. C.2
shows that there persist large co-jumps whose
average correlation is close to zero, i.e. co-jumps composed of return time-series that are weakly
correlated and that have no a priori reason to jump together, except through contagion. A typical
example is shown on Fig. C.3b, it is of size 81 and correlation ρ = 0.06. As we can see, averaging
its different jumps makes small sense since the average ⟨x⟩ is zero for t ̸= 0 (up to the variance).
Far from being reduced to a single jump profile, such weakly large co-jumps could still be de-
scribed by a small number of “hidden” profiles, depending on the “dimensionality” of the co-jump.
Determining such dimensionality and hidden profiles would require applying a decomposition per
co-jump, which would require more data on large co-jumps.
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Figure C.3: Average profile of two co-jumps. The average (black curve) is taken over the profiles
of the jumps involved in each co-jump (gray curves). Left: a strongly correlated co-jump that
exhibits a non-zero average profile. Each jump time-series in the co-jump is a variation around
this average profile. Right: a weakly correlated co-jump which has no meaningful average. The
co-jumps are of size 83 and 81 respectively.
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Appendix D

Appendix of Chapter 6: Why is
stock volatility so much rougher
than index volatility?

D.1 Sum of two log-SfBMs

D.1.1 2nd moment computation

we investigate the roughness of the following signal:

dPt = exp (Ω (t)) dWt + exp (ω̃ (t)) dBt,

where Ω and (ω̃) are independent SfBM defined by their Hurst exponents, respectfully, H and
h̃, such that h̃≪ H, and intermittent parameters respectfully, ν and ν̃. Wt and Bt are independent
Brownian motions.

Based on the characterisation in Equation (6.1.2), to inquire into the roughness of the resulting

signal, we want to find ĥ such that

m(2,∆) =E
(
|log (exp (2Ω(∆)) + exp (2ω̃(∆)))− log (exp (2Ω(0)) + exp (2ω̃(0)))|2

)

=E
(
| log (X∆ + Y∆)− log (X0 + Y0) |2

)

=K2∆
2ĥ with K2 constant

(D.1.1)

where we introduce Xt = exp(2Ω(t)) and Yt = exp(2ω̃(t)).

To develop m(2,∆) in such form, we use the replica trick [126], which consists in writing the
logarithm as follow:

log(X) = lim
n→0

Xn − 1

n
.

Then, Equation (D.1.1) writes

m(2,∆) = lim
n→0

1

n2
E
(
|(X∆ + Y∆)

n − (X0 + Y0)
n|2
)
= lim

n→0

1

n2
E (∆, n), (D.1.2)

where we write E (∆, n) = E
(
|(X∆ + Y∆)

n − (X0 + Y0)
n|2
)

By stationarity, E((X∆ + Y∆)
2n) and E((X0 + Y0)

2n) behave similarly. We here treat the
calculus of E((X∆+Y∆)

2n). Using the Newton formula and the independence of X and Y , we can
write:

E((X∆ + Y∆)
2n) =

2n∑

i=0

(
2n
i

)
E(Xi

∆Y
2n−i
∆ ) =

2n∑

i=0

(
2n
i

)
E(Xi

∆)E(Y
2n−i
∆ )
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Using the Appendix D.1.2 (below), we have:

E
(
(X∆ + Y∆)

2n
)
= E

(
(X0 + Y0)

2n
)
=

2n∑

i=0

(
2n
i

)
E(Xi

∆)E(Y
2n−i
∆ ) =

n∑

i=0

n∑

j=0

(
n
i

)(
n
i

)
E(Xn+i−j

∆ )E(Y n−i+j
∆ ).

We now look at the cross product in the general case, for any integers m,n,

E((X∆ + Y∆)
n(X0 + Y0)

m) =

n∑

i=0

m∑

j=0

(
n
i

)(
m
j

)
E(Xi

∆X
m−j
0 )E(Y n−i

∆ Y j
0 ). (D.1.3)

Relying the properties of SfBM, we have:

cov(Ω(∆),Ω(0)) = E(Ω(∆)Ω(0))− E(Ω(∆))E(Ω(0)) =
ν2

2
(T 2H −∆2H)

and so

cov(2iΩ(∆), 2jΩ(0)) =
4ijν2

2
(T 2H −∆2H).

Given Xt = exp(2Ω(t)), we then have

E(Xi
∆X

j
0) = E(Xi

∆)E(X
j
0) exp(cov(2iΩ∆, 2jΩ0)) = E(Xi

∆)E(X
j
0) exp(

4ijν2

2
(T 2H −∆2H)).

Similarly, for ω̃, we can write

E(Y i
∆Y

j
0 ) = E(Y i

∆)E(Y
j
0 ) exp(cov(2iω̃∆, 2jω̃0)) = E(Y i

∆)E(Y
j
0 ) exp(

4ijν̃2

2
(T 2h̃ −∆2h̃)).

Hence, plugging in Equation (D.1.3) for n = m, we obtain

E((X∆+Y∆)
n(X0+Y0)

n) =

n∑

i=0

n∑

j=0

(
n
i

)(
n
j

)
E(Xn+i−j

∆ )E(Y n−i+j
∆ ) exp(−2(n−i)jν̃2∆2h̃) exp(−2i(n−j)ν2∆2H).

We can now work on E (∆, n),

E (∆, n) =2E((X∆ + Y∆)
2n)− 2E((X∆ + Y∆)

n(X0 + Y0)
n)

=2E((X∆ + Y∆)
2n)− 2E((X∆ + Y∆)

n(X0 + Y0)
n)

=2

n∑

i=0

n∑

j=0

(
n
i

)(
n
j

)
E(Xn+i−j

∆ )E(Y n−i+j
∆ )

(
1− exp(−2(n− i)jν̃2∆2h̃) exp(−2i(n− j)ν2∆2H)

)

=2

n∑

i=0

n∑

j=0

(
n
i

)(
n
j

)
E(Xn+i−j)E(Y n−i+j)

(
1− exp(−2j(n− i)ν̃2∆2h̃ − 2i(n− j)ν2∆2H)

)

Note that we still have m(2,∆) goes to 0, when ∆ tends to 0.
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We now work in the limit ∆ −→ 0 with h̃ < H, we first develop up to o(∆2h̃)

E (∆, n) =4ν̃2∆2h̃
n∑

i=0

n∑

j=0

(
n
i

)(
n
j

)
E(Xn+i−j)E(Y n−i+j)j(n− i) + o(∆2h̃)

=4ν̃2∆2h̃
n−1∑

i=0

n∑

j=1

(
n
i

)(
n
j

)
E(Xn+i−j)E(Y n−i+j)j(n− i) + o(∆2h̃)

=4ν̃2∆2h̃
n−1∑

i=0

n∑

j=1

(
n

n− i

)(
n
j

)
E(Xn+i−j)E(Y n−i+j)j(n− i) + o(∆2h̃)

=4ν̃2∆2h̃
n−1∑

i=0

n∑

j=1

n

n− i

(
n− 1

n− 1− i

)
n

j

(
n− 1
j − 1

)
E(Xn+i−j)E(Y n−i+j)j(n− i) + o(∆2h̃)

=4ν̃2∆2h̃n2
n−1∑

i=0

n∑

j=1

(
n− 1

n− 1− i

)(
n− 1
j − 1

)
E(Xn+i−j)E(Y n−i+j) + o(∆2h̃)

=4ν̃2∆2h̃n2
n−1∑

i=0

n−1∑

j=0

(
n− 1
i

)(
n− 1
j

)
E(Xn−1+i−j)E(Y n−i+j+1) + o(∆2h̃)

=4ν̃2∆2h̃n2E(Y 2)

n−1∑

i=0

n−1∑

j=0

(
n− 1
i

)(
n− 1
j

)
E(Xn−1+i−j)E(Y n−1−i+j) + o(∆2h̃)

E (∆, n) =4ν̃2∆2h̃n2E(Y 2)E
(
(X + Y )2(n−1)

)
+ o(∆2h̃).

Note that one could develop up to o(∆2H) assuming h̃ < H < 2h̃, one would obtain:

E (∆, n) =2

n∑

i=0

n∑

j=0

(
n
i

)(
n
j

)
E(Xn+i−j)E(Y n−i+j)

(
2j(n− i)ν̃2∆2h̃ + 2i(n− j)ν2∆2H + o(∆2H)

=4ν̃2∆2h̃
n∑

i=0

n∑

j=0

(
n
i

)(
n
j

)
E(Xn+i−j)E(Y n−i+j)j(n− i)

+ 4ν2∆2H
n∑

i=0

n∑

j=0

(
n
i

)(
n
j

)
E(Xn+i−j)E(Y n−i+j)i(n− j) + o(∆2H)

E (∆, n) =4ν̃2∆2h̃n2E(Y 2)E((X + Y )2(n−1)) + 2ν2∆2Hn2E(X2)E((X + Y )2(n−1)) + o(∆2H).

Finally, plugging back in Equation (D.1.2), one obtains

m(2,∆) = lim
n→0

1

n2
E
(
|(X∆ + Y∆)

n − (X0 + Y0)
n|2
)

= lim
n→0

2ν̃2∆2h̃E(Y 2)E((X + Y )2(n−1)) + o(∆2h̃)

m(2,∆) =4ν̃2∆2h̃E(Y 2)E
(
(X + Y )−2

)
+ o(∆2h̃).

Or, yet again if we develop up to ∆2H ,

m(2,∆) = lim
n→0

1

n2
E
(
|(X∆ + Y∆)

n − (X0 + Y0)
n|2
)

= lim
n→0

4ν̃2∆2h̃E(Y 2)E
(
(X + Y )2(n−1)

)
+ 4ν2∆2HE(X2)E((X + Y )2(n−1)) + o(∆2H)

m(2,∆) =4E
(
(X + Y )−2

) (
ν̃2∆2h̃E(Y 2) + ν2∆2HE(X2)

)
+ o(∆2H)

All cases of m(2k,∆) where k ∈ N can be worked out similarly. One can also develop a similar
argument for m(2k + 1,∆), k ∈ N and generalized for all m(k,∆), k ∈ R by density.
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D.1.2 combinatory trick

D =

n∑

i=0

n∑

j=0

(
n
i

)(
n
j

)

set k = n+ i− j

=

n∑

j=0

2n−j∑

k=n−j

(
n

k + j − n

)(
n
j

)

=

n∑

k=0

n∑

j=n−k

(
n
j

)(
n

k − n+ j

)
+

2n∑

k=n+1

2n−k∑

j=0

(
n
j

)(
n

k − n+ j

)

we set j = j − (n− k)

=

n∑

k=0

k∑

j=0

(
n

n− k + j

)(
n
j

)
+

2n∑

k=n+1

2n−k∑

j=0

(
n
j

)(
n

k − n+ j

)

we use:

(
n
k

)
=

(
n

n− k

)

=

n∑

k=0

k∑

j=0

(
n

n− (n− k + j)

)(
n
j

)
+

2n∑

k=n+1

2n−k∑

j=0

(
n
j

)(
n

n− (k − n+ j)

)

=

n∑

k=0

k∑

j=0

(
n

k − j

)(
n
j

)
+

2n∑

k=n+1

2n−k∑

j=0

(
n
j

)(
n

2n− k − j

)

we use:

k∑

j=0

(
r
j

)(
s

k − j

)
=

(
r + s
k

)

=

n∑

k=0

(
2n
k

)
+

2n∑

k=n+1

(
2n

2n− k

)

=

n∑

k=0

(
2n
k

)
+

2n∑

k=n+1

(
2n
k

)

=

2n∑

k=0

(
2n
k

)
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D.2 log-SfBM with 2 modes of volatility

We now investigate the roughness of the signal

dPt = exp (A0Ω(t) + ω̃(t))dWt

where Ω and ω̃ are two SfBM of Hurst exponent H and, respectfully, h̃ and (Wt)t>0 is a
Brownian motion. As before, we compute the second moment of log-volatility increments. It gives:

m(2,∆) =E
(
((2A0Ω(∆) + 2ω̃(∆))− (2A0Ω(0) + 2ω̃(0)))

2
)

=E
(
((2A0Ω(∆)− 2A0Ω(0)) + (2ω̃(∆)− 2ω̃(0)))

2
)

=4E
(
(A0Ω(∆)−A0Ω(0))

2
)
+ 4E

(
(ω̃(∆)− ω̃(0))2

)
+ 8E

(
A0Ω(∆)−A0Ω(0)

)
E
(
ω̃(∆)− ω̃(0)

)

=4A2
0K2ν

2∆2H + 4k̃2ν̃
2∆2h̃

Thus,

m(2,∆) = 4
(
A2

0K2ν
2∆2H + k̃2ν̃

2∆2h̃
)

with kq = Kq =
2q/2Γ( q+1

2 )√
π
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D.3 How to simulate a fractional Brownian motion (and
derived processes)

This appendix aims at give some intuitions on fractional Brownian motions (and more generally
gaussian processes defined by their auto-correlations) and how they are built. The method de-
scribed here is the method introduced in Dietrich and Newsam (1997) [129]. We simply present
here the main steps because we believe it helps understanding how these processes are built.

The goal is to simulate a stationary Gaussian process Y (τ) with 0 mean and variance 1. The
process is defined by its correlations (translation invariant) such that

E(Y (t)Y (t+ τ)) = r(|τ |)

with some function r.

D.3.1 Create the correlation matrix R

The first step consists in building the correlation matrix R over a time grid {t0, t1, ..., tN}, such
that Rij = r(|ti−tj |). Note that R is a symmetric Toeplitz matrix1, and as such, is entirely defined
by its first row R0 = (r0, ..., rN ), with rj = r(|t0 − tj |). tN can be seen as the correlation range we
consider.

Remark D.3.1. Note that at this stage, theoretically, generating ϵ such that ϵ ∼ N (0, IN ) and
using the Choleski decomposition R = AA⊤, would allow to generate Y with Y = Aϵ. However
the Choleski decomposition is known to be computationally very expensive, hence, the use of the
present method.

D.3.2 Create the circulant matrix S

The next step consist in creating the (2N × 2N) symmetric Toeplitz matrix S, such that:

{
sk = rk, for k = 0, ..., N

s2N−k = rk, for k = 1, ..., N − 1.

Hence, the first row of S is given by S0 = (r0, ..., rN−1, rN , rN−1, rN−2, ..., r2, r1) and is enough
to defined the whole matrix S (as we build it as a symmetric Toeplitz matrix). Two things are
interesting about S:

• any block along the diagonal of S is a copy of R

• S is circulant2

.
Since S is circulant, its eigen-decomposition is known and writes S = 1

2N FΛF
⊤, with F being

the Fourier transform matrix (with entries Flk = exp(i 2πlk2 )) and diag(Λ) = FS0. Note that,
multiplying a vector v by F is a discrete Fourier transformation of v [130].

D.3.3 Generate Y

From the results above, one can then generate Y the following way:

1. Compute R

2. From R, build S

3. Compute Λ such that Λk = (FS0)k, where F is the Fast Fourier Transform matrix

4. Generate ϵ = ϵRe + iϵIm such that ϵRe, ϵIm are independent Gaussian vectors, ϵRe, ϵIm ∼
N (0, I2N )

1Toeplitz matrix: matrix in which each descending diagonal from left to right is constant.
2Circulant matrix: matrix in which all rows are composed of the same elements and each row is rotated one

element to the right relative to the preceding row. It is a particular case of Toeplitz matrix.
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5. Build vector ẽ such that ẽk = ϵk
(
Λk

2N

)1/2

6. Then, any N +1 subset of consecutive entries of e = F ẽ (from either real or imaginary part)
is a realisation of Y

We give below an example on how to implement it in Python.

D.3.4 Python Algorithm

We write here a way to generate Y, a stationary gaussian process, defined by its correlations given
in vector cov of size N (cov is the realisation of R0).

Algorithm 7 Simulation of Y

Computation of S
cov = np.concatenate((cov, np.flip(cov[1:-1])), axis=0)
computation of Λ
L = np.fft.fft(cov)[None, :]
Generation of ϵ
ϵ = np.random.randn(2 * N - 2) + 1j * np.random.randn(2 * N - 2)
Computation of e
e = np.fft.fft(z * np.sqrt(L / (2 * N - 2)), axis=-1).real
Selection of the subset of size N
Y = e[:, :N]
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Titre : Déchiffrer les chocs des marchés financiers : Etude des Dynamiques Endogènes de Volatilité dans des Marchés Interconnectés

Mots clés : endogéneité, multi-dimensions, Hawkes, volatilité, microstructure des marchés

Résumé : Le rôle des mécanismes de rétroaction dans la création d’insta-
bilités sur des marchés financiers a largement été étudié dans la littérature.
L’endogénéité de la volatilité et de l’activité des marchés a effectivement
conduit à plusieurs krachs notoires. Le plus connu, le flash crash du 6
mai 2010, illustre comment les instabilités du marché découlent de ses ca-
ractéristiques intrinsèques. En effet, c’est une exécution excessivement ra-
pide d’ordres de vente qui a déclenché la chute rapide suivie d’une remontée
du SPmini en moins d’une heure. De plus, les instabilités des marchés sont
accentuées par leur nature multidimensionnelle et leur connectivité, comme
le montre la propagation de la volatilité à travers divers actifs financiers lors
d’événements tels que le flash crash mentionné ci-dessus. En effet, le 6
mai 2010, le flash crash du SPmini a affecté 300 autres actifs. Cette thèse
étudie empiriquement et théoriquement l’endogénéité des mouvements de
prix en multi-dimension. Dans un premier temps, nous cherchons à ca-
ractériser les sauts de prix empiriques. Basés sur des recherches interdisci-
plinaires montrant que l’asymétrie temporelle peut être utilisée pour classer
les sauts d’activité comme exogènes ou endogènes, nous développons une
nouvelle méthode, non supervisée, basée sur des coefficients d’ondelettes
(particulièrement adaptés pour refléter l’asymétrie temporelle) afin de mesu-
rer la réflexivité des sauts de prix univariés. Par ailleurs, notre représentation
a révélé que le retour à la moyenne et l’alignement avec la tendance sont
deux caractéristiques supplémentaires, permettant d’identifier de nouvelles
classes de sauts. Enfin, cette représentation permet d’étudier les propriétés
réflexives des co-sauts, définis par des sauts de prix simultanés (au cours
de la même minute) de plusieurs actifs. Il apparaı̂t qu’une fraction signifi-
cative des co-sauts résulte d’un mécanisme de contagion endogène. Ainsi,
l’événement du 6 mai n’était pas un incident isolé, et des dynamiques en-

dogènes couplées avec une forte connectivité contribuent aux instabilités des
marchés. Parallèlement, nous étudions le modèle du Hawkes quadratique
(QHawkes), utilisé pour décrire la volatilité à haute fréquence. Les processus
QHawkes sont des processus de Poisson qui, par l’expression de leur inten-
sité, décrivent l’influence du passé sur la probabilité de l’activité future. Des
travaux antérieurs ont montré que le modèle QHawkes univarié reproduit plu-
sieurs caractéristiques empiriques : les queues épaisses des distributions, le
regroupement temporel de la volatilité et l’asymétrie temporelle (effets de le-
vier et effet Zumbach). En outre, des résultats supplémentaires sur la stabilité
des processus de QHawkes sont discutés, montrant que la rétroaction qua-
dratique peut induire des événements extrêmes tout en restant stable grâce
à l’équilibre les réalisations inhibitrices et excitatrices. Pour étudier le ca-
ractère multidimensionnel des marchés, nous étendons le modèle QHawkes
à plusieurs dimensions, en considérant plusieurs actifs et leurs interactions
croisées. Un cadre multi-actifs nécessite la prise en compte de faits stylisés
supplémentaires, tels que la prévalence des co-sauts et les effets d’asymétrie
temporelle croisés. En effet, ce travail met en lumière les effets de levier
et de Zumbach croisés. En développant deux modèles, nous montrons que
le modèle QHawkes multivarié (MQHawkes) peut reproduire les faits empi-
riques observés sur les marchés financiers. La calibration du modèle sur
des paires d’actifs confirme que les marchés sont au bord de l’instabilité.
Pour compléter, un autre modèle multivarié de volatilité dépendante de la
trajectoire est étudié : le Nested Factor Model avec des processus log-SfBM
comme volatilités. Ce modèle permet de réconcilier les différences de rugo-
sité entre les indices et les actions, offrant de nouvelles perspectives sur les
dynamiques de la volatilité multivariée.

Title : Unraveling Financial Market Quakes: Exploring Endogenous Volatility Dynamics in Interconnected Markets

Keywords : endogeneity, multi-dimensions, Hawkes, volatility, market microstructure

Abstract : Past research has highlighted that feedback mechanisms un-
derlie many financial markets instabilities. Endogenous dynamics of markets
volatility and activity have indeed led to various notable crashes. Case in
point: the events of May 6th, 2010, commonly referred to as the 2010 flash
crash, exemplify how market instabilities stem from intrinsic features of fi-
nancial markets. As evidence, an excessively rapid execution of sell orders
triggered the rapid decline and subsequent recovery of the SPmini within the
span of an hour. Moreover, market instabilities are compounded by their mul-
tidimensional nature and interconnectedness, as demonstrated by the propa-
gation of volatility across diverse financial assets during events like the afo-
rementioned flashcrash. Indeed, on May 6th, 2010, the SPmini flash crash
affected 300 other assets alongside the SPmini. This thesis presents both
a data-driven approach and a theoretical approach to investigate the en-
dogenous nature of price movements within a multivariate framework. Our
data-driven approach aims to characterize empirical price jumps. Leveraging
interdisciplinary research suggesting that the time-asymmetry of activity can
be used to classify bursts of activity as exogenous or endogenous, we deve-
lop a new unsupervised method based on wavelet coefficients (particularly
suitable to reflect time asymmetry) to measure reflexivity of univariate price
jumps. On top of that, our wavelet-based representation revealed that mean-
reversion and trend are two additional key features, permitting identification of
new classes of jumps. Furthermore, this representation allows to investigate
the reflexive properties of co-jumps, defined by multiple stocks experiencing
price jumps within the same minute. We argue that a significant fraction of
co-jumps results from an endogenous contagion mechanism. Thus, May 6th
event was not an isolated incident, and the interplay of endogenous dynamics

alongside high levels of interconnectedness contributes to the instabilities ob-
served within markets. Concomitantly, our theoretical inquiry focuses on the
quadratic Hawkes (QHawkes) framework, originally introduced to describe
volatility dynamics at tick-by-tick level. QHawkes processes are Poisson pro-
cesses, which, through the expression of their intensity, depict the influence of
the past on the probability of future activity. Previous work has proved that the
univariate QHawkes model replicates several empirical features of financial
time series, including fat tails of the returns’ distribution, volatility clustering
and the time asymmetry effects (leverage and Zumbach effects). Indeed, the
supplementary quadratic and leverage feedback allow to overcome the limita-
tions of the original (linear) Hawkes framework. Besides, additional results on
the stability of QHawkes processes are discussed, showing that the quadratic
feedback can induce extreme events while staying stable by balancing inhi-
bitory and excitatory realizations. To explore market interconnectedness, we
extend QHawkes processes into multidimensional settings, encompassing
several assets and their cross-interactions. A multi-assets framework neces-
sitates consideration of additional stylized facts, such as the prevalence of
co-jumps and cross time asymmetry effects. Indeed, this work sheds light on
the cross leverage and cross Zumbach effects. Developing two frameworks,
we show that the multivariate QHawkes (MQHawkes) can reproduce the em-
pirical facts observed in financial markets. Calibrating the model on asset
pairs further confirms that markets operate on the brink of instability. To be
thorough, another multivariate, path-dependent volatility model is studied: the
nested factor model with log-SfBM processes as volatilities. Our findings sug-
gest that this framework reconciles differences in roughness between indices
and stocks, offering further insights into the dynamics of multivariate volatility.
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