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Résumé / Abstract

Titre: Comment les étoiles se forment-elles ? Le second effondrement et ses con-
séquences

Mots clefs: formation stellaire ; étoile ; disque ; accretion ; radiation ; gravité ; turbulence
; champ magnétique
Résumé: Les étoiles se forment à la suite
de l’effondrement de cœurs denses gravita-
tionnellement instables. Ce processus, bien
qu’il se soit produit d’innombrables fois dans
l’Univers, reste mal compris en raison des
défis liés à l’observation des régions de for-
mation d’étoiles, ainsi que des difficultés
théoriques associées à la modélisation d’un
processus hautement non linéaire dans lequel
l’hydrodynamique autogravitante, les champs
magnétiques, le transfert radiatif et la tur-
bulence se produisent tous simultanément et
présentent un réseau complexe d’interactions.
À cet égard, les simulations numériques ont
offert des informations inestimables qui ont
ouvert la voie à une grande partie de notre
compréhension dans ce domaine. Plus parti-
culièrement, ceux-ci ont révélé une séquence
évolutive en deux étapes dans laquelle se
forme un premier cœur en équilibre hydro-
statique, qui lui-même s’effondre à nouveau
pour former une protoétoile. Ce deuxième
effondrement gravitationnel est un processus
hautement dynamique et, en tant que tel,
constitue une entreprise difficile d’un point
de vue numérique. Au cours de ma thèse,
j’ai réalisé des simulations magnétohydrody-
namiques résistives radiatives de pointe de
l’effondrement de cœurs denses turbulents
jusqu’à des densités stellaires. La plage dy-
namique impliquant 25 ordres de grandeur en
densité et 8 en étendue spatiale est abordée
avec le code de maillage adaptatif RAMSES.
Les propriétés de la protoétoile nouvellement
née et celles de son disque circumstellaire sont

étudiées avec un niveau de détails sans précé-
dent, et les calculs vont au-delà de nombreux
articles antérieurs. Je présenterai les informa-
tions que nous avons acquises sur certaines
questions majeures liées à la formation des
étoiles grâce à ces simulations. Tout d’abord,
j’ai effectué des calculs d’hydrodynamique ra-
diative en symétrie sphérique dans le but
d’étudier les propriétés et le comportement
de la protoétoile, où j’ai constaté qu’elle était
turbulente à la naissance malgré sa stabilité
aux mouvements convectifs. Cela est dû à
une instabilité au niveau du choc d’accrétion
qui se déclenche peu après la naissance de
la protoétoile. La turbulence est ensuite en-
tretenue par l’accrétion. Cela a des implica-
tions sur les modèles d’évolution pré-stellaire,
ainsi que sur l’évolution du champ magné-
tique implanté dans la protoétoile à la nais-
sance. À la suite de cela, j’ai réalisé des sim-
ulations avec de la turbulence dans le cœur
dense initial, qui conduisent à la formation
de disques circumstellaires entourant la pro-
toétoile. Les propriétés du disque naissant,
ainsi que son évolution dans le temps, sont
étudiées en détail. De manière remarquable,
nous constatons qu’un disque circumstellaire
se forme suite à la rupture rotationnelle de
la protoétoile lorsqu’elle accrète rapidement
les matériaux de son environnement. Enfin,
j’ai réalisé des simulations prenant en compte
les champs magnétiques, qui modifient dras-
tiquement la dynamique du gaz par freinage
magnétique. Nous constatons qu’un champ
magnétique d’un kilogauss est implanté dans
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la protoétoile à la naissance, et malgré le
freinage magnétique, elle atteint néanmoins
la vitesse de rupture et forme un disque cir-
cumstellaire. La magnétisation du disque
provoque un transport efficace du moment
cinétique, ce qui conduit à des propriétés du
disque différentes de celles des essais hydro-

dynamiques. Ces résultats ont mis en lu-
mière les plus petites échelles spatiales per-
tinentes pour la formation et l’évolution des
disques protostellaires et circumstellaires, ap-
profondissant ainsi notre compréhension des
objets qui deviendront plus tard des systèmes
planétaires.

Résumé substantiel: Les étoiles se for-
ment à la suite de l’effondrement de
cœurs denses gravitationnellement instables.
Ce processus, bien qu’il se soit produit
d’innombrables fois dans l’Univers, reste mal
compris en raison des défis liés à l’observation
des régions de formation d’étoiles, ainsi
que des difficultés théoriques associées à la
modélisation d’un processus hautement non
linéaire dans lequel l’hydrodynamique auto-
gravitante, les champs magnétiques, le trans-
fert radiatif et la turbulence se produisent
tous simultanément et présentent un réseau
complexe d’interactions. À cet égard, les
simulations numériques ont offert des infor-
mations inestimables qui ont ouvert la voie
à une grande partie de notre compréhen-
sion dans ce domaine. Plus particulièrement,
ceux-ci ont révélé une séquence évolutive en
deux étapes dans laquelle se forme un pre-
mier cœur en équilibre hydrostatique, qui lui-
même s’effondre à nouveau pour former une
protoétoile. Ce second effondrement grav-
itationnel est un processus hautement dy-
namique et, en tant que tel, constitue un défi
d’un point de vue numérique.
Au cours de ma thèse, j’ai réalisé des simula-
tions magnétohydrodynamiques résistives ra-
diatives de pointe de l’effondrement de cœurs
denses turbulents jusqu’à des densités stel-
laires. La plage dynamique impliquant 25 or-
dres de grandeur en densité et 8 en étendue
spatiale est abordée avec le code de maillage
adaptatif RAMSES. Les propriétés de la pro-
toétoile et celles de son disque circumstellaire
sont étudiées avec un niveau de détails sans
précédent, et les calculs vont au-delà de nom-
breux articles antérieurs. Je présenterai les
informations que nous avons acquises sur cer-
taines questions majeures liées à la formation
stellaire grâce à ces simulations.

Tout d’abord, j’ai effectué des calculs
d’hydrodynamique radiative en symétrie
sphérique dans le but d’étudier les propriétés
et le comportement de la protoétoile, où
j’ai constaté qu’elle était turbulente à la
naissance malgré sa stabilité aux mouve-
ments convectifs. Cela est dû à une in-
stabilité au niveau du choc d’accrétion qui
se déclenche peu après la naissance de la
protoétoile. La turbulence est ensuite en-
tretenue par l’accrétion. Cela a des im-
plications sur les modèles d’évolution pré-
stellaire, ainsi que sur l’évolution du champ
magnétique implanté dans la protoétoile à
sa naissance. Nous avons également étudié
le comportement de la protoétoile dans les
mois qui suivent sa naissance, ainsi que
celui de son choc d’accrétion radiatif. À
la suite de la formation de la protoétoile,
son rayon augmente rapidement au fil du
temps. Cela est dû à la nature sous-critique
de son choc d’accrétion, qui peine à évac-
uer l’énorme quantité d’énergie cinétique in-
jectée par accrétion. Cependant, à mesure
que la proto-étoile gonfle, la densité (et donc
la profondeur optique) du choc d’accrétion
diminue de manière continue, ce qui aug-
mente son efficacité radiative. Nous consta-
tons également que la protoétoile n’est pas
complètement ionisée à la naissance. Cepen-
dant, à mesure que la protoétoile accrète du
matériau de son environnement, la quantité
de masse sous forme ionisée en son sein aug-
mente de manière continue au fil du temps.
Par conséquent, la conductivité électrique
de la proto-étoile augmente avec le temps.
De plus, nous estimons que la dissocia-
tion de l’hydrogène moléculaire et l’ionisation
de l’hydrogène atomique et de l’hélium ne
représentent qu’environ 6 % de l’énergie to-
tale injectée par l’accrétion. Ainsi, la consom-
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mation d’énergie de ces processus joue un rôle
insignifiant dans la régulation du rayon de la
protoétoile. Néanmoins, nous prévoyons que
la haute conductivité électrique de la proto-
étoile, combinée à la turbulence dans son in-
térieur, pourrait modifier de manière signi-
ficative son champ magnétique, même avant
le début de la combustion du deutérium.
À la suite de ces simulations à symétrie
sphérique, j’ai réalisé des simulations avec de
la turbulence dans le cœur dense initial, ce
qui conduit à la formation de disques cir-
cumstellaires entourant la protoétoile. Les
propriétés du disque naissant, ainsi que son
évolution dans le temps, sont étudiées en dé-
tail. De manière remarquable, nous consta-
tons qu’un disque circumstellaire se forme
à la suite de la rupture rotationnelle de la
protoétoile lorsqu’elle accrète rapidement les
matériaux de son environnement. Ce disque
nouvellement formé est chaud, dense, très
turbulent et évolue dans des délais très courts
en raison des taux d’accrétion élevés. La
protoétoile est enfouie dans ce disque et au-
cun front de choc ne sépare les deux. À
mesure que l’accrétion se poursuit, le disque
engloutit complètement la protoétoile et se
propage vers l’extérieur en raison d’une quan-
tité de moment cinétique excessif, ainsi que
l’accrétion. La masse du disque dépasse celle
de la protoétoile d’un facteur ≈ 7, ce qui sig-
nifie que la majorité de la masse après le sec-
ond effondrement gravitationnel réside dans
le disque et que son autogravité domine la
dynamique du gaz en son sein. La pression
thermique apporte également une contribu-
tion notable sur la dynamique. Dans le cas où
un disque externe existe avant le second effon-
drement, ce disque circumstellaire se forme
à l’intérieur de celui-ci, et les deux fusion-
nent après que le disque interne s’étend sur
des rayons suffisamment grands. Malgré les
différentes histoires évolutives à des échelles
spatiales plus grandes, la structure du disque
et de l’étoile formée à la suite du second ef-
fondrement gravitationnel est identique, mais
nous remarquons néanmoins une légère dis-
persion causée par les conditions initiales tur-
bulentes. Cela est dû à la formation du pre-

mier cœur de Larson dans toutes nos simu-
lations, un objet à l’équilibre hydrostatique
qui garantit que le second effondrement se
produira dans des conditions à peu près sim-
ilaires. L’existence d’un disque circumstel-
laire permet également de créer une cavité
au niveau des régions polaires. Cette cavité
permet à la protoétoile de rayonner dans un
milieu optiquement mince, permettant ainsi
à son choc d’accrétion d’atteindre un régime
supercritique en ∼ 2 ans et de rayonner la
grande majorité de son énergie d’accrétion.
Grâce à l’analyse physique du front de choc
dans nos simulations, l’hypothèse ad hoc
d’un choc d’accrétion rayonnant la majorité
de l’énergie entrante, qui est utilisée dans
les modèles d’évolution préstellaire pour ac-
corder leurs prédictions aux observations,
s’est désormais avérée vraie. Quant à la struc-
ture du système, afin de découpler physique-
ment la protoétoile de son disque et de ré-
duire sa vitesse de rotation aux valeurs ob-
servées, les mécanismes de freinages doivent
transporter une quantité suffisante de mo-
ment cinétique de l’intérieur du disque vers
l’extérieur. Les champs magnétiques sont
susceptibles de jouer ce rôle.
Enfin, j’ai réalisé des simulations prenant en
compte les champs magnétiques, qui mod-
ifient drastiquement la dynamique du gaz
par freinage magnétique. Conformément
aux résultats précédents de la littérature,
l’approximation MHD idéale conduit à un
freinage magnétique très efficace qui empêche
la formation d’un disque circumstellaire (c’est
ce que l’on appelle la catastrophe du freinage
magnétique). Le résultat du second effon-
drement gravitationnel serait donc une ac-
cumulation centrale et sphérique de matière
qui conduit à la naissance d’une protoétoile
sphérique, avec des nappes de courant dé-
passant de la surface stellaire. Les pro-
priétés de la protoétoile naissante sont sim-
ilaires à celles obtenues dans des simulations
hydrodynamiques à symétrie sphérique. La
protoétoile présente également un intérieure
très fortement turbulent. Lorsque l’on tient
compte de la diffusion ambipolaire, l’efficacité
du freinage magnétique est considérablement
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réduite vers le gaz à haute densité, ce qui
permet à la protoétoile nouvellement née
d’atteindre la vitesse de rupture et de se
débarrasser d’une partie de son matériel de
surface pour former un disque circumstel-
laire autour d’elle. La protoétoile est en-
fouie dans son disque circumstellaire, dont
la naissance et l’évolution sont qualitative-
ment similaires aux simulations RHD que
nous avons précédemment effectuées, car le
rapport de pression thermique avec les pres-
sions magnétiques à l’intérieur du disque dé-
passe de loin l’unité. Cependant, la mag-
nétisation du disque provoque un transport
efficace du moment cinétique, ce qui con-
duit à des propriétés quantitatives du disque
différentes de celles des simulations hydro-
dynamiques. Néanmoins, le disque naissant
s’étend vigoureusement dans la direction ra-
diale. Ce résultat a des implications pour
le problème du moment cinétique, puisque
nous montrons que la protoétoile doit attein-
dre une vitesse de rupture pour former un
disque circumstellaire. En tant que tels, les
processus de transport du moment cinétique
doivent ralentir la protoétoile sur des échelles
de temps considérablement plus longues que
le temps de chute libre du cœur dense du nu-
age. Quant à la puissance du champ mag-
nétique implanté dans la protoétoile, nous
constatons que celui-ci est de l’ordre du kilo-
gauss. Les études observationnelles récentes
sur l’intensité des champs magnétiques dans
les jeunes objets stellaires, bien que peu nom-
breuses en termes de taille d’échantillon, rap-
portent une valeur moyenne d’un kilogauss
et favorisent l’hypothèse d’un champ fossile
sur l’origine des champs magnétiques dans
les étoiles. Cela signifie que ce dernier est
hérité de la naissance protostellaire et que
nos simulations du second effondrement grav-
itationnel sont en accord avec les observa-
tions. Afin d’implanter un tel champ dans
la protoétoile, le flux magnétique au sein du
cœur dense est diffusé par diffusion ambipo-
laire jusqu’à une valeur de ∼ 0,1 G au sein
du premier cœur de Larson. Après le sec-
ond effondrement, la limite MHD idéale est
retrouvée car toutes les particules de pous-
sière sont sublimées et le gaz commence à

s’ioniser, et la moitié de la masse de la protoé-
toile se révèle être sous forme ionisée. Une in-
tensité de champ d’environ 0,1 G dans le pre-
mier cœur de Larson semble également être
en accord avec les mesures paléomagnétiques
des météorites du système solaire, les obser-
vations de maser d’eau dans les jets proto-
stellaires et en accord avec les études observa-
tionnelles de la taille des disques. Ces simula-
tions prenant en compte des champs magné-
tiques ont montré l’importance de l’inclusion
de la diffusion ambipolaire dans les calculs.
Si cette dernière n’était pas incluse, la pro-
toétoile serait dépourvue de disque circum-
stellaire puisqu’elle n’atteint jamais la vitesse
de rupture, et elle aurait une intensité de
champ magnétique bien supérieure à celle ob-
servée dans les jeunes objets stellaires. De
plus, les propriétés du disque naissant dans
nos simulations MHD sont affectées par les
mécanismes de freinages efficaces fournis par
le champ magnétique. Ceux-ci transportent
une quantité considérable de matière vers la
protoétoile, ce qui réduit la densité du disque.
Ce résultat a des répercussions sur les simu-
lations à plus grande échelle qui cherchent à
simuler des échelles de temps beaucoup plus
longues, car elles omettent les régions les plus
internes au profit d’une particule puits qui
accumule la matière de son environnement
avec un seuil d’accrétion donné. Actuelle-
ment, lors de la mesure de ce que devrait
être ce seuil d’accrétion, nous trouvons une
différence d’un ordre de grandeur entre les
simulations RHD et MHD, soulignant ainsi la
nécessité de résistivités adéquates de la pous-
sière, car elles dictent l’intensité du champ
magnétique dont héritent les structures for-
mées après le second effondrement gravita-
tionnel, et par extension, la densité du disque.
En résumé, grâce à ces simulations du sec-
ond effondrement gravitationnel, nous avons
acquis des connaissances sur un certain nom-
bre de problèmes imprégnant le domaine de
la formation des étoiles. Ces simulations de
pointe ont révélé le comportement du gaz aux
plus petites échelles spatiales pertinentes à la
naissance des étoiles et des disques circum-
stellaires.
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Title: How are stars born? The second gravitational collapse and its consequences

Keywords: star formation; stars; protostars; accretion; disks; turbulence; radiation;
magnetic fields

Abstract: Stars form as a result of the
collapse of gravitationally unstable molec-
ular cloud cores. This process, despite
having occurred countless times in the Uni-
verse, remains poorly understood because
of the challenges involved in observing star
forming regions, as well the theoretical dif-
ficulties associated with modelling a highly
non-linear process in which self-gravitating
hydrodynamics, magnetic fields, radiative
transfer, and turbulence, all play out si-
multaneously and exhibit a complex web
of interactions. In this regard, numerical
simulations have offered invaluable insights
that have pioneered much of our under-
standing in the field. Most notably, these
have revealed a two-step evolutionary se-
quence in which a first core in hydrostatic
equilibrium forms, which itself collapses to
form a protostar. This second gravitational
collapse is a highly dynamical process, and
as such, is a challenging undertaking from
a numerical point of view.
During my thesis, I have carried
out state-of-the-art radiative resistive-
magnetohydrodynamics simulations of the
collapse of turbulent dense cores to stellar
densities. The dynamical range involving
25 orders of magnitude in density and 8
in spatial extent is tackled with the adap-
tive mesh refinement code RAMSES. The
properties of the nascent protostar and
that of its circumstellar disk are studied in
unprecedented detail, and the calculations
are pushed beyond many previous papers
in the literature in my attempt to model
the early main accretion phase. The results
of these simulations have offered valuable
insights on some of star formation’s out-
standing issues.
Firstly, I carried out radiative-

hydrodynamics calculations in spherical
symmetry with the goal of studying the
properties and behavior of the nascent pro-
tostar, where I found that it is turbulent at
birth despite its stability against convec-
tive motion. This is due to an instability
at the accretion shock that is triggered
shortly following protostellar birth. The
turbulence is then sustained by accretion.
This has implications for pre-stellar evolu-
tionary models, as well as on the evolution
of the magnetic field implanted in the pro-
tostar at birth.
Following that, I have carried out simula-
tions with turbulence in the initial dense
core, which lead to the formation of cir-
cumstellar disks surrounding the proto-
star. The properties of the nascent disk,
as well as its evolution over time, are stud-
ied in detail. Remarkably, we find that a
circumstellar disk is formed following the
rotational breakup of the protostar as the
latter rapidly accretes materials from its
surroundings.
Finally, I have carried out simulations ac-
counting for magnetic fields, which drasti-
cally alter the gas dynamics through mag-
netic braking. We find that a magnetic field
of kilogauss strength is implanted in the
protostar at birth, and despite magnetic
braking, it nevertheless reaches breakup
velocity and forms a circumstellar disk.
The magnetization of the disk causes effi-
cient angular momentum transport, which
leads to different disk properties than in
the hydrodynamical runs.
These state-of-the-art results have shed
light on the smallest spatial scales rele-
vant to protostellar and circumstellar disk
formation and evolution, thus furthering
our understanding of the objects that later
become fully-fledged planetary systems.
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Tough time never last, only tough people last...

-Demi Demi
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Chapter 1

The birth of stars - Introduction

Our own star, the Sun, is the energy source fueling life on our planet. When it sets below
the horizon, its blinding light scattered across the atmosphere is obscured, revealing the
thousands of visible stars adorning the night sky. These stars are the building blocks
of our Universe, numbering approximately 1024. Despite this, their birth mechanism
is as of yet not fully understood, owing to observational and theoretical hurdles that
significantly hamper breakthroughs in the field. Nevertheless, advancements in stellar
formation theory are of considerable interest to a wide range of fields in astrophysics.
For instance, extra-solar planetary systems display a diverse range of properties, which
calls for a deeper understanding of the initial conditions of their birth process. Such
planetary systems are formed from circumstellar disks of gas and dust, which are a
natural consequence of the conservation of angular momentum during the stellar for-
mation process. Of course, this process also dictates the initial conditions of the star
itself, which joins the main sequence approximately 107 yrs after its birth (Stahler &
Palla 2004). Another example is the physics of the interstellar medium (ISM), the
diffuse gas that permeates galaxies, whose properties are heavily affected by feedback
effects from stars. Finally, galaxies themselves are agglomerations of stars (as well as
dark matter), whose birth mechanism imprints itself on the resulting properties of the
galaxy. It is thus of crucial interest to tackle the challenge of star formation.

In this chapter, we will provide an overview of our current understanding of star for-
mation by showcasing our theoretical grasp of the physical processes involved, all the
while presenting the observational constraints that have guided much of our efforts.
This process is fundamentally multi-scale, both in density and in spatial extent, and
involves a complex interplay of several physical processes such as self-gravitating hy-
drodynamics, magnetic fields, radiative transfer, and turbulence. Of course, it is not
possible for us to fully describe all the scales involved in star formation, and as such we
will limit ourselves to the ones relevant to the work done during this thesis, where we
have taken a keen interest in the collapse of dense cores within molecular clouds and
how such a process results in the birth of stars and circumstellar disks. Before joining
the fray in a complex topic such as this, let us first introduce some context and basic
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concepts that are relevant in understanding the major issues permeating the field1.

1.1 Molecular clouds: stellar foundries

Figure 1.1: The pillars of creation: a giant molecular cloud giving birth to stars, as
photographed in the optical band by the Hubble Space Telescope (left) and in the near-
infrared by the James Webb Space Telescope (right). JWST’s infrared view allows one
to see through the opaque dust, thus revealing nascent stars. Image credits: NASA,
ESA, CSA, STScI, Hubble Heritage Project (STScI, AURA).

Young stars are formed in giant molecular clouds, primarily composed of hydrogen
in molecular form (H2) and helium, with trace amounts of heavier elements (mainly
oxygen, carbon, and nitrogen). These clouds are found all throughout our Milky Way
galaxy, and their huge mass reservoir of dust and gas is what feeds the birth of new stars
and the planetary bodies orbiting them. Figure 1.1 displays perhaps the most famous
cloud complex of all: the pillars of creation, situated in the eagle nebula. The opaque
dust, which represents approximately 1% of the mass content of the cloud, obscures
the newly-formed stars embedded within it in the visible band. In the near-infrared,
this problem is alleviated, as the optical depth of the cloud is significantly lower at
these wavelengths and thus allows us to peer through the cloud and witness the birth
of stars.
Star formation is ultimately a cycle, in which the diffuse gas of the interstellar medium
(ISM) is compressed into stars, before being ejected back into it through outflows,
winds and supernovae. In doing so, elements heavier than hydrogen and helium that
have been produced through stellar nucleosynthesis find their way into the ISM, where
they mix with the original diffuse gas mixture. The gas then condenses once more to
form new molecular clouds, and the cycle repeats itself.

1A more exhaustive description originating from first principles will be made in Chapter 2
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Understanding how these cloud complexes form stars is a difficult undertaking. Firstly,
they are opaque to optical radiation, and although the problem is alleviated in the in-
frared, their high densities ensure that their optical depths remain high. Secondly, the
closest star forming region to the solar system, the Rho Ophiuchi cloud complex, is
situated at ∼ 165 pc (Klose 1986), which makes it very difficult to attain the sub-AU
resolution required to study the small scale physics relevant to star formation. Never-
theless, significant progress has been made in this regard, particularly with the advent
of high resolution millimeter and sub-millimeter instruments, as well as the launch of
more sophisticated space-borne instruments. These have probed star-forming regions
of our galaxy with unprecedented details, thus providing us with ever more sophis-
ticated observational constraints. Furthermore, the increasing amount of computing
power available has allowed for theorists to run ever-more complex simulations that
describe a wide variety of physical processes involved in star formation.

1.1.1 From clouds to stars

The main difficulty in observing molecular clouds lies in the fact that they are mainly
made of H2 molecules, which are notoriously difficult to observe in the infrared due
to their molecular structure. As such, cloud structures, ranging from 104 to 106 M⊙
in mass, have been traditionally observed through a tracer molecule: carbon monox-
ide, which emits at 2.6 mm (Wilson et al. 1970). Molecular clouds generally have a
temperature of 10 K and a mean density of nH2 of 100 cm−3 (Solomon et al. 1987;
Scoville et al. 1987; Chevance et al. 2023). A hierarchy of structures has been observed
in them (Larson 1981; Chieze 1987), in which the mass and size display a correlation.
There is a significant debate (and even controversy) in the literature regarding the
precise nature of molecular clouds and how they form stars; whether they are transient
overdensities of the ISM that are formed by the converging flows of turbulence (e.g.,
Mac Low et al. 1998; Padoan & Nordlund 1999), or structures close to equilibrium
that persist for millions of years (e.g., Larson 1981; McKee 1999, see the review of
Bergin & Tafalla 2007). The difficulty in assessing this stems from the complex web
of interactions between gravity, magnetic fields, cosmic rays, radiation, and feedback
effects from protostars that are at play. Each of these processes and their effects on
star formation is an active field of research in which rapid progress is currently being
made, although a comprehensive theory of star formation that links all the relevant
scales, from galaxies to individual stars all the while accounting for all the relevant
physics, has yet to be achieved.

During this thesis, we have considered the smallest spatial scale relevant to proto-
stellar birth; that of a dense core (of size ∼ 10−2 pc). It is the densest structure
possibly formed by a molecular cloud, one whose eventual collapse triggers the birth
of stars. In their survey Könyves et al. (2015) report a significant fraction of these
(45 − 69%) are gravitationally bound, meaning that they are likely collapsing and in
the process of forming stars. Note however, that star formation is not an isolated
process, it is dictated by its environment and nascent stars themselves affect their
surroundings through feedback effects.
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1.1.2 Turbulence and its spectra

Observations that probe the kinematics of the gas within clouds confirm the ubiquitous
nature of turbulence within them (e.g., Schneider et al. 2011). It is found accross all
scales relevant to star formation (Larson 1981). In essence, it is the means by which
kinetic energy is re-distributed accross spatial scales through random, chaotic motions.
So far, there exists no theory capable of describing the behavior of turbulence, however
one may do so statistically (Frisch 1995). Turbulence in the ISM differs from that which
is commonly found on Earth: it is compressible and magnetized, and affects a huge
range of densities. We will nonetheless present the classical theory of incompressible
turbulence as postulated by Kolmogorov (1941) in his dimensional analysis.

Turbulence is triggered when inertial forces in the fluid greatly outweigh dissipative
viscous forces. This occurs when the Reynolds number (Re) of the flow exceeds a
∼ 102. It can be expressed as

Re = UL

ν
, (1.1)

where U is the bulk velocity of the flow, L its characteristic scale, and ν its viscosity.
When this occurs, kinetic energy is transferred to smaller and smaller scales, until
particle collisions themselves convert said energy into heat. In this sense, turbulence
is a cascading process of energy transfer. Through energy conservation, the energy
dissipation rate ϵ at each scale l is given by (Hennebelle & Falgarone 2012)

ϵ ∝ v2
l

τl

= v3
l

l
, (1.2)

where vl and τl = l/vl are the characteristic velocity and turnover time at scale l. The
kinetic energy at each scale El (∝ v2

l ) and its corresponding power spectrum P (k) can
then be expressed in Fourier space as

E(k) ∼ ϵ2/3k−5/3 , (1.3)

E(k) =
∫

P (k⃗)δ(|⃗k| − k)dk⃗ , (1.4)

where k = 2π/l is the wave number. The power spectrum of velocity in incompressible
turbulent flows is P (k) ∝ k−11/3.

1.2 Gravitational collapse in star forming clouds

In this section, we briefly summarize the main evolutionary stages describing the grav-
itational collapse of dense cloud cores. This is not meant to be a thorough review of
the state of the art, but rather an overview presenting the most commonly admitted
mechanisms and physical processes at play during the birth of stars.
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Jeans instability

Our journey begins when the conditions of collapse are satisfied; namely, when outward
pointing forces can no longer offer enough resistance to the inward pull of gravity (Jeans
1902). Let us first consider a dense core within a molecular cloud, and approximate it
as being a spherical distribution of mass. Furthermore, let us assume that said core is
mainly supported by thermal pressure gradient forces. As we will see later on, this is
a gross oversimplification of the criterion for stability, but it nonetheless allows us to
introduce the concept of the Jean’s mass MJ. In this scenario, triggering the gravita-
tional collapse of the dense core requires one to exceed the threshold mass value MJ.
This critical value can be derived using simple physical arguments: if a gravitational
collapse is triggered, sound waves will propagate through the cloud and will eventually
bounce back to re-establish a thermal pressure balance. The characteristic time for
this to occur is the sound crossing time ts, and if it is shorter than the free fall time
tff (i.e the characteristic time over which the cloud collapses under its own gravity),
then the cloud has time to re-establish a pressure balance and it remains in hydrostatic
equilibrium. If however ts > tff , the cloud cannot re-establish a pressure balance and
the gravitational collapse is unimpeded. tff and ts are given by

tff =
√

3π

32Gρ
, (1.5)

ts = R

cs
, (1.6)

where R is the radius of the dense core and cs is the isothermal sound speed. Therefore,
in order to trigger a gravitational collapse, the condition tff < ts has to be satisfied.
This occurs at a length scale λJ, known as the Jeans length:

λJ = cs

√
3π

32Gρ
. (1.7)

The Jean’s mass is then simply the mass enclosed within λJ:

MJ = 4π

3 λ3
Jρ . (1.8)

This quantity represents the maximum mass a spherical dense core of constant density
and temperature may have before being prone to gravitational collapse.

The prestellar phase

Let us now assume that a dense core is about to undertake the process of gravita-
tional collapse and give birth to a star. Much of our theoretical understanding of the
formation of low mass protostars was pioneered by Richard Larson during his PhD.
His most notable contribution to the field is the discovery of a two step evolution-
ary sequence describing the collapse of a gravitationaly unstable dense core to stellar
densities (Fig. 1.2). It can be summarized as follows (Larson 1969):
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• As the dense core collapses in on itself, the gas approaches a density profile of
ρ ∝ r−2. During the collapse, the gravitational binding energy is irradiated away
in the infrared by dust grains, thus the gas maintains a constant temperature
as it contracts. Eventually, the rising density causes the gas to become optically
thick, after which radiative cooling by dust grains becomes inefficient. This causes
the gas to heat up adiabatically, thus allowing it to reach a state of hydrostatic
equilibrium. This gives birth to the first Larson core, an object of radius ∼ 5 AU
and mass ∼ 10−2 M⊙. The first core continues to accrete material from its
surroundings and contracts adiabatically, first with a polytropic index γeff of 5/3
2, and once the rotational degrees of freedom of H2 molecules are excited (at
∼ 100 K), γeff reduces to 7/5.

• Once the temperature in the center of the first Larson core reaches ≈ 2000 K,
the thermal dissociation of H2 molecules is triggered. This process is highly
endothermic, consuming ≈ 4.48 eV per molecule (Stahler & Palla 2004). The
gravitational binding energy that was previously adiabatically heating the gas is
instead consumed by the dissociation process, which causes γeff to drop to 1.1
(Saumon et al. 1995). As such, the first core loses thermal pressure support
against gravity, and a highly dynamical second collapse ensues3. Once most of
the H2 molecules are dissociated, compressive heating resumes and hydrostatic
equilibrium is once again achieved. This gives birth to the second Larson core
(i.e., the protostar), of radius ≈ 2 R⊙, mass ∼ 10−3 M⊙, and temperature ∼
104 K. The temperatures in the protostellar interior are so high that atomic
hydrogen and helium begin to ionize, however the protostar is thermally stable
and no longer susceptible to further collapse (Tomida et al. 2013).

This evolutionary sequence is summarized in Fig. 1.3, which illustrates the thermody-
namical history at the center of the collapsing cloud core. During each step of this
process, angular momentum conservation causes the gas to rotate around the center
of mass, thus forming a circumstellar disk. We will see later however, that numerous
physical processes can cause a loss of angular momentum during the collapse.

The protostellar phase

The birth of the second Larson core ushers in the protostellar phase, often referred
to as the main accretion phase, as the newly-formed protostar builds up the vast
majority of its final mass throughout its duration. Once most the first core is accreted,
the protostar directly accretes hot molecular gas from its surroundings, whose density
profile quickly approaches free-fall (ρ ∝ r−1.5 and vr ∝ r−0.5, Shu 1977). The majority
of the luminosity output of the protostar is produced by the shock front as it converts a
fraction of the incoming kinetic energy into radiation (i.e., accretion luminosity). This
is owing to the fact that deuterium burning (1H + 2H → γ + 3He) has not yet been
triggered as it requires a temperature of 106 K. As such, the interior radiates a cooling

2H2 behaves as a monoatomic gas at low temperatures
3The first core’s free-fall time is ∼ 10 yr, whereas the free-fall time of the dense core is ∼ 104 yr.
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Isothermal collapse 

Dense core

Second collapse

First core formation
Adiabatic contraction

Accretion shock

First Larson core
(optically thick)

Second Larson core

Figure 1.2: A schematic overview of the birth of the protostar, showcasing the main
stages of the gravitational collapse of a dense core to stellar densities. Solid black lines
indicate the direction of collapse. The isothermal collapse phase is characterized by an
efficient radiative cooling of the core as it contracts. The first core forms as a result of
a buildup of thermal pressure after optical thickness is achieved, which then collapses
in on itself after the onset of H2 dissociation, thus giving birth to the protostar.

flux that struggles to escape due to high optical depths. Observations of protostellar
objects currently in this phase report the presence of circumstellar disks (e.g., Maury
et al. 2019; Tobin et al. 2020), formed through the conservation of angular momentum
during the collapse. They also report the presence of high velocity jets and outflows
(Arce et al. 2007), which suggests the presence of strong magnetic fields driving them4.
Understanding how the protostar evolves during this phase in tandem with the newly-
formed circumstellar disk is a contemporary challenge of stellar formation theory, as a
huge dynamical range needs to be considered along a wide array of physical processes
that dictate the evolution of these two objects. The advent of high resolution millimeter
and submillimeter instruments has greatly facilitated the study of deeply embedded
sources, as the wealth of data gathered has significantly constrained theoretical models,
although much progress is yet to be made.

The pre-main sequence phase

At the end of the protostellar phase, the protostar has accreted the majority of its
surroundings. Our theoretical understanding of this phase is greatly abetted by the

4Although more circumstantial, thermal pressure gradients may also drive outflows.
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Figure 1.3: The two-step evolutionary sequence describing the collapse of a dense
cloud core to stellar densities. The black curve displays the evolution of the central
temperature with respect to central density (analogous to time), which tracks the
thermodynamical evolution of the gas. Figure taken from Bhandare et al. (2020).

work done in stellar physics, as adequate approximations can be made to describe the
evolution of the protostar using the stellar structure equations (e.g. Palla & Stahler
1991; Chabrier et al. 2000). In addition, having accreted the majority of its surrounding
dusty envelope, the protostar now becomes visible in the optical, thus providing H-R
diagrams that can validate evolutionary models. The newly cleared stellar environment
allows for the protostar to radiate away a significant portion of the energy it has
accreted, and its contraction timescale (the Kelvin-Helmholtz timescale tKH) becomes
smaller than its accretion timescale tacc. These two quantities can be expressed as

tKH = GM2
∗

L∗R∗
, (1.9)

tacc = M∗

Ṁ∗
, (1.10)

where M∗ is the protostar’s mass, R∗ its radius, L∗ its luminosity, and Ṁ∗ its mass
accretion rate. tKH represents the time required for the protostar to radiate away its
gravitational binding energy, and tacc represents the time required for the protostar to
build its current mass. When tKH < tacc, the protostar begins its contraction which
occurs over a period of 10 Myr, thus resulting in the release of an immense amount
of gravitational energy. Since the protostar is a gravitationaly bound object, a loss
of energy causes an increase in temperature.5 Thus, the contraction further heats the
protostellar interior until it reaches a temperature of 106 K in its central regions, by
which point deuterium burning begins. This process releases ≈ 5.5 MeV per reaction,
which cannot be transported away through radiative means. As a result, convection

5This is due to the Virial theorem (Sec. 2.1.2), which states that should the gravitational binding
energy of the star be reduced (e.g., through a contraction), then half of the energy is lost by the star
through radiation, while the other half is converted into internal energy, causing it to heat up.
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sets in all throughout the protostar (Hayashi 1961), which transports additional deu-
terium towards the central regions that sustains the fusion process (Stahler et al. 1980).
Eventually, the temperature in the central regions exceed 107 K, thus triggering Hy-
drogen fusion. This signals the end of the pre-main sequence phase, and the protostar
enters the main sequence as a ZAMS (Zero Age Main Sequence) star.

1.2.1 The empirical sequence

The challenge of star formation lies not only in the abundance of physical processes
that add significant complexity to theoretical works, but also in the difficulty involved
in obtaining concrete observational constraints from star forming regions. The im-
mense reservoir of gas and dust in which the nascent star is embedded obscures much
of its outgoing radiation. The envelope reprocesses said radiation and mainly emits
in the infrared, however a greater fraction of stellar light escapes unhampered as the
system evolves over time. As such, young stellar objects (YSOs) have historically been
classified according to the slope of their spectral energy distributions (SEDs, Lada &
Wilking 1984; Lada 1987; Andre et al. 1993), in what is now known as the empirical
sequence (Fig. 1.4).

The class 0 phase represents a period in which the protostar is entirely embedded
within its envelope, where a negligible amount of its radiation manages to peer through
without being re-processed. During this phase, Menv > M∗ ∼ Md, where Menv and Md
are respectively the mass of the envelope and of the disk.
After having accreted a large fraction of the envelope, the protostar begins to reveal
itself in optical wavelengths as its radiation manages to peer through the envelope,
which is itself becoming thinner as its mass content is accreted by the nascent pro-
tostar and circumstellar disk. The system enters what is known as the class I phase,
which lasts ∼ 5 × 105 yr (Evans et al. 2009). During this phase, M∗ > Menv ∼ Md.
Once the majority of the envelope has been accreted by the star and disk, the system
transitions to the class II phase, where strong optical and UV emissions are observed
with M∗ >> Md and Menv ∼ 0. This phase is believed to last 106 yrs.
Once the disk has been accreted by the nascent star, the system transitions to the class
III phase, which is characterized by the presence of a debris disk; an object mainly made
of dust aggregates created by the planet-forming processes.

1.3 The pivotal role of angular momentum during the col-
lapse

A salient question in stellar formation theory relates to the angular momentum budget
of dense cores and how this quantity evolves both during and after the gravitational
collapse. Rotational motion offers centrifugal support against gravity, and the ratio of
rotational to gravitational energy of a dense core of size R, mass M , rotating at an
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Figure 1.4: A schematic overview of the empirical evolutionary sequence of star for-
mation, starting from a pre-stellar dense core and ending with a fully-fledged star, as
inferred from observations (André 2002). Image taken with permission from Lebreuilly
(2020).

angular velocity of Ω, can be expressed as:

Erot

Egrav
∼ R3Ω2

GM
= j2

GMR
, (1.11)

where j is the core’s specific angular momentum. Equation 1.11 shows that should
angular momentum be conserved during the collapse, the centrifugal force becomes
increasingly dominant over gravity. This implies the existence of a centrifugal barrier,
a region in which centrifugal support outweighs gravity, and thus in which further
collapse is halted. Let us now consider a quantitative estimate of the radius of this
centrifugal barrier, in which we assume typical values for the quantities involved in our
balance equation: Ω ∼ 10−14 s−1 (Goodman et al. 1993), M ∼ 1 M⊙, and R ∼ 0.1 pc.
This would result in a centrifugal barrier at r ≈ 460 AU, which is far too large for such a
low mass object. As such, Eq. 1.11 shows that the conservation of angular momentum
would not allow for a star to form, as the resulting protostar would be rotating far
above its breakup velocity. This problem is known as the angular momentum problem
in star formation (Bodenheimer 1995). Thus, during the stellar formation process, a
significant fraction of the original angular momentum budget of the dense core must be
lost. This is illustrated in Fig. 1.5, which displays the specific angular momentum of
the various spatial scales involved in the stellar formation process, from dense prestellar
cores to the Sun. The figure shows that about 7 orders of magnitude in specific angular
momentum must be lost before the star joins the main sequence.

However, angular momentum itself is not a properly defined quantity. Indeed, to
measure it, one must consider an origin point in an inertial frame of reference, and in
the context of collapsing dense cores, this is often assumed to be the center of mass.
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Figure 1.5: Distribution of the specific angular momentum at various scales, as inferred
from observations. Image credits: A. Maury & A. Belloche ’s star formation course.

The problem arises in the fact that dense cores are not axisymmetric distributions of
gas, and so the center of mass is not necessarily the center of collapse. A natural con-
sequence of this fact is that the gravitational collapse itself can generate a torque that
produces angular momentum, sufficiently so to form a circumstellar disk around the
newly formed protostar (Verliat et al. 2020). Therefore, it is difficult to ascertain the
origin of angular momentum in young stellar objects (Verliat et al. 2020; Xu & Kunz
2021; Lee et al. 2021), or the scales from which it is inherited. In addition to this, dense
cores are known to be magnetized (Crutcher 2012). As we will show later on during this
section, this will introduce a torque on the gas that will deplete its angular momentum.

The process by which angular momentum is lost or redistributed is an activate field of
research. Below, we summarize the main physical processes at play in this regard.

1.3.1 Formation of circumstellar disks

A natural consequence of our approximate analyses in Equation 1.11 is the formation of
a centrifugally supported circumstellar disk orbiting the protostar. A naive application
of this conservation law would result in a disk whose radius is of the order of the
centrifugal barrier (∼ 102 AU), a result that is at odds with surveys of class 0 disks
which show that disks of radii r > 100 AU are rare. Indeed, the CALYPSO survey
of Maury et al. (2019) reports that about 75% of their sample of 19 class 0 disks
have radii r < 60 AU, whereas the VANDAM survey of Tobin et al. (2020) reports
that 65% of their sample of 146 class 0/I disks have radii r < 50 AU. This points
towards the fact that a significant portion of the angular momentum of the dense core
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is lost during the collapse itself, most likely as a result of magnetic fields acting on the
fluid. This is further supported by measurements of the specific angular momentum
of class 0/I disks, which seems to be two orders of magnitude below that of dense
cores (Williams & Cieza 2011). Thus, a further 5 orders of magnitude reduction is
needed to explain the rotation rates of main sequence stars. Below, we summarize
the mechanisms responsible for internal torquing within the disk once it has formed,
and the role of magnetic fields, both in setting the initial disk size by transporting
angular momentum during the isothermal collapse phase as well as its role in driving
disk winds, is further discussed in Sec. 1.3.3.

1.3.2 Transport processes in circumstellar disks

We must thus explore what mechanisms are at play in transporting angular momentum
in circumstellar disks. Before delving into the details of said mechanisms, it is useful
to first explore what the implications of angular momentum transport are using a
toy model. Let us consider two annuli of masses m1 and m2 and specific angular
momenta j1 and j2, orbiting a protostar of mass M∗ (see Fig. 1.6). Let us further
assume that these annuli are fully supported by the centrifugal force, such that their
orbital radii are r1,2 = j2

1,2/GM∗. Let us now assume that these two annuli exchange
angular momentum through some torque mechanism such that the inner ring loses
angular momentum through j1 → j1 − δj, and in the process raising the outer ring’s
angular momentum j2 → j2 + δj. Centrifugal balance implies that this would cause a
contraction of the inner ring, while the outer ring expands to a larger radius. A crude
approximation of the exchanged angular momentum can be expressed as6

δJ = δm1

√
GM∗r1 = δm2

√
GM∗r2 , (1.12)

⇒ δm1

δm2
=
√

r2

r1
. (1.13)

Since r2 > r1, an exchange of angular momentum implies that δm1 > δm2. In other
words, the inner ring receives more mass than the outer ring. This demonstrates the
natural tendency of circumstellar disks to concentrate mass in the central regions while
angular momentum is expelled outwards. The salient question now lies in determining
what dissipative processes can extract angular momentum.

Viscous shear

The most natural way to invoke a dissipation of angular momentum in circumstellar
disks is through shear. The previously mentioned balance between the centrifugal and
gravitational forces causes the gas to rotate at the keplerian velocity:

vk = j

r
=
√

GM∗

r
. (1.14)

6This is crudely assuming that the angular momentum difference owing to a change of specific
angular momentum is lower than that caused by the mass exchange.
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Figure 1.6: Schematic representation of angular momentum transport within a circum-
stellar disk, in which two annuli exchange angular momentum. The inner ring contracts
and gains mass in the process, whereas the outer ring expands and loses mass.

This equation implies that throughout the disk, the gas rotates at different velocities
(i.e., the flow is sheared). Thus, molecular viscosities will drag the inner regions and
transfer their angular momentum to the outer regions. The typical timescale by which
this occurs is aptly named the viscous timescale (Lynden-Bell & Pringle 1974):

tν = r2

ν
, (1.15)

where ν is the molecular viscosity of the gas. It can be expressed as

ν ∼ vthλp, (1.16)

where λ is the particle mean free path and vth is their thermal speed:

vth =
√

3κBT

mH
, λp ∼ 1/nσ, (1.17)

where n is the number density of molecules with a collisional cross-section of σ. Taking
σ to be the size of an H2 molecule and conditions appropriate to circumstellar disks
at 1 AU, we have σ ∼ 3 × 10−16 cm−2, n ∼ 1015 cm−3, and vth ∼ 1 km s−1. Thus,
we obtain ν ∼ 3 × 105 cm2 s−1, and tν ∼ 2 × 1013 yr. This timescale is three orders
of magnitude above the age of the universe, which allows us to safely conclude that
viscous shear is not the dominant process behind the transport of angular momentum
in circumstellar disks.

Turbulent diffusion

In order to explain the dissipation of the disks in timescales comparable to those inferred
from observations, let us introduce the α-disk model of Shakura & Sunyaev (1973) and
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Lynden-Bell & Pringle (1974). The main idea behind it lies in invoking turbulence in
circumstellar disks as a mechanism of transport of angular momentum. Indeed, the
low viscosity of these objects also implies that they will be highly turbulent, since their
Reynolds number defined as

Re = csh

ν
, (1.18)

where h is the scale height of the disk and cs the sound speed, is ∼ 1011. This gargan-
tuan Reynolds number means that viscous forces are entirely negligible through a broad
range of spatial scales, and turbulence is ubiquitous in circumstellar disks. However,
describing turbulence and turbulent transport analytically is a difficult undertaking,
and the α-disk model mimics said transport by introducing a turbulent viscosity:

νt = αcsh, (1.19)

where α is a dimensionless parameter that dictates the vigour of turbulent transport.
Its value may be inferred from the observational lifetimes of circumstellar disks, which
are of the order of 106−7 yr (Haisch et al. 2001). Thus, through Eq. 1.15, we have
α ∼ 10−3 − 10−1. An example of a work in the literature that uses this prescription
of angular momentum transport is Hueso & Guillot (2005), who found that this would
result in disks whose sizes are > 100 AU.

This model is of course extremely simplified, as the full physics behind the trans-
port of angular momentum is reduced to a diffusive term. Nevertheless, assuming a
constant α both in space and in time allows for a comprehensive theory describing cir-
cumstellar disks. Further constraining this parameter would require one to model the
origin of turbulence, which in circumstellar disks is rather complex (Armitage 2011).
A widely accepted and robust mechanisms of turbulence generation in circumstellar
disks are gravitational instabilities (Lodato & Rice 2004). Whatever the source of this
turbulence may be, its transport of angular momentum in numerical simulations is
often reported in terms of an effective α:

αR =
⟨δvrδvϕ⟩ρ

⟨P ⟩ρ

, (1.20)

where vr and vϕ are respectively the radial and azimuthal velocities, P the thermal
pressure, and the angle brackets denote a density weighted average over space. The
subscript is meant to differentiate this effective viscosity from that of gravitational
torques discussed below. The "R" stands for Reynolds, as Eq. 1.20 is often called the
Reynolds stress tensor.

Gravitational instabilities

Previously, we have only considered the star’s gravity in our balance equations. Fur-
thermore, we have neglected any thermal pressure gradients present within the circum-
stellar disk. These approximations however, are not entirely valid for newly-formed
circumstellar disks whose mass is comparable to that of the protostar. This allows for
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gravitational instabilities to develop when the following stability criterion is violated
(Toomre 1964):

Q = csω

πGΣ < 1, (1.21)

where Σ is the disk’s surface density and ω its epicyclic frequency:

ω2 = 1
r3

∂(r4Ω2)
∂r

, (1.22)

where Ω is the disk’s angular velocity. This parameter describes the ratio of inward
pointing gravitational forces to outward pointing pressure gradient and centrifugal
forces, all the while accounting for the fact that any instabilities are immediately
sheared apart by differential rotation. When Q ∼ 1, gravitational instabilities are
triggered, and globally trailing spiral waves permeate the disk (see Fig. 1.7, left). In
addition to being a source of turbulence, the non-axisymmetric spiral wave generates an
azimuthal component to the gravitational potential, thus causing a gravitational torque
in the disk which transports angular momentum outward. As with turbulent transport,
the transport of angular momentum through gravitational torques is reported in terms
of an effective α:

αG =
⟨δgrδgϕ⟩ρ

4πG ⟨P ⟩ρ

, (1.23)

where g is the gravitational potential.

Figure 1.7: Simulations by Brucy & Hennebelle (2021) of self-gravitating circumstellar
disks, showing the presence of globally trailing spiral arms generated through gravita-
tional instabilities (left), which can fragment into gravitationaly bound objects should
the disk be able to cool efficiently enough (right). The visualized quantity is the col-
umn density, with brighter colors indicating higher values.
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If however pressure and tidal shearing are unable to damp the instability and pre-
vent further collapse, the disk will fragment into gravitationaly bound objects (Fig. 1.7,
right). This paves the way to form a multiple star system, all the while extracting a
significant amount of angular momentum from the disk. Determining the precise bar-
rier beyond which fragmentation is inevitable is unfortunately not straightforward, as
a recent study by Brucy & Hennebelle (2021) showed that it is better described by a
probabilistic approach. Said probabilities strongly depend on how efficiently the disk
is able to cool, such that an efficiently cooling disk needs to transport angular momen-
tum rapidly in order to generate the heat required to maintain its equilibrium. In this
sense, gravitational torques within circumstellar disks may act as a sort of thermostat,
acting to bring Q as close as possible to marginal stability (Paczynski 1978; Lodato &
Rice 2004; Lodato 2007).

1.3.3 Magnetic fields

Magnetic fields have been detected in the vast majority of star forming regions (Crutcher
2012), and in particular in dense cloud cores (Kirk et al. 2006; Jones et al. 2015; Kan-
dori et al. 2018; Myers & Basu 2021). Two main techniques are commonly used to
measure them: either Zeeman splitting (Crutcher & Kemball 2019) or mapping of lin-
early polarized dust emissions at submillimeter wavelengths (Lazarian 2007; Andersson
et al. 2015).

The field interacts with the gas through the Lorentz force, which can be decomposed
into a pressure and tension term7 (Spruit 2013; Hennebelle & Inutsuka 2019). In CGS
units, it has the following form:

fL = (∇⃗ × B⃗) × B⃗

4π
= −∇⃗

(
B2

8π

)
+ (B⃗ · ∇⃗)B⃗

4π
. (1.24)

The strength of magnetic fields in dense cores has been measured in the range of
10−5 − 10−3 G, and said measurements are often expressed in terms of a normalized
mass-to-flux ratio (Hennebelle & Falgarone 2012)

µ = M/ϕB

(M/ϕB)crit
, (1.25)

where ϕB = πr2B is the magnetic flux. The denominator in the above equation is
the critical mass-to-flux ratio µcrit beyond which gravitational collapse is halted by
magnetic pressure. It has been computed numerically by Mouschovias & Spitzer (1976)

µcrit =
(

M

ϕB

)
crit

= 0.53
π

√
5
G

. (1.26)

Values of µ below 1 are called magnetically subcritical, whereas values above 1 are
called magnetically supercritical. In Fig. 1.8, the magnetic field strength measured

7The MHD equations will be introduced in Chapter 2.
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along the line of sight is plotted as a function of surface density. We see that diffuse
gas tends to be in the subcritical regime, whereas the higher density gas (such as
dense cores for instance) is supercritical. Thus, in the context of collapsing dense
cores, although the magnetic pressure does not provide enough support to counteract
gravity, it may nonetheless extract a significant amount of angular momentum; an effect
known as magnetic braking (Mouschovias 1985). This is done through the magnetic
torque ∇⃗.(−rBϕB⃗/4π), a term arising from magnetic tension and which represents the
field’s inherent resistance to torsion. Thus, should the gas twist any field lines through
rotational movements, torsional Alfvén waves are generated. These waves are carried
along the field lines and extract angular momentum. Thus, the role of magnetic fields
in the context of the angular momentum problem has been the subject of intensive
study in recent years. The transport of angular momentum by magnetic fields within
disks is also often reported in terms of an effective α:

αB = −
⟨BϕBp⟩ρ

4π ⟨P ⟩
, (1.27)

where Bϕ and Bp are respectively the toroidal (azimuthal) and poloidal (vertical and
radial) components of the magnetic field vector.

Figure 1.8: Magnetic field strengths measured along the line of sight and plotted as
a function of surface density. The solid black line displays the value beyond which
magnetic subcriticality is achieved (see Eq. 1.25). Image taken from Crutcher &
Kemball (2019).

Magnetic braking catastrophe

The first simulations to tackle the gravitational collapse of dense cloud cores while
accounting for magnetic fields were done under the ideal MHD approximation (Allen
et al. 2003; Matsumoto & Tomisaka 2004; Galli et al. 2006; Price & Bate 2007; Hen-
nebelle & Teyssier 2008; Hennebelle & Fromang 2008), which assumes that the gas is a
perfect conductor of the electric current. Under said approximation, the magnetic field
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strength observed in dense cores is enough to efficiently transport the vast majority of
the gas’s angular momentum during the isothermal collapse phase, thus preventing the
formation of a circumstellar disk; a problem known as the magnetic braking catastro-
phe.
In order to reduce the efficiency of magnetic braking, turbulence has been invoked as
a possible regulator. Indeed, molecular clouds are highly turbulent structures (Larson
1981; Miville-Deschênes et al. 2017), whose large scale motions cascade down to the
scale of dense cores. By creating stochastic motion, the field lines are tangled and
reconnection is driven (i.e., changes to the magnetic field’s topology, Lazarian & Vish-
niac 1999). This causes a diffusion of the magnetic field as the collapse proceeds, and
hence reduces the efficacy of magnetic braking; enough-so to form a circumstellar disk
(Seifried et al. 2012; Santos-Lima et al. 2012; Joos et al. 2013).
Another mechanism by which the efficiency of magnetic braking can be reduced is by
considering a misalignment of the magnetic field with respect to the rotation axis. This
has an observational basis, as the survey of Hull et al. (2013) found that the outflows
emanating from protostellar cores are not necessarily aligned with the large scale mag-
netic field. If one assumes that said outflows are aligned with the angular momentum
vector of the disk, then this would also imply that the rotation axis of dense cores
is misaligned with respect to the magnetic field threading it. Under this hypothesis,
circumstellar disks may form in ideal MHD simulations (Hennebelle & Ciardi 2009;
Joos et al. 2012; Li et al. 2013; Krumholz et al. 2013; Masson et al. 2016; Gray et al.
2018).

Diffusive processes

In recent years, the most significant correction brought to the ideal MHD approximation
is the inclusion of magnetic resistivities. Since dense cores are not fully ionized (Ume-
bayashi & Nakano 1990; Bergin & Tafalla 2007), the magnetic field cannot, through
the Lorentz force, interact directly with the bulk material of the molecular gas which
is made of neutral species. This interaction happens through ions, which collide with
the neutral species and transfer their momentum to them. Thus, a coupling between
the magnetic field and the gas is predicated upon a high concentration of ions. How-
ever, the measured electron fractional abundance in dense cores is of the order of 10−7

(Bergin & Tafalla 2007). Therefore, a departure from the ideal MHD approximation
is expected to occur during the collapse, and non-ideal effects need to be considered
should one wish to accurately model the interaction of the fluid with the magnetic field;
namely, ambipolar diffusion, ohmic dissipation, and the Hall effect. It is helpful to vi-
sualize each of these effects in the induction equation, which describes the temporal
evolution of the magnetic field in the moving fluid (Maury et al. 2022):

∂B⃗

∂t
= ∇⃗ × (v⃗ × B⃗) − ∇⃗ × (ηO∇⃗ × B⃗)+∇⃗ ×

 ηA

⃗|B|
2

(
(∇⃗ × B⃗) × B⃗

)
× B⃗


− ∇⃗ ×

 ηH
⃗|B|

(∇⃗ × B⃗) × B⃗

 ,

(1.28)
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where η0, ηA, and ηH are respectively the Ohmic, ambipolar, and Hall resistivities. The
first term on the right hand side of Eq. 1.28 represents the advection of the magnetic
field in the fluid. The second term is Ohmic dissipation, which represents the collisions
between electrons and neutral species. The third term is ambipolar diffusion, which
represents the drift between the bulk of the gas made up of neutrals, and the ions.
Finally, the fourth term is the Hall effect, which represents the drift between the ions
and electrons.

All of these resistive effects manifest themselves at different densities during the col-
lapse (see Fig. 1.9). The most significant of them is undoubtedly ambipolar diffusion,
which consistently acts at the widest range of spatial scales; from the dense core to the
first Larson core, where it begins to wane.
Ohmic dissipation begins to manifest itself towards the higher density regime, such as
within the first Larson core and the circumstellar disk.
The Hall effect manifests itself in a more complicated manner. Should the magnetic
field’s orientation be flipped, Eq. 1.28 shows that the ambipolar diffusion and Ohmic
dissipation terms flip signs, whereas the Hall’s effect term does not. This means that
the orientation of the magnetic field with respect to the rotation axis significantly
alters the Hall effect’s contribution to the induction equation (Braiding & Wardle
2012). As such, simulations incorporating the Hall effect (e.g., Tsukamoto et al. 2015a;
Wurster et al. 2016; Marchand et al. 2019; Wurster & Lewis 2020b) have investigated
an anti-aligned and aligned configuration. In the former, the Hall effect supplements
ambipolar diffusion and further reduces magnetic braking, whereas in the latter config-
uration, magnetic braking is enhanced. Thus, the Hall effect has a more circumstantial
contribution to magnetic resistivities.
At the temperatures regime in which H2 molecules are dissociated (T > 2000 K, gen-
erally reached when densities exceed ∼ 10−9 g cm−3 during the collapse), almost the
entirety of the fluid’s dust content is vaporized, and atomic hydrogen and helium begin
to ionize. This leads to a stark reduction in magnetic resistivities, and the magnetic
field recouples with the gas. This entails a recovery of the ideal MHD approximation
within the protostar following the second collapse.
Simulations that have accounted for magnetic resistivities, be it ambipolar diffusion,
ohmic dissipation, or the Hall effect, have consistently reported the formation of a
circumstellar disk (e.g., Machida & Matsumoto 2011; Tsukamoto et al. 2015a,b; Zhao
et al. 2016; Masson et al. 2016; Wurster et al. 2018; Zhao et al. 2018; Vaytet et al.
2018; Machida & Basu 2019; Lebreuilly et al. 2020, 2021; Wurster & Lewis 2020b; Lee
et al. 2021; Wurster et al. 2021). These diffusive processes provide a more robust way
to avert the magnetic braking catastrophe than turbulence or misalignment, whose out-
comes appear to be more circumstantial. Most importantly, they predict disk sizes of
∼ 101 AU (Hennebelle et al. 2016), which is in broad agreement with observations. In
reality, a combination of misalignment, turbulence, and diffusive processes is expected
in nearly all dense cores, which should allow for the vast majority of newly-formed stars
to possess a circumstellar disk orbiting them regardless of their birth environment.

A final detail worth mentioning is the fact that accounting for all magnetic resistivity
effects requires a detailed chemical network capable of describing the abundance of
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charged species according to the temperature and density regime the fluid resides in.
In addition to this, a dust grain model describing their size and density distribution
needs to be included to determine the surface area available for chemical reactions,
such as ion-electron recombination (Marchand et al. 2016; Zhao et al. 2020). The
Mathis-Rumple-Nordsiek distribution (Mathis et al. 1977) is most commonly used for
this purpose, however its validity has been called into question by recent studies of
dust size distributions during the collapse (Lebreuilly et al. 2023; Kawasaki & Machida
2023; Tsukamoto et al. 2023a). These studies shed new uncertainties on the efficiency
of these diffusive processes, which further highlights their sensitivity with respect to
the micro-physics involved during the collapse.
Finally, the main physical process behind the creation of ionized species in dense
cores are cosmic rays. Observations suggest that the cosmic ray ionization rate is
ζH2 ∼ 10−18 −10−16 s−1 (Padovani et al. 2009), however these values may vary depend-
ing on the environment in which the dense core finds itself, as strong shock cavities
in protostellar jets may produce cosmic rays that supplement the background values
(Padovani et al. 2015, 2016).

Figure 1.9: Ambipolar resistivity (red), Ohmic resistivity (green), negative Hall resis-
tivity (cyan), and positive Hall resistivity (blue) as a function of density. The resis-
tivities are computed assuming an MRN (Mathis et al. 1977) dust size distribution.
Image credits: Marchand et al. (2016).

Jets and outflows

A key physical process capable of re-distributing angular momentum are jets and out-
flows. These are often observed in the optical or near-infrared wavelengths, although
the focus has recently shifted to submillimeter wavelengths in order to study molecu-
lar line emissions in more embedded sources (Ray & Ferreira 2021; Tsukamoto et al.
2023b). Jets are highly collimated hypersonic ejecta traveling at a Mach number of
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20 − 30 (∼ 100 km s−1, Hartigan et al. 2011), whereas outflows have a wide opening
angle and are much lower velocity in comparison (traveling at Mach numbers of a few).
Figure 1.10 shows a NIRCam view of L1527 IRS, which reveals an extended density
cavity along the polar regions of the protostar in which material is ejected.

Figure 1.10: JWST NIRCam image of L1527 IRS revealing the presence of an outflow
and its low density cavity. The thin dark band in the center of the image is a circum-
stellar disk obscuring the nascent protostar’s light. Image credits: NASA, ESA, CSA,
STScI.

The stark contrast in ejecta velocity between jets and outflows points toward a dif-
ference in their launching mechanism. Indeed, the hypersonic jet velocity corresponds
roughly to the escape velocity when measured at the surface of the protostar, which
suggests that it is the protostar itself that is propelling the material (Ray & Ferreira
2021). The lower velocity of outflows suggests that the ejecta is propelled at larger
spatial scales, and as a result they are expected to carry a higher amount of mass and
angular momentum as they entrain more material (Machida et al. 2008). A schematic
overview of the structure of jets and outflows is provided in Fig. 1.11.

The dense core collapse calculations we have previously mentioned have also reported
the launching of these outflows. The driving of these two processes is explained by
two physical mechanisms: the former is driven by the magnetocentrifugal mechanism
(Blandford & Payne 1982; Ouyed & Pudritz 1997), where the gas is accelerated by the
magnetocentrifugal force, whereas the latter is driven by the magnetic tower mechanism
(Lynden-Bell 1996; Lovelace et al. 2002), where a strong magnetic pressure gradient
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is responsible for the outward propulsion of high velocity material. Hence, it relies on
a strong twisting of the magnetic field. Such twisting can be achieved at first core
densities, where ambipolar diffusion and Ohmic dissipation have sufficiently diffused
the magnetic field strength to the point where the magnetic field is dragged by the
fluid. The rotation of the first core bends the field lines around it, thus providing the
toroidal component needed to launch an outflow. The same phenomena is reproduced
within the circumstellar disk, which drives what is commonly referred to as a "disk
wind" that continuously extracts angular momentum.
The twisting of field lines is reproduced at the scale of the protostar itself following the
second collapse. Although the ideal MHD approximation is recovered within it owing
to the high degree of ionization, thermal pressure gradient and centrifugal forces far
outweigh magnetic pressure forces (Vaytet et al. 2018; Machida & Basu 2019; Wurster
& Lewis 2020b). Hence, the field lines bend around the newly-formed (and rapidly
rotating) protostar, allowing the launching of a highly collimated jet through the mag-
netic tower mechanism.
We note however, that the prevalence of jets and outflows in these calculations is not
fully established yet, as Wurster & Lewis (2020b); Wurster et al. (2022) report that
turbulence in the dense core seems to be delaying (and even suppressing in some cases)
the onset of outflows and jets. We also note that thermal pressure gradients may
drive outflows, although these are more circumstantial and are predicated upon effi-
cient heating of the envelope by stellar radiation. Finally, in massive star formation,
radiation pressure may also drive or at least aid in the creation of outflows (Yorke &
Sonnhalter 2002; Kuiper et al. 2010, 2011), although Mignon-Risse et al. (2021) has
shown that the magnetic field remains the dominant factor in this regard.

Figure 1.11: Schematic representation of jets and outflows. Image credits: Machida
et al. (2008).
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1.4 The magnetic flux problem

In the previous section, we have discussed magnetic fields in the context of the an-
gular momentum problem, with a particular focus on how magnetic braking affects
the formation and evolution of disks. A closely connected problem to that of angular
momentum is the magnetic flux problem (Mouschovias 1985). Under the ideal MHD
approximation, the magnetic flux ϕB = πr2B is conserved during the collapse. As such,
a collapsing dense core of size R ∼ 10−2 pc with an initial magnetic field strength of
∼ 10−5 G would give birth to a protostar (R ∼ 1 R⊙) whose magnetic field strength
is ∼ 106 G should flux freezing hold. This is approximately three orders of magni-
tude above the magnetic field strength observed in young stellar objects (∼ 103 G,
Johns-Krull 2007; Johns-Krull et al. 2009; Yang & Johns-Krull 2011), and therefore a
considerable amount of magnetic flux has to be lost by the time the protostar becomes
visible. We have mentioned in the previous section the role of magnetic resistivities
in defusing the flux to the point where circumstellar disks are able to form. In this
section, we shift our focus to the magnetic flux inherited by the protostar at the time
of its birth.

1.4.1 Observational constraints

Direct measurements

Direct measurements of the magnetic field strength in protostars can be made using
Zeeman broadening of spectral lines (e.g., Robinson 1980; Johns-Krull & Valenti 1996;
Johns-Krull 2007; Yang et al. 2008). Since such measurements require the stellar
photosphere to be visible, they can only be made during the class I and more evolved
stages, and to our knowledge, only Johns-Krull et al. (2009) and Flores et al. (2019,
2024) presented measurements of magnetic field strength in class I sources. The fact
that such detections only happened so recently illustrates the difficulty of performing
these measurements. Nevertheless, two works have surveyed the magnetic field strength
of a total sample of 28 young stellar objects (YSOs): Johns-Krull (2007); Yang & Johns-
Krull (2011). Their resulting measurements of photospheric magnetic field strengths
and fluxes with respect to stellar age are displayed in Fig. 1.12.
Firstly, it seems that the magnetic field strengths display a moderate amount of scatter
with respect to stellar age, however the mean value is of the order of ∼ 103 G. Secondly,
the magnetic flux seems to be decreasing with stellar age.
We also note the recent study by Flores et al. (2024), which surveyed a sample of 42
class I sources and found a mean magnetic field strength of 4.2 kG, although the authors
of the study did not report the ages of their sources. Finally, in more evolved class II
and III sources, there is a relative abundance of magnetic field strength measurements,
with over 100 samples having been observed. These also seem to report a similar value
of ∼ 1 kG (Yang et al. 2005; Johns-Krull 2007; Lavail et al. 2017; Donati et al. 2019;
Sokal et al. 2020; López-Valdivia et al. 2021; Flores et al. 2022).
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Figure 1.12: Observed magnetic field strengths (left) and magnetic flux (right) of a
sample of 28 young stellar objects from Johns-Krull (2007) and Yang & Johns-Krull
(2011) as a function of stellar age. Image credit: Yang & Johns-Krull (2011).

Indirect measurements

The magnetic field strength may be indirectly inferred from other kinds of observa-
tions. For instance, the disk size surveys of Maury et al. (2019) and Tobin et al. (2020)
indicate that disk radii must be of the order of ∼ 101 AU. This indicates that although
magnetic braking is present in dense cores, the magnetic field is not strong enough
to prevent the formation of circumstellar disks. As such, disk sizes may be linked to
magnetic field strengths through models of magnetically-regulated disks such as those
of Hennebelle et al. (2016).
Another indirect measurement comes from a recent study by Moscadelli et al. (2023),
who observed water masers in a jet at distances < 100 AU from the star and inferred
from them a magnetic field strength of 0.1 − 0.7 G.
Finally, our own solar system can also provide us with constraints. Ancient meteorites
recovered on Earth can be analysed with natural remanent magnetization techniques,
which allows for a direct and precise measurement of the magnetic field strength at the
time of their formation within the protosolar disk (see the review of paleomagnetism by
Weiss et al. 2021). The resulting measurements report a field strength of 0.54 ± 0.21 G
1.22 Myr after the birth of the Sun.

These three indirect measurements provide a constraint on the magnetic field strength
in MHD simulations. As we will show below, the ∼ 0.1 G magnetic field strength
inferred from these observations can provide constraints on MHD simulations of col-
lapsing dense cores. This comes from the fact that the measurements are likely to
reflect the magnetic field present in more diffuse gas, where densities are close to those
of first Larson cores and circumstellar disks.
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1.4.2 Magnetic field strength predicted by simulations

Constraints on the magnetic field strength implanted in the protostar at birth requires
a self-consistent modelling of the collapse of the dense core to stellar densities. Due
to the challenges in performing such simulations, only a handful of studies have done
so by including magnetic fields (see the review by Teyssier & Commerçon 2019). In
addition, the stringent time-stepping constraints following protostellar birth precludes
them from advancing sufficiently in time to predict magnetic field strengths in more
evolved systems such as class I protostars. Nevertheless, some interesting results were
obtained in said simulations, particularly by those that account for magnetic resistivi-
ties.
Indeed, diffusive processes prevent flux freezing from occurring during the collapse,
such that the resulting protostar inherits significantly less magnetic flux from the col-
lapse of the first core. As an illustrative example, Fig. 1.13 shows the magnetic field
strength distribution as a function of density during the second collapse calculations of
Vaytet et al. (2018), where they have compared the resulting measurements under the
ideal and non-ideal (with ambipolar diffusion and Ohmic dissipation) MHD approx-
imation. In the former (red distribution), flux freezing causes the implantation of a
magnetic field of strength 106 G in the protostar, whereas in the latter (blue distribu-
tion), ambipolar diffusion creates a plateau of ∼ 0.1 G at first core densities. Once the
second collapse sets in, the high temperatures sublimate all dust particles and begin
ionizing atomic species, such that flux freezing is recovered. However, the reduction
in magnetic flux prior to the second collapse means that the second core inherits a
significantly weaker magnetic field of ∼ 103 G, in accordance with the observations of
more evolved systems.

The robustness of the results reported by Vaytet et al. (2018) are difficult to establish.
Firstly, non-ideal MHD simulations having reached the second collapse stage are sparse,
and secondly, these studies use different codes, resolutions, chemical networks, cosmic
ray ionization rates, and initial conditions that render a comprehensive comparison
difficult to make. For instance, Tsukamoto et al. (2015b) reports an implanted mag-
netic field of ∼ 102 G when accounting for ambipolar diffusion and Ohmic dissipation.
Wurster et al. (2018); Wurster & Lewis (2020b), accounting for all non-ideal effects,
also report a field strength of ∼ 102 G. However the more recent study of Wurster
et al. (2022) investigated the effects of numerical resolution in their SPH simulations
and reports an unconverged field strength of ∼ 103 G. What is converged however, is
the field strength at first core densities (∼ 0.1 G, e.g. Tsukamoto et al. 2018; Vaytet
et al. 2018; Mignon-Risse et al. 2021), and so we expect flux freezing during the second
collapse to be able to produce at most a field of ∼ 103 G in the protostar, with any
values higher than that being generated by a dynamo process.

1.4.3 Fossil field, or dynamo generated?

We have thus far established from current observational constraints that the magnetic
field strength in YSOs is of the order of 103 G. Second collapse simulations can obtain
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Figure 1.13: Distribution of the magnetic field strength as a function of density under
the ideal MHD approximation (red), and non-ideal MHD with the inclusion of ambipo-
lar and Ohmic diffusion (blue). Image credit: Vaytet et al. (2018).

such magnetic field strengths provided that the first core has a field of ∼ 10−1 G,
which seems to be in accordance with paleomagnetic measurements of solar system
meteorites, water maser observations, and in broad agreement with disk size surveys.
It is thus possible to obtain the kG magnetic fields reported by observations at stellar
birth. The salient question now lies in determining how this magnetic field dynamically
evolves until the protostar becomes visible. Suppose that a 103 G field is implanted
in the protostar at birth. The main resistive process capable of diffusing it is Ohmic
dissipation, whose characteristic timescale is

tO = R2
∗

ηO

. (1.29)

The Ohmic resistivity is dictated by the concentration of charged species, and due
to the high temperatures found within the protostar (∼ 104 K), all dust grains are
sublimated and atomic gas begins to ionize. This causes tO to reach a a value of 1010

yr (Cowling 1945; Wurster et al. 2022), which would mean that a fossil field could
survive throughout an entire stellar lifetime. However, Ohmic dissipation is not the
only dissipative process capable of reducing the magnetic field in protostars. Turbulent
diffusion, much like how it diffuses angular momentum in disks, is capable of diffusing
magnetic fields in stars by tangling the field lines to a typical length scale of turbulence.
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This occurs at a timescale of

td = R2
∗

ηd
, (1.30)

where ηd is the turbulent magnetic diffusivity. Works in pre-main sequence evolution
have shown that the protostar is fully turbulent once deuterium burning begins in
the stellar core (Stahler & Palla 2004), and Bhandare et al. (2020) have shown that
protostars display strong turbulent motion even prior to the onset of thermonuclear
reactions. Therefore, there exists strong turbulence capable of diffusing the magnetic
field in protostars.
The magnetic flux shown in Fig. 1.12 is decreasing with stellar age, however, we know
from pre-main sequence evolution that the protostar also contracts as it joins the main
sequence (Hayashi 1961; Stahler 1983). As such, the decrease in magnetic flux implies
a decrease in magnetic field strength as the protostar evolves. This seems to indicate
that turbulent diffusion is indeed at play, and that the magnetic field in protostars is
not generated through dynamo action. Thus, if the sample of 28 YSOs presented in
Johns-Krull (2007); Yang & Johns-Krull (2011) is representative of the magnetic field
strength in most low mass stars, then this provides a constraint on second collapse
calculations: they must be able to implant a 103 G field in the protostar at birth.

The question now shifts to the strength of this turbulent decay process: if td is too
short (i.e., turbulent diffusion is too efficient), then the protostar requires some kind
of dynamo action to maintain its magnetic field. However, if the structure of the
fossil magnetic field and the interior of the protostar is such that turbulent diffusion
is alleviated, then a dynamo process is no longer necessary to explain observations.
Works in the literature that address this are unfortunately sparse. Tayler (1987) pre-
sented analytical estimates of the magnetic field’s evolution in a fully convective star
(as is expected of classical T Tauri stars, Hayashi 1961), and argued that a fossil field
could survive through the pre-main sequence stage. Moss (2003) expanded on this
work by providing additional analytical estimates. They arrived to similar conclusions,
and argue that the existence of a radiative interior as predicted for protostars of mass
> 2.5 M⊙ (Palla & Stahler 1993) would alleviate the total diffusion of the magnetic
field. However, Durney et al. (1993); Chabrier & Küker (2006) argue that the turbulent
diffusion in pre-main sequence stars is too efficient (with td ∼ 104 yr), and put-forth
the hypothesis of a convective dynamo to explain observations. In addition, Chabrier
& Küker (2006); Dobler et al. (2006) predict a positive correlation between the mag-
netic field strength and the stellar rotation rate, however Johns-Krull (2007); Yang &
Johns-Krull (2011) find no such correlation. This theoretical uncertainty regarding the
magnetic field evolution in protostars stresses the need for further studies that tackle
the subject. In order to better constrain models, additional studies reporting on the
strength and structure of the magnetic fields implanted in protostars following the sec-
ond collapse are required.

Ultimately, unravelling the origin of magnetic fields in stars will lie on additional
progress in our understanding of the interior structure of protostars (i.e., pre-main
sequence evolution) and dynamo theory. Further observational constraints on the mag-
netic field strengths of class I and more evolved sources will greatly constrain theoretical
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efforts in this regard, particularly in confirming or expanding upon the trends observed
in previous surveys.

1.5 The luminosity problem

Following the first surveys of protostellar luminosities (Beichman et al. 1986; Kenyon
et al. 1990), a discrepancy between theoretical models of star formation and obser-
vations was discovered by Kenyon et al. (1990). The median protostellar luminosity
L̃ was found to be an order of magnitude lower than the expected theoretical value.
Protostars shine by radiating away the potential gravitational energy of the gas they
accrete at the accretion shock, with an accretion luminosity Lacc of

Lacc = facc
GM∗Ṁ∗

R∗
, (1.31)

where facc is the fraction of the accretion energy that is radiated away. Here, we define
facc as being the radiative efficiency of the protostellar shock front, where values of ≈ 1
correspond to supercritical (i.e., cold) accretion, and values < 1 correspond to subcrit-
ical (i.e., hot) accretion. In the literature, a mechanical meaning is often attributed to
facc, whereby the shock front is assumed to be supercritical and this parameter simply
refers to the fraction of mass brought by Ṁ∗ that lands in the protostar (e.g., Offner
& McKee 2011).
By assuming that a typical protostar forms in 0.1−0.2 Myr, has a radius of 2 R⊙ and a
mass of 0.5 M⊙, the mass accretion rates should be on average (2.5−5)×10−6 M⊙ yr−1

and thus typical protostellar luminosities should be in the 10−20 L⊙ range (by assum-
ing that facc = 1). However, the observational sample of Kenyon et al. (1990) suggested
that L̃ ∼ 1.6 L⊙. Later infrared surveys by the Spitzer space telescope (Evans et al.
2009; Dunham et al. 2014, 2015) and the Herschel observatory (Fischer et al. 2017)
confirmed the low median luminosity of protostars (Fig. 1.14). This problem is known
as the luminosity problem.

Before delving into the proposed solutions to the problem, let us first consider why
the protostar must radiate away the majority of its gravitational binding energy. If
we neglect protostellar radiation and assume that the entire gravitational energy of
a dense core is injected into the protostar, the Virial theorem reads (Stahler & Palla
2004):

1
2

GM2
∗

R∗
= ∆Eint, (1.32)

where ∆Eint is the energy consumed in the dissociation of H2 molecules and the ioniza-
tion of atomic hydrogen and helium. Assuming that the entirety of molecular hydrogen
is dissociated and ionized, and that helium is similarly fully ionized, this reads

∆Eint = XHM∗

mH

(
∆EH2

2 + ∆EH+

)
+ XHeM∗

4mH
(∆EHe+ + ∆EHe2+) . (1.33)
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Here, XH and XHe are the mass fractions of hydrogen and helium species in the gas,
whose values are respectively 0.73 and 0.27. ∆Ei is the energy required to achieve the
following reactions:

H2 → 2H : 4.48 eV = ∆EH2 ,

H → H+ + e− : 13.60 eV = ∆EH+ ,

He → He+ + e− : 24.59 eV = ∆EHe+ ,

He+ → He2+ + e− : 54.40 eV = ∆EHe2+ .

(1.34)

For a 1 M⊙ protostar, ∆Eint ≈ 3.2 × 1046 erg. Thus, under the extreme scenario in
which facc = 0, Eq. 1.32 yields a protostellar radius of ≈ 58.5 R⊙, a value far in excess
of typical stellar sizes. This implies that facc must be high throughout the protostellar
mass buildup.

Below, we provide a brief summary of the solutions proposed by Kenyon et al. (1990),
which have dominated the discourse surrounding the luminosity problem. For a more
in-depth review, the reader is referred to Fischer et al. (2023).

Figure 1.14: Herschel survey by Fischer et al. (2017) of the total luminosity of 324
protostars, plotted as a function of the envelope mass inside 2500 AU. The red diamonds
are median luminosity values in each mass bin, which are denoted by the dotted vertical
lines. The top (resp. right) histogram shows the luminosity (resp. mass) distribution
as a function of envelope mass (resp. luminosity). Image credit: Fischer et al. (2017).

1.5.1 Lower accretion rates

Kenyon et al. (1990) cited a longer star formation time, and hence lower average ac-
cretion rates, as a possible way to reduce the discrepancy between predictions and
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observations. The results of more recent surveys by the Spitzer space telescope seem
to indicate that this is indeed the case, with the inferred protostellar lifetimes being in
the range of 0.46 to 0.72 Myr (Evans et al. 2009; Dunham et al. 2015), thus reducing the
predicted mean luminosity by a factor 2.3 to 3.6. Furthermore, the extinction-corrected
measurements of Evans et al. (2009) also contributed to reducing the discrepancy, as
they report a mean protostellar luminosity of ≈ 5 L⊙.
Offner & McKee (2011) investigated this purported solution to the luminosity prob-
lem, and found that its predictions falls within the mean luminosity values provided
by Evans et al. (2009) should one consider a mechanical energy loss of ≈ 0.25% (via
outflows and jets) and a modest amount of episodic accretion onto the protostar. Thus,
the scenario of longer star formation time is viable to match current observational data.
As such, the classical luminosity problem as stated by Kenyon et al. (1990) in which the
L̃ was lower than the theoretically predicted values was solved. However, the longer
star formation times were not able to reproduce the large spread in luminosities that
span several orders of magnitude (see Fig. 1.14). It has been found that more complex
models with time-dependant accretion rates may explain observational data (Dunham
et al. 2014; Fischer et al. 2017), however the alternative scenario of episodic accretion
is also viable.

1.5.2 Protostellar outbursts

Episodic accretion is the mechanism causing short, large amplitude variations in pro-
tostellar luminosities that are commonly referred to as outbursts. It was originally
invoked by Kenyon et al. (1990), who argued that it could explain how stars build up
their mass with periods of high mass accretion and high luminosity, in between longer
periods of quieter low mass accretion rates. Observationally, outbursts are commonly
observed, the most famous example of which are FU Ori and Ex Lup events (Audard
et al. 2014). However, other types of outbursts have been observed, and the order of
magnitude increase in stellar luminosity varies from object to object (Fischer et al.
2023).
From a theoretical standpoint, there exists a number of viable mechanisms to trigger
bursts of accretion onto the protostar. These include gravitational instabilities in cir-
cumstellar disks (Vorobyov & Basu 2010, 2015), or variability in larger scale inflows
as reported by Padoan et al. (2014). Furthermore, the magneto-rotational instability
(MRI, Balbus & Hawley 1991) is believed to occur in the inner-most (and hence, most
highly ionized) regions of more evolved class I and II stars (see the review by Lesur
et al. 2023), and may trigger a sudden accretion of mass built-up near the star (Ar-
mitage 2011; Ohtani et al. 2014).

Thus, episodic accretion is a viable mechanism to reproduce the spread observed in
protostellar luminosities. Since a number of models seem to match observational data,
Fischer et al. (2017) argue that the field must go beyond the use of protostellar lumi-
nosity as a prognostic tool to infer how the mass build-up of protostars occurs.
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1.5.3 Radiative efficiency of protostars

So far, we have discussed the luminosity problem exclusively through the lens of accre-
tion, while assuming that facc = 1. This is mainly due to the ad-hoc argument brought
forth by the energy balance equation (Eq. 1.32), rather than on a rigorous analysis of
the radiative physics of the accretion shock. In addition, pre-main sequence evolution
works such as those of Palla & Stahler (1993); Hosokawa & Omukai (2009); Baraffe
et al. (2009, 2012, 2017) rely on a supercritical shock front to match their models with
observations.

Assessing the radiative efficiency of protostars requires a self-consistent modelling of
the shock front, in which one describes its formation after the collapse of the first core
(i.e., second collapse calculations). Studies having done-so under the assumption of
spherical symmetry find that although the first core has a supercritical shock front
that radiates away most of the incoming accretion energy, the second core exhibits a
strongly subcritical shock front that absorbs most of it into its internal energy budget
(e.g., Narita et al. 1970; Commerçon et al. 2011; Bhandare et al. 2018; Vaytet et al.
2013; Bhandare et al. 2020). Although Larson (1969); Winkler & Newman (1980);
Masunaga & Inutsuka (2000) did not explicitly measure the radiative efficiency of the
shock front, their protostars initially swell to very large radii before quickly contracting.
This shows that in their calculations, the protostar’s Kelvin-Helmholtz timescale tKH is
initially longer than the accretion timescale tacc. If one assumes that the protostellar in-
terior’s contribution to the total luminosity output is negligible, then tKH/tacc ≈ 1/facc.
Thus, a contracting protostar in their calculations implies facc ≈ 1.
Expanding the calculations to account for all three dimensions allows for a more real-
istic measurement of facc, one which better reflects the accretion shock’s environment.
Measurements are once again unfortunately sparse, with Bate et al. (2014) and Vaytet
et al. (2018) reporting a strongly subcritical accretion shock (facc ≈ 0), however Vaytet
et al. (2018) also note that the polar regions of the protostar radiates much more effi-
ciently.

Although the protostellar accretion shock is the primary means by which luminos-
ity is produced, and hence the means by which we are able to observe star-forming
regions, little is known about its radiative behavior and how said behavior changes
over time. Providing a self-consistent proof of the supercriticality of the protostellar
accretion shock is of fundamental importance to validate a great number of models in
star formation.

1.6 This work

Throughout the introduction, I have introduced some of the current challenges in stel-
lar formation theory that have so far eluded a concise answer. These problems could
all benefit from a rigorous study of the protostar itself: its interior structure, accretion
shock, and circumstellar disk. As such, during my thesis, I have carried out state of
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the art self-consistent simulations of the birth of low mass protostars by describing the
gravitational collapse of turbulent dense cores, the second collapse following the disso-
ciation of H2 molecules, and the subsequent entry into the main accretion phase. To do
so, the adaptive mesh refinement radiative-magneto-hydrodynamics astrophysical code
RAMSES (Teyssier 2002) was employed. By performing some of the highest resolution
simulations in stellar formation theory, we have described the birth and early evolution
of low mass protostars and their circumstellar disks with unprecedented detail. This
has allowed us to offer new insight into some of the outstanding issues described in the
introduction. The questions tackled during the thesis are the following:

• What are the physical properties of the nascent protostar and its interior?

• What radiative behavior does the protostar exhibit both at birth, and following
the formation of a circumstellar disk?

• What is the angular momentum inherited by the protostar following the second
gravitational collapse, and how does this quantity evolve as the protostar accretes
material from its surroundings?

• How do magnetic fields influence the formation of the protostar, and what insights
can the second collapse offer on the magnetic flux problem?

• How do the newly-formed protostar and disk interact with each other, and how
do they jointly evolve?

To answer these questions, we first began by carrying out radiative-hydrodynamics sim-
ulations in spherical symmetry in order to focus our attention on the nascent protostar,
its interior structure, and the radiative behavior of its accretion shock. Following that,
we included angular momentum in the dense core by accounting for turbulence, and
studied how this influenced the nascent protostar and circumstellar disk. Finally, we
carried out our simulations with magnetic fields, both under the ideal and non-ideal
approximations, albeit with a much shorter horizon of predictability owing to stringent
time-stepping.
I first begin by introducing the theoretical background needed to model the star forma-
tion process in Chapter 2, as well as the basic principles of high performance computing
and the workings of the RAMSES code. The results of my simulations are presented in
Chapter 3, alongside any additional theoretical background that aids in understanding
them. Finally, I discuss the wider implications of my results, offer my main conclusions,
and present my future perspectives in Chapter 4.
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Modelling the star formation process

During the previous chapter, we have introduced the major challenges and issues per-
meating the field of star formation, all the while presenting a basic overview of the
physical processes involved in the birth of stars. In this chapter, we shift our focus
to providing the reader with the theoretical baggage required to rigorously model the
star formation process. This is by no means meant to be a thorough overview, as each
concept addressed in this chapter merits its own lecture, however the reader should
obtain a working understanding of the basic physics at play in star formation. In ad-
dition, the sheer abundance of complex, non-linear physical processes involved in star
formation, many of which are acting across a huge dynamical range, requires one to
leverage the ever-increasing amount of computational power available and run sophis-
ticated numerical simulations. For this reason, we have used the RAMSES astrophysical
code, whose basic functioning and numerical methods will also be presented in this
chapter.

2.1 The fluid equations

The gas and dust mixture permeating galaxies and composing molecular clouds can be
described under the fluid approximation, which holds so long as the distance between
individual particles is smaller than their mean free paths. Due to their incredibly high
Reynolds number, they can be described by the Navier-Stokes equation under the zero
viscosity approximation (i.e., the Euler equations). Under their conservative form,
these read:

∂ρ

∂t
+ ∇⃗ · ρv⃗ = 0⃗ , (2.1)

∂ρv⃗

∂t
+ ∇⃗ · (ρv⃗ ⊗ v⃗ + P I) = −ρ∇⃗ϕ , (2.2)

∂Etot

∂t
+ ∇⃗ · [⃗v(Etot + P )] = −ρv⃗ · ∇⃗ϕ , (2.3)

where ρ is the gas density, v⃗ its velocity, and P its thermal pressure. Equation 2.3
describes the conservation of energy, where Etot is the sum of the internal energy of
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the gas (E), and its kinetic energy

Etot = E + 1
2ρv2 . (2.4)

Equation 2.1 is the continuity equation, which describes the conservation of mass, and
Equation 2.2 describes the conservation of momentum. In the latter equation, ϕ is the
gravitational potential, which may be described via the Poisson equation:

∇2ϕ = 4πGρ . (2.5)

These equations govern the fluid’s motion, however, they do not have a general closed-
formed solution. Note that there are five equations, while the system possesses six
unknown variables (ρ, vx, vy, vz, P , and Etot). In order to close the system, an equation
of state linking the gas’ thermal pressure to its internal energy is required. During this
thesis, we have used the tabulated equation of state of Saumon et al. (1995), which
describes a gas mixture of 73% H and 27% He. It accounts for the dissociation of H2
molecules and the ionization of atomic hydrogen and helium.

2.1.1 MHD equations

As mentioned in the introduction, molecular clouds are composed of magnetized fluids.
Although in this thesis, we have taken an interest in high density gas which exhibits
magnetic subcriticality (i.e., thermal pressure gradient forces far outweigh magnetic
pressure forces), magnetic fields nonetheless play a very significant role in the gas’ dy-
namics and must be taken into account when attempting to model the fluid’s behavior.
Thus, we will describe in this section the equations of magneto-hydrodynamics (MHD).
In essence, MHD describes an ionized collisional plasma, where the charged particles’
motion create currents sustaining magnetic fields, which in turn generate electric fields
through induction. The charged particles in the fluid are subjected to the Lorentz force

F⃗L = j⃗ × B⃗ , (2.6)

where j⃗ is the current density.

Ideal MHD

Under the ideal MHD approximation, the fluid is a perfect conductor. Accounting for
the magnetic field in this approximation requires one to augment the Euler equations
with the Lorentz force. After combining Eq. 2.6 with Maxwell’s equations and Ohm’s
law, the fluid equations for momentum, energy, and magnetic field evolution become
(in cgs units):

∂ρv⃗

∂t
+ ∇⃗ ·

ρv⃗ ⊗ v⃗ +
P + |B⃗|2

2

 I − B⃗ ⊗ B⃗

 = −ρ∇⃗ϕ , (2.7)
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∂Etot

∂t
+ ∇⃗ ·

v⃗
Etot + P + |B⃗|2

2

− B⃗(B⃗ · v⃗)
 = −ρv⃗ · ∇⃗ϕ , (2.8)

∂B⃗

∂t
= ∇⃗ × (v⃗ × B⃗) . (2.9)

Equation 2.9 is the induction equation, which describes the evolution of the magnetic
field as it is advected in the fluid. Under this approximation, flux freezing holds,
meaning that the magnetic flux of the fluid is conserved irregardless of the distortions
of the flow. This means that the magnetic topology is preserved, and the magnetic
field is never dissipated. The magnetic flux is expressed as a surface integral over an
open surface

ϕB =
∫

B⃗ · dS⃗ , (2.10)

and flux freezing can be expressed as

∂ϕB

∂t
+ (v⃗ · ∇)ϕB = 0 . (2.11)

This shows that during a fluid displacement, the magnetic field frozen in the fluid is
displaced alongside it. As such, the magnetic field can be transported and compressed
during the flow. In the context of gravitational collapse, flux freezing would cause the
magnetic field to scale as ρ2/3.

Ambipolar diffusion

Since molecular clouds are weakly ionized, resistive effects need to be accounted for
in the MHD equations. One needs to consider the fact that the fluid is made up of
neutral species, positively charged ions, and negatively charged electrons. In this thesis,
we have accounted for ambipolar diffusion, which adds a heating term in the energy
conservation equation and diffuses the magnetic field in the induction equation:

∂Etot

∂t
+ ∇⃗ ·

v⃗
Etot + P + |B⃗|2

2

− B⃗(B⃗ · v⃗)

− ηAc2

4π|B⃗|2
[((∇⃗ × B⃗) × B⃗) × B⃗] × B⃗

]
= −ρv⃗ · ∇⃗ϕ ,

(2.12)

∂B⃗

∂t
= ∇⃗ × (v⃗ × B⃗) + ∇⃗ ×

 ηAc2

4π ⃗|B|
2

(
(∇⃗ × B⃗) × B⃗

)
× B⃗

 (2.13)

One can see that the ideal MHD limit is recovered when ηA → 0. In order to obtain
ηA, a resistivity table from Marchand et al. (2016) is used. The table provides the
resistivity as a function of density, temperature, and magnetic field strength, which
allows for on-the-fly interpolations in each computational cell during the simulation. It
originates from a a chemical network accounting for neutral and charged species in the
gas, as well as dust grains which can catalyze certain chemical reactions. These grains
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may also carry the electrical charge themselves, their size distribution in Marchand
et al. (2016) are described by the MRN (Mathis et al. 1977) size distribution. The
resistivities also depend on the cosmic ray ionization rate, which is assumed to be the
fiducial value of 10−17 s−1 (Spitzer & Tomasko 1968; Pineda et al. 2024).

2.1.2 Virial theorem

The birth of stars begins when gravity outweighs all other forces. A useful tool allow-
ing for the study of the stability of structures in the Universe is the Virial theorem
analysis, which may be applied to dense cores or any other object in which one ex-
pects a semblance of hydrostatic equilibrium. Under the ideal MHD approximation, the
non-conservative form of the momentum equation can be written as (from Eq. 2.7)

ρ

[
∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗

]
= −∇⃗P − ρ∇⃗ϕ − ∇⃗

(
B2

8π

)
+ (B⃗ · ∇⃗)B⃗

4π
, (2.14)

where we have simply re-written the Lorentz force in Eq. 2.7 as the sum of a tension
and pressure term. Since we are interested in deriving a global equilibrium from this
equation (which expresses a local behavior), we multiply it by the position vector r⃗
and integrate it over a volume. Under the simplifying assumption that the medium is
uniform and isotropic, and by taking the first order moment of Eq. 2.14, this yields

1
2

d2I

dt2 = 2Ekin + 2Ether + Egrav + Emag , (2.15)

where Ekin, Ether, Egrav, and Emag are respectively the kinetic, thermal, gravitational,
and magnetic energy contained within the volume. They are expressed as

Ekin = 1
2

∫
ρv2dV , (2.16)

Ether = 1
γ − 1

∫
PdV , (2.17)

Egrav = 1
2

∫
ρϕdV , (2.18)

Emag = 1
8π

∫
B2dV , (2.19)

where γ is the gas’ adiabatic index and dV is a volume element. I is the moment of
inertia

I =
∫

ρr2dV . (2.20)

On the right hand side of Eq. 2.15, all elements barring Egrav are positive. Stability
against collapse implies that the sum of the kinetic, thermal, and magnetic components
in Eq. 2.15 are greater than −Egrav. Thus, this is equivalent to d2I/dt2 ≥ 0.
The Virial theorem thus allows one to measure an object’s stability against collapse
through energy measurements, which is convenient in large numerical simulations as
said energy measurements are simple to perform.
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2.1.3 Hydrostatic equilibrium

The defining characteristic of stars, protostars, and dense cloud cores, is the fact that
a balance is reached between thermal pressure gradient forces and gravity. Since said
thermal pressure gradients are isotropic, this will naturally cause the hydrostatic object
to assume a spherical shape. A force balance thus yields

1
ρ

∂P

∂r
= −∂ϕ

∂r
. (2.21)

Inserting Poisson’s equation (Eq. 2.5) into the above expression yields

− 1
r2

∂

∂r

(
r2

ρ

∂P

∂r

)
= 4πGρ . (2.22)

Solving this equation requires an assumption of an equation of state. Generally, a
polytropic equation of state P = Kργ is used, which leads to the famous Lane-Emden
equations modelling the interior of stars. If an isothermal equation of state is used
(γ = 1), this leads to the famous singular isothermal sphere profile of Shu (1977),
which is often used to model dense cloud cores.
The attainment of hydrostatic equilibrium following the second gravitational collapse is
what defines the birth of the protostar. It is also hydrostatic equilibrium that dictates
its interior structure, as well as its evolution over time.

2.2 Radiative transfer

As previously mentioned, the birth of stars is heavily affected by radiative processes
that considerably change the thermodynamical behavior of the gas. However, account-
ing for this fundamental process is difficult, and many studies crudely mimic its effects
using a barotropic equation of state, whereby the gas’ pressure depends only on den-
sity. In this section, we will provide the basics of radiation hydrodynamics (RHD).
The concepts and equations presented here have been described more exhaustively by
Mihalas & Mihalas (1984); González et al. (2006); Commerçon (2009), and González
et al. (2015), from which we draw heavy inspiration.

We first begin by introducing some basic definitions. The specific intensity I describes
the transport of photons across space and time. It is described by 3 spatial coordinates
, a solid angle coordinate, the photon frequency, and time. Hence, I = I(r⃗, n⃗, ν, t),
where r⃗ is the position vector, n⃗ the radiation propagation directional vector, t the
time, and ν the radiation frequency.

Astrophysical media have a defined temperature and as such their radiation fields
may be described by the Planck function

Bν(T ) = 2hν3

c2 (ehν/kBT − 1) , (2.23)
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where h is the Planck constant, kB the Boltzmann constant, and c the speed of light.
Bν describes a specific intensity, and the associated radiative energy density may be
obtained by integrating it across all frequencies (i.e., Stefan-Boltzmann’s law)

Er = 4π

c

∫ ∞

0
Bν(T )dν = aRT 4 , (2.24)

where aR is the radiation constant.

When radiation passes through a medium such as an astrophysical gas, it interacts
with it through absorption, emission, and scattering processes. Absorption and scat-
tering decrease the specific intensity I of the radiation field as light propagates through
the gas; a process known as extinction (Mihalas & Mihalas 1984). The amount of ex-
tinction can be described by the extinction coefficient χ:

χ(x⃗, n⃗, ν, t) = κ(x⃗, n⃗, ν, t) + σ(x⃗, n⃗, ν, t) , (2.25)

where κ is the thermal absorption coefficient and σ is the scattering coefficient. Gen-
erally, two absorption coefficients are considered: the Planck mean opacity κP and
Rosseland mean opacity χR

κP =
∫

κ(ν)Bνdν∫
Bνdν

, (2.26)

χR =
∫ ∂Bν

∂T
dν∫ 1

χ(ν)
∂Bν

∂T
dν

. (2.27)

Often, radiative hydrodynamics neglects scattering for added computational perfor-
mance, and only the absorption coefficients are considered. In this case, the Rosseland
mean opacities is written as κR. During this thesis, scattering was neglected. The rea-
son why mean opacities are used is the greatly improved computational performance
it provides. The different weighing schemes used in κP and κR allows one to describe
different regimes of the radiation field: the latter is valid in the diffusion limit, where
the photon mean free path is shorter than all other length scales of the system and the
radiation field displays an isotropic behavior, whereas the former is more valid in the
free streaming limit.
Since the absorption coefficient varies widely according to the astrophysical environ-
ment, it is helpful to measure a medium’s extinction using the optical depth τ :

τ =
∫ l

0
χdl , (2.28)

where l is the total length of propagation through the medium. A region having an
optical depth of τ ≈ 0 is referred to as an optically thin region, whereas a region with
τ >> 1 is referred to as an optically thick region. The emissions of the medium may
similarly be expressed by an emissivity coefficient

η(x⃗, n⃗, ν, t) = ηth(x⃗, n⃗, ν, t) + ηS(x⃗, n⃗, ν, t) , (2.29)

where ηth and ηS are respectively the thermal and scattering components. This allows
us to write the radiative transfer equation[

1
c

∂

∂t
+ n⃗ · ∇⃗

]
I(x⃗, n⃗, ν, t) = η(x⃗, n⃗, ν, t) − χ(x⃗, n⃗, ν, t)I(x⃗, n⃗, ν, t) . (2.30)
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Essentially, the above equation describes the evolution of the specific intensity across
space and time: energy is gained through emissive processes, lost through absorption,
and re-distributed through scattering. It displays an asymptotic behavior; at high
opacities, the diffusion limit is reached where photons interact very intensely with the
medium in which they are embedded. At low opacities, the transport limit is reached,
where the photons are freely streaming and seldom interact with their host medium.

Figure 2.1: Rosseland mean opacities integrated across the [105; 1019] Hz frequency
range and displayed as a function of (ρ, T ). Image taken from Vaytet et al. (2013).

Opacities

Determining χ requires a detailed knowledge of the gas and dust composition of the
medium. During this thesis, we have used the opacity table pieced together by Vaytet
et al. (2013), which provides the opacity of the fluid in densities of [10−19; 102] g cm−3

and temperatures of [5; 107] K. The opacities were originally produced by Semenov
et al. (2003); Ferguson et al. (2005); Badnell et al. (2005), and describe respectively
the opacities of interstellar dust grains (which are assumed to be spherical grains of
silicate), molecular gas, and atomic gas. At T < 1500 K, the opacity of the interstellar
medium is dominated by dust grains, which make up approximately 1% of the mass
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content of the fluid and are described by an MRN size distribution (Mathis-Rumple-
Nordsie, Mathis et al. 1977). Above 1500 K, H2 dominates the opacities of the fluid,
and after its dissociation at ∼ 2000 K, the atomic opacities dominate.
During a simulation, the Plank and Rosseland mean opacities need to be computed as a
function of (ρ, T ) for each photon frequency. The approach taken by Vaytet et al. (2013)
is to compute an opacity table for each spectral bin using Delaunay triangulation, from
which κR and κP may be easily interpolated during the simulation. Figure 2.1 displays
the opacity table of Vaytet et al. (2013) in the gray approximation, i.e., integrated
across all frequencies. This is the opacity table that we have used in the vast majority
of our simulations.

2.2.1 Flux limited diffusion approximation

Integrating the radiative transfer equations with all six degrees of freedom is extremely
demanding computationally, and almost impossible to perform within hydrodynami-
cal simulations with current computational hardware. Indeed, this would require the
use of Monte-Carlo based methods or ray-traced algorithms that solve the radiative
transfer equation across space and time with frequency-dependence. Although very
accurate, from a computational standpoint this is orders of magnitude costlier than
solving the hydrodynamical equations. As such, accurate radiative transfer schemes
are reserved for post-processing purposes, where one would produce synthetic observa-
tions of simulated objects. Within RHD simulations, approximations are often used to
significantly reduce the computational cost. The approximation used during this thesis
is the flux limited diffusion approximation, which essentially consists in reducing the
radiative transfer equation to a diffusion equation by taking the zeroth order moment
of Eq. 2.30. This is of course valid in the diffusion limit (i.e., in regions of high optical
depth), however its accuracy diminishes in the free-streaming limit (i.e., optically thin
regions) as the isotropic nature of the radiation field in this limit is no longer valid.
Accounting for radiative transfer under the FLD approximation consists of augment-
ing the momentum equation with a radiative force term, the energy equation with the
work done by said force and the radiative pressure, and solving for a radiative energy
equation (Commerçon et al. 2011, 2014; González et al. 2015):

∂ρv⃗
∂t

+ ∇⃗ · [ρv⃗ ⊗ v⃗ + P I] = −ρ∇⃗ϕ − λ∇⃗Er, (2.31)

∂Etot

∂t
+ ∇⃗ · [⃗v(Etot + P )] = −ρv⃗ · ∇⃗ϕ − λv⃗ · ∇⃗Er − κPρc(aRT 4 − Er) , (2.32)

∂Er

∂t
+ ∇⃗ · (v⃗Er) + Pr : ∇⃗v = κPρc(arT

4 − Er) − ∇⃗ · F⃗r , (2.33)

where F⃗r is the radiative flux vector, which under the FLD approximation is

F⃗r = −cλ∇⃗Er

ρκR
. (2.34)
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Here, λ is the Minerbo flux limiter (Minerbo 1978), which regulates F⃗r to ensure
causality in the diffusion and free-streaming limits according to

λ =
2/

(
3 +

√
9 + 12R2

)
, if 0 ≤ R ≤ 3/2(

1 + R +
√

1 + 2R
)−1

, if 3/2 < R ≤ ∞
(2.35)

where R = |∇Er|/(κrEr). Under the diffusion limit, λ → 1/3 and in the free-streaming
limit, λ → 1/R. This causes the radiative flux to reach −c∇Er/3κR in optically thick
regions (i.e., radiative energy is diffused isotropically), and cEr in optically thin regions
(i.e., radiative energy is simply advected at the speed of light).
Pr is the radiative pressure tensor, given by

Pr =
(1 − χ

2 I + 3χ − 1
2 n⃗ ⊗ n⃗

)
Er , (2.36)

where χ is given by (Levermore 1984)

χ = λ + λ2R2 . (2.37)

Under the diffusion limit, Pr becomes isotropic and reaches a value of Er/3.

Solving the RHD equations in RAMSES is done in a two step approach: firstly, the
mass, momentum and energy equations are solved using an explicit scheme (see Sec.
2.3) while accounting for radiative terms, and the radiative energy equation is solved
implicitly using a conjugate gradient method (Commerçon et al. 2011, 2014).

Multigroup flux limited diffusion

In the previous section, we have presented the FLD method in the gray approximation
in which we have considered a single spectral bin. In RAMSES, the multigroup FLD
approach has also been implemented by González et al. (2015), which allows for one
to consider multiple photon frequencies. This can be particularly useful when doing
second collapse calculations, as the temperature range causes a large spread in photon
frequencies being produced. The multigroup FLD equations are the more general form
of those presented in the previous section:

∂ρv⃗
∂t

+ ∇⃗ · [ρv⃗ ⊗ v⃗ + P I] = −ρ∇⃗ϕ −
Ng∑
g=1

λg∇⃗Eg , (2.38)

∂Etot

∂t
+ ∇⃗ · [⃗v(Etot + P )] = −ρv⃗ · ∇⃗ϕ −

Ng∑
g=1

[
κPgρc(Θg(T ) − Eg) − λgv⃗ · ∇⃗Eg

]
,

(2.39)

∂Eg

∂t
+∇⃗·[⃗vEg]+Pg : ∇⃗v⃗ = ∇⃗·

[
cλg

ρκRg

∇⃗Eg

]
+κPgρc (Θg(T ) − Eg)+∇⃗v⃗ :

∫ νg+1/2

νg−1/2

∂ν(νPν)dν ,

(2.40)
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where Ng is the total number of spectral bins, Eg the radiative energy within a spectral
bin, and Θg is the energy carried by photons that have a Planck distribution inside
their spectral bin. Solving for the radiative energy equation in the multigroup approach
requires the use of a bi-conjugate gradient method (van der Vorst & Melissen 1990;
González et al. 2015).
The multigroup approach offers greater fidelity, as it can account for multiple photon
frequencies. However, it significantly increases the computational cost, as the radiative
energy equation has to be solved for multiple spectral bins.

2.3 Numerical methods

In physics, a primary function of a theory is to be able to make predictions that are
later validated by experiments. In astrophysics, it is not possible to do so, as we lack
the means to manipulate the heavens, and so laboratory astrophysics is rather small
compared to other fields of physics. In addition, astrophysical phenomena span huge
timescales when compared to human lifetimes, and as we have shown countless times in
this manuscript, they involve a complex interplay of numerous physical processes that
render analytical modelling incredibly challenging. As such, numerical simulations have
become a cornerstone of theoretical astrophysics, allowing theorists to model complex
phenomena through billions upon billions of calculations per second1. The results of
these simulations are then compared to observations, which allows for a fine-tuning of
the model, or in the case of gross mismatch, a complete revision. This has allowed
for countless breakthroughs in our understanding of astrophysical phenomena, and the
unabated increase in computing power will undoubtedly usher-in more breakthroughs.
In this section, we will provide an overview of the basic principles behind creating and
running a simulation.

2.3.1 Time discretization

Simulations describe the evolution of a physical model over discrete time intervals. Let
U⃗ be a vector containing all relevant variables of the system (e.g., density, momentum,
energy, etc...), and F⃗ the vector that describes its evolution over time:

dU⃗

dt
(t) = F⃗ (U⃗(t), t) . (2.41)

Discretizing the above equation in time yields

dU⃗

dt
(t) = U⃗(t + ∆t) − U⃗(t)

∆t
+ O(∆t) . (2.42)

Plugging the above equation back into Eq. 2.41 yields

U⃗(t + ∆t) = U⃗(t) + F⃗ (U⃗(t), t)∆t + O(∆t2) . (2.43)
1As of the writing of this manuscript, we have just reached the era of the exascale, meaning that

supercomputers can now perform a staggering 1018 floating point operations per second.
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This is known as an explicit time integration scheme, in which obtaining the state of
the system at t + ∆t requires knowledge of the system at t. This scheme is generally
straightforward to implement, however it is known to be numerically unstable unless a
sufficiently small timestep is used. Indeed, stability in explicit discretization schemes
requires one to satisfy the Courant-Friedrichs-Lewy (CFL) condition, which states that
a signal travelling at speed a cannot cross more than a single cell of size ∆x in a
timestep:

∆t ≤ ∆x

a
(2.44)

In the particular case of solving the Euler equations in 1D, the CFL condition is:

∆t ≤ ∆x

v + cs
, (2.45)

where cs is the sound speed, and v the fluid velocity.
We may also write a different scheme:

U⃗(t + ∆t) = U⃗(t) + F⃗ (U⃗(t + ∆t), t + ∆t)∆t + O(∆t2) , (2.46)

which is known as an implicit time integration scheme. The advantage of this scheme
over its explicit counterpart is that it offers unconditional numerical stability, however
it requires one to solve a simultaneous set of equations, which in complex systems tends
to be a daunting task.

2.3.2 Finite volume method

In the previous section, we have discussed the time discretization of our system of
equations. Here, we will discuss the spatial discretization that is employed in RAMSES;
the finite volume method.

We may write the previously presented conservative form of the hydrodynamics equa-
tions as

∂U⃗

∂t
+ ∇⃗ · F⃗ (U⃗) = 0 (2.47)

where U⃗ is a state vector containing the conservative variables, and F⃗ is the flux vector
that is linearly reconstructed from U⃗ . In the particular case of the Euler equations
in their conservative form (equations 2.1, 2.2, and 2.3), the state and flux vectors
are U⃗ = (ρ, ρv⃗, E) and F⃗ = (ρv⃗, ρv⃗ ⊗ v⃗ + P I, v⃗(E + P )). Should we discretize the
spatial domain the same way as we have done in time, then we would be employing a
scheme known as the finite differences method, which fails to conserve the conservative
variables of the system. This would result in a very diffusive and unstable scheme, one
that particularly fails to describe shock fronts. The finite volume method on the other
hand, divides the spatial domains into cells rather than fixed grid points, on which an
average value of a conserved quantity U is evaluated. In 1D, this reads:

Ui = 1
∆x

∫ xi+1/2

xi−1/2

Udx , (2.48)
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where ∆x = xi+1/2 − xi−1/2 (see panel (a) of Fig. 2.2). This method is designed to
correctly reproduce the structure of discontinuous solutions, and as such is used in
almost all Eulerian hydrodynamics codes in astrophysics.
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Figure 2.2: Schematic representation of the finite volume method, in which conservative
quantities are averaged within cells (a). The flux can be recovered using a piecewise
constant (b) or piecewise linear (c) reconstruction. Higher order schemes use parabolic
flux reconstructions.

Godunov’s method

In order to solve the general form of the hydrodynamical equations, we integrate Eq.
2.47 over space and time, which yields

∫ xi+1/2

xi−1/2

∫ tn+1

tn

∂U⃗

∂t
+ ∇⃗ · F⃗ (U⃗)

 dxdt = 0 . (2.49)

In a 1D system, the above equation yields

1
∆t

(
U⃗n+1

i − U⃗n
i

)
= − 1

∆x

(
F⃗i+1/2 − F⃗i−1/2

)
, (2.50)

where F⃗i±1/2 is the flux crossing the cell interface:

F⃗i±1/2 =
∫ tn+1

tn
F⃗ (U⃗i±1/2)dt . (2.51)

In essence, Eq. 2.50 states that the average value of a conserved quantity in a given
cell changes according to the net change between the incoming and outgoing fluxes,
which are evaluated at the cell interfaces (hence the ±1/2 subscripts, see panel (a) of
Fig. 2.2). The problem is thus reduced to reconstructing the state vector U⃗ at each cell
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interface and computing the numerical flux across it. This method, called Godunov’s
method (Godunov & Bohachevsky 1959), is particularly useful in hydrodynamics, as
the numerical flux is conserved to machine precision and thus can be applied to solving
the Euler equations in their conservative form.
There are a number of ways to reconstruct U⃗ at each cell interface. For instance, one
may consider a constant value for U⃗ inside the cell (piecewise constant reconstruction),
or a linear function with a slope (piecewise linear reconstruction), or for even higher or-
der schemes, polynomial functions are considered (piecewise parabolic reconstruction).
The first two geometrical reconstructions of the state vector U⃗ are illustrated in panels
(b) and (c) of Fig. 2.2.

Riemann problem

Irregardless of the manner in which the state vector U⃗ is reconstructed, a discontinuity
exists at each cell interface, and computing the correct numerical flux across said dis-
continuity is a problem known as the Riemann problem. Solving the Riemann problem
requires one to estimate the speed of the characteristic waves of the system. Each of
these wave speeds may be represented as an eigenvalue of the Jacobian matrix A of F⃗ :

∂U⃗

∂t
= −A(U⃗)∇⃗ · U⃗ . (2.52)

The characteristic wave speeds of the system are therefore the eigenvalues of A(U⃗).
In a purely hydrodynamical case (i.e., solving the Euler equations), there are three
wave speeds to consider: a contact discontinuity (sometimes called the entropy wave)
travelling at velocity v, and the nature of the two other waves depends on the setup
at play. For instance, these may be a shock wave travelling at velocity v + cs and a
rarefaction wave traveling at v − cs.
In a fully three-dimensional MHD simulation, one needs to consider a total of seven
eigenvalues, representing two fast and two slow magneto-sonic waves, two Alfvén waves,
and the contact discontinuity. The magneto-sonic wave speed can be expressed as

vms = 1√
2

√
c2

s + v2
A ±

√
(c2

s + v2
A)2 − 4c2

sv
2
A,x , (2.53)

where cs is the gas sound speed and vA = B/
√

4πρ is the Alfvén speed. Considering
all seven eigenvalues is costly, as a large number of iterations needs to be performed.
This may prove to be too costly when running a simulation, and as such, approximate
Riemann solvers are used. One example is the Roe solver, which linearizes the Jacobian
matrix and estimates all characteristic wave speeds. Other solvers, although more
approximate, greatly alleviate the numerical cost by considering a curated selection
of these waves. For instance, the HLL (Harten–Lax–van Leer) solver considers only
the fast magneto-sonic waves, whereas HLLC (Harten–Lax–van Leer with contact) also
considers the contact discontinuity. In our RAMSES simulations, we have used the HLLD
solver, which is similar to HLLC but also accounts for the Alfvén waves.
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Flux limiters

When using schemes of second order and above, capturing strong discontinuities and
shock fronts in the flow causes spurious oscillations to develop. This is because of
Godunov’s theorem, which states that in order for a numerical scheme to be Total
Variation Diminishing (TVD, i.e., not producing spurious oscillations), then it must
be at most first order accurate (Harten 1983). In order to obtain higher accuracy for
smooth solutions while avoiding spurious oscillations around shock fronts, flux limiters
are used. These allow for the use of higher order schemes when smooth waves are
present, and limit the numerical flux using lower order schemes in the presence of
strong gradients in order to preserve TVD. Various flux limiters are available, the most
popular of which are minmod, superbee (Roe 1986), and Van-Leer (van Leer 1974). In
our RAMSES simulations, we have used the minmod flux limiter. Note that in second
order schemes in which a piecewise linear reconstruction is used, flux limiters are often
referred to as slope limiters, as limiting the numerical flux implies changing the slope
of the reconstruction within each cell.

2.3.3 Parallel computing

When running a simulation, the calculations can be divided into many smaller in-
dependent tasks that may be executed simultaneously rather than in sequence. The
results of each independent task are then combined to obtain a final global result.
When the memory requirements of a simulation are such that they cannot be run on
a single computer (or node if run on a cluster), then the CPUs must operate with dis-
tributed (i.e., not shared) memory, and information relevant to the calculations such
as boundary conditions for instance, need to be communicated (see Fig. 2.3). This is
the basic principle of parallel computing, which has proven to be particularly useful
in computational fluid dynamics where calculations need to be performed on a large
number of cells or particles, and thus whose calculations stand to benefit greatly from
parallelism. CPU communications are handled through the Message Passing Interface
(MPI), which allows the code to scale with an increasing number of processors.

Load balancing

When performing simulations that run in parallel, the workload of each CPU has to
be determined in a manner that ensures its equal distribution, which would allow for
better scalability and optimal performance. In astrophysical codes however, this is
often difficult to achieve, particularly when attempting to simulate the birth of stars,
as the highly dynamical gravitational collapse tends to concentrate the vast majority
of the mass of the system in a very small volume. This often leads to a phenomena
called load imbalance, where underloaded CPUs need to wait for overloaded CPUs to
finish their computations before proceeding to the next iteration. Load imbalance is
unfortunately unavoidable in many star formation simulations, and the ultimate goal
of load balancing is to reduce CPU idle time as much as possible.
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Sequential computing

Result

Input

Result

Input

Parallel computing

Figure 2.3: Schematic representation of the basics of parallel computing. Instead of
performing a single task on a CPU (left), the task is split into independent parts that
are treated simultaneously by multiple CPUs, the results of which are combined in the
end (right). In the case where the memory pool is not shared, the CPUs communicate
any information relevant to their calculations.

2.3.4 The RAMSES astrophysical code

During this thesis, we have used the RAMSES MHD code (Teyssier 2002). This Eulerian
hydrodynamics code makes use of the finite volume method. Since its first release
in 2002, it has over the years been enhanced with a large cast of modules that allow
it to treat a wide variety of astrophysical phenomena: cosmological simulations (e.g.,
Kaviraj et al. 2017; Chabanier et al. 2020), galaxy simulations (e.g., Teyssier et al.
2010), star formation (e.g., Vaytet et al. 2018; Lebreuilly et al. 2021; Colman et al.
2024), among other applications. In this section, we will present the basic functioning
and features of this code.

Adaptive Mesh Refinement

The most important feature RAMSES has to offer is adaptive mesh refinement (AMR).
As mentioned previously, star formation is a highly dynamical process in which one
must consider a huge dynamical range, both in density and in spatial extent. As such,
it is impossible to simulate the birth of stars with a uniform, fixed grid. AMR allows
one to increase the resolution in regions of interest (such as high density gas in the
collapsing cloud), while maintaining a coarser resolution in regions that do not require
finer details (see Fig. 2.4). This allows for a huge gain in computational time, while
also significantly alleviating the memory constraints of simulations.
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During a simulation, RAMSES continuously checks each cell and flags them for refinement
according to a user-specified criterion (generally, one based on the local Jeans length).
Should a cell be flagged, it is then subdivided into eight finer cells. This process is
repeated throughout the simulation until the maximum refinement level is reached.
Note that cells can also be flagged for de-refinement during the simulation. This
hierarchy of cells is organized in a tree-based structure (Khokhlov 1998), and load
balancing within it is done by decomposing the simulation domain along a Hilbert
space-filling curve.

Figure 2.4: Example of an AMR grid. Image taken from the NDTAMR repository.

Sub-cycling

Since AMR allows for regions of the simulation to be described with varying levels
of refinement, they do not all possess the same timestep constraints. Finer levels
have more stringent CFL conditions, and the coarser levels need not be updated with
such small timesteps. The usage of sub-cycling in RAMSES allows for the coarser levels
to maintain their more lenient timesteps, essentially remaining idle while finer levels
perform their calculations, saving an invaluable amount of computation time in the
process. The time step at each level ℓ however, needs to be synchronized with the finer
levels by remaining a multiple of 2 of finer timesteps. As such, the timestep at each
level is a multiple of 2 of that in finer levels.
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Constrained transport

RAMSES solves for the MHD equations, which adds a significant challenge as one has
to ensure that the divergence-free condition of the magnetic field is met. For this, the
code uses the constrained transport scheme (Evans & Hawley 1988; Fromang et al.
2006), where the induction equation is re-written using the Stokes theorem as

∂

∂t

∫
S

B⃗ · d⃗s = −
∫

l
(B⃗ × v⃗) · d⃗l . (2.54)

By using this approach, the magnetic field components are computed at the cell inter-
faces using an evaluation of the electromotive force on cell edges. By summing said
force across all cell interfaces, the integral cancels out and the divergence-free condition
of the magnetic field is met to machine precision.

2.4 Analyzing and visualizing simulated astrophysical data

When running astrophysical simulations, terabytes of data are created and dumped
into a hard-drive. The data then needs to be visualized and analyzed in order to
extract a meaningful physical interpretation from the simulation. However, owing to
the complicated grid structure found in AMR simulations, as well as the sheer volume
of data to comb through, analyzing simulation data requires one to use a variety of
data analysis techniques. The purpose of this section is to present how I tackled the
problem by showcasing some of the most common data visualizations and analysis
techniques that I used during my thesis. The Osyris python software was my preferred
tool to read and visualize RAMSES data, although the techniques presented here are not
exclusive to it and may be used in a variety of softwares.

2.4.1 Parallelized data analysis

In modern times, astrophysical simulations are generating an ever increasing amount
of data. This makes analyzing the raw output of the simulations ever more challenging,
and conventional methods are proving to be increasingly time-consuming. I was con-
fronted with this problem early in my thesis, where each of my simulations produced
thousands of snapshots of ∼ 3−4 GB, totaling ∼ 3−4 TB, and the prospects of waiting
an increasing amount of hours for my post-processing pipelines to complete hindered
my performance. I thus set-out to create a parallelized post-processing pipeline using
MPI, which proved immensely useful in speeding-up my data analysis routines.

Generally, most post-processing tasks are embarrassingly parallel since the hold-up
is simply the fact that a single processor has to comb through hundreds (if not thou-
sands) of simulation outputs. As such, these do not require MPI parallelism as no
communication between CPUs is required. However, some tasks are so intensive in
RAM memory consumption that parallelism is required in order to spread said RAM
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memory across multiple nodes. This is generally done with very heavy simulations,
where CPUs spread across different nodes will read different domains of the simulation
in order to alleviate RAM memory constraints, and then communicate any information
relevant to the calculations. Finally, a post-processing pipeline parallelized with MPI
may still be used in embarrassingly parallel tasks owing to its versatility. A schematic
overview of the post-processing pipeline is shown in Fig. 2.5. The first step consists
of probing the simulation outputs, and the workload is distributed across all CPUs.
Ideally, the workload may be distributed according to the output folder size, as that
would offer greater scalability, however I have found it much simpler to distribute an
equal number of folders to each CPU, as that ensures that said CPU is handling a
non-discontinuous simulation time span. Once the workload is distributed, each out-
put folder is read iteratively and the user’s set of instructions is executed. If necessary,
communications between CPUs may be performed during this step. Once the tasks
are executed, the post-processing results are saved to disk. This parallelized pipeline
allowed me to obtain significant speed-ups in analyzing RAMSES simulations. The entire
simulation could be post-processed in minutes instead of dozens of hours.
Although most post-processing applications are embarrassingly parallel, the framework
I have built during this thesis may be expanded upon in the future to handle increas-
ingly heavy simulations. A bare-bones version of it is accessible via github.

1. Probe simulation outputs 2. Distribute workload across CPUs

00200 00201 00202

00203 00204 …

CPU 6

00299 00300 00301

00302 00303 …

CPU 7

3. Load data and execute tasks 
on each output

00001

00002

00003

…

00200 00201 …

4. Communicate if necessary

CPU 4 CPU 5 CPU 6

5. Output post-processing results to disk

CPU 4 CPU 5 CPU 6 …

Full 
Simulation

Figure 2.5: A schematic overview of an (almost) embarrassingly parallel simulation
post-processing pipeline.

2.4.2 Coordinate transforms

It is often useful to transform the cartesian coordinates dumped by RAMSES into spher-
ical or cylindrical coordinates. This is useful to study the distribution of gas and its
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kinematics in structures that form as a result of a hydrostatic equilibrium or conserva-
tion of angular momentum, such as protostars or their circumstellar disks. However,
depending on the simulation setup, the user often requires to define these coordinates
in a new basis, rather than compute them directly in the original RAMSES grid. In order
to perform this change of basis, I implemented two rather simple coordinate transform
techniques into the Osyris software: a translation of position vectors and their rotation
and that of all other vector quantities (e.g., velocity or magnetic field) using a rotation
matrix.
The translation is a simple difference between two position vectors:

r⃗′ = r⃗ − r⃗0 , (2.55)

where r⃗0 is the new origin point in the original basis. In order to rotate an arbitrary
vector v⃗ by an angle of θ, the rotation matrix Rm is used:

Rm(θ) = cos(θ)I − sin(θ)[v⃗]× + (1 − cos(θ))(v⃗ ⊗ v⃗) , (2.56)

where [v⃗]× is the cross product matrix of v⃗ 2

[v⃗]×=̂

 0 −vz vy

vz 0 −vx

−vy vx 0

 . (2.57)

As such, an arbitrary vector v⃗ expressed in the new basis as v⃗′ is simply

v⃗′ = Rmv⃗ . (2.58)

A schematic representation of the change of basis is provided in Fig. 2.6. Once this
done, spherical and cylindrical components of vector quantities may be computed. The
radius r, colatitude θ, azimuth ϕ, and cylindrical radius are computed as:

r =
√

x2 + y2 + z2 , (2.59)

θ = arcos
(

z

r

)
, (2.60)

ϕ = arctan
(

y

x

)
, (2.61)

rcyl =
√

x2 + y2 . (2.62)

All other arbitrary (non-position) vectors F⃗x,y,z have their spherical components
F⃗r,θ,ϕ computed through

2 [⃗a]×b⃗ = a⃗ × b⃗. [⃗a]× can be implemented in NumPy as a⃗ × (−I).
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Fr

Fθ

Fϕ

 =

sin(θ)cos(ϕ) sin(θ)sin(ϕ) cos(θ)
cos(θ)cos(ϕ) cos(θ)sin(ϕ) −sin(θ)

−sin(ϕ) cos(ϕ) 0


Fx

Fy

Fz

 , (2.63)

and into their cylindrical counterpart Fr,ϕ,z through

Fr

Fϕ

Fz

 =

 cos(ϕ) sin(ϕ) 0
−sin(ϕ) cos(ϕ) 0

0 0 1


Fx

Fy

Fz

 . (2.64)
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Figure 2.6: Illustration of the change of basis performed prior to coordinate trans-
forms. An off-center disk whose angular momentum vector is misaligned with the z

axis is centered and rotated, such that the new z axis (z′) is aligned with the angular
momentum vector of the disk, and the new x, y plane (x′, y′) is parallel to the disk
midplane.

2.4.3 Raycasting

When performing simulations that lead to the formation of irregular structures, such
as flared disks for instance, it is often helpful to draw profiles or compute quantities
along a line of sight. Ray casting is a particularly useful technique in this regard. In
simple terms, it consists in computing the intersection point between a ray and the six
planes formed by each cube face. The fact that it is a simple computation of intersec-
tion points means that it can also be easily sped-up by GPU hardware (for instance,
through a cupy implementation).

To illustrate how this was implemented, Fig. 2.7 provides a schematic representation
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of raycasting on the x-y plane. Here, the ray (which crosses the origin point for sim-
plicity) is a straight line represented by the function f(x) = ax, where a is the slope
of the ray when projected unto the x-y plane. Let (cx, cy) be the cell center and dx
the cell length.
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Figure 2.7: A schematic representation of raycasting on a 2D x-y plane. Performing
fully 3D raycasting requires one to do the same in the z-x and z-y planes.

In order to determine whether the ray intersects with the cell or not, 4 coordinates
need to be computed: p1, p2, p3, and p4:

p1 = a

(
cx − dx

2

)
,

p2 = a

(
cx + dx

2

)
,

p3 = a−1
(

cy − dx

2

)
,

p4 = a−1
(

cy + dx

2

)
.

(2.65)

As such, an intersection in the x-y plane occurs if one of the following conditions is
met:

1. (cy + dx
2 > p1) & (cy − dx

2 < p1)

2. (cy + dx
2 > p2) & (cy − dx

2 < p2)

3. (cx + dx
2 > p3) & (cx − dx

2 < p3)

4. (cx + dx
2 > p4) & (cx − dx

2 < p4)
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In order to perform a full 3D raycasting, this needs to be done on the z-x and z-y
planes, and a ray intersects with a cube if an intersection is found in all three planes.
In Fig. 2.8, we show an example of a raycasting using data extracted from a RAMSES
simulation. The green cubes are cells having intersected with the ray, where we can see
larger (i.e., coarser) cells at larger radii. The plot on the top-left corner of the figure
shows the associated density profile measured along the ray.
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Figure 2.8: An illustration of raycasting on cells in a RAMSES simulation. The green
cubes are cells that intersect with a ray. The plot on the top-left corner shows the
density profile measured along the ray.

2.4.4 3D Visualizations

When performing 3D simulations, it is often difficult to intuitively grasp, through 2D
projections or slices of the data in the form of images, the full form of the structures
created within them, as well as the spatial distribution of materials. The ability to
interactively visualize an astrophysical object, be it a magnetized protostar, a circum-
stellar disk, or a molecular cloud filament, from multiple viewpoints, offers a significant
speedup in one’s ability to fully understand their structure and kinematics. This in
turn allows for a better understanding of the physical processes at play within them.
Indeed, astrophysics is a highly visual field, in which a proper mental map of the ob-
jects involved is crucial. In this regard, 3D visualization tools allow for a myriad of
possibilities, many of which go beyond mere data visualization and may be used in
public outreach related purposes.

The main difficulty in visualizing simulated astrophysical plasmas in 3D is the fact
they are a continuous spatial distribution of matter, in which objects of interest are
often high density structures that are deeply embedded in, or surrounded by immense
amounts of gas. In addition, as mentioned previously, 3D AMR simulations are often
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very heavy, which makes 3D rendering a RAM intensive task.
I also emphasize the fact that 3D visualizations work best when they are interactive.
This makes them very convenient for personal or public outreach purposes, however
3D figures intended to be published in scientific journals require a significantly higher
amount of polish in order for them to be readily readable. Below, I cover the 3D
visualization techniques I used during the thesis. My software of choice in producing
these is Pyvista (Sullivan & Kaszynski 2019), although they are readily available in a
number of 3D visualization softwares. In Appendix A, snippets of code used to create
some of the figures shown below are listed.

Volume rendering

A very common technique used in visualizing embedded structures is volume rendering.
It consists in generating 2D images from a 3D scalar field, by mapping said scalar onto
the image at the user’s viewpoint using a transfer function. This transfer function is
applied on all viewing rays, and a sum is performed as the ray travels through the
dataset. Generally, sigmoid, linear, or logarithmic transfer functions are used. The
main advantage of this method is that it allows for a visualization of the data without
an explicit extraction of a geometrical surface.
Performing a volume render requires the user to create a uniform dataset, which can
be done in RAMSES using the well known amr2cube function, or by stacking a set of 2D
image slices (see snippets 1 and 3). Thus, this technique must be applied on a subset
of the simulation domain, in which one trades the volume of visualized data for finer
details, as creating a cube as fine as the finest level is too RAM intensive.
Fig. 2.9 shows an example of a volume render of a subset of a simulation containing an
embedded circumstellar disk (snippet 5 shows how to do this). A linear opacity map
is applied as a transfer function, and in order to obtain optimal visual parameters,
an interactive widget varying the opacity distance (i.e., the distance over which the
opacity of the scalar field is summed) is used.

Streamlines

Among the most challenging quantities to visualize in 3D are vector fields such as
velocity or magnetic fields. Streamlines allow for a much simpler analysis of kinematics,
however they are also a 3D tool that benefits greatly from interactivity, as their results
depend on their launching position. The approach here is similar to that of a volume
render: one must first create a cube of the vector field. To do so, it is possible to
make 2D image stacks of the x, y, and z components of the vector field, which are then
mapped unto a 3D grid (see snippets 2 and 4).
Figure 2.10 shows two examples of 3D streamlines: one showing the polar accretion onto
a circumstellar disk (left) and the other showing an interactive placement of magnetic
field streamlines around a second Larson core (see snippets 6 and 7). The latter was
particularly useful in finding the presence of current sheets, which are characterized by
loops of the magnetic field lines on the surface of the protostar. The velocity streamlines
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Figure 2.9: An example of a volume render of a cube extracted from a RAMSES simula-
tion containing a circumstellar disk. The visualized scalar field is the gas density.

on the left showed how the gas is funneled toward the star in the polar regions.

Iso-contouring

It is often helpful to extract geometrical surfaces from the dataset, which is generally
done by defining said surface as being an iso-contour of a scalar quantity. The extracted
surface is made of voxels (i.e., volume elements), and as such may appear to be too
pixelated. For aesthethic purposes, it is possible to smooth an iso-contour using the
Laplace algorithm, which is implemented in most 3D visualization softwares. Note
however, that applying a smoothing algorithm generally causes the surface to shrink
in size. An example of an iso-contour is provided in Fig. 2.11 (see also snippet 8), in
which a star forming clump (from Lebreuilly et al. 2024) is extracted and smoothed
for aesthetic purposes.

Region of interest renders

Often times, the object one wishes to render is far too extended spatially, such that
a volume render would become so coarse in resolution that it is no longer capable of
accurately capturing the finer details that one wishes to visualize. A possible solu-
tion is to perform a ROI (Region Of Interest) render, in which only cells satisfying
a user-defined criterion that accurately captures the structure they wish to visualize
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Figure 2.10: An example of 3D visualization of gas kinematics using streamlines. Left:
visualization of the polar infall of material onto a circumstellar disk using velocity vector
field streamlines, onto which the radial velocity is color-coded. Right: Interactive
streamline placement in a visualization of magnetic field lines within and around a
second Larson core, where the white balls can be moved by the user to modify the
launching point of the streamlines.

are selected and visualized as a point-scatter plot (see snippet 9). Great care should
nonetheless be taken to ensure that the resulting surface is not overly cumbersome to
load onto RAM memory.
Figure 2.12 shows an example of the 3D visualization of a star-forming molecular cloud
filament, which was done by extracting all cells within a given density range. These
were then visualized as a point-scatter plot with a linear opacity transfer function.
This visualization shows that what appear as very thin filaments in 2D projections are
in fact more spatially extended sheets of matter.

3D printing

So far, the 3D visualization techniques we’ve covered are very adequate for a wide va-
riety of purposes. However, as mentioned previously, they work best when interactive.
When attempting to communicate scientific ideas to a wider audience, particularly
non-experts, a static 3D figure rendered on a screen is not as effective (or captivating)
as an interactive model. One approach consists of hosting an interactive 3D digital
scene on a website, however this is often cumbersome to create. Furthermore, it has
been shown that possessing a physical model of the astrophysical object promotes in-
teractivity on behalf of the user, and greatly aids in capturing the audience’s attention
and interest (Madura 2017), be it at conferences or public outreach events.
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Figure 2.11: An example of an iso-contour of the density field of the star forming clump
of Lebreuilly et al. (2024). Left: raw iso-contour surface as extracted from the data
cube. Right: the iso-contour surface after 8000 iterations of the Laplace smoothing
algorithm.

Figure 2.12: An example of an ROI (region of interest) render, in which a molecular
cloud filament is extracted from a RAMSES simulation and visualized as a point-scatter
plot, with a linear opacity transfer function.

In this regard, 3D printing has proven to be particularly useful. It consists of melting
plastic and adding it layer by layer to create the object. The hardware used in 3D
printing has in recent years become increasingly affordable, and even lower-end ma-
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chines may produce impressive results. Typical costs for printers are ∼ 4000 euros, a
modest sum for astrophysical research institutes. Below, I provide an outline of the
procedure I used to print astrophysical objects formed in my simulations or that of my
colleagues. Figure 2.13 displays an overview of the procedure.

1. Extracting surface features. One must first begin by creating a cube representing
a subset of the simulation domain. This will allow for the extraction of a surface
feature using an iso-contouring of a scalar quantity. Multiple surface features may
be extracted using this approach. The 3D model must then be dumped into a file
format compatible with 3D printers (most commonly, these are .stl or .obj). In
panel (a) of Fig. 2.13, a second Larson core formed in an ideal MHD simulation3

is extracted and visualized using Pyvista. Turbulent eddies may be seen at the
surface of the star, and current sheets protrude from its surface. Within the
current sheets, the transition from the level of refinement ℓ = 26 to ℓ = 25 may
be seen, as coarser voxels are rendered on screen.

2. Manual cleanup (optional). After the features are extracted, it is often useful to
load the model onto a 3D modelling software (e.g., Blender) in order to remove
any undesired voxels that were not filtered out by the iso-contouring, such as
those that are disconnected from the rest of the object and are floating in empty
space.

3. Slicing the 3D model. After creating a satisfactory 3D model, one must then load
it onto a slicing software, generally provided by the 3D printer manufacturer.
For example, "Ultimaker Cura" was used during this thesis. Slicing consists in
generating the set of instructions for the 3D printer in order to perform the layer-
by-layer printing. In this step, the type of plastic to be used has to be specified,
where tougher plastics (such as tough polylactic acid) can be used for less fragile
results. It is also important to specify which plastic is used as support beams.
Generally, it is recommended to provide an infill of at least 20% in order to
guarantee the rigidity of the structure. After the slicing is completed, the model
may be sent directly to the 3D printer through the local network or by first saving
it onto a USB key that is latter plugged into it. Panel (b) of Fig. 2.13 displays
this step.

4. Printing. This step generally requires > 10 hours, where the printer works au-
tonomously (panel c of Fig. 2.13). After completion, the support beams must be
removed, and the 3D printed object is recovered (panel d of Fig. 2.13).

3This simulation is presented in Sec. 3.4 of the present manuscript.
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protostellar surface

ℓ = 26

ℓ = 25

Current sheets

Figure 2.13: The procedural pipeline involved in 3D printing an astrophysical object
formed during a simulation (see text). In this example, a second Larson core formed
under the ideal MHD approximation is extracted from the simulation (a), sliced in the
Ultimaker Cura software (b), sent to the 3D printer (c), and printed in full (d). The
yellow structure in (b) are the support beams, which have been removed in (d).
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The second collapse

3.1 The state of the art

In the current state of the art, there are a variety of ways in which the second grav-
itational collapse is simulated. An exhaustive review of all the codes and numerical
techniques can be found in Teyssier & Commerçon (2019). These can be summarized
as:

• 1D simulations tackling the problem in spherical symmetry. This is the original
approach taken by Larson (1969) in his pioneering second collapse calculation.
It allows for a simple setup that is quite easy to implement and which can be
dynamically evolved across very long timescales while including detailed physical
processes (such as multigroup radiative transfer for instance). However, it does
not allow for one to account for the effects of rotation and magnetic fields, which
are crucial to modelling disk evolution. Nevertheless, it allows for a detailed
modelling of the protostar and its evolution, which is expected to be a spherical
object by virtue of its hydrostatic equilibrium. Works in the literature having
used this method include those of Larson (1969); Narita et al. (1970); Larson
(1972); Appenzeller & Tscharnuter (1975); Winkler & Newman (1980); Masunaga
& Inutsuka (2000); Vaytet et al. (2013, 2014); Vaytet & Haugbølle (2017); Stamer
& Inutsuka (2018); Bhandare et al. (2020). The majority of these works have run
their calculations until the complete accretion of the original dense core by the
nascent protostar, and they broadly report a final protostellar radius of R∗ ∼ 2 R⊙
at M∗ = 1 M⊙.

• 2D simulations leveraging polar coordinates. Although simpler than tackling
the problem in 3D, these are much more versatile than 1D calculations as they
allow models to account for rotation and magnetic fields. Generally, 2D models
compute the collapse with a polar symmetry (face-on view) in which the thin
disk approximation and vertically integrated column densities are used; or in so
called "2.5D" simulations that tackle the collapse with an azimuthal symmetry
(edge-on view). This method was adopted by numerous works in the literature
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Larson (1969)
First 1D second collapse simulation Norman et al. (1980)

First 2D disk formation simulation

Boss (1989)
First 3D disk formation simulation

Bate (1998)
First 3D second collapse simulation

Tomisaka (2002)
First 2D MHD second collapse simulation Machida et al. (2006)

First 3D MHD second 
collapse simulation

Vaytet et al. (2018)
3D MHD AMR simulation Wurster et al. (2022)

3D MHD SPH simulation

Ahmad et al. (2024)
3D RHD AMR simulation

Tscharnuter (1987)
First 2D second collapse simulation

Figure 3.1: A curated selection of some historical notable works in the literature (first
seven plots), with a selection of modern equivalents (last three plots). The details of
said works are discussed in the main text.
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such as Tscharnuter (1987); Tomisaka (2002); Tscharnuter et al. (2009); Dapp
& Basu (2010); Schönke & Tscharnuter (2011); Dapp et al. (2012); Bhandare
et al. (2020). It is often used in simulations that study disk evolution across
long timescales, although that often requires one to omit the protostar from the
calculations in order to alleviate the stringent time-stepping constraints.

• 3D simulations using nested-grid techniques. This is a popular choice of a grid
that allows for one to tackle the huge dynamical range involved while implement-
ing a Eulerian technique, and many papers in the literature employ it owing to
its ease of implementation.1 It consists in nesting finer and finer grids inside
one another, thus offering consistently finer spatial resolution in the center of
the computational domain. Although this is immensely useful in second collapse
calculations, it resolves the central regions with an unnecessarily high resolu-
tion in the beginning of the calculation, and restricts the creation of fine and
complex structures to the central regions. Works that use this method include
those of Machida et al. (2006, 2007, 2008); Saigo et al. (2008); Machida et al.
(2011); Machida & Matsumoto (2011); Tomida et al. (2013, 2015); Machida &
Basu (2019). Pioneering 3D Eulerian calculations were almost always performed
using this method.

• 3D simulations using Smoothed Particle Hydrodynamics (SPH). Instead of solv-
ing the fluid equations on a fixed grid or mesh, a mesh-free method is adopted
where particles of fixed mass represent the fluid. As such, this is a Lagrangian
method in which individual particles carry the fluid’s properties. Particles clus-
ter in regions of increasing density during the collapse, thus making the method
ideal for tackling the dynamical range involved in star formation. This method
has so far allowed the inclusion of the most complete physical process involved
in protostellar birth. For instance, the only simulations having reached the sec-
ond collapse phase and thereafter while including all three non-ideal MHD effects
(Ohmic, Ambipolar, and Hall effect) were carried out with SPH. Its Lagrangian
nature also allows for a much better conservation of angular momentum than
Eulerian methods, particularly those that utilize cartesian grids, as they can triv-
ially describe advection. It does however present numerous constraints: firstly,
while the spatial resolution naturally follows regions of increasing density as the
particles cluster around them, lower density regions remain poorly resolved. In
addition, the mass of each particle often remains fixed, meaning that attaining
higher resolutions requires one to significantly increase the number of particles in
the simulation. Finally, this method struggles to adequately capture shock fronts,
and an artificial viscosity term is often added to the equations in order to prevent
spurious oscillations. Works in the literature making use of this method include
those of Bate (1998); Whitehouse & Bate (2006); Stamatellos et al. (2007); Bate
(2010, 2011); Bate et al. (2014); Tsukamoto et al. (2015b); Wurster et al. (2018);
Wurster & Lewis (2020b); Wurster et al. (2021, 2022).

• 3D simulations using Adaptive Mesh Refinement (AMR, see Sec. 2.3.4). This
1By "ease of implementation", I mean relative to other Eulerian 3D methods. It is still immensely

challenging to develop a code capable of tackling the second collapse using a nested-grid technique.
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is perhaps the most difficult approach, as it requires one to consider a compli-
cated grid structure on top of solving the already highly complex hydrodynamical
equations. The versatility of an AMR mesh allows for one to circumvent both
the disadvantages of static nested grids and the diffusivity of SPH methods. It
is however immensely difficult to implement, and its computational cost is often
much greater than either nested grids or SPH simulations. The user-specified re-
finement criterion also allows one to accurately model the flow at any scale, and
provides much more control over spatial resolution than that allowed by SPH. As
such, prior to this thesis, only two of studies have used AMR codes to tackle the
second collapse: Banerjee & Pudritz (2006) and Vaytet et al. (2018). The strin-
gent time-stepping constraints following the second collapse, coupled with the
poorer load-balancing schemes of AMR techniques following protostellar birth,
and the heavy computational cost of numerical MHD solvers has forced both of
these studies to stop their calculations almost immediately following the birth of
the protostar.

In Fig. 3.1, a curated selection of some notable works in the literature are displayed (see
Teyssier & Commerçon 2019 for a review of historical works). The first plot shows the
first ever second collapse calculation of Larson (1969), who pioneered much of theoreti-
cal star formation. This calculation, carried out in 1D spherical symmetry, established
the two-step evolutionary sequence of protostellar birth. Performing the simulations in
2D required the advent of much more powerful computers, as a fine spatial resolution is
required to resolve the collapsing cloud in the center. The first correct 2D collapse cal-
culation was that of Norman et al. (1980), whose higher resolution coupled with a more
sophisticated angular momentum conserving scheme allowed for a much more realistic
description of the collapsing dense core. Although they did not reach the adiabatic
stage, they succeeded in describing the formation of a disk structure in their axially-
symmetric calculations. Notably, they confirmed Larson (1969)’s central density peak
and the power-law tail. Tscharnuter (1987), studying a similar setup, managed to push
the calculations all the way to the second collapse stage and described the birth of a 2D
protostar. The calculations, which could now describe both the formation of circum-
stellar disks and protostars, showed that first and second Larson cores are flattened
structures due to the centrifugal force.
Fully 3D simulations came soon-after with Boss (1989), who was the first to simulate
a 3D collapse. By now, a considerable amount of effort in the field was devoted to
understanding stellar multiplicity (i.e., the formation of multiple star systems), and
the fragmentation of a gravitationally unstable disk was the favored hypothesis to ex-
plain the observed binary separations. Boss (1989) was able to show that disks exhibit
gravitational instabilities, causing the development of spiral waves within them that
may then form bound fragments. The immense cost of 3D simulations meant that the
first 3D second collapse calculation came nearly nine years later, with Bate (1998)’s
SPH study. Stellar multiplicity was still the main focus of the time and in this study,
it was discovered that the first core fragments into bound objects should it rotate too
quickly. This would then lead to the formation of tight binaries, separated by a few
AU in orbital distance. Later, developments in the field focused on the addition of
more complex physics such as magnetic fields, which were first considered in Tomisaka
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(2002)’s 2D study, and later studied in 3D by Machida et al. (2006), who also consid-
ered magnetic resistivities in their calculations. These studies were able to describe the
birth of magnetically launched outflows and jets, as well as the transport of angular
momentum by magnetic fields. Nowadays, the state of the art consists in leveraging
the immense amount of computational resources available to run higher resolution sim-
ulations in which individual physical processes may be investigated. These simulations
now largely include the effects of radiative transfer in their calculations, which is crit-
ical to properly model the thermal behavior of the gas.

Since the goals of my thesis involved a detailed self-consistent study of the nascent
protostar and circumstellar disk, as well as their radiative behavior, a Eulerian method
capable of adequately capturing shock fronts is naturally best suited for the task. My
host team had an expertise in one such code: the RAMSES code, whose use of adaptive
mesh refinement allowed it to tackle the dynamical range involved in second collapse
calculations. In addition, a rich variety of physical modules such as magnetic fields
under the ideal and non-ideal MHD limit, as well as radiative transfer (both gray and
multigroup) are already implemented in the code, which allowed me to experiment
with different numerical and physical setups.

3.2 Paper I: The nascent protostar

The early works of my PhD focused on simulating the main stages of the collapse of an
isolated dense core resulting in the birth of a protostar: the initial isothermal phase,
the formation of the first Larson core, the second collapse following the dissociation
of H2 molecules, and the subsequent main accretion phase. This required the use of
the detailed equation of state of Saumon et al. (1995), which describes a gas mixture
of H2, H, H+, He, He+, and He2+. In addition, radiative transfer was accounted for
under the FLD approximation, and the tabulated opacities pieced together by Vaytet
et al. (2013) was used in this regard. The physics at scales larger than that of the first
Larson core itself have already been thoroughly investigated in the literature, and as
such, were not extensively studied during my PhD. I stress however that the flow at
these scales was still modelled in order to produce a self-consistent calculation describ-
ing the second collapse stage.

In order to circumvent the stringent computational cost associated with simulating
the second gravitational collapse while maintaining a very high spatial resolution, I
carried out the first calculations in spherical symmetry. Although one may rightfully
question the use of a fully three-dimensional code to simulate what is essentially a
uni-dimensional flow, this was done with two objectives in mind. Firstly, in this setup,
a gravitationally unstable dense core devoid of any angular momentum collapses in on
itself. This causes the entirety of the collapsing gas to fall into the nascent protostar,
thus dedicating the vast majority of the simulation’s computational resources to it.
Secondly, the results of Bhandare et al. (2020)’s 2D simulations seemed to suggest that
protostars are convective at birth, even prior to deuterium burning in their core. This
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substantial result has multiple implications: convective motion is an efficient energy
transport and mixing mechanism within the protostar, and as such will play an impor-
tant role in regulating the mass-radius relationship of young stellar objects prior to their
first observational appearance. In addition, the vigorous convective motion described
in Bhandare et al. (2020) will undoubtedly affect the magnetic field implanted in the
protostar at birth. Thus, this result has implications for the magnetic flux problem
described in Sec. 1.4. Whether this will diffuse the magnetic flux within the protostar,
or in the contrary, trigger an early dynamo process, is outside the scope of this thesis.
Our goals were to model the formation of the protostar and in the process, reproduce
Bhandare et al. (2020)’s findings, and to present an exhaustive quantification of this
turbulence and its effects on the protostar. Performing the simulations in 3D naturally
allows for a better description of turbulent motion. What followed is perhaps the most
detailed ever 3D study of a nascent protostar, in which turbulent motion within the
protostar was resolved for the first time in three dimensions. Before presenting the
paper, published in Astronomy & Astrophysics (680, A23), let us first present some
theoretical background on convective instabilities within stars.

3.2.1 Theoretical background: Convective instability

Convection in stars and protostars occurs when other energy transport mechanisms,
namely radiative transport and conduction, can no longer efficiently carry energy out-
ward. What follows is a mechanical transport of energy, where it is advected vertically
by buoyant parcels of fluid that rise from the hotter layers of the star to cooler layers,
and once they’ve cooled down, fall back down to hotter layers. Convection is a local
phenomena in protostars, and determining where it occurs requires a criteria for con-
vective instability. Consider for instance a parcel of fluid of density ρ1 and pressure
P1, that rises vertically a distance ∆r to a lower density medium ρ2 and pressure P2
(see Fig. 3.2). Since the star is in hydrostatic equilibrium, the buoyant cell maintains
pressure balance with its surroundings. During the displacement, the parcel must thus
expand to lower its thermal pressure, and in the process its density, where it goes from
ρ1 to ρ∗ < ρ1. If the drop in density is such that the buoyant cells keeps traveling
upward (i.e., ρ∗ < ρ2), then the protostar is convectively unstable at this location. If
however, the cell’s density is lower than that of its surroundings (i.e., ρ∗ > ρ2), then
the cell sinks back down. Thus, we must determine the density after displacement ρ∗,
and for this, let us assume that the displacement is an adiabatic process, meaning that
heat flow from the buoyant parcel to its surroundings is slower than the displacement
time itself. As such, we have

ρ∗ = ρ1

(
P2

P1

)1/γ

. (3.1)

Due to hydrostatic equilibrium, a pressure gradient dP/dr exists and we may write

P2

P1
= 1 + 1

P1

dP

dr
∆r , (3.2)
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Figure 3.2: Schematic representation of convection within protostars. A buoyant cell
with density ρ1, embedded within a medium with density ρ1 and pressure P1, rises
vertically a distance ∆r to a medium of density ρ2 and pressure P2. If the density of
the rising cell is greater than that of its newfound medium, it will sink back down,
otherwise it will keep rising buoyantly.

⇒ ρ∗

ρ1
= 1 + 1

γP1

dP

dr
∆r . (3.3)

ρ2 may similarly be expressed as

ρ2

ρ1
= 1 + 1

ρ1

dρ

dr
∆r , (3.4)

ρ2

ρ1
= 1 + 1

P1

dP

dr
∆r − 1

T1

dT

dr
∆r , (3.5)

where we have made use of the ideal gas law P = ρ kBT
µmH

. We may thus write

ρ∗ − ρ2

ρ1
=
(

1
γ

− 1
)

1
P1

dP

dr
∆r + 1

T1

dT

dr
∆r . (3.6)

Since in protostars both dP/dr and dT/dr are negative, we may write the following
criterion for stability: ∣∣∣∣∣dT

dr

∣∣∣∣∣ <

(
1 − 1

γ

)
T1

P1

∣∣∣∣∣dP

dr

∣∣∣∣∣ . (3.7)

The above equation is a formulation of Schwarzschild’s criterion for stability against
convection (Schwarzschild 1906). If the temperature gradient within the protostar is
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steeper than the right hand side of Eq. 3.7 (which represents the adiabatic temperature
gradient), then convection will take place. It is often reformulated using the entropy
S:

dS

dr
= cP(∇ − ∇ad)d lnP

dr
, (3.8)

where cP is the heat capacity of the gas, ∇ = d lnT/d lnP is the logarithmic tem-
perature gradient and ∇ad = (γ − 1)/γ is the adiabatic temperature gradient. Since
dP/dr < 0, convective instability implies that dS/dr < 0.2 Should there be supera-
diabaticity (i.e., ∇ > ∇ad), then convection will transport energy and work to bring
the gradient back to adiabaticity, meaning that entropy will be nearly constant in a
convection zone. A constant entropy means that any such zone may be modelled as
being a polytrope and thus greatly facilitates analytical modelling of protostellar inte-
riors. This shows the importance of turbulence, and the implication of Bhandare et al.
(2020)’s findings on the structure of protostars prior to deuterium burning.

Note that during the above derivation, we have ignored gradients in mean molecu-
lar weights, which is not always a valid assumption as ionization processes take place
throughout the protostar. A more advanced calculation taking this into account would
lead to the Ledoux criterion for convective instability (Ledoux 1947). In any case,
convective instability always requires that dS/dr < 0.
In our studies, we have used a tabulated equation of state, and as such, we had di-
rect access to the entropy content of each cell in our simulations. Hence, convective
instabilities could directly be probed by measuring dS/dr.

2Equation 3.7 is equivalent to ∇ < ∇ad.

– 68 –



A&A 680, A23 (2023)
https://doi.org/10.1051/0004-6361/202346711
c© The Authors 2023

Astronomy
&Astrophysics

The birth and early evolution of a low-mass protostar
A. Ahmad1 , M. González1 , P. Hennebelle2, and B. Commerçon3

1 Université Paris Cité, Université Paris-Saclay, CEA, CNRS, AIM, 91191 Gif-sur-Yvette, France
e-mail: adnan.ali.ahmad1998@gmail.com

2 Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, 91191 Gif-sur-Yvette, France
3 Univ. Lyon, ENS de Lyon, Univ. Lyon 1, CNRS, Centre de Recherche Astrophysique de Lyon, UMR5574, 69007 Lyon, France

Received 20 April 2023 / Accepted 2 October 2023

ABSTRACT

Context. Understanding the collapse of dense molecular cloud cores to stellar densities and the subsequent evolution of the protostar
is of importance to model the feedback effects such an object has on its surrounding environment, as well as describing the conditions
with which it enters the stellar evolutionary track. This process is fundamentally multi-scale, both in density and in spatial extent, and
requires the inclusion of complex physical processes such as self-gravity, turbulence, radiative transfer, and magnetic fields. As such,
it necessitates the use of robust numerical simulations.
Aims. We aim to model the birth and early evolution of a low-mass protostar. We also seek to describe the interior structure of the
protostar and the radiative behavior of its accretion shock front.
Methods. We carried out a high resolution numerical simulation of the collapse of a gravitationally unstable 1 M� dense molecular
cloud core to stellar densities using 3D radiation hydrodynamics under the gray flux-limited diffusion approximation. We followed the
initial isothermal phase, the first adiabatic contraction, the second gravitational collapse triggered by the dissociation of H2 molecules,
and ≈247 days of the subsequent main accretion phase.
Results. We find that the subcritical radiative behavior of the protostar’s shock front causes it to swell as it accretes matter. We also find
that the protostar is turbulent from the moment of its inception despite its radiative stability. This turbulence causes significant entropy
mixing inside the protostar, which regulates the swelling. Furthermore, we find that the protostar is not fully ionized at birth, but the
relative amount of ionized material within it increases as it accretes matter from its surroundings. Finally, we report in the appendix
the results of the first 3D calculations involving a frequency-dependent treatment of radiative transfer, which has not produced any
major differences with its gray counterpart.

Key words. stars: formation – stars: low-mass – stars: protostars – radiative transfer – gravitation – methods: numerical

1. Introduction

Despite its common occurrence in the Universe, understanding
the collapse of gravitationally unstable dense molecular cloud
cores, mostly composed of hydrogen and helium, to stellar densi-
ties is a challenging task to overcome in stellar formation theory.
This does indeed entail both complex physics and observational
challenges that have so far proved extremely difficult to tackle.
Newly formed protostellar cores have a typical radius of about
∼2 R� and are deeply embedded in their opaque parent molecular
cloud core. When coupled with the fact that most stars form in
regions of our galaxy situated at ∼100 pc within relatively short
timescales, observational breakthroughs have been sparse (e.g.,
Andre et al. 1993; Maury et al. 2019, see additionally the review
by Dunham et al. 2014). From a theoretical standpoint, the chal-
lenge arises from the complex interplay between numerous phys-
ical processes: self-gravitating hydrodynamics, magnetic fields,
radiative transfer, and turbulence. In addition, phase transitions
such as molecular hydrogen dissociation also need to be taken
into account. As a result, an analytical description of protostellar
birth is virtually impossible and the field is dominated by numer-
ical models.

The first of such works was that done by Larson (1969), who
computed the collapse of a dense molecular cloud core to stel-
lar densities in 1D spherical symmetry. In this pioneering work,
Larson identified a two stage evolutionary sequence resulting in

the birth of a low-mass protostar. Initially, as the cloud core col-
lapses, any compressive heating generated by the gravitational
contraction is immediately radiated away in the infrared by dust
grains. This initial isothermal phase is followed by an adiabatic
heating phase after the gas density reaches ∼10−13 g cm−3, where
the optical depth exceeds unity and radiative cooling becomes
inefficient. As a result, the central regions build enough thermal
pressure support to reach a state of hydrostatic equilibrium: this
is the birth of the first Larson core. It continues its contraction
adiabatically with a polytropic index γeff of five-thirds, which
then changes to seven-fifths once temperatures exceed 85 K and
the rotational degrees of freedom of H2 are excited.

Once the temperature of the first Larson core exceeds
2000 K, the thermal dissociation of H2 is triggered, which is a
highly endothermic process that consumes 4.48 eV per molecule
(Stahler & Palla 2004). As a result, the energy provided by the
compressive heating is mostly spent on the dissociation process
instead of providing additional thermal pressure support. This
breaks the state of hydrostatic equilibrium, and a violent second
collapse ensues with γeff ≈ 1.1. The extreme rise in density and
temperature following this event gives birth to a new protostellar
object in hydrostatic equilibrium: the second Larson core1. The
protostar continues accreting material from the infalling enve-
lope, and angular momentum conservation leads to the formation

1 We sometimes refer to this object as the protostar.
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of a circumstellar disk. Once core temperatures exceed
106 K, deuterium burning begins, thus ending the pre-stellar
phase.

This evolutionary sequence has so far been well accepted
for low-mass protostars. Since the work done by Larson
(1969), the field has developed ever more robust codes to
tackle the 21 orders of magnitude in density and eight in spa-
tial extent, in fully 3D simulations in order to include the
effects of magnetic fields, rotation, turbulence, as well as radi-
ation (for a detailed summary of each milestone reached over
the years, see Teyssier & Commerçon 2019). These advance-
ments were brought about by the ever increasing amount of
computing power available. However, this growing complex-
ity of the simulations has also meant that their computa-
tional costs has increased. As a result, there is a vast param-
eter space to explore and determine the role different physi-
cal processes play, but this task is hindered by the technical
costs of the simulations. Such technical difficulties have sig-
nificantly constrained the time stepping in self-consistent 3D
simulations, and current state-of-the-art papers struggle to inte-
grate the calculations past a few years after the birth of the
protostar (e.g., Vaytet et al. 2018 reached 24 days using adap-
tive mesh refinement, Wurster & Lewis 2020a reached 4 yr
using smooth particle hydrodynamics, whereas the 1D code in
Masunaga & Inutsuka 2000 reached 1.3 × 105 yr). Such con-
straints have forced researchers interested in larger timescales
to omit the expensive calculations of the protostar by replac-
ing it with a sink particle (Bate et al. 1995; Bleuler & Teyssier
2014), effectively reducing the feedback effects the proto-
star has on larger spatial scales to a sub-grid model (e.g.,
Vorobyov & Basu 2015; Tomida et al. 2017; Hennebelle et al.
2020a; Wurster & Lewis 2020b; Lebreuilly et al. 2021).

Despite the many advancements achieved over the years, the
difficulties in integrating the simulations across large timescales
has meant that the evolution of the protostar is still poorly under-
stood. Since protostellar feedback plays a significant role in the
formation and fragmentation of its surrounding disk, the tem-
perature and structure of its envelope, as well as the overall
dynamics of molecular clouds (Hennebelle et al. 2020b, 2022;
Grudić et al. 2022), understanding the physics at the protostellar
scale is of crucial importance. Hence, our goal is to model the
birth of the protostar and study its evolution through time in a
self-consistent 3D manner. We place a special focus on the inte-
rior structure of the protostar, its accretion shock, and the inner
turbulent motions, in order to understand its behavior. Since
previous studies in the literature involving nonideal magneto-
hydrodynamics have shown that protostars are born with weak
magnetic field strengths, ranging from 10−1−103 G (Vaytet et al.
2018; Wurster & Lewis 2020a; Wurster et al. 2022), the thermal
pressure is orders of magnitude above the magnetic pressure.
Hence, we have decided to omit magnetic fields from our study
and have constrained ourselves to a radiation-hydrodynamics
(RHD) model under the gray flux-limited diffusion (FLD)
approximation. This provides the added benefit of reducing the
computational cost of the simulations. Our simulations were
carried out using the adaptive mesh refinement (AMR) code
RAMSES (Teyssier 2002). In addition, we have for the first time
carried out a 3D simulation with frequency-dependent radiative
transfer leading to the formation of the protostar. Its results are in
agreement with its gray counterpart, and we have reported them
in the appendix.

In Sect. 2, we present the numerical methods and the initial
conditions used in this work. The birth of the protostar, its evo-
lution through time, and its chemical composition are presented

in Sect. 3. Finally, the behavior of the turbulence found within
the protostar is studied in Sect. 4.

2. Model

2.1. RAMSES with multigroup flux limited diffusion

Our simulations were carried out using the 3D adaptive mesh
refinement and finite-volume code RAMSES (Teyssier 2002). In
order to include radiative transfer, we have used the flux-limited
diffusion module developed by Commerçon et al. (2011a, 2014),
and its extension to a multigroup description by González et al.
(2015). Since the protostar and its evolution over time are our
subject of interest, we have naturally chosen the gray (single-
group) approximation, which allows for better performance.
However, we have also run a simulation with a multigroup
description in order to compare it with its gray counterpart, the
results of which are presented in Appendix C. Hence, for the
sake of clarity, we present our governing equations in their gen-
eral (multigroup) form, which consist of the Euler equations cou-
pled with a radiative energy equation (González et al. 2015):

∂ρ

∂t
+ ∇ · [ρu] = 0, (1)

∂ρu

∂t
+ ∇ · [ρu ⊗ u + PI

]
= −ρ∇φ −

Ng∑

g=1

λg∇Eg, (2)

∂Etot

∂t
+ ∇ · [u(Etot + P)] = −ρu · ∇φ

−
Ng∑

g=1

[
κPgρc(Θg(T ) − Eg) − λgu · ∇Eg

]
, (3)

∂Eg

∂t
+ ∇ · [uEg] + Pg : ∇u = ∇ ·

[
cλg
ρκRg
∇Eg

]

+ κPgρc
(
Θg(T ) − Eg

)
+ ∇u :

∫ νg+1/2

νg−1/2

∂ν(νPν)dν, (4)

∇2φ = 4πGρ, (5)

where ρ is the gas density, u its velocity vector, P its thermal
pressure, T its temperature, φ the gravitational potential, I the
identity operator, κPg the Planck mean opacity, κRg the Rosse-
land mean opacity, G the gravitational constant, c the speed of
light, and λg the flux limiter. We note that Ng is the total num-
ber of radiative groups whose frequency borders are νg±1/2. Θg is
the energy carried by photons that have a Planck distribution of
temperature T inside their given radiative group. Etot is the total
gas energy, which includes the kinetic and internal energy E:

Etot =
1
2
ρv2 + E. (6)

Eg (resp. Pg) is the frequency-integrated radiative energy (resp.
pressure tensor) inside each group:

Eg =

∫ νg+1/2

νg−1/2

Eνdν, Pg =

∫ νg+1/2

νg−1/2

Pνdν. (7)

The opacities are also computed in the same manner:

κRg =

∫ νg+1/2

νg−1/2

κRνdν, κPg =

∫ νg+1/2

νg−1/2

κPνdν. (8)
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We define the total radiative energy Er as the sum of the radiative
energy inside each group:

Er =

Ng∑

g=1

Eg. (9)

Equation (1) is the continuity equation, Eq. (2) describes the
conservation of momentum, Eq. (3) the conservation of energy,
Eq. (4) the conservation of radiative energy, and Eq. (5) the Pois-
son equation for self-gravity.

The code uses the HLL Riemann solver to solve the hydro
equations, and the radiative energy equations are solved using
a time implicit solver with the following flux limiter (Minerbo
1978):

λg =


2/

(
3 +

√
9 + 12R2

g

)
, if 0 ≤ Rg ≤ 3/2

(
1 + Rg +

√
1 + 2Rg

)−1
, if 3/2 < Rg ≤ ∞

(10)

with Rg = |∇Eg|/(ρκRg
Eg). The radiative pressure tensor is given

by:

Pg =

(
1 − χg

2
I +

3χg − 1
2

ng ⊗ ng
)

Eg, (11)

where χg = λg + λ2
gR

2
g and ng = ∇Eg/|∇Eg|. Under the optically

thick limit, Rg → 0 and λg → 1/3 which causes Pg to become
isotropic. In the main body of this paper, we have used the gray
approximation, meaning that there is a single group of photons
(i.e., Ng = 1).

The equation of state used is the tabulated EOS of
Saumon et al. (1995), which has been extended to lower densi-
ties by Vaytet et al. (2013). It describes the thermal properties of
H2, H, H+, He, He+, and He2+. The cloud has an initial mixture
of 73% H and 27% He.

The gas and dust opacities were taken from Vaytet et al.
(2013), who pieced together a table of opacities in the range of
10−19 g cm−3 < ρ < 102 g cm−3 and 5 K < T < 107 K from
Semenov et al. (2003), Ferguson et al. (2005) and Badnell et al.
(2005; see Fig. 2 of Vaytet et al. 2013). When temperatures are
below 1500 K, the dust particles (which represent 1% of the mass
content of the fluid) dominate the opacities and they are in ther-
mal equilibrium with the gas. Once temperatures exceed 1500 K,
the dust sublimates and the molecular gas opacities begin to
dominate. Finally, when the temperatures exceed 3200 K, all
molecules are dissociated and the atomic gas opacities domi-
nate. The Planck and Rosseland mean opacity tables are com-
puted within each frequency group according to the Delaunay
triangulation process described in Vaytet et al. (2013). In gray
radiative transfer simulations, there is only a single frequency
group ([105; 1019] Hz) along which the entire opacities are inte-
grated. The resulting opacity mesh is presented in Fig. 1, and
the temperature-density distribution of the cells in our compu-
tational domain at the epoch of protostellar birth is overlaid in
red. At low temperatures, the dust dominates the fluid’s opacity;
however, they are destroyed once temperatures exceed ≈1500 K
and the subsequent drop in κR is clearly visible in the figure.
Once the gas transitions toward higher densities, the atomic gas
opacities begin to rise and a new opacity peak appears.

Limiting ourselves to a RHD model is not without merit.
Indeed, not only does this significantly reduce the computational
costs of our simulations, it also has a physical justification. Cur-
rent state-of-the-art papers involving nonideal MHD have con-
sistently shown that the protostar is born with a weak magnetic
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Fig. 1. Opacity mesh created for our gray radiative transfer approxima-
tion. The temperature-density distribution of all cells during the epoch
of protostellar birth is overlaid in red.

field strength, thus placing the magnetic pressure orders of mag-
nitude below the thermal pressure. One can thus omit magnetic
fields when describing protostars prior to the beginning of a
dynamo process.

2.2. Initial Conditions

Our initial conditions consists of a uniform density sphere of
mass M0 = 1 M�, initial temperature T0 = 10 K, and a radius of
R0 = 2.465 × 103 AU. This molecular cloud core is 100 times
denser than its surrounding environment, and its ratio of thermal
to gravitational energies is

α =
5R0κBT0

2GM0µmH
= 0.25, (12)

where κB is Boltzmann’s constant and mH is the atomic mass
constant. The mean molecular weight µ corresponds to 2.31 for
our initial gas mixture.

As we have chosen to focus our attention on the formation
and early evolution of the protostar, we have not included any
motion in our initial conditions, be it in the form of coherent solid
body rotation or any turbulent velocity vector field in the cloud
core. This allows the ensuing gravitational collapse to form a
spherical, central protostar in the absence of any disks. Hence,
our computational resources are more devoted to the protostar,
and we can integrate our simulations for longer timescales. In
this respect, our study is equivalent to 1D calculations such as
those of Larson (1969), Narita et al. (1970), Winkler & Newman
(1980), Masunaga & Inutsuka (2000), Vaytet et al. (2013),
Vaytet & Haugbølle (2017), Bhandare et al. (2018, 2020). The
added benefit of carrying out these calculations in 3D is the
ability to describe the turbulent motion within the second core,
recently brought to light by the 2D study of Bhandare et al.
(2020). As such, these initial conditions provide us with an ideal
scenario to study the accretion shock and the interior structure of
the protostar.
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2.3. Refinement strategy

In order to resolve the interior of the protostar, an exception-
ally high resolution is required. We continuously refine our AMR
grid according to a modified Truelove criterion (Truelove et al.
1997):

∆x ≤
λ∗j
N
, (13)

where ∆x is the cell length and N = 20. λ∗j is the Jeans length
computed at the cell’s given density and at a temperature of
100 K:

λ∗j =


λj

√
100 K

T if T > 100 K

λj otherwise
(14)

where λj is the Jean’s length. This allows the resolution to fol-
low a length that varies in ρ−1/2 independently of temperature
once T > 100 K. The coarse grid has a resolution of 643 cells
(`min = 6), and we allow 20 additional levels of refinement
(`max = 26). This results in an effective spatial resolution of
∆x = 1.4× 10−4 AU at the maximum refinement level. Although
some of the protostar’s properties are not converged at this reso-
lution (see Appendix B), we have nonetheless proceeded with it
in order to circumvent the stringent time-stepping constraints.

Our refinement strategy provides us with N
√

T
100 K cells

per actual Jeans length (until the maximum refinement level
is reached), which throughout our simulation corresponds to
20−2 × 103 cells. In the protostar’s central region, we have
≈60 cells per jeans length. This allows us to effectively resolve
turbulent motions within the protostar.

Our simulation was run on two nodes, each containing
32 CPU cores. As reported in Vaytet et al. (2018), the load bal-
ancing performs poorly in RAMSES when simulating second
gravitational collapses, as the majority of the computational
load is contained in a small central region. As such, a smaller
CPU workforce is the optimal choice as it reduces the MPI
communications load. The simulation was run for a total of
2053.75 h, which corresponds to a usage of 131 440 CPU h. By
using the Berthoud et al. (2020) estimate of 4.68 g hCPU−1, the
CO2 equivalent carbon footprint of our simulation is ≈615 kg.

3. Results

3.1. Genesis

We first begin by describing the system at the epoch of pro-
tostellar birth. We define this moment as the instant a second
accretion shock forms (i.e., a discontinuity in the radial veloc-
ity profile). In Fig. 2, we show plots displaying various physical
profiles along radius and density. Panel e shows the temperature-
density distribution of our cells. Here, the previously mentioned
two step evolutionary sequence is clearly visible: the collapse
begins isothermally, contracts adiabatically, and once the disso-
ciation of H2 begins, a second collapse occurs where T ∝ ρ1/10

(γeff ≈ 1.1). The supersonic free-falling gas then collides with
the protostellar surface which causes the shock heating observed
after ρ ∼ 10−5 g cm−3, and the gas begins a second phase of adia-
batic contraction as the newly formed protostar continues accret-
ing material. The temperatures inside the protostar reach upward
of ≈8.5 × 104 K. This is a far-cry from the 106 K needed to fuse
deuterium; the protostar must further contract and its core tem-
perature needs to increase ten-fold in order to become a star and
join the main sequence.

Panel a shows the radial velocity profile, where one can
observe a prominent discontinuity at 6 × 10−3 AU (≈1.3 R�),
which marks the protostar’s border. Another discontinuity, this
time corresponding to the first Larson core border, is visible
at 0.5 AU. The location of these shock fronts also correspond
to steep density and temperature gradients in panels b and d.
Both outside and inside the first core border, the density profile
approaches ρ ∝ r−2 (dashed black line in panel b), which is char-
acteristic of the collapse of an isothermal sphere (Larson 1969;
Penston 1969). Just outside the second core border, the density
profile closely approaches ρ ∝ r−1.5 (solid black line in panel b),
which demonstrates that the accreted gas is free-falling into the
newly formed protostar. Since T ∝ ργeff−1, we also see two dif-
fering temperature profiles in panel d; outside the first core bor-
der, the contraction occurs with γeff = 7/5, hence T ∝ r−0.8

(dashed black line). However, inside the first core the contrac-
tion occurs with γeff ≈ 1.1. As a result, the temperature profile
follows T ∝ r−0.2 (solid black line).

When the free-falling gas reaches the stellar surface, the
supersonic collision heats it significantly, as it cannot dissipate
its kinetic energy in the form of radiation in these extremely
high optical depths (see Fig. 4b). This causes the temperature
spike seen in panel d at the second core border, which exceeds
the temperature in the protostar’s outer layer. This exhibits the
radiative nature of the protostar at birth; it mainly radiates the
accretion energy it receives at the shock front which far out-
weighs the cooling flux that struggles to escape the opaque inte-
rior. Once inside the protostar, there is a significant amount of
spread around vr = 0, which shows that there are parcels of fluid
that are both rising and falling, thus hinting at the presence of
turbulent motions in the protostar’s interior. Indeed, when visu-
alizing the velocity vector field in Fig. 3, there is a significant
amount of eddies visible downstream of the accretion shock.

In panel c, the radial entropy2 profile is displayed. Here,
we once again see two steep gradients corresponding to both
core borders. Inside both cores, the entropy profile rises with
the radius. This implies that the core is radiatively stable,
and cannot generate any convection from its central regions3

(Stahler & Palla 2004). The nature of this turbulent motion will
be studied in detail in Sect. 4.2. We subsequently also revisit the
behavior of the entropy profile in Sect. 3.2.

In panel f, we display the sum of the enclosed gas and radia-
tive energies Eenc as well as its constituent parts, namely radia-
tive, kinetic, and internal energy, as a function of radius, and
computed using

Eenc(r) = 4π
∫ r

0
(Etot + Er) r2dr. (15)

Throughout the entire volume of our computational domain,
the bulk of the system’s energy resides under internal energy
form, and kinetic energy is the second most prominent form.
The majority of Eenc is within the protostar itself. By look-
ing at the enclosed radiative energy curve, we can distinguish
three plateaus. The first one, just outside the protostar’s border,
shows that the bulk of the radiative energy at r < 0.1 AU is
located inside the protostar, and is a consequence of the weak
radiative energy gradient outside the second core border (see
Fig. 4a). This is also suggesting that very little radiation is
escaping the protostar, thus hinting at the subcritical nature of
the second core accretion shock (the radiative flux escaping the

2 The entropy was obtained through an interpolation of the EOS table.
3 This is consistent with the 2D results of Bhandare et al. (2020).
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Fig. 2. Various sets of 2D histograms binning the cells in our computational domain (panels a–e) at the epoch of protostellar birth. Panels a–d
represent respectively radial velocity, density, entropy, and temperature as a function of radius. The solid (resp. dashed) black line in panel b
displays the expected density profile for a free-falling gas (resp. for the collapse of an isothermal sphere). The solid (resp. dotted) black line in
panel d represents the expected temperature profile for the collapse of an isothermal sphere with γeff = 1.1 (resp. γeff = 7/5). Panel e displays
temperature as a function of density, where the overlaid solid black line displays a contraction with γeff = 1.1. Panel f represents the sum of the
enclosed gas and radiative energies at radius r (solid line, see Eq. (15)), along with its constituent parts, namely internal (dashed line), kinetic
(dotted line), and radiative energies (dash-dotted line).

shock front is inferior to the incoming energy flux). The sec-
ond plateau, located outside the first core border, is in fact not a
real plateau; the enclosed radiative energy is indeed increasing.
However there is far too little radiative energy outside the first
core to lift the curve any further. Once r > 102 AU, the enclosed
radiative energy curve increases once again, as the volume inte-
gral now includes the photons emitted by the isothermal phase
of the contraction. Finally, the third plateau is simply caused by
the fact that we have reached the boundaries of the simulation
box, and no new cells are used to compute the volume integral.

We now turn to studying the radiative behavior of the sim-
ulation at the birth of the protostar. Figure 4 shows the spe-
cific radiative energy (panel a), and the opacity (black curve in
panel b), averaged in radial bins and displayed as a function of

radius. The red curve in panel b shows the optical depth τ com-
puted from the outer edge of the simulation box:

τ =

∫ 3R0

r
ρ(r)κR(r)dr. (16)

Panel c of this figure displays the luminosity L(r), computed
as:

L(r) = 4πr2c
λ(r)∇Er(r)
ρ(r)κR(r)

· (17)

Panel a shows us that the radiative energy is constant at large
radii ( dEr

dr = 0). Since the photons being produced locally by the
gas are streaming through an optically thin medium, Er remains
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Fig. 3. Density slices through the center of the domain at the birth of the protostar (t = 0, panel a) and roughly 2 months later (t ≈ 59 days,
panel b). The swirly patterns are line integral convolution (LIC) visualizations of the velocity vector field, which display prominent eddies inside
the newly formed protostar. Over the span of ≈2 months, the protostar has grown in radius by a factor ≈2.8.

constant during this phase of isothermal contraction. Once the
gas becomes optically thick to radiation, we witness a subse-
quent buildup in radiative energy. A sharp gradient, correspond-
ing to the first core accretion shock, is then seen at 0.5 AU. It
should be noted however that the first core accretion shock has
already radiated a substantial amount of energy, which has then
propagated outward. This is made possible by the supercritical
nature of the first core accretion shock (Commerçon et al. 2011b;
Vaytet et al. 2018). Inside the first core, the radiative energy gra-
dient is not as steep as that of the adiabatic gas outside of it. Since
Er ∝ T 4, we have Er ∝ r−3.2 outside the first core (γeff = 7/5,
gray dotted line), whereas Er ∝ r−0.8 inside it (γeff = 1.1, gray
dashed line). The temperatures found inside the first core exceed
the dust sublimation temperature (≈1200 K), causing the drop in
opacity seen in panel b. Once we reach the protostar, the high
densities spike the atomic gas opacities, and the optical depth
reaches a staggering 1015. This causes the steep radiative energy
gradient at the protostar’s border (≈6 × 10−3 AU) and the subse-
quent buildup seen in its interior.

In the luminosity profile shown in panel c, we see a spike at
the protostar’s border. This is the second core accretion shock.
Due to the temperature of the shock front, mainly Ultra-Violet
photons are emitted at this radius, which are quickly reab-
sorbed by the optically thick gas upstream and reemitted in the
infrared4. As such, the total luminosity exiting the protostellar
surface should be measured just upstream of the shock front,
which yields a value of ≈8 × 10−7 L�. Curiously, the total lumi-
nosity becomes somewhat constant with the radius starting at
20 AU, which shows that the emanating radiative flux decreases
as Frad ∝ r−2. This means that the photosphere of the system
is located at about this radius. The salient question one might
ask here is how the system’s behavior within the photosphere
impacts the amount of flux escaping it, as that would allow us
to link our current theoretical understanding of newly formed
protostars with photometric observations. However, we have not
been able to integrate our calculations long enough to witness
any noticeable change in the radiative behavior of the photo-
sphere.

4 The multigroup simulation that we have run and presented in
Appendix C permits us to better distinguish what photon frequencies
are produced at all radii.

3.2. Evolution of the protostar

We now turn to studying the evolution of the protostar over
time. Due to our high resolution, the time stepping is very
stringent. In addition, we have ∼3 × 107 cells inside the pro-
tostar’s volume, which resulted in a very heavy computational
load and our ability to integrate across long timescales was heav-
ily impacted. Nevertheless, the results obtained provide us with
valuable insights into the evolution of its physical properties and
the radiative behavior of the accretion shock.

We thus begin by studying Fig. 5, which displays the evo-
lution of various properties of the protostar. In order to com-
pute these physical properties, we selected all cells whose
thermal pressure support outweighs incoming ram pressure (see
Appendix A). In addition, we leverage the complementary infor-
mation available in Fig. 6, which displays various physical pro-
files, averaged in radial bins and displayed as a function of radius
at different times.

In Fig. 5, panel a displays the enclosed mass inside the pro-
tostar. The protostar is born with a mass of M∗ ≈ 4 × 10−3 M�,
which steadily grows over time. The mass accretion rate, dis-
played in panel d, is computed by integrating the mass flux on
the protostar’s surface:

Ṁ∗ = −
∫

S ∗
ρvrdS , (18)

where S ∗ is the protostar’s surface. The mass accretion rate
begins at a tremendous 0.2 M� yr−1, and quickly declines to
5.2 × 10−3 M� yr−1 by the last snapshot of our simulation. The
radius of the protostar is displayed in panel b. It is formed with a
radius of R∗ ≈ 1.3 R�, and it continuously increases over time. In
view of the fact that it contains such a small mass, the large radii
seen in panel b are intriguing. Indeed, panels a and b show that
the protostar contains ≈1.7 × 10−2 M� in a radius of 9.5 R� by
the end of the simulation. This initial bloating phase has previ-
ously been reported in the literature (Larson 1969; Narita et al.
1970; Winkler & Newman 1980; Bhandare et al. 2020), and is
caused by the radiative behavior of the shock front. As can be
seen in Fig. 4b, the accretion shock has a very high optical
depth, and its radiation is immediately absorbed by the gas just
upstream, which is also optically thick. As a result, the protostar
faces immense difficulty radiating away the kinetic energy of the
gas it accretes, the majority of which is dumped into the inter-
nal energy budget of the protostar. This is more readily seen in
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Fig. 4. Radiative energy (panel a), Rosseland mean opacity (black,
panel b), optical depth (red, panel b), and luminosity (panel c), aver-
aged in radial bins and displayed as a function of radius at the epoch of
the protostar’s formation.

panel c of Fig. 5, which displays the surface integrated lumi-
nosity L∗ (measured just upstream of the accretion shock) as
well as the fraction facc of the accretion luminosity Lacc radiated
away (blue curve of panel c). These two quantities are computed
as

L∗ =

∫

S ∗

cλ∇Er

ρκR
dS , (19)

facc ≈ L∗
Lacc

, (20)

where

Lacc =
GM∗Ṁ∗

R∗
· (21)

Equation (20) is only an approximation of the radiative efficiency
of the shock front because L∗ also contains the cooling flux ema-

nating from the protostar’s interior, although we expect the lat-
ter to be very small due to the optical depths such radiation has
to travel through. All throughout the simulation, the protostar is
extremely dim and it radiates only a minute fraction of the accre-
tion luminosity. The continuous increase in protostellar luminos-
ity is due to two reasons; the expanding radiative surface, and
the decrease in shock density (see Fig. 5e), which reduces the
optical depth of the accretion shock and facilitates the escape of
radiation. Although the surface temperature of the protostar also
decreases, its rate of decrease is not enough to reduce its lumi-
nosity output over time.

This accumulation of energy can also be seen in Fig. 6, which
displays the evolution of various radial profiles over time. In
panel e of this figure, one can see that the specific entropy of
the gas downstream of the shock front is continuously increasing
over time: the entire profile shifts upward as accretion progresses.
However as the mass accretion rate decreases, the rate of increase
in specific entropy also decreases. One can also see an increase in
entropy in between the first and second core borders, caused by
the radiation produced at the protostar’s shock front.

Another insight provided by this plot is the fact that the
entropy continuously rises with the radius inside the protostar at
all times during the simulation, meaning that it remains radia-
tively stable. Despite this, one can see a plateau develop just
downstream of the second core shock front which is induced by
the transport of heat in these regions. The mechanism behind
this heat transport is the turbulent motion found within the pro-
tostar, which allows for a redistribution of energy throughout
the protostar, and thus causes the entire entropy profile to shift
upward. This becomes prominent over time as the effects of
this turbulence begin to materialize (see Sect. 4.2 and the tur-
bulence crossing time in Fig. 15c). As a consequence, the tur-
bulent transport of energy becomes increasingly prominent over
time in the protostar’s outer layers. Having carried out our sim-
ulation in 3D, our more complete description of turbulence has
allowed this plateau to develop on much smaller timescales than
in Bhandare et al. (2020)’s 2D simulations (see Appendix D).
One can also distinguish a second plateau develop in the inner-
most regions. This secondary plateau is caused by the high
degree of ionization in the central regions (see Fig. 8), which
causes the fluid to transition to a lower entropy regime. The tur-
bulent transport of heat within the protostar then causes this sec-
ondary plateau to develop. The mixing of entropy plays a cru-
cial role in regulating the protostar’s radius. Indeed, as radiative
cooling struggles to evacuate the immense amount of energy
being accreted by the protostar, turbulence aids this process
by redistributing heat in its outer regions, thus alleviating the
bloating.

Curiously, panel b of Fig. 5 displays a sudden increase in pro-
tostellar radius at t ≈ 187 days, which coincides with a sudden
increase and subsequent drop in shock density and temperature.
This corresponds to a free fall time of the first Larson core, and
indeed the various radial profiles in Fig. 6 confirm that the first
core is accreted by the protostar at this moment (see for instance
the disappearance of the first core accretion shock in panel
a or d). Although this causes an order of magnitude increase
in protostellar luminosity, the radiative efficiency remains well
below unity since the protostar is still deeply embedded in
an optically thick cloud. Its radius must further increase to
larger values before the accretion shock can properly evacu-
ate its radiative energy into a less dense and optically thinner
medium.

Figure 6 also informs us of the behavior of the gas upstream
of the protostar’s shock front both prior to and after the
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Fig. 5. Evolution of the physical properties of the protostar displayed as a function of time, where t = 0 marks the birth of the protostar. Panel a
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(resp. panel f) the average density (resp. temperature) at the shock front. The solid blue line in panel c represents the radiative efficiency of the
protostar.

accretion of the first Larson core. As mentioned previously, the
density profile in the inner regions of the first Larson core fol-
lows ρ ∝ r−1.5 (gray dashed line) and ρ ∝ r−2 in its outer layers.
As seen in panel a of the figure, the boundary between these
two profiles expands outward over time, such that the entire den-
sity structure inside the first Larson core shifts to ρ ∝ r−1.5.
This behavior has previously been reported by Larson (1972),
Shu (1977). The temperature profile follows T ∝ ργeff−1. Prior
to the accretion of the first core, the H2 molecules are under-
going the dissociation process, which places γeff at ≈1.1. As a
result, the temperature profile follows T ∝ r−0.15 (gray dashed
line in panel b). Once the first core is accreted, the protostar
directly accretes hot (and hence excited) H2 molecules, whose
γeff is ≈7/5. As a result, the temperature profile now shifts to
T ∝ r−0.6 (gray dotted line in panel b). We see the same behav-
ior in the radiative energies; since Er ∝ T 4, we have Er ∝ r−0.6

prior to the accretion of the first Larson core, and Er ∝ r−2.4

afterwards.
Despite the nonlinear nature of the problem, it is our hope

that a sub-grid model could be developed to properly describe
the radiative feedback of the protostar unto its surrounding envi-
ronment. To this end, we have displayed in Fig. 7 the protostar’s
surface integrated luminosity, plotted against its radius. This has
demonstrated a power-law relationship between the two, where
L∗ ∝ R5.7

∗ . The power-law fit was performed prior to the accretion
of the first core (i.e., R∗ < 6 R�), as later times exhibit differing
gas behaviors upstream of the accretion shock (Fig. 6), which in
turn changes the exponent of the power-law. In addition, we do
not have a sufficient number of data points to accurately describe
L∗(R∗) after the accretion of the first core. Although this result’s
robustness needs further testing and investigation, it excitingly
hints at the existence of an analytical model that can be found.
Such a model will need to describe the temporal evolution of the
gas behavior both upstream and downstream of the shock front,
whereby one estimates the amount of radiative flux escaping the
protostellar surface based on the local gas structure. We plan to

further explore this power-law relationship between L∗ and R∗ in
the future.

3.3. Chemical composition

An important factor to consider following our discussion in
Sect. 3.2 is the dissociation of molecular hydrogen and the ion-
ization of atomic hydrogen and helium. These processes con-
sume energy, which is supplied by accretion and thus must be
considered when attempting to determine the energy budget, and
hence the radius of the protostar. The energy consumed by these
processes is:

H2 → 2H : 4.48 eV,
H→ H+ + e− : 13.60 eV,

He→ He+ + e− : 24.59 eV,

He+ → He2+ + e− : 54.40 eV.

(22)

Using the equation of state table, we can directly estimate the
fractions of each of these species in our computational domain
by interpolating their values. As such, we do not actually model
their dynamics, but simply provide the expected amount of each
species for a given cell. We thus display in Fig. 8 the mass frac-
tion of each species Xi, averaged in radial bins where

XH2 + XH + XH+ = 1,
XHe + XHe+ + XHe2+ = 1.

(23)

In panel a of this figure, we display these fractions at the epoch
of the protostar’s formation. A steep gradient in the fraction of
H2 (red curves) is seen, which corresponds to the protostar’s
accretion shock. Here, all remaining H2 molecules are dissoci-
ated as a result of the shock heating, and only atomic hydro-
gen enters the protostar. The intense shock heating also begins
ionizing the neutral hydrogen atoms (cyan curves), which hap-
pens in a much more gradual manner. However, the tempera-
tures are not high enough to ionize the entirety of the atomic
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Fig. 6. Evolution of the density (panel a), temperature (panel b), radiative energy (panel c), radial velocity (panel d), specific entropy (panel e),
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are power law curves representing the expected density, temperature, and radiative energy profiles both prior to and after the accretion of the first
Larson core.

hydrogen reservoir, even in the central regions. We also see the
onset of single (purple curves) and double (pink curves) He ion-
ization just downstream of the accretion shock. The temperatures
achieved in these regions cause a similar amount of He in first
and second ionization states, although the curves begin to differ
in the central regions. We see the same patterns ≈2 months later
in panel b, although the accretion shock has moved outward and
the total fraction of ionized H has increased, whereas the fraction
of ionized He remains the same.

Using these fractions, we also compute the mass of each of
these species and display them in Fig. 9 as a function of the pro-
tostar’s mass (M∗, analogous to time). Since almost no hydrogen
is under molecular form inside the protostar, we have omitted
displaying the mass this species represents in the figure. We see
an almost linear increase of all species with M∗, although the
slopes for each species differs. At about M∗ ≈ 7.5 × 10−3 M�,
ionized Hydrogen becomes the dominant species inside the pro-
tostar in terms of mass, and by M∗ ≈ 1.7×10−2 M�, about ≈50%
of the protostar’s mass is under ionized form. However, the esti-
mated amount of ionized material begins to decrease shortly
afterward due to the decreasing density and temperature in the
central core (see Figs. 6a,b). In any case, this figure shows us
that the electrical conductivity of the protostar remains high fol-
lowing its birth.

By computing the total energy consumed by the dissocia-
tion and ionization processes, we find that they represent only
≈6% of the total energy injected by accretion since the proto-
star’s birth. As such, the rest of the accretion energy is either
dumped into the internal energy budget of the protostar or used
to drive turbulent motions, which are eventually converted into
thermal energy. We estimate the fraction of the accretion energy
used to drive turbulence in Sect. 4.2.

4. Turbulent motion within the protostar

In this section, we aim to characterize the turbulence inside the
protostar shown in Fig. 3 by describing it both quantitatively and
qualitatively. We subsequently study how it evolves over time in
our simulation.

4.1. Onset of turbulence

As stated previously, the rising entropy profile within the proto-
star suggests that this turbulence is not generated by a classical
convective instability as postulated by Schwarzschild’s criterion,
where the protostar would exhibit a transition from a radiative
zone to a convective shell. Thus, another instability seems to be
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at play here. Upon further investigation, we have discovered that
the non-radial flow within the protostar has its origins during the
hydrostatic bounce immediately following its formation.

Indeed, Fig. 10 shows the protostar at different critical
moments during its birth. Panel a shows the protostar as the sec-
ond core accretion shock begins to form. Here, minute devia-
tions from a purely radial flow can be seen downstream of the
shock front. These are due to our use of a Cartesian grid, which
favors flow along the grid axis. Upon crossing the shock front,
the upstream velocity dispersions are amplified by about an order
of magnitude, which allows them to be seen in the streamlines.
Nevertheless, the kinetic energy carried by the non-radial flow is
well below that of the radial flow.

Several hours later, γeff reaches 4/3 in the central regions
owing to the rising density and temperature, thus forming a
hydrostatic equilibrium that halts any further inward flow. This
causes a hydrostatic bounce (panel b), where fluid with vr > 05

can be seen within the protostar. This bounce amplifies the
non-radial flow within the protostar, although our grid geome-
try again seems to have an influence. Once the outgoing wave
reaches the shock front, a physical instability seems to be trig-
gered as strong vortical movement are produced within the pro-
tostar (panel c). Once the bounce has passed, these turbulent
motions become sustained by accretion, as the supersonic radial
flow of gas upstream of the accretion shock transfer’s some of
its momentum to the downstream gas, thus sustaining or ampli-
fying any ortho-radial components in the downstream flow. This
signals the onset of strong, stochastic turbulence within the pro-
tostar, as it becomes sustained through accretion. Indeed, Fig. 11
displays the kinetic energy power spectrum Ps within the pro-
tostar throughout the simulation (panel a), which exhibits the
power-law relationship governing Ps(`) and `, where ` is the
inverse of the wavenumber. The exponent (n) of this power-law
obtained through a numerical fit is displayed in panel b; it hovers
around 2. Although n drops during the accretion of the first core
when t ≈ 180 days, it returns to 2 afterwards. This implies that
the turbulence within the protostar is being continuously main-
tained by accretion.

5 The outgoing wave is subsonic.
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Another interesting observation provided by this figure is
that the turbulence inside the protostar is not that expected of
an incompressible fluid as postulated by Kolmogorov (1941),
where Ps(`) ∝ `11/3, despite the fact that the velocity dispersions
are subsonic and well below the local sound-speed (blue curve
in Fig. 14). This is due to the heavily stratified nature of the pro-
tostellar interior, which hinders the inward motion of turbulent
eddies.

In Fig. 12, we compare the ortho-radial kinetic energy Evθ,φ
with its radial counterpart Evr within the protostar. These two
quantities are computed as:

Evθ,φ = 4π
∫ R∗

0
ρr2

(
v2
φ + v2

θ

)
dr, Evr = 4π

∫ R∗

0
ρr2v2

r dr. (24)

Where vφ and vθ are respectively the azimuthal and merid-
ional velocity. The curve suggests that the instability behind this
turbulence causes an exponential growth of non-radial perturba-
tions, before reaching a nonlinear phase where it stagnates. If
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equipartition is achieved, one would expect Evθ,φ/Evr ≈ 2; how-
ever, the figure shows that the ratio reaches ≈0.8 by t ≈ 30 days
and hovers around this value, meaning the flow within the proto-
star is mainly dominated by its radial component throughout the
simulation.

In addition, although the entropy profiles averaged in radial
bins in Fig. 5e show that the protostar is stable against con-
vection, Fig. 13 shows that the turbulent motions can lead to
local negative entropy gradients, where lower entropy fluid lies
above higher entropy fluid. This causes weak convection to occur
locally across all radii, and further contributes to the stochastic
nature of the turbulence within the protostar.

We have seen this same pattern in higher resolution simula-
tions; both `max = 27 and `max = 28 show the exact same onset
of turbulence6. Through private communications with A. Bhan-
dare, we have learned that a similar phenomena seems to occur
in Bhandare et al. (2020)’s 2D simulations run on a polar grid.
Indeed, their protostar is turbulent at birth despite its radiative
stability (see their Fig. C.1), and this turbulence begins follow-
ing the hydrostatic bounce.

When combining all of these elements together, we can con-
clude that although the seed for this turbulence has its origins
in our grid geometry, the hydrostatic bounce and the subsequent
amplification of turbulence caused by it and its interaction with
the shock front are physical. We are still unsure as to what pre-
cise instability is at play here, but we have offered some evidence
that could implicate the Standing Accretion Shock Instability
(SASI, Blondin et al. 2003; Scheck et al. 2004; Foglizzo et al.
2007) in Appendix E.

In real astrophysical cases, the initial cloud core possesses
both turbulent and rotational motion. If minuscule disturbances
in the flow such as ours can provide the seed necessary to trigger
turbulence within the protostar, then we predict that all protostars
will be turbulent at birth.

6 We have presented the results of our `max = 27 in Appendix B; how-
ever, the time-stepping after second core formation in the `max = 28 was
too stringent to produce any presentable results.

4.2. Accretion driven turbulence

Now that we have established that turbulent motion is created at
protostellar-birth and later sustained by accretion, we proceed by
providing a quantitative analysis of its behavior throughout our
simulation. To this end, we begin with Fig. 14, which displays
the velocity dispersions σv computed in radial bins as a function
of radius (solid black line) at our last simulation snapshot. In this
figure, the velocity dispersions upstream of the shock front are
amplified by almost two orders of magnitude.

Once the matter has properly settled into the protostellar
surface, the velocity dispersions scale with the radius follow-
ing a power-law σv ∝ r9/10 (red fit in the figure). As the radius
decreases, our ability to resolve these turbulent motions is ham-
pered, since the number of cells in each radial bin decreases with
decreasing volume. As a result, the scaling law is broken and the
turbulence begins to dissipate through numerical diffusion. We
would like to emphasize that the scaling law heavily depends on
the internal structure of the protostar. As Fig. 6a has shown, the
density profile (and hence the stratification) of the protostellar
interior varies over time, which we have found is reflected in
the scaling law between σv and r (the proportionality exponent
between σv and r changes over time). Nevertheless, these turbu-
lent motions carry a substantial amount of energy all throughout
the protostar; the turbulent kinetic energy flux ρσ3

v (dotted line)
remains strong all throughout the interior.

Since we are dealing with accretion driven turbulence, a
fraction of the incoming accretion energy is used to drive tur-
bulent motions inside the protostar. In order to determine this
fraction, we base our analysis on the analytical tools provided
by Klessen & Hennebelle (2010), which provides an estimate
of the amount of turbulence generated by accretion and lost
through decay in astrophysical bodies. Consequently, we begin
by defining these tools, namely the turbulent crossing time τd,
the turbulence driving scale which we assume to be 2R∗, and the
mean 3-dimensional velocity dispersion 〈σv〉 inside the protostar
(Klessen & Hennebelle 2010):

τd ≈ 2R∗
〈σv〉 · (25)

One can also compute the amount of turbulent kinetic energy
inside the protostar through

Eturb =
1
2

M∗〈σv〉2, (26)

where M∗ is the protostar’s mass. Using this, we can estimate the
loss of turbulent kinetic energy over time Ėdecay

Ėdecay ≈ −Eturb

τd
= −1

4
M∗〈σv〉3

R∗
· (27)

Thus, in order to sustain the turbulence observed inside our pro-
tostar, it needs to be continuously driven by the incoming accre-
tion energy Ėin

Ėin =
1
2

Ṁ∗v2
in, (28)

where vin is the infall velocity at the accretion shock. Finally,
this allows us to compute the fraction of the accretion energy
required to sustain the turbulence in the interior, which is char-
acterized by the efficiency factor ε:

ε =

∣∣∣∣∣∣
Ėdecay

Ėin

∣∣∣∣∣∣· (29)
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Fig. 10. Density slices through the center of the domain showing the onset of turbulence within the protostar. Streamlines of the velocity vector
field are shown in white. Each panel represents a different time, with panel a showing the protostar during the formation of the accretion shock
(t = 0), panel b after the onset of a hydro-dynamical rebound from the central region (t ≈ 16.5 h), and panel c after the outgoing wave interacts
with the shock front (t ≈ 21 h). The scale bar in panel b applies to the other two panels.

If ε < 1, then turbulence is sustained by accretion. In order to
obtain 〈σv〉, we simply average the velocity dispersion inside the
protostar by weighing it by mass. The mass weighing is done
to ensure that the energy measurement is biased toward higher
density gas.

In Fig. 15, we display 〈σv〉, Ėin, Ėdecay and ε as a function
of time. We have also displayed in panel c the turbulent cross-
ing time (red line), which allows us to estimate the time required
for the turbulence to dissipate from large eddies down to thermal
energy. As the surface integrated mass accretion rate diminishes
over time (see Fig. 5d), so too does the subsonic velocity disper-
sion inside the protostar. As a result, the accreted kinetic energy
Ėin also reduces. The turbulence decay Ėdecay also decreases
over time. This is to be expected since the velocity dispersions
decrease and the protostellar radius increases. Regardless, the
turbulence decay Ėdecay remains well below the injected accre-
tion energy at all times; the efficiency factor peaks at ≈31%. This
shows that the injected accretion energy is abundant enough to
sustain the observed turbulence inside the protostar at any point
during the simulation. However, since the turbulent driving scale
increases as the protostar grows, so too does the spatial extent of
the turbulent cascade process. This is more readily seen in Fig. 3,
where larger eddies can be seen at the accretion shock as the pro-
tostar grows. This results in an increasing turbulent timescale,
where the fraction of the injected accretion energy takes a more
considerable amount of time to dissipate into thermal energy.

The ubiquitous turbulence found in the protostar raises the
important question of how well it is described by our simula-
tion. It is thus helpful to estimate the Reynolds number Re found
within the protostar:

Re ∼ 2csR∗
vthλp

, (30)

where cs is the sound speed, λp the particle mean free path, and
vth the thermal speed of hydrogen atoms:

vth =

√
3κBT
mH

, λp ∼ 1/nσ, (31)

where n is the number density of atoms with collision cross-
section σ (≈10−16 cm2). By our simple estimates, the Reynolds

number of the protostar’s fluid should be ∼1014 at the surface
(cs ∼ 1 km s−1, T ∼ 103 K, n ∼ 1018 cm−3) and ∼1017 in the
central regions (cs ∼ 10 km s−1, T ∼ 104 K, n ∼ 1022 cm−3).
These gargantuan Reynolds numbers mean that the character-
istic scales by which viscosity effectively dissipates turbulence
are orders of magnitude below our maximum spatial resolution.
Indeed, such dissipation scales are on the order of the particle
mean free path (∼[10−6−10−3 cm]), whereas our maximum spa-
tial resolution is ∆x = 2.2 × 109 cm. As such, the turbulence is
instead dissipated by our numerical diffusion, which means that
our ability to describe this process is likely very impacted by our
resolution. We have investigated the influence of our numerical
resolution on the accretion driven turbulence in Appendix B and
concluded that higher resolutions lead to stronger velocity dis-
persions in the protostar’s interior, which in turn amplifies the
turbulent transport of heat. For further inquiries on turbulence
in star formation related processes, we invite the reader to see
McKee & Ostriker (2007), Hennebelle & Falgarone (2012).

5. Discussions

5.1. The effects of initial conditions on the first and second
Larson cores

A result which initially intrigued us is the size of the first Larson
core in our simulation. Indeed, Fig. 2 shows a first core radius of
0.5 AU. However, Fig. 4 shows a photosphere located at a much
larger radius of 20 AU. As such, the location at which the fluid
transitions from an optically thin regime to an optically thick
one does not coincide with that of the first core border. This
is despite the fact that isothermality is broken at the location
of this transition (Fig. 2d). Hence, the radius of our first core
is smaller than that which is commonly reported in the litera-
ture (e.g., Larson 1969; Vaytet et al. 2013; Vaytet & Haugbølle
2017; Bhandare et al. 2018). The small size of our first core
can be attributed to our selection of the alpha value (Eq. (12)),
which is smaller than those commonly adopted in the literature
(>0.5). For instance, Vaytet et al. (2013) compared the results of
their simulations for different α values, and have found smaller
first core radii for smaller α (see their Tables 1 and 2). This is
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Fig. 11. A spectral analysis of the turbulence within the protostar.
Panel a: Kinetic energy power spectrums as a function of characteris-
tic scale ` of the gas within the protostar at different times, where t = 0
marks the epoch of protostellar formation. The last curve (dark red) cor-
responds to t ≈ 241 days. Panel b: power-law fit of the curves in panel
a, where Ps(`) ∝ `n.
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Fig. 12. Ratio of ortho-radial to radial kinetic energy inside the protostar
(see Eq. (24)) as a function of time, where t = 0 marks the birth of the
protostar.

Fig. 13. Cross-sectional view of the protostar at our final simulation
snapshot, showing the interior entropy. The colorbar has been artificially
anchored for visualization purposes. The gray spherical outline is an
artistic choice for better visualization and serves no physical meaning.
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Fig. 14. Velocity dispersion computed in radial bins (black curve) and
average local sound speed (blue curve), displayed as a function of radius
at our last simulation snapshot (t ≈ 241 days, where t = 0 marks
the birth of the protostar). The red curve is a fit of the inertial range,
whose exponent is ≈9/10. The black dotted curve represents the turbu-
lent energy flux (displayed in units of g s−3).

due to the fact that smaller α values correspond to more violent
gravitational collapses, where the high infall velocities and mass
accretion rates lead to very strong ram pressure. As such, higher
amounts of thermal pressure support are needed in order to attain
a hydrostatic equilibrium in these configurations.

The value of α that we have adopted has however little bear-
ing on the subsequent formation of the protostar. Indeed, the
high mass accretion rates unto the protostar (which begin at
∼10−1 M� yr−1 and decline to ∼10−3 M� yr−1 by our last snap-
shot) have previously been reported by numerous papers inde-
pendently of the initial conditions and physical model adopted
(e.g., Vaytet et al. 2013; Tomida et al. 2013; Bate et al. 2014;
Vaytet & Haugbølle 2017; Bhandare et al. 2020). The reason
behind this is the first Larson core, which provides a momen-
tary halt to accretion unto the central regions until temperatures
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Fig. 15. Mass-weighted velocity dispersion inside the protostar
(panel a), injected accretion energy alongside the turbulence decay
(panel b), and efficiency factor (panel c) displayed as a function of time,
where t = 0 marks the birth of the protostar. The red line in panel c
corresponds to the turbulence crossing time (see Eq. (25)).

can exceed ≈2000 K, by which point the second collapse
ensues. Since Larson (1969) has shown that the mass accre-
tion rate asymptotically reaches ∼c3

s/G, then one can expect
Ṁ∗ ∼ 10−2 M� yr−1, which explains the convergence seen in the
literature.

5.2. The radiative behavior of the protostar

Figure 5 has shown us that the second core accretion shock
remains subcritical throughout the simulation’s duration, and as
a consequence the protostar’s radius swells dramatically over
time. The most similar work in the literature to our study
is that of Bhandare et al. (2020), which also exhibits a sub-
stantial increase of the protostar’s radius with mass. Since
their study is two dimensional, they were able to integrate for
much longer timescales (hundreds of years instead of our hun-
dreds of days), and as such they were able to witness a con-
traction of the protostar in some of their simulations. This
is explained by a reduction of the incoming mass accretion
rate (i.e., a reduction in the incoming accretion energy), and
an increased protostellar luminosity. They characterize this by
comparing the Kelvin–Helmholtz timescale with the accretion
timescale, which we have omitted from our study since the lat-
ter remains well below the former throughout our simulation7.
Once the Kelvin–Helmholtz timescale drops below the accre-
tion timescale (i.e., facc > 1), the protostar can evacuate its
energy, which causes the contraction. However, this occurs once
the protostars have expanded to very large radii (on the order
of a few AU, with a strong dependence on the initial cloud
mass), where the accretion shock has reached first core densi-
ties. Furthermore, they do not evolve the simulations long after
the contraction, meaning that it is unknown if this contraction
is maintained all the way to the formation of a solar-like object.
Nevertheless, the subcritical nature of the second core accretion
shock has been widely reported in the literature (Larson 1969;
Winkler & Newman 1980; Vaytet et al. 2013, 2018; Bate et al.
2014; Bhandare et al. 2018, 2020). It has been settled that the
radiative efficiency of protostars must be high during most of its
main accretion phase, as that would allow them to form with rea-
sonably small radii (Larson 1972; Appenzeller & Tscharnuter
1975; Winkler & Newman 1980; Stahler et al. 1980). Neverthe-
less, providing a quantitative estimate of the radiative efficiency
of the second core accretion shock and how it varies over time
remains of scientific interest. Indeed, many papers in the liter-
ature that are interested in larger spatial scales omit the expen-
sive computations that we have performed; they set aside the
protostar by replacing it with a sink particle, and prescribe
its feedback effects using a sub-grid model (e.g., Urban et al.
2010; Vorobyov & Basu 2015; Hennebelle et al. 2020b, 2022).
Thus, the radiative feedback of the protostar in these studies is
facc × Lacc, where facc is treated as a free parameter. The value of
this parameter has been shown to have a significant effect on the
resulting IMF (Hennebelle et al. 2020b). Our simulation shows
that the radiative efficiency is extremely low immediately fol-
lowing its birth, and although it increases significantly over time,
it remains well below the current values used in the literature.
However, we expect it to reach unity once most of the envelope
has been accreted, as that would significantly reduce the optical
depth of the shock front. This would subsequently allow the pro-
tostar to contract by radiating away the large amount of energy
it has accumulated.

5.3. The role of turbulence

Regardless of our simulation’s capacity in describing it, the exis-
tence of turbulent motion within the protostar from the moment
of its inception is noteworthy, most notably for studies that aim

7 Our estimate of the radiative efficiency (Eq. (20)) is equivalent to the
ratio of the accretion timescale to the Kelvin–Helmholtz timescale.
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to model the formation of stellar magnetic fields. Indeed, as
stated previously, since dissipative effects such as ambipolar dif-
fusion and ohmic dissipation considerably reduce the magnetic
field strength implanted in the protostar, a dynamo process is
required in order to generate the magnetic fields observed in
young stellar objects (∼1 kG, Johns-Krull et al. 2009). In order
to trigger such a dynamo process, convective motions are a pre-
requisite (e.g., Durney et al. 1993; Chabrier & Küker 2006), and
it is commonly believed that such motions arise once nuclear
burning begins in the stellar core. Indeed, the onset of nuclear
fusion reverses the entropy profile inside the star, such that the
central core will possess a higher entropy than the outer layers.
This is due to the fact that the colossal amounts of energy gen-
erated by fusion can not be transported through radiation alone,
and thus convective motions begin. Since our study has shown
that turbulent motion emerges at protostellar birth, we reiterate
Bhandare et al. (2020)’s hypothesis that a dynamo process can
begin far earlier than previously thought. Since such a process
draws from the kinetic energy budget of the protostar, then it can
also participate in regulating its radius.

5.4. Open questions

In our opinion, our results raise important questions that we
hope will be addressed in the future. Firstly, the manner in
which the radiative behavior of the protostar differs when one
includes more realistic initial conditions, where turbulence or
solid body rotation in the initial dense molecular cloud core
provide the angular momentum budget necessary to form a
disk, should be thoroughly investigated. Although Bate et al.
(2014), Vaytet et al. (2018) have shown that the second core
accretion shock remains strongly subcritical, Vaytet et al. (2018)
have shown that the poles of the protostar radiate much more
efficiently.

Secondly, the extent with which turbulence helps in regulat-
ing the swelling of the protostar should be analysed in depth.
Our resolution study has shown that higher resolutions lead to
stronger velocity dispersions; however, since it is extremely dif-
ficult to further increase the resolution, we suggest that 1D cal-
culations that include turbulence through mixing length theory
might offer better insights in this regard (e.g., Larson 1969;
Palla & Stahler 1991).

Finally, magnetic fields can help in regulating the radius of
the protostar, and a quantitative study in this regard is desir-
able. Indeed, previous studies in the literature have shown that
magnetic fields can generate outflows (e.g., Machida et al. 2006,
2007; Tomida et al. 2013; Bate et al. 2014; Tsukamoto et al.
2015; Wurster et al. 2018; Wurster & Lewis 2020a; see also
Mignon-Risse et al. 2021 for the high mass case). Such outflows
can extract a significant amount of energy which would have
otherwise been accreted by the protostar.

6. Conclusion

We have carried out a simulation modeling the collapse of a
gravitationally unstable, uniform density sphere of mass 1 M�
to protostellar densities, using a 3D RHD description of the
gas dynamics under the FLD approximation. The calculations
describe the initial isothermal phase, the first adiabatic contrac-
tion, the second gravitational collapse triggered by the dissocia-
tion of H2, and the second adiabatic contraction. We follow the
evolution of the resulting protostar for ≈247 days after its forma-
tion, which is longer than the first core free fall time of ≈187 days
and hence we were able to witness the latter’s accretion by the

protostar. Having placed a focus on the interior structure of the
protostar, the simulation was carried out with the highest ever
3D resolution, which involved the use of 26 levels of refinement
and 20−2 × 103 cells per jeans length. Our findings can be sum-
marized as follows:

(i) Following the formation of the protostar, its radius swells
dramatically over time. This is due to the subcritical radia-
tive nature of its shock front, which struggles to evac-
uate the immense amount of kinetic energy injected by
accretion. The radiative efficiency of the protostar remains
well below unity in the time-span that we have simu-
lated, even after the accretion of the first core. However,
as the protostar swells, the density (and hence the opti-
cal depth) of the accretion shock continuously decreases,
which increases its radiative efficiency. We have revealed
a power-law relationship between the luminosity just
upstream of the shock front and the protostellar radius, a
result which could aid in inferring the radiative behavior of
the protostar across larger timescales once its robustness is
established.

(ii) Owing to our very high resolution, we were able to
reproduce the findings of Bhandare et al. (2020)’s 2D sim-
ulations, where they have discovered that the protostar
is turbulent from the moment of its inception despite
its radiative stability. The turbulence is created during a
hydrostatic bounce immediately following the birth of the
protostar; it grows exponentially before reaching its non-
linear phase, where it is then maintained by accretion. We
have described this subsonic turbulence both quantitatively
and qualitatively: a fraction (<31%) of the injected accre-
tion energy is used to drive this turbulent motion, and the
velocity dispersions show a power-law scaling with the
radius. Since the protostar is heavily stratified, the behav-
ior of this turbulence differs from the classical theory of
Kolmogorov (1941). Due to the very high Reynolds num-
bers found in the protostar, our description of this turbu-
lence is impacted by our numerical resolution. Our grid
geometry also influences the behavior of the turbulence.
Nevertheless, the heat transport it provides leads to signif-
icant entropy mixing and aids in regulating the protostellar
swelling.

(iii) We find that the protostar is not fully ionized at birth.
However, as the protostar accretes material from its sur-
roundings, the amount of mass within it under ionized form
continuously increases over time. Hence, the electrical con-
ductivity of the protostar increases over time. Additionally,
we estimate that the dissociation of H2 and the ionization
of atomic hydrogen and helium represents only ≈6% of the
total energy injected by accretion. As such, the energy con-
sumption of these processes plays an insignificant role in
regulating the radius of the protostar. Nevertheless, we pre-
dict that the high electrical conductivity of the protostar,
when combined with the turbulence in the interior, could
lead to a dynamo process prior to the onset of deuterium
burning. Since generating the stellar magnetic field comes
at the expense of kinetic energy, this could also aid in reg-
ulating the swelling of the protostar’s radius.

(iv) For the first time, we have carried out during these calcula-
tions a frequency-dependent treatment of radiative transfer.

The results, presented in Appendix C, show no major
differences to the gray approximation. This is in agreement with
the 1D calculations of Vaytet et al. (2013).

Despite the short time-span of our simulation, we believe
these results shed light on an otherwise poorly understood phase
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of the stellar formation process. We are currently investigating
how this evolutionary picture changes once we include angu-
lar momentum in the system (which leads to the formation of a
circumstellar disk), the results of which will be presented in a
follow-up paper.
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Appendix A: Defining the protostar in our
simulation
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Fig. A.1. Illustration of our protostar definition criterion in a slice
through the center of the domain at the epoch of protostellar formation.
The colormap represents the local radiative flux, which prominently dis-
plays the second core accretion shock. The lime contour represents our
P ≈ ρv2

r criterion for the protostellar surface, of which all cells within it
are counted as among the protostar. The dotted black circle represents
an angular average radius of the protostellar surface.

Herein, we present our definition of the protostar, namely the
criterion by which we select cells that belong to it. Ideally, one
would like to select all cells at and downstream of the accre-
tion shock. For this, we have opted to adopt the criterion of
Tomida et al. (2010), which selects all cells whose thermal pres-
sure support outweighs ram pressure (P > ρv2

r ). However, this
criterion also selects cells belonging to the first core that are
not currently undergoing a second gravitational collapse. As
such, we have supplemented this criterion with a radius check,
in which only cells at radii smaller than twice that of the 10−5

g cm−3 density isocontour can be selected. In order to compute
R∗, we simply average the radius of the P ≈ ρv2

r contour (i.e., the
protostellar surface). The results of this criterion are presented
in Fig. A.1, which displays satisfactory results as the P ≈ ρv2

r
contour closely follows the accretion shock front.

Appendix B: Resolution study

As mentioned previously, simulating the stellar formation pro-
cess requires a robust treatment of a multitude of physical
processes. As such, each physical process requires an ade-
quate spatial sampling in order to produce physical results. The
most common approach in our field is a continuous refine-
ment of the grid based on the local Jeans length as suggested
by Truelove et al. (1997). This study suggested that the Jeans
length be resolved with at least four cells; however, this is inad-
equate to describe a second gravitational collapse, as the huge
dynamical range requires a more diligent approach to spatial
refinement. In addition, the inclusion of magnetic fields, be they
ideal or nonideal, as well as the incorporation of radiative trans-
fer can add further strain on simulations, as this requires addi-
tional spatial sampling to describe the full range of magnetic
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Fig. B.1. Central temperature plotted against central density prior to the
first hydrodynamical bounce, for simulations with a maximum refine-
ment level of 25 (∆x = 2.93×10−4 AU, blue curve), 26 (∆x = 1.46×10−4

AU, orange curve), and 27 (∆x = 7.34 × 10−5 AU, green curve).

resistivities and the dust and gas opacities (see the discussions
in Vaytet & Haugbølle 2017; Vaytet et al. 2018; Wurster et al.
2022). As such, it is important to carry out thorough examina-
tions of the effect of resolution to test the convergence of each
simulation based on the physical processes included in it, as well
as the initial conditions with which it is carried out.

To this end, we have carried out two additional lower and
higher resolution simulations in which we vary the maximum
refinement level; however, the number of cells per λ∗j was main-
tained at 20 (see Eq. 13 and 14) as this has proven to be perfectly
adequate. These two simulations possess a maximum refinement
level `max of 25 and 27, as opposed to the intermediate `max = 26
of the simulation presented in the main body of this paper. This
respectively offers them a spatial resolution of ∆x = 2.93 × 10−4

AU and ∆x = 7.34 × 10−5 AU at the maximal refinement level,
as opposed to ∆x = 1.46 × 10−4 AU.

We thus show in Fig. B.1 the central temperature as a func-
tion of the central density prior to the first hydrodynamical
bounce (i.e., the moment when the central density drops from
one snapshot to the next). The figure shows that prior to the for-
mation of the protostar, all three simulations have followed iden-
tical evolutionary paths. However, the maximum density reached
differs; the lower resolution run with `max = 25 (blue curve) has
attained 3.76 × 10−2 g cm−3, the intermediate `max = 26 (orange
curve) reached 1.05 × 10−1 g cm−3, and the higher resolution
`max = 27 (green curve) reached 1.39 × 10−1 g cm−3. Thus, the
central density achieved by the second gravitational collapse is
resolution dependent; however, the intermediate resolution run
achieved much closer results to the higher resolution run than to
its lower resolution counterpart.

We now turn to Fig. B.2, which shows density slices through
the center of the domain for all three simulations with their AMR
refinement level contours. These slices are shown at a moment
in time where all three protostars have reached similar masses.
Unsurprisingly, the spherical morphology of the protostar is bet-
ter described in the intermediate (panel b) and high (panel c) res-
olution runs. Furthermore, the additional refinement levels allow
a better resolution of the shock front, which is crucial to prop-
erly describe the sharp protostellar border. We also note that the
lower resolution run displays a much larger radius than its inter-
mediate and higher resolution counterparts.
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Fig. B.2. Density slices through the center of the domain for simulations
with a maximum refinement level of 25 (∆x = 2.93×10−4 AU, panel a),
26 (∆x = 1.46×10−4 AU, panel b), and 27 (∆x = 7.34×10−5 AU, panel
c). The scale bar in panel (c) applies to the other two panels. These slices
are shown at a moment when all three protostars have reached similar
masses (5.9 × 10−3 M� for panel (a), 5.75 × 10−3 M� for panels (b) and
(c)).

In Fig. B.3, we display the evolution of the radius (panel
a) and masses (panel b) of the protostars. We note here that
the higher resolution run (green curves) forms a smaller pro-
tostar, both in radius and in mass. In addition, it consistently
shows smaller radii than the `max = 25 and 26 runs at similar
masses. The radius of the protostar in the lower resolution simu-
lation fluctuates wildly, as the interior is poorly resolved in this
run. In addition, the protostar in this run shows a huge, spuri-
ous drop in mass by t ≈ 90 days, which demonstrates that it is
inadequate to describe its evolution. Since the radiative behav-
ior of the accretion shock front is identical in all three runs (i.e.,
extremely subcritical), the smaller radius in the higher resolution
run is explained by the more adequate description of turbulence
it provides. Indeed, we show in panel (a) of Fig. B.4 the veloc-
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Fig. B.3. Radius (panel a) and mass (panel b) displayed as a function of
time, where t = 0 marks the epoch of protostellar birth, for simulations
with a maximum refinement level of 25 (∆x = 2.93 × 10−4 AU, blue
curve), 26 (∆x = 1.46 × 10−4 AU, orange curve), and 27 (∆x = 7.34 ×
10−5 AU, green curve).

ity dispersions computed in radial bins inside the protostar. The
higher resolution run displays stronger velocity dispersions than
the other two runs, which provides a better turbulent transport
of heat. As a result, the plateau in the entropy profile is better
developed here than in `max = 25 and 26 runs, which shows that
the energy has been better redistributed. Hence, the radius of the
protostar in the higher resolution run is consistently smaller.

Finally, we display in Fig. B.5 the ratio of ortho-radial to
radial kinetic energies (see Eq. 24) of the protostars as a function
of time. The temporal evolution here is similar for the `max = 26
and 27 runs, but the `max = 25 once again appears to be incapable
of properly describing the turbulent motions within the protostar.

In summary, although this resolution study has shown that
our simulations are not converged, the differences between the
`max = 26 and `max = 27 runs are small enough for us to con-
clude that our results are sufficiently realistic for physical inter-
pretations. When taking into account the stringent time-stepping
involved in the `max = 27 run (which we could not integrate past
a dozen days), we have concluded that `max = 26 is the optimal
resolution choice.
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with a maximum refinement level of 25 (∆x = 2.93 × 10−4 AU, blue
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Fig. B.5. Kinetic energy of the ortho-radial flow compared to that of
radial flow inside the protostar as a function of time, where t = 0 marks
the birth of the protostar, for simulations with a maximum refinement
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Appendix C: Collapse with multigroup radiative
transfer

In order to test the robustness of our simulation’s results, which
uses a gray approximation for its radiative transfer, we have
conducted a second simulation with a multigroup description.
It possesses the same initial conditions; however, we now split
the [105; 1019 Hz] frequency range into four distinctive groups.
The results of the simulation are extremely similar to that of its
gray counterpart, as previously reported by the 1D calculations
in Vaytet et al. (2013).

Our choice of 4 groups was the result of significant mem-
ory constraints. Indeed, since our maximum refinement level is
26, this requires the allocation of around 1.5 TB of RAM mem-
ory, of which ≈ 915 GB are used by the AMR grid. Further-
more, such a memory cost meant that the 64 processing cores
had to be spread across 4 times as many computing nodes, which
increased the CPU communications burden. In addition to the
heightened computational load, the added communications bur-
den constrained our ability to integrate the simulation on longer
timescales.

Since protostars form with temperatures > 104 K, most of
the radiative energy is in the ultraviolet part of the electromag-
netic spectrum. This energy is later absorbed by the surrounding
gas and reemitted in the infrared. We thus chose to have both an
infrared and an ultraviolet-visible group, with two other radiative
groups bordering these two to avoid any energy omissions. The
frequency borders of each group are presented in Table C.1, and
the opacity meshes created for each of them using the previously
mentioned Delaunay triangulation process are presented in Fig.
C.1.

These meshes are very similar to the gray mesh (see Fig.
1); the dust destruction front and the subsequent atomic opacity
peak are both clearly visible except for the X-ray mesh (panel d),
where the destruction of the dust particles barely has a noticeable

effect. In addition, the X-ray mesh also contains a batch of trian-
gles at log(T ) ∼ 3.5, which is due to a lack of sampling points
in the Vaytet et al. (2013) dataset. However, since this radiative
group is the least prominent in terms of radiative energies, this
will have a minor effect on our simulation.

The results of this multigroup simulation are displayed in
Figures C.2 and C.3, where we compare it with its gray counter-
part. Fig. C.2 shows the luminosity of each radiative group (com-
puted using Eq. 17). We see that the total multigroup luminos-
ity (lime dash-dotted line) and the gray luminosity (black dotted
line) are very similar, albeit the location of the first core accretion
shock differs slightly (0.5 and 0.6 AU). This is due to a slightly
higher amount of enclosed radiative energy inside the first core
for the multigroup run (in turn due to a higher opacity for UV-
Visible photons), which causes its specific entropy to increase by
virtue of radiative heating from the second core accretion shock.

Unsurprisingly, the UV-Visible group dominates the lumi-
nosity output of the protostar, whereas the IR group dominates
everywhere else. At both first and second core shock fronts, the
luminosity of each radiative group spikes, although the X-ray
photons produced at these locations are quickly reprocessed by
the other groups.

Finally, the evolution of the properties of the protostar
formed in the multigroup run is compared to that of its gray
counterpart in Fig. C.3. We find that the radii, luminosities and
radiative efficiencies are extremely similar, although the mass
differs slightly. As mentioned previously, the first core in the
multigroup run has a slightly higher enclosed energy. This causes
the mass accretion rate unto the second core to be lower. Despite
the differing masses, the radii are very similar because of a sim-
ilar amount of specific entropy.

This allows us to conclude that the multigroup description
offers no major differences to its gray counterpart, a result which
is in agreement with Vaytet et al. (2013).
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Fig. C.1. Rosseland mean opacity meshes created for each radiative group in our multigroup simulation (see Table C.1). The temperature-density
distribution of all cells during the epoch of protostellar birth is overlaid in red.
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Table C.1. Frequency and corresponding wavelength borders of the 4
radiative groups used in our multigroup simulation.

Radiative Group [ν1; ν2] (Hz) [λ2; λ1] (m)

1: Radio [105; 3 × 1011] [3 × 103; 10−4]
2: IR [3 × 1011; 4.287 × 1014] [10−4; 7 × 10−7]

3: UV-Visible [4.287 × 1014; 3 × 1016] [7 × 10−7; 10−8]
4: X-ray [3 × 1016; 1019] [10−8; 3 × 10−11]

10 3 10 2 10 1 100 101 102

r [AU]

10 26

10 22

10 18

10 14

10 10

10 6

10 2

Lu
m

in
os

ity
 [L

]

Gray
Radio
IR
UV-Visible
X-ray
Ng

g = 1
Lg

Fig. C.2. Luminosity profiles displayed as a function of radius at the
epoch of the protostar’s birth for the gray radiative transfer simulation
(dotted black line) and its multigroup counterpart (colored solid lines).
The lime dash-dotted line is the total luminosity in the multigroup run.
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Appendix D: Comparison with a 2D simulation
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Fig. D.1. Radius of the protostar as a function of its mass: a comparison
of the results of this paper (black curve) with those of Bhandare et al.
(2020) (red curve).

Herein, we compare the results of our simulation with those
of the 1 M� 2D collapse calculations of Bhandare et al. (2020).
Since their calculations are similar to ours, this will allow us
to better assess what a three dimensional description of the gas
motion offers. To this end, we begin by studying Fig. D.1, which
shows the protostellar radius as a function of protostellar mass.
We see that protostar is consistently more compact than in the
2D calculation; it possesses a smaller radius for a given mass.
Since the radiative efficiency of the protostar is extremely low
in both simulations, this cannot be explained by any of the pro-
tostars radiating away more energy than the other. We explain
this difference in radii by comparing their radial entropy pro-
files in Fig. D.2: by the time the protostar reaches a mass of
≈ 1.76× 10−2 M�, the entropy plateau in the interior is achieved
in our 3D simulation, whereas it has yet to form in the 2D coun-
terpart. This allows us to conclude that the 3D description of the
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Fig. D.2. Comparison of the results of this paper (black curve) with
those of Bhandare et al. (2020) (red curve). The curves display the
specific entropy, averaged in radial bins and displayed as a function
of radius, at a moment in time where both protostars have a mass of
≈ 1.76 × 10−2 M�.

gas motion allows for more efficient entropy mixing, which reg-
ulates the radius of the protostar.

However, the entropy profile outside the second core is quite
different in our two simulations. This can be explained by the
different initial conditions. Indeed, Bhandare et al. (2020) have
used a Bonnor-Ebert sphere as their initial conditions, whereas
we have used a highly unstable uniform density sphere. This
results in a shorter first core lifetime in our simulation, and it
is accreted by the time our protostar has reached ≈ 1.76 M�. In
addition to this, the equation of state table used in both simula-
tions is different. This causes different behaviors in entropy, par-
ticularly inside the second Larson core since the Saumon et al.
(1995) EOS takes into account the ionization of He, whereas
the Vaidya et al. (2015) EOS used in Bhandare et al. (2020) does
not.
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Appendix E: Standing Accretion Shock Instability

Herein, we investigate wether or not the Standing Accretion
Shock Instability (SASI, Blondin et al. 2003; Scheck et al. 2004;
Foglizzo et al. 2007) could be the mechanism behind the onset
of turbulence within our protostar. This instability is known to
operate in core-collapse supernovae, where it causes them to
appear aspherical. Recently, Bhandare et al. (2020) put forth the
hypothesis that this instability could be at play in protostars,
where it could cause oscillations of the accretion shock. SASI
requires for feedback to occur between the central regions and
the accretion shock. Although our physical environment heavily
differs from that of a core-collapse supernova and we do not have
a proto-neutron star downstream of our second core accretion
shock, our protostar has a central region of highly dense, ionized
gas that repulses inward flow. In this sense, the central regions of
our protostar can communicate with the accretion shock through
acoustic feedback. In the 2D study of Bhandare et al. (2020), the
central regions (r < 10−2 AU) were a part of a reflexive inner
boundary, which can naturally provide feedback to the shock
front.

In order to investigate whether this mechanism is responsi-
ble for the generation of turbulence in our protostar, we study
our `max = 27 run presented in Appendix B due to its high spa-
tial and temporal resolution. Indeed, this run presents oscilla-
tions of the protostellar radius possibly caused by SASI. To this
end, we display in panel (a) of Fig. E.1 the amplitude of said
oscillations, computed as (R∗ − R∗)/R∗, where R∗ is the average
radius of the protostar over a given period. Here, we can clearly
see high amplitude, high frequency oscillations at protostellar
birth; however, their amplitude and frequency reduces over time.
This is more readily seen in the power spectrum of this curve
(panel b), which shows a high energy peak corresponding to a
period of ≈ 1.4 days, and a handful of lower energy low fre-
quency peaks. These oscillation periods of the protostellar radius
should be compared with the advection timescale tadv, computed
as (Foglizzo et al. 2007):

tadv =

∫ R∗

R∇

dr
|vr(r)| , (E.1)

where R∇ is the radius where the gas has effectively settled fol-
lowing its crossing of the accretion shock (i.e., vr has reached
≈ 0). Our estimate of tadv has yielded ≈ 3 days, which is about
twice as long as the oscillation period of the protostar. However,
as the protostellar radius grows, so too does tadv, which could
explain why the frequency of oscillations is reducing over time.
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Fig. E.1. Amplitude of oscillations of the protostellar radius in the
`max = 27 run (panel a), displayed as a function of time where t = 0
marks the birth of the protostar. Panel (b) displays the Fourier trans-
form of the curve in panel (a).

Although these measurements do not allow us to conclude
with certainty that SASI is operating in our protostar, they do
indicate that we are in the regime where it is theoretically
possible.
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Chapter 3

3.3 Paper II: Birth of circumstellar disks

In recent years, the main objective behind most efforts involved in studying the collapse
of dense cores has not been the protostar itself, but rather, the circumstellar disk. The
main idea being to produce a self-consistent model of the formation and evolution of
said disk. However, doing so requires one to omit the protostar from simulations, as
that would require a very stringent timestep that prohibits the study of the circum-
stellar disk across large enough timescales. As such, the inner-most regions relevant
to protostellar and circumstellar disk formation (< 1 AU) are often omitted in favor
of a sink particle, onto-which sub-grid physics are encoded. However, recent studies
(Machida et al. 2014; Vorobyov et al. 2019; Hennebelle et al. 2020b) have shown that
said sub-grid physics have a strong impact on the resulting properties of the circum-
stellar disk, be it during its formation or evolution. This implies that the star-disk
interaction wrapped into the sub-grid model has to be self-consistently modeled, and
calls for a concerted effort in which the protostar and circumstellar disk are jointly
studied.

After the publication of my first paper, I shifted my focus from the protostar to circum-
stellar disks. Although the spherically symmetrical calculation has delivered valuable
insights on the interior structure of the protostar and the radiative behavior of its ac-
cretion shock, it provide us with an incomplete description of the birth of protostars as
it does not account for angular momentum. In order to do so, we decided to introduce
an initially turbulent velocity vector field in the dense core. This is to account for
the fact that molecular clouds are highly turbulent structures (Larson 1981; Miville-
Deschênes et al. 2017) whose large scale turbulent motions cascade down to the scale
of dense cores. Although a survey of velocity dispersions inside these structures is cur-
rently lacking in the literature, case-studies have so far shown subsonic measurements
(Bergin & Tafalla 2007; Gaudel et al. 2020), and so we have chosen to include at most
transonic turbulence in our initial conditions.
Studying the star-disk interaction, as well as the radiative behavior of the protostar
in these conditions, had never been done before in the literature. The main reason
behind this being the stringent timestepping constraints that forced theorists to pre-
maturely stop their calculations as soon as the second Larson core had formed. During
this project, I ran a multitude of simulations with a variety of initial conditions in
which the initial amount of angular momentum in the dense core varied. In order
to alleviate timestepping constraints, while maintaining the extremely high resolution
and stringent refinement criterion required to study both the nascent protostar and its
circumstellar disk, we decided to omit magnetic fields from these calculations. This
has a physical justification; all non-ideal MHD simulations having reached the second
collapse stage in the literature report that magnetic fields are diffused by Ohmic dis-
sipation and ambipolar diffusion to the point where thermal pressure support vastly
outweighs magnetic pressure in high density gas (ρ > 10−11 g cm−3). As such, one
may describe the early evolution of the protostar to a reasonably high degree of fidelity
without magnetic fields, although one must keep in mind that the behavior at lower
densities is heavily affected by them.
Despite the absence of magnetic fields, each simulation required months of CPU wall
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time and at least 100 000 CPU hours in total. This brute-force approach allowed us to
describe the combined birth of the protostar and its circumstellar disk with unprece-
dented detail. The paper below, published in Astronomy & Astrophysics, presents its
findings.
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ABSTRACT

Context. Understanding circumstellar disks is of prime importance in astrophysics; however, their birth process remains poorly con-
strained due to observational and numerical challenges. Recent numerical works have shown that the small-scale physics, often
wrapped into a sub-grid model, play a crucial role in disk formation and evolution. This calls for a combined approach in which both
the protostar and circumstellar disk are studied in concert.
Aims. We aim to elucidate the small-scale physics and constrain sub-grid parameters commonly chosen in the literature by resolving
the star-disk interaction.
Methods. We carried out a set of very high resolution 3D radiative-hydrodynamics simulations that self-consistently describe the
collapse of a turbulent, dense molecular cloud core to stellar densities. We studied the birth of the protostar, the circumstellar disk,
and its early evolution (<6 yr after protostellar formation).
Results. Following the second gravitational collapse, the nascent protostar quickly reaches breakup velocity and sheds its surface
material, thus forming a hot (∼103 K), dense, and highly flared circumstellar disk. The protostar is embedded within the disk such
that material can flow without crossing any shock fronts. The circumstellar disk mass quickly exceeds that of the protostar, and its
kinematics are dominated by self-gravity. Accretion onto the disk is highly anisotropic, and accretion onto the protostar mainly occurs
through material that slides on the disk surface. The polar mass flux is negligible in comparison. The radiative behavior also displays
a strong anisotropy, as the polar accretion shock was shown to be supercritical, whereas its equatorial counterpart is subcritical. We
also find a remarkable convergence of our results with respect to initial conditions.
Conclusions. These results reveal the structure and kinematics in the smallest spatial scales relevant to protostellar and circumstellar
disk evolution. They can be used to describe accretion onto regions commonly described by sub-grid models in simulations studying
larger-scale physics.

Key words. stars: early-type – stars: evolution – stars: formation – stars: low-mass – stars: pre-main sequence – stars: protostars

1. Introduction

Circumstellar disks form as a result of the conservation of angu-
lar momentum during the collapse of gravitationaly unstable
pre-stellar cloud cores. Understanding the formation of these
disks and their subsequent evolution is of fundamental impor-
tance in astrophysics, as they are the birthplace of planets. This
task is, however, heavily impeded by numerous challenges in
observing star-forming regions, as the dense infalling envelope
obscures the nascent disk during the class 0 phase. As such,
most observational constraints come from more evolved class
I and II disks. From a theoretical standpoint, the prohibitive
time-stepping constraints in numerical simulations has made
it nearly impossible to self-consistently describe the evolution
of a newly formed circumstellar disk over a sufficiently large
timescale in order to compare it with observations. To circum-
vent these constraints, theorists have abandoned the descrip-
tion of the innermost regions (<1 AU) and instead use sink par-
ticles (Bate et al. 1995; Bleuler & Teyssier 2014) onto which
sub-grid physics are encoded. These particles interact with the
surrounding gas through self-gravity and accretion as well as
through radiative and mechanical feedback effects such as out-

? Movies are available at https://www.aanda.org

flows and stellar winds. The parameters of these particles, such
as their effective radius and accretion thresholds, have largely
been chosen on the grounds of educated guesswork. Although
necessary to study the global evolution of the disk, reducing the
inner regions (which contain the protostar) to a sub-grid model
can produce nonphysical results, especially when much of the
actual sub-grid physics that have been encoded remain poorly
constrained.

In this respect, Machida et al. (2014) investigated the effects
of sink parameters on the formation of circumstellar disks. They
found that the choice of the sink radius and its accretion thresh-
old can, in conjunction with the physical model employed,
dictate the formation and evolution of a circumstellar disk.
Vorobyov et al. (2019) led a similar study but focused on the
mass transport rate from the sink cell to the protostellar surface.
They found that simulations with a slower mass transport rate
would form more massive disks and that the accretion rate onto
the protostar displayed more episodic behavior.

Finally, Hennebelle et al. (2020a) studied the influence of the
sink accretion threshold on the global evolution of the disk. They
found that while the mass contained within the sink is insensi-
tive to this parameter, the disk radius and mass exhibit a strong
sensitivity to it. Indeed, they found that the disk mass increases
significantly at higher accretion thresholds.
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From these empirical studies, it has become clear that a
deeper understanding of the disk’s inner boundary is a nec-
essary endeavor to pursue in order to understand the global
disk evolution. Of course, this is not the only field of applica-
tion of sink particles. Much larger scale simulations that seek
to provide a protoplanetary disk or stellar population synthe-
sis by modeling the collapse of an entire molecular cloud,
such as those of Bate (2012, 2018), Hennebelle et al. (2020b),
Lebreuilly et al. (2021, 2024a,b), Grudić et al. (2022), also rely
on sink particles for their inclusion of small-scale physics. This
also applies to simulations studying the high-mass regime (e.g.,
Krumholz et al. 2009; Kuiper et al. 2010; Mignon-Risse et al.
2021a,b, 2023; Commerçon et al. 2022; Oliva & Kuiper 2023).
However, understanding the inner boundaries of circumstellar
disks requires a self-consistent description of the inner regions
in which one must model the formation of the protostar fol-
lowing a second gravitational collapse triggered by the disso-
ciation of H2 molecules and its subsequent interaction with
the disk. Although Larson (1969) had pioneered second col-
lapse calculations in spherical symmetry, the field has since
developed ever more robust codes to tackle the problem in
the three dimensions necessary to describe the formation of a
circumstellar disk while including ever more complex physics
such as radiative transfer (e.g., Whitehouse & Bate 2006; Bate
2010, 2011; Ahmad et al. 2023) and magnetic fields under the
ideal and non-ideal approximations (Machida et al. 2006, 2007,
2008, 2011; Machida & Matsumoto 2011; Tomida et al. 2013,
2015; Bate et al. 2014; Tsukamoto et al. 2015; Wurster et al.
2018, 2021, 2022; Vaytet et al. 2018; Machida & Basu 2019;
Wurster & Lewis 2020). Although the latest studies struggle to
integrate across large timescales due to stringent time-stepping
constraints, an important result they’ve shown is that the higher
density gas (ρ > 10−10 g cm−3) is poorly magnetized due to
magnetic resistivities, thus placing the magnetic pressure orders
of magnitude below the thermal pressure. As such, in addi-
tion to greatly alleviating numerical constraints, omitting mag-
netic fields allows one to describe the inner sub-AU region
with reasonably high fidelity prior to the birth of a stellar
magnetic field through a dynamo process. Additionally, these
studies have not studied in depth the interaction between the
nascent protostar and its surrounding disk, mostly due to the
prohibitive time-stepping. Nevertheless, they have offered valu-
able insight regarding the system’s structure following the sec-
ond collapse phase. Indeed, they seem to indicate that the inner
regions are characterized by a density plateau in the innermost
region (<10−2 AU), which then transitions toward a power-law
distribution (Saigo et al. 2008; Machida & Matsumoto 2011;
Tsukamoto et al. 2015; Vaytet et al. 2018).

In this paper, we investigate the inner boundaries of newly
formed circumstellar disks using high resolution 3D radiation-
hydrodynamics (RHD) calculations of the collapse of a dense
molecular cloud core to protostellar densities under the gray flux
limited diffusion approximation (FLD). To this end, we modeled
the collapse of the pre-stellar core, the formation of a first hydro-
static Larson core, the second gravitational collapse triggered by
the dissociation of H2 molecules, and the subsequent early evo-
lution of the inner regions. Particular attention was given to the
interaction between the nascent protostar and the disk and how
such a process evolves over time.

2. Model

We carried out our simulations using the RAMSES (Teyssier
2002) adaptive mesh refinement (AMR) code and the same setup

employed in Ahmad et al. (2023) but with a notable difference
being the presence of angular momentum in the system through
the inclusion of an initially turbulent velocity vector field param-
eterized by a turbulent mach number Ma. Commerçon et al.
(2011, 2014) and González et al. (2015) implemented FLD in
the code. We used the equation of state of Saumon et al. (1995)
and the opacity tables of Semenov et al. (2003), Ferguson et al.
(2005), and Badnell et al. (2005), which were pieced together
by Vaytet et al. (2013). The initial conditions consist of a uni-
form density sphere of mass M0 = 1 M�, initial temperature
T0 = 10 K, and a radius of R0 = 2.465 × 103 AU, thus yield-
ing a ratio of thermal to gravitational energy of α = 0.25. We
present four runs in the main body of this paper where the ini-
tial amount of turbulence varies: Ma = 0.2 for run G1, 0.4 for
G2, 0.8 for G3, and 1 for G4. Although Ma varies, the turbulent
seed does not. This means that run G4 has five times as much
initial angular momentum as G1. For comparative purposes, we
also ran two additional simulations, labeled G5 and G6. The
simulation of G5 possesses the same parameters as run G2 but
also includes solid body rotation in the initial cloud core, whose
ratio of rotational to gravitational energy is βrot = 10−2. Run G6
also contains the same parameters as G2, but it has a higher α
of 0.5.

We used the same refinement strategy as in Ahmad et al.
(2023); however, since angular momentum is present in the sys-
tem, the simulations do not require a resolution as stringent as
their spherically symmetrical counterpart, as the properties of
the protostar, such as its central density and radius, are easier to
resolve. Thus, we lowered the maximum refinement level `max to
25 in order to alleviate our time-stepping constraints, thus yield-
ing a spatial resolution of ∆x = 2.9 × 10−4 AU at the finest level
(the coarse grid is 643 cells, with `min = 6). Nevertheless, the
stringent refinement criterion yielded some of the best-resolved
disks in the literature. Indeed, the circumstellar disks in our sim-
ulations have [95−2.7 × 103] cells per Jeans length, with ∼107

cells within their volume.

3. Results

Our simulations cover the initial isothermal contraction of the
cloud, the birth of the first Larson core, the second gravitational
collapse, and the subsequent evolution of the star-disk system.
The physics at large scales (i.e., from the cloud core to the first
Larson core) have been thoroughly discussed in the literature,
and as such, they are only briefly covered in our paper. Below, we
focus our study on the behavior of the system in the innermost
regions that contain the protostar.

3.1. The dynamical range

Herein, we illustrate the full dynamical range covered by all of
our simulations using run G4 as an example. To this end, we
display in Fig. 1 column densities at various scales (panels a–
d), and slices through the center of the domain displaying den-
sity (panels e–f), radiative flux (panels g–h), and temperature
(panels i–j). Panel a displays the column density at the scale
of the dense molecular cloud core. Here, a filamentary struc-
ture of size '103 AU formed by gravo-turbulence can be seen
(Tsukamoto & Machida 2013), and within this structure a first
Larson core is born. In this run, the first core lifetime is sig-
nificantly extended thanks to ample angular momentum, which
reduces the mass accretion rate onto it. As such, a disk was able
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Fig. 1. Visualization of the entire dynamical range covered in our simulations. The figure displays data taken from the final snapshot of run G4.
Panels a–d show the projected gas column density along the y direction across multiple scales, ranging from ≈9.35 × 103 AU in panel a to 3 AU in
panel d. Panels e–j are slices through the center of the domain along the y direction for panels e, g, and i, and along the z direction for panels f, h,
and j. These display density (panels e and f), radiative flux (panels g and h), and temperature (panels i and j). The color bars in panels e and f are
centered on the density of the inner disk’s shock front (≈1.5 × 10−9 g cm−3 at this snapshot).

to form around it1, as seen in panel c. Within this disk, the sec-
ond collapse takes place and gives birth to the protostar and the
circumstellar disk, as seen in the lower panels.

3.2. Protostellar breakup

We begin by describing the structure of the system shortly after
the onset of the second gravitational collapse using Fig. 2. We

1 In the case of runs G1 and G2, no disk was formed at these scales
prior to the onset of the second collapse. This is discussed further in
Sect. 3.5.

use data from run G6 as an example, although the evolutionary
sequence displayed here applies to all other runs as well. The top
row of this figure (panels a–d) displays the local radiative flux,
an excellent tracer of shock fronts. It is computed as

Frad = −cλ∇Er

ρκR
, (1)

where c is the speed of light, λ the Minerbo (1978) flux lim-
iter, Er the radiative energy, ρ the gas density, and κR the Rosse-
land mean opacity. At a shock front, kinetic energy is converted
into radiation and as such it is accompanied by an increase in
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Fig. 2. Demonstration of the breakup of the protostar due to excess angular momentum. The data is taken from run G6. Each column represents a
different time, where t = 0 marks the birth of the protostar. Panels a–d are slices along the z direction through the center of the domain that display
the local radiative flux emanating from the cells (see Eq. (1)). The scale bar in panel a applies to panels b–d as well. The mass of the protostar
at each snapshot is displayed in the top-right corners of panels a–d. Panels e–h display 2D histograms binning all the cells in our computational
domain, which show the distribution of azimuthal velocities divided by

√|gr|r with respect to radius. The color code in the histograms represents
the co-latitude θ divided by π, where θ/π = 0.5 corresponds to the equator and θ/π = 1 (respectively 0) corresponds to the south (respectively
north) pole. The dotted black lines in panels e–h display vφ/vcrit = 1 (see Eq. (2)). An animated version of this plot is available online.

radiative flux. Hence, this quantity prominently displays accre-
tion shocks and spiral waves.

The bottom row of the figure (panels e–h) displays the
azimuthal velocity2 distribution of all cells in our computational
domain with respect to radius, which we have divided by the
critical velocity beyond which the centrifugal force exceeds the
radial component of the gravitational force:

vcrit =
√
|gr|r, (2)

where

gr = −∂φ
∂r
· (3)

Here, φ is the gravitational potential obtained through the
Poisson equation.

Once the gas has completed its dissociation of H2 molecules
and ample thermal pressure support is gathered, the second Lar-
son core (i.e., the protostar) is formed. At birth (first column),
the protostar is a thermally supported spherical object, and its
azimuthal velocities are well below vcrit. A mere eight and a half
days later (second column), the protostar has nearly doubled in
mass, and an equatorial bulge is now visible in panel b. This is
due to the fact that as the protostar accretes, it is also accumu-
lating angular momentum. Nevertheless, it is still rotating below

2 vφ was computed along the angular momentum vector of the gas
within 0.5 AU.

vcrit. A month later (third column), the outer shells of the proto-
star finally exceed vcrit, after which material spreads outward and
transitions to a differential rotation profile in which the centrifu-
gal force is now the main counterbalance to gravity. The sus-
tained accretion ensures a constant flow of material within the
protostar exceeding vcrit.

3.3. An embedded protostar

The expulsion of material by the protostellar surface will natu-
rally lead to the formation of a circumstellar disk. Here, we study
how such a disk grows and evolves while analyzing the accretion
mechanism onto the protostar and the disk. To this end, we stud-
ied Fig. 3, which displays density slices through the center of the
computational domain for run G1 at different times. The veloc-
ity streamlines are color coded with the local radial mass-flux
−ρvr, where red colors denote inward transport of material, blue
colors denote outward transport, and white signifies very little
transport. The evolutionary sequence displayed here applies to
all other runs.

Panels a and f display the system once temperatures exceed
2000 K and the dissociation of H2 is triggered, where the gas
spirals inward almost isotropically. The central region accumu-
lates material quickly, and once ample thermal pressure sup-
port is gathered, the protostar forms. We display in panels b
and g the structure of the system once the protostar reaches
breakup velocity. As the protostar’s surface begins expelling

A90, page 4 of 17



Ahmad, A., et al.: A&A, 687, A90 (2024)

To
p-

Do
wn

 v
ie

w

a

t = -43.12 days

0.2 AU

b

t = 0.00 days

c

t = 94.36 days

d

t = 268.26 days

e

t = 365.88 days

Ed
ge

-O
n 

vi
ew

f g h i j

10 8 10 7 10 6 10 5 10 4

 [g cm 3]

101 100 10 1 10 2 10 3 0 10 3 10 2 10 1 100 101

vr [g cm 2 s 1]

Fig. 3. Top-down (top row, panels a–e) and edge-on (bottom row, panels f–j) slices through the center of the domain of run G1 displaying density
and velocity streamlines. The color coding in the velocity streamlines displays the local radial mass flux −ρvr. Each column displays a different
epoch, where t = 0 (panels b and g) corresponds to the moment of protostellar breakup. The scale bar in panel a applies to all other panels. An
animated version of this plot is available online.

material, a disk immediately forms afterward, and as time pro-
gresses, an increasing amount of material collides with the disk
instead of the protostar, thus causing the former to grow sig-
nificantly over time. Hereafter, we refer to this newly formed
circumstellar disk as the inner disk (in accordance with the
terminology of Machida & Matsumoto 2011). In panel d, we
observed the development of spiral waves, which seem to have
subsided into near-circular waves in panel e3 We note that dur-
ing this phase, the accretion timescale of the disk (Md/Ṁd ∼
10−2 M�/10−2 M� yr−1 = 1 yr) is shorter than its dynamical
timescale (2πRd/vφ ∼ 2π × 1 AU/3 km s−1 ≈ 10 yr). This means
that any angular momentum redistribution process within the
inner disk occurs on longer timescales than accretion. Thus,
accretion is the dominant process behind the expansion of the
disk.

We now turn to studying the accretion process with the aid
of the streamlines in Figs. 3 and 4, which displays the radial
mass flux in slices through the center of the domain. In addi-
tion, we display unbroken velocity vector field streamlines in
Fig. 5 at a curated moment. Although the polar regions initially
bring a large amount of material to the central protostar, the
polar reservoir of gas is quickly depleted and by t ≈ 268 days
(fourth columns and onward of Figs. 3 and 4), very little mass is
accreted through the poles. Indeed, most of the material landing
at the protostellar surface is sliding on the inner disk’s surface,
as its velocity component normal to the disk surface is not strong
enough to break through the shock front. We note, however, that
some material landing on the disk surface can sometimes break
through the shock front and is then transported into the inner
disk, as can be seen in panel b of Fig. 5. The previously men-

3 The gravitational stability of the inner disk is discussed in Sect. 3.6.

tioned spiral waves can be seen transporting material radially in
panels d and e. This is more apparent in Fig. 6, which displays
the radial mass flux averaged in radial bins and measured sepa-
rately for both the upper layers of the disk and its main body for
all our runs. One can see that in all runs and across all radii, the
upper layers of the disk have a strictly positive radial mass flux,
whereas the main body shows alternating inflows and outflows
of material.

What is most visually striking from the edge-on views is the
vertical extent of the disk: it is substantially flared, giving it the
shape of a torus. This is more so apparent in the 3D render-
ing of the system displayed in Fig. 7. The inner disk’s surface
(rendered in blue) completely engulfs the protostar (rendered in
green). Figure 7 also displays the 3D velocity streamlines, which
show that the material accreted through the poles carries with it
angular momentum as the gas is spiraling inward. The cross-
sectional slices in the figure display the radiative flux, which
reveals shock fronts and spiral waves. Interestingly, there does
not seem to be any shock fronts separating the protostar from
the inner disk (barring the spiral waves). This means that the
accretion shock envelopes both the protostar and the inner disk,
and the two act as a continuous fluid system. As such, differen-
tiating the protostar and the inner disk is rather difficult, but the
rotational profiles seem to indicate that the protostar is in solid
body rotation and the inner disk exhibits differential rotation4.
All other runs have displayed an identical structure of the inner
disk.

4 See Appendix A for an overview of how each object was defined.
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Fig. 4. Same as Fig. 3 but displaying only the local radial mass flux −ρvr in order to better demonstrate how accretion occurs in the star and inner
disk system. An animated version of this plot is available online.

3.4. A convergent structure

We display in Figs. 8 and 9 the radiative flux in slices through
the center of the domain for runs G1−G6 at a moment in time
where the inner disk has reached a radius of ≈0.5 AU. We note
the almost identical structure of the inner disk in all runs: it is
toroidal and highly flared. We also note that run G3 (panels c
and q) displays a strong eccentricity, as the outer disk that formed
around the first Larson core in this run was already highly eccen-
tric prior to the second collapse.

In the top-down slices (panels a–d), we notice ripples in
radiative flux. These are spiral waves which have relaxed into
nearly circular perturbations. We note that runs G1 and G2 have
stronger spirals waves (i.e., the radiative flux emanating from
them is stronger) due to their higher mass. (For a more in-depth
analysis of these spiral waves, see Sect. 3.6).

An interesting observation from panels e–h of Fig. 8 is the
prominence of the radiative flux along the poles. Indeed, the
polar region is much less dense than the equator, which causes
the radiative flux to escape much more easily along this direc-
tion. This also causes the gas to heat up in the polar direction5.

3.5. Evolution

Having ascertained the structure of the system in the innermost
regions following the second gravitational collapse, we follow
the temporal evolution of the inner disk with the aid of Fig. 10.
The properties of the inner disk once it has reached a radius of
1 AU are of particular interest, as that is the most commonly cho-
sen sink radius.

First, we point out the different evolutionary history of each
simulation in panel a. This figure displays the maximum den-
sity in our computational domain as a function of time since the
birth of the first core. The moment in which each curve exhibits
a sharp rise in central density corresponds to the onset of the sec-

5 The radiative behavior of the system is studied in Sect. 5.

ond gravitational collapse. Here, we observed clearly that sim-
ulations with higher initial amounts of angular momentum have
a delayed onset of second collapse, as the additional centrifugal
support significantly extends the first core’s lifetime by reducing
its mass accretion rate. In runs G3, G4, G5, and G6, the first core
lifetime is long enough for it to have a disk built around it such
that the inner disk forms within a disk (Machida & Matsumoto
2011). Despite the differing evolutionary histories, the resulting
properties of the inner disk, displayed in panels b, c, e, and f,
show remarkable similarity. Indeed the temporal evolution of the
inner disk equatorial radius Rd (panel f), shows very little spread.
The specific angular momentum of the inner disks, displayed
in panel e, also exhibit striking similarity. This shows that the
amount of specific angular momentum in the inner disk is inde-
pendent of the initial amount of angular momentum in the parent
cloud core, a result that is in agreement with Wurster & Lewis
(2020)’s non ideal MHD and hydro simulations. Furthermore,
the entirety of the angular momentum budget of the first core is
found within the inner disk and protostar after it is accreted.

The curves in panel c display the inner disk’s mass (Md),
which exhibit the same evolutionary trend and Md(1 AU) ∈
[1.634 × 10−2; 2.755 × 10−2] M�. The mass of the protostar
(panel d), although very similar in runs G1−G4, has runs G5−G6
as outliers since M∗ is about '40% larger in these runs. Interest-
ingly, M∗ also seems to be decreasing in most runs, meaning that
the protostar is shedding its mass to the disk due to excess angu-
lar momentum. The notable exception is run G1, in which the
protostar’s mass is increasing due to strong gravitational torques.

Finally, we turn our attention to panel b, which displays the
density of the inner disk’s equatorial shock front (ρs). We mea-
sure this quantity along the equator since that is the region where
most of the incoming mass flux lands on the inner disk (as shown
in Fig. 3). As such, this quantity is an equivalent to the accre-
tion threshold used in sink particles (nacc). We report ρs(1 AU) ∈
[5.35 × 10−10; 2 × 10−9] g cm−3. The most commonly adopted
accretion threshold in the literature is 1.66×10−11 g cm−3 (nacc =
1013 cm−3). We thus suggest higher values of nacc when possible
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Fig. 5. Unbroken velocity vector field streamlines of run G1 at t ≈
322 days after the birth of the inner disk illustrating the dynamics of
accretion onto the disk and protostar in a top-down (panel a) and edge-
on (panel b) view. The scale bar in panel b applies to panel a as
well. An animated version of these streamlines, made using windmap
(https://github.com/rougier/windmap) is available online.

for studies employing sink particles whose radius is 1 AU. How-
ever, we acknowledge that this can significantly increase the
numerical cost of simulations, and thus might be too constrain-
ing for certain studies, particularly those that aim for very long
temporal evolution.

The reason for such a convergence in the inner disk proper-
ties is the first core itself. As discussed in Ahmad et al. (2023),
this hydrostatic object halts any inward accretion until tempera-
tures can exceed the H2 dissociation temperature of 2000 K, after
which the second collapse ensues. As such, the mass accretion
rate asymptotically reaches c3

s/G (∼10−2 M� yr−1, Larson 1969;
Penston 1969) independently of initial conditions, provided that
a first core forms. The small spread we observed in Fig. 10 is the
result of our turbulent initial conditions, as no discernible trend
can be inferred from their differences. We expect the large-scale
initial conditions to play a more significant role later on when the
entirety of the first Larson core is accreted and that mass accre-
tion rates onto the innermost regions are dictated by transport
processes within the disk and by the infall of material onto said
disk.

We note that in the case where an outer disk exists prior to
the onset of a second collapse, the inner disk will simply merge
with it (Machida & Matsumoto 2011). This was the case for runs
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Fig. 6. Average radial mass flux measured in radial bins for runs G1
(blue), G2 (orange), G3 (green), G4 (red), G5 (black), and G6 (magenta)
at a moment in time where the inner disk has reached ≈1 AU in radius.
Only cells belonging to the inner disk were considered (see Appendix A
for information on how the inner disk was defined). The solid lines rep-
resent measurements made on the upper layers of the disk, whereas the
dashed lines represent measurements made in its main body.

Fig. 7. Three-dimensional view of the inner disk and protostar at a
moment in time when the former has reached ≈0.5 AU in radius. The
blue structure is the surface of the inner disk. The inner r < 0.1 AU
region has been cut out in order to reveal the flow onto the proto-
star (rendered in green). The white curves are velocity vector field
streamlines launched along the poles to reveal polar accretion. The
bottom, left, and right panels are cross sections through the center
of the domain displaying the radiative flux. The visualized volume is
1.6×1.6×1.6 AU3. An animated version of this plot is available online.

G3, G4 and G5. The first core lifetime in runs G1 and G2 was not
long enough for it to gather enough material around it to form a
disk.

3.6. Gravitational stability of the inner disk

The existence of such a massive circumstellar disk naturally begs
the question of whether it will undergo fragmentation or not. In
order to determine the gravitational stability of the inner disk,
we use the classical Toomre Q parameter (Toomre 1964):

Q =
ωcs

πGΣ
, (4)
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Fig. 8. Slices through the center of the domain for runs G1, G2, G3, and G4 (respectively first, second, third, and fourth columns) showing the local
radiative flux in a top-down (top row, panels a–d) and edge-on (bottom row, panels e–h) view. The slices illustrate the structure of the accretion
shock as well as the presence of spirals in the inner disk (see Eq. (1)). The scale bar in panels d and h apply to all other panels as well. The slices
are shown at a moment in time where the inner disks have reached a radius of ≈0.5 AU. The mass of each inner disk is displayed in the top-right
corners of panels a–d.

where cs is the gas sound speed, Σ its surface density, and ω its
epicyclic frequency, defined as

ω2 =
1
r3

∂(r4Ω2)
∂r

, (5)

where Ω is the angular velocity of the gas. This parameter repre-
sents the ratio of the outward pointing forces on the gas, namely
the centrifugal and pressure gradient forces, to the inward point-
ing gravitational force. If Q < 1, the disk is unstable and a frag-
mentation is likely. We measure the sound speed and the angular
velocity by averaging along the vertical axis of the inner disk.

We display the real part of Q in top-down slices through the
center of the domain for run G1 in Fig. 11 at curated moments.
In panel a, we display the circumstellar disk at its birth, just
after the protostar exceeded breakup velocity and began shed-
ding its mass. This results in a ring of gas surrounding the pro-
tostar, whose Q value is above unity. In panel b, we display the
system just prior to the onset of the first large amplitude spiral
wave. Here, the Q parameter remains above unity in the inner-
most regions of the disk; however, an hourglass-shaped region
has Q < 1 at slightly larger radii. The ratio of inner disk mass
to protostellar mass has also increased by a factor ≈7. In panel
c, a coherent two-armed spiral wave is launched from the center,
and it grows radially as it is sheared apart by differential rota-
tion when propagating outward. Finally, panels d and e show
that these spiral waves relax into nearly circular ripples as a
result of the increase in temperature. The Q values in panels
b–e hovers around unity throughout the disk, meaning that the
disk remains marginally stable against gravitational instabilities
despite its high mass relative to that of the protostar. This is due
to its very high temperature.

A recent numerical study by Brucy & Hennebelle (2021) has
shown that the fragmentation barrier of disks is quite blurry; it is
better described by a probabilistic approach and said probabili-
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Fig. 9. Same as Fig. 8 but for runs G5 and G6 (respectively first and
second columns).

ties strongly depend on how efficiently the disk is able to cool.
As such, the fragmentation of the disk is also set by the cooling
criterion. In our case, the inner disk is still strongly accreting,
and a considerable amount of accretion energy is absorbed by the
disk, particularly along the optically thick equator (this is shown
in Sect. 5). This ensures that the inner disk remains hot and thus
mostly stable against fragmentation despite its very high mass
relative to the protostar. The primary regulator of the inner disk
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Fig. 10. Temporal analysis of the inner disk in all our runs. Blue is for G1, orange for G2, green for G3, red for G4, black for G5, and magenta
for G6. Panel a provides the context in which the inner disk is born by displaying the central density’s evolution since the formation of the first
Larson core (defined as the moment where ρc > 10−10 g cm−3). Panels b–e respectively display as a function of the inner disk’s equatorial radius Rd
(analogous to time) the density of the inner disk’s equatorial shock front, the mass of the inner disk, the protostellar mass, and the specific angular
momentum of the inner disk. Panel f displays the evolution of the inner disk radius with respect to time, where t = 0 marks the moment of birth of
the inner disk. The gray dotted line in panels b–e marks Rd = 1 AU. (For information on how the inner disk was defined, see Appendix A).

temperature during this phase is the endothermic dissociation of
H2, which places γeff at ≈1.1.

4. Gas structure and kinematics

Herein, we provide a more quantitative analysis of the structure
and kinematics of the inner disk with the aid of Fig. 12. Panels a–
e of this figure display various quantities azimuthally averaged
in radial bins in the equatorial region, where the equator was
defined as the region in which θ/π ∈ [0.45; 0.55], where θ is the
co-latitude. The curves are shown at a moment in time in which
the inner disk has reached a radius of ≈1 AU.

Panel a displays the equatorial density curve, which exhibits
a plateau in the innermost regions (r < 10−2 AU) and a power
law tail6. This behavior has been described by all previous 3D
studies in the literature that employ either pure hydro or non-
ideal MHD. This density structure, as well as the radial velocity
curves displayed in panel b, suggest that no discontinuity in the
flow separates the protostar from the inner disk. The only way for
us to differentiate the two is by studying the rotational behavior
of the system: we observed an object in solid body rotation in
the inner-most regions ( j ∝ r2, panel d) and a transition to a
differential rotation profile (panel c).

4.1. Deviations from Keplerian rotation

We observed a significant deviation from Keplerian rotation
(vφ ∝ r−0.5) in the inner disk. Indeed, it seems that vφ ∝ r−0.3.

6 We note that the disk in which the protostar was born in run G6 had
fragmented prior to second collapse, and three first Larson cores exist
within it. This causes the density spikes seen at larger radii.

In order to explain such a difference, one must start by analyz-
ing the balance equation between the centrifugal, pressure, and
gravitational forces (Pringle 1981; Lodato 2007):

v2
φ

r
=

1
ρ

∂P
∂r
− gr, (6)

where P is the thermal pressure. By assuming a radial density
profile where ρ ∝ r−β and radial isothermality (∂c2

s/∂r ≈ 0), we
may write

v2
φ ≈ −grr − βc2

s , (7)

where cs is the gas sound speed. We may approximate gr from
the column density profile of the inner disk:

gr ' −GMenc(r)
r2 , (8)

where G is the gravitational constant and

Menc(r) = M∗ + 2π
∫ r

R∗
Σ(r′)r′dr′. (9)

Here, Σ is the disk’s surface density. We note that this is merely
an analytical estimate of gr, which is different from the true
potential computed in Eq. (3). Now let us assume a column
density profile of Σ ∝ r−ξ. This means that the grr term in
Eq. (7) scales with r−ξ+1, whereas the βc2

s term scales with
r−β(γ−1) (T ∝ ργ−1). From Fig. 12, we can write ξ ≈ 3/2 and
β ≈ 3. Additionally, γ ≈ 1.1 in the inner disk (panel e of
Fig. 12). Thus, grr ∝ r−0.5 and βc2

s ∝ r−0.3. This means that we
may expect stronger deviations from Keplerian velocity at larger
radii in the inner disk. At Rd = 1 AU, we have Md ∼ 10−2 M�
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Fig. 11. Top-down slices through the center of the domain of run G1 displaying the real part of the Toomre Q parameter (see Eq. (4)) at different
times. Here, t = 0 (panel a) corresponds to the moment of birth of the inner disk. Only cells belonging to the inner disk were used in the calculation
of Q. The ratio of the inner disk mass to protostellar mass is displayed on the bottom left of each panel. The scale bar in panel a applies to all other
panels. An animated version of this plot is available online.

and cs ∼ 1 km s−1. As such,
√

1 + βc2
s/grr ≈ 0.8, and we thus

expect the deviation from Keplerian rotation to be of the order
of (vφ − vK)/vK ≈ −20% (where vK =

√
GMenc/r). Panel g of

Fig. 12 shows us that these are reasonable approximations.
Note that what we call “Keplerian” rotation in the present

paper is different from its commonly adopted meaning in the
literature. Indeed, the literature defines the Keplerian velocity as
vK,lit =

√
GM∗/r; however, as the disk’s mass exceeds that of

the protostar by up to a factor of seven, the measured deviations
from vK,lit would be ∼100%.

4.2. Analytical description of the inner disk structure

Herein, we set out to provide an analytical description of the
structure of the inner disk, which is rather exotic by virtue of its
very high mass relative to that of the protostar, as well as its very
high temperature. This is not meant to be a full analytical devel-
opment, but rather, one that seeks to deepen our understanding
of the structure witnessed in our simulations. Namely, we seek
to understand why Σ ∝ r−3/2, and in turn provide an analyti-
cal prediction of nacc. To do so, we use as our starting point the
important result shown in Sect. 3.6, namely that Q ≈ 1 through-
out most of the inner disk. This allowed us to link the sound
speed cs and the disk’s column density profile Σ through

cs ≈ πGΣ

Ω
· (10)

We can write the following power-law descriptions of these two
quantities

Σ = Σ0

(
r

R∗

)−ξ
, (11)

cs = cs0

(
r

R∗

)−β(γ−1)/2

, (12)

where we have made use of the fact that ρ ∝ r−β. We note that Ω
is constrained by Σ through the equation

Ω '
√

G
r3

(
M∗ + 2π

∫ r

R∗
Σr′dr′

)
. (13)

This allowed us to write

Σ0 ' cs0

πG

√
GM∗

R3∗
· (14)

To describe Σ, one must thus first obtain the boundary values
at r = R∗ and r = 1 AU. Since Σ and cs are linked through
Eq. (10), this is equivalent to finding the boundary values of cs.
Our simulations indicate β ≈ 3, and γ ≈ 1.1 in the inner disk.
Hence, cs ∝ r−0.15. This allowed us to write

log
(

cs0

cs

)
=
β(γ − 1)

2
log

(
r

R∗

)
= 0.15 × log

(
r

R∗

)
· (15)

Since R∗ ∼ 10−2 AU,

cs0 = 100.3 × cs(1 AU) ≈ 2 × cs(1 AU). (16)

This means that when traveling from the protostellar surface to
r = 1 AU, cs reduces by a factor of approximately two. The tem-
perature of the inner disk is ∼103 K, hence cs(1 AU) ∼ 1 km s−1

and cs0 ∼ 2 km s−1. By using Eq. (10), we can link this boundary
condition to ξ:

(
cs

cs0

)2

=

(
r

R∗

)3−2ξ M∗
Menc

, (17)

⇒
(

cs

cs0

)2

=

(
r

R∗

)3−2ξ M∗
M∗ + 2π Σ0

R−ξ∗ (−ξ+2)

(
r−ξ+2 − R−ξ+2

∗
) · (18)

Numerically solving Eq. (18) for ξ such that (cs/cs0 )2 ≈ 1/4
yields ξ ≈ 1.38 (with M∗ ∼ 10−3 M�), which is close to the
value witnessed in most of our runs (≈3/2, panel h of Fig. 12).

Once we had a description of both Σ and cs, we could
describe the density profile with the aim of predicting nacc as

ρ =
Σ

2h
, (19)

where h is the disk scale height:

h =
cs

Ω
· (20)

Thus, this analytical framework provides ρ(1 AU) ≈ 5.37 ×
10−10 g cm−3 (nacc ≈ 3.23×1014 cm−3, when considering a mean
molecular weight of one). This result is within the bounds pro-
vided by the simulations ([5.35 × 10−10; 2 × 10−9] g cm−3), and
thus we consider it to be satisfactory.
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Fig. 12. Studying the structure and kinematics of the gas in our simulations. Panels a–e display a set of azimuthally averaged quantities along the
equatorial regions with respect to radius, where the equator was defined as the region where θ/π ∈ [0.45; 0.55] at a moment in time where the inner
disk has reached ≈1 AU in radius. Panel a displays the density, panel b shows the radial velocity, panel c presents the azimuthal velocity, panel
d shows the specific angular momentum, and panel e presents the temperature. Panel f displays the enclosed angular momentum profile. Panel
g displays the deviation from Keplerian rotation along the disk midplane. Panel h displays the column density profile of the inner disk, where
non-disk cells were masked.

4.3. Radial transport within the inner disk

Once we had an analytical framework with which we could
describe the inner disk, it was of interest to quantify the trans-
port of material within it. More specifically, we wished to
describe the transport processes using a simple alpha-disk model
(Shakura & Sunyaev 1973) and compare it with the measured
values within our simulations. A common approach in this
regard is to measure the stress tensors induced by turbulent fluc-
tuations and the self-gravity of the disk, respectively αR and αgrav
(e.g., Lodato & Rice 2004; Brucy & Hennebelle 2021; Lee et al.
2021). However, in our case, we found these measurements dif-
ficult to interpret, as the disk is awash with eccentric motions
(Lovascio et al., in prep.), turbulent eddies, spiral waves, and
erratically infalling material (see for example Fig. 5), which
resulted in unreliable values of αR and αgrav. Instead, we opted
for a simpler approach in which we attempted to fit an approxi-
mate analytical description of the transport within the inner disk
with the measured values of our simulations. The mass accretion
rate at any given radius in our simulations can be obtained using

Ṁs(r) = −2πrΣ〈vr〉, (21)

where 〈vr〉 is the vertically averaged radial velocity. We note that
the majority of the inward transport of material occurs in the
upper layers of the disk, as seen in Fig. 6. Along the midplane,
material tends to spread outward, causing negative mass accre-
tion rates. As such, when performing the vertical average of vr,
we weighed vr in two different ways:

〈vr〉z =
1

zmax − zmin

∫ zmax

zmin

vrdz, (22)

〈vr〉ρ =
1
Σ

∫ zmax

zmin

ρvrdz, (23)

where zmin and zmax are respectively the minimal and maximal
heights of the disk at a given radius and azimuth. 〈vr〉z will thus
be biased by the infall in the upper layers of the disk, whereas
〈vr〉ρ will be biased by the dense midplane.

The analytical estimate of the mass accretion rate is
(Shakura & Sunyaev 1973; Pringle 1981)

Ṁ(r) = 3πνΣ, (24)

where ν is the effective viscosity of the inner disk

ν =
αshc2

s

Ω
· (25)

Here, αsh is the Shakura & Sunyaev (1973) alpha which dictates
the vigour of radial mass transport. Using the equations devel-
oped in the previous section, we may write Eq. (24) as

Ṁ(r) = 3αsh
c3

s0

G

(
r

R∗

)−β(γ−1)−ξ+3/2 √
M∗

Menc
, (26)

⇒ Ṁ(r) = 3αsh
c3

s0

G

(
r

R∗

)−β(γ−1)−ξ+3/2

×
√√

M∗
M∗ + 2π Σ0

R−ξ∗ (−ξ+2)

(
r−ξ+2 − R−ξ+2

∗
) · (27)

We may obtain an estimate of the αsh parameter in Eq. (26) with
the aid of Fig. 13, which displays the mass accretion rate in our
simulations computed using Eq. (21) at a moment in time when
the inner disk radius has reached ≈ 1 AU. We measure Ṁs using
both 〈vr〉z (panel a) and 〈vr〉ρ (panel b). Using average stellar
parameters reported in the figure caption, we over-plot Eq. (26)
(solid gray lines). The figure shows that the vigour of inward
transport varies across all radii, and in the case of runs G2-6, the
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Fig. 13. Radial mass accretion rate within the inner disk for all runs
(solid colored lines) as a function of cylindrical radius and computed
using Eq. (21) at a moment in time when Rd has reached ≈1 AU. Only
cells belonging to the inner disk were used in the computation of Ṁs.
Panel a displays the measurements of Ṁs made using 〈vr〉z (Eq. (22)),
whereas panel b displays the same measurements made using 〈vr〉ρ
(Eq. (23)). The solid gray lines are analytical estimates of radial trans-
port computed using Eq. (26), with αsh = 10−1 (top), 5 × 10−2 (middle),
and 10−2 (bottom). The other parameters for the solid gray lines are
M∗ ≈ 7 × 10−3 M�; R∗ ≈ 3 × 10−2 AU; cs0 ≈ 5 km s−1; β ≈ 3; ξ ≈ 3/2,
and γ ≈ 1.1.

outer layers (r > 0.2 AU) of the inner disk have negative mass
accretion rates, meaning that material is mostly spreading out-
ward. In panel b, we saw that the transport of material in the
main body of the inner disk fluctuates wildly. Furthermore, any
inward transport in this region consistently has lower mass accre-
tion rates than in the upper layers of the disk (panel a). Indeed,
the upper layers of the disk have a mass accretion rate that can
be approximated by Eq. (26) with αsh ∼ 5 × 10−2.

We note, however, that Ṁs varies not only in space but also in
time, and so the value of αsh reported here is not valid through-
out the entirety of the class 0 phase. Indeed, once most of the
remnants of the first Larson core are accreted, and that the mass
accretion rate onto the star-disk system significantly reduces,
this will inevitably cause a decrease in αsh, as Ṁs is mainly
dominated by the infall and will thus drop by several orders of
magnitude. We would thus have a disk whose angular momen-
tum transport is very weak, with αsh ∼ [10−5; 10−3], but whose
mass is significantly higher than that of the protostar. In addi-
tion, panel d of Fig. 10 shows that despite the inward trans-
port of material within the inner disk, the protostellar mass is
decreasing in most runs as a result of excess angular momen-
tum. This allowed us to conclude that although the inner disk
can be described by the physics of alpha disks, such a descrip-
tion is a first-order approximation whose results are not entirely
reliable.

5. Radiative behavior

Although the protostar has not reached the temperatures required
for fusion yet (>106 K), it will dominate the radiative output of

the system by virtue of its high temperature and its accretion
luminosity. A quantitative analysis of said radiative behavior is
seldom provided in the literature, and it is the purpose of this
section.

To this end, we first begin by providing a qualitative
overview of the radiative behavior of the system at medium
(i.e., 102 AU) scales. As discussed previously, the structure of
the accretion shock is rather complex, as it envelopes both the
protostar and the inner disk. Nevertheless, the polar accretion
shock, as seen in the bottom rows of Figs. 8 and 9, produces
the majority of the radiative flux. In addition, the density cav-
ity along the poles allows said radiation to escape much more
easily than along the optically thick equator. This is reflected in
Fig. 14, which displays the radiative flux emanating from each
cell in edge-on slices across the center of our domain at curated
moments for run G5. The protostar is born embedded within
a disk that formed around the first Larson core (panel a). As
time progresses, the radiation produced at the protostellar accre-
tion shock escapes and brightens the polar regions significantly
(panels b–d). However, the equatorial regions remain dark as the
radiative flux struggles to pierce through the highly opaque disk.
As such, the disk is almost unaffected by the protostar’s radia-
tion.

We now turn to providing a quantitative analysis of the radia-
tive behavior of the protostar and inner disk. To do so, as in
Vaytet et al. (2018), Bhandare et al. (2020), and Ahmad et al.
(2023), we compare two quantities: the radiative flux just
upstream of the accretion shock (Frad, see Eq. (1)), and the
incoming accretion energy flux. However, since the shock front’s
structure is complex, we measure these quantities in only four
directions: north-south along the poles, and east-west along the
equator (see panel a of Fig. 15):

Facc,pol ' −ρvr
GMenc(R∗)

R∗
− Evr − Pvr − ρv

3
r

2
, (28)

Facc,eq ' −ρvr
GMenc(Rd)

Rd
− Evr − Pvr − ρv

3
r

2
, (29)

where R∗ (resp. Rd) is the protostellar (resp. inner disk) radius,
E the gas internal energy, P its thermal pressure, and

Menc(r) = 4π
∫ r

0
ρr′2dr′. (30)

This allowed us to define the radiative efficiency as

facc,pol ≈
Frad,pol

Facc,pol
, (31)

facc,eq ≈
Frad,eq

Facc,eq
· (32)

These are approximate measurements of the radiative efficiency
of the accretion shock because the radiative flux also contains the
cooling flux emanating from the protostellar interior, although
the later remains smaller than that produced at the accretion
shock because of the low temperature of the protostar (∼104 K)
prior to deuterium burning.

We display in panels b and c of Fig. 15 the resulting mea-
surements of facc,pol and facc,eq obtained through ray-tracing. A
schematic drawing displaying the location at which each quan-
tity was measured is presented in panel a. In contrast to spher-
ically symmetrical calculations, the radiative efficiency of the
accretion shock displays a strong anisotropy: the polar accretion
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Fig. 14. Edge-on slices through the center of the domain displaying the local radiative flux at different times (see Eq. (1)). Here, t = 0 (panel a)
corresponds to the moment of protostellar birth. The data is taken from run G5. The scale bar in panel a applies to all other panels. An animated
version of this plot is available online.
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Fig. 15. Quantitative analysis of the radiative behavior of the accretion shock. Panel a is a schematic representation of the star and inner disk
system, where the solid line is the location of the accretion shock that envelopes both the protostar and the disk. The dashed lines represent four
rays launched from the center of the system along which the location of the accretion shock is found and its radiative efficiency measured just
upstream from it (numbered red dots). The resulting measurements are presented in panels b and c. North and South (respectively solid and dashed
lines in panel b and East and West (respectively solid and dashed lines in panel c are shown for all simulations. These display the polar and
equatorial radiative efficiencies (respectively facc,pol and facc,eq; see Eqs. (31) and (32)).

shock (panel b) is much more efficient than its equatorial coun-
terpart (panel c). Indeed, the polar shock front reaches supercrit-
icality ( facc,pol = 1) in less than 2.5 years for most runs, whereas
facc,eq < 1 throughout all simulations. This is due to the polar
density cavity that allows the accretion shock to shine into an
optically thin medium, whereas the equatorial accretion shock
remains optically thick due to the remnants of the first Larson
core and the presence of an extended outer disk around it.

The drop in facc,eq seen in most runs (e.g., at t ≈ 1.2 yr for
run G1) is due to the equatorial shock front expanding out of
the opacity gap, a region where temperatures are high enough to
sublimate dust (see Fig. 1 of Ahmad et al. 2023). This causes the
shock front to shine into a region of higher opacity, which in turn
reduces its luminosity. Eccentric inner disks can also cause an
east-west anisotropy, as is most apparent in run G3. In contrast,

we witness very minor anisotropies when comparing north-south
radiative efficiencies.

The low radiative efficiency of the equatorial shock front has
an important consequence on the structure of the inner disk: as it
accretes, the majority of the accretion energy is dumped into its
thermal budget, thus causing it to maintain a high temperature
and to swell along the vertical extent.

6. Discussions

6.1. The star-disk structure

In the common star formation paradigm, the protostar is often
seen as a standalone object wholly separate from the circumstel-
lar disk due to an accretion shock separating the two. Our results
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show that such a boundary does not exist: the transition from
the protostar to the inner disk is a smooth one, and the two act
as a continuous fluid system. This means that until either torque
mechanisms transport sufficient material inward, or a protostel-
lar magnetosphere arises, the protostar and the inner disk will
continue to behave as a continuous fluid system.

Unfortunately, obtaining observational constraints on the
structure of the system in such a young and deeply embed-
ded object is very difficult, but two recent studies by Laos et al.
(2021) and Le Gouellec et al. (2024) seem to be offering hints
on the accretion mechanism during the class 0 phase. Whereas
Laos et al. (2021) argues for magnetospheric accretion similarly
to class I objects by basing their arguments on the similar shapes
of the Brγ line profiles, Le Gouellec et al. (2024) additionally
analyzed the velocity profiles of these lines which exhibited
clear differences. Based on this result, they concluded that the
accretion mechanism in class 0 sources must be of a different
nature. Additionally, they report very vigorous accretion unto the
central regions. These observations are an indirect probe of the
structure of the system following the second collapse. If a stel-
lar magnetosphere cannot be inferred from them, then we argue
that a structure similar to that described in this paper may be
present.

6.2. Toward an eventual fragmentation

Although our analysis of the gravitational stability of the inner
disk indicates that it is currently marginally stable against gravi-
tational instabilities, it is also in a transient state in which it main-
tains an incredibly high temperature through accretion. This is
by virtue of the low radiative efficiency of the inner disk’s shock
front. The protostar, as shown in Sect. 5, contributes almost noth-
ing to heating the inner disk because it is currently embedded
within it and the majority of its radiative flux escapes along the
poles. One can imagine that such a disk will inevitably cool
down once accretion subsides, and thus would be much more
prone to fragmentation. The high mass budget of the inner disk
also indicates that such fragmentations can occur multiple times,
and thus lead to the formation of multiple star systems, or per-
haps of Jupiter-like planets in close proximity to the central
star.

6.3. Caveats

Although the radiative-hydro approximation is valid for the
timescales described here, this obviously cannot be the case on
longer timescales, as the stellar magnetic field will undoubt-
edly increase once a dynamo process begins. Furthermore, the
hot, dense, and highly turbulent inner disk may also gener-
ate a dynamo process (Balbus & Hawley 1991; Wardle 1999;
Lesur et al. 2014; Riols & Latter 2019; Deng et al. 2020). The
onset of strong magnetic fields will bring about outflows and
jets, as well as induce strong magnetic torques that can transport
material inward and also reduce the rotation rate of the protostar
to observed values in more evolved systems (∼10% of breakup
velocity, Hartmann & Stauffer 1989; Herbst et al. 2007). These
will likely heavily influence the evolution of the system in the
innermost regions. Nevertheless, the simulation presented in
Machida & Basu (2019) was integrated for 2000 years after pro-
tostellar birth with non-ideal MHD, and their results seem to
indicate that ρs(1 AU) ∼ 10−9 g cm−3 (see their Fig. 13). Their
protostar also seems to progressively separate from the inner
disk (see panels m–p of their Fig. 5 and vr in their Fig. 11), likely

as a result of magnetic torques. Although state of the art non-
ideal MHD simulations indicate that thermal pressure support far
outweighs its magnetic counterpart in circumstellar disks (e.g.,
Machida et al. 2010; Vaytet et al. 2018; Machida & Basu 2019;
Lee et al. 2021), magnetic torques likely outweigh turbulent vis-
cosity or gravitational torques (as quantified by Machida & Basu
2019).

In addition, although we notice relatively little spread in our
results, more exhaustive constraints on the inner boundaries of
circumstellar disks can be obtained by exploring a more varied
range of M0, α, and βrot. This was not done due to computa-
tional constraints, as the simulations are expensive to run at such
high resolution (each run used at least 100 000 CPU hours in
total).

6.4. Consequences on global disk evolution scenarios

As a result of the high values of nacc hereby reported, the
mass of circumstellar disks in numerical simulations may
have been underestimated by about an order of magnitude
(Hennebelle et al. 2020a). This appears to be inconsistent with
observations of class 0 disks, which report lower disk masses
of ∼10−2 M� (Tobin et al. 2020). We note, however, that a recent
study by Tung et al. (2024) has found that class 0 disk masses are
routinely underestimated with current observational techniques.
Nevertheless, the results indicate that the disk is very massive
at birth, and naturally one must question how such a disk might
evolve over time.

As such, we put forward two speculative evolutionary sce-
narios that we believe to be possible. The first scenario rests on
the previously discussed fragmentation of the disk; as accretion
subsides and the disk cools, it will become more prone to grav-
itational instabilities. Should the inner disk fragment, a signifi-
cant amount of angular momentum could be extracted from the
system.

Another scenario would rest on the strength of magnetic
fields in the inner disk. Perhaps the results of current state of
the art papers that report high thermal to magnetic pressure
ratios are overestimating the strength of magnetic resistivities
in the gas whose density exceeds first Larson core densities
(ρ > 10−13 g cm−3), and thus would be underestimating the mag-
netic field strength within the protostar’s and inner disk’s pre-
cursor. This is in light of new studies (Lebreuilly et al. 2023;
Kawasaki & Machida 2023; Tsukamoto et al. 2023; Vallucci-
Goy et al., in prep.) that cast doubt on the validity of the MRN
(Mathis-Rumple-Nordsiek, Mathis et al. 1977) dust size distri-
bution used in said state of the art papers. In the case where the
resistivities inside the first Larson core are overestimated, we
would expect stronger coupling within the gas prior to hydrogen
ionization. Although the ratio of thermal to magnetic pressure is
still expected to greatly exceed unity within the inner disk, this
would undoubtedly increase the strength of magnetic torques
and cause a more central distribution of material, in which the
protostar quickly exceeds the inner disk’s mass and separates
itself from it. However, simulations employing MRN resistivities
create disk radii in broad agreement with observational surveys
(Maury et al. 2019; Tobin et al. 2020), in which the magnetic
field truncates the disk radius at ∼101 AU. Perhaps the disk radii
can serve as a lower bound on magnetic resistivities for low den-
sity gas, whereas the strength of magnetic fields in young stel-
lar objects (∼103 G, Durney et al. 1993; Chabrier & Küker 2006)
can serve as an upper bound on resistivities within the first Lar-
son core.
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6.5. Comparison with previous works

We now turn to comparing our results with previous calcula-
tions in the literature that have resolved the birth of the proto-
star and the inner disk structure described in this paper. Due to
the very stringent time-stepping, only a handful of such stud-
ies exist. To our knowledge, the first report of the existence of a
swollen disk-like structure around the second core is that of Bate
(1998), who carried out their calculations using the SPH numer-
ical method under the barotropic approximation. Saigo et al.
(2008) later confirmed the existence of such a structure with
their own barotropic calculations, this time using a nested-grid
code. Although these papers do no have enough details presented
for us to quantitatively compare our results, the description they
provide of the structure of the second core and its surround-
ings seem to be qualitatively similar to ours. Following these
two studies, Machida & Matsumoto (2011) led a detailed study
of the inner disk under the barotropic approximation in which
they include magnetic fields with ohmic dissipation, where they
found qualitatively similar results to the hydro case. Notably,
they report an inner disk mass of ∼10−2 M�, and a protostellar
mass of ∼10−3 M�, in accordance with our results.

More recent studies include those of Wurster et al.
(2018, 2022), Vaytet et al. (2018), Machida & Basu (2019),
Wurster & Lewis (2020). The simulations presented in
Vaytet et al. (2018) were also run with the RAMSES code
while including magnetic fields. They reported the existence
of a circumstellar disk around the protostar when including
magnetic resistivities. They also reported that they could not
resolve the shock front separating the protostar from the inner
disk, but as we have demonstrated in this paper, such a shock
front does not exist. The mass of the disk reported in their
paper is ∼10−4 M�, which is to be expected given their short
simulation time following protostellar birth (24 days) that results
from stringent time-stepping.

As stated previously, Machida & Basu (2019) have also stud-
ied the inner disk, in which they were able to follow the calcu-
lations for a period of 2000 years following protostellar birth.
Their results seem to indicate similar ratios of protostellar to
disk mass than our paper, and the structure of their inner disk
also seems to be similar to ours despite the presence of a mag-
netically launched outflow and a high velocity jet.

Finally, Wurster et al. (2018, 2021, 2022), Wurster & Lewis
(2020) ran these calculations using SPH and all non-ideal MHD
effects: ohmic dissipation, ambipolar diffusion, and the hall
effect. They found the same disk structure following the sec-
ond collapse phase. In contrast to Machida & Basu (2019), they
report no high velocity jets and argue that magnetically launched
outflows are circumstantial and depend on the initial turbulent
velocity vector field, as well as the non-ideal effects at play.
The only way in which we may quantitatively compare our
results to theirs is through the protostellar mass, which seems
to be ∼10−3 M�. The inner disk mass was not measured in these
papers.

In summary, the circumstellar disk structure described in this
paper is routinely found in previous papers simulating the second
collapse in 3D. Although the quantitative details of the proper-
ties of said disk may differ due to different numerical methods
and physical setups, it is guaranteed to be recovered in simula-
tions that possess sufficient amounts of angular momentum in
the first core. As such, the only simulations that do not recover it
are those that make use of the ideal MHD approximation, which
extracts too much angular momentum from the system and pre-
vents the protostar from ever reaching breakup velocity.

7. Conclusion

We have carried out a set of high resolution 3D RHD simula-
tions that self-consistently model the collapse of a 1 M� dense
molecular cloud core to stellar densities with the goal of study-
ing the innermost (<1 AU) regions. Our results are summarized
as follows:

(i) Following the second gravitational collapse, the protostar
is formed through hydrostatic balance. Through accretion,
the protostar accumulates angular momentum and reaches
breakup velocity, after which it sheds some of its mass to
form a hot, dense, and highly turbulent circumstellar disk,
which we call the inner disk. The protostar is embedded
within this disk, and no shock front separates the two. As
accretion continues, the disk completely engulfs the proto-
star and spreads outward due to a combination of excess
angular momentum and accretion. The disk mass exceeds
that of the protostar by a factor of approximately seven,
which means that the majority of the mass following the
second collapse resides in the disk and its self-gravity dom-
inates, with notable contributions from thermal pressure on
its dynamics. In the case where an outer disk exists prior to
the second collapse, this circumstellar disk forms within it,
and the two merge after the inner disk spreads to sufficiently
large radii.

(ii) Despite the differing evolutionary histories at larger spatial
scales, the star-disk structure formed after the onset of the
second collapse is identical, with a small spread caused by
the turbulent initial conditions. This is due to the forma-
tion of the first Larson core in all our simulations, a hydro-
static object that ensures that the second collapse occurs in
approximately similar conditions.

(iii) Accretion onto the protostar mainly occurs through mate-
rial that slides on the disk’s surface, as polar accretion has
a low-mass flux in comparison. Along the equator, material
spreads outward due to excess angular momentum. Accre-
tion onto the inner disk is highly anisotropic.

(iv) The radiative emissions of the star-disk system are
anisotropic. The radiative efficiency of the accretion shock
is supercritical along the poles, whereas the inner disk’s
equatorial shock front is subcritical and on the order of
10−3.

(v) The density of the inner disk’s shock front at 1 AU (the
most commonly used sink radius) is in the range of [5.35 ×
10−10; 2 × 10−9] g cm−3, which is about an order of magni-
tude higher than the commonly used sink accretion thresh-
old of 1.66 × 10−11 g cm−3. Thus, we suggest higher accre-
tion thresholds for studies employing sink particles when-
ever possible. We note, however, that our results correspond
to very early times and may not be applicable throughout
the entirety of the class 0 phase.

(vi) In order to physically decouple the protostar from its disk
and reduce its rotation rate to observed values, torque mech-
anisms need to transport a sufficient amount of angular
momentum outward. Magnetic fields are likely to play this
role.

These results reveal the structure and kinematics of the inner-
most regions of circumstellar disks, which are often omitted
from simulations due to computational constraints. Although
our results are valid for the timescales described here (<6 years
following protostellar birth), we expect magnetic fields to
play a more significant role later on, particularly in cre-
ating powerful torques that transport material toward the
protostar.
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Grudić, M. Y., Guszejnov, D., Offner, S. S. R., et al. 2022, MNRAS, 512, 216
Hartmann, L., & Stauffer, J. R. 1989, AJ, 97, 873
Hennebelle, P., Commerçon, B., Lee, Y.-N., & Charnoz, S. 2020a, A&A, 635,

A67
Hennebelle, P., Commerçon, B., Lee, Y.-N., & Chabrier, G. 2020b, ApJ, 904,

194
Herbst, W., Eislöffel, J., Mundt, R., & Scholz, A. 2007, in Protostars and Planets

V, eds. B. Reipurth, D. Jewitt, & K. Keil, 297
Joos, M., Hennebelle, P., & Ciardi, A. 2012, A&A, 543, A128
Kawasaki, Y., & Machida, M. N. 2023, MNRAS, 522, 3679
Krumholz, M. R., Klein, R. I., McKee, C. F., Offner, S. S. R., & Cunningham,

A. J. 2009, Science, 323, 754
Kuiper, R., Klahr, H., Beuther, H., & Henning, T. 2010, ApJ, 722, 1556
Laos, S., Greene, T. P., Najita, J. R., & Stassun, K. G. 2021, ApJ, 921, 110
Larson, R. B. 1969, MNRAS, 145, 271
Lebreuilly, U., Hennebelle, P., Colman, T., et al. 2021, ApJ, 917, L10

Lebreuilly, U., Vallucci-Goy, V., Guillet, V., Lombart, M., & Marchand, P. 2023,
MNRAS, 518, 3326

Lebreuilly, U., Hennebelle, P., Maury, A., et al. 2024a, A&A, 683, A13
Lebreuilly, U., Hennebelle, P., Colman, T., et al. 2024b, A&A, 682, A30
Lee, Y.-N., Charnoz, S., & Hennebelle, P. 2021, A&A, 648, A101
Le Gouellec, V. J. M., Greene, T. P., Hillenbrand, L. A., & Yates, Z. 2024, ApJ,

966, 91
Lesur, G., Kunz, M. W., & Fromang, S. 2014, A&A, 566, A56
Lodato, G. 2007, Nuovo Cimento Rivista Serie, 30, 293
Lodato, G., & Rice, W. K. M. 2004, MNRAS, 351, 630
Machida, M. N., & Basu, S. 2019, ApJ, 876, 149
Machida, M. N., & Matsumoto, T. 2011, MNRAS, 413, 2767
Machida, M. N., Inutsuka, S.-I., & Matsumoto, T. 2006, ApJ, 647, L151
Machida, M. N., Inutsuka, S.-I., & Matsumoto, T. 2007, ApJ, 670, 1198
Machida, M. N., Inutsuka, S.-I., & Matsumoto, T. 2008, ApJ, 676, 1088
Machida, M. N., Inutsuka, S.-I., & Matsumoto, T. 2010, ApJ, 724, 1006
Machida, M. N., Inutsuka, S.-I., & Matsumoto, T. 2011, PASJ, 63, 555
Machida, M. N., Inutsuka, S.-I., & Matsumoto, T. 2014, MNRAS, 438, 2278
Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425
Maury, A. J., André, P., Testi, L., et al. 2019, A&A, 621, A76
Mignon-Risse, R., González, M., & Commerçon, B. 2021a, A&A, 656, A85
Mignon-Risse, R., González, M., Commerçon, B., & Rosdahl, J. 2021b, A&A,

652, A69
Mignon-Risse, R., González, M., & Commerçon, B. 2023, A&A, 673, A134
Minerbo, G. N. 1978, J. Quant. Spectr. Radiat. Transf., 20, 541
Oliva, A., & Kuiper, R. 2023, A&A, 669, A80
Penston, M. V. 1969, MNRAS, 144, 425
Pringle, J. E. 1981, ARA&A, 19, 137
Riols, A., & Latter, H. 2019, MNRAS, 482, 3989
Saigo, K., Tomisaka, K., & Matsumoto, T. 2008, ApJ, 674, 997
Saumon, D., Chabrier, G., & van Horn, H. M. 1995, ApJS, 99, 713
Semenov, D., Henning, T., Helling, C., Ilgner, M., & Sedlmayr, E. 2003, A&A,

410, 611
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Sullivan, C., & Kaszynski, A. 2019, J. Open Source Softw., 4, 1450
Teyssier, R. 2002, A&A, 385, 337
Tobin, J. J., Sheehan, P. D., Megeath, S. T., et al. 2020, ApJ, 890, 130
Tomida, K., Tomisaka, K., Matsumoto, T., et al. 2013, ApJ, 763, 6
Tomida, K., Okuzumi, S., & Machida, M. N. 2015, ApJ, 801, 117
Toomre, A. 1964, ApJ, 139, 1217
Tsukamoto, Y., & Machida, M. N. 2013, MNRAS, 428, 1321
Tsukamoto, Y., Iwasaki, K., Okuzumi, S., Machida, M. N., & Inutsuka, S. 2015,

MNRAS, 452, 278
Tsukamoto, Y., Machida, M. N., & Inutsuka, S.-I. 2023, PASJ, 75, 835
Tung, N.-D., Testi, L., Lebreuilly, U., et al. 2024, A&A, 684, A36
Vaytet, N., Chabrier, G., Audit, E., et al. 2013, A&A, 557, A90
Vaytet, N., Commerçon, B., Masson, J., González, M., & Chabrier, G. 2018,

A&A, 615, A5
Vorobyov, E. I., Skliarevskii, A. M., Elbakyan, V. G., et al. 2019, A&A, 627,

A154
Wardle, M. 1999, MNRAS, 307, 849
Whitehouse, S. C., & Bate, M. R. 2006, MNRAS, 367, 32
Wurster, J., & Lewis, B. T. 2020, MNRAS, 495, 3807
Wurster, J., Bate, M. R., & Price, D. J. 2018, MNRAS, 481, 2450
Wurster, J., Bate, M. R., & Bonnell, I. A. 2021, MNRAS, 507, 2354
Wurster, J., Bate, M. R., Price, D. J., & Bonnell, I. A. 2022, MNRAS, 511,

746

A90, page 16 of 17



Ahmad, A., et al.: A&A, 687, A90 (2024)

Appendix A: Defining the protostar and inner disk
in our simulations

The definition of the protostar in our simulations is rather seman-
tic, as it is not a separate object from the inner disk. We use
the same criterion as Vaytet et al. (2018) for defining the proto-
star: it is simply the gas whose density is above 10−5 g cm−3. We
note that in Vaytet et al. (2018), the authors mention that they do
not have enough resolution to resolve the protostellar accretion
shock separating it from the circumstellar disk, although as we
have shown in Sect. 3.2, such a discontinuity does not exist.

In order to define the inner disk, none of the criteria currently
used in the literature were adequate in our case, mostly due to our
use of turbulent initial conditions. Additionally, in some simula-
tions, the second collapse occurred within a larger-scale disk,

which further complicated our disk selection criterion. Inspired
by Joos et al. (2012), we used the following criterion:


P > ρv2
r , Thermal support against radial infall

ρv2
φ > P, Centrifugal support exceeds pressure

ρs < ρ < 10−5 g cm−3, Density threshold

where ρs is the density of the inner disk’s equatorial shock
front, obtained at each snapshot through ray-tracing. This crite-
rion ensures that no cells currently undergoing the second grav-
itational collapse phase are selected and that sufficient angular
momentum is present in the gas to qualify as a disk. The third
item in this criterion states that ρ < 10−5 g cm−3, but this is again
an arbitrary choice to separate the protostar from its circumstel-
lar disk.
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3.4 MHD simulations

Following our results in the previous paper, we pondered on their universality. Indeed,
these simulations leveraged the results of previous state of the art papers to omit mag-
netic fields and push the calculations much further in time. The most significant results
found were the breakup of the protostar and the subsequent rapid radial spreading of
the newly-formed circumstellar disk, whose resulting properties may differ under the
influence of a magnetic field. Furthermore, although there exists a number of papers
reporting on the magnetic field properties of newly-formed protostars, the vast major-
ity of these use idealized setups in which solid body rotation is assumed and a magnetic
field threads the dense cloud core. In addition, these calculations are often stopped
soon after protostellar birth, and little is reported on the structure of the magnetic field
in protostars. With this in mind, during the last year of my PhD, I ran a set of MHD
simulations reaching the second collapse stage, however, due to the numerical cost of
these simulations, they were not as exhaustive and have a much shorter horizon of pre-
dictability than the RHD runs presented in the previous sections. Nevertheless, these
simulations have yielded interesting results pertaining to the problems tackled during
this thesis, namely the angular momentum problem and the magnetic flux problem.

3.4.1 Context

In recent years, the role of magnetic fields in star formation has garnered a significant
amount of interest. Aided by advances in far-infrared and submillimeter (e.g., ALMA,
NOEMA, VLA) instruments capable of measuring linearly polarized dust emissions,
magnetic fields have been observed in dense cloud cores (Kirk et al. 2006; Jones et al.
2015; Kandori et al. 2018; Myers & Basu 2021) where they exhibit supercriticality
(i.e., the mass-to-flux ratio is above unity) and a typical field strength of ∼ 10−5 G.
Furthermore, using Zeeman line splitting techniques (Crutcher & Kemball 2019), they
have also been observed in young stellar objects with values of ∼ 103 G (Johns-Krull
2007; Johns-Krull et al. 2009; Yang & Johns-Krull 2011; Flores et al. 2024). Should the
magnetic field be perfectly coupled to the fluid during the collapse of the dense core
(i.e., the ideal MHD approximation), flux freezing implies that the resulting protostar
would have a magnetic field strength of ∼ 106 G, far in excess of observed values.
Therefore, a considerable amount of magnetic flux is lost by the time the protostar
becomes visible. This problem is known as the magnetic flux problem, which has so
far eluded a concise answer. Current observational surveys of magnetic fields of young
stellar objects, although limited in sample size, have so far failed to find any correlation
between magnetic field strength and stellar age, however they report a decreasing mag-
netic flux over time. This favors the fossil field hypothesis, meaning that the measured
magnetic fields in these evolved sources are carried over from their inception in the
second Larson core. Ultimately, solving this problem requires a detailed model of the
evolution of the protostellar magnetic field as the protostar transitions from the class
0 to the class I phase, accounting for prestellar evolution and describing the magnetic
field’s evolution using dynamo theory, however such a model is yet to be developed and
little is reported on the subject in the literature. In the absence of any such model,
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the fossil field hypothesis remains favored and this may provide a constraint on star
formation simulations, as they must be able to form a protostar whose magnetic field
has a strength of ∼ 103 G.

A similar and closely linked issue to this is the angular momentum problem, which
states that should angular momentum be conserved during the collapse of the dense
core, stars would rotate far above their breakup velocity and circumstellar disks would
be an order of magnitude larger than their observed sizes (∼ 101 AU, Maury et al.
2019; Tobin et al. 2020). Once again, the ideal MHD approximation fails to conform to
observational data as it produces magnetic braking that is efficient enough to extract
all angular momentum from the dense core (i.e., the magnetic braking catastrophe,
Matsumoto & Tomisaka 2004; Hennebelle & Teyssier 2008; Hennebelle & Fromang
2008; Mellon & Li 2008). It is now widely admitted that resistive processes, mainly
ambipolar diffusion, are responsible for breaking the ideal MHD limit towards higher
density gas and reducing the magnetic braking efficiency to the point where a disk may
form and reach sizes comparable to observations (e.g., Masson et al. 2016; Hennebelle
et al. 2016; Vaytet et al. 2018; Machida & Basu 2019; Wurster & Lewis 2020a,b). In
addition to this, resistive MHD simulations report a converged magnetic field strength
of ∼ 0.1 G in the first Larson core (primarily due to ambipolar diffusion), which allows
for the second Larson core to form with a magnetic field strength of ∼ 103 G (e.g.,
Vaytet et al. 2018; Machida & Basu 2019; Wurster et al. 2022).
In order to account for resistive processes, one must use a detailed chemical network
that describes the abundance of charged species. In addition, one must also make an
assumption on the dust grain size and density distribution in order to determine the
surface area available for chemical reactions (Marchand et al. 2016; Zhao et al. 2020),
and to account for the fact that the dust particles themselves may be the main charge
carriers. In this regard, the Matthis-Rumple-Nordsiek distribution (Mathis et al. 1977)
is most often used, as it is mostly valid for dust particles in the interstellar medium,
however, recent studies having undertaken the effort of re-evaluating the MRN distribu-
tion during the collapse of dense cores have called into question its validity (Lebreuilly
et al. 2023; Kawasaki & Machida 2023; Tsukamoto et al. 2023a; Vallucci-Goy et al.
2024). Most notably, these studies reveal an absence of small grains toward gas den-
sities close to first Larson core values (∼ 10−13 g cm−3), which in turn causes a stark
drop in Ohmic resistivity, to the point where it is no longer a viable dissipative process
at densities of the first Larson core and higher. The Hall effect, even within the MRN
framework, remains the most poorly constrained resistive effect. Studies accounting
for it report drastically different evolutionary scenarios for protoplanetary disks (e.g.,
Tsukamoto et al. 2015a; Wurster & Lewis 2020a; Wurster et al. 2022), however the
computed resistivities are too uncertain to draw any conclusions on the subject. The
only resistive effect whose role and behavior during the protostellar collapse can be in-
ferred with reasonable confidence is ambipolar diffusion, whose reduction in magnetic
braking efficiency allows for the formation of disks whose sizes are in broad agreement
with class 0 disk size surveys.

Finally, it has recently become clear that subgrid models used in protostellar collapse
calculations in order to alleviate timestepping constraints produce results that are very
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sensitive to their parameters (Machida et al. 2014; Vorobyov et al. 2019; Hennebelle
et al. 2020b). This requires one to study the innermost sub-au region of circumstellar
disks, which entails second-collapse calculations resolving both the protostar and the
newly-formed circumstellar disk. A number of said calculations exist in the literature
(e.g., Vaytet et al. 2018; Machida & Basu 2019; Wurster & Lewis 2020b; Wurster et al.
2022). However, the majority of these use idealized setups in which solid-body rotation
is assumed and turbulence is absent in the initial dense cloud core. This absence of tur-
bulence allows the magnetic field to maintain a coherence which amplifies its effects, be
it magnetic braking or the launching of outflows and jets. In addition, with the excep-
tion of Wurster & Lewis (2020b); Wurster et al. (2022); Machida & Basu (2019), these
calculations are often stopped soon after protostellar birth owing to timestepping con-
straints. Nevertheless, they found that the resulting protostar and circumstellar disk
are thermally supported bodies, where thermal pressure gradient forces vastly outweigh
their magnetic counterparts. In this regard, Ahmad et al. (2024) let a study in which
the RHD approximation was used and found that the nascent protostar quickly reaches
breakup speeds, by which point a circumstellar disk forms around it and expands out-
ward. This occurs regardless of the initial conditions of the parent dense core. Machida
& Matsumoto (2011) and Bhandare et al. (2024) similarly report the existence of this
disk surrounding the protostar (hereafter called the inner disk or circumstellar disk).

In the present study, we continue our work in Ahmad et al. (2024) by including the
effects of magnetic fields in our calculations, both under the ideal and non-ideal MHD
approximation, while accounting for radiative transfer using the the Flux Limited Dif-
fusion (FLD) approximation. Our goals are to describe the birth and early evolution of
the protostar and the circumstellar disk surrounding it. In light of the aforementioned
recent studies around dust size distribution during protostellar collapses that report a
stark drop in Ohmic resistivities, we have chosen to ignore Ohmic dissipation in our
non-ideal MHD simulation, and only ambipolar diffusion is accounted for. We follow
the collapse of a dense cloud core to stellar densities, and describe the initially isother-
mal phase of the collapse, the formation of the first Larson core and its subsequent
adiabatic contraction, the second collapse following the dissociation of H2 molecules,
the birth of the protostar, and subsequently push the calculations as far as possible in
time. In our pursuit of describing the smallest spatial scales relevant to protostellar
and circumstellar disk birth, we have obtained the best resolved protostars and cir-
cumstellar disk in the MHD literature. Particular attention is given to the structure
of the magnetic field within the nascent protostar, as well as within the circumstellar
disk. The evolution of the nascent circumstellar disk is also compared to its hydro
counterpart in order to better ascertain the effects of magnetic fields on the system.
Our results, reported below, carry multiple implications for the angular momentum and
the magnetic flux problem. In addition, they offer constraints on subgrid parameters
used in disk evolution studies.
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3.4.2 Numerical setup

We have used the same setup as in Ahmad et al. (2024), with the same refinement
strategy. It consists of a uniform density dense cloud core of radius R0 = 2.465 × 103

AU, mass M0 = 1 M⊙ and temperature 10 K, equivalent to an initial ratio of thermal to
gravitational energy of 0.25. Angular momentum is present through the inclusion of a
turbulent velocity vector field parameterized by the turbulent Mach number M, which
we have set to 0.4. Radiative transfer is accounted for under FLD approximation. A
uniform magnetic field threads the dense cloud core along the z axis, and its strength
is parameterized by the mass-to-flux ratio which we have set to 4. This corresponds to
an initial magnetic field strength of ∼ 10−5 G in the dense cloud core, and an Alfvénic
Mach number of Ma ≈ 0.12. This setup is identical to that of run G2 in Ahmad et al.
(2024), with the only difference being the presence of magnetic fields.
Two simulations will be presented in this section; one under the ideal MHD approxi-
mation (hereafter IMHD) and one in which we have accounted for ambipolar diffusion
(hereafter NIMHD). These two simulations use the same refinement strategy, however
run IMHD has a maximum refinement level of ℓmax = 26 (the coarsest level is at
ℓmin = 6) whereas run NIMHD has ℓmax = 25. As we will see later-on, this is because
run IMHD forms a much more compact protostar, whose properties require a finer spa-
tial resolution to describe. This means that at the finest refinement level, run IMHD
and NIMHD respectively have a spatial resolution of ∆xIMHD = 1.4 × 10−4 AU and
∆xNIMHD = 2.9 × 10−4 AU.

Zoom-out

Owing to very stringent time-stepping constraints, run NIMHD requires approximately
two days of CPU wall time in order to integrate ≈ 40 hours. This is because the
timestep at the finest level reaches a mere minute, and the poor load balancing causes
most cells to be handled by a few CPUs. As the protostar and circumstellar disk grow
and expand over time, this problem is aggravated as a considerable number of cells are
created to describe the newly formed structures. In order to alleviate the timestepping
constraints, we have also run a simulation branched out of run NIMHD nearly 0.4
years after protostellar birth, in which the maximum refinement level was reduced from
ℓmax = 25 to ℓmax = 24. This allowed us to push the simulation considerably further
out in time,3 which is particularly useful to study the expansion of the newly-formed
circumstellar disk. This run, labeled "NIMHD_LR", is discussed in Sec. 3.4.6.

3.4.3 Large scale structures

We first begin by describing the system at the scale of the dense core itself (∼ 103 AU),
with the goal of providing the contextual environment in which the protostar is born.
To this end, we compare runs IMHD and NIMHD in Fig. 3.3 at our final simulation

3The ℓmax = 25 simulation ran for ≈ 0.55 years after protostellar birth, whereas the ℓmax = 24
simulation ran from ≈ 0.44 years to ≈ 1.57 years.
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snapshots (respectively ≈ 23.25 and ≈ 23.39 kyr after simulation start), which displays
the column density (first row), the optical depth τ computed along the line of sight
(second row), and the maximum temperature along the line of sight (third row). τ is
computed as

τ =
∫ zmax

zmin
ρκRdz , (3.9)

where ρ is the gas density and κR the Rosseland mean opacity.
The column density maps show a filamentary structure of size ∼ 102 AU forming in
both runs. This structure is formed by gravo-turbulence (Tsukamoto & Machida 2013),
however it appears much thinner in these calculations than their RHD counterparts
in Ahmad et al. (2024). This is due to magnetic braking, which extracts a significant
amount of angular momentum from the gas and thus prevents it from spreading out as
much. Since ambipolar diffusion begins acting at higher densities (∼ 10−14 g cm−3),
the two runs yield identical column density maps outside the filament, however in the
case of run NIMHD it has fragmented into two distinct dense cores (Fiege & Pudritz
2000). The existence of a secondary bound fragment within the filament is owing to an
extended first core lifetime. Indeed, the first core survived ≈ 100 years longer in run
NIMHD owing to a reduced mass accretion rate onto it, which is in turn due to less
efficient magnetic braking. In this time span, the filament fragmented in run NIMHD,
whereas the stringent timestepping following the second collapse froze the simulation
at larger scales in run IMHD, and no bound fragment is witnessed at its final simula-
tion snapshot.
Despite the very similar structure, the two runs have differing optical depth maps
(panels c and d). Indeed, run NIMHD has a more spatially extended optically thick
region (lime-colored contours) than run IMHD. This is due to the differing tempera-
tures found within the cloud core, as ambipolar diffusion significantly heats-up the gas
(panel f). The increase in temperature at these densities manifests itself as an increase
in opacity (see figure 1 of Ahmad et al. 2023). This serves to show that the two models
should produce distinct emission maps that may be discriminated against with current
observational instruments.

We now turn to studying the collapse in quantitative terms using Fig. 3.4. Panel
(a) of this figure displays the maximum density of the simulation as a function of time
since first core formation (defined as the moment where ρmax > 10−10 g cm−3). The
steep rise in ρmax in this figure corresponds to the second collapse (i.e., protostellar
birth). We see here that the two runs display different first core lifetimes, with run
NIMHD entering the second collapse phase nearly 200 years later. This is in contrast
to Vaytet et al. (2018)’s results, who reported a longer first core lifetime in their ideal
MHD simulation due to the interchange instability reducing mass accretion rates onto
it. This discrepancy between our results is due to our use of turbulent initial condi-
tions, which although does not prevent the emergence of the interchange instability
in run IMHD (panel a of Fig. 3.3), still reduces its efficiency. The first core in run
NIMHD survived for a total of ≈ 250 years, which is about half as much as the hydro-
dynamical run presented in Ahmad et al. (2024). Its extended lifetime in comparison to
run IMHD is due to the reduced magnetic braking efficiency, which allows for angular
momentum to reduce mass accretion rates onto the first core. The maximum density
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reached post-second collapse in run IMHD is ∼ 10−1 g cm−3, and ∼ 10−3 g cm−3 in
run NIMHD.
During the collapse, flux freezing causes the magnetic field strength to increase with
increasing density (with B ∝ ρ2/3). This causes the maximum magnetic field strength
(Bmax) in run IMHD, shown in panel (b), to continuously increase over time (with
increasing central density), with small drops in magnetic field strength being caused
by turbulent reconnection. In run NIMHD however, the magnetic field strength dis-
plays a plateau at ∼ 10−1 G, owing to ambipolar diffusion. Once the second collapse
occurs, flux freezing (which is recovered in run NIMHD following dust sublimation and
the ionization of atomic gas species) once again causes a strong increase in magnetic
field strength, which reaches ∼ 105 G in run IMHD and ∼ 103 G in run NIMHD. We
also notice in both runs that the magnetic field strength measured at the location of
maximum density (Bcentral, dotted lines) is a factor ≈ 2 below Bmax. Following the
second gravitational collapse (panel c), the maximum magnetic field strength reaches
≈ 3 × 105 G in run IMHD, and ≈ 104 G in run NIMHD. Soon after protostellar birth,
the maximum field strength in run IMHD continuously decreases to ∼ 5 × 104 G, and
in the case of run NIMHD, it decreases to ∼ 6 × 103 G and plateaus around this value.
We see the same trend in Bcentral, which fails to coincide with Bmax following the sec-
ond collapse, and whose discrepancy with it seems to worsen over time. We show later
in Sec. 3.4.5 that the drop in magnetic field strength in run IMHD is mostly due to
an outward advection of magnetic flux. The discrepancy between Bmax and Bcentral
has been reported in previous papers in the literature, most notably Wurster & Lewis
(2020b); Wurster et al. (2022). They also report a reduction in Bmax shortly follow-
ing protostellar birth. Our results confirm their findings, however the cells containing
ρmax and Bmax are separated by a very small distance (∼ 10−2 AU) in our simulations,
and we do not report the existence of a "magnetic wall" on which magnetic flux is
accumulated as they do.

– 116 –



The second collapse

a
IMHD

500 AU

b
NIMHD

c

1

500 AU

d

1

e

500 AU

f

100

101

102

103

104

[g
cm

2 ]

10 2

10 1

100

LO
S 

101

102

103

LO
S 

T m
ax

 [K
]

Figure 3.3: A comparison of runs IMHD (first column) and NIMHD (second column) at
the scale of the dense cloud core itself. The snapshots are taken respecitvely at t ≈ 23.25
and t ≈ 23.39 kyr following the collapse of the dense core. The first row displays column
density (panels a and b), the second row displays the optical depth computed along
the line of sight (panels c and d), and the last row displays the maximum temperature
along the line of sight (panels e and f). All maps are projections along the z axis. The
lime-colored contour in panels (c) and (d) represent an optical depth of unity. The
scale bars in the first column apply to the second column as well.
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Figure 3.4: A quantitative comparison of the collapse between run IMHD (black) and
run NIMHD (red). Panel (a) displays the evolution of the maximum density since
the formation of the first Larson core, which we define as the time where a density
of ≈ 10−10 g cm−3 is achieved. Panel (b) and (c) display the magnetic field strength
evolution as a function of time since first core formation and since protostellar birth
(defined as the moment a density of ≈ 10−5 g cm−3 is reached), where the solid lines
represent the maximum magnetic field strength and the dotted lines represent the
field’s strength measured at the location of maximum density.

3.4.4 The second collapse

Qualitative result of the second collapse

We now turn to the main focus of our study; the structure of the system following the
second gravitational collapse. To this end, we first begin by studying the qualitative
structure of the system with the aid of density, temperature, radiative flux, and radial
velocity slices displayed in figures 3.6 and 3.7. The slices are projected along the an-
gular momentum vector of the gas within 0.2 AU for run NIMHD, and in the case of
run IMHD, along the z axis since there is virtually no angular momentum left in the
gas owing to the efficiency of magnetic braking.
The differences between the resulting protostars are stark. The first row displays the
system at protostellar birth, which we define as our t = 0. The protostar in run IMHD
is more compact than run NIMHD, displaying higher densities and temperatures owing
to the lack of centrifugal support against gravity. This causes it to form at a radius
of ≈ 0.97 R⊙, whereas in run NIMHD, the centrifugal support flattens the protostar
considerably and extends its radius to ≈ 4.8 R⊙. In the weeks following the formation
of the protostar in run IMHD (panels b-e and l-o of Figs. Fig. 3.6 and Fig. 3.7), its
size grows considerably as it accretes material from its surroundings. This is due to
the subcritical nature of its accretion shock, which struggles to radiate the incoming
accretion energy (see Ahmad et al. 2023). In addition, filamentary structures protrud-
ing from the stellar surface can be seen growing in spatial extent as time progresses.
These are in fact current sheets akin to coronal mass loops, which appear as filaments
when visualized in slices. Additionally, an approximately spherical shell of material
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surrounds the protostar, which is most apparent in the density and radiative flux slices
of Fig. 3.6 and Fig. 3.7. This corresponds to a region of strong magnetic pressure,
which supports the gas against gravity and hence drives the radial velocities down to
≈ 0. Notably, we report no high-velocity jets or outflows surrounding the protostar in
this run. This is likely due to our use of turbulent initial conditions, which was shown
to significantly disrupt these processes by Wurster & Lewis (2020b).
In the case of run NIMHD, an entirely different evolutionary sequence is witnessed.
As time progresses, a disk-like structure surrounding the protostar is formed. This is
due to the latter’s accumulation of angular momentum, after-which it reaches breakup
velocity and material is advected outward. This result confirms the findings of Ahmad
et al. (2024), in which no magnetic fields were present. As the disk grows in size and
in mass, it exhibits spiral waves which form as a result of gravitational instabilities.
These spiral waves carry a significant amount of angular momentum outward and cause
increased mass accretion rates onto the protostar.

These figures show the importance of including ambipolar diffusion in our calculations,
as they permit enough angular momentum to survive and hence avert the magnetic
braking catastrophe.

Defining the protostar and circumstellar disk

Since the two runs yield drastically different qualitative properties, one must have ro-
bust definitions for both the protostar and the circumstellar disk before proceeding to
any quantitative comparison. In the case of run IMHD, the protostar is a thermally
supported body, however, simply finding the cells in which thermal pressure support
is attained as is done in Ahmad et al. (2023) is inadequate, as the current sheets pro-
truding from the stellar surface also satisfy this definition. As such, we have decided
to define the protostar as being all cells in which at least 90% of H2 molecules are
dissociated (i.e., XH2 < 10−1, where XH2 is the fraction of hydrogen under molecular
form).
In the case of run NIMHD, the presence of centrifugal support drastically changes
the structure of the protostar, which flattens along the equator. Further complicat-
ing things, the transition from thermal pressure support to mainly centrifugal support
against gravity is smooth, and no shock front separates the protostar from its circum-
stellar disk (Ahmad et al. 2024). As a result, we adopt the same arbitrary definition
for the protostar as in Vaytet et al. (2018); Ahmad et al. (2024), namely, that it is the
gas whose density exceeds 10−5 g cm−3. To illustrate why these two criteria were used,
we display in Fig. 3.5 their results when applied to both simulations. The criterion
defining the protostar as being XH2 < 10−1 is displayed in the first row, where we see
that it recovers the stellar surface in run IMHD but fails to do so in run NIMHD. On
the other hand, the second criterion stating that the star is defined as ρ > 10−5 g cm−3

and displayed in the second row, shows that it selects extended current sheets protrud-
ing from the stellar surface in run IMHD but recovers a centrifugally flattened surface
in run NIMHD.

The circumstellar disk is defined as in Ahmad et al. (2024); it is the centrifugally
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Figure 3.5: A 3D illustration of the two criteria used to define the protostar, as ap-
plied in run IMHD (first columns) and run NIMHD (second columns). The first row
displays an isocontour of XH2 ≈ 10−1, whereas second row displays an isocontour of
ρ ≈ 10−5 g cm−3. The colorbar in the first (resp. second) row displays the gas density
(resp. XH2) in the extracted surface.

supported gas whose thermal pressure support exceeds incoming ram pressure, and
whose density exceeds the density of the shock front (which is in turn determined
through ray-tracing).
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Figure 3.6: A set of slices showing the evolution of the density (first two columns)
and temperature (last two columns) for run IMHD (first and third column, panels a-e
and k-o) and run NIMHD (second and fourth column, panels f-j and p-t). Each row
represents a different time, where t = 0 corresponds to the moment of protostellar birth.
For comparative purposes, the slices are shown at similar times, and the timestamp is
written in the top right corner of each panel. The slices are done in the z direction for
run IMHD, and along the angular momentum vector for run NIMHD. The scale bars
in the first row apply to all other rows as well.
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Figure 3.7: Same as Fig. 3.6, but this time showing the radiative flux (first two columns)
and radial velocity (last two columns).
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Gas structure and kinematics

We now turn to providing a more quantitative comparison between run IMHD and run
NIMHD. To this end, we display in Fig. 3.8 and Fig. 3.9 averages of various physical
quantities. In the case of run NIMHD, since the structure we witness is a flattened
disk-like structure, these quantities are averaged azimuthaly in cylindrical bins in which
only cells in the midplane region are selected. The midplane is defined as the region in
which z ∈ [−2.5; 2.5]×10−2 AU, where the z component is computed along the angular
momentum axis of the gas within 0.1 AU. In the case of run IMHD, the measurements
are done using the spherical coordinate system since the protostar and the distribution
of material around it posses a spherical morphology.

We begin by studying the structure of run IMHD (Fig. 3.8). The density profile at
protostellar birth, displayed in panel (a) (solid line), shows that the central region of
the protostar reaches ∼ 10−1 g cm−3.4 Nearly 117 days later (dotted line), this value
drops to ∼ 10−3 g cm−3. In both snapshots, a power-law tail follows the central den-
sity peak. The sharp discontinuity in the radial velocity profile (panel d) displays the
location of the accretion shock, which is ≈ 4 × 10−3 AU (≈ 0.86 R⊙) and subsequently
moves outward as the protostar expands. The azimuthal velocity curves, shown in
panel (e), display the efficiency of magnetic braking in this simulation: nearly no an-
gular momentum survived, as vϕ alternates between positive and negative values and
is mostly a noisy measurement. In panel (c), the specific entropy of the gas5 is shown.
Here, as in Ahmad et al. (2023), we see that ds/dr > 0 throughout the protostellar in-
terior, meaning that the protostar is radiatively stable against convective instabilities.
However, as accretion still drives turbulence within the protostellar interior (Bhandare
et al. 2020; Ahmad et al. 2023), the entropy profile at our final snapshot is flattened
as a result of the mechanical transport of energy. The entropy profile has also been
lifted upwards as a result of the accretion of energy. These results are very similar to
the spherically symmetrical RHD run presented in Ahmad et al. (2023), which again
illustrates how efficient magnetic braking is in this run.

In Fig. 3.9 however, we witness very different results for run NIMHD. Firstly, the
density reached in the central regions is two orders of magnitude lower and at ∼
10−3 g cm−3, a value close to the hydro runs presented in Ahmad et al. (2024). Un-
like in run IMHD however, no hydrostatic bounce occurs and the maximum density
remains constant as time progresses. The temperature shown in panel (b) is also an
order of magnitude lower than in run IMHD, and sits close to 5 × 103 K, however this
increases to 7×103 K nearly 191 days later, meaning that the protostar is heating up as
it accretes material. The cylindrical radial velocity vcyl, displayed in panel (d), shows
that the protostellar accretion shock is formed at 2 × 10−2 AU (≈ 4.3 R⊙), which is
nearly five times larger than in run IMHD. This midplane shock front expands outward
to 2 × 10−1 AU at our final snapshot. We emphasize that it is no longer the proto-
stellar accretion shock that is displayed by the discontinuity in vcyl, but rather, that

4This value was shown to be unconverged in Ahmad et al. (2023), albeit not by a lot and the
resolution is such that its numerical outcomes are reliable enough for physical interpretation.

5The specific entropy is obtained through an interpolation of the equation of state table.
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of the newly-formed circumstellar disk in which the protostar is embedded. In panel
(e), we display the azimuthal velocity curves. Here, we see very clearly that rotational
motion exists, as vϕ > 0 throughout the radii displayed in the figure. Furthermore,
these curves show that the central regions are in solid body rotation, whereas the cir-
cumstellar disk exhibits differential rotation. At t ≈ 190 days, the disk displays a fully
Keplerian (vK =

√
GM∗/r) rotation profile (dashed red curve).

Finally, we display in panel (c) the specific entropy of the gas. As in run IMHD, the
protostar is radiatively stable against convective motion. However, at our final simu-
lation snapshot, we see that it is no longer the case as there exists a region in which
ds/dr < 0. This is likely caused by the prominent spiral waves in the star disk system,
and will further contribute to creating strong turbulent motion that act as effective
viscosity and extract angular momentum from the gas, thus driving accretion in the
midplane regions.

This analysis once again shows the stark differences of both runs; whereas the al-
most entirely complete absence of angular momentum in run IMHD owing to magnetic
braking causes the second collapse to form structures more akin to those produced
in spherically symmetrical calculations, the inclusion of ambipolar diffusion allows a
considerable amount of angular momentum to survive and hence form a rotationally
supported disk surrounding the protostar. In this sense, run NIMHD is more related
to hydrodynamical runs than to run IMHD, and thus should be quantitatively and
qualitatively compared as such.

3.4.5 Magnetic field structure

In this section, we describe the structure and morphology of the magnetic field within
and in the close vicinity of the protostar. To this end, we display in Fig. 3.10 and
Fig. 3.11 slices showing the magnetic field strength and plasma β (= 8πP/B2). In
Fig. 3.10, the slices are shown in a top-down (panels a-e and k-o) and edge-on (pan-
els f-j and p-t) view, whereas the absence of rotation in run IMHD renders any such
double-visualization useless, and we may visualize these quantities along the z axis
only. We will also leverage the information available in Fig. 3.8 and Fig. 3.9.

The magnetic field streamlines of run NIMHD are displayed in panels (a-j) of Fig. 3.10.
In the top-down view (panels a-e), we see the magnetic field lines being dragged by the
nascent protostar. At the temperature-density regime displayed here, the ideal MHD
limit is recovered as all dust grains are sublimated and ambipolar diffusion is no longer
at play. In addition, the plasma β values displayed in the last two rows indicates that
thermal pressure support far outweighs magnetic pressure support, meaning that it
is the fluid that dictates the behavior of the magnetic field. As such, the rotation of
the newly-formed protostar and circumstellar disk causes a significant build-up of the
toroidal component of the magnetic field, as the lines are twisted and tangled to an
extreme degree by the violent second collapse. Along the disk midplane, there also
seems to be a significant amount of turbulent magnetic eddies, which appear most
prominent at later times. These are likely formed as a result of the emergence of spiral
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Figure 3.8: A set of measurements of various physical properties of run IMHD at
protostellar birth (t = 0, solid lines) and t ≈ 117 days later (dotted lines). These
are averages in spherical bins, and show the gas density (panel a), temperature (panel
b), entropy (panel c), radial and azimuthal velocity (panels d and e), magnetic field
intensity (panel g), and the azimuthal and meridional components of the magnetic field,
normalized by its magnitude (panels h and i). Panel (f) displays the enclosed magnetic
energy (black lines) and the enclosed mass (red lines) as a function of spherical radius.

waves (see Figs. 3.6 and 3.7), which create significant turbulent motion within the
disk. In essence, the turbulent eddies show that the magnetic field is at places confined
within a tube-like structure which crosses the disk midplane, and hence showcases a

– 125 –



Chapter 3

10 3 10 2 10 1 100 101

rcyl [AU]
10 13

10 11

10 9

10 7

10 5

10 3

 [g
cm

3 ]

aa

10 3 10 2 10 1 100 101

rcyl [AU]

101

102

103

104

T 
[K

]

bb

t = 0 [days] t = 193.28 [days]

10 3 10 2 10 1 100 101

rcyl [AU]

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

s [
×1

09
er

g
K

1
g

1 ]

cc

10 3 10 2 10 1 100 101

rcyl [AU]
6

5

4

3

2

1

0

v c
yl

r [
km

s
1 ]

dd

10 3 10 2 10 1 100 101

rcyl [AU]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

v
 [k

m
s

1 ]

ee
vK(M* =  4.42×10 3 M )
vK(M* =  9.03×10 3 M )

10 3 10 2 10 1 100 101

r [AU]

1034

1036

1038

1040

1042

E B
en

c [
er

g]
ff

10 3 10 2 10 1 100 101

rcyl [AU]
10 3

10 2

10 1

100

101

102

103

B 
[G

]

gg

10 3 10 2 10 1 100 101

rcyl [AU]

10 1

100

|B
/B

| [
G]

hh

10 3 10 2 10 1 100 101

rcyl [AU]

10 1

100

|B
z/B

| [
G]

ii

10 6

10 5

10 4

10 3

10 2

10 1

100

M
en

c [
M

]

Figure 3.9: A set of measurements of various physical properties of run NIMHD. These
were done in cylindrical radial bins, in which only cells belonging to the midplane,
defined as z ∈ [−2.5; 2.5] × 10−2 AU, were used. Solid lines are measurements done
at t = 0 (corresponding to the moment of protostellar birth), and dotted lines are
measurements done ≈ 190 days later. Panel (a), (b), and (c) display respectively the
gas density, temperature, and specific entropy. Panels (d) and (e) display the gas’
(cylindrical) radial and azimuthal velocity. The red curves in panel (e) display the
Keplerian velocity computed with the protostar’s mass at a given snapshot. Panels
(g), (h), and (i) display the magnetic field strength, its toroidal component, and its
vertical component. The toroidal and vertical components are normalized by the total
magnetic field strength. Panel (f) displays the enclosed magnetic energy (black lines)
and the enclosed mass (red lines) as a function of spherical radius.
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significant poloidal component within the disk. We also note the spiral structure of
the magnetic field intensity within the star-disk system. In Wurster et al. (2022), it
is claimed that the Hall effect is responsible for the creation of this spiral structure,
however our results show here that the Hall effect is not necessary to form it.
Interestingly, in the edge-on view of panels (h-j), we see what appears to be a dipo-
lar field in the western half of the star-disk system, where magnetic field streamlines
originating from the southern pole of the protostar loop back into its northern pole,
however we are unsure as to why the feature appears only in the western half.6 Outside
the star-disk system, the magnetic field lines are mostly vertical and they thread the
two bodies, showcasing the poloidal nature of the magnetic field in these regions. The
plasma β decreases in the polar regions over time due to the depletion of material
in these regions as the second collapse proceeds (Ahmad et al. 2024), which in turn
causes a reduction in thermal pressure support. The disk’s surface also appears to have
a plasma β ≈ 1, and the velocity vector field streamlines indicate that a considerable
amount of material is advected toward the protostar from the upper layers of the disk,
as reported previously in the MHD run of Lee et al. (2021) and the hydro runs of
Ahmad et al. (2024). Despite this, we see no outflow or high velocity jet developing, as
the velocity vector field streamlines in panels (p-t) are pointing towards the protostar,
thus indicating infall. Any such outflows are likely to occur at much later times, when
the polar reservoir of gas is significantly depleted and the plasma β in these regions
drop to very small values. This once again confirms the results of Wurster & Lewis
(2020b), which found that turbulence in the initial dense cloud core significantly delays
the onset of jets and outflows. This is likely due to the absence of coherent magnetic
field lines, which significantly hinders the onset of jets and outflows.
With regards to the spatial distribution of the magnetic field within the star-disk sys-
tem, we unsurprisingly see that the central region containing the protostar has the
strongest field strength, reaching ≈ 5 × 103 G. In accordance with Wurster et al.
(2022) higher resolution runs, we witness spiral structures in magnetic field strength
throughout the star-disk system.
In panels (h) and (i) of Fig. 3.9, quantitative measurements of Bϕ and Bz are provided.
The cylindrical radial velocity displayed in panel (d) allows one to locate the accretion
shock, which manifests itself as a strong discontinuity.7 Firstly, at t = 0, the toroidal
component is the dominant one within the protostar. However, at t ≈ 191 days, the
poloidal component is significantly built up and it becomes stronger than its toroidal
counterpart. At larger radii (i.e., within the circumstellar disk), the opposite occurs:
we see a build-up of the toroidal component of the magnetic field whereas the poloidal
component is significantly reduced. In panel (f), the black lines display the enclosed
magnetic energy within the (spherical) radius r, which is computed as:

EBenc = 1
2

∫ r

0
B2r2dr . (3.10)

We see that the innermost regions of the system lose magnetic energy over time. In
these regions, the gas recovers the ideal MHD limit and flux freezing holds, with

6We believe this feature is likely transient, as it is not as evident at later times.
7The asymmetrical distribution of matter in the equatorial regions caused by the disk’s eccentricity

dilutes the azimuthal average and causes vcyl to diffuse.
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B ∝ ρ2/3. Since the density within said regions remains somewhat constant, their
loss of magnetic energy is due to an outward advection of material, as the protostar
exceeds breakup velocity and begins shedding its surface material (Ahmad et al. 2024).

We now turn to describing the magnetic field structure of run IMHD (Fig. 3.11). Here,
at t = 0 (panels a and f), we see an extreme pinching of the magnetic field lines as a
result of the second gravitational collapse. In addition, the field lines outside the pro-
tostar (lime contour) are almost entirely radial, with virtually no toroidal component
present. However, as in Ahmad et al. (2023), we find strong turbulent motion within
the protostar.8 This causes all magnetic field components within the protostar to reach
a similar strength, a fact that is particularly evident in panels (h) and (i) of Fig. 3.8.
Surrounding the protostar, we once again witness the spherical structure described
earlier. Here, we see that this structure displays stronger magnetic field strengths than
its surroundings, thus driving the plasma β down to considerably lower values. This
allows the gas to reach considerably higher values of magnetic pressure, which creates
a secondary shock front upstream of the protostellar shock front (the velocity vector
field streamlines are shown in panels f-j). In doing so, this structure acts as a sort of
"cocoon" for the protostar. We also see in this figure that the current sheets protruding
from the protostellar surface have a plasma β ≈ 1, and the gas seems to be dragged
along them toward the protostar.
Figure 3.8 offers some insight regarding the nature of the "cocoon". Panel (a) of this
figure displays the radial density profile, which exhibits a drop of approximately two
orders of magnitude in the central regions following a hydrostatic bounce (Ahmad et al.
2023). This in turn causes a drop in B (panel g), however we also notice a region of in-
creased magnetic field strength outside the protostellar surface, hinting at an outward
advection of magnetic flux. This is more evident in panel (f), where the black lines dis-
play EBenc . Here, at t = 0, we see that the region containing most of the enclosed mass
(i.e., the region in which Menc ceases to increase) coincides with the region containing
most of the enclosed magnetic energy. However, this is no longer the case at t ≈ 117
days, showing that magnetic energy was advected outwards. The small discrepancy in
EBenc seen at r = 1 AU between the two snapshots is caused by turbulent reconnection,
which destroys magnetic flux.
One final result we would like to report is in regards to the slices shown in panels (f-j) of
Fig. 3.11, displaying the plasma β of the gas. In Vaytet et al. (2018), it is reported that
the protostar formed under the ideal MHD approximation is a magnetically supported
object. However, we show here that all gas downstream of the protostellar accretion
shock (lime contour) has a plasma β ≈ 1 or ≫ 1. This means that the protostar is an
entirely thermally supported body. In addition, we have overlayed on these slices the
velocity vector field streamlines, which show that no outflow or jet is being launched
by the protostar. This is to be expected given the immensely unstructured nature of
the magnetic field in this run, which exhibits no coherent toroidal component.

8This is better seen in later times displayed in the figure.
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Figure 3.10: The magnetic field of run NIMHD: a set of slices displaying the magnetic
field strength (top two rows) and plasma β (bottom two rows) in a top-down (first
and third rows) and edge-on (second and fourth rows) view. The white curves in
the first two rows (panels a-j) are magnetic field streamlines, whereas in the last two
rows (panels k-t) they are velocity vector field streamlines. Each column represents a
different time, where t = 0 corresponds to the moment of protostellar birth. The mass
of the protostar and its circumstellar disk is displayed in the top right corner of panels
a-e. The scale bars in the first column apply to all other columns as well.
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Figure 3.11: Same as Fig. 3.10, but for run IMHD. Since there is virtually no rotation in
this run, the slices are done along the z axis only. The lime-colored contour designates
the stellar surface.

3.4.6 Disk expansion: comparison with the hydro case

We now turn to providing a quantitative description of the evolution of the circum-
stellar disk over time. Since its structure appears to be qualitatively similar to the
hydro case (a large and highly flared disk), we will compare it to that obtained in
run G2 of Ahmad et al. (2024), whose initial conditions and numerical setup are the
same (notwithstanding the absence of magnetic fields). In addition, since Fig. 3.10
has shown that the plasma β ≫ 1 within the disk, we expect a similar evolution to
the hydro case but with a notable increase in torquing owing to the strong magnetic
field strength. To this end, we display in Fig. 3.12 the mass, radius, specific angular
momentum, and density at the equatorial shock front of the circumstellar disk in run
NIMHD (black curves) and in the hydro run of Ahmad et al. (2024) (orange curves,
hereafter run HD). We also leverage the information provided in Fig. 3.13, which dis-
plays the column density maps of runs NIMHD and HD (resp. panels a and b) and
their corresponding radial profiles (panel c). The velocity profiles are shown in panel
d.
Additionally, since it is of interest to advance the simulation in time, we have branched
run NIMHD at ≈ 0.4 years following protostellar birth and run a parallel simulation
with a reduced ℓmax = 24, which significantly alleviates the computational cost of the
simulation. The properties of the disk in this run, labeled "NIMHD_LR", are shown
in the green curves of Fig. 3.12. The overlap between the black and green curves shows
that its results are realistic enough for physical interpretations.

We first begin by studying the temporal evolution of the disk’s radius with respect
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to time (panel e). We note the fact that although the evolution in the initial 0.3 years
are identical in the HD and NIMHD runs, they later diverge as run NIMHD exhibits
a slower disk growth in time owing to strong torque mechanisms. Nevertheless, the
plot displaying disk’s mass with respect to its radius (panel b) shows that the HD
and NIMHD runs exhibit a similar evolutionary trend, although run NIMHD’s curves
appears more oscillatory than that of run HD. These oscillations are caused by strong
spiral waves within the disk in run NIMHD, which carry a significant amount of ma-
terial inwards and in doing so, also reduce the mass of the disk when compared to
run HD. Indeed, at a given disk radius, run NIMHD displays a smaller mass than run
HD. These spiral waves are likely caused by magnetic torques, which reduce the gas’s
centrifugal support against gravity, and they warp the disk, as can prominently be seen
in panel (a) of Fig. 3.13. Indeed, when measuring the mass-weighted mean magnetic
field strength within a radius of 10 AU, the toroidal component outweighs all others
by an order of magnitude (≈ 270 G, compared to ≈ 60 G for the cylindrical radial
component and ≈ 25 G for the vertical field). This means that the magnetic field is
mostly parallel to the disk midplane, which has been shown to cause prominent spiral
waves to develop (Joos et al. 2012; Li et al. 2013; Hennebelle et al. 2020a). In con-
trast, the hydro disk (panel b) remains circular. This causes higher column densities
in the outer regions of the disk in run HD than in run NIMHD (panel c). Finally, the
higher protostellar mass causes faster rotation in the innermost regions of the disk in
run NIMHD (panel d), and its velocity profile closely approaches the Keplerian profile
(dashed line), whereas in run HD the velocity profile is super-Keplerian owing to the
disk’s self-gravity.
The prominence of magnetic braking is further displayed in panel (c) of Fig. 3.12, which
shows the protostellar mass as a function of disk radius. Here, we see that although
run HD quickly reaches a plateau in disk mass, run NIMHD shows a rapidly growing
protostar. Note that the specific angular momentum of the disk, shown in panel (d),
is the same in both runs and scales as

√
Rd.9 In panel (f), we show the specific angular

momentum of the gas within 1 AU, computed both outside of the disk (dotted lines)
and within it (solid and dashed lines). This figure shows that the disk in run NIMHD
is accreting from a reservoir of gas containing a smaller amount of angular momentum
than run HD, which shows that magnetic braking occurred before the gas was accreted
onto the disk.
The reduced mass of the disk in run NIMHD when compared to run HD also manifests
itself in a reduced disk density. More specifically, when measuring the density at the
disk’s equatorial shock front, we see that it is consistently lower than in run HD. Al-
though we could not integrate the calculations to the point where the disk reaches the
commonly used sink accretion radius of 1 AU, the current trend seen (and extended
by run NIMHD_LR) seems to indicate that the equatorial shock density in our MHD
simulations will be lower than in the hydro case.

9This scaling is a consequence of the disk’s Keplerian velocity profile.
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Figure 3.12: Temporal evolution of the circumstellar disk of run NIMHD (black curves),
compared with its hydro counterpart (orange curves). The green curves are a zoom-
out branched from run NIMHD and run at a lower resolution with ℓmax = 24 (see Sec.
3.4.2). Panels (a), (b), (c), and (d) display as a function of the disk’s equatorial radius
Rd respectively the density measured at the disk’s equatorial shock front, the mass of
the disk, the mass of the protostar, and the disk’s specific angular momentum. Panel
(e) displays Rd as a function of time, where t = 0 marks the moment of birth of the
disk. Panel (f) displays the specific angular momentum of the gas within 1 AU found
inside the disk (solid and dashed lines) and outside the disk (dotted lines) as a function
of time since the birth of the disk.

3.4.7 Discussions

The results presented here, most notably those of run NIMHD, are noteworthy for a
number of outstanding issues in stellar formation theory. We discuss their implications
in this wider context below.

The angular momentum problem

In Ahmad et al. (2024), we reported on the birth of the circumstellar disk as a result
of the breakup of the protostar and the subsequent vigorous radial expansion of the
disk in time. Run NIMHD has confirmed that such a phenomenon is reproduced even
in the presence of magnetic fields, provided that magnetic resistivities are accounted

– 132 –



The second collapse

a

0.1 AU

b

0.1 AU

10 2 10 1

rcyl [AU]

100

102

104

106

[g
cm

2 ]

c

NIMHD
HD

10 4 10 3 10 2 10 1 100 101

rcyl [AU]

0

5

10

15

20

v
[k

m
s

1 ]

dvK(M* =  9.03×10 3 M )
vK(M* =  6.55×10 3 M )

102 103 104 105 106

 [g cm 2]

Figure 3.13: A structural and kinematic comparison between run NIMHD and HD
(resp. black and orange curves in panels c and d). Panel (a) displays column density
maps for run NIMHD at our final simulation snapshot, which is ≈ 190 days after
protostellar birth. Panel (b) displays the equivalent map for run HD, at a moment
in time where its radius is comparable to that of run NIMHD (≈ 0.2 AU). Only cells
belonging to the disk were used in the making of these maps. The second row displays
the radial profiles of column density (panel c) and azimuthal veocity (panel d). The
dashed lines in panel (d) display the Keplerian velocity computed with the protostar’s
mass.

for. In the literature, Machida & Matsumoto (2011); Vaytet et al. (2018); Machida &
Basu (2019); Bhandare et al. (2024) have also reported on the birth of a circumstellar
disk that rapidly expands to larger radii. What these simulations seem to show is that
a paradigm shift is required in our understanding of the angular momentum problem.
Indeed, long has it been implicitly implied in stellar formation theory that angular
momentum must be lost during the collapse so as to prevent the protostar from ever
reaching breakup velocity (Bodenheimer 1995). What our comparison between run
IMHD and NIMHD shows is that should angular momentum transport by magnetic
fields be so efficient so as to prevent the protostar from ever reaching breakup velocity,
then no circumstellar disk forms: it is the very fact that the protostar achieves rota-
tional breakup that allows for circumstellar disks to form in our simulations. As such,
whatever angular momentum transport process is responsible for spinning down the
protostar to the ∼ 10 − 15% of breakup velocity as is observed in YSOs (Rebull et al.
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2004; Herbst et al. 2007) is acting on longer timescales than the free-fall time of the
cloud.

The magnetic flux problem

As mentioned previously, YSOs are consistently found to have ∼ kG magnetic field
strengths, with the earliest measurements being those of class I sources. Since the
current observational data points towards a fossil field hypothesis, this value serves as
a constraint for second collapse calculations, as they must implant a kG field strength
in the protostar. Our results, and those of Vaytet et al. (2018); Machida & Basu (2019);
Wurster et al. (2022), show that such a value may be achieved and maintained following
the second collapse. The uncertainty here lies in the short horizon of predictability of
second collapse calculations, as they must be able to simulate ∼ 105 years following
protostellar birth in order to make an adequate comparison with observations. As
such, in order to advance the field, better constraints on magnetic field strengths both
at dense core scales through the measurement of linearly polarized dust emissions,
or at much smaller scales through Zeeman broadening, are required in class 0 sources.
However, these measurements are immensely difficult to undertake owing to the optical
depths involved.
In the meantime, a significant amount of theoretical modeling is required in order to
describe the evolution of the protostellar magnetic field in conjunction with pre-stellar
evolution models, however simplified such models are. Numerically costly simulations
such as those presented in this thesis are immensely helpful in obtaining the initial
properties and structure of the protostar, however their short horizon of predictability
precludes them from definitively solving the magnetic flux problem.

The missing mass problem

Current observational surveys of class 0/I disks estimate their masses to be ∼ 10−3 −
10−2 M⊙ (e.g., Tobin et al. 2020), which appears to be an order of magnitude lower than
those predicted by theoretical studies (∼ 10−2 − 10−1 M⊙, e.g., Machida & Matsumoto
2011; Tsukamoto et al. 2015b,a; Tomida et al. 2015; Masson et al. 2016; Lee et al. 2021,
see the discussions in Tsukamoto et al. 2023a). Notwithstanding the uncertainties
involved in current observational methods (Tung et al. 2024), this discrepancy has
been dubbed the "missing mass problem". It has also been shown that current subgrid
models aiming to emulate the sub-AU regions by replacing them with a sink particle
show a strong sensitivity to the parameters chosen in said model. In Hennebelle et al.
(2020b), the sink accretion threshold was shown to particularly affect the disk mass,
with lower accretion thresholds leading to lower disk masses. The results of Ahmad
et al. (2024) seemed to show that the sink accretion threshold used in most simulations
is a factor ≈ 40 lower than it should be, thus exacerbating the missing mass problem as
that would mean that disks are in reality much more massive in simulations. Although
the disk in run NIMHD has not reached the commonly chosen sink accretion radius of
1 AU yet, an extrapolation of the trend it shows would lead to an accretion threshold
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that is an order of magnitude lower than that in the hydro run of Ahmad et al. (2024).
This is owing to magnetic torques that significantly increase the protostellar mass in
comparison to hydro runs, and thus leads to a disk with lower density. As such, we
cautiously conclude that omitting magnetic fields produces a disk density at 1 AU that
is too computationally expensive to be emulated in sub-grid models, despite the fact
that the plasma β of the gas is well above unity in the magnetized runs. A more
thorough understanding of the disk properties thus not only requires one to study
the nascent protostar and disk in concert, but also requires better constraints on dust
resistivities that dictate the amount of angular momentum inherited by the disk.
In any case, this issue highlights the need for better comparisons between observations
and theoretical models, as Tung et al. (2024) has shown that current observational
estimates of disk masses are inadequate and fail to predict the current sizes when
compared to simulations.

The importance of adequate dust resistivity tables

An important uncertainty in our current understanding of sub-AU regions is the dust
resistivity used. The MRN dust size distribution is increasingly called into question
by studies that account for dust coagulation and fragmentation during protostellar
collapses (Lebreuilly et al. 2023; Kawasaki & Machida 2023; Tsukamoto et al. 2023a;
Vallucci-Goy et al. 2024; Bhandare et al. 2024). Our simulations are undertaken under
the assumption that Ohmic resistivity is, as predicted by dust-size distribution studies,
negligible. This leads to stronger magnetic fields within the first Larson core, which in
turn increases the magnetic field intensity in the nascent protostar and circumstellar
disk. As a result, magnetic torques drive considerably more material towards the
protostar, thus leading to a reduced disk density.
As such, the properties of the newly-formed circumstellar disk are highly sensitive to the
dust resistivities that dictate the magnetic field intensity inherited from larger spatial
scales. A better understanding of the sub-AU regions is predicated upon accurate dust
resistivity tables, which requires a better understanding of the dust size distribution.
This will ultimately be achieved by longer wavelength observations of star-forming
regions in order to probe optically thin dust emissions, as well as by advances in our
theoretical modelling of dust growth and fragmentation during protostellar collapses.

3.4.8 Conclusion

In the present study, we have undertaken radiative MHD simulations describing the
collapse of a turbulent and gravitationaly unstable dense cloud core of 1 M⊙ to stellar
densities, both under the ideal MHD approximation and under the non-ideal approxi-
mation in which we have accounted for ambipolar diffusion. Our stringent refinement
criterion, as well as high spatial resolution, allowed us to describe the nascent protostar
and circumstellar disk with unprecedented resolution. We push the calculations as far
as possible in time following protostellar birth in order to study the nascent disk’s
expansion, reaching ≈ 0.5 years in our high resolution run and ≈ 1.2 years in our lower
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resolution run. Our results may be summarized as follows:

(i) In accordance with previous results in the literature, the ideal MHD approx-
imation leads to very efficient magnetic braking which prevents the formation
of a circumstellar disk (i.e., the magnetic braking catastrophe). The results of
the second gravitational collapse in this run is a central, spherical accumulation
of material that leads to the birth of a spherical protostar, with current sheets
protruding from the stellar surface. The properties of the nascent protostar are
similar to those obtained in spherically symmetrical hydrodynamical runs such
as Ahmad et al. (2023). The protostar also exhibits strong turbulent motion.

(ii) When accounting for ambipolar diffusion, the efficacy of magnetic braking is sig-
nificantly reduced toward higher density gas, which allows the nascent protostar
to reach breakup velocity and shed its surface material to form a circumstellar
disk around it. The protostar is embedded within its circumstellar disk, whose
birth and early evolution is qualitatively similar to the RHD runs presented in
Ahmad et al. (2024), as the plasma β within the disk far exceeds unity. The
nascent disk vigorously expands in the radial direction. This result carries impli-
cations for the angular momentum problem, as we show that the protostar must
achieve breakup velocity in order to form a circumstellar disk. As such, angular
momentum transport processes must spin-down the protostar on considerably
longer timescales than the free-fall time of the dense cloud core.

(iii) The magnetic field implanted in the protostar at birth has a strength of ∼ 105 G in
the ideal MHD run, which then continuously reduces to ∼ 104 G as the simulation
progresses. In the non-ideal MHD run, the implanted field has a strength of
∼ 103 G which is maintained throughout the simulations duration. Since current
observational surveys of magnetic fields in YSOs favor the fossil field hypothesis,
this puts the non-ideal MHD simulation in agreement with them.

(iv) The structure of the magnetic field in both runs is, as expected, vastly different.
In the ideal MHD run, the magnetic field lines are tangled by the turbulent
motion within the protostar, and the azimuthal and meridional components (Bϕ

and Bθ) reach similar strengths. In addition, we see a magnetically supported
structure resembling a cocoon upstream of the accretion shock. In the non-ideal
MHD run, the magnetic field is mostly toroidal (Bϕ), although a notable poloidal
component (Bz) threads the star-disk system. Within the protostar, the poloidal
component is significantly built-up over time.

(v) Owing to our use of turbulent initial conditions, the magnetic field mostly loses
its coherence and we see no outflows or jets in both runs. In the non-ideal MHD
run however, the plasma β in the polar regions upstream of the protostellar accre-
tion shock is continuously being reduced. Coupled with the fact that a poloidal
component is being built-up in the protostar, this may lead to the launching of
an outflow at later times.

(vi) When comparing the nascent disk in the non-ideal MHD run to its hydro coun-
terpart (from Ahmad et al. 2024), we note a reduced disk density. This is caused
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by the presence of strong magnetic and gravitational torques within the disk,
which transport a significant amount of material towards the protostar. This
also causes the protostar to become more massive than in the hydro case. The
reduced disk density in turn causes a reduced density at the disk’s equatorial
shock front, which is an important measure for studies of global disk evolution
that leverage sink particles to advance the simulations in time. The trends seen
in our simulations indicate that the shock front’s density at 1 AU in the magne-
tized case is an order of magnitude lower than that reported in the hydro runs
of Ahmad et al. (2024). As such, we cautiously conclude that current subgrid
models used in the literature are valid.

Although we may learn a lot from expensive simulations like the ones presented
in this study, it is important to note that their horizon of predictability is rather
short and their results may not be applicable throughout the entirety of the class 0
phase. The importance of magnetic fields in dictating the transport of material within
the circumstellar disk also highlights the need for better constraints on the dust-size
distribution, which requires significant observational and theoretical efforts.
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Chapter 3

3.5 Miscellaneous results

Herein, we present miscellaneous results obtained during the thesis that, although are
interesting, do not warrant a publication on their own.

3.5.1 Merger of First Larson cores

Thanks to our use of adaptive mesh refinement when simulating the collapse of turbu-
lent dense cloud cores, we could resolve the formation of multiple first Larson cores that
had formed as a result of the fragmentation of a gravo-turbulent filament, or through
gravitational instabilities in circumstellar disks. Some of these first Larson cores would
then merge together. To our knowledge, no paper in the literature reports on this, and
so we would like to present it in this manuscript.

To this end, we display in Fig. 3.14 a merger of two first Larson cores which formed
within the same gravo-turbulent filament. This run was a radiative MHD simulation
in which ambipolar diffusion is accounted for. It possesses the same numerical setup
as run NIMHD presented in Sec. 3.4, but with a turbulent Mach number of M = 1
instead of 0.4.
The top row of the figure displays the column density of the gas, which shows two first
Larson cores that appear spherical in morphology. These two bodies approach each
other as they travel within their host filament over a few dozen years, and they begin
their merger in panel (b). In panels (c-e), we see a notable increase in rotational ve-
locity as the first Larson core that resulted from the merger appears significantly more
flattened than its progenitor cores. As a result of the increase in rotational velocity,
the magnetic field lines are dragged along by the gas, which builds up a significant
toroidal component. As a result of this, we witness in panels (i) and (j) the onset of a
low velocity outflow (≈ 2 km s−1). Events like these allow for the first Larson core to
accumulate material faster than by simply accreting the surrounding gas, and hence
would lead to a faster second gravitational collapse.

3.5.2 Multigroup simulations

In appendix C of Ahmad et al. (2023), a simulation accounting for multigroup radia-
tive transfer was carried out. The simulation accounted for 4 radiative groups: radio,
infrared, ultra-violet/visible, and X-rays (see table C.1 of Ahmad et al. 2023 for the
frequency ranges of each group).
The simulation, carried out in spherical symmetry, failed to yield any meaningful phys-
ical differences to its gray counterpart, and its added computational cost was deemed
unworthy given the similarities. However, the simulations presented in Ahmad et al.
(2024) show that the structure and behavior of the radiative shock front changes sig-
nificantly when a disk forms around the second Larson core. As such, I carried out a
similar multigroup simulation accounting for angular momentum in the initial dense
core, with the goal of studying the radiative behavior of the star-disk system using a
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Figure 3.14: A merger of two first Larson cores within a gravo-turbulent filament. Each
column represents a different time, where t = 0 corresponds to the beginning of the
simulation. The first row (panels a-e) displays the gas column density. The second row
(panels f-j) displays a radial velocity slice across the center of the scene, with velocity
vector field streamlines displayed in white.

more realistic radiative transfer description. This simulation had the same setup as the
gray FLD run G2 of Ahmad et al. (2024), with the only difference being the number
of radiative groups described.

The resulting disk properties as compared to the gray run are presented in Fig. 3.15,
which shows the mass-radius relationship of the circumstellar disk. The figure shows
that the multigroup run once again fails to yield any meaningful differences to its gray
counterpart. The reasons for this can be seen in Fig. 3.16, which shows that the radia-
tive energies of the star-disk system are completely dominated by the infrared group.
The UV/visible group, although producing photons at protostellar scales, has its ra-
diation quickly reabsorbed by the gas and re-emitted at infrared wavelengths. Most
UV/visible photons escape along the polar density cavity, where they are re-processed
in the infrared. As such, the multigroup run yields slight differences in radiative energy
to its gray counterpart along the polar regions (see panels f and h of Fig. 3.16), but
not within the disk owing to the high optical depths involved.
To conclude on this experiment, we have shown that the multigroup run’s added com-
putational burden is not justified given its similarities to the gray run.
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Figure 3.15: The mass-radius of the circumstellar disk: a comparison between a gray
simulation (black line) and a multigroup run (red line).
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Figure 3.16: Slices across the center of the computational domain, displaying the Rosse-
land mean opacities (top row) and radiative energies (bottom row) for the multigroup
run (second column and onward) and the gray run (first column). The slices are shown
at a moment in time where both runs have a similar disk radius of ≈ 0.45 AU.
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Chapter 4

Conclusion and Perspectives

During the past three years, I had the opportunity to carry out state-of-the-art research
in which I simulated the birth and early evolution of stars and circumstellar disks. This
was made possible by decades of algorithmic and code development in RAMSES, which
allowed for the inclusion of multiple highly non-linear physical processes to be included
in our calculations. In addition, observational breakthroughs in the field have allowed
astronomers to lift the veil on the physical processes behind the genesis of stars and
circumstellar disks, thus furthering our understanding of the progenitors of planetary
systems. Despite being mired in the heavy numerical cost of the simulations, these
were pushed beyond many previous studies in the literature, both in terms of effec-
tive spatial resolution and in physical timescales described, allowing me to study the
nascent structures in the simulations with unprecedented detail.

Having been immersed in a field of research in which rapid progress is being made,
I was able to place my work in a detailed scientific context, and links between a num-
ber of physical scales and processes could be drawn. In chapter 1, some outstanding
issues of star formation pertaining to the work done during this thesis are presented.
The goal of the thesis was to provide a rigorous analysis of the second gravitational
collapse, a critical step in the collapse of a dense cloud core that leads to the formation
of a protostar.
In chapter 2, the theoretical background required to model the birth of stars, as well as
the numerical techniques used in our RAMSES simulations are presented. In addition to
these, I share some of the expertise I’ve gathered in analysing the simulation’s results,
both in terms of performative boosts through parallelization, and in terms of data
visualization techniques that greatly aid in extracting a physical interpretation of the
simulation’s results. The latter proved particularly useful during my thesis, and some
common 3D visualization and 3D printing techniques are presented.
In chapter 3, the results of my simulations are presented. These have so far led to
two publications in the Astronomy & Astrophysics journal during my thesis, with a
third one in preparation. The first publication studies the nascent protostar in spher-
ical symmetry using radiative hydrodynamics (RHD), and the second paper studies
the collapse while including angular momentum in the initial dense cloud core. This
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led to the formation of circumstellar disks shortly following protostellar birth, and the
two object’s interaction and joint evolution was studied in detail. Finally, a suite of
simulations including magnetic fields, both under the ideal and non-ideal MHD approx-
imation, are presented in this chapter. These led to significantly different gas dynamics
than in the hydrodynamical runs.
Below, I summarize the main insights offered by my work on some of star formation’s
outstanding issues. Some perspectives of future works are also presented.

4.1 The insights gained by second collapse calculations

On the protostar itself

The main benefit of simulating the second collapse is the fact that one may self-
consistently model the birth of the protostar itself. Our first publication simulated
the collapse of a dense core in spherical symmetry, thus leading to the birth of a
protostar which we studied in-depth. The protostar is formed through hydrostatic
equilibrium once ample thermal pressure support is built following the resumption of
adiabatic heating when most H2 molecules are dissociated.
By virtue of our very high resolution (20−2000 cells per Jeans length), we have discov-
ered an instability in the first hours of protostellar birth: as the gas is in the process
of establishing a hydrostatic equilibrium following the completion of H2 dissociation,
small perturbation in the flow are exponentially amplified, leading to strong turbulent
motion within the protostar that is then sustained by accretion. This confirms a pre-
vious finding by Bhandare et al. (2020), who reported that the protostar is turbulent
at birth despite its radiative stability. The turbulent transport of material within the
protostellar interior leads to very efficient entropy mixing, which drives the entropy
gradient to zero, thus allowing said interior to be modelled by a polytrope. This result
goes against the common paradigm in which the onset of turbulent motion within the
protostar coincides with deuterium ignition.

On the luminosity problem

Following the birth of the protostar, its radius swells owing to the subcritical nature of
its shock front; the immense optical depths upstream of the accretion shock prohibit the
protostar from radiating away the gargantuan amounts of kinetic energy it is accreting
(the mass accretion rate is ∼ 10−1 M⊙). This results in the addition of significant
amounts of high entropy content to the protostellar interior (i.e., hot accretion), thus
causing the increase in radius. The strong turbulent motion within the protostar aids in
regulating its swelling. Although the radiative efficiency of the protostar is initially well
below unity, as accretion progresses, the density upstream of the shock front reduces,
which allows for an increasing amount of radiation to escape. In our second paper,
which accounts for angular momentum in the initial dense core, material gathers in
a disk, which creates a density cavity along the polar regions. This cavity enables
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the protostar to shine into an optically thin medium, thus allowing its shock front to
reach supercriticality in ∼ 2 years and radiate away the vast majority of the incoming
accretion energy. Owing to the physical analysis of the shock front in our simulations,
the ad-hoc assumption of radiative supercriticality used in pre-stellar evolution models
to conform their predictions to observations, has now been proven to be true.

On the formation of circumstellar disks and the angular momentum problem

In our simulations accounting for angular momentum in the initial dense cloud core,
we find that the protostar reaches breakup velocity in a matter of months. This means
that the centrifugal force along the equatorial regions exceeds the radial component of
gravity, thus causing material to be advected outward due to excess angular momentum.
Thus, a smooth transition from mainly thermally to centrifugally supported gas is
witnessed, and a circumstellar disk is formed as a result. The accretion shock envelops
both the protostar and the disk, and the two act as a continuous fluid system. As
the nascent protostar and disk accrete material from their surroundings, the former
vigorously spreads radially. The disk’s temperature, compounded by the subcritical
nature of its accretion shock, causes it to flare-up significantly along the vertical extent,
and it completely engulfs the protostar in volume. This occurs independently of the
initial conditions at larger spatial scales, with a small spread caused by the turbulent
initial conditions.
When accounting for magnetic fields in our calculations, drastically different results
are obtained, depending on whether the ideal or non-ideal MHD approximation is
used. In the former, magnetic braking is efficient to such an extent that almost no
angular momentum remains in the gas at higher densities. This prevents the protostar
from ever reaching breakup speeds, and thus no circumstellar disk forms. On the
other hand, when ambipolar diffusion is included in our calculations, the efficiency of
magnetic braking is reduced and breakup velocities are achieved following protostellar
birth, similarly to our hydrodynamical runs. This allows a circumstellar disk to form,
however its properties are slightly different than in our RHD runs. Indeed, although
the thermal to magnetic pressure ratio far exceeds unity in the disk, magnetic torques
carry a significant amount of material inward, thus leading to a more massive protostar.
In the RHD runs, the mass of the disk exceeds that of the protostar up to seven-fold,
whereas it is comparable to it in our MHD runs. In both cases, the disk’s self-gravity
has a significant influence on its dynamics.
On larger scales, we find that an outer, more extended disk of radius ∼ 10 AU may form
around the first Larson core. The existence of this disk prior to the second collapse
mainly depends on the first core’s lifetime, which is very sensitive to the physics at
play, as well as to the initial angular momentum budget of the dense core. For instance,
in our RHD runs, increasing the strength of the initial turbulent velocity vector field
yielded more extended first core lifetimes, which lead to the formation of disks around
the latter. When including magnetic fields, angular momentum is efficiently extracted
from low density gas, and no outer disk formed. Following the second collapse, the
circumstellar disk that formed as a result of protostellar breakup quickly expands in
radius and merges with the more extended outer disk should the latter exist.
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On the magnetic flux problem

Current observational surveys of magnetic field intensities in young stellar objects, al-
though lackluster in sample size, report a mean value of ∼ 1 kG and favor the fossil
field hypothesis of the origin of magnetic fields in stars. This means that the latter is
carried over from protostellar birth, and thus second collapse calculations can provide
insights on how such an implantation occurs. Under the ideal MHD approximation,
the magnetic field implanted in the protostar has a strength of ∼ 105 G and shows a
decreasing trend thereafter, owing to an outward advection of material, and to turbu-
lent reconnection caused by the strong turbulent motion within the protostar.
However, in the simulation in which we include ambipolar diffusion, the implanted field
has a strength of ∼ 103 G that is thereafter maintained. In order to implant such a
field in the protostar, the magnetic flux within the dense core is diffused by ambipolar
diffusion to a value of ∼ 0.1 G within the first Larson core. After the second collapse,
the ideal MHD limit is recovered as all dust particles are sublimated and the gas begins
to ionize, and half the mass content of the protostar is shown to be under ionized form.
A field strength of ∼ 0.1 G within the first core also seems to be in agreement with
paleomagnetic measurements of solar system meteorites, water maser observations in
protostellar jets, and in broad agreement with observational surveys of disk sizes.

On jets and outflows

The use of turbulent initial conditions in our MHD runs greatly reduced the coher-
ence of the initial magnetic field threading the dense core. Although an interchange
instability developed in the ideal MHD run which caused material to move outward in
the radial direction, this was not the case in the non-ideal run. On stellar scales, we
report no jets or outflows in both the ideal and non-ideal runs, however in the latter
simulation the plasma β of the gas is continuously reducing over time in the polar
regions. As a strong poloidal component is simultaneously being built-up, this could
in the future lead to launching of a jet. Turbulence in the initial dense core thus has a
delaying effect on the launching of jets and outflows.

On the importance of adequate dust resistivities

Our non-ideal MHD simulation has shown the importance of including ambipolar dif-
fusion in the calculations. Should the latter not be included, the protostar would be
devoid of a circumstellar disk as it never reaches breakup velocity, and it would have
a magnetic field strength far in excess of what is observed in YSOs.
In addition to this, the properties of the nascent disk in our MHD runs are affected
by the efficient torque mechanisms the magnetic field provides. These transport a con-
siderable amount of material towards the protostar, which in turn reduce the disk’s
density. This result has repercussions on larger scale simulations that wish to simulate
much longer timescales, as they omit the inner-most sub-AU region in favor of a sink
particle that accretes material from its surroundings with a given accretion threshold.
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Currently, when measuring what said accretion threshold should be, we find an order
of magnitude difference between the RHD and MHD runs, thus emphasizing the need
for adequate dust resistivities, as they dictate the magnetic field strength inherited by
the structures formed following the second collapse and by extension, the disk density.

4.2 Perspectives

Throughout this thesis, exciting results were obtained that pushed the boundaries of
our understanding of stars and circumstellar disks. Each new simulation offered insights
on certain physical processes and phenomena, but new questions always rose. Below,
I summarize the work that can be done as a follow-up to this thesis.

Unravelling the origin of magnetic fields in stars

In addition to needing a better understanding of dust resitivities, and by extension the
dust size distribution, understanding the origins of magnetic fields in stars will require
a collaborative effort in which knowledge from pre-main sequence stellar evolution,
dynamo theory, and stellar formation theory are combined. This will allow us to form
a cohesive theory modelling the implantation of a magnetic field in the protostar, and
how the former behaves during the latter’s subsequent evolution towards the main
sequence.
From the point of view of second collapse calculations, detailed constraints on the
magnetic field intensity and structure according to the initial conditions of the collapse
can be provided, in addition to the interior structure of the protostar following its
birth. These can then be used by a pre-main sequence evolutionary model to describe
the evolution of the interior structure of the protostar, and direct numerical simulations
can then be applied to discern whether the protostar is conductive to dynamo action.
However, the magnetic field inherited by the protostar at birth strongly depends on
the coupling of the field to the gas during the collapse. Knowledge of the strength of
this field is predicated upon a detailed knowledge of dust grains, and at the scale of
dense cores, variations in dust emissivities are observed (Maury et al. 2022). Large
millimeter interferometers such as NOEMA and ALMA are currently being used to
produce more detailed observations of dust emissions, and their observations may aid
in obtaining better constraints on the dust properties in star-forming regions. In the
meantime, simulations with non-MRN dust resistivities may be run with the goal of
performing a parameter space exploration, and their results may be used to infer the
possible range of magnetic field strengths implanted in the protostar.

Simulating longer timescales

The main drawback of second collapse calculations is the short horizon of predictability
they provide. Indeed, owing to a combination of stringent timestepping constraints and
poor load-balancing, the simulations can only describe the first few years following the
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birth of the protostar. In order to significantly increase the simulated physical time,
sub-grid models such as the use of a sink particle need to be used. However, finding
the correct parameters, namely the accretion threshold and the radiative efficiency, not
to mention any mechanical feedback effects from the protostar such as jets, needs a
careful calibration to self-consistent simulations.
In this respect, it would also be useful to use a different, more modern code to carry out
the simulations. Graphical Processor Units (GPUs) have become increasingly available,
and the computing power they offer can be leveraged to gain performance boosts. As
such, a number of MHD AMR codes are now developed on hybrid frameworks, capable
of running on both GPUs and CPUs, such as Dyablo that is currently in development
at CEA. In addition, a stripped-down version of RAMSES, aptly called mini-RAMSES,
is currently in development. Its main difference to the main code is the manner in
which communications are handled; load balancing occurs much more frequently, with
significant gains in performance for setups possessing a large ℓmax. A second collapse
calculation using this code might be of interest.

Predicting disk properties using machine learning: the ORACLE project

Due to the challenges associated with observing class 0 and I disks embedded in op-
tically thick star-forming cores, current observational techniques fail to recover the
correct disk mass when measuring dust continuum emissions (Tung et al. 2024). In
order to better link observations with theoretical models, I had the idea to build a
database of synthetic observations of disks, extracted from nearly ∼ 100 TB of sim-
ulation data available at CEA. This would allow me to train a convolutional neural
network on a dataset containing ∼ 105 synthetic observations after adequate data-
augmentation techniques (e.g., different points of view and different ages) are applied,
which may then infer the disk mass from observational data.
The simulations at CEA have a wide variety of initial conditions, physical setups, and
numerical resolutions, thus allowing me to create a varied dataset on which to train the
neural network. Once a disk is found and extracted in a simulation, a radiative transfer
tool (such as RADMC-3D for instance) may be applied to obtain an intensity map,
and an instrument simulator (such as CASA) may then produce the full synthethic
observation.
Ultimately, the goal would be to make such a dataset available to the wider astronom-
ical community using the Galactica service.
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Appendix A

Useful code snippets

Snippet 1: Extracting a uniform grid from a simulation subdomain using Osyris

1 from tqdm import tqdm
2 import os
3 dx = .1*osyris.units("au")
4 resolution = min(256,

int(dx.to("au").magnitude/data["amr"]["dx"].min().to("au").values))↪→

5 grid_res = (resolution, resolution, resolution)
6 dz = dx # extent to be covered in z axis by volume stack
7 scalar = "density"
8 unit = "g/cm^3"
9 data["hydro"][scalar] = data["hydro"][scalar].to(unit)

10 # computing z coordinates for the stack
11 z_coord =

osyris.Array(values=np.linspace((center.z-dz/2).to("au").values,↪→

12 (center.z+dz/2).to("au").values, grid_res[-1]), unit="au")
13 # proceed to data gathering
14 volume_stack = []
15 for i in tqdm(range(grid_res[-1]), ascii=True, desc="Creating volume

stack for scalar field '{}'".format(scalar)):↪→

16 # first select new image center
17 new_xc = center.x; new_yc = center.y; new_zc = z_coord[i]
18 new_im_center = osyris.Vector(x=new_xc.to("au").values,
19 y=new_yc.to("au").values,
20 z=new_zc.to("au").values,
21 unit="au")
22 plane = osyris.map({"data":data["hydro"][scalar]},
23 origin=new_im_center, dx=dx, direction="z",

resolution=grid_res[0], plot=False)↪→

24 volume_stack.append(plane.layers[0]['data'].data)
25 # scalar fields get stacked on first axis
26 np.save(dump_path, np.stack(volume_stack, axis=0))
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Snippet 2: Extracting a uniform grid from a simulation subdomain using Osyris. Application to a vector field

1 dx = .1*osyris.units("au")
2 resolution = min(256*2,

int(dx.to("au").magnitude/data["amr"]["dx"].min().to("au").values))↪→

3 # grid resolution in (x,y,z)
4 grid_res = (resolution, resolution, resolution)
5 dz = dx # extent to be covered in z axis by volume stack
6 field = "B_field"
7 units = "G"
8

9 # computing z coordinates for the stack
10 z_coord =

osyris.Array(values=np.linspace((center.z-dz/2).to("au").values,↪→

11 (center.z+dz/2).to("au").values, grid_res[-1]),
12 unit="au")
13

14 fields = ["x", "y", "z"]
15 volume_stack = []
16 for i,u in enumerate(fields):
17 vs = []
18 data["hydro"]["{}_{}".format(field, u)] =

getattr(data["hydro"][field], u).to(units)↪→

19 for i in tqdm(range(grid_res[-1]), ascii=True, desc="Creating
volume stack for vector field '{}' ({}
component)".format(field, u)):

↪→

↪→

20 # first select new image center
21 new_xc = center.x; new_yc = center.y; new_zc = z_coord[i]
22 new_im_center = osyris.Vector(x=new_xc.to("au").values,
23 y=new_yc.to("au").values,
24 z=new_zc.to("au").values,
25 unit="au")
26

27 plane = osyris.map({"data":data["hydro"]["{}_{}".format(field,
u)]},↪→

28 origin=new_im_center, dx=dx, direction="z",
resolution=grid_res[0], plot=False)↪→

29 vs.append(plane.layers[0]['data'].data)
30 volume_stack.append(vs)
31 # vector fields get stacked on the last axis.
32 np.save(dump_path, np.stack(volume_stack, axis=-1))
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Snippet 3: Loading a scalar field onto a Pyvista uniform grid

1 import pyvista as pv
2 stack = np.load(path)
3 xmin = -100; xmax = 100;
4 ymin = -100; ymax = 100;
5 zmin = -100; zmax = 100;
6 dx = (xmax-xmin)/stack.shape[0]
7 dy = (ymax-ymin)/stack.shape[1]
8 dz = (zmax-zmin)/stack.shape[2]
9 # Create the grid on which PyVista can deposit the data

10 grid = pv.ImageData()
11 grid.dimensions = stack.shape
12 grid.origin = [xmin, ymin, zmin]
13 grid.spacing = [dx, dy, dz]
14 grid.point_data['scalar'] = stack.flatten(order='C')

Snippet 4: Loading a vector field onto a Pyvista uniform grid

1 vec = np.load(path)
2 vx = vec[..., 0]
3 vy = vec[..., 1]
4 vz = vec[..., 2]
5 vectors = np.column_stack((vx.ravel(), vy.ravel(), vz.ravel()))
6 # Create the grid on which PyVista can deposit the data
7 grid = pv.ImageData()
8 grid.dimensions = stack.shape
9 grid.origin = [xmin, ymin, zmin]

10 grid.spacing = [dx, dy, dz]
11 grid[field_name] = vectors
12 grid[field_name+" (norm)"] = np.linalg.norm(vectors, axis=1)

Snippet 5: Volume render of a scalar field with interactive opacity using Pyvista

1 def update_opacity_distance(val):
2 vr.GetProperty().SetScalarOpacityUnitDistance(val)
3 return
4

5 p = pv.Plotter()
6 vr = p.add_volume(grid, scalars="scalar", cmap="magma", clim=[-4, -1],
7 opacity="linear", mapper="gpu",
8 opacity_unit_distance=grid.length / 25,
9 shade=True, scalar_bar_args={"interactive":True})

10 f = lambda val: vr.GetProperty().SetScalarOpacityUnitDistance(val)
11 p.add_slider_widget(rng=[0, grid.length/4],

callback=update_opacity_distance, title="Opacity Distance")↪→

12 p.show_grid()
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Snippet 6: Static streamline placement using Pyvista

1 grid_vertices = [ # starting point coordinates
2 [(xmax,ymin,zmax), (xmin,ymax,zmin)], # diagonal
3 [(xmax,ymin,zmin), (xmin,ymax,zmax)], # diagonal
4 [(xmax,ymax,zmin), (xmin,ymin,zmax)], # diagonal
5 [(xmin,ymin,zmin), (xmax,ymax,zmax)], # diagonal
6 [(0,0,zmin), (0,0,zmax)], # cross sectional
7 [(xmin,0,0), (xmax,0,0)], # cross sectional
8 [(0,ymin,0), (0,ymax,0)], # cross sectional
9 ]

10 nstream_packets = [i for i in range(len(grid_vertices)]
11

12 for i in nstream_packets:
13 stream, src = grid.streamlines(field_name, return_source=True,

n_points=500, pointa=grid_vertices[i][0],
pointb=grid_vertices[i][1], progress_bar=True,
integration_direction="both")

↪→

↪→

↪→

14 stream_list.append(stream)
15

16 p = pv.Plotter()
17 for stream in stream_list:
18 strml = stream.tube(radius=0.0015)
19 plotter.add_mesh(strml, color="w")
20 p.show()

Snippet 7: Interactive streamline placement using Pyvista

1 def simulate(pointa, pointb):
2 streamlines = grid.streamlines(field_name,
3 n_points=300, max_steps=500, pointa=pointa, pointb=pointb,

integration_direction='both', terminal_speed=0, max_time=20↪→

4 )
5 p.add_mesh(streamlines, name='streamlines', line_width=2,

render_lines_as_tubes=True, cmap='turbo', scalars=field_name+"
(norm)")

↪→

↪→

6

7 p = pv.Plotter()
8 p.add_line_widget(callback=simulate, use_vertices=True)
9 p.show()

Snippet 8: Iso-contouring using Pyvista

1 contours = grid.contour(np.arange(rhomin, rhomax+1, .5))
2 smooth_contour = contours..smooth(n_iter=2000, progress_bar=True)
3 p = pv.Plotter()
4 p.add_mesh(contours, opacity=.4, clim=[rhomin, rhomax], cmap="viridis")
5 p.show()
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Snippet 9: ROI render using Pyvista

1 rho = np.load(path+"rho.npy")
2 pos = np.load(path+"pos.npy")
3 c = # numpy boolean array
4 points = np.transpose([pos[0][c],pos[1][c],pos[2][c]])
5 cloud = pv.PolyData(points)
6 cloud['log(rho) [g/cm^3]'] = np.log10(rho[c])
7 p = pv.Plotter()
8 p.add_mesh(cloud, cmap="magma", clim=None, opacity="linear")
9 p.show()
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