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Titre : Réseaux de neurones augmentés par la physique pour I'apprentissage de lois de compor-
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Résumé :
Le contrdle de santé des structures demeure
une préoccupation essentielle en ingénierie,
étant donné les impératifs de sécurité et de du-
rabilité. Une pratique récente consiste a mettre
en place un dialogue entre une structure phy-
sique et son jumeau numérique, afin de prédire
I'état de santé et de limiter 'lendommagement.
Cette these s'intéresse a la question fonda-
mentale de la construction automatique d'un
modele de comportement matériau, néces-
saire a la prédiction fiable de I'état de la struc-
ture. Les lois de comportement matériau sont
représentées par des réseaux de neurones
contraints a respecter les principes de la ther-
modynamique, via l'apprentissage de poten-
tiels convexes intervenant dans le cadre des
Matériaux Standards Généralisés. L'entraine-
ment des réseaux de neurones est réalisé de

maniére non supervisée par la minimisation
de lI'erreur en relation de comportement mo-
difiée (MCRE). La fonctionnelle mCRE offre un
sens physique riche grace a l'indicateur d'er-
reur de modele ainsi qu’a la possibilité de ga-
rantir le respect des connaissances fiables. Un
procédure de calibration automatique des hy-
perparametres est développée pour réduire
la sensibilité aux choix de l'utilisateur. La mé-
thode développée dans cette thése est testée
sur différents types de comportements non-
linéaires (hyperélasticité, élastoplasticité, visco-
plasticité).

Enfin, une procédure d'assimilation de don-
nées, fondée sur les filtres de Kalman, est dé-
veloppée pour prédire de maniére séquentielle
I'état de la structure, dans le cas de comporte-
ment matériau dépendant de I'histoire.

Title : Physics-augmented neural networks for constitutive modeling
Keywords : Modified Constitutive Relation Error, Physics-augmented neural networks, Nonlinear
constitutive law, Thermodynamics, Kalman Filter.

Abstract : Structural health monitoring re-
mains a crucial concern in engineering, gi-
ven the imperatives of safety and durability. A
recent practice involves establishing a dialogue
between a physical structure and its digital twin
to predict the health status and limit damage.
This thesis focuses on the fundamental
question of automatically constructing a ma-
terial constitutive model, necessary for reliably
predicting the structure’s state. Material consti-
tutive laws are represented by neural networks
constrained to adhere to the principles of ther-
modynamics, through the learning of convex
potentials within the framework of Generalized
Standard Materials. The training of neural net-

works is performed in an unsupervised man-
ner by minimizing the modified constitutive re-
lation error (MCRE). The mCRE functional pro-
vides a rich physical sense due to the model er-
ror indicator and the ability to guarantee com-
pliance with reliable knowledge. An automatic
hyperparameter calibration procedure is deve-
loped to reduce sensitivity to user choices. The
method developed in this thesis is tested on va-
rious types of nonlinear behaviors (hyperelasti-
city, elastoplasticity, viscoplasticity).

Finally, a data assimilation procedure based
on Kalman filters is developed to sequentially
predict the structure’s state, in the case of ma-
terial behavior dependent on history.
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Introduction

Controlling structural integrity to prevent failure caused by manufacturing defects, impacts,
excessive loading, fatigue, or other unexpected events is a critical engineering concern.
Many structures, such as wind turbines, aircraft, bridges, satellites, and vehicles, may be
susceptible to potential degradations. In this context, it is crucial to implement techniques
that can detect damage early on and track their growth to ensure the integrity of structures
throughout their lifespan (Farrar & Worden, 2007). Ensuring the durability of structures
not only addresses security challenges but also has profound environmental implications.
Structures with long lifetimes reduce the need for frequent replacement, thereby reducing
the consumption of raw materials and energy required for new construction. The Inter-
governmental Panel on Climate Change (IPCC) highlights the importance of sustainable
infrastructure development in mitigating the effects of climate change and emphasizes the
role of durability in achieving these goals (Intergovernmental Panel on Climate Change,
2019). By focusing on improving the durability and resilience of structures with Structural
Health Monitoring (SHM), researchers and engineers can make a significant contribution
to global sustainability and environmental protection efforts.

SHM has evolved significantly over the years. A recently published literature review (Wang &
Ke, 2024) identifies four progressive levels of SHM: damage detection, damage localization,
damage quantification, and damage prognosis. The first level, damage detection, involves
identifying the presence of damage within a structure (Rytter, 1993). Following detection,
the second level, damage localization, seeks to determine the precise location of damage
(Doebling et al., 1996). The third level, damage quantification, assesses the severity of the
damage (Farrar & Worden, 2007). Finally, the fourth level, damage prognosis, predicts the
future state of structural health and any potential impact on the structure performance (Si
etal., 2011). The present thesis, part of an academic project, aims to develop the numerical
tools for the future of model-based damage prognosis. Today, achieving efficient SHM
reaching damage prognosis is still an open challenge which now seems possible because of
a combination of different factors: high-resolution sensors, accurate physics-based models,
and fast simulation and data assimilation tools (Chamoin, 2021).

The ingredients for modern SHM: high-resolution sensors, accurate physics-based
models, and fast simulation and data assimilation tools.

The first component of modern SHM is the use of sensing techniques that allow in-situ
measurements with high spatial resolution, enabling rapid and continuous damage detec-
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tion. Modern sensors are progressively replacing traditional point sensors (strain gauges or
displacement transducers) as they provide much richer experimental information. These
powerful sensing techniques include image-based approaches such as Digital Image Cor-
relation (DIC) (Sutton et al., 1983; Hild & Roux, 2006), vibration-based sensing (Doebling
etal., 1998; Chesné & Deraemaeker, 2013), embedded micro-sensor arrays using electrically
conductive carbon nanotubes (Thostenson & Chou, 2006; Guzman De Viloria et al., 2011)
or optical fibers (Froggatt & Moore, 1998; Glisic & Inaudi, 2007). The present manuscript
focuses on an embedded network of optical fibers based on Rayleigh backscattering, see
(Chamoin et al., 2022) for a review. In this technology, local modifications of the fiber
properties lead to variations in the magnitude of the backscattered multi-frequency signal
(caused by the interaction of light with natural density fluctuations within the fibers), which
is analyzed by Fast Fourier Transform (Soller et al., 2005; Hénault et al., 2012), measuring
both static and dynamic strain fields (Schwartz, 2008; Rausch & Mdder, 2010).

The second factor is the rich knowledge history of physics-based constitutive models
(Lemaitre & Chaboche, 1990). They are of practical importance for predicting material
behavior inside mechanical structures, from damage initiation to failure. Complex constitu-
tive models are now used on Finite Element virtual testing, reducing the need for long and
costly experimental campaigns (Abisset, 2012; Liu & Zheng, 2010). A large set of simulation
models is then available, ranging from macro-level to micro-level damage descriptions
with increasing complexity and CPU cost (hierarchical modeling) (Fish, 2011). The scale of
modeling used in this manuscript is based on the thermodynamics of continuous media
with a description based on internal variables (Chaboche, 1988, 1993; Ladeveze et al., 1991).

Another critical aspect is the need for real-time simulation and data assimilation. Ap-
plied mathematics, computational mechanics, and computer science have made signif-
icant contributions, particularly in the development of reduced-order modeling (ROM)
techniques (Barrault et al., 2004; Chinesta et al., 2014; Quarteroni et al., 2011). These tech-
niques have become a cornerstone in addressing the computational challenges inherent to
large-dimensional engineering problems that persist despite continuous improvements
in computing resources. These approaches significantly reduce CPU costs and memory
requirements without sacrificing solution accuracy (Chinesta et al., 2011). This manuscript
does not focus on the use of ROM techniques and the speed-up of the developed numerical
methods will be discussed in the conclusion as a research perspective.

The DREAM-ON project: building Dynamic Data Driven Application Systems (DDDAS)
for SHM.

The modern sensing technologies, the rich history of physics-based modeling, as well as
the efficient ROM techniques open up the possibility to design new processes in which sim-
ulations and measurements dynamically and seamlessly exchange information to control
systems. This is the motivation for a paradigm called Dynamic Data Driven Applications



Systems (DDDAS) (Blasch et al., 2022). The DDDAS concept is one of the most challeng-
ing applications of Simulation-Based Engineering Sciences (SBES) (Oden et al., 2006). It
involves the use of systems that provide relevant data in (near) real-time to computational
models of the evolution of physical phenomena of interest in order to predict and control
outputs and meet a set of objectives . The main idea of DDDAS is therefore to establish a
feedback loop between the real system and its numerical simulator (twin), whose objectives
are twofold:

* to continuously predict the evolution of relevant physical phenomena and adjust the
system accordingly (e.g. adjust the orientation of a wind turbine blade);

¢ to dynamically update the computational model by assimilating in real-time some
in-situ measurements for effective diagnosis and prognosis.

The DDDAS concept, by simultaneously incorporating theoretical and experimental in-
formation, increases the reliability of simulation models by benefiting from the recent trend
in SHM. It relies on hybrid approaches (Maday et al., 2015; Peherstorfer & Willcox, 2015b;
Chinesta et al., 2019) to take the best of both model-based and data-based approaches.
Model-based approaches benefit from high interpretability and physical consistency: they
have low variance and high bias. Data-based approaches are good at fitting observations
at the cost of poor generalization and significant sensitivity to measurement noise: they
have high variance and low bias. The use of hybrid methods can dramatically improve the
capabilities for decision-making and control of the evolutionary system. Establishing such
a synergistic and continuous dialog between simulations and data is gradually becoming an
attractive key challenge in the industry and is expected to be an important future technology
(Darema, 2015).

The ERC project DREAM-ON (Chamoin, 2021), of which this work is a part, aims to
address the key numerical challenges needed to achieve accurate and efficient SHM in the
DDDAS framework. Figure 1 illustrates the general idea of this project. In-situ measure-
ments (from optic fiber sensors) are sequentially assimilated to create an updated model,
referred to as a "hybrid twin" of "digital twin instance" (McClellan et al., 2022). This updated
model is then used for safety control of the structural health.

The challenges addressed in this thesis: predicting the material behavior for the
construction of a digital twin.

This thesis focuses on the construction of the hybrid twin. The key challenge addressed
in this thesis is to accurately predict the structural state with a focus on the modeling of the
material behavior. Constitutive modeling requires a deep understanding of the material
behavior, and although there is a large literature on physics-based material models, an
accurate description of the structural state throughout the life cycle is complicated to
achieve. This challenge raises 2 questions. The first one, which is the main focus of this
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Figure 1 e General description of the ERC project DREAM-ON

thesis, aims to automatically define and adapt the constitutive model all along the life
cycle of the structure. This question is referred to as the model bias correction or model
enrichment, and is performed with historical data. The second one aims to use on-the-fly
measurements with the updated constitutive model to sequentially predict the structural
state. This question, referred to as sequential data-assimilation, is only a secondary goal of
this thesis which was treated in collaboration with another PhD student of the DREAM-ON
project. Figure 2 summarizes these two questions for the construction of the hybrid twin.
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Figure 2 e Detailed description of the ERC project DREAM-ON

To generate an accurate constitutive model from data, the observations can be used to



select the best model from a predefined catalog of physics-based models (Flaschel et al.,
2021). However, even the best model from a predefined catalog is likely to have a model
bias. One way to avoid model bias is not to postulate any model form. This can be done
by replacing the model with tools that can represent functions such as random forests
(Breiman, 2001), gradient boosting machines (Friedman, 2001), support vector machines
(Cortes & Vapnik, 1995), or neural networks (Goodfellow et al., 2016). The works of this
manuscript are based on the latter tool and benefit from the extensive trend of coupling
physical knowledge with neural networks (Raissi et al., 2019). With the pioneering works
in the 1990s (Ghaboussi et al., 1999), an active research direction is now the use of neural
networks to represent the constitutive model (Dornheim et al., 2024). The use of neural
networks for constitutive modeling raises several issues.

A primary concern is how to take advantage of the rich history of modeling, in which
we can distinguish two levels of knowledge. On the one hand, modeling frameworks have
been developed to satisfy thermodynamic principles (Halphen & Nguyen, 1975; Ottinger &
Grmela, 1997). These modeling frameworks are fundamental to avoid writing constitutive
models that do not obey the laws of thermodynamics. Ideally, a neural network represent-
ing a material behavior should be able to fit into one of these modeling frameworks. To
ensure compliance with thermodynamic principles, the constitutive neural networks used
in this thesis are constrained to formulate models within the Generalized Standard Material
framework (Halphen & Nguyen, 1975), with the learning of thermodynamic potentials. On
the other hand, within these thermodynamic frameworks, researchers have developed nu-
merous models to best represent material behavior (Lemaitre & Chaboche, 1990): learning
a constitutive model from scratch with data, without using existing models, is probably not
appropriate (need for large amount of data, complexity of optimization, energy efficiency
of the learning process, etc.). It is therefore natural to wonder how to take advantage of
these two levels of knowledge when using neural networks to describe a constitutive law.

A second issue concerns the training of neural networks. Learning a constitutive model -
relating strain to stress - is not an easy task, since measuring stress is not feasible in practice.
As there are no labeled measurements of the input and output, training a constitutive neural
network with measurable data is an unsupervised learning task. However, the question of
identifying model parameters (not described by neural networks) with the same type of
data is not new. This task, referred to as the inverse problem (Bonnet & Constantinescu,
2005), has been widely studied and numerous identification methods already exist, which
can be based on least squares minimization (Grédiac, 2004), stochastic approaches (Kaipio
& Somersalo, 2007; Tarantola, 2005; Rosic et al., 2013), or minimization of a cost function
with a strong physical sense (Claire et al., 2004; Andrieux et al., 1999; Ladeveze et al., 1994).
Thus, the unsupervised training of neural networks can naturally benefit from the literature
on inverse problems in solid mechanics. Among the identification methods, the modified
Constitutive Relation Error (mCRE) framework (Ladeveze et al., 1994) offers very attractive
properties in the context of the ERC project DREAM-ON. First, this framework is suited
to deal with the available data, which are partial (as opposed to full-field measurements)
(Waeytens et al., 2016), noisy (Feissel & Allix, 2007), potentially corrupted (Allix et al., 2005)
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and with incomplete boundary conditions (Diaz et al., 2015). Second, the critical context of
SHM requires meaningful metrics of prediction reliability. The mCRE function provides a
rich physical sense through its modeling error term, available for each prediction, which can
localize the region of the structure where the model bias is important (Bui & Constantinescu,
2000; Deraemaeker et al., 2004).

[l Goal of this thesis regarding model bias correction

Regarding the model bias correction goal, the question addressed is the following:
How to train neural networks to represent thermodynamic potential in an unsu-
pervised manner with the mCRE framework? This question implies the following
questions:

* How to perform the unsupervised neural network training? How to minimize
the mCRE?

* How to ensure compliance with thermodynamics?

e How to measure the reliability of the learned constitutive model?

Organization of the manuscript.

The manuscript is structured as follows:

* a bibliographic review is performed in Chapter 1. It focuses on the modified Con-
stitutive Relation Error framework and the coupling techniques between physical
knowledge and neural networks, including neural networks for constitutive modeling.

* Chapters 2 and 3 focus on the methodological aspect of training neural networks in
the mCRE framework. Chapter 2 focuses on behaviors that are history-independent
(nonlinear elasticity) whereas Chapter 3 treats history-dependent behavior (elasto-
plasticity and viscoplasticity).

e Chapter 4 emphasizes the need for an adequate parameterization of the neural net-
work to achieve universal approximation, allow to leverage of the knowledge of existing
models, and improve the training efficiency.

 Finally, Chapter 5 proposes an mCRE-based sequential data assimilation framework
suited to deal with history-dependent behavior in the context of SHM with model
bias correction. The bibliography relevant to sequential data-assimilation will be
introduced in this Chapter.
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The introduction of this manuscript has highlighted the importance of accurate consti-
tutive modeling in the context of SHM. Despite the current availability of a wide variety of
physical models, model bias will always remain. If the structure of a model is assumed to be
too far from reality, it will be impossible to obtain relevant predictions, even with a relevant
parameter identification where the model parameters best fit the measured data. One way
to free oneself from the a priori writing of a model is to replace the physical model with a
neural network. As already mentioned, the use of neural networks has to be done carefully,
e.g. not to violate the physics. In this context, training a neural network to represent a con-
stitutive law is simply the next step at the intersection of two different research directions:
inverse problems for constitutive modeling and physics-enhanced Deep Learning. On
the one hand, training a neural network in an unsupervised context is nothing more than
an inverse problem, arguably more difficult due to the significant number of parameters.
As mentioned before, an interesting idea is to treat this inverse problem with the mCRE
framework, which offers numerous appealing properties to achieve SHM in the DDDAS
paradigm. Therefore, the first part of this bibliographic chapter is dedicated to a literature
review on the mCRE error. First, the basics of the mCRE error and its minimization are
recalled, and then special attention is paid to the formulation of the mCRE error in the
context of nonlinear behavior law, specifically formulated with the generalized standard
materials framework.

On the other hand, the use of neural networks raises specific questions related to the
coupling between this tool of artificial intelligence and physics. The second part of this
bibliographic chapter is dedicated to coupling techniques between Deep Learning and
physical knowledge. First, the basics of Deep Learning are recalled, then the ways to
combine physical knowledge and Deep Learning are classified into three main families
of techniques, and finally special attention is paid to the recent use of neural networks in
learning constitutive laws.

1 The modified Constitutive Relation Error (mCRE) frame-

work

1.1 The CRE concept for verification of finite element method results

The CRE concept was introduced in the 1970s in the context of finite element (FE) verifi-
cation (i.e., a posteriori error estimation and mesh adaptation) to define a bound on the
FE discretization error. Pioneering ideas are detailed in a series of papers by Ladeveze
and co-workers (Ladeveze, 1975; Ladeveze & Leguillon, 1983; Ladeveze & Rougeot, 1997;
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Destuynder & Métivet, 1999), with comprehensive summaries in publications (Ladeveze
& Pelle, 2004; Ladeveze & Chamoin, 2016). The following paragraphs describe the CRE
concept in detail. First, the notations of the direct mechanical problem are introduced.

[l Direct mechanical problem

Let us consider a body in initial configuration 2 ¢ R%(d = 1,2,3) with boundary
0 and isothermal environment. Dirichlet boundary conditions are imposed on
0, c 90 by means of a displacement field #,;. Neumann boundary conditions are
prescribed on 00, € 992 by means of a force field ff. Here 092, N9, =0. A body force
field £ may also be prescribed in .
The solution to the direct mechanical problem is the couple (u#, o) of displacement
and Cauchy stress fields that satisfies the three following groups of equations:

 kinematic admissibility defines the space U, ; of displacement fields satisfying
the Dirichlet boundary conditions:

u|agl =Uy (1.1)

* static admissibility defines the space S, of stress fields satisfying the equilib-
rium:

Ja’:e(v)dQ:ffZ.de—i-f f.vdS VYvel, (1.2)
Q Q o,

with the linearized strain tensor €(v) = %(Vv + Vv T)and %, the space of kine-
matic admissibility with homogeneous Dirichlet conditions.

* constitutive relation defines the space I of strain-stress couples that satisfy
constitutive relation:
o=Ke(u) (1.3)

The philosophy of the CRE is to divide the equations of the direct mechanical problem
(1.1, 1.2, 1.3) according to the reliability of information. The constitutive relation is con-
sidered an unreliable equation, while the admissibility equations are considered reliable.
For a given admissible pair (i, d), i.e. 1 €U,,; and 6 € S,,;, one can measure how much it
does not satisfy the constitutive relation, thus computing the so-called constitutive relation
error:

2
éaCRE

(,0)= f 6 — Ke(@)|[;_,d2= f (6 —Ke(@)): K': (6 —Ke(@))dQ (1.4)
Q Q

While the displacement field obtained in an FE calculation naturally satisfies kinematic

admissibility, this stress field is not exactly statically admissible. Therefore, to evaluate a

discretization error bound with the CRE, a fully equilibrated stress field must be computed.

This may be done using the hybrid-flux method (or Element Equilibration Technique - EET)

(Ladeveze & Leguillon, 1983; Coorevits et al., 1992; Ladeveze & Maunder, 1996; Florentin
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etal., 2002; Pled et al., 2011), flux-free methods (Pares et al., 2006; Cottereau et al., 2009;
Pares et al., 2009), or Raviart-Thomas-Nédélec elements (Ern et al., 2007; Ern & Vohralik,
2010).

Avisual interpretation is given in Figure 1.1. In the space of strain-stress pairs, we can
see that for an admissible pair (#&, ), the CRE is a distance to the space of stress-strain pairs
satisfying the constitutive relation.

7

I' Space of strain-stress couples that satisfy the constitutive relation

Figure 1.1 e Interpretation of the CRE in the space of strain-stress couples

1.2 The mCRE for inverse problem

In the 1990s, the CRE concept was adapted to solve inverse problems. In the context of
inverse problems, in addition to the direct problems equations (1.1, 1.2, 1.3), displacement
(or strain) observations are available. The inverse problem consists in finding the con-
stitutive model parameters p (e.g. Young’s modulus and Poisson’s ratio) that best fit the
observations.

In the first approach, observations were enforced in the definition of the admissible
space and optimal parameters were found by minimizing the CRE cost function (Kohn, 1988;
Ladeveze & Reynier, 1989), but this approach was not well suited in the case of important
measurement noise. In (Ladeveze et al., 1994), a more flexible approach (the one used in
this manuscript) was proposed to enforce only reliable information on the admissible space
A,, thus consistently extending the general framework. This more flexible approach, now
known as the modified Constitutive Relation Error (mCRE), is described below.

paptzargmin[ min &2 . (@,6; p) (1.5)
p

(ﬁ,é)eAd mCRE
with
&merp(il, 05 p) =J 16— K(p)e(@)|[3, dQ+al|lTu —u,,,|1* (1.6)
Q

where A, =(U,, xS,4), @ is a scaling factor, and IT is an operator that extracts observations
from the displacement field u so that the model can be compared to the observations.
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Equation (1.6) stands for the case where the boundary conditions are assumed to be known.
This formulation can be extended for unknown boundary conditions through the addition of
a term accounting for the mismatch between measured and predicted boundary conditions.

1.3 The mCRE minimization for linear elasticity

The minimization of (1.5) depends on the type of model considered but the general principle
is always a 2-step iterative minimization (as summarized in Algorithm 1):

* afirst step with fixed parameters p, where a new admissible field pair (i, & )"V
is found to minimize the mCRE. As we will see, this is a minimization under the
admissibility constraints. The kinematic admissibility is enforced in the search space,
while the static admissibility is enforced by a Lagrangian.

* asecond step is performed with a fixed admissible field couple (i, &)Y, in which
the parameters are updated with a gradient descent step. The gradient of the mCRE
functional with respect to the constitutive model parameters is computed using the
adjoint state method.

For the sake of clarity, the minimization of (3.5) is presented here in the case of linear
elasticity, and the extension of the mCRE formulation is detailed in Section 1.5.

Algorithm 1 General philosophy of mCRE minimization

1: Initialize parameters p©

2: while not converged do

3:  Step 1 with fixed parameters p:

4 Find new admissible field couple (i, 6)"*1 to minimize mCRE.
5 Step 2 with fixed admissible field couple (&, )" +V:

6: Update parameters with a gradient descent step.

7: end while

1.3.1 Step 1: computation of admissible fields minimizing the mCRE (for fixed parame-
ters)

In this step parameters p are fixed and the goal is to find :

(ﬁ,ﬁ'):argmin[é";cm(u,a; p)] (1.7)
(u,0)e.dy

First, a displacement field # is introduced (from dualization) such that & = K(p)e(?). By
replacing ¢ in (1.6), the mCRE function is written:

& crp(l, 05 p) =f IK(p)(e(9)— €(@)l3, dQ+allTlu — w1 (1.8)
Q

11
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In a discretized version (following the classical FE discretization), the mCRE reads:

(ﬁ_V)TK(p)(ﬁ_V)_l_a(Hﬁ_Uobs)T(Hﬁ_Uobs) (1.9)
where the capital letters denote the discretized associated field, and K is the global stiffness
matrix.

In step 1, admissible fields (i, 6) are searched to minimize the mCRE function under
the admissibility constraints. The static admissibility constraint is:

Ja:e(z)dQ:Jf;.xde £.4dS Viel, (1.10)
Q Q a0,

where 4 is a field of Lagrange multipliers.

Thus, the constrained minimization problem of Step 1 is formulated with the following
discretized Lagrangian:

LM0,V,A)==(U—-V)"K(p)O—V)+allU —U,,,)" 11U —U,,,)—A"(K(p)V —F)

(1.11)

N | =~

where F is the global load vector. To impose the kinematic admissibility, with finite
element discretization, only the free degrees of freedom (dof) are searched for, and the
prescribed dofs are imposed in the search space.

[l Remark

Section 1.1 introduced the concept of CRE in the context of FE verification, where
the CRE serves as a bound on the discretization error. In this context, the CRE is
computed with a post-processed ¢ from the EET method (or other methods).
On the contrary, in the context of inverse problems, the discretization error is usually
negligible compared to the error caused by wrong model parameters. The admissible
field ¢ used in the calculation of the mCRE functional is directly the field obtained
from the FE discretization and is not post-processed (cf (Nguyen, 2021) to assess the
discretization error).

The search for the stationarity of the Lagrangian leads to the following system:

(0" —o

ou K(p)(U —V)+all"(IU - U,,,) =0
458"? “o o K(p)(V — 0)—K(p)A —0 (12
o' K(p)V —F =0

A
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From % =0itcomes A=V — U, and (1.12) eventually yields:

K(p)V =F
{ (P) (1.13)

(K(p)+all'MU =F+all’ U,,,

(1.13) is fundamental in the mCRE method. It shows that the field V is obtained from the
FEM solution of the direct problem (Block 1.1) for a given set of material parameters, while
U is a compromise between the model and the observations (weighted by the parameter
). In practice, one way to find a meaningful value of a is to choose it so that U fits the
observations up to the measurement noise. This technique is called the Morozov criterion
(Morozov, 1968), as further developed in Chapter 2.

The following example illustrates the consequence of this on the interpretation of the mCRE
terms.

Let us consider a one-dimensional beam, with section S, initial length [,
and Young modulus E;, .. The constitutive relation is the Hooke law o = E;,,.€. The beam
is clamped at x =0 and is loaded in tension with a known force F For the sake of simplicity,
this problem is limited to one degree of freedom, where the displacement u,; at the end of

/

ﬂ Young modulus E,, .
Section S
Initial length [,

the beam is observed.

Let us consider the case where Eg .55 # E;rye in a situation without measurement noise.
System (1.13) reads:

. F
N 0=
Kguesssz Kguess
(1.14)
(Kguess+a)a:F+auobs azw
Kg uess
with Kgyess = —Eg"lf)”s. To understand the behavior of the mCRE functional, the following

details the casea — oo and a =0

When a — o0 ':

In this case, strong importance is given to the discrepancy of the data in the mCRE functional
(1.6). Therefore, the displacement # obtained at the end of Step 1 tends to the observed
displacement iz, which can be observed in (1.14). In this case, when the mCRE is computed at
&

the end of Step 1, the term a||[Illu —u,, ;|| is zero and only the CRE term appears in the mCRE

functional:

13
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1

gr%?CRE(a’ﬁ; Eguess)ziKguess(lj—ﬁ)z (1_15)
1 F
:EKguess(—K _uabs)z (1.16)

guess

with 1, =5 guess from Ey .., the larger the CRE term. This observation

justifies the name of "modeling error" given to the CRE term.

Whena=0:

In this case, the modeling error term in the mCRE function (1.6) is strongly emphasized,
and # is forced to satisfy the assumed model: @t = ¢ f — = 0. Therefore, when the mCRE is
computed with the value of &t and ¥ obtained at the end of Step 1, the modeling error is 0. This

observation may seem counterintuitive since one can say that there should be a modeling
error as soon as Eg . s is not E; .. Actually, the chosen value a does not make this modeling
error appear, because the solution # is not forced to compromise with the observation.

The modeling error should here be understood as the error in the model structure (in this
example, the structure of the model is correct, and the model parameter is incorrect).

1.3.2 Step 2: updating model parameters with a gradient descent step

This step consists of the updating of the parameters p with a gradient descent step:

(n+1) — p(n)_ lr dé"z CRE(

U (n+1) ‘7 (n+1). p ))

ap
where (0", V(7)) are the fields obtained at the end of Step 1 of the n + 1 iteration of the
mCRE minimization. For simplicity, (I"*V, V"*D) will be denoted as (U, V). The gradient

of mCRE with respect to the parameters is computed using the adjoint-state method:

(1.17)

d&? u,v; T,V,A;
ncre(U,Vip) d2(U,V,2p) (1.18)
dp dp
_dUo¥ dV 0% dAd% 0% 1.19)
“dp o0 dapav apoaap '
_oZ (1.20)
=% .
d&? U,v; 1 . ..0K .
mCRE( p) =—(U—V)T (p)(U+V) (1.21)
dp 2 ap
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In the previous example, this is the gradient of the mCRE with respect to the
model parameters, here Eg -

as? u,v; S
mere O ViP) _ S g
dp 2l0

(1.22)

(1.23)

which is 0 if Eg e 55 = E;rye (Without noise). In the case where Eges5 # Eyrye, if @ =0 there
is no difference between # and 7, so the Young’s modulus is not updated: it is important
to choose a value that creates a modeling error term. It is also worth noting that ¢ and the
learning rate I/, both influence the optimization process. The larger the @, the larger the
difference between i and 9, the larger the update of the model parameters.

Online tool: The previous example is implemented in Python and is available in the
GitHub repository in the file Chap_1/1inear_mCRE. ipynb. It may be interesting to analyze
the influence of the noise level, the value of @ and the initial guess Egs; on & and the value
of the mCRE functional.

1.4 Previous works on mCRE

The mCRE framework - also referred to as the Modified Error in Constitutive Equations
(MECE) - is now widely studied in diverse applications as detailed in Table 1.1

Application

References

Dynamics

(Ladeveze et al., 1994; Chouaki et al., 1996; Ladeveze & Chouaki,
1999; Deraemaeker et al., 2002; Allix et al., 2003; Barthe et al.,
2004; Deraemaeker et al., 2004; Allix et al., 2005; Ladeveze et al.,
2006; Feissel & Allix, 2007; Faverjon & Sinou, 2008; Nguyen et al.,
2008; Banerjee et al., 2013; Charbonnel et al., 2013; Bonnet &
Aquino, 2015; Diaz et al., 2015; Guchhait & Banerjee, 2016; Silva
& Maia, 2017; Guchhait & Banerjee, 2018; Diaz et al., 2022)

Acoustics

(Decouvreur et al., 2004, 2007, 2008; Warner et al., 2014)

Corrupted measure-
ments

(Allix et al., 2005; Feissel & Allix, 2007; Nguyen et al., 2008)

Full-field
ments

measure-

(Ben Azzouna et al., 2015; Huang et al., 2016; Ghosh et al., 2017;
Banerjee et al., 2013; Guchhait & Banerjee, 2016, 2018; Ferrier
etal., 2021; Nguyen, 2021)

In situ measurements

(Charbonnel et al., 2013; Bouclier et al., 2013)

Defect detection

(Bui & Constantinescu, 2000; Faverjon et al., 2009; Waeytens
et al., 2016; Barbarella et al., 2016; Hu et al., 2017, 2019; Diaz
etal., 2024)

Nonlinear material be-
havior

(Chouaki et al., 1998; Hadj-Sassi, 2007; Guchhait & Banerjee,
2015; Marchand et al., 2019; Nguyen, 2021)

Table 1.1 e mCRE applications with corresponding references

15
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This wide range of works has highlighted several interesting properties of the mCRE
framework, such as improved convexity with respect to the parameters to be identified
compared to other functionals (Bonnet & Constantinescu, 2005; Feissel & Allix, 2007; Diaz,
2023), spatial localization of errors (Bui & Constantinescu, 2000; Ben Azzouna et al., 2015;
Barbarella et al., 2016), robustness to noise on the observations (Allix et al., 2005; Feissel
& Allix, 2007; Nguyen et al., 2008), or the ability to deal with partially known boundary
conditions (Diaz et al., 2015; Bonnet & Aquino, 2015; Aquino & Bonnet, 2019; Ferrier et al.,
2021).

[l Remark

A stochastic interpretation of mCRE was proposed in (Deraemaeker et al., 2004).
Since covariance on the modeling error is usually not known, the idea is to integrate
the CRE term (used at modeling error) into Bayesian inference. The value of the CRE
term is then used to quantify the confidence of the model, accounting for modeling
error.

The present manuscript builds on and extends the work on parameter identification of
nonlinear constitutive laws. The following section recalls the mCRE formulation in the case
of nonlinear behavior within the framework of the Generalized Standard Material (Halphen
& Nguyen, 1975).

1.5 The mCRE framework for nonlinear behavior

The extension of mCRE to nonlinear material behavior is based on the thermodynamically
consistent framework of the Generalized Standard Material. This framework is first recalled
before the mCRE extensions for nonlinear behavior are presented.

1.5.1 Thermodynamics framework

This section aims to describe the thermodynamic framework of the Generalized Standard
Material (Halphen & Nguyen, 1975) used in this work. In such a formulation, the material
behavior is described in terms of state equations and evolution laws involving convex
potential, pseudo-potential, and internal variables. The following recalls the properties that
should be satisfied to be automatically compatible with the principles of thermodynamics.
A more detailed explanation can be found in (Lemaitre & Chaboche, 1990).

First principle
The conservation of energy is described by the first principle of thermodynamics. The
first principle of thermodynamics locally reads:

pée=0:é+r—V-q (1.24)
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with the specific energy density e, the Cauchy stress tensor o, the linearized strain tensor
€, the volume heat source r, and the heat flux q.

Second principle
The second principle of thermodynamics reads locally:

ps'+V-(1)—£20 (1.25)

0
with s the specific entropy density and 6 the temperature.

Clausius-Duhem inequality
After introducing the Helmholtz free energy i = p(e—8s), the Clausius-Duhem inequality
is obtained by combining (1.24) and (1.25):

q-Vo

>0 (for an isothermal process) (1.26)

This inequality is fundamental for defining thermodynamically consistent constitutive
laws. For a problem with plasticity, the total strain tensor is written with the following
decomposition: € = €, + €, including the elastic strain €, and the plastic strain €,,. Internal
variables X; (k = 1,...,K), collected in the vector X, are introduced to represent other
phenomena (such as hardening). The state equations are derived from the Helmholtz free
energy, which is used as the thermodynamic potential y(¢, € ,, X). The Clausius-Duhem
inequality can be rewritten:

9

81,0) é,+0a:¢é _Zax L~ >0 1.27)
k

Jde

with (o — ﬁ) €, +0:¢€, Zk LT 2y Xk the intrinsic dissipation. The use of a convex
function ¢ automatically satlsﬁes the Clausius-Duhem inequality. For reversible elastic
transformation with homogeneous temperature, it comes o = g—g’e corresponding to the
Hooke’s law. By analogy, thermodynamic forces Y, gathered in Y are defined such that they

are associated with the internal variable vector X with ¥ = g—gﬁ.

A convex, non-negative and zero at origin dissipation pseudo-potential ¢(é p,X ) may
be postulated for the definition evolution laws, to guarantee the positivity of the intrinsic
dissipation 2 =(0 : €,—Y : X). The evolution laws are derived from the pseudo-potential
with:

o=—-Y=—— (1.28)

17
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[l Generalized Standard Material framework

To summarize, a way to model a constitutive behavior in the thermodynamically
consistent framework of Generalized Standard Material (Halphen & Nguyen, 1975) is
to establish the functions ¢’ and ¢ respectively involved in the set of state laws and
evolutions laws and satisfying the following properties:

* 1 is convex;

* ¢ is convex, non-negative and zero at origin.
The dual potentials are defined by the Legendre-Fenchel transform:

Y*(s)=sup [s.ee — lp(ee)] and ¢*(s)=sup [s.ép — w(ép)] (1.29)
€. é!’
with e, = [€¢,,X], e, = [¢,,—X] the global flux variables, and s = [, Y] the global
thermodynamic forces. The potential ¢, ¢, Y* and ¢* are involved in the definition of the
Constitutive Relation Error (CRE) recalled in Section 1.5.2.

[l Remark
For a rate-independent behavior, ¢* is not differentiable and the yield criterion
function f (o) is introduced. In this case:

0if f <0
w*(a)zl(f)={ , (1.30)
+ooif f=0

1.5.2 mCRE formulation for nonlinear behavior
In the case of a nonlinear material behavior, the mCRE functional still consists of a CRE term

and a discrepancy to the observations term. For an admissible solution § = (é,, €, 0,X,Y),
the mCRE is:

ngnCRE( xp) CRE ) J ||Hu uobS“ dt (131)

in which the CRE term is composed of a term 7),, involving the free-energy and a term
Ny taking into account the dissipation (Ladeveze & Moés, 1998; Ladeveze, 2001; Ladeveze
& Pelle, 2004):

T t
&2 pp(8) Jané ,X,f/)deHf jfnw(ép,&,f(,f/)dﬂdsdt (1.32)
0 0 JQ
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with

ny(€.,6,X,Y)=1(€,X)+y*0,Y)—6:¢,—X.Y (1.33)
' ; i é,+X.¥ (1.34)

[l Remark

As in the linear case, the CRE functional (1.32) has been used as an FE element
verification in a wide range of applications (Ladeveze & Moés, 1997; Chamoin &
Ladeveze, 2008; Ladeveze & Chamoin, 2010; Chamoin et al., 2012; Waeytens et al.,
2012; Ladeveze et al., 2012; Chamoin et al., 2017).

Figure 1.2 shows an interpretation of (1.33) defined by the term 1, for a constitutive
law without dissipation and without internal variable. For a given point (¢, d), the area in
blue is y*(d), the area in grey is y(€), the area bounded by the red rectangle is ¢ : €. So the
hatched area is 1,,(€,0) =y (€)+y*(6)—0a : €.

A 4

Ny(é &)=y (6)+ 'P(é%l& : ée|

Figure 1.2 e Interpretation of the term 1), defined in (1.33).

[l Remark
Without dissipation and with quadratic potential ¢ describing the Hooke law (y/(€) =

19
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z€:Keand Y*(0) =30 : K~'0), the linear elasticity constitutive relationis ¢ = K : €
and the CRE is the same as the one written in (1.4).

The minimization of the mCRE for nonlinear constitutive laws remains close to the idea
of Algorithm 1 presented in the linear case. The main modification is the way the admissible
fields are computed, since evolution laws have to be integrated. In (Marchand et al., 2019;
Nguyen, 2021), Step 1 is realized with a strategy inspired by the LATIN method (Ladeveze,
1999), which is non-incremental (i.e. global in time) and well suited to the mathematical
structure of the mCRE. The choice is to split the mCRE into two positive parts gi(ee, g,X,Y)
and 8£(ép,a,X, Y) defined by:

T T
PN PN a
gj(ée,fr,x,Y):J an(ée,é',X,Y)det—f-Ef [T —u,,,|[*dt (1.35)
0 Q 0

T t
&€, 0, X, Y):f f an(ép,a, X, Y)dQdsdt (1.36)
0 0 JQ

This separation into two positive parts allows the minimization of each term alterna-
tively. Equation (3.9) is a compromise between the residual on the state equations and the
discrepancy with measurements. Its minimization is a linear (because elasticity is assumed
to be linear here) and global in space problem. The minimization of (3.10) is local in space
and corresponds to the integration of the evolution laws, here performed with an Euler
scheme. This strategy is maintained in the present manuscript and further details are given
in Chapter 3. In all previous works on the mCRE framework, the form of the constitutive
relation was always considered reliable (only the parameters were considered unreliable
and thus updated). However, the form of the constitutive relation is not always reliable in
practice, which is referred to as model bias. In the remainder of the manuscript, the form of
the constitutive relation is relaxed by using neural networks to describe the thermodynamic
potentials ¢ and ¢.

2 Coupling Deep Learning and constitutive modeling

2.1 Introduction to Deep Learning

Before delving into the specificities of this research, this section positions Deep Learning in
the context of artificial intelligence and provides a brief general description of the basic
principles of Deep Learning. As presented in Figure 1.3, Deep Learning is a subset of
Machine Learning which is also a subset of Artificial Intelligence.

Artificial Intelligence, often abbreviated as Al, is the emulation of human intelligence pro-
cesses by computer systems. It encompasses a wide range of techniques and methodologies
designed to enable computers to perform tasks that typically require human intelligence.
These tasks include decision-making, knowledge representation, and rule-based systems.
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4 N

Artificial Intelligence (AI)
4 ) ) N\

Machine Learning (ML)

Linear
4 : N regression
Deep Learning (DL) Knowledge
representation
K-means
CNN
MLP GNN PCA Rules-based
systems
AE RNN
Random Forest
GAN Automatic
TANN PINN decision making
PANN Support Vector
Machine

(. /

- J
- J

Figure 1.3 o Classification of Artificial Intelligence methods.

Al systems can be designed to operate autonomously or with human supervision.

Machine learning (ML) is a subset of artificial intelligence that focuses on developing
algorithms and statistical models that enable computers to learn from data and make pre-
dictions or decisions based on that data, without being explicitly programmed to perform
specific tasks. In other words, Machine Learning algorithms learn patterns and relation-
ships from large data sets, allowing them to generalize and make predictions or decisions
about new, unseen data. ML algorithms can be categorized into supervised learning, un-
supervised learning, and reinforcement learning, depending on the type of training data
and learning goals. Common applications of Machine Learning include classification, re-
gression, clustering, dimensionality reduction, and recommendation systems, involving
methods such as linear regression, K-means, Principal Component Analysis (PCA), Random
Forest or Support Vector Machine (SVM) (Bishop, 2007).

Deep Learning is a subfield of Machine Learning that focuses on training artificial neural
networks with multiple layers of interconnected nodes, also known as artificial neural
networks (ANNs). Deep learning models are able to automatically learn representations of
data through these multiple layers, enabling them to capture intricate patterns and features
in complex datasets. Unlike traditional Machine Learning approaches that require manual
feature engineering, Deep Learning algorithms can learn representations directly from raw
data, making them highly versatile and suitable for a wide range of tasks. Deep Learning
has achieved remarkable success in various domains, including image recognition (He
et al., 2016; Krizhevsky et al., 2017), speech recognition (Amodei et al., 2016; Hinton et al.,
2012), language translation (Vaswani et al., 2017; Wu et al., 2016), and autonomous driving
(Bojarski et al., 2016; Chen et al., 2015), driving significant advances in the field of artificial
intelligence. One reason behind the success of Deep Learning relies on the use of important
datasets, coming from the internet and social networks for example (Deng et al., 2009).
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As shown in Figure 1.3, Deep Learning is composed of a wide range of neural network
architectures, which are briefly introduced below, designed for specific types of input data.

2.1.1 The multilayer perceptron

A multilayer perceptron (MLP), also called a feedforward neural network (FFNN), is the
most common Deep Learning model (Goodfellow et al., 2016). An MLP is a mathematical
model fyy whose goal is to approximate a function f. The function fy y is parameterized by
0, the parameters of the neural network (consisting of weights and biases). The parameters
0 are adjusted to find the best approximation of the function in a process called neural
network training, which is described in detail in Section 2.1.3. The output of an MLP is
obtained by a series of compositions of elementary operations involving a perceptron.

A perceptron to mimic biological neurons

The building block of an MLP is the perceptron, introduced in (McCulloch & Pitts, 1943)
to model the behavior of a biological neuron, and further extended and implemented by
(Rosenblatt, 1958). The output of a perceptron # is defined by the following operation:

h=.o(Wx"—b) (1.37)

where .¢/ is an activation function (originally the Heaviside function), x is the real-valued
input vector, W is a vector of real-valued weights, and b is a bias. The weights allow the
influence of each component of the input x to be amplified, while the bias shifts the decision
boundary away from its origin and remains independent of any input value.

Figure 1.4 shows an illustration of the perceptron implemented by Rosenblatt in 1958,
as well as the function h of (1.37).

h as a function of x for several values of W and b
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Figure 1.4 ¢ Rosenblatt’s perceptron. Left: Physical implementation of the perceptron in
1960. Right: output of a perceptron for different values of weight and bias for a
scalar input.
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From the perceptron to the MLP
An MLP is nothing more than an organization in a network of multiple perceptrons, as
shown in Figure 1.5. Mathematically, the output of an n-layer MLP is given by

fNN(x) = Wn hn—l(Wn—l hn—z(- .. I/VZhI(VVIxT - bl)T - bZ)T - bn—l)T - bn (138)

Note that in (1.37) h is a scalar function, while in (1.38) h is applied component-wise to a
vectorial input. In the example of Figure 1.5, x is a 6-component line vector, W, is a 4 by
6 matrix, W, is a 2 by 4 matrix, W; is a 3 by 2 matrix, W, is a 1 by 3 matrix, b, a 4 by 4 line
vector, b, a 2 by 2 line vector, b; a 3 by 3 line vector, and b, a scalar.

Components
of the input
vector X

'—Q_ Output ¥

Figure 1.5 ¢ Multilayer perceptron (MLP) in a configuration with a 6-component vector in
input and respectively 4-2-3-1 perceptrons in each layer.

Representing an XOR (exclusive or) with an MLP
This example illustrates how an MLP can represent an XOR function. In the XOR function, the
output is 1 if the inputs are different, and 0 if the inputs are the same, the truth table of an
XOR function is as follows:

Input A Input B | Output
0 0 0
0 1 1
1 0 1
1 1 0

The input layer consists of two neurons corresponding to the value of the input data. The
hidden layer has two neurons and uses the Heaviside activation function. The weights and
biases of this layer are W} and b;. The output layer has one neuron and also uses the Heaviside
activation function. The weights and biases of this layer are W, and b,. One way to represent
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an XOR function is to have the following parameters:
2 =2 —1 2

Universal Approximation Theorem

The Universal Approximation Theorem for neural networks, a cornerstone result in the
field of Deep Learning, states that feedforward neural networks with a single hidden layer
containing a finite number of neurons can approximate any continuous function on a
compact input space with arbitrary accuracy, given a sufficiently large number of neurons.
This theorem, first proved by Cybenko in 1989 (Cybenko, 1989) and later generalized by
Hornik in 1991 (Hornik, 1991), highlights the remarkable representational power of neural
networks as universal function approximators. By using a nonlinear activation function in
the hidden layer, such as the sigmoid, neural networks are able to capture complex input-
output mappings and learn highly nonlinear relationships within the data. The Universal
Approximation Theorem provides the theoretical justification for the widespread use of
neural networks in various domains. Despite its theoretical importance, this theorem is only
an existence theorem and does not say anything about the ability to perform successful
training, mainly because of the non-convex nature of neural network optimization, as
discussed in Section 2.1.3.

2.1.2 Other network architectures

In addition to multilayer perceptrons (MLPs), the landscape of neural network architectures
encompasses a wide variety of powerful models. These include the following architecture
families:

e Recurrent Neural Network (RNN): A type of neural network designed to process
sequential data, such as time series or natural language. RNNs have recurrent con-
nections that allow information to persist over time, making them useful for tasks
such as speech recognition, language modeling, and sentiment analysis (Hochreiter
& Schmidhuber, 1997). The use of internal memory in RNN can be compared with
the use, in mechanics, of description with internal variables.

* Convolutional Neural Network (CNN): A specialized type of neural network commonly
used to analyze visual images. CNNs consist of multiple layers of convolutional filters
that can automatically learn hierarchical representations of features. They are widely
used in tasks such as image classification, object detection, and image segmentation
(LeCun et al., 1998).

* Autoencoder (AE): A type of neural network used for unsupervised learning of efficient
encodings or representations of input data. Autoencoders consist of an encoder
network that compresses the input into alatent representation, and a decoder network
that reconstructs the input from the latent representation. They are useful for tasks
such as data denoising, dimensionality reduction, and anomaly detection (Hinton &
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Salakhutdinov, 2006). In the context of mechanics, this technique shares similarities
with the homogenization and localization approach.

* Graph Neural Network (GNN): A type of neural network designed to operate on graph-
structured data, where nodes represent entities and edges represent relationships
between them. GNNs can learn representations of nodes and graphs, enabling tasks
such as node classification, graph classification, and link prediction. They are ap-
plicable in domains such as social network analysis, recommendation systems, and
drug discovery (Scarselli et al., 2008). In mechanics, the use of Finite Element meshes
can be compared with the GNN way to structure information.

2.1.3 Gradient-based optimization for neural network training

This section aims to give a quick overview of the optimization used in Deep Learning.
More detailed explanations can be found in (Goodfellow et al., 2016). To find the optimal
parameters 6 of neural network architectures, gradient-based optimization methods are
commonly used. These methods aim to minimize a predefined non-convex loss function
£(0) that quantifies the difference between the network’s predictions and the true targets
in the training data. Gradient-based optimization algorithms, such as variants of gradient
descent, utilize the gradient of the loss function with respect to § computed with automatic
differentiation. By iteratively updating the parameters @ in the direction of the negative
gradient, these methods attempt to navigate the complex landscape of the loss function and
converge to satisfactory solutions. Stochastic gradient descent (SGD) (Robbins & Monro,
1951), a variant of gradient descent, is commonly used in neural network training and is
described in detail in Algorithm 2. The term "stochastic" refers to the fact that instead of
computing the gradient of the loss function over the entire training data set, SGD computes
it over randomly selected mini-batches of data. The size of each mini-batch, called the
batch size, is a hyperparameter that can be adjusted based on computational constraints
and optimization performance. An epoch, in this context, represents one complete pass
through the entire training dataset. Multiple epochs are performed to improve the model
gradually, but care must be taken to avoid overfitting, which occurs when the model learns
the specific details and noise in the training data to an extent that it negatively impacts
the performance on new data. A validation dataset, composed of different data from the
training dataset, plays a crucial role in evaluating model performance during training to
guard against overfitting.

The most common loss function used in neural network training is the mean squared
error (MSE), which measures the average squared difference between the predicted and
actual values. We also encounter alternative loss functions such as binary cross-entropy
loss for binary classification tasks, categorical cross-entropy loss, or more sophisticated
loss. During backpropagation, gradients of the loss function with respect to the parameters
are computed using automatic differentiation, which efficiently applies the chain rule of
calculus to propagate gradients through the network layers. It is important to note that
gradient-based optimization methods, including stochastic gradient descent (SGD), can
converge to local minima of the loss function, resulting in suboptimal solutions. Therefore,
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Algorithm 2 Neural Network Training with Stochastic Gradient Descent

: . Traini RGN
1: Input: Training dataset {(x, y™)}¥ ,
size B
2: Initialize neural network parameters randomly: 6
3: for t =1 t0 nepoens do

4 forb=1t0 % do > Iterate over mini-batches

learning rate ., number of epochs 7p,chs, batch

5: Select randomly a mini-batch {(x\7,y'))}# |
6: Forward pass for the mini-batch:
7: Compute neural network output: $) = fyy(x?, )
8: Compute average loss over the mini-batch: £® = 137 Loss(y?,§?)
9: Backward pass (backpropagation) for the mini-batch:
10: Compute gradients: Vy = V,.2®
11: Update parameters using stochastic gradient descent (SGD):
12: 0 —0—1.Vy2®»
13: end for
14: end for

15: Output: Trained neural network parameters: 6

multiple initializations and careful tuning of hyperparameters are often required to mitigate
the risk of getting stuck in local minima.

Beyond the SGD presented here, adaptive learning rate methods such as AdaGrad
(Duchi et al., 2011), RMSProp (Tieleman & Hinton, 2012), and Adam (Kingma & Ba, 2015)
dynamically adjust the learning rate during training, providing faster convergence and
improved performance on non-convex optimization problems with varying curvature.

E2 Online tool: Neural Networks playground:

https://playground.tensorflow.org provides a very helpful resource to gain intuition on how a
neural network works.

In this tool, the MLP architectures are easily editable. It is possible to train the network with
multiple hyperparameter combinations and obtain visual results throughout the training.

Vanilla neural networks, while powerful, have several drawbacks that motivate the ex-
ploration of alternative approaches such as physically-enhanced neural networks. A major
limitation is their black-box nature, which makes it difficult to interpret the learned repre-
sentations and understand the underlying mechanisms driving the predictions. In addition,
vanilla neural networks often require large amounts of labeled data for training, which
is not always readily available, especially in domains where data collection is expensive
or time-consuming. Furthermore, traditional neural networks do not explicitly incorpo-
rate known physical principles or constraints into their architectures, which can lead to
inefficiencies or inaccuracies when modeling physical systems or phenomena (Raissi et
al,, 2019). These limitations underscore the need for novel methods that aim to integrate
domain-specific knowledge, such as physical laws or constraints, into the learning process
to improve interpretability, robustness, generalization capabilities, and training efficiency,
while harnessing the power of Deep Learning for complex prediction tasks.
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2.2 Coupling techniques between physical knowledge and neural net-
works

The integration of Deep Learning with physical knowledge offers the possibility to improve
the solution of complex scientific and engineering problems and is a growing trend, as
shown in Figure 1.6. Due to the very large number of publications in this field, an exhaustive
literature review is not possible. In Section 2.3, the contributions that deal specifically with
neural networks for constitutive modeling are reviewed. Nevertheless, the techniques for
incorporating physical knowledge into neural networks can be grouped into 3 families,
which are described in detail below.

key words: "Physics" - "Neural" - "Networks" key words: "Neural" - "Networks"
4000 150000

125000 A
3000 +

100000 A

2000 1 75000 -

50000 -

Publications (total)
Publications (total)

1000 ~

25000 A

0
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Year Year

Figure 1.6 ¢ Left: Number of publications per year containing the keywords "Physics",
"Neural" and "Networks" in the title or abstract. Right: Number of publi-
cations per year containing the keywords "neural" and "networks" in the
title or abstract. The database used is the one accessible from the website
https://app.dimensions.ai/discover/publication. Other databases
may give different results.

2.2.1 Physics-guided loss function

The integration of physical laws into the loss function of neural networks marks a significant
advance in bridging the gap between Deep Learning and traditional scientific computing.
Known as "physics-informed", this approach uses the governing physical equations, often
partial differential equations (PDEs), as an important component of the training process.
Unlike conventional neural networks, where the loss function primarily quantifies the
deviation between predictions and data, this technique introduces an additional term to the
loss function that informs the training with the underlying physical principles. Pioneering
ideas for adding PDE residuals to the loss can be found in (Lagaris et al., 1997), while
(Raissi et al., 2019) named the concept of "physics-informed neural networks" (PINN) and
accelerated the physics community’s enthusiasm for neural networks. PINNs are now used
in many different applications, such as fluid mechanics (Cai et al., 2021), biology (Lagergren
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et al., 2020), chemistry (Zanardi et al., 2022), magnetostatics (Kovacs et al., 2022), or solid
mechanics (Haghighat et al., 2021), to name just a few.

The key to this methodology is the formulation of a PDE residual-based loss component.
This component evaluates the extent to which the predictions of the neural network are
consistent with the PDEs describing the physical system under study. Specifically, the
network is designed to predict physical quantities of interest (e.g., temperature, pressure)
over a domain, and the PDE residuals are computed by substituting these predictions into
the corresponding PDEs. A well-trained PINN minimizes these residuals, ensuring that its
predictions not only fit the available data, but also satisfy the physical laws governing the

system.
Several elements are typically combined to construct the total loss function:

e Data Loss: This element measures the discrepancy between the neural network’s
predictions and the observed data, guiding the network to learn from empirical
observations.

e PDE Residual Loss: This element, the hallmark of PINNs, quantifies the discrepancies
between the predictions and the physical laws expressed by the PDEs. Minimizing
this loss ensures that the solutions are physically plausible.

* Boundary and Initial Condition Loss: To further ensure the fidelity of the predictions,
terms are included that penalize deviations from known boundaries and initial con-
ditions of the physical system. This forces the neural network to obey these critical
constraints.

The process of training a PINN involves the simultaneous minimization of these com-
ponents of the loss function, using backpropagation and optimization techniques as in
conventional Deep Learning. However, the inclusion of the PDE residual loss introduces
anew dimension to the training process, requiring careful consideration of the physical
context and the numerical stability of the learning algorithm, as well as a (potentially
time-consuming) tuning of the weights between losses (Bischof & Kraus, 2022).

This approach of embedding physical knowledge directly into the loss function allows
for the direct integration of physical constraints and principles, improving the reliability
and accuracy of the neural network’s predictions, especially in scenarios where empirical
data may be sparse or noisy.

[l Remark

It is worth noting that the mCRE functional has similarities with the structure of
the PINN loss function, with a decomposition that includes physical and data terms.
However, the mCRE functional is not used to solve PDE, it is used to correct model
bias. The minimization of the mCRE functional also involves strong enforcement of
constraints which is not the case with PINN (penalization).
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2.2.2 Physics-guided Architecture

A second way to couple physics and neural networks is to work at the level of the architecture
of the neural network. A common approach is to construct network architectures that reflect
the structure of the physical equations themselves. For example, networks can be designed
to have layers or connections that correspond directly to terms in differential equations,
ensuring that the flow of information through the network mimics the physical processes
(Muralidhar et al., 2020). When dealing with a physical problem, even the choice of inputs
and outputs of a neural network is often motivated by physical arguments. There are
also hybrid approaches that combine neural networks with traditional numerical solvers
for differential equations (Fang, 2022; Massala et al., 2023). In such architectures, the
neural network may be responsible for learning complex boundary conditions or source
terms, while the numerical solver handles the integration of the differential equations. This
symbiosis makes it possible to leverage the strengths of established numerical methods
while adding the flexibility and adaptability of Machine Learning models.

Another approach is to use specialized layers or units that enforce certain constraints.
For example, symmetries and invariances inherent in the physical system can be embedded
in the network design to ensure that the network’s predictions remain consistent under
transformations that leave the physical system unchanged (Cohen & Welling, 2016). Another
example is a convolutional layer which naturally guarantees invariance under translation.
Other properties, such as convexity, can also be enforced in the (Amos et al., 2017) architec-
ture, as we will see.

The main advantage of enforcing physics in the architecture is that every prediction,
in both the training and inference phases, satisfies the enforced properties, whereas non-
respect of physical knowledge in the loss function is penalized only during training. Also,
by constraining the neural network in the architecture, the search space (described by the
neural networks) is reduced to only physical solutions, thus reducing the number of local
minima in the training process.

2.2.3 Physics-guided initialization

Transfer learning is a transformative strategy in the field of neural networks, particularly
for integrating physical knowledge into Machine Learning models (Farahani et al., 2020).
In this approach, knowledge gained from solving one problem is applied to a different
but related proble. In the context of embedding physical principles into neural networks,
transfer learning offers a unique way to improve model performance, especially in scenarios
where data is scarce or the complexity of physical systems is high (Heidenreich et al., 2024).

The essence of transfer learning in this domain involves pre-training a neural network
on a vast dataset where the physical laws are well-understood and data are abundant. The
network learns to recognize patterns and features governed by these underlying physical
principles. This pre-trained model is then fine-tuned on a smaller, target dataset that
represents a specific scientific or engineering problem of interest. The fine-tuning process
adjusts the model’s weights and biases to adapt to the nuances of the new problem, while
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retaining the fundamental physical insights learned during pre-training.

Transfer learning significantly reduces the amount of data required to train a model on
the target task. By using a model pre-trained on a related task, the network uses previously
learned features and patterns, accelerating the learning process for the new task. To effec-
tively implement transfer learning, it is critical to identify source tasks that are sufficiently
related to the target task to ensure that the knowledge transfer is relevant and useful. In
addition, careful attention must be paid to the fine-tuning process, balancing the retention
of learned physical principles with adaptation to the specific characteristics of the new
problem.

In summary, transfer learning is a powerful mechanism for integrating physical knowl-
edge into neural networks. By using pre-trained models and adapting them to new tasks,
this approach improves the efficiency, accuracy, and applicability of neural networks in
solving complex scientific and engineering problems that are firmly grounded in physical
laws.

2.3 Neural networks and constitutive modeling

The field of constitutive modeling also benefits from extensive research to evaluate the
ability of neural networks to describe constitutive behavior. Although this topic is very
trendy today, the idea of representing a constitutive model is not new, as the pioneering ideas
can be found in (Ghaboussi et al., 1999). At that time, learning strain-stress relationships
relied solely on data, neglecting any physical insight into the network architecture or loss
function.

Recent contributions can be divided into two groups according to the data used for
training. The first group of contributions aims at training neural networks in a supervised
learning procedure with a strain-stress database (or strain-free energy), while the second
group aims at discovering new constitutive models from data obtained from real experi-
ments, thus training neural networks in an unsupervised way. The contributions of the
first community focus more on architecture, while the second community focuses more
on numerical methods suitable for training neural networks with real data (or at least syn-
thetic data representing obtainable measures). The main focus of this manuscript belongs
to the second group of contributions, but is closely related to the first. The supervised
contributions can be motivated by different reasons:

* Speed-up simulation: Once a neural network is trained, the inference phase of a
constitutive artificial neural network is generally much faster compared to other tra-
ditional numerical solvers in computational mechanics. Trained with a strain-stress
database, a neural network can easily replace the complex integration of evolution
laws (Rezaei et al., 2024) or be used as a homogenization tool replacing complex
multiscale simulation (Bishara et al., 2023).

* Gain knowledge about neural networks for constitutive modeling to pave the way
for model discovery: Another motivation for developing supervised learning of con-
stitutive models is simply to improve the understanding of neural networks for con-
stitutive modeling or to propose new modeling frameworks.
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In the following paragraphs, some choices are discussed, such as what to put in the
inputs and outputs of the neural network, the different thermodynamic frameworks, the
types of architectures used, how to handle internal variables, or the choice of loss functions.
In fact, the following discussion of these choices is nothing more than a discussion of
modeling choices. Some of these questions predate the neural network trend and may be
answered differently in different contexts.

[l Remark

At the beginning of this PhD in 2021, most of the work on constitutive architecture
was just beginning. Some approaches that now seem well established in 2024 were
not published at all at the beginning of the PhD. In the following literature review,
precision is added when contributions share ideas developed simultaneously in this
PhD.

On the choice of inputs and outputs
When using neural networks to model material behavior, the choice of input and output
variables is critical.

This question first addresses the scale at which the modeling is aimed. Global infor-
mation about the structure can be used to predict whether the structure is damaged or
not (Gulgec et al., 2017; Bono et al., 2023), as a damage detection classification problem
(damage or not damage). On the other hand, models can incorporate input information
related to the microstructure of the material (Aldakheel et al., 2023; Rao & Liu, 2020). In
between these two extremes are mesoscopic models based on the thermodynamics of
continuous media with a description based on internal variables. This manuscript focuses
on the latter scale.

Once the modeling scale is determined, it can be argued that modeling all of the consti-
tutive behavior may be overkill, and the neural network should be used only to represent
the unknown (or difficult to model) part of the behavior. Learning linear elasticity with a
neural network may be a questionable idea. For example, in the context of plasticity and
motivated by modeling reasons, (Liu et al., 2022) uses the neural network only to learn the
yield surface. In the same philosophy, (Fuhg et al., 2023) proposes a modular framework for
elastoplasticity in which neural networks only represent the unknown physics. This kind of
idea is particularly suitable in a low-data regime, which is generally the case in experimental
setups.

Finally, to go further on the choice of inputs in a constitutive neural network, emphasis
should be placed on the invariant formulation of constitutive models (Boehler, 1987). If the
class of symmetry of the material to be modeled is known, using the associated invariants
of strain in the input (instead of strain components) allows to write a symmetry preserving
model. Encoding symmetry in this way reduces the amount of data needed to train the
networks, which is one explanation for the recent popularity of this choice (Linden et al.,
2023; Linka & Kuhl, 2023; Fuhg et al., 2022; Tac et al., 2022; Thakolkaran et al., 2022). Some
of these papers have been published simultaneously with some studies of this thesis.
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On the choice of thermodynamics framework

It is well known that constitutive models must satisfy thermodynamics.The respect of
thermodynamics can be learned from data, but one can argue that a neural network would
need a very large amount of data to derive thermodynamic principles on its own. Further-
more, learning thermodynamics from data does not give any guarantee on its respect in
the inference phase.

The question then arises on how to ensure that the network makes only thermodynami-
cally consistent predictions.

Several works, including studies from this thesis, have addressed the issue of enforcing
thermodynamic constraints in the architecture or penalizing their violation in the loss
function during the training phase. The advantage of enforcing constraints in the architec-
ture is that they are automatically satisfied in the inference phase, whereas this is not the
case when constraints are imposed in the loss function during training. The first coupling
between thermodynamics knowledge and neural network (in order of appearance) is called
"thermodynamic artificial neural network" (TANN) and was introduced in a series of works
by Masi. In (Masi & Stefanou, 2022) a multilayer perceptron is proposed to predict the stress
increment derived from a thermodynamic potential. The mechanical dissipation is then
computed and its positivity constraint is included in the loss function used for training.
Nevertheless, this remains only a penalization during the training phase, which does not
guarantee anything concerning the inference. The dissipation can also be computed in the
inference phase to check whether the Clausius-Duhem inequality is satisfied or not. In (He
& Chen, 2022) the stress is also derived from a thermodynamic potential, but the increment
of the internal variable is given by a recurrent neural network. The main advantage is that
this approach does not require the selection of the internal variables as they are obtained
from the internal memories of the recurrent cells. The second principle is also considered
in the loss function.

Another way to define a thermodynamically consistent architecture can be found in
(Hernandez et al., 2021), where the metriplectic structure of dissipative systems is imple-
mented in the form of the so-called General Equation for Non-Equilibrium Reversible-
Irreversible Coupling (GENERIC) (Romero, 2009; Ottinger & Grmela, 1997). In (Fuhg et al.,
2023) thermodynamic potentials are predicted with the input-convex architecture pro-
posed in (Amos et al., 2017) (with internal variables as input), thus automatically satisfying
the Clausius-Duhem inequality. Finally, the Generalized Standard Material framework
(Halphen & Nguyen, 1975) is constrained using input-convex neural networks (Amos et al.,
2017; Rosenkranz et al., 2024), as is done in this manuscript. Note that the GENERIC and
Generalized Standard Material frameworks share similarities and the transition from one
to the other can be found in (Mielke, 2011) as in both frameworks laws are derived from
potentials. The GENERIC framework can represent more than just constitutive modeling
(e.g. dynamical systems), but when this framework is used to represent constitutive laws, it
is equivalent to the Generalized Standard Material framework.

In this manuscript, the Generalized Standard Material framework is used, which means
that convex potentials must be constructed. The following details how such requirements
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can be enforced in the architecture:

The architecture used is shown in Figure 1.7. To ensure convexity, the weights between
the layers are positive (the weights mapping the input layer to the layers can be negative),
and the activation functions are convex and non-decreasing. In the case without evolution
laws, this framework is also widely used, with only one potential: the Helmholtz free energy
(Linden et al., 2023; Linka & Kuhl, 2023; Fuhg et al., 2022; Tac et al., 2022; Thakolkaran
etal., 2022; As’ad et al., 2022). The stress is obtained by automatic differentiation of the free
energy:

g=—— (1.39)

Y(e)and o = % should vanish at zero deformation (e = 0) so the potential is written:
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Figure 1.7 ¢ Input convex thermodynamics-consistent architecture used.

On the role of internal variables

The role of internal variables is also very important. Internal variables characterize the
state of matter. They are hidden variables in the sense that they are not measurable. Differ-
ent approaches to the treatment of internal variables can be found in the literature. The
choices made in the literature are closely related to the amount of information available.
Indeed, with rich information, it is quite possible to detect internal variables with a neural
network. However, in contexts with limited data availability, learning internal variables
becomes very complicated and they have to be postulated a priori (Fuhg et al., 2023). To
my knowledge, there are no studies that have succeeded in automatically learning internal
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variables based on truly measurable information. There are two interesting approaches to
learning internal variables. On the one hand, recurrent networks can be adapted to learn
internal variables thanks to their memory system (Rosenkranz et al., 2024). In (Bonatti &
Mohr, 2021), the network manages to learn a set of internal variables with a memory system
inspired by LSTM. Since the data used to train the model are generated for a known model,
this study showed that the number of learned internal variables can be relevant compared
to the physical model. On the other hand, autoencoders, an architecture useful for com-
pressing information, are also suitable for learning internal variables. In (Masi & Stefanou,
2022), an autoencoder system is used for homogenization to reconstruct microstructural
information while constraining the dimension of the latent space.

Type of NN structure

The choice of network architecture is closely related to the choice of thermodynamic
framework and internal variables. A large number of works have addressed the issue of
representing history-dependent constitutive models with neural networks (Wu et al., 2020;
Zhang & Mohr, 2020; Bonatti & Mohr, 2022; Gorji et al., 2020; Vlassis & Sun, 2021). As is
classically the case in Deep Learning, different types of neural networks are used, such as

 feed-forward neural networks. With this type of network, the inputs of the neural
network are generally the strain increment and the postulated internal variables (see
for examples (Ibragimova et al., 2021; Weber et al., 2023));

* recurrent neural networks which are suited to deal with time series. One strong
interest of such recurrent networks is the use of internal memories which can play
the role of internal variables (see for examples (Bonatti & Mohr, 2021; Im et al., 2021;
Wu et al., 2020; Mozaffar et al., 2019; Gorji et al., 2020));

 time convolutional neural networks that are also suited for time series: a comparison
between time convolutional neural networks and recurrent neural networks can be
found in (Abueidda et al., 2021) in the context of plasticity and thermo-viscoplasticity.

In (Linka & Kuhl, 2023), an architecture specifically designed for constitutive modeling
is proposed, in which functions usually encountered in constitutive models are embedded
in the network architecture.

On the choice of loss function

Finally, the choice of loss function for training is an important issue. If a model is already
available, it is possible to generate databases of strain-stress (or potential-strains), and in
this case the choice of a least squares loss function is quite natural. In the supervised case,
a discussion may arise as to whether it is better to place a loss function on the stress or on
the potential (Vlassis & Sun, 2021). The answer to this question may vary depending on the
way the network is parameterized.

In the unsupervised case, the task of choosing the loss function is more challenging.
The choice of such a metric is not new to neural networks, but is a recurring question in
inverse problems. Indeed, in the case of inverse problems for the identification of constitu-
tive law parameters (Bonnet & Constantinescu, 2005), there are numerous identification
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methods which can be based on least squares minimization such as the Finite Element
Model Updating (FEMU) (Grédiac, 2004), on stochastic approaches (Kaipio & Somersalo,
2007; Tarantola, 2005; Rosic et al., 2013), or minimization of a cost function with a physical
sense such as the Equilibrium Gap Method (Claire et al., 2004).

The Equilibrium Gap Method has been adapted to a behavior described by a neural
network in the so-called NN-EUCLID framework (Thakolkaran et al., 2022), while the
adaptation of the mCRE is the main goal of this thesis.
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Chapter conclusion

This bibliographic chapter served to recall the chosen framework for inverse problems:
the mCRE. This chapter also reviewed the basics of Deep Learning, with particular
emphasis on the coupling of techniques with physical knowledge, especially the
use of neural networks for learning constitutive laws. Several lessons can be drawn
from this bibliography for this manuscript. First, the literature review on mCRE has
identified the current limitations of work on parameter identification using this tool.
A notable point is that despite the widespread use of the mCRE, relatively few studies
have focused on updating parameters for nonlinear constitutive models. It is also
important to note that all works on the mCRE assume a model form and attempt to
identify the parameters of that model. The model form has always been considered
reliable, while the parameters have been considered unreliable. This manuscript then
deals with how to free the model form and considers the model form to be unreliable
as well.

The second set of lessons comes from the bibliographic study of coupling techniques
between Deep Learning and physical knowledge. Recent work has addressed many
points of resistance to the use of neural networks. Indeed, it is now possible to con-
strain the neural network so that it does not violate physics, for example by enforcing
a thermodynamic framework or symmetry properties. These works thus point to the
possibility of using neural networks in critical contexts, such as the one targeted in
this manuscript. This study also highlights the lack of work dealing with unsupervised
learning, which is required to train neural networks with measurable data. The re-
mainder of this manuscript then focuses on the unsupervised learning of constitutive
laws described by a neural network that validates physical properties within the mCRE
framework, in a unified strategy.
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The previous bibliography chapter suggested the possibility of unsupervised training
of a physically constrained neural network within the mCRE framework. This chapter
aims to explore the first methodological aspects related to the coupling of Deep Learning
with the mCRE framework. In order to gradually consider the difficulties, this chapter
focuses on a nonlinear, but history-independent, behavior. After a brief description of
the problem addressed in this chapter, a minimization procedure adapted to nonlinear
elastic behavior is presented. This procedure is a continuation of the work on mCRE with
alternating minimization. The free energy is represented by the mean of an input-convex
neural network, and the goal of the learning is to find the neural network parameters
that best approximate the constitutive model. The training of neural networks is much
more challenging than classical parameter identification due to the very large number
of parameters to be learned. This difficulty is aggravated by the fact that the numerical
training method requires the tuning of many hyperparameters, often manually adjusted by
a user. Unfortunately, the context of DDDAS targeted in this manuscript prevents relying on
a user to adjust the hyperparameters. Therefore, special attention is paid to the automatic
tuning of hyperparameters. Finally, the method is validated on two test cases. The first case
involves the learning of a nonlinear elastic law under the hypothesis of small perturbations,
and the second case is a hyperelastic case involving the learning of a Mooney-Rivlin model.

1 Problem definition

To define the problem notations, let us consider a body in initial configuration Q c R4(d =
1,2,3) with boundary 92 and isothermal environment. Dirichlet boundary conditions are
imposed on 90, ¢ 92 by means of a displacement field #;. Neumann boundary conditions
are prescribed on 92, € Q2 by means of a force field ff, with 00, N 9Q, =0. Abody force
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field f’j may also be prescribed in (2. Additionally, strain measurements E,; (in the case of
observations from optical fibers or strain gauges) or displacement measurements u,;, (in
the case of digital image correlation) are available. We consider here observation data E,, ;.
The solution to the mechanical problem is the couple (u, S) of displacement and second
Piola-Kirchoff stress fields that satisfies the three following groups of equations:

* kinematic admissibility defines the space U, ; of displacement fields satisfying the
Dirichlet boundary conditions:
Uoo, = Ug

* static admissibility defines the space S, of stress fields satisfying the equilibrium:

f S(u): (F(u)T.Vv)dQ:J
0

f;.vdﬂ+f f.vdS Vvel,
Q 29,

with F the deformation gradient and % the space of kinematic admissibility with
homogeneous Dirichlet conditions.

¢ constitutive relation:
_OY(E; p)
JE

with the strain tensor E(u) = %(Vu +Vu® +Vu'Vu) and p the parameters of the
constitutive law. Such a notation for the constitutive law, involving a convex po-
tential ¢y depending on state variables alone, is provided by the first principle of
thermodynamics.

S

The minimization of the mCRE aims to identify the constitutive relation parameters p
(weight and bias of a neural network) that fit the best to experimental data. Here Dirichlet
and Neumann’s conditions are known, as well as the observations E,,, or u,;,, that are
affected by measurement noise.

2 A minimization procedure suited for nonlinear elasticity

In the present context, the minimization of the mCRE aims to find the parameters p,,,
such that:

poptzargmin[( min [J(1/)(ﬂ;p)+¢*(§;p)—§:E(ﬁ))dQ—i—aIIHE(ﬁ)—EobSIIZ” 2.1)
Q

pePp u,S)e.d,

where the potential ¢ and the space of parameters &? are such that the constitutive model
guarantees the physical conditions detailed in the paragraph dedicated to the thermo-
dynamic framework in Section 2.3. This section describes the minimization in a unified
framework suited for:

* an explicitly given parametrized constitutive relation.
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* a constitutive relation described by a neural network (in this case, parameters p
should be understood as weights and biases of the network). The description of a
constitutive relation by a physics-augmented neural network enables to search for
the potential ¢/ in a space of potentials that satisfy the requirements of a constitutive
law. Here, input-convex neural networks (such as detailed in Section 2.3 Figure 1.7)
are used to represent the potential 1. Discussions on the network architecture will
be conducted in Chapter 4.

This minimization consists in an iterative process where iteration n + 1 is composed of:

* a first step performed with fixed parameters p'"”, in which a new admissible field
couple (i, $)*V is found to minimize the mCRE.

* asecond step performed with fixed admissible field couple (i, $)"*Y, in which pa-
rameters are updated with a gradient descent step.

Both steps are detailed in the following section for iteration 7. A novelty of this approach
lies in the way the Step 1 is performed: in the present context this Step 1 is nonlinear and
the minimization is performed with a Newton scheme.

2.1 Stepl

In this step, parameters p"" are fixed and the goal is to find:

(@, §)" :argmin[&fﬂcm(ﬁ, S; p("))] 2.2)
(t,8)e.d,

with
Encre(@, $; p™) =f (v (@ p™)+y($;p™)— § : E()) dQ+a||ILE(@) — Eopl*  (2.3)
Q
To express the Legendre-Fenchel transform *(S) (defined in Section 1.5.1) in a more

convenient way, a displacement field ¥ is introduced. With the convexity of 1) with respect
to E the sup is reached for ¢ such that:

. oY
=— 2.4
S JE |Ew) 4
so that,
& alp A A
Pr(S) FE s E(0)—y(E(D)) (2.5)
By replacing in (2.3) the mCRE reads:
A oA n A n 3 A A~ A
é”fnCRE(u»v»p)=J (y(a; p™)—y(o;p™) % Em:(E(v)—E(u)))dQ+a||nE(u)—Eobs||2
Q 1 4

(2.6)
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To search the couple (i, $)""*" in the admissible space .</,;:

* 1 is discretized with the following decomposition:

U,
U= [Udl 2.7)

where U, is the discretized displacement field at active degrees of freedom and U,
the discretized displacement field for the Dirichlet boundary conditions.

e the mCRE minimization is performed under the constraint:

h(v,l):f S(v):(F(v)T.Vl)dQ—f
Q

Q

f;.ldQ—f £.2dS=0 VAel, (2.8)
a9,

so that § satisfies the static admissibility.

This constrained minimization is performed by means of a Lagrangian functional:

L@, 0,A)=8% . (@, 0)+h(D,A) 2.9)

with the following Newton scheme (Boyd & Vandenberghe, 2004):

-—1 -

-aZgranRE aZgVZnCRE 0 ag;‘zn(,‘RE
W, —uy on? 2000 on
ﬁk-&—l - l)k = | %6ncre Pmcre Ah(v,A) 28} cre (2.10)
A 0900 092 o )
0 hwd 9 | |h(®,A)]

The right-hand side of (2.10) is evaluated with the quantities of iteration k.

The first-order derivatives are:

(4 @2
angRE OE 0y oY OF
T Tl T 7E )] ME(@)— E
96, OE 8%
{ ZOmcrE | 98 E(D)— E(a)dQ 2.11)
o0 99 9Ez|ne TP ER)
oy
4 == A :F(v —fv 0O— £
kh(v,)v) L(é’E o (D)VA d@)d LZQ  2.dS

Concerning second-order derivatives, terms that vanish at convergence of the Newton
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scheme are neglected so that:

0282

mCRE OE\20%) Jde2 T
2 mcRrE do IL.II
a2 jﬂ((aa) JE2 E(m) +a(57)
aZgiCRE (3E)2527~/)
o0’ 0E2|pw
| o0 v g 2.12)
82(geranRE — [ _8_E8_E321/J dQ
20D jQ 00 0f OE2 ko
ah(v 5E orp| BF (D)
aﬁ a2l FOVA 3L Tae vA)do

with F(9)=(1+ V7).

All the integrals are performed using finite element discretization (1.3 shows the dis-
cretization in the case of linear elasticity). The initialization of the Newton scheme is done
with the fields (#, ) obtained at the end of Step 1 with the previous parameters. Step 1
terminates when the relative update on the displacement field is below a tolerance (usually
setto 107%).

2,2 Step2

This step consists of the updating of the parameters p with a gradient descent step:

déaz a(n+1), ﬁ(n+1); (n)
:p(n)_lr merE( r") (2.13)
ap
with (Y, 9"*V) the fields obtained at the end of Step 1 of the n + 1 iteration of mCRE

minimization. For the sake of simplicity, (2", **V) are denoted (#, ?) in the following.

The gradient of mCRE with respect to the parameters is computed with the adjoint-state
method:

A6y cns(B0p) _dL(a,0,4p) _dids doo¥ dAdZ 0% 0%

= 2.14

dp dp dp ou dp o0 dp 31 op dp 14

= = -— dQ (2.15)
dp Q(ap E(@) 5p )

with .¢ the Lagrangian associated to the constrained minimization problem of Step 1
defined in Section 1.1.1 (minimization defined in (2.2) with the constraint defined in (2.8)):

It is worth noticing in (2.15) that the parameters are updated following the computation
of the gradient in the whole structure and not only where there is a measurement.

To summarize this section and introduce the next one, Figure 3.2 illustrates the general
methodology for further training the physics-augmented neural network with the mCRE.
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Definition of a physics-augmented architecture )

N )

Initialization training with generated data following a priorimodel )

Minimization of mCRE:

Pop: =argmin| min | J (w(a:p)+y*(Sip)— S : E(@) d-+al [LE(@)— E,p, |||
pED (@,Skd;~ Jq

Automatic tuning of o with the knowledge of noise level

While a stop criterion based on the CRE model error is not reached:

/Step 1: h

(@, 8)"*Y) = argmin| f (v(@;p™)+y*(85p™)— 8 : E(@)) d-+alE@)— Eqp, ]
Q

(@,8)e.dy
+ Kinematic admissibility imposed by the searched space
+ Static admissibility imposed by Lagrangian
* Constrained minimization performed by a Newton scheme
.

(Step 2:

dé&?

a(n+1) g(n+1). (n)
pm) = pm _ 2 crp (@D, 0 pl)

dp

* Gradient computed with adjoint state method

+ I, is an adaptative learning rate updated at each iteration
\

Figure 2.1 e Description of the method developed.

3 Automatic rules for hyperparameters tuning

When the constitutive model is described by a neural network, the minimization task is
much harder because of the large number of parameters. Indeed, neural networks are
known to be hard to train (Glorot & Bengio, 2010), partly because of the sensitivity to
user-defined hyperparameters. Moreover, the DDDAS framework prevents the user from
changing hyperparameters and performing several times the training. In the following, this
issue is tackled by:

¢ a physics-guided initialization described in Section 3.1;

a Morozov-based automatic tuning of the weighting between losses introduced in
Section 3.2;

e an empirical adaptive learning rate rule described in Section 3.3;

a CRE-based stop criterion used to avoid the predefined choice of the number of
epochs (Section 3.4).
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3.1 Reducing the sensitivity to initialization: physics-guided initializa-
tion with a priori knowledge

The training of neural networks is known to be sensitive to initialization (Glorot & Bengio,
2010), so is the minimization of the mCRE in the case of parameter updating (Nguyen,
2021). Indeed, with random initialization, the mCRE minimization fails to converge in most
of the experiments performed. A common approach is to initialize the neural networks
randomly following different distributions such as the one used in (Glorot & Bengio, 2010)
(known as "Xavier uniform" and "Xavier normal"), in (He et al., 2015) (known as Kaiming
initialization) or in (Saxe et al., 2014). These random initiations are sometimes associated
with a normalization of input data in order to avoid exploding and vanishing gradients.
In the context of neural networks for constitutive modeling, some approaches even train
several neural networks with different initializations and choose the best after training
(Thakolkaran et al., 2022).

Yet, when dealing with constitutive modeling an initial idea can be available such as is
the case in this work. Therefore, before training within the mCRE framework, the network
is initialized following an initial guess. Instead of random initialization, a first training
is performed to initialize the network with an a priori model with the expected material
parameters. A database {€,1)} is generated from a known constitutive model assumed to
be close to the target one. The initialization training is performed in a classical supervised
way with the Adam optimizer (Kingma & Ba, 2015) in order to minimize the mean square
error loss. The positivity constraint on the weights is already enforced through gradient
clipping. The choice of the a priori model can depend on the structure and type of loading
considered.

The generated database is created to be rich enough to describe the studied range. The
weights and biases of the neural network obtained at the end of the training are used as the
initialization of the mCRE minimization algorithm described in the following section.

3.2 Reducing the sensitivity to weighting between losses: automatic
tuning of «

A frequent concern in multiple losses optimization is the tuning of the weighting between
losses (Bischof & Kraus, 2022; Wang et al., 2020). This concern is also known in the case
of mCRE minimization, with the parameter a (Deraemaeker et al., 2004; Diaz et al., 2022).
Here, the physical sense of the mCRE can provide a way to tune a: «a is automatically tuned
before the training and constantly adapted during the training. The general philosophy of
the tuning is that the model should not be updated below the noise level, considering the
noise level of the measurement tools is known a priori. Hence, the field @ constructed at the
end of the Newton scheme (2.10) in Step 1 should get as close as possible to the measure,
but should not fit the noise. To quantify this criterion, « is re-written:
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where n,;, is the number of observations and o the standard deviation of the measurement
noise. Replacing in (2.2):

(@, §)"+D) = argmin[f (y(@;p™)+y*($;p™)— § : E())d+a! |ITLE (i) — E | ]
Q

" 2
(@1,8)ecly NopsO

(2.16)

In order for 7 not to fit the observations below the noise level, the order of magnitude
of ﬁIIHE (it)— E, ;|| should be 1, as stated in the Morozov criterion (Morozov, 1968).
Before the training of the neural network, several Steps 1 are performed to find the proper
value of ¢’. The greater @’ the lower the data discrepancy error after Step 1. This tuning is
performed by dichotomy. During the minimization of the mCRE, as soon as the normalized
data-driven discrepancy is out of the admissible bound after Step 1, @’ is returned following
this procedure and a new Step 1 is performed with the new «'.

This simple technique is powerful to prevent the network from overfitting as the pre-
dicted field u cannot fit the observations below the noise level.

[l Remark

Here, since the value of « is fixed to enforce that # is always up to noise level to
the observations (before each computation of the gradient step), another choice of
formulation could have been made in which « could play the role of the Lagrange
multiplier. Step 1 could be modified to perform a constraint minimization to enforce
that # is always up to noise level of the observations. This approach would provide
sufficient flexibility to be robust to noise without the need to choose the value of a by
dichotomy.

3.3 Reducing the sensitivity to learning rate: automatic tuning of learn-
ing rate

Another well-known sensitive parameter in neural networks training is the choice of the
learning rate [/, (Jacobs, 1988). A too small value of /, can cause the training to be extremely
slow, whereas a too large value can cause instability during the training with the risk of not
reaching convergence. The value of the learning rate should be analyzed with regard to
the progress made during one training step. Here, the two steps minimization procedure
provides an interesting indicator on the update speed of the training. Indeed, the number
of iterations performed in Step 1 depends on the modification of the space of solutions that
satisfy the constitutive relation for given parameters (I',) caused by the parameters update
in Step 2 (because Step 1 is initialized with (#&, #) found at the end of the previous Step 1), as
it is shown in Figure 2.2.

According to multiple experiments, a good compromise is located around 4 iterations
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Figure 2.2 ¢ Influence of the learning rate on the number of iterations in Step 1.

in Step 1. It is thus possible to automatically adapt the learning rate with the following
empirical-based rule:

lr —lr xupdate_coefficient (number_iterations_step_1) (2.17)

An example of the values of update_coefficient (number_iterations_step_1) is
presented in Figure 2.3. These values have been obtained empirically by testing a significant
amount of values on different test cases compared to the ones presented in this paper. The
main advantage of this rule is that the convergence of the method is no more sensitive to
the user learning rate choice, as shown in Section 5.3.1, which enables to train the network
online. Note that this rule can be adapted depending on the test case: a way to adapt this
rule is to set the target number of iterations to the number of iterations needed to solve the
FEM problem for the initialized network.

10! >

10°

Value of learning rate update coefficient

2 4 6 8 10
Number of iterations during step 1

Figure 2.3 e Example of the value of the coefficient used in the empirical learning rate
update rule as function of the number of iterations during Step 1.
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3.4 Reducing the sensitivity to the number of epochs: definition of a
physics-based stop criterion

Neural networks training requires a stop criterion. A naive technique, but yet efficient in
many approaches, is to predefine a number of epochs before the training and to retune
this parameter a posteriori as long as the predictions are not satisfactory (Goodfellow et al.,
2016). This technique is not suited here as the training should be performed online for
DDDAS. Another widely used rule is to define a criterion to present overfitting. The idea is
to stop the training when the loss computed on the validation dataset is stagnating while
the loss on the training dataset is still decreasing. This criterion can not work here because
of the unsupervised nature of the training.

The mCRE minimization is a really interesting framework as it provides a strong physical
sense that can be used to define a stop criterion. In the case of neural networks that are
theoretically universal approximators, the method can be designed as if there were no
model bias. Yet, to the authors’ knowledge, this property has not yet been shown in the
case of physics-augmented constitutive modeling. The assumption here is that a physics-
augmented neural network (constructed to enforce in the architecture all the requirements
of a constitutive model) can approximate any physics-consistent constitutive model (which
matches the same requirements). Assuming there is no model bias, the network can repre-
sent any constitutive model that satisfies the imposed constraints. As this is further shown
in Section 5.1.3, the CRE term can be interpreted as a modeling error. The CRE is homoge-
neous to an energy and can thus be compared to the energy in the structure, the normalized
CRE writes:

2
2 gCRE

o . ____ TCRE (2.18)
lized
normalized_cre fn Y(E(v))dQ

A stop criterion (for the overall convergence of the method) can then be established
based on the relative energy error in the system:

2
gnormalized_c oy < tol (2.19)

where f0! is a user-defined target value of the stop criterion.

This criterion is also used to estimate how far from convergence is the minimization
process: near convergence the number of iterations in Step 1 is naturally lower. This can be
a problem in the previous learning rate update rule, because the learning rate can be set
to high values which can lead to a leap far from the minimum. To alleviate this concern,
near convergence the learning rate update rule is modified so that the learning rate is
only updated if it tends to decrease: the update coefficients larger than 1 are set to 1 near
convergence.
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3.5 Extension to the case of multiple loadings in the database

So far, the method has been presented in the case of only one loading case. In practice,
the training database is constituted of multiples loading cases so the method should be
modified:

e Step 1 and Step 2 are consecutively performed for each loading case.

* For the stop criterion, the method stops when the criterion is reached on all the
loading cases. When a loading case reaches the criterion, the weights and biases of
the neural network are no longer updated with this loading case. In each epoch, a
verification is made to check if the criterion is still reached for this loading case: if the
criterion is not reached, the weights and biases are then updated.

* Concerning the learning rate, the same value is applied for all the loading cases. The
update rule is applied after each epoch (when all the loading cases have been treated)
and takes into account the mean of iterations performed in all steps 1.

4 Practical implementation

The implementation of this method was done using the PyTorch library in Python. Py-
Torch is a powerful open-source Machine Learning library developed by Facebook’s Al
Research Lab (FAIR) that has gained widespread acceptance for its ease of use, flexibil-
ity, and computational efficiency, especially in the areas of Deep Learning and artificial
intelligence.

The library is well known for its automatic differentiation system, implemented through
a component called Autograd, which automates the calculation of gradients - a critical
feature for training neural networks. This feature simplifies the development of complex
models by abstracting the complex mathematics involved in backpropagation, making it
accessible to those with a limited understanding of the underlying theory.

PyTorch supports GPU acceleration, significantly speeding up computations and fa-
cilitating the handling of large datasets, which is critical for Deep Learning tasks. This is
achieved through seamless CUDA integration, enabling efficient parallel computation and
batch processing capabilities.

The library’s modular design gives researchers and developers the flexibility to add their
own components or use the extensive set of pre-built modules to create neural networks,
optimizers, and loss functions. This modularity supports a wide range of applications, from
simple linear regression models to complex neural networks.

Batch operations are also an important feature of PyTorch, allowing vectorization of
operations and efficient handling of large datasets by dividing them into manageable
batches. This feature is critical for training models on large data sets, as it helps minimize
memory usage while maximizing computational efficiency.

The coupling of the mCRE with PyTorch was quite challenging. In fact, the minimization
of the mCRE requires the implementation of a finite element solver, which was implemented
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from scratch using PyTorch. The main feature of this FE code is that it supports the auto-
matic differentiation of a thermodynamic potential. This is necessary because in the most
general case where a potential is described by a multilayer neural network, the derivatives
of the potential are too complicated to be obtained analytically. During the 3 years of this
thesis, the Pytorch library has evolved a lot. An important step is the integration of the
library developed in (Horace He, 2021) into PyTorch, which now makes the implementation
easier. In the implemented version of the mCRE minimization code in 2024, all operations,
including the first and second derivatives of the potential and the matrix assembly, are
vectorized, which provides a very important speedup (about 500 times faster than the
non-vectorized version). Since each gradient descent step requires the computation of
admissible fields, this efficient implementation is very important. However, for the size of
the problem treated in this manuscript, the GPU implementation did not give any speed-up,
because the computation of admissible fields requires a matrix inversion, which is faster on
the CPU. For the problems treated in the manuscript, performing all computations on the
GPU except the inversion on the CPU did not give any speedup because of the time needed
to switch data from the GPU to the CPU and back to the GPU.

5 Results

5.1 Application on a nonlinear case in small deformation

This part illustrates the performance of the method on a first test case, with a non-quadratic
potential to be learned under the small strain regime. Section 5.1.1 and 5.1.2 respectively
present the training and validation databases, Section 5.1.3 presents the constitutive relation
error before the training of the neural network with the mCRE procedure (i.e. after the
initialization training), and Section 5.1.4 proposes an evaluation of the method on this test
case.

5.1.1 Training database

The training database is constituted of synthetic data generated with a finite element
simulation:

* constitutive relation: the chosen reference non-quadratic potential distinguishes the
behavior in tension from the one in compression along the longitudinal axis (axis 1):

1. 1 1
Y€)= EE <€ >+2+5E <€ >_2+5E €,+G e, (2.20)

where < e >, and < e >_ stand respectively for the positive and negative parts, £ =
12GPa and E =20G Pa are the tension and compression Young moduli, G =8G Pa
is the Coulomb modulus and €;; are components of the linearized strain tensor
e=1Vu+(Vu)".
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e geometry: the geometry considered is the 2D (plane strain) cantilever beam presented
in Figure 2.4.

* loading: the database includes 10 different loading cases |, with a combination of
pure bending, tension and compression.

0 10 20 30 40 50

—— Optic fiber

Figure 2.4 « Geometry, mesh and position of optic fibers.

After the finite element simulation, the component of the strain in the direction of the
optic fiber is saved. White Gaussian noise is then added to the synthetic measurements,
with a level discussed in Section 5.3.3. It is worth noticing that only the noisy observations
and boundary conditions are used in the mCRE minimization procedure: the analytical
expression of the target potential is not used in the training but only for validation purposes.
Thus this training can be qualified as unsupervised training.

5.1.2 Validation database

The validation database is constituted of 6 deformation paths: uniaxial tension (UT), uni-
axial compression (UC), biaxial tension (BT), biaxial compression (BC), simple shear (SS),
and pure shear (PS). Equations (2.21) show the deformation gradient for these 6 cases,
with y €[0,1e73] a loading parameter. 100 points per loading are used in the validation
database. This validation process is the same as the one used in (Thakolkaran et al., 2022).
These deformation paths are only used for validation and are not used during training. For
validation, a comparison is made between the learned and the ground truth potential along
these deformation paths.

1+y 0 — 0 1+y 0
FUT — ,FUC — 1+y ,FBT — ,
(7) 0 1] (7) l 0 1] (7) 0 14y
L o 1
FBC(Y):l1+y 1 ],Fss(},):ll 7’]’ PS() = +7r (1) ] 2.21)
e 0 1 0

5.1.3 Error after initialization training

Before minimizing the mCRE, the network s initialized to represent linear isotropic elasticity
thanks to a classical supervised training described in Section 3.1 The potential used to
generate data for the initialization training is the following:
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1 2 1 2 2
Y(€e)= EE €t EE €, +G €, (2.22)

with E = 24G Pa the Young modulus, G = 11G Pa the Coulomb modulus and €;; the
components of the linearized strain tensor.

Number of layers 4
Number of neurons per hidden layer 50
Optimizer Adam
Number of epochs le5
Learning rate (cyclic /, scheduler Smith, 2017) | I, €[1e™°,1e™*], cycle of 100 epochs

Table 2.1 ¢ Parameters used for the initialization training.

Table 2.1 summarizes the parameters used for this initialization training. At the end
of this training, the network is well suited to represent linear elasticity as shown in Figure
2.5 (top). However, along axis 1, this potential does not represent well the non-quadratic
potential: thisis the goal of the mCRE minimization to train this neural network to accurately
represent the non-quadratic potential (correction of model bias). Figure 2.6 shows, for
a bending loading, the fields S,; and €,, associated to displacement fields & and ¥. To
understand the role of fields # and ¥ the reader can refer to the linear elastic case in 1.3.
Figure 2.6 demonstrates that the discrepancy between fields associated with @ and ¥ are
localized where the €, is positive, i.e. where the material is in tension along axis 1. This
discrepancy is explained by the difference between the non-quadratic potential and the
neural network in tension that can be observed in Figure 2.5. At the bottom of Figure 2.6
the normalized CRE map shows the localization of the error. This CRE map is a powerful
tool because:

* the analytical ground truth potential is not needed to compute the error,

e an error level is available everywhere in the structure, even where there is no observa-
tion,

* it can deal with noisy and partial observations,

* this error is localized in the zone of model bias (here in the zone in tension along axis
1),

For all these reasons, the CRE is a strong indicator of model bias, and can even be used in
the inference phase. In the following, results after the minimization of mCRE are presented
and discussed.

5.1.4 Evaluation of the method

Figure 2.5 (bottom) shows the potential predicted by the neural network before and after
the mCRE minimization: the model bias is corrected as the tension behavior along axis 1 is
now correctly predicted. This correction of model bias is possible as the loading database
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Figure 2.5 ¢ Top: Potentials evolution with respect to the components of the linearized
strain tensor after the initialization training to represent linear elasticity. This is

contains solicitations that make appear tension along axis 1. Figure 2.7 shows the conver-

the prediction of the neural network before the mCRE minimization. Bottom:
Potentials evolution with respect to the components of the linearized strain

tensor before and after mCRE minimization.

gence of the mean (over the loading cases) of the mCRE and normalized CRE as well as the

evolution of relative error on the validation dataset. The similarity in the evolution between

mCRE and normalized CRE is explained by the fact that a is adapted during training to

constraint the normalized data discrepancy term of the mCRE to be close to 1 (see Section

3.2).

About the evolution of these criteria, the plateau at the beginning of training is caused

by the small value of the initial learning rate. With the adaptive learning rate rule described

in Section 3.3, the learning rate gets high enough to achieve decreasing of the mCRE after

several epochs (here around 12 epochs).

5.2 Application on a hyperelastic case: Mooney-Rivlin model
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Bending load 4

€11 and Sy associated to u after initialization training
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Figure 2.6 ¢ For a bending loading (top), fields S,, and €, associated with displacement
fields &## and ¥ (middle) and the normalized CRE map (bottom). These obser-
vations depend on the initialization choice.

5.2.1 Training database

The training database is constituted of synthetic data generated with a finite element
simulation:

e constitutive relation: Mooney-Rivlin potential (Mooney, 1940; Rivlin, 1948):

Y(C)=A(I,—3)+B(I,—3)+ C(I,—3)(I,—3) (2.23)
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Figure 2.7 o left: evolution of the mean (over the loading cases) mCRE during the training;

center: evolution of the mean (over the loading cases) normalized CRE during

the training, right: evolution of the relative error on the validation database
during training.

with

J =det(C)
jl = ]_2/3 tr(C)

=57 [(CY ~ u(C?)
C=2E+1

and A=1.9, B=0.4 and C =1 some material parameters.
e geometry: the geometry considered is a 2D (plane strain) square.

* loading: the database includes 30 different loading cases f}, with uniaxial tension and

uniaxial compression. The training database is deliberately chosen with few loading
cases to quantify the generalization to out-of-training database loading cases.

After the finite element simulation, the full displacement is stored and white Gaussian
noise is then added to the synthetic measurements with a noise level of 0, 1%. Here again,
only the noisy observations and boundary conditions are used in the mCRE minimization
procedure: the analytical expression of the target potential is not used in the training but
only for validation purposes. Even though the method presented in Section 2 is detailed in
the case of strain observations, it extends easily to the case of displacement observations.

5.2.2 Validation database

The validation database is constructed according to the same procedure as the one de-
scribed in Section 5.1.2 with the deformation paths (2.21). The difference is that here, the
target model describes hyperelastic behavior so the range of y should be different: y €[0, 1].
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5.2.3 Evaluation of the method, case of incomplete training database

For this test case in which the network has to learn a Mooney-Rivlin constitutive model,
the method is evaluated when the training database does not include enough deformation
paths to describe all features of the constitutive model. The interest of this incomplete
training database is to see the generalization outside the training database. Before the
minimization of the mCRE, the network is initialized thanks to an initialization training
described in Section 3.1 with the Neo-Hookean model:

Y(E)=A(I,—3)+B(J—1) (2.24)

with A=1.9 and B = 2.4 are material parameters.

Figure 2.8 shows the potential before and after the mCRE minimization along two
deformation paths. On the left, it is uniaxial compression along one axis (whereas it was
the other axis in the training database) and the learned potential is close to the target. This
generalization from one axis to another is explained by the fact that the isotropic invariants
were put inside the network. On the right, the response to pure shear is not correctly
described as this does not appear in the training database. Yet, this lack of precision is
compensated by the mCRE framework that can be used to assimilate data in the online phase
by the mean of the predicted fields associated with u (trade-off between the prediction
from the trained model and assimilated data). Moreover, even in the prediction phase when
data are assimilated the CRE modeling error is available to give a confidence bound on the
prediction.

UC (in the training database) PS (not in the training database)
—— Neo-Hookean —— Neo-Hookean |
2.54- Target (Mooney-Rivlin) i £ Target (Mooney-Rivlin)
NN initial 8T« NNinitial NN A
NN trained S NN trained

R
| A// 4 W
0'5 // 2 / /

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.8 ¢ Potential before and after the mCRE minimization along two deformation
paths: on the left is uniaxial compression and on the right is pure shear.

5.3 Robustness on hyperparameters choice
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5.3.1 Relevance of adaptive learning rate

The learning rate parameter is a crucial parameter for the convergence of Deep Learning
training: Figure 2.9 (left) shows the evolution of the relative error on the validation dataset
during the training for several different values of /,. This figure highlights the sensitivity
of this parameter on good convergence. In most Deep Learning use cases, this parameter
is tuned by the user until the results are satisfactory. Here, the DDDAS context (Chamoin,
2021) imposes that the training has to be performed online, thus imposing an automatic
tuning of this parameter. Figure 2.9 (middle) shows the evolution of the relative error on the
validation dataset for different initial learning rates. This shows that the adaptive learning
rate rule drastically reduces the sensitivity of the choice of the learning rate as very different
initial learning rates achieve close convergence whereas it was not the case without the
adaptive learning rate. Figure 2.9 (right) demonstrates that the learning rates all stabilize to
a close value, even with an important difference in the initial learning rate choice. This is
the case only when the initial learning rate is small: if the initial learning rate is too large,
the first epoch will update the network far from the initialization with a priori knowledge,
so it is better to set a low initial value. Indeed, even if there is a high difference between
the low initial learning rate and the proper one, the learning rate will adapt only in a few
iterations.

Without adaptive learing rate With adaptive learning rate Evolution of learning rate
4x 10!
| ATATAIAN
— 1A :
3% 10! - 1 o 10
S © 10'4- — initial Ir = le | g
£ £ initial Ir = 1¢* "} \ el
g £ —— initial Ir=1¢> || \ =
3 © PR \ 3
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Figure 2.9 ¢ Left and middle: evolution of the relative error on the validation dataset (left:
sensitivity of the fixed learning rate without adaptive learning rate, middle:
sensitivity of the initial learning rate when the adaptive rule is applied). Right:
evolution of the learning rate when the adaptive rule is applied.

5.3.2 Relevance of adaptive weighting between losses

This part presents the interest of the adaptive tuning of a. First, Figure 2.10 helps to under-
stand the role played by a. It shows the strain and stress fields associated with displacement
fields @ at the end of Step 1 for different values of a. Equation (1.13) shows the role of
in the linear elastic case: #@ is a compromise between the observed data and the model
for the current parameters, and a sets up the balance between these two terms. A similar
interpretation can be done in the case of non-quadratic potentials as shown in Figure 2.10:
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e For a small value of a (here when o = 1), E;; and §,, are really closes to the one
obtained with # (no compromise with data). The associated CRE map shows there is
no error, which means the value of «a is too low.

* On the opposite, @ =10 000 shows an important difference between u and v but the
solution associated with # seems noisy.

¢ In this case a good choice of a is between 100 and 10 000: the automatic tuning gives
a value of ¢ =2 000.

Figure 2.11 (left) illustrates how the convergence is affected by different values of . This
shows that convergence is sensitive to the chosen values of @, which motivates the need for
adaptive tuning. The right-hand side of Figure 2.11 shows the convergence for the same
initial values of a. As a is always chosen such that the # field fits the observations to the
noise level, the convergence is the same for these 3 initial values of a.

Nevertheless, this adaptive tuning comes with a high computational cost: when #&
does not fit the observations to noise level, multiple Steps 1 have to be performed in the
dichotomy to find the proper value of a. This constitutes an important drawback of the
method and should be further investigated.

5.3.3 Robustness to noise

The mCRE for parameter identification has already been shown to be very effective in the
presence of noisy measurement (Allix et al., 2005; Feissel & Allix, 2007). This article confirms
the previous observations in the case of neural network training. Figure 2.12 (left) shows
the evolution relative error on the validation dataset for different noise levels: even with
high noise levels, the relative error on the validation dataset is acceptable. Figure 2.12
(right) shows the potential learned with high noise. For the 40% noise case, the potential
is not representative of reality but is still close and better than before the training. This is
achievable thanks to the adaptive a tuning which requires the knowledge of the noise level.
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e11 and Sy associated to v (does not depend on a)

 0.0002
0.004
Su 0.002 Ei F0.0001
M. NWWHL.... |
0 0.000 O0+— |
0 20 40 0 20 40 0.0000
—0.002
L _0.0001
€11 and Sy associated tou (@ =1) a=1
7 0.0002 4
0.004
S 0.002 Ei L 0.0001 normalized CRE map 3
; P L. | 5 2
01— 0000 O | 0
0 20 40 0 20 40 0.0000 0 20 40 )
—0.002
L —0.0001 0
e11 and Sy associated to u (o = 100) a =100
T 0.0002 4
0.004
i 3
0.002 E; L 0.0001 normalized CRE map
;| P :
0000 0O = | 0
0 20 40 0.0000 0 20 40 |
—0.002
L —0.0001 0
e11 and Sy associated to u (o = 10000) o= 1é
 0.0002 4
0.004
0.002 Eq L 0.0001 normalized CRE map
—0.002
L _0.0001
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Chapter conclusion

This chapter introduced a novel approach to train physics-augmented neural networks
for constitutive law representation using partial strain or displacement measurements
and boundary conditions. All reliable information such as thermodynamics or equilib-
rium properties was enforced either in the network or in the minimization procedure.
This chapter has shown that it is possible to train a neural network in an unsupervised
way thanks to the modified Constitutive Relation Error (mCRE).
The automatic hyperparameter tuning is another significant feature of the proposed
method, which is particularly relevant for online training in the Dynamic Data Driven
Application Systems (DDDAS) paradigm. The evaluation of the method has shown to
be effective in producing accurate models in the case of nonlinear state laws, excel-
lent noise robustness and low sensitivity to user-defined hyperparameters. Overall,
this proposed method offers a potentially valuable tool for predicting the behavior
of materials and structures under external loadings, thus opening up new avenues
for research in the field of computational mechanics. Nevertheless, at this point
only a history-independent behavior has been learned. The following chapter ad-
dresses history-dependent dissipative behaviors by incorporating evolution laws in
the learning process.
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Chapter 1 introduced the mCRE formulation for material behavior within the framework
of generalized standard materials. Few mCRE studies have focused on the recalibration of
history-dependent model parameters, and all assumed a specific model form (Marchand
et al,, 2019; Bonnet et al., 2024). Following the previous chapter, this chapter aims to
free the process from the traditional model bias present during parameter identification
within the mCRE framework. The previous chapter was dedicated to learning nonlinear
constitutive laws but was restricted to history-independent behaviors (state equations).
This chapter then focuses on the training of neural networks, constrained to respect the
framework of generalized standard materials, to learn history-dependent behaviors with
neural networks. The method is evaluated on different test cases by means of several criteria
such as the accuracy of the learned model, the evolution of the loss function during the
training, the noise robustness, the localization of modeling error and the relevance of
automatic hyperparameters tuning rules.

1 Problem definition

To define the problem notations, let us consider a body in an initial configuration Q ¢ R%(d =
1,2,3) with boundary 92 and isothermal environment, observed for a period [0, T'] under
the small strain assumptions. Dirichlet boundary conditions are imposed on 02, ¢ 92 by
means of a time-dependent displacement field u,;. Neumann boundary conditions are
prescribed on 992, C 2 by means of a time-dependent traction field ff. A time-dependent
body force field f¢ may also be prescribed in 2. Additionally, noisy strain measurements
€,1, (in the case of observations from optic fibers) or displacement measurements u,,;,; (in
the case of digital image correlation) are available.

The solution to the direct mechanical problem is the set of the variables (e,, ey, §) satis-
fying the three following groups of equations for each time ¢ €[0, T']:



1. Problem definition

* kinematic admissibility defines the space U, of displacement fields u satisfying the
Dirichlet boundary conditions:
Ujpo, = Uq 3.1)

e static admissibility defines the space .7, ; of stress fields satisfying the equilibrium:

f s:e(v)dQ:f f;.deJrf f.vdS Yvel, (3.2)
Q 0 29,

with e = e, + e,, and U, the space of kinematic admissibility with homogeneous
Dirichlet conditions.

¢ constitutive behavior:

- a set of state equations:

oY
= 3.3
s Jde, 3-3)
- a set of evolution laws:
174"
=_T 34
s Jde (3-4)

The potentials ¥ and ¢ are parametrized with some parameters p.

The minimization of the mCRE aims to identify the parameters p of constitutive re-
lations that fit the best to experimental data. Here Dirichlet and Neumann boundary
conditions are assumed to be known (even though the framework extends to unreliable
boundary conditions (Nguyen, 2021)), whereas the observations €, or u,;, are affected
by measurement noise. Here, we consider observations u,,;.

1.1 A minimization procedure suited for history-dependent behavior

The inverse problem consists of finding the optimal parameters p,,, (involved in the
thermodynamic potentials) such that:

— : ) A
Pop: —argzrlln[g}zygngRE(s, p)] (3.5)
with
a T
&2 np(85 P)=6,4(55 p)+EJ Id—u,,,||*dt (3.6)
0

where .«/; = (%,, x Z,4) (even though it is possible to consider loading as uncertain
information, see (Nguyen, 2021)), a is a scaling factor, and II is a projector of # on the
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sensing quantities, and:

T T t
géRE(§;p):J- an(ée,&ﬁ,?)dgdwf ffnw(ép,&ﬁ,f/)dszdsdt (3.7)
0 Q 0 0 JaQ

The minimization of the mCRE is still performed with an iterative process in which, at
iteration n +1:

* in Step 1, an optimal admissible solution §"**V is computed for the current parameters
p"™ such that:

a(n+1)

S = argmin[é”2 crelSs p(”))] (3.8)

K m
Se.dy

e in Step 2, the parameters of the constitutive model are updated following a gradient
descent step to get p**+V.

The main difference with the previous chapter is how the admissible solution is com-
puted, because it requires the integration of evolution laws. Sections 1.1.1 and 1.1.2 respec-
tively detail the first and second steps of this iterative minimization.

1.1.1 First step: computing the optimal admissible solution for given parameters

The first step, which is the most expensive one regarding computation time, is performed
with a strategy similar to the one used in (Marchand et al., 2019; Nguyen, 2021). This strategy
is inspired by the LATIN method (Ladeveze, 1999), which is non-incremental (i.e. global in
time) and is well-suited to the mathematical structure of the mCRE. The choice made here
is to split the mCRE into two positive parts 6"5(@6, 6,X,Y)and gé(ép, é',)?, Y) defined by:

T

T
A A A A a
5’3(@8,&,)(,1/):] an(ée,&,X,Y)det+f E||1m—u0bs||2dt (3.9)
0 Q

0

T t
62(6,,0.%, 1) = J f f no(éy.0 %, 7)d0dsdt .10
0 0 Q

This separation into two positive parts enables minimizing each term alternatively.
Equation (3.9) is a compromise between the residual on the state equations and the dis-
crepancy with measurements. Its minimization is a linear (because elasticity is assumed to
be linear here) and global in space problem. The minimization of (3.10) is local in space
and corresponds to the integration of evolution laws, performed here with an Euler scheme.
The general philosophy of Step 1 minimization is illustrated in Figure 3.1. ., (resp. .%,,) is
the space of variables searched in the global (resp. local) step that minimizes the quantity
&y (resp &,).



1. Problem definition

4 Local step: minimization of &, )
Searching for X, Yu, €c u) €pur Xo) Yo €c0r €p,v
N frozen
[ c(w).e(v) )
( Global step: minimization of &, R
Searching for u, €, ,, 04, U, €¢ 1) Ty
Qnternd variables X, Yy, €p 4, Xy, Yo, €p o frozen )

Figure 3.1 e [llustration of the LATIN-inspired scheme for Step 1 minimization of the mCRE.

Global step (minimization of 55))

In this minimization step, 6"5 is minimized under the admissiblity constraint (u, o) € (%, x
<,a)- The kinematic admissibility is enforced in the search space, in which the discretization
of u is split into the imposed and free degrees of freedom. The static admissibility of o is
imposed through a Lagrangian:

T
z(ée,&,X,Y,x):gi(ée,&,)z,f/)—f [fé':e(l)dﬂ—f fj.de—J f.2.ds |dt
0 Q Q o9,
(3.11)

In the expression of &7, the quantity n,, defined in (1.33) involves a dual Legendre-
Fenchel transform, defined in (1.29), which is not convenient in practice. Therefore, a
displacement field # (defined up to a rigid body motion) is introduced by duality such that:

oy

Jde,le,,

oSy 0= (3.12)
Foragivend, €, , is the strain providing for the supremum in the definition of the Legendre-
Fenchel transform. The variables associated with the displacement ¥ (resp. i) are denoted

S = (ée,w ép,w &V!er?v) (resp. §u = (ée,u! ép,uré'urxu’?u))-
Replacing the Legendre-Fenchel expression involved in (1.33), (3.11) leads to:

A

T
z(ée,urée,w&v’Xu!Xw Yv»}’): f J [w(ée,quu)_w(ée,v’Xv)_(j'v :(ée,v_ée,u)_ YV(XU_XM)]det
0 Q
T

Q
+f §||1_[u—uobs||2dt
0

(3.13)

During the global step, internal variables X,,, Yy, €, 4, X,, Y, € pv are frozen to the value

p.u
obtained at the last local step. The stationarity of the Lagrangian is found with a Newton
scheme similar to Chapter 2. In the case of linear elasticity, this Newton scheme converges

in one iteration.
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Local step (minimization of 6";)

In this step, the minimization of 6"; corresponds to the integration of evolution laws at each
Gauss point (local step). This step can be parallelized. The integration of the evolution
laws is performed with an Euler scheme with the total strains €(u#) and €(v) frozen. The
initial conditions on internal variables are enforced for the first time step. As mentioned in
Section 1.5.1 dealing with the thermodynamic framework, in the rate-independent case the
dissipation potential is the indicator of a convex domain and is not differentiable, whereas in
the rate-dependent case, this potential is differentiable. This leads to different formulations
in the integration of evolution laws. The local steps are detailed for each case in Section 3.

Stop criterion for Step 1

The stop criterion used for Step 1 (alternation of local and global steps) needs to be defined.
This minimization is a fixed point algorithm, so the stopping criterion is defined regarding
the stagnation of the CRE between two successive local and global steps. The tolerance
is defined by the user and its influence will be discussed in the section dedicated to the
automatic tuning of the learning rate. The last step performed needs to be the global step
so that the solution of the minimization is statically admissible.

Restart strategy

After an update of the model parameters, the new Step 1 is initialized with the solutions s,,,
s, obtained at the previous Step 1. This restart strategy significantly reduces the number of
iterations required for convergence, thus decreasing computation time.

1.1.2 Second step: update of parameters
This step consists of the updating of parameters p with a gradient descent step:

882 (§(n+1) . p(n))
_ pm_ COmcrE ’ 3.14
with §**V the solution obtained at the end of Step 1 of the iteration n + 1 of the mCRE
minimization.

(n+1)

p

To summarize this section and introduce the next one, Figure 3.2 illustrates the general
methodology for further training the physics-augmented neural network with the mCRE.
This minimization can be seen as a Sequential Quadratic Programming (SQP) approach
(Nocedal & Wright, 2006).
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Minimization of mCRE:
Popt = arg;nin[ ?61‘122 é”,iCRE@ ; p)]

(Whlle gCRE > €stop

P N\
Step 1: §(n+1) = argmin[giCRE(§ H p(n))]

§Eﬁd
- N

{ Elastic initialization for the first iteration or restart with the solution from last iteration J

While stopping criterion is not reached :

Local step: Integration of evolution laws. Minimization of

T pt
g;(é,,,a—,X,Y):f ff(p(ép,—X)—i-ga*(é',Y)—é':é,,-i—X.Ydesdt
0 0 JQ

Global step: Global equilibrium
T @ T
g;(ee,&,X,Y)zf f w(ée,X)+1/)*(é',Y)—6':ée—X.Ydet+§f [|TT6L— 5 |[*dt
0 Q 0

+ Kinematic admissibility imposed by the searched space
+ Static admissibility imposed by Lagrangian

Vs
A

Step 2:

2 A
(1) — gp(m) _ 063cre(S

op

n+l1) ; p(n))

p

* Gradient computed with adjoint state method
. J

Figure 3.2 ¢ Description of the method developed.

2 Training of thermodynamically-consistent neural net-
works with the mCRE framework

The previous section has recalled basics on the minimization of the modified Constitutive
Relation Error in the case of a nonlinear constitutive model involving evolution laws. This
procedure is suited for parameter identification of a given constitutive model. In addition,
it may be used for neural network training (i.e. finding parameters p containing weights
and biases (W, b)) when the constitutive model is described by a neural network.
Representing a constitutive model by a neural network enables to release of the form of
the constitutive relation: potentials ¢ and ¢ are searched in the space of functions that
satisfy physical requirements defined in Section 2.1. Yet several questions and difficulties
emerge when the constitutive model is described by a neural network. On the one hand,
the question of consistency in the inference phase with respect to physical requirements
is addressed in Section 2.1. On the other hand, the important number of parameters to
find compared to the case of a given constitutive model form makes the optimization task
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(Glorot & Bengio, 2010) more difficult. Specifically and as discussed in Chapter 2, Deep
Learning is known to be sensitive to user-defined hyperparameters such as learning rate,
number of epochs, batch size, etc. In Section 2.2, the automatic tuning strategy is discussed
again and adapted (when necessary) to the minimization involving evolution laws.

2.1 Constitutive model described by a thermodynamically-consistent
neural network

In Section 1.5.1, a thermodynamic framework has been defined for constitutive modeling.
In the following, neural networks which satisfy this framework are presented. As a reminder,
the constitutive behavior is described by means of two potentials: the Helmholtz free
energy Y and the dissipation pseudo-potential ¢. To automatically satisfy thermodynamic
principles, it is sufficient to assume ¢ to be convex and ¢ to be convex, non-negative and
zero at the origin.

According to the reliability of the initial guess on the constitutive model, either the
whole behavior can be described by neural networks, or only some parts, as it is done in
(Fuhg et al., 2023) in a context of limited data. In the case where some parts are well-known
- such as elasticity - it is possible to enforce the form of the known part of the model. For
example, function ¢ can be splitinto ¥ = ,(€,)+ v ,(€,), in which ¢, = 3€.:K:€,and
Y, is represented by a neural network. In this example, the proposed mCRE framework can
simultaneously identify parameters of y, and the weights and biases of the neural network
describing v,,.

In both cases, it is possible to enforce positivity, convexity, and zero at origin constraints
in the neural network. The general idea is described in the following and details can be
found in (Fuhg et al., 2023; Linden et al., 2023). Positivity is enforced through the use
of positive activation functions. Concerning convexity, the input convex neural network
(ICNN) architecture proposed in (Amos et al., 2017) is employed. This architecture uses
convex non-decreasing activation functions and positivity constraints on intermediate
weights. As the composition of a convex and convex non-decreasing function is convex and
the sum of convex functions is also convex, this architecture guarantees convexity. Finally,
the output of the network is corrected by subtracting its value in zero, so that the output is
zero when the input is zero.

2.2 Hyperparameters automatic tuning strategy

In this section, the strategy for automatic tuning of the hyperparameters is presented for the
minimization involving evolution laws. The relevance of these rules is evaluated in Section
3. All the rules have been designed on a test case (with different target models and geometry
which are not presented here) and evaluated on the test cases presented in the paper. The
main changes concern the tuning of the weighting between losses and the tuning of the
learning rate. The initialization strategy as well as the definition of the stopping criterion
remain similar to the ones in Chapter 2 (see Sections 3.1 and 3.4). The following thus details
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the Morozov-based automatic tuning of the weighting between losses, and the empirical
adaptive learning rate rule. Figure 3.4 provides an idea of the general strategy for updating
hyperparameters during training.

2.2.1 Morozov-based criterion for automatic tuning of weighting between losses

In the version of this work dedicated to state laws (Chapter 2), @ was tuned at each epoch
using a dichotomy (see Section 3.2). The computation time needed for the tuning of a was
high (because it needs to re-perform Step 1 for each value of a tested) but still reasonable
when dealing with state laws. On the contrary, when dealing with evolution laws, the
computation time prohibits the use of this strategy. The idea here is to select an initial value
of ¢, perform the training until convergence of the normalized CRE, and then progressively
update the value of « (see Figure 3.4). As exploring the full range of possible values of a is
prohibited by the computation time, the value of « is thus progressively increased (resp.
decreased) if the model is updated above (resp. below) the noise level until one of the
following conditions is met:

¢ the Morozov criterion is satisfied;

e or the normalized CRE is far from the user-defined target (the notion of far is defined
through the use of the normalized CRE term to assess the modeling error).

After updating the value of @, Step 1 is initialized with the solution § obtained before
the update.

2.2.2 Adaptive tuning of the learning rate

The tuning of the learning rate is very similar to the strategy implemented in Chapter 2,
Section 3.3. Evaluating the appropriate learning rate still involves an analysis of the progress
achieved during a single training step. In this context, a valuable indicator of the training
update speed can be obtained from the two-step minimization procedure. The number
of iterations made in Step 1 for a given epoch is directly linked to the value of the update
made in Step 2 of previous epochs, as illustrated in Figure 3.3. The difference with Chapter
2 is in the way to count the iterations, here the global iterations of the Step 1 fixed-point
algorithm are counted. Starting from the second epoch, the learning is updated so that
the number of iterations made is close to an empirically defined target on the number of
iterations. This rule has been designed on a test case different from the one presented in
this article and the influence of this empirical rule will be shown in Section 3.2.5. This rule
is strongly very close to the one used in the previous chapter even though the minimization
performed in Step 1 is different (so the way to count iterations is different).

According to multiple experiments, a good compromise is located around 6 iterations
in Step 1. It is thus possible to automatically adapt the learning rate with the following
empirical-based rule:

lr —1lr xupdate_coefficient (number_iterations_step_1) (3.15)
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where update_coefficient (number_iterations_step_1) is a function depend-
ing on the number of iterations performed in previous Step 1. A point of attention is that
the function update_coefficient (number_iterations_step_1) should be changed
if the tolerance of the stopping criterion of Step 1 is modified (with a smaller tolerance
the number of iterations is naturally higher). The main advantage of this rule is that the
convergence of the method is no more sensitive to the user learning rate choice, as shown
in Section 3.2.5, which enables to train the network online.

Near convergence, the learning rate should not be increased, as otherwise there is a risk
of getting far from the global minimum. To do so, near convergence the learning rate is only
updated if the rule tends to decrease the learning rate (the notion of near convergence is
defined in the next paragraph). Additionally, a replay strategy has been implemented if the
learning rate is too large, thus implying a very large number of iterations in Step 1. In this
case, the model before updating is reloaded and a new gradient descent step is performed
with a lower learning rate.

4 N\

Step 1: s = argmin[&fnCRE(s g p("))]
s€.dy
s N

[ Restart with solution from last epoch j

While stopping criterion is not reached :

A large (resp. small)
learning rate in Step

[ Local step: Integration of evolution laws J

implies an important

[ Global step: Global equilibrium

pe

v

j 2 for a given epoch

(resp. small) number
of iterations in the
Step 1 loop for the

e next epoch.
Step 2:
2 a(n+1) .
(n+1) — () _ g angRE(S(nJr ); P(n))
p = r 3
b
~ J

Figure 3.3 ¢ Influence of the learning rate on the optimization process.

3 Results

This section is dedicated to the results and discussion on three different test cases. The
first one in Section 3.1 is a toy example in 1D to illustrate the mCRE method in a case of
parameter identification: only one parameter of a given hardening law is identified. The
second one in Section 3.2 aims at learning a nonlinear hardening law. Finally the third one
in Section 3.3 aims at learning a viscoplastic behavior. The evaluation of the performance
is based on several criteria such as the accuracy of the learned model (Sections 3.2.3 and
3.3.2), the evolution of the loss function during the training (Sections 3.2.3 and 3.3.2), the
noise robustness (Section 3.2.4), the localization of modeling error (Section 3.3.3), or the
relevance of automatic hyperparameters tuning rules (learning rate in Section 3.2.5, and
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{ Step 1 mCRE }

Number of iterations
required for Step 1 is
larger than a tolerance ?

Return before the last model
update

Update model parameters with
learning rate divided by 100

Normalized CRE
value above the
user-defined target

Morozov
criterion
satisfied ?

Update learning rate regarding the
number of iterations needed for Step 1

[
[ Update model parameters with new ]

Data-driven loss
above noise level

learning rate

Progressively increase weighting
between losses until Morozov
criterion is satisfied or CRE loss is far
enough from target

between losses until Morozov
criterion is satisfied

LProgressively decrease weighting

Update model parameters with
learning rate divided by 100 (if
the stopping criterion is not
reached)

learning rate divided by 100 (if the

Update model parameters with
stopping criterion is not reached)

Figure 3.4 ¢ General idea for hyperparameters updating.

the weighting between losses in Section 3.3.4).

3.1 Asimple 1D example to identify an isotropic hardening modulus

Before presenting the results of neural network training with the mCRE framework, this
section aims to show parameter identification of the hardening modulus in a simple 1D
toy problem. This section is associated with an open-access code ' and can be helpful
for a better understanding of the mCRE concept, hyperparameters influence and tuning.
Figure 3.5 illustrates the problem that is addressed. A one-dimensional beam, with Young
modulus E, initial elasticity limit R, linear hardening modulus & and length L =1, is
loaded in tension. For the sake of simplicity, this problem is limited to one degree of
freedom, in which the displacement is observed and affected by measurement noise. Here
the constitutive laws are assumed to be known and the only parameter to identify is the
hardening modulus k. The potentials are the following:

1 1
w(ee,p)=5E6i+5hp2 (3.16)
0if f <0
p*(o,R)= (3.17)
+ooif f=0

with f =0 —(R+R,).

Yhttps://gitlab-research.centralesupelec.fr/antoine.benady/mcre_evolution_1d/- /tree/main?ref_type=
heads
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Consequently,
o=Ee, (3.18)

t
thpwithp:f 1€, lldt (3.19)
0

and, following the normality rule:

_;8f

€= 30 (3.20)

with A>0if f=0and f =0.

Studied beam

Only degree of
FE  Young modulus (known value) freedom.

A Imposed force F

Ry Initial elasticity limit (known value) Observed

displacement
h  Hardening modulus (to identify) P

Figure 3.5 e Simple 1D problem: beam with isotropic hardening.

The initial guess is h;,; = 5 x 10*MPa, whereas the target value is h,,,, = 10°MPa. Figure
3.6 shows the difference between true and predicted responses for the initial parameter
guess. For a given training epoch, after the first step (computing an admissible solution that
minimizes &,,crx for given model parameters), the expression of stationarity conditions of
the Lagrangian defined in (3.13) gives that:

* s, is a compromise between the solution of the forward problem and the observed
data (hybrid state);

* s, is the solution of the forward problem.

Figure 3.7 shows these solutions at the end of Step 1 for the first epoch, for different
values of a. Indeed, the compromise between the forward problem and the observed data
depends on the value of a. The larger the a, the closer the predicted displacement field
to the true displacement field. In the example of Figure 3.7, two values of a are presented.
With a = 105, the predicted strain associated with solution s, corresponds exactly to the
true strain.

As mentioned in Section 2.2, the tuning of this parameter is important for at least two
reasons:

* At the end of the training process, the compromise between the model and measure-
ments should be such that the discrepancy between the predicted solution s, and
the observations is of the order of the magnitude of the noise level.

¢ As the gradient of the mCRE is directly linked to the difference between s, and s, the
value of ¢ has a strong influence on the optimization process. Yet, this influence is
strongly linked to the role of the learning rate. As tuning a with respect to the Morozov
criterion is more computationally expensive than tuning the learning rate following
the empirical rule presented in Section 2.2, this value is only tuned at convergence.
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3. Results

Figure 3.7 e Solutions s, and s, for different values of @ (top: a = 10, bottom a = 10°)

Figure 3.8 (top) shows the results of the training for various epochs. At the end of

the training, the parameter h is properly identified and the solution s, is close to the

measurements. The constitutive relation, even though it is not directly observed, is properly

learned. The bottom of Figure 3.8 shows that the mCRE functional decreases smoothly. In
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this toy example, the hyperparameters are manually tuned because the computational time

is very low (less than 30 seconds for the whole training).
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Figure 3.8 e Results of training for the identification of & for the 1D test case.

E8 Online tool: The code associated with this example is available in the GitHub repository
in the file Chap_3_evolution_mCRE. ipynb

3.2 Rate-independent test case: learning a nonlinear isotropic harden-
ing law

3.2.1 Reference problem

In the previous section, the model form was known and only one parameter was identified.
In the use cases targeted in this paper, only an initial guess on the model form is known.
The initial guess is represented by a neural network that is trained in the mCRE framework.
To represent the initial guess, it is possible to perform a first supervised training with the
Adam optimizer for example (Kingma & Ba, 2015) before the mCRE training.
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In this section, a nonlinear isotropic hardening law is recovered. For the sake of simplic-
ity, a part of the model is assumed to be known as represented in Table 3.1, with the values of
the parameters in Table 3.4. This is a modeling choice dictated by the reliability of material
knowledge: other strategies can be imagined such as identifying some model parameters
simultaneously or even representing every part with neural networks. The mCRE strategy
easily adapts to these cases. It is worth noticing that in the addressed problem, the yield
criterion is assumed to be known, which means that the dissipation potential is known (it is
recalled that in the rate-independent case, the pseudo-potential is the indicator function of
the convex elastic domain as defined in (1.30)). In the rate-independent case, representing
the dissipation potential by a neural network is not convenient: it is more adapted to use
the neural networks to represent the yield criterion.

Figure 3.9 shows the geometry, boundary conditions, and sensor positions of the prob-
lem under study. The studied case is a 2D beam loaded in tension with variable loading
forces. The generated measurements come from two optic fibers oriented along the two
main axes and positioned in the middle of the beam.

Model used to generate data Model to train

Elastic part of the free energy:

1
Yele)= 5(7L(t1‘ee)2 +2U€, 1 €,) Assumed to be known with the correct parameters

Plastic part of the free energy:

A Represented by a neural network initialized with:
Ppley)=Ap+ (e —1)

Ypley)= 3o

Limit of the elasticity domain:

f=0.—(R+Ry) Assumed to be known with the correct parameters

Table 3.1 e Summary of the nonlinear hardening law test case, with A = 5 +V1):E1V—zv)’ U= 2(1E+ 7

and o, the Von-Mises equivalent stress.

Parameters | Value
E 200 GPa
v 0.25
A 45 MPa
B 3000
h 50 GPa
R, 100 MPa

Table 3.2 e Values of parameters used in the nonlinear hardening law test case.
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Optical fiber: strain

measurements
AR
/ 1y
/ —>

Figure 3.9 ¢ Geometry of the problem under study.

3.2.2 mCRE minimization for the rate-independent test case.

This section aims to detail the mCRE minimization in the specific case treated. Step 1
minimization of the mCRE is composed of a local step (integration of evolution laws) and a
global step (computation of admissible fields).

Local step

Inthelocal step, the variables €(u) and €(v) and the variables p,, p,, Ry, Ry, €0 4, € 1) € us €p o
are searched. The integration is performed with an Euler implicit scheme. In the follow-
ing, the indices u and v are dropped and the integration is written in a generic form. For

each element and for each time step, the integration consists in finding (both for # and v
solutions):

. 50

€y =55

. s0f

P =—A%r

f=0

{ o) (3.21)

=~

€=¢€,+€,
_ oY,
— Ode,

After time discretization, (3.21) becomes:

_Ae—(e£+1—e£)—AA§—£-
le—pt-i-Al%

R R+ A2 TP | =0 (3.22)
[l R)

9,
o— J€,

where +’ denotes the quantity - at time step . The system (3.27) is solved with a Newton-
Raphson method in which the Jacobian matrix is computed through automatic differentia-
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tion. At the end of the local step, the variables p,, p,, Ry, Ry, €¢ 4, €, 4, €p us €, , are updated.

p,w

Global step

During the global step, the variables X,,, Y, €,, ,, X,, Y,, €, , are frozen to the value obtained

p.us
at the local step. An admissible solution is computed through the minimization of the

Lagrangian defined in (3.13), with X,,=r,, Y, =R,, X, =1,,Y, =R,

Step 2

As the dissipation potential is assumed to be known here, only the parameters involved in
the plastic part of the free energy p,,, are updated through gradient descent:

n+l _ n _angnCRE(su’sv;p)
p"pp plpp apw
P

dgiCRE(Su,sv;p):fo( o1
dpy, o Ja 9Py,

3.2.3 General results

(3.23)

with

oy
Su ﬁplpp

)dQ dt (3.24)

Sy

At the beginning of the training, the initial guess on the model form is wrong (see Table
3.1), which is referred to as model bias. If the form of the model were not released (i.e. not
described by a neural network), it would not be possible to properly fit observations. In
Figure 3.10, the material behavior is shown for the true model and initial guess. On the
right, the shape of the hardening part of o, as a function of €,, is not properly represented.
The initial guess is linear whereas the true response has an exponential shape.

As previously mentioned, representing a constitutive model by a neural network enables
relaxing the model form. Indeed, Figure 3.11 shows the response at the end of the training:
the hardening law has evolved from a linear law to a nonlinear law and the response is
properly represented. The relation R as a function of p is learned even though none of
these quantities is observed in practice. Note that the case of non-monotonic loadings has
not been addressed in this article, but has been treated previously in the case of parameter
identification (see Chapter 5 in (Nguyen, 2021)). As the fixed-point algorithm is global in
time, non-monotonic loadings should not have any consequence on the convergence.

Figure 3.12 shows the evolution of the mCRE (with the CRE and distance to observation
term) during the training. At the end of the training, the normalized data loss is approxi-
mately 1, which means that the Morozov criterion is satisfied. Concerning the normalized
CRE, itis below the user-defined target value. As these two criteria are met and following the
procedure defined in Figure 3.4, the training stops. The gap between the learned relation
and the true one (see Figure 3.11) is explained by the Morozov criterion: the updated model
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should not fit data below the noise level (1% here, where the noise is on the total strain
observations coming for the optic fiber measurements).

After epoch 500, the normalized CRE has an oscillating behavior, which is explained
by the updating of the weighting between losses a. The evolution of the parameter « is
represented in Figure 3.13. The high value of the loss function can be surprising compared
to value of other loss functions in the literature. This is explained by the high value of a
(20,000 in Figure 3.13) needed to satisfy the Morozov criterion, as well as the fact that the
CRE term is not normalized in the value of the mCRE plotted.
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Figure 3.10 ¢ Model bias at the beginning of the training.

«10% 011 as a function of €4 % 10! R as a function of p

1.4 ; P
~ f
p
1.2 f

2.0

1.0 ¢
15 '
1/ /

0.6 10 J’

/s
0.4 /
0.5

02 ~—o— True solution i ~—o—True solution
/ Prediction with initial guess Prediction with initial guess
00l & . —* Prediction after training

00 02 04 06 08 1.0 0 1 2 3 4
x1073 x107*

Prediction after training i 00l ¢ . 7®

Figure 3.11 ¢ Learned hardening law at the end of the training.

3.2.4 Robustness to noise level

Previous works about mCRE have shown the high robustness of the method to noise level
(see (Allix et al., 2005; Feissel & Allix, 2007) for example). This section aims to briefly analyze
the noise robustness of this test case. In Figure 3.14, the evolution of the loss function,
divided into the CRE and the distance to observations, is represented for different noise
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Figure 3.12 o Left: evolution of the normalized CRE during the training. Middle: evolution
of the normalized data loss during the training. Right: evolution of the mCRE
during the training. For the 3 curves, the values are computed after Step 1
and before updating the weights and biases of neural networks.
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Figure 3.13 o Evolution of a during the training.

levels from 0.01% to 20%. The first observation to notice is the value of the normalized data
loss at the end of the training. This value is close to one, which means that the Morozov
criterion is satisfied: the gap between the predicted strain and the measured strain is the
same order of magnitude as the noise level. Secondly, the normalized CRE decreases during
training, until the stopping criterion is met. These two observations show that the training
is reaching the expected behavior: the modeling error is decreased to the expected value
and the model is updated up to noise level.

In the following, a X % noise is added to the measurements, following a normal distribu-
tion of zero mean and a standard deviation 1) defined as:

Zl uobs|
= X% x 3.25
1 °” number of observed degrees of freedom (8:23)
When the noise is 20%, the right part of Figure 3.14 shows that the mCRE is increasing
while the normalized CRE and the normalized data loss are decreasing. This is explained
by the increasing value of a that follows an evolution similar to the one in Figure 3.13. For
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the highest noise level, the training requires fewer epochs than the lower noise level. The
first reason is that the value of a at the beginning of the training is adequate (normalized
data loss is close to one) and as the model should not be updated below the noise level, the
correction from the initial guess is lower than for lower noise levels as it is further shown.

Now that the behavior of the training has been checked, it is interesting to observe the
curve of the learned hardening law and the response o, as a function of €,,. Figure 3.15
shows this for two different noise levels (0,01% and 20%). For the low noise level (even
though it is a quite high noise level compared to other methods such as (Thakolkaran et al.,
2022)) the hardening law is properly learned. On the other hand, for the noise level of 20%,
only a slight correction has been made. Indeed, on the left of Figure 3.15, the gap between
the predicted strain and the true strain (without noise on the curve) is around 20%: it would
make no sense to update below the noise level.

Normalized CRE Normalized data loss mCRE
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Figure 3.14 ¢ Impact of noise level on convergence. Left: evolution of the normalized CRE
during the training. Middle: evolution of the normalized data loss during the
training. Right: evolution of the mCRE during the training. For the 3 curves,
the values are computed after Step 1 and before updating the weights and
biases of neural networks.

3.2.5 Relevance of the automatic learning rate tuning

This section aims to briefly illustrate the efficiency of the adaptive tuning of the learning
rate presented in Section 2.2. In Figure 3.16, the evolution of the mCRE during training is
represented for three different values of the initial learning rate chosen by the user (with
a difference of 5 orders of magnitude between the highest and the lowest). One strong
advantage of this rule is that the level of mCRE reached at convergence is the same for the 3
initial values. This means that the training is not sensitive to the user learning choice, which
is rarely the case in gradient-descent-based optimization in Deep Learning (Goodfellow
etal., 2016). This is explained by the adaptive rule which automatically chooses close values
of the learning rate after several epochs, independently of the initial choice. A sensitivity
remains regarding the training time, which is not a major concern here.
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Figure 3.15 ¢ Learned hardening law at the end of training for different noise levels.
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Figure 3.16 o Influence of the initial learning rate on the optimization process.

3.3 Rate-dependent test case: learning a dissipation pseudo-potential

In this section, the method is tested with a viscoplastic behavior. As in the previous section,
a part of the constitutive model is assumed to be known and another part is released through
the use of a neural network. Here, the free energy is assumed to be fully known (linear
elasticity and linear hardening law), as well as the boundary of the elasticity domain. The
parameters involved in the free energy and elasticity domain are also assumed to be known
(even though they could be updated in the same way as the neural network parameters). In
contrast, the form of the dissipation pseudo-potential is released with a neural network.
This neural network is initialized to represent a classical power law (Lemaitre & Chaboche,
1990), whereas the model used to generate the data is a hyperbolic cosine law (Pipard et al.,
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2013), as summarized in Table 3.3. Figure 3.18 shows the discrepancy between the initial
and the true models.

The case under study is the 2D notched beam shown in Figure 3.17. The beam is sub-
jected to tension with varying loading forces, while the full-field displacement is measured.

Figure 3.17 ¢ Geometry of the problem under study.

Model used to generate data Model to train

Elastic part of the free energy:

1
Yel€.)= E(A(tree)2 +2Ue€, 1 €,) Assumed to be known with the correct parameters

Plastic part of the free energy:

1
Yplep)= 3 hp? Assumed to be known with the correct parameters

Limit of the elasticity domain:

f=0, a— (R+Ry) Assumed to be known with the correct parameters

Dissipation potential

Represented by a neural network initialized with:

o) = N:(j—l(<{(a>+ )

w*(f)=AB(COS(%)—1)

Table 3.3 ¢ Summary of the rate-dependent test case.

Parameters Value

E 200 GPa

14 0.3

A 18 MPa

B 0.3s7!

h 1.5 GPa
R, 160 MPa
K, 50 MPa.s!/Na
N, 10

Table 3.4 ¢ Values of parameters used in the rate-dependent test case.
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3.3.1 mCRE minimization for the rate-dependent test case

This section aims to detail the mCRE minimization in the case of a rate-dependent behavior.
Step 1 minimization of the mCRE is composed of a local step (integration of evolution laws)
and a global step (computation of admissible fields).

Local step

As in the rate-independent case, in the local step, the variables €(u) and €(v) and the vari-
ables p,, py, Ry, Ry, €0 4, €, 4, €p 4y €, , are searched. The integration is performed with an
Euler implicit scheme. In the following, the indices # and v are dropped and the integra-
tion is written in a generic form. For each element and for each time step, the integration
consists in finding (both for # and v solutions):

ép:%fr*
p="ar
{ R="00 (3.26)
€=¢€,+€,
o =5

After time discretization, (3.26) becomes:

r+1 ry_ 9y*
Ae—(€! —eel—ﬁdt
(p*
pt+1_pt+ﬁdt
Rt+l_Rt+a_Wazl/"P(p)dt

R _op?

Y.
o — Jde,

=0 (3.27)

where +/ denotes the quantity - at time step ¢, and d t the time increment. The sys-
tem (3.27) is solved with a Newton-Raphson method in which the Jacobian matrix is
computed through automatic differentiation. At the end of the local step, the variables
Pu>Pys Rus Ry, €0 4y €0 4, €, 4, €, , are updated.

Global step

During the global step, the variables X,,,Y,,, € pour X, Yy, €, , are frozen to the value obtained
at the local step. An admissible solution is computed through the minimization of the
Lagrangian defined in (3.13), withX,, =r,,Y, =R, X, =1,,Y, =R,

85



Chapter 3. Learning nonlinear history-dependent behaviors

Step 2

As the free energy is assumed to be known here, only the parameters involved in the dissi-
pation potential p,. are updated through gradient descent:

082 - pi(Sur Sus P)
n+1 n mCRE\“UW ~v
= — 3.28
Py =Py Opy 20
with
0&? Su» Su; rre o p* o p*
mere( p):J f f( v | _2¥ )desdt (3.29)
Py o Jo Ja OPglss  Opyls,

3.3.2 General results

This section presents the general results of the method on the viscoplastic test case. Figure
3.18 shows the results of the finite element simulation for the true model and neural network
before and after training. The behavior is properly reconstructed after training and the
model bias on the dissipation potential is properly corrected.

Figure 3.19 illustrates the evolution of the different terms of the mCRE during the training.
At the end of the training, the stopping criterion is properly met as the normalized CRE is
below the target (1e%) and the normalized data loss is close to 1, thus satisfying the Morozov
criterion. The oscillating behavior of the normalized CRE is explained by the automatic
update of the weighting between losses a. Indeed, every time the normalized CRE is below
the target and the Morozov criterion is not met, the value of « is increased (see Figure 3.4).
When « is increased, the normalized CRE increases and the normalized data loss decreases.

Oeq as a function of ey ©* as a function of f
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NN before training

> o 201
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50 5
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Figure 3.18 e Finite element simulation for the true model and neural network before and
after training (with 0.1% noise level).

The previously obtained conclusions in the rate-independent test case regarding the
robustness to noise level (Section 3.2.4) and the relevance of the learning rate tuning (Section
3.2.5) still stand in the rate-dependent test case (even though they are not presented again).
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Figure 3.19 e Left: evolution of the normalized CRE during the training. Middle: evolution

of the normalized data loss during the training. Right: evolution of the mCRE
during the training.

The following sections evaluate the mCRE framework on the ability to properly localize the

model bias on the structure in Section 3.3.3 and the relevance of the tuning of the weighting
between losses « in Section 3.3.4.

3.3.3 Localization of the model bias in the structure

Aninteresting aspect of the mCRE framework is the localization of model bias. In the present
example, Figure 3.18 shows that the plastic behavior is not properly modeled before the
training of the neural network. This can also be seen in Figure 3.20 in which the cumulative
plastic strain is shown in the structure for the last time step of the simulation, both for
the true model and the neural network before training. On the right of Figure 3.20, the
normalized CRE shows that the modeling error is localized in the part of the structure in
which there is plasticity. This observation is explained by the fact that this is the plastic part
of the behavior that is not properly modeled. It is worth noticing that the computation of

this error only requires information that is available in the inference phase (no use of the
true potential nor true internal variable value).

3.3.4 Relevance of the automatic tuning of the weighting between losses

This section aims to briefly illustrate the relevance of the automatic tuning of the weighting
between losses presented in Section 2.2. In Figure 3.21, the evolution of the mCRE during
training is represented for four different values of the initial weighting between losses
chosen by the user (with a difference of 4 orders of magnitude between the highest and
the lowest). Figure 3.4 can be helpful to understand the evolution of @ during training: the
value of a is increased every time the normalized CRE is below the target and the Morozov
criterion is not met. Figure 3.21 shows that the level of mCRE reached at convergence is the
same for the 4 initial values, which means that the converged value is not sensitive to the
user’s choice of the initial value. Yet, a strong sensitivity remains regarding the computation
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Figure 3.20 e a: Cumulative plastic strain obtained with the true model. b: Cumulative
plastic strain obtained with the neural network before training. c: Difference
between the cumulative plastic strain obtained with the true model and the
cumulative plastic strain obtained with the neural network before training. d:
Normalized CRE at the beginning of the training. e: Cumulative plastic strain
obtained with the neural network after training. f: Difference between the
cumulative plastic strain obtained with the true model and the cumulative
plastic strain obtained with the neural network after training. g: Normalized
CRE after training.

time. Indeed a proper initial value can help achieve quicker convergence (@ = 10000) in
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Figure 3.21. This issue might be overcome by adding an initial automatic tuning at the
beginning of the training, such as is done in the previous chapter.
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Figure 3.21 o Left: evolution of the weighting between losses during the training. Middle:
evolution of the normalized data loss during the training. Right: evolution of
the mCRE during the training.
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Chapter conclusion

This chapter presented a method for unsupervised training physics-augmented neural
networks to represent evolutionary laws. This chapter is built on the framework
of Chapter 1, in which the modified Constitutive Relation Error is minimized. All
reliable information is still enforced by construction. The novelty of this chapter lies
in the ability to treat history-dependent dissipative behavior. This extension required
the adaptation of the minimization process, especially in Step 1 (computation of
admissible field) which requires the integration of the evolution laws.

The performance of the methods was assessed on three test cases: a simple 1D prob-
lem where only one parameter of the constitutive model was updated, an elastoplastic
behavior where a nonlinear hardening law was learned, and a viscoplastic behavior
where a cosine hyperbolic dissipation potential was learned. The method showed
interesting performance in terms of accuracy of the learned model, robustness to
noise, localization of modeling error, and sensitivity of the law to user-defined hy-
perparameters. Since the model should be corrected within the DDDAS paradigm,
special attention was paid to the automatic tuning of the hyperparameters (weighting
between losses, learning rate, and initialization). In summary, the proposed approach
represents a promising tool for predicting the response of materials and structures to
external loads.

However, this work requires additional studies before being applied to real structures.
First, the computational cost seems prohibitive. This problem could be overcome by
coupling this work with previous ones on the mCRE suitable for real-time control using
reduced order modeling (Marchand et al., 2016; Chamoin et al., 2016). Another reason
is the required choice of postulated internal variables. Even if the model form of the
relationships involving internal variables is properly corrected, a model bias remains
in the choice of internal variables. A research direction to alleviate this problem could
be the use of recurrent neural networks (RNN), in which the internal memories can
play the role of internal variables (Gorji et al., 2020), although the coupling with the
mCRE error could be challenging.
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So far, the focus of this manuscript has been on the development of an mCRE mini-
mization procedure for unsupervised training of neural networks. However, a fundamental
question has not yet been addressed at this stage, that of the architecture (number of layers
and number of neurons per layer) of the neural network. This important question deserves
a chapter of its own. As already mentioned, minimizing the mCRE functional requires
a relevant initialization and if we are not careful enough, it is possible to introduce an
initialization bias due to the large number of local minima. If the optimization gets stuck
into a local minimum, the model bias cannot be corrected. This chapter details the problem
of initialization bias and proposes a method for choosing the architecture to overcome this
problem.
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1 The problem of local minima with NN-mCRE

The training of neural networks is known to be sensitive to initialization (Glorot & Bengio,
2010) because of the strongly nonconvex nature of the loss function with respect to the
neural networks parameter. The minimization of the mCRE is also sensitive to initialization,
even in the case of parameter updating (Nguyen, 2021) (without neural network). Without
being cautious enough, the integration of neural networks in the mCRE can strongly empha-
size this sensitivity to initialization. In Chapters 2 and 3, a supervised initialization training
was performed before the mCRE minimization. In the cases treated so far, this method
was not subjected to any problem, but we show in the following that an initialization bias
can appear. First, some specificities of the mCRE are recalled to justify the need for a close
initialization of the neural network in Section 1.1. In Section 1.2, an example is introduced
to illustrate the risk for an initialization bias which prevents properly correcting model bias.
Finally, Section 1.3 discusses the possible solution to get rid of initialization bias.

1.1 The specificities of the NN-mCRE with initialization

The minimization procedure of the mCRE requires a relevant initialization for 2 reasons,
and contrary to most methods in Deep Learning, a random initialization is not suitable.
The first reason is that for each mCRE iteration, admissible fields are computed, using the
current model. With a randomly initialized model, the fields obtained at the end of Step
1 would not be meaningful. The second reason can be understood when observing the
modeling error term in the mCRE: it involves the potential described by a neural network.
With a random potential, the way to measure the error is not very relevant. This is why
this method is more suited to correcting a model bias rather than learning from scratch a
constitutive model.

That being said, it means that two solutions must be implemented. First, a relevant
initialization should be performed before minimizing the mCRE. It is quite natural then to
use transfer learning, with a first supervised initialization training to represent an a priori
constitutive model assumed to be close to the real behavior. Second, the optimization
should be constrained in order not to go too far from the initialization in one step. This is
done by constraining the value of the learning rate to do only small steps (see the tuning of
the learning rate in the previous chapter).

These two tricks are only solving a part of the problem. Indeed, constraining the opti-
mization process to perform only small steps prevents the exploration of different mCRE
valleys. Thus, without being careful, a bias can be introduced with the initialization training,
because the optimization process might finish in a local minima. The following section
illustrates this phenomenon, referred to as "initialization bias".

1.2 An example of initialization bias

This section aims to illustrate the problem of initialization bias with an example.



1. The problem of local minima with NN-mCRE

Problem definition
The problem treated is similar to the first problem treated in Chapter 2, Section 5.1.
Synthetic data are generated following the following model:

1 1 1
¢(€): EE;— < 611 >+2+5E1_ < 611 >_2+§E2 €§2+G 621 (4.1)

<e>, and < e>_ stand respectively for the positive and negative parts, E;" = 12GPa
and E; = E, = 20G Pa are the tension and compression Young moduli, G =8G Pa is the
Coulomb modulus and €;; are components of the linearized strain tensor €.

Let us say that the model used for prediction is the following

1
w(e)zwzvzv(fu)"'iEz €§2+G 621 (4.2)

with E, =20G Pa the Young modulus in direction 2, G =8G Pa the Coulomb modulus. The
parameters E, and G are assumed to be known (not updated), and the goal of this example
is to find the parameters of y'yy(€,;) which is a function described by an input-convex
neural network. This decomposition, which might seem surprising, is only introduced for
the sake of simplicity to illustrate the initialization bias phenomenon.

Now let us say that i)y is initialized with the following model:

1
Yap= 551611 (4.3)

with E, =20G Pa.

Manual initialization in two different ways.

In the following, in order to illustrate the point, the initialization of iy will be made
manually (without supervised training), in two different ways. Later the mCRE training is
performed with these two initializations to show the strong influence of the initialization
bias. Figure 4.2 illustrates the two different initialization strategies.

The two different strategies, presented in Figure 4.2, give the same function at the
initialization, which is ¥ »p.

mCRE minimization for the two different initialization

Now that the network is initialized with an a priori model (thus replacing the supervised
initialization training in this example), the mCRE minimization can be performed. In
this example, no evolution law is prescribed so the method of Chapter 2 is implemented.
Let us recall that the learning rate is adapted with the empirical rules detailed in Section
3.3 of Chapter 2. In the implemented example, the database is composed of one loading
step, for the same bending beam as the one in Figure 2.4, but with full-field displacement
measurements. Figure 4.2 shows the results of the mCRE minimization for the two different
initializations. Even though the two initializations represent the same a priori function,
only one of them (initialization (b)) converges to the true potential. For the initialization (a),
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Figure 4.1 ¢ Two different possibilities to initialize Yy to represent Y ,p

it can be observed that the Young modulus is the same for the tension and the compression,
as the parabola is symmetric. When looking at the structure of the initialized weights, it
makes sense that initialization (a) cannot separate tension from compression, whereas it is
possible with initialization (b). Because the learning rate is constrained to make only small
gradient steps, the optimization failed to switch minimization valleys. Therefore, a good
representation of the a priori model does not ensure the convergence of the minimization
to the global minimum. This example might seem trivial, but when using supervised a
priori training instead of manual initialization, it seems very complicated to predict whether
the optimization will reach a global or a local minimum. To conclude, this example has
illustrated the phenomenon of initialization bias: two initializations representing the same
a priori model can give two different convergences of the mCRE minimization. The next
section discusses the possibilities to overcome this limitation.

1.3 Possibilities to get rid of initialization bias

There are several ways of avoiding this initialization bias. The first idea is to carry out
several mCRE trainings with different initializations. This idea can be found in the NN-
ECULID method (Thakolkaran et al., 2022), in which 30 training runs are performed with
30 different initializations. Once the 30 training sessions have been completed, only the
best model is retained. Although functional, this technique is not at all optimized due to its
high computational cost.

Another idea is to initialize in the right optimization valley, i.e. the one in which the
minimum is the global minimum. This idea seems very complicated in practice, because
the cartography of the loss is not available. Furthermore, one can say that if we knew where
is the global minimum, we would probably not need neural networks to learn a constitutive
model.

Finally, a third idea is to work on the parameterization of the network (number of layers
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Figure 4.2 o Left: Evolution of the normalized CRE during the mCRE minimization. Right:
Yy as afunction of €,, before and after training for different initialization.

and number of neurons by layers) to try to avoid this initialization bias. In the example
presented in Section 1.2, the problem came from the fact that the network had multiple
layers. The idea of the next section is to use a one-layer input-convex neural network.

2 An adequate parameterization of neural networks for

constitutive model

The previous section highlighted that multiple-layer neural networks can create an initializa-
tion bias with the minimization of the mCRE. This initialization sensitivity is emphasized by
two constraints of the mCRE minimization: the need for a meaningful first model (required
to compute admissible fields since the first iteration), and the need for a small learning
(required not to go too far too quickly from the meaningful initialization). As this problem
is inherent to the mCRE minimization, it makes sense to explore a solution that is not
classical in Deep Learning. The proposed solution is to investigate a one-layer modified
input-convex neural network in order to get rid of the initialization bias. This idea might
seem to be a counter-current philosophy as the trend in Deep Learning is to constantly
increase the network depth. Indeed, it is known that increasing the depth of the network
increases the expressivity, which is the ability to learn complex functions. Nevertheless, in
the Generalized Standard Material framework, the functions to learn are smooth because
they are convex. Thus, a strong expressivity is probably not needed, and a one-layer modi-
fied ICNN may be sufficient. After introducing the concept of one-layer modified ICNN
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in Section 2.2, Section 2.2 investigates whether a one-layer modified ICNN is expressive
enough or not. A common problem with neural networks is their lack of interpretability, be-
cause of their important number of layers. In the case of one-layer modified ICNN, we show
that a certain amount of interpretability can be reached, especially regarding extrapolation:
Section 2.3 discusses the extrapolation.

2.1 Aone-layer modified ICNN

The idea of this work is to propose a simple parameterization to get rid of initialization
bias and improve interpretability. Before introducing this parameterization, let us briefly
recall the requirements that should be satisfied by the function Y, described by a neural
network.

* Y yn should be convex with respect to the input;

* The second-order derivative of the network with respect to the input should not be
zero everywhere (because Step 1 in the mCRE minimization requires the computation
of tangent operators).

This parametrization slightly modifies the one-layer ICNN as it was originally introduced.
The output of one-layer ICNN as proposed in (Amos et al., 2017) writes:

N
Yx)=> WaW'x"+b) (4.4)
i=1
with x € R? the neural network input, 1 € R the neural network output, N € N the number
of neurons in the hidden layer, W' € R? the i-th line of the first layer weights matrix W;,
b/ € R the i-th component of the first layer bias vector b;, W’ € (R*)? the i-th component
of the second layer weights vector W, and a a component-wise activation function. The
positivity constraints on W, and the use of a convex and non-decreasing activation function
ensure the convexity of ¢ with respect to the input. In (4.4), the skip connections are not
considered as our numerical experiments did not show any benefits from them. In Amos
etal.,, 2017, W;, W,, b, are trainable parameters.
The present work relies on the following slightly modified parameterization:

N
P(x)=> a(W'(x—b")) (4.5)

with W' € R? the i-th line of the weights matrix W and, b’ € R? the i-th line of biases
matrix b. In this parametrization, the values of b are fixed with a physical argument, and
only the matrix W is trainable. The following paragraph details how to fix the bias.

Sampling of the biases with physical knowledge
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A constitutive model should always be defined with a domain of validity. For exam-
ple, when defining an elastic model, it is advisable to define a domain in which the material
is elastic. This must also be checked when the constitutive model is described by a neural
network. For this reason, we have chosen to fix the bias values a priori and not to make
them trainable. In the following, the biases are sampled with the following procedure:

1. Arange of validity is defined a priori;
2. Anumber of neurons in the layer is chosen by the user;

3. The biases are uniformly sampled in this validity range.
Use of Softplus activation function to overcome the zero second order derivative issue

The architecture proposed in (4.5) has a second-order derivative of the output with
respect to the input that is zero over the entire definition domain. As a result, this model
violates the requirements mentioned at the beginning of this section. To overcome this
problem, the ReL.U activation function can be replaced by a Softplus activation function
(which is a regularized version of the ReLU with a non-zero second-order derivative):

1
Softplus(x) = E log(1 +exp(f x)) (4.6)
where f3 is a parameter acting on the regularization level of the ReLU as illustrated in
Figure 4.3.

ReLU and Softplus First derivative Second derivative
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Figure 4.3 ¢ Comparison of the ReLU and Softplus function for several values of . Left:
Softplus and ReLU functions. Middle: First derivative. Right: Second-order

derivative.

[l Remark

In Chapter 2, the activation function was chosen as ReLU square (a(X)=< X >i), and
in Chapter 3 (which was developed later), the Softplus function was used. This change
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is explained by the fact that ReLU square, coupled with the positivity constraints
needed by the ICNN (Amos et al., 2017), does not allow for learning every convex
function (one example being linear functions.)

This example shows how the function ) ,p(x) = x? can be approximated
by an ICNN with ReLU and Softplus (for multiple values of ) activation functions, using
the parameterization described so far. With the use of a Softplus activation function, the
represented function is no longer piecewise linear.

For K = 4 affine functions For K =16 affine functions
—— A priori —— A priori
NN with Softplus (beta = 1) NN with Softplus (beta = 5)
8 —== NN with Softplus (beta = 2) === NN with Softplus (beta = 10)

=== NN with RelLU === NN with RelLU

The value of B can be chosen following the knowledge of the discretization. A possibility
is to perform a supervised initialization training to represent an a priori model. As the
supervised training does not require the use of non-vanishing second-order derivatives, it
can be performed with ReLU activation functions. At the end of this supervised training,
it is possible to change the ReLU to Softplus and to choose f in the following way. It is
worth noting that 8 acts as a "response time" in the exponential. Let us denote Ax the
discretization step defined by:
validity range

Ax =
number of neurons

Looking at the previous example, if we want the output of the activation function to be
equal to the Softplus function only on its own interval and equal to ReLU elsewhere, we can
write the following system:

0 Softplus(x)
D x —Ax < €
2 4.7)
0 Softplus(x)
0x Ax > ]. —€

2

where € is a user-defined tolerance. Solving this system gives an upper bound to choose
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. A lower bound can be obtained in the same way writing a minimal condition on the
second-order derivative at the middle of the interval.

2.2 Expressivity of one-layer modified ICNN

This section aims to check if the proposed parameterization is expressive enough. To do
so, the proposed architecture is compared with multiple-layer ICNN, roughly composed
of the same number of parameters. Table 4.1 details the number of parameters for the 4
architectures tested.

| Model type | Number of parameters |
Proposed parameterization 4096
ICNN with 2 layers 4548
ICNN with 3 layers 4516
ICNN with 4 layers 3732

Table 4.1 ¢ Number of parameters for the 4 architectures tested.

To compare the expressivity of these architectures, they have been compared on four
different test cases of convex functions illustrated in Figure 4.4.

The four convex functions exhibit various characteristics that differentiate them in
terms of smoothness, differentiability, and behavior with respect to directionality. Function
fi represents a quadratic function that is smooth and differentiable everywhere, as it is a
polynomial function. f,, representing the Euclidean norm, introduces an additional square
root operation, resulting in a lack of differentiability at the origin. f; and f, are different
from the first two as they exhibit different directional behaviors. For f; the directional
behaviors only differ for the director coefficient, while for f; it is the power and the director
coefficient that are changing.

For each function, each architecture has been trained 7 times with alearning rate ranging
from 1077 to 1, on 2000 epochs, with 216 data points, with a batch size of 1024. For each
function and for each architecture, Table 4.2 gives the final value of the loss function (mean
square error), on a validation dataset, for the best of the 7 trainings. Table 4.2 shows that
the expressivity of the proposed parameterization is the same order of magnitude as the
other architectures with more layers (but with roughly the same number of parameters).
This result is explained by the fact that convex functions are smooth functions, so they do
not require a very expressive networks to be represented.

2.3 Interpretable extrapolation offered by one-layer modified ICNN

One limitation preventing neural networks from being used in critical applications is their
uncertain extrapolation. This difficulty is explained by the complex and often opaque
nature of deep neural networks which can make them challenging to diagnose and correct
extrapolation errors. The interpretable nature of the extrapolation of a physical model is a
strong advantage over the use of deep neural networks. Nevertheless, with the proposed
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ﬁ(x»y):x2+y2
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Figure 4.4 ¢ 4 convex functions used to assess the expressivity of the 4 architectures com-

pared.
Model type Function 1 | Function 2 | Function 3 | Function 4
Proposed parameterization | 1.92x 1077 | 1.06x 107 | 3.67 x 107 | 8.54x 107°
ICNN with 2 layers 2.81x107°% | 226x 1077 | 6.79x 107 | 8.31x 107>
ICNN with 3 layers 1.62x107% | 2.19x 107 | 3.36x107° | 8.98x107°
ICNN with 4 layers 1.25x10° | 1.20x 10° | 4.25x 100 | 3.36 x 10~

Table 4.2 e Value of the validation loss function at the end of the best training for each of
the 5 architectures tested.

parameterization relying on a one-layer network, the extrapolation can be interpreted. This
section aims to discuss the extrapolation offered by this parameterization.

To discuss the extrapolation, i.e. the prediction for input not available in the training
database, let us have a look at the gradient of the mCRE with respect to the parameters (in
the case of a nonlinear elastic behavior):

oy

— 4.8
E@) Op (4.8)

dg,anRE(ﬁ,ﬁ;p)_f (3_1,0 )
], E(®)

dp op
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The field 7 is constructed to be close to the observations up to the noise level and ¥ is
an admissible field obtained with the finite element solution for the constitutive model
parameterized by p.

Let us consider one parameter W* and its associated weight b*.

oY
oWk

=Wrka’(WHE -bH") (4.9)
E

(4.10)

where,

~0if WHE—-b")T <<0

(4.11)
~1if WHE—-b5)T>>0

a'(WHE—-b")")= {
For a weight for which its associated bias is far from the training database, the gradient
will always be zero, which means that the weight will never be updated. This conclusion
is very interesting because it means that the weights far from the training database are
the same as the one at the end of the supervised initialization training to represent an
apriori model. Far from the observations, the extrapolation is therefore performed with the
a priori model. The model is only corrected where there are observations. This property is a
strong advantage of the proposed parameterization because one can argue that it is better
to extrapolate with a wrong but understood physical model than with a non-understood
neural network.

2.4 Discussion on the use of second-order optimization method

In Deep Learning, most of the trainings are performed with gradient descent (or variants
such as Adam). Second-order methods, like Newton’s method (or variants such as quasi-
Newton, BFGS) are rarely used. For a gradient-based optimization, weights are updated with
P = Pi—1.V, <. Newton's method consists of writing a second-order Taylor development
around the set of parameters py:

0:¥
op:?

(p—pi)f (4.12)

Pk

T(p)=2(p)+VpZL(p)p—p)+

The parameters p,,, are then obtained by looking for the stationarity of the Taylor
development, i.e. the parameters where the gradient of the Taylor development is zero:

82

op?

-1
Pen=pi+( p) v, Z(pi) (4.13)
k
One advantage of Newton’s method over gradient-descent is that they do not require
the choice of a learning rate, which would allow to get rid of the empirical rules used in
this manuscript. This method is not common in Deep Learning for multiple reasons. First,
Newton’s methods are efficient for strictly convex loss function, which is very rarely the
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case in Deep Learning (Lim & Lim, 2022). Secondly, it requires the computation of the
Hessian which is a square matrix of if size number of parameters. For neural networks with
an important number of parameters, the computation of the Hessian is already expensive
(methods such as BFGS alleviate this concern by computing an approximation of the
Hessian). Then the Hessian needs to be inverted, which is even more computationally
expensive. Finally, gradient-descent methods are more suited for GPU computation as they
do not need a matrix inversion.

In the present case, because the network is not deep with the proposed parameterization,
the choice of gradient descent might be questioned. Indeed, as mentioned in Chapter 1,
the mCRE is known for its convexity properties. With the proposed parameterization
the number of parameters is reasonable and the Hessian is sparse (see the second-order
derivative of the activation function in Figure 4.3). With the mCRE the Hessian is computed
by derivating one time the gradient computed with the admissible fields of Step 1. An
implementation of Newton’s method to minimize the mCRE has been performed to compare
with gradient-descent. The results were not convincing compared to gradient descent. Even
if the proposed parameterization offers a better convexity of the loss function, the loss
function is not strictly convex everywhere which explains the poor results of Newton’s
method.

3 Results with one-layer modified ICNN

In Section 2, two main advantages of the parameterization have been discussed: the pos-
sibility of getting rid of initialization bias and the possibility of extrapolating with the a
priori knowledge. In the present section, these two advantages are checked on numerical
examples. The first example is the same as the one used to illustrate the initialization bias
in Section 1.2 and the second one is an example in elastoplasticity.

3.1 Example with a nonlinear elastic behavior

Section 1.2 highlighted the possible presence of initialization bias with multiple layer input-
convex neural networks. This section aims to show that the proposed network parameteri-
zation does not suffer from this problem anymore.

The problem treated was the following. Synthetic data is generated following the follow-
ing model:

1 1 1
Yle)= EEf <€n>,"+ SEr <€en> 2y B €,+G e, (4.14)
and the model used for prediction is the following
1 2 2
¢(6):¢NN(€11)+§E2 622+G 621 (4]-5)

The goal of this example is to find the parameters of iy y(€,;) which is a function described
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by an input-convex neural network initialized with:
1 2
Yar =3 E€ (4.16)

In the following, ¢y is a one-layer modified ICNN with 10 neurons. The biases are
uniformly sampled in [—2 x 107%;2 x 1073].

Figure 4.5 shows the function Yy atinitialization (as well as ¢ 4,» and the true potential),
and the normalized CRE in the bending beam at the beginning of the mCRE minimization.
The model bias is localized in the part of the beam that is in tension, which is explained by
the fact that the potential described by 'y at the initialization is different from the true
one for the positive values of €,;.

Potential as a function of €7,
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Figure 4.5 o Left: 1) 4p, the true potential, and y 5 at initialization. Right: normalized CRE
map at initialization.

The training is performed according to the procedure described in Chapter 2, with
the parameterization proposed in the present chapter. This training has been replayed
10 times with different initialization training to represent the same v ,p and the results at
convergence are similar (same values of CRE and mCRE, same learned potential). Figure
4.6 summarizes the mCRE minimization, for one of these 10 training, with convergence
curves of the normalized CRE, the normalized data loss and the mCRE, as well as the
potential at the end of the training, and the map of the normalized CRE at the end of the
mCRE minimization. The result of one of these trainings shows that the initialization bias
described in Section 1.2 is no longer present with the proposed parameterization.

3.2 Example of interpretable extrapolation in elastoplasticity

In Section 2.3, it was shown that the proposed parameterization offers the possibility to per-
form an interpretable extrapolation. Indeed, with the one-layer modified ICNN (fixed bias
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(a) Normalized CRE (b) Normalized data loss (c) mCRE
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Figure 4.6 o (a) Evolution of the normalized CRE. (b) Evolution of the normalized data loss.
(c) Evolution of the mCRE. (d) ¥ »,p, the true potential, and vy at the end of
the mCRE minimization. (e) Normalized CRE map at the end of the mCRE
minimization.

and Softplus activation function), the weights associated with biases far from the training
database input are not updated. As the network is initialized with an a priori model before
the mCRE minimization, it means that once the mCRE is minimized, the extrapolation far
from the training database is performed with the a priori model.

This section shows the extrapolation of the elastoplastic example of Chapter 3 Section
3.2 (learning of nonlinear isotropic hardening law). In this example, only the plastic part of
the free energy is learned. The network is initialized with Y, 4p(p) = 3hp? and the training
data was generated with y,(p) = Ap + 2(e~B” —1). Before the mCRE minimization, the
biases are sampled in [0; 8 x 10~*], and a supervised training is performed with database of
couples {p,y', 4p}, Where p is also uniformly sampled in [0;8 x 10~*].

Figure 4.7 shows that the initialized neural network correctly represents ¢ 4p for p €
[0;8 x 107*], as well as the hardening law (R as a function of p). When the beam of Section
3.2 (Chapter 3), is loaded in tension, the behavior 0, as a function of €,; is also properly
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represented.
After this initialization training, the mCRE minimization is performed, but this time

with a loading such that p €[0;2.5 x 10~*]. Figure 4.7 shows that:

 For p €[0;2.5 x 107*], the network after training (mCRE minimization) properly repre-
sents the nonlinear hardening law;

» For p €[2.5%x107%;8 x 107*], the hardening law is linear, which corresponds to the a
priori model.

A similar conclusion can be observed in 0, as a function of €,,. To conclude, this simple
example has illustrated that the extrapolation outside the training database is performed
with the a priori model. Nevertheless, this requires carefully selecting the interval in which
the biases are sampled to make sure this interval is wider than what will be seen during the

MCRE minimization.
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Chapter conclusion

This chapter introduced an adequate parameterization suited for the mCRE minimiza-
tion. This parameterization was motivated by the need to get rid of the initialization
bias. A close initialization is crucial with the mCRE in order to compute meaningful ad-
missible fields at the first epoch. An example has demonstrated that the initialization
bias can be particularly problematic with the mCRE minimization because it requires
the optimization to be constrained in order not to go too far from the initialization in
one step.

The chosen network was based on a one-layer modified ICNN, with a priori chosen
and fixed biases, Softplus activation function (with the  parameter fixed with the
knowledge of discretization) to avoid vanishing second-order derivatives. The expres-
sivity of this architecture was compared to deeper ICNN. This comparison showed
that this architecture is expressive enough to represent convex functions. Finally,
significant advantages of the parameterization were discussed and illustrated on ex-
amples. This architecture allows getting rid of the initialization bias, as well as the
possibility to extrapolate with the a priori model.
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A Modified Dual Kalman Filtering approach
for sequential data-assimilation involving
nonlinear evolution laws

The development of this chapter has been done in collaboration with Sahar Farahbakhsh
(involved in another ERC project thesis). The work presented in this chapter has been the
subject of the following contribution:

Benady A, Farahbakhsh S, Baranger E, Poncelet M, Chamoin L. A Modified Dual Kalman Fil-
tering approach for sequential data-assimilation involving nonlinear constitutive evolution
laws. (in preparation). !
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'Sahar Farahbakhsh developed during her thesis a numerical method based on the Modified Dual Kalman
Filtering, to sequentially update model parameters of linear constitutive model (without evolution laws).
This chapter aims to merge her work with mine (on the learning of evolution laws) to sequentially update
the parameters of nonlinear evolution laws.
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Chapter 5. MDKEF for sequential data-assimilation with nonlinear evolution laws

The previous theses on the mCRE (Diaz, 2023; Marchand, 2017) have shown that a
strong advantage of the mCRE lies in the possibility to treat both the model updating and
sequential data assimilation in a unified framework. So far, this thesis has extended the
mCRE framework for the model updating of history-dependent dissipative constitutive laws.
The goal of this chapter is to show that the development of this thesis can still be coupled
with a sequential data assimilation procedure, thus preserving the possibility of relying on a
unified framework. Therefore the development of this chapter is only a preliminary work to
illustrate the possibility of integrating the evolution laws in the sequential data assimilation
procedure.

The continuous prediction of structural state requires a sequential data assimilation
framework to interface the numerical model with the on-the-fly observations. First in-
troduced and manually applied in (Richardson & Lynch, 1922) by a meteorologist, data
assimilation combines physical laws, or models, and observations to obtain the best pos-
sible estimation of the system state. Data assimilation methods were commonly used at
first in oceanography and meteorology sciences for weather prediction, but they have been
applied in other fields of science such as engineering throughout the years. Sequential
data assimilation methods are probabilistic approaches that provide estimates of the entire
system state as well as its associated uncertainties by propagating information forward in
time (Bertino et al., 2003). The Best Linear Unbiased Estimator (BLUE) is a well-known
sequential data assimilation method (Aitken, 1935). Other examples include Bayesian
filtering approaches (Law et al., 2015), but in these cases, the calculation of the likelihood
functions can be challenging or computationally expensive. Originating from Bayesian
inference, the Kalman Filter (KF) addresses this issue by assuming independent Gaussian
distributions for every parameter (Kalman, 1960), and stands out as a well-established data
assimilation algorithm incorporating a prediction-correction scheme. It iteratively refines
predictions using acquired measurements at each step.

Over the years, several extensions to the original linear Kalman Filter have been proposed
to enhance its performance across diverse and especially nonlinear applications. The
Extended Kalman Filter (EKF) is a very popular extension of Kalman Filters for capturing
nonlinearities (Sunahara & Yamashita, 1970; Bucy & Senne, 1971). This method is based
on operator linearization by means of Taylor expansions. Other KF extensions mostly rely
on the propagation of sampling points to represent the nonlinearities of the system. Some
of the common examples are Ensemble Kalman Filters (EnKF) (Evensen, 1994, 2003) and
Particle Filters (Del Moral, 1996) where at each time step a sampling made by the Monte
Carlo method is propagated through nonlinear system operators, although these methods
can become costly due to the sampling approach. Motivated by the need for computational
efficiency, the Unscented Kalman Filter (Julier & Uhlmann, 1997; Julier et al., 2000) was
developed based on the Unscented Transform (Julier et al., 1995), resulting in a reduced size
in sampling point sets. Recently, an even more computationally efficient approach named
Scaled Spherical Simplex Filter (S3F) was introduced (Amir et al., 2022; Papakonstantinou
et al., 2022) which further reduces the size of the required sample point set in comparison



to the UKE providing the same level of accuracy.

Although primarily recognized as a state prediction algorithm, certain extensions of
the Kalman Filter have found utility as parameter identification algorithms and for solving
inverse problems. For this mean, parameters to be identified can be concatenated with
state variables in the KF framework, resulting in a Joint Kalman filter. Another possibility
is to keep the parameters in the state vector; and turn the observation operator into a
state evolution operator based on a second Kalman filter. This approach is called the Dual
Kalman filter. Some examples of research using nonlinear extensions of Kalman Filters
for identification purposes through joint or dual definitions of the dynamic system can
be found in (Mariani & Corigliano, 2005; Gove & Hollinger, 2006; Mariani & Ghisi, 2007;
Onat, 2019). It should be noted that despite their proven computational efficiency, Kalman
Filters have generally shown sensitivity to noisy measurements for both state estimation
and parameter identification, and are susceptible to divergence from the actual solution in
the presence of corrupted measurements (Nguyen et al., 2008; Li et al., 2016).

On the contrary, the mCRE framework is robust to noisy and corrupted measurements.
Despite its robust nature, the mCRE method is unsuitable for online model updating be-
cause it lacks the sequential framework required for such applications. Furthermore, it can
be computationally expensive as it requires a two-step and iterative minimization process.
To address these limitations, a proposed solution involves integrating the mCRE within a
sequential data assimilation method, specifically the Kalman filtering technique. By doing
so, the integration within these algorithms overcomes the limitations of both mCRE and
Kalman Filters, resulting in a fast and robust sequential model updating method called
the Modified Dual Kalman Filter (MDKF). This was proposed in (Marchand et al., 2016)
where the MDKF was developed and used for unsteady thermal applications. In (Diaz et al.,
2023a) the MDKF was further modified, resulting in a more stable and computationally effi-
cient approach, and verified for low-frequency dynamics cases by applying the developed
framework on two earthquake engineering examples. In (Diaz et al., 2023b), the MDKF
framework was developed based on UKF and S3F Filters, and the results were compared.
The approach using S3F gave more satisfying results from a computational point of view,
whereas the accuracy level was the same for both approaches. Figure 5.1 summarizes the
classification of Kalman Filter methods.

The present chapter illustrates that the works of (Diaz et al., 2023a) can naturally be
extended to integrate evolution laws. In Section 1, the basics of Kalman filtering are recalled,
as well as the Scaled Spherical Simplex Filter (S3F) and the extensions of Kalman Filtering
to deal with parameter identification (with a focus on MDKF). In Section 2, the MDFK
framework is extended to sequentially update model parameters of nonlinear constitutive
evolution laws. Section 3 presents the results of this method on an elastoplastic case where
an isotropic hardening modulus is updated. Finally, Section 4 opens perspectives to couple
neural networks with the MDKF framework.
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Kalman filters for Kalman filters for sequential state
sequential state estimation and parameters
estimation identification
Linear Kalman Nonlinear
Filter (LKF) extensions
Joint Kalman Dual Kalman
Filter Filter
Extended Kalman Filter Particle Filter Siema-points
(linearization of model (Monte Carlo g p
. filters
and observer operators) sampling)
Ensemble Unscented Scaled Spherical
Kalman Filter Kalman Filter Simplex Filter
(EnKF) (UKF) (S3F)

Figure 5.1 o Classification of Kalman Filter methods (not exhaustive). The developments of
this chapter use an S3F-based Dual Kalman Filter approach

1 From Linear Kalman Filter to Modified Dual Kalman Fil-
ter

This section briefly recalls the concept of Kalman filtering. First of all, let us introduce
the notations of the dynamical system under a discrete space-time form required for the
Kalman filtering. The system generally consists of two equations, namely a state prediction
equation, and an observation equation:

xk = %k_l(xk_]) wk—l) (5 1)
Zp = A Xp— Vg)

where x; is the state vector at timestep ?;, z; the vector of observation data, w; and v, are
respectively uncorrelated Gaussian errors in model and measurements. Finally, .# and
¢ are model and observer operators that are derived from the physical problem and are
generally nonlinear.

Figure 5.2 schematically shows how Kalman Filters work. Based on this dynamical
system, Kalman Filters follow a prediction-correction scheme consisting of two steps. In the
prediction step, the system state at the next stage is estimated. This estimation is modified
at the second step by new measurements acquired, resulting in a posteriori system state.

The remainder of this section is organized as follows. Section 1.1 presents the linear
case where both the model and observer operators are assumed to be linear, then Section
1.2 presents the nonlinear KE Section 1.3 discusses the extension of KF for parameter
identification, with an emphasis on the MDKF approach.
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Xz B i Predicted state
| : X Corrected state estimate
‘ i u @  Observation
/. : —> Model prediction
\ ‘ . Correction from observation

Tk—1 Ik 41 Ttz

Figure 5.2 o [llustration of the Kalman Filter algorithm

1.1 Linear Kalman Filter (LKF)

The initial Kalman Filter introduced in (Kalman, 1960) considered the model and observer
operators to be linear, which turned the equation system (5.1) to (5.2):

X1 =M X + Wi (5.2)
Zk:ka+Uk

where M and H represent the linear model and observer operators, respectively.

The LKF framework also assumes the modeling and observation error to be statistically
independent of each other, and statistically independent of the state. Another assumption
is that the model and observation error follow zero-mean normal distributions:

{wkNC/V(O’Q) (5 3)

UkNJV(O,R)

where Q is the model error covariance matrix and R the measurement noise covariance
matrix.

Algorithm 3 details the LKF approach. Line 5 corresponds to the model prediction of the
next state X,” based on the estimated current state x;_; and line 6 updates the associated
covariance matrix. Line 9 computes the Kalman gain, according to the fact that the best
unbiased estimator minimizes the a posteriori error covariance matrix. The term C, H”
projects the prior error covariance into the measurement space, providing a measure
of how much error we expect in our prediction in the same units as the measurement.
The term H C;_H' represents the contribution of the prior state estimate’s uncertainty to
the measurement’s uncertainty, essentially telling how much the uncertainty in the state
estimate affects the uncertainty in the measurement output. The term R is the measurement
noise covariance, adding the uncertainty from the measurement itself. The addition of
HC_H" and R represents the total expected measurement uncertainty. We observe that
limg_o Ky = H™1 and lim¢__, K} = 0 which means that the gain weights the residual more
(resp. less) heavily as the measurement error covariance R approaches zero (resp. as the a
priori estimate error covariance C, approaches zero). In other words, as the measurement
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error covariance R approaches zero, the actual measurement z;. is trusted more and more
while the predicted measurement H X, is trusted less and less; in the reverse, as the a priori
estimate error covariance C,_ approaches zero, the actual measurement z; is trusted less
and less (negligible correction), while the predicted measurement H X, is trusted more and
more.

Finally, lines 10 and 11 respectively update the state estimate and the associated covari-
ance matrix.

Algorithm 3 Linear Kalman Filter Algorithm

1: Input:

2: Model and observations matrices M and H, noise covariance matrices Q and R, initial
state vector X, and associated covariance matrix C,,

3: fork=0,1,2,... do

4: Prediction Step:

5: X =Mx_, > Predict next state

6: C.=MC._ M T+Q > Predict next covariance

7

8: Update Step:

9: Ki,=C _HHC_H" +R)" > Compute Kalman Gain
10: X = X, + Ki(z,— C X)) > Update estimate with observation
11: Ci,=(I—-K.H)C_ > Update the estimate covariance
12: end for

1.2 Nonlinear extensions of KF: focus on the Scaled Spherical Simplex
Filter (S3F)

As the LKF does not take into account the possible nonlinearities in the dynamical system,
some extensions of the Kalman Filters have been introduced to address this issue. Indeed,
the difficulty that arises when considering nonlinear operators is as: given a Gaussian
probability density characterized by its mean X and its covariance matrix C,, how can we
construct the a posteriori probability density resulting from the application of a nonlinear
operator .¢/?

Extended Kalman Filter (EKF): linearization of the model and observer operators

As mentioned in the introduction of this chapter, the Extended Kalman Filter (EKF) is
based on a linearization of the model and observer operators around the current mean
in order to directly reuse the LKE The posterior probability density (resulting in the trans-
formation of Gaussian probability density with mean X and covariance matrix C, by the
nonlinear operator .¢f) with mean Y and covariance matrix C,is thus obtained as:

{ Y =.4(X) 5.4

C,=A"C,LA  A=V.d
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Nevertheless, the accuracy of this approach is not enough when the nonlinearities
cannot be properly linearized (Mariani & Ghisi, 2007; Diaz, 2023).

Ensemble Kalman Filter (EnKF): Monte-Carlo sampling and propagation

To overcome these limitations, the statistical linearization technique can be used (Gelb,
1974; Lefebvre et al., 2004). In this technique, a nonlinear function of a random variable is
linearized through a linear regression between sampling points drawn from the prior distri-
bution of the random variable. This type of method has led to the Ensemble Kalman Filter
introduced in (Evensen, 1994). In this case, the posterior probability density is obtained
with:

1 N
Y=— X;
N ;:1 < (X;)

1 - -
C=% 2 (- (X;) = V) (X;)— V)"

(5.5)

2

—_

with X; ~ A (X, C,)

The limitation of this approach is the important number of sampled points required to
obtain the posterior probability density. Indeed, the model evaluation can be computation-
ally expensive, thus making this approach not suited for sequential data assimilation.

Unscented Kalman Filter (UKF): use of a limited number of o-points

The Unscented Kalman Filter (UKF) (Julier & Uhlmann, 1997) was introduced to decrease
the number of sampled points, called o-points. It requires the sampling of 2L + 1 o-points
(where L is the size of the state vector).

The idea, based on the so-called Unscented transform, is to deterministically sample
well-chosen o -points and propagate them through the nonlinear operator. The o-points are
computed with the expressions presented in Table 5.1. The numerically efficient Cholesky
factorization method is generally used to calculate the matrix square root. The posterior
probability density is then obtained with:

B 1 2L+1 B
S m ) =X+ .
Y NE_I o™.d(X;) X;=X+[/C,S];
= (5.6)

2L+1

€y = > Ol (X) = VY (X)~ V)"
i=1

where w!" and w{ are weights associated with the o-points, and § a matrix used for the
definition of the o -points.

Scaled Spherical Simplex Filter (S3F): UKF with less o -points
Recently introduced in (Amir et al., 2022; Papakonstantinou et al., 2022), the Scaled
Spherical Simplex Filter (S3F) requires L+2 o -points, thus reducing by 50% the computation
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time. The posterior probability density is obtained in the same way than (5.6), the only

difference being the number of o-points.

The developments of this chapter are based on the S3F because of this computational
efficiency. Algorithm 4 presents the S3F algorithm (as well as the UKF because they share
the same basics, only the definition of o -points differs).

Algorithm 4 UKF/S3F

1: Input:

2: Observations z;, model and observation operators .#, /¢, noise covariance matrices
Q for model bias and R for measurement noise, S3F parameters: (¢, 3, k), number of

state parameters L

3:

4:

5: Initialization:

6:

7:

Table 5.1):

8:

9: fork=1:00do
10: Lrei = X1 +(+/Cr1S); Vie[l,N]
11:
12: Prediction:
130 A =M X) Vie[l,N]
4 ge=30 0P g,

15: Cr=>1, (&, — %) E,— %) +Q
16:
17: gk,i:%(‘%‘k,i) VZE[[].,N]]
A N
18 2} :Zi?\,1 W%
19: C..=>._ 0% —2) % i—2)" +R
_ N B._ ~_ ~
20: C..=>, Wi (X, — % (&, —2)"
21:

Initial state estimation X, and its associated covariance matrix C,

Computation of the constant weights associated with o -points (according to Table 5.1):
Computation of the constant matrix S used for the definition of o -points (according to

> Calculating N o-points

> Prediction for each o -point
> Weighted mean to predict the state

> Associated covariance matrix

> Observation for each o-point

> Weighted mean for the observations
> Covariance

> Cross-covariance

22: Correction:
23:  K,=C_C]! > Kalman gain
24: X=X, +Ki(z—2;) > Updated state
25: C,=C,—K;C_K] > Associated updated covariance
26: end for

[l Remark

For the sake of simplicity, Algorithm 4 is presented in the case where the noise is
assumed to be additive. One can refer to (Julier & Uhlmann, 1997) to see a more

general framework.
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UKF S3F
Vie[0,2L], 2, = £+(/OS), Vielo,L+1],2; = % +(VCS),
0 q —-q 0 —q/1 7 0 0 0
0 q -4 0 —q/2 —q,/2 G2 0 0
5= s=|. . . . o
o-points defintion : - . : : : : : :
0 -4 9 (L2 0 —qi/L —qi/L —qi/L —qi/L - —=qi/L qil .
-2 I(L+1)
=T a=ad\ =12 L]
1
m_q_ m_q1___
wo_l a? 0)0—1 a?
o-points weights of=wl'+1-d*+p of=wl+1-d*+p
1. 1 .
wf”:wf:sze[[l,zL]] w{":wfziaz(L+l)Vze[[l,L+l]]

Table 5.1 e Definition of the o-points and their associated weigths. As it is generally done
in the literature, the parameter « is taken equal to zero to obtain these formula.

1.3 Kalman Filter for parameter identification

So far, the presented Kalman Filters are state estimation algorithms. The present section
presents two possible adaptations to perform parameter identification and state estimation,
namely the Joint Kalman Filter and Dual Kalman Filter, illustrated in Flgure 5.3

i x . ke—k+1
Joint state: ﬁk Measurements: yi State: X
k
Nonlinear KF on }—o Updated state:
_ Eie1
T
~2
l . . A A
= Joint nonlinear KF Measurements: Y = X Pk
Nonlinear KF on }—v Updated parameters:
Updated ioi |:5€k+1] Pr+1
pdated joint state: Pint
k—k+1

Parameters: Py

Figure 5.3 o Joint and dual Kalman filters schemes (figure inspired from (Diaz, 2023)).

First, it is required to integrate the parameters p into the definition of the dynamical

system (5.1). The dynamical system thus reads:

Pk = Pr—1+ Wy 1

X = My (Xk_1, Pr—1) Wy —1) (5.7)

z = 76Xk, )
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Joint Kalman Fllter

The first approach consists of using only one Kalman Filter in which the model parameters
are seen as components of the same vector as the state. To do so, the parameter vector is
concatenated with the state vector to produce a joint state x; =[x, p!]”, leading to the

Joint Kalman Filter framework:

.| A (X Py Wy i)
X, =

Pk = Pr—1 T Wy k1 (5.8)

zr =Xk, )

Dual Kalman Filter

In the Dual Kalman Filter approach, the state vector is only composed of the parameters
to identify. The observer operator is converted into a state evaluation operator .%¢,,,,;, based
on a second Kalman Filter (5.10), accounting fot the evolution of the dynamical system.
The denomination "dual" comes from the use of two Kalman Filters.

Pr = Pr—1t Wy k1 (5.9)
2= %dual(xk’ Pio> Wy k> vk)
X = ﬂk—l(xk—l! Pr—1» wx,k—l) (5 10)
2y = Xy, P> Wy k> Vk)

Both of these approaches have been widely used for nonlinear identification applications
by various nonlinear extensions of Kalman filter. The Dual Kalman Filter approach might be
more costly, but can provide better estimates (Mariani & Corigliano, 2005). The following of
this Chapter builds on the Dual Kalman Fllter approach in a modified version that integrates
nonlinear KF extension and the mCRE framework.

2 Extension of MDKEF to address evolution laws

As already mentioned in this chapter introduction, KF is suited for sequential data assim-
ilation but is not robust to high measurements noise. On the contrary, the mCRE is very
robust to noisy measurements but is not suited for sequential data assimilation. The mCRE
and the Dual Kalman Filter approaches were coupled in (Marchand et al., 2016) in the
context of unsteady thermal applications. By doing so, this coupling overcomes the limi-
tations of both mCRE and Kalman Filters, resulting in a fast and robust sequential model
updating method called the Modified Dual Kalman Filter (MDKEF). In (Diaz et al., 2023a) the
MDKEF was further modified, and verified for low-frequency dynamics cases by applying
the developed framework on two earthquake engineering examples. The present section



2. Extension of MDKEF to address evolution laws

extends the works of (Marchand et al., 2016; Diaz et al., 2023a) to the case of nonlinear
history-dependent material behavior.

Algorithm 5 details the MDKF approach in the context of nonlinear history-dependent
material behavior. The key idea of the MDKF approach is to use the admissible fields of the
mCRE obtained from the trade-off between the model and observations at the end of Step 1
(see Section 1.1.1) as the dual observations in the Dual Kalman Filter. Contrary to the use of
a classical projection matrix as an observer to collect the measurements to compare to the
predictions, the use of the mCRE admissible fields offers high robustness to noise. Indeed,
in line 17, for each o-point the Step 1 of the mCRE minimization is performed in order to

compute the admissible fields resulting in a compromise between model and observations.

The parameters are updated at each step searching for the values giving a zero gradient of
mCRE (see line 24 in Algorithm 5).

Algorithm 5 MDKF
1: Input:
Model and observation operators ./, 7, noise covariance matrices Q for model bias,
KF parameters: (agr, B,K),
Initial state estimation X, and its associated covariance matrix C,

N

Initialization:

Computation of the constant weights associated with o -points (according to Table 5.1):
Computation of the constant matrix S used for the definition of o -points (according to
Table 5.1):

8:

9: fork=1:00do
10: Lri = Pr—1+ (v Cr18); Vie[1l,N] > Calculating N o -points
11:
12: X i =i Vie[l,N] > Prediction for each o-point
13: pe = ZL w;’lﬁg ri > Weighted mean to predict the parameters
14: C = ZL (% P /% & =P +Q > Associated covariance matrix
15:
16: For each o -point, perform mCRE Step 1 to compute admissible fields and set:
17: ffk,izvpngRE(%];i)
18: 2= Zf;l "% > Weighted mean for the observations
19: C,,= ZL W% i — 21 Zi — 21)" > Covariance
20: C..= 211 col?(ﬂ?,;i — P (& i— 27 > Cross-covariance
21:
22: Correction:
23:  K,=C_C]! > Kalman gain
24: P =P, +Ki(0—2;) »Byreplacing z;, =0, the parameters are searched to have a

zero mCRE gradient.

25: C.=C,—K,C_ K] > Associated updated covariance
26: end for
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E2 Online tool: Two 1D-examples can be found in the repository of this thesis: one
for the updating of a Young modulus (without evolution law on the material behavior)
and one for the updating of an isotropic hardening modulus (with evolution law). See
Chap_5/MDKF_elastic and Chap_5/MDKF_evolution.

3 Results

This section aims to illustrate the MDKF method on an elastoplastic case. As mentioned in
this chapter introduction, the goal of this chapter is not to conduct an extensive analysis of
the performance of the MDKF method, but only to check that the MDKF framework can be
easily adapted to the case of history-dependent constitutive model. A two-dimensional
beam loaded in tension is considered. The considered beam has the same geometry and
sensor position as in Figure 3.9. The constitutive model considered is the following:

* The free energy ¢ is split into the elastic part ¢, and plastic part i, with

_1 5 ] _ Evy _ E
z,be(ee)—z(/l(tree) +2ue,: €,) where?t—(1+V)(1_2V),,u—2(1+v) (5.11)
1
zpp(ep)zéhpz (5.12)

¢ The dissipation pseudo-potential is:

¢*(f)=1I1(f) wheref =0,,—(R+R,)is the Von Mises Yield criterion (5.13)

with I(f) the indicator function, E the Young modulus, v the Poisson ratio, R, the initial
Yield limit and & the isotropic hardening modulus.

This model is used to generate the synthetic data representing optic fiber observations.
A white Gaussian noise of 0,01% is then added to these observations. In the following the
form of this model is assumed to be known. For the sake of simplicity, all the parameters
are assumed to be known except the isotropic hardening modulus which is updated. The
values of the parameters are the same as in Chapter 3 in Table 3.4. 500 loading steps
are considered and Figure 5.4 shows the evolution of the estimated normalized isotropic
hardening modulus as a function of time. This figure shows that the hardening modulus is
properly identified as the normalized middle o -point converges close to the true value. The
stationarity of the middle o-point at the beginning (until ¢ = 250) is explained by the fact
that the material is still in the elasticity domain, yet the hardening modulus is not sensitive.

4 Toward a coupling between MDKF and model bias correc-

tion with neural networks

The previous section presented the parameter identification of a given model form. There-
fore this method is potentially subject to model bias when the assumed model is too far
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Figure 5.4 ¢ Evolution of the normalized isotropic hardening modulus as a function of the
time, for the 3 o-points.

from reality. Yet, using the MDKF procedure to update the neural network parameters is
too costly because the number of o-points directly depends on the number of parameters
to identify. S3F requires L + 2 o -points and UKF requires 2L + 1 o-points (where L is the
number of parameters to identify).

An idea to correct the model bias while allowing for a continuous sequential data as-
similation is summarized in Figure 5.5. This idea, which has not been implemented yet,
relies on a continuous dialog between the model bias correction procedure (developed
in Chapters 2 and 3), with the MDKF-based sequential data assimilation. The key idea is
to use the modeling error term available in the mCRE at each state estimation in order to
evaluate the quality of the predictions. When the value of the modeling error is too high,
the model bias correction procedure can be performed, based on all the historical data
available at this time. This model bias correction can be performed with three major steps.

First, the neural networks can be initialized with the best model available (in the sense
of CRE modeling error). This model can come from a catalog of physical models or from a
previously trained neural network. This step thus involves a model selection based on the
CRE value as well as a supervised neural network training when the selected model is taken
from the catalog of physical models.

The second step consists of a mCRE minimization with the historical data available at
this time. This procedure might be very costly, but does not need to be performed quickly as
the sequential data assimilation can still be performed in parallel. If one wants to reduce the
cost of this minimization, it is possible to sample only relevant timesteps for this training.
The relevant timesteps can be, once again, chosen with a criterion based on the CRE term
evaluated on the MDKF estimated states: to correct model bias it is relevant to use the
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timestep with a high modeling error.

Finally, the trained network cannot be directly used in the MDKF because of the high
number of parameters. This motivates the need for postprocessing the trained network to
sparsify it. (Fuhg et al., 2024) recently proposed a sparsification method suited for input-
convex neural networks in the context of model discovery. In this approach, sparse and
interpretable expressions are recovered from the neural networks, with a smoothed version

of L°-regularization. The obtained expression is parametrized, and these parameters can
be sequentially updated in the MDKF procedure.

Sequential data Estimated state

Continuous state estimation and parameter updating W
(MDKF method) J

a Modeling

— error value
Historical
data

I Updated
-
Model bias correction model
(to execute when the modeling error reaches a high value)

[ 1) Neural network initialization with best model at disposal ]

2) Neural network training with mCRE minimization on
historical data

sparse model

[ 3) Post-processing of the neural network solution to get a ]

- /

Figure 5.5 e Strategy to correct model bias along the structure lifecycle.
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Chapter conclusion

In this chapter, we presented a Modified Dual Kalman Filtering (MDKF) approach
aimed at sequential state estimation and parameter identification. This chapter
checked that the previous works on MDKF can be extended to integrate the case
where the material behavior involves nonlinear evolution laws. This method inte-
grates the recent development in Kalman Filtering approaches, especially the Scaled
Spherical Simplex Filter (S3F) which offers accurate results with a small number of
o -points, even in the presence of important nonlinearities. By integrating on-the-fly
observations with the robust mCRE framework, the MDKEF offers an efficient and
reliable estimation of evolving parameters that is robust to noise.

The method has been illustrated with an elastoplastic behavior in which an isotropic
hardening modulus was sequentially updated. This preliminary work shows promis-
ing results on a relatively simple 2D case, which paves the way for the sequential
updating of more complex constitutive models after further investigations. Neverthe-
less, at this stage, no reduced order modeling strategy has been implemented which
does not make this approach suited for real-time data assimilation. The method
should be further investigated with evolutive model parameters, coupled with the
NN-mCRE approach for model bias correction, and tested with real experimental
data.
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Conclusion and perspectives

Main contributions of the thesis

The main objective of this thesis was to develop advanced numerical methods for model
bias correction, allowing accurate prediction of material behavior throughout the structural
life cycle. To achieve this, the key idea was to free the model form by using neural networks
to represent constitutive models, which allows the model form not to be assumed a priori.

This choice of using neural networks to represent constitutive models without a pre-
defined form raised several critical questions. How can the neural network be effectively
trained to model constitutive behavior without direct stress-strain data? How can the model
ensure compliance with established physical laws and reliable knowledge? How can the
reliability of the learned models be quantitatively assessed to ensure their applicability in
practical scenarios?

The mCRE framework has proven to be very helpful in answering these questions. In
fact, this manuscript has shown that this framework is suitable for training neural networks
in an unsupervised manner. With the mCRE, it is natural to formulate the constitutive
models with thermodynamic potentials using the Generalized Standard Material frame-
work. Adherence to this framework was ensured by using input-convex neural networks
to represent convex thermodynamic potentials. The other part of reliable knowledge, the
static and kinematic admissibility, is enforced in the minimization process by computing
admissible fields before each model update. Finally, the CRE term provides a rich physical
meaning that is used as a modeling error to assess the reliability of the model.

The developed method was implemented in different cases. Chapter 2 focused on the
model bias correction of history-independent behavior such as nonlinear elastic and hy-
perelastic behavior. In Chapter 3, history-dependent dissipative behaviors were considered
with an emphasis on elastoplasticity and viscoplasticity.

Neural network training is known to be very sensitive to the choice of user-defined
hyperparameters, which motivated the development of automatic hyperparameter tuning.
Without careful selection of the network architecture, training may converge to a local
minimum. Chapter 4 addressed this issue by introducing a one-layer input-convex neural
network that is less subject to local minima.

Finally, the development of the mCRE framework to deal with nonlinear evolution laws
has been used in Chapter 5 to extend the MDKF approach, an mCRE-based Kalman Filter
method suited for sequential data assimilation.
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Conclusion

While significant advancements have been made regrading the model bias correction,
several areas require further exploration to enhance the applicability and efficiency of the
methods.

Prospect: dealing with unknown variables

In this manuscript, the internal variables were assumed to be known. In practice, the
knowledge of the number of internal variables might be difficult to determine and may be
an important source of modeling error. In the approach developed in this manuscript, no
model bias correction for the number of internal variables was implemented, which is a
strong limitation prior to application with real data. Learning internal variables is therefore
a natural perspective to continue this work. There are a couple of works in the literature that
aim at learning internal variables (Rosenkranz et al., 2024; Bonatti & Mohr, 2021), but to the
author’s knowledge, they all are performed in a supervised way (with strain-stress data). A
research direction could be to use the architecture (based on recurrent neural networks)
proposed in the supervised contributions and train them in an unsupervised manner.

Prospect: efficiency of the minimization process through coupling with reduced order
modeling

The examples treated in this thesis were limited to two-dimensional geometries, with
relatively simple loading cases. The computational cost was already significant (a few hours
for a 2D geometry with history-dependent behavior). The efficiency of the method should
therefore be improved before treating real cases with complex geometry and loading history,
such as in the target of the DREAM-ON project.

Coupling the proposed method with reduced order modeling (ROM) techniques is there-
fore a relevant research direction. Among the wide range of ROM methods, the Proper
Generalized Decomposition (PGD) (Chinesta et al., 2011, 2014) consists in iteratively con-
structing, on-the-fly, alow-rank representation of the solution from a modal decomposition
with separated variables. This decomposition, computed by solving eigenvalue problems,
allows to obtain an approximate parametric solution that explicitly depends on all model
parameters (boundary conditions, geometry, material properties, etc.) considered as extra-
coordinates, and then describes the solution of all possible scenarios. Recently, approaches
have been proposed to apply PGD to nonlinear models, such as the LATIN-PGD method
(Cremonesi et al., 2013; Relun et al., 2013) using the iterative LATIN method (Ladeveze,
1999). The LATIN-PGD method has already been coupled with the mCRE in (Marchand
etal., 2016). It would be interesting to update this work in the case where the constitutive
model is described by neural networks. Another approach to integrating ROM techniques
is to rely on iterative proper orthogonal decomposition (POD) using approaches similar to
(Peherstorfer & Willcox, 2015a; Haasdonk et al., 2023).

Prospect: evaluation of the method on experimental data



In this manuscript, only synthetic data were considered for the mCRE minimization or
the MDKF-based sequential data assimilation. A white Gaussian noise was added to the
synthetic data, which may be different from the real-life noise. The evaluation of the
developed method should then be performed with real-life data. Currently, work is in
progress to train neural networks within the mCRE framework on the experimental data
presented in the Appendix B (where neural networks are trained with another unsupervised
method on digital image correlation data).

Prospect: assembling the blocks of the DREAM-ON project to control the structural health

Finally, the different parts of the DREAM-ON project (model bias correction, sequential
data assimilation, model predictive control) should be assembled to build in real-time a
hybrid twin, used to control the structural health to limit its damage. The pioneering ideas
concerning the coupling between sequential data assimilation and model bias correction
(including a sparsification of the model) were established in Chapter 5, Section 4, but the
implementation remains a perspective. The use of the updated model for model predictive
control is also an open question.

Acknowledgements

This thesis has received funding from the European Research Council (ERC) under the

European Union’s Horizon 2020 research and innovation program (grant agreement No.

101002857).

127



Conclusion

128



Appendices

129






Comparison between NN-EUCLID and NN-
MmCRE

This appendix is a summary of the Master thesis of Edgar Zembra that I supervised during
the summer 2023. The reference of the open-access master thesis of Edgar Zembra is:
Edgar Zembra, Antoine Benady, Emmanuel Baranger, Ludovic Chamoin. Use of physics-
augmented neural networks for unsupervised learning of material constitutive relations -
Comparison of the NN-Euclid and NN-mCRE methods. ENS Paris-Saclay; Centrale Supélec.
2023. https://hal.science/hal-04255767

The internship of Edgar Zembra was motivated by the need for a comparison between
the methods of unsupervised neural network training suited to deal with measurable data.
To the best of the author’s knowledge, NN-EUCLID and NN-mCRE are currently the only
two approaches in the literature to treat the unsupervised training of neural networks for
constitutive modeling. In this appendix, the NN-EUCLID method is briefly described in
Section 1 and is compared with the NN-mCRE approach.

1 EUCLID framework in brief

The idea of the NN-EUCLID method (Thakolkaran et al., 2022) is to train a neural network to
minimize the equilibrium gap (Claire et al., 2004). A strain field, computed from a measured
displacement field, is used as the input of a neural network. The neural network outputs a
stress field that is then used to compute the loss function based on the equilibrium gap.
The neural network parameters are updated with a gradient descent until convergence.
The following presents this process more formally. Consider displacement field data
u(x) defined on spatial positions x. This displacement field may come from DIC/DVC
measurement procedures and is supposed to be known on the sample surface. The dis-
placement field is expressed using a finite element mesh, composed of N, nodes, with finite
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element shape functions ®(x) such that:

Ny
u(x)zz ué(I)i(x), (A.1)

i=1

with u! being the nodal displacement amplitudes. The deformation gradient field is then
approximated as follows:

Ny
F(x):I+Z u Vo' (x), (A.2)
i=1

where I is the identity matrix and V the gradient operator defined in Lagrangian specifica-
tions.

Let a specimen be loaded with Ny reaction forces R; with i € [1, N;], obtained with
external force sensors. The EUCLID framework consists of minimizing a loss function
based on the force balance residuals given by a first term .; ,, at all free nodes and a second
term %5 at the controlled boundary conditions. The N, nodes of the finite element mesh
can hence be divided into an inner part N;,, and the controlled boundary condition part
Ngc, with N, = N,; + Npc.

In case of negligible body forces, the nodal residual can be written by integrating the
stresses onto the reference domain (2

Q Q

Where ./ is a constitutive model mapping deformation F onto first Piola-Kirchhoff
stress P(F)=_/ [F].

The EUCLID framework proposes a first loss term minimizing the L2 norm on the nodal
force residuals (ensuring a balanced state).

IVint

zim(r)=2[ﬁ(t)]2, (A4)

i=1
The second term expects to balance the reaction forces

Nr

zsc(f)ZZ

j=1

Npc 2
Rj(t)—Zfi(t)] : (A.5)
i=1

The complete loss consists of a weighted sum of the two terms described above, with A
a weighting factor (Flaschel et al., 2021). The loss also sums all N, temporal contributions
such that:

1 <
&= EZ [ Lo 1)+ 2 L3e(1)]. (A.6)

The EUCLID method has been extended with the learning of neural-network constitutive
models and is referred to as NN-EUCLID (Thakolkaran et al., 2022).



2. Comparison of NN-mCRE and NN-EUCLID

2 Comparison of NN-mCRE and NN-EUCLID

This section aims to summarize the comparison between the NN-mCRE and the NN-
EUCLID approaches. The main difference comes from the choice of the loss function:
an equilibrium-based loss for NN-EUCLID, and a loss function based on the constitutive
relation error for NN-mCRE. The choice of the loss function has many implications on the
optimization process, the possibilities offered by the methods, and the performance.

It is common to present the mCRE framework through the spectrum of information
reliability. The philosophy of the mCRE is therefore to strongly enforce reliable information
while releasing unreliable information. An efficient way to understand the conceptual dif-
ferences between the two approaches is to compare what is considered reliable and what is
not. First, both approaches release the model form (unreliable) using neural networks while
ensuring the thermodynamic consistency (reliable) through input-convex neural networks.
The fundamental difference lies in the consideration of the measured displacement field. In
NN-EUCLID the measured field is used directly to compute the stress field, thus considering
the measurements as reliable. On the contrary, NN-mCRE considers the measurements as
unreliable because of the noise: the displacement fields used to compute the gradient of
the loss function are thus obtained from the computation of admissible fields (Step 1 of the
mCRE minimization). By doing so, the admissibility is considered reliable in NN-mCRE,
whereas it is only penalized in the loss function in NN-EUCLID.

[l Remark

The CRE for inverse problem method (in its "not modified" version) used to consider
the measurements as reliable by integrating the observations in the definition of the
kinematic admissibility (Ladeveze & Reynier, 1989). This approach was not suitable
for dealing with high noise levels, which motivated the development of the mCRE.

That being said, the two methods exhibit different features regarding the computational
cost, the robustness to noise, and the possibility of dealing with incomplete observations.
An interested reader should refer to the master thesis of Edgar Zembra for the quantitative
comparison.

Computational cost

From the experiments conducted during Edgar Zembra’s internship, NN-EUCLID demon-
strated a higher computation efficiency. This observation is explained by the fact that
NN-EUCLID is not required to compute admissible fields before each gradient step. Indeed
the computational cost of the mCRE comes from the need to compute admissible fields
before each gradient step: the computation of admissible fields requires the assembly and
inversion of the tangent matrix.

Noise robustness
NN-mCRE showed as expected a better robustness to noise than the NN-EUCLID frame-

133



134

Appendix A. Comparison between NN-EUCLID and NN-mCRE

work. This is explained by the use by NN-EUCLID of the measured displacement fields
directly to compute the stress field used for the loss function: the noise thus propagates
from the displacement to the loss function, resulting in inaccurate model update in pres-
ence of high noise. Nevertheless, the author thinks that this limitation can be overcome
through the development of a method accounting for noise propagation. Furthermore,
with the value of noise generally obtained with digital image correlation, this lack of noise
robustness is handlable.

Incomplete observations

The last point of comparison concerns the possibility of treating incomplete observations,
such as strain observations coming from optical fibers. This is one strong advantage of
NN-mCRE over NN-EUCLID because NN-EUCLID cannot treat partial measurements.
Indeed, to compute the equilibrium gap, it is necessary to have a stress field everywhere
in the structure. As the stress field is computed with the constitutive model directly from
the strain field obtained from displacement measurements, it is not possible to compute a
stress field everywhere with partial measurements.



Learning a hyperelastic behavior with the
NN-EUCLID method applied on experimen-
tal data

This appendix is a summary of a contribution to the unsupervised training of Physics-
Augmented neural networks (PANN) with the NN-EUCLID method applied to real data. This
work was made in collaboration with Clément Jailin, Rémi Legroux and Emmanuel Baranger
and was subject to a submission in Experimental Mechanics: Experimental learning of a
hyperelastic behavior with a Physics Augmented Neural Network.

Nowadays, the current approaches in the literature train the PANN from synthetic
data. The developments are hence restricted to numerical proof of concepts. The noise
included in the studies differs from real experimental noise (e.g. sometimes applied on the
deformation or displacement fields) and other sensor uncertainty (e.g. force sensor axis
uncertainty). The quantity of data used in synthetic approaches can be tuned to train the
model successfully. Finally, procedures are rarely blinded; by knowing the targeted model
(knowing the shape of the free energy surface, for example), the neural network architecture
can hence be adequately designed using the required deformation invariants. The closest
study to the current development in the literature is (Li & Chen, 2022), where the authors
validate their Al model from DIC measurements in a compression test on rubber cubes.
However, besides being a different constitutive model (without physical knowledge), the
experiment is limited to small deformations (under 5%). Multiple questions are still open for
the experimental training of highly constrained PANN models, architecture selection, and
model validation. The identification of PANN from actual experimental data hence remains
a challenge and has not been studied in the literature beyond 1D applications (Jordan et al.,
2020; Diamantopoulou et al., 2021; Pierre et al., 2023; Flaschel et al., 2021).

Figure B.1 summarizes the contribution detailed in this appendix. Here, a PANN is
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Figure B.1 ¢ Summary of the implemented approach

trained and tested within an NN-EUCLID (see Appendix A for a brief description of NN-
EUCLID) framework based on experiments performed on hyperelastic behavior with digital
image correlation (DIC) measurements. The results of the training are compared with a
traditional Neo-Hookean model (with identified parameters within the EUCLID framework).
In this model variant, the strain energy density function is written with the deformation
invariants defined in plane stress, with I, = tr(C) and J = det(F), with C=FT - F:

Wyn =

N =

A
-(11—2)—/1-10g(])+§ log(J)?, (B.1)

with y and A the Lamé coefficients.

The network used in this application is an input-convex neural network, similar to
the one used in this dissertation. A study on the architecture has been implemented
(not detailed here) to find the number of layers and neurons which enable to best fit the
observations.

Two uni-axial tensile tests have been performed on a rubber-like hyperelastic mate-
rial with unknown a priori properties. A single sample was loaded twice, first with a full
geometry and a second time after a hole was created and the sample repositioned. In
the second test, the shape of the sample was cut with a hole to enhance a heterogeneous
loading and increase the mechanical content of the measurement. The loaded surface
was imaged using a PCO-edge camera with a telecentric lens (diameter 125 mm) and LED
panels. At this scale, each pixel has a resolution of 78 um. (electronic noise estimated
standard deviation: o s, = 374 gray levels in experiment-1, and o s, = 340 gray levels in
experiment-2 for 16-bit GL images). The uni-axial testing machine was a thermo-regulated
electro-mechanical INSTRON system equipped with a 5 kN loading cell (estimated stan-
dard deviation o = 0.020 N). The sample was continuously loaded during the test with
a displacement control. The tensile displacement measured by the machine is written v.
The material was initially cycled to reach a stabilized behavior. Figure B.2 shows the DIC
results in terms of displacement and strain for one timestep.

The imaged surface was covered with thin white paint speckles to create an image
gradient used for the DIC measurement. As the sample color was initially black, no black
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Figure B.2 ¢ DIC results for one timestep: (a) displacement field, expressed in pixels and
(b) deformation tensor.

paint was used (allowing for a reduction in the projected paint quantity and thus reducing
the risk of paint cracking at large deformation). The shapes and appearances of the samples
are shown in figure B.3(a).

The PANN was trained during 20,000 epochs of the NN-EUCLID procedure. The loss
starts at values around 10* and converges to 121. For comparison, the loss estimated on
the 30-first unloaded DIC computation gives 4.2 (std 0.22). The EUCLID procedure was
also applied to identify the two material parameters of the NH model. At convergence, the
obtained parameters were Eyy =1.74 MPa and vy =0.471. The final converged value of
the loss was 299. This equilibrium loss is much higher than the previous PANN results.

The equilibrium metrics at every loading step of the test sets for both models are pre-
sented in Figure B.4 and B.5, respectively, for the internal metrics and boundary condition
metric. First, the metrics evolve smoothly, without significant discontinuity between the
steps close to the trained ones. This suggests that the model does not completely overfit the
trained data and is able to generalize the behavior. At the end of experiment-2, some steps
show discontinuous high values for both models when the loading is important. As the NH
model is also impacted, the reason comes from the input deformation fields. Inaccurate
DIC measurements pollute those steps and may correspond to outlier deformation element
values. The first outliers in the inner part appear at around 35 mm and at the boundary
condition at around 50 mm.

For experiment-1, the internal loss is low for both models (under 50). Most of the total
loss is represented by the boundary condition part. For experiment-2, the internal part
increases with the loading. After approximately 31.5 mm (thus after the training loads),
the PANN internal error becomes higher than the NH one. This may highlight an issue in
extrapolating after the trained steps. However, the boundary condition loss part shows
lower values for the PANN model compared to the NH model. Finally, the last steps (around
50 mm) show important boundary condition metrics value. It may also be due to inaccurate
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(a) Geometries and DIC meshes for experiment-1 (left) and experiment-2 (right)
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(b) Force displacement curves for experiment-1 (left) and experiment-2 (right)

Figure B.3 e Samples, meshes, and force/displacement curves measured by the loading
machine for experiment-1 (a) and experiment-2 (b). The red circles in (b)
indicate the 20 training data and the black squares represent the validation
data. All other blue steps are used for the test.

DIC measurement on nodes at the boundary condition, as it happens for both the PANN
and NH models.

Conclusion

This study presents the application of a thermodynamics-augmented neural network,
PANN, learning 2D real hyperelastic behavior. Through the use of two uni-axial experi-
ments, instrumented by digital image correlation and force sensors, the PANN model was
trained within an EUCLID framework and validated. The experiments, which achieved axial
deformations of over 200% and showcased marked non-linear behavior, provided robust
training and validation datasets. 20 loading steps from one experiment were employed for
training, while an extensive set of 640 loading steps, from both experiments, was used for
validation. Comparative analysis of our model with a covariance-weighted error highlighted
the PANN approach’s capability in understanding material behavior, in particular when
extrapolating beyond the training load amplitudes, indicating the model’s robustness and
predictive accuracy. This research not only highlights the potential of neural networks
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in modeling material behavior but also opens the way for experimental neural network
constitutive models in materials science. The full article also includes discussions on the
model selection, the mechanical contents of the training and validation datasets, as well as
more a more detailed comparison between the NH and PANN models.
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Repository with the Python tutorials

To support the concepts and methodologies discussed throughout this dissertation, I
have created a comprehensive Python tutorial available on GitHub. This repository in-
cludes step-by-step instructions, code samples, and relevant datasets designed to enhance
understanding and facilitate practical application. To access the repository, please visit
https://github.com/Antoine-benady/thesis_tutorial

The content of the repository is the following:

* The folder "Chapter_1" contains a 1D example for the mCRE minimization, in the
case of the identification of a Young modulus.

¢ The folder "Chapter_3" illustrates the mCRE minimization involving an elastoplastic
behavior, in 1D, for the identification of an isotropic hardening modulus.

* The folder "Chapter_5" shows two implementations of the MDKF approach, in 1D,
one for the updating of a Young modulus (history-independent behavior) and one for
the updating of an isotropic hardening modulus (history-dependent behavior).
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Extended abstract in french

Cette annexe comprend un résumé étendu du manuscrit, rédigé en francais.

Le controdle de santé des structures demeure une préoccupation essentielle en ingénierie,
étant donné les impératifs de sécurité et de durabilité. Une pratique récente consiste a
mettre en place un dialogue entre une structure physique et son jumeau numérique, afin
de prédire I'état de santé et de limiter 'endommagement. C’est I'objectif du projet ERC
DREAM-ON, dans lequel s’inscrit cette these, réalisée au Laboratoire de Mécanique Paris-
Saclay (LMPS). Celle-ci vise a construire le jumeau numérique d’une structure physique de
maniere a obtenir un modele prédictif de la santé de la structure afin de limiter son endom-
magement via des lois de controle. Au sein du projet DREAM-ON, cette these s'intéresse a
la construction automatique d’'une loi de comportement décrite par un réseau de neurones
a partir de données mesurables. Le manuscrit s’articule autour de cinq chapitres encadrés
par une introduction et une conclusion.

Lintroduction précise le cadre de I'étude et le contexte lié au projet ERC DREAM-ON.
Lidée développée dans ce travail est d'utiliser les réseaux de neurones dont les applications
récentes sont trés nombreuses, couplés a la technique de l'erreur en relation de com-
portement modifiée qui est une technique largement étudiée dans le cadre de probléemes
inverses.

Le premier chapitre correspond a une synthese bibliographique qui met en place les out-
ils de base utilisés, portant d'une part sur I'erreur en relation de comportement modifiée, et
d’autre part sur les réseaux de neurones en se focalisant sur leur application dans le champ
de la physique. La revue de littérature sur I'erreur en relation de comportement modifiée a
permis d’identifier une limite des précédents travaux : la forme de la loi de comportement
est systématiquement postulée a priori, laissant alors la méthode d’identification sujet a
un biais de modele. L'étude bibliographique sur les réseaux de neurones est alors justifiée
par la possibilité offerte par les réseaux de neurones de représenter n'importe quelle fonc-
tion continue (théoreme d’approximation universelle), permettant ainsi de s’affranchir
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du biais de modele lorsque le réseau de neurones décrit la loi de comportement. Apres
avoir présenté les réseaux de neurones et les techniques de couplage avec la physique, cette
bibliographie s'intéresse a I'utilisation récente des réseaux de neurones pour décrire des lois
de comportement matériau, notamment sur I'utilisation de réseaux de neurones validant
par construction les principes de la thermodynamique. Une limite actuelle de la littérature
concerne |'’entrainement « non-supervisé » de lois de comportement dans la mesure ot la
plupart des travaux utilisent des données de contraintes, non mesurables en pratique. La
conclusion de ce chapitre invite donc a entrainer les réseaux de neurones en minimisant la
fonctionnelle d’erreur en relation de comportement modifiée, permettant ainsi de traiter le
probleme d’apprentissage non-supervisé.

Dans le deuxiéme chapitre, une méthode de couplage entre les réseaux de neurones
et I'erreur en relation de comportement modifiée est proposée pour traiter les problémes
d’élasticité et d’hyperélasticité. Cette procédure s’appuie sur l'utilisation de réseaux de
neurones convexes pour décrire un potentiel thermodynamique. Les parametres du réseau
sont cherchés de maniere a minimiser I'erreur en relation de comportement modifiée
via une procédure d’optimisation spécifiquement développé pour le cas ou1 le comporte-
ment est décrit par réseau de neurones. Une discussion importante est portée sur les
différentes manieres de réduire la sensibilité des hyperparametres choisis. Différents cas
tests viennent illustrer I'efficacité de I’algorithme proposé, notamment sur la robustesse
au bruit de mesure, la qualité des solutions apprises, et la faible sensibilité aux choix des
hyperparametres.

Le troisieme chapitre compléte le chapitre précédent en étendant I'idée proposée aux
comportements matériaux dépendant de I'histoire, ce qui nécessite des adaptations pour
I'algorithme de minimisation liées a la nécessité d’intégrer les lois d’évolution. La méthode
est d’abord illustrée sur un cas unidimensionnel de plasticité avec loi d’écrouissage isotrope
(associé a un tutoriel python en acces libre), puis sur 'apprentissage de lois élastoplastique
et viscoplastique. Les conclusions du précédent chapitre sont confirmées sur les différents
cas tests.

Le chapitre 4 propose d’étudier plus en détail I'’architecture du réseau de neurones. Dans
ce chapitre, I'idée est d’étudier le réseau lui-méme et de le rendre le plus efficace possible
par rapport a son utilisation, notamment pour réduire au maximum la présence de minima
locaux. Les choix des fonctions d’activation, du nombre de couches, de l'initialisation
sont donc étudiés, afin de proposer une paramétrisation qui s’avere particulierement effi-
cace pour ce probléme. Cette paramétrisation est intéressante dans la mesure ou elle ne
repose que sur une seule couche cachée, ce qui va a I'encontre de nombreux développe-
ments récents en apprentissage profond. Ceci s’explique par le fait que les fonctions a
apprendre sont convexes, et donc relativement simple comparés aux fonctions apprises en
apprentissage profond. Cette paramétrisation a une couche offre par ailleurs I’'avantage de
comprendre certaines choses en termes d’extrapolation, bien que cette observation reste a
explorer sur des cas plus difficiles.

Dans le chapitre 5, un autre challenge du projet est abordé ; il s’agit de ’assimilation
de données séquentielles. Ce chapitre est relativement exploratoire, car différentes idées



sont présentées, mais elles ne sont qu'une premiere pierre a I’objectif initial proposé dans
I'introduction. Lidée est fondée sur le couplage entre I’erreur en relation de comportement
modifiée et les filtres de Kalman déja développé au laboratoire. Ce chapitre consiste a
étendre les précédents travaux de maniere a intégrer dans ce cadre les comportements
matériaux non-linéaires et dépendant de I'histoire.

Enfin, la conclusion dresse un bilan des travaux réalisés dans ce manuscrit. Au niveau
des perspectives, plusieurs pistes sont identifiées et classées. Les perspectives concernent
principalement I'apprentissage des variables internes et la rapidité de la méthode avec
le couplage avec des outils de réduction de modele. Des annexes présentent également
certains travaux menés en périphérie de la these, avec notamment 'utilisation d'une autre
méthode de la littérature (NN-EUCLID) sur des données expérimentales et la comparaison
de cette derniere avec la méthode développée en these.
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