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Abstract

This thesis focuses on degradation models with imperfect maintenance actions. First, a

literature review presents the existing research on degradation modeling, in particular the

di�erent processes used, and the impact of maintenance on degradation over time. It also

discusses various statistical inference methods, particularly for estimating model parame-

ters, and di�erent approaches to assessing maintenance costs over time, and determining

optimal maintenance policies to aid in the decision making process. The initial research of

this manuscript focuses on statistical inference in a degradation model with imperfect main-

tenance. The underlying degradation process is a Wiener process with drift. Maintenance

e�ects are assumed to be imperfect, described by an Arithmetic Reduction of Degradation

(ARD1) model. The system is regularly inspected and degradation levels are measured.

Four di�erent observation schemes are considered so that degradation levels can be observed

between maintenance actions as well as just before or immediately after maintenance. In

this �rst study, the estimation of the model parameters under the four observation schemes

are examined. Maximum likelihood estimators are derived for each scheme. The quality of

the estimations is assessed and the observation schemes are compared through an extensive

simulation and performance study. Following that, a more realistic way of modeling im-

perfect maintenance in degradation models is proposed, assuming that maintenance a�ects

only a part of the degradation process. More precisely, the global degradation process is

the sum of two dependent Wiener processes with drift. Maintenance has an ARD1-type

e�ect on only one of these processes. Two particular cases of the model are considered:

perturbed ARD1 and partial replacement models. The usual ARD1 model is also a speci�c

case of this new degradation model. The system is regularly inspected in order to mea-

sure the global degradation level. A general observation scheme is considered, including

various possible observation schemes, where degradation levels are only measured between

maintenance actions but can be measured as close as possible from maintenance times. As

previously, the maximum likelihood estimation of the model parameters is studied in both

particular models. The quality of the estimators is assessed through a simulation study.

Finally, based on this last degradation model, decision making is considered in the last

chapter of this manuscript. Two inspection schemes are explored, whether degradation is

inspected before maintenance or after repairs. In the pre-maintenance inspection scheme,

the asymptotic maintenance cost per time unit is assessed using two di�erent methods. A

purely simulation-based method that evaluates maintenance costs across multiple life cycles
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of the system, and a hybrid method, based on semi-regenerative Markov properties, that

evaluates maintenance costs between two inspections. The inter-inspection period and the

preventive replacement threshold are the decision variables considered to derive an optimal

maintenance policy. Numerical outcomes of the optimal policies are presented and com-

pared under both inspection schemes, according to model parameters and cost coe�cients.

Résumé

Cette thèse se concentre sur des modèles de dégradation en présence de maintenances

imparfaites. Tout d'abord, une revue de la littérature présente les travaux existants concer-

nant les modèles de dégradation, notamment les di�érents processus et approches étudiés

pour la modélisation de la dégradation et des e�ets de la maintenance. Elle présente égale-

ment diverses méthodes d'inférence statistique, en particulier pour estimer les paramètres

du modèle, ainsi que di�érentes approches pour évaluer les coûts de maintenance sur un

intervalle de temps donné et établir des politiques de maintenances optimales, aidant à la

prise de décision. Le premier travail de ce manuscrit se concentre sur l'inférence statistique

d'un modèle de dégradation avec maintenances imparfaites. Le processus de dégradation

sous-jacent est un processus de Wiener avec drift. Les e�ets de la maintenance sont supposés

imparfaits et décrits par une réduction arithmétique de la dégradation d'ordre 1 (modèle

ARD1). Le système est régulièrement inspecté et les niveaux de dégradation sont mesurés.

Quatre di�érents schémas d'observation sont considérés de telle sorte que les niveaux de

dégradation peuvent être aussi bien observés entre les maintenances, comme aux instants de

maintenance, juste avant ou juste après celle-ci. Dans cette étude, les paramètres du mod-

èle sont estimés suivant les quatre schémas d'observation. Les estimateurs du maximum

de vraisemblance sont obtenus pour chacun de ces schémas. La qualité des estimations est

évaluée et les schémas d'observation sont comparés à travers une étude de simulation et

performance. Dans un second temps, un nouveau modèle de dégradation est proposé, plus

adapté aux situations pratiques. L'e�et de la maintenance n'a�ecte cette fois-ci qu'une

partie du processus de dégradation. Plus précisément, le processus global de dégradation

est la somme de deux processus de Wiener dépendants avec drift. La maintenance a un e�et

de type ARD1 seulement sur un de ces deux processus. Deux cas particuliers de ce modèle

émergent : le modèle ARD1 perturbé et le modèle de remplacement partiel. Le modèle

ARD1 usuel, tel que décrit dans le second chapitre, est aussi un cas particulier de ce nou-

veau modèle plus général. Le système est régulièrement inspecté pour mesurer le niveau de
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dégradation global. Un schéma d'observation général est pris en compte pour l'inférence

statistique, englobant plusieurs politiques d'observation possibles. Notamment, les niveaux

de dégradation ne sont pas mesurés aux instants de maintenance mais peuvent être mesurés

à tout autre moment, aussi proches possibles de ces instants là. A l'instar du premier mod-

èle étudié dans le second chapitre, les paramètres des deux cas particuliers de ce nouveau

modèle sont estimés par maximum de vraisemblance. La qualité des estimations est évaluée

à travers une étude de simulation. En dernier lieu, la prise de décision est étudiée dans

le dernier chapitre de ce manuscrit. Deux schémas d'inspection sont considérés, selon si

l'inspection est réalisée juste avant maintenance ou juste après réparation. Pour le schéma

d'inspection "pré-maintenance", le coût asymptotique par unité de temps est évalué suivant

deux méthodes. Une méthode purement simulatoire qui évalue les coûts de maintenance

sur un cycle de vie du système, et une méthode dite hybride, basée sur les propriétés de

semi-régénération d'un processus de Markov qui évalue les coûts de maintenance entre deux

inspections. La période entre deux inspections et le seuil de renouvellement préventif sont

les variables de décision prises en compte dans l'optimisation de la politique de maintenance.

Les résultats numériques des politiques de maintenance optimales obtenues sont présentés

et comparés suivant les deux schémas d'inspection et en fonction de divers paramètres du

modèle et coe�cients de coût considérés.
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Introduction

Technological or industrial equipment and engineering assets (or systems) such as dikes,

dams, wind turbines or power plants undergo degradation due to intrinsic wear, usage

imposed by operating conditions or exposure to environmental factors. For such repairable

industrial equipment and assets, a critical concern is to maintain their operation within

speci�c conditions that ensure safety and availability. In order to reduce deterioration and

mitigating risks, maintenance actions are performed on these industrial systems, altering

their degrading behavior over time.

Degrading systems in historical contexts

Throughout history, many examples have shown the critical importance of understand-

ing the reliability of reparable systems over time to prevent failures (when degradation

exceeds a critical threshold) and accidents. To name a few, on April 27, 1895, the Bouzey

dam, built a few years earlier in Eastern of France, failed, releasing a massive �ood wave

that caused extensive damage to the nearby villages and infrastructures, Figure 1. A few

years before the failure, several cracks and leaks had been reported, but ine�ectively re-

paired, leading to the accident [88]. On June 3, 1998, an ICE 1 train operating on the

Hannover-Hamburg railway derailed near Eschede in Lower Saxony, Germany, claiming 101

lives and causing many injuries. This accident was attributed to a fatigue crack in the

wheel, leading to wheel failure. A part of the wheel got caught in a railroad switch, chang-

ing its direction as the train passed over it. Consequently, the carriages of the train followed

two distinct tracks, resulting in the derailment [32]. On 14 August 2018, a section of the

Morandi bridge collapsed in Genoa, Italy, sweeping away around 30 vehicles and resulting

in the loss of 43 people, Figure 2. This accident was attributed to a general fatigue problem
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and corrosion in the tendons (high-strength cables or strands) [13].

As illustrated in these tragic events, in many di�erent �elds, e�ectively modeling the

degradation of industrial systems in order to anticipate failures and implement better main-

tenance policies presents a key challenge to ensure safety and reliability of the system.

Figure 1: Repair of the post-failure Bouzey
dam, 1895

Figure 2: A photography of Morandi bridge
post-collapse [23]

Degradation modeling

In order to represent the degradation behavior, better anticipate eventual failures, and

e�ciently plan maintenance activities, one of the main issue consists in developing a prac-

tical degradation model that considers real-world scenarios and takes maintenance e�ects

into account.

First of all, let us brie�y remind some fundamental probability concepts [2], which are

widely used throughout this manuscript.

� In probability theory and statistics, a random variable is a variable whose value

depends on the outcome of a random experiment.

� A probability distribution is a mathematical model that describes the behavior of

a random experiment. More precisely, this distribution quanti�es the probabilities

associated with each possible outcome of the random experiment.

� A probability density function (PDF) is a function describing the probability distri-

bution of a continuous random variable.

� A stochastic process is a model used to describe the evolution of a random variable

over time [26].
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In this manuscript, degradation is considered random and continuous over time. Con-

sequently, continuous-time stochastic processes prove to be well-suited for modeling the

evolution of the system deterioration with time. Speci�cally, Levy processes [67], with their

independent and stationary increments (these properties are further detailed in Chapters 1

and 2), are particularly convenient for degradation modeling over continuous time. These

increments follow a speci�c probability distribution, chosen based on the degradation indi-

cator of the considered system, or, more generally, chosen to align with various practical

case studies. For instance, in practice, system degradation may occasionally decrease dur-

ing short time intervals, indicating an improvement in the system condition. To model that

speci�c situation, the selected probability distribution must allow the simulated degrada-

tion to be non-monotonous. As an example, when modeling degradation increments, the

Gaussian distribution (or normal distribution) is a commonly used model, characterized

by two parameters: its mean and its variance (see [97] for a review on common probabil-

ity distributions). The values of the Gaussian-distributed increments are de�ned over R
and are symmetrically distributed around the mean parameter, with a higher probability

of values being close to this parameter. The variance parameter represents the dispersion

of all these increments values from the mean. Alternatively, when degradation is mono-

tonically increasing over time, it is more accurate to describe it using a positively de�ned

distribution. For example, positive degradation increments can be modeled by a Gamma

distribution, whose PDF is positively de�ned. Besides, the Poisson distribution, frequently

used to model the number of occasional events within a limited time, can be included in

the degradation process to describe occasional shocks that accelerate the degradation of a

system.

Furthermore, within a single system, several components can undergo degradation. This

degradation can be modeled by multivariate processes, more or less correlated, within the

same degradation model. For example, considering the track geometry of a railway in

Figure 3, the track alignment tends to undergo deformation over time, both longitudinally

and transversely. Then, two distinct yet correlated processes can be proposed to model this

type of deterioration.
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Figure 3: Examples of longitudinal and transversal track levelling [74]

However, the behavior of system degradation experiences punctual changes when main-

tenance actions are performed. Within its life cycle, the system can undergo various main-

tenance actions. Maintenance can be referred to "imperfect" when its impact fails to reduce

degradation to its initial state. On the opposite, "perfect" maintenance resets degradation

to the initial system condition, initiating a new life cycle for the system. Typically, this

last type of maintenance can consist in a replacement of the system or the component.

In addition, maintenance can be preventive or corrective. On the one hand, preventive

maintenance is regularly performed to prevent potential failures, either periodically or by

optimizing its frequency based on inspected degradation levels over time. Corrective main-

tenance, on the other hand, is carried out after the failure of the system. Its frequency

depends on the system's condition. Corrective maintenance is generally more costly than

preventive maintenance and may involve an unavailaibilty period of the system. Hence,

the challenge is to identify an appropriate model capable of precisely depicting both the

evolution of degradation and multiple maintenance e�ects on the system.
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Figure 4: Example of a degradation tra-
jectory over time, simulated through mul-
tiple degradation increments modeled by a
Wiener process with positive drift
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Figure 5: Example of a degradation trajec-
tory with periodic imperfect maintenance ac-
tions (every 50 time units)

An example of a simulated degradation trajectory is presented in Figure 4 over the time
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interval [0, 80]. In this �gure, the degradation increments of the process follow a Gaussian

distribution with a positive mean. Since the support for a Gaussian distribution is R,
even if the general trend of degradation increases over [0, 80], degradation can still decrease

over some time intervals. In Figure 5, degradation undergoes three periodic imperfect

maintenance actions carried out at times {50, 100, 150}, illustrated by the vertical segments.

In this example, the maintenance e�ect is considered instantaneous and is proportional to

the accumulation of degradation since the last maintenance action. This explains why

the depicted maintenance e�ects di�er from each other. Speci�cally, the �rst imperfect

maintenance shows a minimal impact on degradation, as degradation does not signi�cantly

increase over the �rst time interval [0, 50].

Additionally, the system can undergo partial maintenance e�ects, wherein maintenance

interventions are carried out only on speci�c components rather than the entire system.

Figure 6: Disk-brake assembly [77]

In that scenario, while a part of the system is regularly

maintained, the remainder is left unchanged, keeping

degrading over time. As an illustration, considering a

vehicle's braking system, it is often necessary to eval-

uate degradation and conduct repairs on the brake

pads but not on the whole disc, Figure 6. Therefore,

when multiple processes are involved in the degrada-

tion model, partial maintenance e�ects can consist in a�ecting only a limited number of

these processes.

Another practical illustration regarding degradation modeling is depicted in Figures 7

and 8. EDF (Électricité de France) presents a case study that consists in modeling support

tube plates degradation in a steam generator, as shown in Figure 7. Within a steam

generator, the tubes undergo signi�cant vibrations, and the support plates play a crucial

role in preventing this shaking. Over time, these plates accumulate dirt, reducing their

e�ciency. The thickness of dirt can serve as an indicator of degradation. In Figure 8,

degradation levels are observed using three di�erent monitoring techniques. These three

methods describe the same degradation phenomenon within the steam generator. The �rst

graph (located at the top of the �gure) is a visual indicator, regularly capturing degradation

on the support plates via a camera positioned within the system. This procedure requires

a temporary system shutdown. In the second graph, degradation is punctually monitored

using Eddy current testing [17], also requiring a system shutdown. In the third graph, �uid

pressure measurements inside the tubes are collected through frequent monitoring. No
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shutdown are needed for this last technique. Degradation levels are observed at di�erent

locations inside the steam generator, either in the hot leg pipe or in the cold leg pipe (refer

to Figure 7), denoted by crosses and points. Notably, in this �gure, the maintenance e�ect

is clearly visible. The observed degradation levels are increasing over time (the x-axis), then

instantaneously reduced right after the maintenance action (denoted by the blue dashed

line). In this example, time scale is censored to ensure con�dentiality.

Figure 7: Support plates inside a steam gen-
erator [84]

Figure 8: Inspected degradation levels as a
function of time, collected on support plates
inside a steam generator

Statistical inference

The selected degradation model includes multiple parameters. These parameters can

be associated with the underlying degradation process, describing for example its drift, its

variance, its shape, its scale etc. and can also be related to the maintenance e�ect, outlining

its e�ciency. For instance, in Figure 9, three degradation trajectories are displayed, modeled

by independent underlying degradation processes based on three Gaussian distributions

with di�erent values of drift (µ) and variance (σ2), respectively N (5, 200) (this notation

stands for the normal distribution with drift parameter equals 5 and variance parameter
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equals 200) in purple, N (15, 1000) in pink and N (30, 30) in orange. As shown in this �gure,

the model parameters de�ne the behavior of the degradation evolution. Thus, assessing the

theoretical value of these parameters is a major task to precisely describe the degradation.
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Figure 9: Examples of three simulated degradation trajectories based on di�erent values of
the model parameters

The complexity and the precision of their estimation in the degradation process is mainly

in�uenced by the number of considered parameters, their interdependence, their theoretical

values, the number of available observed degradation levels, and the location of these ob-

servations along the degradation trajectory. Particularly, in practical situations, providing

limited data samples and keeping data con�dentiality, such as censoring maintenance times,

adds complexity to modeling degradation and maintenance e�ects as well as assessing the

parameters. This procedure of evaluating model parameters based on a limited sample of

observations is referred to as statistical inference [82].

Moreover, based on the characteristics of the system, degradation levels can be observed

at di�erent times: At the exact maintenance times (immediately before and/or after the

intervention), only between maintenance times, or even both between and during mainte-

nance times. In this manuscript, the chosen scheme describing the instants and locations of

the observations along the degradation trajectory is called the observation scheme. In addi-

tion, in practice, the observation scheme can di�er from one maintenance to another within

a single system. Besides, in some speci�c scenarios, degradation levels can also be observed

continuously on the system. As the choice of the location of the observations around the

maintenance action provides di�erent insights into degradation and maintenance e�ect, the
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chosen observation scheme may impact the quality of parameter estimations. Therefore, it

is necessary to opt for a relevant and realistic observation scheme that ensures high-quality

parameter estimations.

Decision making

Another issue regarding degrading systems consists in optimizing the maintenance

scheduling. Indeed, each type of maintenance action incurs its own speci�c cost. In prac-

tice, preventive maintenances are frequently scheduled periodically, without considering the

current state of the system or the global maintenance cost, which includes the cost of all

the considered maintenance actions carried out on the system within a speci�c time period.

In addition, conducting maintenance actions or just inspections can be very expensive as

it may require the shutdown of system components or complicate operational procedures.

Furthermore, performing a maintenance action can sometimes partially damage the sys-

tem, accelerating its degradation. Therefore, in order to avoid premature or unnecessary

interventions, anticipate costly failures and make better decisions regarding future mainte-

nance actions, it is crucial to implement a suitable maintenance strategy. To achieve this,

factors such as degradation thresholds, above which a speci�c maintenance action must

be triggered, as well as imperfect maintenance or inspection frequencies are considered in

the assessment of the global maintenance cost. These decision variables can be optimized

by minimizing the maintenance cost over a speci�c time period. Thus, proper methods

need to be proposed to precisely evaluate the maintenance cost over time, and, thereafter,

determine optimized maintenance policies based on speci�c decision variables.

Hence, based on the observation of various industrial degrading assets, the main di�-

culty in apprehending deterioration, entails identifying an appropriate degradation model

that can precisely describe the unique deterioration of the system. In this manuscript,

stochastic processes over continuous time are chosen to model degradation. Therefore, de-

termining a proper model involves exploring one or multiple degradation processes, more

or less dependent, to describe degradation impacted by speci�c maintenance e�ects over

the system's lifespan. This model should be able to adjust to various observation schemes,

enabling properly chosen methods to precisely estimate model parameters. Based on this
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model, maintenance assumptions can be suggested, specifying the e�ect of di�erent possible

interventions performed on the system according to the current degradation level. There-

after, suitable methods should be proposed to assess the cost of each considered maintenance

over a speci�c period. The derived costs, considering various values of the studied decision

variables, should enable the recommendation of enhanced maintenance policies.
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Chapter 1

Degradation models with imperfect

maintenance actions

This chapter provides an overview of degradation models in the literature. To analyze the

system deterioration process, gain deeper insights into the failure behavior, and enable bet-

ter maintenance decisions, various degradation models are studied in many di�erent �elds.

These models should be able of capturing the underlying random degradation phenomena.

Nowadays the representation of maintenance e�ects regarding degradation models is increas-

ingly prevalent in the literature. In Section 1.1, a review on multiple stochastic processes

is presented for modeling degradation with possible maintenance e�ects. Modeling such

processes may introduce additional challenges, such as identifying analytic distributions as-

sociated with these degradation models (for example the Remaining Useful Life (RUL), the

�rst hitting time, etc.), ensuring the model's identi�ability for statistical inference studies,

and evaluating maintenance costs, among other considerations. As outlined in Section 1.2,

statistical inference is mainly mentioned in the literature regarding degradation models and

various techniques are used to assess model parameters. After choosing a proper degrada-

tion model, multiple maintenance policies are suggested and described in Section 1.3, based

on speci�c decision variables, such as the inter-inspection period, the inter-repairs period,

the preventive replacement threshold or the corrective replacement threshold. Maintenance

policies can be optimized by evaluating and minimizing the maintenance cost.
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1.1 Degradation modeling

Multiple models are available to represent the reliability of a system. To characterize the

lifespan of components, anticipate potential failures and the remaining life of a system, and

plan preventive maintenances, survival analysis models are frequently considered in the

literature. A classic challenge regarding these types of analyses consists in modeling the

failure rate, i.e. the probability for a component to fail in the next instant, given that it has

survived up to a certain point in time. To choose the proper model, commonly distributions

are proposed in the literature, such as exponential, normal, lognormal, Weibull, Gamma,

among others [8, 76]. These distributions can be chosen based on a speci�c case study and

take into account the unique characteristics of the system. However, these survival analyses

will not be further explored, as it is out of the scope of this manuscript. Another approach

to assess system reliability involves the use of degradation models, where the degradation

behavior of the system is modeled over time. This degradation as a function of time can

be either discrete or continuous, as well as characterized over discrete or continuous times.

A typical way to describe such models is the use of stochastic processes, where degrada-

tion is random and evolves with time. Extensive research in the literature has focused on

these processes, using a variety of speci�cally selected distributions. More recently, mainte-

nance e�ects have been added to this degradation process to better apprehend the system's

deterioration over its life cycle.

1.1.1 Overview of di�erent stochastic processes

Since a system's degradation randomly evolves with time, stochastic processes are well

suited for modeling system's deterioration, as described in [26]. For example, Levy processes

are widely used to model degradation over continuous time. A Levy process [67], {Xt}t≥0,

is de�ned by:

� X(0) = 0 almost surely

� The independence of its increments: For any s, t; 0 ≤ s < t, all its increments Xt−Xs

are independent over disjoints time intervals

� Its stationary increments : For any s, t; 0 ≤ s < t, Xt −Xs is similarly distributed

as Xt−s

� t→ Xt is almost surely right-continuous with left limits
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Speci�c distributions are commonly employed to characterize the degradation incre-

ments over time intervals. Among the well known Levy processes are the Gamma process,

with increments following a Gamma distribution de�ned by a shape and a scale parameter,

the Wiener process, with increments following a normal distribution de�ned by its drift

and variance parameters and the Poisson process, where increments follow a Poisson dis-

tribution with an intensity parameter. First of all, Gamma processes are very popular in

modeling system degradation [1, 59, 93, 37]. In [71], the leveling of railway track is altering

with time. Based on expert judgments, this type of deterioration is modeled by a gamma

process. In the same application �eld, and already mentioned in the introduction, Mercier

et al. [74] model both longitudinal and transversal leveling of a railway track using a trivari-

ate reduction: Three independent Gamma processes are initially considered to construct a

bivariate Gamma process that describes the two leveling indicators.

Wiener processes are also widely used in degradation models. A Wiener process {Xt}t≥0

with drift is described as follows.

X(t) = µ t+ σ B(t) ; X(0) = 0

Here, X(t) represents the degradation level at time t, µ is the drift parameter, σ is the

standard deviation parameter and B(t) is a Brownian motion. Speci�cally, for any s, t; 0 ≤
s < t, the increment B(t) − B(s) follows a normal distribution with zero drift and a

variance equal to t−s. The degradation increments of a Wiener process, as a Levy process,

are notably characterized by their independence over disjoints time intervals and by their

associated normal distribution, such that X(t)−X(s) ∼ N
(
µ(t−s), σ2(t−s)

)
. Thus, unlike

gamma processes, the evolution of degradation modeled by a Wiener process can be non-

monotonous, and decrease over some time intervals. In [25], a Wiener process with drift is

used as a health indicator to represent the biomarker decrease for HIV infected individuals.

Whitemore [98] also uses a Wiener process to model the wear of components and materials.

Di�erent variants of the Wiener-based degradation model are also described in literature:

Ye et al. [102] propose to add random e�ects on a Wiener-based degradation model. The

accuracy of this model is demonstrated on real datasets, such as a fatigue crack growth and

head wear of hard disk drives. In Zhang et al. [104], a nonstationary Wiener process (i.e.

a Wiener process with a non-linear drift) is considered and applied to gyroscopic drifts in

inertial navigation systems. In [107], multiple variants of Wiener-based degradation models

are considered, involving nonlinearity, multisource variability, covariates and multivariate
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aspects in the model. Yet, degradation might as well presents a non-continuous pattern. In

[94], a homogeneous Poisson process, i.e. a Poisson process with constant rate parameter,

is used to model fatal and nonfatal shocks, each one occurring with a speci�c probability.

Markov processes are also commonly used in the literature regarding degradation models.

A Markov process is a stochastic process in which the future state of the system depends

only on the current state [31]. Therefore, the system has no memory of its past states. The

di�erent levels of a system state can be de�ned on a continuous state space or on a discrete

space state and occur over continuous time or discrete time. For instance, Kallen et al.

[53], employs a Markov process over continuous time and discrete condition states using

bridge condition data in the Netherlands. Le et al. [60] also uses a continuous-time Markov

process to model multi-state systems. Moreover, a discrete state-space Markov process

over discrete time, and initially based on a gamma process, is proposed in [81] to study

pitting corrosion. Finally, Zhang et al. [105] use a discrete-time semi-Markov degradation

model to describe the deterioration of the roads. In this article, the degradation level of

the road is categorized into discrete performance states, and the duration for which the

process remains in the current state, referred to as the holding time, follows a discrete

Weibull distribution. The term "semi" Markov process comes from the non-exponential

distribution of the holding time (in a standard Markov process, the holding time follows

an exponential distribution) [44]. Let us also highlight that, as previously mentioned in

some speci�c case studies, system degradation is often caused either by the deterioration

of multiple dependent components, each may which exhibit a unique degradation behavior

within the same considered system, or by various environmental factors. To model such

complex degradation scenarios, multivariate stochastic processes can be used, taking into

account multiple degrading as well as non-degrading components [4, 74, 64, 107, 95, 6].

Deterioration can also be modeled by less common stochastic processes. Hsieh et al. [45]

propose to model the leakage current of thin gate oxides by a discrete degradation model

based on a non homogeneous Weibull-compound Poisson process. The variance-gamma

process is used in [85] to model the continuous leakage rate of a centrifugal pump, the

inverse-gamma process, �rst introduced in [43] as a wear model to describe an increasing

degradation, has been reused ever since [39]. Wang and Xu, Ye and Chen [96, 101] pro-

pose the inverse Gaussian process where increments are also independent on disjoint time

intervals and follow an inverse Gaussian distribution. In [35], the transformed-beta process

is introduced but this time, degradation increments are positively correlated over disjoint

time intervals. Degradation can also be characterized by continuous processes over discrete
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times. For instance, [38] introduces a generalization of the non-stationary Gamma process,

which can be seen as the extended Gamma process based on a time discretization. Another

approach consists in including di�erential equations into stochastic processes, which are

well-suited for describing physical models. In [29], a degradation model relies on di�er-

ential equations to depict the degradation process of wind turbines. In [66], the studied

degradation model is based on a stochastic partial di�erential equation, connecting statis-

tics and physics and including space-time covariances to provide a more relevant model to

practical situations.

However, alternative approaches, not necessarily relying on stochastic processes, can be

used to model systems degradation. For example, certain industrial units are better suited

to be characterized by physics-based models. Starters in auxiliary power units, which

generate energy in aircraft, undergo degradation over their lifespan, potentially leading

to failure. Hanachi et al. [42] explore the degradation of gas turbine engines, employed

in both aircraft propulsion and industrial power generation. Their approach involves a

thermodynamic model using the heat loss and power de�cit as degradation indicators.

Additionally, Zhang et al. [106] employ exhaust gas temperature as a degradation indicator

and propose two distinct models. One physics-based model involves measures of the peak

exhaust gas temperature, the shaft speed at peak, the ambient temperature and the ambient

pressure. Another generic model is proposed based on neural networks.

Let us also point out that, for a more realistic approach and based on a speci�c degrading

system, degradation models sometimes incorporate human errors. In Zhai et al.'s study

[103], an underlying Wiener process is used to model degradation in burn-in models (burn-in

refers to the initial period of operation for a system, during which it undergoes multiple tests

to identify potential issues or failures [5]). Human errors in the degradation measurements

are taken into account in these burn-in degradation models and are characterized by a

Gaussian distribution added to the degradation process. Moreover, Che et al.'s research

[16], show the interdependence between degrading systems and human errors induced by

system manipulation. In their article, degradation is modeled by a semi-Markov process

and human errors follow a non homogeneous Poisson process. However, human errors are

not considered in this manuscript, as the explored degradation models are more general

and not applied to a speci�c system whose degradation could be in�uenced by these types

of errors.
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1.1.2 Maintenance e�ect in degradation models

In order to contain degradation or avoid failures, systems undergo preventive or corrective

maintenances. Nowadays, an increasing number of degradation models consider mainte-

nance e�ects. Various types of maintenance actions can be performed on a degrading

system.

For instance, replacement of components can be carried out on the system when the

inspected degradation level exceeds a given threshold, or to prevent or respond to a failure.

These replacements can be partially performed. For example, only one or few components

of the system can be replaced while the other part of the system keeps deteriorating with

time. In [65], in the context of tra�c light systems of the Norwegian railway network, pro-

cesses approximated by virtual age models (such as ARA∞ and copula models, based on

multivariate distribution functions) are studied and compared to each other to model inde-

pendent industrial components in series con�guration. A failed component is automatically

replaced whereas the other components are minimally maintained.

In practice, repairs, excluding replacements, are often imperfect as the system does not

return to a brand-new state after the intervention. Various techniques are used to model

such e�ects. In [104], a degradation-rate function and a degradation-rate reduction factor

are considered to describe the maintenance e�ect. In [110], a time-scale transformation

function is included in the Wiener-based model to capture non-linearity in degradation and

an improvement factor characterizes the maintenance e�ect. Ma et al. [69] consider that all

the degradation model's parameters are random variables, and a residual damage coe�cient

is added to the degradation level after each maintenance. Furthermore, the degradation

level can also be directly reduced when maintenance is performed: In [63], degradation is

modeled by a Wiener process and the degradation level just after maintenance is a random

variable described by a beta distribution (which is a special case of the Dirichlet distribution,

[22]). Similarly, Kamranfar et al. [54] consider a Gamma process as a degradation model,

and the maintenance e�ect reduces degradation by a random quantity that follows a doubly

truncated gamma distribution (both left and right tails of the distribution are cut). In [18],

degradation levels right after imperfect maintenance follow an exponential distribution.

Using an exponential distribution for degradation value just after maintenance can be better

suited for practical situations and can simplify analysis and calculations [40].

Maintenance e�ects can also be presented as a reduction in the system's age. The

concept of virtual age, initially introduced by Kijima [56] in the context of survival analyses
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and reused in [28], when applied to degradation models, consists in reducing degradation

such that the system rejuvenates after repair. Based on this idea, Mercier et al. [73, 72]

propose the ARA1 model on a gamma process. In these last articles, each repair removes a

certain percentage of age accumulated since the last maintenance. Kahle et al. [50] consider

Kijima's approach to model the maintenance e�ect on a Wiener-based degradation model

describing both the reduction of degradation level and the reduction of virtual age. Wang

et al. [95] also use the ARA1 and ARA∞ model on a time scale adjustment model using a

multivariate Wiener process.

Mercier et al. [73] �rst introduced the ARD1 model (Arithmetic Reduction of Deterio-

ration of order 1) which involves reducing degradation at maintenance times by a certain

quantity, proportional to the degradation accumulated since the last maintenance action.

Based on this approach, Salles et al. [87] also use the ARD1 model on a non homogeneous

gamma process where ρ ∈ [0, 1] is the maintenance e�ciency parameter, i.e. the proportion

of the accumulated degradation since the last maintenance that is removed every time a

repair is performed. When ρ = 0, maintenance e�ect is minimal and degradation keeps

increasing as if no maintenance had been performed on the system. This speci�c situation

is called ABAO (As Bad As Old). On the opposite, when ρ = 1, the maintenance is optimal

and the system is like a new one after the maintenance. This situation is called AGAN (As

Good As New). More speci�cally, the ARD1-type maintenance e�ect on a given univariate

process {X(t)}t≥0 can be described as follows:

Let τ1, τ2, ..., τk be the maintenance times, i.e. times at which a maintenance is per-

formed. Let X(t) be the degradation level of a non-maintained system at time t. Let Y (t)

be the degradation level of a maintained system at time t and ρ ∈ [0, 1] the maintenance

e�ciency parameter, which equals zero when the maintenance e�ect is minimal. If main-

tenance actions are assumed to be instantaneous, let ∀ j ∈ {1, ..., k}, Y (τ−j ) and Y (τ+
j )

respectively be the degradation level right before and right after the jth maintenance at

time τj . If maintenance e�ects are ARD1-type, the degradation level just after the jth

maintenance is:

Y (τ+
j ) = (1− ρ) X(τj)

The value of degradation jumps Y (τ+
j )− Y (τ−j ) for all j ∈ {1, ..., k} at maintenance times

is proportional to the degradation accumulated since the last maintenance:
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Y (τ+
j )− Y (τ−j ) = −ρ (X(τj)−X(τj−1))

The arithmetic reduction of degradation is often used as a maintenance e�ect in the

literature: Corset et al. [21] model degradation using a gamma process, and maintenance

e�ect is ARD∞. Based on this model, the degradation level just after maintenance depends

on all the degradation accumulated since the very beginning of the system's deterioration

process. In [86], both ARD1 and ARD∞ are explored in the context of a gamma-based

degradation model. Lastly, in [85], a variance gamma process is used to model the leak-

age rate of a centrifugal pump, and maintenance e�ects decrease degradation by varying

percentages.

Hence, the literature on degradation models o�ers multiple stochastic processes to ef-

fectively model degradation over time. Speci�cally, these processes can be univariate or

multivariate, exhibiting varying degrees of dependency. They may be compound processes

based on di�erent distributions and can include various sets of parameters, which are not

necessarily homogeneous (i.e. constant over time). Covariates can also be taken into ac-

count in the degradation process. Additionally, maintenance e�ects are more and more

considered in this process. Many di�erent approaches have been proposed to capture this

notable shift in the evolution of system degradation. This diversity of degradation models

enables a precise description of the unique evolution of deterioration for each asset and its

response to maintenance interventions.

1.2 Statistical inference

After establishing an appropriate deterioration model, statistical inference can be conducted

to estimate the parameters of the model. For instance, in a Wiener-based degradation

model with imperfect maintenances, the theoretical values of both drift and variance of the

Wiener process along with the maintenance e�ciency parameter should be considered for

statistical inference. The chosen methods to estimate parameters rely on the selected model,

the number of involved parameters, their correlation and the available data. Deriving an

analytic writing of the estimators can be a complex task. Thus, numerical approaches can

be preferred in the parameters estimation process.
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1.2.1 Methods for inference

Statistical inference is often explored in the context of degradation models, where di�erent

techniques are employed to estimate the model parameters. As a reminder, in statistics, the

likelihood function represents the joint probability density function (PDF) of the observed

data as a function of the model parameters [48]. Maximum Likelihood Estimation (MLE),

further detailed in [48], is frequently used to estimate parameters of degradation processes.

The key concept is to determine optimal parameters that maximize the log-likelihood func-

tion given the observed data [51, 54, 109, 35, 21, 45]. In the article by Chuang et al.

[18], degradation levels after maintenance follow an exponential distribution that incorpo-

rates a recti�cation e�ort parameter estimated using the MLE method [24]. Additionally,

there are many alternative methods for parameter estimation. For instance, in [108], the

Expectation-Maximization (EM) algorithm is employed when degradation levels are not

observable after maintenances. Zhang et al. [104] use a quasi Monte-Carlo method, intro-

duced in [83], to evaluate �xed parameters of the model and a speci�c �ltering technique to

assess the maintenance e�ect. As mentioned earlier, [74] employ a bivariate gamma process

based on a trivariate reduction to model the leveling of a railway track. Given that the

likelihood's expression is more complex to optimize in this case compared to the likelihood

of a univariate process, both EM algorithm and MLE are employed to estimate all �ve

model parameters. Salles et al. article [87] estimates the maintenance e�ciency parameter

from an ARD1 model using a semiparametric method, as the estimation of this parameter

relies only on the data and not on the other parameters of the underlying Gamma pro-

cess. In [54], two di�erent maintenance e�ects are proposed for inference depending on

the available data: If the sample of degradation levels just before corrective maintenance

is available, then a reduction of the degradation is taken into account. Alternatively, if

only time durations of a maintenance cycle are available, a reduction in the system's age

is studied. In both scenarios, two speci�c likelihoods are derived and globally maximized,

even though this process can be time-consuming. Furthermore, the method of moments

is also quite popular for inference [9, 3, 86]. Grounded in the law of large numbers, this

intuitive method expresses the expectations of power of random variables as functions of

parameters. In [86], the method of moments and MLE are used to estimate the model's

parameters and are successively applied to the ARD1 and ARD∞ models. In addition,

various algorithms and numerical tools are employed to estimate parameter values. In [85],

in order to maximize the likelihood function, developed numerical functions are used, in-
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cluding numerical optimization algorithms such as the Nelder-Mead [78], the BFGS method

[12] and a Newton-type algorithm [34].

1.2.2 Observation schemes

Statistical inference relies on the observation scheme of the degradation levels. The likeli-

hood, being a function of the observed data, is directly in�uenced by the observed degrada-

tion values, thereby a�ecting parameter estimations. Hence, the amount of available data

as well as the chosen observation scheme can signi�cantly impact the quality of estimations.

The best scenario for modeling degradation occurs when degradation is under contin-

uous monitoring. This is particularly recommended for highly critical system that require

constant inspection of their condition. For instance, in practice, electrical car batteries or

the braking system of skyscraper elevators can undergo continuous monitoring. Although

this situation is rarely encountered due to its complexity and high cost, more engineering

devices are proposed to facilitate ongoing checks [61]. In the literature, the deterioration

of continuously monitored system can be taken into account in various degradation mod-

els [10, 60, 72]. In that situation, any alterations are promptly identi�ed in the system,

allowing interventions to be scheduled as soon as possible.

However, in many practical examples, systems are punctually monitored. As mentioned

earlier, inspection times are mainly discussed and optimized regarding degradation models.

In the literature, di�erent inspection time scheduling are considered to align models with

practical scenarios. For instance, degradation levels can be observed just before and after

maintenance actions, providing an optimal knowledge of the maintenance impact on degra-

dation [109]. However, this observation scheme is relatively uncommon in practice due to its

potential cost complexity. In cases such as [108], inference is conducted whether degradation

levels just after maintenance are observable or not. Real data from the electric industry,

like an electrical distribution device, are provided and degradation's value right after each

inspection need to be determined by the company's engineers. Additionally, degradation

levels can be inspected between maintenances and potentially right before a preventive or

corrective maintenance when observed degradation surpasses a certain threshold. In Zhang

et al. [104], the system is periodically monitored but fails when the degradation level ex-

ceeds a critical threshold. In other cases, like [74, 35, 85], the system is monitored at speci�c

time intervals. If the inspected degradation level exceeds a certain threshold, a preventive

maintenance is triggered. Consequently, inspections take place both between and before

preventive maintenances. More frequently degradation levels can also only be observed just
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before maintenances [87, 54, 21].

Therefore, statistical inference o�ers a better understanding of the degradation model

based on the available observations. Various methods are employed for estimating model

parameters, and many distinct observation schemes are considered. Yet, besides the speci�c

case of continuous monitoring, none of these mentioned examples consider simultaneously

multiple observation schemes for one unique degradation model with imperfect maintenance.

Nevertheless, in practice, inspection schemes can easily di�er from one maintenance to an-

other within the same asset. Moreover, considering another observation scheme can have

a signi�cant impact on parameter estimation, as it provides di�erent insights into degra-

dation and maintenance e�ects. Consequently, considering only one observation scheme

results in a limited analysis of statistical inference and does not align with many real-world

scenarios. That is why a novel approach to statistical inference, considering diverse obser-

vation schemes, should be undertaken based on a proposed degradation model in presence

of imperfect maintenance.

1.3 Maintenance policy and decision making

In the industrial �eld, a signi�cant challenge is establishing an e�cient maintenance policy

that contains degradation while minimizing �nancial costs. To achieve this goal, it is

necessary to conduct maintenance actions at the appropriate times, according to prede�ned

degradation thresholds. Many di�erent maintenance policies are explored and optimized in

the literature, based on various degradation models [49].

1.3.1 Maintenance strategies

Inspections and di�erent types of maintenance, such as preventive maintenances, preventive

or corrective replacements, can be considered in a maintenance policy, each associated to a

speci�c cost.

Usually, the type of maintenance action to trigger is initially determined by inspect-

ing the system state. Indeed, inspections are carried out to evaluate its condition and

eventually determining the appropriate timing for triggering repairs or replacements. In

practice, inspections are often performed periodically [30, 53, 104, 55, 11], regardless of

the system's current condition, making its implementation easier. Yet, to avoid costly

and premature inspections, it is sometimes more relevant to adjust their frequency. This
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involves determining the optimal inspection period or the optimal time for the next inspec-

tion that minimizes the inspection costs [37, 14, 4, 79, 15]. Speci�cally, various inspection

time functions, such as linear, convex or concave, whether deterministic [4] or random [79],

are proposed and optimized to determinate the next inspection time. In some practical

situations, inspections may require partial or total system shutdowns, incurring signi�cant

costs and time. For instance, in Hameed et al's article [41], inspections and other mainte-

nance activities are performed during the shutdown of systems, such as in process plants.

Thereafter, the optimization of this shutdown period involves minimizing the �nancial costs

associated with production loss, asset loss, and safety concerns. Additionally, inspections

can also cause damage to the system. In their article, Zhao et al [109] provide a relevant

example from Schneider Electric company where some electrical distribution devices are

subject to corrosion. Inspections can impact the surface treatments, leaving the system

more vulnerable to future corrosion and contributing to its degradation over time. Hence,

due to their cost, time constraints and potential adverse e�ects, inspections are not always

conducted frequently in real-world situations and their scheduling needs to be improved.

One the one hand, this lack of frequent inspection data entails a signi�cant challenge in

properly modeling degradation and anticipating eventual failures. On the other hand, poor

decision-making in inspection scheduling may result in an excessive number of scheduled

inspections, leading to an increased global inspection cost over a speci�c period and poten-

tially causing damage to the system. Hence, determining the inter-inspection frequency or

the timing of the next scheduled inspection are critical decisions that should be considered

when formulating the maintenance policy.

Moreover, in order to establish a maintenance strategy, one or several degradation

thresholds are given. By evaluating the degradation levels against these prede�ned thresh-

olds, one can determine the most suitable type of action to undertake. In [92, 47, 21, 99,

40, 80], similar maintenance policies are proposed. In these articles, degradation is modeled

by various processes such as Gamma processes, Wiener process or Markov process, and a

preventive or a corrective threshold are given. If degradation value is lower than the pre-

ventive threshold, then the system is left unchanged. If the inspected degradation value is

between the preventive and the corrective threshold, then a preventive maintenance is car-

ried out. If the inspected degradation level is beyond the corrective threshold, the system

fails and a corrective replacement of the system is triggered with an eventual downtime.

In the article [37], the maintenance policy is slightly di�erent. This time, if the inspected

degradation value is located between the preventive and corrective threshold then a pre-
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ventive replacement is carried out. In [111], one threshold is presented and two types of

maintenances are described: the preventive replacement when the inspected degradation

levels remains below the unique threshold and corrective replacement when the inspection's

value exceeds this threshold. Likewise, in the study by Xuping et al. [100], only preventive

and corrective replacements are considered, such that each maintenance initiates a new life

cycle for wind turbine equipment. In [46], the RUL, i.e. the distribution of the remain-

ing lifetime of a system before failure, is studied and helps to determine the maintenance

policy. In this article, a single threshold is de�ned. If inspected degradation is below this

threshold, then two options are considered: either the RUL estimated standard deviation

is less than a prede�ned value, the system's RUL is predicted to schedule the next mainte-

nance. Conversely, if the estimated RUL standard deviation exceeds the prede�ned value,

more inspections are required for a better RUL prediction. Furthermore, when inspired

by practical scenarios, maintenance policies must take into account the unique character-

istics of the case study. For instance, in [11] an Italian Railway track-line is considered

and the vertical and horizontal alignment of the tracks are studied. Then, two alignment

quality thresholds are given. If the tracks alignment is still considered in good condition,

then no maintenance need to be performed. If the length of alignment gap exceeds the

�rst threshold, a maintenance is strongly recommended. If the alignment quality is really

deteriorated or exceeds the second threshold, then a maintenance needs to be performed

in a limited time frame. In [60], the degradation of a multi-state system is represented

through a continuous-time Markov process. Two observation schemes are considered, one

discrete and the other continuous. Under the sequential observation scheme, either a failure

is observed and a corrective maintenance is performed, or the system is still working and

is left unchanged. In the continuous observation scheme, inspections are perfect, i.e. every

change in the system state is detected. Depending on the observed degradation state, the

system can undergo either minimal repair or preventive replacement.

After evaluating various maintenance approaches, the maintenance cost is computed

and its asymptotic form per time unit minimized, helping in the decision-making process

for selecting an appropriate maintenance policy.

1.3.2 Cost optimization and optimal decision variables

Every type of intervention carried out on the system to maintain or just observe degradation,

such as inspections, preventive maintenances or replacements entails a speci�c cost. Over

the system's entire lifespan, one can properly choose the decision variables in order to
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minimize the overall cost of these operations. For instance, periods between inspections,

values of degradation thresholds or parameters associated with the degradation process can

be evaluated to align with cost optimization goals.

First of all, a global maintenance cost c(t), which encompasses costs related to all

the maintenance actions performed on a system over a speci�c period of time [0, t], needs

to be assessed to properly evaluate optimal maintenance policies thereafter. To achieve

this purpose, various approaches are proposed in the literature. Speci�cally, regenerative

properties, initially detailed in [89], and semi-regenerative properties of stochastic processes

[70] are widely employed. Regenerative properties specify that the stochastic process has

regeneration states, where it resets to its initial state or to a state similarly distributed as the

initial one. Moreover, a semi-regenerative process does not fully reset to its initial state as

it shares some regenerative properties but considers a dependency between the regeneration

states. Based on the regenerative properties and the renewal theory, introduced in [33, 27],

and applied to Markov processes in [19], it follows that the asymptotic cost per time unit

lim
t→+∞

c(t)
t equals the expectation of the cost over the regenerative period T divided by the

expectation of this period, expressed as lim
t→+∞

c(t)
t = E[c(T )]

E[T ] . These properties help assessing

precisely this cost rate. For instance, numerical methods, as the popular Monte Carlo

simulations [75], when used to simulate degradation trajectories over multiple regenerative

periods, enable the evaluation of this cost rate. Furthermore, in Cocozza's work [20], the

asymptotic cost per time unit can also be computed between two inspections, considering

this time semi-regenerative properties.

In the literature, various maintenance policies are suggested and optimized by mini-

mizing the asymptotic maintenance cost per time unit, often based on di�erent decision

variables such as inter-inspection intervals and preventive thresholds. For instance, in the

already mentioned work by Huynh et al. [47], they aim to minimize costs by adjusting

the timing of inspections and preventive replacements of the system. Van's study [92] in-

troduces the (M,Q) policy, where M de�nes the preventive threshold, and inspections are

scheduled so that the probability of failure before the next inspection falls below a de�ned

limit Q. In Grall et al. [37], the (m(X),M) policy is optimized where, this time, m(X)

is the inter-inspection time function, gradually decreasing until a preventive replacement

is performed. As the system's condition worsens, more frequent monitoring becomes es-

sential. In Zhu's work [111], the frequency of the inspections is also taken into account in

the policy (Θ, b, Lp). Θ denotes the initial inspection time, b controls the change in inspec-

tion frequency and Lp is the preventive threshold. In [46] more parameters are included in
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the studied policies. In this paper, one of the examined maintenance policy is denoted as

(γ, σ, α, τ), with γ representing the inspection period, σ as the empirical standard deviation

threshold of the RUL, α as the probability of the RUL not to exceed a certain value and

τ a time threshold beyond which a repair should be conducted. In [99], the life cycle cost

is optimized according to the inter-inspection time and the prede�ned degradation level

right after repair. This paper highlights that extending the inter-inspection time interval

raises the risk of potential system failure. It is observed that the degradation level after

an preventive repair can be lowered when increasing the cost of condition monitoring. In

Grall et al.'s paper [36] a multi-threshold policy structure is considered. In this article,

the threshold determines the time of the next inspection. Speci�cally, as the system de-

teriorates more, the time until the next inspection shortens. If the inspected degradation

falls within the prede�ned "inspection zone" thresholds, the system remains as it is, and

another inspection is scheduled based on these thresholds. However, if the degradation

level exceeds the preventive threshold, a preventive replacement is carried out, and if it

exceeds the corrective threshold, a corrective replacement is performed. In this article,

various maintenance policies are studied, aiming to minimize the cost by considering the

number of thresholds and the speed of the system deterioration. It appears that for slowly

deteriorating systems, a high number of thresholds is favored, but their values must be care-

fully chosen for decision making. In cases of accelerated deterioration, the earlier the next

inspection are scheduled and the weaker the thresholds values must be chosen. This multi-

threshold policy is also explored in Castanier et al.'s work [14]. This time, preventive repairs

involving a restarting threshold are considered and each type of maintenance (inspections,

repairs and replacements) takes a non-negligible time. Consequently, an unavailability cost

must be taken into account into the life cycle cost analysis, which is optimized based on

both the preventive and restarting thresholds. In [29], wind turbines data coming from

German wind farms are analyzed. The study employs stochastic di�erential equations to

describe the degradation model of these turbines. When the system experiences failures

before its scheduled maintenance, corrective maintenance actions are undertaken. As an

alternative, if the system remains operational until its planned maintenance, preventive

maintenance procedures are executed. Then, various costs coe�cients are considered, such

as the repair cost after failure, the preventive maintenance cost, the eventual downtime

cost and �nancial losses resulting from the interruption of power generation during a wind

turbine maintenance. In another �eld, crest-level of Dutch dikes tend to sink away into

the sea due to various environmental factors, needing regular heightening. To model these
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crest-level declines, Speijker et al. [90] propose models, including both linear and non-linear

ones represented by mixtures of exponential densities. Two costs are considered: a �xed

cost for mobilization and road reconstruction and a variable cost estimated per cubic me-

ter of dike volume. This study focuses on computing the optimal dike heightening based

on crest-level decline and evaluating the �nancial requirements for upcoming maintenance.

In [68], a multi-component model is introduced including update parameters. Multiple

repairable components are taken into account. Each component undergoes di�erent main-

tenance actions based on its degradation level after inspection. Components can either be

subject to preventive maintenance, replacement or can be left unchanged. Opportunistic

maintenances entail the system shutdown. Then, the system's downtime is determined by

the longest unavailability time among all components. A cost value is associated to each

of these maintenances. The study shows that using this proposed model with updated

parameters leads to smaller expected maintenance costs compared to other models such as

a one-component Wiener-based degradation model.

Hence, maintenance costs assessment and the optimization of maintenance policies are

widely explored in the literature on degradation modeling. Various methodologies are

proposed to evaluate maintenance costs over speci�c periods and subsequently optimize

maintenance strategies based on selected decision variables. The complexity of cost assess-

ment and the methods proposed for it depend on the chosen degradation model and the

prede�ned inspection scheme. Therefore, the derived optimized policies will be in�uenced

by these factors. To my knowledge, the e�ect of the location of the inspections (whether

degradation is inspected before or after imperfect maintenance) on cost assessment and

the derived optimal policies has not yet been studied. This impact, as well as adapted

methodologies, should be further explored in the context of degradation modeling.
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1.3.3 Conclusion on modeling, inference and decision-making for degra-

dation with imperfect maintenance

A signi�cant challenge consists in constructing a degradation model, relevant to practi-

cal need. This model should apprehend deterioration of possible dependent components

within a single system. In literature, degradation models typically assume that mainte-

nance a�ects the entire system, whereas in practice, it often only impacts certain parts

of the system. Furthermore, from my understanding of literature on degradation models,

statistical inference on degradation models with imperfect maintenance is consistently stud-

ied under one speci�c observation scheme, which describes the location of the inspection

along the degradation trajectory. However, in practice, many di�erent inspection schemes

can be employed within a single system from one maintenance action to another . Thus,

the considered model should take into account realistic maintenance and inspection scenar-

ios and handle statistical inference under di�erent observation schemes using appropriate

methods. Furthermore, maintenance policies can be suggested and speci�c methods should

be proposed to enable the evaluation of the asymptotic cost per time unit. The impact

of model parameters, chosen cost coe�cients and the inspection scheme on the derived

optimal policies should be considered.

This manuscript presents an initial degradation model involving maintenance e�ects,

relying on an univariate stochastic process. In practical situations, degradation levels are

mostly identi�ed through inspections conducted at di�erent times on the system. One issue

consists in �nding a model adaptable to any of these scenarios. Chapter 2 details a uni-

variate Wiener-based degradation model that considers all these observation con�gurations,

studying statistical inference corresponding to these di�erent schemes.

As previously mentioned, di�erent components, more or less interdependent, can undergo

degradation within a single system. Maintenance actions frequently a�ect speci�c com-

ponents rather than the entire system. In Chapter 3, a realistic degradation model with

partial maintenance e�ects is introduced. This new model is based on a bivariate Wiener

process and inference is studied according to a general observation scheme that includes all

possible inspection policies.

Based on that new model, an inspection/replacement policy is established in Chapter 4.

The asymptotic cost per time unit is assessed thanks to a new method that combines

analytic and numerical results. Eventually, numerical studies are carried out to optimize

the suggested maintenance strategy, analyzing the in�uence of model parameters, cost
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coe�cients and inspection scheme on the optimal policy.
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Chapter 2

A Wiener-based degradation model

with imperfect maintenance actions

and under di�erent observation

schemes

In this chapter, technological or industrial equipment that are subject to degradation are

considered. These units undergo maintenance actions, which aim to reduce their degrada-

tion level. The following sections consider a degradation model with imperfect maintenance

e�ect. The underlying degradation process is a Wiener process with drift. The mainte-

nance e�ects are described with an Arithmetic Reduction of Degradation ARD1 model.

The system is regularly inspected, during which the degradation levels are measured. Four

di�erent observation schemes are considered, allowing degradation levels to be observed

between maintenance actions, as well as just before or just after maintenance times. This

chapter focuses on studying the estimation of the model parameters under four observation

schemes. Maximum likelihood estimators are derived for each scheme. The quality of the

estimations and the observation schemes are compared through an extensive simulation and

performance study.

The chapter is structured as follows. In Section 2.1, the Wiener-based ARD1 model

and the four selected observation schemes are introduced. The statistical inference of the

model based on these observation schemes is examined in Section 2.2. The quality of

the estimations and a comparative analysis of the observation schemes are explored in

Section 2.3. Concluding remarks are provided in Section 2.4.
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2.1 The Wiener-based ARD1 model

This section presents the degradation model and the observation schemes used in the paper.

The underlying degradation process is a Wiener process. The e�ect of maintenance is

an arithmetic reduction of degradation, expressed by the ARD1 model. Four observation

schemes are considered, depending on the observations made (or not) at maintenance times.

Finally, the notations used in the paper are presented.

2.1.1 The underlying degradation process

Let X(t) be the degradation level at time t of a system which is not maintained. X =

{X(t)}t≥0 is called the underlying degradation process. In this paper, X is assumed to

be a Wiener process with drift. This process is commonly used in degradation modeling,

especially in order to take into account the possibility of non strictly increasing degradation

paths.

Therefore, ∀t ≥ 0, X(t) = µ t+ σ B(t) where B is a standard Brownian motion. µ > 0

is a drift parameter and σ2 is a variance parameter. The Wiener process is such that:

� X(0) = 0 almost surely.

� The increments are independent. ∀s1 < t1 < s2 < t2, X(t1)−X(s1) andX(t2)−X(s2)

are independent.

� The increments are normally distributed. ∀s < t, X(t)−X(s) has the normal distri-

bution N
(
µ (t− s), σ2 (t− s)

)
. In particular, X(t) ∼ N (µ t, σ2 t).

2.1.2 The e�ect of maintenance

The system is observed from time 0 to a certain time τ . Between 0 and τ , k maintenance

actions (or repairs) are performed at times τ1 < τ2, ..., < τk. Maintenance durations are

assumed to be negligible or not taken into account. To simplify the mathematical writing,

let τ0 = 0 and τk+1 = τ .

An e�cient maintenance is expected to reduce the degradation level. Let Y (t) be the

degradation level at time t of the maintained system. Y = {Y (t)}t≥0 is the degradation

process of the maintained system. We have to express Y as a function of the underlying

degradation process X. In [73], Mercier and Castro used both ARD1 (Arithmetic Reduc-

tion of Degradation) and ARA1 models. For this last model, they needed to introduce
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independent copies X(i) of X. In the present paper, we consider only the ARD1 model, so

only one copy of X is needed.

The ARD1 assumption is that the e�ect of maintenance is to reduce the level of degra-

dation of a quantity which is proportional to the level of degradation accumulated since

the last maintenance. Let ρ ∈ [0, 1] be the coe�cient of proportionality, which is called the

maintenance e�ect parameter.

Before the �rst maintenance, both X and Y processes are identical:

∀t ∈ [0, τ1[, Y (t) = X(t)

Let Y (τ−1 ) be the degradation level just before the �rst maintenance action, so that

Y (τ−1 ) = X(τ1). The e�ect of the �rst maintenance at τ1 is to reduce the degradation level

Y (τ−1 ) of a quantity ρ
[
Y (τ−1 )− Y (0)

]
= ρY (τ−1 ). Therefore, the degradation level just

after τ1 is

Y (τ+
1 ) = Y (τ−1 )− ρY (τ−1 ) = (1− ρ)Y (τ−1 ) = (1− ρ)X(τ1) (2.1)

After the �rst maintenance action, the system is deteriorating according to X and we

have

∀ t ∈ [τ1, τ2[, Y (t) = Y (τ+
1 ) +X(t)−X(τ1) = X(t)− ρX(τ1)

Just after the second maintenance action we have

Y (τ+
2 ) = Y (τ−2 )− ρ[Y (τ−2 )− Y (τ+

1 )] (2.2)

= X(τ2)− ρX(τ1)− ρ[X(τ2)−X(τ1)] = (1− ρ)X(τ2)

By recurrence, it follows that ∀ t ∈ [τj−1, τj [

Y (t) = Y (τ+
j ) + [X(t)−X(τj)] = X(t)− ρX(τj) (2.3)

The e�ect of maintenance at time τj is expressed by the degradation jump Zcj , di�erence

between the degradation level after and before maintenance

Zcj = Y (τ+
j )−Y (τ−j ) = (1−ρ)X(τj)− [X(τj)− ρX(τj−1)] = −ρ [X(τj)−X(τj−1)] (2.4)
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2.1.3 Observation schemes

The system is regularly inspected and the degradation levels are measured. Potentially,

the degradation level can be measured either at maintenance times (just before and/or just

after) and/or between maintenance actions.

Let nj be the number of observations of the degradation levels on ]τj−1, τj [, i.e. between

two successive maintenance times. It is possible that nj= 0. When nj≥ 1, the corresponding

observation times are denoted tj,1 < tj,2 < ... < tj,nj . Let N=
k+1∑
j=1

nj , i.e. the total number

of observations of the degradation levels between maintenance times.

For observations made at maintenance times, ∀ j ∈ {1, ..., k+ 1} let us denote tj,nj+1 =

τj = tj+1,0. Therefore, in [τj−1, τj ], we have potentially nj+2 observations, at times

τj−1 = tj,0 < tj,1 < tj,2 < ... < tj,nj < tj,nj+1 = τj . The subscript j in these notations

means that τj corresponds to the last observed maintenance time. Consequently,

Y (tj+1,0) = Y (τ+
j ) and Y (tj,nj+1) = Y (τ−j )

The observations are the levels of degradation Y (tj,i) at times tj,i, ∀ j ∈ {1, ..., k + 1},
∀i ∈ {0, ..., nj + 1}. Considering the independence of increments in the Wiener process,

the quantities of interest are the observed increments of degradation. The time intervals

between observations are denoted ∆tj,i= tj,i− tj,i−1,∀ j ∈ {1, ..., k+ 1}, ∀i ∈ {1, ..., nj + 1}.
The degradation increments are denoted ∆Yj,i = Y (tj,i) − Y (tj,i−1), ∀ j ∈ {0, ..., k}, ∀i ∈
{1, ..., nj + 1}.

The ideal situation is when all the degradation measures can be made, at maintenance

times (before and after) and between maintenance times. This situation of complete mea-

surements is called �complete observation scheme� in the following. In this case, the jumps

Zcj = Y (τ+
j )− Y (τ−j ) are observed.

Figure 2.1 represents an example of trajectory of the degradation process for the com-

plete observation scheme. In this example, maintenance actions are done periodically each

5 time units. Each point is an observed degradation level. The blue lines are the successive

mean degradation paths after maintenance actions.

In Figure 2.1, ∀ j ∈ {1, ..., k + 1}, tj,nj+1 = τj = tj+1,0. Y (τ−j ) and Y (τ+
j ) are respec-

tively the degradation levels that happen just before and just after the jth maintenance.

Thus, Y (τ−j ) is observed just before Y (τ+
j ) at time τj . In the same way, Y (tj,nj+1) is

observed just before Y (tj+1,0).
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Figure 2.1: A trajectory of the degradation process and notations used
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In practice, it may happen that it is not possible to observe all or part of the degradation

levels at maintenance times. In this case of incomplete measurements, the real degradation

jumps Zcj cannot be observed. Instead, other kinds of jumps are observed, which will be

de�ned in next section. In this paper, we consider the complete observation scheme as well

as three incomplete observation schemes. So four observation schemes are studied. In the

observation scheme m, the observed jump around the jth maintenance is denoted Zsj .

� Complete observation scheme: The degradation levels are observed just before and

just after each maintenance action.

� Second observation scheme: The degradation levels are observed just before each

maintenance action but not just after.

� Third observation scheme: The degradation levels are observed just after each main-

tenance action but not just before.

� General observation scheme: The degradation levels are not observed neither just

before nor just after each maintenance action.

A summary of all the notations used in the paper is given hereafter.

2.2 Statistical inference

The aim of this section is to estimate the three parameters of the Wiener-based ARD1

model under the four observation schemes. Let us recall that µ is a drift parameter, σ2 is

a variance parameter and ρ is the maintenance e�ect parameter.

We use the maximum likelihood method, from the observation of the degradation process

on [0, τ ]. The four observation schemes described previously lead to di�erent writings of

the likelihood and therefore to di�erent estimators of the parameters.

There are two kinds of observations, the increments of degradation and the observed

jumps around maintenance times. Therefore, the likelihood L(µ, σ2, ρ) has two parts.

Thanks to the independence of the increments of the Wiener process, the part linked to

degradation increments is the product of the densities of these increments. The part linked

to degradation jumps is more complex and will be studied in each observation scheme.
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Finally, a general expression of the likelihood is

L(µ, σ2, ρ) =

∏
j

∏
i

f∆Yj,i(∆yj,i)

 ∏
j

fZsj |Osτ−
j

(zsj ) (2.5)

where Os
τ−j

is the history of the observed degradation process just before τj , i.e. the σ-

algebra generated by the increments and observed jumps before the jth maintenance for

the observation scheme s. Moreover, the increments ∆Yj,i have a normal distribution

N (µ∆tj,i , σ
2∆tj,i). Therefore, the main problem is to determine in each scheme the

conditional distribution of the observed degradation jumps Zsj given the past.

2.2.1 Complete observation scheme

In this complete observation scheme, the degradation levels are both observed just before

and just after each maintenance action. A simulated trajectory of the degradation pro-

cess is presented in Figure 2.2. The black points are the observed degradation levels. In

this example, the maintenance actions are made periodically each 5 time units and the

observations of the degradation levels between maintenance actions are made periodically

each 1 time unit. The values of the parameters are µ = 2, σ2 = 2 and ρ = 0.5. k = 3

maintenance actions are done, n = 24 observations of the degradation levels are made

and ∀ j ∈ {1, 2, 3, 4}, nj= 4. The �rst degradation level y(t1,0) = 0 is considered as an

observation.

Figure 2.2: Complete scheme: a trajectory of the degradation process
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All the degradation increments ∆Yj,i are observed, ∀ j ∈ {1, ..., k+1} , ∀ i ∈ {1, ..., nj+

1}. ∀ j ∈ {1, ..., k}, the real degradation jumps Zsj are observed. Therefore, the likelihood

(2.5) is:

L1(µ, σ2, ρ) =

k+1∏
j=1

nj+1∏
i=1

f∆Yj,i(∆yj,i)

 k∏
j=1

fZcj |O1

τ−
j

(zcj) (2.6)

Here ∀j ∈ {1, ..., k},
O1
τ−j

= {∆y1,1, ...,∆y1,n1+1, z
1
1 ,∆y2,1, ..., ,∆yj−1,nj−1+1, z

1
j−1,∆yj,1, ...,∆yj,nj+1}

From (2.4), we have for all j:

Zcj = −ρ [X(τj)−X(τj−1)] = −ρ
nj−1+1∑
i=1

∆Yj,i (2.7)

Thus, given O1
τ−j
, Zcj is completely known. Zcj | O1

τ−j
follows a Dirac distribution:

fZcj |O1

τ−
j

(zcj) = 1{
zcj= −ρ

nj−1+1∑
i=1

∆yj,i

}

Therefore, the model is meaningful, under this complete observation scheme, only if all

the quantities
zcj

nj−1+1∑
i=1

∆yj,i

are equal (equal to −ρ). This seems obviously very unlikely in

practical situations. So in the following, we will not consider the estimation of ρ. µ and σ2

are estimated by maximizing the likelihood

L1

(
µ, σ2

)
=

k+1∏
j=1

nj+1∏
i=1

1√
2πσ2∆tj,i

exp

(
−(∆yj,i − µ∆tj,i)

2

2σ2∆tj,i

)
(2.8)

Straightforward computations lead to the maximum likelihood estimators of µ and σ2

µ̂ =

k+1∑
j=1

nj+1∑
i=1

∆Yj,i

k+1∑
j=1

nj+1∑
i=1

∆tj,i

=
1

τ

Y (τ)−
k∑
j=1

Zcj

 (2.9)
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σ̂2 =
1

N + k + 1

k+1∑
j=1

nj+1∑
i=1

(∆Yj,i − µ̂∆tj,i)
2

∆tj,i
(2.10)

Note that µ̂ = X(τ)/τ , so µ̂ is an unbiased estimator of µ. Furthermore σ̃2 =
N + k + 1

N + k
σ̂2

is an unbiased estimator of σ2 (proof in Appendix A.2)

2.2.2 Second observation scheme

In this scheme, the degradation levels just before maintenance actions Y (τ−j ) are observed,

but the degradation levels just after maintenance actions Y (τ+
j ) are not observed. This

situation is illustrated in Figure 2.3. In this �gure, we have used the same trajectory of

the degradation process as in Figure 2.2, but we considered that the degradation levels just

after maintenance actions Y (τ+
j ) are not observed. The jumps at maintenance times and

the �rst degradation increments after maintenance are not observed, so they are represented

with dotted lines. The values of the parameters µ, σ2, ρ, the number of maintenance actions

k and the number of observations between maintenance actions {nj}0≤j≤3 are the same as

in Figure 2.2, but the number of observed data is now n = 21.

Figure 2.3: Second scheme: a trajectory of the degradation process

The studies in [87, 54] assume that only the degradation levels just before maintenance

actions are observed. This corresponds to this second observation scheme in the particular
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case where ∀j, nj= 0. In this case, the observed jumps are the only observations

Z2
j = Y (τ−j+1)− Y (τ−j ) = X(τj+1)−X(τj)− ρ [X(τj)−X(τj−1)]

which have the N
(
µ(τj+1 − τj)− µρ(τj − τj−1) , σ2(τj+1 − τj) + σ2ρ2(τj − τj−1)

)
distri-

bution.

Note that the ∆Yj,1 ∀j ∈ {2, .., k + 1} are not observed but the �rst increment ∆Y1,1 is

observed. Thus, the history of the process at τ−j is ∀j ∈ {1, ..., k},
O2
τ−j

= {∆y1,1,∆y1,2, ...,∆y1,n1+1, z
2
1 ,∆y2,2, ...,∆yj−1,nj−1+1, z

2
j−1,∆yj,2, ...,∆yj,nj+1}

The real degradation jumps Zcj = Y (τ+
j )− Y (τ−j ) are not observed. Instead, the observed

jump around the jth maintenance is

Z2
j = Y (tj+1,1)− Y (τ−j ) = Y (tj+1,1)− Y (τ+

j ) + Y (τ+
j )− Y (τ−j )

= ∆Yj+1,1 + Zcj = ∆Yj+1,1 − ρ
nj+1∑
i=1

∆Yj,i

= ∆Yj+1,1 − ρ∆Yj,1 − ρ
nj+1∑
i=2

∆Yj,i (2.11)

In the likelihood, we need to compute the conditional PDF of Z2
j given O2

τ−j
. Since

∆Yj,1 is not independent of O2
τ−j
, the computation of this conditional distribution could be

complex.

However, the computation can be simpli�ed in this case because, thanks to the properties

of the ARD1 model, the missing value Y (τ+
j ) can be computed as a function of the already

observed values and ρ.

At time zero, Y (τ0) = 0. From (2.1), Y (τ+
1 ) = (1− ρ) Y (τ−1 ). From (2.2),

Y (τ+
2 ) = Y (τ−2 )− ρ

[
Y (τ−2 )− Y (τ+

1 )
]

= (1− ρ)Y (τ−2 ) + ρ (1− ρ) Y (τ−1 )

By recurrence, it follows that ∀ j ∈ {1, ..., k}

Y (τ+
j ) = (1− ρ)

j∑
i=0

ρj−i Y (τ−i ) (2.12)
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Therefore, ∀ j ∈ {1, ..., k}, the observed jump Z2
j can be written

Z2
j = ∆Yj+1,1 + Y (τ+

j )− Y (τ−j ) = ∆Yj+1,1 + (1− ρ)

j∑
i=0

ρj−i Y (τ−i )− Y (τ−j )

= ∆Yj+1,1 − ρY (τ−j ) + (1− ρ)

j−1∑
i=0

ρj−i Y (τ−i ) (2.13)

Equation (2.13) is much easier to use than (2.11) because ∆Yj,1 is independent of O2
τ−j

and

conditionnally to O2
τ−j
, the Y (τ−i ) for i ≤ j are observed. So the conditional distribu-

tion of Z2
j given O2

τ−j
is the N

(
µ ∆tj+1,1 − ρ y(τ−j ) + (1− ρ)

j−1∑
i=1

ρj−i y(τ−i ), σ2∆tj+1,1

)
distribution.

Finally, the likelihood for the second observation scheme is

L2

(
µ, σ2, ρ

)
=

k+1∏
j=1

nj+1∏
i=1+1j>1

f∆Yj,i(∆yj,i)

 k∏
j=1

fZ2
j |O2

τ−
j

(
z2
j

)
(2.14)

From Equation (2.13), for all j, z2
j − µ ∆tj+1,1 + ρ y(τ−j ) − (1 − ρ)

j−1∑
i=1

ρj−i y(τ−i ) =

y(tj+1,1)− µ ∆tj+1,1 − (1− ρ)
j∑
i=1

ρj−i y(τ−i ). Therefore, the log-likelihood is derived as

lnL2

(
µ, σ2, ρ

)
=− N + k + 1

2
lnσ2 + c1 −

1

2σ2

[ k+1∑
j=1

nj+1∑
i=1+1j>1

(∆yj,i − µ∆tj,i)
2

∆tj,i

+

k∑
j=1

1

∆tj+1,1

(
y(tj+1,1)− µ∆tj+1,1 − (1− ρ)

j∑
i=0

ρj−iy(τ−i )

)2 ]
(2.15)

where c1 is a constant.

Deriving the log-likelihood, the maximum likelihood estimators µ̂, σ̂2 and ρ̂ are obtained

as the solutions of the likelihood equations system, as follows.

57



µ̂ =
1

τ

Y (τ) + ρ̂

k∑
j=1

Y (τ−j )− (1− ρ̂)

k∑
j=1

j−1∑
i=0

ρ̂j−iY (τ−i )

 (2.16)

Moreover, let us notice that
k∑
j=1

j−1∑
i=0

ρ̂j−iY (τ−i ) =
k−1∑
i=1

k∑
j=i+1

ρ̂j−iY (τ−i ) and

(1− ρ̂)
k−1∑
i=1

 k∑
j=i+1

ρ̂j−i

Y (τ−i ) =
k−1∑
i=1

 k∑
j=i+1

ρ̂j−i −
k∑

j=i+1

ρ̂j−i+1

Y (τ−i )

=

k−1∑
i=1

(ρ̂− ρ̂k−i+1)Y (τ−i )

Since Y (τ) + ρ̂
k∑
j=1

Y (τ−j ) = Y (τ−k+1) + ρ̂Y (τ−k ) + ρ̂
k−1∑
j=1

Y (τ−j ) then,

Y (τ) + ρ̂
k∑
j=1

Y (τ−j )− (1− ρ̂)
k∑
j=1

j−1∑
i=1

ρ̂j−i Y (τ−i ) = Y (τ−k+1) + ρ̂ Y (τ−k ) +
k−1∑
i=1

ρ̂k−i+1 Y (τ−i )

Thus, µ̂ =
1

τ

k+1∑
i=1

ρ̂k−i+1 Y (τ−i ) (2.17)

σ̂2 =
1

N + k + 1


k+1∑
j=1

nj+1∑
i=1+1j>1

(∆Yj,i − µ̂ ∆tj,i)
2

∆tj,i
+

k∑
j=1

(
Y (tj+1,1)− µ̂ ∆tj+1,1 − (1− ρ̂)

j∑
i=0

ρ̂j−iY (τ−i )

)2

∆tj+1,1


(2.18)
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k∑
j=1

1

∆tj+1,1

[
j∑
i=0

ρ̂j−i−1Y (τ−i )[(1− ρ̂)(j − i)− ρ̂]

][
Y (tj+1,1)− µ̂∆tj+1,1 − (1− ρ̂)

j∑
i=0

ρ̂j−iY (τ−i )

]
= 0

(2.19)

These estimators can equivalently be obtained using the pro�le likelihood method. The

maximum likelihood estimator ρ̂ is equal to arg maxρ lnL2(µ̂(ρ), σ̂2(ρ), ρ) where µ̂(ρ) and

σ̂2(ρ) are obtained using Equations (2.17) and (2.18) replacing ρ̂ and µ̂ by ρ and µ̂(ρ).

Using Equations (2.15) and (2.18), one can easily show that the pro�le log-likelihood can

be written

ln L2(µ̂(ρ), σ̂2(ρ), ρ) = −N + k + 1

2

[
ln σ̂2(ρ) + 1

]
+ c1

Then, the maximum likelihood estimator of ρ can be viewed as the value of ρ which mini-

mizes the estimated variance of the underlying degradation process when ρ is supposed to

be known.

Biases of these estimators are computed in Appendix A.2.

2.2.3 Third observation scheme

In this scheme, the degradation levels just after maintenances Y (τ+
j ) are observed, but the

degradation levels just before maintenance actions Y (τ−j ) are not observed. This situation

is illustrated in Figure 2.4. As for Figure 2.3, we have used the same trajectory of the

degradation process as in Figure 2.2, but we considered that the degradation levels just

before maintenance actions Y (τ−j ) are not observed. This is illustrated by dotted lines

in Figure 2.4. In order to keep the notations homogeneous, we also assume that the last

degradation level Y (τ) is not observed, so the last observation is Y (tk+1,nk+1
). The values

of µ, σ2, ρ, k and {nj}1≤j≤4 are the same as before, but the number of observed data is now

n = 20.

Here, none of the ∆Yj,nj+1 ∀j ∈ {1, .., k} are observed. In this case, the history of the

process at τ−j is also the history of the process at tj,nj : ∀j ∈ {1, ..., k},
O3
τ−j

= O3
tj,nj

= {∆y1,1, ...,∆y1,n1 , z
3
1 ,∆y2,1, ...,∆yj−1,nj−1 , z

3
j−1,∆yj,1, ...,∆yj,nj}

The real degradation jumps Zcj = Y (τ+
j )− Y (τ−j ) are not observed. Instead, the observed
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Figure 2.4: Third scheme: a trajectory of the degradation process

jump around the jth maintenance is

Z3
j = Y (τ+

j )− Y (tj,nj ) = Y (τ+
j )− Y (τ−j ) + Y (τ−j )− Y (tj,nj )

= Zcj + ∆Yj,nj+1 = −ρ
nj+1∑
i=1

∆Yj,i + ∆Yj,nj+1

= −ρ
nj∑
i=1

∆Yj,i + (1− ρ) ∆Yj,nj+1 (2.20)

∆Yj,nj+1 is independent of O3
τ−j
. So the conditional distribution of Z3

j given O3
τ−j

is the

N
(
µ(1− ρ)∆tj,nj+1 − ρ

nj∑
i=1

∆yj,i , σ
2(1− ρ)2∆tj,nj+1

)
distribution.

Finally, the likelihood for the third observation scheme is

L3

(
µ, σ2, ρ

)
=

k+1∏
j=1

nj∏
i=1

f∆Yj,i(∆yj,i)

 k∏
j=1

fZ3
j |O3

tj,nj

(z3
j ) (2.21)
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The log-likelihood is derived as

lnL3

(
µ, σ2, ρ

)
= −N + k

2
lnσ2 + c2 − k ln(1− ρ)− 1

2σ2

[
k+1∑
j=1

nj∑
i=1

(∆yj,i − µ∆tj,i)
2

∆tj,i

+
1

(1− ρ)2

k∑
j=1

1

∆tj,nj+1

(
z3
j − µ(1− ρ)∆tj,nj+1 + ρ

nj∑
i=1

∆yj−1,i

)2 ]
(2.22)

where c2 is a constant.

Deriving the log-likelihood, the maximum likelihood estimators µ̂ and σ̂2 are obtained as

the solutions of the likelihood equations system, as follows.

µ̂ =
1

tk+1,nk+1

k+1∑
j=1

nj∑
i=1

∆Yj,i +
1

1− ρ̂

k∑
j=1

(
Z3
j + ρ̂

nj∑
i=1

∆Yj,i

) (2.23)

σ̂2 =
1

N + k


k+1∑
j=1

nj∑
i=1

(∆Yj,i − µ̂ ∆tj,i)
2

∆tj,i
+

k∑
j=1

(
Z3
j − µ̂ (1− ρ̂)∆tj,nj+1 + ρ̂

nj∑
i=1

∆Yj,i

)2

(1− ρ)2∆tj,nj+1


(2.24)

One can show that µ̂ can also be written (see Appendix A.1)

µ̂ =
1

tk,nk

[
Y (tk,nk) +

ρ̂

1− ρ̂
Y (τ+

k )

]
For ρ̂, the derivation of the log-likelihood leads to an expression which is too complex to

be given here. Therefore we use directly the pro�le likelihood method. As in the previous

sub-section, ρ̂ = argmaxρ lnL3 (µ̂(ρ), σ̂2(ρ), ρ), where the pro�le log-likelihood is

lnL3 (µ̂(ρ), σ̂2(ρ), ρ) = −1

2
(N + k)

[
ln σ̂2(ρ) + 1

]
− k ln (1− ρ) + c2 (2.25)

where µ̂(ρ) and σ̂2(ρ) are obtained similarly as in the previous sub-section.
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By analogy with [87, 54] one could assume that only the degradation levels just after

maintenance actions are observed. This corresponds to this third observation scheme where

∀j, nj= 0. In this case, the observed jumps are the unique observations

Z3
j = Y (τ+

j )− Y (τ+
j−1) = (1− ρ)∆Yj,1

which have the N
(
µ(1− ρ)(τj − τj−1) , σ2(1− ρ)2(τj − τj−1)

)
distribution.

Therefore, di�erent triplets (µ, σ2, ρ) will lead to the same observations, so the model is not

identi�able. Note that this problem does not appear for the second observation scheme.

Biases of these estimator are detailed in Appendix A.2.

2.2.4 General observation scheme

In this last scheme, neither Y (τ−j ) nor Y (τ+
j ) are observed. This situation is illustrated

in Figure 2.5. As before, the last observation is Y (tk,nk). The values of µ, σ2, ρ, k and

{nj}1≤j≤4 are the same as before, but the number of observed data is now n = 17.

Figure 2.5: General observation scheme : a trajectory of the degradation process

It is assumed that we have at least one observation between two successive maintenance

actions : ∀ j ∈ {1, ..., k + 1}, nj ≥ 1. Here, neither the ∆Yj,1 (except the �rst one) nor the

∆Yj,nj+1 are observed. In this case, the history of the process at τ−j or tj,nj is ∀j ∈ {1, ..., k},
Og
τ−j

= Ogtj,nj = {∆y1,1, ...,∆y1,n1 , z
g
1 ,∆y2,2, ...,∆yj−1,nj−1 , z

g
j−1,∆yj,2, ...,∆yj,nj}

The real degradation jumps Zcj = Y (τ+
j )− Y (τ−j ) are not observed. Instead, the observed
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jump around the jth maintenance action is

Zgj = Y (tj+1,1)− Y (tj,nj ) = Y (tj+1,1)− Y (τ+
j ) + Y (τ+

j )− Y (τ−j ) + Y (τ−j )− Y (tj,nj )

= ∆Yj+1,1 + Zcj + ∆Yj,nj+1

= ∆Yj+1,1 − ρ
nj+1∑
i=1

∆Yj,i + ∆Yj,nj+1

= ∆Yj+1,1 − ρ
nj∑
i=2

∆Yj,i − ρ ∆Yj,1 + (1− ρ)∆Yj,nj+1 (2.26)

∆Yj+1,1 and ∆Yj,nj+1 are independent of Ogtj,nj . But Zgj and Zgj−1 share the same non

observed increment ∆Yj,1, so ∆Yj,1 is not independent of Ogtj,nj . Therefore, the conditional
distribution of Zgj given Ogtj,nj is not easy to derive.

In fact, it is easier here to use the joint distribution of the observed jumps given the observed

increments. Let Og be the set of all observed increments

Og =
{

∆y0,1, {∆yj,i}1≤j≤k+1, 2≤i≤nj
}

The likelihood can be written

Lg
(
µ, σ2, ρ

)
=

k+1∏
j=1

nj∏
i=1+1j>0

f∆Yj,i (∆yj,i)

 fZg |Og (zg1 , zg2 , ..., zgk) (2.27)

where fZg |Og is the conditional PDF of the observed jumps given the observed increments.

Since the Zgj are linear combinations of independent normal random variables, fZg |Og is the

PDF of a Gaussian vector. Therefore, we have to compute the expectation and covariance

matrix of this vector.

From (2.26), the conditional expectation of Zgj is, ∀ j ∈ {1, ..., k}

E
[
Zgj | O

g
]

= µuj(ρ)− vj(ρ) (2.28)
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where ∀j,

uj(ρ) = ∆tj+1,1 − ρ∆tj,11j>1 + (1− ρ)∆tj,nj+1

vj(ρ) = ρ

nj∑
i=1+1j>1

∆yj,i

From (2.26), the conditional variance of Zgj is, ∀ j ∈ {1, ..., k}

Var
[
Zgj | O

g
]

= σ2sj(ρ) (2.29)

where ∀j,
sj(ρ) = ∆tj+1,1 + ρ2∆tj,11j>1 + (1− ρ)2∆tj,nj+1

The conditional covariance of (Zgj−1, Z
g
j ) is, ∀ j ∈ {2, ..., k}

Cov
(
Zgj−1, Z

g
j | O

g
)

= Cov(∆Yj,1 − ρ
nj−1∑
i=2

∆yj−1,i − ρ ∆Yj−1,1 + (1− ρ)∆Yj−1,nj−1+1,

∆Yj+1,1 − ρ
nj∑
i=2

∆yj,i − ρ ∆Yj,1 + (1− ρ)∆Yj,nj+1)

= Cov(−ρ ∆Yj,1 , ∆Yj,1) = −ρ Var[∆Yj,1] = −ρ σ2∆tj,1 (2.30)

Let us de�ne u(ρ)t = (u1(ρ), u2(ρ), ..., uk(ρ)) and similarly v(ρ)t and s(ρ)t.

Finally, the conditional distribution of Zg given Og is the multivariate normal distribution

N (µ u(ρ)− ρ v(ρ) , σ2 Σ(ρ)) where

Σ(ρ) =



s1(ρ) −ρ∆t2,1 0 · · · · · · · · · · · · 0

−ρ∆t2,1 s2(ρ) −ρ∆t3,1 0

0 −ρ∆t3,1 s3(ρ) −ρ∆t4,1 0

...
. . . . . . . . . . . . . . .

...

0 −ρ∆tk−2,1 sk−1(ρ) −ρ∆tk−1,1

0 · · · · · · · · · · · · 0 −ρ∆tk−1,1 sk(ρ)
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The log-likelihood is derived as

ln Lg
(
µ, σ2, ρ

)
= −N

2
lnσ2 + c3 − ln

√
det Σ(ρ)

− 1

2σ2

[
(zg − µu(ρ) + v(ρ))t Σ(ρ)−1 (zg − µu(ρ) + v(ρ)) +

k+1∑
j=1

nj∑
i=1+1j>1

(∆yj,i − µ∆tj,i)
2

∆tj,i

]
(2.31)

where c3 is a constant.

Deriving the log-likelihood, the maximum likelihood estimators µ̂ and σ̂2 are obtained as

the solutions of the likelihood equations system, as follows.

µ̂ =

ut(ρ̂) Σ−1(ρ̂) zg + ut(ρ̂) Σ−1(ρ̂) v(ρ̂) +
k+1∑
j=1

nj∑
i=1+1j>1

∆Yj,i

ut(ρ̂)Σ−1(ρ̂)u(ρ̂) +
k+1∑
j=1

nj∑
i=1+1j>1

∆tj,i

(2.32)

σ̂2 =
1

N

(zg − µ̂ u(ρ̂) + v(ρ̂))t Σ−1(ρ̂) (zg − µ̂ u(ρ̂) + v(ρ̂)) +

k+1∑
j=1

nj∑
i=1+1j>1

(∆Yj,i − µ̂∆tj,i)
2

∆tj,i


(2.33)

As in the previous sub-section, the pro�le log-likelihood is derived as

ln Lg
(
µ̂(ρ), σ̂2(ρ), ρ

)
= −N

2
(1 + ln σ̂2(ρ)) + c3 − ln

√
det Σ(ρ) (2.34)

Therefore, ρ̂ = argmin
ρ

[
N
2 ln σ̂2(ρ) + ln

√
det Σ(ρ)

]
Biases of these estimators are detailed in Appendix A.2.
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2.3 Quality and comparison of the estimators

This section presents the results of an experimental study which aims to assess the quality

of the proposed estimators and to compare the four observation schemes.

Several situations are studied in order to assess the in�uence on the estimation quality

of

� the number nj and location of observations between two successive maintenance ac-

tions,

� the number of maintenance actions k ,

� the maintenance e�ciency parameter ρ.

For each situation, the same 5000 simulated trajectories of the degradation process are

used for each observation scheme. In each case, the model parameters ρ, µ and σ2 are

estimated.

In this section, the �gures represent the boxplots of the distributions of the estimations

for each parameter. The observation schemes are represented from left to right by colours

(complete: green, 2: orange, 3: blue, general: magenta). The red dotted lines represent

the true value of the parameters. Let us remind that there is no estimation of ρ for the

complete observation scheme.

For the complete observation scheme, the degradation levels are observed periodically

each one time unit. In the �rst two sub-sections, the three other observation schemes are

obtained by removing some observations from the complete scheme (see Figures 2.2 to 2.5).

The e�ect of this loss of information on the quality on the estimators is studied.

In the third sub-section, for each situation, the total number of observations n is the

same for the four observation schemes. It allows to compare the quality of estimation for

each observation scheme for a given size of data.

For a given situation, the {nj}j∈{1,...,k+1} are all equal and the maintenance times τj
are periodic. The underlying degradation process is the same in each case with µ = 2 and

σ2 = 5. The di�erent features used for the simulations are given in Table 2.1.
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Table 2.1: Summary of the di�erent features used for the simulations

Situation Figure µ σ2 ρ nj k n Maintenance period

1 2.6 2 5 0.5 2 3 - 6

2 2.7 2 5 0.5 5 3 - 6

3 2.8 2 5 0.5 2 7 - 6

4 2.9 2 5 0.1 2 7 - 6

5 2.10 2 5 0.9 2 7 - 6

6 2.12 2 5 0.5 - 7 16 10

7 2.13 2 5 0.5 - 7 16 10

2.3.1 In�uence of the number of observations

In situations 1 to 3 (Figures 2.6 to 2.8), the maintenance e�ciency parameter ρ is the same,

which allows to assess the e�ect of

� the number of observations between two successive maintenance actions, by comparing

Figure 2.6 (nj= 2) and Figure 2.7 (nj= 5),

� the number of maintenance actions, by comparing Figure 2.6 (k = 3) and Figure 2.8

(k = 7),

� the loss of information linked to the observation schemes, by comparing the boxplots

inside each �gure.

Figure 2.6: Estimation of µ, σ2 and ρ, situation 1

For µ and σ2, the best estimations are obtained for the complete scheme, and the worst

for the general scheme . The quality of estimations in scheme 2 and 3 are equivalent. This
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Figure 2.7: Estimation of µ, σ2 and ρ, situation 2

Figure 2.8: Estimation of µ, σ2 and ρ, situation 3

result was expected and is linked to the total number of observation in each scheme, given in

Table 2.2. The boxplots con�rm the negative bias of σ̂2, previously proved for the complete

scheme. Similar bias seem to hold for the three other schemes.

For ρ, the worst estimations are obtained as expected for the general scheme. The

estimations for scheme 3 are signi�cantly better than for scheme 2. From a practical point

of view, it is not surprising that ρ is better estimated when the e�ect of maintenance on

the degradation level is immediately observed.

Table 2.2: Total number of observations, n

Observation scheme

Situation 1 2 3 4

1 16 13 12 9

2 28 25 24 21

3 32 25 24 17
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The bigger the number of observations, the better the quality of estimations, whether

the degradation levels are observed at maintenance times or between maintenance times.

For the general scheme, the estimations are better in situation 2 than in situation 3. There-

fore, one could believe that it is better to increase the number of observations between

maintenance actions than the number of maintenance actions. However, Table 2.2 shows

that the total number of observations is bigger in situation 2 than in situation 3. Finally,

to increase the quality of estimations, the main point seems to increase the number of

observations whatever they are.

2.3.2 In�uence of the value of the maintenance e�ciency parameter ρ

In this sub-section, situations 3 to 5 (Figures 2.8 to 2.10) are compared, for which all the

features of the simulations are equal except the value of ρ : ρ ∈ {0.5, 0.1, 0.9}. Note that
the number of observations in each scheme is the same for the three situations (see situation

3 in Table 2.2), so the comparison of the situations will re�ect only the impact of the value

of ρ.

The comparison of the quality of estimations between the four observation schemes leads

to the same conclusions as in the previous section. The change of the value of ρ has no

impact on the estimations of µ and σ2. The closer the value of ρ is to 1, the better it is

estimated.

Figure 2.9: Estimation of µ, σ2 and ρ, situation 4

2.3.3 In�uence of the observations locations

In the previous sub-sections, we have noticed that, as expected, the quality of the estima-

tions grows with the total number of observations n. Therefore, in the following, we compare
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Figure 2.10: Estimation of µ, σ2 and ρ, situation 5

the quality of estimations between schemes with the same total number of observations.

Starting from a sequence of observations following the complete scheme, we build obser-

vation sequences according to schemes 2,3 and the general scheme with the same number

of observations, where the observation times are either close to the maintenance times (sit-

uation 6) or far from the maintenance times (situation 7). Moreover, we choose to have

a minimal number of observations between maintenance actions (nj ∈ {1, 2, 3}) in order

that the impact of the locations of the observations with respect to maintenance times be

clearly seen.

Observation backgrounds

Situation 6 for which the observation times are close to maintenance times is illustrated in

Figure 2.12. Situation 7 for which the observation times are far from maintenance times

is illustrated in Figure 2.13. In both situations, n = 16 degradation levels are observed in

every scheme. The observations locations in situations 6 and 7 are described hereafter and

illustrated in Figure 2.11.

1. Complete observation scheme, nj= 0.

The degradation levels are only observed at the maintenance times.

2. Second observation scheme, nj= 1.

� the observed degradation levels are close to the missing values at maintenance

times, tj+1,1 = τj + 1
10(τj+1 − τj) (Situation 6, Figure 2.12)

� the observed degradation levels are located at the middle time between two suc-

cessive maintenance actions , tj+1,1 = τj + 1
2(τj+1−τj) (Situation 7, Figure 2.13)
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3. Third observation scheme, nj= 1.

� the observed degradation levels are close to the missing values at maintenance

times , tj+1,1 = τj+1 − 1
10(τj+1 − τj) (Situation 6, Figure 2.12)

� the observed degradation levels are located at the middle time between two suc-

cessive maintenance actions , tj+1,1 = τj + 1
2(τj+1−τj) (Situation 7, Figure 2.13)

4. General observation scheme, nj= 2

� the observed degradation levels are close to the missing values at maintenance

times, tj+1,1 = τj + 1
10(τj+1 − τj) and tj+1,2 = τj+1 − 1

10(τj+1 − τj) (Situation 6,

Figure 2.12)

� the observed degradation levels are further to the maintenance times, tj+1,1 =

τj + 1
3(τj+1 − τj) and tj+1,2 = τj+1 − 1

3(τj+1 − τj) (Situation 7, Figure 2.13)

0 τ1 τ2 τ3

Obs Scheme 1:

Obs Scheme 2:

Obs Scheme 3:

Obs Scheme 4:

Figure 2.11: Locations of the observations of the degradation under situation 6 (circles)
and 7 (stars)

Figure 2.12: Estimation of µ, σ2 and ρ, situation 6
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Figure 2.13: Estimation of µ, σ2 and ρ, situation 7

Quality of the Estimations

The most striking result from Figures 2.12 and 2.13 is that the estimations of µ and σ2 are

noticeably worse for the complete scheme than for the other schemes in both situations.

This can be explained by the fact that, in the complete scheme with nj= 0, the observations

consist of the degradation increments ∆Yj,1 and the degradation jumps Zcj = −ρ ∆Yj,1.

Therefore, only half of the observations brings useful information for estimating µ and σ2.

Moreover, it appears that the estimations of ρ are better in situation 6 than in situation

7. It re�ects the fact that in order to estimate the maintenance e�ciency, it is recommended

to observe the degradation levels close to the maintenance actions. As before, the best

scheme for the estimation of ρ is scheme 3.
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2.4 Conclusion on the Wiener-based degradation model

This chapter examined studied statistical inference for a Wiener-based degradation model

with ARD1 imperfect maintenance actions under four distinct observation schemes. For

each scheme, the maximum likelihood estimators of the three model parameters have been

derived. Through a simulation study, the impact of the number and placement of obser-

vations between successive maintenance actions, the count of maintenance actions, and

maintenance e�ciency on estimation quality has been investigated. As expected, estima-

tion quality improves with an increased number of observations. An interesting �nding is

that the best estimation of ρ is obtained for the third observation scheme. It means that if

only a limited number of observations is possible, it is recommended to perform them just

after each maintenance.

The study reveals that the ARD1 model encounters certain drawbacks concerning in-

ference matters. The model is not well suited to practical situations involving the complete

observation scheme. To avoid these issues another Wiener-based degradation model with

imperfect maintenance is considered in the next chapter.
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Chapter 3

Modeling and inference for a

degradation process with partial

maintenance e�ects

This chapter proposes a novel approach to modeling imperfect maintenance in degradation

models, under the assumption that maintenance impacts only a part of the degradation

process. In the existing literature, concerning degradation model, maintenance e�ects are

generally assumed to a�ect the entire degradation process. However, in practical scenarios,

maintenance actions are often performed only on speci�c components of the system and

consequently have an e�ect only on a part of the degradation process. For instance, within

the framework of railway infrastructure management and track geometry maintenance, lon-

gitudinal leveling by tamping (i.e. compacting the ballast to correct the track geometry)

can be considered as a partial repair : they do restore in part the track geometry, but since

the ballast itself is not replaced and rail fastenings are not tightened, this operation does

not results in a as-good-as new state for the track level [71]. Another example is a vehicle's

braking system, where maintenance actions are generally performed only on the break pads

and not on the whole disc. More generally, when a system is made of several components,

maintenance often consists in replacing only a smaller group of components [91, 58]. This

is called partial replacement. Maintenance is perfect for the replaced components, but is

imperfect for the whole system. While this situation has been discussed to justify the rele-

vance of imperfect maintenance models, these models typically do not directly incorporate

the partial replacement assumption. An exception is the partial repair model based on

superimposed renewal processes proposed in [65]. Therefore, for modeling degradation, it
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appears pertinent to consider that maintenance can a�ect only a part of the degradation

process.

More precisely, the global degradation process is the sum of two dependent Wiener pro-

cesses with drift. Maintenance has an ARD1-type e�ect (Arithmetic Reduction of Degra-

dation), as introduced in [73], on only one of these processes. It reduces the degradation

level of a quantity which is proportional to the amount of degradation of this process ac-

cumulated since the last maintenance. Two particular cases of the model are explored:

the perturbed ARD1 and the partial replacement models. The system undergoes regular

inspections, during which degradation levels are measured. The conventional ARD1 model

is a speci�c case of this newly proposed full model. Two distinct observation schemes are

considered. In the complete scheme, the degradation levels are measured both between

maintenance actions and at maintenance times (just before and just after). In the general

scheme, the degradation levels are measured only between maintenance actions but can be

observed as close as possible from maintenance times. At �rst sight, the complete obser-

vation scheme seems the most natural and reasonable. However, it may not be possible to

implement this ideal scheme in practice, for various technological and engineering reasons.

This is for example the case if the measurement devices and technical crew for inspection

are not the same as the technical devices and crew for maintenance, such as for railway

assets monitoring and maintenance, where inspections and maintenance actions cannot be

performed at the same time because of an incompressible maintenance intervention delay

[71]. In such cases, it is necessary to model the observation procedures in a more real-

istic way (accounting for delays between the inspections and the maintenance actions, or

non-periodic inspections). This can be done in the general observation scheme. Besides, a

measurement at a maintenance time is a limit case of a measurement between maintenance

times, when the measurement (inspection) time tends to the maintenance time. Therefore,

all the possible observations schemes (as the 4 schemes considered in [62]) are limit cases

of the general scheme. That is why it is called general. Thereafter, the maximum likeli-

hood estimation of the model parameters is studied for both observation schemes in both

particular models. The quality of the estimators is assessed through a simulation study.

The chapter is organized as follows. The new degradation model is presented in Sec-

tion 3.1. The statistical inference is studied in Section 3.2 for the perturbed ARD1 and

partial replacement models, under both observation schemes. The results of the simula-

tion study are presented in Section 3.3. Finally, concluding comments are given and some

prospects are raised in Section 3.4.
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3.1 A degradation model with partial maintenance e�ects

This section presents the proposed degradation model, for which maintenance a�ects only a

part of the degradation process. The model is described in Section 3.1.1. An alternative pa-

rameterization is proposed in Section 3.1.2. Some particular cases are listed in Section 3.1.3

and an identi�ability issue is raised in Section 3.1.4.

3.1.1 Model description

The assumptions of the proposed model are given below.

� The degradation process is made of two partsXU= {XU (t)}t≥0 andXM= {XM (t)}t≥0.

� Between two maintenances, the degradation process evolves as the sum of the under-

lying degradation processes XU and XM .

� Maintenance only a�ects XM .

� Maintenance e�ect is of the ARD1-type [73]: at maintenance times, the degradation

level is reduced of a quantity which is proportional to the amount of degradation of

XM accumulated since the last maintenance action.

� XU and XM are dependent Wiener processes with drift, or (XU , XM )T is a bi-

variate Wiener process with drift. Therefore, their increments are independent and

(XU (t), XM (t))T is a Gaussian vector:(
XU (t)

XM (t)

)
∼ N

((
µU

µM

)
t, ΣUM t

)
(3.1)

where ΣUM =

(
σ2
U cUM

cUM σ2
M

)
.

µU , µM are the drift parameters, σ2
U , σ

2
M are the variance parameters, and cUM is

a covariance parameter. Note that the coe�cient of correlation between XU (t) and

XM (t) is

Corr(XU (t), XM (t)) =
cUM t√
σ2
U t σ

2
M t

=
cUM
σUσM

= rUM ∈ [−1, 1].
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Therefore, the coe�cient of correlation does not depend on time.

The system is maintained at times (τ1, τ2, ...). Let Y (t) be the degradation level at time

t of a maintained system, with Y (0) = 0. Let Y (τ−j ) be the degradation level just before

the jth maintenance at time τj and Y (τ+
j ) be the degradation level just after τj .

Before the �rst maintenance action, the degradation level Y of the system evolves as

the sum of XU and XM .

∀ t ∈ [0, τ1[, Y (t) = XU (t) +XM (t).

Just before the �rst maintenance, Y (τ−1 ) = XU (τ1) +XM (τ1).

At time τ1, an ARD1-type maintenance is performed that only a�ects XM . The main-

tenance e�ect is to reduce the degradation level of a quantity proportional to the amount of

degradation of XM accumulated since the origin. Let ρ be the coe�cient of proportionality,

which expresses the e�ciency of maintenance.

Y (τ+
1 ) = Y (τ−1 )− ρ

[
XM (τ1)−XM (0)

]
= XU (τ1) + (1− ρ)XM (τ1)

Between τ1 and τ2, the system is degrading as a non-maintained system.

∀ t ∈ [τ1, τ2[, Y (t) = Y (τ+
1 ) +XU (t) +XM (t)−XU (τ1)−XM (τ1)

= XU (t) +XM (t)− ρXM (τ1)

At τ2, an ARD1-type maintenance is performed.

Y (τ+
2 ) = Y (τ−2 )− ρ

[
XM (τ2)−XM (τ1)

]
= XU (τ2) + (1− ρ)XM (τ2)

By recurrence, it is easy to show that the degradation process of the maintained system

is de�ned as follows.

∀j ≥ 1, Y (τ−j ) = XU (τj) +XM (τj)− ρXM (τj−1) (3.2)

Y (τ+
j ) = XU (τj) + (1− ρ)XM (τj) (3.3)

∀ t ∈ [τj−1, τj [, Y (t) = XU (t) +XM (t)− ρXM (τj−1) (3.4)

The e�ect of a maintenance action is represented by a jump of the degradation level.
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Let Zcj be the observed jump at the jth maintenance time.

Zcj = Y (τ+
j )− Y (τ−j ) = −ρ

[
XM (τj)−XM (τj−1)

]
(3.5)

From the properties of the Wiener processXM , the Zcj are independent random variables

and their respective distributions are, ∀j ≥ 1:

Zcj ∼ N
(
−ρµM∆τj , ρ

2σ2
M∆τj

)
. (3.6)

where ∆τj = τj−τj−1. Note that the jumps are not independent of the previous degradation

increments.

The distribution of the degradation increments inside each inter-maintenance interval

can also be easily derived from (3.4):

∀ j ≥ 1, ∀ τj−1 < s < t < τj , Y (t)− Y (s) = XU (t)−XU (s) +XM (t)−XM (s).

Therefore, the distribution of the increments is given by, ∀ j ≥ 1, ∀ τj−1 < s < t < τj :

Y (t)− Y (s) ∼ N
(
(µU + µM )(t− s), (σ2

U + σ2
M + 2cUM )(t− s)

)
. (3.7)

The independence of increments of the bivariate process (XU ,XM ) implies the indepen-

dence of increments of Y .

3.1.2 An alternative parameterization

From a statistical perspective, the model parameters will have to be estimated from �eld

data. The observed data are degradation increments and degradation jumps, whose dis-

tributions are given by (3.6) and (3.7). Therefore, in order to simplify the writings in

statistical inference, it appears relevant to introduce an alternative parameterization of the

model. Let

XS(t) = XU (t) +XM (t) (3.8)

XS is the global underlying degradation process of the unmaintained system and XM

is the part of this process which is a�ected by maintenance actions. ( XS(t), XM (t))T is a
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linear transform of the Gaussian vector (XU (t), XM (t))T :(
XS(t)

XM (t)

)
= A

(
XU (t)

XM (t)

)
, where A =

(
1 1

0 1

)
.

So (XS(t), XM (t))T is still a Gaussian vector. From usual results on random vectors,

its mean is

A E

(
XU (t)

XM (t)

)
=

(
µU + µM

µM

)
t

and its covariance matrix is

AΣUM tA
T =

(
σ2
U + σ2

M + 2cUM cUM + σ2
M

cUM + σ2
M σ2

M

)
t.

Therefore, let us introduce new parameters µS , µM , σ2
S , σ

2
M , cSM , rSM , such that (

XS(t), XM (t))T is a Gaussian vector with mean (µS , µM )T t and covariance matrix ΣSM t,

where ΣSM =

(
σ2
S cSM

cSM σ2
M

)
and rSM = cSM/(σSσM ). The links between the �rst param-

eterization (U,M) and the second parameterization (S,M) are given in Table 3.1.

Table 3.1: Links between the two model parameterizations

(XU , XM ) (XS , XM )

Drift µU = µS − µM µS = µU + µM
Variance σ2

U = σ2
S + σ2

M − 2cSM σ2
S = σ2

U + σ2
M + 2 cUM

Covariance cUM = cSM − σ2
M cSM = cUM + σ2

M

Correlation rUM =
rSMσS − σM√

σ2
S + σ2

M − 2 rSMσSσM

rSM =
rUMσU + σM√

σ2
U + σ2

M + 2 rUMσUσM

To simplify writings, let ∀ ` ∈ {S,M}, ∆X`
j = X`(τj)−X`(τj−1) be the increment of

the degradation process ` (` ∈ {S,M}) between the j−1th and the jth maintenance action.

In the new parameterization, the degradation level and jumps are de�ned as follows.

∀ j ≥ 1, ∀ t ∈ [τj−1, τj [, Y (t) = XS(t)− ρ XM (τj−1). (3.9)

∀j ≥ 1, Zcj = −ρ
[
XM (τj)−XM (τj−1)

]
= −ρ ∆XM

j . (3.10)
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The distributions of the degradation increments and jumps are:

∀ j ≥ 1, ∀ τj−1 ≤ s < t ≤ τj , Y (t)− Y (s) ∼ N
(
µS(t− s), σ2

S(t− s)
)
. (3.11)

∀ j ≥ 1, Zcj ∼ N
(
−ρµM∆τj , ρ

2σ2
M∆τj

)
. (3.12)

From (3.11) an (3.12), it can be seen that parameters (µS , σ
2
S) are closely linked to

degradation increments between maintenance actions while parameters (µM , σ
2
M , ρ) are

closely linked to degradation jumps, so to maintenance e�ciency. This remark will be

useful in Section 3.2 for the estimation of these parameters.

Finally, the distribution of the degradation level at time t can be easily computed from

(3.9):

Y (t) ∼ N
(
µSt− ρµMτj−1 , σ

2
St+ ρ2σ2

Mτj−1 − 2ρrSMσSσMτj−1

)
The same degradation trajectory under both parameterizations is presented in Fig-

ure 3.1. The observed degradation process Y is represented with the underlying processes

XU and XM on the left �gure and with XS and XM on the right �gure. This trajectory

has been simulated using the following parameters : µU = 4, µM = 2, σ2
U = 10, σ2

M = 7,

rUM = 0.8, ρ = 0.7, which is equivalent to µS = 6, µM = 2, σ2
S = 30.39, σ2

M = 7,

rSM = 0.94, ρ = 0.7.

In this example, four maintenance actions are periodically performed at times {3, 6, 9, 12}.
The underlying processes are simulated using consecutive degradation increments on a time

increment equals to 0.001. In the �rst parameterization, between maintenance actions, the

degradation process Y (in black) evolves as the sum of XU (in green) and XM (in blue).

In the second parameterization, Y evolves as XS (in red) between maintenances. The cor-

relation between the underlying degradation processes clearly appears in this �gure. The

maintenance e�ect is also clearly visible for the �rst three maintenances. For the fourth

one at τ4 = 12, the maintenance e�ect is not visible because the amount of degradation

accumulated for process XM between τ3 = 9 and τ4 = 12 is very small.

3.1.3 Speci�c cases

The model de�ned by Section 3.1.2 will be called hereafter the full model. Some interesting

speci�c cases of the full model can be considered.
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Figure 3.1: Degradation trajectories of Y (t) (in black) with (XU , XM ) (in green and blue)
in the left �gure and (XS ,XM ) (in red and blue) in the right �gure.

� ABAO. When ρ = 0, Y (t) = XS (t) = XU (t) + XM (t). Maintenance has no e�ect

on the system, the system after maintenance is As Bad As Old (ABAO).

� Usual ARD1 model. The new model is equivalent to the usual Wiener-based ARD1

model [73, 62] when the whole degradation process is a�ected by maintenance actions.

This is the case for XU (t) = 0, ∀ t ≥ 0, i.e. µU = σ2
U = cUM = 0. In this case,

XS= XM so µS = µM , σ2
S = σ2

M = cSM and rSM = 1. In this situation, ρ = 1 entails

a perfect maintenance action.

� Perturbed ARD1 model. When µS = µM or µU = 0, XU , which can depend

on the degradation process, is a white noise. So the degradation process Y can be

considered as a usual Wiener-based ARD1 model perturbed by this white noise.

� Partial replacement. In the usual ARD1 model, ρ = 1 means that the system is

renewed, or As Good As New (AGAN), after each maintenance. Here, ρ = 1 means

that maintenance deletes all the amount of degradation of XM accumulated since the

last maintenance. Globally, maintenance is not perfect (Y (τ+
j ) = XU (τj) 6= 0) but

can be considered as optimal. This corresponds to the situation where maintenance

consists in replacing a part of the system components, but not the whole system. This

situation is particularly interesting in practice and will be studied in Section 3.2.
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� When XU and XM are independent, rUM = 0 so rSM = σM√
σ2
U+σ2

M

. Therefore XS

and XM are dependent and positively correlated.

� When XS and XM are independent, rSM = 0 so rUM = − σM√
σ2
S+σ2

M

. Therefore XU

and XM are dependent and negatively correlated.

� rUM = 1⇒ rSM = 1. A perfect positive correlation under the (U,M) parameteriza-

tion entails a perfect positive correlation under the (S,M) parameterization.

� rSM = 1 ⇒ rUM = σS−σM√
(σS−σM )2

⇒ rUM = {−1, 1}. A perfect positive correlation

under the (S,M) parameterization entails a perfect correlation under the (U,M)

parameterization, which can be either positive or negative.

3.1.4 Identi�ability

The de�nition of the model in (3.9) to (3.12) shows that two di�erent sets of parameters

(µM , σ
2
M , ρ) and (µ̃M , σ̃

2
M , ρ̃) such that ρµM = ρ̃µ̃M and ρσM = ρ̃σ̃M de�ne the same

model.

More precisely, XS(t) and XM (t) can be written XS(t) = µSt+σSB
S(t) and XM (t) =

µM t + σMB
M (t), where BS and BM are dependent standard Brownian motions. Let

X̃M (t) = µ̃M t + σ̃MB
M (t), where µ̃M = ρµM/ρ̃ and σ̃M = ρσM/ρ̃. We have X̃M (t) =

ρXM (t)/ρ̃ and ρ̃X̃M (t) = ρXM (t). Therefore, the degradation process Ỹ (t) = XS(t) −
ρ̃X̃M (t) is exactly the same as Y (t) = XS(t)− ρXM (t). Moreover, it is easy to show that

Cov(XS(t), X̃M (t)) = ρcSM t/ρ̃ = c̃SM t and r̃SM = c̃SM/σS σ̃M = rSM .

So �nally, ∀ρ̃ ∈]0, 1] the sets of parameters (µS , µM , σ
2
S , σ

2
M , rSM , ρ) and (µS , ρµM/ρ̃,

σ2
S , ρ

2σ2
M/ρ̃

2, rSM , ρ̃) de�ne the same model. Although it is less visible, the same problem

also appears using the (U,M) parameterization.

Hence, the full model is not identi�able. Therefore, in Section 3.2, constraints will be

imposed in order to estimate the parameters of identi�able models: the perturbed ARD1

and partial replacement models.

In order to study statistical inference in the following section, the model's likelihood is

�rst derived for the full model.
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3.2 Statistical Inference

Let Θ = (µS , µM , σ
2
S , σ

2
M , rSM , ρ) be the set of model parameters under the second pa-

rameterization. This section studies the statistical estimation of these parameters from

�eld data. The system is assumed to be regularly inspected and degradation levels Yj,i are

measured. Two observation schemes (i.e. two ways of collecting data) are considered, the

complete scheme and the general scheme. For both schemes, the parameters are estimated

by the maximum likelihood method. Each scheme leads to a di�erent writing of the like-

lihood and then to di�erent estimations of the parameters. The observation schemes are

described in Section 3.2.1. The general expressions of the likelihoods are determined in

Section 3.2.2. Due to the identi�ability issue raised in Section 3.1.4, the estimation is made

in Section 3.2.3 only for the perturbed ARD1 and partial replacement models under both

observation schemes.

3.2.1 Observation schemes

The considered system is observed in a time interval [0, τ ]. In this interval, k maintenances

are performed at times τ1, . . . , τk. Let us denote τ0 = 0 and τk+1 = τ .

∀ j ∈ {1, ..., k + 1}, let nj be the number of observations of the degradation level in

]τj−1, τj [. The degradation levels are observed at times tj,i, where tj,i is the time of the

ith observation in ]τj−1, τj [ ∀ i ∈ {1, ..., nj}. If observations are made at the maintenance

times (just before and/or just after), the corresponding observation times are denoted

tj,nj+1 = τj = tj+1,0. Let ∆tj,i= tj,i − tj,i−1 be the time elapsed between two successive

observations.

Complete observation scheme

In the complete scheme, the degradation levels are measured both between maintenance

actions and at maintenance times (just before and just after). In Figure 3.2, a degradation

trajectory is simulated for µS = 10, µM = 5, σ2
S = 30, σ2

M = 20, rSM = 0.7, ρ = 0.8. In

this example, degradation levels are periodically observed and represented by black dots.

Maintenance actions are periodically performed at times {3, 6, 9, 12}. The two underlying

processes XS and XM are respectively depicted by the red and blue lines. The observed

degradation increments of the system are represented by the black line.

Due to the properties of the Wiener process, it is more convenient to consider that
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Figure 3.2: Observations of the degradation levels of the maintained system (in black) under
the complete observation scheme

the degradation increments (instead of degradation levels) are observed. Therefore, in the

complete scheme, the observations are made of:

� The degradation increments ∆Y c
j,i= Y (tj,i) − Y (tj,i−1) = XS(tj,i) − XS(tj,i−1), for

1 ≤ j ≤ k + 1 and 1 ≤ i ≤ nj + 1. They are independent and their respective

distributions are ∆Y c
j,i ∼ N

(
µS∆tj,i, σ

2
S∆tj,i

)
.

� The degradation jumps Zcj = Y (τ+
j )−Y (τ−j ) = −ρ

[
XM (τj)−XM (τj−1)

]
= −ρ∆XM

j ,

for 1 ≤ j ≤ k. They are not independent of the observations prior to τj . The set of

all these observations is denoted:

Oc
τ−j

= {∆yc1,1, ...,∆yc1,n1+1, z
c
1,∆y

c
2,1, ...,∆y

c
j−1,nj−1+1, z

c
j−1,∆y

c
j,1, ...,∆y

c
j,nj+1}

The likelihood function is the joint PDF of the jth jump given all the observations before

τj . Therefore, the likelihood function in the complete scheme, denoted Lc(Θ), is given by

Lc(Θ) =
k+1∏
j=1

nj+1∏
i=1

f∆Y cj,i
(∆ycj,i)

k∏
j=1

fZcj |Ocτ−
j

(zcj) (3.13)

where fZcj |Ocτ−
j

is the conditional PDF of the jth jump given all the observations before τj .

The expression of this likelihood is developed in Section 3.2.2.

In [62], this observation scheme has been considered for a usual ARD1 Wiener-based

degradation model (�rst observation scheme in [62]). In this model, the value of a jump is
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proportional to the amount of degradation accumulated since the last maintenance action.

Thus, under the complete observation scheme, the sizes of the jumps are deterministic given

the previous observations. This is very unlikely in practice. Here, Zcj = −ρ ∆XM
j and the

∆XM
j are not observed, so the problem of the ARD1 model does not occur. Therefore,

the proposed model is more realistic than the ARD1 model for the complete observation

scheme.

General observation scheme

In the general scheme, the degradation levels are measured only between maintenance

actions. In Figure 3.3, a degradation trajectory is simulated for the same parameters as

in Figure 3.2. In this example, contrary to Figure 3.2, the observations are not periodic

and the numbers of observations between two successive maintenances are not constant.

As in Figure 3.2, every black dot represents an observated degradation level. Dotted lines

correspond to the unobserved degradation increments around maintenance times. The two

underlying processes XS and XM are respectively depicted by the red and blue lines. The

observed degradation increments of the system are represented by the black line.
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Figure 3.3: Observations of the degradation levels of the maintained system (in black) under
the general observation scheme

In this case, neither Y (τ−j ) nor Y (τ+
j ) are observed. Therefore, the true degradation

jumps Zcj are also not observed. The observation around the jth maintenance time τj is

the di�erence between the �rst observed degradation level after τj and the last observed

degradation level before τj :

∀j ≥ 1, Zgj = Y (tj+1,1)− Y (tj,nj ) (3.14)
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Therefore, in the general scheme, the observations are made of:

� The degradation increments ∆Y c
j,i, for 2 ≤ j ≤ k and 2 ≤ i ≤ nj , and 1 ≤ i ≤ n1

for j = 1. Indeed, with respect to the complete scheme, the �rst and last degra-

dation increments of each interval are no longer observed, except the very �rst one

∆Y c
1,1. As before, they are independent and their respective distributions are ∆Y c

j,i ∼
N
(
µS∆tj,i, σ

2
S∆tj,i

)
.

� The new jumps Zgj = Y (tj+1,1)− Y (tj,nj ), for 1 ≤ j ≤ k. They are not independent

of the observations prior to tj,nj . The set of all these observations is denoted:

Ogtj,nj = {∆yc1,1, ...,∆yc1,n1
, Zg1 ,∆y

c
2,2, ...,∆y

c
j−1,nj−1

, Zgj−1,∆y
c
j,2, ...,∆y

c
j,nj}

Therefore, the likelihood function in the general scheme, denoted Lg(Θ), is given by

Lg(Θ) =
k+1∏
j=1

nj∏
i=1+1j>1

f∆Y cj,i
(∆ycj,i)

k∏
j=1

fZgj |O
g
tj,nj

(zgj ) (3.15)

The expression of this likelihood is developed in Section 3.2.2.

3.2.2 Derivation of the likelihood

Complete observation scheme

In order to write the likelihood (3.13), the only di�culty is to derive the conditional distri-

butions of the jumps Zcj = −ρ ∆XM
j given Oc

τ−j
.

We have ∆XM
j = XM (τj)−XM (τj−1) =

nj+1∑
i=1

∆XM
j,i and ∆XS

j = XS(τj)−XS(τj−1) =

nj+1∑
i=1

∆XS
j,i. ∆XM

j,i is independent of all observed degradation increments before τj , except

∆XS
j,i = ∆Y c

j,i. So �nally, the conditional distribution of Zj given Oc
τ−j

is simply the

conditional distribution of −ρ ∆XM
j given ∆XS

j = ∆ycj .

(∆XM
j ,∆XS

j )T is a Gaussian vector:(
∆XM

j

∆XS
j

)
∼ N

((
µM

µS

)
∆τj ,

(
σ2
M cSM

cSM σ2
S

)
∆τj

)
(3.16)
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The following lemma [57] gives the conditional distributions of the components of a Gaussian

vector.

Let

(
A

B

)
be a Gaussian vector such that

(
A

B

)
∼ N (µ,Σ), where µ =

(
µA

µB

)
and

Σ =

(
ΣA ΣAB

ΣBA ΣB

)
. Then, the conditional distribution of U given [B = b] is multivariate

normal N (µ̃, Σ̃) where µ̃ = µA + ΣABΣ−1
B (b− µB) and Σ̃ = ΣA − ΣABΣ−1

B ΣBA.

So the distribution of ∆XM
j given ∆XS

j can be derived thanks to the lemma given in 3.2.2,

with A = ∆XM
j , B = ∆XS

j , µA = µM∆τj , µB = µS∆τj , ΣA = σ2
M∆τj , ΣB = σ2

S∆τj , and

ΣAB = cSM∆τj .

Straightforward computations lead to the desired conditional distribution:

Zcj | Ocτ−j ∼ N
(
−ρ
(
µM∆τj + rSM

σM
σS

(∆ycj − µS∆τj)
)
, ρ2∆τj σ

2
M

(
1− r2

SM

))
(3.17)

Hence, the log-likelihood for the complete observation scheme is:

lnLc(Θ) =− 1

2

(
k+1∑
j=1

nj+1∑
i=1

ln(2πσ2
S∆tj,i) +

(
∆ycj,i − µS∆tj,i

)2
σ2
S∆tj,i

+
k∑
j=1

ln(2πρ2∆τjσ
2
M (1− r2

SM )) +

(
zcj + ρµM∆τj + ρrSM

σM
σS

(∆ycj − µS∆τj)
)2

ρ2∆τjσ2
M (1− r2

SM )

)
(3.18)

General observation scheme

In order to write the likelihood (3.15), the only di�culty is to derive the conditional distri-

bution of the observed jump around the jth maintenance Zgj given Ogtj,nj . ∀ j ∈ {1, ..., k},
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we have:

Zgj = Y (tj+1,1)− Y (tj,nj )

= Y (tj+1,1)− Y (τ+
j ) + Y (τ+

j )− Y (τ−j ) + Y (τ−j )− Y (tj,nj )

= ∆Y c
j+1,1 + Zcj + ∆Y c

j,nj+1 (3.19)

= ∆XS
j+1,1 − ρ ∆XM

j + ∆XS
j,nj+1

= ∆XS
j+1,1 − ρ ∆XM

j,11j>1 − ρ
nj∑

i=1+1j>1

∆XM
j,i − ρ ∆XM

j,nj+1 + ∆XS
j,nj+1

In this sum:

� ∆XS
j+1,1 is not observed and is independent of Ogtj,nj .

� ∆XM
j,11j>1 is not observed. It depends on ∆XS

j,11j>1, which is also not observed, but

involved in Zgj .

�

nj∑
i=1+1j>1

∆XM
j,i is not observed but depends on

nj∑
i=1+1j>1

∆XS
j,i, which is observed.

� ∆XM
j,nj+1 and ∆XS

j,nj+1 are not observed, are independent ofO
g
tj,nj

, but are dependent

one from each other.

Finally, the conditional distribution of Zgj given Ogtj,nj is the conditional distribution of

Zgj given

 nj∑
i=1+1j>1

∆XS
j,i, Z

g
j−1

. This distribution will be obtained by using again the

lemma of Appendix 3.2.2, starting from the Gaussian vector

Zgj , nj∑
i=1+1j>1

∆XS
j,i, Z

g
j−1

.

To simplify writings, let us denote:

� ∆tgj =
nj∑

i=1+1j>1

∆tj,i the elapsed time between the �rst and last observation on the

jth inter-maintenance interval. For j ≥ 2, ∆tgj= tj,nj − tj,1. For j = 1, ∆tg1 = t1,n1 .

� ∆Y g
j =

nj∑
i=1+1j>1

∆XS
j,i the total increment of degradation observed on the jth inter-

maintenance interval. The Gaussian vector of interest can now be written
(
Zgj , ∆Y g

j , Z
g
j−1

)
.
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The expectation of the Gaussian vector is given by:

µZgj = E[Zgj ] = E[∆Y c
j+1,1] + E[Zcj ] + E[∆Y c

j,nj+1]

= µS(∆tj+1,1 + ∆tj,nj+1)− ρµM∆τj . (3.20)

E[∆Y g
j ] = µS∆tgj . (3.21)

For the covariance matrix, one has to compute:

σ2
Zgj

= Var[Zgj ]

= Var[∆XS
j+1,1 − ρ ∆XM

j,11j>1 − ρ
nj∑

i=1+1j>1

∆XM
j,i − ρ ∆XM

j,nj+1 + ∆XS
j,nj+1]

= Var[∆XS
j+1,1] + ρ2 Var[∆XM

j,11j>1] + ρ2 Var[
nj∑

i=1+1j>1

∆XM
j,i ]

+ ρ2 Var[∆XM
j,nj+1] + Var[∆XS

j,nj+1]− 2ρ Cov(∆XS
j,nj+1,∆X

M
j,nj+1)

= σ2
S∆tj+1,1 + ρ2σ2

M∆tj,11j>1 + ρ2σ2
M

nj∑
i=1+1j>1

∆tj,i

+ ρ2σ2
M∆tj,nj+1 + σ2

S∆tj,nj+1 − 2ρcSM∆tj,nj+1

= σ2
S(∆tj,nj+1 + ∆tj+1,1) + ρ2σ2

M∆τj − 2ρ rSMσSσM ∆tj,nj+1. (3.22)

Var[∆Y g
j ] = σ2

S∆tgj . (3.23)

Cov(Zgj , Z
g
j−1) = Cov(−ρ∆XM

j,1,∆X
S
j,1) = −ρcSM∆tj,1. (3.24)

Cov(Zgj ,∆Y
g
j ) = Cov(−ρ

nj∑
i=1

∆XM
j,i ,

nj∑
i=1+1j>1

∆XS
j,i) = −ρcSM∆tgj . (3.25)

Cov(∆Y g
j , Z

g
j−1) = Cov(

nj∑
i=1+1j>1

∆XS
j,i,∆X

S
j,1) = 0. (3.26)

Finally, ∀j ∈ {2, ..., k}, the distribution of the Gaussian vector
(
Zgj , ∆Y g

j , Z
g
j−1

)
is
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given by:

 Zgj
∆Y g

j

Zgj−1

 ∼ N(


µZgj
µS∆tgj
µZgj−1

 ,


σ2
Zgj

−ρrSMσSσM∆tgj −ρrSMσSσM∆tj,1

−ρrSMσSσM∆tgj σ2
S∆tgj 0

−ρrSMσSσM∆tj,1 0 σ2
Zgj−1


)

(3.27)

The distribution of Zgj given (∆Y g
j , Z

g
j−1) can be derived thanks to the lemma given

in Appendix 3.2.2, with A = Zgj , B =

(
∆Y g

j

Zgj−1

)
, µA = µZgj , µB =

(
µS∆tgj
µZgj−1

)
, ΣA = σ2

Zgj
,

ΣAB = (−ρrSMσSσM∆tgj ,−ρrSMσSσM∆tj,1), ΣBA = ΣT
AB and ΣB =

(
σ2
S∆tgj 0

0 σ2
Zgj−1

)
.

After computations, the desired conditional distribution is obtained:

Zgj | O
g
tj,nj
∼ N

(
µZgj −

ρ rSMσM
σS

(
∆ygj − µS∆tgj

)
− ρ rSMσSσM∆tj,11j>1

σ2
Zgj−1

(
zgj−1 − µZgj−1

)
,

σ2
Zgj
− ρ2r2

SMσ
2
Sσ

2
M

(
∆tgj
σ2
S

+
∆t2j,11j>1

σ2
Zgj−1

))
(3.28)

Finally, the log-likelihood for the general observation scheme is:

lnLg(Θ) = −1

2

(
k+1∑
j=1

nj∑
i=1+1j>0

ln(2πσ2
S∆tj,i) +

(∆ycj,i − µS∆tj,i)
2

σ2
S∆tj,i

+

k∑
j=1

ln

(
2π

(
σ2
Zgj
− ρ2r2

SMσ
2
Sσ

2
M

(∆tgj
σ2
S

+
∆t2j,11j>1

σ2
Zgj−1

)))

+

(
zgj − µZgj + ρ rSMσM

σS

(
∆ygj − µS∆tgj

)
+

ρ rSMσSσM∆tj,11j>1

σ2
Z
g
j−1

(
zgj−1 − µz(2)j−1

))2

σ2
Zgj
− ρ2r2

SMσ
2
Sσ

2
M

(∆tgj
σ2
S

+
∆t2j,11j>1

σ2
Z
g
j−1

)
)

(3.29)

Let us recall that this second observation scheme has been called general because the

complete scheme is a limit case of this scheme when tj,nj and tj+1,1 tend to τj . In this case,

∆tj+1,1 and ∆tj,nj+1 tend to 0, ∆tgj tends to ∆τj and ∆ygj tends to ∆Y c
j . Under these
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assumptions, it is easy to check that the conditional distribution in the general case (3.28)

converges to the conditional distribution in the complete case (3.17).

3.2.3 Estimation for the perturbed ARD1 and partial replacement models

The identi�ability issue raised in Section 3.1.4 leads that the parameters Θ = (µS , µM , σ
2
S , σ

2
M ,

ρ, rSM ) of the full model cannot be estimated. But if some constraints are imposed, the

model may become identi�able. Therefore, we will consider in the following the parameter

estimation for two speci�c models introduced in Section 3.1.3, the perturbed ARD1 and

partial replacement models.

� Perturbed ARD1. The degradation process is an ARD1 model perturbed by a white

noise. This corresponds to the case µS = µM = µ. Therefore, the model parameters

in this case are Θ1 = (µ, σ2
S , σ

2
M , ρ, rSM ). The log-likelihoods in the complete and

general observation schemes are respectively lnLPAc (Θ1) = lnLc(µ, µ, σ
2
S , σ

2
M , ρ, rSM )

and lnLPAg (Θ1) = lnLg(µ, µ, σ
2
S , σ

2
M , ρ, rSM ), which can be computed using (3.18)

and (3.29).

� Partial replacement. The maintenance is optimal since it deletes all the amount of

removable degradation accumulated since the last maintenance. This corresponds to

the case ρ = 1. Therefore, the model parameters in this case are Θ2 = (µS , µM , σ
2
S , σ

2
M ,

rSM ). The log-likelihoods in the complete and general observation schemes are respec-

tively lnLPRc (Θ2) = lnLc(µS , µM , σ
2
S , σ

2
M , 1, rSM ) and lnLPRg (Θ2) = lnLg(µS , µM , σ

2
S ,

σ2
M , 1, rSM ), which can be computed using (3.18) and (3.29).

3.3 Simulation study

This section presents the results of a simulation study which aims to assess the quality of

the estimators. In order to analyze the impact on the estimation quality of the param-

eters values, the number of maintenance actions and the number of observations, several

situations are considered and compared to each other. Through a study of the impact on

observation locations, it is also possible to compare the complete and general observation

schemes.

Only the Perturbed ARD1 and Partial replacement model are considered. Mainte-

nance actions and degradation measurements are supposed to be periodically performed.

A situation is de�ned by the values of the model parameters, the number of observations
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between maintenance actions (nj), the number of maintenance actions (k), the total num-

ber of observations (n), and the maintenance period. For each situation, 5000 degradation

trajectories are simulated. The �ve model's parameters are estimated by maximizing the

log-likelihoods (3.18) and (3.29) with the Nelder-Mead method. To obtain good estimation

results, the initial parameter values of this algorithm have to be carefully chosen. The em-

ployed technique is described in Appendix A.3. The results are presented through box-plots

of the empirical distribution of each estimator.

3.3.1 Quality of parameter estimation for the complete observation scheme

Perturbed ARD1 model

For the Perturbed ARD1 model, 8 situations are considered, described in Table 3.2. For each

situation, 5000 degradation trajectories are simulated. For each trajectory, maintenances

are performed every 3 time units. The boxplots of the estimators are presented in Figure

3.4.

Table 3.2: Simulation situations for the Perturbed ARD1 model

Situation µ σ2
S σ2

M ρ rSM nj k n

1 5 10 7 0.5 0.7 2 4 20
2 5 10 7 0.5 0.7 0 9 20
3 5 10 7 0.5 0.7 5 2 21
4 5 10 7 0.5 0.7 2 49 200
5 5 10 7 0.5 0.1 2 4 20
6 5 10 20 0.5 0.7 2 4 20
7 5 10 7 0.2 0.7 2 4 20
8 5 10 7 0.8 0.7 2 4 20

� Situation 1 is the reference situation, with an average maintenance e�ciency (ρ = 0.5),

a quite high correlation between the underlying degradation processes (rSM = 0.7),

k = 4 maintenance actions and nj= 2 observations of the degradation level between

each maintenance.

� Situation 2 has the same parameters and the same amount of data, but with more

maintenances and no observations between maintenances. Since we have more infor-

mation on the jumps and less information between maintenance, σ2
M and ρ are better

estimated and σ2
S is less well estimated. µ and rSM are also better estimated.
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Figure 3.4: Estimations of the parameters of the Perturbed ARD1 model for the complete
observation scheme
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� Situation 3 is the dual of the previous one, with less maintenances and more observa-

tions between maintenances. Logically, all the estimations are degraded, except that

of σ2
S .

� Situation 4 is similar to situation 1, with much more data. As expected, the estimation

quality of all estimators increases with the number of data.

� Situation 5 is similar to situation 1, except that the coe�cient of correlation is much

smaller (rSM = 0.1). The box-plot shows that it is di�cult to estimate a so small

coe�cient of correlation. The estimations of other parameters are not a�ected except

ρ, which is slightly less well estimated as in Situation 1.

� Situation 6 is similar to situation 1, except that the second variance is much larger

(σ2
M = 20). Unsurprisingly, only the estimation of σ2

M is a�ected.

� Situation 7 is similar to situation 1, except that the maintenance e�ciency is much

smaller (ρ = 0.2). It appears that the estimation of ρ is improved and the the

estimations of other parameters are not a�ected.

� Situation 8 is similar to situation 1, except that the maintenance e�ciency is much

larger (ρ = 0.8). Only the estimation of ρ is slightly degraded.

These results and other simulations not reported here lead us to draw the following

conclusions. The parameters are generally well estimated, even for a rather small amount

of data. σ2
S and σ2

M are slightly underestimated and rSM is overestimated. A higher number

of maintenances improve the estimation of the parameters linked to the jumps σ2
M , ρ and

rSM . A higher number of observed degradation levels between maintenances improves the

estimation of σ2
S . It is di�cult to estimate rSM when its value is close to 0 or 1. The

variances of the estimators of σ2
M and ρ increase when the true parameter values increase.

Partial replacement model

For the Partial replacement model, 6 situations are considered, described in Table 3.3. The

boxplots of the estimators are presented in Figure 3.5. The results are completely similar

to those of the Perturbed ARD1 model. Whereas drifts theoretical values are di�erent, the

estimations quality of µS and µM remains comparable.
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Table 3.3: Simulation situations for the Partial replacement model

Situation µS µM σ2
S σ2

M rSM nj k n

1 10 5 10 7 0.7 2 4 20
2 10 5 10 7 0.7 0 9 20
3 10 5 10 7 0.7 5 2 21
4 10 5 10 7 0.7 2 49 200
5 10 5 10 7 0.1 2 4 20
6 10 5 10 20 0.7 2 4 20
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Figure 3.5: Estimations of the parameters of the Partial replacement model for the complete
observation scheme
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3.3.2 Impact of the observations locations and the observation schemes

The aim of this section is to look if the observations locations between two successive

maintenance actions can have an impact on the estimation quality. To that aim, degradation

levels are not necessarily periodically observed. Five situations are considered, described

in Table 3.4 and illustrated in Figure 3.6. The total numbers of data are equivalent in all

situations. The considered model is the Perturbed ARD1 model.

Table 3.4: Simulation situations for assessing the impact of observations locations

Observation scheme Situation µ σ2
S σ2

M ρ rSM nj k n

c 1 5 10 7 0.5 0.7 0 9 20
g 2 5 10 7 0.5 0.7 2 9 21
g 3 5 10 7 0.5 0.7 2 9 21
g 4 5 10 7 0.5 0.7 2 9 21
g 5 5 10 7 0.5 0.7 2 9 21
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Figure 3.6: Observations location for the �ve considered situations and the �rst three
maintenance times.

� In situation 1, the data are collected under the complete observation scheme, with no

observed degradation levels between maintenances.

� In situation 2, the data are collected under the general observation scheme. Two

degradation levels are measured in each interval, and the measurement times are

close to the maintenance times. Here, the degradation measurements are not periodic:

∀ j ∈ {1, ..., 9}, tj,nj = τj − 1
5 and tj+1,1 = τj + 1

5 .
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� In situation 3, the data are collected under the general observation scheme. Two

degradation levels are measured in each interval, and the measurement times are

periodically spaced in the intervals between maintenances.

� In situation 4, the data are collected under the general observation scheme. Two

degradation levels are measured in each interval, and the measurement times are just

before the maintenance times. Here, the degradation measurements are not periodic:

∀ j ∈ {1, ..., 9}, tj,nj = τj − 1
5 and tj+1,1 = τj + 1

2 .

� In situation 5, the data are collected under the general observation scheme. Two

degradation levels are measured in each interval, and the measurement times are just

after the maintenance times. Here, the degradation measurements are not periodic:

∀ j ∈ {1, ..., 9}, tj,nj = τj − 1
2 and tj+1,1 = τj + 1

5 .
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Figure 3.7: Estimations of the parameters of the Perturbed ARD1 model for the situations
of Table 3.4
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The boxplots of the estimators are presented in Figure 3.7. This �gure shows that the

best estimations are obtained for situation 1, except for σ2
S . It means that in order to

estimate the parameters mainly linked to the maintenance e�ect, it is better to observe

degradation levels at maintenance times. Conversely, for parameter σ2
S mainly linked to

the intrinsic degradation, it is recommended to observe degradation levels between mainte-

nances.

The results for situation 2 are closer to the results of situation 1 than those of situation

3. This illustrates the fact that Situation 1 is a limit case of situation 2, or that the

complete observation scheme is a limit case of the general observation scheme. In this case,

the observed jumps in the general scheme Zgj are close to the real jumps Zcj .

The estimations in situation 4 and 5 are comparable except for the correlation coe�cient

rSM , which is better estimated when degradation levels are observed just after maintenance

actions.

The estimation quality is slightly better in situation 5 compared to situation 4. Measur-

ing degradation levels just after maintenance actions improves the estimations quality. In

the usual ARD1 model, the best estimations are not obtained for the complete observation

scheme [62]. On the contrary, for the proposed model, the complete observation scheme

provides the best estimation.
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3.4 Conclusion on the new degradation model with partial

maintenance e�ects and perspectives

This chapter has introduced a new degradation model with imperfect maintenance, which

assumes that maintenance e�ect only a�ects a part of the degradation process. Two partic-

ular models of interest have been studied, the Perturbed ARD1 and the Partial replacement

models. The parameters of these models have been estimated under two di�erent observa-

tion schemes. The quality of estimation has been assessed through a simulation study and

the impact of di�erent features of the model and data has been analyzed. A �rst prospect

of this study is to derive the theoretical properties of the estimators.

In the future, decision making techniques could be carried out in order to establish

optimal maintenance policies. Generally, it is assumed that a failure occurs when the

degradation process hits for the �rst time a given degradation threshold. For usual Wiener

processes, it is well known that the �rst hitting time is inverse Gaussian distributed [52]. For

the new degradation model presented in this article, the �rst hitting time's distribution is

not inverse Gaussian anymore but appears to be more complex as the degradation trajectory

is discontinuous at maintenance times. So an interesting prospect of this work is the

determination of this distribution.

In 3.4, a preliminary step is given, through an empirical estimate of this distribution's

PDF. Maintenance e�ects seem to cause the multimodal shape of the distribution. Due to

the maintenance e�ect, the risk of failure is higher before a maintenance than after. Further

studies could be carried out in the future in order to determine the theoretical distribution

of the �rst hitting time for this degradation model.
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Figure 3.8: An example of a simulated
degradation trajectory

0

5

10

15

20

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
time

d
e

n
si

ty

Figure 3.9: Empirical distribution of the
�rst passage time

Degradation trajectories are simulated for the proposed model and �rst hitting times

are collected. An example of a simulated trajectory and observed hitting time is given in

Figure 3.8. An histogram of the obtained values is plotted in Figure 3.9.

It appears that the �rst hitting time is multimodal distributed. In Figure 3.9, the modes

of the empirical PDF are clearly close to the maintenance times. In fact, the multimodal

shape of the distribution is a consequence of the maintenance e�ect on the degradation.
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Chapter 4

An inspection/replacement policy for

a degrading system with imperfect

partial repair e�ects

This chapter focuses on a cost modeling and optimization of a maintenance policy based

on the previously studied Wiener-based degradation model with partial maintenance ef-

fects. To distinguish those imperfect maintenance actions with partial e�ects from other

maintenance types, they are referred to as repairs. In this chapter, the proposed mainte-

nance policy involves inspections, repairs (or imperfect maintenances), and as-good-as-new

(AGAN) replacements. These replacements can be either corrective (if performed after

a failure) or preventive (triggered when the degradation level exceeds a certain thresh-

old). The inter-inspection time and the preventive replacement threshold are optimized

by minimizing the average maintenance cost. This average cost is determined by using

the Markov-renewal properties of the degradation process of the maintained system. Two

methods are considered to compute the average cost and obtain the optimal policy. The

study also explores the impact of speci�c cost coe�cients and model parameters on the

optimal maintenance policy.

In Section 4.1, a description on the studied degradation model is recalled and the main-

tenance assumptions are exposed. Based on these assumptions, a maintenance policy is

formulated and optimized in Section 4.2 based on the average maintenance cost. To min-

imize this cost and determine the optimal maintenance policy, two di�erent methods are

introduced. Subsequently, numerical results are discussed in Section 4.3, in order to analyze

the potential in�uence of prede�ned cost coe�cients and model parameters on the optimal
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maintenance policy.

4.1 Description of the Wiener-based degradation model

Given its suitability for practical situations, the Wiener-based degradation model with

partial maintenance e�ects, as described previously in Chapter 3, is employed in this chapter

to model degradation and establish a maintenance policy.

4.1.1 Degradation process under periodic repair

Let us recall some main assumptions about the used degradation process in this chapter.

The system's degradation is divided into two components: XU = XU (t)t≥0, the unmain-

tainable part of the degradation and XM= XM (t)t≥0, the maintainable part. Between

repairs, the degradation process evolves as the sum of these two underlying processes. Re-

pairs exclusively impact the XM component of the system's degradation. Furthermore, the

repair e�ect is characterized as an ARD1-type process, as detailed in [73]. The underlying

processes XU and XM are Wiener processes with drift. Their parameters are respectively

de�ned by the drift parameters µU , µM , the variance parameters σ2
U , σ

2
M , and the covari-

ance parameter cUM . Notably, the coe�cient of correlation between XU (t) and XM (t),

denoted as rUM , is constant over time and rUM ∈ [−1, 1]. As written in the previous

chapter, ρ represents the repair e�ciency parameter. In the following sections, repairs are

supposed to be e�cient, i.e. ρ ∈ [0, 1]. ∀j ∈ N∗, τj are the periodic maintenance times,

such that τ̃ = τj − τj−1. Let Y (t) be the degradation level of the maintained system at

time t. Let XS(t) represents the evolution of the degradation between two inspections,

i.e. the sum of the underlying processes XU and XM . It is assumed that Y (0) = 0 and

∀ t ∈ [τj−1, τj [, ∀ j ∈ {1, ..., k}, Y (t) = XU (t)+XM (t)−ρXM (τj−1) = XS(t)−ρXM (τj−1),

where XS represents the evolution of the degradation between two maintenance actions,

i.e. the sum of the underlying Wiener processes XU and XM .

4.1.2 Maintenance assumptions and maintenance policy structure

The type of maintenance action is determined by periodic inspections (conducted with

period τ̃), each one performed immediately before each repair or replacement, both of

which are instantaneous. The inspected degradation level just before each maintenance

∀ j ∈ {1, ...k}, Y (τ−j ), at time τj , is considered to decide between a repair (as described in
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the previous section) or an as-good-as-new replacement. Two degradation thresholds are

de�ned: M as the preventive replacement threshold and L as the corrective replacement

(or failure) threshold. M is set by the "maintenance decision maker" whereas L is not a

maintenance decision variable ans is assumed to be given in this study. ∀ j ∈ {1, ..., k},
over [τj−1, τj [, the following rules apply:

� If there exists a time t ∈ [τj−1, τj [ such that Y (t) > L, then a failure occurs when

degradation �rst exceeds the threshold L over the interval [τj−1, τj [, leading to tem-

porary unavailability. The whole system undergoes a corrective replacement at the

next maintenance time τj , such that Y (τ+
j ) = 0.

Failures are not self-declared: An inspection needs to be performed at the next main-

tenance time to witness this breakdown and carry out the replacement.

If degradation does not exceed the threshold L over [τj−1, τj [, then either a repair or

a preventive replacement is performed at time τj according to the following rules.

� If Y (τ−j ) < M , a repair is carried out, such that Y (τ+
j ) = XS(τj) + (1− ρ)XM (τj).

� IfM ≤ Y (τ−j ) ≤ L, a preventive replacement is performed, such that Y (τ+
j ) = 0. Let

us notice that, if a failure occurs exactly at the scheduled maintenance time (which

is a zero probability event), no unavailability time is considered, and a preventive

maintenance is performed.

Under these assumptions, each inspection is instantaneously followed by either repair or

replacement. Consequently, the jth maintenance time, denoted as τj , represents j periodic

inspection times such that τj = jτ̃ where τ̃ is the inspection period.

An example of a degradation trajectory including two system life cycles is presented

in Figure 4.1. The inter-inspection time τ̃ is set to 40, M is 700, and L is 1000. As

the employed degradation model is Wiener-based, degradation can decrease on some time

intervals. Inspections are depicted by circles and lead either to a repair or a preventive

replacement. Corrective maintenances due to failures are only conducted at inspection

times. In Figure 4.1, one failure is observed at time 230, leading to corrective replacement

conducted at the next inspection times τ6 = 240.

The preventive replacement threshold M and the inspection period τ̃ are the decision

variables for the considered maintenance policy. Each type of maintenance action, including

inspection, repair, preventive and corrective replacement, involves a speci�c maintenance
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cost. The asymptotic maintenance cost per time unit is assessed, and an optimal mainte-

nance policy is considered by minimizing this cost.

Figure 4.1: Evolution of a degradation trajectory Y (t) under maintenance assumptions

4.2 Maintenance cost assessment using two di�erent methods

In this section, the asymptotic maintenance cost per time unit is de�ned according to the

maintenance assumptions described in the previous section. Two distinct approaches are

suggested for evaluating this cost.

4.2.1 Maintenance cost modeling

As mentioned earlier, each type of maintenance action entails a maintenance cost. Here,

the global cost at time t is determined by the total unavailability time and the number

of inspections, repairs, preventive and corrective replacements carried out within the time

interval [0, t].

A cost coe�cient is associated to each type of maintenance. Let cI , cR, cP , cC be

respectively the cost coe�cient for inspections, repairs, preventive replacements, corrective
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replacements and cD be the the cost rate per time unit for unavailability. The number of

these di�erent types of maintenance actions over the interval [0, t] can be de�ned as follows.

� NR(t), the number of repairs over [0, t] is equal to
b t
τ̃
c∑

j=1
1{Y (τ−j )<M}∩{ sup

s∈[τj−1,τj [
Y (s)≤L}.

� NP (t), the number of preventive replacements over [0, t], is equal to
b t
τ̃
c∑

j=1
1{M≤Y (τ−j )≤L}∩{ sup

s∈[τj−1,τj [
Y (s)≤L}.

� NC(t), the number of corrective replacements over [0, t], is equal to
b t
τ̃
c∑

j=1
1{ sup

s∈[τj−1,τj [
Y (s)>L}.

Furthermore, after each failure, the system is no longer available until the next inspection

time. The total unavailability time must also be taken into consideration in the global

maintenance cost. Thus, this global maintenance cost at time t, denoted c(t), is incurred

by inspections, repairs, replacements and system unavailability and veri�es

c(t) =(cI + cR) NR(t) + (cI + cP ) NP (t) + (cI + cC) NC(t) + cD

b t
τ̃
c∑

j=1

(τj − Sj) (4.1)

where Sj represents the time at which a potential failure occurs over the interval [τj−1, τj [.

Considering that the system keeps degrading itself after failure, it follows that ∀ j ≥ 1,

Sj =

 τj , if sup
s∈[τj−1,τj [

Y (s) ≤ L

inf{s ∈ [τj−1, τj [ | Y (s) > L}, otherwise.

Let us notice that if sup
s∈[τj−1,τj [

Y (s) ≤ L, no failure occurs over [τj−1, τj [. On the contrary,

if sup
s∈[τj−1,τj [

Y (s) > L, the system fails involving an unavailability time. For example, in

Figure 4.1, the observed value of S5 is τ5 = 200 and the observed value of S6 is 230, which

di�ers from τ6 = 240 because the system failed between τ5 and τ6.

In order to assess the performance of the maintenance policy, we use the asymptotic

cost per time unit lim
t→+∞

c(t)
t . Thereafter, two di�erent approaches are introduced in order

to compute this asymptotic maintenance cost per time unit. The �rst method relies only

on numerical simulations of multiple system life cycles, while the second, named the hy-

brid method, resorts to the semi-regenerative Markov process properties of the maintained
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degradation process to derive analytic expressions and it incorporates both numerical eval-

uation of these expressions and stochastic simulation for the cost computation. Let us �rst

depict the mathematical properties of the maintenance based degradation process used in

both cases.

4.2.2 Two mathematical approaches for considering the maintenance-

based degradation process

There are two equivalent approaches to apprehend the maintenance-based degradation pro-

cess in order to assess the asymptotic maintenance cost per time unit.

Considering regenerative life cycles

The �rst approach consists in considering the evolution of the system degradation between

two AGAN replacements, i.e. over a regenerative life cycle. Let T denote the random

variable that represents the life cycle duration of the system. The link between T and the

considered degradation model can be expressed using the following notations:

� Rpj is the random variable equal to 1 when the jth inspection is followed by a preventive

replacement and 0 otherwise, Rpj = 1{M≤Y (τ−j )≤L, sup
s∈[τj−1,τj [

Y (s)≤L}.

� Rcj is the random variable equal to 1 when the jth inspection is followed by a corrective

replacement and 0 otherwise, Rcj = 1{ sup
s∈[τj−1,τj [

Y (s)>L} .

� Rj is the random variable equal to 1 when the jth inspection is followed by a replace-

ment and 0 otherwise, Rj = 1{Rpj=1} + 1{Rcj=1} and R0 = 0.

� Q` is the index of the inspection time which corresponds to the `th replacement, such

that Q` = {infj ∈ N|j > Q`−1;Rj = 1} and Q0 = 0.

� Given the previous expressions, {τQ`}`≥0 are the replacement times, i.e. times at

which a replacement is carried out on the system. For instance, in Figure 4.1, the

observed replacement indexes are Q1 = 3 and Q2 = 6 and the replacement times are

τQ1 = τ3 and τQ2 = τ6.

� ∆τQ` represents the random duration of the `th life cycle of a system, such that

∆τQ` = τQ` − τQ`−1
. {∆τQ`}`≥1 are independent and identically distributed as the

random variable T .
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Considering a semi-regenerative Markov process

The second approach consists in considering the evolution of the system degradation be-

tween two inspections. In fact, {Y (t)}t≥0 is a semi-regenerative Markov process taking

values in R, whose semi-regenerative instants are {τj}j≥0. Let (Y (τ+
j ))j≥1 = (Yj)j≥1 be

the embedded Markov chain taking values in R. After each replacement, degradation is

completely reset to zero and the following progression of the degradation is independent of

prior events. Likewise, after each repair, the degradation only advances based on the sys-

tem's condition right after that speci�c maintenance time. Thus, between two repairs, the

studied model can be described by a semi-regenerative Markov process (or Markov renewal)

[20, 36, 21]. As a matter of fact, ∀t ∈ [0, τ̃ [, ∀ j ≥ 0 ,

(Y (t+ τj)|Y0 = y0, ..., Yj = yj) is similarly distributed as (Y (t)|Y (0) = yj) indeed,

Y (t+ τj)− Yj = Y (t+ τj)− Y (τ+
j ) = XS(t+ τj)−XS(τj) = ∆XS(t)

Therefore, Y (t) is a semi-regenerative Markov process, and τj represents its semi-regenerative

instants.

Let us notice that, as illustrated in Figure 4.2, degradation can decrease over some

time intervals due to the considered Wiener underlying processes. The consequences of

this property may not be immediately intuitive: Although ρ ∈ [0, 1], degradation levels

after repair can be greater than degradation levels right before repair, meaning that Y (τ−j )

≤ Y (τ+
j ). Despite maintenance assumption, Y (τ+

j ) does not belong to [0,M [ since in

reality Yi ∈ R. These properties arise because the maintenance e�ect Y (τ−j ) − Y (τ+
j ) =

ρ
(
XM (τj)−XM (τj−1)

)
can potentially increase the degradation (even if ρ ∈ [0, 1]) due to

the fact that the underlying Wiener process XM is not necessarily increasing.
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time

Figure 4.2: Example of degradation, denoted as Y (t) and its underlying Wiener processes
XU (t) and XM (t) over [0, τ1]. In this speci�c scenario, the degradation level before repair
is lower than the degradation level after repair

4.2.3 Maintenance cost assessment based on life cycles simulations

After both preventive and corrective replacements, the entire system is renewed, causing

the degradation level to reset to zero instantly after replacement. Consequently, a new life

cycle of the system begins. From practical point of view, it is reasonable to assume that

the regenerative period is �nite, and then E[T ] < +∞. Moreover, the maintenance cost

function (t → c(t)) de�ned in the previous section, is positive (all the cost coe�cients are

positive), increasing (c(0) = 0) and for any 0 ≤ s ≤ t, c(t)− c(s) = c(t− s).
Thus, according to the renewal theory [20], the long run average maintenance cost, or the

maintenance cost rate in loose terms, can be expressed as below.

lim
t→∞

c(t)

t
=
E[c(T )]

E[T ]

The stochastic behavior of the degradation over di�erent life cycles are independent and
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identical. Then, the following expression holds true for all ` ≥ 1, speci�cally when ` = 1.

E[c(T )]

E[T ]
=

1

E[T ]

[
(cI + cR) E [Q1 − 1]

+ (cI + cP ) P( sup
s∈[0,τQ1

[
Y (s) ≤ L)

+ (cI + cC) P( sup
s∈[0,τQ1

[
Y (s) > L) + cD E [τQ1 − SQ1 ]

]
(4.2)

where:

� E [Q1 − 1] is the expectation of the number of repairs within a life cycle. Given that

Q1 represents the number of inspections within one cycle, and the last inspection is

followed by a replacement, it follows that Q1 − 1 repairs are carried out over one life

cycle.

� P( sup
s∈[0,τQ1

[
Y (s) ≤ L) is the probability that the system life cycle ends with a preventive

replacement.

� P( sup
s∈[0,τQ1

[
Y (s) > L) is the probability that the system life cycle concludes with a

corrective replacement.

� E [τQ1 − SQ1 ] is the expectation of the unavailability time over τQ1 .

Determining an analytic expression of these probabilities and expectations proves to be

challenging due to their dependence on the stochastic variable Q1, representing the number

of inspections before replacement. Consequently, the expected cost will be assessed by

stochastic simulations of the realizations (i.e. Monte Carlo simulations) over multiple life

cycles. Let Ncyc be the prede�ned number of life cycles, chosen high enough to ensure

convergence in the frequencies of maintenances and replacements, such that,

� E[Q1 − 1] is estimated by 1
Ncyc

Ncyc∑̀
=1

(Q` −Q`−1 − 1)

� P( sup
s∈[0,τQ1

[
Y (s) ≤ L) is estimated by 1

Ncyc

Ncyc∑̀
=1

Rp`

� P( sup
s∈[0,τQ1

[
Y (s) > L) is estimated by 1

Ncyc

Ncyc∑̀
=1

Rc`
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� E[τQ1 − SQ1 ] is estimated by 1
Ncyc

Ncyc∑̀
=1

(τQ` − SQ`)

� E[T ] is de�ned by 1
Ncyc

Ncyc∑̀
=1

(τQ` − τQ`−1
)

4.2.4 Maintenance cost assessment using semi-regenerative process prop-

erties

The long run average maintenance cost can also be written using the semi-regenerative

Markov property of the maintenance-based degradation process Y (t), considering τ̃ as the

semi-regenerative period.

Let us assume that :

� E[T 2] < +∞

� E[c(T )] < +∞

� E[Tc(T )] < +∞

� π∞ is the unique stationary probability for the Markov chain (Yj)j≥1

Given these assumptions and according to [20], the long run average maintenance cost

veri�es

lim
t→∞

c(t)

t
=

Eπ[c(τ̃)]

τ̃
=

∫
R E[c(τ̃)|Y (0) = y]π∞(y)dy

τ̃
(4.3)

To solve this equation, two quantities need to be computed: the conditional expectation

E[c(τ̃)|Y (0) = y] and the stationary distribution π∞(y). First, let us have a look on this

conditional expectation.

Analytic formulation of the conditional expectation expressed in the long run

average maintenance cost

As the degradation level over the interval [0, τ̃ ] depends on the degradation level at time

zero and considering that Y can now be seen as a semi-regenerative Markov process, the

conditional expectation E[c(τ̃)|Y (0) = y] can be computed using the Equation (4.1) for

t = τ̃ .
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Consequently, the Equation (4.4) is deduced.

Eπ[c(τ̃)|Y (0) = y] =(cI + cR) p1(y, τ̃) + (cI + cP ) p2(y, τ̃) + (cI + cC) p3(y, τ̃) + cD q4(y, τ̃)

(4.4)

where the quantities p1(y, τ̃), p2(y, τ̃), p3(y, τ̃) and q4(y, τ̃) refer to:

� p1(y, τ̃) = E[NR(τ̃)|Y (0) = y] = P

(
Y (τ̃−) < M, sup

s∈[0,τ̃ [
Y (s) ≤ L | Y (0) = y

)
is the

conditional probability of a repair occurring after τ̃

� p2(y, τ̃) = E[NP (τ̃)|Y (0) = y] = P

(
M ≤ Y (τ̃−) ≤ L, sup

s∈[0,τ̃ [
Y (s) ≤ L | Y (0) = y

)
is

the conditional probability of a preventive replacement being carried out after τ̃

� p3(y, τ̃) = E[NC(τ̃)|Y (0) = y] = P

(
sup
s∈[0,τ̃ [

Y (s) > L | Y (0) = y

)
is the conditional

probability of a corrective replacement occurring after τ̃

� q4(y, τ̃) = E [τ̃ − S1| Y (0) = y] where S1, initially de�ned in Section 4.2, represents

the �rst time at which the degradation exceeds the corrective threshold L.

Then, the conditional expectation expressed in Equation (4.3) veri�es

Proposition 4.2.1 The following proposition gives an analytic expression of the quantities

involved in Equation (4.4).

� p1(y, τ̃) =

[
Φ

(
M − y − µS τ̃

σS
√
τ̃

)
− exp

(
2
µS(L− y)

σ2
S

)
Φ

(
M − y − µS τ̃ − 2(L− y)

σS
√
τ̃

)]
1{y≤L}

� p2(y, τ̃) =

[
Φ

(
L− y − µS τ̃

σS
√
τ̃

)
− exp

(
2
µS(L− y)

σ2
S

)
Φ

(
−(L− y)− µS τ̃

σS
√
τ̃

)
−Φ

(
M − y − µS τ̃

σS
√
τ̃

)
+ exp

(
2
µS(L− y)

σ2
S

)
Φ

(
M − y − µS τ̃ − 2(L− y)

σS
√
τ̃

)]
1{y≤L}

� p3(y, τ̃) =

[
Φ

(
µS τ̃ − (L− y)

σS
√
τ̃

)
+ Φ

(
− µS τ̃ + (L− y)

σS
√
τ̃

)
exp

(
2µS(L− y)

σ2
S

)]
1{y≤L} + 1{y>L}
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� q4(y, τ̃) =

[(
τ̃ − L− y

µS

)
Φ

(
µS τ̃ − (L− y)

σS
√
τ̃

)
+

(
τ̃ +

L− y
µS

)
Φ

(
− µS τ̃ + L− y

σS
√
τ̃

)
exp

(
2µS(L− y)

σ2
S

)]
1{y≤L} + τ̃1{y>L}

where Φ represents the cumulative distribution function (CDF) of a standard Gaussian

distribution.

Proof 4.2.1 First, let us note that if Y (0) > L then sup
s∈[0,τ̃ [

Y (s) > L and consequently

p1(y, τ̃) = p2(y, τ̃) = 0, p3(y, τ̃) = 1 and q4(y, τ̃) = τ̃ . Therefore, in the following proof

only the case where y ≤ L is considered. Additionally, using the semi-regenerative Markov

model, let us recall that the evolution of the degradation level, ∀ s ∈ [0, τ̃ [, veri�es

Y (s) = XS(s)− ρXM (0)

= XS(s)−XS(0) +XS(0)− ρXM (0)

= ∆XS(s) + Y (0)

Then, Y (τ̃−) = ∆XS(τ̃) + Y (0)

And in particular, since (Y (τ̃−)|Y (0) = 0) follows a Gaussian N (µS τ̃ , σ
2
S τ̃), then, for

y ≤ L,

p1(y, τ̃) =P
(
Y (τ−) < M, sup

s∈[0,τ̃ [
Y (s) ≤ L | Y (0) = y

)
= P

(
∆XS(τ̃) < M − y, sup

s∈[0,τ̃ [
∆XS(s) ≤ L− y

)
=

∫ M−y

−∞
P
(

sup
s∈[0,τ̃ [

∆XS(s) ≤ L− y | ∆XS(τ̃) = x

)
f∆XS(τ̃)(x)dx

According to lemma 1.17 in [52] p. 34,

P
(

sup
s∈[0,τ̃ [

∆XS(s) > L− y | ∆XS(τ̃) = x

)
=

{
1 if x > L− y
exp

(
− 2 (L−y)(L−y−x)

σ2
S τ̃

)
alternatively

Therefore,
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p1(y, τ̃) =Φ

(
M − y − µS τ̃

σS
√
τ̃

)
− 1

σS
√

2πτ̃

∫ M−y

−∞
exp

(
− 1

2σ2
S τ̃

(
(x− µS τ̃)2 + 4(L− y)(L− y − x)

))
dx

Let us remark that (x− µS τ̃)2 + 4(L− y)(L− y − x) =
(
x− µS τ̃ − 2(L− y)

)2 − 4µS τ̃(L− y) then,

p1(y, τ̃) =Φ

(
M − y − µS τ̃

σS
√
τ̃

)
− exp

(
2
µS(L− y)

σ2
S

)
Φ

(
M − y − µS τ̃ − 2(L− y)

σS
√
τ̃

)
This expression of p1(y, τ̃) remains true for M = L and can be directly used to obtain the

following expression of p2(y, τ̃)

It follows that

p2(y, τ̃) =P
(
M − y ≤ ∆XS(τ̃) ≤ L− y, sup

s∈[0,τ̃ [
∆XS(s)− y ≤ L− y

)
=Φ

(
L− y − µS τ̃

σS
√
τ̃

)
− exp

(
2
µS(L− y)

σ2
S

)
Φ

(
−(L− y)− µS τ̃

σS
√
τ̃

)
− Φ

(
M − y − µS τ̃

σS
√
τ̃

)
+ exp

(
2
µS(L− y)

σ2
S

)
Φ

(
M − y − µS τ̃ − 2(L− y)

σS
√
τ̃

)
In Kahle et al.'s book [52], it has been demonstrated that the �rst time when degradation ex-

ceeds a critical threshold, follows an inverse-Gaussian distribution for a univariate Wiener-

based process. Therefore, based on Kahle et al.'s proof [52] and the provided formulation of

the cumulative distribution function of the �rst hitting time page 18, p3(y, τ̃) veri�es

p3(y, τ̃) =P

(
sup
s∈[0,τ̃ [

∆XS(s) > L− y

)
= P

(
inf{s ≥ 0|∆XS(s) > L− y} < τ̃

)

=Φ

(
µS τ̃ − (L− y)

σS
√
τ̃

)
+ Φ

(
− µS τ̃ + (L− y)

σS
√
τ̃

)
exp

(
2µS(L− y)

σ2
S

)
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Let us notice that whenM is equal to L, it satis�es p3(y, τ̃) = 1−p1(y, τ̃), meaning that when

the system does not undergo preventive replacement, then it is either repaired or correctively

replaced after an inspection.

Finally,

q4(y, τ̃) =E [τ̃ − t| Y (0) = y] =

∫ τ̃

0

(
τ̃ − t

)
finf{s≥0|∆XS(s)>L−y}(t)dt

where finf{s≥0|∆XS(s)>L−y}(t) represents the PDF of an inverse-Gaussian distribution since

it refers to the �rst passage time of a Wiener process with drift. An expression of this PDF

can be found in Kahle et al. [52], p. 16, and then,

q4(y, τ̃) =

∫ τ̃

0
(τ̃ − t) L− y√

2πσ2
S t

3
exp

(
− (L− y − µSt)2

2σ2
St

)
dt = τ̃ I1 − I2 with

I1 =

∫ τ̃

0

L− y√
2πσ2

S t
3

exp
(
− (L− y − µSt)2

2σ2
St

)
dt

I2 =

∫ τ̃

0

L− y√
2πσ2

S t
exp

(
− (L− y − µSt)2

2σ2
St

)
dt

I1 and I2 can be computed using the following trick. First, let us notice that (L−y−µSt)2 =

(L− y+µSt)
2− 4(L− y)µSt. Then, I1 can be expressed as the di�erence between two other

integrals Ia and Ib such that

Ia =
1√
2π

∫ τ̃

0

1

2σS

(µS√
t

+
L− y√
t3

)
exp

(
− (L− y − µSt)2

2σ2
St

)
dt

Ib =
1√
2π

∫ τ̃

0

1

2σS

(µS√
t
− L− y√

t3

)
exp

(2(L− y)µS
σ2
S

)
exp

(
− (L− y + µSt)

2

2σ2
St

)
dt

Afterwards, the following changes of variable u = µSt−(L−y)

σS
√
t

and v = µSt+(L−y)

σS
√
t

can respec-

tively be applied to Ia and Ib, such that du = 1
2σS

(µS√
t

+ L−y√
t3

)
dt, dv = 1

2σS

(µS√
t
− L−y√

t3

)
dt,

and since L− y ≥ 0,
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Ia =

∫ µSτ̃−(L−y)
σSτ̃

−∞

1√
2π

exp

(
−u

2

2

)
du = Φ

(
µS τ̃ − (L− y)

σS
√
τ̃

)

Ib = exp
(2(L− y)µS

σ2
S

) ∫ µSτ̃+(L−y)
σSτ̃

+∞

1√
2π

exp

(
−u

2

2

)
dv

= exp
(2(L− y)µS

σ2
S

)
Φ(−µS τ̃ + (L− y)

σS
√
τ̃

)

Finally, since I2 = L−y
µS

(Ia + Ib),

q4 =

(
τ̃ − L− y

µS

)
Φ

(
µS τ̃ − (L− y)

σS
√
τ̃

)
+

(
τ̃ +

L− y
µS

)
Φ

(
− µS τ̃ + L− y

σS
√
τ̃

)
exp

(
2µS(L− y)

σ2
S

)

Stationary distribution of the embedded Markov process

To analytically compute the long run average maintenance cost of Equation (4.3), only the

expression of the stationary distribution π∞ of the Markov chain {Yj}j≥0 is now missing.

Let π(.|.) denotes the transition probability associated with the distribution of Yj+1 given Yj ,

which does not depend on j thanks to the homogeneous Markov property. This distribution

is globally continuous and can be characterized by a PDF, but it also includes a Dirac mass

in 0 which refers to the probability for the next inspection to lead to a replacement. Let

fY1 | R1=0, Y (0)=y(x) be the conditional PDF of degradation levels after maintenance, given

that the maintenance action is a repair, and δ0(x) the Dirac mass in 0. Then,

π(x|y) =fYj+1|Yj (x) = fY1|Y (0)=y(x) (4.5)

=P
(
Y (τ̃−) < M, sup

s∈[0,τ̃ [
Y (s) ≤ L | Y (0) = y

)
fY1 | R1=0, Y (0)=y(x)

+

[
P
(
M ≤ Y (τ̃−) ≤ L, sup

s∈[0,τ̃ [
Y (s) ≤ L | Y (0) = y

)
+ P

(
sup
s∈[0,τ̃ [

Y (s) > L | Y (0) = y
)]

δ0(x)

=p1(y, τ̃) fY1 | R1=0,Y (0)=y(x) + (p2(y, τ̃) + p3(y, τ̃)) δ0(x) (4.6)
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Obtaining the analytic expression of the stationary distribution requires to solve the sta-

tionary equation,

π∞(x) =

∫
R
π(x|y) π∞(y)dy (4.7)

Let us notice that this integral is de�ned over R, because, as mentioned at the end of Sec-

tion 4.2.2, degradation level right after repair can actually be greater than the degradation

level right before repair (Figure 4.2). In that case, the degradation level after repair can

potentially exceed L, such that Y (τ−j ) < M ≤ L < Y (τ+
j ).

Solving the stationary equation presents a signi�cant challenge. Volterra methods, as sug-

gested in previous works [7, 111, 47], o�er a numerical approach to obtain it. However,

expressing the transition probability density function analytically is a complex task. In

addition, solving the stationary equation is not su�cient for computing the conditional

expectation of the cost over a stationary semi-regenerative cycle. In fact, the integral

presented in Equation (4.3) also needs to be computed. Hence, our approach suggests

estimating the cost and the stationary distribution through stochastic simulations of the

degradation between inspections, following a Monte Carlo approach.

Estimation of the maintenance cost rate based on simulations of the degradation

over inspection intervals

Let us keep in mind that the quantity E[c(τ̃)|Y (0) = yi] ≡ g(yi), developed in Equa-

tion (4.4), is analytically expressed in Proposition 4.2.1. Afterwards, we suggest to estimate

Eπ[c(τ̃)], the expected cost, over a stationary semi-regenerative cycle using simulations of

the degradation.

Let (Yj)j≥0 represent the sample of the �rst degradation levels right after repair or replace-

ment, collecting from simulated degradation on one trajectory. In general, to obtain a nearly

i.i.d. sample following the distribution π∞, one typically considers the values {YjN}j≥1

where N is chosen big enough to ensure independence. However, this approach signi�-

cantly increases the number of required simulations and is time-consuming. Therefore, to

simplify the procedure, we set N = 1 and j ∈ {1, ..., 5000}. Considering jmax = 5000 post-

repair degradation levels e�ectively reduce the impact of their successive inter-dependence,

and ensure convergence towards the stationary distribution: As depicted in Figure A.1, the

empirical stationary distributions do not visually evolve when considering more degradation

levels. Then, as depicted in Figure A.2, adjusting N to 1 does not impact the estimations
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of the cost. Let us also note that the minimal number of considered degradation levels

to ensure convergence towards the stationary distribution, depends on the model parame-

ters, on the chosen inter-inspection period and on the values of the degradation thresholds.

However, considering 5000 degradation values appears to be widely enough to ensure con-

vergence for any model parameters and decision variables (M and τ̃). Thus, E[c(τ̃)] is

estimated by 1
5000

∑5000
j=1 g(Yj).

In order to illustrate the behavior of the stationary distribution π∞, each histogram

presented in Figure 4.3 represent the 5000 �rst observations of {Yj}1≤j≤5000 for di�erent

values of M and τ̃ . Figure 4.3 shows histograms of the empirical stationary distribution,

each coming from one simulated degradation trajectory for di�erent values of the decision

variables M and τ̃ . From now and for the following numerical experiments, the corrective

replacement threshold L is set at 1000. Within each histogram, 5000 values correspond-

ing to degradation levels after maintenance or replacements are displayed. For instance,

the Figure 4.4 illustrates an example of a simulated degradation trajectory over eight life

cycles. The black dots represent the degradation levels de�ning the empirical stationary

distribution. In these examples the corrective replacement L threshold is set at 1000. These

histograms are intentionally depicted in counts rather than in frequencies, allowing a direct

observation of the number of replacements and repairs in the distribution. For either τ̃ = 10

or τ̃ = 30, when M increases and gets closer to L, the weight of the Dirac mass at zero

decreases, which corresponds to a decrease in the number of replacements. As the value

of M rises, there is an increase in the number of repairs and a decrease in the number of

replacements when τ̃ = 10 within the interval [0, 50000], or when τ̃ = 30 within the interval

[0, 150000]. In addition, with an increase in M , the potential value of Yj also rises, as

preventive replacements occur only when Y (τ−j ) ≥M . Alternatively, the life cycles of sys-

tems lengthen since it requires more time for degradation to exceed M . This phenomenon

corresponds to an increase in the number of repairs and then to a larger dispersion in the

empirical stationary distribution.
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Figure 4.3: Examples of simulated stationary distributions π∞, constructed with simulated
post-repair degradation levels (Yj)j≥1 and according to various values of τ̃ andM , based on
the next parameters: µU = 7, µM = 10, σ2

U = 400, σ2
M = 600, rUM = 0.7, ρ = 1, L = 1000
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Figure 4.4: Example of a simulated degradation trajectory over eight life cycles, when
τ̃ = 10 and M = 600
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Figure 4.5: Flowchart illustrating the di�erent possible methods employed in assessing or
computing the long run average maintenance cost.



4.2.5 Comparison of the two methods

Figure 4.5 outlines the distinction between the two simulation methods employed for as-

sessing the analytic cost. The purely simulation-based method is described only by numer-

ical simulations of the renewal cycles, whereas the hybrid method uses both the analytic

expressions presented in the conditional expectation under the stationary measure in Equa-

tion (4.4) and simulation of the stationary distribution. A third method is suggested, based

on analytic expressions of both the stationary distribution and the quantities mentioned in

Equation (4.4). Yet, as previously mentioned, due to the apparent complexity in obtaining

the analytic expression of the stationary distribution, this last method has not been taken

into account in the cost assessment presented in this chapter.

In Figure 4.8, the maintenance cost rate is assessed using both the purely simulation-

based method and the hybrid method. The solid lines depict the purely simulation-based

method, while the dashed lines represent the hybrid method. Each line illustrates the

long run average maintenance cost for di�erent values of the preventive threshold. The

cost rates obtained with the purely simulation-based method are estimated using simulated

degradation trajectories over 5000 system life cycles based on the following parameters:

µU = 7, µM = 10, σ2
U = 400, σ2

M = 600, rUM = 0.7, ρ = 1, cIR = 12, cIP = 50,

cIC = 100, cD = 50. As illustrated in Figure A.3, 5000 cycles seem largely su�cient to

guarantee the convergence of the assessed cost rate for di�erent values of τ̃ and M and

for a speci�c set of model parameters. Let us keep in mind that di�erent sets of model

parameters may alter the convergence results. Yet, the deliberate choice if 5000 life cycles

is intended to ensure convergence for all sets of model parameters studied in the following

numerical experiments. For each method, and considering the chosen theoretical values of

the parameters, the degradation trajectories are simulated using di�erent time steps : 0.01,

0.1 and 1.

At a time step of 0.01, the purely simulation-based method aligns with the hybrid

method, as the estimated cost values are highly similar. When the time step equals 1, the

estimations of the cost loose precision for both methods. Speci�cally, the hybrid method

shows less precision when the preventive threshold approaches the corrective threshold

(when M > 900), and the maintenance cost rate values are further from the cost values

with a time step at 0.01. Alternatively, with an increase in the preventive thresholdM , the

purely simulation-based method tends to underestimate cost values. Let us note that, for

this method, when the step is set at 1, a few failures occur precisely at the maintenance
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time. For example, using the same degradation trajectory with a time step of 1 depicted in

this �gure, when M = L, 237 failures out of 5000 occur exactly at the maintenance time.

Although in theory and as well as in practice, this situation has no chance to happen, it

can occur when using simulations based on a large time step. As mentioned earlier, in this

speci�c case, preventive replacements are carried out.

Furthermore, as the time step rises, there is reduced information about the degradation,

leading to fewer chances to detect a failure (Figure 4.6) or detect it later (Figure 4.7). For

these reasons, compared to a smaller time step method, preventive replacements or repairs

are favored over corrective ones and the potential unavailability time is shortened. Since the

cost coe�cients for preventive replacement are lower than those for corrective ones, these

remarks explain why the purely simulation-based method with a time step of 1 results in

underestimated cost values. Nevertheless, when time steps are set at 0.1 and 0.01, all the

failures occur between maintenance times.

Figure 4.6: Example of degradation incre-
ments simulated over di�erent time steps,
resp. p = {0.01, 0.1, 1}. In this scenario,
when p = 1, failure is not even detected, in
contrast to the smaller considered time steps.

Figure 4.7: Example of degradation incre-
ments simulated over di�erent time steps,
resp. p = {0.01, 0.1, 1}. In this scenario,
when p = 1, failure is identi�ed at the exact
maintenance time, i.e. later compared to the
smaller considered time steps.
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On the other hand, for a reasonable value of the preventive replacement threshold

(M ≤ 900), the hybrid method keeps precision regardless of the chosen time step, in

contrast to the purely simulation-based method with time steps set at 0.1 and 1. Indeed,

for the hybrid method, the resulting estimated cost values are closer from those obtained

with a smaller time step. Additionally, the same comparative analyses, using the same

model parameters and cost coe�cients, have been conducted employing di�erent values for

the inspection period τ̃ , as presented in Figure A.4 and Figure A.5. In these �gures, due to

simulation time constraints, two time steps instead of three are depicted, 0.1 and 1. Once

again, when τ̃ = 10 and τ̃ = 40 and for a reasonable value of M , the hybrid methods

are aligning and maintain precision no matter the time step. Moreover, using the hybrid

method over bigger time steps is less time-consuming than the purely simulation-based

method with very small time steps. Therefore, it appears more accurate to use the hybrid

method for the following cost assessments.
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4.3 Numerical experiments

For the following numerical experiments, the maintenance cost rate is assessed using the

hybrid method. The number of degradation levels used to simulate the empirical stationary

distribution is always greater than or equal to the number of replacements (or the number

of life cycles). As previously mentioned, 5000 post-repair degradation levels seem to be a

reasonable number to ensure convergence of the cost rate using di�erent values of τ̃ andM ,

Figure A.2. Then, to obtain the long run average maintenance cost considering di�erent

values of τ̃ and M , all the degradation trajectories, as the one presented in Figure 4.1, are

simulated over Ncyc = 5000 life cycles (corresponding to 5000 replacements).

As shown in Figure 4.8, the hybrid method enables the simulation of degradation incre-

ments over larger time steps, especially for values of M distant enough from the corrective

threshold. Indeed, in this situation, the evaluation of cost rates is not impacted by the

time step, and the computational time is largely reduced. Hence, in this section, the hybrid

method is employed and each degradation increment is simulated over a time interval set

at 1 time unit. To obtain the asymptotic cost per time unit, a degradation trajectory, as

the one presented in Figure 4.1, is simulated over Ncyc = 5000 life cycles, corresponding

to 5000 replacements. As previously mentioned, 5000 life cycles seem to be a reasonable

number to ensure convergence of the cost rate using di�erent values of τ̃ and M , Fig-

ure A.3. Furthermore, this approach is also used with di�erent values of τ̃ and M in order

to evaluate the optimal maintenance policy (τ̃∗,M∗) by minimizing the cost rate. For the

computation of the cost rates, τ̃ ∈ [2.5 ; 50] and its values are discretized every 2.5 time

unit. M ∈ [100 ; 900] and its values are discretized every 25 degradation unit. Let us

note that optimizing the maintenance policy for the given decision variables is very time-

consuming. Naturally, a �ner discretization and more considered cost rates and coe�cients

will provide more accurate results. For the following experiments, it is reasonably assumed

that 0 ≤ cI ≤ cR ≤ cP ≤ cC + cD. From now on, to simplify notations, as inspections are

necessarily followed by either a repair or a replacement, we note cIR = cI+cR, cIP = cI+cP

and cIC = cI + cC .
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Figure 4.9: Surface long run average maintenance cost rates as a function of the inter-
inspection time τ̃ and the preventive threshold M , computed with a corrective threshold
equal to 1000 and the following cost coe�cients: cIR = 12, cIP = 50, cIC = 100, cD = 200
and the set of parameters presented in Situation 1, Table 4.1.

In Figure 4.9, 5000 cycles are simulated for each value of τ̃ and M and the maintenance

cost rates are computed with the hybrid method. For the given cost coe�cients and model

parameters, the optimal policy, i.e. for which the maintenance cost rate is minimal, is

(τ̃∗,M∗) = (17.5, 525).

4.3.1 Cost assessment and optimization

In this section, the long run average maintenance cost is computed using the hybrid method

according to the decision variables τ̃ the inspection period, and M the preventive replace-

ment threshold. τ∗ and M∗, the optimal values of τ̃ and M which minimized the long run

average maintenance cost presented in Equation (4.3), are analyzed taking into account

di�erent speci�c cost coe�cients and model parameters. Let us also keep in mind than the

chosen value for the corrective replacement threshold remains L = 1000 for all the following

numerical experiments. Consequently, all optimal maintenance policies should be evaluated

with respect to this corrective threshold.
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Table 4.1: Parameters employed in simulating degradation trajectories

Situation

parameters
µU µM σ2

U σ2
M rUM ρ

1 7 10 400 600 0.7 1

2 7 10 400 600 0.1 1

3 7 30 400 600 0.7 1

4 7 10 400 600 0.7 0.1

Di�erent situations are considered in Table 4.1 in order to assess the possible in�uence

of the model parameters on the optimal maintenance policy. Thus, in each situation,

simulated degradation trajectories are based on a speci�c set of model parameters. On the

one hand, the following section analyze the e�ect of the prede�ned cost coe�cients cIP and

cost rate cD on the optimal policy. On the other hand, this section also studies the impact

of the drift of the maintained process µM , the correlation coe�cient rUM between the two

underlying Wiener processes XM and XU , and the repair e�ciency parameter ρ on the

optimal maintenance policy.

4.3.2 In�uence of the preventive replacement cost coe�cient and the

unavailability cost rate

To assess the potential in�uence of the given costs coe�cients, multiple values of both

preventive cost coe�cients and unavailability cost rates are examined. The long run average

maintenance cost is computed as a function of these cost coe�cients.

In�uence of the preventive replacement cost

To evaluate the impact of the preventive replacement cost, the maintenance cost rate is

calculated using the hybrid method and for the following preventive cost coe�cients: cIP =

{12, 25, 50, 100, 150}. In order to respect the previously mentioned assumption 0 ≤ cI ≤
cR ≤ cP ≤ cC + cD, the other cost coe�cients are set at cIR = 12 , cIC = 100 and cD = 50,
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Figure 4.10: Optimal values of τ̃ and M considering di�erent preventive cost coe�cients
(cIP )

For reasonable values of τ̃ and M , over the system life cycle, trade-o�s exist between

the number of repairs, the preventive threshold M and the length of the inter-inspection

time τ̃ (Equation (4.3)). As the preventive threshold M approaches the corrective thresh-

old L, the number of failures tends to increase. This phenomenon also contributes to an

increase in the number of repairs and an extension of the life cycle. Moreover, for a given

preventive threshold M , a decrease in the value of τ̃ rises the number of repairs, lengthens

the life cycle and preventive replacements are more likely to be performed than corrective

ones. Furthermore, a too small value of τ̃∗ would result in an excessive number of repairs,

potentially leading to a high maintenance cost. Similarly, too long inter-inspection periods

tend to favor failures, shorten system life cycles and elevate the cost (Equation (4.2)).

In Figure 4.10, for each situation, the following observations and possible explanations

arise:

� As preventive cost coe�cients rise, an increase in the optimal preventive threshold

results in a decrease in the optimal inter-inspection time.

In general, an increase in the preventive cost coe�cients tends to slightly favor cor-

rective replacements over preventive replacements. Here, as cIP rises, a higher value

of the preventive threshold and a lower value of the inter-inspection time, minimize

the maintenance cost rate. In this situation, more repairs over a system life cycle, as

well as more corrective replacements (over the 5000 initially simulated ) are observed

on the degradation trajectories.
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� When cIP ≥ 50, the optimal inter-inspection time stabilize for the �rst three situations

and a more moderate increase is observed in the optimal values of M . Speci�cally, in

situations 2 and 3, when cIP ≥ 100, the values of τ̃ no longer decrease, while values

of M∗ slightly increase.

Based on the observation of the degradation trajectories, this case results in more

repairs over a life cycle and extended durations of life cycles.

This trend can explain the convergence of optimal values forM towards the corrective

threshold L in all situations. Opting for a higher risk of failure is favored in order to

manage the maintenance cost rate. There also can be economic bene�ts in accepting

a higher risk of failure rather than performing unnecessary or prematurely scheduled

preventive replacements.

� When the preventive replacement cost coe�cient is equal to the failure cost coe�cient

cIP = cIC + cD = 150, τ̃∗ ∈ [10, 20] and M∗ ≥ 700 for all situations. Let us remark

that, in that case, the type of replacement no longer a�ects the maintenance cost

rate, allowing more failures and corrective replacements. Only the number of repairs

and the length of τ̃ in�uence the cost. This can also explain why the values of M

approaches the corrective threshold L when cIP = 150 (examples of these degradation

cycles are presented in Appendix Figures A.8 and A.9).

� When the preventive cost coe�cient is equal to the repair cost coe�cient (cIR =

cIP = 12), the optimal preventive threshold is minimal. Based on the observation

of the simulated degradation trajectories, these preventive replacements are always

prioritized over corrective ones and the number of repairs strongly decreases even

though life cycles are shortened, Appendix Figures A.6 and A.7.

In�uence of the unavailability cost rate after failure

The impact of the unavailability cost rate cD is also studied with values set at {12, 20, 50, 100, 150, 200}.
For each of these values, to respect the assumption regarding the order of the maintenance

cost coe�cients, the other cost coe�cients are set at cIR = 12 , cIP = 50 and cIC = 100.
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Figure 4.11: Optimal values of τ̃ and M considering di�erent unavailability cost rates (cD)

� In Figure 4.11, in contrast to Figure 4.10, the optimal values ofM show less variability

for all the situations. In the �rst three situations, as the unavailability cost rate rises,

both τ̃∗ and M∗ remain approximately at the same moderate level.

Therefore, for these model parameters and for the other considered cost coe�cients,

the unavailability cost rate does not seem to impact the optimal policy (τ̃∗,M∗) that

much.

It is worth noticing that, given the chosen cost coe�cients (cIR = 12 , cIP = 50

and cIC = 100), a corrective replacements will always be more expensive than a

preventive one, regardless of the unavailability cost coe�cient. This explains the

limited variability in the resulting optimal policies.

� In the initial three situations, in contrast to Figure 4.10, a slight reduction in τ̃∗
corresponds to a marginal reduction in M∗.

� For all situations,when cD > 150, the optimal values of τ̃ and M stabilize.

Su�ciently low values of both τ̃∗ andM∗ tend to avoid failures. Prioritizing preventive

replacements appears more suitable to minimize the risk of costly failures, Appendix

Figure A.11.

� In the �rst three situations, when the unavailability cost rate is su�ciently low, M∗

and τ∗ are slightly higher.
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In that situation, a failure is less costly. Then, for these optimal policies, failures are

slightly more susceptible to occur, Appendix Figure A.10.

� Similar to Figure 4.10, in situation 4, the lower the τ̃∗, the higher M∗. As unavail-

ability cost rate rises, the optimal inter-inspection signi�cantly decreases, while the

optimal preventive threshold sees only a slight increase, leading to favor preventive

replacement.

Situation 4 refers to a low repair e�ciency parameter leading to an acceleration of the

degradation. Thus, as the unavailability cost rises, a strong reduction in the inter-

inspection period is more inclined to e�ciently control the degradation and avoid too

costly failures. Meanwhile, a slight increase in the optimal preventive threshold can

lengthen the duration of life cycles, reducing maintenance cost rates.

4.3.3 In�uence of the model parameters

To identify potential e�ects of model parameters on the optimal maintenance policy, one can

observe how the curves behave relative to each other in both Figure 4.10 and Figure 4.11.

In�uence of the correlation parameter, rUM

Situations 1 and 2 show similar behaviors of the curves. For the optimalM , these curves are

generally located between situation 3 and 4. Indeed in these �rst two situations, between

two repairs, degradation increases less than in situation 3 but equally to situation 4 and

maintenance e�ects are less pronounced than in situation 3 but more e�ective than in

situation 4.

Since the �rst two situations lead to a similar behavior of the curves, the coe�cient

correlation rUM between the two underlying processes XU and XM in the model, appears

to have minimal impact on the maintenance cost rate.

In�uence of the drift of the maintained process, µM

In situation 3, compared to the other situations, more extreme maintenance policies arise.

Optimal inter-inspection periods τ̃∗ are always lower, and optimal preventive replacement

thresholds M∗ are always greater.

As only process XM is a�ected by repairs, a higher value of the second process drift

(µM ) results in a more pronounced maintenance e�ect. Let us note that in the �rst three
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situations, as ρ = 1, degradation level after repair remains XU (τj). However, over the inter-

inspection interval τ̃ , degradation accelerates when the drift value is higher. Consequently,

in this situation, there are higher risks of failures and shorter life cycles.

As degradation accelerated over the inter-inspection period, a lower value of τ̃∗ seems

necessary to avoid too costly failures. Meanwhile, a greater value of M∗ is more likely to

favor multiple repairs and lengthen life cycles.

In�uence of the repair e�ciency parameter, ρ

Compared to the other situations, situation 4 shows greater variability in its optimal poli-

cies.

Compared to situation 3, when cIP ≤ 100 and for all the given values of cD, a higher

value of τ̃∗ and lower value of M∗ are obtained. In this situation, repairs are almost

ine�ective, leading to an acceleration of the degradation. Then, for a moderate value of

the preventive cost coe�cient, performing multiple repairs over a cycle is not economically

interesting as increasing their frequency has no signi�cant impact on degradation but does

increase the cost. It appears more interesting to reduce their frequency until a replacement

is scheduled.

Yet, as the preventive cost coe�cient becomes excessively high, τ̃∗ clearly decreases

while M∗ strongly increases. Even though maintenances are not very e�ective in this

situation, their impact on the degradation over a life cycle seems to become signi�cant

when performed a su�cient amount of time. It appears necessary to signi�cantly increase

the number of repairs to avoid premature preventive replacements.

Let us also notice that optimal value of τ̃ is a non-monotonically function of the pre-

ventive cost coe�cient. Indeed, the maximal value of τ̃∗ is obtained for cIP = 25. When

cIP is su�ciently low (cIP < 25), τ̃∗ tends to slightly decrease and M∗ is minimal favoring

preventive replacements over corrective ones.

4.4 Overview of a post-repair inspection/replacement policy

From now on, di�erent inspection assumptions are considered. Degradation levels are as-

sumed to be inspected right after repairs and replacements. Compared to the previous

inspection policy, inspecting right after repairs, a policy already considered in practice, can

o�er further insights into the repair e�ect. For instance, in Chapter 2, observing degra-

dation levels after repairs provides e�ective parameter assessments, even with a limited
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number of observations. In addition, in the case of an optimal repair (ρ = 1), post-repairs

inspections provide information about the degradation level of the unmaintained compo-

nent, since Y (τ+
j ) = XU (τj), at the repair time. On the other hand, for this new inspection

policy, the degradation level might exceedM before a repair and drop below this preventive

threshold right after performing the repair. Then, considering this new inspection policy

might signi�cantly impact the optimal maintenance policy (τ∗,M∗).

Nevertheless, under this inspection policy, the analytic writing of the long run average

maintenance cost appears to be much more complicated to obtain, even partially. Then,

this section introduces the new considered maintenance assumptions and proceeds directly

to numerical experiments using the purely simulation-based method.

4.4.1 Maintenance assumptions

As previously, the system undergoes inspections, repairs, preventive and corrective replace-

ments. Repairs are performed periodically and degradation levels are only observed right

after every repair. ∀ j ≥ 1, over [τj−1, τj [, the following rules apply:

� If there exists a time t ∈ [τj−1, τj [ such that Y (t) > L, then a failure occurs when

degradation �rst exceeds the threshold L over the interval [τj−1, τj [, leading to tem-

porary unavailability which incurs a cost. The whole system undergoes a corrective

replacement at the next maintenance time τj , such that Y (τ+
j ) = 0. No inspection

is carried out in this situation. If degradation does not exceed the threshold L over

[τj−1, τj [, then either a repair alone or a repair followed by a preventive replacement

is performed at time τj according to the following rules.

� If Y (τ+
j ) < M after the repair, the system do not necessitate any further interventions

and is left unchanged.

� IfM ≤ Y (τ+
j ) ≤ L, a preventive replacement is performed right after the repair, such

that Y (τ+
j ) = 0. Let us notice that, if a failure occurs at the scheduled maintenance

time (which is a zero probability event), no unavailability time is considered, and a

preventive maintenance is performed.

For this policy, maintenance assumptions are slightly di�erent: when the observed degra-

dation level right after repair is between M and L, then a preventive as-good-as-new re-

placement is instantaneously performed on the entire system. In that speci�c situation, two

134



maintenance actions are simultaneously performed on the system. Therefore, every preven-

tive replacement necessarily involves one inspection and one repair at the same maintenance

time. In addition, compared to the previous inspection policy, failures are self-declared and

corrective replacements do not involve any inspections. Figure 4.12.

Figure 4.12: Degradation trajectory Y (t) as a function of time

4.4.2 Cost optimization and numerical experiments

Previously, as presented in Equation (4.3), a semi-regenerative Markov process is considered

to evaluate the long run average maintenance cost under the stationary measure, with the

aim of writing a fully or partially analytic cost expression. However, the introduction of this

new inspection scheme has increased the complexity of the analytic cost assessment Eπ [c(τ̃)]
τ̃

between two inspections. As previously, the cost involves calculating various quantities, in-

cluding P

(
Y (τ+

j ) < M, sup
s∈[0,τ̃ [

Y (s) ≤ L | Y +
j−1 = y

)
, P

(
M ≤ Y (τ+

j , sup
s∈[0,τ̃ [

Y (s) ≤ L | Y +
j−1 = y

)
,

P
(

sup
s∈[0,τ̃ [

Y (s) > L|Y +
j−1 = y

)
and the conditional expectation of the unavailability time. In

these probabilities, Y (τ+
j ), de�ned as Y (τ+

j ) = XU (τj) (when repairs are assumed to be
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optimal, i.e. ρ = 1), represents the degradation level immediately after repairs and before

any potential preventive replacements. Between two repairs, degradation evolves according

to the process XS , such that Y (s) = XS(s). Consequently, the assessment of the cost

involves two dependent processes, XU and XS , signi�cantly complicating its evaluation.

Thus, in this section, the long run average maintenance cost presented in Equation (4.2), is

only numerically assessed, using the purely stochastic simulation-based method over regen-

erative periods. As outlined in the previous pre-inspection policy, degradation trajectories

are simulated based on successive degradation increments over small time steps (increments

are simulated every 0.1 time unit). All the degradation trajectories are simulated over Ncyc

life cycles. Optimal policies are determined by minimizing the long run average maintenance

cost according to the same discretized values of τ̃ and M presented previously.

As mentioned earlier, compared to the previous inspection policy, for a given inter-inspection

time and preventive threshold, an inspected degradation level can exceedM before a repair

and drop below M right after the repair. This scenario tends to increase the number of

repairs over one life cycle. In general, for moderate values of τ̃ and M , it also leads to a

higher risk of failure. This is why, in the following numerical experiments, the optimal pre-

ventive threshold is lower than the one obtained in the previous inspection policy, avoiding

either too many repairs or too many failures.
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Figure 4.13: Surface long run average maintenance cost rates as a function of the inter-
inspection time τ̃ and the preventive thresholdM , considering post-repair inspections. Cost
coe�cients include cI + cR = 12, cI + cP = 50, cC = 100, cD = 200, with model parameters
speci�ed in Situation 1, Table 4.1
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Figure 4.13 gives an example of an optimal policy given the same speci�c cost coe�cients

and model parameters as Figure 4.9 previously. In Figure 4.13, the optimal decision vari-

ables, τ̃∗ = 20 and M∗ = 325, are optimized using Monte Carlo simulations composed of

successive small degradation increments, each one generated over 0.1 time unit. The whole

degradation trajectory is simulated over Ncyc = 5000 cycles. Compared to Figure 4.9 where

τ̃∗ = 17.5 and M∗ = 525, the optimal τ̃ does not really change, whereas M∗ signi�cantly

decreases. In this scenario, preventive replacements are favored, avoiding expensive failures

and corrective replacements.
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Figure 4.14: Optimal values of τ̃ and M considering di�erent preventive cost coe�cients

In Figure 4.14, for all situations, the optimal inter-inspection time decreases as the preven-

tive replacement cost coe�cient rises. When the cost coe�cient exceeds 100, the optimal

inter-inspection time tends to stabilize at a certain optimal value. Meanwhile,M∗ increases

as the cost coe�cient rises.

Compared to the previous optimal policies outlined in Figure 4.10, the curves for τ̃ show

similar trends, whileM∗ are generally lower for all situations. As expected, when cIP ≥ 25,

the optimal values of M are notably lower compared to the values of M∗ in the inspection

assumptions previously considered, potentially avoiding an excessive number of repairs and

failures. On the other hand, when cIP = cIR = 12, the optimal values of M are slightly

higher. In this case, prioritizing both repairs and preventive replacements over corrective

replacements becomes economically interesting. However, setting the preventive threshold
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too low may result in an excessive frequency of preventive replacements, thereby shortening

life cycles and elevating the maintenance cost rate. Let us also note that, compared to the

pre-inspection policy, the optimal policies show less sensitivity to changes in the preventive

cost coe�cient, as there is reduced variability in the obtained optimal policies.

In�uence of the unavailability cost rate
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Figure 4.15: Optimal values of τ̃ and M considering di�erent preventive cost coe�cients

In Figure 4.15, there is minimal variability among the optimal values of the decision vari-

ables. Speci�cally, the optimal values of M∗ show marginal variation.

Just as in Figure 4.14, compared to the pre-repair inspection policy, the optimal values

of τ̃ are very similar, whereas the optimal values of M are strongly reduced. However, the

optimal values of τ̃ tend to stabilize earlier than in the previous inspection policy (here the

same τ̃∗ is observed when cD ≥ 100 for the �rst three situations). As mentioned in the

previous section, here again, failures involve two cost rates: the corrective and the unavail-

ability cost rate. The chosen cost coe�cients are set such that cIC = 100, cIP = 50, cI = 12.

Thus, regardless the chosen cost rate coe�cient associated with the unavailability of the

system, failures will always incur higher costs than preventive replacements. Therefore,

given the chosen cost coe�cients, the unavailability cost rate does not have a signi�cant

impact on the optimal policy (τ̃∗,M∗).

138



4.4.3 In�uence of the parameters

Similarly to the previous inspection policy, the impact of the model parameters can be

studied by comparing the resulting optimal policies with each other.

� In both Figure 4.14 and Figure 4.15, for a given value of the preventive cost coe�cient

and unavailability cost rate, the optimal values of M are highly similar between the

�rst three situations. Consequently, the considered model parameters (µM , rUM ) do

not show a notable in�uence on the optimal values of the preventive replacement

threshold.

� Just as in the pre-repair inspection policy, the optimal policies in situations 1 and 2

are very similar, indicating that the coe�cient correlation between the two underlying

Wiener processes XU and XM , does not signi�cantly impact the optimal policy.

� In situations 1 and 3, values ofM∗ are highly similar and values of τ̃∗ follow the same

trend in both Figure 4.14 and Figure 4.15. Let us remark that the �rst three situations

where ρ = 1, the inspected degradation level after repair corresponds to Y (τ+
j ) =

XU (τj). Then, as µM is not considered in the post-repair inspected degradation, the

inspected degradation levels are equivalent in situations 1 and 3. The only distinction

in the optimal policy between these two situations comes from the evolution of the

degradation between the inspections. Between two inspections, degradation is higher

in situation 3. Then, for the considered values of τ̃ and M , more failures are likely

to occur in this situation, leading to a slightly di�erent maintenance policy. Indeed,

di�erent values of τ̃∗ are observed between these two situations.

� In situation 3, the observed values of M∗ are much lower compared to the pre-repair

inspection policy (Figure 4.10, Figure 4.11). This di�erence comes from the fact

that in the pre-repair inspection policy, the inspected degradation levels are much

higher, Y (τ−j ) = XU (τj) + XM (τj), whereas, in the post-repair inspection policy,

inspected degradation levels are given by Y (τ+
j ) = XU (τj). Necessarily, these di�erent

inspection values signi�cantly alters the optimal policy.

� In situation 4, optimal values of τ̃ andM are quite similar, whether degradation levels

are inspected before or after repairs. In this situation, with ρ = 0.1 and maintenance

being nearly ine�ective, degradation levels inspected right before repairs are very close

from those inspected right after. As expected, when the repair e�ciency parameter is
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close to zero, the inspection assumptions, whether inspections are conducted before

or after repairs, show marginal impact on the optimal policy.
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4.5 Conclusion on the inspection/replacement policy

In this chapter, a maintenance policy is established using the Wiener-based degradation

model with partial maintenance e�ects. The long run average maintenance cost is assessed

using both the regenerative and semi-regenerative properties of the maintained degrada-

tion process. These two approaches are respectively referred to the purely simulation-based

Monte Carlo method that relies on simulated degradation trajectories over one life cycle,

and the hybrid method that combines analytic expressions and numerical simulations of

the stationary distribution, both involved in the cost rate assessment. This hybrid method

appears to be less time-consuming and give e�cient results for a preventive threshold rea-

sonably distant from the corrective threshold. Two maintenance policies are considered.

On the one hand, degradation levels are inspected before any type of maintenance action.

On the other hand, in the second maintenance policy, degradation levels are inspected

right after each repair. In both maintenance policies, the inter-inspection time τ̃ and the

preventive threshold M are the decision variables. Variations of these optimal policies are

also analyzed considering di�erent values for model parameters and various cost coe�-

cients: In both inspection policies, the increase in the preventive cost coe�cient leads to

a reduction in the optimal inter-inspection time and an increase in the optimal preventive

threshold. Moreover, in both pre-repair and post-repair inspection policies, the correlation

coe�cient between the two underlying Wiener processes does not signi�cantly a�ect the op-

timal policy. However, besides these similarities, the inspection scheme noticeably impacts

the derived optimal policies. When degradation is inspected before repairs, variations in

the maintained drift parameter µM and the repair e�ciency parameter ρ signi�cantly alter

the optimal policy (τ̃∗ , M∗). On the opposite, in the post-repair inspection policy, µM
does not a�ect the optimal policy as, when ρ = 1, this parameter is not considered in the

evaluation of the degradation after repair. As this post-repair inspection policy tends to

increase the number of failures for moderate values of τ̃ and M∗, the value of the optimal

preventive threshold is lowered to ensure cheaper preventive replacements.

Future investigations may consider an exploration of the complete analytic form of the

long run average maintenance cost, requiring the assessment of the stationary distribution.

In this chapter, as the simulation of degradation trajectories can be very time-consuming,

�ve situations, referring to �ve di�erent sets of model parameters, have been studied and

compared to determine the possible in�uence of model parameters and cost coe�cients on

the maintenance cost rates. Yet, additional situations and further studies involving more
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various values of model parameters, could be conducted in the future to precisely evaluate

the impact of all the model parameters and cost coe�cients on the maintenance cost rates,

considering both inspection policies.
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Conclusion

This manuscript presents two degradation models with maintenance e�ects: the �rst model

relies on a univariate Wiener process with drift (Chapter 2), while the second novel model

is built on a bivariate Wiener process with drift, where only one out of two processes is

a�ected by maintenance e�ects (Chapter 3). For this last model, and based on inference

outcomes, two models emerge: The perturbed ARD1 model, de�ned by a usual Wiener-

based degradation model perturbed by a white noise, and the partial replacement model,

where maintenance e�ects are optimal on the maintained component.

For each model described in Chapters 1 and 2, and inspired by actual observation

schemes used in the industry, multiple observation schemes are taken into account for statis-

tical inference. For both models, the observation scheme in�uences parameter estimations.

Speci�cally, numerical results using the �rst degradation model described in Chapter 1 show

that when only a limited number of observations is provided, observing degradation lev-

els right after repairs o�ers better parameter estimations than observing degradation only

before repairs. Moreover, for both models, better estimations results are obtained when

degradation is observed close to maintenance times. However, for this �rst presented model,

observing degradation both just before and just after repairs leads to deterministic jump

values, failing to properly re�ect reality. On the opposite, the proposed degradation model

with partial maintenance e�ects proves to be well-suited for practical scenarios and bypass

statistical inference issues encountered with the initial Wiener-based model. Nevertheless,

to ensure identi�ability of this new model, constraints need to be imposed either on the

maintenance e�ciency parameter (ρ = 1) or on drift parameters (µU = µM ). The realistic

partial replacement situation (ρ = 1) allows statistical inference in all possible observation

schemes.

Afterwards, based on the degradation model with partial maintenance e�ects, two main-
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tenance policies are established, involving inspections either right before maintenance or

right after repairs, imperfect repairs, preventive and corrective replacements (Chapter 4).

A speci�c cost coe�cient is associated to each of these maintenances. The long run av-

erage maintenance cost is assessed using two di�erent approaches. One employs the re-

generative properties of the maintained process over a system life cycle, and the other one,

called the hybrid method, uses a semi-regenerative Markov process over the inter-inspection

time. The �rst approach is based on fully numerical Monte Carlo simulations while the hy-

brid method includes analytic expressions in the asymptotic cost assessment. This hybrid

method is more time-e�cient, providing precise results for a reasonable preventive replace-

ment threshold (not too close to the corrective threshold). Furthermore, maintenance cost

rates are assessed with the hybrid method, according to the inter-inspection time τ̃ and

the preventive threshold M . These two decision variables are optimized by minimizing the

long run average maintenance cost, and the resulting optimal policies, considering various

values of model parameters, speci�c cost coe�cients, and di�erent inspection schemes, are

discussed. For both inspection policies (whether degradaiton is inpsected before or after

maintenance), given speci�c cost coe�cients, the optimal policy (τ̃∗ , M∗) appears to be

sensitive to changes in the preventive cost coe�cient. The rise in the preventive cost coe�-

cient leads to a decrease in the optimal inter-inspection time and simultaneously an increase

in the optimal preventive threshold. Some model parameters also impact the optimization

results. The correlation coe�cient rUM between the two underlying Wiener processes does

not signi�cantly in�uences the optimal policy, whereas the value of the drift parameter of

the maintained process µM , as well as the value of the maintenance e�ciency parameter

ρ signi�cantly impact (τ̃∗,M∗). In addition, the inspection scheme in�uences the optimal

policy outcomes. Indeed, the post-repair inspection policy entails new resulting optimal

policies, especially when maintenance actions are su�ciently e�ective. In general, failures

are more likely to happen in this inspection policy, resulting in di�erent optimization out-

comes. On the one hand, the obtained values of M∗ are signi�cantly lower compared to

those assessed in the pre-maintenance inspection scheme. On the other hand, these result-

ing optimal policies show less variability when considering di�erent cost coe�cients speci�c

to the type of maintenance.

Based on this work, further analyses can still be explored. In Chapter 2, a multi-modal

empirical PDF of the �rst hitting time arise using the degradation model with partial main-

tenance e�ects. Then, the analytic expression of the �rst passage time distribution and the

Remaining Useful Life are worth investigating for this model. In Chapter 4, another ap-
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proach to assess the optimal policy could be considered, consisting in the search for the

analytic writing of the stationary distribution involved in the stationary equation (Equa-

tion (4.3)). This will result in a fully analytic form of the asymptotic cost per time unit,

when inspections occur before repairs. This last method will enable the computation of the

maintenance cost rate, without concern for computational time. A further analytic analy-

sis regarding the cost rate assessment could also be conducted considering the post-repair

inspection policy. Additionally, conducting more numerical studies, such as considering

more values of model parameters and cost coe�cients, could allow a better understanding

of the impact of all cost coe�cients and model parameters on the optimal maintenance

policy, considering both pre-maintenance and post-repair inspection policies. Furthermore,

studying other inspection schemes, such as those outlined in Chapter 1, will also enable us

to determinate the precise impact of observation locations on the resulting optimal mainte-

nance policies. Besides, alternative maintenance strategies can also be proposed based on

the degradation model with partial maintenance e�ects.

The degradation model with partial maintenance e�ects could also be adapted to more

general practical situations. For instance, multivariate processes could be considered for

this model. Notably, the model could include two co-dependent multivariate processes,

instead of being limited to two univariate processes. In such cases, random vectors should

be considered for inference. Such a model would be capable of describing the degrada-

tion of a multi-component system, where components are more or less correlated to each

other. Given the partial maintenance e�ect, only a few speci�c components would undergo

maintenance. In addition, to specify the degradation phenomena, covariates could also be

integrated into this model. In the example illustrated in Figures 7 and 8, degradation is

inspected in both hot and cold leg pipes of a steam generator, depicting di�erent values

of degradation levels. Therefore, factors such as temperature or humidity could be consid-

ered as additional variables in�uencing the degradation process. Naturally, the selection of

these covariates would depend on the speci�cs of the studied practical scenario. Besides, in

practice, degradation of di�erent dependent components are not necessary inspected simul-

taneously within the same asset. Hence, this new di�culy lies in considering di�erent sets

of inspection times for each involved process for statistical inference and decision making.
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Chapter A

Appendices

A.1 Maximum likelihood estimator of µ in the third observa-

tion scheme

The maximum likelihood estimator of µ in the third observation scheme is given by Equa-

tion (2.23):

µ̂ =
1

tk,nk

k+1∑
j=1

nj∑
i=1

∆Yj,i +
1

1− ρ̂

k∑
j=1

(
Z3
j + ρ̂

nj∑
i=1

∆Yj,i

)
We have

1

1− ρ̂

k∑
j=1

Z3
j =

ρ̂

1− ρ̂

k∑
j=1

Z3
j +

k∑
j=1

Z3
j

Furthermore Y (τ+
k ) =

k∑
j=1

nj∑
i=1

∆Yj,i +

k∑
j=1

Z3
j

Y (tk,nk) =

k+1∑
j=1

nj∑
i=1

∆Yj,i +

k∑
j=1

Z3
j

Thus, µ̂ =
1

tk,nk

[
Y (tk,nk) +

ρ̂

1− ρ̂
Y (τ+

k )

]

A.2 Biases of the parameter estimators

Some of the model parameters estimators computed in Section 2.2 are biased. These even-

tual biases are computed below according to each observation scheme.
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Complete observation scheme

The expressions for the estimators in the complete observation scheme are provided in

Equation (2.9) and Equation (2.10).

E[µ̂] =

k+1∑
j=1

nj+1∑
i=1

E [∆Yj,i]

τ
= µ

and,

σ̂2 =
1

N + k + 1

[
k+1∑
j=1

nj+1∑
i=1

∆Y 2
j,i

∆tj,i
+ µ̂2

k+1∑
j=1

nj+1∑
i=1

∆tj,i − 2 µ̂
k+1∑
j=1

nj+1∑
i=1

∆Yj,i

]

We have
k+1∑
j=1

nj+1∑
i=1

∆tj,i = τ and
k+1∑
j=1

nj+1∑
i=1

∆Yj,i = µ̂ τ . Therefore,

σ̂2 =
1

N + k + 1

[
k+1∑
j=1

nj+1∑
i=1

∆Y 2
j,i

∆tj,i
− µ̂2 τ

]

E[σ̂2] =
1

N + k + 1

[
k+1∑
j=1

nj+1∑
i=1

E[∆Y 2
j,i]

∆tj,i
− E[µ̂2] τ

]

We have E[∆Y 2
j,i] = σ2∆tj,i + µ2∆t2j,i and E[µ̂2] = σ2

τ + µ2 , thereby,

E[σ̂2] =
1

N + k + 1

[
σ2(N + k + 1)− µ2τ − σ2 + µ2τ

]
=

N + k

N + k + 1
σ2

Therefore, σ̂2 is a biased estimator and σ̃2 =
N + k + 1

N + k
σ̂2 is an unbiased estimator of σ2.

Second observation scheme

The maximum likelihood estimator of µ in the second observation scheme is given by

Equation (2.16) and Equation (2.18).
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µ̂ =
1

τ

k+1∑
j=1

nj+1∑
i=1+1j>1

∆Yj,i +

k∑
j=1

Y (tj,1)− Y (τ−j ) + ρ̂

k∑
j=1

Y (τ−j )− (1− ρ̂)

k∑
j=1

j−1∑
i=0

ρ̂j−iY (τ−i )


We have,

∀i ∈ {1 + 1j>1, ..., nj + 1}, ∀j ∈ {1, ..., k + 1}, E[∆Yj,i] = µ∆tj,i

and

E[Y (tj,1)− Y (τ−j )|O2
τ−j

] = µ∆tj,1 − ρ̂y(τ−j ) + (1− ρ̂)

j−1∑
i=1

ρ̂j−1y(τ−i )

Then,

E[µ̂] =
1

τ

µ k+1∑
j=1

nj+1∑
i=1+1j>1

∆tj,i + µ
k∑
j=1

∆tj,1

 = µ

Thus, µ̂ is an unbiased estimator of µ in the second observation scheme.

The maximum likelihood estimator of σ2 in the second observation scheme is given by

Equation (2.18). Given that degradation increments are independent and that they are

also independent of jumps given previous observations, we have:

V[µ̂] =
1

τ2

k+1∑
j=1

nj+1∑
i=1+1j>1

V[∆Yj,i] +

k∑
j=1

V[Y (tj,1)− Y (τ−j ) + ρ̂y(τ−j )− (1− ρ̂)

j−1∑
i=1

ρ̂j−1y(τ−i )|O2
τ−j

]


=

1

τ2

σ2
k+1∑
j=1

nj+1∑
i=1+1j>1

∆tj,i + σ2
k∑
j=1

∆tj,1

 =
σ2

τ
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Let us denote (A) and (B) such that σ̂2 = (A) + (B):

(A) =
1

N + k + 1

k+1∑
j=1

nj+1∑
i=1+1j>1

(∆Yj,i − µ̂ ∆tj,i)
2

∆tj,i

=
1

N + k + 1

k+1∑
j=1

nj+1∑
i=1+1j>1

∆Y 2
j,i

∆tj,i
+ µ̂2

k+1∑
j=1

nj+1∑
i=1+1j>1

∆tj,i − 2µ̂

k+1∑
j=1

nj+1∑
i=1+1j>1

∆Yj,i



(B) =
1

N + k + 1

k∑
j=1

(
Y (tj+1,1)− µ̂ ∆tj+1,1 − (1− ρ̂)

j∑
i=0

ρ̂j−iY (τ−i )

)2

∆tj+1,1

=
1

N + k + 1

[
µ̂2

k∑
j=1

∆tj+1,1 +
k∑
j=1

(
Y (tj+1,1)− Y (τ−j ) + ρ̂Y (τ−j )− (1− ρ̂)

j−1∑
i=0

ρ̂j−iY (τ−i )

)2

∆tj+1,1

− 2µ̂
k∑
j=1

(
Y (tj+1,1)− Y (τ−j ) + ρ̂ Y (τ−j )− (1− ρ̂)

j−1∑
i=0

ρ̂j−iY (τ−i )

)]

Then,

σ̂2 =(A) + (B)

=
1

N + k + 1

[
k+1∑
j=1

nj+1∑
i=1+1j>1

∆Y 2
j,i

∆tj,i
+

k∑
j=1

(
Y (tj+1,1)− Y (τ−j ) + ρ̂Y (τ−j )− (1− ρ̂)

j−1∑
i=0

ρ̂j−iY (τ−i )

)2

∆tj+1,1

− µ̂2τ

]
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Furthermore, based on the previous writing of σ̂2, we have:

E[∆Y 2
j,i] = V[∆Yj,i] + E[∆Yj,i]

2 = σ2∆tj,i + µ2∆t2j,i

and E[
(
Y (tj+1,1)− Y (τ−j ) + ρ̂Y (τ−j )− (1− ρ̂)

j−1∑
i=0

ρ̂j−iY (τ−i )|O2
j

)2
]

=V[Y (tj+1,1)− Y (τ−j )|O2
j ] + E[Y (tj+1,1)− Y (τ−j ) + ρ̂Y (τ−j )− (1− ρ̂)

j−1∑
i=0

ρ̂j−iY (τ−i )|O2
j ]

2

=σ2∆tj+1,1 + µ2∆t2j,1

E[µ̂2] = V[µ̂] + E[µ̂]2 =
σ2

τ
+ µ2

Thus, E[µ̂2] =
1

N + k + 1

[
σ2(1 +N) + µ2

k+1∑
j=1

nj+1∑
i=1+1j>1

∆tj,i + σ2k + µ2
k∑
j=1

∆tj+1,1 − σ2 − µ2τ

]

E[σ̂] = σ2 k +N

k + 1 +N

Thus, σ̂2 is biased and an unbiased estimator of σ2 is σ̃2 = k+N+1
k+N σ̂2.

Third observation scheme

The expressions for the estimators in the third observation scheme are provided in Equa-

tion (2.23) and Equation (2.24).

E[Y (τ+
j )− Y (tj,nj )|O3

tj,nj
] =µ(1− ρ)∆tj,nj+1 − ρ̂

nj∑
i=1

∆yj,i

Then, E[µ̂|O3
tj,nj

] =
1

tk+1,nk+1

µ k+1∑
j=1

nj∑
i=1

∆Yj,i + µ
k∑
j=1

∆tj,nj+1

 = µ

Therefore, µ̂ is unbiased in the third observation scheme.

Based on Equation (2.24), and given that the degradation increments are independent and

that they are also independent of jumps given previous observations, we have:
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V[µ̂] =
1

tk+1,nk+1

k+1∑
j=1

nj∑
i=1

V
[
∆Yj,i

]
+

1

(1− ρ̂)2

k∑
j=1

V
[
Y (τ+

j )− Y (tj,nj ) + ρ̂

nj∑
i=1

∆Yj,i|O3
tj,nj

]

Then, V[σ̂2] =
σ2

t2k+1,nk+1

k+1∑
j=1

nj∑
i=1

∆tj,i +

k∑
j=1

∆tj,nj+1

=
σ2

tk+1,nk+1

Let us develop the writing of σ̂2 written in Equation (2.24):

σ̂2 =
1

N + k

[
k+1∑
j=1

nj∑
i=1

∆Y 2
j,i

∆tj,i
+ µ̂2

k+1∑
j=1

nj∑
i=1

∆tj,i − 2µ̂
k+1∑
j=1

nj∑
i=1

∆Yj,i

+
k∑
j=1

(
Y (τ+

j )− Y (tj,nj ) + ρ̂
nj∑
i=1

∆yj,i
)2

(1− ρ̂)2∆tj,nj+1

+ µ̂2
k∑
j=1

∆tj,nj+1

− 2
µ̂

1− ρ̂

k∑
j=1

[
Y (τ+

j )− Y (tj,nj ) + ρ̂

nj∑
i=1

∆yj,i
]]

=
1

N + k


k+1∑
j=1

nj∑
i=1

∆Y 2
j,i

∆tj,i
+

k∑
j=1

(
Y (τ+

j )− Y (tj,nj ) + ρ̂
nj∑
i=1

∆yj,i
)2

(1− ρ̂)2∆tj,nj+1
− µ̂2 tk+1,nk+1


Knowing that,
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E[∆Y 2
j,i] =σ2∆tj,i + µ2∆t2j,i

E
[
(
(
Y (τ+

j )− Y (tj,nj ) + ρ̂

nj∑
i=1

∆yj,i
)2|O3

tj,nj

]
=V[Y (τ+

j )− Y (tj,nj )] + E
[
Y (τ+

j )− Y (tj,nj ) + ρ̂

nj∑
i=1

∆yj,i
]2

=σ2(1− ρ̂)2∆tj,nj+1 + µ2(1− ρ̂)2∆t2j,nj+1

E[µ̂2] =
σ2

tk+1,nk+1

+ µ2

One can easily write E[σ̂2] in the third observation scheme:

E[σ̂2] =
1

k +N

σ2 N + µ2
k+1∑
j=1

nj∑
i=1

∆tj,i + σ2 k + µ2
k∑
j=1

∆tj,nj+1 − σ2 − µ2tk+1,nk+1


=
k +N − 1

k +N
σ2

Hence, σ̂2 is biased and an unbiased estimator of σ2 would be σ̃2 = k+N
k+N−1 σ̂

2.

General observation scheme

The expressions of the estimators in the general observation scheme is given by Equa-

tion (2.32) and Equation (2.33). We have,

E[∆Z̃g|Ogτj ] = µu− v and,

E[µ̂] =

u(ρ̂)t Σ−1(ρ̂) v(ρ̂) + u(ρ̂)t Σ−1E[∆Z̃g|Ogτj ] +
k+1∑
j=1

nj∑
i=1+1j>1

E[∆Yj,i]

u(ρ̂)tΣ−1(ρ̂)u(ρ̂) +
k+1∑
j=1

nj∑
i=1+1j>1

∆tj,i

=

u(ρ̂)t Σ−1(ρ̂) v(ρ̂) + u(ρ̂)t Σ−1(ρ̂)(µu(ρ̂)− v(ρ̂)) + µ
k+1∑
j=1

nj∑
i=1+1j>1

∆tj,i

u(ρ̂)tΣ−1(ρ̂)u(ρ̂) +
k+1∑
j=1

nj∑
i=1+1j>1

∆tj,i

= µ

Then µ̂ is an unbiased estimator of µ.
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Furthermore, based on Equation (2.32), we have,

V[µ̂] =

V[u(ρ̂)t Σ−1(ρ̂)Zg] +
k+1∑
j=1

nj∑
i=1+1j>1

V[∆Yj,i](
u(ρ̂)t Σ−1(ρ̂)u(ρ̂) +

k+1∑
j=1

nj∑
i=1+1j>1

∆tj,i

)2

Since degradation increments are independent to each other, and they are independent from

the jumps given the previous observations, we have,

V[µ̂] =σ2

u(ρ̂)t Σ−1(ρ̂)Σρ̂)Σ−1t ρ̂u(ρ̂)+)
k+1∑
j=1

nj∑
i=1+1j>1

∆tj,i(
u(ρ̂)t Σ−1(ρ̂)u(ρ̂) +

k+1∑
j=1

nj∑
i=1+1j>1

∆tj,i

)2

Then, since Σ is symmetric,

V[µ̂] =
σ2

u(ρ̂)t Σ−1(ρ̂)u(ρ̂) +
k+1∑
j=1

nj∑
i=1+1j>1

∆tj,i

The expression of σ̂2, described in Equation (2.33), can be developed as follows.

σ̂2(ρ) =
1

N

[
Zg

t
Σ−1(ρ̂)Zg − µ̂ZgtΣ−1(ρ̂)u(ρ̂) + Zg

t
Σ−1(ρ̂)v(ρ̂)

− µ̂u(ρ̂)tΣ−1(ρ̂)Zg + µ̂2u(ρ̂)tΣ−1(ρ̂)u(ρ̂)− µ̂u(ρ̂)tΣ−1(ρ̂)v(ρ̂)

+ v(ρ̂)tΣ−1(ρ̂)Zg − µ̂v(ρ̂)tΣ−1(ρ̂)u(ρ̂) + v(ρ̂)tΣ−1(ρ̂)v(ρ̂)

+

k+1∑
j=1

nj∑
i=1+1j>1

∆Y 2
j,i

∆tj,i
+ µ̂2

k+1∑
j=1

nj∑
i=1+1j>1

∆tj,i − 2µ̂
k+1∑
j=1

nj∑
i=1+1j>1

∆Yj,i


Since Σ−1(ρ̂) is symmetric, u(ρ̂)tΣ−1(ρ̂)Zg = Zg

t
Σ−1(ρ̂)u(ρ̂). Then, −µ̂ZgtΣ−1(ρ̂)u(ρ̂) −

µ̂u(ρ̂)Σ−1(ρ̂)Zg = −2µ̂u(ρ̂)Σ−1(ρ̂)Zg. Furthermore, given Equation (2.32), we have,
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k+1∑
j=1

nj∑
i=1+1j>1

∆Yj,i+u(ρ̂)tΣ−1(ρ̂)Zg+u(ρ̂)tΣ−1(ρ̂)v(ρ̂) = µ̂

(
u(ρ̂)tΣ−1u(ρ̂) +

k+1∑
j=1

nj∑
i=1+1j>1

∆tj,i

)
Thus,

σ̂2(ρ) =
1

N

[
Zg

t
Σ−1(ρ̂)Zg + 2Zg

t
Σ−1v(ρ̂) + v(ρ̂)tΣ−1v(ρ̂)

+
k+1∑
j=1

nj∑
i=1+1j>1

∆Y 2
j,i

∆tj,i
− µ̂2

k+1∑
j=1

nj∑
i=1+1j>1

∆tj,i + u(ρ̂)tΣ−1u(ρ̂)


Then we compute E[σ̂2(ρ)] involving the following expectations,

E[Zg
t
Σ−1(ρ̂)v(ρ̂)] = E[Zg

t
]Σ−1v(ρ̂) = (µ̂u(ρ̂)− v(ρ̂))tΣ−1v(ρ̂)

=µu(ρ̂)tΣ−1v(ρ̂)− v(ρ̂)tΣ−1v(ρ̂)

E[∆Y 2
j,i] =V[∆Yj,i] + E[∆Yj,i]

2 = σ2∆tj,i + µ2∆tj,i

E[µ̂2] =V[µ̂] + E[µ]2 =
σ2

u(ρ̂)tΣ−1u(ρ̂) +
k+1∑
j=1

nj∑
i=1+1j>1

∆tj,i

+ µ2

Moreover, one can prove by induction that E[Zg
t
Σ−1(ρ̂)Zg] = Tr(σ2ΣΣ−1)+E[Zg

t
]Σ−1(ρ̂)E[Zg],

then,

E[Zg
t
Σ−1(ρ̂)Zg] =Tr(σ2ΣΣ−1) + E[Zg

t
]Σ−1(ρ̂)E[Zg]

=σ2Tr(Σ(ρ̂)Σ−1(ρ̂)) + (µu(ρ̂)− v(ρ̂))tΣ−1(ρ̂)(µu(ρ̂)− v(ρ̂))

=σ2k + µ2u(ρ̂)tΣ−1(ρ̂)u(ρ̂)− µu(ρ̂)tΣ−1(ρ̂)v(ρ̂)− µv(ρ̂)tΣ−1(ρ̂)u(ρ̂) + v(ρ̂)tΣ−1(ρ̂)v(ρ̂)

=σ2k + µ2u(ρ̂)tΣ−1(ρ̂)u(ρ̂)− 2µu(ρ̂)tΣ−1(ρ̂)v(ρ̂) + v(ρ̂)tΣ−1(ρ̂)v(ρ̂)

Therefore,
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E[σ̂2] =
1

k+1∑
j=1

nj

[
σ2k + µ2u(ρ̂)tΣ−1(ρ̂)u(ρ̂)− 2µu(ρ̂)tΣ−1(ρ̂)v(ρ̂) + v(ρ̂)tΣ−1(ρ̂)v(ρ̂)

+ 2µu(ρ̂)tΣ−1(ρ̂)v(ρ̂)− 2v(ρ̂)tΣ−1(ρ̂)v(ρ̂) + v(ρ̂)tΣ−1(ρ̂)v(ρ̂)

+ σ2
( k+1∑
j=1

−k
)

+ µ2
k+1∑
j=1

nj∑
i=1+1j>1

∆tj,i − σ2 − µ2
(
u(ρ̂)tΣ−1(ρ̂)u(ρ̂) +

k+1∑
j=1

nj∑
i=1+1j>1

∆tj,i
)]

Thus, E[σ̂2] =
(
k+1∑
j=1

nj)−1

k+1∑
j=1

nj

σ2 and σ̂2 is biased. An unbiased estimator of σ2 is

k+1∑
j=1

nj

(
k+1∑
j=1

nj)−1

σ2.

A.3 Parameters initialization for the maximum likelihood es-

timation algorithm

Model's parameters are estimated by maximizing the log-likelihood with the Nelder-Mead

algorithm. In most situations, this method is not really sensitive to its initialization. How-

ever, a good initialization provides a more e�cient algorithm and avoids potential local

minima. In order to provide an e�cient initialization, we will use the remark made in Sec-

tion 3.1.2 saying that (µS , σ
2
S) are closely linked to degradation increments while parameters

(µM , σ
2
M , ρ) are closely linked to degradation jumps, so to maintenance e�ciency. For the

complete observation scheme with periodic maintenances of periodicity ∆τ , the initializa-

tion of the parameters is made as follows. The initial values of (µS , σ
2
S , µM , σ

2
M , rSM , ρ)

will be denoted (µ
(0)
S , σ2

S
(0)
, µ

(0)
M , σ2

M
(0)
, r

(0)
SM , ρ

(0)).

� Initialization of µS and σ2
S . A preliminary estimation of µS and σ2

S can be done

by considering that only the degradation increments ∆Y c
j,i are observed. These

random variables are independent and have respectively the N
(
µS∆tj,i, σ

2
S∆tj,i

)
distributions. So µ

(0)
S and σ2

S
(0) will be the values of µS and σ2

S which maximize

L(µS , σ
2
S) =

∏
j

∏
i
f∆Y cj,i

(∆ycj,i). It is easy to show that:
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µ
(0)
S =

k+1∑
j=1

nj+1∑
i=1

∆ycj,i

k+1∑
j=1

nj+1∑
i=1

∆tj,i

=
y(τ)

τ
and σ2

S
(0)

=
1

N + k + 1

k+1∑
j=1

nj+1∑
i=1

(∆ycj,i − µ
(0)
S ∆tj,i)

2

∆tj,i
,

where N =
k+1∑
j=1

nj .

Note that for the perturbed ARD1 model (µS = µM = µ), µ(0)
S is an estimator of µ.

� Initialization of ρ and µM . The jumps Zcj are independent and their respective

distributions are N
(
−ρµM∆τ , ρ2σ2

M∆τ
)
. So ∀ j ∈ {1, ..., k}, E

[
Zcj

µM∆τ

]
= −ρ.

Therefore, for the Perturbed ARD1 model, one can choose µ(0)
M = µ

(0)
S and ρ(0) =

− 1

kµ
(0)
M ∆τ

k∑
j=1

zcj . For the Partial replacement model, ρ = 1 so µ(0)
M = − 1

k∆τ

k∑
j=1

zcj .

� Initialization of σ2
M . If only the jumps Zcj are observed, the likelihood is L(µM , σ

2
M , ρ) =

k∏
j=1

fZcj (z
c
j). It is easy to show that the parameter values which maximize this func-

tion are such that σ2
M = 1

kρ2∆τ

k∑
j=1

(zcj+ρµM∆τ)2. Therefore, for the Perturbed ARD1

model, σ2
M

(0)
= 1

kρ(0)
2
∆τ

k∑
j=1

(zcj+ρ
(0)µ

(0)
M ∆τ)2. And for the Partial replacement model,

σ2
M

(0)
= 1

k∆τ

k∑
j=1

(zcj + µ
(0)
M ∆τ)2.

� Initialization of rSM . Since Zcj = −ρ∆XM
j and ∆Yj = ∆XS

j , Cov
(
Zcj
−ρ ,∆Yj

)
=

Cov(∆XM
j ,∆XS

j ) = cSM∆τ . Therefore, cSM can be estimated by the empirical

covariance between the Zcj/(−ρ) and the ∆Y c
j /∆τ :

c
(0)
SM = − 1

∆τρ(0)

[
1
k

k∑
j=1

Zcj∆Yj − 1
k2

k∑
j=1

Zcj
k∑
i=1

∆Yi

]
, and r(0)

SM =
c
(0)
SM

σ
(0)
S σ

(0)
M

.



A.4 Empirical stationary distribution based on di�erent con-

sidered numbers of degradation levels
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Appendix �gure A.1: Histograms of the counts of post-maintenance degradation levels
based on various numbers of degradation values and di�erent inter-inspection periods: τ̃ ∈
{10, 30}, M = 600 and jmax = {100, 1000, 5000, 9000}. For each presented stationary
distribution, the underlying simulated degradation trajectories are based on the following
model parameters: µU = 7, µM = 10, σ2

U = 400, σ2
M = 600, rUM = 0.7, ρ = 1

170



A.5 Maintenance cost rates assessment based on di�erent

considered numbers of post-maintenance degradation lev-

els
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Appendix �gure A.2: Various numbers of post-maintenance degradation levels are consid-
ered for assessing maintenance cost rates according to di�erent values of τ̃ ∈ {10, 20, 30}
and M = {600, 800}. For each cost rate assessment, the simulated degradation trajectories
are based on the following set of model parameters: µU = 7, µM = 10, σ2

U = 400, σ2
M =

600, rUM = 0.7, ρ = 1
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A.6 Maintenance cost rates assessment based on di�erent

considered numbers of life cycles
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Appendix �gure A.3: Various numbers of cycles are considered for assessing maintenance
cost rates according to di�erent values of τ̃ ∈ {10, 20, 30} and M = {600, 800}. For each
cost rate assessment, the simulated degradation trajectories are based on the following set
of model parameters: µU = 7, µM = 10, σ2

U = 400, σ2
M = 600, rUM = 0.7, ρ = 1
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A.7 Comparison between the di�erent methods to assess the

maintenance cost
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Appendix �gure A.4: Long run average maintenance cost as a function of M , for τ̃ =
10, according to both the purely simulation-based method and the hybrid method. The
underlying simulated degradation trajectories are based on various time steps: 0.01 and 1.
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Appendix �gure A.5: Long run average maintenance cost as a function of M , for τ̃ =
40, according to both the purely simulation-based method and the hybrid method. The
underlying simulated degradation trajectories are based on various time steps: 0.01 and 1.
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A.8 Degradation trajectories

These following �gures illustrate the initial ten degradation life cycles based on speci�c

model parameters and a given (τ̃ ,M) policy when degradation is inspected before repairs.
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Figure A.6: Situation 4, τ̃ = 25 , M =
100
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Figure A.7: Situation 3, τ̃ = 15 , M =
300
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Figure A.8: Situation 3, τ̃ = 10 , M =
900
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Figure A.9: Situation 4, τ̃ = 10 , M =
800
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Figure A.10: Situation 1, τ̃ =
22.5 , M = 625
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Figure A.11: Situation 3, τ̃ =
12.5 , M = 750
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