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Chapter 1

Introduction

1.1 Context and Background

In today’s world, data is omnipresent and plays a crucial role in shaping industries, tech-
nologies, and daily lives. This explosion of data is driven by advancements in digital
technologies, social media, and the proliferation of internet-connected devices. These de-
vices range from personal gadgets such as smartphones and fitness trackers to smart home
appliances and public infrastructure. In urban environments, sensors are increasingly uti-
lized to monitor traffic flow and environmental conditions, enhancing urban living. For
instance, traffic sensors installed on roads collect real-time data on vehicle counts and
speeds, helping to optimize traffic management and reduce congestion.

As data becomes more central and encompasses various types: structured, unstruc-
tured, and semi-structured, the need for efficient solutions to store and exchange it has
become critical. This is particularly important in an interconnected world dominated
by web-based services and platforms. The necessity to transfer data between systems, de-
vices, or applications has driven the development of various storage and exchange solutions.
Databases have emerged as key methods for organizing and managing data. Solutions tai-
lored to specific needs range from traditional relational databases, where structured data is
organized into tables and known for their robustness, to modern non-relational databases
such as document stores and graph databases. These newer data modeling and organiza-
tion solutions are designed to handle unstructured or semi-structured data, offering more
flexibility in managing complex data structures, although they may lack the consistency
and reliability of traditional databases.

Each of these models has its advantages and limitations. Relational databases, for
example, provide consistency and structure but may struggle with highly complex, hi-
erarchical, or unstructured data. In contrast, non-relational databases, such as key-value
stores, offer more flexibility and scalability but may lack the strict transactional guarantees
of relational systems. Depending on the nature of the data and the goals of the application,
one may choose between a structured or unstructured approach. The challenge lies not
only in storing the data but also in ensuring that it can be exchanged easily and efficiently
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between systems, which is essential for the seamless operation of modern, interconnected
technologies.

In our context, we are particularly interested in semi-structured data, which serves
as a bridge between fully structured and unstructured data. Formats like XML, JSON,
and HTML have become foundational as they provide a flexible way to describe data,
balancing structure and flexibility. XML and JSON, for instance, are widely used in web
communication, making it easier for systems to interact with one another, exchange data,
and enable integration across platforms.

Historically, XML held the position of the primary data format for web applications,
offering a standardized approach to representing structured documents. Introduced in
1998, XML aimed to extend the capabilities of HTML by empowering users to create their
own document structures, thus allowing for a more nuanced representation of information.
However, due to the verbosity and complexity of XML, coupled with the rapid evolution of
web applications that demanded more efficient and flexible data interchange mechanisms,
the need for alternatives grew. This shift in requirements ultimately led to the emergence
of JavaScript Object Notation (JSON).

JSON quickly became the most widely adopted format due to its concise syntax, ease of
use, and lightweight nature. Its simple and readable format is particularly well-suited for
data interchange in APIs and web services, where efficient representation and rapid pars-
ing are essential. This shift toward JSON reflects a broader trend in software development
focused on improving efficiency and reducing complexity. As JSON gained prominence in
modern web applications and services, its straightforward structure proved to align well
with the needs of users, offering a more intuitive approach to representing data compared
to XML. While XML once served as the foundational technology for early web data ex-
change, JSON has largely replaced it in modern applications, especially for exchanging
data between systems.

1.1.1 JSON
JSON has become an integral part of modern web applications, with a significant majority
of APIs utilizing it for data transmission and representation, such as the Twitter API,
Facebook Social Graph API, and others. The emergence of large language models (LLMs)
has further solidified the importance of JSON, as they often rely on this format for effective
communication.

Its widespread adoption driven by the rise of RESTful APIs, is supported by a robust
ecosystem of tools that enhance usability. Numerous tools exist for verifying JSON syn-
tax, ensuring data integrity, and converting data from various formats into JSON. These
resources assist users in managing and manipulating JSON data efficiently, further stream-
lining the development process.

Moreover, JSON is supported across many programming languages, each offering built-
in means for parsing, generating, and manipulating JSON data. This broad compatibility
increases its appeal, allowing developers to work seamlessly with JSON regardless of their
programming environment.
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In the realm of databases, JSON has emerged as a favored format for data storage in
NoSQL systems. For instance, MongoDB utilizes a flexible schema to store data in JSON-
like documents (BSON format), allowing for high performance and scalability. Similarly,
Couchbase supports JSON natively, enabling rapid data access and complex querying.
Additionally, JSON is often used to represent metadata and configuration files.

At its core, JSON consists of key-value pairs and array structures, among other data
types, making it a versatile choice for various applications.

Example 1 1. The following text represents a JSON document used by the Twitter API
to encode tweets and illustrate their structure. The document includes various pieces of
information associated with the tweet, such as the creation date, text content, user infor-
mation.

{ "created_at": "Thu Apr 06 15:24:15 +0000 2017",
"id_str": "850006245121695744",
"text": "1\/ Today we\u2019re sharing our vision for the future of

the Twitter API platform!\nhttps:\/\/t.co\/XweGngmxlP",
"user": {

"id": 2244994945,
"name": "Twitter Dev",
"screen_name": "TwitterDev",
"location": "Internet",
"url": "https:\/\/dev.twitter.com\/",
"description": "Your official source for Twitter Platform news,

updates & events. Need technical help? Visit
https:\/\/twittercommunity.com\/\u2328\ufe0f #TapIntoTwitter"

},
"place": {},
"entities": {

"hashtags": [],
"urls": [

{ "url": "https:\/\/t.co\/XweGngmxlP",
"unwound": {

"url": "https:\/\/cards.twitter.com\/cards\/18ce53wgo4h\/3xo1c",
"title": "Building the Future of the Twitter API Platform"

}
}

],
"user_mentions": []

}
}

1This example was taken from the Twitter Developer documentation, which can be accessed here
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1.1.2 JSON Schema
Despite the widespread adoption of JSON for various applications, its inherent flexibility
posed significant challenges. While JSON allowed users to represent almost any kind of
data structure, it lacked a standardized way to define or enforce these structures. As the
use of JSON expanded, the absence of formal specifications for defining and validating data
became increasingly evident.

Initially, validation relied heavily on documentation or custom code to ensure that
data adhered to expected formats. Although this method was effective when dealing with
simpler data, it became inadequate or challenging when confronted with more complex
and deeply nested structures. JSON lacked built-in mechanisms for enforcing data types,
required fields, or constraints, which led to unpredictable behavior, bugs, and inefficiencies.
For instance, when the same data needed to be processed across different environments or
programming languages, developers often had to duplicate efforts, as they were required
to write similar code serving the same function in different languages.

The introduction of JSON Schema 2 aimed at resolving these issues by providing a
standardized method to define and validate the structure of JSON data. With JSON
Schema, developers can specify the type of values the JSON data should follow, required
fields, and apply more complex rules, such as patterns for string values, array length
restrictions, and numeric value ranges. This formalization allows for automated validation,
ensuring that data conforms to predefined standards, which is especially crucial in large
systems and APIs where consistency and correctness are paramount.

Moreover, JSON Schema has become essential in API development and is widely used
in tools and platforms like OpenAPI 3, Swagger 4, and Postman 5 to define the structure
of both request and response bodies and to ensure the integrity of their data pipelines.
In many cases, different teams develop separate API components. The absence of a stan-
dardized format, combined with JSON’s flexibility, can lead to misinterpretations of data
formats. JSON Schema provides a shared understanding of data structures, reducing the
risk of inconsistencies, security vulnerabilities, and integration errors. By offering this
structured approach, JSON Schema introduces an essential layer of validation and stan-
dardization, facilitating the scalability and maintenance of JSON-based systems, and en-
abling teams to focus on their core tasks rather than duplicating efforts to validate data
manually.

While JSON Schema is often associated with API validation, its applications extend
beyond that. It is increasingly used in data modeling for microservices, NoSQL database
schema enforcement, and configuration management in complex systems. By offering a
formal definition of data structures, it aids in managing data consistency and integrity
throughout the software development lifecycle.

Along with the features it offers for defining constraints for different data types, a key
2https://json-schema.org
3https://www.openapis.org
4https://swagger.io
5https://www.postman.com/product/rest-client/
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feature of JSON Schema is its support for modular and reusable schemas. Developers
can reference one schema from another, promoting reusability and modular design. This
is particularly useful in large-scale API ecosystems where the same data structures are
reused across multiple endpoints, ensuring consistency and reducing redundancy in schema
definitions.

In addition, JSON Schema undergoes continuous specification updates and has evolved
through multiple versions, each adding more expressive and powerful features. Draft-
04 [43], one of the most widely adopted versions, focused on basic validation. More re-
cent versions, such as Draft-07 [71] and Draft 2020-12 [72], introduced advanced features
like conditional validation (e.g., "if", "then", "else" statements) and improved support for
schema reuse and modularity. This evolution demonstrates the growing importance of
JSON Schema in response to the changing needs of web development and data validation,
allowing developers to handle increasingly complex validation scenarios.

JSON Schema’s expanding ecosystem of tools and libraries further reinforces its im-
portance in modern development. These tools, ranging from schema validators and migra-
tion utilities to schema generation and code generation, make it easier to integrate JSON
Schema into diverse environments. Developers can leverage these tools to automate data
validation workflows, ensuring consistency and accuracy across different systems. 6

Through its formalization, modular design, and rich tool support, JSON Schema can
significantly improve the efficiency and scalability of systems that rely on JSON. By en-
suring data validity, it minimizes errors, reduces manual validation effort, and strengthens
the robustness of applications handling large and complex data sets.

1.2 Problem Statement and Motivations
JSON Schema is a schema language that encompasses many interesting features, including
the use of logical operators and constraints that can sometimes be complex. Like other
schema languages, it faces a variety of challenges, including both general problems that are
common to schema languages used for specifications and those specific to JSON Schema.
Given its increasing popularity, it is essential to address these issues to provide users with
a better understanding of the language and its specificities.

Decision problems, such as satisfiability, are crucial for schema languages. Deciding
satisfiability involves determining whether a schema admits at least one instance that con-
forms to its specification. Other important problems include inclusion checking, which
assesses whether one schema is included in another, essentially verifying if the set of in-
stances that conform to the first schema also conforms to the second. Schema equivalence
is another decision problem whose goal is to decide whether two schemas capture exactly
the same set of instances. Addressing these problems is vital for schema evolution, particu-
larly given the widespread adoption of JSON Schema across various web APIs and systems.
As these systems evolve and transition from one version to another, it often necessitates

6An exhaustive list of these tools can be found on the official JSON Schema website or the Awesome
JSON Schema repository.
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the evolution of their schemas as well. This evolution requires the revalidation of existing
data to ensure it aligns and complies with the new specifications, thereby maintaining
compatibility.

An interesting approach to tackle these challenges is to check inclusion between the
old schema S and the new schema S ′, and this amounts to checking the non-satisfiability
of the schema ¬S ′ ∧ S which is expressible in JSON Schema, and this verification can
be done by means of generating data that conforms to the schema ¬S ′ ∧ S. In order to
check inclusion in a sound and complete fashion, the data generation approach must be
sound and complete, meaning that an instance is generated if and only if the schema is
satisfiable. Achieving this is particularly challenging due to the complexities inherent in
the JSON Schema language.

While generating a single valid JSON instance can provide insights into the various
theoretical problems that JSON Schema faces, our objective extends beyond that. We are
particularly interested in how the capacity for generating JSON data can serve multiple
applications and practical use cases. For instance, an important usage of multi-instance
JSON Schema generation is to help schema understanding. As we will illustrate later,
JSON Schema is highly expressive, and schemas can often be challenging to understand,
even for experts. Having the ability to generate multiple instances of a schema can be a
crucial aid for users, as examples help demonstrate various features of the schema and how
they interact. This is particularly important given that, in many cases, these interactions
can be subtle and difficult to grasp.

Moreover, the generation of synthetic JSON data is crucial for verifying systems through
rigorous testing. By creating diverse instances that adhere to the schema, developers can
assess how applications respond to various inputs, including edge cases that may not be
immediately apparent. This kind of testing can help anticipate potential mismatches or
performance issues, which can have significant implications for the reliability of services
once deployed.

Example 2 To illustrate how synthetic JSON data generation conforming to the speci-
fications defined by a JSON Schema can assist testers in verifying JSON-based systems,
consider the context of black-box testing. In black-box testing, the internal logic of the sys-
tem or API are not relevant; the emphasis is placed on how the API behaves in response
to input and output interactions. This makes it particularly suitable for web APIs where
data is continually consumed and produced.

The primary goal is to ensure that the API reliably returns expected outputs based on
given inputs, adhering to the contract defined by its input and output specifications, typically
represented in the form of JSON or JSON Schema.

By treating the API as a "black box", testers can concentrate on the API’s behavior
without needing to inspect or modify its internal code. This approach simplifies testing
and enhances efficiency, allowing for the validation of whether the API correctly processes
input, conforms to schema rules, and produces valid output.

This verification is crucial for detecting mismatches or performance issues that could
impact the reliability of services once deployed. Furthermore, generating synthetic data
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that conforms to JSON Schema specifications aids in illustrating expected API behavior,
enhancing understanding, and facilitating documentation. Through black-box testing and
schema-based data generation, developers can ensure consistency and correctness across
various API interactions.

Input: JSON
Schema S

API (Black Box)
Output: JSON
data produced

by the API

Synthetic data
generation that
conforms to S

Validation
against the

JSON Schema S′
Error: program

interruption or data
not conforming to S′

Figure 1.1: Black box testing of JSON-based web APIs

Figure 1.1 presents a typical black-box testing process for an API, where both input
and output data structures can be specified using JSON Schema. This process includes the
following steps:

1. JSON Schema definition: if the API does not already use JSON Schema to specify
the structure, constraints, and types for the JSON data it consumes (input) and
produces (output), define two JSON Schemas, S and S ′, for the input and output
data, respectively. Any input data provided to the API must conform to the schema
S, ensuring that it is in the expected format.

2. Synthetic data generation: generate synthetic JSON data that conforms to S. This
provides various test cases that adhere to the input schema, allowing for comprehen-
sive testing across a range of valid and edge-case scenarios.

3. Black-box API testing: the generated data is sent to the API as input, while the
internal workings of the API are not examined. The only concern is whether the API
responds correctly according to its defined behavior.

4. Validation and error identification: when processing the input data, the API can
either successfully produce output or, if it fails, indicate that it has encountered errors.
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Such failures suggest there are misconceptions or internal issues within the API.
When output data is produced correctly, this data is then validated against the output
schema S ′. If the API output does not conform to the output schema, we can conclude
that there are bugs or logic errors in the API’s handling of the data.

In conclusion, our objective is to develop an effective solution that addresses the vari-
ous challenges associated with JSON Schema through data generation techniques. While
tackling theoretical, as well as practical, issues such as satisfiability, inclusion checking,
and schema equivalence is crucial, we are also driven by other implications of our work
related to multi-instance generation, so as to enable the production of large datasets for
important practical applications, as the one illustrated in Example 2.

Our efforts aim to bridge the gap between research and practical application, ensuring
our solution is relevant and beneficial across various applications. By concentrating on the
formal design and the practical implementation of efficient data generation techniques for
JSON Schema, we seek to contribute meaningfully to the evolution of this language and its
usability in real-world situations. Through our work, we aspire to enhance how developers
and organizations utilize JSON Schema in their projects, improving both efficiency and
effectiveness in data and schema handling.

1.3 Thesis Contributions
In this section, we summarize our scientific contributions, highlighting the key advance-
ments we have made in the field of JSON Schema generation and validation.

• Definition of an experimental protocol: establishing a comprehensive framework
to evaluate the witness generation approach for data generation for JSON Schema
[11, 12], this contribution establishes a structured methodology for assessing its per-
formance and reliability. The evaluation focuses on testing both the completeness
and correctness of the approach in generating JSON data that conforms to JSON
Schema.

• Development of a new generation technique: designing a novel generation tech-
nique that balances existing methods, this contribution focuses on efficiently gener-
ating valid instances for JSON Schema. The solution specifically addresses gaps in
current approaches, particularly regarding the uniqueness constraint in arrays, which
is often overlooked or inadequately handled, involving solutions based on randomness
that do not always guarantee a valid outcome, as well as methods that entail high
computational overhead. Furthermore, it enables the generation of multiple distinct
instances that conform to a JSON Schema, enhancing flexibility and utility in prac-
tical applications. While the approach is designed to be both efficient and correct, it
is important to note that it accepts some loss of completeness, prioritizing generation
speed over exhaustive instance coverage.
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• Introduction of a hybrid generation approach: developing a hybrid approach
that combines the thoroughness of the witness generation approach with the effi-
ciency of our novel generation technique. This approach ensures both correctness
and performance for JSON Schema data generation, addressing the limitations of
each individual method. By integrating these two strategies, the technique strikes
a balance between precision and computational efficiency, making it suitable for a
broader range of schemas and use cases.

• Implementation of a JSON Schema validator: developing a validator for mod-
ern JSON Schema, which corresponds to the version Draft 2020-12 [72] that in-
troduces enhanced features, increasing expressive power and adding a new layer of
complexity to the validation process.

1.4 List of Publications
The following is a list of the publications that were produced during the course of this
thesis, reflecting the research contributions made in the area of data generation for JSON
Schema and related topics:

[11] Witness Generation for JSON Schema.
Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli,
Carlo Sartiani, Stefanie Scherzinger.
Proceedings of the VLDB Endowment, Volume 11, Number 12.

[13] Validation of Modern JSON Schema: Formalization and Complexity.
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Carlo Sartiani, Stefanie Scherzinger.
Proceedings of the ACM on Programming Languages, Volume 8, Number POPL.
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1.5 Thesis Outline
The thesis is structured into several key chapters, each designed to address specific aspects
of the research and contribute to a comprehensive understanding of data generation within
the context of JSON Schema. Each chapter builds upon the previous ones, providing a
comprehensive narrative that effectively leads the reader through the complexities of the
topic.

• In Chapter 2 we delve into related works, exploring existing literature and method-
ologies pertinent to our research.

• Chapter 3 lays the groundwork by discussing the foundational concepts of the JSON
data model and JSON Schema. It includes a presentation of their syntax and se-
mantics, ensuring that readers have a solid understanding of the core principles that
underpin our research.

• Moving forward, Chapter 4 presents an existing solution for generating data for JSON
Schema. This chapter not only describes the methodology but also introduces the
experimental analysis conducted as part of this thesis, emphasizing its contributions
to the field.

• In Chapter 5 we introduce a novel method aimed at enhancing data generation while
addressing the limitations of prior approaches. This is one of the main contributions
of the thesis.

• Following this, Chapter 6 showcases the experimental results that validate the perfor-
mance of our proposed method. It presents a detailed analysis of various experiments
conducted to assess the method’s efficiency and reliability.

• Chapter 7 shifts the focus to a hybrid approach that synergizes the strengths of
previously discussed techniques. This chapter culminates in the development of a
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more efficient data generation system, designed to overcome the limitations inherent
in existing methods.

• Finally, Chapter 8 wraps up the thesis, summarizing key findings and suggesting
future research directions, offering insights into potential avenues for further explo-
ration.
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Chapter 2

Related Work

In this chapter, we delve into the research surrounding JSON Schema
and its applications, examining various studies that have explored its
features, capabilities, and implications in real-world scenarios. We focus
on the methodologies employed to leverage its strengths for data valida-
tion and generation. Additionally, we highlight significant contributions
from the academic community that have advanced the understanding
and usability of JSON Schema, providing a comprehensive overview of
its current landscape and future directions.

2.1 Introduction
JSON Schema has gained traction as a robust schema language for representing and validat-
ing JSON data. It offers a wide range of features, including constraints on various JSON
data types that ensure compliance with specific formats, structures, and value ranges,
making it highly effective for enforcing data integrity across diverse applications.

In addition to basic constraints, JSON Schema supports logical operators like disjunc-
tion and conjunction, enabling the combination of multiple schemas for describing complex
logic. This expressiveness turns out to be useful for capturing real-world situations where
different rules govern the structure of data. Another powerful feature is its modularity,
achieved through a reference mechanism that allows schema fragments to be reused across
different parts, reducing redundancy and improving maintainability. The referencing mech-
anism is not limited to internal fragments since JSON Schema allows referencing external
schemas, enabling one to integrate and validate data across schemas defined outside the
current context. This feature is particularly useful in large applications and systems where
schemas evolve independently but must remain interconnected in some way.

In the following sections, we will discuss various research areas related to JSON Schema,
including an overview of techniques, formalization, satisfiability, and inclusion, as well as
schema inference for JSON data and the usage of negation in JSON Schema. Additionally,
we will explore existing data generators designed for generating JSON data that conforms
to the specifications of JSON Schema.
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2.2 Techniques and Challenges in JSON Schema and
JSON

2.2.1 JSON Schema Formalization, Satisfiability and Inclusion
Many research studies have examined JSON Schema, aiming to understand its expressive-
ness power and intricacies. In [64], Pezoa et al. introduced the first formalization of JSON
Schema [43], investigating the problem of validating a JSON document against a JSON
Schema, and demonstrating that the validation process can be achieved in polynomial time.
They also compared the language to traditional formalisms such as monadic second-order
logic (MSO) and tree automata, concluding that JSON Schema cannot be expressed using
either of them in the presence of the uniqueness constraint in arrays.

The challenges associated with JSON Schema’s expressiveness and complexity were
further explored in [30], where Bourhis et al. analyzed the satisfiability of schemas, proving
that it is EXPTIME-complete for schemas without the uniqueness constraint in arrays and
2EXPTIME for those that include it.

Additionally, several other studies have focused on the problem of inclusion for JSON
Schema. Habib et al. [46, 44, 45] made a significant contribution by developing an inclusion
checker for schema containment, which determines whether one schema is a subset of
another. This work is particularly important in detecting bugs and incompatibilities in
JSON data. When systems like JSON-based web APIs evolve along with their schemas,
this containment checker helps verify potential incompatibilities. In their study, they
focused on a subset of Draft-04 [43] of JSON Schema and implemented their subschema
checker [51] using the Python programming language. Their method can also be adapted
to address satisfiability by checking if a schema is contained within the empty schema, the
schema that admits no instances. If a schema is found to be contained within the empty
schema, it is considered unsatisfiable.

Furthermore, the IBM ML framework LALE [27] adopts an incomplete inclusion check-
ing algorithm for JSON Schema to enhance the safety of machine learning pipelines. This
implementation highlights the importance of inclusion checking across various domains,
including machine learning workflows.

In addition, other research, such as [42], conducted an empirical study on JSON Schema
containment on the JSON Schema Test Suit [2], evaluating a first generation of tools in
this area. The authors emphasize the need for a dedicated micro-benchmark to assess
these tools’ applicability to real-world schemas and identify open research opportunities
with practical relevance.

2.2.2 Schema Inference for JSON Data
The exploration of schema inference and management in NoSQL databases and JSON
Schema has garnered considerable attention. Researchers are investigating methodologies
to enhance schema extraction, visualization, and evolution management. These efforts
aim to address challenges related to data heterogeneity, structural outliers, and schema
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maintenance in dynamic environments. Additionally, the development of tools and ap-
proaches focused on improving schema discovery and profiling reflects a growing interest
in effectively handling JSON data and the complexities inherent in NoSQL databases.

In [58], a comparative analysis of schema inference approaches targeting the JSON
format was conducted, evaluating both static features and dynamic performance, while
also addressing the ongoing challenges and open problems in schema inference for NoSQL
databases. Notably, in [66], Sevilla et al. pioneered a model-driven engineering approach
to infer versioned schemas from NoSQL databases, with subsequent enhancements in [33]
by Chillón et al. focusing on schema visualization. Scherzinger et al. in [67] introduced a
comprehensive data evolution management strategy, later expanded by Klettke et al. [54]
on schema extraction and evolution history reconstruction. Izquierdo and Cabot worked
in [52] on schema discovery for JSON web services, while in [41], Frozza et al. presented
graph-based extraction techniques for both JSON and BSON document collections.

Additionally, Baazizi et al. made significant contributions in this area with their work
on schema inference from massive JSON datasets. In [14], they addressed the challenges
of inferring schemas at scale, emphasizing the importance of ensuring that the inferred
schemas are both accurate and scalable for large-scale systems. Their follow-up study in
[16] extended this approach by introducing a method for parametric schema inference,
which enhances both storage efficiency and querying operations. These works have proven
instrumental in automating schema generation in environments where manually defining
schemas is impractical, particularly in distributed and cloud-based systems. For further
exploration of schema inference and related techniques, additional works can be found in
[15, 18, 19, 17]

The relevance of schema inference in our discussion lies in its potential to enhance the
JSON data generation process by acting as the reverse operation of data generation. By
leveraging schema inference, we can infer a JSON Schema S ′ from previously generated
instances and then generate new instances that satisfy the original schema S but not S ′

(i.e., S ∧ ¬S ′). This approach may allow the generation of data that differs in structure
and content, offering more diversity. This iterative process could improve both data gen-
eration strategies and schema understanding, making it particularly valuable in complex
environments. We leave the study of this inference-based approach as future work.

2.2.3 Studying the Use of Negation in JSON Schema
Negation plays a crucial role in JSON Schema, allowing schema designers to express con-
straints and conditions that are not easily captured through positive assertions. The abil-
ity to specify what is not allowed within a JSON document enhances the expressiveness of
schemas, making it possible to model complex data relationships and constraints. However,
the use of negation also introduces complexity, particularly in terms of schema validation
and interpretation.

A comprehensive investigation into the practical usage of negation within JSON Schema
data modeling was conducted in [21, 20, 24]. Recognizing that negation is a logical operator
often underutilized in type systems and schema description languages due to its complexity
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in decision-making, the authors set out to determine its relevance in actual applications.
They gathered an extensive corpus of JSON Schema documents, analyzing approximately
90,000 schemas sourced from GitHub.

Through systematic analysis, the authors quantified the patterns of negation usage
and provided a qualitative assessment of schemas incorporating negation. Their findings
confirmed that negation is actively utilized by JSON Schema users, following stable and
common patterns, along with peculiar ones that highlight the complexity and diversity of
its applications. This work not only sheds light on the practical implications of negation
in JSON Schema but also opens avenues for further research into how negation can be
effectively supported in tools and frameworks.

In addition to the empirical analysis of negation usage, the concept of negation closure
in JSON Schema, studied by the same authors in [23, 22] has received significant attention.
They explored negation closure, which refers to the property of a logical formalism that
allows every negated assertion to be rewritten into a negation-free form. This property is
essential for ensuring that reasoning about schemas remains consistent and manageable.

This research conducted by the authors demonstrated that, unlike many logical systems
that enjoy negation closure, JSON Schema does not possess this characteristic. They
examined how negation interacts with various operators within the schema, revealing that
some JSON Schema operators do not exhibit negation closure, such as the constraint that
restricts numbers to be multiples of a certain value. This finding highlights a critical
gap in the language’s expressiveness, particularly when attempting to manipulate schemas
containing negation.

The implications of this lack of negation closure are significant. Without a systematic
way to eliminate negation, users may encounter challenges during schema validation and
interpretation. The authors proposed an extension of JSON Schema that incorporates
negation closure, introducing a not-elimination algorithm designed to transform negated
assertions into equivalent non-negated forms. This extension not only enhances the ex-
pressiveness of JSON Schema but also facilitates the development of tools and frameworks
that can effectively handle negation.

By integrating these findings, the body of work surrounding negation in JSON Schema
offers valuable insights into both its practical applications and theoretical implications.
The authors underscore the importance of supporting negation in schema design, not only
to improve usability but also to pave the way for future enhancements in the JSON Schema
ecosystem. As we will see in Chapter 4 and Chapter 5, the involvement of negation also
plays a critical role in the process of generating JSON data that conforms to a JSON
Schema, further illustrating its significance in the broader context of JSON Schema appli-
cations.

2.3 Data Generators for JSON Schema
Research has increasingly focused on the challenge of generating JSON data that conforms
to JSON Schema, especially within the context of testing JSON-based systems. This in-
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terest is driven by the necessity for robust and valid test data that aligns with the specific
structural and semantic rules defined by JSON Schema. Generating schema-compliant
data is essential for ensuring that applications behave as expected, facilitating early de-
tection of issues during development. Consequently, numerous research works, tools and
methodologies have emerged to assist in the automated generation of compliant JSON data,
streamlining the testing process and enhancing data integrity across various applications.

2.3.1 Literature Review
One of the first contributions in the area of data generation for JSON Schema is jsongen,
a library developed by Fredlund et al. [40, 38] for generating test JSON data for web
services testing, which is further explored in [26]. jsongen relies on QuickCheck [34], a
property-based testing tool primarily used in Haskell that allows developers to define and
automatically test properties of programs using randomly generated input or custom data
generators when needed. jsongen employs QuickCheck to generate data that conforms to
a JSON Schema by deriving a generator based on the schema’s structural and validation
rules. Following this, it is important to note that jsongen is now considered obsolete, along
with open-source tools such as Schematic-ipsum [53] and Json-schema-random [61], as they
primarily focused on the earlier versions of JSON Schema, specifically Draft-03 [73] and
Draft-04 [43], and have not been actively maintained since then.

Since then, more recent works have been investigating the generation of data for JSON
Schema, concentrating on the latest drafts that introduce more expressiveness to the lan-
guage through a variety of features. Advancements in the domain of web API testing have
led to the development of tools like Schemathesis [49], designed to detect defects in web
APIs. Similar to jsongen, Schemathesis relies on property-based testing frameworks to
generate data that conforms to JSON Schema constraints, while also leveraging fuzzing
techniques. It employs the property-based framework Hypothesis [59], specifically utiliz-
ing the hypothesis-jsonschema library [48], which is a data generator for JSON Schema
that supports versions Draft-04 [43] through Draft-07 [71] of the language. Furthermore,
Schemathesis incorporates schema preprocessing techniques prior to invoking the generator
to optimize the generation of both valid and invalid data, enhancing its effectiveness in
testing the robustness of web APIs. The hypothesis-jsonschema library will be discussed
later in the next section.

Moreover, the need for efficient generation approaches has led to other works focusing
on data generation for JSON Schema, addressing various challenges in this domain. In [37],
DataGen was initially conceived as a JSON data generator that did not incorporate JSON
Schema; however, it has since evolved into a versatile tool that generates both JSON and
XML data. More specifically, it now integrates JSON Schema in its process of generating
JSON data. In [32], Cardoso and Ramalho introduced a new version of DataGen, referred
to as DataGen From Schemas, which extends DataGen and is designed to support all the
features of the latest version of JSON Schema, Draft 2020-12 [72]. The developed data
generation workflow begins by parsing the schema into an intermediate structure using
PEG.js [56]. This intermediate structure is then translated into a predefined Domain
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Specific Language (DSL). Finally, DataGen takes over by processing the DSL model to
generate the JSON data.

An important aspect of our interest in this research work is how the uniqueness con-
straint in arrays is addressed. The adopted strategy involves regenerating values when a
duplicate is detected, allowing up to 10 attempts before stopping the regeneration pro-
cess, where the last generated value is considered, potentially violating the uniqueness
constraint. This method relies on randomness for resolution. While this approach may
work in some scenarios, it is not efficient, particularly when the schemas being processed
have a finite and limited domain size, where the regeneration of the same values is more
probable. Depending on randomness to enforce uniqueness can lead to significant compu-
tational costs, especially when dealing with complex schemas. Additionally, the inherent
lack of control in random generation may result in failures to produce arrays that satisfy
the uniqueness constraint, despite the existence of simpler, more effective solutions.

It is worth noting that the work does not provide experimental results to evaluate the
performance or efficiency of the tool, which could offer valuable insights into its practical
applicability and effectiveness in real-world scenarios.

A more recent study on the generation of data for JSON Schema was introduced in [63],
where the authors present Fences, a tool that generates JSON data for JSON Schema using
an approach based on flow graphs. Fences supports JSON Schema Draft 2020-12 [72] with
all its features, targeting the generation of both valid and invalid data, where the latter can
potentially be used to detect the provenance of defective data in schemas, leading to the
identification of problematic fragments of the schemas. The generation process of Fences
includes a preprocessing phase, a step that many generators generally rely on to simplify
schemas by effectively eliminating conjunctions and negations, thereby making the schema
easier to generate. Furthermore, the authors introduced a coverage metric that assesses
the effectiveness of generators, providing a qualitative measure for the generated data.

Fences was evaluated against hypothesis-jsonschema [48], using both the official JSON
Schema test suite [2] and a real-world schema collection from Industry 4.0 [62]. The paper
outlines that Fences achieved slightly higher schema coverage even though it generated
fewer JSON instances than hypothesis-jsonschema, which makes it faster overall.

Further studies on data generation for JSON Schema include [11], where an overview
of the method will be covered in Chapter 4, as the experimental protocol conducted in
this research was one of the contributions of the thesis. This research introduced witness
generation, a sound and complete approach for instance generation for JSON Schema. A
more in-depth discussion is provided in [12], which presents various algorithms and proofs
concerning the soundness and completeness of the method for generating witnesses for
JSON Schema. Additionally, our work in [6, 7], which introduces a new efficient technique
for data generation, forms a core part of the thesis and will be presented in detail in
Chapter 5.

Another notable contribution is discussed in [55], which focuses on the challenge of
translating ECMA-262 regular expressions [39] used in JSON Schema into Brics syntax
[60]. This work highlights the translation mechanism employed in [11, 12] for generating
string data using the Brics library.
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2.3.2 Overview of Open-Source Tools
In this section, we provide an overview of open-source tools that perform data generation
for JSON Schema, focusing on those that are actively maintained and regularly updated.
These tools play a crucial role in supporting schema-based testing and validation by au-
tomating the creation of JSON instances. We examine their core features, and limitations,
in order to identify potential gaps that motivate the need for more efficient and adaptable
data generation techniques.

JSON Generator (DG)[28]. This tool is developed in Java and is currently at version
0.4.7. An online version is provided 1, and it supports JSON Schema Draft-07 [71] as well
as earlier versions.

It adopts a two-phase approach: an initial generation phase followed by a fixing phase,
during which the generated data is validated using an external validator [29]. If validation
errors occur, the tool attempts to repair the generated instance. This repair process stops
if the same error is encountered twice or if the instance becomes fixed and valid. However,
the fixing approach is somewhat naive, as it involves redoing the generation to address
issues that may not have been captured during the initial generation phase.

Negation is not addressed, as it is ignored during the initial generation phase, and in the
fixing phase, the tool handles the error of not satisfying negation by returning a default
value of zero. Moreover, hen encountering exclusive disjunctions, where instances must
satisfy exactly one schema, the tool naively resolves these by randomly selecting a branch
of the schema to satisfy, similar to how disjunctions are handled.

Furthermore, the generation of arrays in the presence of the uniqueness constraint is
mentioned but not adequately addressed. If a value has already been generated, it will not
be added to the array, effectively moving to the next item to generate, which can result
in arrays that are smaller than desired when a minimal bound is imposed. In the fixing
phase, when a uniqueness error is detected, the array is simply filtered to remove dupli-
cates, potentially leading to issues with size constraints. This special case highlights the
limitations of the repair process, which can result in infinite cycles of reparation, as errors
can be interdependent; fixing the uniqueness constraint can violate the minimal bound,
and adding items to satisfy the minimal bound can lead to violations of the uniqueness
constraint.

One notable feature of the tool is its ability to generate string values using the Randexp
library 2. This adds a layer of randomness that improves the quality of the generated data;
however, it may occasionally produce invalid values. Additionally, the tool incorporates
hyperparameters that give users control over various preferences, further enhancing the
customization of the data generation process

Overall, despite the limitations outlined, the tool provides a robust framework for JSON
data generation that conforms to JSON Schema, as will be detailed in the experimental
analysis of Chapter 4.

1https://tryjsonschematypes.appspot.com/#generate
2https://github.com/fent/randexp.js
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JSON-Schema-faker (JSF)[1]. This generator, is written in JavaScript, supports
Draft-04 [43] of JSON Schema and is currently at version 0.5.6. An online version is
also provided 3 (for the version 0.5.4 of the tool), along with a command-line interface
(CLI) 4. Additionally, a Python version of the tool has been developed 5.

Differently from the previous tool, this one does not include a fixing mechanism. Nev-
ertheless, it has comparable limitations, as negation is not addressed, along with other
object-related constraints such as dependencies between fields. It also struggles when im-
plicit conjunctions between constraints are present. In addition, dealing with the unique-
ness constraint in arrays is limited and managed similarly to how it is handled in DataGen
From Schemas [32]. The approach involves regenerating values until a distinct one is found,
allowing for up to 100 attempts.

Similar to the DG tool, it also incorporates randomness, as the generation of string
values relies on the same Randexp library2. It also utilizes other libraries such as Faker.js6

and Chance.js7, which are used not only for string values but also for numeric values.
In line with the previous tool, it allows users to specify a broader range of options

to suit their specific needs, such as overriding certain constraints defined by the schema
(e.g., size of arrays and the depth level of references when resolved). Nevertheless, these
customization options can sometimes become unwieldy and lead to the generation of invalid
values.

JSF serves as a versatile solution for developers seeking to simulate realistic datasets
based on defined schemas. It is comparable to the DG tool, though it comes with a few
additional limitations.

JSON-everything (JE) [36]. The library we discuss here encompasses various tools
for querying and managing JSON data written in C#, along with tools dedicated to JSON
Schema, such as a tool for schema generation from data. It also includes a data generator
for JSON Schema 8. Currently at version 2.2.0, the generator also has a web-based version
available for users 9.

While its documentation does not explicitly state which version of JSON Schema it
supports, it references keywords like if/then/else that were introduced in Draft-07 [71],
suggesting compatibility with this version. However, it does not cover all features; for
example, constraints on dependencies between fields in the object type are not supported.
Additionally, it does not support the generation of arrays with the uniqueness constraint.

The generator employs the Bogus library 10 for generating string values in schemas
where there are no specific conditions or restrictions applied to the string type. Conversely,

3https://json-schema-faker.js.org/
4https://github.com/oprogramador/json-schema-faker-cli
5https://github.com/ghandic/jsf
6https://fakerjs.dev/
7https://chancejs.com/
8GitHub repository of the data generation tool.
9https://json-everything.net/json-schema

10https://github.com/bchavez/Bogus
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when restrictions are defined, it utilizes the Fare library 11 for generating values that must
adhere to the specified constraints. However, regular expressions not supported by the
latter library result in invalid generation, and it also does not handle logical operations
involving regular expressions.

The tool is significantly limited compared to existing alternatives, particularly because
of the limitations associated with string generation.

Hypothesis-jsonschema (HJS)[48]. This data generator is implemented in Python
and is currently at version 0.23.1. It supports Draft-04 [43], Draft-06 [70], and Draft-07
[71] of JSON Schema, covering nearly all the features of these drafts, with the exception
of recursive schema references.

This generator acts as a bridge between JSON Schema and property-based testing,
extending the capabilities of Hypothesis [59] 12.

Hypothesis is a powerful Python library designed for generating unit tests based on
specifications. It automatically generates input data for tests by defining strategies, which
describe the types of data to be used. Hypothesis represents the possible values for these
strategies as a tree structure, especially for nested or complex data types. Using heuristics,
it explores this structure to generate a wide range of data, including edge cases. The gen-
erated data is random, which helps ensure thorough test coverage by exposing unexpected
behaviors or edge case scenarios that might otherwise be missed.

HJS acts as a translator between JSON Schema and Hypothesis, converting JSON
schemas into corresponding search strategies that generate data conforming to the schema’s
constraints. It includes a preprocessing phase to simplify the schema, ensuring more
efficient and accurate data generation. For instance, during this phase, HJS combines
strategies when handling complex schema elements like conjunctions in the original JSON
Schema. Additionally, the tool supports advanced features of JSON Schema, such as en-
forcing uniqueness constraints on array elements, though its handling of some of these
features may be limited in certain cases.

Despite its strengths, HJS does have some limitations. Its reliance on property-based
testing through Hypothesis can lead to higher computational costs, especially when dealing
with highly complex schemas. Another significant limitation is its lack of support for
recursive references, a common feature in many real-world JSON Schemas.

Containment checker (CC)[51, 46, 44, 45]. The last tool we describe is jsonsub-
schema, briefly introduced in Section 2.2.1. While not a data generator, it remains an
important part of the JSON Schema ecosystem and is used in our study, as will be pre-
sented in Chapter 4.

This tool checks schema inclusion, returning a simple true or false to indicate whether
one schema is included in another, without generating examples or instances. Currently
at version 0.0.7, jsonsubschema supports only Draft-04 [43] schemas and was developed in

11https://github.com/moodmosaic/Fare
12https://hypothesis.readthedocs.io/en/latest/ and https://hypothesis.works/
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Python. The tool has certain limitations in addition to only supporting the aforementioned
version of JSON Schema: key language features, such as recursion and negation, are not
handled.

Despite its limitations in handling the full language and its lack of data generation
capabilities, the tool introduced key operations within its inclusion checking process, par-
ticularly schema preprocessing, which involves schema manipulations that are directly
applied in our current work. Therefore, it was important to highlight the tool here and
point out its capabilities.

2.4 Conclusion
In this chapter, we discussed how JSON Schema has been studied in relation to various
problems associated with schema languages, such as satisfiability and inclusion. The re-
search studies conducted on those aspects underscore the complexity and expressive power
of the language, highlighting the challenges involved when manipulating JSON Schema.

We also explored schema inference techniques that enhance the extraction and man-
agement of schemas for JSON data. These methods are crucial for improving schema
design and facilitating data discovery, and we also highlighted a scenario that relates to
our concern of data generation, and how schema inference can possibly be used in our
context.

Negation in JSON Schema was examined, emphasizing its significance in defining more
complex constraints and in increasing the expressiveness of the language.

Lastly, we addressed existing tools that perform data generation for JSON Schema,
which aim at automating the creation of data instances, and outlined how they are con-
ceived and the different techniques used for achieving generation.

Overall, this chapter illustrates the advancements made in understanding and applying
JSON Schema techniques, while also emphasizing the need for ongoing research to tackle
existing challenges and improve practical applications within the JSON Schema ecosystem.
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Chapter 3

Preliminaries

In this chapter, we explore the foundational concepts needed to under-
stand the upcoming sections of this document. We begin with a detailed
introduction to the JSON data model, the widely used format for struc-
turing and exchanging data on the web. Next, we provide an in-depth
overview of JSON Schema, highlighting its key features and capabilities.
Finally, we examine the syntax and semantics of JSON Schema in detail,
laying the groundwork for a comprehensive understanding of its use and
validation mechanisms. To illustrate these concepts, we will also present
an example demonstrating how validation is performed against a schema,
showing how different keywords guide the validation process and affect
the outcome.

3.1 The JSON Data Model
JSON (JavaScript Object Notation) is a widely-used format for storing and exchanging
data in web applications, defined by standards such as ECMA-404 [35] and IETF RFC
8259 [31]. Its syntax uses braces, brackets, commas, and colons to represent key-value
pairs clearly, making it suitable for diverse applications. JSON is language-independent,
allowing various programming languages to parse and generate JSON data easily. Its
support for a hierarchy of nested objects and arrays enables flexible data descriptions,
contributing to its popularity in modern programming environments.

Figure 3.1 presents the data types supported by JSON, where values can be of several
types: null, boolean, number, string, array, or object. Arrays are ordered lists of JSON
values, separated by commas, and enclosed in brackets. They can be empty and may
contain elements of any type, including other arrays and objects. Objects consist of a
(potentially empty) set of key-value pairs, separated by commas and delimited by opening
and closing braces. While it is technically possible to have duplicate keys in an object,
this is strongly discouraged, as it can lead to unexpected behaviors. In our context, keys
li must be unique and are of type string, while the values can be any JSON value.
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d ∈ Num, s ∈ Str, n ∈ Int, n ≥ 0, li ∈ Str
J ::= null | true | false | d | s | [ J1, . . . , Jn ] | { l1 : J1, . . . , ln : Jn } i ̸= j ⇒ li ̸= lj

Figure 3.1: The JSON data model

In the grammar described in the figure, null is the only value possible for the null
type, representing an empty value. The boolean type only allows the values false and
true. Num represents the set of all possible numerical values, which must consist of finite
and well-defined numbers, as numeric values that cannot be represented as sequences of
digits (such as infinity) are not permitted. Notably, numbers can also be represented in
exponential notation, so 1e3 is a valid JSON number. The set of all possible string values
is denoted by Str, where a string value is defined as a sequence of zero or more Unicode
characters, delimited by double quotation marks, and supports a backslash escaping syntax
for special characters. For instance, to represent the character ’\’, we use "\\" in JSON.

Example 3 Consider the following JSON object, consisting of four key-value pairs. The
value associated with the key "name" is of type string. For the "age" key, it holds an
integer value. The value of the key "address" is of type object and is composed of 3
key-value pairs, all of which are of string type. Lastly, the value of "hobbies" is an array
containing strings.
{ "name": "John Doe",

"age": 24,
"address": {

"street": "4 Pl. Jussieu",
"city": "Paris",
"zipCode": "75005"

},
"hobbies": ["Hiking","Cooking","Painting"]

}

3.2 Overview of JSON Schema
In this section, we provide an overview of the key aspects of JSON Schema, focusing on
a subset of Draft 2019 [69] and earlier versions, as these are the most widely adopted in
practice. While more recent versions such as Draft 2020-12 [72] have introduced advanced
features, we limit our scope to the widely used functionality in order to maintain relevance
and compatibility with common implementations.

A JSON Schema specification is itself a JSON document that defines various typed
assertions to enforce constraints on specific JSON structures (e.g., objects, arrays, etc.).
These typed assertions are typically expressed using the type keyword, which indicates
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the category of JSON data they refer to. In this section, we will explore the key types of
assertions and their practical usage, before delving into their formal semantics later on.

• Base value assertions: these define constraints for basic types such as strings
and numbers. For strings, regular expressions can be used to describe patterns
(pattern), and their length can be restricted by specifying minimum and maximum
values (minLength, maxLength). For numbers, constraints can be defined through
intervals (minimum, maximum) or by specifying multiples (multipleOf).

• Array assertions: these are used to specify the types of elements that can appear
in an array using items and prefixItems, and to restrict the size of the array using
an interval (minItems, maxItems). It is also possible to require a specific number of
elements to satisfy a schema using the constraint contains, along with minContains
and maxContains. Ensuring the uniqueness of elements in an array can be achieved
through the uniqueItems constraint.

• Object assertions: these allow developers to define the structure of objects by
specifying the schema for individual properties (properties) or by using regular
expressions to capture property names (patternProperties). Required properties are
defined through required, and constraints on the number of properties can be set with
minProperties and maxProperties. It is also possible to enforce that property names
follow a specific convention using propertyNames. Additionally, handling undefined
properties (additionalProperties) and expressing dependencies between properties
(dependentRequired and dependentSchemas) are key features for managing complex
object structures.

Beyond these basic capabilities of defining constraints on the different JSON data types,
JSON Schema supports the construction of complex expressions through boolean operators
such as disjunction (anyOf), conjunction (allOf), negation (not), and exclusive disjunction
(oneOf). Furthermore, JSON Schema provides mechanisms for defining reusable schema
fragments through $defs and $ref, facilitating modular and maintainable schema designs,
especially in large-scale systems. As a result, it is also possible to define schemas that
reference themselves, enabling the creation of recursive structures.

Example 4 To give an overview of assertions that can be expressed in JSON Schema,
consider the following schema. It restricts valid values to objects containing a property "a"
whose value must be a string that matches the pattern "a(c|e)*". Additionally, it allows
for the presence of other properties with unrestricted values.
{ "type": "object", "required": ["a"],

"properties": { "a": { "type": "string", "pattern": "a(c|e)*" } },
"additionalProperties": true

}
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While the previous example is straightforward, schemas can become considerably more
intricate when overlapping constraints or dependencies are introduced. For instance, the
patternProperties keyword allows constraints to be applied to properties whose names
match a given regular expression, potentially overlapping with constraints defined in properties.

Example 5 The following schema extends the previous one by introducing a patternProperties
assertion. Properties whose names match the regular expression "a+" must have a mini-
mum length of 3. This results in an overlap with the previous assertion for the property
"a", which must satisfy both the minimum length constraint and the pattern "a(c|e)*".
{ "type": "object", "required": ["a"],

"properties": { "a": { "type": "string", "pattern": "a(c|e)*" } },
"patternProperties": { "a+": { "minLength": 3 } }

}

The above example, while simple, is very helpful in highlighting the limitations of
existing implementations of data generation for JSON Schema, which are unable to handle
overlapping constraints due to their limited support for conjunction.

Overlapping constraints can also occur in array assertions, as shown in the following
example.

Example 6 The following schema describes arrays with a minimum of four and a maxi-
mum of ten items. Each item in the array must be a string with a minimum length of two
characters, and at least one of these strings must match the pattern "a(b|c)a".
{ "type": "array", "minItems": 4, "maxItems": 10,

"items": { "type": "string" , "minLength": 2 },
"contains": { "pattern": "a(b|c)a" }

}

To illustrate the application of boolean operators in JSON Schema, consider the fol-
lowing schema, which demonstrates the use of both conjunction and disjunction.

Example 7 The following schema restricts valid values to objects that must either contain
a property "a" with a string value or a property "b" with an integer value.
{ "type": "object",

"properties": { "a": { "type": "string" }, "b": { "type": "integer" } },
"anyOf": [ { "required": ["a"] }, { "required": ["b"] } ],
"allOf": [

{ "properties": { "a": { "minLength": 3 }, "b": { "minimum": 10 } } }
],
"additionalProperties": false

}
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This example showcases the use of boolean operators like anyOf (disjunction), requiring
either property "a" or "b" to be present, and allOf (conjunction), ensuring that if present,
"a" must be a string of at least three characters, and "b" must be an integer greater than
or equal to 10.

3.3 Syntax and Semantics of JSON Schema
In this section, we will explore the syntax and semantics of JSON Schema, concentrating
on the specific assertions relevant to our study. As mentioned in the previous section,
we only focus on a subset of the version Draft 2019 [69], by excluding keywords that
introduce extra complexity to validation, such as $anchor, $dynamicAnchor, $dynamicRef,
as well as keywords whose semantics rely on annotations, namely unevaluatedProperties and
unevaluatedItems.

Figure 3.2 highlights the assertions included in our study. As specified in the grammar,
a valid JSON Schema S can be a boolean true or false, or it can also be a JSON object,
which may be empty; in this case, it is equivalent to the schema true. In the grammar,
Num represents the set of all possible numerical values, and Str represents the set of all
possible string values. The variable i is a positive integer.

The value of $ref, denoted as uri, is of type string. In this context, we have excluded
the feature of referencing external schemas and are focusing solely on referencing fragments
of the schema itself in different places. Thus, uri consists of a path within the schema,
where the root is represented with #. For example, "#/a/b" is a valid URI that allows for
referencing the schema of "b", which is located inside the schema of "a" that is situated at
the root level.

The format 1 constraint enables the identification of certain string values. Its value for
is a string that can represent a wide range of defined values, such as "date", "email", and
so on. Finally, JVal represents the set of all valid JSON values.

Remark 1 In our representations, we use {|...|} to denote a set of values, while the nota-
tion { ... } is specifically reserved for representing JSON objects.

We define the semantics of JSON Schema in an operational manner based on prior
work in [13], which studies validation for the latest version, Draft 2020-12 of JSON Schema
[72]. We adapt the set of validation rules established in that context to suit our specific
needs. The validation of an instance J against a schema S, yielding a boolean value,
is represented through a main judgment and two auxiliary judgments. These judgments
are interdependent and guided by the syntax of JSON Schema, facilitating a clear and
structured approach to understanding the semantics of the different assertions.

• The schema judgment is the main one, denoted J ? S 7→ r, captures the validation
of J against S and returns the boolean value r;

1The complete list of allowed values for format can be accessed here.
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b ∈ {|false, true|}, q ∈ Num, i ∈ N, k ∈ Str, uri ∈ Str, for ∈ Str, p ∈ Str, J ∈ JVal
Tp ::= object | number | integer | string | array | boolean | null

S ::= true | false | { K (, K )∗ } | { }
K ::= type : Tp | type : [Tp1 , . . . , Tpn] | minimum : q | maximum : q

| exclusiveMinimum : q | exclusiveMaximum : q | multipleOf : q
| pattern : p | minLength : i | maxLength : i | format : for
| minProperties : i | maxProperties : i | required : [ k1, . . . , kn ]
| properties : { k1 : S1, . . . , km : Sm } | additionalProperties : S
| patternProperties : { p1 : S1, . . . , pm : Sm } | propertyNames : S
| dependentSchemas : { k1 : S1, . . . , kn : Sn }
| dependentRequired : { k1 : [ k1

1, . . . , k1
o1 ], . . . , km : [ kn

1 , . . . , kn
on

] }
| minItems : i | maxItems : i | minContains : i | maxContains : i
| uniqueItems : b | items : S | prefixItems : [ S1, . . . , Sn ] | contains : S
| $defs : { k1 : S1, . . . , kn : Sn } | $ref : uri | anyOf : [ S1, . . . , Sn ]
| allOf : [ S1, . . . , Sn ] | oneOf : [ S1, . . . , Sn ] | not : S
| if : S | else : S | then : S | const : Jc | enum : [ J1, . . . , Jn ]

Figure 3.2: Grammar of normalized JSON Schema Draft 2019

• The auxiliary judgments, keyword judgment denoted J ? K → r, and keywords-list
judgment denoted J ? K⃗ ⇒ r, are meant to capture the validation of J over a single
keyword K or a list of keywords K⃗, respectively. This latter judgment is useful for
defining the semantics of keywords whose semantics depends on the evaluation of
adjacent keywords like in the case of additionalProperties.

Figure 3.3 outlines the rules for the schema judgments and keywords-list judgments. The
rules (false-schema) and (true-schema) correspond to the boolean schemas false and true
respectively. The validation rules for these schemas are straightforward. The false schema
represents the universally unsatisfiable schema, which does not admit any JSON instance,
and as a result, any validation against this schema will always yield false (denoted F).
Conversely, the true schema is universally satisfiable, meaning it admits every possible
JSON value, and validation against it will always yield true (denoted T ).

The rule (KwList-(n+1)) represents the process of validating an instance against a set
of schema keywords, incrementally building upon the results of validating the instance
against each keyword in the list. It follows an inductive structure, where the overall
validation result is derived by taking the conjunction of the validation results from each
individual keyword in the list.

The rule (emptyKwList) is trivial and serves as the base case for the induction of the
previous rule, where the absence of constraints allows for any instance to be valid.
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Rules (schema-true) and (schema-false) rely on the validation of the list of keywords
contained within the schema. If the keywords-list validation succeeds and returns T , then
the validation of an instance against the schema also yields T . Conversely, if the keywords-
list validation fails and returns F (false), the validation of the instance against the schema
also results in F .

J ? false 7→ F (false-schema)

J ? true 7→ T (true-schema)

J ? [ K1, . . . , Kn ] ⇒ T
J ? { K1, . . . , Kn } 7→ T

(schema-true)

J ? K⃗ ⇒ rl J ? K → r

J ? (K⃗ + K) ⇒ rl ∧ r
(KwList-(n+1))

J ? [ K1, . . . , Kn ] ⇒ F
J ? { K1, . . . , Kn } 7→ F

(schema-false)

J ? [ ] ⇒ T (emptyKwList)

Figure 3.3: Schema and keywords-list jugements

In the following, we will present the semantics of the different keywords listed in the
grammar. We follow the terminology of the JSON Schema standard by distinguishing
between terminal assertions, boolean applicators, and structural applicators.

3.3.1 Terminal Assertions
These assertions assemble keywords that do not contain any sub-schema. First, we have
the type-uniform ones that do not make a differentiation based on the type of the instances;
these are enum, const, type : [Tp1, . . . , Tpn], and type : Tp. Then, we have the implicative
keywords, which are specific to a certain type T and always return T (true) when applied
to instances whose types differ from T . To capture the semantics of a terminal assertion
kw : J ′ when applied to an instance J , we consider two validation rules (kwTriv) and (kw).
The former rule applies to the trivial case of the typed assertions, while the latter applies
to both typed assertions in the general case and the type-uniform assertions. For the
type-uniform ones, the condition TypeOf (J) = TypeOf (kw) is ignored, where TypeOf (J)
extracts the type of J , while TypeOf (kw) indicates the type to which kw refers. Table 3.1
presents all the terminal assertions and specifies the condition verified for each assertion
when applied to the instance J .

TypeOf (J) ̸= TypeOf (kw)
J ? kw : J ′ → T

(kwTriv)

TypeOf (J) = TypeOf (kw) r = cond(J, kw :J ′)
J ? kw :J ′ → r

(kw)
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assertion kw:J’ TypeOf (kw) cond(J,kw:J’)
enum : [J1, . . . , Jn] no type J ∈ {|J1, . . . , Jn|}
const : Jc no type J = Jc

type : Tp no type TypeOf (J) = Tp
type : [Tp1, . . . , Tpn] no type TypeOf (J) ∈ {|Tp1, . . . , Tpn|}
exclusiveMinimum: q number J > q
exclusiveMaximum: q number J < q
minimum: q number J ≥ q
maximum: q number J ≤ q
multipleOf: q number ∃i ∈ Int. J = i × q
pattern: p string J ∈ L(p)
minLength: i string |J | ≥ i
maxLength: i string |J | ≤ i
minProperties: i object |J | ≥ i
maxProperties: i object |J | ≤ i
required : [ k1, . . . , kn ] object ∀i. ki ∈ names(J)
uniqueItems: true array J = [J1, . . . , Jn] with n ≥ 0

∧ ∀i, j. 1 ≤ i ̸= j ≤ n ⇒ Ji ̸= Jj

uniqueItems: false array T
minItems: i array |J | ≥ i
maxItems: i array |J | ≤ i
format: format string J ∈ L(format)
dependentRequired : ∀i ∈ {|1 . . . n|}.

{ k1 : [ k1
1, . . . , k1

o1 ] object ki ∈ names(J)
. . . , kn : [ kn

1 , . . . , kn
on

] } ⇒ {|ki
1, . . . , ki

oi
|} ⊆ names(J)

Table 3.1: Terminal assertions: conditions

3.3.2 Boolean Applicators

The semantics of the boolean applicators is straightforward and rely on applying the cor-
responding logical connectives to the validation results of each schema.

J ? S 7→ r

J ? not : S → ¬r
(not)

∀i ∈ {|1 . . . n|}. J ? Si 7→ ri r = ∨({|ri|}i∈{|1...n|})
J ? anyOf : [S1, ..., Sn] → r

(anyOf)

∀i ∈ {|1 . . . n|}. J ? Si 7→ ri r = ∧({|ri|}i∈{|1...n|})
J ? allOf : [S1, ..., Sn] → r

(allOf)
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∀i ∈ {|1 . . . n|}. J ? Si 7→ ri r = ( |{|i | ri = T |}| = 1 )
J ? oneOf : [S1, ..., Sn] → r

(oneOf)

3.3.3 Structural Applicators
We differentiate between three families of applicators: those related to objects, arrays, and
others. For each family, we further distinguish between independent applicators, whose
semantics are described using the keyword judgment, and dependent applicators, whose
semantics depend on the evaluation of adjacent applicators and are hence captured using
the keywords-list judgment.

Object Keywords. These keywords are specific to the object type, hence, their seman-
tics are trivial and they are always satisfied when applied to instances that are not of
type object. They are composed of sub-schemas, thus requiring verification of the internal
structures of the instance.

First, to illustrate the trivial behavior of these keywords when encountering an instance
that is not of type object, we present the trivial rule for the properties keyword, that is:

TypeOf (J) ̸= object
J ? properties : { k1 : S1, . . . , km : Sm } → T

(propertiesTriv)

The (properties) rule captures the non-trivial case, that is, when J is an object of the form
J = { k′

1 : J1, . . . , k′
n : Jn }. This rule states that, in order for J to validate properties :

{ k1 : S1, . . . , km : Sm }, every value Ji whose key k′
i matches a keyword kj : Sj, must

validate the schema Sj. This rule relies on collecting the set of indexes of matching pairs
in order to perform validation whose result is combined using conjunction.

J = { k′
1 : J1, . . . , k′

n : Jn } {|(i1, j1), . . . , (il, jl)|} = {|(i, j) | k′
i = kj|}

∀q ∈ {|1 . . . l|}. Jiq ? Sjq 7→ rq r = ∧({|rq|}q∈{|1...l|})
J ? properties : { k1 : S1, . . . , km : Sm } → r

(properties)

The (patternProperties) rule generalizes the previous one by considering key-pattern
membership expressed by k′

i ∈ L(pj) where L(pj) denotes the language of the pattern
pj, instead of exact label-keyword matching. The same conjunctive semantics used in the
previous rule is adopted here.

J = { k′
1 : J1, . . . , k′

n : Jn } {|(i1, j1), . . . , (il, jl)|} = {|(i, j) | k′
i ∈ L(pj)|}

∀q ∈ {|1 . . . l|}. Jiq ? Sjq 7→ rq r = ∧({|rq|}q∈{|1...l|})
J ? patternProperties : { p1 : S1, . . . , pm : Sm } → r

(patternProperties)
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The (propertyNames) rule captures the semantics of propertyNames which, differently
from other operators which constrain the instance values based on a specific schema, con-
strains the instance labels by imposing them to adhere to the associated schema S. The
semantics of propertyNames is trivially conjunctive, as expressed in the premise of the rule.

J = { k1 : J1, . . . , kn : Jn } ∀i ∈ {|1 . . . n|}. ki ? S 7→ ri r = ∧({|r(σi)|}i∈{|1...n|})
J ? propertyNames : S → r

(propertyNames)

The semantics of dependentSchemas is conditional and allows applying a sub-schema in
case a label exists. The corresponding rule expresses this fact by collecting all sub-schemas
that need to be applied on the validated instance J and combining the validation results
with a conjunction.

J = { k′
1 : J1, . . . , k′

m : Jm } {|i1, . . . , il|} = {|i | i ∈ {|1 . . . n|}, ki ∈ {|k′
1, . . . , k′

m|}|}
∀q ∈ {|1 . . . l|}. J ? Siq 7→ rq r = ∧({|rq|}q∈{|1...l|})
J ? dependentSchemas : { k1 : S1, . . . , kn : Sn } → r

(dependentSchemas)

The additionalProperties operator is evaluated relatively to a context where any value
Jiq which has not been validated by an adjacent properties or patternProperties must
adhere to the schema S. The evaluated values are those remaining after eliminating the
pairs whose keys are in the languages of the properties and patterns extracted by the
function propsOf(K⃗). The function propsOf is defined as follows, where the notation ki
indicates a pattern whose language accepts only the string value ki:

propsOf(properties : { k1 : S1, . . . , km : Sm }) = k1 ·|·. . .·|·kn

propsOf(patternProperties : { p1 : S1, . . . , pm : Sm }) = p1 ·|·. . .·|·pm

propsOf(K) = ∅ otherwise
propsOf([ K1, . . . , Kn ]) = propsOf(K1)·|·. . .·|·propsOf(Kn)

The semantics of this operator is also conjunctive, and the associated rule is a specific
case of the (KwList-(n+1)) rule which collects the validation results of a keyword-list K⃗ in
a conjunctive manner.

J = { k1 : J1, . . . , kn : Jn } J ? K⃗ ⇒ r

{|i1, . . . , il|} = {|i | 1 ≤ i ≤ n ∧ ki ̸∈ L(propsOf(K⃗))|}
∀q ∈ {|1 . . . l|}. Jiq ? S → rq r′ = ∧({|rq|}q∈{|1...l|})

J ? (K⃗ + additionalProperties : S) ⇒ r ∧ r′
(additionalProperties)
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Array Keywords. These keywords only impact instances of type array, otherwise, their
effect is trivial. Similar to the object keywords, evaluating an instance against such key-
words necessitates the verification of the instance’s internal structure.

The following rule evaluates array-type instances against a set of schemas specified
within the prefixItems keyword. It asserts that each item of the instance located at
position i, where i ≤ n, is validated against the ith schema of prefixItems. The overall
validity of the instance is obtained by combining the boolean values returned for each item.
When either the instance or the list of schemas is empty, the returned value is T .

J = [ J1, . . . , Jm ] ∀i ∈ {|1 . . . min(n, m)|}. Ji ? Si 7→ ri r = ∧({|ri|}i∈{|1...min(n,m)|})
J ? prefixItems : [ S1, . . . , Sn ] → r

(prefixItems)

The (contains) rule checks whether an item of the instance satisfies the schema S.
Consequently, it returns T if at least one item fulfills the condition, and F otherwise.

J = [J1, . . . , Jn] ∀i ∈ {|1 . . . n|}. Ji ? S 7→ ri r = ∨({|ri|}i∈{|1...n|})
J ? contains : S → r

(contains)

The following rule checks the validity of the items that have not been evaluated by an
adjecent prefixItems keyword present in K⃗. The list of items to verify are all those whose
indexes come after the index captured by the function maxPrefixOf , which is defined as
follows:

maxPrefixOf(prefixItems : [ S1, . . . , Sm ]) = m

maxPrefixOf(K) = 0 otherwise
maxPrefixOf([ K1, . . . , Kn ]) = maxi∈{|1...n|} maxPrefixOf(Ki)

The overall validity of the instance is obtained by combining the boolean values returned
for each item.

J = [ J1, ..., Jn ] J ? K⃗ ⇒ r {|i1, . . . , il|} = {|1 . . . n|} \ {|1 . . . maxPrefixOf (K⃗)|}
∀q ∈ {|1 . . . l|}. Jiq ? S 7→ rq r′ = ∧({|rq|}q∈{|1...l|})

J ? (K⃗ + items : S) ⇒ r ∧ r′

(items)

The (contains-bounds) rule captures the semantics of contains in presence of the minContains
and maxContains keywords. It generalizes the contains rules by introducing cardinality
constraints: an array is valid when the cardinality of the items satisfying contains ranges
between the values of minContains and maxContains.

J = [ J1, ..., Jn ]
∀i ∈ {|1 . . . n|}. Ji ? S 7→ ri κc = {|i | ri = T |} rc = (i ≤ |κc| ≤ j)

J ? (contains : S + minContains : i + maxContains : j) ⇒ rc

(contains-bounds)
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Other Keywords. The $ref rule states the obvious validation of a $ref: uri statement
which amounts to validating schema S ′ referenced by uri.

The two remaining rules capture the validation of conditionals which relies on validating
either the then or else sub-schema depending on the validation result of the if statement.

S ′ = getSchema(uri) J ? S ′ 7→ r

J ? $ref : uri → r
($ref)

J ? K⃗ ⇒ r J ? Si 7→ T J ? St 7→ r′

J ? (K⃗ + if : Si + then : St + else : Se ) ⇒ r ∧ r′
(if-true-then)

J ? K⃗ ⇒ r J ? Si 7→ F J ? Se 7→ r′

J ? (K⃗ + if : Si + then : St + else : Se ) ⇒ r ∧ r′
(if-false-else)

3.4 Validation Example

In the following, we present a detailed example to illustrate the validation process of an
instance against a schema in JSON Schema. After defining the core concepts of JSON and
JSON Schema, as well as their syntax and semantics, it is crucial to demonstrate how vali-
dation works in practice. Through this example, we aim to showcase the interplay between
different schema keywords and how the validation rules operate, particularly emphasizing
how instances are evaluated against the assertions and constraints defined by the schema.

By walking through this example, we provide a concrete understanding of the validation
process, allowing us to see how schemas are applied to specific data structures and how the
operational semantics come into play. This example will further clarify how the judgments
and rules interact to determine whether a given JSON instance conforms to the specified
schema.

Example 8 Consider the following schema, which defines a set of constraints for a JSON
value to be valid: Firstly, through the type keyword, it specifies that valid instances must be
of type object. Additionally, the instance must contain a minimum of three properties, as
indicated by the minProperties constraint. The presence of the property "ab" is mandatory,
which is enforced through the required keyword.

Moreover, the schema utilizes patternProperties to apply specific requirements based
on property names. For properties whose names match the pattern "^a.*c$", the value
must be an integer that is a multiple of 2. Properties that match the pattern "^a.+$" must
have values that are numbers greater than or equal to 20 and also multiples of 7. Lastly,
for properties that match the pattern "^ab.*$", the value must be a string consisting of at
least two uppercase letters.
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{ "type": "object", "minProperties": 3, "required": ["ab"],
"patternProperties": {

"^a.*c$" :{ "type": "integer", "multipleOf": 2 },
"^a.+$": {"minimum": 20, "multipleOf": 7 },
"^ab.*$": {"type":"string", "pattern": "[A-Z]{2,}" }

}
}

Now consider the following instances that we want to validate against the previous schema.
These instances all share the same keys "ab" and "ac", both with identical values. The
instance J1 differs from the others by including an additional key, "acc". In contrast, both
J2 and J3 contain the key "abc", but with different values associated with it.

J1 = { "ab": "AA", "ac": 28, "acc": 28 }

J2 = { "ab": "AA", "ac": 28, "abc": 28 }

J3 = { "ab": "AA", "ac": 28, "abc": "AA" }

• All three instances are valid against the keywords type, minProperties, and required
as they are all JSON objects containing at least three properties, including the required
property "ab".

• patternProperties validation:

– "ab": this property has the same value, "AA", of type string, in all three in-
stances. It matches the patterns "^a.+$" and "^ab.*$" present in the schema of
patternProperties.
Regarding the former pattern, "^a.+$", its corresponding schema does not specify
the type of JSON values it admits. It only contains the minimum and multipleOf
keywords, which are not specific to the type string, thus the validation is trivial
and returns T .
For the latter pattern, the patternProperties specifies that if a property matches
this pattern, then its value must be of type string and match the regular expres-
sion constraint defined by the pattern keyword, which is "[A-Z]{2,}". The value
of "ab", which is "AA", belongs to the language of this regular expression, making
the pair ("ab", "AA") valid against this pattern and its schema.

– "ac": this property also has the same value, 28, across all instances. It is
captured by both patterns "^a.*c$" and "^a.+$".
The value 28 is valid according to the schema for the former pattern since it is of
type integer and a multiple of 2. Additionally, this value is also valid against the
schema of the second pattern. As the schema contains constraints specific to the
type integer, validation is non-trivial and must be performed. Since the value
28 is greater than 20 and is a multiple of 7, it is valid. Similarly to the previous
property, the pair ("ac", 28) is valid against the schema of patternProperties.
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– "acc": this property only appears in the instance J1, with its value being 28. Sim-
ilar to the previous property, it matches both the first and second patterns, allow-
ing us to conclude that its validation against the schema of patternProperties
returns T . Since the values of the three properties in J1 are all valid against
the various schemas of the patterns they match, this makes the instance J1 valid
against the entire schema S.

– "abc": this property appears in both J2 and J3 with different values. in J2 its
value is 28 and in J3 it is "AA", and it matches the three patterns of
patternProperties.
The value 28 is valid against the schemas of the first two patterns but is not
valid against the schema of the third pattern, as that schema only accepts values
of type string. Therefore, the instance J2 not valid against S.
Similarly, the value "AA" is valid against the schemas of the second and third
patterns, but it is not valid against the schema of the first pattern since it is not
of type integer, making the instance J3 invalid against S.
In fact, any instance containing a property that matches both the first pattern
"^a.*c$" and the third pattern "^ab.*$" will always be invalid against S. This is
due to the implicit conjunction in the schema, as values of properties matching
these patterns must satisfy both schemas. Since one schema only admits string
values and the other admits only integer values, this contradiction makes it
impossible for any value to satisfy the schemas of both patterns, resulting in an
invalid instance.

In summary, this example illustrates the validation process of JSON instances against a
schema defined in JSON Schema. While the schema itself may appear straightforward, the
overlapping patterns in patternProperties highlight the potential complications that can
arise from differing constraints. Even with relatively simple constraints, the interaction
between schema keywords and the schemas associated with the same keyword can introduce
complexities not only for validation but also for other tasks involving JSON Schema.

In conclusion, this chapter has laid a solid foundation for understanding both the JSON
data model and the JSON Schema vocabulary, emphasizing their syntax, semantics, and
key features. By outlining the mechanisms of schema validation, we have provided essential
context for how JSON Schema ensures data integrity and structure. This understanding
sets the stage for the subsequent chapters, enabling a deeper comprehension of how data
generation for JSON Schema is performed in the presence of various schema constraints.
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Chapter 4

Witness generation

In this chapter, we describe an existing solution for instance generation
for JSON Schema. This technique is notable for its soundness and com-
pleteness, and for being the only solution that can either generate a valid
instance or determine whether a schema is unsatisfiable. We will discuss
the main features of this method and the techniques it employs to achieve
reliable instance generation.

4.1 Introduction
Witness generation is a crucial method for solving complex problems related to JSON
Schema, such as inclusion, equivalence, and satisfiability. It involves determining whether,
for a given JSON S, there exists a JSON value J that satisfies all the constraints imposed
by S. If such value exists, it is called a witness, and the goal of the generation process
is to return this witness. Although a schema can admit an infinite number of witnesses,
the objective is to return at least one. Conversely, if no such value can be generated, the
schema is said to be unsatisfiable, meaning that there is no JSON value that complies with
the constraints defined in the schema.

This method is essential in practice because it provides concrete examples of JSON
values that conform to a schema, which can help in verifying the schema’s correctness
and answering problems such as schema inclusion. For instance, when examining schema
inclusion between two schemas S and S ′, if we want to determine whether the former is
included in the latter, we can attempt to generate a witness for S ∧¬S ′. If this conjunction
is unsatisfiable, then the inclusion holds. Otherwise, if a JSON value is generated, the
inclusion does not hold, and the generated value helps clarify why certain inclusion criteria
are not met.

However, witness generation is a computationally challenging task due to the expres-
siveness of the JSON Schema language. The presence of the logical operators (allOf, anyOf,
not, and oneOf) introduced earlier, along with the recursive mechanism using the keyword
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$ref and various structural constraints introduces significant complexity. Previous research
[30] has shown that the satisfiability problem for JSON Schema is EXPTIME-complete,
illustrating the inherent difficulty of designing efficient algorithms to solve it.

To address this challenge, a complete and sound algorithm for witness generation has
been developed. This approach can handle the entire set of JSON Schema operators,
with the exception of uniqueItems, which is excluded because it significantly increases the
complexity of the problem. The algorithm introduces several novel techniques, such as a
preparation phase for objects and arrays, and a lazy and-completion strategy to optimize
the handling of conjunctions. These techniques allow the algorithm to generate witnesses
efficiently, even for complex schemas, while ensuring both soundness and completeness. In
addition to the algorithm, extensive experiments have demonstrated the practicality of the
solution. The results indicate that, despite the inherent complexity of the problem, the
approach performs effectively on real-world schemas. This makes the algorithm a viable
solution for generating JSON data.

In the following sections, we will describe the key phases of the algorithm by applying
them to a specific example. We will illustrate the generation process for objects, demon-
strating how each phase of the algorithm operates in practice. This detailed exploration
aims to provide a comprehensive understanding of how to tackle the challenges of gener-
ating data for JSON Schema. We will also highlight the results previously discussed in
[11, 12].

4.2 Understanding Witness Generation Through an
Example

In this section, we will first introduce and describe the overall process of witness generation,
outlining each key phase and its role in the algorithm. After presenting this structured
overview, we will apply these steps to a specific schema example, demonstrating how
the process works in practice. Following this example, we will provide insights of the
experimental analysis to highlight the algorithm’s performance and efficiency. Finally,
we will conclude by discussing the strengths and limitations of the witness generation
approach.

4.2.1 Witness Generation Overview
The witness generation process begins by translating an input JSON Schema into an al-
gebraic representation. JSON Schema is inherently non-algebraic because the semantics
of certain assertions can change depending on their surrounding context, making formal
manipulation more complex. Additionally, certain operators in JSON Schema are redun-
dant and can be expressed using logical combinations of existing ones. To address this,
the schema is translated into a core algebra that minimizes redundancy by replacing those
redundant operators with others. For instance, the keyword const is transformed into a
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typed schema that only describes the value corresponding to this operator. For example,
{ "const": 1 } is translated to { "type": "number", "minimum": 1, "maximum": 1 }.

It is important to note that schemas are represented using variables, and those that
contain sub-schemas are expressed as logical combinations of these variables. To manage
this efficiently, Reduced Ordered Boolean Decision Diagrams (ROBDDs) are used. ROB-
DDs ensure that the same variable is not added twice when representing a schema. By
computing the ROBDD representation of a schema and storing it, the process avoids dupli-
cating equivalent variables. This method optimizes schema representation, improving the
algorithm’s efficiency while ensuring that schema handling remains consistent throughout
the process.

After the translation comes the negation elimination phase. The algebra used during
this phase is the resulting algebra from the translation process, extended with new opera-
tors to remove the negation operator. These new operators correspond to JSON Schema
operators that do not possess a dual, meaning they cannot be expressed using their dual
operators combined with negation, such as multipleOf. The negation elimination process
involves defining a complement variable for each variable defined during translation and
then pushing the negation inward. Whenever a negation is encountered, it is replaced by
the corresponding complement variable.

Next, the schema undergoes stratification, which involves substituting schemas corre-
sponding to typed assertions with newly defined variables when those schemas are not
already variables. For every newly defined variable, a complement variable is also defined.
The goal of this process is to ensure that all typed assertions have a single variable as their
argument.

Afterwards, the schema is transformed into Canonical Guarded Disjunctive Normal
Form (GDNF). In GDNF, a schema is expressed as a disjunction of conjunctions of terms,
where each term is a typed assertion. This transformation standardizes the schema and
makes it efficient for analysis. Following this, the canonicalization process further refines
the GDNF schema. Canonicalization involves splitting conjunctive terms into sets of typed
groups, with each typed group consisting of a single typed assertion and denoting instances
of the same type.

In the following, we will discuss the step preceding generation: the preparation of
object and array groups, which, as mentioned earlier, is a novel technique introduced in
this witness generation approach.

Object Preparation. The object preparation process distinguishes object assertions
into two separate categories: constraints and requirements. Requirements are assertions
that must be met, establishing the minimum conditions that the object must satisfy. These
requirements ensure that specific patterns or properties are included in the object; they
consist of the assertions minProperties, required, and propertyNames. On the other hand,
constraints are those assertions that set the maximum limits on object properties, en-
suring that certain conditions are not exceeded. These constraints include the assertions
maxProperties, properties, and patternProperties.
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To clarify this distinction, consider an empty object: an empty object will always satisfy
the constraints, but it may not satisfy the requirements if any are present. Conversely,
once an object satisfies all the requirements, it will continue to do so regardless of any
additional key-value pairs added. However, adding new key-value pairs could potentially
lead to violations of the constraints.

The preparation process begins by incrementally constructing objects. Initially, an
empty object is created, and members are added step by step to meet all the requirements.
These members consist of keys and the corresponding schemas that they must satisfy.
Each addition is carefully verified to ensure that it also respects the constraints. In simple
cases, this process is straightforward. However, in more complex scenarios, where pat-
terns overlap or the object schema is non-trivial, additional steps are necessary. In these
situations, the preparation process involves explicitly managing the interactions between
constraints and requirements. Instead of trying to build a solution and generating objects
in a trial-and-error manner, the process analyzes all possible combinations upfront, making
the interactions between constraints and requirements explicit.

Once these interactions are identified, the next step is selecting the viable combinations
that fulfill the necessary conditions and can lead to successful object generation. Some
combinations lead to valid objects, while others do not; for instance, two overlapping
patterns may contain contradictory conditions in their schemas. To handle this process
effectively, the system may introduce new variables to manage the conjunction of multiple
constraints and requirements. Preparation of objects might sometimes rely on previous
phases, such as GDNF, and utilize ROBDDs to avoid creating variables that already exist.

Array Preparation. Similar to objects, array preparation involves managing two main
categories of assertions: constraints and requirements. Constraints are conditions that
arrays must meet but are inherently satisfied by an empty array; these include limits on
the number of items or specific schemas the items must comply to. Requirements, on the
other hand, set minimum criteria that an array must fulfill, such as having a minimum
number of elements or ensuring that certain values are present at specific positions. In
array preparation, requirements are defined by assertions such as minItems, minContains
and contains, while constraints encompass all other array assertions.

The interplay between requirements and constraints introduces complexities that are
addressed during this preparation phase. These interactions can lead to situations where
array elements must satisfy both constraints and requirements, resulting in conjunctions
of conditions. Arrays face additional challenges due to constraints like the maxContains
assertion, which involves managing negations and imposes upper bounds on the number of
items satisfying certain criteria.

Array preparation differs from object preparation in that it needs to deal with the po-
sitions of items within the array since arrays are ordered lists of items. This positional
aspect adds complexity to the preparation which not only has to consider all possible com-
binations of constraints and requirements, but also on which indexes these combinations
need to be satisfied. The counting requirements also introduce extra complexity since it
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requires keeping track of the number of generated items that satisfy a specific schema.

Remark 2 Given that the approach seeks to exhaustively enumerate all possible solutions
by examining every combination of constraints and requirements to generate witnesses, wit-
ness generation will be referred to as the pessimistic approach in the subsequent chapters.

4.2.2 Witness Generation Process
Before running the algorithm on the example, we will first introduce the key JSON Schema
operators used in the example and their corresponding algebraic representations. It is
important to note that once the schema is translated into the algebra, the subsequent
phases are performed on this algebraic form of the schema. The Table 4.1 outlines these
operators and their equivalent in the algebra.

Assertion Algebraic Representation
type : Tp type(Tp)

minLength: i len∞
i

pattern: p pattern(p)
minProperties: i pro∞

i

required: [ k1, . . . , kn ] req(k1 , . . . , kn)
properties: { k1 : S1, . . . , kn : Sn } props(k1 : Si, . . . , kn : Sn)

patternProperties: { p1 : S1, . . . , pn : Sn } props(p1 : Si, . . . , pn : Sn)

Table 4.1: Translation of JSON Schema operators to the algebra

In the following, we will illustrate the object generation process through an example
schema that demonstrates the interactions between requirements and constraints. While
we have streamlined the process for clarity, the key concepts remain relevant and provide
a foundational understanding of the overall idea introduced in [11, 12].

Example 9 The following schema describes objects with both requirements and constraints.
The objects must have at least two properties, as indicated by the minProperties constraint.
One required property, "a", must be a string that matches the pattern "(a|b)c.*", meaning
it must start with either "a" or "b" followed by the character "c", and then followed by zero
or more occurrences of any character. Additionally, the patternProperties field specifies
that any property whose name matches the pattern "a+" (i.e., one or more occurrences of
the character "a") must have a value with a minimum length of 3 characters. Together,
this schema introduces interactions between the required and patternProperties keywords,
as well as between pattern and minLength, requiring instances that satisfy the schema to
adhere to these interactions during generation.
{ "type": "object", "required": ["a"], "minProperties": 2,

"properties": { "a": { "type": "string", "pattern": "(a|b)c.*" } },
"patternProperties": { "a+": {"minLength": 3 } }

}
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The generation of a witness for this schema proceeds as follows:

1. Translation to the core algebra: as outlined in the overview of the approach, the
first step consists of translating the schema into an algebraic representation. This
step is straightforward, as it involves mapping each JSON Schema keyword to its
corresponding algebraic form described in Table 4.1. Here, r represents the root
schema, while x and y correspond to the schemas appearing within the properties
and patternProperties keywords, respectively.

r = type(Obj) ∧ req(a) ∧ props(a : x) ∧ props(a+ : y) ∧ pro∞
2

x = type(Str) ∧ pattern((a|b)c.∗), y = len∞
3

2. The positive algebra: as stated in the previous section, the algebraic representation
is extended with new operators to eliminate the operator not. In this step, compared
to the earlier schema representation, the operator pattReq is introduced to handle the
negation of required when negation is involved. It combines the semantics of both
required and properties, ensuring that a valid JSON instance must contain the key
a, and the associated value must satisfy the schema represented by the variable x.

r = type(Obj) ∧ pattReq(a : x) ∧ props(a+ : y) ∧ pro∞
2

x = type(Str) ∧ pattern((a|b)c.∗), y = len∞
3

3. Negation elimination: during this phase, the complement of each variable previously
defined is determined. Here, co(r) is the complement of the root variable r, and
its corresponding schema describes the JSON values that are not valid against the
schema of r. These include all values that are not of type object, hence the dis-
junction of all other types, and object values that do not satisfy the constraints
defined in the schema of r. Here, the schema of r includes three distinct object-
specific constraints, each inducing a different schema that captures the values that
do not conform to the original schema. For instance, an invalid object value against
the schema of r is one that has less than 2 properties, represented by the schema
type(Obj) ∧ pro1

0.
The schema of the complement variable of x describes all values that are not of type
string or values of type string that are in the language of the pattern (a|b)c.∗, which
denotes the pattern that matches any string not matched by (a|b)c.∗.
The schema of y allows for all value types, but when a value is a string, it must meet
the length constraint. Consequently, its complement does not include instances of
other types, and the string values must be limited to a maximum of 2 characters.
The negation is pushed inside each operator, where pattReq becomes props with nega-
tion pushed inside, resulting in co(x) being the schema of the key a, and vice versa,
where properties becomes pattReq with co(y) being the schema describing the values
of the pattern a+.
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r = type(Obj) ∧ pattReq(a : x) ∧ props(a+ : y) ∧ pro∞
2

x = type(Str) ∧ pattern((a|b)c.∗), y = len∞
3

co(r) = type(Null) ∨ type(Bool) ∨ type(Num) ∨ type(Str) ∨ type(Arr)∨
(type(Obj) ∧ props(a : co(x))) ∨ (type(Obj) ∧ pattReq(a+ : co(y))) ∨ (type(Obj) ∧ pro1

0)

co(x) = type(Null) ∨ type(Bool) ∨ type(Num) ∨ type(Arr) ∨ type(Obj)∨
(type(Str) ∧ pattern((a|b)c.∗))

co(y) = type(Str) ∧ len2
0

4. In the previous representation, no combination of variables is contained within a
typed assertion; hence, all the schemas already meet the stratification requirements.
Next comes the transformation into GDNF. All schemas are already in GDNF; for
instance, r is already a typed object group, except for the variable y, which is trans-
formed to capture a disjunction of all the other types along with the string typed
assertion type(Str) ∧ len∞

3 .

r = type(Obj) ∧ pattReq(a : x) ∧ props(a+ : y) ∧ pro∞
2

x = type(Str) ∧ pattern((a|b)c.∗)

y = type(Null) ∨ type(Bool) ∨ type(Num) ∨ type(Arr) ∨ type(Obj) ∨ (type(Str) ∧ len∞
3 )

co(r) = type(Null) ∨ type(Bool) ∨ type(Num) ∨ type(Str) ∨ type(Arr)∨
(type(Obj) ∧ props(a : co(x))) ∨ (type(Obj) ∧ pattReq(a+ : co(y))) ∨ (type(Obj) ∧ pro1

0)

co(x) = type(Null) ∨ type(Bool) ∨ type(Num) ∨ type(Arr) ∨ type(Obj)∨
(type(Str) ∧ pattern((a|b)c.∗))

co(y) = type(Str) ∧ len2
0

5. Object preparation: during this phase, the algorithm explores the different com-
binations of requirements and constraints to determine the combinations that will
produce an instance that satisfies the schema.
The requirements in the schema of the example are represented by the assertions
pattReq(a : x) and pro∞

2 , while the constraints are represented by props(a+ : y).
To satisfy the first requirement (i.e., the presence of a), two possible choices exist:

• Generating a key in the language defined by the intersection a ∩ a+.
• Generating a key in the language defined by the intersection a ∩ a+.
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Given that a is in the language of the pattern a+, the second option is not viable.
Therefore, the first option is chosen, which means the value of the key a must sat-
isfy the schema defined by x ∧ y. A new variable will be created to express this
conjunction, and afterward, it will be transformed into GDNF and canonicalized.
This process consists of distributing the schema of x over the disjunctive schema of
y, resulting in the schema type(Str) ∧ pattern((a|b)c.∗) ∧ len∞

3 . Here, the generation
process will create a string value with a minimum length of 3 that is in the language
of the pattern (a|b)c.∗.

Secondly, to satisfy the second requirement pro∞
2 , we need to choose a second pair

of patterns and schemas. This can be achieved by selecting a key that is not in the
languages of both patterns a and a, or that is only in the language of a+ but not in
a. The inclusion of a and a+ is not a viable solution since it has already produced
the key a, and it is the only value possible given that the intersection of the patterns
only accepts the string a.

For instance, if the chosen solution does not consider both patterns, then the key
to generate is in the language of the pattern a ∪ a+, and its value must adhere to
the schema of the variable whose body is co(x) ∧ co(y). After it undergoes the
different transformations outlined previously, this schema results in type(Str) ∧ len2

0 ∧
pattern((a|b)c.∗). Finally, generation proceeds to create a valid key-value pair that
will be added to the previously generated key to form a valid object.

4.3 Experimental Analysis

In this section, we present the experimental evaluation of the witness generation algorithm
for JSON Schema, using the same results obtained in prior research. These experiments
were designed to evaluate the algorithm’s performance in terms of correctness, complete-
ness, and efficiency when applied to various schema collections. Witness generation is
computationally challenging due to the expressiveness of the JSON Schema language, and
the experiments aimed to determine whether the algorithm could generate valid instances
within a reasonable timeframe, even for complex schemas. Additionally, the goal was to
compare its performance with existing JSON Schema data generators to determine whether
it advances the state of the art.

The experimental analysis conducted in this earlier research is an important con-
tribution of this thesis, providing valuable insights into the behavior and structure of
JSON Schema. Through the results, we gained a clearer understanding of the algorithm’s
strengths and limitations when dealing with the challenges of data generation.

In the following, we will describe the experimental setup, outline the schema datasets
used, and summarize the key findings.
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4.3.1 Implementation and Experimental Setup
The witness generation algorithm was implemented in Java 11, utilizing the Brics [60]
library for generating string values from patterns and the jdd library [68] for handling
ROBDDs. The experiments were conducted on a Precision 7550 laptop with a 12-core
Intel i7 2.70GHz CPU, 32GB of RAM, running Ubuntu 21.10. Each schema was processed
by a single thread, with the JVM heap size set to 10GB. Witnesses were validated using
an external validator [3] and manually verified in cases where the validator reported false
negatives. The schemas for each collection were processed sequentially in a single execution,
with a 60-minute timeout enforced per schema.

Remark 3 Since the Brics library lacks support for many features of the ECMA-262 [39]
regular expressions used in JSON Schema, all patterns are transformed during preprocessing
to ensure compatibility with Brics syntax, following the translation mechanism described in
[55].

4.3.2 Schema Collections
To assess the effectiveness of the withess generation algorithm, it was tested on several
different schema collections, which are detailed in Table 4.2, including both satisfiable and
unsatisfiable schemas.

Collection #Total #Sat/#Unsat Size (KB): Avg/Max

Github (Git) [25] 6,427 6,387/40 8.7/1,145
Kubernetes (K8s) [57] 1,092 1,087/5 24.0/1,310.7
Snowplow (Snw) [4] 420 420/0 3.8/54.8
WashingtonPost (WP) [65] 125 125/0 21.1/141.7
Handwritten (HW) [11, 12] 235 197/38 0.1/109.4
Containment-draft4 (CC4 ) [8] 1,331 450/881 0.5/2.9

Table 4.2: Description of the schema collections

Real-world Schemas. The largest collection was gathered from GitHub, with JSON
Schema-related files retrieved using a BigQuery search on the GitHub public dataset. After
identifying approximately 80K potential schemas, a thorough process of duplicate removal
and data cleaning was applied, reducing the set to 6,427 unique schemas. Among these, 40
were identified as unsatisfiable by the tool and then confirmed through manual inspection.
Additionally, occurrences of the uniqueItems keyword were renamed, making it a non-
validating keyword since the algorithm does not process this keyword.

The other three real-world schema collections came from established standards. These
included schemas related to Kubernetes (for application deployment), Snowplow (for reg-
ulating system interactions), and The Washington Post (for managing data from content
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management systems). Previous studies had already used earlier versions of these collec-
tions for inclusion checks. Nearly all schemas in these collections are satisfiable, except for
five in the Kubernetes set.

Handwritten Schemas. Real-world schemas, while reflecting practical applications, of-
ten focus on commonly used operators and lack more complex interactions needed for
stress-testing. To address this, a collection of 235 handcrafted schemas was created to
specifically challenge the algorithm by demonstrating intricate interactions between JSON
Schema operators. These schemas, while smaller in size, illustrate complex behaviors such
as implicit conjunctions in objects caused by overlapping patterns. They also highlight
advanced scenarios involving nested logical operators, such as oneOf inside not.

Synthesized Schemas. In addition to real-world and handwritten collections, synthe-
sized schemas derived from the JSON Schema validation test suite were incorporated.
These schemas are designed to systematically cover the full range of JSON Schema oper-
ators. They consist of pairs of schemas S and S ′, along with a boolean value indicating
whether S is included in S ′. Tests were restricted to schemas compliant with Draft-04, as
this version is used by competing tools and thus serves as a common standard for compari-
son. Schemas containing unsupported features, such as the format keyword or external file
references, were excluded. Containment or inclusion was checked by generating witnesses
for the combined schema S∧¬S ′, where unsatisfiability indicates that S is contained within
S ′. Both satisfiable and unsatisfiable schemas were included, providing a broad range of
test cases.

4.3.3 Experimental Results

Table 4.3 summarizes the results of the experiments, in which the witness generation tool is
compared with the DG tool [28] for real-world and handwritten schemas, as DG is primarily
used for data generation. For synthesized schemas, the comparison includes both the DG
tool and the CC tool [51, 46], the latter of which was developed as a containment checker to
verify schema inclusion between two given schemas. As previously stated, the synthesized
schemas consist of two schemas for which inclusion is being verified, along with a ground
truth specifying whether the inclusion holds or not, making it possible to compare results
with the CC tool.

When evaluating each tool, three distinct outcomes are identified: success, when a
correct result is produced; interruption, which include timeouts, memory issues, and other
runtime errors; and logical errors, which are further categorized into errors on satisfiable
schemas, where the schema S is satisfiable but the code either returns "unsatisfiable" or
provides a witness that does not satisfy S, and errors on unsatisfiable schemas, where the
schema is unsatisfiable but a witness is still generated.
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Col. Tool Success Interrupt. Errors
sat.

Errors
unsat.

Med.
Time

95%
-tile

Avg.
Time

Git Ours 99.19% 0.81% 0% 0% 0.019 s 0.749 s 4.289 s
DG 94.2% 2.86% 2.43% 0.51% 0.021 s 0.082 s 0.190 s

K8s Ours 100% 0% 0% 0% 0.013 s 0.510 s 0.577 s
DG 99.54% 0% 0% 0.46% 0.023 s 0.069 s 0.031 s

Snw Ours 99.52% 0.48% 0% no unsat 0.065 s 3.864 s 2.071 s
DG 94.76% 0% 5.24% no unsat 0.024 s 0.078 s 0.032 s

WP Ours 100% 0% 0% no unsat 0.042 s 132.690 s 23.349 s
DG 96.8% 0% 3.2% no unsat 0.030 s 0.079 s 0.042 s

HW Ours 100% 0% 0% 0% 0.070 s 3.063 s 2.593 s
DG 8.51% 34.04% 49.36% 8.09% 0.023 s 0.132 s 0.049 s

CC4 Ours 100% 0% 0% 0% 0.004 s 0.038 s 0.011 s
DG 28.78% 30.88% 0.07% 40.27% 0.020 s 0.034 s 0.019 s
CC 35.91% 62.96% 0.15% 0.98% 0.003 s 0.096 s 0.036 s

Table 4.3: Correctness and completeness results, median/95th percentile/average runtime
(in seconds)

Correctness and Completeness. Table 4.3 highlights that in the Github collection,
the witness generation tool encounters interruption errors in 0.81% of the schemas (52
schemas). Among these interruptions, 0.44% are due to timeouts (28 schemas), 0.01% are
caused by ref-expansion issues (1 schema), and 0.36% result from out-of-memory errors
when using the automata library (23 schemas). Additionally, 2 timeouts are noted for the
Snowplow collection, attributed to the presence of the maxLength keyword with a high value.
Since Brics constructs an automaton based on this, it results in increased processing time.
The tool successfully processes the remaining schemas, with no logical errors observed in
any of the schema collections.

The DG tool successfully processes 94.20% of the GitHub schemas and achieves a
similar level of correctness for other real-world schemas. However, it performs poorly on
handwritten schemas, where it shows 49.36% logical errors on the satisfiable schemas of this
collection. This issue arises from the tool’s inability to handle intricate situations involving
negation and complex interactions between object constraints and array constraints, which
sometimes involve implicit relationships that must be carefully managed. Additionally, the
tool uses a different library for generating strings, which contributes to some logical errors
in certain cases. Furthermore, the DG tool is not suitable for inclusion checking as it fails
to detect unsatisfiability.

Regarding the CC tool, the results on the Containment-draft4 collection exhibit a very
high rate of interruption errors, which can be attributed to its limited support for only a
subset of the JSON Schema language. This low coverage results in frequent runtime issues
when encountering unsupported features. Despite this, the tool demonstrates relatively
few logical errors, indicating that when it does process a schema successfully, it generally
produces correct results. However, the frequent interruptions limit its overall reliability
and applicability across a broader range of schemas.

In conclusion, the witness generation tool demonstrates better results, as it was specif-
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ically designed to target both completeness and correctness. In contrast, the DG and CC
tools were intended for different purposes, with the CC tool in particular lacking the capa-
bility to fully support the entire JSON Schema language, resulting in higher interruption
errors and limited reliability.

Execution Times. The results about execution times in Table 4.3 show that both the
DG tool and CC tool demonstrate low and consistent execution times across the collec-
tions, with minimal variance between median, 95th percentile, and average values. On the
other hand, while the witness Generation tool exhibits very low median times across all
collections, it experiences some outliers that lead to significantly higher 95th percentile
and average times. In the Snowplow collection, these outliers with high execution times
are due to the extensive presence of the pattern keyword, which results in multiple calls to
the Brics library during schema preprocessing. Regarding the Washington Post collection,
the analysis of the outliers shows intricate combinations of operators, particularly nested
logical operators. The GitHub collection contains both categories: the presence of complex
patterns and intricate interactions between operators. These observations are further vali-
dated by Figure 4.1, which represents the correlation between schema sizes and execution
times in a scatter plot on a log-log scale, one of the other aspects analyzed during these
experiments. We observe a linear correlation for many schemas, but there are some outliers
with small sizes but high execution times. This confirms the previous observation that high
execution times are due to the presence of specific operators and their interactions, as well
as complex patterns, particularly those involving maxLength with high values or intricate
patterns.

Despite the higher execution times in some schemas, the Witness Generation tool ul-
timately outperforms the others due to its higher success rate, as it consistently delivers
correct results without logical errors. This makes it a more reliable tool in complex cases,
where correctness is prioritized over low execution times.

4.4 Conclusion
In conclusion, this prior work has introduced a practical and effective algorithm for wit-
ness generation for the JSON Schema language, addressing important challenges such as
schema satisfiability and containment checking. By combining well-established techniques
with novel strategies, such as object and array preparation, the algorithm effectively han-
dles the intricacies arising from the language’s operators and their various interactions.
The focus on designing a robust algorithm targeting correctness and completeness has led
to the development of a tool that efficiently processes both real-world schemas and com-
plex handcrafted ones, where other tools often encounter logical or runtime errors. The
experimental analysis attests to the viability of the approach, demonstrating that it can
consistently generate correct results, even for complex schemas. While certain schemas
result in higher execution times due to factors such as the exponential complexity of the
preparation phase, the presence of complex patterns, and the operator maxLength with
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(a) Github collection (b) Kubernetes collection

(c) Snowplow collection (d) WashingtonPost collection

(e) Handwritten collection (f) Containment-draft4 collection

Figure 4.1: File size vs. runtime on a Log-Log Scale

high values, intricate interactions involving nested logical operators also contribute to this
increase. Despite these challenges, the overall performance, correctness, and reliability of
the witness generation tool significantly outperform competing solutions, particularly in
more complex scenarios.

This approach while being complete still needs to consider the uniqueItems operator
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which introduces extra complexity to the problem. Addressing this in future work is
desirable as it will lead to covering all the JSON Schema language. Additionally, while
the current algorithm focuses on generating a single instance, a natural next step would
be to develop methods for generating multiple instances with different levels of coverage,
and also generating not only synthetic data but real data as well.

Overall, the work provides a solid foundation for data generation for JSON Schema,
advancing the state of the art in this domain by offering a reliable and efficient solution
to a previously unsolved problem. The results not only affirm the feasibility of handling
the complexity of the language within a reasonable timeframe but also open the door to
further refinements and broader applications in schema analysis and data validation.
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Chapter 5

A Novel Optimistic Approach For
Generation

In this chapter, we introduce a novel optimistic approach for JSON
Schema data generation that prioritizes efficiency by minimizing schema
preprocessing and complex rewritings. Our method focuses on sound-
ness over completeness, providing valid instances for satisfiable schemas
while identifying unsatisfiable ones. We will detail the preprocessing
phase, which includes reference expansion and schema canonicalization,
as well as the generation process for each data type, outlining the specific
algorithms that form the core of this technique.

5.1 Introduction
The need for an efficient and correct data generation tool for JSON Schema has become
increasingly critical, particularly as JSON Schema continues to evolve with new features,
and the complexity of schemas grows with these updates. Existing approaches, while
effective in some scenarios, often present significant trade-offs. This chapter introduces a
novel optimistic approach for JSON Schema data generation that seeks to strike a balance
between completeness, correctness, and performance, addressing the limitations of earlier
methods. By focusing on a more streamlined, sound approach that emphasizes speed
without sacrificing too much in terms of completeness, this technique offers a practical
solution for various generation tasks.

In Chatper 4, we explored a pessimistic approach for instance generation for JSON
Schema, and through the experimental analysis in that chapter, we investigated optimistic
strategies for data generation. The pessimistic approach, while thorough and accurate, can
be computationally expensive and slow due to its exhaustive nature. On the other hand,
existing optimistic approaches provide faster results but at the expense of completeness and
correctness. These optimistic tools often fail when schemas become too complex or involve
challenging constructs like conjunctions and negations, and they also lack mechanisms
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to identify unsatisfiable schemas. A common feature of of both the pessimistic and the
optimistic techniques, is that they are designed to generate a single instance, meaning that
running the generators on a schema S will always return a single instance when successfully
processed. Although they can be used to produce multiple instances by constructing an
array schema whose items sub-schema is S and selecting a minimum number of items
to generate, it is uncertain whether the generated instances will be distinct, which is a
drawback in scenarios that require unique examples.

This chapter addresses these challenges by proposing a new optimistic approach de-
signed to offer faster data generation while maintaining high coverage with only a slight
trade-off in completeness. Our method avoids the complex schema rewritings and exhaus-
tive preparations introduced in previous work, such as the techniques in [11, 12]. Instead,
we rely on a minimalistic preprocessing phase that simplifies the schema, followed by an
efficient generation phase. We ensure soundness by processing conjunctions and partially
handling negations. Additionally, like the pessimistic approach, our method can stati-
cally check for schema emptiness, allowing it to identify in most cases when a schema is
unsatisfiable.

The primary goals of this approach are to provide a more efficient generator that is
both fast and correct (sound), while accepting some loss of completeness. Unlike previous
solutions, our method is not limited to generating a single instance; it is also designed to
generate multiple distinct instances. Additionally, it is capable of handling the uniqueItems
constraint in arrays, a feature not supported or addressed naively in most earlier gener-
ation methods. This capability is achieved through the use of multiple distinct instances
generation.

To achieve these goals, the approach is divided into two main phases. First, in the
preprocessing phase, we introduce reference expansion and schema canonicalization. The
canonicalization process, adapted from [46] and extended for Draft 2019 of the standard
[69], helps prepare the schema for efficient data generation. Reference expansion is straight-
forward, ensuring that references within the schema are resolved up to a certain depth.
Schema canonicalization, on the other hand, transforms the schema into a canonical form,
making it easier to generate valid instances in the subsequent phase.

The second phase is the generation phase, which begins with unsatisfiability checking to
ensure that the schema admits instances. Once this is confirmed, the schema can then be
used to generate the desired number of instances. A dedicated generator is assigned to each
data type, including basic types, object types, and array types, ensuring that the correct
instances are produced based on the structure and constraints of the schema. Similar to the
pessimistic approach introduced in Chapter 4, all generation related to strings is handled
using the Brics library [60], which provides robust support for generating string instances
in accordance with the specified schema constraints.

In the following sections, we first describe the preprocessing phase in detail, including
reference expansion and schema canonicalization. We then present the generation phase,
where we outline how each data type is processed, accompanied by the necessary algo-
rithms. The chapter concludes by summarizing the key contributions of our new approach.
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5.2 The Preprocessing Phase
In this section, we will discuss the preprocessing phase of our new optimistic approach for
JSON Schema data generation, which consists of two main steps: reference expansion and
schema canonicalization. This phase is essential for simplifying the schema and prepar-
ing it for the generation process by resolving references and applying transformations to
standardize its structure.

The first step, reference expansion, involves resolving all $ref keywords within the
schema. References are replaced with their corresponding schema definitions, ensuring
that the entire schema becomes self-contained and easier to process in subsequent phases.
This step is straightforward but critical, as unresolved references can complicate both
schema understanding and manipulation, potentially leading to errors or incomplete data
generation.

The second step, schema canonicalization, plays a pivotal role in preparing the schema
for efficient generation. It is based on a set of transformation rules outlined by Habib et al.
[46] and extends them to support the Draft 2019 standard [69]. Additionally, we incorporate
rules from [11, 12], which help in handling other JSON Schema operators not supported
by earlier work. Importantly, this canonicalization process is designed to be minimal and
less complex than the exhaustive schema rewritings introduced in Chapter 4. The goal of
canonicalization is to restructure the schema to eliminate conjunctions when possible and
partially handle negations, applying rewriting rules that reduce schema complexity while
preserving its original semantics. Ideally, the schema is transformed into a disjunctive
normal form, containing only the anyOf keyword, which corresponds to a disjunction of
schemas, each representing values of the same JSON type.

After canonicalization, the schema remains semantically equivalent to the original, de-
scribing the same set of valid JSON instances, but is in a form that is more amenable
to efficient data generation. This transformation is key to ensuring the generation phase
operates smoothly without encountering the complexities of the original schema.

In the following subsections, we will provide a detailed explanation of each of these
steps, along with examples to illustrate how they are performed on a schema. This will
clarify the techniques used and highlight the practical impact of each step in the overall
preprocessing phase.

5.2.1 Reference Expansion
References are an important feature of JSON Schema, serving as a mechanism for one
schema to point to another. This functionality facilitates the reuse of schema definitions,
which allows the same definitions to be reused multiple times, avoiding redundancy and
improving maintainability. Reference expansion is a fundamental operation within JSON
Schema, which is why we will not delve too deeply into its complexities. Instead, we will
focus specifically on local references, which are references that point to other fragments
within the same schema document.

While external references can be easily resolved by loading the schema from the specified
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URI, they are not included in the schema collections we have been studying. Therefore,
we will concentrate on the process of expanding local references, which involves replacing
each occurrence of a reference with the specific part it points to within the schema.

Example 10 To illustrate how references are expanded, consider a recursive schema that
defines a person as an object with two properties: "name", which is a string, and "children",
which is an array. Each item in the "children" array is itself a person, as indicated by the
reference pointing back to the entire schema (using "$ref":"#", which refers to the root of
the current schema). This creates a recursive structure, where each person can have a list
of children, and each child is also a person with their own name and potential children.
{ "type": "object",

"properties": {
"name": { "type": "string" },
"children": { "type": "array", "items": { "$ref": "#" } }

}
}

The expansion, limited to one level of depth, produces a schema where the recursive "children"
property is terminated by setting the schema of items to false instead of continuing to
expand the reference further. This marks the end of the recursive branch in the items
assertion and prevents further recursion. While this simplifies the process, it introduces a
limitation in our handling of references, which could lead to logical errors in cases where
deeper recursion is required.
{ "type": "object",

"properties": {
"name": { "type": "string" },
"children": {

"type": "array",
"items": {

"type": "object",
"properties": {

"name": { "type": "string" },
"children": { "type": "array","items": false }

} } }
}

}

This expansion is described in Figure 5.1, where we focus on the main cases. In this
process, Sb denotes the base schema that is initially called and serves to resolve local
references appearing at any arbitrary nesting level. The function Expan is responsible for
performing this operation. It takes the schema Sb and recursively resolves the references,
ensuring that each reference is substituted with the schema fragment it points to.

We also use a context C, which is simply a list of visited URIs, to keep track of the
references that have already been expanded. This helps detect any cycles, preventing
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Expan({$ref : f}, C) ::= Expan(gets(Sb, f), C ∪ {f}) if f ̸∈ C
Expan({$ref : f}, C) ::= false if f ∈ C
Expan({not : S}, C) ::= {not : Expan(S, C)}
Expan({anyOf/allOf/oneOf : [S1, .., Sn]}, C) ::=

{anyOf/allOf/oneOf : [Expan(S1, C), .., Expan(Sn, C)]}

Figure 5.1: Reference expansion

infinite recursion when a reference points back to a schema that has already been visited.
The function Expan checks C at each step to see if a reference has been expanded before,
ensuring that the process terminates correctly.

To avoid infinite recursion in recursive schemas, we interrupt the expansion by turning
the schema into false when recursion is detected, as illustrated in the example provided.
This approach terminates the recursive branch and prevents the expansion from going
further when encountering such cyclic references.

While this one-level expansion is sufficient for the schema collections we have been
studying, as they do not include many deeply recursive references, it introduces a limitation.
Setting the schema to false may lead to logical errors in some scenarios where deeper
expansion is necessary. Reference expansion, being a fundamental but straightforward
operation in JSON Schema, justifies this simplified approach.

In the future, the depth of expansion could be treated as a hyperparameter, offering
more flexibility in handling complex schemas. Additionally, implementing a more robust
reference-handling strategy would address the logical errors that may arise from prema-
turely terminating recursive branches.

5.2.2 Schema Canonicalization
Canonicalization is the step in our approach that aims to simplify and optimize an ex-
panded schema for efficient data generation. The process restructures the schema into a
semantically equivalent but more manageable form, ensuring it remains capable of defin-
ing the same set of valid instances. This is achieved through a set of transformation rules
based on [46], which we have adapted to support Draft-2019 of JSON Schema and extended
with additional rules from [25]. The canonicalization process can be broken down into the
following key operations:

• Minimization of redundant operators: This step removes syntactic sugar by
eliminating redundant operators related to the same data type. For example, con-
straints like exclusiveMinimum and minimum are merged, the keywords properties
and additionalProperties are combined with patternProperties.
In string-typed schemas, the value of the keyword format is first replaced with the
regular expression corresponding to the specified format. Then, along with the string
length bounds, it is integrated into pattern using the Brics operators, with the "&"
operator being used for conjunction.
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Moreover, the const operator, which is not specific to any type, is replaced by enum,
with its value being an array containing only the value of const.
Additionally, more complex constructs like oneOf, dependentSchemas, dependentRequired,
and if-then-else are rewritten into their logical equivalents using disjunctions, con-
junctions, and negations. The transformation of oneOf follows the rule outlined in
[46], while the transformations for dependentSchemas, dependentRequired, and if-
then-else are based on the methods presented in [25], as these operators were not
supported in the work discussed in [46].

• Decomposition into homogeneous sub-schemas: The schema is broken down
into smaller sub-schemas, each containing expressions that relate to a specific data
type. This decomposition helps simplify the schema structure and facilitates easier
manipulation for the generation phase.

• Filtering: A small cleaning procedure is performed by removing keywords that
appear in a schema but relate to a different type than the one described in the
schema. Additionally, the enum array is filtered to eliminate values that are not of
the same type of the schema in which it appears. This filtering of enum can sometimes
lead to the detection of schema unsatisfiability when the enumeration becomes empty
after the removal of these values.

• Partial elimination of negation: We perform partial negation elimination in-
stead of complete negation removal, as discussed in Chapter 4, where negation is
fully eliminated in the pessimistic technique. As mentioned in [25], achieving com-
plete negation elimination requires extending the schema language with additional
operators. In our approach, negation is only eliminated when dealing with string or
number/integer schemas.

String Schemas. After eliminating redundant operators, the only keyword present
in a string schema is pattern. Eliminating negation from this schema produces a
disjunction of all the other JSON Schema data types, except for string, along with
the complement string schema of the original schema. In this process, the comple-
ment schema is computed by pushing negation inside the pattern keyword, resulting
in a pattern that represents the complement of the original. Unlike the pessimistic
technique discussed in Chapter 4, the Brics library [60] is not utilized during this
preprocessing of string schemas. This decision simplifies the transformation process
by avoiding the added complexity of string operations associated with the Brics au-
tomata, allowing for a more straightforward handling of the logical structure of the
schemas.

Example 11 If we have a schema S = { "type": "string", "pattern": "p" }, the
negation elimination in the schema { "not": S } produces the following schema:

58



{ "anyOf": [
{ "type": "null" }, { "type": "boolean" }, { "type": "integer" },
{ "type": "number" }, { "type": "object" }, { "type": "array" },
{ "type": "string", "pattern": np }

]
}

In this example, np represents the complement pattern of "p". In our implementation,
np is denoted by the string "NOT(p)". This is the pattern that will be processed during
generation when the negation of strings is present.

Number and Integer Schemas. In schemas of type number and integer, the
elimination of redundant operators removes the keywords exclusiveMinimum and
exclusiveMaximum. After this elimination, the schema will contain the keyword type,
along with a combination of the keywords minimum, maximum, and multipleOf. Com-
plete negation elimination occurs only when either minimum or maximum is present, or
when both are included.
When the multipleOf keyword is present, negation is not eliminated; instead, it is
pushed inside the schema, resulting in a sub-schema that includes only the multipleOf
constraint.
Generally, negating a number or integer schema results in a disjunction of all other
types, with certain exceptions. Specifically, when negating a number schema, integer
is excluded from the list of allowed types. Conversely, negating an integer schema
does not exclude number, as a float value remains a valid instance in this context. In
this case, we introduce the additional constraint that the schema does not permit
values that are multiple of 1.
Along with the other type-specific schemas, the disjunction contains a sub-schema
for each keyword appearing in the original schema. For the keyword minimum, the
negation elimination produces a sub-schema that contains the dual keyword, maximum,
with its value being the value of minimum minus a small value. In our implementa-
tion, we specified ϵ = 1e−6. Similarly, negation elimination of maximum produces a
sub-schema containing minimum, this time with its value being the value of maximum
plus the epsilon value. Regarding multipleOf, the negation elimination produces
a sub-schema that contains the type keyword along with the not keyword, whose
corresponding schema includes only the multipleOf constraint.

Example 12 Consider the following schema S:
{ "type": "integer", "minimum": min, "maximum": max, "multipleOf": m }

The negation elimination in the schema { "not": S } produces the following schema,
where newMax = min − ϵ and newMin = max + ϵ.
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{ "anyOf": [
{ "type": "null" }, { "type": "boolean" }, { "type": "string" },
{ "type": "object" }, { "type": "array" },
{ "type": "number", "not": { "multipleOf": 1 } },
{ "type": "integer", "maximum": newMax },
{ "type": "integer", "minimum": newMin },
{ "type": "integer", "not": { "multipleOf": m } }

]
}

Other Schemas. The remaining cases involve the negation of conjunctions and
disjunctions, where negation is distributed according to De Morgan’s laws. Addi-
tionally, the negation elimination for null and boolean types is considered. Since
there are no constraints specific to these data types, negation elimination in these
schemas produces a disjunction of all other types.
For the object and array types, negation is not eliminated; the result is simply the
disjunction of the other types along with the complement schema of the original
schema, while retaining the negation. We chose not to eliminate negation in these
cases due to the complexity it introduces in these nested structures. While it is pos-
sible to address trivial cases, such as the negation elimination of object schemas with
only the bounds minProperties and maxProperties, this topic has been thoroughly
studied in [25]. Since our work does not introduce additional contributions in this
area, we focused primarily on the elimination of negation in the basic types.

Example 13 Consider the following object schema:
{ "type": "object", "minProperties": min, "maxProperties": max,

"patternProperties": { "p1": S1, . . ., "pn": Sn }
}

Elimination of negation in this schema produces the following schema:
{ "anyOf": [

{ "type": "null" }, { "type": "boolean" }, { "type": "integer" },
{ "type": "number" }, { "type": "string" }, { "type": "array" },
{ "not": {

"type": "object", "minProperties": min, "maxProperties": max,
"patternProperties": { "p1": S1, . . ., "pn": Sn }

}
}

]
}
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• Merging similar assertions: Assertions related to the same type are combined
whenever possible to further simplify the schema. This step also includes identifying
cases where the schema might define an empty set of valid instances, allowing for
optimization or early termination. Since we rely on this merging process in various
aspects of our approach, both during canonicalization and, as we will see later, in
the generation phase, we will provide these rules.
These merge rules are detailed in Figure 5.2. The first rule is straightforward and
addresses the merging of schemas that pertain to incompatible types. The remain-
ing rules are tailored to specific types and are designed to combine the constraints
associated with each type while preserving their semantic integrity.
For instance, for number types, the bounds are intersected, and the multipleOf
arguments are combined using the least common multiple (lcm). For string types,
any patterns present are combined using the Brics "&" operator for conjunction.
The array rule follows a similar logic for bounds, relying on the combination of
the prefixItems sub-schemas by invoking mergeItems, which identifies the longest
common prefix and applies items to the sub-schemas outside that common prefix.
The contains constraints, which are inherently existential, are combined using allOf
to preserve their semantics. It is essential to emphasize that each schema in contains
must be satisfied individually. Consequently, combining these schemas may lead to
contradictions, resulting in scenarios where the overall conjunction may be unsat-
isfiable. As a result, we retain these schemas in the allOf array, which allows us
to maintain the integrity of each constraint. This necessity introduces one of the
limitations our approach faces.
The logic for object types is straightforward, involving the intersection of bounds,
the collection of required labels from both schemas, and the merging of properties
by combining schemas associated with the same patterns using mergeProps.

The canonicalized schemas are generally expressed in disjunctive normal form (DNF).
However, in certain cases, schemas cannot be merged due to the presence of negation,
particularly when dealing with object and array schemas.

The structure of these canonicalized schemas is captured by the grammar in Figure 5.3,
which describes the general schemas S in DNF. The conjuncts of S are built from pos-
itive typed assertions (TA) and their negated forms (notTA), which primarily apply to
object and array assertions. For number assertions, negation can still appear before the
multipleOf operator as expected, but this does not hinder the merging of assertions.
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S1 = { type : T, K⃗ } S2 = { type : T’, K⃗ ′ } T ̸= T’
{ allOf : [ S1, S2 ] } → false

(heterogenous types)

Si = { type : number, minimum : mi, maximum : Mi, multipleOf : mofi }
i = 1, 2 m = max(m1, m2) M = min(M1, M2) l = lcm(mof1, mof2)
{ allOf : [ S1, S2 ] } → { type : number, minimum : m, maximum : M, multipleOf : l }

(intersect number)

Si = { type : string, pattern : pi } i = 1, 2
{ allOf : [ S1, S2 ] } → { type : string, pattern : p1 & p2 }

(intersect string)

Si = {type : array, minItems : mi, maxItems : Mi, prefixItems : [ Si
1, . . . .Si

ni
], items : S ′

i,

contains : Sci
, minContains : mci, maxContains : Mci}

i = 1, 2 m = max(m1, m2) M = min(M1, M2)
pItems = mergeItems([ S1

1 , . . . .S1
n1 ], [ S2

1 , . . . .S2
n2 ])

{ allOf : [ S1, S2 ] } → {type : array, minItems : m, maxItems : M,

prefixItems : pItems, items : { allOf : [ S ′
1, S ′

2 ] },

allOf : [{ contains : Sc1 , minContains : mc1, maxContains : Mc1 },

{ contains : Sc2 , minContains : mc2, maxContains : Mc2 }]}
(intersect array)

Si = {type : object, minProperties : mi, maxProperties : Mi, required : [ ki
1, . . . , ki

n ],
patternProperties : { pi

1 : Si
1, . . . , pi

li
: Si

li
}, propertyNames : Si}

i = 1, 2 m = max(m1, m2) M = min(M1, M2)
pattProps = mergeProps({ p1

1 : S1
1 , . . . , p1

l1 : S1
l1 }, { p2

1 : S2
1 , . . . , p2

l2 : S2
l2 })

{ allOf : [ S1, S2 ] } → {type : object, minProperties : m, maxProperties : M,

required : [ k1, . . . , kn ] ∪ [ k′
1, . . . , k′

l ],
patternProperties : pattProps, propertyNames : { allOf : [ S, S ′ ] }}

(intersect object)

Figure 5.2: Conjunction elimination rules
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b ∈ {|false, true|}, q ∈ Num, i ∈ N, k ∈ Str, p ∈ Str, J ∈ JVal
S ::= true | false | S | { anyOf : [ S (, S)+ ] }
S ::= { allOf : [ TA? (, NotTA)+ ] } | { TA (, enum : J)? } | notTA
TA ::= NullTA | BoolTA | NumTA | IntTA | StrTA | ArrTA | ObjTA
NullTA ::= type : null

BoolTA ::= type : boolean

NumTA ::= type : number (, minimum : q)?(, maximum : q)?(, multipleOf : q)?

(, not : { multipleOf : q })?

IntTA ::= type : integer (, minimum : q)?(, maximum : q)?(, multipleOf : q)?

(, not : { multipleOf : q })?

StrTA ::= type : string (, pattern : p)?

ArrTA ::= type : array (, minItems : i)?(, maxItems : i)?(, uniqueItems : b)?

(, items : S)?(, prefixItems : [ S1, . . . , Sn ])?

(contS | { allOf : [ contS(, contS)+ ] })?

ObjTA ::= type : object (, minProperties : i)?(, maxProperties : i)?

(, required : [ k1, . . . , kn ])?(, patternProperties : { p1 : S1, . . . , pm : Sm })?

(, propertyNames : S)?

notTA ::= { not : { ObjTA } } | { not : { ArrTA } }
contS ::= (, minContains : i)?(, maxContains : i)?(, contains : S)?

Figure 5.3: Generation grammar
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Example 14 To illustrate the utility of canonicalization, consider the following schema,
which consists of two sub-schemas, each implicitly expressing a disjunction of conditions:
{ "allOf": [

{ "type": ["object","number","array"], "required": ["a","e"],
"properties": { "a": S1, "e": S2 },
"patternProperties": { "(a|b)*": S3, "(a|e)+": S4 },
"multipleOf": 3, "contains": { "type": "string" }

},
{ "type": ["number","array"], "minimum": 7, "minItems": 3 }

]
}

During canonicalization, this implicit disjunction is made explicit, allowing assertions to
be grouped by type (object, number, array, etc.). The process then distributes conjunctions
over disjunctions, transforming the schema into disjunctive normal form (DNF), while
attempting to eliminate negation where possible.
{ "allOf": [

{ "anyOf": [
{ "type": "object", "required": ["a","e"],

"properties": { "a": S1, "e": S2},
"patternProperties": { "(a|b)*": S3, "(a|e)+": S4 },

},
{ "type":"number", "multipleOf": 3 },
{ "type": "array", "contains": { "type":"string" } }

] },
{ "anyOf": [

{ "type": "number", "minimum": 7 },
{ "type": "array", "minItems": 3 }

] }
]

}

Next, syntactic sugar is removed by combining properties into patternProperties, result-
ing in the final canonicalized schema:
{ "anyOf": [

{ "type":"object", "required": ["a","e"],
"patternProperties": { "a": S1, "e": S2, "(a|b)*": S3, "(a|e)+": S4 }

},
{ "type":"number", "multipleOf": 3, "minimum": 7 },
{ "type": "array", "minItems": 3, "contains": { "type":"string" } }

]
}
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5.3 The generation Phase
In this section, we outline the process of generating multiple distinct valid instances for a
given schema, building on the foundations established in the preprocessing phase. Our goal
is to extend the problem of single instance generation introduced in Chapter 4 to efficiently
produce up to N distinct valid instances for a schema S. Unlike the pessimistic approach
described in Chapter 4, which exhaustively explores every possible solution, our optimistic
approach prioritizes speed, accepting some incompleteness when processing certain schema
constructs, particularly those involving negated object and array sub-schemas.

Despite this incompleteness, correctness remains a key priority. This means that when
a schema is satisfiable, our method will generate valid instances that adhere to the schema’s
constraints. Conversely, when a schema is unsatisfiable, our method will, in most cases,
accurately determine that no valid instances can be generated. By ensuring that satisfiable
schemas yield valid outputs and unsatisfiable schemas are flagged, the approach maintains
soundness while balancing efficiency with completeness.

The generation phase consists of two key steps, which are detailed in the following
sections: unsatisfiability checking and the generation algorithms, which include the main
algorithm and the algorithms specific to each JSON Schema type.

5.3.1 Unsatisfiability Checking
Before proceeding to instance generation, we introduce a critical step in the process: check-
ing for unsatisfiability. Once the schema has undergone canonicalization during the pre-
processing phase, this step aims to detect inherently unsatisfiable schemas early, thereby
preventing unnecessary computation. The detection of unsatisfiability is achieved by stat-
ically analyzing the canonicalized schema for contradictory specifications. Most cases of
schema emptiness can be identified through this static analysis; however, there are certain
complex cases where static analysis is insufficient and requires a more involved approach,
which highlights a limitation of the method and makes the detection incomplete. In such
cases, unsatisfiability detection must be handled dynamically during the generation step
to avoid increased computational costs, which we do not currently implement.

Specifically, the schemas discarded during this step are those that do not admit even a
single valid instance. Determining unsatisfiability when requiring N distinct instances is
more challenging and may require additional processing during the generation phase.

This step ensures that our method, while optimistic, maintains correctness by refraining
from attempting to generate instances for unsatisfiable schemas, despite its incompleteness
and the potential oversight of some cases.

This detection is performed by a recursive function isUnsat that determines whether a
canonicalized schema is unsatisfiable. This function is defined as a set of rules denoted by
the judgment S → r, taking a schema S as its parameter and returning a boolean value r,
where r = T (true) indicates that the schema S is unsatisfiable. The analysis is based on
the content of the schema: if it is a typed schema, the function verifies certain conditions
specific to that type, as we have defined a set of rules for each data type. If the schema is a
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disjunction, the isUnsat function is run on each branch. If the function returns F (false)
for any branch, we stop the verification process. Conversely, if the schema is a conjunction,
we return F , as unsatisfiability cannot be detected in this case.

Universally Satisfiable and Unsatisfiable Schemas. The following rules capture the
universally true schema, indicating that it admits valid instances, and the universally false
schema, which indicates that it does not admit any valid instances.

false → T (false-schema)

true → F (true-schema)

Conjunctive and Dijsunctive Schemas. The first rule applies to conjunctive schemas,
where the function always returns F , indicating that unsatisfiability cannot be statically
determined for such schemas. The second rule handles disjunctive schemas, and checks if
all branches of the disjunction are unsatisfiable. If isUnsat returns T for every branch, the
schema is deemed unsatisfiable.

{ allOf : [ S1, . . . , Sn ] } → F (allOf-schema)

S = { anyOf : [ S1, . . . , Sn ] } r = ∧n
i=1isUnsat(Si)

S → r
(anyOf-schema)

Number and Integer Types. The following rules define the conditions under which the
function isUnsat will determine that a schema of type number or integer is unsatisfiable.
In this context, K⃗ contains the set of keywords that are permitted after canonicalization;
these include those specific to these types or enum and are not already present in S.

The first two rules are trivial. The rule (number-Mof-0) returns T when specifying
that a number should be a multiple of 0, as no number can be a multiple of 0. The
rule (number-bounds) checks whether the value of minimum is greater than that of maximum,
resulting in an unsatisfiable schema if this condition holds.

S = { type : number, multipleOf : m, K⃗ }
r = (m = 0)

S → r
(number-Mof-0)

S = { type : number, minimum : min, maximum : max, K⃗ }
r = (min > max)

S → r
(number-bounds)

The following rule checks whether there exists a multiple of m within the interval
[min, max]. If no such multiple exists, the schema is deemed unsatisfiable. The boolean
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variable r is the negation of what the function mofInInterval returns; thus, if mofInInterval
returns F , indicating there are no multiples of m in the specified range, r will be T ,
indicating that the schema S is unsatisfiable.

The function mofInInterval processes this by calculating the smallest multiple of m
that is greater than or equal to min and the largest multiple of m that is less than or equal
to max. It compares these two values, returning T if a valid multiple exists within the
range. Specifically, the implementation involves computing the ceiling of min

m
multiplied by

m to find the lower bound, and the floor of max
m

multiplied by m for the upper bound. A
small epsilon is added to the upper bound comparison to mitigate potential floating-point
errors.

S = { type : number, minimum : min, maximum : max, multipleOf : m, K⃗ }
r = ¬mofInInterval(m, min, max)

S → r
(number-Mof-Interval)

The following rule verifies whether m is a multiple of m′. Given that the schema
explicitly states that valid instances must not be multiples of m′, the function isUnsat will
return T if m is indeed a multiple of m′, indicating that the schema is unsatisfiable.

The function isMultiple processes this by first checking if m′ is 0 to prevent division by
0, returning F in that case. If m′ is not equal to 0, it calculates the result of the division
m
m′ and checks if this result is a whole number. If the division yields a whole number,
it confirms that m is a multiple of m′, leading to the conclusion that the schema S is
unsatisfiable.

S = { type : number, multipleOf : m, not : { multipleOf : m′ }, K⃗ }
r = isMultiple(m, m′)

S → r
(number-Mof-notMof)

String Type. For string schemas, the only rule defined checks whether the language of
the pattern is empty, meaning that if no string value matches the pattern, the schema is
unsatisfiable.

The verification process is performed using the Brics library [60], which constructs an
automaton corresponding to the regular expression defined by the pattern. We then check
whether this automaton is empty.

S = { type : string, pattern : p, K⃗ }
r = (L(p) = ∅)

S → r
(string-empty)

Object Type. Detecting emptiness in object schemas is more involved than in basic
types. In most cases, determining unsatisfiability cannot be done statically; it often requires
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dynamic verification of the domains of patterns present in patternProperties, among other
aspects. However, as stated before, we will focus here on the simpler cases that can be
detected statically. The following rules address these cases.

The first two rules are trivial and relate to the verification of the bounds. The rule
(object-bounds) checks whether the schema contains a minimal bound with a value higher
than the maximal bound. The rule (object-reqMax) verifies whether the number of re-
quired properties exceeds the maximal bound. Any schema that meets these conditions is
considered unsatisfiable.

S = { type : object, minProperties : min, maxProperties : max, K⃗ }
r = (min > max)

S → r
(object-bounds)

S = { type : object, required : [ k1, . . . , kn ], maxProperties : max, K⃗ }
r = (n > max)

S → r
(object-reqMax)

The following rule addresses the verification of required properties against the schema
defined by propertyNames, which describes string values, either as a string schema or an
enumeration of string values. This rule checks whether any required property fails to
conform to the schema of propertyNames. The conformity is assessed using the function
LS which builds an automaton for the language defined by the propertyNames schema.
Each required property is then evaluated against the automaton, and if any property is
not accepted, it indicates that the schema is unsatisfiable.

S = { type : object, required : [ k1, . . . , kn ], propertyNames : Sstr, K⃗ }
r = ∃i ∈ {|1 . . . n|}. ki /∈ LS(Sstr)

S → r
(object-reqPNames)

The following rule checks for the existence of a required property that belongs to the
language of a pattern whose corresponding schema is unsatisfiable. If such a property is
identified, the entire object schema is then unsatisfiable.

S = { type : object, required : [ k1, . . . , kn ], patternProperties : { p1 : S1, . . . , pm : Sm }, K⃗ }
r = ∃i ∈ {|1 . . . n|}, j ∈ {|1 . . . m|}. (ki ∈ L(pj)) ∧ isUnsat(Sj)

S → r
(object-reqPatt)

Array Type. Similar to object schemas, detecting schema emptiness for array schemas
involves additional complexity in many cases. Figure 5.4 outlines the rules for cases where
unsatisfiability can be detected statically without complex computations.
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Most of these rules address contradictory bounds, where minimal bounds are greater
than the maximal bounds. This is captured by rules (array-bounds) and (array-contBounds).
In the former, we use minItems/minContains to avoid repeating the rule twice, as it applies
to both minItems and minContains.

Other rules cover scenarios where the schemas of prefixItems are insufficient to meet
the minimal bounds, and items is present with an unsatisfiable schema (rule (array-itUnsat)),
with the minimal bound being either minItems or minContains.

Further rules address cases related to the contains keyword. Rule (array-contUnsat)
indicates that a schema S is unsatisfiable when the contains keyword contains an unsatis-
fiable schema. Additionally, rule (array-contMax) specifies that a schema with a maximal
bound of 0 in the presence of contains is also unsatisfiable.

Finally, the last rule (array-pItemsUnsat) captures unsatisfiability in schemas containing
the prefixItems keyword, where an unsatisfiable schema appears at an index smaller than
the minimal bound.

S = { type : array, minItems/minContains : min, maxItems : max, K⃗ }
r = (min > max)

S → r
(array-bounds)

S = { type : array, contains : Sc, minContains : minC, maxContains : maxC, K⃗ }
r = (minC > maxC)

S → r
(array-contBounds)

S = { type : array, prefixItems : [ S1, . . . , Sn ], items : Sit, minItems/minContains : min, K⃗ }
r = ((n < min) ∧ isUnsat(Sit))

S → r
(array-itUnsat)

S = { type : array, contains : Sc, K⃗ }
r = isUnsat(Sc)

S → r
(array-contUnsat)

S = { type : array, contains : Sc, maxItems : max, K⃗ }
r = (max = 0)

S → r
(array-contMax)

S = { type : array, prefixItems : [ S1, . . . , Sn ], minimum/minContains : min, K⃗ }
r = ∃i ∈ {|1 . . . n|}. (i < min) ∧ isUnsat(Si)

S → r
(array-pItemsUnsat)

Figure 5.4: Unsatisfiability rules for array schemas

In addition to all the previously mentioned rules, the verification process for type-
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specific schemas that involve the enum keyword entails validating each value in the enumer-
ation against the schema. If a valid value is found, the verification process stops, indicating
that the schema admits an instance. Conversely, if none of the values in the enumeration
satisfy the schema’s requirements, then the schema is deemed unsatisfiable. This validation
is conducted using the validator described in [3].

Additionally, during the verification of the enum items, we filter out and retain only
the values that are valid against the schema. This step simplifies the generation process,
ensuring that the remaining values in the enumeration are directly usable for instance
generation without the need for further checks.

5.3.2 Main Generation Algorithm
Once the schema has been checked for unsatisfiability and determined to be satisfiable,
the generation process begins, starting with the main algorithm. This algorithm takes the
schema S and the desired number of instances N as input and attempts to generate up to
N distinct valid instances that conform to the schema.

The goal of this approach is to extend the witness generation problem introduced in
Chapter 4, by producing multiple distinct valid instances rather than a single one. However,
our optimistic solution is inherently incomplete, as it may not be able to handle certain
schema classes, particularly those involving negated object or array sub-schemas. When
this is the case, we return an indication to express this incompleteness through a gener-
ation failure signal, meaning that the process cannot proceed with generating instances.
When the schema can be successfully processed, the algorithm returns M instances, where
M ≤ N , indicating that it may generate fewer than the desired number of instances.

The generation proceeds through a case-based analysis of the schema, which is managed
by two mutually recursive functions: Gen, responsible for processing schemas in partially
disjunctive normal form (denoted S), and GenS, which handles disjuncts (denoted S).
Both functions are detailed in Figure 5.5.

The first line of Gen handles the universally satisfied schema true, generating a default
set of values, typically integers from 1 to N . The second line handles disjunctive expres-
sions by generating values from a single disjunct, specifically the one that can produce N
instances or a set of values closest to N . Importantly, we do not accumulate instances
from multiple disjuncts to avoid generating duplicate values, as this would complicate
the process. This choice introduces a minor limitation: we may end up generating fewer
than N instances, even when the overall schema could potentially admit N or more dis-
tinct instances. If none of the disjuncts can produce a result, the process returns GenFail
indicating generation failure.

For GenS, the logic is straightforward: generation fails in the presence of negated
assertions (as seen in the first and third lines). In cases involving the enum keyword, since
the enumeration has been cleaned to only contain valid values against the schema (cf.
Filtering 5.2.2), GenS simply selects N values or the maximum it can generate. For other
types, the function relies on type-specific algorithms for generating instances corresponding
to basic and complex types.
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Gen(true, N) ::= {|1, . . . , N |}
Gen({ anyOf : [ S1, . . . , Sn ] }, N) ::= GenS(Si, N) s.t.GenS(Si, N) ̸= GenFail and for i, j = 1..n

|GenS(Si, N) |= Min(N, Maxj{| |GenS(Sj , N) | |})
GenFail otherwise

GenS({ allOf : [ TA, NotTA ] }, N) ::= GenFail
GenS({ TA, enum : [ J1, . . . , Jn ]) }, N) ::= trunc(N, {|Ji | Ji ? TA 7→ T |})
GenS(NotTA, N) ::= GenFail
GenS(TA, N) ::= see specific algorithms

Figure 5.5: Instance generation: main algorithm

5.3.3 Generation of Basic Types
In this section, we describe the methodology employed for generating instances of basic
data types, including null, boolean, number/integer, and string. The generation of null
type is straightforward, as it can only yield the single value null. Similarly, for the boolean
type, the generation process returns the values F , T , or both when the desired number of
distinct instances N ≥ 2.

The main focus lies in generating number and string types, where the approach becomes
more nuanced. For number (generation for integer is similar), we generalize the function
defined in the pessimistic approach [11, 12], aiming to produce N distinct values. This is
achieved through an iterative process that updates the interval bounds based on previously
generated values, ensuring that the values fall within the specified minimum and maximum
constraints, while satisfying the argument of multipleOf and violating the argument of a
negated multipleOf.

For string, the generation of N distinct values relies on the Brics library [60]. This
involves constructing an initial automaton that accepts the language defined by the regular
expression of the pattern constraint. To avoid regenerating previously created values, we
iteratively update the automaton by intersecting it with a complement automaton that
excludes the newly generated value.

In the following we delve into the specifics of these generation processes, highlighting
their underlying logic and addressing the challenges encountered.

Number/Integer Types. The generation of numerical values proceeds through an it-
erative process aimed at producing N distinct values whenever possible while adhering
to the specified constraints. The approach varies depending on the presence or absence
of the following constraints: multipleOf, not (with its corresponding schema containing
multipleOf, noted here as notMof), minimum, and maximum.

With multipleOf constraint:

1. If minimum is defined: The algorithm identifies the nearest multiple of the value of
the multipleOf constraint that is greater than minimum and that it is not a multiple
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of notMof if present.

2. If only maximum is defined: The search focuses on the nearest multiple of the value of
the multipleOf that is less than maximum and does not violate the notMof constraint.

3. If neither minimum nor maximum is defined: The algorithm selects the multipleOf value
directly, as it has been verified to not be a multiple of notMof during unsatisfiability
checking. Here, ϵ is set to 1e−6.

After generating a valid number vi, if minimum is defined, it is updated to vi + ϵ; if only
maximum is present, it is adjusted to vi − ϵ. If neither is specified, a new minimum constraint
is introduced with a value of vi +ϵ during the first iteration. This update aims at excluding
the previously generated value from being generated again.

When multipleOf is not present but notMof is present:

1. If minimum is defined: The algorithm identifies the nearest value greater than minimum
that is not a multiple of the value of the notMof constraint.

2. If only maximum is defined: The algorithm looks for the nearest value less than maximum
that is not a multiple of the value of the notMof constraint.

3. If neither minimum nor maximum is defined: The algorithm starts from zero and moves
upwards, ensuring that the generated values are not multiples of the value of the
notMof constraint.

The updates of minimum and maximum are performed similarly to the previous case. If
neither bound constraint is present, a new minimum constraint is introduced during the first
iteration.

When neither multipleOf nor notMof is present: When neither the multipleOf
nor notMof constraints exist, the generation starts with minimum (if defined) and moves
upwards, or with maximum (if only that is specified) and moves downwards. If neither
minimum nor maximum is provided, the algorithm begins from zero and moves upwards.
It continually updates the values of minimum and maximum, ensuring that a new minimum
constraint is introduced with a value of the generated value plus ϵ after the first iteration
if no bound constraints are present.

String Type. After canonicalization, string schemas contain only the pattern keyword,
with potential negations expressed using the notation "Not(p)", where p represents the
negated pattern. This may also involve conjunctions of negations, nested negations, and
other combinations. To address this and facilitate generation with Brics, we use a function,
patternToAutomaton, that creates an automaton starting from a pattern. This function
decomposes the entire pattern if it consists of multiple components, builds separate au-
tomatons for each part, and combines them to create a single automaton that defines the
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language of the full pattern. For negated patterns, the automaton returned is the comple-
ment of the automaton built from the regular expression of the pattern. For instance, in
the case of the negation "Not(p)", where p is a single pattern, the function first constructs
the automaton for p and then returns its complement automaton.

The function also makes minimal adjustments to the patterns, aiming to align them
with Brics’ requirements as closely as possible. As mentioned in Remark 3 of Chapter 4, the
pessimistic approach performs a complete translation from the regular expression syntax of
JSON Schema to Brics. However, for our optimistic approach, we opt for a simpler strategy,
translating only essential JSON metacharacters. For instance, the metacharacter "\d" is
replaced with "[0-9]", and "\w" is replaced with "[a-zA-Z0-9_]" to ensure compatibility
with Brics.

The generation of the N distinct string values is then performed iteratively, start-
ing with the automaton returned by the patternToAutomaton function. This automaton,
denoted as A, accepts the language defined by the regular expression of the pattern con-
straint. In each iteration, we generate a new string value w and exclude it from the
automaton A to prevent regeneration. This exclusion is achieved by updating the automa-
ton such that A = A ∩ A′ where A′ is the complement of the automaton that accepts only
w.

Given our incomplete translation, some scenarios may result in potential inaccuracies
or false results. We do not opt for a full translation to Brics because it does not provide
any substantial contribution to our work. Instead, we focus on covering the limited set
of patterns commonly observed in the usage of JSON Schema. This targeted approach
allows us to effectively address the most relevant scenarios without unnecessary complexity
or computational overhead, ensuring that our generation process remains efficient and
manageable.

5.3.4 Object Types
Given an object schema

ObjTA ::=
{ type: object, minProperties: min, maxProperties: max,

patternProperties:{p1 : S1, ..., pn : Sn},
required:[l1, ..., lk]
propertyNames: Sstr }

and the desired number N of distinct objects, generation is performed by the following
Algorithm 1. It first invokes SatReq (cf. Algorithm 2) in order to generate the values
of the required fields. In case it is not possible to generate a value for at least one of
the required fields, generation fails. Otherwise, generation goes on by calling SatMinProp
(cf. Algorithm 3) which checks whether minProperties is satisfied and, if not, it generates
additional fields by attempting to produce enough values for each additional field to increase
the number of possible objects that can be obtained. Then, if the sets of generated values
for fields satisfying minProperties are sufficient to obtain at least N objects, we return the
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generated instances; Otherwise, if it is possible to add new fields or replace non-required
existing ones (as verified by | required |< maxProperties), MoreInstances function (cf.
Algorithm 4) is called to generate the missing instances. This is achieved by adding more
fields while adhering to the maxProperties constraint in order to reach N objects.

Algorithm 1: main object generation algorithm
Data: An object assertion ObjTA, an integer N
Result: M ≤ N instances | GenFail

1 Res = {}
2 objMap = SatReq(ObjTA, N)
3 if objMap ̸= GenFail then
4 objMap = SatMinProp(ObjTA, objMap, N)
5 if objMap ̸= GenFail then
6 Res = objProduct(objMap)
7 M =|Res |
8 if M < N and |required |< maxProperties then
9 return Res ∪ MoreInstances(ObjTA, objMap, N−M)

10 else
11 return Res

12 return GenFail

Example 15 To illustrate the generation of objects, consider the following normalized
object schema which requires every valid object to have at least 4 properties, two of which
must have the keys "a" and "b".
{ "type": "object", "minProperties": 4, "maxProperties": 5,

"patternProperties": {
"a": { "type": "integer", "minimum": 1, "maximum": 4 },
"b": { "type": "integer", "minimum": 1, "maximum": 1 },
"c": { "type": "integer", "minimum": 1, "maximum": 5 },
"d": { "type": "integer", "minimum": 1, "maximum": 4 },
"e": { "type": "integer", "minimum": 1, "maximum": 4 },
"a.*": { "type": "integer", "multipleOf": 2 }

},
"required": ["a","b"]

}

Suppose we want to generate 100 distinct objects that satisfy this schema. First, we
deal with required fields (Algorithm 2 - SatReq) and we try to generate 100 distinct values
for the key "a" but there are only two values possible, hence Va = [2, 4]. For the next
required key, which is "b" we try to generate ⌈100

2 ⌉ = 50 values, but the generation returns
one value, Vb = [1]. We continue by satisfying minProperties (Algorithm 3 - SatMinProp)
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and for "c" we try to generate ⌈50
1 ⌉ = 50 but we get Vc = [1, 2, 3, 4, 5], finally, we try to

generate ⌈50
5 ⌉ = 10 for "d" by we only get Vd = [1, 2, 3, 4]. The number of instances we can

build using the pairs key-set of values is: M = |Va| ∗ |Vb| ∗ |Vc| ∗ |Vd| = 2 ∗ 1 ∗ 5 ∗ 4 = 40
instances.

The minProperties assertion is now met, but we are still missing L = N − M = 60
instances, and since the maximum number of properties per object is not reached yet which
is 5, we can introduce a new property, and to this end (Algorithm 4 - MoreInstances) we pick
"e", which has not yet been considered by generation. Observe that in order to obtain new
records we can use values for required attributes "a" and "b" already dealt with, and combine
with values for "e" either those for "c" or those for "d" or values for both "c" and "d". Each
of these combinations yields a record satisfying both minProperties and maxProperties. In
more details, we have req = {|"a", "b"|}, hence we set Preq = |Va| ∗ |Vb| = 2 ∗ 1 = 2, and
nonReq = {|"c", "d"|}, hence the subsets of nonReq that we can associate to the new key
"e" and to the set req of required properties is: subs = {|{|"c"|}, {|"d"|}, {|"c", "d"|}|}, hence
we have: ∑|subs|

i=1 Pi = P1 + P2 + P3 = |Vc| + |Vd| + |Vc| ∗ |Vd| = 5 + 4 + 20 = 29. Finally,
concerning the number of values for "e" we have Ne ≥ ⌈ 60

2∗29⌉, i.e. we need two values for
the new property "e" in order to reach the 100 instances, so that the generation of values
for "e" returns Ve = [1, 2]. We perform then a cartesian product between the sets of values
associated to each key in order to obtain the 100 instances.

We present now in more details the three algorithms invoked by the main object gen-
eration algorithm just illustrated.

Algorithm 2 - SatReq

Algorithm 2: SatReq(ObjTA, N)
Result: A map from strings to sets of JSON values | GenFail

1 objMap : Map[Str, Set[J ]] = Map(); frac = N
2 for each l ∈ required do
3 CS = {||}
4 for each (pi, Si) ∈ patternProperties s.t. l ∈ L(pi) do
5 CS = CS ∪ Si

6 Ŝ = merge(CS); Vl = Gen(Ŝ, frac)
7 if Vl ̸= GenFail then
8 objMap[l] = Vl; frac = ⌈frac/ |Vl |⌉
9 else

10 return GenFail

11 return objMap
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Algorithm 2 aims at satisfying the required constraint by generating a set of key-value
pairs. For each required property l, we consider all sub-schemas Si associated to patterns
pi whose language contains l and which, therefore, need to be merged into Ŝ using the
function merge defined in sub-section 5.2.2.

Going back to Example 15 we have that values generated for the key "a" must satisfy
the schemas corresponding to both "a" and to "a.*", whereas values generated for the "b"
key must only satisfy the schema corresponding to "b". As illustrated before, in generating
those field values, we generate multiple values for each key so as to increase towards N the
number of objects that we can form by combining "a" and "b" values. The pairs "a" : Va

and "b" : Vb, where Va (resp. Vb) collects the set of generated values for "a" (resp. "b"),
are then returned in the map objMap. Note that if the generation returns GenFail for a
required key, the generation for the whole schema aborts and returns GenFail.

Algorithm 3 - SatMinProp
The goal of Algorithm 3 is to fulfill the minProperties constraint, if not already satis-
fied by the previous generation step. It resorts at generating the missing keys from a
set of candidate patterns obtained by considering the specification of propertyNames: Sstr,
if any, using Comb(Sstr, pi) which combines the schema Sstr with a pattern pi expressed
in patternProperties:{p1 : S1, ..., pn : Sn}, resulting into a pattern that accepts strings
matching both Sstr and pi. So we build the set P of patterns in patternProperties hav-
ing non empty intersection with Sstr (line 5) and then try to generate attributes using
these patterns (lines 9-18). For any p ∈ P we first try to generate a label l from p
by means of GenKey(p, failP ), which returns a string value that matches p and does
match any pattern in failP . This last one includes patterns pi for which we cannot gen-
erate an instance for Si. We initially set failP to the empty set (line 4). Then, with
l = GenKey(p, failP ) we recover all pi : Si such that l ∈ L(pi), by including of course
also p : S in patternProperties (lines 4-6), and we add Si to the sets of schemas CS,
whose schemas are then merged in order to obtain Ŝ. We generate then instances Vl for
Ŝ and by definition of the merge operation this implies that the instances in Vl satisfy all
the Si in CS (lines 14-20). So we update objMap[l] and the number frac of values to
generate for the next key in order to reach N instances, and the remaining number m of
key-value pairs to generate (lines 14-20). In case we are not able to generate any instances
for Ŝ, and CS only contains the schema S (related to the pattern p of the current iteration
of the loop starting at line 6, we add p to failP (lines 20-21) so that we do not generate
keys and related values for this pattern in subsequent iterations. After all patterns have
been used to generate the missing m properties, if m > 0 then this means that we could
not generate more properties so we return fail, otherwise, the current mapping objMap
including the generated instances for a number of properties meeting minimum is returned.
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Algorithm 3: SatMinProp(ObjTA, objMap, N)
Result: A map from strings to sets of JSON values | GenFail

1 Preq = ∏
(li,Vi)∈objMap |Vi|; m = min− |required |; frac = ⌈N/Preq⌉

2 if m > 0 then
3 failP = ∅
4 P = {p | (p, S) ∈ patternProperties ∧ L(Comb(Sstr, p)) ̸= ∅}
5 for each p ∈ P do
6 for i = 1 to m do
7 if p ̸∈ failP then
8 l = GenKey(p, failP )
9 if l == null then

10 break
11 else
12 CS = {||}
13 for each (pi, Si) ∈ patternProperties s.t. l ∈ L(pi) do
14 CS = CS ∪ Si

15 Ŝ = merge(CS), Vl = Gen(Ŝ, frac)
16 if Vl ̸= GenFail then
17 objMap[l] = Vl; frac = ⌈frac/ |Vl |⌉; m = m − 1 ;
18 else
19 if |CS |== 1 then
20 failP = failP ∪ p

21 else
22 break

23 if m == 0 then
24 break

25 if m > 0 then
26 return fail

27 return objMap
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Algorithm 4 - MoreInstances

Algorithm 4: MoreInstances(ObjTA, objMap, N)
Result: M ≤ N instances

1 Res = ∅
2 failP = ∅
3 P = {p | (p, S) ∈ patternProperties ∧ L(Comb(Sstr, p)) ̸= ∅}
4 for each p ∈ P do
5 while true do
6 if p ∈ failP then
7 break
8 else
9 l = GenKey(p, failP )

10 if l == null ∨ |Res |== N then
11 break
12 else
13 CS = {||}
14 for each (pi, Si) ∈ patternProperties s.t. l ∈ L(pi) do
15 CS = CS ∪ Si

16 (n, subs) = nbV aluesToGen(ObjTA, objMap, N)
17 Ŝ = merge(CS), Vl = GenS(Ŝ, n)
18 if Vl ̸= GenFail then
19 objMap[l] = Vl;
20 Res = Res ∪ getNewInstances(l, objMap, subs, N)
21 else
22 if |CS |== 1 then
23 failP = failP ∪ p

24 if |Res |== N then
25 break

26 return Res

The number of instances that can be built from the map objMap once the previous
phase has finished is M = ∏

(li,Vi)∈objMap |Vi|. These instances are constructed by taking the
cartesian product of the sets Vi of values from objMap. The final phase of the generation,
defined by Algorithm 4, is invoked when N has not been reached yet (i.e. M < N), and is
meant to generate new instances, when possible.

Algorithm 4 is somewhat similar to Algorithm 3. The main difference is that Algo-
rithm 4 terminates when the desired number of instances is reached or, otherwise, there
are no more patterns to exploit for generating the new properties.
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Like Algorithm 3, we use P and failP in order to determine the pattens to use to
generate new keys l. The main differences w.r.t. Algorithm 3 are the following ones.
For each new generated key l we stop considering the pattern pi from which l has been
generated in case l = null or in case we have a sufficient number of instances (lines 13-14).
Otherwise we invoke nbV aluesToGen which returns the number n of values we need to
generate for this key l so as to reach the desired number of instances N , and in addition it
returns the set of subsets of non-required generated keys with which new values for l will
be combined to in order to form new object instances (as illustrated in Example 15).

To this end nbV aluesToGen considers, from its input parameters, the current
M = N − ∏

(li,Vi)∈objMap |Vi|, req and nonReq as the sets of required and non-required
properties appearing in objMap respectively, min and max as the values of the constraints
minProperties and maxProperties in the object schema ObjTA, and returns subs as the
set of subsets of nonReq keys s.t. ∀s ∈ subs: |s| ∈ [ min − |req| − 1, max − |req| − 1 ].
In other words, subs is the set of all the possible combinations of non-required properties
that will be associated to the new key l and to the required keys in order to generate new
instances while respecting minProperties, maxProperties and required constraints. Given
a new key l, the generation of Nl values for l ensures the generation of Preq ∗ Nl ∗ ∑|subs|

i=1 Pi

new instances, where: Preq = ∏|req|
i=1 |Vi|, where Vi is the set of values associated to the ith

required key in objMap, and ∀i ∈ [1, |subs|] we have Pi = ∏|subsi|
j=1 |Vj|, where Vj is the set of

values associated to the jth non-required key in the ith subset of subs in objMap. To reach
the N instances, we need to generate M new instances, hence, the number of values Nl to
generate for the new key l should satisfy the following inequality: Preq ∗Nl ∗

∑|subs|
i=1 Pi ≥ M ,

thus: Nl ≥ ⌈ M

Preq∗
∑|subs|

i=1 Pi

⌉. If the generation produces valid JSON values for a given key
l, we use getNewInstances to combine the pair l : Vl with the pairs that were stored in
objMap in order to build the new instances.

5.3.5 Array Types
The general form of array schemas that we consider is defined below:

ArrTA ::=
{ type: array, minItems:minIt, maxItems:maxIt,

prefixItems:[S1, ..., Sn], items:S,
contains:Sc, minContains:minC, maxContains:maxC }

Dealing with arrays in the general case is slightly more involved than dealing with
objects due to the upper bound assertion maxContains and to the uniqueness constraint
uniqueItems. The upper bound assertion requires the use of negation and poses a serious
limitation. Luckily enough, in our collections of schemas representing typical real-world
schemas, no schema uses this assertion, so we ignore maxContains in the current version
of the work and postpone it to future work. The situation is different for the uniqueness
constraint which is used in practice and which we can deal with by posing a restriction, that
of considering the single instance generation, where the goal is to generate one instance
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only, i.e N = 1. We will present multiple instances generation in the absence of uniqueItems
then we show how we deal with uniqueItems in a restricted case where we only generate a
single instance.

Remark 4 While in the generation grammar of Figure 5.3, an array schema may contain
a conjunction of contains assertions as consequence of applying merge, we decided to
keep our presentation simple by focusing on the case of a single contains assertion, as
our solution naturally generalizes to the broader case involving multiple such assertions.
Additionally, in practice, we have never encountered such a scenario.

Multiple array instance generation

The generation of N array instances is captured by Algorithm 5 which proceeds by calling
SatMinItMinC (cf. Algorithm 6) to generate M ≤ N array instances of homogenous
size s satisfying both minItems and minContains, then, in case M < N , it attempts to
generate the missing N − M instances by calling MoreInstances (cf. Algorithm 8) to
combine the already generated M instances with extra values, if the array specification
allows so, that is, if s < maxItems; otherwise, it returns the instances already generated by
SatMinItMinC.

Algorithm 5: main array generation algorithm
Data: An array assertion ArrTA, an integer N
Result: M ≤ N instances | GenFail

1 Res = {||}
2 arrMap = SatMinItMinC(arrTA, N)
3 if arrMap ̸= GenFail then
4 Res = arrProduct(arrMap);
5 M =|Res |; s = Size(Res[0]);
6 if M < N and s < maxItems then
7 return Res ∪ MoreInstances(ArrTA, Res, N−M, s)
8 else
9 return Res

10 return GenFail

Algorithm 6 - SatMinItMinC The general idea of generating a set of N arrays from
an array specification is based on generating a sequence of k fractions of N using the
sub-schemas of the specification then to cross-product these k fractions in order to build
the N arrays. This generation relies on preparing a candidate array CA of sub-schemas
by considering the schemas of prefixItems up to minit and, in case prefixItems has less
schemas than minItems, CA is extended with as many copies of items as needed to meet
the minItems constraint (lines 4-5). This preparation also serves for preparing a potentially
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empty array called tail obtained by considering the prefixItems schemas not part of CA
and which may be used for satisfying the minContains constraint (line 7).

Generation proceeds iteratively by consuming the schemas of CA in a sequential order
while passing, at each iteration, the fraction frac of values that remain to be gener-
ated. During this process, the contains schema is also considered towards exhausting
minContains. In case combining this schema with the candidate schema from CA yields a
valid instance, the counter j is decremented when calling GenWithContIfPoss (line 9).
All generated values are collected in an indexed map M and the fraction value is updated
by considering the cardinality product of the already generated values, this is captured by
DomProd used in line 13 and defined as follows

DomProd(M) =
∏

V ∈values(M)
|V |

In case minContains is not completely satisfied, the generation continues by considering,
this time, the tail schemas, if any (line 17) until they are completely examined, then resort-
ing to the items schema if its combination with minContains schema yields a valid value
(line 19). In either cases, when generation succeeds, the generated values are appended to
the map, otherwise, the whole generation fails due to failing to meet minContains.

Example 16 To illustrate SatMinItMinC, consider the following array schema and let
S1 (resp. S2) denote the first (resp. last sub-schema) of prefixItems, and let Si (resp. Sc)
denote the sub-schema of items (resp. contains).
{ "type": "array",

"minItems": 3,
"prefixItems": [

{ "type": "integer", "minimum": 1, "maximum": 2 },
{ "type" : "integer", "minimum": 4, "maximum": 5 }

],
"items": { "type": "integer", "minimum": 2, "maximum": 10 },
"contains": { "type": "integer", "multipleOf": 3 },
"minContains": 2

}

The generation of 100 instances satisfying this schema is achieved as follows: First, CA
is built as described before and yields [S1, S2, Si]. Then generation proceeds by attempting
to generate 100 distinct values from S1 while considering Sc. However, since S1 and Sc

are incompatible, generation falls back to considering only S1 whose maximum domain is
V0 = {|1, 2|}. Now, we consider S2 alone (after noticing that it is also incompatible with Sc)
and attempt to generate ⌈100

|V0| ⌉ = ⌈100
2 ⌉ = 50 values but only succeed in producing V1 = {|4, 5|}

which contains two values. The last schema in CA is Si which can be combined with Sc and
is requested to generate ⌈ 100

|V0|∗|V1|⌉ = ⌈100
4 ⌉ = 25 values while it yields V2 = {|3, 6, 9|}. In order

to fulfill minContains, we still need to generated the same set of elements V3 = {|3, 6, 9|}
one more time.
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Algorithm 6: SatMinItMinC(ArrTA, N)
Result: a map containing pairs (index, set of values) | GenFail

1 M : Map[Int, Set[J ]] = Map(); frac = N ; j = minC;
2 /* satisfy minItems, satisfy minContains if possible */
3 m = Min(minit, size(prefixItems)); CA = [S1, .., Sm]; tail = [];
4 if size(CA) < minit then
5 CA.concat(repeat(Sit, minit − m));
6 else
7 tail = [Sm+1, . . . , Sn]
8 for i in 1..size(CA) do
9 (V, j) = GenWithContIfPoss(CA[i], Sc, frac, j);

10 if V ̸= GenFail then
11 M [i] = V ; frac = ⌈frac/DomProd(M)⌉
12 else
13 return GenFail

14 /* satisfy remaining minContains */
15 while j > 0 do
16 if size(tail) > 0 then
17 (V, j) = GenWithContIfPoss(tail.removeF irst(), Sc, frac, j);
18 else
19 V = Gen(merge({|Sit, Sc|}), frac); j−−;
20 if V ̸= GenFail and size(M) < maxItems then
21 M [i] = V ; frac = ⌈frac/DomProd(M)⌉
22 else
23 return GenFail

24 return M

Algorithm 8 - MoreInstances The generation of missing array instances exploits the
set of already generated arrays Res by extending them with new values generated by
considering the array specification, to produce new instances of larger size, which are thus,
distinct from those of Res. The main task of MoreInstances is to produce
⌈N/ |Res |⌉ distinct values so that, when they are used for extending the Res arrays, we are
able to obtain N distinct instances. These new values are first obtained from schemas of
prefixItems in case not all sub-schemas of prefixItems have been used by SatMinItMinC
(lines 5-7) then by considering items in case all prefixItems sub-schemas have been used
by SatMinItMinC or that the combination of the generated values does not produce N
(lines 8-9). Lastly, the newly generated values are combined with the arrays from Res
(lines 11 and 12), and in case the combinations exceed the requested value N , only N such
combinations are returned (using an arbitrary trunc function).

82



Algorithm 7: GenWithContIfPoss(Sh, Sc, N, j)
Data: Head schema Sh, ‘contains’ schema Sc, # instances N , # contains j
Result: A pair (V, j), V is the generated value and updated j

1 if j > 0 then
2 V = Gen(merge({|Sh, Sc|}), N);
3 if V ̸= GenFail then
4 return (V, j − 1)

5 return (Gen(Sh, N), j)

Example 16 (continued)
Now, we construct the array instances by combining elements from all Vi’s whose total
combination amounts to ∏3

i=0 |Vi |= 36; hence it remains to generate 100−36 = 64 by using
Si which is requested to return ⌈ 64∏3

i=0|Vi|
⌉ = 2 values and it indeed produces V4 = {|2, 3|}.

These values are built and added to the previous ones, making the total number of instances
generated 36 + ∏4

i=0 |Vi |= 36 + 72 = 108 instances, and only 100 instances are returned.

Algorithm 8: MoreInstances(ArrTA, Res, N, m)
Result: M ≤ N instances

1 M : Map[Int, Set[J ]] = Map(); CA = []; i = 0; frac = ⌈N/ |Res |⌉;
2 if size(prefixItems) > m then
3 CA = [Sm+1, . . . , Sn]
4 /*Generate new values*/
5 while i < size(CA) and frac > 0 do
6 V = Gen(CA[i], frac); i++;
7 if V ̸= GenFail then
8 M [i] = V ;
9 frac = ⌈frac/DomProd(M)⌉;

10 if frac > 0 then
11 V = Gen(Sit, frac);
12 if V ̸= GenFail then
13 M [i] = V ;

14 /*combine new values with Res*/
15 New = arrProduct(M);
16 return trunc(N, concat(Res, New))
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Single instance generation in the presence of uniqueItems

A naive solution for generating an array of distinct values involves iterating over the can-
didate array CA, generating a value for the first candidate, and continuing this process for
each subsequent candidate. However, ensuring distinct values for each candidate quickly
becomes problematic. For instance, when generating a value for the second candidate, it
may result in the same value as that of the first candidate. In such cases, we would need
to regenerate a new value, leading to two potential strategies for resolving the issue.

The first strategy is to repeatedly generate new values randomly until a distinct one
is obtained. However, this approach may never terminate, particularly when dealing with
schemas that define infinite domains or have overlapping constraints within CA. The sec-
ond strategy involves introducing negation to discard previously generated values. This
adds significant complexity, as it requires schema canonicalization to properly handle nega-
tions. In our case, negation elimination is only partially supported, which could lead to
generation failures when schemas involve negations that are difficult or impossible to re-
solve.

To avoid these challenges, we propose a solution that does not adopt either of the
previous strategies. Instead, it aims for efficiency by performing a single pass over the
candidate array CA, while guaranteeing termination. Generating a single array instance
that ensures uniqueness is a specific case of multiple array instance generation. While
both processes involve satisfying minItems and minContains by invoking SatMinItMinC,
they differ in the number of values generated at each iteration. In multiple array instances
generation, we start with N and progressively decrease the number of values generated
as the process continues. In contrast, when generating a single instance that satisfies
uniqueItems, we begin with N = 1 for the first candidate of CA and incrementally increase
the number of generated values for each subsequent candidate.

The purpose of incrementing N is to prevent the generation of the same value for
different candidates in previous iterations. To ensure that each new candidate of CA can
be assigned a distinct value, the approach generates N = i + 1 values for the candidate
at index i of the array CA (where i = 0 for the first candidate). When the generation
of the N distinct values is successful, it guarantees that there is always a distinct value
available for each candidate, maintaining the uniqueness constraint. However, even when
generating fewer than N distinct values in a particular iteration, the array generation can
still succeed. This is because the overall process does not strictly rely on producing a
fixed number of values at each step, but rather focuses on ensuring that the final solution
satisfies the uniqueness constraint by considering all candidates collectively.
Graph-theoretic approach to uniqueness verification. To explain why generating
fewer values can still result in an array that respects the uniqueness constraint, we adopt a
graph-theoretic approach. Specifically, we construct a bipartite graph G = (L, R, E), where
the left-hand side L vertices represent the indices of the array, and the right-hand side R
vertices represent the values generated for the candidates of CA. The edges E connect the
indices to the generated values. To ensure uniqueness, we have two possible approaches
for verification.
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A first exponential solution with perfect matching. Ensuring uniqueness at
each iteration is equivalent to guaranteeing the existence of an L-perfect matching in G,
defined as a set of disjoint edges that covers every vertex in L. In other words, this ensures
that each vertex in L is connected to a distinct vertex in R, preventing any two vertices in
L from sharing the same value from R.

The key to this approach lies in Hall’s Marriage Theorem [47], which provides a nec-
essary and sufficient condition for the existence of an L-perfect matching. According to
the theorem, there is an L-perfect matching in G if, for every subset X of L, the following
condition holds: |X |≤ NG(X), where |X | represents the number of vertices in the subset
X, and NG(X) is the neighborhood of X in G (i.e., the set of vertices in R connected to
at least one vertex in X). This condition is evaluated only when the desired number of
distinct values N to generate is not met.

Specifically, we start with an empty graph G, where L = R = E = ∅. During the first
iteration, we generate one value v0 for the first index of the array. If the generation fails,
the process stops and returns GenFail. Otherwise, we add the vertices to both L and R ,
resulting in L = {|0|}, R = {|v0|} and E = {|(0, v0)|}. The process continues in this manner.
At each iteration, we need to compute the pairs (X,NG(X)) of subsets of L and their
neighborhoods in G. As stated before, the verification of the Hall’s Marriage condition
only intervenes when the desired number of distinct values is not generated; nevertheless,
the subsets are computed at each iteration (not all subsets are recomputed, only the new
ones by accumulation). This reduces the complexity, which is initially O(2|L| · |E|) at each
iteration, but it is still exponential.

Maximum cardinality matching for improved efficiency. Given the impracti-
cality of the previous solution when the size of the arrays to generate becomes large due
to the exponentiality of the algorithm, we address this with a second approach, which
is also graph-theoretic, using the same graph G and construction process. However, the
verification of the uniqueness changes as follows: at each iteration when we generate fewer
distinct values than desired, we find the maximum cardinality matching in G. This is a
subset of the edges E such that vertices from both L and R are adjacent to at most one
edge. After finding the maximum matching, we verify whether it contains all the vertices
of L,which means all the indices of the array are covered. There exist many algorithms
for finding the maximum cardinality matching; among them, the Hopcroft-Karp algorithm
[50] is one of the most efficient, with a complexity of O(

√
|L| + |R| · |E|).

Once the complete graph G is built, we need to retrieve the L-perfect matching or the
maximum matching in the case of the second approach.

Example 17 To illustrate the process of building the bipartite graph, consider the fol-
lowing schema, which includes various types of assertions that can be expressed in arrays
while requiring the values to be distinct. The verification will be conducted using the first
approach, which focuses on ensuring uniqueness through L-perfect matching in the bipartite
graph.
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{ "type": "array", "minItems": 2, "maxItems": 4, "minContains": 2,
"prefixItems": [

{ "type": "integer", "maximum": 2 },
{ "enum" : [3,12,18] }

],
"items": { "type": "integer", "multipleOf": 2, "maximum": 20 },
"contains": { "minimum": 10, "multipleOf": 3 },
"uniqueItems": true

}

To satisfy this schema, an array must have a minimum of two items, the first of which
adheres to prefixItems, and it must contain at least two items satisfying the contains
schema. In our case, this requirement can only be fulfilled by generating an additional
item using items, since the constraints of the first schema prefixItems contradict those of
contains.

Figure 5.6 depicts the iterations for building the graph G = (L, R, E).
In the following we describe the iterations for building the graph G, where the neighborhood
of a subset X of L in G is represented as X → Y , with Y being a subset of R that includes
the vertices connected to at least one vertex of X.

1. Initially, only the first schema of prefixItems at index 0 is considered, resulting in
the generation of {|2|}. G is updated to contain L = {|0|}, R = {|2|}, and E = {|(0, 2)|}.
The neighborhood of the subsets of L at this iteration is

NG = {|{|0|} → {|2|}|}

2. Next, the second schema is considered together with contains, leading to the genera-
tion of {|12, 18|}. At this stage, L = {|0, 1|}, R = {|2, 12, 18|}, and E = {|(0, 2), (1, 12), (1, 18)|}.
The neighborhood is updated to:

NG = {|{|0|} → {|2|}, {|1|} → {|12, 18|}, {|0, 1|} → {|2, 12, 18|}|}

3. Then, items is considered and combined with contains to fulfill minContains, result-
ing in the generation of the same set of values {|12, 18|}. The updated graph has
L = {|0, 1, 2|}, R = {|2, 12, 18|}, and E = {|(0, 2), (1, 12), (1, 18), (2, 12), (2, 18)|}. The
neighborhood from the previous iteration is then augmented with the following:

{|{|2|} → {|12, 18|}, {|0, 2|} → {|2, 12, 18|}, {|1, 2|} → {|12, 18|}, {|0, 1, 2|} → {|2, 12, 18|}|}

At this iteration, we observe that the generation process resulted in only two values:
{|12, 18|}. This presents an interesting scenario, as the desired number of distinct
values was N = 3, corresponding to i + 1, where i = 2.
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To verify the uniqueness constraint, we examine the existence of an L-perfect match-
ing in the bipartite graph G. The L-perfect matching requires that each vertex in L is
connected to a distinct vertex in R. Given the current state of the graph, L = {|0, 1, 2|}
and R = {|2, 12, 18|}, we need to check if we can establish a matching that covers all
vertices in L.
The verification of an L-perfect matching reveals that it is indeed possible to cover
all vertices in L with the available values in R, as the condition | X |≤ NG(X),
where X represents a subset of L, is satisfied. For instance, one valid matching could
be {|(0, 2), (1, 12), (2, 18)|}. This outcome confirms that, despite generating only two
values, the conditions for uniqueness can still be satisfied by appropriately matching
the candidates with the generated values.

The graph admits two L-perfect matchings (which are also maximum matchings that
contain all the vertices of L): {|(0, 2), (1, 12), (2, 18)|} and {|(0, 2), (1, 18), (2, 12)|} and al-
lows for generating two arrays of unique items: [2, 12, 18] and [2, 18, 12].
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Figure 5.6: Graph G at iterations: 0, 1 and 2

Algorithm 9 outlines the approach for constructing the graph G, represented as the map
M . As stated previously, the process of generating a single array instance in the presence
of uniqueItems is similar to generating multiple arrays; it only differs in the number of
values to generate for each candidate CA and in verifying the existence of an L-perfect
matching (or a maximum matching that covers all the indices of the array), with the
function existsMatching implemented to support both versions of the verification process.
It is important to note that we have omitted the instructions for handling contains and
minContains from the algorithm, as their satisfaction is managed similarly to the case
of generating multiple instances. Once the graph is built without errors, the function
Matching returns the matching that will be used to construct the array.

In conclusion, while the algorithm for generating a single instance in the presence of
uniqueItems demonstrates notable efficiency, it does have certain limitations. A primary
concern lies in the order in which the candidates from the array CA are processed. For
example, if a candidate schema with an infinite domain is evaluated first, causing the
algorithm to generate only one value for this schema, and the subsequent candidate schema
has a finite domain limited to only accepting the value generated from the first, this can
lead to generation failure.
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Algorithm 9: UniqueItems generation
Data: An array of schema CA
Result: An instance Ja | GenFail

1 M : Map[int, Set[J ]] = Map(); i = 0
2 while i <|CA | do
3 Vi = GenS(CA[i], i + 1)
4 if Vi == GenFail then
5 return GenFail
6 else
7 if |Vi |< i + 1 then
8 if ¬existsMatching(M) then
9 return GenFail

10 M [i] = Vi; i = i + 1

11 return Matching(M)

To address this issue, it is essential to adopt a more sophisticated approach that employs
a heuristic to determine the order in which candidates are evaluated. By strategically
reordering candidates, it becomes possible to mitigate the risk of generation failures and
enhance the overall effectiveness of the solution. This adjustment not only improves the
algorithm’s robustness but also paves the way for generating valid instances more reliably
in complex scenarios.

Furthermore, it is possible to generalize the problem of single instance generation in
the presence of uniqueItems to the task of generating N different instances. The main idea
here is to ensure the presence of N distinct L-perfect matchings (or N distinct maximum
matchings) at each iteration. This generalization not only broadens the applicability of the
algorithm but also provides a framework for generating distinct multiple valid instances
while maintaining the uniqueness constraints required by the uniqueItems.

5.4 Conclusion
In this chapter, we introduced a novel optimistic approach for JSON Schema data gen-
eration, designed to address the limitations of existing techniques by being efficient while
maintaining correctness and a high level of coverage. The two main contributions of this
approach are: its ability to generate multiple distinct instances and its handling of arrays
with the uniqueItems constraint.

The first major contribution, multiple instances generation, allows for the generation
of distinct, valid instances for the same schema. This feature is especially useful in testing
and validation scenarios, where having a variety of examples is required. By utilizing
efficient generation algorithms tailored to each data type, our approach ensures that each
instance conforms to the schema while being unique. This marks a significant improvement
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over previous methods that were designed to generating a single instance and where the
generation of multiple distinct instances is not guaranteed.

The second contribution, the ability to handle arrays with the uniqueItems constraint,
ensures that generated arrays contain unique items, a feature often overlooked or not well
handled by previous generation tools. While we provided an efficient solution for this
problem, it does have some limitations, primarily related to the order in which schemas
are processed. These limitations can be addressed with more sophisticated solutions that
use heuristics to optimize the order of evaluation. Additionally, we discussed a poten-
tial approach to generalize this problem for generating multiple arrays while respecting
the uniqueItems constraint, ensuring that the algorithm produces distinct arrays, each
containing values that are unique.

The preprocessing phase of our approach, consisting of reference expansion and schema
canonicalization, is crucial for simplifying the schema and preparing it for efficient gener-
ation. Reference expansion resolves internal references, making the schema self-contained,
while canonicalization restructures it to facilitate generation. Designed to be minimal, this
phase reflects the optimism in our approach. Unlike the complex preprocessing techniques
employed in the pessimistic method outlined in Chapter 4, we focus on straightforward
procedures that do not involve intricate operations. This phase, although minimal, also
differentiates us from other optimistic solutions, which often neglect preprocessing and
suffer from errors due to inadequate preparation.

Our approach is designed for efficiency and correctness, which makes it inherently
incomplete. Its incompleteness arises from several factors: partial negation elimination,
incomplete translation of patterns from the regular expression language used by JSON
Schema to that used by the Brics library [60], and static unsatisfiability checking that leaves
cases requiring dynamic verification undetected. Despite these limitations, the method
aims for high coverage: satisfiable schemas generate valid instances, and the approach
can flag unsatisfiable schemas early, reducing unnecessary computation. The trade-off in
completeness is acceptable for many real-world applications where quick and correct results
are more valuable than exhaustive instance coverage.

In conclusion, this chapter presented an efficient and sound solution for JSON Schema
data generation, designed to address the limitations of existing techniques by balancing
efficiency, correctness, and completeness. With support for generating multiple distinct
instances and correctly handling the uniqueItems constraint in arrays (even while limiting
to single-instance generation due to complexity), this approach achieves a balance between
performance and accuracy. Its streamlined preprocessing and focus on soundness make
it a practical tool for a wide range of tasks requiring JSON Schema data generation,
particularly in scenarios where speed and correctness take precedence over completeness.
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Chapter 6

Experimental Analysis

In this chapter, we present a comprehensive experimental analysis of our
instance generation approach for JSON Schema. The experiments aim
to achieve several objectives: first, to compare our method with existing
data generation tools in terms of correctness and execution times; second,
to assess the scalability of our optimistic approach and its ability to
generate multiple valid instances; and third, to investigate our handling
of uniqueItems.

6.1 Introduction
The goal of this chapter is to evaluate the performance and effectiveness of our instance
generation approach for JSON Schema through a series of targeted experiments. The
experiments are designed to address three key aspects of our method. First, we aim to
compare our approach with existing data generation tools, focusing on both the correctness
of the generated instances and the time required to generate them. This comparison will
help us understand how our solution measures up against other state-of-the-art tools in
terms of accuracy and efficiency.

Second, we assess the scalability and efficiency of our optimistic approach in generat-
ing multiple valid instances across real-world schemas. This involves evaluating not only
the ability of our method to handle individual instance generation but also its effective-
ness in producing sets of instances with varying cardinality. By examining how well our
approach scales, we can determine if it maintains low execution times, ensuring that it
remains efficient and practical for real-world applications that require large-scale instance
generation.

Finally, we evaluate the method’s ability to successfully handle the uniqueItems con-
straint, which is a key contribution of this work. This experiment assesses the robustness
and correctness of our approach in managing this challenging schema feature.

To conduct these experiments, we used the schema collections previously employed in
the pessimistic method introduced in Chapter 4 (cf. Table 4.2 for a detailed description of
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the schema collections), ensuring consistency in our evaluations. Our optimistic approach
tool was implemented in Scala, leveraging pattern matching to encode schema rewriting
rules for preprocessing the input schema. The generation algorithms were implemented
in a more imperative style to maximize efficiency. Additionally, we relied on the Brics
library [60] for generating strings from patterns, following the same design principles as in
our previous work on witness generation [11, 12]. The experiments were performed on a
Precision 7550 laptop with a 12-core Intel i7 2.70GHz CPU and 32 GB of RAM, running
Ubuntu 23.04.

6.2 Single Instance Generation Experiments
To evaluate the performance of our optimistic generation tool, we compared it with the tools
JSON-Schema-faker (JSF) [1] and JSON-everything (JE) [36] presented in Section 2.3.2.
Since these other tools are designed to generate only a single instance, we configured our
optimistic tool to also produce just one instance by setting N = 1. Additionally, to ensure
a fair comparison, we ignored the uniqueItems constraint, as it is not handled by the other
tools.

It is important to note that the experiments involving the witness generation tool
introduced in Chapter 4, the DG tool [28], and the CC tool [51] have already been discussed
in Section 4.3, with the full results presented in Table 4.3. Therefore, we will not reference
these tools again in this context.

6.2.1 Experimental Results
Table 6.1 presents the results of our evaluation of our approach’s ability to generate valid
instances. We executed our tool alongside the two other tools1 for each schema collection
and subsequently collected the generated instances, which were validated against the orig-
inal schema (when satisfiable) using an external validator [3]. The correctness ratios for
each combination of tool and schema collection are reported, detailing three distinct out-
comes: success, which includes cases where a valid instance is produced as well as scenarios
where the schema is unsatisfiable and the tool correctly indicates emptiness; logical errors,
which occur when a non-valid instance is generated or an instance is generated while the
schema is unsatisfiable; and interruptions (Interrupt.), which include any processing errors
such as timeouts. Additionally, we report the ratio of schemas that our tool intentionally
discards to prevent the generation of potentially invalid instances (GenFail). To ensure
the timely completion of our experiments, we set a processing timeout of 5 minutes for
each schema.

Correctness and Completeness. The experimental results indicate that the optimistic
tool encounters interruption errors in 0.37% of the schemas (24 schemas), with 22 of these

1JSF was tested using its Command Line Interface, while JE was tested by directly using its source
code.
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Col. Tool Success Interrupt.
(+GenFail)

Logical
Error

Time (ms)
med./avg.

Git Ours 98.17% 0.37% +0.81% 0.65% 1/54
JSF 82.64% 5.80% 11.56% 117/323
JE 58.68% 20.77% 20.55% 9/10

K8s Ours 100% 0% +0% 0% 2/15
JSF 89.84% 0.18% 9.98% 122/125
JE 69.41% 8.43% 22.16% 7/8

Snw Ours 99.04% 0.48% +0% 0.48% 2/223
JSF 95.24% 2.62% 2.14% 119/549
JE 72.38% 18.10% 9.52% 2/5

WP Ours 100% 0% +0% 0% 5/65
JSF 87.20% 0% 12.80% 121/134
JE 29.60% 25.60% 44.80% 6/11

HW Ours 18.72% 5.53% +71.07% 4.68% 5/95
JSF 9.36% 17.45% 73.19% 221/3,806
JE 3.83% 1.70% 94.47% 2/7

CC4 Ours 78.96% 0.45% +19.69% 0.90% 1/2
JSF 27.20% 2.78% 70.02% 206/219
JE 0.23% 3.91% 95.86% 1/508

Table 6.1: Correctness results and execution times

due to timeouts where the tool fails to return a result within the 5-minute limit. The
remaining 2 schemas experience errors related to unhandled patterns. Additionally, there
are 2 timeouts in the Snowplow collection, which correspond to the same schemas that
resulted in timeouts for the witness generation tool. As previously mentioned, this issue
arises from high values of the maxLength constraint. In the Handwritten and Containment-
draft4 collections, interruptions stem from patterns. However, the errors are not solely
due to the patterns being unsupported by the Brics library [60] but also arise from the
way patterns are transformed during the negation elimination process in string schemas,
as introduced in 5.2.2. Specifically, this process involves pushing the negation inward to
complement the pattern, and the implementation struggles when dealing with conjunctions
of negated patterns. This leads to interruption errors, revealing a bug in the system that
needs to be addressed.

Regarding logical errors, these primarily arise from unhandled patterns in the GitHub,
Snowplow, and Containment collections. In the Handwritten collection, the errors result
from very intricate schemas where logical operators are nested and interact in complex
ways, indicating the presence of bugs related to the processing of these operators.

Generation failures are almost nonexistent in the real-world schemas, with the tool
returning GenFail for only 52 schemas in the GitHub collection. An examination of
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these schemas revealed the presence of negations applied to object and array schemas.
In contrast, we observe a high incidence of generation failures in the Handwritten and
Containment-draft4 collections, as these synthetic schemas make excessive use of object
and array negations.

In terms of success rates, the optimistic tool shows a high success rate, outperforming
both other tools and the DG tool. It also demonstrates comparable success rates to the
witness generation tool, except for the synthetic schema collections.

Regarding the other tools, in the GitHub collection, the JSF tool shows a notable level
of success, but it still experiences numerous interruptions and logical errors, particularly
when handling synthetic schemas. These issues indicate its difficulties in consistently gen-
erating valid instances, which makes it not effective in practice. The JE tool, in particular,
struggles even more, exhibiting a high rate of interruptions alongside a significant number
of logical errors. This clear disparity highlights the superior performance and reliability of
our approach in generating valid instances across the different schema collections.

Execution Times. The execution times reported in Table 6.1 reveal strong performance
of the optimistic tool across the various schema collections. The tool demonstrates consis-
tently low median and average execution times, with median times as low as 1-5 millisec-
onds and average times always under 100 milliseconds, except for the Snowplow collection,
where some schemas exhibit higher execution times. For example, in the GitHub collec-
tion, 66.31% of the successfully processed schemas (4,246 out of 6,403) were completed in
1 millisecond or less. As noted previously in Chapter 4, the longer execution times in the
Snowplow collection can be attributed to the presence of complex patterns, where string
generation significantly contributes to increased processing times.

In comparison to the witness generation tool, the optimistic tool is less affected by
the preprocessing phase, requiring minimal preprocessing. Table 6.2 further illustrates the
median and average times for both the canonicalization and generation phases. While the
execution times for canonicalization are generally higher than those for generation in most
collections, with both the median and average times being greater for canonicalization, it is
noteworthy that when considered individually, generation times are typically higher. This
trend is illustrated in Figure 6.1, a scatter plot of generation versus canonicalization times,
where this observation is more clearly visualized for the GitHub and Snowplow collections.

Canonicalization is influenced by the elimination of conjunctions and the partial removal
of negation, particularly when these operations are performed within nested structures
(i.e., inside object and array constraints), which can lead to increased execution times.
Conversely, generation is impacted by string generation, relying on the Brics library for
generating strings and object properties, whereas canonicalization does not utilize Brics at
all. It is also important to note that generation depends on canonicalization; for instance,
when an object property matches multiple patterns, generation requires the merging of the
schemas of the matching patterns, which can sometimes result in longer execution times.

These findings underscore the effectiveness of our optimistic approach across the ma-
jority of schema collections, demonstrating its ability to deliver efficient processing while
maintaining low execution times.
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Col. Canoncicalization Generation
Median Average Median Average

Git 0 8.86 0 41.84
K8s 1 10.89 1 1.16
Snw 0 0.61 1 222.41
WP 1 37.94 1 4.80
HW 4 46.31 0 8.68
CC4 1 1.69 0 0.2

Table 6.2: Median and average times for the canonicalization and the generation phases

Regarding the other tools, the JSF tool consistently shows higher execution times
across all collections, particularly in the HW collection, where the average time exceeds
3800 milliseconds. Regarding the JE tool, although it shows very low execution times,
a fair comparison must take into account the success rate of each tool. Given that JE
encounters a very high number of interruptions and logical errors, it proves unreliable, and
its execution times are of limited relevance.

Moreover, as highlighted in earlier experiments, the relationship between schema size
and execution time remains a significant factor. Figure 6.2, in which the plots of execution
time against schema size on a log-log scale, continues to show a linear correlation for many
schemas while identifying a few outliers across the different schema collections.

The results are consistent with the previous experimental analysis discussed in Chap-
ter 4, where outliers in execution times were attributed to complex schema features such as
intricate patterns, nested logical operators, and the maxLength keyword with high values.

6.2.2 Preliminary Experiments with HJS
While the primary focus of the experimental analysis centered on other tools and methods,
Hypothesis-jsonschema (HJS) [48] had not been initially included in the testing procedures.
To address this, a set of preliminary experiments was later conducted specifically for HJS .
This subsection presents those findings, highlighting its performance and behavior under
similar conditions to the previously analyzed tools.

Table 6.3 highlights the results of the experiments of HJS on the schema collections
listed in Table 4.2. The execution times of the Github schema collection were not recorded,
hence they are not presented in the table.

The comparison between the results of HJS and our technique (cf. Table 6.1) reveals
that our tool achieves higher success rates across all schema collections, with the sole
exception of the Handwritten collection. This difference arises because, in our approach,
we do not eliminate negation when encountering object and array schemas, whereas HJS
addresses some of those cases.

The results indicate that HJS suffers from a high number of interruption errors, pri-
marily due to its inability to handle recursive references effectively. In terms of logical
errors, most arise from the generation of invalid string values, particularly in the Github
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and Snowplow collections. In the Snowplow collection, 16 out of 18 logical errors are due
to patterns, while 2 are due to not satisfying the constraint multipleOf. In the Github
collection, 337 out of 379 errors arise from not satisfying pattern. For the Handwritten
collection, HJS struggles with logical errors mainly due to its failure to generate values
that are valid with respect to schemas involving negation and conjunction.

Regarding execution times, measured in seconds, HJS exhibits significantly long ex-
ecution times. This was expected due to its underlying structure, as it relies on the
property-based testing framework Hypothesis [59]. Notably, it is the tool with the highest
execution times across all the different tools tested in our experiments. This increased
duration may impact its practical usability, especially in scenarios requiring rapid data
generation.

Col. Success Interrupt. Logical
Error

Time (seconds)
med. / avg.

Git 86.56% 7.34% 6.10% -

K8s 97.89% 2.11% 0% 5.47 / 13.71

Snw 95.48% 0.24% 4.28% 1.99 / 4.48

WP 80.8% 19.2% 0% 2.77 / 4.57

HW 36.60% 58.72% 4.68% 14.88 / 29.65

CC4 77.99% 21.64% 0.37% 0.02 / 5.69

Table 6.3: Correctness results and execution times of HJS

6.2.3 Conclusive Remarks
The experimental analysis of our method for single instance generation demonstrates that
it outperforms other tools. Although the witness generation tool (Chapter 4) demon-
strates higher accuracy, our approach yields comparable results for real-world schemas. A
key advantage of our tool is its very low execution times, making it particularly suitable
for applications requiring fast data processing. While we faced some challenges with spe-
cific schema collections, the overall performance of our tool underscores its reliability and
effectiveness in practical scenarios.

95



(a) Github collection (b) Kubernetes collection

(c) Snowplow collection (d) WashingtonPost collection

(e) Handwritten collection (f) Containment-draft4 collection

Figure 6.1: Canoncilization time vs generation time on a Log-Log Scale
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(a) Github collection (b) Kubernetes collection

(c) Snowplow collection (d) WashingtonPost collection

(e) Handwritten collection (f) Containment-draft4 collection

Figure 6.2: Single instance generation: file size vs. runtime on a Log-Log Scale
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6.3 Multiple Distinct Instances Generation Experi-
ments

To evaluate the scalability of our instance generation approach, we conducted experiments
focused on generating multiple distinct instances. This aspect is crucial for assessing how
well our method can handle generating a large number of instances and ensuring efficiency
in practical applications. For this purpose, we utilized the GitHub schemas that were
successfully processed during our single instance generation experiments, creating a new
dataset specifically for this evaluation.

Given a well-processed Github schema S, we constructed an array schema in the fol-
lowing format: {"type":"array","items":S’,"minItems":N,"uniqueItems":true}, where
S’ is the resulting schema after performing the reference expansion process introduced in
Section 5.2.1 on S. We varied N to examine the performance across different sizes, in-
cluding values such as 5, 10, 20, and larger values of N up to 1000. We also included the
uniqueItems constraint set to true to ensure that every instance amongst the N instances
to be generated is unique. This approach thoroughly tests our method’s capability to
generate multiple valid instances efficiently and correctly.

For each value of N , we excluded schemas that inherently could not generate the speci-
fied number of instances (i.e., schemas that are unsatisfiable by design). This cleaning phase
was carried out by manually inspecting the schemas. As in our previous experiments on
single instance generation, each generation run here was conducted with a timeout of 5
minutes per schema.

We measured the various rates of success, interruptions, generation failures, and logical
errors as in the previous experiments. Additionally, we included the average size of the
instances produced.

The results of these experiments are reported in Table 6.4, providing a comprehensive
overview of the performance metrics.

6.3.1 Correctness and Completeness
After analyzing the different rates measured, we can make the following observations: (i)
the success ratio remains relatively stable, with a minor decline for higher values of N ,
accompanied by a slight increase in interruption and logical errors, and (ii) the generation
failure ratio remains consistent, around 1%. As in our previous single instance genera-
tion experiments, we identified the same primary causes for these issues: interruptions
were largely due to timeout errors and pattern-related issues, while logical errors resulted
from generating invalid strings from patterns containing special characters not natively
supported by the Brics library.

Upon further investigation, we observed that interruptions for lower values of N were
mostly timeout-related, while pattern-related errors became more prominent as N in-
creased. For instance, at N = 5, we encountered 12 timeouts, 6 interruptions caused
by patterns, and 2 interruptions due to memory problems linked to two large schemas.
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N #Schemas Success Interrupt. GenFail Logical
Error

Time (ms)
Avg / Med

Avg Size
(KB)

5 6,228 95.59% 0.35% 0.93% 3.13% 136 / 2 1
10 6,217 95.37% 0.47% 0.98% 3.18% 125 / 2 1.35
20 6,209 95.18% 0.47% 0.98% 3.37% 147 / 3 2.74
30 6,208 95.12% 0.55% 0.96% 3.37% 89 / 2 4.15
40 6,208 94.36% 1.32% 0.97% 3.35% 98 / 3 5.54
50 6,208 94.35% 1.32% 0.98% 3.35% 176 / 6 6.94
60 6,208 94.32% 1.32% 0.98% 3.38% 205 / 7 8.34
70 6,207 94.25% 1.32% 0.98% 3.45% 155 / 6 9.76
80 6,207 94.19% 1.37% 0.98% 3.46% 173 / 8 11.17
90 6,205 94.18% 1.37% 0.98% 3.47% 197 / 9 12.58
100 6,205 94.13% 1.42% 0.98% 3.47% 222 / 11 14
150 6,203 94.10% 1.50% 0.98% 3.42% 144 / 23 21.12
250 6,200 94.08% 1.55% 0.95% 3.42% 181 / 60 35.44
500 6,196 94.08% 1.57% 0.95% 3.40% 373 / 237 71.72
1000 6,194 94.04% 1.60% 0.95% 3.41% 1,174 / 974 145.98

Table 6.4: Multiple instances generation results

These schemas were the only ones across all N values to experience heap errors, and no
additional memory issues were observed. At N = 100, we recorded 20 timeouts and 63
interruptions related to patterns, and for N = 1000, 27 timeouts and 67 pattern-related
interruptions occurred.

As with the single instance experiments, the generation failures were primarily tied to
schemas involving negations, in the presence of not or oneOf. These negations affected
required branches of the schema, making them difficult to handle with our generation
approach. Additionally, some failures were linked to limitations in the Brics library, which,
for certain patterns, struggled to generate the required number of distinct strings, despite
the input pattern meeting the necessary cardinality constraints.

6.3.2 Execution Times
When examining the execution times for different values of N , several notable trends
emerge. For smaller values of N (from N = 5 to N = 150), the median times increase in a
relatively linear fashion, indicating that most schemas are processed efficiently. In contrast,
the average times are significantly higher, suggesting the presence of a few slow outliers.
As N increases, both the average and median times steadily rise, with a noticeable increase
in median times starting at N = 250 and a substantial jump at N = 500. This increase
can be attributed to two factors: first, generating more instances inherently requires longer
execution times; second, generating those instances may necessitate traversing additional
branches of the schemas compared to those traversed for the previous value of N , which
can also extend processing times. The decrease observed in average times at N = 30 and
N = 40 can be attributed to a rise in interruption errors.
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Furthermore, as N increases, both the average and median times continue to grow,
indicating a trend of longer execution times for generating instances. Even at N = 1000,
the average and median times remain distinct, though the gap between them narrows,
suggesting that while the impact of outliers lessens, they still exist. Overall, the data
shows that although a few slow schemas inflate the average times for smaller values of N ,
processing times for most schemas increase as N rises, reflecting a general slowdown in
instance generation for larger values of N .

Despite this growth in execution times, generation using this optimistic approach re-
mains highly efficient, capable of generating 1000 instances in approximately 1 second,
making it suitable for real-world applications.

Figures 6.3a and 6.3b, which illustrate the evolution of average and median execution
times as N varies, effectively help visualize and confirm these observations. The trends
depicted in these figures reinforce our analysis, highlighting the differences in processing
times for various schemas as the number of instances increases. By clearly displaying
the changes in both average and median times, these figures provide a comprehensive
understanding of the impact of N on execution efficiency.

6.3.3 Conclusive Remarks
In conclusion, our analysis has highlighted the overall efficiency and effectiveness of the
tool for generating multiple instances. The findings confirm that, despite some fluctuations
in execution times and the presence of a few outlier schemas, the tool remains capable
of generating 1000 instances in approximately 1 second. This efficiency is particularly
noteworthy, as it suggests the tool’s applicability in real-world scenarios requiring rapid
data generation.

Additionally, Figure 6.3a and Figure 6.3b provide valuable insights into the trends of
average and median execution times as N varies, confirming the patterns we observed.
The linear growth illustrated in Figure 6.3c, depicting the average size of the generated
instances, aligns with our expectations, given the deterministic nature of our optimistic
approach. However, it’s important to note that the growth can sometimes exceed linear,
depending on the complexity of the schema. This occurs when, at certain points, we switch
branches within the schema to generate the required number of instances. This behavior
highlights the adaptability of the approach, although it can lead to increased size variability
in some cases. This flexibility remains a strength of the tool, contributing to its reliability
and effectiveness.

Overall, these insights reinforce the potential of our instance generation tool for prac-
tical applications, setting a solid foundation for future developments and improvements
aimed at enhancing both accuracy and efficiency.
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(a) N vs Average time

(b) N vs Median Time

(c) N vs Average size of the generated instances

Figure 6.3: Overview of Execution Metrics with Varying N
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6.4 UniqueItems Experiments
To evaluate our approach’s ability to handle the uniqueItems keyword and test the capa-
bilities of the algorithm designed for this purpose, we constructed a specialized collection
of synthetic schemas where uniqueItems is always set to true. The previous schema collec-
tions lacked sufficient schemas featuring uniqueItems as they were primarily intended to
test other generators that do not support this feature.

6.4.1 Experimental Setup
To build the schemas, we defined four distinct meta-schemas: SInt, SStr, SObj, and SArr.
These meta-schemas describe array schemas defining four different types of arrays:

• SInt defines arrays containing items of type integer

• SStr defines arrays where items are of type string

• SObj defines arrays with items of type object

• SArr defines arrays with items of type array

When running our optimistic generator on these meta-schemas, instead of generating
instances that are JSON values, the generator produced instances that are themselves
JSON schemas. The meta-schemas effectively guided the generation process, resulting in
schemas representing the various data types. The meta-schemas that were defined have
the following form:
{ "type": "object",

"required": ["type","minItems","prefixItems","items",
"contains","minContains","uniqueItems"],

"properties": {
"type": { "type": "string", "const": "array" },
"minItems": { "type": "integer", "minimum": 5, "maximum": 10 },
"prefixItems": SpIt,
"items": Sit,
"contains": SC,
"minContains": { "type": "integer", "minimum": 2, "maximum": 8 },
"uniqueItems": { "type": "boolean", "const": true }

},
"additionalProperties": false

}

Here, SpIt is an array of schemas, while both Sit and SC are schemas. These schemas
are used to describe the values of the four data types. For example, when using the meta-
schema SStr to generate schemas, the schemas within SpIt, Sit, and SC define items that
are of type string. Specifically, the schema SC of the meta-schema SStr is defined as follows:
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{ "type": "object", "required": ["type","pattern","minLength"],
"properties": {

"type": { "type": "string", "const": "string" },
"pattern": { "type": "string", "const": "a+b*.*" },
"minLength": { "type": "integer", "minimum": 5, "maximum": 10 }

},
"additionalProperties": false

}

To construct a large collection of schemas, and given that our generator is determinis-
tic and processes the properties within the required array in the order they appear in the
schemas, we aimed to avoid duplicate schemas while ensuring diverse configurations with
various values for all constraints. To achieve this, we implemented a randomization strat-
egy for processing the required array. For each meta-schema, we conducted 500 runs of
generation, with each run producing N = 1000 schemas. This approach allows for greater
diversity in the combinations of values, effectively covering the constraints with different
configurations.

In total, after duplicates removal and the exclusion of the unsatisfiable schemas, the
collection comprises 35,366 unique schemas, distributed as follows based on the content
of their array-schema: 5,962 schemas with arrays of integers (AInt), 5,610 with arrays
of strings (AStr), 7,688 with arrays of objects (AObj), and 16,106 with arrays of arrays
(AArr).

For instance, when the generator is executed on the meta-schema SInt, it might produce
a schema like the following, which defines arrays containing integer values with the specific
constraints:
{ "type": "array", "minItems": 5, "uniqueItems": true,

"items": { "maximum": 100, "type": "integer", "minimum": -10 },
"contains": { "type": "integer", "multipleOf": 13 },
"prefixItems": [

{ "maximum": 100, "type": "integer", "minimum": 15 },
{ "maximum": 100, "type": "integer", "minimum": -5 },
{ "maximum": 100, "type": "integer", "minimum": -10 },
{ "maximum": 100, "type": "integer", "minimum": 30 },
{ "maximum": 100, "type": "integer", "minimum": 17 }

],
"minContains": 6

}

6.4.2 Experimental Results
Table 6.5 presents the standard metrics measured throughout all the experiments con-
ducted, concerning correctness and execution times for each schema collection, along with
the average size of the generated instances.
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Coll.(size) Success Interrupt. GenFail Logical
Error

Avg time
(ms)

Avg Size
(KB)

AInt (5,962) 100% 0% 0% 0% 0.85 0.04
AStr (5,610) 100% 0% 0% 0% 4.91 0.12
AObj (7,688) 100% 0% 0% 0% 4.85 0.47
AArr (16,106) 100% 0% 0% 0% 13.07 0.38

Table 6.5: uniqueItems experiments

The results presented in the table about the performance metrics show that the gen-
erator achieved a success rate of 100 for all the four schema collections. There were no
interruptions or logical errors reported, reflecting the robustness of the generation process,
nor generation failures, since we have not included negation in these schemas.

The observations we make regarding execution times are as follows: the collection with
arrays of integers (AInt) exhibited the shortest average time at 0.85 milliseconds, as integers
do not present any complexities in terms of generation. In contrast, the collections with
arrays of strings (AStr) and arrays of objects (AObj) showed slightly longer average times
of 4.91 milliseconds and 4.85 milliseconds, respectively. This increase in execution time
can be attributed to the involvement of the Brics library, which adds some overhead during
the generation process.

The collection containing arrays of arrays (AArr) had the longest average execution
time at 13.07 milliseconds. This is expected due to the increased complexity associated
with nested array structures. Specifically, the presence of a non-empty contains schema,
combined with a minimum value of 3 for minContains, necessitates a merging of the schemas
from prefixItems and the contains schema during generation. This additional require-
ment contributes to the increased execution time, making it higher than that of the other
collections.

Overall, these results demonstrate the effectiveness of our approach in generating valid
instances for schemas that contain the uniqueItems keyword while maintaining high perfor-
mance and accuracy across schemas that describe different data types. Although the four
schema collections are synthetic and do not involve very complex schemas, they feature
various combinations of constraints and their values, which necessitates interactions that
may require merging the schemas. These preliminary experiments were sufficiently robust
to test the generation algorithm for uniqueItems, including its various components, such
as verifying the presence of maximum matching and other related processes.

6.5 Conclusion
This chapter has provided a comprehensive evaluation of our instance generation approach
for JSON Schema, demonstrating its performance and effectiveness across multiple ex-
perimental scenarios. We systematically analyzed our method through single instance
and multiple instances generation experiments, as well as specific tests focusing on the
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uniqueItems constraint.
In the single instance generation experiments, we compared our approach with existing

tools, highlighting its competitive edge in terms of execution speed without sacrificing
accuracy. This efficiency is crucial for real-world applications that require rapid and reliable
data generation. Despite some difficulties encountered with particular schema collections,
the overall results affirm our tool’s capability to produce valid instances swiftly.

The multiple instances generation experiments further underscored the scalability of
our method. We observed that our approach efficiently handled the generation of large
sets of instances, maintaining low execution times even as the size of the desired outputs
increased. The data generated during these tests showcased the tool’s adaptability and
performance, confirming its suitability for practical applications that demand high-volume
data generation.

Lastly, the dedicated experiments on the uniqueItems constraint revealed the robustness
of our approach in managing this intricate schema feature. The successful generation of
valid instances underlined the method’s reliability and its ability to navigate complex
interactions within schemas.

Overall, the findings from this chapter reinforce the potential of our JSON Schema
data generation tool. Its design effectively balances speed and correctness, paving the
way for future enhancements that could further optimize accuracy and performance. This
solid foundation encourages continued exploration and development, promising significant
advancements in the domain of schema-based data generation.
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Chapter 7

Hybrid Approach

In this chapter, we introduce a hybrid approach for JSON Schema data
generation, which combines the strengths of both the pessimistic and
optimistic strategies. The goal of this approach is to ensure a balance
between accuracy and efficiency, addressing the limitations of each in-
dividual method. We provide a detailed evaluation of its effectiveness,
comparing it with previous techniques, and present an optimized work-
flow that enhances both the correctness and performance of the genera-
tion process.

7.1 Introduction
In this chapter, we introduce an advanced generation technique that harnesses the strengths
of the two previously introduced generation strategies—the pessimistic approach 4, and the
optimistic approach 5—aiming at delivering a robust solution that ensures completeness,
correctness, and overall efficiency for JSON Schema data generation.

The pessimistic approach, defined in Chapter 4, represents a rigorous method for gen-
erating JSON data. It guarantees that the generated data adheres meticulously to the
schema’s requirements. This approach ensures that every constraint and specification
present in the schema is satisfied, thereby providing a high level of assurance regarding
the correctness of the generated data. However, this thoroughness comes with a significant
computational cost. For complex schemas, the pessimistic approach can be particularly
resource-intensive, resulting in longer processing times and higher computational over-
head. Additionally, this method does not handle uniqueness constraints in arrays, which
may limit its applicability in certain scenarios.

To address these drawbacks, we introduced the optimistic approach, which will be the
second key component of our hybrid strategy. The optimistic approach is designed to
overcome the limitations of the pessimistic approach by focusing on efficiency and speed.
This method sacrifices some degree of completeness but is capable of covering a much
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broader spectrum of schemas. As shown in the experimental analysis section, the optimistic
approach efficiently handles a wide variety of schemas, even though it does not guarantee a
result for every possible schema. The trade-off between completeness and execution speed
makes the optimistic approach particularly valuable for applications where rapid results
are crucial, despite potential failure in generating a result.

The hybrid approach combines these two techniques, leveraging their respective strengths
to create a versatile and effective solution for JSON Schema data generation. By inte-
grating the thoroughness of the pessimistic approach with the efficiency of the optimistic
approach, our hybrid methodology provides a balanced solution that can be adapted to a
wide range of use cases. This dual-strategy system allows us to optimize the generation
process, ensuring both the accuracy of the results and the efficiency of the computation.
The following sections will delve into the details of how these techniques are combined
and applied, illustrating the benefits and applications of our hybrid approach in various
scenarios.

7.2 Comparative Analysis: Quantitative and Qualita-
tive Evaluation

In this section, we provide an in-depth comparative analysis of the pessimistic approach
versus the optimistic approach, aiming to highlight their respective strengths and limita-
tions. This discussion extends the findings presented in the experimental analysis chapter 6
by offering a clearer examination of both quantitative and qualitative aspects. Our goal is
to thoroughly evaluate the potential benefits and improvements that arise from the hybrid
generation technique, which integrates elements of both approaches. We will explore how
this combined methodology enhances success rates, efficiency, and overall effectiveness in
practical applications.

To begin, we will quantitatively assess the performance of both approaches by analyz-
ing the number of schemas where each method encounters an interruption error, fails to
generate a valid witness, or determines the unsatisfiability of the schema. By comparing
the outcomes between the pessimistic approach and the optimistic approach, we aim to
discern any improvements or advantages that the hybrid method may offer.

In addition to the quantitative analysis, we will conduct a qualitative evaluation to gain
deeper insights into the practical implications of each approach. This involves examining
the contexts in which each method encounters difficulties, as well as exploring the trade-
offs associated with each approach. For instance, we will investigate whether the hybrid
technique provides more reliable results in scenarios where the optimistic approach alone
might fall short, or if it delivers efficiency gains that outweigh the completeness sacrificed
by the optimistic approach.

Our analysis will also consider various factors such as computational cost, execution
time, and the complexity of schemas. By evaluating these aspects, we aim to understand
how effectively the hybrid approach balances the thoroughness of the pessimistic method
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with the efficiency of the optimistic approach. This comprehensive assessment will help
identify areas where the hybrid technique excels and where further improvements may be
needed.

Ultimately, the objective of this comparative analysis is to provide a clear understanding
of how the integration of these two generation techniques impacts the overall performance
and applicability of the JSON Schema data generation process. By thoroughly examining
both quantitative metrics and qualitative factors, we seek to determine whether the hy-
brid approach offers significant advantages over the individual methods and to outline the
scenarios in which it is most beneficial.

7.2.1 Github Collection
In the following, we will discuss the differences between the results of the experimental
analysis of both approaches on the GitHub collection, as this particular collection presents
nuances where the differences are not immediately clear and require an in-depth study and
comparison.

First, we will identify the number of schemas for which one approach fails to generate
a valid result and examine the outcomes of those schemas in the other approach, and vice
versa, recalling, as discussed previously, that the pessimistic approach only fails due to
interruption errors. Then, we will identify the reasons behind these differences in outcomes
to better understand the strengths and limitations of each method. This comparison aims
to determine whether combining both approaches leads to an improvement in the number
of schemas for which a valid instance is generated, thereby increasing the overall success
rate.

Table 7.1 provides a detailed comparison of schemas that encounter interruption er-
rors, generation failures, and logical errors using the optimistic approach, and shows the
outcomes of these schemas when evaluated with the pessimistic approach. This analy-
sis highlights the complementary nature of the two methods: the pessimistic approach
effectively resolves many issues where the optimistic approach fails, thereby improving
the overall generation success rate. However, it also reveals limitations, as there are a
total of 22 schemas that are not successfully handled by either method. Specifically, in
the pessimistic approach, all 22 schemas encounter timeout errors, while in the optimistic
approach, 18 result in timeout errors, and the remaining 4 experience generation failures.

The reasons why some schemas are successfully processed by the pessimistic approach
but not by the optimistic approach are as follows:

Interrupt. For two schemas, the interruption errors in the optimistic approach occur
due to unhandled patterns in JSON Schema regular expressions (cf. String generation in
Section 5.3.3). In contrast, the pessimistic approach successfully processes these schemas
by fully translating the regular expressions into the language supported by the Brics library,
as outlined in [12, 55]. Another schema encounters issues in the optimistic approach due to
its naive reference expansion mechanism, which can lead to multiple expansions of the same
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schema and result in a timeout. The pessimistic approach avoids this by using a variable
mechanism that ensures each schema is expanded only once, as mentioned earlier. The
remaining three schemas are complex and require more processing time. As noted before,
the optimistic approach is limited to a 5-minute timeout, whereas the pessimistic approach
allows for up to an hour. This additional time in the pessimistic approach enables the
successful processing of these schemas. Extending the timeout for the optimistic approach
could potentially lead to a successful processing as well.

GenFail. The schemas that resulted in generation failures using the optimistic approach
can be attributed to the inherent limitations of the method when dealing with negation.
On the other hand, the pessimistic approach avoids these issues by entirely eliminating
negation, as previously mentioned in Section 5.2.2. This allows it to generate valid results
for these schemas.

Logical Error. Similarly to the two errors in the Interrupt. category, the logical errors
in the optimistic approach are due to limitations in the Brics library [60, 55], whereas
the pessimistic approach addresses these issues effectively through the regular expressions
translation mechanism.

Optimistic Pessimistic Result
Error # Schemas Success Interrupt.
Interrupt. 24 6 18
GenFail 52 48 4
Logical Error 42 42 -

Table 7.1: Optimistic errors VS the pessimistic results

Table 7.2 highlights the failures encountered by the pessimistic approach and their
corresponding outcomes when assessed with the optimistic approach. The table shows
that the optimistic approach successfully resolves the majority of issues that the pessimistic
method encounters, as evidenced by the high number of successful results. However, it also
confirms that there are 22 schemas that remain unresolved by both approaches, as noted
in table 7.1. Among the 52 schemas that encounter errors in the pessimistic approach, 28
are due to timeouts, 23 are due to memory issues and 1 schema encounters a ref-expansion
error. The memory problems arise during the translation of patterns from JSON Schema
to Brics in the pessimistic approach. In contrast, the optimistic approach does not perform
this translation. Since these memory issues do not occur during generation (where Brics is
invoked), it indicates that the problematic patterns are not used in the generation phase.
Additionally, the optimistic approach avoids the complex preparation phases present in the
pessimistic approach, contributing to its better performance in handling timeouts.

To conclude the assessment of the hybrid approach’s success rate on this collection, we
find that combining both methods improves the overall success rate. The breakdown of
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Pessimistic Optimistic Result
Error # Schemas Success Interrupt. GenFail Logical Error
Interrupt. 52 30 18 4 -

Table 7.2: Pessimistic errors VS the optimistic results

outcomes is as follows: success for 6,405 schemas (99.66%), GenFail for 4 schemas (0.06%),
and Interrupt. for 18 schemas (0.28%).

After confirming the improvement in the success rate, we will now analyze the exe-
cution times to determine whether the optimistic approach consistently outperforms the
pessimistic method in terms of speed or if there are cases where the pessimistic approach
is faster. This analysis will help us understand how to integrate both methods effectively
into a hybrid approach, potentially optimizing the workflow to leverage the strengths of
each method for better overall performance.

Table 7.3 provides a summary of schema execution times, comparing the number of
schemas where the optimistic approach is faster, the pessimistic approach is faster, and
those with identical execution times. This comparison focuses exclusively on schemas for
which a correct result was returned, meaning either a valid instance was generated if the
schema was satisfiable, or it was correctly identified as unsatisfiable. Schemas that were
not successfully covered by either method have been excluded. The count for the optimistic
approach includes schemas where it succeeded and was faster, as well as those where it
succeeded while the pessimistic approach returned an interruption error. Similarly, the
count for the pessimistic approach includes schemas where it succeeded and was faster, as
well as those where it succeeded while the optimistic approach either returned a generation
failure or encountered a logical error. The table highlights that the optimistic approach
is faster for the majority of schemas (98.02%), while the pessimistic approach is faster for
a smaller subset (1.94%), and a few schemas (0.04%) have equal execution times for both
methods.

# Schemas Same
Exec. Time

Optimistic
Faster

Pessimistic
Faster

6,405 3 6,278 124

Table 7.3: Schema counts based on execution times

The plots in Figures 7.1 and 7.2 provide a visual confirmation of the results presented
in Table 7.3, offering additional insights into the comparison of execution times between
the optimistic and pessimistic approaches. The analysis covers a total of 6,279 schemas,
focusing only on those for which both methods returned valid results and excluding cases
where at least one method yielded an invalid result, as comparisons in such cases are
meaningless.

Figure 7.1 illustrates the count of schemas processed within different time intervals,
with execution times measured in milliseconds (ms). The intervals range from 0-1 ms to
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over 1000 ms, providing a clear comparison between the two methods. As expected, the
optimistic approach is significantly faster, dominating the lower time intervals and process-
ing 85.47% of the schemas in the 0-5 ms range, which highlights its efficiency. Conversely,
although the pessimistic approach is slower overall, it still processes a considerable number
of schemas in the 0-100 ms range, demonstrating that it is still efficient for many cases.

Figure 7.1: Distribution of Schemas Processed Across Time Intervals for Optimistic and
Pessimistic Approaches

Figure 7.2 presents a detailed distribution of execution times for the two methods on
a log-log scale. Each blue dot represents the execution time of a schema under both the
optimistic and pessimistic approaches, with the x-axis indicating the optimistic approach’s
execution time and the y-axis indicating the pessimistic approach’s execution time. The
red line, labeled "Equal Times," represents the line y = x, where both approaches have
the same execution time for a given schema. The dense clustering of points above the
"Equal Times" line, where the x-axis (optimistic approach) values are lower than the y-
axis (pessimistic approach) values, visually confirms that the optimistic approach generally
outperforms the pessimistic approach in terms of speed. For many schemas, the difference
in performance is substantial, with the optimistic approach being significantly faster, as
illustrated by the points located at the top left of the plot. The few points below the
line indicate cases where the pessimistic approach is faster than the optimistic approach.
However, these points are close to the y = x line, suggesting that, despite being slower,
the execution times of the optimistic approach are not far from those of the pessimistic
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approach, except for the few points under the green line.

Figure 7.2: Comparison of Execution Times Between Optimistic and Pessimistic Ap-
proaches on a Log-Log Scale

Together, these plots illustrate the same trend highlighted in the table: the optimistic
approach dominates in terms of speed for the majority of schemas, while the pessimistic
approach is faster only in a few cases. The visualizations emphasize the distribution of ex-
ecution times, with the optimistic approach consistently performing more efficiently across
a wide range of schemas.

7.2.2 Other Collections
Applying the same comparison approach used for the GitHub collection, we will now ana-
lyze the results for the Snowplow, Kubernetes, WashingtonPost, and Containment-draft4
collections. The Handwritten schema collection will be excluded from the analysis due to
the very low success rate of the optimistic approach compared to the pessimistic approach,
as no additional gains can be achieved.

In the case of the Snowplow collection, the pessimistic solution encounters only two
Interrupt. errors, which are also observed in the optimistic approach. For the other
collections, the pessimistic approach demonstrates a 100% success rate, making further
comparison to check for potential improvements unnecessary. The outcomes for these
collections remain consistent with those of the pessimistic approach, maintaining the fol-
lowing success rates: Kubernetes (100%), Snowplow (99.52%), WashingtonPost (100%),
and Containment-draft4 (100%).

Following the success rate analysis, we now turn our focus to execution times across the
different schema collections. Table 7.4 summarizes this comparison by showing the number
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of schemas where each approach is faster or where their execution times are identical
within the four collections. Specifically, the optimistic approach significantly surpasses the
pessimistic approach in three collections. In the WashingtonPost collection, it is always
faster (100%). In the Kubernetes and Snowplow collections, it is quicker for almost all
schemas (99.27% and 98.56%, respectively). In contrast, the Containment-draft4 collection
shows a more balanced distribution, with the optimistic approach being faster in 63.41%
of schemas and the pessimistic approach in 31.03%. This balance is due to the optimistic
approach returning a GenFail for 19.69% of the schemas, as detailed in Table 6.1, leading
the pessimistic approach to be considered faster in those cases, as it successfully returns a
valid result.

collection # Schemas Same
Exec. Time

Optimistic
Faster

Pessimistic
Faster

K8s 1,092 3 1,084 5
Snw 418 0 412 6
WP 125 0 125 0
CC4 1,331 74 844 413

Table 7.4: Schema counts based on execution times

Figure 7.3 shows the number of schemas processed within different time intervals for
the various collections. As observed in the GitHub collection, the optimistic approach
predominantly occupies the lower time intervals, except in the WashingtonPost collection,
where Figure 7.3c shows a more balanced distribution across time intervals. In contrast,
the pessimistic approach is more concentrated around the middle and higher time intervals
for all schema collections.

Figure 7.4 provides a detailed log-log scale distribution of execution times for the two
methods across all schema collections. The different plots confirm our previous observa-
tions from the comparison of the GitHub collection; here, too, we see that the optimistic
approach is faster for the majority of schemas. Specifically, in the plots of the Kubernetes,
WashingtonPost, and Containment-draft4 collections (Figures 7.4a, 7.4c, and 7.4d, respec-
tively), the differences in execution times are generally small, except for some outliers in
the WashingtonPost collection. These outliers are represented by points at the top middle
of the plot, where the difference is significant (around 102ms and 103ms for the optimistic
approach, and over 105ms for the pessimistic approach). The substantial difference in these
cases is explained by the object and array preparations steps that these schemas undergo
in the pessimistic method, while the optimistic approach uses simpler preprocessing, sug-
gesting that some parts of the schemas that were prepared are not crucial for generation.
Regarding the Snowplow collection, represented by Figure 7.4b, we observe large differences
in many schemas. This is due to the preprocessing of strings in the pessimistic approach,
where the use of the Brics library results in additional manipulations that are sometimes
not essential for generation. In contrast, the optimistic approach, although it also uses the
Brics library, utilizes it only during the generation phase and not during canonicalization,
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resulting in a more straightforward process without any extra overhead.

(a) Kubernetes collection (b) Snowplow collection

(c) WashingtonPost collection (d) Containment-draft4 collection

Figure 7.3: Distribution of Schemas Processed Across Time Intervals for Optimistic and
Pessimistic Approaches

7.2.3 Conclusive Remarks
In conclusion, the refined analysis and detailed comparison between the optimistic and
the pessimistic approaches suggest that developing a hybrid method integrating both ap-
proaches is both valuable and promising. Combining these methods can significantly en-
hance the overall success rate of generating correct JSON instances and determining schema
unsatisfiability. Additionally, it ensures high coverage for JSON Schema data generation by
addressing the limitations inherent in each method. For example, the hybrid approach can
address the pessimistic approach’s lack of handling the uniqueItems constraint and the op-
timistic approach’s incomplete handling of negation, thus providing a more comprehensive
and robust solution.

Our evaluation of execution times reveals that the optimistic approach generally out-
performs the pessimistic approach in terms of speed for most schemas across all schema

114



(a) Kubernetes collection (b) Snowplow collection

(c) WashingtonPost collection (d) Containment-draft4 collection

Figure 7.4: Comparison of Execution Times Between Optimistic and Pessimistic Ap-
proaches on a Log-Log Scale

collections. The figures presented in the previous sections visually confirm this trend, illus-
trating that the optimistic approach dominates the lower time intervals and shows superior
efficiency across a wide range of schemas. Specifically, in the GitHub collection, the op-
timistic approach processes the majority of schemas in the fastest time intervals, while
the pessimistic approach is more concentrated in the middle and higher time intervals.
Further analysis of the Snowplow, Kubernetes, WashingtonPost, and Containment-draft4
collections reaffirms these findings. The optimistic approach consistently surpasses the
pessimistic approach in three collections, demonstrating superior speed. The Washing-
tonPost collection is notable for its balanced distribution across time intervals, while in
the Containment-draft4 collection, the performance is more balanced due to the optimistic
approach returning a GenFail for some schemas.

Overall, while the optimistic approach proves to be faster and more efficient in the ma-
jority of cases, the detailed examination of execution times and the specific characteristics
of each schema collection highlight the nuanced performance differences between the two
methods. These insights are valuable for optimizing the hybrid approach and tailoring it
to leverage the strengths of both methods effectively.
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7.3 Hybrid Approach Workflow
In this section, we discuss the adaptive strategies that form the foundation of the hybrid
approach for JSON Schema data generation. The analysis conducted in the previous
section will guide us in developing various methodologies for integrating the optimistic and
pessimistic approaches. These methodologies aim to intelligently combine the strengths
of both approaches to achieve an optimal balance between efficiency and accuracy. We
will first introduce a naive strategy and then present more sophisticated strategies that
dynamically adapt based on the characteristics of the schema being processed.

7.3.1 Naive Approach
Since the analysis performed in the previous section and the detailed comparison between
the two methods revealed that the optimistic approach is faster in most cases, a straight-
forward strategy for building the hybrid system involves initially attempting to generate
JSON data using this method. The remarkable speed and efficiency of the optimistic ap-
proach make it an ideal starting point. If this initial attempt fails, the hybrid system then
falls back on the pessimistic method. By adopting this two-step process, the naive strategy
for the hybrid system effectively combines the strengths of both methods: leveraging the
speed of the optimistic approach for the majority of cases while ensuring completeness
through the pessimistic approach when necessary.

Table 7.5 summarizes the correctness results and execution times for the naive hybrid
approach across across the various schema collections. It includes columns for the success
rate, interruption errors (Interrupt.), generation failures (GenFail), logical errors, and ex-
ecution times, with both median and average values reported in milliseconds. The success
rates for each collection have already been discussed in the previous section, so we will not
revisit them here. Instead, we will focus on analyzing the execution times. This analysis
aims to assess the efficiency of the naive approach and identify both its advantages and
drawbacks. By examining its performance across different schema collections, we seek to
uncover trends and areas where optimizations and improvements may be needed, ultimately
refining the approach to achieve a better balance between speed and correctness.

collection Success Interrupt. GenFail Logical
Error

Time (ms)
med./avg.

Git 99.66% 0.28% 0.06% 0% 1/813
K8s 100% 0% 0% 0% 2/15
Snw 99.52% 0.48% 0% 0% 2/225
WP 100% 0% 0% 0% 5/65
CC4 100% 0% 0% 0% 1/7

Table 7.5: Naive hybrid approach: correctness results and execution times

The time measurement for the naive hybrid approach is structured to account for the
combined execution of both the optimistic and pessimistic methods, depending on the
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outcome of the optimistic approach. Specifically, if the optimistic method successfully
generates a valid result, the recorded time is solely the time taken by the optimistic ap-
proach. However, if the optimistic approach produces an invalid result, such as a logical
error or a GenFail, the time measured is the cumulative duration of the optimistic attempt
plus the time required by the pessimistic method to generate a valid result. In cases where
the optimistic approach encounters an interruption error, the time measurement varies
based on the type of error. For a timeout error, the recorded time includes the 5-minute
timeout duration plus the time the pessimistic method takes to generate a valid result. If
the interruption error is of a different nature, the time measured combines the duration
needed to detect the error, along with the subsequent time taken by the pessimistic method
to produce a valid outcome.

The table reveals that the median execution times for all schema collections align
precisely with the median times of the optimistic approach. This outcome was expected,
given the results of the analysis conducted in Chapter 6, which highlighted the optimistic
approach’s high success rate and speed. Since the naive hybrid system predominantly
relies on the optimistic method, the consistency in median times suggests that the system
effectively leverages the strengths of the optimistic approach in the majority of cases.

Another clear observation from the table is that, for the Kubernetes and Washing-
tonPost collections, the execution times match those of the optimistic approach exactly.
This result is due to the 100% success rate of the optimistic approach in these collections,
meaning there was no need to resort to the pessimistic approach.

In contrast, the other collections show an increase in average execution time. However,
this increase is almost insignificant in the Snowplow and Containment-draft4 collections. In
Snowplow, only 2 schemas required reprocessing with the pessimistic method because the
optimistic approach initially produced invalid results. Similarly, in the Containment-draft4
collection, despite the hybrid approach need to fall back on the pessimistic method for
20.59% of the schemas, the average execution time increase is minimal. This is attributed
to the low execution times of the pessimistic method in this collection. Compared to
the two collections, the GitHub collection exhibits a noticeable increase in the average
execution time. This increase can be attributed partly to the reprocessing of 90 schemas
that initially yielded incorrect results with the optimistic approach, requiring a fallback
to the pessimistic method. Additionally, a major contributor to the extended execution
time is the processing of 6 schemas that encountered interruption errors. Specifically, 4 of
these errors were timeout errors in the optimistic approach, which also resulted in lengthy
processing times with the pessimistic method. The remaining 2 errors were of other types,
detected immediately.

In conclusion, the naive hybrid approach offers several key advantages:

• Simplicity in Setup: It requires neither additional computational resources nor
complex schema manipulations and verifications.

• Efficiency: By leveraging the speed of the optimistic approach, the hybrid method is
highly efficient, particularly for schemas that the optimistic method handles correctly.
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• Execution Time: As observed across various collections, the execution time of the
naive hybrid approach is nearly identical to that of the optimistic approach, with the
exception of the GitHub collection.

• Performance: It outperforms the pessimistic method, and its success rates are at
least as good as, if not better than, those of both methods when run individually.

However, the approach does have limitations. In particular, as seen in the GitHub col-
lection, it can experience significant increases in execution time, primarily due to handling
timeout errors or schemas that the optimistic approach fails to process correctly. These
drawbacks highlight areas where the naive hybrid approach can be optimized. Addressing
these issues could further enhance its efficiency and effectiveness, making it an even more
robust solution for JSON Schema data generation.

7.3.2 Fallback Mechanism Optimization
While the naive hybrid approach provides a solid foundation, there are opportunities to
refine its fallback mechanism for better performance. In this section, we explore ways to op-
timize the process of switching between the optimistic and pessimistic methods. These op-
timizations aim to reduce the time overhead that occurs during fallback scenarios, thereby
improving the overall efficiency of the hybrid approach. By enhancing the decision-making
process and introducing smarter fallback strategies, we aim to create a more efficient and
effective system for JSON Schema data generation.

Post-Canonicalization Switch

A first optimization strategy we propose involves shifting the fallback decision point to
after the schema has been canonicalized. This strategy aims to switch to the pessimistic
approach earlier in the process. Instead of relying on failures during generation, logical
errors, or interruption issues to trigger the fallback, this strategy evaluates the schema’s
canonical form to determine if the optimistic approach should proceed.

The primary motivation for this strategy is that, once a schema is in its canonical
form, potential issues become easier to identify due to its normalized structure, making
generation-related problems more straightforward to detect. Additionally, previous experi-
ments have shown that across various schema collections, the generation phase is generally
more time-consuming than the canonicalization phase for many schemas, particularly in
the GitHub collection. By implementing the fallback decision after canonicalization, we
can bypass the generation phase for schemas that are unlikely to produce successful results,
thus saving both computational resources and time.

The primary focus of this optimization is to address generation failures. For interrup-
tion errors, timeout errors occur during the canonicalization phase, making it impractical
to address them post-canonicalization. Other interruption errors are detected instanta-
neously, so the optimization does not significantly impact their handling, as these errors
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are identified quickly during the generation phase. Regarding logical errors, the optimiza-
tion offers minimal benefit. These errors primarily result from current limitations in the
implementation of the optimistic approach and would require a translation mechanism for
regular expressions from JSON Schema to Brics [60] to be effectively resolved

In the following, we will detail how this post-canonicalization strategy functions, present
some results, and conclude by discussing its advantages and limitations.

Methodology. In the post-canonicalization decision strategy, the process begins with
executing the optimistic method until the schema has been canonicalized. Once the schema
is in its normalized form, our static verification checks whether the optimistic approach
can successfully generate JSON data. If this verification indicates a potential failure,
the hybrid system bypasses the optimistic generation attempt and directly invokes the
pessimistic method. This approach ensures that the optimistic method is only used when
it has a reasonable chance of success. The verification process on the canonicalized schema
must be efficient and less costly compared to the actual generation process.

The decision to either continue using the optimistic approach for generation or switch
to the pessimistic method is based on a static analysis of the canonicalized schema. Given
the incompleteness of the optimistic method, negation and conjunction can still be present
in the schema, potentially complicating the generation process. The static verification
involves traversing the schema to check for these operators in fragments that are essential
for generation. This process is not costly and helps determine the likelihood of success
for the optimistic approach. By ensuring that the optimistic approach generation step is
applied only when appropriate, this static analysis optimizes the overall generation process.

Before describing how the static verification is performed, let us introduce examples
of schemas for which generation will fail. These examples will help clarify the types of
schema structures that pose challenges during generation, particularly when they include
object or array constraints essential to fulfilling the schema’s overall specifications. Once
these examples are presented, we will move on to explaining the static verification process
and how it determines when generation is likely to fail.

Example 18 Consider the schema { "not": { "required": ["b"] } }. After applying
the canonicalization process to this schema, it is transformed into the normalized schema:
{ "not": { "type": "object", "required": ["b"] } }.

Now, consider the following schema in its canonical form that contains the previous
schema as a fragment. This schema restricts the structure of an object such that "a" must
exist and must not be an object containing a property "b". Since the schema corresponding
to the property "a" is a schema containing the negation operator, the generation of a value
for "a" will not proceed and returns GenFail, and because "a" is a required property, this
failure leads to the overall schema generation failing as well.
{ "type": "object",

"properties": { "a": { "not": { "type": "object", "required": ["b"] } } },
"required": ["a"]

}
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Example 19 Consider the following canonical schema that defines object instances where
the property "a" must exist and its value must be an array with at least two items. Addi-
tionally, the keyword patternProperties specifies that the value of any property that starts
with "a" followed by any number of occurrences of a given character must be an array with
at least one item. Furthermore, these arrays must not contain any objects that have a prop-
erty "b". Given these constraints, optimistic generation will fail for this schema because
it is not possible to generate valid value for the property "a". Consequently, generating a
valid instance for the entire schema is impossible.
{ "type": "object", "required": ["a"],

"properties": { "a": { "type": "array", "minItems": 2 } },
"patternProperties": {

"^a.*$": {
"type": "array", "minItems": 1,
"items": { "not": { "type": "object", "required": ["b"] } }

}
}

}

Following the examples, we now present the verification process for detecting schema
structures that lead to generation failures. As previously mentioned, our goal is to main-
tain a verification process that is efficient and not costly. To achieve this, we focus on
schema structures characterized by straightforward conditions that do not involve complex
computations or intricate verification.

To detect these schema structures, we define a recursive function isFail that determines
whether generation for a schema will fail. This function is defined as a set of rules denoted
by the judgment S → r, taking a schema S as its parameter and returning a boolean
value r, where r = T (true) indicates that generation will fail for S.

The rules (not-object-fail) and (not-array-fail) describe fundamental failure cases that il-
lustrate the smallest fragments of schemas where generation will fail. These cases cover
the generation process for negation (i.e. notTA) as outlined in the main generation algo-
rithm 5.5. Specifically, these rules apply to schemas resulting from the canonicalization of
{(objKW)+} and {(arrKW)+}, where objKW and arrKW denote an object and an array
keyword, respectively. These canonical forms represent the basic scenarios where schema
generation is inherently problematic due to their structure. By addressing these fundamen-
tal fragments, we establish the minimal conditions under which schema generation fails,
providing a foundation for understanding more complex failure cases.

S = { not : { type : object, (objKW )+ } }

S → T
(not-object-fail)

S = { not : { type : array, (arrKW )+ } }

S → T
(not-array-fail)
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The following rules (allOf-fail) and (anyOf-fail) describe generation failures for conjunc-
tions and disjunctions. These cases correspond to the generation process for conjunction
and disjunction outlined in the main generation algorithm 5.5. Generation will fail for the
conjunction if it contains at least one sub-schema for which generation fails. Regarding
disjunction, generation will fail if it fails for all of its sub-schemas.

S = { allOf : [ S1, . . . , Sn ] } r = ∨n
i=1isFail(Si)

S → r
(allOf-fail)

S = { anyOf : [ S1, . . . , Sn ] } r = ∧n
i=1isFail(Si)

S → r
(anyOf-fail)

The rule (required-fail) specifies that generation will fail for the schema S if a required
property matches a pattern whose corresponding schema leads to generation failure. This
rule covers the scenario outlined in Example 18.

S = {type : object, patternProperties : { p1 : S1, . . . , pm : Sm },

required : [ k1, . . . , kn ], K⃗}
r = ∃i ∈ {|1 . . . n|}, j ∈ {|1 . . . m|}. (ki ∈ L(pj)) ∧ isFail(Sj)

S → r
(required-fail)

The second rule for objects, denoted (minProperties-fail), addresses the schema struc-
tures illustrated in Example 19. It asserts that if the schema requires instances to have at
least one key-value pair, and if patternProperties contains patterns whose corresponding
schemas lead to generation failures, then generation will fail for S.

S = {type : object, patternProperties : { p1 : S1, . . . , pm : Sm },

minProperties : min, K⃗}
r = (min ≥ 1) ∧ (∧m

i=1isFail(Si))
S → r

(minProperties-fail)

The rule (contains-fail) states that in the presence of the contains constraint in an
array schema, generation will fail if generation for the schema of contains results in Gen-
Fail and if the function minCinS(S) returns T (true). This function checks the condition
(minContains ̸∈ keys(S)) ∨ (minContains ∈ keys(S)∧ S(minContains) ≥ 1), which de-
termines whether the contains constraint must be satisfied. Here, keys(S) returns the
keywords present in S, and S(minContains) returns the value of minContains in S.

S = {type : array, contains : Sc, K⃗}
r = minCinS(S) ∧ isFail(Sc)

S → r
(contains-fail)
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The rule (contains-prefixItems-fail) indicates that if the contains constraint is present
in the schema S and must be satisfied, and if the schema also contains the prefixItems
array, then generation will fail for the whole schema if it fails for the first schema in
prefixItems. This is because any instance that satisfies the schema must include at least
one item that meets the contains constraint. Therefore, if generation fails for the first
schema in prefixItems, denoted S1, the generation process for the entire schema S will
fail.

S = {type : array, contains : Sc, prefixItems : [ S1, . . . , Sn ], K⃗}
r = minCinS(S) ∧ isFail(S1)

S → r
(contains-prefixItems-fail)

In the presence of the contains constraint in an array schema, where it must be sat-
isfied, and with items included but prefixItems absent, meaning that the items of any
valid instance must conform to the specifications of items, the rule (contains-items-fail)
states that if the generation process results in GenFail for the schema of items, then the
generation for the entire schema S will fail.

S = {type : array, contains : Sc, items : Sit, K⃗}
r = minCinS(S) ∧ prefixItems ̸∈ keys(S) ∧ isFail(Sit)

S → r
(contains-items-fail)

The rule (minItems-prefixItems-fail) specifies that generation for the schema S will fail
under two conditions: first, if the schema requires instances to have at least min items, and
second, if generation fails for any schema in prefixItems where the index is less than or
equal to min. When both conditions are met, the generation process for the entire schema
S will fail.

S = {type : array, minItems : min, prefixItems : [ S1, . . . , Sn ], K⃗}
r = (min ≥ 1) ∧ (∃i ∈ {|1 . . . n|}. (i ≤ min) ∧ isFail(Si))

S → r
(minItems-prefixItems-fail)

Similar to the rule (contains-items-fail), the rule (minItems-items-fail) indicates that
in the absence of prefixItems and the presence of items, generation will fail for S if S
requires the instances to have at least one item and the generation for the schema of items
results in failure. This rule covers the scenario involving the array sub-schema within
patternProperties in Example 19.

S = {type : array, minItems : min, items : Sit, K⃗}
r = (min ≥ 1) ∧ prefixItems ̸∈ keys(S) ∧ isFail(Sit)

S → r
(minItems-items-fail)
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Finally, rule (minItems-prefixItems-items-fail) addresses scenarios where both prefixItems
and items are present. If the schema requires more items than are specified in prefixItems,
and if the schema for items leads to a generation failure, then the generation for the entire
schema S will also fail

S = {type : array, minItems : min, prefixItems : [ S1, . . . , Sn ], items : Sit, K⃗}
r = (min > n) ∧ isFail(Sit)

S → r
(minItems-prefixItems-items-fail)

Results. To assess the benefits of this optimization, we analyzed the execution times
for schemas where generation resulted in failures. By focusing on these cases, we aimed
to determine whether the optimization effectively reduces processing time and improves
performance. This examination allows us to verify if the post-canonicalization switch suc-
cessfully identifies problematic schemas earlier, thereby avoiding costly generation attempts
and contributing to a more efficient overall process.

Figure 7.5 displays the distribution of execution times for the generation phase of
schemas in the GitHub collection that resulted in generation failures. Out of the 52 schemas
that encountered generation failures, 45 had execution times of 0 milliseconds, as shown in
the plot. For the remaining schemas, while the execution times were not zero, they were
still relatively insignificant. This distribution highlights that the generation phase generally
completed almost immediately for most schemas, indicating that the proposed optimization
does not significantly impact or improve the handling of these specific schemas. This
outcome is attributed to the fact that the majority of these schemas triggered generation
failures through the basic cases addressed by the main generation algorithm 5.5, with their
canonical forms commonly featuring either a negation or conjunction operator at the root
level. Regarding the other collections, generation using the optimistic approach resulted
in failures only for the Containment-draft4 collection, where, similarly, these failures were
detected immediately.

Even though the proposed optimization doesn’t target logical errors, we are still in-
terested in examining the execution times of schemas that encountered these errors. By
analyzing these times, we aim to gain further insights into how the generation phase per-
forms in these cases. This analysis will provide a more complete picture of the overall
execution times, even for scenarios not directly improved by the optimization.

Figure 7.6 highlights the execution times for schemas encountering logical errors in the
GitHub collection. The generation phase completes almost immediately for the majority
of schemas, with only a few outliers showing longer execution times, typically due to
complex patterns. Similarly, for the other collections, Snowplow and Containment-Draft4,
the analysis of schemas with logical errors reveals the same behavior, as generation also
concludes quickly across these collections.

In conclusion, while the post-canonicalization fallback optimization represents a well-
considered effort to improve the hybrid approach, it comes with notable limitations. The
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Figure 7.5: Distribution of Execution Times for the Generation Phase of Failed Schemas
in the GitHub Collection

Figure 7.6: Distribution of Execution Times for the Generation Phase of Schemas with
Logical Errors in the GitHub Collection
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primary drawback is that this optimization focuses solely on generation failures, leaving
interruption errors unresolved. Since timeout errors typically arise during the canonical-
ization phase, optimizing post-canonicalization provides no solution for these cases. Addi-
tionally, logical errors remain unaddressed by this strategy due to inherent limitations in
the optimistic approach, particularly in processing complex regular expressions.

Furthermore, the analysis of execution times for schemas encountering generation fail-
ures indicates that this optimization yields minimal gains in practice. For both the GitHub
and Containment-Draft4 collections, generation failures were detected almost immediately,
offering no significant performance improvements. These observations suggest that while
the optimization reduces some overhead, its overall impact may be limited for certain
schema collections.

Despite these observations, it is important to note that the schema collections used in
this study are specific examples. In more diverse or complex scenarios, this optimization
has the potential to enhance JSON Schema data generation, particularly for schemas where
the generation phase is time-intensive and prone to failure. Therefore, while the current
benefits are limited, this strategy might still offer advantages in practical scenarios involving
more complex schema structures.

Pre-Canonicalization Switch

In continuation of our efforts to improve the hybrid approach and address the limitations
of the previous optimization strategy, we introduce the pre-canonicalization switch opti-
mization. This new strategy proposes moving the fallback decision point to before the
canonicalization phase begins. The goal is to address timeout errors more effectively and
enhance the overall efficiency of the hybrid method by avoiding both the canonicalization
and generation phases for schemas that are likely to result in generation failures.

The core idea behind this approach is to assess the schema’s potential for failure before
starting canonicalization. By identifying problematic schemas earlier in the process, we
can avoid triggering canonicalization and generation phases for schemas that are expected
to fail. This proactive strategy aims to save computational resources and reduce processing
time, thereby enhancing the overall efficiency of the hybrid approach pipeline.

In the sections that follow, we will detail the mechanics of the pre-canonicalization
switch strategy, present results from its implementation, and discuss its advantages and
limitations. This strategy is designed to address the inefficiencies observed with the pre-
vious optimization by focusing on early detection of issues and reducing unnecessary pro-
cessing.

Methodology. In the pre-canonicalization switch strategy, the evaluation of the schema
starts immediately after the reference expansion phase. This early assessment aims at
identifying schemas that are likely to fail, thereby allowing us to bypass both the canoni-
calization and generation phases for such schemas and directly call the compete and correct
approach.
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To implement this strategy, we use a recursive function named isFail2. Similar to the
isFail function used in the post-canonicalization switch, isFail2 determines the likelihood
of failure for a schema based on its structure following reference expansion. Defined by a
set of rules, this function serves the same purpose of early failure detection. As with our
previous approach, this early detection process is designed to be efficient and less costly
than the canonicalization and generation phases.

The rules used in the function isFail2 to capture failures for schemas featuring disjunc-
tion, as well as those handling schemas that describe arrays and objects, are similar to those
defined for the isFail function in the post-canonicalization switch. For disjunction, failure
is determined when generation fails for all its sub-schemas. Similarly, for schemas describ-
ing arrays and objects, the failure conditions follow the same rules established for isFail,
ensuring consistency in the evaluation of these schema structures across both optimization
strategies.

The rule (not-fail2) is used to detect generation failures in specific schema structures
that contain the keyword not. The schema S may include additional keywords, repre-
sented by the list of assertions K⃗. Regardless of the other keywords present, under certain
conditions, the sub-schema S ′ associated with the keyword not is sufficient to determine
whether generation will result in a GenFail outcome for the entire schema S. The function
isDisjunct takes the schema S ′ and returns T if those specific conditions are met, indicating
that generation will fail.

S = { not : S ′, K⃗ } type ̸∈ keys(S) r = isDisjunct(S ′)
S → r

(not-fail2)

Specifically, the function isDisjunct verifies whether a schema is of the form
{(type:allTypes)?,(objKW | arrKW)+}. Here, allTypes is an array containing all the
JSON Schema data types, and the presence of the keyword type is optional. The terms ob-
jKW and arrKW denote an object and an array keywords, respectively, with the condition
that at least one of these keywords must be included. isDisjunct(S’) returns T if:

• S ′ = { KW1, . . . , KWn } where ∀i ∈ {|1 . . . n|}. KWi is an object or an array keyword.

• S ′ = { type : allTypes, KW1, . . . , KWn } where ∀i ∈ {|1 . . . n|}. KWi is an object or
an array keyword.

• S ′ = { anyOf : [ S1, . . . , Sn ] } where ∀i ∈ {|1 . . . n|}. KWi is an object or an array
keyword and ∄i, j ∈ {|1 . . . n|}. j ̸= i where Si = { objKW1, . . . , objKWm } and
Sj = { arrKW1, . . . , arrKWl }

In addition to the rule used to detect failures in schemas containing conjunctions, as
defined in the previous optimization strategy, which specifies that a generation failure in a
sub-schema leads to the failure of the root schema, the function isFail2 incorporates this
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rule as well. However, it also includes additional rules to handle a wider range of schema
structures.

The following rules, (allOf-fail-obj) and (allOf-fail-arr), are designed to identify genera-
tion failures in schemas describing conjunctions involving objects and arrays, respectively.
In these rules, none of the individual sub-schemas within the conjunctions causes gener-
ation failure on its own. For instance, in the rule for objects, the schema with negation
effectively represents a disjunction of all other types combined with the negation of the
object schema. Since any value of a different type is valid, this schema alone does not
result in generation failure. However, when combined with other schemas that exclusively
describe objects, the values of other data types become invalid. Because the negation
for objects cannot be removed, the schema ends up with persistent negation, leading to
generation failure for the entire schema.

S = { (type : object)?, allOf : [ S1, . . . , Sn ], K⃗ } n ≥ 2
r = ∃i ∈ {|1 . . . n|}. Si = { not : { type : object, (objKW )+ } }

∧ ∀j ∈ {|1 . . . n|}. j ̸= i, Sj = { type : object, (objKW )∗ }
S → r

(allOf-fail-obj)

S = { (type : array)?, allOf : [ S1, . . . , Sn ], K⃗ } n ≥ 2
r = ∃i ∈ {|1 . . . n|}. Si = { not : { type : array, (arrKW )+ } }

∧ ∀j ∈ {|1 . . . n|}. j ̸= i, Sj = { type : array, (arrKW )∗ }
S → r

(allOf-fail-arr)

In addition, since the verification process is conducted before canonicalization, the
boolean operator oneOf is also included in this failure detection strategy. We use the
following rule to detect schema structures that cause a schema containing this operator
to result in generation failures. Given the complexity of this operator, our focus is on
covering basic schema structures that do not require complex verification. These schema
structures were discovered after analyzing schemas for which generation fails, ensuring that
our detection strategy is targeted and relevant. The failure of a schema containing oneOf
can be effectively detected depending on the structure of the sub-schemas within the oneOf
operator and their interactions. To detect these interactions that lead to failure, we use
the function oneOfCond, which returns T if certain conditions are met by the sub-schemas
within oneOf.

S = { oneOf : [ S1, . . . , Sn ], K⃗ } r = oneOfCond([ S1, . . . , Sn ])
S → r

(oneOf-fail)

Before delving into the explanation of how the function oneOfCond works, it is impor-
tant to note that during canonicalization, the oneOf operator is translated into its logical
equivalent: a disjunction of conjuncts, where each conjunct contains negation. In these
conjuncts, all sub-schemas within oneOf are negated except for one. The schema structures

127



we aim to cover here are those describing objects and arrays, regardless of whether the type
keyword is present or not.

Table 7.6 presents the schema structures we are analyzing, the schemas produced after
applying the canonicalization process to these patterns, and their corresponding nega-
tions. In this context, Obj represents schemas describing objects that include at least one
object-related keyword, represented by {type:object,(objKW)+}. Similarly, Arr refers to
schemas describing arrays, represented by {type:array,(arrKW)+}. The function co is
used to denote schemas that capture instances not covered by its schema parameter. For
example, co(Obj) captures instances that are not valid against the schema Obj. Moreover,
otherTypes captures all JSON schema types except the one appearing in the disjunction.
For instance, in otherTypes ∨ co(Obj), otherTypes is equivalent to the disjunction of
all types except objects.

Schema structure Canonicalization Negation
Obj Obj otherTypes ∨ co(Obj)
Arr Arr otherTypes ∨ co(Arr)

{not:Obj} otherTypes ∨ co(Obj) Obj
{not:Arr} otherTypes ∨ co(Arr) Arr

{(objKW|arrKW)+}} otherTypes ∨ Obj ∨ Arr co(Obj) ∨ co(Arr)
{not:{(objKW|arrKW)+}} co(Obj) ∨ co(Arr) otherTypes ∨ Obj ∨ Arr

Table 7.6: Schema structures with corresponding canonicalized forms and negations

Since each conjunct resulting from the canonicalization of the oneOf operator contains
exactly one positive schema, with all the others negated, we will analyze the outcome of
the conjunction of the canonicalized version of each schema structures from the previous
table with the negations of each schema structures.

The matrix M+ represents the outcome of these conjunctions, where the rows represent
the canonicalized schemas and the columns their negations. To simplify the notation,
we substituted {(objKW|arrKW)+ with {(KW)+}. A value 0 in the matrix indicates that
the conjunction of the two schemas will not proceed, meaning that generation will fail.
Conversely, a value of 1 signifies that the conjunction is successful and the generation will
proceed.

M+ =



Obj Arr {not:Obj} {not:Arr} {(KW)+} {not:{(KW)+}}
Obj 0 1 1 1 0 1
Arr 1 0 1 1 0 1
{not:Obj} 1 1 0 1 0 1
{not:Arr} 1 1 1 0 0 1
{(KW)+} 1 1 1 1 0 1
{not:{(KW)+}} 0 0 0 0 0 0


All the values on the diagonal are equal to 0. This is because no schema structures can

be successfully combined with its own negation. For instance, the schema structures Obj
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cannot be successfully merged with its negation, which is otherTypes ∨ co(Obj). The
conjunction of Obj with each of the other types results in the schema false, and the only
remaining conjunction is Obj and co(Obj), which cannot be merged.

Similarly, consider the schema structures {not:{(objKW|arrKW)+}}. The canonicalized
version of this pattern, when conjuncted with the negations of all other patterns, cannot
be successfully combined. This is because it represents the complement of objects and
arrays, and these complements cannot be merged with any negation of the other schema
structures.

In contrast, an example of a successful conjunction with a value of 1 is the canonicalized
version of {not:Obj} combined with the negation of {not:{(objKW|arrKW)+}}. Genera-
tion will be successful for this conjunction because otherTypes in the first schema struc-
tures includes all types except object, while the negation in the second schema structures
includes all types except object and array. Thus, their combination covers all necessary
types for successful generation.

Additionally, since all schemas are negated except one, we must also analyze the inter-
actions between the negated versions of the schema structures themselves. This involves
evaluating how the conjunctions of the negated schema structures interact with each other.
By examining these interactions, we can gain a more comprehensive understanding of how
combining negations impacts the overall generation process. The results of this analysis
are presented in the matrix M-, which complements the results from M+ by offering insights
into the effects of negating and combining different schema structures.

M- =



Obj Arr {not:Obj} {not:Arr} {(KW)+} {not:{(KW)+}}
Obj 1 1 0 1 0 1
Arr 1 1 1 0 0 1
{not:Obj} 0 1 1 1 0 1
{not:Arr} 1 0 1 1 0 1
{(KW)+} 0 0 0 0 0 0
{not:{(KW)+}} 1 1 1 1 0 1



Now that we have identified the interactions between all the schema structures, including
the canonicalized versions with their negations and the interactions among the negated schema
structures themselves, we will visualize these relationships by constructing graphs. We first use
the matrix M+ to build graphs, where the nodes represent schema structures and an edge between
two nodes corresponds to a value of 1 in the matrix, indicating the possibility of merging those
patterns. Afterward, we will use the matrix M- to complete the graphs by adding edges between
the negated schema structures.

Figure 7.7 represents the graphs that illustrate these interactions. In these graphs, we
use abbreviations to represent the different schema structures: O stands for {type:object,
(objKW)+}, A for {type:array, (arrKW)+}, KW for {(objKW|arrKW)+}, NO for the negation
{not:{type:object, (objKW)+}}, NA for {not:{type:array, (arrKW)+}},
and NKW for {not:{(objKW|arrKW)+}}. In this context, the superscript - is used to represent the
negation form of a schema, while its absence represents its canonical form.
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Now that we have introduced all the necessary material, we return to the function oneOfCond,
which evaluates whether the schemas within the oneOf operator could potentially cause gener-
ation failures. This assessment is performed by analyzing the graphs presented in Figure 7.7.
Specifically, the function checks whether, within the graphs containing the canonical forms of the
schema structures corresponding to the schemas within oneOf (excluding graphs that contain the
canonical forms of the schema structures not present in oneOf), there exists a subgraph where all
the schema structures form a fully connected component. For a fully connected subgraph to be
valid, it must include at least one schema in its canonical form, with the other schemas in their
negated forms. If such a fully connected subgraph exists, merging these schemas is feasible, and
the generation will proceed. If no fully connected subgraph meeting these criteria can be found,
the function returns T , indicating that generation will fail.

Example 20 Consider the following schema, the schema structures featured within the oneOf
operator are {(objKW|arrKW)+} (KW) for the first and last schemas, {type:object,(objKW)+}
(O) for the second schema, and {not:{type:object,(objKW)+}} (NO) for the third schema.

Here, the function oneOfCond only checks the graphs containing the canonical forms KW,
O, and NO, which correspond to the graphs of Figures 7.7e, 7.7a and 7.7c. Since the three nodes
representing these schema structures are not connected in any of these graphs, oneOfCond returns
T , indicating that generation will fail.

It’s important to note that the simultaneous appearance of these schema structures will always
lead to generation failures, even in the presence of other schema structures.

{ "oneOf": [
{ "required": ["a"] },
{ "type": "object", "required": ["a","b"] },
{ "not": { "type": "object", "required": ["c"] } },
{ "required": ["b","d"] }

]
}

Example 21 Consider the following schema that only contains the schema structures KW. The
function oneOfCond checks the graph shown in Figure 7.7e. Since the nodes labeled KW and KW-

are not connected, the function also returns T .

{ "oneOf" : [
{ "properties": { "a": true, "b": true }, "minProperties": 2 },
{ "required": ["a", "b"] }

]
}

Example 22 Consider the following schema, which contains the schema structures O, NKW and
NO. Since the graph of figure 7.7a contains a complete subgraph with the three nodes labeled O, NKW-

and NO-, the function oneOfCond returns F , indicating that the generation will be successful.
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{ "oneOf" : [
{ "type": "object", "properties": { "a": true, "b": true },

"minProperties" : 2 },
{ "not": { "required" : ["a", "b"] } },
{ "not": { "type": "object", "required" : ["c"] } }

]
}

Results. Table 7.7 presents the results from applying this new optimization to the
GitHub and containment-draft4 collections, which are the only ones containing schemas
that encountered generation failures and interruption errors.

We recall that both the naive hybrid approach and the previous version of the hybrid
approach optimized with the earlier strategy had similar execution times, as the earlier
strategy had a nearly insignificant impact. However, as shown in the table, this new
strategy demonstrates some improvements. The average execution times for both the
GitHub and containment-draft4 collections have decreased compared to those recorded
previously. In the containment-draft4 collection, the improvement is minimal, which is
attributed to the fast processing of schemas in this collection by both the optimistic and
pessimistic methods. In contrast, the GitHub collection shows a more significant gain.
Specifically, the function isFail2 successfully detected the failure outcomes for the 3 out of 4
schemas that previously encountered timeout errors. Additionally, the strategy contributed
to reduced execution times for schemas that were processed correctly but had previously
resulted in generation failures.

Moreover, the new optimization strategy enhances our ability to detect schemas that
experienced timeout errors when processed with the optimistic approach. Out of the 22
schemas that previously encountered timeout errors, this verification process identified
19 as failures. The remaining 3 schemas include 1 that experienced a timeout during the
reference expansion phase and could not be detected, and 2 that exhibited complex schema
structures not covered by the isFail2 function.

collection Success Interrupt. GenFail Logical
Error

Time (ms)
med./avg.

Git 99.66% 0.28% 0.06% 0% 1/670
CC4 100% 0% 0% 0% 1/6.21

Table 7.7: optimized hybrid approach: correctness results and execution times

The pre-canonicalization switch optimization introduces notable improvements over the
previous strategy by addressing some of the key limitations of the post-canonicalization
fallback. Unlike its predecessor, this new approach tackles both generation failures and
interruption errors, particularly timeout issues that arise during the canonicalization phase.
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Figure 7.7: Schema structures interactions

By detecting failure-prone schemas before canonicalization begins, the function isFail2 has
successfully reduced execution times and improved overall efficiency in the hybrid approach.
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While some schemas remain unaddressed by this strategy, particularly those that en-
counter timeouts during reference expansion and complex patterns not detected by the
static analysis, the overall impact of the pre-canonicalization switch is promising. It of-
fers a more robust solution for optimizing JSON Schema data generation, especially in
scenarios where the generation process is resource-intensive and prone to failure.

To conclude, this strategy is a valuable addition to help optimise the hybrid approach, as
it shows significant improvements in performance and error handling. Future refinements,
targeting even more complex schema structures could further extend its effectiveness.

7.4 Conclusion
The development and evaluation of the hybrid approach for JSON Schema data genera-
tion presented in this chapter offer significant advancements over existing strategies. By
combining the pessimistic (pessimistic) approach with the faster, more flexible optimistic
approach, the hybrid methodology has demonstrated a balanced solution capable of ad-
dressing a wide variety of schemas, while maintaining both correctness and efficiency.

Through the optimizations proposed, we have seen incremental improvements in both
performance and error handling. The naive hybrid approach laid the groundwork, showing
that a straightforward combination of the two methods could yield comparable success
rates and execution times to the optimistic approach, particularly for simpler schemas.
However, limitations in handling more complex or failure-prone schemas highlighted the
need for further refinement.

The introduction of the post-canonicalization fallback optimization addressed specific
issues related to generation failures but struggled to resolve interruption errors, particu-
larly those occurring during the canonicalization phase. While this strategy reduced some
computational overhead, its impact was limited, especially for schema collections where
failure detection occurs immediately.

The pre-canonicalization switch optimization, on the other hand, provided a more sub-
stantial improvement by proactively addressing both generation failures and interruption
errors. By implementing failure detection earlier in the process, we successfully reduced
execution times and improved the efficiency of the hybrid approach, especially in scenarios
where resource-intensive operations previously led to timeouts. Although some schemas re-
main beyond the reach of this strategy, it represents a more robust and adaptable solution
for complex schema structures.

Overall, the hybrid approach, particularly with the integration of the pre-canonicalization
switch, shows significant promise for optimizing JSON Schema data generation.
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Chapter 8

Conclusion

8.1 Summary and Key Findings

This thesis has explored the problem of data generation for JSON Schema, a widely adopted
vocabulary used to describe the structure and semantics of JSON data, which is crucial
for web APIs and is supported by a large ecosystem of tools. Data generation serves not
only as a means to address challenging theoretical problems but also as a practical tool for
verifying program consistency and validating functionalities.

In Chapter 3, we introduced the syntax of both JSON and JSON Schema, providing a
detailed overview of the latter’s features and constraints while focusing on a subset of the
Draft 2019 version [69]. To streamline the analysis and avoid the additional complexity
introduced by certain operators, we intentionally excluded functionalities such as dynamic
referencing.

We then presented in Chapter 4 an existing method for witness generation in JSON
Schema, which guarantees both correctness and completeness by generating valid instances
for satisfiable schemas while flagging unsatisfiable ones. This method, referred to as the
pessimistic approach, includes a preprocessing phase that simplifies the schema by elimi-
nating complex constructs like negations and thoroughly prepares object and array types
for more efficient instance generation. While this method is capable of producing a single
valid instance, adapting it for multiple instances generation is possible but does not confirm
that these instances will be distinct, which is one of the method’s limitations. Additionally,
it does not support the uniqueItems constraint in arrays, which enforces the uniqueness of
values within arrays.

In Chapter 5, we introduced our novel optimistic approach, which emerged from an
extensive experimental analysis of both the pessimistic method and other existing tools,
such as JSON Generator (DG) [28] and the Containment checker (CC ) tool [51, 46], mark-
ing a key contribution of this thesis. This analysis was conducted on a diverse set of
schema collections, as outlined in Table 4.2, to evaluate the performance of the pessimistic
approach against the other data generation methods. The experiments highlighted that
while the pessimistic approach guarantees both correctness and completeness, its compu-
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tational overhead limits its practicality in certain scenarios. Conversely, JSON Generator
(DG), which directly generates instances without a preprocessing phase, belongs to the
class of optimistic solutions that prioritize efficiency over completeness. Although this
optimistic approach yielded faster results, it struggled with more complex schemas, partic-
ularly those involving intricate constraints like negation and conjunction. These findings
motivated the design of our own optimistic approach, drawing on the advantages and short-
comings identified during the comparative analysis. The Containment checker (CC ) tool
[51, 46], although specifically designed for schema inclusion rather than data generation,
also influenced how our method handles schema complexities.

Through this thorough evaluation of existing approaches, we conceptualized our op-
timistic approach, focusing on balancing the correctness of the pessimistic solution with
the speed of existing optimistic methods while addressing key challenges such as array
uniqueness (uniqueItems) and generating multiple distinct instances. This new optimistic
method is designed as an alternative to the existing approaches, aiming to maximize effi-
ciency at the expense of completeness. Unlike JSON Generator (DG), this approach relies
on a preprocessing phase that is less complex and complete than that of the pessimistic
method, adapted from the methodologies described in [46], along with elements drawn
from the preprocessing of the pessimistic approach. Notably, we deliberately avoided the
complete elimination of negation constructs, which contributes to the incompleteness of
this approach.

The optimistic approach advances the state of the art in data generation for JSON
Schema by addressing challenges such as generating arrays under the uniqueItems con-
straint. It effectively provides a solution that is not based on randomness and does not
involve high computational overhead, facilitating the creation of multiple distinct instances.
The comprehensive experimental analysis highlighted in Chapter 6 has confirmed its effi-
ciency across various aspects. In comparison with both the pessimistic method and other
optimistic tools like JSON Generator (DG)[28], JSON-Schema-faker (JSF)[1], and JSON-
everything (JE)[36], our method demonstrated balanced performance, particularly when
considering efficiency and correctness time as combined metrics.

Despite its strengths, the optimistic approach has its limitations. These drawbacks
have been discussed throughout the thesis and are summarized as follows:

• One of the limitations is that we considered only a subset of the Draft 2019 version of
JSON Schema, omitting a few operators. This omission arises because prior versions
of JSON Schema, such as Draft-06 [70], are the most widely used. Consequently,
we primarily focused on the operators included in those earlier versions and incorpo-
rated only a few from the latest version, specifically excluding features like dynamic
referencing.

• Incompleteness: This is the major limitation of our approach. Given its design for
efficiency, we opted for a preprocessing phase that performs basic transformations,
during which negation is not completely eliminated, particularly when dealing with
object and array types. This decision arises from the fact that complete negation
elimination has already been explored in JSON Schema [72], and addressing it in our
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context does not provide additional value. The incompleteness is indicated by the
method’s failure to generate instances, returning GenFail as a signal to users that
generation cannot proceed. Despite this limitation, our approach performs well across
various real-world schema collections; however, this issue is particularly noticeable
in the HW schema collection, where it achieves a low success rate along with a high
GenFail rate, as highlighted in Table 6.1.

• String generation: another significant limitation arises from the approach’s inconsis-
tency in generating correct string values, as it occasionally produces incorrect results
for certain cases. This issue stems from the lack of a mechanism for translating
ECMA-262 [39], the language of the regular expressions used by JSON Schema, into
the language supported by Brics [60], the library employed for generating string val-
ues. The absence of a complete translation mechanism is a deliberate choice, as
it does not add significant value. The complete translation is already defined in
the context of the pessimistic approach [11, 12], which implements this translation
mechansim. Thus, this limitation is more an issue of implementation within the
optimistic tool rather than an inherent limitation of the approach.

• Limited support for array keywords: as stated in Remark 4, we only consider single
contains schemas in our generation process, ignoring the cases involving conjunction.
Given the existential nature of this operator, it is not sufficient to simply process and
merge the schemas; each schema of contains requires a specific number of items to
satisfy its constraints (indicated by minContains, if present). Consequently, devel-
oping a complete solution to address this complexity would be more intricate and
could potentially decrease the efficiency of our approach; thus, we have decided not
to consider it for now. Additionally, the maxContains constraint is ignored because its
involvement necessitates negating the contains schema. Given our partial elimina-
tion of negation, the result generally ends up in generation failures when encountering
object and array types.

• Despite the unsatisfiability verification presented in Section 5.3.1, the approach leaves
some cases unaddressed that involve complex verifications that cannot be performed
statically. The approach does not conduct any verification during the generation
process, resulting in scenarios where, for example, the method indicates a generation
failure while the processed schema is actually unsatisfiable.

• While the proposed approach for generating JSON arrays in the presence of uniqueItems
in Section 5.3.5 showed promising results as highlighted by the experimental analysis
of Chapter 6, there are a few scenarios that may lead to generation failure. These
scenarios occur when the order of visiting the schemas does not allow for generating
enough values, and the algorithm that checks for the existence of a perfect matching
(or a maximum cardinality matching) has not found one. Additionally, the genera-
tion of multiple arrays respecting the uniqueness constraint is not supported, which
is essential for handling nested arrays with unique items.
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• Other limitations include those that are not inherent to the approach but rather
stem from the choices we made. The approach is deterministic and always generates
the same set of values for a given schema. One limitation is that it does not allow
users to control the instances generated, nor does it enable covering different types of
instances by exploring various branches of the schema during each generation. While
this issue is interesting, it represents a broader challenge on its own.

• Our generation technique only allows for synthetic generation, meaning that the
generated values do not always reflect the context. For example, if a schema re-
quires a property called "name", with its corresponding schema defined as "type":
"string", our generator will produce valid string values without considering the se-
mantics. As a result, the technique lacks support for generating real data that is
more aligned with the intended context.

Finally, to overcome some of the limitations of the optimistic approach and design a
more robust solution, we introduced a hybrid approach in Chapter 7 that combines the
strengths of both the pessimistic and optimistic methods. This preliminary design show-
cased promising results, demonstrating its capability to address a wider variety of schemas
while maintaining both correctness and efficiency. The initial implementation of the hy-
brid approach revealed that a straightforward integration of the two strategies could yield
competitive success rates and execution times, especially for simpler schemas. However, it
also highlighted the need for further refinement when dealing with more complex schema
structures. The introduction of various optimizations, such as the post-canonicalization
fallback and the pre-canonicalization switch, aimed to enhance performance and error han-
dling. Overall, the hybrid approach represents a significant advancement in JSON Schema
data generation, offering a balanced solution that effectively leverages the benefits of both
methodologies.

8.2 Perspecitives for Data Generation for JSON Schema
From the various insights gained throughout our work on JSON Schema, we intend to de-
fine some directives for the novel optimistic approach, as well as for the hybrid approach.
These directives will serve as a foundation for future enhancements and refinements, ad-
dressing the limitations identified in the research while maximizing the effectiveness of the
generation process. By synthesizing these findings, further investigations can be guided
to advance the state of the art in JSON Schema data generation and ensure that the ap-
proaches remain aligned with the evolving needs of users and the broader ecosystem of web
APIs.

The novel optimistic approach introduced has shown promising results despite the limi-
tations outlined in the previous section, demonstrating competitive performance by balanc-
ing efficiency and correctness. However, to further enhance this approach as a foundational
element of the hybrid method, several areas of improvement deserve exploration.
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Language Coverage. A key improvement involves expanding the optimistic approach
to consider the entire language defined by the latest version of JSON Schema. While this
is a relatively minor concern given the widespread adoption of prior versions, aligning with
the latest specifications will enhance the approach’s robustness and applicability, allowing
us to build a solution that is easy to adapt to novel versions of the schema language.

Improvement of Negation Elimination. Although complete elimination of negation
is a complex task, certain scenarios allow for feasible simplifications without exhaustive
processing.

Example 23 For instance, consider the following object schema S that solely contains the
minProperties and maxProperties constraints:

{ "type": "object", "minProperties": min, "maxProperties": max }

Eliminating negation in a schema composed of the negation of S, { "not": S }, is
straightforward and does not require complex processing. Handling such cases efficiently will
enhance both the completeness and performance of the optimistic approach. The resulting
schema after negation elimination is as follows:

{ "anyOf": [
{ "type": "null" }, { "type": "boolean" }, { "type": "integer" },
{ "type": "number" }, { "type": "string" }, { "type": "array" },
{ "type": "object", "minProperties": max+1 },
{ "type": "object", "maxProperties": min-1 }

]
}

Heuristic Evaluation for UniqueItems. To improve the generation of arrays under
the uniqueItems constraint, a possible approach would consists of adopting heuristics that
evaluate the domain sizes of candidate schemas, ensuring an optimal order of traversal
to prevent generation failures. By carefully determining this order, we can increase the
chances of producing valid instances. Building on this, the problem can be extended from
generating a single array to generating N distinct arrays conforming to the uniqueItems
constraint. This extension will involve constructing a bipartite graph and identifying N
perfect matchings, significantly boosting the robustness and scalability of the approach.

Schema Coverage for Diverse Instances. Improving the generation process by re-
fining the exploration of branches within the schema is essential for generating diverse
instance types. This coverage problem is more complex than merely producing instances
that differ in field values. A comprehensive analysis of schema exploration strategies will
be necessary to ensure a rich variety of generated instances.
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Integration of Large Language Models (LLMs). Machine learning, and particularly
Large Language Models (LLMs), presents an exciting opportunity to enhance the gener-
ation of real-world data. LLMs have shown promising results in understanding context
and generating specific data types. By integrating calls to LLMs, we can significantly im-
prove the realism of generated data, aligning it more closely with the intended application
context.

User-guided Generation. Giving users more control over the generation process could
greatly improve the flexibility and usefulness of the approach. By enabling custom heuris-
tics or user-defined priorities, the generation strategy can be adapted to meet specific
needs across different domains, such as automated testing, data synthesis, or API simula-
tion. This customization would make the tool more versatile and better suited to a wide
range of use cases.

By addressing these areas of improvement and the other limitations mentioned in the
previous section, the optimistic approach can be made a more robust and efficient solution
for data generation in the evolving landscape of JSON Schema. As a key component of the
hybrid approach, it can also enhance its overall effectiveness. One of the core advantages
of the hybrid approach is its ability to leverage the strengths of both optimistic and pes-
simistic strategies. However, defining heuristics that govern the switching mechanism will
be critical for maximizing performance. By developing more sophisticated decision-making
processes that evaluate factors such as schema complexity and specific constraints (e.g.,
negation or uniqueItems), a better determination of when to prioritize speed (optimistic)
or completeness (pessimistic) can be achieved. Such enhancements would allow the hybrid
approach to automatically adapt to a wider range of scenarios, ensuring it remains both
efficient and reliable.
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RÉSUMÉ

JSON (JavaScript Object Notation) est un format d’échange de données largement utilisé, notamment dans le cadre des
APIs web. Sa simplicité et sa légèreté en font un choix idéal pour l’échange de données entre clients et serveurs. JSON
Schema constitue un vocabulaire puissant pour définir la structure, les contraintes et les règles de validation des données
JSON, garantissant ainsi l’intégrité et la cohérence des informations tout en respectant les formats et la sémantique
spécifiés. Cette synergie entre JSON et JSON Schema renforce la fiabilité de la gestion des données, permettant aux
développeurs de créer des applications robustes et faciles à maintenir, tout en mettant en œuvre efficacement une
validation solide des données.
La génération de données pour JSON Schema revêt une importance majeure, car elle répond à des défis critiques
associés aux langages de schéma, tels que l’inclusion, la satisfiabilité et l’équivalence. Par exemple, l’inclusion est
essentielle pour vérifier que les données existantes sont conformes aux schémas mis à jour, préservant ainsi l’intégrité
des données lors de l’évolution des systèmes. Au-delà de l’inclusion, la génération de données JSON est cruciale pour
tester les APIs web, permettant aux développeurs de simuler divers scénarios et de valider le comportement de leurs
applications dans différentes conditions. En produisant des données conformes aux schémas spécifiés, les développeurs
peuvent évaluer efficacement la robustesse et la précision de leurs systèmes.
Dans cette thèse, nous explorons divers aspects liés à JSON Schema, en mettant particulièrement l’accent sur les défis
de la génération de données. Nous proposons une approche nouvelle qui équilibre efficacité et correction, facilitant la
génération de données valides qui respectent les spécifications définies par les schémas. Cette approche vise à améliorer
tant la performance que la fiabilité du processus de génération de données.
De plus, nous introduisons une stratégie hybride qui tire parti de l’efficacité de notre technique de génération de données
tout en intégrant des éléments d’une méthode établie reconnue pour sa complétude et sa correction dans le processus
de génération. En combinant ces deux méthodologies, nous visons à créer une solution de génération plus robuste.
Enfin, nous proposons des orientations pour des recherches futures dans le domaine de la génération de données
pour JSON Schema. Nous définissons des directives destinées à améliorer notre technique de génération ainsi que
les outils existants de manière générale, tout en explorant des défis supplémentaires liés au langage. En abordant ces
problématiques, nous aspirons à faire progresser l’état de l’art dans la génération de données pour JSON Schema.

ABSTRACT

JSON (JavaScript Object Notation) is a widely used data interchange format, especially in the context of web APIs. Its
simplicity and lightweight design make it an excellent choice for exchanging data between clients and servers. JSON
Schema acts as a powerful vocabulary for defining the structure, constraints, and validation rules for JSON data, ensuring
the integrity and consistency of information while adhering to specified formats and semantics. This synergy between
JSON and JSON Schema enhances the reliability of data management, empowering developers to build robust and
maintainable applications that effectively implement strong data validation.
Data generation for JSON Schema is of great interest, as it addresses critical challenges associated with schema lan-
guages, including inclusion, satisfiability, and equivalence. For instance, ensuring inclusion is crucial for confirming that
existing data complies with updated schemas, thus safeguarding the integrity of data through system evolutions. Beyond
inclusion, generating JSON data is essential for testing web APIs, allowing developers to simulate various scenarios and
validate their applications’ behavior under diverse conditions. By producing data that conforms to specified schemas,
developers can effectively assess the robustness and correctness of their systems.
In this thesis, we explore the multifaceted issues related to JSON Schema, with a particular focus on the challenges of
generating compliant data. We propose a novel data generation approach that balances effectiveness and correctness,
facilitating the production of valid data adhering to specified schemas. This approach aims to improve both the efficiency
and reliability of the data generation process.
Furthermore, we introduce a hybrid strategy that leverages the strengths of our rapid data generation technique while
incorporating elements from established methods known for their completeness and correctness. By combining these
methodologies, we intend to create a more robust solution that effectively addresses the demands of generating valid
JSON data while maintaining high performance.
Finally, we outline directions for future research in the field of data generation for JSON Schema. We define guidelines
aimed at steering subsequent investigations and enhancements, exploring additional challenges related to the language.
By addressing these issues, we seek to advance the state of the art in data generation for JSON Schema.
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JSON, JSON Schema, Data Generation, Synthetic Data, Validation, Satisfiability, Inclusion
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