
HAL Id: tel-04888896
https://theses.hal.science/tel-04888896v1

Submitted on 15 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation and Analysis of Dynamic Graphs
Vincent Bridonneau

To cite this version:
Vincent Bridonneau. Generation and Analysis of Dynamic Graphs. Computer Science [cs]. Normandie
Université, 2024. English. �NNT : 2024NORMLH23�. �tel-04888896�

https://theses.hal.science/tel-04888896v1
https://hal.archives-ouvertes.fr

i

iii

Remerciements

Tout ce travail et cette thèse n’auraient jamais pu voir le jour sans le soutien de nombreuses personnes

qui ont cru en moi et m’ont permis d’arriver jusqu’ici. Je tiens particulièrement à remercier Frédéric

Guinand et Yoann Pigné, qui m’ont offert cette belle opportunité de travailler sur un sujet aussi riche et

profond. Nos échanges ont souvent été intenses, avec des visions parfois opposées sur la manière d’étudier

des problèmes et d’en concevoir de nouveaux. Mais je pense que nous avons tous les trois pu en tirer

des enseignements qui nous permettent aujourd’hui de comprendre et de voir les choses avec un regard

différent.

Je tiens particulièrement à remercier mes parents, Lydia et Éric Prola, ainsi qu’Olivier Bridonneau et

MC, qui ont été d’un soutien indéfectible et ont cru en mon projet, même lorsque je doutais sérieusement

de moi. Ils ont toujours su trouver les mots pour me rassurer et me motiver. Sans eux, cette thèse ne

serait pas ce qu’elle est. Je remercie également mes chers frères et ma chère sœur, qui occupent une place

toute particulière dans mon cœur. Je serai toujours là pour eux.

Je tiens aussi à remercier ce bon vieux Jason Schoeters, le J, avec qui j’ai passé des moments inou-

bliables : un très bon ami et un très bon vivant, par la même occasion. Un grand merci également aux

Pils de Fut, avec qui j’ai passé d’excellents moments. La distance n’a pas eu raison de notre amitié, et je

suis sûr que nous continuerons à bien rigoler autour d’une bonne bière !

Je tiens également à remercier chaleureusement Monsieur Stéphane Mouez, mon professeur de mathématiques

en seconde, qui a cru en moi, m’a donné le goût des mathématiques et a fait nâıtre en moi l’envie de faire

de la recherche. Je remercie aussi Monsieur Olivier Rivière, qui m’a transmis la rigueur mathématique

et a renforcé ma volonté d’étudier des problèmes et de les définir de façon claire et précise. Je suis

reconnaissant envers l’équipe de Math.en.Jeans, qui m’a permis de découvrir dès le lycée le monde de la

recherche et ce à quoi ressemblent les problèmes que l’on peut étudier. Bien que simples en apparence,

ils peuvent renfermer de nombreux trésors, notamment dans les moyens que l’on met en œuvre pour les

résoudre.

Un grand merci également à Mathieu Faverge et Pierre Ramet, qui m’ont accueilli dans leur laboratoire

et avec qui j’ai pu contribuer pour la première fois à un projet de recherche, à ma petite échelle.

Enfin, j’aimerais remercier tous mes collègues du LITIS du Havre, avec qui j’ai pu créer de belles

amitiés et partager d’agréables moments.

Abstract

In this thesis, we investigate iterative processes producing a flow of graphs. These processes find

applications both in complex networks and time-varying graphs. Starting from an initial configuration

called a seed, these processes produce a continuous flow of graphs. A key question arises when these

processes impose no constraints on the size of the generated graphs: under what conditions can we ensure

that the graphs do not become empty? And how can we account for the changes between successive steps

of the process? To address the first question, we introduced the concept of sustainability, which verifies

whether an iterative process is likely to produce graphs with periodic behaviors. We defined and studied a

graph generator that highlights the many challenges encountered when exploring this notion. Regarding

the second question, we designed a metric to quantify the changes occurring between two consecutive steps

of the process. This metric was tested on various generators as well as on real-world data, demonstrating

its ability to capture the dynamics of a network, whether artificial or real. The study of these two concepts

has opened the door to many new questions and strengthened the connections between complex network

analysis and temporal graph theory.

ii

Résumé en français :

La nature et les sociétés humaines offrent de nombreux exemples de systèmes composés d’entités qui

interagissent, communiquent ou sont simplement connectées les unes aux autres. La théorie des graphes

offre un excellent formalisme pour modéliser ces systèmes complexes, allant des réseaux sociaux aux

systèmes biologiques. La plupart des phénomènes observés dans ces réseaux peuvent s’exprimer sous

forme de propriétés sur les graphes. On peut notamment citer le phénomène du ≪ petit monde ≫ ou

les réseaux dits ≪ sans échelle ≫. Comprendre les mécanismes sous-jacents à leur évolution est essentiel

pour saisir les dynamiques de ces réseaux. Différents mécanismes existent pour reproduire les propriétés

observées. Parmi eux, on peut citer l’attachement préférentiel, utilisé notamment par le modèle de

Barabási-Albert (BA), qui permet de produire des séquences de graphes croissants sans échelle.

Dans une direction parallèle, on peut également étendre le concept de graphe en y ajoutant une

dimension temporelle. Dans ce cas, les propriétés statiques des graphes sont retravaillées pour tenir

compte de l’évolution des graphes dans le temps. Par exemple, on peut citer la notion de trajet qui,

semblable à celle de chemin, traduit la possibilité de se déplacer d’un sommet à un autre en respectant

des contraintes temporelles. De même que dans le cas des réseaux complexes, la capacité à générer

des graphes temporels est étudiée afin de produire des graphes aux propriétés spécifiques. On peut par

exemple évoquer le modèle Edge-Markovian Graph, un processus stochastique permettant de produire

des graphes et d’étudier des problèmes de communication.

L’observation de ces mécanismes de génération donne naissance à la problématique de cette thèse, qui

réside dans l’étude de processus itératifs de génération de graphes temporels. Lorsqu’un graphe est obtenu

par itérations successives d’un tel mécanisme, on parle d’un graphe dynamique. Cette dénomination met

en avant l’aspect itératif du processus pour produire une séquence ordonnée de graphes. Une question

nous a particulièrement intéressés dans le cadre de ce travail : que se passe-t-il lorsqu’un générateur n’est

soumis à aucune contrainte, notamment en ce qui concerne l’évolution du nombre de sommets au fil du

temps ?

Cette situation soulève deux problématiques : la possibilité qu’un processus conduise à des graphes

périodiques au-delà d’un certain moment et la quantification des changements entre deux étapes consécutives

du processus. Pour répondre à ces interrogations, nous avons introduit deux métriques. La première,

que nous avons appelé sustainability, et que l’on peut traduire par pérennité, est une mesure qualitative

: un générateur est dit sustainable s’il produit des graphes qui ne deviennent ni vides ni périodiques. La

seconde métrique, le DynamicScore, quantifie les changements entre deux instants successifs, à la fois au

niveau des sommets (V-DynamicScore) et des arêtes (E-DynamicScore).

Pour démontrer la pertinence de la notion de pérennité, nous avons défini et étudié un générateur de

graphes mettant en évidence les nombreux défis rencontrés lors de l’exploration de cette notion. En ce

qui concerne le DynamicScore, nous l’avons testé sur divers générateurs ainsi que sur des données réelles,

démontrant sa capacité à capturer la dynamique d’un réseau, qu’il soit artificiel ou réel. L’étude de ces

deux concepts a ouvert la voie à de nombreuses nouvelles questions et renforcé les liens entre l’analyse

des réseaux complexes et la théorie des graphes temporels.

iii

keywords: Dynamic Graphs, Dynamic Graph Metrics, Dynamic Graph Generation, Complex

Networks, Dynamic Graph Analysis

mots clés : Graphes dynammiques, Métriques sur les graphes dynamiques, Génération de graphes

dynamiques, Réseaux complexes, Analyse des graphes dynamiques

Contents

1 Introduction 1

2 Introducing Time in Graphs 5

2.1 Graph . 6

2.2 Complex Networks Analysis . 7

2.2.1 Complex Networks Properties . 7

2.2.1.1 The Small-World Property . 8

2.2.1.2 Scale-free Networks . 9

Hyperbolic Geometry . 9

2.2.1.3 Strong Clustering Coefficient . 10

2.2.1.4 Triadic Closure . 10

2.2.1.5 Navigability . 11

2.2.2 Generation of Complex Networks . 11

2.2.2.1 The Watts-Strogatz Model . 11

2.2.2.2 The Barabási and Albert Model . 13

2.2.2.3 BA-based models . 13

Triadic Closure . 14

Popularity vs Similarity . 14

Conclusion . 15

2.3 Time in Graphs . 15

2.3.1 Formalism . 16

2.3.2 Problems and Properties in Graphs with Time . 17

2.3.2.1 Journey . 17

2.3.2.2 Connectivity . 19

Classification . 20

2.3.3 Generation of Time-Varying Graphs . 21

2.3.3.1 Generator of Edge-Markovian Graphs . 21

v

vi Contents

2.3.3.2 Simple Time-Varying Graphs Generation 22

2.3.3.3 Generating Graph with a Given Feature 22

2.4 Discussion on Time in Graphs . 23

2.5 Formalizing the Concept of Dynamic Graphs . 24

3 Qualifying and Quantifying Graph Dynamics 27

3.1 Sustainability . 28

3.1.1 Definition . 28

3.1.2 Comparison to Existing Generative Processes . 29

3.1.2.1 Barabási-Albert Model . 29

3.1.2.2 Edge Markovian Graphs . 29

Known Properties of EMGG . 29

Density Evolution of Edge-Markovian Graphs 30

Sustainability . 31

3.2 DynamicScore . 32

3.2.1 Definition . 32

3.2.2 Specific Values of DynamicScore . 34

3.2.2.1 Constant Graph Order . 34

3.2.2.2 Growing Network . 35

Linear Grow . 35

Exponential Growth . 36

Graph Densification . 36

3.2.3 Comparison to Generator Models . 37

3.2.3.1 Sequence of Erdos-Renyi Graphs . 37

3.2.3.2 Edge-Markovian Graphs . 39

3.2.3.3 Barabasi-Albert Generating Graphs . 40

3.3 Information Persistence Problem . 42

3.3.1 Problem Formulation . 43

3.3.1.1 Communication Strategy . 43

Constant Flooding . 43

Simple Flooding . 44

3.3.2 Studied Problems . 44

3.3.3 Remarks and First Results . 45

3.3.3.1 Time Complexity of the Spreading Algorithm 45

3.3.4 Questions and Open Problems . 46

3.3.4.1 Questions Related to the Simple Flooding Algorithm 46

3.3.4.2 Connection between Simple Flooding and Constant Flooding 47

3.3.4.3 Sustainability and Information Persistence Problem 47

Contents vii

4 Illustrative Case Study of Dynamic Graph Generators Analysis 51

4.1 Definitions and Generative Model and Definitions . 51

4.2 Theoretical Analysis . 54

4.2.1 First Results on Sustainability . 54

4.2.2 Limit Case Analysis . 54

4.2.2.1 Case: SS = N and SC = N . 55

4.2.2.2 Case: SS = N and SC = ∅ . 55

4.2.2.3 Case: SS = ∅ and SC = N . 55

4.2.2.4 Case: SS is a non-empty finite set and SC = ∅ 55

4.2.2.5 Case: SS = ∅ and SC is a non-empty finite set 56

4.2.2.6 Graph Order Increase . 56

4.2.2.7 Case: SS = N and SC is a non-empty finite set 57

4.2.2.8 Case: SS is a non-empty finite set and SC = N 58

4.2.2.9 Summary of results . 58

4.2.3 General Cases . 58

4.2.3.1 Partition sets . 60

4.2.4 The Redistributed Model . 60

4.3 Segments . 61

4.3.1 S = {0} . 62

4.3.1.1 Sustainability . 62

4.3.1.2 Relationship with the Information Persistence Problem 65

4.3.1.3 Study of Graph Evolution . 65

4.3.1.4 Graph Evolution and Sustainability . 69

One fixed point . 70

Two fixed points . 70

Three fixed points . 72

Building the Sustainable Interval . 74

4.3.2 Vertex DynamicScore . 74

4.3.3 Conjecture on the Sustainability . 75

4.3.4 The Purpose of the Non-redistributed Model . 77

4.4 Infinite Sets and Asymptotic Graph Order Evolution . 80

4.4.1 Intermediate Result . 80

4.4.2 The Equivalent and First Interpretation . 83

4.4.3 Generated Graphs Interpretation . 83

4.4.3.1 Exponential Increasing . 84

4.4.3.2 Exponential Decreasing . 84

4.4.3.3 Quasi Constant Evolution . 84

4.4.3.4 Sustainability of Small Generated Graphs 86

viii Contents

5 Analysis of Real World Networks 89

5.1 Transforming Events into Graphs . 90

5.1.1 Events as Instantaneous Contacts . 90

5.1.1.1 Time Interval . 91

5.1.1.2 Sliding Window . 92

5.1.1.3 First-to-last Vertices . 92

5.1.1.4 Growing Model . 93

5.1.1.5 Remarks . 94

5.1.2 Events as Permanent Contacts . 95

5.1.2.1 Filtering . 95

5.2 Illustrative Case Study . 96

5.2.1 Instantaneous Contacts . 96

5.2.1.1 Email Network . 96

Remarks about the study of Leskivec . 97

Growing Network Transformation . 98

Time Interval Transformation . 98

Sliding Window Transformation . 99

First-to-last Vertices and Edges Transformation 99

5.2.1.2 Autonomous System . 101

Growing Network Transformation . 101

Time Interval Transformation . 102

Sliding Window Transformation . 103

First-to-last Transformation . 103

5.2.2 Permanent Contacts . 105

5.2.2.1 Data and Model . 105

5.2.2.2 Objectives . 106

5.2.2.3 Analysis . 107

5.2.2.4 Improving Filtering Methods . 109

The Ellipse Model . 109

Filtering Branches . 110

6 Conclusion 113

List of Figures

2.1 Representation of a graph with six vertices and five edges. 6

2.2 The degree distribution of a BA graph obtained with n = 100000 final vertices, m0 = 6

initial vertices and m = 5 new connections every step. 14

2.3 Representation of a dynamic graph G = (G1, G2, G3). 17

2.4 Representation of a journey between vertices A and B in the dynamic graph G = (G1, G2, G3). 18

2.5 Representation of a dynamic graph G = (G1, G2, G3) with traversal times represented by

labels on edges. 19

2.6 Representation of a time connected dynamic graph G = (G1, G2). 20

2.7 Representation of a round connected dynamic graph G = (G1, G2, G3). 20

2.8 Description of the states in the Edge-Markovian Graphs Generator. 21

3.1 The two different configurations where |p + q − 1| = 1. On the left, p = q = 1. This

means whatever the initial configuration, the edge will stay in the same state. On the

right, p = q = 0. This means the edge state changes at every step. 30

3.2 Illustration of the dynamic score for vertices. Here nt+1 is assumed to equal nt. For the

case DV
t = 2

3 , − refers to as Vt − Vt+1, the set of non-conserved vertices. ∩ refers to as

Vt ∩Vt+1, the set of conserved vertices. Finally, + refers to as Vt+1−Vt, the set of created

vertices. 34

3.3 Average dynamic score as a function of the parameters p and q. On the left, the parameter

p is set and the parameter q ranges from 0.05 to 0.95. One may notice that for a fixed

value of parameter p, the average dynamicScore does not depend on q. On the right, the

parameter q is set and the parameter p ranges from 0.05 to 0.95. As observed with the

picture on the left, the average dynamicScore does not depend on q so all the marks are

mingled. 41

ix

x List of Figures

4.1 Leaves of the tree represent the general cases. Rounded corners green boxes corresponds

to cases for which results are presented in this Section, in Section 4.3 and in Section 4.4.

Dashed boxes are cases not covered within this report. 59

4.2 Relationship between the average value of ct and the expected value. Each point correspond

to a single threshold d. d is ranging from 0.001 to 0.01 with a step of 0.0005 and from 0.01

to 0.2 with a step of 0.005 . 66

4.3 One fixed point . 71

4.4 Two fixed points . 72

4.5 Three fixed points . 73

4.6 Mean value of vertex DynamicScore got from experimentation. Points represent the av-

erage over 20 run and 30000 time steps for a single m and M . The yellow surface is the

plan of equation z = 2
3 . For all these parameters, d is set to 0.05. Red points represent

DynamicScore greater than 2
3 . Blue points represent DynamicScore lower than 2

3 76

4.7 Success rate of simulations for m ranging from 1 to 8. Each curve represent a different

value of m. The x-axis is a value of M and the y-axis is the success rate. 77

4.8 Example of the evolution of a dynamic graph produced by D3G3. Parameters are S =

[13, 31] and d = 0.05. 78

4.9 Scenario of exponential increase. A = [0, 5], s = 7, n0 = 375. The theoretical value is given

by the formula nt ≈
(

2|A|
s

)t

n0 . 84

4.10 Scenario of exponential decrease. A = [4, 5], s = 5, n0 = 7523. Theoretical values are given

by the formula nt ≈
(

2|A|
s

)t

n0. 85

4.11 Simulation performed considering s = 4, A = [0, 1] and d = 0.05. The number of steps is

5000 and the initial seed graph is a random geometric graph of order 2000. 86

4.12 Theoretical graphical representation of fS,d for value of n from 0 to 400. The blue curve

correspond to A = [0, 7] and the red one correspond to A = [8, 15] 87

5.1 Illustration of a sequence of event. Here, T = 8 and only three vertices are interacting in

the whole sequence . 91

5.2 Illustration of a transformation from a sequence of event to a time-varying graph. Here,

T = 8 and τ = 3. As u does not interact with another vertex, it is not present in G1. . . . 91

5.3 Illustration of a transformation from a sequence of event to a time-varying graph. Here,

T = 8, W = 3 and τ = 1. 92

5.4 Illustration of a transformation from a sequence of events to a time-varying graph using

the F2LVE transformation. Here, T = 8 and τ = 3. Dashed lines indicate edges part of

the resulting graph but which are not occurring at that date. 93

5.5 Illustration of a transformation from a sequence of event to a dynamic graph. Here, T = 8

and τ = 3. 93

5.6 DynamicScores, nt and et graph order evolution for the Growing Network transformation

for the E-mail network. 98

5.7 DynamicScores and graph order evolution for the Time Interval transformation. 99

List of Figures xi

5.8 DynamicScores and graph order evolution for the Sliding Window transformation. 99

5.9 DynamicScores and graph order evolution for the First-to-last transformation. 100

5.10 Comparison between the number of vertices and the number of edges of each graph. Each

blue point represents a measured number of vertices and number of edges computed from

the data analysis. The dashed black line represents the theoretical expectation. 102

5.11 DynamicScores, nt and et evolution for the Growing Network transformation for the Au-

tonomous System network. 102

5.12 DynamicScores, nt and et evolution for the Time Interval transformation for the Au-

tonomous System network. 103

5.13 DynamicScores, nt and et evolution for the Sliding Window transformation for the Au-

tonomous System network. 104

5.14 DynamicScores, nt and et evolution for the FTLVE transformation for the Autonomous

System network. 104

5.15 A short portion of the mycelium of Podospora anserina, and its graph model. Blue, degree-

one, nodes are the apexes, yellow, degree-three, nodes are branching nodes and red, degree-

two, nodes are structural nodes, distributed along the hyphae. (Courtesy of Thibault

Chassereau) . 105

5.16 Evolution of both DV
t and DE

t for the mycelium until the end of the experiment. 108

5.17 Comparison between the evolution of nt and et for the whole growing dynamic graph of PA.109

5.18 Evolution of DV
t through time for different cut-off values of r. A cut-off value of 0% means

that network is entirely contained in the ring. The inner disk is null. 109

5.19 The complete network after adding all the vertices and the edges. This picture represents

only the edges. 110

List of Tables

3.1 Dynamic Score of both the edges and vertices for the Barabaśı-Albert model. The consid-

ered parameters are |V0| = 2, m0 = |E0| = 1 and m = 1. 41

4.1 Order and DynamicScore evolution for the different cases. nt denotes the order of graph

Gt, DV
t its vertices DynamicScore and DE

t the edges DynamicScore. 58

4.2 Sustainability of dynamic graphs according to parameters sets of D3G3. 58

4.3 Ratio of sustainability graphs for different thresholds d. Each run has a limit of 3500

iterations. 79

xiii

CHAPTER 1

Introduction

Nature and human societies offer many examples of systems composed of entities that interact, commu-

nicate or are just connected with each other. The Internet, a transportation network, a swarm of robots,

an ant colony, a social network, an urban network, or a crowd are some examples [7].

Graphs are certainly one of the best formalisms for modeling them. Every vertex in the graph models

one entity. A link is added between two vertices when a particular condition about the corresponding

entities is verified. For instance: two persons are talking to each other, a predator catches a prey, a virus

passes from one individual to another, two actors perform in the same play, etc. The semantic of the inter-

action, communication or connection is proper to the system. During last two decades, many works have

been dedicated to the study of networks modeling these systems. It has been shown that, unlike classical,

regular or random graphs, graphs modeling complex real systems present specific statistical properties,

leading researchers to introduce the term of complex networks for naming them. Among main charac-

teristics that were highlighted are the small-world and the scale-free properties. Once the observations

are done and the analyses are performed, one fundamental question remains: ”which mechanisms might

enable such properties to appear in these networks?” The design of generative or constructive processes

aimed at producing graphs with such characteristics has been shown to be a promising approach. In 1998,

Watts and Strogatz proposed a way of generating graphs owning the small-world property. Starting from

a regular lattice the process randomly rewires part of the network’s connections [43]. One year later, in

1999, Barabási and Albert designed an iterative process for generating graphs with both the small-world

and the scale-free properties [5]. At each time step a new vertex is added to the graph and is more likely

linked to high degree vertices. This mechanism or rule is known as ”preferential attachment”. In both

cases, the approach used consists in designing processes based on appropriate mechanisms to generate

graphs with the desired properties. However, such studies are more interested in the final graph obtained

at the end of the process rather than in the dynamics of the graph itself.

1

2 Chapter 1. Introduction

In another approach, graphs can be enriched with a notion of temporality, allowing for a paradigm

shift. Fundamental concepts in graph theory, such as paths or connectivity, take on a new dimension

in temporal graphs, broadening our understanding of static graphs. For example, the concept of a path

extends to that of a journey, which represents a path connecting two vertices while respecting temporal

constraints. Defining the shortest journey becomes more complex, as multiple definitions are possible,

such as arriving as early as possible, minimizing the number of edges used, or minimizing the total time.

Several models have been developed to generate temporal graphs with the aim of studying these new

properties. Microcanonical Randomized Reference Models [19], for instance, create temporal graphs by

reshuffling the edges of an existing graph while preserving certain characteristics, such as connectivity.

Other models, like Edge-Markovian graphs, developed in [11], employ generative processes to produce a

sequence of graphs starting from an initial condition. In this case, the presence or absence of an edge is

determined by a Markovian stochastic process dependent on the current state of the edge, a model often

used to study problems such as flooding.

At the intersection of these two perspectives, iterative processes are used to create evolving struc-

tures, enabling the study of either static characteristics, such as small-world properties, or temporal ones,

like time-connectivity. In this context, dynamic graphs play a key role, as they are formed through the

combination of an iterative process and an initial seed graph, producing a sequence of graphs that evolve

over time. However, most models in the literature constrain the evolution of these sequences by fixing

the size of the graphs or limiting the changes to the vertex set. A major contribution of this thesis is the

exploration of dynamic graph generation when these constraints are relaxed. Specifically, we investigate

what happens when the number of vertices is allowed to vary over time, raising fundamental questions:

can a graph eventually become empty if left unconstrained? How can we quantify the changes that occur

between consecutive steps in an iterative process?

To address these questions, two key metrics were introduced. The first, sustainability, assesses whether

a graph generator produces non-empty and non-periodic graph sequences over time, thus maintaining

structural complexity without collapsing or falling into repetitive cycles. The second metric, the Dynam-

icScore, quantifies the changes between two consecutive time steps at both the vertex (V-DynamicScore)

and edge (E-DynamicScore) levels, providing a granular view of the dynamics at play. Our analysis shows

that these metrics provide valuable insights into the behavior of dynamic graphs. For instance, sustain-

able graph sequences maintain stability over time, while the DynamicScore helps to track the evolution of

network dynamics. Additionally, we explore broader applications of these metrics, such as understanding

how information might persist in dynamic graphs and determining how vertices must interact to ensure

information propagation. This will constitute the core of Chapter 3.

For exploring the potential of these metrics a dynamic graph generator, presented in Chapter 4 has

been proposed. Further investigations into dynamic graph families produced by this generator reveal

that sustainability depends on the classification of parameters, and that additional tools are required to

fully resolve questions related to the evolving network order. Among the different obtained results, we

3

have shown that for certain categories of parameters, the application of specific rules leads to a growing

structure, allowing the generated graphs to remain sustainable. We also demonstrated that even when

an estimate of the number of vertices is available, additional methods and tools are necessary to fully

address the question of sustainability. This is investigated in Chapter 4.

To better see the interest of the DynamicScore metric the last part of the document is dedicated

to the analysis of real-world networks. The DynamicScore metric is applied to these networks and the

results are analyzed. In the study conducted during this thesis real-world networks are represented as

sequences of events. These events either model instantaneous or permanent interactions. Instantaneous

interaction refers to an interaction which does not last in time such as e-mails or two individuals having

a conversation for instance. The analysis of such networks allowed us to generate dynamic profiles of

networks, revealing how they evolve over time at different time scales. Permanent interaction here refers

to a contact which never disappear once created. Example of such contact may be found in biology such

as in organic system where an event model a new connection between two entities. For this case, we

study the DynamicScore on filtered sub graphs of a bigger time-varying graph aggregating all the events

and provide tools and ideas to observe what the DynamicScore may say about these filtering. This is

detailed in Chapter 5.

CHAPTER 2

Introducing Time in Graphs

In this chapter, we will explore graphs from various perspectives. We will demonstrate how this tool

proves powerful for modeling and analyzing the properties of complex networks. Complex networks

represent systems composed of entities interacting with one another. Several observations have highlighted

common properties shared by different networks. These fascinating properties do not seem to result

from randomness or any particular regularity. They can be expressed in terms of graph characteristics,

illustrating the strength of this model. The observation of these properties led to the idea of generating

graphs that exhibit them. Among the existing mechanisms, some stand out due to their iterative nature.

Corresponding processes build a graph starting from an initial one and then apply rules successively to

generate a sequence of graphs. This concept of iterative process also applies when adding a temporal

dimension to graphs. Incorporating a temporal dimension provides new perspectives for studying graphs.

Such an addition introduces new concepts that are absent from static graph theory. For example, the

concept of paths in graphs becomes much richer within the paradigm of temporal graphs.

To cover the points mentioned above, this chapter is organized as follows. We will start by briefly

introducing what graphs are and then present some fundamental concepts necessary for the rest of the

chapter. In Section 2.2, we will apply the notion of graphs to the study of complex networks. We will also

discuss the common properties of complex networks before examining the generative mechanisms that

can be implemented to achieve these properties. Then, in Section 2.3, we will address the integration of

the temporal dimension in graphs. We will begin by presenting the different formalisms used to describe

such graphs. We will then discuss some properties and related works on these graphs before talking about

the generators used to create them. Finally, we will introduce the notion of dynamics. This concept,

applicable to both the generation of complex networks and temporal graphs, will be described in Section

2.5.

5

6 Chapter 2. Introducing Time in Graphs

2.1 Graph

Graphs are fundamental tools for modeling real world networks. A graph consists of a set of entities,

called vertices or nodes. These vertices can be connected by links, called edges. In such cases edges may

have an orientation, meaning one end is the source while the other is the destination. In that case, edges

are referred to as arcs. From a formal point of perspective a graph may be defined as follows:

Definition 1 Graph:

Let V be a set, called the set of vertices, and E ⊆ V × V , called the set of edges. The couple

G = (V,E) is called a graph.

An illustration of a graph G is provided in Figure 2.1. In this example, the vertices of the graph are

A,B,C,D,E and F . This graph is undirected, and its edges are {A,B}, {C,D}, {F,A}, {F,B}, and

{F,E}.

A

B C

D

E

F

Figure 2.1: Representation of a graph with six vertices and five edges.

From the definition of a graph it is possible to define basic concepts. For instance, a path between

two vertices u and v is a finite sequence of edges (e1, . . . , ek) such that it is possible to go from u to v

by traversing the edges in the order provided by the sequence. For instance, a path from A to E may be

({A,F}, {F,E}) or ({A,B}, {B,F}{F,E}). If a path exists between two vertices u and v we say that

u can reach v. If every vertex may reach every other vertex, then the graph is said to be connected,

otherwise, it is said to be disconnected. The graph represented on Figure 2.1 is not connected because

there is no path between A and D for instance.

The length of a path is the number of edges used in the sequence: the length ({A,F}, {F,E}) is

two while the length of ({A,B}, {B,F}{F,E}) is three. A shortest path between two vertices is a path

such that it is not possible to find a path having a shorter length. The distance between two vertices

corresponds to the length of a shortest path, if one exists, otherwise the distance does not exist or is

considered to be infinite.

The neighborhood of a vertex u, referred to as N u, corresponds all the vertices sharing a common

edge with u. For instance, the neighborhood of A is NA = {F,B}. The degree of a vertex u, referred to

as deg(u), corresponds to the size its neighborhood. For instance the degree of A is deg(A) = 2. In the

2.2. Complex Networks Analysis 7

case of directed graphs, the notion of degree may be divided in two : indegree and outdegree. Indegree

corresponds to the number of arc pointing to a vertex, while outdegree corresponds to the number of arc

exiting a vertex.

With these notions it is possible to define more sophisticated metrics like triangles and clustering

coefficient. A triangle in a graph corresponds to three mutually connected vertices. The clustering

coefficient represents the ratio between the number of triangles and the maximum potential number of

triangles in a graph. This concept can be defined either at the level of a single node or for the entire

graph. When defined at the level of a node, the clustering coefficient is referred to as the local clustering

coefficient. For a given vertex u, this quantity is the ratio size of the number of triangles u belongs to over

the maximum potential number of potential triangles u belongs to. Assuming the graph is undirected,

the number of potential triangles is
(deg(u)

2
)
. It possible to define the clustering coefficient at the whole

graph level taking the average local clustering coefficient for all vertices. The clustering coefficient in this

case is referred to as the average clustering coefficient.

2.2 Complex Networks Analysis

In the exploration of real-world networks, a fundamental first step involves emphasing their inherent

properties, which serve as the foundation for understanding what is considered as a common property

complex networks share. These properties are the small-world phenomenon, scale-freeness, strong cluser-

ing coefficient, triadic closure and navigability. Each of them is discussed and definitions are provided to

express them in terms of graph property.

In a second time, mechanisms that make properties emerging from real-world networks will be studied,

shedding light on the processes that give rise to their unique features. The study of such mechanisms

is made in order to explain how properties are obtained. Our investigation centers around two pivotal

models: the Watts-Strogatz model, introducing a ’rewiring’ mechanism in order for the small-world phe-

nomenon to rise and the Barabási-Albert model, which employs preferential attachment, resulting in a

scale-free degree distribution of node degrees. Derived models based on the Barabási-Albert model are

then presented to propose mechanisms inducing new properties. Each model offers nuanced perspectives

on network formation. Through a systematic exploration of these models, we endeavor to highlight the

intricate dynamics governing the evolution of real-world networks, providing insights into the underlying

processes that give rise to their observed properties.

2.2.1 Complex Networks Properties

The observation of real world networks reveal few common properties that are not present in random or

regular graphs [7]. Many reasons motivate the search for such features, with the aim of understanding how

they are produced in real life. Building generative dynamic graph models is one approach to deciphering

the underlying mechanisms that lead to their emergence. This section reviews a short list of these features.

8 Chapter 2. Introducing Time in Graphs

In the following, we focus on a few key properties: the small-world phenomenon, where networks

exhibit both highly clustered nodes and short distances between them; scale-freeness, which refers to the

presence of a few highly connected nodes alongside many vertices with small degrees; strong clustering,

that corresponds to networks with high clustering coefficient values; triadic closure, which describes how

two vertices connected to a common vertex tend to form a triangle; and navigability, which refers to how

easily one can move from one vertex to any other using short paths. With these characteristics in mind,

the aim is to understand the essence of complex networks.

2.2.1.1 The Small-World Property

A common property real complex networks share is the small world property. It translates the idea that,

in a real network, only a few hops are necessary to join two different nodes taken at random. In terms of

path length, it means that the average distance between two nodes is ”small” compared to the size of the

network. When a formal definition of how small this distance must be to considered a network as a small

world, it is common to use a the logarithm of the network size. However, considerations on the average

path length are not enough to state whether or not a network has the small-world property. Indeed,

Watts and Strogatz in [43] have identified another feature networks must satisfy to be qualified as small

world. This other feature is the clustering coefficient. In their original article, this quantity referred to

as the average clustering coefficient and is defined as the average clustering coefficient of every node. See

section 2.2.1.3 for more details. This quantity must be high enough for networks to be qualify as small

world. Gathering these two metrics, the clustering coefficient and the average shortest path, a definition

of the small world property may be as follow:

Definition 2 Let G = (V,E) be a network. Let n denote the size of the graph (i.e., n = |V |). Then,

G satisfies the small world property if and only if, the average shortest path between every pair of

nodes is proportional to ln (n) and if the average clustering coefficient CG is high enough and not

depending on the network size.

It is important to notice that not all networks share this property. One way to realize it is to look at

simple theoretical network topologies. Let us then consider different network topologies and see whether

or not they satisfy the small world property.

As a first topology, let us consider the lattice or the grid topology. These topologies are very regular

and therefore easy to study. In such networks, the average shortest path is proportional to n. As a

consequence, they are not qualified as small-world networks. However, their average clustering coefficient

is high. In the case considered by Watts and Strogatz, a regular lattice of n nodes, each connected to its

k nearest neighbors, the clustering coefficient of each node is 3
4 .

Another topology one may consider is the topology of a random graph. The way the graph may be

draw being wide, the study is restricted to graph of size n and where an edge between any two vertices

has a probability p to exist or not. This way to obtain a graph is known as the Erdös-Rényi (ER) model

2.2. Complex Networks Analysis 9

[17]. It turns out that using such a model to build up graphs often results in a network having a small

average shortest path. However, the clustering coefficient of this family of networks is very low. Thus,

completely random topologies are not small world.

In order to find a satisfying model exhibiting the small world phenomenon, Watts and Strogatz

provided a generative process that takes place between a regular and a random network. This model

is further studied in section 2.2.2.1. Without giving all the details, the idea behind the generation

mechanism is to rewire a lattice graph so that, after a certain amount of rewiring, the graph becomes a

small-world network. This model has different properties ER does not have and are investigated in the

corresponding section.

2.2.1.2 Scale-free Networks

In their article [5] Barabási and Albert have shown than most real world networks, the World Wide Web

for instance, exhibit a property called scale-free. The term scale free means that the degree distribution

exhibits a power law distribution. The origin of the scale-free property may also be explained by the

topological structure of these networks. Indeed, it has been observed that a few nodes, called hubs,

gathered a lot of connections towards nodes, while nodes with few connections with others are more

current. The following definition formalizes the property:

Definition 3 A network is said to be scale free if there exists a and γ > 2 such that the probability

P (k) for a given node to have a degree k satisfies:

P (k) = ak−γ

The just stated definition involves the probability mass function. Some authors also sometimes restricts

the range γ belongs to: 2 < γ < 3. This comes from observations on real networks such as the Internet

or social networks. Different models trying to produce scale free networks have emerged last decades.

Among others the most popular one is the Barabási-Albert model. This model will be more precisely

defined in Section 2.2.2.2. It has popularized preferential attachment as a mechanism for a new comer in a

network to connect with others. This mechanism has extensively been studied. Other similar mechanisms

are used for building up new models, like hyperbolic geometry.

Hyperbolic Geometry Models based on this second concept tries to see the emergence of impor-

tant features such as scale-freeness, efficient navigability in the network and strong clustering coefficient.

Models using only preferential attachment as defined in the original article of Barabási and Albert [5] do

not exhibit these two features that seems to be present in real-world networks according to [35]. Recent

works like [28] suggest that a hidden hyperbolic metric space may be found for every complex network.

The curvature of a given hyperbolic space influences the value of the power-law exponent of the degree

distribution. The authors also explain that hyperbolic spaces can be used to efficiently build complex

networks, as many of the common properties exhibited by complex networks emerge from the use of such

spaces.

10 Chapter 2. Introducing Time in Graphs

Some representation of hyperbolic geometry represents the space using the Poincaré disk model [28].

It is a model generalizing the flat euclidean geometry. Such spaces show a negative curvature −ζ2 < 0.

Such a model consists in a 2D disk with a radius R in which the distance between every pair of points

(u, v) = ((ru, θu), (rv, θv)), referred to as duv, is computed using the hyperbolic law of cosines:

cosh (ζduv) = cosh (ζru) cosh (ζrv)− sinh (ζru) sinh (ζru) cos θuv (2.1)

In the above equation, θuv = π − |π − |θu − θv|| is a mathematical way to compute the shortest angle

between u and v, that is an angle ranging from 0 to π. The main difference between euclidean and

hyperbolic geometry lies in the importance some points have compared to others.

2.2.1.3 Strong Clustering Coefficient

This sub section focuses on the clustering coefficient metric. This metric aims at quantifying the cliquish-

ness (i.e., the capability for a network to embed cliques). This metric is useful to describe the small-world

phenomenon as well as to quantify the transitivity of a network. From a network point of view, this metric

is computed by comparing the number of triangles in the graph with the maximum number of triangles

that could exist. From definition provided in Section 2.1, clustering coefficient involves the average clus-

tering coefficient. It has been first introduced by Watts and Strogatz to compute the clustering coefficient

of their model [43]. This quantity along side with the average shortest path allows to define precisely the

small-world phenomenon: in real-world networks, the clustering coefficient is high and does not depend

on the size of the graph. For the model proposed by Watts and Strogatz this value is for instance close

to 3
4 .

2.2.1.4 Triadic Closure

Clustering coefficients are powerful tools for measuring the transitivity of a node and, by extension,

verifying whether a network adheres to the principle of triadic closure. In general, triadic closure is a

principle, introduced by Georg Simmel in 1908 in his book Soziologie [39] (See a translation in [40]) ,

which states that in a network, if a node is connected to two other nodes, it is highly likely that these two

nodes are also directly connected. In social networks, this property can be more informally summarized

as ”the friends of my friends are my friends”. From a network generation perspective, this formulation

helps in the design of mechanisms for creating links between nodes: if a node u is connected to a node

v ̸= u, it is possible to choose a neighbor of v to create a connection between this neighbor and u. Among

all existing network generation models, we can cite [6, 37]. The model proposed by [6] for instance uses

this principle, in addition to the principle of preferential attachment, to construct networks that exhibit

both scale-free properties and a high clustering coefficient. In their article, the authors do not give any

specific value or expression for the clustering coefficient to ensure triadic closure. However, as in the case

of the Watts-Strogatz model [43], both mention an average clustering coefficient greater than 0.7. This

model is discussed in more detail in Section 2.2.2.3.

2.2. Complex Networks Analysis 11

2.2.1.5 Navigability

Navigability is a notion introduced to address the problem of finding a path between any pair of vertices

that is close to the shortest path, in a network that is not fully known, relying only on local information.

This question has been investigated in the study of the small world phenomenon by Stanley Milgram in

[42]. Navigability is also close to the idea of the six degrees of separation. This theory states that, on

Earth, the social distance between any two people is on average 6. Later, physicists such as Boguña et al.

in [8] explained that navigability in complex network may be explained by the existence of an underlying

hidden metric space. Such a space is called a hyperbolic space. This concept has already been presented

in Section 2.2.1.2. Short paths between vertices have to be found without a global knowledge of the

network, using only local information. An algorithm may be designed to find this shortest path using

information of the hidden metric space after embedding the network in the space.

These properties: small-world, scale-freeness, navigability and triadic closure, are present in many

real-world networks. A key question is: how were such properties acquired during the evolution of

these networks? What mechanisms can explain their emergence? The following section reviews several

well-known generative network models that attempt to provide insights into these questions.

2.2.2 Generation of Complex Networks

This section focuses on existing models found in the literature used to build artificial networks satisfying

properties defined in Section 2.2.1. The aim of this generation is to find mechanisms that can explain

the origin of certain properties in complex networks. The first model studied here is a model designed

to produce model exhibiting the small-world phenomenon. The next models are introduced to produce

scale-free networks. Several models are presented derived from a popular one called the Barabási-Albert

model.

2.2.2.1 The Watts-Strogatz Model

The Watts-Strogatz model is a fundamental network model that was developed by Duncan J. Watts

and Steven H. Strogatz in 1998 [43]. It was designed to address an intriguing problem in observed real

networks: the small world phenomenon. This phenomenon refers to the idea that, in many real-world

networks, any two individuals are connected by a surprisingly short chain of hops and, in the same time,

the network shows a highly clustering topology. This model was motivated by the need to understand

how such small-world properties emerge in social networks, as well as in various other domains, including

the brain’s neural connections and the structure of the internet.

The Watts-Strogatz model starts with a regular lattice network, which is a structured network where

each node is connected to its nearest neighbors. The model then introduces randomness by rewiring some

edges, which leads to the emergence of small-world characteristics. The Watts-Strogatz model can be

formally defined using three parameters as follows

12 Chapter 2. Introducing Time in Graphs

Definition 4 Let n ∈ N, k ∈ N such that k < n
2 and p ∈ [0, 1] a probability. Let n represent the

number of nodes, k the number of nearest neighbors each node is initially connected to, and p the

probability of edge rewiring. The model can be expressed mathematically as follows:

1. Start with an ordered ring of n nodes, where each node i is connected to k nearest neighbors on

either side. This creates a regular lattice network, which can be represented as a graph G(n, k).

2. For each edge (i, j) in G(n, k), with a probability p, rewire the edge to connect to a different

node m selected uniformly at random, such that m ̸= i and m ̸= j. This process is done

independently for each edge. The resulting network is denoted as G(n, k, p).

In this formal definition, G(n, k, p) represents the Watts-Strogatz network with n nodes, each initially

connected to k nearest neighbors, and edges rewired with probability p. This mathematical representation

captures the key steps of the Watts-Strogatz model and allows for a precise description of the network

structure and randomness. The clustering coefficient of this structure is 3(k−2)
4(k−1) ≃

3
4 while the average

shortest path is close to n
2k for the initial graph. It is therefore not a small world due to typical path

length (in the following of this section, C(n, k, p) will refer to as the clustering coefficient while L(n, k, p)

will refer to as the typical shortest path). In general, for small values of p, the network retains its regular

lattice structure. This means that nodes are still connected to their nearest neighbors, and the network

exhibits high clustering. However, the introduction of a few random edges means that, in practice, there

are shorter paths between most pairs of nodes, which is characteristic of the small-world phenomenon.

Watts and Strogatz have shown this phenomenon comes quickly as p increases. On the opposite side,

namely as p tends towards 1, networks become increasingly random, with most edges being rewired. In

this limit, the small-world properties disappear, and networks start resembling random networks with

short average path lengths (L(n, k, p) ∼ ln (n)
ln (k)) but low clustering (C(n, k, p) ∼ k

n).

Finally, the in-between range of p values reveals a special mix of features that define the small-world

behavior in the Watts-Strogatz model. In this range, the network exhibits both small-world properties

and the characteristics of a regular lattice. The small-world phenomenon is most pronounced when the

value of p falls within this transition range. This suggests that to observe the small-world phenomenon,

the value of p should be considered small.In their article, Watts and Strogatz have exhibit the trend of

the clustering coefficient and the length as function of parameter p, showing the quick drop in the average

shortest path and the later drop of clustering coefficient.

The networks obtained through this generative process are single static graphs, achieved after a finite

number of rewiring steps. Properties are assessed on the final graph obtained after all the rewiring. Thus,

time is absent from the process, and dynamics play no role in the results. There is no evolution in the

network; all the rewiring could be applied at once, and the same result would be achieved.

2.2. Complex Networks Analysis 13

2.2.2.2 The Barabási and Albert Model

In this section, we present the Barabási-Albert (BA) model. This model, introduced in the article [5] in

1999, consists in a generative process for building scale-free networks. The generated graphs fall into the

category of ”growing networks”. The model is based on the preferential attachment mechanism, which

manages the connections of new vertices added to the network, feeding its growth. This principle can be

summarized as follows: a new vertex is more likely to join a vertex with a high degree in the network than

one with a low degree. The Barabási-Albert model can be formally defined as follows, using 3 parameters:

Definition 5 Let n0 ∈ N, m0 ∈ N and m ≤ m0. The generative process is described by the following

algorithm:

1. Start with a seed graph G0 with n0 vertices and m0 edges.

2. To build Gt+1 from Gt for any t ∈ N, add a new vertex u to Vt and connect it with m distinct

vertices. These vertices are chosen so that the probability u connects to them depends on their

degree :

∀v ∈ Vt,Pr[u ∼ v] = deg(v)∑
w∈Vt

deg(w)

With this model, it is possible to build networks with a power-law degree distribution. The exponent

γ of the power-law equals 3, which is, as we showed in Section 2.2.1.2, a common exponent value one

may found in real-world networks. An illustration of this phenomenon is provided figure 2.2. This figure

represents the degree distribution of a network produced using the Barabási-Albert model. The seed

graph G0 contains m0 + 1 vertices and m0 edges and is connected. The final graph of the sequence

contains 100000 vertices. The degree distribution represented on Figure 2.2 exhibits a power law degree

distribution with γ = 3. The tail of this power law is said to be fat as it does not fit exactly the theoreti-

cal equation represented by a red dashed line. This comes from the stochastic behavior of the BA process.

This model highlights one mechanism that could explain how scale-freeness emerges in complex net-

works. However, the emergence of the property is observed when the graph is large, for a large number of

iterations of the process. Therefore, even though the model builds dynamic graphs with growing size, the

purpose of this model is to build graphs that become scale-free only for large orders. Note also that the

measure of this property is made on a static graph rather than on the sequence of graphs. This point will

be further investigated in Chapter 3 in which metrics are applied to temporal networks (called dynamic

graphs).

2.2.2.3 BA-based models

This section introduces new models based on the BA mechanism and highlights what properties emerge

within the networks generated by these models.

14 Chapter 2. Introducing Time in Graphs

101 102 103

10−5

10−4

10−3

10−2

10−1

100

k

P
(k

)
Degree distribution of a BA graph

Degree distribution
y = 2m2

k3

Figure 2.2: The degree distribution of a BA graph obtained with n = 100000 final vertices, m0 = 6 initial
vertices and m = 5 new connections every step.

Triadic Closure The Triadic Closure model aims at generating networks exhibiting both a strong

clustering coefficient alongside the scale-free property. This is not the case of BA model where the

clustering coefficient depends on time and shows a decreasing trend. Triadic Closure is a new principle

for connecting new nodes to others. An example of model using this mechanism may be found in [6]. It

is worth mentioning the number of connections a node makes when inserted is fixed and is a parameter

of the model. It will be referred to as k and must be greater than or equal to 2. The principle behind

this model can be divided in two steps. When a new node is added to the network, a first connection,

using preferential attachment, with one already existing node, is created. Then, the k − 1 remaining

connections are performed, either using the PA mechanism or such as to build a triangle. Bianconi and

her colleagues have shown networks generated using such a mechanism exhibit the scale-free property as

well as strong clustering coefficient.

Popularity vs Similarity This model has been designed to introduce a new way for nodes to connect

with others. Instead of only considering popularity, which is a synonym for a node of having a high

2.3. Time in Graphs 15

degree, new nodes will also consider homophily. Homophily comes from the intuitive idea that new

nodes may prefer to connect with nodes similar to them if possible. An implementation of this idea in

complex network construction may be found in [35, 47, 33]. The main contribution for these models was

to represent this notion of homophily using a mathematical framework called hyperbolic geometry. Each

time a new vertex is added to the network, polar coordinates are attached to the node. Distribution

of node angles enable the computation of the similarity. The main difference between euclidean and

hyperbolic geometry has already been explained in Section 2.2.1.2.

Conclusion The study of large structures such as the World Wide Web or social networks, is important

for understanding the emerging properties of complex networks. In this domain, observed properties of

networks have been first studied. Properties of networks are features of the corresponding graph models.

These feature may concern the degree distribution, distance between vertices or average clustering coef-

ficient for instance. The causes that produce these properties have been then investigated to determine

what may lead to them. The study conducted here involves generative processes allowing scientists to

build networks having the same structure as those found in real world networks. One can, for example,

cite the rewiring method used by Watts and Strogatz to transform a regular graph into a so-called small-

world graph. Similarly, the preferential attachment method used by Barabási and Albert is employed to

produce scale-free networks. In both cases, the generation mechanism is used to produce a final static

graph exhibiting the desired property or properties. Although these two models start from an initial

configuration and result in a graph through the application of rules, the intermediate sequence of graphs

does not seem to be explored in a the same way for both of them. The model of Barabási and Albert

and its derivatives is based on an iterative process that produces a sequence of graphs, the limit of which

is used only for its properties. This sequence of graphs may be seen as a time-stamped graph and pref-

erential attachment as a generator of such graphs.

These generative models, while successful for building networks that exhibit some a priori selected

properties, do not take into account the time dimension and the evolution of the network. In the following

sections, we will study how time can be introduced in graphs and what it entails on some fundamental

measures and notions, like connectivity, distance, and shortest path.

2.3 Time in Graphs

Adding the notion of time in graphs is a way to generalize the concept of graph. Instead of considering ver-

tices and edges as constant sets, they are now time-dependent. This induces the idea that everything may

change over time, such as edge and node properties. The time considered to deal with dynamic graph is

most of the time discrete. Time might be continuous or discrete. For instance, if two nodes are connected

by an edge which value equals the euclidean distance between them, and if the nodes are moving, then this

value changes continuously. In the context of this work we will not consider such a situation. We propose

to consider discrete time. In Chapter 5, we will continue the discussion about possible time discretization.

16 Chapter 2. Introducing Time in Graphs

Moreover, in this paradigm, vertices and edges are allowed to be removed and/or added. Different

names for such graphs can be found in the literature such that temporal graphs, temporal networks, time-

varying graphs, evolving graphs or dynamic graphs for instance. There exist different ways to introduce

time in a graph, or to model it.

In the following sections dedicated to time-varying graphs, we first introduce the formalism used

to incorporate time into graphs. Then, we present fundamental properties of these graphs, which are

analogous to properties found in static graphs. The first property is the concept of a journey, which

extends the notion of a path. The second is time-connectivity, an extension of the traditional notion of

connectivity. This notion is further explored to propose a classification of time-varying graphs based on

their features. Next, we delve into generative models to propose mechanisms for producing time-varying

graphs.

2.3.1 Formalism

It is possible to model time-dependence by introducing a labeling function that associates, to each edge

(resp. vertex), a set of dates corresponding to the edge (resp. vertex) presence in the graph. From a

formal point of view, this can be written as follows:

Definition 6 Graph with Time Labeling Functions:

Let G = (V,E) be a static graph (also referred to as underlying graph).

• T a set of non-negative integers,

• ρ : E × T → {0, 1} a time presence function associating to each edge e and each date t.

ρ(e, t) = 1 if e is present in the graph at date t and ρ(e, t) = 0 otherwise,

• ψ : V × T → {0, 1} a time presence function for the vertices,

• ζ : E×T → N a traversal time function associating to each edge e and each date t the time to

cross e starting from date t.

Then (G, T , ρ, ζ, ψ) may be qualified as a time-varying graph.

This way to model dynamic graphs may be found in [21, 9]. It is a very complete model where presence of

vertices/edges and edge traversal times are considered. Not all the works, found in the literature, model

graphs with all these parameters. For instance ψ is often omitted and vertices are therefore considered

being part of the graph during the whole time the graph exists. In addition, in some paradigms, instead

of deleting nodes, all their links are removed, making them isolated. For this specific model, isolated

vertices are considered as absent.

Some even use simpler model when studied graphs are constrained. For instance if every edge is

present at most one time step, then graphs may be modeled as (G, T , λ) where λ : E → N is labeling

function associating to each edge its single time presence (see [26] as an example of such a paradigm). In

this paradigm, the set of vertices is most of the time constant (except when some failure communication

2.3. Time in Graphs 17

protocol are studied) and only edges are allowed to appear or disappear. If the time is finite, then it is

possible to model T as an interval [0, T], where T is the greatest time in T .

The second way to model time in graphs is to use a sequence of static graphs. In this formalism, the

whole sequence refers to as a time-varying graph. :

Definition 7 Sequence of Static Graphs:

Let T be a set, (Gt)t∈T = (Vt, Et)t∈T be a sequence of static graphs. Then G = (Gt)t∈T is a

time-varying graph.

This definition may be found in [46]. Here, instead of having a function labeling edges, the dynamic

graph consists in the sequence of all the static graphs representing its evolution through time. It is worth

mentioning that the order of the graphs in the sequence matters.

2.3.2 Problems and Properties in Graphs with Time

Introducing time in graphs induces a new paradigm in graph theory. A new concept emerges from this

paradigm : the notion of journey. This notion, which generalizes the notion of path in the graph theory,

is a key concept in the study of time-dependent graphs. It is a fundamental notion leading to the study

of new problems and property focusing on the effect of time in graphs. The concept of journey is relevant

for instance to properly define and study question of reachability in time-dependent graphs. It is also

helpful to define concepts such as time connectivity which is a very studied question.

This Section is organized as follows. First, we provide a definition of what a journey is. Then, the

notion of reachability is defined as well in the same section. The notion of time connectivity of a whole

graph and related problems are defined and studied in Section 2.3.2.2. To illustrate every question and

notion defined in this section, an instance of a temporal graph with four vertices and three time steps is

provided Figure 2.3.

A B

CD

A B

CD

A B

CD
G1 G2 G3

Figure 2.3: Representation of a dynamic graph G = (G1, G2, G3).

2.3.2.1 Journey

The notion of a journey is closely related to that of a route. A route in a time-varying graph is an ordered

sequence of edges from a vertex u to a vertex v (u and v may be the same) that respects the time order

of the edges. For instance a route between vertex A and vertex D on graph represented Figure 2.3 would

18 Chapter 2. Introducing Time in Graphs

be ({A,B}, {B,D}). A journey between two vertices u and v is then defined as a route in which the time

at which each edge is crossed is specified. Such a notion may be found in [23, 46] for instance. Using the

example given above, a journey between vertex A and vertex D might be (({A,B}, 1), ({B,D}, 2)). A

simple illustration of this journey is given Figure 2.4. Let us defined more formally this notion:

A B

CD

A B

CD

A B

CD
G1 G2 G3

Figure 2.4: Representation of a journey between vertices A and B in the dynamic graph G = (G1, G2, G3).

Definition 8 Journey:

Let G = (Gt)t∈T . Let V =
⋃

t∈T Vt and E =
⋃

t∈T Et. Let u and v be vertices in V . Then a journey

J (u, v) between u and v is a sequence ((ei, ti))i∈[0,τ], such that:

• τ is the length of the sequence.

• (ei)i∈[0,τ] is a path from u to v in the underlying graph G = (V,E).

• ti ≤ ti+1 for all i ∈ [0, τ − 1].

There are several points worth mentioning about the notion of journey. First, more than one journey

may exist between two vertices. For instance (({B,A}, 1), ({A,C}, 2)) is a journey from B to C as well

as (({B,C}, 3). Second, the notion of journey is not a symmetric relationship: if there exists a journey

from u to v, it is possible that there is no journey from v to u. On Figure 2.3, it is possible to find a

journey from vertex A to vertex D (see above), while there is no journey from D to A. The question of

finding journeys between vertices in the time-varying graph is referred as the reachability problem. This

problem may be defined as a decision problem. It is formally defined in this document by the following

definition:

Definition 9 Reachable(G, u, v)

Require: G = (Gt)t∈T a dynamic graph, u and v two vertices from G.

Ensure: 1 if there exists J (u, v), 0 otherwise.

All the points addressed above may be rewritten using this problem. For instance, using the example

Figure 2.3, Reachable(G, A,D) = 1 while Reachable(G, D,A) = 0.

Each edge may also be assigned a traversal time for specifying the time spent crossing it. On the

example provided Figure 2.4, traversal times were not specified. It is possible to fix this time to 1 for

instance. This means, for a journey ((ei, ti))i∈T , that ti < ti+1. If the traversal time is set to 0, then it

2.3. Time in Graphs 19

is possible to traverse more than one edge at a given date.

This leads us to another remark about the central notion of shortest path in static graphs. The

analogous, based on the journey notion, is not straightforward translated in time-varying graphs. Three

variants of shortest paths may be derived from the notion of journey.

For instance one may define the shortest journey that minimizes the number of edges in the path, or

the foremost journey which minimizes the arrival date of the path, or the fastest journey, that minimizes

the difference between the starting date and the arrival date of the path. These variants were introduced

in [46]. With this consideration, (({B,A}, 1), ({A,C}, 1)) is a journey from B to C using two edges

at step 1. Note that this journey is a foremost journey from B to C, but not a shortest journey as it

requires two edges while (({B,C}, 3) is a shortest journey. In the case where all edges have the same

traversal time, this shortest journey is also the fastest one. If the time-varying graph consider different

traversal times on the edges, then shortest and fastest journeys are generally different. For instance on

2.5, a fastest journey between A and B is be (({A,C}, 1), ({C,B}, 3)) reaching B after 4 steps, while the

shortest journey (({A,B}, 1)) reaches B after 7 steps.

A B

CD

7

2

A B

CD

2

4

A B

CD

4 2

G1 G2 G3

Figure 2.5: Representation of a dynamic graph G = (G1, G2, G3) with traversal times represented by
labels on edges.

2.3.2.2 Connectivity

An important question treated when time is introduced in graphs is whether any given vertex in the

graph may reach all the vertices in the graph. If every vertex u of a dynamic graph G may reach every

other vertex v, then the dynamic graph is said to be time connected. For instance, the example provided

Figure 2.3 is not a time connected graph as D cannot reach A. An example of time connected graph is

provided Figure 2.6. Indeed, a journey exists between any two vertices (note that edges are non-oriented):

• from A to B: (({A,B}, 1));

• from A to C: (({A,B}, 1), ({B,C}, 2));

• from A to D: (({A,D}, 2));

• from B to A: (({B,A}, 1));

• from B to C: (({B,C}, 2));

• from B to D: (({B,A}, 1), ({A,D}, 2));

• from C to A: (({C,D}, 1), ({D,A}, 2));

• from C to B: (({C,B}, 2));

• from C to D: (({C,D}, 1));

• from D to A: (({D,A}, 2));

20 Chapter 2. Introducing Time in Graphs

• from D to B: (({D,C}, 1), ({C,B}, 2)); • from D to C: (({D,C}, 1)).

One important thing to notice is that a graph may be time connected while every static graph of the

sequence may be disconnected. The previous example illustrates this situation.

A B

CD

A B

CD
G1 G2

Figure 2.6: Representation of a time connected dynamic graph G = (G1, G2).

Classification The concept of connectivity, alongside with the one of journey, has led to the study of

various notions. Several properties are derived from the simple notion of time-connected graph. These

notions and their relationships have motivated researcher to classify time-varying graphs according to

their properties. This is for example the case of the article [38]. In this paper the authors designed dif-

ferent classes of time-varying graphs according to the connectivity/reachability of graphs. For example,

there is a class of graphs where a vertex can reach all other vertices. Such a vertex may be referred to as

a temporal source. Another example is the class of graphs where there is a journey between every pair of

vertices in both directions: for all vertices u and v, there exists a journey (ei, ti)0≤i≤k from u to v and a

return journey (ei
′, ti

′)0≤i≤k′ from v to u such that tk < t0
′. This means it is possible to send a message

from any vertex u to any vertex v, and v can reply to u.

This class may be referred to as the class of round connected graphs. The example provided on Figure

2.6 is not round connected. An example of round connected graph may be found on Figure 2.7. Such a

A B

CD

A B

CD

A B

CD
G1 G2 G3

Figure 2.7: Representation of a round connected dynamic graph G = (G1, G2, G3).

graph is indeed round connected as edges at step 3 may be used to build journeys to go back to every

source vertex. This is a consequence of the the last graph being a complete graph and (G1, G2) is already

time connected.

2.3. Time in Graphs 21

2.3.3 Generation of Time-Varying Graphs

The generation of time-varying graphs generally aims to create graphs with some specific properties.

The rest of this section is dedicated to some time-varying graphs generators. For each of them, a brief

description of the mechanism producing graphs is studied.

2.3.3.1 Generator of Edge-Markovian Graphs

This section presents the Edge-Markovian Graphs Generator (EMGG), its formal definition and some of

its fundamental properties. This model has been introduced in [11] and is a generalization of markovian

graphs. The Edge-Markovian Graphs Generator (EMGG) is a stochastic process that produces an infinite

sequence of static graphs. Let Gt refer to as the graph produced at step t. Gt = (Vt, Et) where Vt (resp.

Et) represents the set of vertices (resp. edges) at step t. The EMGG is parameterized by two probabilities,

denoted as p and q, along with an initial condition or seed graph, denoted as G0. The set of vertices of

the graph does not change during the evolution process, so, for all t > 0, Vt = V0 = n. Given two vertices

u and v, if at step t the edge (u, v) ∈ Et, the edge is said present and absent otherwise. The EMGG

operates as follows: at each step, all possible edges (present or absent) are examined1. The generator

determines for each edge if it will remain in the same state (present/absent) in the next snapshot graph

or if it will change. The decision is based on two probability parameters: 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1. The

role of p is to define the probability that an edge present at a given step remains present during the next

step, while the role of q is to define the probability that an edge absent at a given step remains absent

during the next step. Note that in the original paper the, p is defined as the death rate and q as the birth

rate. To have an equivalent definition, it is necessary to replace p by 1− p and q by 1− q. The behavior

of this process is summarized in the diagram of Figure 2.8.

present absentp

1− p

q

1− q

Figure 2.8: Description of the states in the Edge-Markovian Graphs Generator.

A few specific values of p and q lead to distinct behaviors. For instance, when both p and q are set to

0, the generated graphs exhibit a blinking behavior, with edges alternating between present and absent

at each step. Conversely, when p and q are both set to 1, the graphs remain static throughout, with

Gt equal to the initial graph G0 at all time steps. In the case where q = 1 − p, the process becomes

time-homogeneous, meaning that the generation of each new graph is independent of the previous step.

Other cases result in different behaviors, which are explored in the next chapter.

1there are n(n − 1)/2 such edges

22 Chapter 2. Introducing Time in Graphs

Definition 10 Edge-Markovian Graph Generator (EMGG): An EMGG is parameterized through 4

parameters n ∈ N∗, p and q ∈ [0, 1] and an initial configuration G0. Instances produced by such a

generator are such that:

• for all step t, |Vt| = n;

• for all pair of vertices e = (u, v) ∈ V 2
t :

– if e ∈ Et, then e ∈ Et+1 (remain present) with probability p and becomes absent with

probability 1− p;

– if e /∈ Et, then e ∈ Et+1 (becomes present) with probability 1 − q and remain absent of

Et+1 with probability q.

The maximum number of edges that may be contained at a given step t is
(

n
2
)
. The set of edges is evolv-

ing through time and computing Edge-DynamicScore gives an information about its dynamics. In the

following sub sections we establish a solid foundation for understanding its dynamics and its relationship

with probabilities p and q.

2.3.3.2 Simple Time-Varying Graphs Generation

The model discussed here has been designed to study time-varying graph connectivity for graphs satisfying

two conditions. First, produced graphs are simple, which means every existing edge must appear exactly

once in a graph. Second, graphs are proper, which means two edges sharing one common vertex cannot

exist at the same time. The model considered has been introduced in [10]. The purpose was to study

questions of connectivity on temporal graphs. The proposed model is defined as follows:

Definition 11 Let n ∈ N, let p ∈ [0, 1]. The generator produces graph using the following steps:

First, the generator create a complete graph with n vertices. For every edge, a number is drawn

uniformly at random in [0, 1]. This number is considered as the label of the edge. Then, the generator

filters edges and keeps only those having a label lower than or equal to p. The generator next changes

the label as integers ranging from 1 to the |E| (the number of remaining edges) following the order

induced by the labels. This represents the final graph : Gt = ([1, n], {e|λ(e) = t}) where λ(e) is the

label of edge e.

This construction ensures produced graphs simple and proper. Indeed, every snapshot graph Gt has only

one edge and this edge is different at any step. Such graphs are completely changing from one step to the

next one. Another point to study here is the mechanism lurking underneath the creation of such graphs.

2.3.3.3 Generating Graph with a Given Feature

The model discussed here is designed to generate time-varying graphs satisfying a given property. This

idea has been developed in [19]. In this article the authors present the notion of Microcanonical Ran-

domized Reference Model (MRRM). One key concept necessary to present MRRM is the concept of

2.4. Discussion on Time in Graphs 23

feature. A feature is a function that takes a time-varying graph as an input. Thus, the function returning

the underlying graph of a time-varying graph is a feature as well as the function returning 1 if the a

time-varying graph is connected and 0 otherwise. A MRRM is therefore a generative model defined as

follows:

Definition 12 Let x be a feature and G∗ be a time-varying graph. A MRRM is a model that takes

G∗ as input and which returns a time-varying graph G such that x(G∗) = x(G). The output graph G

is drawn uniformly at random among all the time-varying graphs G′ satisfying x(G′) = x(G∗).

This definition may be constrained introducing a state space. Such a space is a set of time-varying graphs

satisfying some conditions. For instance the state space may only contain graphs with a fixed number of

vertices and bounded in time.

There are several ways to generate time-varying graphs using this model. In their article [19], Gauvin

et al. present three methods. The first method involves shuffling, either by randomizing the time labels of

the edges or the snapshot graphs while preserving a given feature. The second method uses the feature to

partition the state space, where the feature is used to build equivalence classes. The third method views

a MRRM as a transition matrix, treating it as a linear stochastic operator that transforms a time-varying

graph G∗ into another time-varying graph G.

A key strength of such networks lies in the concept of features. A feature is only constrained by the

input, which must be a time-varying graph, but is flexible in terms of output. For example, a feature

could be a decision problem, such as determining the time connectivity of a time-varying graph, or a

graph, such as extracting the underlying static graph from a time-varying one. However, for this model

to function, both a feature and a time-varying graph must be defined. As a result, this approach is

not suitable for discovering time-varying graphs that satisfy certain properties, as a graph exhibiting the

property must already be provided as input.

2.4 Discussion on Time in Graphs

Graphs are widely used to represent and study complex networks. However, static graphs are often

insufficient to explain dynamical phenomena in real-world networks. To address this, the concept of

time-varying graphs has been introduced, allowing changes in the graph over time. In this framework,

both edges and vertices can evolve, with elements appearing or disappearing throughout time.

Some models utilize this idea to generate time-varying graphs. For example, the Barabási-Albert

model generates a scale-free graph through an iterative process. Other models focus directly on the time-

varying graph itself, exploring properties introduced by the addition of time and how these properties

differ from those of static graphs. Even simple concepts like paths become richer in time-varying graphs,

raising new questions that do not arise in static graph contexts.

24 Chapter 2. Introducing Time in Graphs

One specific aspect that captured our interest in the study of these graphs is the generation of

time-varying graphs. There are several approaches to generating such graphs. Some methods focus on

the structure of the graph itself, whether static or time-varying. Examples include the Watts-Strogatz

model, Microcanonical Randomized Reference Models (MRRM), and the model presented in Section

2.3.3.2. Other methods consider a time-varying graph as a flow of static graphs, where each graph is

generated based on the previous one. The Barabási-Albert model, its derivatives, and the Generator

of Edge-Markovian Graphs (EMGG) are examples of this approach. For instance, the Barabási-Albert

model aims to construct a scale-free graph by continually adding vertices, while the EMGG keeps the

vertex set constant and its dynamics quickly converges to a stationary distribution.

Our work concentrates on the dynamics of graph generation, particularly the processes that generate

sequences of graphs based on previously generated ones. We observed several limitations in existing mod-

els. First, the graph’s order (i.e., the number of vertices) is typically fixed or grows steadily, determined

by the model’s parameters rather than emerging naturally from the process. Second, while some metrics

exist for time-varying graphs, they tend to describe the graph itself, not the generative process. For

example, time-connectivity is a property of the graph, but it doesn’t quantify the changes the process

imposes on the graph.

We aim to study the dynamics of graphs obtained by generative processes, where features like graph

order and edge count evolve without being driven by fixed parameters. We aim to study the dynamics of

graphs obtained by generative processes where features like graph order and edge count evolve without

being driven by fixed parameters. For that purpose, two new metrics are introduced to quantify and

qualify the generative processes themselves. These ideas lead us to define the concept of dynamic graphs

produced by generative processes.

2.5 Formalizing the Concept of Dynamic Graphs

The concept of a dynamic graph is introduced to account for the existence of an underlying process that

generates the graph. Unlike a time-varying graph, where two consecutive graphs in the sequence (see

Definition 7) may be independent from an evolutionary perspective, in a dynamic graph, two consecutive

static graphs are linked by an underlying generative process, making the study of its dynamics relevant.

This paradigm is inspired by the study of dynamical systems, which describe the evolution of a sys-

tem’s state (represented as a state vector x(t)) through differential equations dx(t)
dt . A similar approach,

inspired by statistical physics, is found in Strogatz’s work on such systems [41].

The key idea here is to focus on the underlying ”story” driving the evolution of the graph. In our

study, dynamic refers to the rules governing the transition from one static graph to the next. Repeated

application of these rules generates a sequence of static graphs, forming what we call a dynamic graph.

The number of times these rules are applied may be finite or infinite, depending on the application. This

2.5. Formalizing the Concept of Dynamic Graphs 25

section concentrates specifically on the transition function and aims to provide a formal representation

of dynamic and use this formalism to define the notion of a dynamic graph.

The process is represented as a function fd, analogous to how systems of differential equations are

studied. Applying fd to a graph Gt generates a new graph Gt+1, such that Gt+1 = fd(Gt). There are

no constraints on the nature of this function; it can be either deterministic or stochastic. The formal

definition of a dynamic is given as follows:

Definition 13 Dynamic:

A dynamic is a function fd : G = (V,E) 7→ G′ = (V ′, E′), where G and G′ are graphs.

This framework offers a flexible perspective for exploring iterative generative processes, allowing for

various scenarios without restricting features like graph order. Under this definition, it is possible for

|V ′| ̸= |V | or |V ′| = |V | with V ̸= V ′. While this definition uses a single graph as input, it could be ex-

tended to functions that take multiple graphs as inputs, without affecting the explanations provided here.

A dynamic graph in the context of this work, is a sequence of graphs starting from an initial condition

G0, and using a dynamic function fd to generate new graphs from previously produced ones. The number

of graphs in the sequence may be a parameter. Dynamic graphs are formally defined as follows:

Definition 14 Dynamic Graph:

Let T = [0, T] or N be a set of non-negative integers, G0 a static graph, and fd a dynamic. Then,

the time-varying graph G = (Gt)t∈T , where Gt+1 = fd(Gt) for all t ∈ N if T = N, or Gt+1 = fd(Gt)

for all t ∈ [0, T − 1] otherwise, is a dynamic graph.

This definition emphasizes the importance of a mechanism to produce graphs. Instead of generating a

time-varying graph in a single step, the generative process is iterative, building new graphs from already

generated ones. Examples of generative processes producing dynamic graphs include the Barabási-Albert

model and its derivatives, as well as the Generator of Edge-Markovian Graphs, both of which provide

iterative rules for generating sequences of graphs.

Conclusion

The concept of graphs is a powerful tool for representing and studying complex networks, helping to

understand phenomena in real-world systems. Some models, like the Watts-Strogatz model, utilize static

graphs, while others, such as the Barabási-Albert model, incorporate time to transform an initial seed

graph G0 into a sequence of graphs. However, these models typically focus on a single limiting graph to

assess properties such as small-world phenomena or scale-freeness.

In contrast, recent studies emphasize time-varying graphs, which examine entire sequences rather

than individual static instances. For example, time-connectivity explores whether every vertex can find

a temporal path to all others, introducing challenges not present in static graph theory.

26 Chapter 2. Introducing Time in Graphs

A fundamental aspect of time-varying graphs is their generation through processes that create a flow

of graphs, termed dynamic graphs. These are defined by functions that transform one graph into another

using specific rules. This dynamic framework, inspired by statistical physics and differential equations,

allows graph characteristics to evolve as a result of the generative process.

The following chapters will explore the consequences and properties of these generative processes,

focusing on metrics that assess graph dynamics rather than static features. Additionally, we will examine

a specific example of a generative process in Chapter 4.

CHAPTER 3

Qualifying and Quantifying Graph Dynamics

This chapter focuses on the study of generative processes for dynamic graphs, a concept defined in the

previous chapter in Section 2.5. As mentioned earlier, several questions arise when these generative

processes are allowed to modify the set of vertices without any fixed constraints. For example, the set

of vertices may change over time, and its size may depend on the rules applied. This opens up several

possible scenarios. For instance, the sequence of graphs might converge, toward an empty graph, toward

a constant static graph (Gt+1 = Gt), or might change for ever. This raises questions about the evolution

of the vertex and edge sets: is it sufficient to study the number of vertices and edges, or do we need more

sophisticated metrics to fully capture the dynamics? This question leads to an investigation of changes

in the composition of vertices and edges and the methods for measuring them.

To address these challenges, this chapter introduces several key concepts. The first, called sustain-

ability, assesses the overall progression of a sequence of graphs. This concept forms a foundation for

analyzing dynamic graph generators. A graph is considered sustainable if its dynamics do not eventually

loop or stagnate. A formal definition of sustainability is provided in Section 3.1.

The second concept introduced is a metric designed to quantify the dynamic changes in a graph.

This metric, called DynamicScore, captures the global changes between consecutive graphs. Together

with the analysis of vertex and edge count evolution, DynamicScore offers a deeper understanding of

time-varying graph dynamics. This metric is further discussed in Section 3.2.

Lastly, an additional question, expanding on the idea of sustainability and generalizing the concept

of journeys in time-varying graphs, is explored in Section 3.3. This section examines communication in

dynamic graphs where the set of vertices evolves over time. Two problems are introduced in this context,

focusing on whether information can persist despite the loss of vertices over time.

27

28 Chapter 3. Qualifying and Quantifying Graph Dynamics

3.1 Sustainability

The primary aim of this research is to define the concept of ”sustainability” within the context of dynamic

graph generators. This study focuses on generators that evolve the entire set of vertices and those based

on dynamic mechanisms. This concept is one of the contributions of this thesis. Indeed, to the best of

our knowledge, it has not been previously explored, which necessitates the development of an appropriate

definition.

Our investigation centers on three specific scenarios related to dynamic graph generators, discussed in

Section 3.1.1. These scenarios outline the conditions that a dynamic graph or its generator must satisfy

to be considered sustainable. Additionally, we reflect on this new metric, recognizing that it may not be

inherently intuitive.

Further, in Section 3.1.2, we study sustainability on two well-known models: the Barabási-Albert model

and the Generator of Edge-Markovian Graphs.

3.1.1 Definition

The sustainability metric is a novel tool introduced to study generative processes. This section outlines

the development of the sustainability concept and the underlying choices that shaped its definition. Three

predicates were formulated to define the sustainability of dynamic graph generators.

First, the generators must ensure persistence by avoiding the production of graphs that eventually

become empty. Second, the generators should exhibit non-periodicity; initially, this condition aimed

to prevent graphs from becoming static over time, but it was later generalized to include deterministic

generators. The intent here is to avoid the creation of graphs that lack ”dynamics” or that become

repetitively predictable. Third, we sought to control growth by preventing the generation of graphs that

expand exponentially, instead promoting a balanced growth that allows for elements of decay or reduction.

However, in our contributions, only the first two predicates were retained. The third predicate,

concerning growth control, proved difficult to quantify and was deemed more dependent on specific

applications. The two predicates used to define the sustainability notion are summarized in the following

definition:

Definition 15 Sustainability Predicates:

Let G = (Gt)t∈T . G is said to be sustainable if it satisfies the following two predicates:

P0 : ∄T ∈ T ,∀t ≥ T,Gt = (∅, ∅)

P1 : ∄T ∈ T ,∃k ∈ Z+,∀t ≥ T,Gt+k = Gt

3.1. Sustainability 29

3.1.2 Comparison to Existing Generative Processes

Examples of existing generative models can be found in Chapter 2. In this section, we apply the definition

of sustainability to evaluate whether these generative models ensure the sustainability of the graphs they

produce.

3.1.2.1 Barabási-Albert Model

Some well-known generative processes, such as the Barabási-Albert model, produce sustainable dynamic

graphs. In these models, both the graph order and the number of edges are controlled: for all t ∈ N,

|Vt+1| > |Vt|, and Gt ̸= (∅, ∅). Therefore, these graphs satisfy the two criteria required to be classified as

sustainable.

For these generators, graph sustainability is evident and is inherently defined by the model itself, thus

requiring no further analysis of sustainability. However, some may argue that since the process grows

by adding one vertex and a fixed number of edges, the changes in composition become insignificant as

the size of the graphs increases. In Section 3.2.3.3, it is even demonstrated that a metric quantifying the

dynamics of time-varying graphs for both vertices and edges approaches zero over time.

Thus, even though the generated graphs are sustainable, one might contend that they become non-

sustainable as time approaches infinity. This observation suggests that the notion of sustainability could

be further refined by using other metrics quantifying the dynamics of time-varying graphs.

3.1.2.2 Edge Markovian Graphs

The question of sustainability may also be studied in the case of Edge-Markovian Graphs (EMG). Indeed,

here the model is parameterized with two probabilities p and q. The question of sustainability may be

treated to see whether or not there exist parameters such that produced graphs are always sustainable or

not. To this end, we first expose some well-known result about EMG and then provide an analysis of the

density evolution. This analysis is then used to state about sustainability. In the following, the number

of edges in a generated graph at step t will be referred to as mt and the graph density will be referred to

as m̂t.

Known Properties of EMGG In order to ease the understanding of the dynamics of EMGG in-

stances, some results about EMGG are presented. First note that the state of each edge is independent

of the state of the other edges of the graph, thus, studying the probability of presence/absence of each

edge independently from the others is correct. As presented in [11] the transition matrix P for a single

edge satisfies:

P =

 p 1− p

1− q q

 (3.1)

The analysis of Markovian processes and more especially the study of two-states markovian processes has

shown that for each single edge, the distribution of presence, in the context of EMGG, converges toward

a stationary distribution π as long as |p+ q− 1| ≠ 1 (see [15] for a proof). The situation |p+ q− 1| = 1 is

30 Chapter 3. Qualifying and Quantifying Graph Dynamics

A B1 1

(a) Case where p = q = 1

A B

1

1
(b) Case where p = q = 0

Figure 3.1: The two different configurations where |p + q − 1| = 1. On the left, p = q = 1. This means
whatever the initial configuration, the edge will stay in the same state. On the right, p = q = 0. This
means the edge state changes at every step.

discussed below. As a stationary distribution of a Markov chain, π satisfies π = πP . The value of vector

π is stated in the following theorem:

Theorem 1 Stationary distribution:

For p, q probabilities such that |p+ q − 1| ≠ 1, the stationary distribution π is
(

1−q
2−p−q

1−p
2−p−q

)
.

Proof : It is sufficient to notice that π =
(

1−q
2−p−q

1−p
2−p−q

)
is a distribution and that π = πP . ■

Thus, the presence of an edge has a Bernoulli distribution of parameter π∗ = 1−p
2−p−q as a stationary

distribution. As every edge is independent one from the other, the number of edges has a binomial

distribution of parameters
(

n
2
)

and π∗. The situation for which |p + q − 1| = 1 can be declined in two

sub-cases: either p = q = 1 or p = q = 0. On the one hand if p = q = 1, then graphs produced by

EMGG remains unchanged forever. This means Gt = G0 for all t. In this configuration, the density

is constant and equal to the density of the very first graph of the sequence of snapshot. On the other

hand if p = q = 0, then produced graphs are 2-periodic and more precisely, Et+1 is the complementary

of Et for all t. In this configuration, the density switches at every time step. More precisely, m̂t = m̂0

for t even and m̂t = 1 − m̂0 for t odd. Thus, in both cases the density of a produced graph does not

converge to a stationary distribution. Thes configurations are gathered in the figure 3.1. For all other

cases, the eigenvalue p+ q−1 provides the speed of convergence toward the stationary distribution. This

convergence rate is an exponential in |p + q − 1|. A convenient way to observe this is to consider the

matrix P in its diagonal form:

P = U

1 0

0 p+ q − 1

U−1

Then, it is sufficient to notice that for any initial distribution π(0), the distribution at step t π(t) is given

by

π(t) = π(0)P t

Density Evolution of Edge-Markovian Graphs In order to better understand the relationships

between EMGG dynamics and the Edge-DynamicScore metric, that will be presented in the next section,

we first show that the number of edges is on average close to a quantity depending only on p and q. To

that end, we prove the following lemma on the evolution of the density:

Lemma 1 Evolution of the Density

Let consider EMGG parameterized by (n, p, q). Let (G0, . . . , Gt) be a sequence of graphs produced by

3.1. Sustainability 31

EMGG. Then, the expected normalized density for the graph Gt+1 satisfies the following equation:

ˆmt+1 ≃ fp,q(m̂t) = m̂tp+ (1− q)(1− m̂t) = (p+ q − 1)m̂t + (1− q) (3.2)

Proof: as the process is a Markov chain, ˆmt+1 depends only on m̂t. Second, it is worth mentioning that

every edge is independent from the others. The expected number of edges that remain present is pm̂t

while the expected number of edges changing their state from absent to present is (1− q)(1− m̂t). The

expected number of edges present at step t+ 1 is thus the sum of these two quantities. ■

This lemma provides a valuable interpretation of the density expectation, which allows us to further

investigate the existence of a fixed density. By analyzing the expectation, we can identify a specific value

that represents a fixed point within the computation process. In the context of the function fp,q, a fixed

point refers to a value m∗ for which f(m∗) = m∗ holds true. The computation of this fixed point value

is carried out according to the procedure outlined in the subsequent lemma.

Lemma 2 Expected Number of Edges:

Let G be a graph produced by EMG(n, p, q) Let m̂t be the density of graph at step t. Then, as long as

|p+ q − 1| < 1 an expectation value for m̂t, referred to as m∗, satisfies fp,q(m∗) = m∗:

m∗ = 1− q
2− p− q (3.3)

Proof: this result comes from finding a fixed point to the function fp,q ■

This fixed point value matches with the probability of presence of an active edge in the stationary

regime. It is not surprising as it gives, in both case, the average and expected value of the graph density.

These findings enable us to gain deeper insights into the dynamics of the system and the properties

associated with the EMGG, paving the way for a more comprehensive understanding of its behavior.

Sustainability As a consequence of the above result, it may be shown that, if p and q are both different

from 0 and 1, then graphs are likely to be sustainable. This may be proved using two arguments. First, if

p and q are both different from 0 and 1, then there always a chance for one edge to transit from one state

to another. Moreover, the estimation provided in Lemma 2, shows that, if p and q are both different from

0 and 1, the expected density of the graph is neither 0 nor 1, which means the graph is neither empty nor

complete. Now the question is, what is happening if p or q equals 0 or 1. Let us discuss each case. First,

if p = q = 1, then every edge stay in its state. Therefore graphs remains steady and are therefore not

sustainable. If, p = q = 0, then every edge switch state at every step. Produced graphs are periodic with

a period 2 and are therefore not sustainable. If p = 0 and q = 1, then after one step, produced graphs

are empty and therefore not sustainable. If p = 1 and q = 0, then after one step, produced graphs are

complete graphs and therefore not sustainable. If p or q equals 1 while the other is different from 0 and

1, then if p = 1 then graphs will become empty with high probability as every edge stay present from the

first moment they are present. The same thing occurs when q = 1, but graphs will rather become empty

32 Chapter 3. Qualifying and Quantifying Graph Dynamics

for similar reasons. However, if p or q equals 0 while the other is different from 0 and 1, then graphs

are likely to be sustainable. Indeed, if p = 0 for instance, then once an edge appear, it disappear at the

very next step but if an edge is absent, then it may stay absent with probability q and become present

with probability 1− q. It is therefore unlikely for a graph to become periodic. The same reason may be

applied for the case q = 0. All these results may be gathered in the following theorem:

Theorem 2 Sustainability Conditions:

The Edge-Markovian Graph Generative process produces sustainable graphs if and only if p and q ∈]0, 1[

or p or q equals 0 while the other is different from 0 and 1.

As can be seen, the sustainability conditions are simple to state, but verifying them for a given generator

is not straightforward.

Conclusion on the Sustainability

Unlike these cases, some generators are based on mechanisms making the evolution of the vertices (and

edges) more difficult to predict, and the dynamics is worth studying. This is the case of the generative

models proposed in Chapter 4. The sustainability metric has been designed to study such parameterized

generative models producing dynamic graphs. Indeed, before studying complex properties about dynamic

graphs, it is worth making sure these graphs do not become empty for instance. This is why, the

sustainability metric is a first milestone in the study of dynamic graphs when their set of vertices/edges

changes over time. Once the sustainability is ensured or almost certain for some families of dynamic

graphs, the next step in the study of sustainability is to look at the reasons a dynamic graph is sustainable.

In the context of this thesis, we have found some families of graphs seeming to exhibit a structure

maintaining the whole graph sustainable while others just produce graphs without any visible structure.

Example of graphs exhibiting a structure maintaining their sustainability are investigated in Section 4.3.4.

3.2 DynamicScore

In this section, we introduce a complementary metric for studying the evolution of graph order. This

metric is called DynamicScore. It is a quantitative metric that provides a global perspective on the

changes that can occur within the graph over a time step. It derives from an existing metric known as

the Jaccard distance, named after the author who first used it in his work [25]. Initially utilized in the

field of biology, it also plays a key role in set theory, as it corresponds to a distance in the topological

sense. Furthermore, it provides a measure of dissimilarity between two subsets of a larger set. This means

that this metric is a distance, taking values between 0 and 1, where a value of 1 indicates that the two

input sets do not share any common elements.

3.2.1 Definition

The DynamicScore is a novel metric aiming at quantifying the dynamic of a graph. The motivation lurk-

ing underneath this metric is to answer the question ”how dynamic a graph is ?”. It is worth mentioning

this question is not straightforward. When we first attempted to define a measure of the dynamics of a

3.2. DynamicScore 33

graph we were tempted to say a graph is slowly dynamic when its size remains nearly the same during a

short number of steps. However, a graph can have very little change in size and yet the entire set may

have evolved. Indeed, maintaining a constant size does not prevent various scenarios from occurring. For

instance, the set of vertices may remain steady, or it may have completely changed. In the first case,

it seems relevant to qualify the dynamics as low. In the second case, the graph may be qualified as a

highly dynamic graph. The metric should emphasis this situation by providing a low (resp high) score

indicating the graph has not changed too much (resp has changed a lot). Therefore, the objective was to

introduce a metric that accounts for all these scenarios and enables the quantification of graph dynamics,

and in some cases, characterizes certain phenomena.

The definition of the DynamicScore introduced in this section encompasses every aspect we want a

metric quantifying the dynamics of graphs to embed. The DynamicScore is an answer to this question. It

effectively measures the similarity between two consecutive graphs in a graph sequence. The metric is a

distance based on the Jaccard distance dJ of two sets. Notably, the DynamicScore emphasizes changes in

composition, both at a local level over time between two consecutive steps, and at a global level spanning

the entire graph. It is formally defined as follows:

Definition 16 Vertices-DynamicScore:

Given a dynamic graph G, such that at time t Gt = (Vt, Et). We call Vertices-DynamicScore

(also referred to as V-DynamicScore or Vertex DynamicScore in the following) at time t and denoted

by DV
t , the ratio:

DV
t = |Vt+1△Vt|

|Vt+1 ∪ Vt|

where |A| denotes the size of set A. The △ operator for any two sets A and B referred to as A△B

and is defined as A△B = (A ∪B)− (A ∩B).

Similarly, for a given dynamic graph the definition of its edges DynamicScore is defined as follow:

Definition 17 Edges-DynamicScore:

Given a dynamic graph G, such that at time t Gt = (Vt, Et). We call Edges-DynamicScore (also

referred to as E-DynamicScore or Edge DynamicScore in the following) at time t and denoted by

DE
t , the ratio:

DE
t = |Et+1△Et|

|Et+1 ∪ Et|

One interesting thing with these metrics is that they do not require anything but the set of vertices and

the set of edges to be defined. The DynamicScores serve as dissimilarity measures, enabling comparisons

between two consecutive snapshot graphs. A score of 0 indicates that the two sets are identical, while a

score of 1 means that they do not share any common elements. In general, a value close to 0 suggests

minimal changes in the graph between two consecutive steps, whereas a value close to 1 implies significant

modifications have occurred. It should be noted that graph order and the V-DynamicScore measure two

different quantities. For instance, between two consecutive time steps, t and t + 1, the value DV
t can

range from 0 to 1 while the order of the graph remains the same. The following section investigate further

34 Chapter 3. Qualifying and Quantifying Graph Dynamics

these observations. Remark: to avoid the problem of the division by zero and as the DynamicScore is

a distance, DV
t will be set to zero if both Vt and Vt+1 are empty.

3.2.2 Specific Values of DynamicScore

For illustrating these definitions, we will consider different cases for a dynamic graph, from t to t+ 1. In

a first time we will see how V-DynamicScore may be used as a complementary metric to graph order.

We will then provide few results when dynamic graphs grow and see different scenarios.

3.2.2.1 Constant Graph Order

Let assume that between t and t+ 1 the order remains the same, thus |Vt+1| = |Vt| = n. Here the focus

will be on Vertices-DynamicScore, but observations are equivalent in the case of edges. To illustrate the

expressiveness of this metric, we analyze three different cases.

Case 1: if all vertices are replaced, then, on the one hand, graphs do not share any common vertex.

The composition of the dynamic graph has thus completely changed in one step. On the other hand,

DV
t = 1. Thus, the DynamicScore, by providing a value of 1, perfectly highlights the dramatic change of

the vertex set, during one step.

Case 2: if the set of vertices remains the same, the graph composition does not change in one step

(Vt = Vt+1). Moreover, DV
t = 0. As in the previous case, the absence of changes is encompassed in

DynamicScore values. This may be extended to graphs with small changes. In that case, DynamicScore

values are close to 0.

Case 3: The last case is when half of the vertices are replaced. In that case, the intersection of the two

consecutive sets Vt ∩ Vt+1, the set of created vertices Vt+1 − Vt and the set of removed vertices Vt − Vt+1

contains n
2 elements. Then DV

t = 2
3 .

This is summarized in the diagram 3.2.

0

Vt = Vt+1

Vt = Vt+1

2
3

Vt+1 ∩ Vt ̸= ∅

− ∩ +

1

Vt ∩ Vt+1 = ∅

Vt Vt+1

Figure 3.2: Illustration of the dynamic score for vertices. Here nt+1 is assumed to equal nt. For the case
DV

t = 2
3 , − refers to as Vt − Vt+1, the set of non-conserved vertices. ∩ refers to as Vt ∩ Vt+1, the set of

conserved vertices. Finally, + refers to as Vt+1 − Vt, the set of created vertices.

This shows that DynamicScore is a complementary metric with the evolution of graph order. Indeed,

when the graph order does not change, the set of vertices as well as the set of edges may change.

The DynamicScore takes into account such changes as it provides information about changes in the

3.2. DynamicScore 35

composition of a dynamic graph between consecutive steps. It is even possible to go further and to find

a connection between the number of conserved vertices (|Vt ∩ Vt+1|) and the V-DynamicScore:

Theorem 3 V-DynamicScore and Conserved Vertices:

Let G = (Gt)t∈N be a dynamic graph. Assume that |Vt| = |Vt+1| = n for some t ∈ N. Define α = |Vt∩Vt+1|
n

as the proportion of conserved vertices from step t to step t + 1. Then, the V-DynamicScore and α are

connected as follows:

DV
t = 21− α

2− α

Proof: Let α = |Vt∩Vt+1|
n . Then, using the definition of the V-DynamicScore and the assumption that

n = |Vt| = |Vt+1|, the following holds:

DV
t = |Vt△Vt+1|

|Vt ∪ Vt+1|
= |Vt|+ |Vt+1| − 2αn
|Vt|+ |Vt+1| − αn

= 21− α
2− α

■

One thing to notice with this relationship is that DV
t ranges from 0 to 1 as α does. The second thing

to notice is that the V-DynamicScore is a decreasing function of α. With all these arguments, it is clear

that DynamicScores are complementary metrics of the graph order or the number of edges as when they

do not change, DynamicScores spotlights composition changes with values ranging from 0 (no changes)

to 1 (every thing has changed).

3.2.2.2 Growing Network

Let us now focus on a growing dynamic graph, meaning at each step t, Vt ⊆ Vt+1 and Et ⊆ Et+1. Here

we will focus on three different situations. The first one is when nt and et grows linearly. In that case, it

is possible to show that both V-DynamicScore and E-DynamicScore tends toward 0 as t tends to infinity.

The second situation is when nt grows as an exponential (nt = n0 × at). For that case, it is possible to

find a relationship between DV
t and a. The third situation does not concern a specific grow but when et

may be expressed as a polynomial of nt. In that case, it is possible to exhibit a relationship between DE
t

and DV
t . Before delving into these cases, let us proof the following lemma that will be helpful for proofs:

Lemma 3 General V-DynamicScore of Growing Graph Let assume Vt ⊆ Vt+1 for all t ∈ N, then:

DV
t = 1− nt

nt+1

Proof: From the assumption Vt ⊆ Vt+1, it comes |Vt△Vt+1| = nt+1 − nt and |Vt ∪ Vt+1| = nt+1. Thus,

the following holds:

DV
t = nt+1 − nt

nt+1
= 1− nt

nt+1

■

Let us now delve into the different cases.

Linear Grow Let us assume that nt = a × t + n0 and et = b × t + e0. It is possible to prove that in

this configuration, V-DynamicScore and E-DynamicScore converges toward 0.

36 Chapter 3. Qualifying and Quantifying Graph Dynamics

Theorem 4 Linear Growth DynamicScores:

Let us assume that nt = a × t + n0 and et = b × t + e0. Let assume T = N. Then, limt→∞DV
t =

limt→∞DE
t = 0.

Proof: The result come from limt→∞
nt

nt+1
= limt→∞

et

et+1
= 1 and from Lemma 3. ■

This theorem, alongside with both V-DynamicScore and E-DynamicScore are decreasing function of

t, proves that the dynamics of linear growing graphs tends to zero and therefore graphs are less dynamic

as time grows. This result may be extended to polynomial growth as, for any polynomial function P (t),

the ratio P (t)
P (t+1) tends to 1 as t tends to infinity.

Exponential Growth For this paragraph, let us assume the size of the graph grows as an exponential

of the form nt = n0 × at and et = e0 × bt with a ≥ 1 and b ≥ 1. In that case, the V-DynamicScore does

not tend toward zero but remains constant over time. The value of this constant depends on the value

of a and the relatinship between them is stated in the following theorem.

Theorem 5 Exponential Growth DynamicScore:

Let us assume that nt = n0× at and et = e0× bt. Then, for all t ∈ T , then DV
t = 1− 1

a and DE
t = 1− 1

b .

Proof: This comes from Lemma 3 and nt

nt+1
= 1

a . ■

As opposed to graph size increasing as a polynomial of time, here the DynamicScore remains constant

over time. Moreover, the bigger a and b, the closer DV
t and DE

t are to 1.

Graph Densification Let us now delve into the case where graphs become denser. In this context, it

is still assumed that graphs are growing (i.e., Vt ⊂ Vt+1), but here a polynomial relation exists between

the graph order and the number of edge : et = c× (nt)a with a ∈ [1, 2]. It is therefore possible to find a

relationship between V-DynamicScore and E-DynamicScore as follows:

Theorem 6 Graph Densification DynamicScore: Let assume there exist c > 0 and a ∈ [1, 2] such that

et = c (nt)a for all t. Then the following holds:

DE
t = 1−

(
1−DV

t

)a

Proof: Using Lemma 3 and the densification relationship between et and nt, DE
t may be written as

follows:

DE
t = 1− et

et+1
= 1−

(
nt

nt+1

)a

= 1−
(

1−
(

1− nt

nt+1

))a

= 1−
(
1−DV

t

)a

■

From this it is possible to check whether a growing graph gets denser over time using this relationship.

However, this relationship only holds if the graph is growing. If this is not the case, another method

should be used to see if the graph gets denser over time.

3.2. DynamicScore 37

3.2.3 Comparison to Generator Models

From now we will use this metric in order to describe the dynamic of graphs produced by generative

processes. In a first time, the focus will be on network with neither removal nor addition of vertices, so that

the focus will be only on edges dynamics. To illustrate this, a model has been designed based on Erdös-

Rényi random graph model. It will be proven that considering this model it is possible to analytically

estimate the DynamicScore distribution and that, assuming a few hypotheses, the DynamicScore is

roughly constant. Then, the EMGG, presented in Section 2.3.3.1, is studied. For this model, we will

prove that the average value of the E-DynamicScore is depending only on one parameter. In a third time,

the focus will be on growing networks. They are such that a new vertex is added at every step of the

generative process using preferential attachment. Such a mechanism has been described more formally

above so this section will only deal with properties of the DynamicScore. It will be shown that Vertices-

DynamicScore, as well as Edges-DynamicScore, converge toward 0, meaning graph dynamics becomes

small.

3.2.3.1 Sequence of Erdos-Renyi Graphs

As a first model, we here investigate a model based on the Erdös-Rényi (ER) [16] random graph model.

More precisely, the generator produces a sequence of graphs such that every snapshot graph is an ER graph

with n vertices as a probability of connection p. The motivation behind this choice is that the mechanism

involved in the generative process is simple to describe. Moreover, the analysis of the distribution of the

DynamicScore is enabled in this paradigm, which is not always the case. Such an analysis will be a first

milestone in the study of DynamicScore, and comparison with other models will enlighten features and

properties of other models as we will see in other sections. Defining formally such a generative process

leads to the following definition:

Definition 18 Erdös-Rényi Dynamic Graph Generator (ERDGG):

Let n ∈ Z+ and p ∈ [0, 1]. A graph produced by ERDGG(n, p) is a sequence of independent random

graphs generating using the mechanism introduced in the ER model [16].

The sequence of every graph generated using this generation mechanism is said to be a ”time-independent”

Markov chain, meaning that it is a Markov chain with no dependencies between two consecutive steps.

Various properties may be found about static graphs obtained from the initial ER model. Among others,

the distribution of the number of edges and is known and is such that, for every graph G = (V,E)

obtained from ER(n, p) generation paradigm, |E| has a binomial distribution |E| ∼ B
((

n
2
)
, p
)
. This

result is obtained reasoning on the independence between every single edge of which the distribution

of presence is of course a Bernoulli scheme of parameter p. This is sufficient to prove the following

result, providing an approximation for the distibution of the DynamicScore in the general case. The

approximation just mentioned concerns one argument in the proof. Indeed, the proof relies on the

independence on the number of removed or created edges |Et△Et+1| and the number of edges present at

least once |Et ∪ Et+1|, which does not hold as the intersection is included in the union, but will provide

results obtained from simulation and help the understanding of the dynamics of the generator.

38 Chapter 3. Qualifying and Quantifying Graph Dynamics

Theorem 7 Let n and p be as defined above. Let t ≥ 0, and Gt = (V,Et) and Gt+1 = (V,Et+1) two

consecutive generated graphs. Let DE
t denote the E-DynamicScore as defined above. Then, DE

t can be

approximated by a lognormal distribution with parameters µ and σ2 satistying:

µ = ln
(

21− p
2− p

)
σ2 = 4− 11p+ 12p2 − 4p3

2
(

n
2
)
p(1− p)(2− p)

Proof: First, let consider the distribution of |Et△Et+1| and the distribution of |Et ∪ Et+1|. To establish

the distribution of |Et△Et+1|, the following reasoning on a single edge e ∈ V 2 is enough:

Pr(e ∈ Et△Et+1) = Pr ((e ∈ Et ∩ e /∈ Et+1)) + Pr[(e ∈ Et+1 ∩ e /∈ Et)]

= p(1− p) + (1− p)p

= 2p(1− p)

Thus, as every edges are independent one another, |Et△Et+1| ∼ B
((

n
2
)
, 2p(1− p)

)
. Following a sim-

ilar way, the distribution of |Et ∪ Et+1| ∼ B
((

n
2
)
, p(2− p)

)
Using the assumption both |Et△Et+1|

and |Et ∪ Et+1| are independent provides that ln
(
DE

t

)
∼ N (µ, σ2), with µ = ln

(
2 1−p

2−p

)
and σ2 =

1
(n

2)
(

1
2p(1−p) + 1

p(2−p) − 2
)

(σ2 lies on the value in the statement). Therefore DE
t = exp (ln (DE

t)) ∼

Lognormal(µ, σ2). ■

Two main observations may be derived from this statement. The expectation of a lognormal distri-

bution parameterized using µ and σ2 is exp
(
µ+ σ2

2

)
(it is worth mentioning that the parameters of

X having a lognormal distribution are the same parameters for exp (X) having a normal distribution).

However knowing only the mean value of a distribution is not enough. One would also require the coef-

ficient of variation CV, which measures the dispersion of the values a random variable may have around

its expected value. For a lognormal distribution, this value is
√
eσ2 − 1. Providing σ2 is small, Tailor

expansion of this expression leads to the approximation
√
eσ2 − 1 ≃ σ. As σ is small for huge values

of n, the dispersion of DynamicScore values around µ will be very small. Therefore, the mean value of

the DynamicScore can be considered equal to the value that the DynamicScore takes without too much

variability. In addition, the expected value may be considered close to µ as σ2

2 is close to zero.

The application of DynamicScore to this generative model gives us more insights about the dynamics of

produced graphs. Indeed, the definition of the generator implies that two consecutive snapshot graphs are

completely independent one another. The generative process is therefore a ”Time-Homogeneous” Markov

Chain. Thus, there is no reason to think there is any common information between two consecutive steps.

However, it has just been shown that DynamicScore is almost constant. As this metric represents the

renewal rate of edges between consecutive steps, it is possible to use it to compute the conservation rate,

which will also be almost constant. Moreover, the average DynamicScore exhibits a decreasing trend on

p. It is sufficient to notice that 1−p
2−p = 1 − 1

2−p is a decreasing function of p. Possible values for the

3.2. DynamicScore 39

DynamicScore ranges from 0 to 1, indicating its ability to capture all sort of changes in the graph. In

addition to this, the function p 7−→ 2 1−p
2−p is an involution (it is its own reverse), therefore, it is possible to

produce generated graphs with a chosen DynamicScore: for a given DynamicScore D, parameter p must

equal 2 1−D
2−D for the average DynamicScore to equal D. As we see, it is possible to design the generator

to produce graphs with a fixed dynamics.

3.2.3.2 Edge-Markovian Graphs

The results presented in this section have been published and presented during the 12th International

Conference on Complex Networks and their Applications [1].

This section explores the relationship between the Edge-Markovian Graphs Generator (EMGG) and

the DynamicScore, focusing on the computation of an expectation value regardless of the graph’s density.

This model has already be presented and defined in Section 2.3.3.1. This is an extension of the sequence of

Erdos-Rényi graph generator which can be seen as a special case where p = 1− q. The main result of this

work is that the average DynamicScore does not depend on the parameter q but only on p. Additionally,

similar to the previous dynamic graph generator, we prove that the average DynamicScore can be equal

to any possible values between 0 and 1. These findings can be explained by the generative process being

a Markov chain. A last important point to emphasize is that in this section, only the DynamicScore of

edges will be studied, since the set of vertices remains constant.

The following theorem provides a precise value of this expectation, elucidating the crucial role played

by the parameters p and q in this context:

Theorem 8 Average General DynamicScore

Let G be a graph produced by EMG(n, p, q) Let m̂t be the density of graph at step t. Then, in average:

DE
t = 1− pm̂t

1 + q(m̂t − 1) (3.4)

Proof: The proof consists in finding the average number of edges in Et△Et+1 and in Et ∪Et+1. For the

first one, it consists in computing, on average, the number of edges which state is changing. Assuming

the density of edges at t is m̂t, then the density of edges that change from present to absent is on average

(1 − p)m̂t and the density of newly present edges is on average (1 − q)(1 − m̂t). Therefore, the size of

Et△Et+1 is on average:

|Et△Et+1| = (1− p)m̂t + (1− q)(1− m̂t)

For computing the union size, it is sufficient to notice that it contains all the present edges at step t plus

appearing edges (1− q)(1− m̂t). Thus, the size of the union is in average:

|Et ∪ Et+1| = m̂t + (1− q)(1− m̂t)

40 Chapter 3. Qualifying and Quantifying Graph Dynamics

It is therefore possible to estimate the average DynamicScore:

DE
t = (1− p)m̂t + (1− q)(1− m̂t)

m̂t + (1− q)(1− m̂t)
= 1− pm̂t

1 + q(m̂t − 1)

■

This result must be evaluated for densities close to m∗. The reason for this is that, as the generation

process is Markovian and |p+ q − 1| < 1, the sequence of produced graphs quickly converges to a limit,

which happens to be an ER graph with parameters
(

n
2
)

and π∗. Since these graphs have an edge count

following a binomial distribution with parameters
(

n
2
)

and π∗, we conclude that the typical density is also

a highly representative value of the density of the produced graphs. This implies density of these graphs

are close to π∗ = m∗. Combining this theorem with the fixed point density of generated graphs provides

DynamicScore at the fixed point density:

Theorem 9 E-DynamicScore in Average around m∗:

For all p, q such that |p+ q − 1| < 1

DE
t (m∗) = 21− p

2− p

Moreover, DE
t (m∗) may take any value from 0 to 1.

Proof: it results from the combination of both theorem 8 and lemma 2. ■

Notably, the average E-DynamicScore is independent of the value of q and exhibits a decreasing trend

as p increases. The range of possible values for the E-DynamicScore ranges from 0 to 1, indicating its

ability to capture the extent of changes in the graph. These findings are illustrated on Figure 3.3, obtained

through simulations, considering various values of p and q, both ranging from 0 to 1, while excluding the

endpoints. These visual representations offer a good understanding of the relationship between EMGG

instances, their E-DynamicScore on average, and the parameters p and q. By examining these figures,

we obtain experimental confirmation and deeper understanding of the behavior and characteristics of

the EMGG, corroborating the insights provided by the above-stated theorem, particularly in relation to

the E-DynamicScore. The impact of the parameter q on the average E-DynamicScore is found to be

negligible, whereas parameter p appears to be more influential in determining its value. Notably, it is

observed that the E-DynamicScore can encompass the entire range from 0 to 1 as p varies from 1 to 0.

3.2.3.3 Barabasi-Albert Generating Graphs

In [5], the generative process is clearly described. For this model, the focus is both on the evolution of

the vertices and on the edges. Using our notations the generation of the graph starts with a seed graph

G0 = (V0, E0) such that |V0| = n0 and 0 ≤ |E0| = m0 ≤ 1
2n0(n0 − 1). Note that in the original research

article, no information is given about the initial number of edges. At every time step t+ 1 a new vertex

ut+1 is added and this new vertex is linked to m(≤ n0) vertices already in Vt. Thus Vt+1 = Vt ∪ {ut+1}

and |Et+1| = |Et| + m. From this it is possible to compute both Vertex and Edge-DynamicScore. As

the number of node inserted in the graph at each step is one, DV
t = 1

n0+t+1 . Moreover, the number

3.2. DynamicScore 41

0 0.5 1

0.5

1

q

D
E

t
(m

∗)
p =0.05
p =0.15
p =0.25
p =0.35
p =0.45
p =0.55
p =0.65
p =0.75
p =0.85
p =0.95

(a) E-DynamicScore Average vs. q.

0 0.5 1

0.5

1

p

D
E

t
(m

∗)

q = 0.05
q = 0.15
q = 0.25
q = 0.35
q = 0.45
q = 0.55
q = 0.65
q = 0.75
q = 0.85
q = 0.95

(b) E-DynamicScore Average vs. p

Figure 3.3: Average dynamic score as a function of the parameters p and q. On the left, the parameter p
is set and the parameter q ranges from 0.05 to 0.95. One may notice that for a fixed value of parameter p,
the average dynamicScore does not depend on q. On the right, the parameter q is set and the parameter
p ranges from 0.05 to 0.95. As observed with the picture on the left, the average dynamicScore does not
depend on q so all the marks are mingled.

of new connections being m and no connection being removed leads to DE
t = m

m0+(t+1)m . Thus, both

the Vertex and the Edge-DynamicScore are decreasing and tend toward 0 as t tends to infinity. The

two plots in table 3.1 illustrate this decreasing trend. Graphs produced using such a mechanism are

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

t

D
V t

DV
t evolution through time |V0| = 2

DV
t = 1

3+t

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

t

D
E t

DE
t evolution through time |E0| = 1

DE
t = 1

2+t

Table 3.1: Dynamic Score of both the edges and vertices for the Barabaśı-Albert model. The considered
parameters are |V0| = 2, m0 = |E0| = 1 and m = 1.

such that their dynamics is decreasing and becomes very close to 0 as the number of step increases.

Even though the original purpose of such a model is not to produce very changing graphs but rather to

produce networks fitting a certain property one can find in real networks, the study of the DynamicScore

on such a model faces an observation raised on the original paper written by Barabasi et. al. One main

condition stated in the paper says that to observe an emerging scale-free trend in network, it is necessary

that preferential attachment (the way new vertices connect to already existing vertices by selecting with

a higher probability those having a high degree) comes with a growing network. On top of that, the

reasoning involved to prove that the generating model produces scale-free networks is an asymptotic

reasoning and to consider that the graph grows in size to infinity. Such a condition implies that the size

42 Chapter 3. Qualifying and Quantifying Graph Dynamics

of the network is always increasing, meaning the network must be considered an infinite process that

continuously evolves. With this approach, we can say that preferential attachment, as designed in the

BA paradigm, leads to graphs with low dynamics.

Conclusion on the DyanamicScore Metric

The DynamicScore (both of the vertices and the edges) metric defined in this section offers a new vision

on the study of dynamic graphs. It provides a way to compute composition changes in a dynamic graph

between two consecutive steps by measuring dissimilarities observed in snapshot graphs between these

two steps. This metric may be used to quantify the dynamics of a time-varying graph. As the metric can

only take values ranging from 0 to 1, it is possible to use the DynamicScore value to say whether a dy-

namic graph is rather dynamic (value close to 1) or rather not dynamic (value close to 0) with the special

case of a null DynamicScore (constant graph). The importance of the DynamicScore goes further as for

some model (EMGG) as its expected value may be proved to be independent from one or many of the

parameters of the model. Moreover, specific values of V-DynamicScore and E-DynamicScore may be ob-

tained under some circumstances such as polynomial growth, exponential growth or graph densification.

It is also a complementary metric of the graph order. When the number of vertices does not change from

one step to the next one, V-DynamicScore helps providing information on what have changed in the graph.

As a further study of the DynamicScore, this metric will be further study in Chapter 4 where it will

be used to have a better understanding of the dynamics of a generative process. Moreover, application

of the metric to real world networks is presented on Chapter 5. In this chapter, different transformations

of real world data will be studied and their dynamics explored through the use of the DynamicScore

metric.

3.3 Information Persistence Problem

The work presented in this section has been published and presetend during the 2024 edition of the

French Regional Conference on Complex Systems [2].

This section introduces a new problem, generalizing concepts of reachability in dynamic graphs (see

Section 2.3.2.1). The information-persistence problem addressed here focuses on how information remains

present in a dynamic graph when the set of vertices changes over time. To the best of our knowledge

this is the first time this problem is formally defined and addressed. While they may appear similar in

appearance, the broadcasting and epidemic spreading problems [20, 29, 34] are, to a large extent, different

from the problem described in this work.

In the context of a dynamic graph wherein the set of vertices evolves over time, along with a defined

communication strategy, the aim is to check whether information persists within the graph at a specified

step T , and potentially quantify the proportion of vertices retaining this information.

3.3. Information Persistence Problem 43

The objective of this study is to introduce two novel problems relating to this subject. Firstly, in

Section 3.3.1, we delve into the formulation of the problem. Concurrently, we provide clear definitions

of dynamic graphs and broadcasting strategies to mitigate any potential ambiguity. Additionally, we

introduce concepts relevant to dynamic graphs, such as dynamic graph generation, to broaden the scope

of information persistence study. This section culminates in the formal definition of the information

persistence problem and the information covering problem. Section 3.3.3 is dedicated to the presentation

of some preliminary results for a restricted set of instances. In particular we provide algorithms solving

the defined problems and show that their time complexity are polynomial. After dealing with these

points, a last section (Section 3.3.4) is dedicated to open problems this new paradigm offers.

3.3.1 Problem Formulation

The information-persistence problem is defined using two parameters: a dynamic graph G = (Gt)t∈T ,

with T = [0, T], and a communication strategy A specifying how information spread. Knowing these

two information, the question is whether or not there exists a couple of vertices (u, v) such that u ∈ V0,

v ∈ VT and u can reach v through a journey according to the communication strategy.

3.3.1.1 Communication Strategy

The parameter A concerns the communication strategy. In this work, we restrict the communication

policies to local broadcasting strategies only. Thus, when communicating at time t, a vertex sends the

information to all its neighbors connected to it at time t. The broadcasting strategy describes the way

information spread between vertices. Many works have been devoted to this problem, especially in the

domain of mobile ad hoc networking [45]. But in most studies, the set of vertices remains the same all

the time. However, whatever the case, changing or unchanging vertices set, the strategy must specify

the conditions for sending a message to connected neighbors. For instance, a minimum delay of one time

step might be mandatory on a vertex between the reception of the information and its transmission to its

neighbors. Some strategies may select vertices to which transmit the information within the neighborhood,

or may allow only a restricted number of transmissions. All these points have to be clearly defined. In

this work we restrict our study to two algorithms and remarks are made to highlight relevant questions.

Constant Flooding The first algorithm to be discussed is a variant of the flooding algorithm. We call

it constant flooding. The principle is that once a vertex receives the information, it keeps transmit it to

its neighbors as long as it is present in the graph. The constant flooding algorithm is defined as follows:

Definition 19 Constant Flooding Algorithm (CF):

Let G be a dynamic graph. Let u be a vertex in this graph. Let t be the date at which u receives the

information. Then as long as u remains in the graph, u transmits the information to its neighbors

at every step t′ > t.

It is important to notice that if a vertex receives information at step t it starts its transmission from

the next time step, at t+ 1.

44 Chapter 3. Qualifying and Quantifying Graph Dynamics

Simple Flooding The strategy discussed here is known as simple flooding algorithm. The principle is

the following: once a vertex receives the information, it is allowed to send it to its neighbors only once.

A delay of one time step has to be observed between the reception and the emission. In the current

work this algorithm only waits one time step before the transmission of the information to its neighbors,

however it could be possible to consider other variants of this algorithm for which the transmission could

be done later. The algorithm is defined as follows:

Definition 20 Simple Flooding Algorithm (SF):

Let G be a dynamic graph. Let u be a vertex in this graph, meaning there exists t such that u ∈ Vt.

Let t′ be the first date such that u receives the information. Then u sends the information to its

neighbors at t′ + 1 only.

Note that the transmission might be done even if the vertex has no neighbors connected.

3.3.2 Studied Problems

In this part, we define notions and set formalism aiming at studying and defining the information persis-

tence and the information coverage problems. For the rest of this part, we assume that a broadcasting

strategy A and a dynamic G are defined. The first step is to introduce the notion of reachability between

two vertices u ∈ V0 and v ∈ VT as it plays a key role in the definition of the two problems.

Definition 21 Reachability:

Let u ∈ V0 and v ∈ VT . We say that u can reach v using the broadcasting strategy A, and we note

u
A−→ v, if v can receive information from u according to the broadcasting strategy A.

Although reachability has already been defined in Section 2.3.2.1, here the definition is made in a

different paradigm. Indeed, vertices are allowed to disappear, and therefore vertices present at step t = 0

may be absent at step T . Therefore the time at which the journey starts and when it ends now matters.

As the goal is to define a problem dealing with persistence of information, the date at which the journey

starts and when it ends are set to the 0 and T respectively. Note that the target vertex may be reached

before date T , but it still must exist in the dynamic graph at this date. However, if the information is

not introduced at a step later than 0, it may be relevant to define the reachability according to the date

at which u sends the information and the date at which v receives it. Note also that this definition of

reachability also implies that there exists a journey from u to v, satisfying the condition implied by the

broadcasting strategy A.

From the definition of reachability it is possible to define two decision problems. The first one is

defined as the capability for a dynamic graph to exhibit a vertex u ∈ V0 and another vertex v ∈ VT such

that u A−→ v. This problem will be referred to as the information persistence problem in this document.

Formally, this problem can be defined as follows:

3.3. Information Persistence Problem 45

Definition 22 Information Persistence Problem:

Let G = (Gt)0≤t≤T be a dynamic graph and let A be a broadcasting strategy. Then, G is said to be

A-persistent if it satisfies:

∃u ∈ V0,∃v ∈ VT , u
A−→ v (3.5)

The second problem defined in this work is called the information coverage problem. It is the capability

for a dynamic graph to exhibit for every vertex v ∈ VT , at least one vertex u ∈ V0 such that u A−→ v. This

means there exists a subset S ⊂ V0 such that for every vertex v ∈ VT , there exists u ∈ V0 such that u

can reach v using the strategy A. Formally, this problem is defined as follows:

Definition 23 Information Coverage Problem:

Let G = (Gt)0≤t≤T be a dynamic graph and let A be a broadcasting strategy. Then, G is said to be

A-coverable if it satisfies:

∀v ∈ VT ,∃u ∈ V0, u
A−→ v (3.6)

Now that both problems have been defined, the remainder of this section is dedicated to their study.

As a first step, an analysis of the two problems will be presented assuming the dynamic graph is known.

An algorithmic study will show that the problems can be solved in polynomial time by conducting a

simple simulation of information spreading within the graph. Subsequently, a link will be established

between the persistence of information and the processes of generating dynamic graphs. We demonstrate

in this case that sustainability alone is not sufficient for information to persist within a graph and attempt

to identify conditions under which the generated graphs exhibit information persistence in the case of

the D3G3 model presented in the next Chapter.

3.3.3 Remarks and First Results

The main result is an algorithm to solve both the information persistence problem and the information

coverage problem when the broadcasting strategy is CF (constant flooding). Its time complexity is studied

and is shown to be polynomial. This algorithm takes as an input a dynamic graph G and a set of vertices

I0 ⊂ V0 having information at date 0. This algorithm depends on the broadcasting strategy studied and

simulates the spread of information.

With this algorithm, it is possible to answer the question of the persistence problem. Indeed, it is

sufficient to apply this algorithm with the whole set of initial vertices I0 = V0. If the algorithm ends

returning a non-empty set, then, G is A-persistent. With the same idea, it is possible to answer the

information coverage problem. If the result of the spreading algorithm with I0 = V0 is VT , then it means

every vertex in VT can be reached by at least one vertex in V0.

3.3.3.1 Time Complexity of the Spreading Algorithm

Let us now study the time complexity of algorithm 1. The goal is to prove that the time complexity of

this algorithm is O
(∑T

t=1 ntmt

)
, with mt = |Et|. This comes from the complexity of the most nested for

loop. In the worst case, the time complexity of set operations are bounded by the size of the set. Here,

46 Chapter 3. Qualifying and Quantifying Graph Dynamics

Algorithm 1 Spreading(G, I0)
Require: G = (Gt)0≤t≤T a dynamic graph, I0 ⊂ V0 set of vertices having the information at date t = 0.
Ensure: IT ⊂ VT set of vertices receiving information from vertices in I0 or ∅ if no such vertices exist.

1: I ← I0
2: for t← 0 to T do
3: I ← I ∩ Vt

4: if I = ∅ then
5: return ∅
6: end if
7: for (x, y) ∈ Et do
8: if x ∈ I and y /∈ I then
9: I ← I ∪ {y}

10: else if x /∈ I and y ∈ I then
11: I ← I ∪ {x}
12: end if
13: end for
14: end for
15: return I

the considered set is I ⊂ Vt for any given t ∈ [1, T]. Therefore, the time complexity of the lines 7–13 is

O (mt × nt). As it is the biggest time complexity of the first for loop (lines 2–14), the time complexity

of the whole algorithm is thus O
(∑T

t=1 ntmt

)
.

As mentioned above, this algorithm solves both the information persistence problem and the in-

formation coverage problem. We can therefore deduce that the complexity of these two algorithms is

O
(
n0 +

∑T
t=1 ntmt

)
, where the term n0 comes from the construction of I0, a copy of V0. Thus, we have

established the existence of algorithms solving the information persistence and the information coverage

problems in polynomial time.

3.3.4 Questions and Open Problems

This section aim at discussing open problems and remarks about the two defined problems. Questions

about the communication algorithms are first addressed. Then connections with the sustainability prop-

erty are investigated.

3.3.4.1 Questions Related to the Simple Flooding Algorithm

The reader may have noticed that the previously defined algorithm is not convenient if the node has no

neighbor at the moment of transmission. It would be interesting to postpone the transmission at another

date in order to improve the performances of the process from an information-persistence point of view.

However, considering such a possibility raises many questions.

First, it could be possible to remove the delay between the reception of the information and its trans-

mission to neighbors. This situation is similar to the notion of non-strict path in temporal graphs. In

that case, given a connected component, as soon as one vertex receives the information, then all the

vertices of that connected component also receive and send the information. As a consequence, all these

nodes will never send the information at later dates. This means that only the vertices present at step

3.3. Information Persistence Problem 47

0, if the information is introduced at date 0, will have the information. This means that some vertices

must exists both at step 0 and T to ensure the persistence of information.

In an opposed direction there are some ways that takes into account the possible future neighborhood

of the node to estimate the moment when the information could be send. Indeed, another way to define

the moment to send the information would be to wait until the neighborhood is not empty. This question

is not treated in this document, however it may offer interesting wondering. For instance, it is possible

to study questions such as:

• When should a given node send the information it owns so that information persistence is guaran-

teed?

A last question concerns the possibility for a node to transmit the information several times. The defined

algorithm does not allow multiple transmissions: once the information has been spread by one vertex,

this vertex does not transmit it again. It is possible to imagine some applications where the vertex can

receive the information several times. Every time the information is received, the vertex will transmit

it again to its neighbors. This defines a new algorithm and the questions, previously defined, may be

addressed for this new strategy.

3.3.4.2 Connection between Simple Flooding and Constant Flooding

One final aspect to address here is the connection between simple flooding and constant flooding strategies.

Specifically, it is observed that if a dynamic graph is SF-persistent, then it is also CF-persistent. To

illustrate this, it suffices to note that if a dynamic graph G is SF-persistent, then there exist vertices

u ∈ V0 and v ∈ VT such that information is transmitted from u to v via a temporal path using the simple

flooding communication strategy. However, this path is also observable using the constant flooding

communication strategy. Indeed, for propagation with a simple flooding strategy, information can only

be transmitted once it has been received, whereas in the case of a constant flooding strategy, information is

continuously transmitted after being received. Thus, in the scenario where the communication strategy

is constant flooding, the information can indeed follow the same path between u and v as when the

communication strategy is simple flooding. Note also that there are some cases in which SF cannot

achieve information persistence, while CF can.

3.3.4.3 Sustainability and Information Persistence Problem

This section focuses on studying the problem of information persistence from the perspective of dynamic

graph generators. Here, we assume that graphs are the product of a generation mechanism as defined

earlier. One of the initial observations is that if a generator produces A-persistent graphs for any diffusion

strategy A, then the graphs do not become empty, which is a characteristic of sustainability. However,

the converse is not necessarily true. There are cases where the produced graphs are sustainable without

being information persistent.

48 Chapter 3. Qualifying and Quantifying Graph Dynamics

For instance, considering the generative model defined in Chapter 4, it is possible to find parameter

values such that the produced graphs are sustainable with high probability without being information

persistent. An example may be found in Section 4.3.1.2.

Conclusion on the Information-persistent Problem

This section introduced the Information Persistent Problem and redefined several basic concepts related

to the study of dynamic graphs, now considering the possibility for vertices to disappear over time. An

example of this is the Reachability problem, which now requires that the source vertex is present at the

initial date and the target vertex at the final date.

Additionally, two new problems related to communication were introduced. The first one, referred to

as the information-persistent problem, addresses the problem of the existence of a journey from a vertex

present at the first step to a vertex present at the last date. The second problem, referred to as the

information-covering problem, aims to quantify the minimum number of vertices required to transmit

information from step 0 to all the vertices present at the last step. A communication algorithm is used to

describe how information traverses edges and how vertices are allowed to communicate to their neighbors.

In this document, we proved that when a whole dynamic graph is known, the problem may be solved using

a polynomial time algorithm. This algorithm simply simulates the spread of the information through the

dynamic graph. The problems are then analyzed under the condition where only the generative process

is known to see what result can be inferred from this limited knowledge.

The two problems defined in this section shows a natural continuation of the sustainability property.

The objective was to see whether a dynamic graph generator that produces sustainable graphs also gen-

erates information-persistent instances. We showed that this is not always the case (see Section 4.3.1.2).

The study of these problems is therefore motivated by the need to identify, for dynamic graphs, conditions

of information-persistence as they are different from those ensuring sustainability. Future research should

investigate these conditions further.

Moreover, additional perspectives could include exploring other notions defined in the context of time-

varying graphs, such as time-connectivity. For example, the basic notion of time-connectivity could be

extended to account for the addition and removal of vertices over time.

Conclusion

This chapter focused on the study of dynamic graph generators as defined in Section 2.5. Dynamic

graphs are produced by an iterative generative process that starts from an initial condition and results

in a sequence of static graphs. Understanding the dynamics of a graph requires studying the underlying

generative process that governs its evolution over time. The chapter explores different questions related

to various models of dynamic graph generators. For instance, some generative models do not constrain

the size of the graph, making essential the analysis of its evolution to predict whether it will become

3.3. Information Persistence Problem 49

empty or will produce loops. Additionally, understanding changes in the composition of the graph is

crucial, especially when the size of the graph remains constant.

To this end, two metrics and two problems have been designed to study these scenarios. The first met-

ric, called sustainability, characterizes a dynamic graph generator as sustainable if the generated graphs

neither become empty nor periodic. While this property is often obvious in well-known models such as

the Barabási-Albert model, which produces infinitely growing and hence sustainable graphs, it becomes

less clear for models like the Generator of Edge-Markovian Graphs. For these, specific conditions need to

be identified to ensure sustainable instances. The sustainability metric is particularly useful for studying

generators, such as the one presented in the next chapter, where the network size and state result from

the application of predefined rules.

The second metric introduced is the DynamicScore, which highlights compositional changes between

two consecutive graphs generated by a process. Preliminary results demonstrate how the Dynamic-

Score reflects the dynamics of time-varying graphs. Applying this metric to existing generator models

showed, for example, that the Barabási-Albert model produces dynamic graph instances with both the

V-DynamicScore and E-DynamicScore decreasing toward zero. A notable property was observed with

the Edge-Markovian Graph Generator, where the average value of the E-DynamicScore was shown to be

independent of one of the parameters of the model. Although this chapter did not apply the Dynamic-

Score to real-world data, this is a goal for Chapter 5.

In addition to these metrics, two problems were defined, extending beyond the sustainability met-

ric and generalizing concepts related to time-varying graphs. These problems can be explored once a

dynamic graph generator is proven to produce sustainable graphs. One example of such redefinition

is the modified Reachability problem, which accounts for disappearing vertices over time. Two new

communication-related problems were introduced: the information-persistent problem, which explores

the existence of a journey between a vertex present at the first step and another at the last step, and

the information-covering problem, which seeks to determine if there exists a subset of the initial ver-

tices that are able to transmit information from the initial step to all vertices present at the last step.

A polynomial-time algorithm was proposed to solve these problems when the entire dynamic graph is

known, but the solution differs when the graph is unknown. The study highlighted that conditions for

information persistence differ from those for graph sustainability, necessitating further research to identify

these conditions.

Future work should explore other properties of time-varying graphs, such as extending time-connectivity

to account for the addition and removal of vertices. For example, a possible extension could involve de-

termining whether there exists a subset of initial vertices that can reach all existing vertices, not just

those present at the last step.

CHAPTER 4

Illustrative Case Study of Dynamic Graph Generators Analysis

The main sections of this chapter have been published and presented during the 2nd Symposium on

Algorithmic Foundations of Dynamic Networks [3]. The results presented in Section 4.4 have been

published in the Applied Network Science [4].

The model presented in this chapter serves as an illustrative case study of a dynamic graph generator,

where sustainability and DynamicScores, as introduced in the previous chapter, are not straightforward.

Inspired by Conway’s Game of Life [12], our model diverges significantly: it uses random vertex positioning

rather than a grid, resulting in nondeterministic behavior. This divergence necessitates new tools and

metrics beyond those used in cellular automata. Our initial studies examined parameter settings that

affect the sustainability of the generated graphs. We identified specific parameter families that influence

whether a graph remains sustainable or collapses over time. For example, one set of parameters led us to

define and explore sustainability zones, while another revealed structural patterns that support sustained

graph growth. Finally, a particular parameter set showcases sustainable dynamic graphs which are not

information-persistent (see Section 3.3).

4.1 Definitions and Generative Model and Definitions

In this section we define a parameterized model generating families of dynamic graphs : the Degree-

Driven Dynamic Geometric Graph Generator (D3G3). D3G3 is a parameterized generator and according

to the parameters, it can produce a wide variety of dynamics. It will be used as a case study. A first

global analysis of the generated graph families is performed in Section 4.2. Section 4.3 focuses on specific

values of the parameters and present a rigorous analysis of the evolution of the dynamics of the graph and

of the likelihood of its sustainability. Graphs produced by D3G3 are sequence geometric graphs ordered

by a timestamp. A geometric graph is defined by an euclidean space and a threshold d. For this study,

without loss of generality we consider a 2D-unit-torus (i.e., a square [0; 1[2 where the two opposite sides

51

52 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

are connected). Each vertex is characterized by a set of coordinates, such that given two vertices u and v

it is possible to compute their euclidean distance: dist(u, v). Given V the set of vertices, the set of edges

E is defined in the following way: E = {(u, v) ∈ V 2 | dist(u, v) ⩽ d}

The choice to use a unit torus in two dimensions to position the points of a random geometric graph

offers several significant advantages. Firstly, by adopting this topological structure, border effects are

eliminated, thus ensuring a more precise representation of connectivity between graph points. Further-

more, by basing the probability of connection between vertices on the surface area each vertex occupies

on the torus, we achieve a method that considers the spatial geometry. This approach is bolstered by

existing analyses such as [13, 36] Drawing upon these previous works allows for further analysis, focusing

on specific aspects of the problem, such as calculating the probability of a vertex having a certain degree.

Finally, the choice of the unit torus and more generally, the use of geometric random graphs, stems

from their natural way of connecting vertices. In these models, the connection between two vertices is

only determined by the distance separating them: for two vertices to be connected, it is necessary and

sufficient for their distance to be less than a connection threshold. There are, of course, alternative

methods for connecting vertices. For instance, one could mention the model proposed by B.M. Waxman

in [44], where the connection between two vertices is not guaranteed by their distance being strictly less

than a threshold, but rather by a probability density function parameterized by this threshold. This last

model was not considered in our work.

Graphs generated by D3G3 are produced thanks to an evolution process. This mechanism is parame-

terized by an initial graph (the seed graph) and by two transition rules driving the evolution of the graph

between two consecutive time steps. Apart from a random generator, no external decision or additional

information is used by this mechanism. Rules are based on vertex degrees only and rely on a random

generator for positioning new vertices in the 2D euclidean space. This leads to the name of the generator:

Degree-Driven Dynamic Geometric Graphs Generator or D3G3.

4.1. Definitions and Generative Model and Definitions 53

Definition 24 Degree Driven Dynamic Geometric Graph Generator

An instance of D3G3 is defined by an initial graph, a set of parameters and two rules:

• G0 ̸= (∅, ∅) the seed graph,

• parameters:

– d ∈]0,
√

2
2 [

– Ss a set of non-negative integers

– Sc a set of non-negative integers

• rules applied on Gt leading to Gt+1:

– if v ∈ Vt, then v ∈ Vt+1 if and only if deg(v) ∈ SS (conservation rule)

– if v ∈ Vt and if deg(v) ∈ SC then add a new vertex to Vt+1 with a random position in the

unit-torus (creation rule)

Thus, evolution of the graph between two consecutive time steps t and t + 1, is driven by two rules

applied to each vertex v ∈ Vt simultaneously. The first rule determines for a vertex v ∈ Vt whether it is

kept at step t+1 while the second rule concerns the possibility for a vertex v ∈ Vt to create a new vertex in

Vt+1 according to its degree. The position of conserved vertices does not change from one step to the next

one. Conversely, position of new vertices is drawn uniformly at random in the torus. This choice has been

made to study the behavior of dynamic graph in a first time without considering every possible way to

place new vertices on the torus. As we show in this document, this paradigm allows interesting dynamics

to emerge without requiring too much parameters. Indeed, introducing a function to set position of new

vertices implies the analysis of this function and therefore an analysis of its parameters. For the moment,

this study focuses only on the case where new vertices have random position. Before going further in the

analysis of this generative model, let us defined some vocabulary:

Definition 25 Conserved/Create/Removed/Duplicated nodes

Let G = (Gt) a graph produced by D3G3. Let t ⩾ 0. Let u ∈ Vt and v ∈ Vt+1, then

• u is said to be a conserved vertex if and only if u ∈ Vt ∩ Vt+1.

• u is said to be removed if and only if u ∈ Vt − Vt+1.

• u is said to be a creator/creating vertex if and only if deg(u) ∈ SC .

• v is said to be a created vertex if and only if v ∈ Vt+1 − Vt.

• u is said to duplicate if and only if it is both a conserved and a creator node.

54 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

4.2 Theoretical Analysis

While the model is very simple, it presents a wide variety of dynamics and long-term evolution. According

to SS and SC composition, several classes of dynamic behaviors have been identified. These classes have

been defined by computing two measures: the evolution of the order of the graph, and the evolution of

the Vertex DynamicScore. Results are reported at the end of this section in Tables 4.1 and 4.2.

4.2.1 First Results on Sustainability

The first presented results concern sustainability of graphs generated by D3G3. In order to state the

results, a first lemma concerning the evolution of the vertices and edges of D3G3 instances is proved:

Lemma 4 Let G = (Gt)t∈N dynamic graph generated by D3G3. Then, for all t ∈ N, if Vt = Vt+1, then

Et = Et+1.

Proof: This comes from property of conserved vertices. Indeed, conserved vertices of any instances of

D3G3 have a fixed position. Therefore, for any t ∈ N if all the vertices of Vt are conserved, then no edges

are removed nor added as edges depends only on the distance between vertices. This ends the proof. ■

From this lemma, it comes that the study of sustainability of D3G3 instances relies mainly on the

evolution of the set of vertices. Indeed, if the set of vertices does not change, then the set of edges does

not change neither. It is therefore sufficient to restrain on the evolution of the set of vertices. From this

remark, we can prove the main result of this section :

Theorem 10 Let G = (Gt) a dynamic graph generated by D3G3, if its order and its V-DynamicScore

are never equal to 0 then the graph is sustainable.

Proof: The sustainability defined in Section 3.1 involves two properties. A dynamic graph is said to

be sustainable if it never becomes empty nor periodic. Therefore, to prove this theorem, it suffices to

focus on the periodic aspect as dynamic graphs are assumed not to become empty. Moreover, the V-

DynamicScore of considered dynamic graphs is positive, meaning they never become static. It comes

from these remarks that these dynamic graphs are sustainable if they do not become periodic for any

period k > 1. To demonstrate that this never occurs, let us employ a proof by contradiction. Let assume

there exists k > 1 and T ∈ N such that for all t ≥ T , Vt = Vt+k. Let t ≥ T . As dynamic graphs are

assumed not to become static, then Vt ̸= Vt+1. Two cases may lead to such a situation. The first case is

at least one vertex has been removed from the graph. In that case, this vertex never appear in the graph

later, which leads to a contradiction. The second case occurs when at least one vertex is created. In such

a case, to satisfy the periodic assumption, this vertex must disappear to ensure Vt = Vt+k. However,

this implies Vt+1 ̸= Vt+k+1 as a vertex that is removed never appears again. This is also a contradiction.

Thus, the periodic assumption cannot be true which implies the dynamic graph is sustainable. ■

4.2.2 Limit Case Analysis

Regarding the generative process, the obtained graphs depend on the threshold d, on the seed graph

G0 and on the two sets SC and SS . Each combination of d, SC and SS does not necessarily lead to

4.2. Theoretical Analysis 55

sustainable graphs. However, some simple cases may lead to a positive or negative answer to the question

”are the produced graphs sustainable?”. These cases are called limit cases. They occur when at least

one of the two sets SS and/or SC is either N or the empty set. The following paragraphs address these

situations.

4.2.2.1 Case: SS = N and SC = N

At each time step each vertex of the graph is both a conserved and a creator vertex, it is therefore

duplicated. Then, as soon as G0 ̸= (∅, ∅), the order of the graph increases exponentially: nt = 2tn0 and

thus limt→∞ nt = +∞.

Consider an instance of dynamic graph produced by D3G3 with these parameters sets, is this graph

sustainable? The analysis of the DynamicScore leads to the conclusion. Indeed, every vertex is duplicated,

thus, |Vt+1| = 2nt. From that, it comes DV
t = 1

2 . In conclusion, for all t, the graph is never null and

DV
t > 0, thus from Theorem 10 the graph is sustainable.

4.2.2.2 Case: SS = N and SC = ∅

If SS = N and SC = ∅, then for all t, whatever the degree of any vertex, it is not a creator, hence no new

vertices are added to the graph. In addition, all vertices have their degree in SS , thus every vertex is

conversed between t and t+ 1. Thus, Gt = G0 for all t ∈ N which means the graph is static and therefore

not sustainable.

4.2.2.3 Case: SS = ∅ and SC = N

This case is the opposite situation of the previous one. All the vertices are creators, but none are

conserved. Hence, for all t ∈ N, if v ∈ Vt, v /∈ Vt+1, but, as deg(v) ∈ SC , the creation rule generates a

new node that replaces v. So, for all t ∈ N, nt = n0. The graph is only always changing as all nodes are

renewed. From the DynamicScore point of view, this implies Vt ∩ Vt+1 = ∅ and DV
t = 1 and the graph is

sustainable.

4.2.2.4 Case: SS is a non-empty finite set and SC = ∅

In such a case, no vertex will be created in this situation since SC = ∅. Thus for all t, nt ≤ n0. If G0 is

not null, then, several cases may occur:

1. first case: all vertices in Gt have their degree in SS : for all v ∈ Vt, deg(v) ∈ SS . Then, all vertices

are conserved, the order remains unchanged and the graph is static, Gt+1 = Gt, hence the graph is

not sustainable,

2. second case: opposite to the first one, for all v ∈ Vt,deg(v) /∈ SS , hence Gt+1 is null and the graph

is not sustainable,

3. last case: some vertices have their degree not belonging to SS , they are removed and as a conse-

quence nt+1 < nt. At each occurrence of this case, the order of the graph is strictly decreased by

56 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

one, then this can happen at most n0 times before the graph becomes empty unless it becomes

static before.

As a consequence, for the limit case, the graph is not sustainable.

4.2.2.5 Case: SS = ∅ and SC is a non-empty finite set

Note first that for all t, Vt+1 ∩ Vt = ∅, no vertex is conserved from t to t + 1. In addition, for all t,

nt+1 < nt, unless if for all v ∈ Vt,deg(v) ∈ SC , then nt+1 = nt. Thus the evolution of the graph order

is non increasing. In addition, as SS = ∅, DV
t = 1, so the graph can never become static. The only

way for the graph to be non sustainable is to become null. It is then not possible to conclude about the

sustainability. Indeed, consider the case for which at a given date t, 0 < nt ≤ k + 1 and SC = [0, k] then

for all t′ > t, nt′ = nt. Such a dynamic graph is sustainable. Conversely, if SC = {k}, as soon as less

than k + 1 nodes have their degree equal to k the graph becomes empty after two time steps.

4.2.2.6 Graph Order Increase

For some specific parameters sets, the increase of the order of the graph asymptotically tends to zero,

which has some effect on graph sustainability. This is the object of the following theorem:

Theorem 11 Let G = (Gt)t⩾0, SS and SC such that SS or SC equals N while the other one is finite

and not empty, then the probability that graph order increases tends toward 0 as the graph order tends to

infinity: P (nt+1 > nt) →
nt→+∞

0.

Proof Let P (nt+1 > nt) denote the probability that graph order increases between step t and step t+ 1

and D = SS ∩ SC . For a node u ∈ Vt, u duplicates if and only if deg(u) ∈ D.

P (nt+1 > nt) = P (∃u ∈ Vt,deg(u) ∈ D)

= 1− P (∀u ∈ Vt,deg(u) /∈ D)

As every node is independent from another, the probability P (deg(u) /∈ D) is the same for all u ∈ Vt, the

following holds:

P (nt+1 > nt) = 1− (P (¬D))nt

where P (¬D) represents the probability a node does not satisfy the duplicating condition. As positions

of vertices are independent of each other:

P (¬D) = 1−
∑
k∈D

(
nt − 1
k

)
pk(1− p)nt−k−1

Let M = maxD. For large values of nt and as p ∈]0, 1[:

∀k ⩽M, 0 <
(
nt − 1
k

)
pk(1− p)nt−1−k ⩽

(
nt − 1
M

)
(1− p)nt−1−M

4.2. Theoretical Analysis 57

As 0 < |D| ⩽M + 1:

P (¬D) ⩾ 1−
(

(M + 1)
(
nt − 1
M

)
(1− p)nt−1−M

)nt

(4.1)

Knowing that

∀N, ∀k ⩽ N,

(
N

k

)
= N !
k!(N − k)! = 1

k!

N∏
i=N−k

(N − i)

and that M is a constant not depending on nt:(
nt − 1
M

)
∼

nt→+∞

nt
M

M !

Rewriting the right side of 4.1 leads to:

A

(
nt − 1
M

)
(1− p)nt ∼

nt→+∞

A

M !n
M
t (1− p)nt where A = M + 1

(1− p)M+1

As 1 − p ∈]0; 1[is not depending on nt, nM
t (1 − p)nt tends toward 0 as nt tends to infinity. Thus,

A
(

nt−1
M

)
(1− p)nt → 0, thereby:

(P (¬D))nt ∼
nt→+∞

exp
(
nt ln

(
1− A

M !nt
M (1− p)nt

))
∼

nt→+∞
exp

(
A

M !nt
M+1(1− p)nt

)

From this, (P (¬D))nt → 1, and hence we deduce the wanted theorem. ■

4.2.2.7 Case: SS = N and SC is a non-empty finite set

As SS = N, between two time steps, all nodes are conserved, thus, for all t, Vt ⊆ Vt+1. The first

consequence is that if G0 is not a null graph, for all t, Gt is not a null graph. Let us analyze the evolution

of the order of the graph. Given t such that, there exists a vertex v such that deg(v) ∈ SC , then nt+1 > nt.

But, if for some t′, all v ∈ Vt′ ,deg(v) /∈ SC , then for all t > t′, nt = nt′ and the graph will be static.

From Theorem 11 P (nt+1 > nt) →
nt→+∞

0 which implies P (nt+1 − nt = 0) →
nt→+∞

1. As all vertices are

conserved between two time steps:

P (|Vt+1 − Vt| = 0) →
nt→+∞

1

This leads to this limit on the probability the graph becomes static:

P (Gt is static) →
nt→+∞

1

Hence, for this limit case, we can conclude that the graph is asymptotically non sustainable.

58 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

4.2.2.8 Case: SS is a non-empty finite set and SC = N

For all t ∈ N, for all v ∈ Vt, either v duplicates (if deg(v) ∈ SS) or v is not conserved but is a creator. In

both cases, between two consecutive time steps, each vertex is at the origin of a new one. Thus, DV
t > 0

and nt > 0, hence, from Theorem 10, the graph is sustainable.

4.2.2.9 Summary of results

SS

SC N finite set ∅

N
∀t, nt = 2tn0 ∀t, nt+1 ⩾ nt ∀t, Gt = G0
∀t,DV

t = 0.5 ∀t, 0 ≤ DV
t ≤ 0.5 ∀t, (DV

t ,DE
t) = (0, 0)

limnt→∞ P (nt+1 > nt) = 0

finite ∀t, nt+1 ⩾ nt General ∀t, nt+1 ⩽ nt

∀t, 0.5 ≤ DV
t ≤ 1 cases limt→∞ n = constant

set limnt→∞ P (nt+1 > nt) = 0 (see Section 4.2.3) limt→∞DE
t = (0, 0)

∅
∀t, nt+1 = nt ∀t, nt+1 ⩽ nt

∀G0, G1 = (∅, ∅)∀t,DE
t = (1, 1) ∀t, Vt ̸= ∅ =⇒ (DV

(t),DE
t) = (1, 1)

Table 4.1: Order and DynamicScore evolution for the different cases. nt denotes the order of graph Gt,
DV

t its vertices DynamicScore and DE
t the edges DynamicScore.

Stemmed from these results, sustainability property of dynamic graphs can be established. The results

are reported on Table 4.2.

SS

SC N finite set ∅

N Sustainable Asymptotically Non sustainable
non sustainable

finite Sustainable General cases Non sustainable
set (see Section 4.2.3)

∅ Sustainable Depends on Non sustainable
the parameters

Table 4.2: Sustainability of dynamic graphs according to parameters sets of D3G3.

4.2.3 General Cases

General cases correspond to all cases for which both SC and SS are non empty sets and none of both

sets are equal to N. We classify all possible cases according to the tree represented on Figure 4.1.

The case SC = SS composed of consecutive integers will be considered in section 4.3. In the present

section we consider the cases for which SC ̸= SS .

• if SC ∩ SS = ∅ and SC ∪ SS ⊂ N then the order of the graph is non-increasing.

• if SC ∩ SS ̸= ∅ and SC ∪ SS = N then the order of the graph is non-decreasing.

• If SC ∩ SS = ∅ and SS ∪ SC = N, then |Vt| = |V0|, the order of the graph is constant.

4.2. Theoretical Analysis 59

SS , SC /∈ {∅,N}

SS and SC are segments SS and/or SC are/is not a segment

SS = SC = S SS ∩ SC ̸= ∅SS ∩ SC = ∅ SS ∩ SC = ∅ SS ∩ SC ̸= ∅

SS ∪ SC = N SS ∪ SC ⊂ N SS ∪ SC = N SS ∪ SC ̸= N

s ∈ Z+, A ⊆ [0, s − 1], SS = SC = {sk + r|k ∈ N, r ∈ A}

Other cases

Figure 4.1: Leaves of the tree represent the general cases. Rounded corners green boxes corresponds to
cases for which results are presented in this Section, in Section 4.3 and in Section 4.4. Dashed boxes are
cases not covered within this report.

These three cases are carefully analyzed below. In a first time the two sets are assumed to be disjoints.

On the second time they are assumed to cover the whole set N. Finally a consequence of the two first

results is given assuming the two sets make a partition of N, which means they are disjoints and their

union is N.

Two different evolutions raise from the others. There is one where the order of the graph is always

decreasing. This case occurs when both sets SS and SC does not share common elements. There is

another case where the order of the graph is always increasing. This case occurs when both sets SS and

SC cover the whole set N. These results are proved in the two following theorems:

Theorem 12 Disjoint sets

Let t ⩾ 0 and Gt = (Vt, Et) a graph and SS and SC two sets of positive integers. If SS ∩ SC = ∅, then

the series (|Vt|)t⩾0 is decreasing.

Proof: Let consider (Gt)t⩾0 a generated graph. Let t ⩾ 0 and u be a vertex in Vt. Then, as SS ∩SC = ∅,

the degree of node u can’t belong to both sets. It follows that vertex u can’t be both conserved and a

creator. As this holds for every vertex in Vt, the order of generated snapshot graph is not increasing

between two consecutive steps. ■

Theorem 13 Union set

Let SS and SC subsets of N. If SS ∪ SC = N, then the series (nt)t⩾0 is increasing.

Proof: The main argument here is the same used in the proof of theorem 12, except that the degree of

every node in Vt belongs to at least one of the two sets SS and SC . Therefore, the order of generated

60 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

snapshot graphs is not decreasing between two consecutive steps. ■

These two theorems shows that there exists configurations of SS and SC such that instances of D3G3

are either non-decreasing or non-increasing. The next section deals with configuration of both sets such

that the instances have a constant number of vertices.

4.2.3.1 Partition sets

In this section, SS and SC are considered to be a partition of N. This means SS∩SC = ∅ and SS∪SC = N.

From Theorems 12 and 13, every graph Gt = (Vt, Et) has a constant order. Many dynamics emerge from

that case. Two of them have already been treated above when dealing with limit cases (see Section 4.2.2):

SS = N and SC = ∅ (non-sustainable) and SS = ∅ and SC = N (sustainable).

Other dynamics exist such as when SS = Z+ and SC = {0}. In that case, D3G3 produces graphs

evolving until no isolated vertices exist. This may be an alternative method for building static geometric

graphs with no isolated vertices. The only case where graphs are always sustainable is when the seed

graph contains exactly one vertex. More generally, for any m ∈ N, if SC = [0,m] and SS = [m+ 1,+∞),

then generated graphs are always sustainable if |V0| ≤ m+ 1. Indeed, the degree of any vertex in a graph

with less than m+ 2 vertices is always lower than m+ 1, so between two consecutive steps it will not be

conserved, but will create a new node. Therefore generated graphs always have a positive V-DynamicScore

and are never empty. From application of Theorem 10, such graphs are always sustainable.

4.2.4 The Redistributed Model

Before delving into the study of general cases a simpler model is introduced. The goal of this model

is to provide a tool aiming at stating, for given parameters m,M and d, whether the graph is likely

to be sustainable or not. This model is studied as it helps understanding the evolution of graph order.

This work has been presented during the 2023 edition of the French Regional Conference on Complex

Systems that was held in Le Havre. In this model, between two time steps, conserved nodes are randomly

repositioned on the torus. This ensures that, at each time step, the new obtained graph is a random

geometric graph. The new position of the vertices are redistributed over the torus with a uniform random

position, independent from the previous one. When applying this change on the conservation rule, the

resulting graph Gt+1 is a random geometric graph whose order depends on the order of Gt. This reduces

dramatically the difficulty of estimating the nt+1 as a function of nt. We call this model ”the redistributed

model” or the Redistributed Degree Driven Dynamic Geometric Graph Generator (RD3G3). It is formally

defined as follows:

4.3. Segments 61

Definition 26 Redistributed Degree Driven Dynamic Geometric Graph Generator (RD3G3):

An instance of the redistributed model is defined by an initial graph, a set of integer and a rule:

• parameters:

• G0 ̸= (∅, ∅) the initial graph,

– d ∈]0,
√

2
2 [

– S a set of non-negative integers

• rules applied on Gt leading to Gt+1:

– for all v ∈ Vt such that deg(v) ∈ S, v ∈ Vt+1 (conservation rule) with a new position and

a new vertex is added to Vt+1 with a random position in the unit-torus (creation rule)

With this model it is now possible to analyze different families of parameters in order to find conditions

ensuring produced graphs are sustainable. The aim of this model is to provide a first milestone in the study

of generative processes and the sustainability of the dynamic graphs they produce. Indeed, estimating

the evolution of the number of nodes is easier with this model than with the original D3G3 model. This

difficulty lies in the structure induced by conserved vertices and is further explained in Section 4.3.4.

This section highlight the difference between the RD3G3 and D3G3 through the study of the seed graph

parameter G0.

4.3 Segments

In this section, parameters SS and SC are limited to equal sets of consecutive integers. Both sets are such

that SS = SC = [m,M] (called segments), with m,M ∈ N2, and referred to as S in the following. The

evolution of graph order for different values of parameters m and M is investigated. The study of these

parameters has led to various conjecture through the analysis of RD3G3 presented in Section 4.2.4. The

purpose of this model is to provide ideas to treat D3G3 for which we do not have any theoretical tools

expressing conditions for the generator to produce sustainable graphs. In order to find such conditions,

the work has been separated in different parts. First, some statements and properties are theoretically and

experimentally prove for a special case: S = {0} in Section 4.3.1. For this case, a relationship connecting

expected graph order at a step t+ 1 and graph order at step t is found under some conditions. We also

provide an upper bound for nt (t > 0) showing generated graphs cannot exceed a finite value. Then, a

theoretical analysis of RD3G3 in the general case (S = [m,M]) is provided. The study of the function

estimating nt+1 knowing nt leads to study three scenarios. These scenarios are identified according to the

number of fixed-points the function has: one, two or three. The sustainability for each case is investigated

and tools are provided when the answer is not clear. In the next part of this section, V-DynamicScore of

graphs is studied through experimentation. It is shown to be equal in average to 2
3 . The reason behind

this particular value is also explained in this part. Finally, open conjectures and the difference between

D3G3 and RD3G3 are explained in the two last sections. They concern the sustainability of graphs and

provide a glance at the results we are now working on.

62 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

4.3.1 S = {0}

The case SS = SC = S = {0} is considered in this section. The seed graph, G0, is supposed to be a

random geometric graph whose order is arbitrarily chosen. We first derive a bound on the graph order.

Then the transition from step 0 to step 1 is studied. Finally, the mean value of graph order is estimated.

An approximation for small values of the distance threshold d is provided. These results are then used

to state about generated graphs sustainability. Then the information-persistent problem as defined in

Section 3.3 is studied on instances of graphs.

4.3.1.1 Sustainability

Let us first delve into the question of the sustainability of generated graphs. The first result provided

here concerns bounds in the order of generated graphs.

Theorem 14 Bounded Graph Order:

Let S = {0}, d ∈]0; 1
2 [and G0 = (V0, E0) such that there exists at least one node u ∈ V0 being isolated

(i.e., deg(u) = 0), then, for all t > 0, nt ⩽ 8
πd2

Proof

The unit torus and 0 < d < 1
2 are considered. Let S = {0} and G0 = (V0, E0). Let t > 0 such that

Gt is not empty. The size of Vt is maximized as soon as there is not enough free space on the torus for

adding a new isolated vertex. If we consider an empty torus, a vertex can be put anywhere. The area

covered by this node is equal to πd2. For the rest of the proof, let consider, for each vertex u on the

torus, the disk of radius d/2 and center u and referred it as D(u). From this, the condition for two nodes

u and v to be non connected is: D(u) ∩ D(v) = ∅. After the addition of the first vertex u1, a second

vertex u2 can be added to the torus if it satisfies D(u1)∩D(u2) = ∅. The area occupied by the two disks

is then 2× π(d/2)2, and the remaining free area is thus 1− 2× π(d/2)2. Assuming N vertices with non

intersecting disks are already present in the torus, the free area is then 1 − Nπ d2

4 . This quantity has

to be positive so N must be lower than or equal to 4
πd2 . This last quantity is an upper bound for the

number of isolated vertices. However, the rules says that isolated vertices duplicate. Thus, the number

of vertices at one step t can not exceed twice the upper bound of isolated vertices. Hence, for all t > 0,

nt ⩽ 8
πd2 . ■

This theorem provides an upper bound for graph order for S = {0}, ensuring graph order cannot

exceed a certain value. However, this does not provide any information about graph order evolution,

which is the purpose of the two following theorems.

Theorem 15 Expected graph order at step 1:

Let S = {0}, d > 0 and G0 = (V0, E0) be a random geometric graph of order n0, then n1
2 ∼ B(n0, (1 −

p(d))n0−1), where p(d) is the area of a circle of radius d on the torus. An expectation value for n1 is

therefore 2n0 · (1− p(d))n0−1.

Proof

4.3. Segments 63

For sake of clarity, in the remaining part of this proof, p(d) will be referred to as p. At the very first

step t = 0, Gt = G0 is a random geometric graph and its nodes are uniformly distributed over the unit

torus. Let (u, v) ∈ V0
2. For a fixed threshold d, let consider the probability that u and v are connected.

v is connected to u if and only if dist(u, v) ⩽ d. It means v is in the disk of center u and radius d. If we

denote by X(u, v) the event “u and v are connected”, the wanted probability is the ratio of the area of

the surface of a disk of radius d over the area of the unit torus. For all (u, v) ∈ V0
2, X(u, v) ∼ B(p).

Let’s study the degree distribution of a node u ∈ V0. As the position of every point is independent

one from the others, variables X(u, x) are independent for all x ̸= u. More over the degree of u is the

number of connections u has to other nodes :

deg(u) =
∑
u̸=v

X(u, v)

All variables X(u, v) being independent for all v ̸= u, deg(u) ∼ B(|V0|−1, p) as a sum of |V0|−1 = n0−1

independent Bernoulli variables of same parameter p. Let’s consider Y0(u) the event “u is conserved at

step 1” (Y0(u) = 1 if and only if u is conserved and 0 otherwise), then, as S = {0}:

P (Y0(u) = 1) = P (deg(u) = 0) = (1− p)n0−1

This means Y0(u) ∼ B((1− p)n0−1). Thus the number of conserved vertices at step 1 is:

Y0 =
∑

u∈V0

Y0(u)

As all points have an independent position, n1
2 = Y0 ∼ B(n0, (1− p)n0−1). ■

Theorem 16 (Expected value of graph order)

Let S = {0}, d > 0 and G0 = (V0, E0) such that there exists at least one node u ∈ V0 being isolated

(i.e., deg(u) = 0), then either the graph becomes empty, or the average number of conserved nodes is

l(d) = 1− log (
√

1+4α−1
2)

log α with α = 1
1−p and p = p(d).

Proof

Let t ⩾ 1. Two cases are to be discussed: the case of conserved vertices from step t − 1 to step t

(Vt ∩ Vt−1) and the case of created nodes at step t (Vt − Vt−1). As the number of created nodes is the

same as the number of conserved nodes from t− 1 to t, we set ct = |Vt ∩ Vt−1| = |Vt − Vt−1|.

First let’s study the number of conserved vertices from step t to step t + 1 among those conserved

from step t− 1 to step t. cconserved
t+1 denotes this number. Let u ∈ Vt ∩ Vt−1. The probability for u to be

conserved is the probability that its degree to created nodes remains equal to 0.

deg(u) =
∑

v∈Vt−Vt−1

X(u, v)

Let v ∈ Vt − Vt−1. As in the previous section, X(u, v) ∼ B(p) and deg(u) ∼ B(ct, p) as a sum of

independent Bernoulli variables of same parameter p. Yt(u) denotes the event “u is conserved at step t+1”.

The probability that u survives is P (Yt(u) = 1) = P (deg(u) = 0) = (1− p)ct , thus: Yt(u) ∼ B((1− p)ct).

64 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

Therefore, the number of conserved vertices at step t+ 1 among those conserved at step t is:

cconserved
t+1 =

∑
u∈Vt∩Vt−1

Yt(u)

As the position of created nodes are independent from themselves and from conserved vertices, Yt(u) are

independent for all u ∈ Vt ∩ Vt−1, cconserved
t+1 ∼ B(ct, (1− p)ct).

Let’s study the number of conserved vertices among created nodes. ccreated
t+1 denotes this number. Let

u ∈ Vt − Vt−1. To study the degree of u, two cases must be studied. The first one is the number of

connections between u and all other created nodes (denoted as degC(u)). The second one is the number

of connections to already present nodes (denoted as degS(u)). degC(u) and degS(u) can be obtained

using the following formulas:

degC(u) =
∑

v∈Vt−Vt−1,u̸=v

X(u, v)

degS(u) =
∑

v∈Vt∩Vt−1

X(u, v)

As the position of created points on the torus are independent one from the others, degC(u) is a sum of

independent Bernoulli variables and therefore, degC(u) ∼ B(ct − 1, p). For degS(u), connections between

a created node and an already present node are not independent from each other: knowing u is connected

to an already present node means it is close to it and as other conserved nodes are farther than d, it

implies that degS(u) is not a sum of independent Bernoulli variables. However, as a first approximation,

this quantity will be considered as a sum of independent Bernoulli variables.

Thus, the computation of the expectation of ct+1 = cconserved
t+1 + ccreated

t+1 gives:

ct+1 = ct(1− p)ct + ct(1− p)2ct−1

By looking for a limit to this series gives l ⩾ 0 satisfying:

l = l(1− p)l + l(1− p)2l−1

Solving this equation gives l = 0 or :

l = 1−
log
(√

1+4α−1
2

)
logα with α = 1

1− p

■

Experiments have been run to see if this relationship is accurate. The results are summarized on

figure 4.2. This figure shows the accuracy of the expectation of graph order given in theorem 16. Indeed,

the blue curve, close to the dashed line, highlights that theoretical expectation and experimental results

are close to be equal. This result being proved leads to an approximation for small values of threshold d.

4.3. Segments 65

Corollary 1 Let d > 0 and l(d) as defined in the previous theorem (16). Then for small values of d:

l(d) ∼ −
log
(√

5−1
2

)
πd2 = log ϕ

πd2

where ϕ is the golden ratio
(

1+
√

5
2

)
.

Proof Let d > 0 be small. Thus, applying Taylor expansion gives 1
1−πd2 ∼ 1+πd2 and log

(
1

1−πd2

)
∼ πd2.

The numerator comes from 4 · 1
1−πd2 ≃ 4. The golden ratio is obtained using operations on log and by

noticing that 2√
5−1 = 2(

√
5+1)
4 = ϕ, the golden ratio. Combining these results leads to the statement of

the corollary. ■

It is therefore possible to state that, in the case where S = {0}, it is possible to theoretically get an

expectation of graph order as well as to get an upper bound for graph order depending on parameter

d. Moreover, this expectation is close to the observed value meaning the generated dynamic graphs are

likely to be sustainable if the time is finite. Another question is to check whether or not generated graphs

are information-persistent. This is the purpose of the next paragraph.

4.3.1.2 Relationship with the Information Persistence Problem

This section focuses on studying the problem of information persistence to see if produced graphs with

D3G3 and S = {0} may lead to information-persistent graphs if they already are sustainable. It is not

possible to produce information-persistent graph with such a consideration. Indeed, if we expect the

condition V0 ∩ VT = ∅ to be satisfied (no initial vertices are still present at a given time T), then the

information will have vanished from the dynamic graph.

To understand this, it is essential to understand that SS = SC = 0 implies that only isolated vertices

are retained and can generate new vertices in the graph. If a new vertex u connects to an isolated vertex

v, then both u and v will disappear in the subsequent time step. Furthermore, only isolated vertices can

retain information in the graph, as any other vertex disappears along with the information it carries.

Hence, we deduce that the produced graphs when SS = SC = 0 are not A-persistent for any considered

strategy A. The case SS = SC = {0} therefore exhibits an example of a family of graphs, proved to be

sustainable but not information-persistent. It is worth mentioning it as it might be counter intuitive.

4.3.1.3 Study of Graph Evolution

In this Section we aim at estimating the evolution of the graph order during graph dynamics. However, in

the D3G3 model, between two time steps, non-conserved nodes are removed from the graph and conserved

nodes are located at the same position, which entails a remanent graph. This remanent graph induces a

structure influencing the computation of graph order. More precisely, nodes that are about to be removed

connected to conserved ones interfere in the probability that conserved nodes at time t are still conserved

at time t+ 1. This is linked to computing the degree of the neighbors of a node u knowing the degree of

node u. To our knowledge, this is a difficult question. For that purpose, a relaxed version of the D3G3

66 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
·105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·105

ct

Ex
pe

ct
ed

va
lu

e
Relationship between the average value of ct and
the expected value mentioned in theorem 16.

ct = f(Expected average value)
Identity (y = x)

Figure 4.2: Relationship between the average value of ct and the expected value. Each point correspond
to a single threshold d. d is ranging from 0.001 to 0.01 with a step of 0.0005 and from 0.01 to 0.2 with a
step of 0.005

model is considered enabling analytical study of this evolution. In this model, conserved nodes are moved

(i.e., their position are changed) such that obtained graph is a new random geometric graph at each step.

We call this model ”the redistributed model”. This will help us proving the following theorem:

Theorem 17 Let G = (Gt)t∈N be a dynamic graph obtained with the redistributed model, then at every

step t, nt+1
2 ∼ B(nt, p(S, d, nt)), where p(S, d, nt) is the probability that a node is conserved between step

t and t+ 1:

p(S, d, nt) =
M∑

k=m

(
nt − 1
k

)
pk(1− p)nt−1−k

Here, p(d) refers to the probability for two different nodes to be connected (i.e., the probability that the

distance between them is lower than or equal to d), which is, for d ⩽ 1
2 , πd2.

Proof

In the redistributed model, at time step t a RGG (Gt) is built. If the graph order at time t is equal to

4.3. Segments 67

nt, the graph order at t+ 1 is equal to twice the number of surviving nodes at time t. As every node has

an independent position in the torus, this probability is the same for all nodes. Let’s denote it p(S, d, nt).

Let u ∈ Vt. Then:

p(S, d, nt) = P (deg(u) ∈ S) =
M∑

k=m

P (deg(u) = k) (4.2)

p(S, d, nt) =
M∑

k=m

(
nt − 1
k

)
pk(1− p)nt−1−k (4.3)

Assuming one node is a conserved node does not affect the probability of conservation for other nodes.

The number of conserved nodes can be computed summing independent Bernoulli’s events of parameter

p(S, d, nt). This gives nt+1
2 follows a binomial distribution of parameter nt and p(S, d, nt). ■

Computing expectation for a binomial distribution leads to an expectation for nt+1 knowing nt.

Indeed, this expectation is 2ntp(S, d, nt). For a fixed set S, this provides a relationship between nt and

nt+1:

Definition 27 Expectation of graph order:

Let m, M and d be parameters for the redistributed model. Let G = (Gt) be an obtained graph with

such parameters. Then, the expectation of graph order at step t + 1 (nt+1) knowing graph order at

step t (nt) is fS,d(nt) and satisfies nt+1 = fS,d(nt) = 2ntp(S, d, nt), and then:

∀n ∈ N, fS,d(n) = 2np(S, d, n) (4.4)

This quantity is referred to as the relationship in the sequel. Studying the relation for every value

of m, M and d turns out to be a difficult problem. However some results may be conjectured. A first

conjecture concerns the variations of the relationship:

Conjecture 1 Let m,M and d be parameters of the model. Let S = [m,M] and fS,d the relationship

as defined above. Then there exists n∗ ∈ N such that fS,d is increasing on [0, n∗] and decreasing on

[n∗ + 1,+∞[.

This conjecture is difficult to prove due to the sum involved in the computation of fS,d. However, it is

not necessary to study the relationship for all integers. It is possible to perform the study on a limited

interval. This is the purpose of theorem 18 (below). But before proving this theorem, it is necessary to

provide another formulae computing variations of fS,d:

Lemma 5 Let m, M and d be parameters of the model. Let ∆fS,d defined as the variation of fS,d: for

n ∈ N,∆fS,d(n) = fS,d(n+ 1)− fS,d(n). Then:

∀n ∈ N,∆fS,d(n) = 2
M∑

k=m

(k + 1)
(
n

k

)
pk(1− p)n−1−k

(
1− n+ 1

k + 1p
)

Proof : Let m, M and d be parameters of the model. Let n a be non-negative integer. This proof only

68 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

focuses on the terms of the sum of ∆fS,d:

∆fS,d(n) = 2
(

M∑
k=m

(n+ 1)
(
n

k

)
pk(1− p)n−k − n

(
n− 1
k

)
pk(1− p)n−1−k

)

= 2
M∑

k=m

pk(1− p)n−1−k

(
(n+ 1)

(
n

k

)
(1− p)−

(
n− 1
k

))

Let k ∈ N such that m ⩽ k ⩽M . Every term of the sum of ∆fS,d can be expressed as follow only using

results on binomial coefficients:

(n+ 1)
(
n

k

)
(1− p)− n

(
n− 1
k

)
= (k + 1)

(
n+ 1
k + 1

)
(1− p)− (k + 1)

(
n

k + 1

)
= (k + 1)

((
n+ 1
k + 1

)
− p
(
n+ 1
k + 1

)
−
(

n

k + 1

))
= (k + 1)

((
n

k

)
− p
(
n+ 1
k + 1

))
= (k + 1)

((
n

k

)
− pn+ 1

k + 1

(
n

k

))
= (k + 1)

(
n

k

)(
1− pn+ 1

k + 1

)

This last equality leads to the following form of ∆fS,d:

∆fS,d(n) = 2
M∑

k=m

(k + 1)
(
n

k

)
pk(1− p)n−1−k

(
1− n+ 1

k + 1p
)

■

It is now possible to state the following theorem about variations of fS,d:

Theorem 18 Let m,M and d be the parameters of the model. Let S = [m,M] and fS,d the relationship

as defined above. Let p = p(d) be the probability for two different nodes to be connected. Then, fS,d is

increasing between 0 and m+1
p − 1 and decreasing from M+1

p − 1 to infinity.

Proof : The goal is to prove that ∆fS,d(n) is positive for n < m+1
p − 1 and negative for n > M+1

p − 1.

To understand this, ∆fS,d(n) can be rewritten as follow (lemma 5):

∀n ∈ N,∆fS,d(n) = 2
M∑

k=m

(k + 1)
(
n

k

)
pk(1− p)n−1−k

(
1− n+ 1

k + 1p
)

It is sufficient to notice that, for all k ∈ S, the sign of every single term of the sum is the sign of(
1− n+1

k+1p
)

. For fixed k, the term is positive if and only if n is lower than k+1
p − 1. As this last term

is an increasing function of k, all terms of the sum are therefore positive if n is lower than m+1
p − 1

and negative if n is greater than M+1
p − 1. Hence, the relationship is increasing from 0 to m+1

p − 1 and

decreasing from M+1
p − 1 to infinity. ■

Thanks to theorem 18, conjecture 1 is proved for intervals [0, xm] and [xM ,∞[xm = m+1
p − 1 and

4.3. Segments 69

xM = M+1
p − 1. At this stage, quantifying more precisely the evolution of the graph order is not

achievable. However, a study of the fixed points of fS,d enables to draw some conclusion about generated

graphs sustainability.

4.3.1.4 Graph Evolution and Sustainability

First note that knowing the variations of fS,d is not enough to deal with graphs sustainability. Indeed,

as claimed by the following theorem, big graphs are not sustainable.

Theorem 19 Non-sustainability of big graphs:

Let m, M and d be parameters of the model. Let fS,d be the relationship. Then, there exists N > 0 such

that for all n > N, fS,d(n) < 1.

Proof : For this proof, it is sufficient to prove that fS,d(n) → 0 when n → +∞. Let n such that

n ⩾ 2M + 1. In this situation, for all k ⩽ M , binomial coefficient
(

n−1
k

)
⩽
(

n−1
M

)
. Moreover, as

(1− p) < 1, x 7−→ (1− p)x is decreasing. Therefore, for all k ⩽ M , (1− p)n−1−k ⩽ (1− p)n−1−M . It is

thus possible to get the following inequality for all k ⩽M :

(
n− 1
k

)
(1− p)n−1−kpk ⩽

(
n− 1
M

)
(1− p)n−1−Mpk

Noticing p < 1 and fS,d is a sum of M −m+ 1 elements, fS,d(n) can be bounded as follow

fS,d(n) ⩽ 2n(M −m+ 1)
((

n− 1
M

)
(1− p)n−1−M

)

As M is fixed, the binomial coefficient
(

n−1
M

)
is equivalent to a polynomial of degree M as n grows to

infinity: (
n− 1
M

)
∼ nM

M !

Therefore, fS,d(n) is equivalent to the product of a polynomial and an exponential function converging

towards 0. This implies fS,d(n) converges towards 0 as n tends to infinity. ■

This theorem says that there always exists a graph order limit such that graphs whose order are greater

than this limit are likely to become empty. Therefore, it is not possible to obtain sustainable graphs with

a large amount of nodes.

A new mathematical concept is introduced with the aim of studying graph sustainability. This concept

is referred to as a fixed point. The analysis of generated dynamic graphs has led to the introduction of

this concept for a specific reason: it aims to classify parameters into distinct categories according to

functions fS,d. These categories, detailed above, provide a framework within which the sustainability

of graphs can be explained based on the category to which a dynamic graph belongs. Fixed points are

defined as follows:

70 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

Definition 28 Fixed Point:

Let m, M and d be parameters of the model. A fixed point for the relationship fS,d is an non-negative

integer n such that: fS,d(n) ⩽ n and fS,d(n+ 1) > n+ 1

or fS,d(n) ⩾ n and fS,d(n+ 1) < n+ 1

Such fixed points characterize variation of graph order. Indeed, graph of order n for n taken between

two consecutive fixed points is either always decreasing or increasing. From experiments performed on

the redistributed model as well as on D3G3, three different cases appear and are conjectured as follow:

Conjecture 2 For all m, M and d being parameters of the model, the relationship fS,d has either one,

two or three fixed points.

This conjecture is the main tool aiming at studying sustainability in the segment case. Indeed, in the

three different cases, it is possible to answer whether a given set of parameters is sustainable or not. How-

ever, there is no characterization about parameter values that may help founding which case parameters

lead to. The only one claim that can be made is that d does have an influence on this case.

The conjecture 2 is assumed in this subsection. This section aims at stating about sustainability in

the three different cases. This is illustrated by a description of the behavior of the relationship fS,d in

every case.

One fixed point First let’s consider the case where the relationship has only one fixed point. When it

has only one fixed point, this point is 0. This comes from fS,d(0) = 0. Moreover, for all n, fS,d(n) < n.

As for a snapshot graph of order nt at step t, fS,d(nt) gives the expectation value of nt+1 at step t+ 1.

Graph orders of generated graphs are decreasing in average. Graphs obtained in this case are therefore

not sustainable. This is illustrated by Figure 4.3.

Two fixed points For the two fixed points case, 0 is also a fixed point. This also comes from fS,d(0) = 0.

The other fixed point is greater than zero. The case where fS,d have two fixed points were conjectured

in our work to be a consequence for m, the lower bound of S, to equal to 0. It was also conjectured that

m = 0 implies fS,d has two fixed points. In the following theorem, we finally give a proof of that result

which lies in the value of fS,d(1):

Theorem 20 (Characterization of the two fixed points) Assuming the hypothesis that fS,d has either one,

two or three fixed points, then the relationship fS,d has two fixed points if and only if m = 0.

Proof: To prove this statement, let us reason through double implications. First, we prove that m = 0

implies fS,d has exactly two fixed points. Let assume S = [0,M] for any M ∈ N. Then, for all n ≤M+1,

fS,d(n) = 2n. This comes from
(

n−1
k

)
= 0 for any n ∈ N and k ≥ n. Thus, for all n ∈ N and k ≥ n, the

following holds:

fS,d(n) = 2n
(

n−1∑
k=0

(
n− 1
k

)
pk (1− p)n−1−k

)
= 2n

4.3. Segments 71

Figure 4.3: One fixed point

This implies at least fS,d(1) = 2 > 1. However, from theorem 19, there exists n1 > M + 1 such that

fS,d(n1) < 1 < n1. As fS,d(M + 1) = 2(M + 1) and fS,d(n1) < 1, there exists n2 ∈ [M + 2, n1] satisfying

fS,d(n2) ≥ n2 and fS,d(n2 + 1) < n2 + 1 (for the rest of the proof, let assume n2 is the smallest positive

integer satisfying this property). Therefore, fS,d has at least two fixed points. The last step is to prove

fS,d does not have three fixed points. Let assume fS,d does have three fixed points. There exists n3 > n2

such that fS,d(n3) ≤ n3 and fS,d(n3 + 1) > n3 + 1. Thus, for the same reason n2 exists, there also exists

n4 ∈ [n3 +2, n′] satisfying fS,d(n4) ≥ n4 and fS,d(n4 +1) < n4 +1, which implies fS,d has four fixed point,

which is a contradiction with the hypothesis of the theorem. This means fS,d has exactly two fixed points.

Let us now proof fS,d has two fixed points implies m = 0. Let assume first, m ≥ 1. In that case, the

binomial coefficient
(

n−1
k

)
= 0 for n = 1, implying fS,d(1) = 0. Two cases occur, either no fixed point

exists or at least one. On the one hand, only 0 is a fixed point, so fS,d has exactly one fixed point. On the

other hand, the smallest positive fixed point n must satisfy fS,d(n) ≤ n and fS,d(n+ 1) > n+ 1 because

fS,d(1) = 0. Thus, there exists n′ ≥ n + 1 such that fS,d(n′) ≥ n′ and fS,d(n′ + 1) < n′ + 1. It follows

that fS,d has three fixed points and m ≥ 1 cannot lead to fS,d with two fixed point. By contraposition,

we deduce the wanted implication. ■

A consequence for this theorem from Theorem 19 is that generated graphs when m = 0 are sustainable

as long as their graph order does not exceed a limit. Such a limit has not been computed theoretically.

Its existence is a consequence of Theorem 19. Graphs whose order exceeds this limit are likely to become

72 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

empty. An example of parameters leading to fS,d having two fixed points is illustrated by figure 4.4.

Figure 4.4: Two fixed points

Three fixed points For the last case, the goal is to show that graph order is likely to remain bounded.

Deeply looking at this case raises the question of values of graph order for which the size is not too

large and not too small so that it does not collapse. For that purpose we define an interval, called

sustainable interval, such that, if the graph order remains within that interval, this ensures the persistence

of the graph. This sustainable interval is considered as a tool to study graph sustainability. It concerns

expectation of graph order evolution through time. It says that if the image of the function fS,d for all

integers within the interval does not exceed the upper bound, then the graph is likely not to collapse.

Let’s define more precisely this concept:

Definition 29 Sustainable Interval:

Let m, M and d be parameters of the model. Let consider fS,d such that it has three fixed points.

Let Nm be the first positive fixed point and N ′
m the smallest integer greater than Nm such that

fS,d(N ′
m) ⩾ Nm and fS,d(N ′

m + 1) < Nm (N ′
m exists as a consequence of Theorem 19). The

sustainable interval associated to m, M and d is defined as the interval [Nm, N
′
m].

This definition is illustrated through figure 4.5. Such an interval satisfies a property about the values

fS,d takes when it is restricted to it:

Theorem 21 Sustainability in the sustainable interval:

Let m, M and d be parameters of the model. Let assume the relationship fS,d has three fixed points and

4.3. Segments 73

Figure 4.5: Three fixed points

that [Nm, N
′
m] is its associated sustainable interval. Then, the relationship satisfies:

∀n ∈ N, n ∈ [Nm, N
′
m]⇔ fS,d(n) ⩾ Nm

Moreover, if the fS,d does not exceed N ′
m, then the it satisfies:

∀n ∈ [Nm, N
′
m], fS,d(n) ∈ [Nm, N

′
m]

If such a condition is observed, then, graphs produced with a seed graph with an order within [Nm, N
′
m]

are likely to be sustainable.

Proof: Let assume fS,d first increases and then decreases (see Conjecture 1) and it has 3 fixed-points.

As a consequence of Theorem 20, m ⩾ 1, meaning fS,d(1) = 0 < 1. Thus, as Nm is the first positive

fixed-point and as fS,d increases, every n ∈ [0, Nm] satisfies fS,d(n) ∈ [0, Nm]. As fS,d(n) tends toward 0

as n tends to infinity (see Theorem 19), then there exists N ′
m such that for every n ⩾ N ′

m, fS,d(n) ⩽ Nm.

For the value of n ∈ [Nm, N
′
m], they satisfy fS,d(n) ⩾ Nm as a consequence of Conjecture Nm. The

second part of the theorem is just a remark. ■

Main interpretation of that theorem is that graphs are sustainable with high probability in the sustain-

able interval if and only if there are no values of fS,d exceeding the upper bound of the sustainable interval.

74 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

Building the Sustainable Interval The following paragraphs provide arguments aiming at obtain-

ing the sustainable interval. They also provide arguments to check whether the relationship exceeds

the upper bound of the interval. The theorem 18 clearly gives bounds to find out the maximum of the

relationship fS,d. Three algorithms are sufficient to answer both questions: an algorithm to compute the

argument of the maximum of the relationship fS,d, an algorithm to find its fixed point between 0 and

the argument of the maximum and an algorithm to solve fS,d(n) = y for n greater than the argument

of the maximum and y > 0 lower than or equal to the maximum. In the following, these algorithms are

first implemented. It is then explained how to use them to answer questions about the sustainable interval.

The argument maximum: To compute the argument maximum of the relationship, it is sufficient to

study fS,d on the interval [xm, xM] for xm and xM as defined above. This is a consequence of theorem

18. Let’s denote it N∗.

The first positive fixed point: To find the fixed point of fS,d mentioned in the definition of the sus-

tainable interval, it is sufficient to compute the argument maximum of it. The previous algorithm answers

this question. Then, as the relationship is increasing from 0 to N∗, it is sufficient to iterate and find an

integer n such that fS,d(n) ⩽ n and fS,d(n+ 1) > n+ 1.

The solution of the equation: For the last algorithm, the goal is to find an integer n such that n is

greater than N∗ of fS,d, fS,d(n) ⩾ y and fS,d(n) < y, for a fixed y which is assumed to be positive and

lower than the maximum of fS,d.

From these algorithms it is possible to implement algorithms stating the existence of the sustainable

interval and its bounds. For the existence or not of the sustainable interval, it is sufficient to check

whether the maximum of the relationship is greater than its argument. This comes from that sustainable

interval exists if and only if there are values of the relationship that exceed their argument. As the

relationship is increasing from 0 to fS,d(N∗), then sustainable interval exists if and only if fS,d(N∗) > N∗.

For computing the sustainable interval boundaries, it is sufficient to know the value of the first fixed point

Nm (as it provides the lower bound) and to solve the equation fS,d(x) = Nm as finding the corresponding

x to this equation provides the upper bound (N ′
m). The existence of N ′

m is ensured by theorem 19.

4.3.2 Vertex DynamicScore

The goal is to highlight a characterization aspect of the segment family using the V-DynamicScore

metric. As edge DynamicScore will not be studied for that case, vertex DynamicScore will be referred to

as DynamicScore in this section. As in this particular configuration, conserved vertices are the same as

created nodes, it is possible to state particular results about the value of DynamicScore:

Theorem 22 Let S be a segment set of non-negative integers and d ∈]0, 1
2 [. Let G be a generated graph

4.3. Segments 75

of order nt at step t and number of conserved nodes from step t to step t+ 1 referred to as st. Then:

DV
t = nt

nt + st

Proof To prove this result, it is sufficient to notice that nt+1 = 2st, as SS = SC , which means the

number of conserved nodes is the same as the number of created nodes. Thus, applying some basic result

about set sizes and noticing that st = |Vt ∩ Vt+1|, leads to:

|Vt ∪ Vt+1| = nt + nt+1 − st = nt + st

|Vt△Vt+1| = nt + nt+1 − 2|Vt ∩ Vt+1| = nt

It follows that the vertex DynamicScore is equal to nt

nt+st
. ■

Result about the DynamicScore observed in generated graphs parameterized with a segment set S is

stated in the following conjecture:

Conjecture 3 Let m,M ∈ N. Let S = [m,M] and d > 0 be parameters of RD3G3. Then the Dynamic-

Score of generated graphs is in average equal to 2
3 .

Although this conjecture has not been proved theoretically, experimentation have been performed. They

are in line with this conjecture telling that the average DynamicScore of generated graphs is roughly

equal to 2
3 . Results of this experimentation are gathered on picture 4.6. A possible interpretation of this

conjecture and performed experimentation relies on the result stated in theorem 22 and on results from

last part. Indeed, if vertex DynamicScore is close to 2
3 , it means st ≃ nt

2 . Then, as nt+1 = 2st, it comes

nt+1 ≃ nt, which means that the graph order is close to a fixed point of the relationship fS,d mentioned

in the previous section.

4.3.3 Conjecture on the Sustainability

When studying the generator process D3G3, a conjecture quickly emerged. It suggested that, for any

chosen value of m, there exists, for a sufficiently small value of d, an integer M such that for the D3G3

generator with parameters S = [m,M] and d, most of the dynamic graphs produced by the process would

be sustainable. To make this conjecture more formal and easier for the reader to follow, the following

statement is provided:

Conjecture 4 Let m be a non-negative integer. There exists d ∈ [0;
√

2
2] and M ⩾ m such that, the

probability a dynamic graph produced using D3G3 is sustainable is close to 1.

This conjecture has been elaborated after testing several configurations of parameters m, M and d.

For d greater than 0.1, simulations exhibited graphs that quickly become empty, and therefore non-

sustainable. Conversely, the smaller the tested value of d, the higher the proportion of graphs that reach

the end of the simulations, approaching or even reaching 100%. Regarding the study around parameter

M , simulations revealed that when m is fixed and M increases, a threshold effect occurs on the rate of

76 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

20 30 40 50 60 50
100

0

0.2

0.4

0.6

0.8

1

m M

D
V t

Vertex-DynamicScore in average.

Figure 4.6: Mean value of vertex DynamicScore got from experimentation. Points represent the average
over 20 run and 30000 time steps for a single m and M . The yellow surface is the plan of equation z = 2

3 .
For all these parameters, d is set to 0.05. Red points represent DynamicScore greater than 2

3 . Blue points
represent DynamicScore lower than 2

3 .

sustainable graphs. This threshold effect indicates that once M exceeds a certain value, the proportion

of graphs reaching the maximum number of iterations jumps from less than 10% to nearly 100%. In the

initial tests, values of m ranged between 1 and 8. To conduct these tests, values of M were chosen based

on the values of m: from m+ 1 to 4m (more values were tested for small values of m to clearly observe

this threshold effect). For each pair of tested m and M , 100 tests were conducted, each consisting of

1,000 iterations. The graphs were considered sustainable if they reached the last iteration and were not

empty. Although the tested values of m and M were small, this allowed us to form initial hypotheses to

be tested. One initial hypothesis was to determine conditions on M for the conjecture to be true. More

precisely, the goal was to find a function of f such for M ⩾ f(m), produced graphs are sustainable. The

success rate of all simulations conducted for each (m,M) pair is represented in Figure 4.7. This Figure

shows the percentage of sustainable simulations. The value of parameter d is set to 0.05. Other values

of d lower than 0.1 also shows this threshold effect, and the choice to represent this value is arbitrary.

This graph highlights the emergence of a threshold effect for the value of M relative to m. This initial

observation supports the conjecture, even suggesting the existence of a threshold value M ′ such that for

M ⩾M ′, the graphs produced by D3G3 would be sustainable with a high success rate.

However, a deeper study showed us that this observation was not correct, and even worse, that for

larger values of m, there was no M that would result in sustainable graphs. An initial observation of this

phenomenon occurred when we tested parameters like m = 13 and M = 31. For this case M ⩾ 2m, yet

the simulations performed with these parameter values showed a very low success rate. The result of these

4.3. Segments 77

Figure 4.7: Success rate of simulations for m ranging from 1 to 8. Each curve represent a different value
of m. The x-axis is a value of M and the y-axis is the success rate.

simulations are detailed in Section 4.3.4. It turned out that the graph produced often tended to grow

significantly before collapsing. This did not happen for smaller values of M . We then assumed that there

was not a threshold effect but rather a step effect. This means that for a given m, the values of M that

result in sustainable graphs, with high probability, are contained within an interval [M1,M2]. We then

tested much larger values of m to examine this hypothesis. Tested values of parameter m ranged were 200

and 300. For these values of m, we did not find any M such that graphs obtained were sustainable. We

then tried to understand how this could be possible. One argument, which is unfortunately not a proof,

is when we studied the sustainability interval. For each values of M , only one produced a sustainable

interval with no value exceeding the upper bound. However, this area is too small to ensure the graph to

be sustainable. For all other case, either there is no sustainable interval or the function fS,d exceed the

interval. Thus, for such value of m there is no M such that produced graphs are sustainable.

4.3.4 The Purpose of the Non-redistributed Model

The reader may wonder why did we study the non-redistributed model while the redistributed one already

provide a wide possibility for which sustainability is an interesting question. The reason is that stating

about sustainability requires different answers according to the studied model. Indeed, sustainability

conditions are different between the redistributed and the non-redistributed model. On the one hand,

conditions on the redistributed model seems to depend only on the graph order. It is therefore sufficient

to study fS,d to already have an answer about the sustainability of produced graphs. On the other hand,

the sustainability conditions for the non-redistributed does not depend only on graph order. Indeed,

geometric structures of small graphs influence their sustainability. This is a consequence of conserved

vertices that does not move from one step to the next one. Therefore conserved vertices are more likely

to still remain present when the graph is small as the number of interactions with other vertices are

unlikely. This may be observed on graphs such as those generated with parameters S = [13, 31], G0

complete geometric graph composed of 14 vertices and d ranging from 0.02 to 0.1 for instance. For

these configurations graphs start from a complete graph and grow until a threshold value depending on

parameter d. An illustration of this evolution is given Figure 4.8 representing the evolution of the graph

78 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

order and the V-DynamicScore for one obtained graph. On this graph, it is possible to see that up to

step 400 the graph is in a growing phase. During this phase the value of the V-DynamicScore is stable

and close to 2
3 . As the graph order does not increase too much between two consecutive steps, this means

around half the number of vertices are conserved while other are new. Then after this step, the graph

features start oscillating meaning the graph enter into a different phase. This change of phase is an

evidence of the existence of a growing structure maintaining the graph sustainable. However, we do not

have proof of the existence of this structure. Moreover, the conditions that ensure such a structure makes

the graph grow up to a certain size are also unknown. The only thing we can say is that such a scenario

does not occur in the case of graphs generated with RD3G3 using the same parameters. For this setup,

all becomes empty after two steps: the graph at the second iteration step is a random graph with 2n0

vertices which implies too few vertices satisfy the duplication condition.

0 200 400 600 800 1,000
0

2,000

4,000

t

n
t

(a) nt through time

0 200 400 600 800 1,0000

0.2

0.4

0.6

0.8

1

t

D
V t

(b) DV
t through time

Figure 4.8: Example of the evolution of a dynamic graph produced by D3G3. Parameters are S = [13, 31]
and d = 0.05.

Simulations have been run to seek for graphs reaching a fixed number of iterations. Graphs reaching

this condition are considered sustainable up to this fixed date. For every value of d tested, 20 simulations

were run. The ratio of sustainable graphs obtained from this experiment is represented Table 4.3. On

this table it is possible to see that the ratio of sustainable graphs is non null though decreasing. For small

values of d, sustainability is observed on a large amount of run showing the main difference between the

redistributed model and the original one. In addition, these results also support Conjecture 4, at least

on finite time.

4.3. Segments 79

d Sustainability rate

0.02 0.9

0.03 0.8

0.04 0.8

0.05 0.7

0.06 0.65

0.07 0.95

0.08 0.55

0.09 0.5

0.1 0.25

Table 4.3: Ratio of sustainability graphs for different thresholds d. Each run has a limit of 3500 iterations.

Conclusion on Segments

The focus of this section is to identify conditions that ensure the sustainability of dynamic graphs for

a specific family of parameters: both sets SS and SC are equal and contain consecutive non-negative

integers (i.e., S = SS = SC = [m,M], for m,M ∈ N). In this setup, a new model, called the redistributed

model (RD3G3), is introduced as a simplified version of the D3G3 model for theoretical analysis. This

model modifies the conservation rule such that the positions of conserved vertices are adjusted in the

same way that newly created vertices are placed on the torus.

This section investigates the sustainability of both models, highlighting their fundamental differences.

In the D3G3 configuration, we first proved that when both sets contain only zero, the produced graphs

are likely to be sustainable when d is close to zero. Additionally, we demonstrated that when the seed

graph is a complete geometric graph with n0 = m+ 1 vertices, the graphs are likely to be sustainable for

small values of parameter d. The exact cause behind the phenomenon ensuring sustainability in these

graphs remains unknown; however, the presence of a growing structure might provide an explanation.

For the RD3G3 model, sustainability is analyzed through a function estimating the evolution of the

number of vertices over time. This analysis led to a conjecture that there are only three different scenarios

for analyzing sustainability. According to this conjecture, the estimating function has either one, two, or

three fixed points. If the function has one fixed point, the graphs are almost certainly non-sustainable.

If it has two fixed points, the graphs are almost surely sustainable, except when they grow too large. In

the case where the function has three fixed points, sustainability becomes less straightforward. For this

scenario, we have shown that it is relevant to define an interval such that, when the seed graph’s order

remains within this interval, sustainable graphs are produced.

Additionally, the V-DynamicScore was studied for this model in the context of sustainable graphs.

The results indicate that, on average, this metric equals 2
3 , meaning that roughly half of the vertices are

replaced at each step. This suggests that sustainable graphs tend to reach a form of equilibrium over time.

80 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

Future work should extend the analyses performed for this family of parameters. For the RD3G3

model, analyzing the variations of the estimated function could refine the conditions under which graphs

are sustainable. This could draw from the study of complex systems, where the behavior of the derivative

near fixed points determines whether they are attractive or repulsive. For the D3G3 model, further

investigation is needed into the structural properties that maintain graph sustainability. One potential

approach is to adjust the parameters such that both sets are segments, with SC containing few lower

values than SS . While this idea has been tested on a few values and has not produced convincing results,

it is worth mentioning for future exploration.

4.4 Infinite Sets and Asymptotic Graph Order Evolution

The work presented in this section has been published in the Applied Network Science journal [4].

This section introduces a new family of parameters to work with the RD3G3 model introduced in the

Section 4.3 to simplify the analysis of the D3G3 model. The main result we prove here is that sustainabil-

ity of large dynamic graphs may be theoretically explored leading to three different possible behaviors.

This analysis has been possible using results on infinite sums and properties of complex numbers. These

results are provided in the subsequent Section. Then, using these properties, we are able to obtain an

equivalent of fS,d(n) for large values of n. This equivalent highlights an exponential growth of produced

graphs (i.e., there exists a > 0 such that fS,d(n) ∼ an).

This section aims at presenting our work on the RD3G3 model for restrained values on the parameter

S. Indeed, this work focuses on sets of the form S = {sk + r | r ∈ A, k ∈ N} for fixed s ∈ Z+ and

A ⊂ [0, s − 1]. This equivalent will also help understanding the behavior of generated graphs with high

orders. It will also provide an answer to whether generated graphs are sustainable or not. Indeed,

depending on the value of s and A, three different scenarios are possible. If the base of the exponential

is less than 1, then the graphs are, on average, decreasing in size over time. If the base equals 1, then

the graphs are, on average, constant in size from one step to the next. If the base is greater than 1,

then the graphs are increasing in size and generally sustainable. Although sustainability is ensured in the

last scenario, further consideration is required regarding the size of the graph in the other cases. This is

proved in Section 4.4.3.4, where we show that for small-sized graphs, a different approach is necessary.

Indeed, the choice of values for S influences the sustainability of produced graphs.

4.4.1 Intermediate Result

The computation of the equivalent relies on the properties satisfied by roots of unity. As a reminder, a

nth root of unity for some positive integer n is defined as follow:

Definition 30 Let n be a positive integer. Then a nth root of unity is a complex number ω such

that ωn = 1.

4.4. Infinite Sets and Asymptotic Graph Order Evolution 81

Even though such numbers have been extensively studied, we have not found any article nor courses

proving the following statements. This is why the proof are provided here with some properties complex

numbers satisfy which may be found in [22] at section 2.5. Most important ones are gathered in the

following lemma:

Lemma 6 Let n be a positive integer. Then the following holds:

• ωn = exp (2iπ
n) is a nth root of unity;

• a complex number ω is a nth root of unity if and only if there exist k such that ω = ωk
n;

• if a complex number ω is a nth root of unity, then its modulus satisfies |ω| = 1;

• sum of jth powers of nth root of unity, for any non-negative integer j, are such that:

n−1∑
k=0

(
ωk

n

)j =

n If n divides j

0 Otherwise

Such properties are useful to prove the following lemma concerning infinite sums:

Lemma 7 Let s ∈ Z+, n ∈ N and x ∈ R. Let r ∈ [0, s− 1], then we get the following equality:

+∞∑
k=0

(
n

sk + r

)
xsk+r = 1

s

s−1∑
j=0

ω−jr
s (1 + ωj

sx)n

where ωs = exp
(2iπ

s

)
is an sth root of unity.

Proof : Let s ∈ Z+, n ∈ N and x ∈ R. Let r ∈ [0, s− 1]. Let ωs = exp (2iπ
s). The first thing to notice is

that the infinite sum on the left side of the equality converges. For any values of k such that sk+ r > n,

the binomial
(

n
sk+r

)
= 0. Thus, the infinite sum contains only finitely many non-zero terms. Then, it is

sufficient to notice that, according to properties roots of unity satisfy, the following holds:

∀m, 1
s

(
n

m

)
xm

s−1∑
j=0

ωs
j(m−r) =

(

n
m

)
xm If there exists k such that m = sk + r

0 Otherwise

82 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

From this the following equations hold:

+∞∑
k=0

(
n

sk + r

)
xsk+r = 1

s

+∞∑
m=0

(
n

m

)
xm

s−1∑
j=0

(ωj
s)m−r

= 1
s

+∞∑
m=0

s−1∑
j=0

ω−jr
s

(
n

m

)
(ωj

s x)m

= 1
s

s−1∑
j=0

ω−jr
s

(+∞∑
m=0

(
n

m

)
(ωj

s x)m

)

= 1
s

s−1∑
j=0

ω−jr
s

(
n∑

m=0

(
n

m

)
(ωj

s x)m

)

= 1
s

s−1∑
j=0

ω−jr
s (1 + ωj

s x)n

This ends the proof.■

This lemma on roots of unity helps getting another expression of the function fS,d:

Theorem 23 Let s ∈ Z+, n ∈ N and A ⊂ [0, s− 1]. Let S as defined above, then:

fS,d(n) = 2
s
n

∑
r∈A

s−1∑
j=0

ω−jr
s

(
1− p+ ωj

sp
)n−1

Proof : Let s ∈ Z+, n ∈ N and A ⊂ [0, s− 1]. Rewriting fS,d(n) lead to the following expression

fS,d(n) = 2n
∑
r∈A

(+∞∑
k=0

(
n− 1
sk + r

)
psk+r(1− p)n−1−(sk+r)

)

= 2n(1− p)n−1
∑
r∈A

(+∞∑
k=0

(
n− 1
sk + r

)(
p

1− p

)sk+r
)

Thus, applying the result of lemma 7 provides:

fS,d(n) = 2
s
n(1− p)n−1

∑
r∈A

s−1∑
j=0

ω−jr
s

(
1 + ωs

j p

1− p

)n−1

= 2
s
n
∑
r∈A

s−1∑
j=0

ω−jr
s

(
1− p+ ωs

jp
)n−1

This ends the proof. ■

This theorem provides an exact formulae for the estimation function fS,d. It is important to notice

that this re-written formulae involves only finite sums. It is therefore easier to deal with its analysis

which is the purpose of the following sub-section.

4.4. Infinite Sets and Asymptotic Graph Order Evolution 83

4.4.2 The Equivalent and First Interpretation

From result obtained in the last subsection, it is possible to get an equivalent for great values of n for

fS,d:

Theorem 24 Let s ∈ Z+, n ∈ N and A ⊂ [0, s− 1]. Let S as defined above, then for large values of n:

fS,d(n) ∼ 2|A|
s
n

Proof : This comes from theorem 23 and from properties on complex numbers. More precisely, for each

value of r ∈ A there is exactly one value of j ∈ [0, s − 1] such that ω−jr
s (1 − p + ωj

sp) = 1 (for j = 0).

For all other values of j, (1 − p + ωj
sp) ̸= 1 and have a modulus lower than 1. Therefore, raised to the

n− 1-th power, if j ̸= 0 (1− p+ ωj
sp)n−1 −→ 0 as n grows to infinity and (1− p+ ωj

sp)n−1 = 1 if j = 0.

The rest is computation of limits. ■

This result has an interpretation for graphs generated with the model. Indeed, for a given snapshot

graph at step t of order nt, the application of the rule will produce a graph with an expected order(
2|A|

s

)
nt at step t+1. The evolution of graph order exhibits three different trends depending on whether(

2|A|
s

)
is lower than, equal to or greater than 1. The next section goes further in the analysis of these

three cases. It also highlights the differences between graph order evolution of big and small graphs:

interpretation depends on the smallest values of parameter S.

4.4.3 Generated Graphs Interpretation

This section aims at going further in the interpretation of previously stated results. More precisely, this

section highlight three different asymptotic graph order evolution that occur from stated equivalent in

4.4.2. Moreover, interpretation for small graph order is given. This will help knowing whether generated

graphs are likely to remain steady or not depending on the smallest values of the parameter S. Before

dealing with each case, it is important to understand the meaning of theorem 24. This theorem states

that for any given generated graph having nt nodes at a step t and assuming nt is big enough, then, at

the next step, nt+1 is expected to be close to
(

2|A|
s

)
nt. Therefore, starting with a seed graph of order

N big enough would lead, after t steps, to a graph of order

nt ≃
(

2|A|
s

)t

N

This is why graph order is said to grow exponentially. From this, three cases have to be observed:

• The first case is 2|A|
s < 1. This means generated graphs order are likely to decrease when their

order is large.

• The second case is 2|A|
s > 1. This means generated graphs order are likely to increase when their

order is large.

• Finally, the third case is 2|A|
s = 1.

84 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

4.4.3.1 Exponential Increasing

The first studied case is when s and A both satisfy 2|A|
s > 1. For this case, as S is not bounded the order

of generated graphs is likely to tend to infinity. Generated graphs are therefore likely to be sustainable.

An instance illustrating this case is given Figure 4.9.

0 1 2 3 4 5 6 7 80

0.5

1

1.5

2

2.5

3

3.5
·104

Time Steps

G
ra

ph
O

rd
er

Exponential Increase Scenario

Numerical results
Theoretical values

Figure 4.9: Scenario of exponential increase. A = [0, 5], s = 7, n0 = 375. The theoretical value is given
by the formula nt ≈

(
2|A|

s

)t

n0

4.4.3.2 Exponential Decreasing

The second studied case is when s and A both satisfy 2|A|
s < 1. For this case, graph order of generated

graphs is likely to decrease exponentially. An instance illustrating this case is given Figure 4.10. However,

it is not enough to conclude on the sustainability of generated graphs. Indeed, when graphs become small

enough (close to 0), one may consider to take into account the smallest values of set S. This last case is

further studied in section 4.4.3.4.

4.4.3.3 Quasi Constant Evolution

The results presented in this section have been published in the Applied Network Science journal [4].

Two points must be noticed for the last case. First, this case happens if and only if s is even. Indeed,

if s is odd, whatever the set A one may choose, the numerator will be even. Second, for a given time step

t, application of the rule on a graph which order is nt will produce a graph which order is expected to be

nt+1 = nt. It is however necessary to go further as fS,d only provides an expectation. The graph order

4.4. Infinite Sets and Asymptotic Graph Order Evolution 85

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 300

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Time Steps

G
ra

ph
O

rd
er

Exponential Decrease Scenario

Numerical results
Theoretical values

Figure 4.10: Scenario of exponential decrease. A = [4, 5], s = 5, n0 = 7523. Theoretical values are given
by the formula nt ≈

(
2|A|

s

)t

n0.

will indeed change a little. An estimation for this change can be obtained with the standard deviation

of a binomial law. Despite all these considerations, simulations have been performed. They all show

that graph order changes through time with little variations. These simulations are represented in figure

4.11. It is worth noticing graph order is not constant all along the simulation, but rather increasing or

decreasing a little bit every time.

A further step to this study is to take into account the standard deviation σS,d associated with graph

order evolution. For a given nt ∈ Z+ order of a graph at step t, σS,d(nt) tells how far away from nt+1 is

fS,d(nt), which in this case is roughly nt. Thus, applying Chebishev’s inequality [18], for instance, states

that for any given real number k > 0:

Pr[nt+1 /∈ [nt − kσS,d(nt), nt + kσS,d(nt)]] ⩽
1
k2

The computation of σS,d(n) for large enough values of n lead to an equivalent which is the purpose of

the following theorem:

Theorem 25 Let s ∈ Z+, n ∈ N and A ⊂ [0, s− 1]. Let S as defined above, then for large values of n:

σS,d(n) ∼ 1
s

√
n|A|(s− |A|)

86 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

0 1,000 2,000 3,000 4,000 5,0000

2,000

4,000

6,000

t

n
t

Graph order evolution through time.

Graph order evolution

Figure 4.11: Simulation performed considering s = 4, A = [0, 1] and d = 0.05. The number of steps is
5000 and the initial seed graph is a random geometric graph of order 2000.

Proof: The proof of this theorem relies on the same argument as for theorem 24 and on the definition

of the standard deviation of binomial distributions. ■

This theorem states that the standard deviation σS,d(n) is proportional to
√
n for large values of n.

This provides better information about the possible values nt+1 may have depending on nt. Indeed, now

above stated inequality can by rewritten as follow:

P

(
nt+1 /∈

[
nt −

k

2
√
nt, nt + k

2
√
nt

])
⩽

1
k2

4.4.3.4 Sustainability of Small Generated Graphs

The question of whether a small generated graph is sustainable or not does not depend on the asymptotic

variation of the graph order. The answer to this question relies on the smallest values that the parameter

S contains. Indeed, on the one hand, whatever the values of s one may consider, if A ⊂ [k, s− 1) for any

k ⩾ s
2 , then graphs whose order does not exceed k do not have nodes with a degree greater than or equal

to k. Therefore such graphs become empty because they do not have any node satisfying the duplication

rule. A further step is to consider small values of parameter S. For instance, for d = 0.05, s = 16

and A = [8, 15], the full-lined curve of fS,d represented in figure 4.12 shows that for small values of n,

fS,d(n) < n. This means that graph order of small graph is expected to decrease between two consecutive

steps and graphs are likely to become empty. Therefore generated graphs, for this configuration are likely

not be sustainable.

On the other hand, whatever the values of s one may consider, if A ⊂ [0, k + 1] for any k < s
2 , then

graphs whose order does not exceed k have nodes with a degree lower than or equal to k. Therefore

such graphs do not become empty because they have all their nodes satisfying the duplication rule. As

4.4. Infinite Sets and Asymptotic Graph Order Evolution 87

for the first case, a further step is to consider small values of parameter S. For instance, for d = 0.05,

s = 16 and A = [0, 7], the dotted curve of fS,d represented in figure 4.12 shows that for small values

of n, fS,d(n) ⩾ n. This means that graph order of small graphs is expected to increase between two

consecutive steps. Therefore, as soon as graph order does not exceed a certain quantity, generated graphs

are likely to conserve few nodes and therefore are likely to be sustainable.

0 50 100 150 200 250 300 350 4000

100

200

300

400

n

f S
,d

(n
)

Graphical representation of the function fS,d

Considered parameters are s = 16 and d = 0.1.

y = fS,d(n);A = [0 : 7]
y = fS,d(n);A = [8 : 15]

y = n

Figure 4.12: Theoretical graphical representation of fS,d for value of n from 0 to 400. The blue curve
correspond to A = [0, 7] and the red one correspond to A = [8, 15]

Conclusion on Infinite Sets

This section has delved into the study of the RD3G3 model presented in Section 4.2.4. This section

aims at providing a new family of parameters for which sustainability may be investigated through the

analysis of an asymptotic equivalent of fS,d, the function estimating the evolution of the number of

vertices through time. The study of this equivalent as proved that when the size of a snapshot graph nt is

big enough, then fS,d(nt) ∼ a× nt with a ∈ [0, 2]. The sustainability is ensured when a > 1 as produced

graphs are growing exponentially. This not always the case when a ≤ 1. For this case, the study of fS,d

for small values is required to see whether produced graphs are sustainable.

Conclusion

This chapter was dedicated to the computation of sustainability and DynamicScores on dynamic geometric

graphs generated by a specific parameterized generator. This simple generator is parameterized through

three variables: a connection threshold d aiming at connecting all points closer than a distance d and

two sets SS and SC containing non-negative integers. The first one aims at deciding whether a vertex is

kept between two consecutive steps and the second one whether a vertex is at the origin of a new vertex

88 Chapter 4. Illustrative Case Study of Dynamic Graph Generators Analysis

at the very next step. Several properties are shown about the whole family of graphs the generator

provides for a single configuration. All these properties shown try to answer a single question. This

question concerns graph sustainability. It is defined as the property, for a given graph obtained with a

given seed graph and evolving rules, that the graph does not become empty after a finite number of steps.

Defining this concept for this model is not simple since the evolving rules are not deterministic. It involves

probabilistic computations and therefore questions about a possible threshold for which the graph is said

to be sustainable if the probability of the emptiness of the graph is greater than this threshold. Here

the focus has been made on two different metrics, graph order evolution and V-DynamicScore defined

in Chapter 3. Different values of the parameters have been studied, but it has not been possible to try

them all as the amount of possible cases is far too big. Cases for which properties have been shown are

limit cases, the general case and two very specific cases. The first one may be referred to as ”segments”

and the second one concerns regular sets. Limit cases have led to a first classification when at least one

of the two parameter sets is either empty or contains all non-negative integers. General cases highlights

some properties for specific conditions on both sets. The case of segment sets has revealed theoretical

difficulties, especially when computing graph order between consecutive steps. This has led to the creation

of a new tool named the ”sustainable interval”. This tool aims at estimating bounds that frames graph

order even though it is not always reliable as probabilities are involved. The case of regular infinite sets

spotlighted an interesting and surprisingly simple equivalent of the graph order when this graph order is

big enough. This equivalent eases the study of graphs as it provides three different scenarios. For one of

them sustainability is possible to state. For the others, however it is mandatory to investigate the case

of small graphs and how their order evolves through time. This model shows interesting aspects and we

have proved that answering the sustainability question is not straightforward. Further investigations also

show that it is also possible to find configuration of this model leading to sustainable graphs which are

not information-persistent. This situation occurs when isolated vertices only are both conserved and at

the origin of new vertices.

CHAPTER 5

Analysis of Real World Networks

In this chapter, we establish a link between the theoretical contributions and the study of real networks.

The objective is to compute the metrics created and presented in Chapter 3 using real world networks

data, with a particular emphasis on the DynamicScore (see Section 3.2). Our focus will be on networks

that emerge through interactions.

This study addresses two types of interactions commonly found in the literature: instantaneous and

permanent contacts. Readers can refer to the survey by Holmes and Saramaki [24] for more details.

Instantaneous contacts are modeling interactions between entities that occur over short time periods.

Example of such interactions are handshake between two people, e-mails or communications between

routers on the Internet for instance. Permanent contacts are modeling interactions such that once initi-

ated, persist indefinitely. These types of contacts can be observed in biological systems, such as in the

mycelium of filamentous fungi.

In both cases, the data considered in this section is represented as sequences of events in the form

u, v, t. For instantaneous contacts, this indicates that an interaction between u and v occurs at time t

(directional if contacts are oriented). In the case of permanent contacts, this means that vertex u starts

interacting with vertex v from time t until the end of the experiment. The analysis provided in this

chapter serves as an initial connection between the DynamicScore and real-world networks modeled as

dynamic graphs. The conclusions drawn here are preliminary and further investigation is required to

fully harness the potential of the DynamicScore for studying real-world networks.

In this section, we propose various approaches to transform a sequence of events into a dynamic graph.

We describe the different characteristics of these transformations and provide a framework for their in-

terpretation. For instantaneous contacts, we demonstrate that these transformations allow for multiple

89

90 Chapter 5. Analysis of Real World Networks

perspectives at various time scales for the same network. For permanent contacts, we show that the Dy-

namicScore can be used on filtered graphs to characterize different phases in the evolution of the network.

This chapter is divided into two parts. The first part is dedicated to the presentation of various

transformations that can be applied to convert a sequence of events into a dynamic graph. The second

part focuses on their application to real data, offering insights into network dynamics through the analysis

of both the DynamicScore and the evolution of the graph’s order.

5.1 Transforming Events into Graphs

This section is dedicated to exploring the different transformations of real-world data into a time-varying

graph in the case of Person-to-Person networks. Real-world data studied here comes in the form of

sequences of events, where each event is defined as a temporal edge (u, v, t), indicating that entity u

interacted with entity v at time t. In the case of directed networks, we will say that u is the source and

v is the destination. We denote by T the largest time in the event sequence. The goal is to transform

this sequence of events into a time-varying graph G = (Gi)0≤i≤I with I the index of the last graph in the

sequence of graphs. The choice of the transformation depends on the nature of the event. For instance,

events may model instantaneous contacts between two vertices. This case is investigated in Section 5.1.1.

Otherwise, events may model the arrival or the creation of new vertices and edges in the system. This

case is investigated in Section 5.1.2.

5.1.1 Events as Instantaneous Contacts

This section focuses on events as instantaneous contacts. To transform a sequence of timestamped events

E into a time-varying graph G, methods consist in grouping temporal edges into a finite sequence of

static graphs (G0, . . . , GI). Other choices are possible, such as modeling the resulting graph as a static

graph G = (V,E) equipped with a function λ : E −→ P(J1, T K) associating to each edge its presence

times. For our purpose, the model of sequence of snapshot graphs is well-suited. Note also that the

sequence of graphs produced must satisfy the constraint of preserving the order of timestamps of edges

in the sequence. The size of G (and thus the value of I) is not necessarily equal to T : it can be smaller

or greater. Indeed, each graph in the sequence can group events from several consecutive timestamps.

For instance, we might have a sequence of events where the time unit is one second while these events

are grouped into graphs representing exchanges happening on a daily scale (see Section 5.2.1.1). Several

transformations are possible depending on the regrouping policy. Four of these transformations are

presented and detailed in the remainder of this section. To illustrate the transformations discussed, we

will use as an example the temporal event sequence shown in Figure 5.1. This sequence will serve as an

example to illustrate the function of each transformation and to understand the resulting graphs.

5.1. Transforming Events into Graphs 91

u

v

w

0 1 2 3 4 5 6 7 8

Figure 5.1: Illustration of a sequence of event. Here, T = 8 and only three vertices are interacting in the
whole sequence

5.1.1.1 Time Interval

The Time Interval Transformation involves gathering events by time intervals to obtain a single time-

varying graph. The length of an interval, also called the period, is denoted by τ . In this method, each

graph Gi represents all interactions that occurred between time step iτ and (i+ 1)τ − 1, inclusive. Thus,

there are T
τ static graphs in the time-varying graph, where T is the date of the last event in the sequence

of events.

In this construction, if a vertex interacts at time t1 and at a later time t2, but does not interact at

an intermediate time, it is considered absent throughout the interval (t1, t2) and thus absent from the

graphs corresponding to those dates. Therefore, vertices that do not interact with any others during an

interval [iτ, (i+ 1)τ −1) will be considered absent from graph Gi, even if they have interacted in the past

and will interact again later.

An illustration of what is obtained once the transformation is applied is given in Figure 5.2. In this

figure, it is possible to see that each graph covers three consecutive dates, and they differ from one

graph to another. Additionally, it is also possible to see that vertex u does not interact with any other

vertex between dates 3 and 5, inclusive, and thus, it is not part of the set of nodes in graph G1. The

graphs shown in the illustration are: G0 = ({u, v, w}, {{u, v}, {u,w}, {v, w}}), G1 = ({v, w}, {{v, w}}),

and G2 = ({u, v, w}, {{u,w}, {v, w}}).

u

v

w

0 1 2 3 4 5 6 7 8

G0 G1 G2

Figure 5.2: Illustration of a transformation from a sequence of event to a time-varying graph. Here,
T = 8 and τ = 3. As u does not interact with another vertex, it is not present in G1.

This construction is studied in this document as it is the most intuitive one and it is possible to get

results on DynamicScores as it will be presented in Section 5.2.1.2.

92 Chapter 5. Analysis of Real World Networks

5.1.1.2 Sliding Window

The Sliding Window Transformation is based on the sliding window principle. As a beginning, a window

size W is set as well as a shift τ . As for all examples presented for illustrating transformations in this

Chapter a sequence of events of size T is also considered. In this method, each graph Gi represents all

interactions that occurred between times i (inclusive) and i + W (exclusive). An illustration of such a

transformation is provided on Figure 5.3. On this example, the time-varying graph produced is com-

posed of 7 graphs. The sequence is the following: G0 = G1 = ({u, v, w}, {{u, v}, {v, w}, {u,w}}), G2 =

({u, v, w}, {{u, v}, {v, w}}), G3 = ({v, w}, {{v, w}}) and G4 = G5 = G6 = ({u, v, w}, {{u, v}, {v, w}}).

u

v

w

0 1 2 3 4 5 6 7 8

G0

G1

G2

G3

G4

G5

G6

Figure 5.3: Illustration of a transformation from a sequence of event to a time-varying graph. Here,
T = 8, W = 3 and τ = 1.

This transformation produces T −W
τ + 1 static graphs. The transformation is smooth in the sense

that it allows for capturing small changes in the structure of the time-varying graph. This is due to the

ability to adjust the shift size τ . It should be noted that the window size is not related to the time unit

separating two consecutive events. For example, events may be divided by seconds while the window size

may be days, weeks, or even months. Furthermore, it is advisable to choose τ allowing for an integer

division to ensure that no graph (specifically the last one in the sequence) has a smaller size than the

others.

5.1.1.3 First-to-last Vertices

The First-to-last transformation is based on the following principle: if a vertex u is present both at time

t1 and t2 such that t1 < t2, then u is considered present at every time t ∈ [t1, t2], even if it does not

interact with any other vertex. Referring back to the example in Figure 5.2, this means that u is also

present in graph G1. This can be expressed more formally as:

∀u ∈
T⋃

i=0
Vi,
[
∃(t1, t2) ∈ [0, T]2, t1 < t2 ∧ u ∈ Vt1 ∧ u ∈ Vt2 ⇒ ∀t ∈ [t1, t2], u ∈ Vt

]
Regarding the sequence of graphs produced, it is similar to the one given for the time intervals. They

cover the dates in the same way, but graphs obtained for the two transformations are different due to the

just given rule. Such a construction allows a vertex to be considered present in the graphs from the first

5.1. Transforming Events into Graphs 93

date it interacts with another vertex in the network and disappears as soon as it no longer interacts with

any other vertex. Referring back to the example in Figure 5.1, the graphs produced are as follows: G0 =

({u, v, w}, {{u, v}, {u,w}, {v, w}}), G1 = ({u, v, w}, {{v, w}}), and G2 = ({u, v, w}, {{u,w}, {v, w}}). We

note that u ∈ V1 because even if it does not interact with another vertex between times 3 and 5 inclusive,

it is present in graphs G0 and G2.

This consideration on the vertices of the graphs may also be considered for the edges: an edge is

present in graph Gi if it is belongs to Gi′ and Gi” where i′ ⩽ i ⩽ i”. This second transformation will be

referred to as First-to-last Vertices and Edges (F2LVE) in the rest of the document. This transformation

is illustrated on Figure 5.4.

u

v

w

0 1 2 3 4 5 6 7 8

G0 G1 G2

Figure 5.4: Illustration of a transformation from a sequence of events to a time-varying graph using the
F2LVE transformation. Here, T = 8 and τ = 3. Dashed lines indicate edges part of the resulting graph
but which are not occurring at that date.

5.1.1.4 Growing Model

This model is based on the principle of growing networks: for a given τ > 1 integer, for each graph Gi

in the produced sequence of static graphs, Gi contains all the events occurring before (i + 1)τ . Thus,

the sequence of graph is increasing : Vi ⊂ Vi+1 and Ei ⊂ Ei+1 for all i ∈ [0, T/τ]. An illustration

of such a transformation is provided Figure 5.5. The sequence of events provided for this example is

different from the one used on Figure 5.1 to have a better illustration of the principle. The time-varying

graph obtained is G = (G0, G1, G2) with G0 = ({v, w}, {{v, w}}), G1 = ({u, v, w}, {{u, v}, {v, w}}),

G0 = ({u, v, w}, {{u, v}, {v, w}, {u,w}}).

u

v

w

0 1 2 3 4 5 6 7 8

G0

G1

G2

Figure 5.5: Illustration of a transformation from a sequence of event to a dynamic graph. Here, T = 8
and τ = 3.

Such a transformation helps studying a network at a global scale. Indeed, it gathers every event into

94 Chapter 5. Analysis of Real World Networks

graphs and no edges as well as no vertices are removed from graphs. It is a relevant transformation to

see how many different contacts are new on every time interval of length τ for instance.

5.1.1.5 Remarks

Each model presented above has different uses. The choice of one transformation rather than another

one depends on the specific application considered, as well as the meaning of the sequence of graphs that

form a time-varying graph.

For example, if the Sliding Window transformation is used instead of the Time Interval transfor-

mation, the first one will produce more graphs, but the analysis of the dynamics produced by the two

transformations will lead to different interpretations. The dynamics produced by the Sliding Window

transformation will provide a finer granularity than those produced by the Time Interval transformation,

as well as smoother dynamics, without a straight cut between groups of events. Thus, the choice of

a given transformation might be driven by the semantics of the data itself. If there exists an obvious

reason for grouping events, for instance if every day one parameter changes, then using the Time Interval

transformation would probably be more relevant than the Sliding Window transformation.

Note that the Sliding Window transformation considers much smaller time gaps between two consec-

utive graphs (the size of the window) than in the case of the Time Interval transformation, where the

time gap between two graphs is the length of the time interval. Concerning Time Interval construction,

one of its advantage is that the resulting graph sequence is smaller, which helps ensure better memory

complexity. This advantage, however, should be put into perspective, as the small size of the sequence

also means that the number of data points that can be obtained is limited. A small number of data

points may not lead to significant results and could bias the study being conducted. This phenomenon is

observed and described when studying a dataset of e-mails sent between core members of an European

research center (see Section 5.2.1.1).

Another example is the comparison between the Time Interval and the First-to-Last Vertices trans-

formations. It can be noted that what differentiates them in terms of DynamicScore is a difference in

the DynamicScore of the vertices only. Indeed, the sequence of edge sets is the same between the two

transformations. Moreover, the Dynamic Score of the vertices for the Time Interval transformation will

always be greater than that of the First-to-Last transformation due to the conservation of vertices in the

latter transformation.

It is worth mentioning that all these transformations are meaningful due to the appearance as well

as the disappearance of vertices over time. Indeed, if the set of vertices remains steady, then all these

constructions provide graphs with the same DynamicScore (constant and equal to 0).

In this document, the focus is on transforming sequences of events into time-varying graphs. We

examine what happens when events are grouped in batches within a time interval. Other models are also

5.1. Transforming Events into Graphs 95

possible but have not been covered. For instance, one could imagine associating an edge with a given

event. This edge persists in the time-varying graph for a certain duration depending on the application

considered. This duration symbolizes the time of an interaction. In the case of a conversation, for

example, two people might start talking at time t. Since we do not know when their conversation ends,

we can set an arbitrary duration to model the length of a typical conversation. This approach allows for

obtaining a second sequence of events that models appearances and disappearances. From this second

sequence, it is possible to derive a time-varying graph that is more detailed than just a sequence of

graphs. This type of time-varying graph can be modeled as a temporal graph in the form G = (V,E, λ, ζ)

(see Section 2.3.1). This approach has some limitations. For instance, the length of a conversation is set

arbitrary. Such a technical detail is nonetheless requires as no information is provided on the end of an

interaction. This information is necessary to build time-varying graph.

5.1.2 Events as Permanent Contacts

In this section, events are considered as the introduction of permanent edges. This means once the edge is

introduced it never disappears. It is also the case of the vertices at the each end of these edges. Examples

are biological systems such as bacteria, filamentous fungi or molecules. Therefore, transformations look at

different aspects of the system. Instead of providing multiple scenarios as it is done in the section dealing

with instantaneous contacts, a general method is presented here. This method consists in extracting sub

time-varying graphs from a bigger one using filter functions. First, a time-varying graph is produced from

the sequence of events. The way this graph is produced is similar to the Growing Transformation (see

Section 5.1.1.4). Then one or many filters are applied on the time-varying graph to obtain new graphs,

subsets of the whole graph.

5.1.2.1 Filtering

Filtering a time-varying graph G is a process extracting a sub time-varying graph G′ using a filter function.

A filtering function is a function f : G = (V,E) 7→ G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. G′ is

obtained after the application of the filter to every snapshot graph of G. The filtering function f may

only filter vertices depending on their features. In that case, E′ is built such as E′ = E ∩ (V ′ × V ′) (i.e.,

the set of edges present in G having their vertices in V ′). The feature of the vertices depends on the

nature of the studied network. For instance, if vertices have spatial coordinates, then a filter may select

vertices close to a given position. This is what have been done when studying the time-varying graph of

a filamentous fungus called Podospora anserina (see Section 5.2.2). Note that this process produces two

time-varying graphs. In addition to the filtered graph, there is also the complementary of this graph.

This graph may be seen as the filtered graph obtained using the complementary filter f̄ of f defined as

follows : f̄ : G = (V,E) 7→ G” = (V ”, E”) such that V ” = V − V ′ and E” = E − E′. It is something

worth to bear in mind as metrics may be investigated on both sub time-varying graphs.

96 Chapter 5. Analysis of Real World Networks

5.2 Illustrative Case Study

This section is dedicated to the application of transformations defined in Section 5.1. These transforma-

tions aim at transforming event sequences into time-varying graphs.

5.2.1 Instantaneous Contacts

In order to illustrate how DynamicScore values may be influenced by transformations, two contact net-

works have been studied. These two networks are available on the Stanford Network Analysis Project

(SNAP) web site [32]. SNAP is a research platform developed by the Stanford University (USA). It

is dedicated to the analysis of large social and information networks. SNAP provides tools and data

to ease the study of complex networks, covering various domains such as social networks, communica-

tion networks, citation networks, and more. SNAP provides temporal networks in which data are given

as sequences of events as described above. For this document, the focus has been made on two net-

works. The first network is composed of e-mails sent between institution members of a large European

research institution. The second network is a dataset that consists of routers that are part of the Internet.

For this study, we present the dataset and information about each network. We then present the dif-

ferent transformations used in our work and the obtained results. For this section, every transformation

is applied on sequences of events to build time-varying graphs. For each transformation, for any time t,

four quantities are studied: the order of the graph, nt, the number of edges, et, the Vertex-DynamicScore,

DV
t and the Edge-DynamicScore, DE

t .

The objective is to highlight the role of each transformation. All the results obtained from the

application of each transformation are then put together to draw a global picture of the dynamics of the

network. Let us delve in the study of these datasets.

5.2.1.1 Email Network

The network studied represent the e-mail network extracted from a large European research institution

dataset. These data are available on the Web site on SNAP ([32]). They only represent e-mails between

members of the institution as e-mails coming from outside of the institution were not collected. The

data are gathered in a CSV file in which each entry represents a temporal edge (u, v, t) meaning that

person u sent an e-mail to person v at time t. Every person in the dataset corresponds to one email

address and is represented by a positive integer and the time t, given in seconds, starts from 0 at the

beginning of the study. The period covered by the dataset ranges from October 2003 to May 2005 (18

months) and precisely 803 days. The network is composed of 986 vertices, 24,929 static edges and 332,334

temporal edges. The difference between static and temporal edges is that static edges represent edges in

the footprint graph, with no time information, while temporal edges are edges in the time-varying graph.

An extended version of this network has already been studied by J. Leskovec et al. in the paper [31].

5.2. Illustrative Case Study 97

In this paper, authors show a relationship between the number of edges et and the number of nodes nt at a

given step t. This relation is proved to be as follows : et = nt
a with a ≃ 1.12. The purpose of the authors

was to prove that temporal networks tend to get denser rather than to grow linearly. The network built

from the data is a growing network in which, each snapshot graph gathers all the interactions occurring

up to a given month. The first graph is therefore all the emails sent during October 2003, and the last

one is the graph of all the interactions up to May 2005.

In order to highlight the potential and the differences between each transformation, the core version

of this network, available at [32], is studied. Every transformation is applied to the sequence of events

and both Vertices and Edges DynamicScores are computed. The goal is to see whether the DynamicScore

metrics may lead to a better understanding of the behavior of users. First, it is necessary to set a time

interval which may symbolize the time length of an interaction. In their study [31], authors set this length

to one month. However, such a length represents only 18 samples, which is not relevant to conduct a

robust study of the network. To solve this problem, we choose to set the time length to one week for

every transformation. The Time Interval transformation gathers events occurring during one week. The

Sliding Widow transformation has a window length of one week and a shift of one day. The Growing

Network transformation also gathers data week after week. Finally, in the First-to-last transformations

for vertices and for both vertices and edges, each snapshot will group interactions week by week.

An important point to notice is that the sequence of events provided gives events as follows: u, v, t

where u is the sender, v is the receiver and t is the time at which the e-mail is sent. It is relevant to

have a discussion on how to consider a connection between two individuals in the sequence of events.

The method proposed by Kossinets et al. [27] states that two vertices A and B are connected if and

only if A sends an e-mail to B and vice versa. However, this biases the meaning associated with the

connections between two individuals. Moreover, the sequence of events does not provide further infor-

mation than the sending of an e-mail between two people at a given date. Therefore, we have decided,

for this network, to consider the links oriented. It does not change the way the DynamicScore is computed.

Remarks about the study of Leskivec .

We have performed the same analysis as the analysis provided by Leskivec et al. in their paper [31]. In

this paper, they study the densification phenomenon in growing networks. This phenomenon highlights

that instead of growing linearly, the number of edges at a given step t (e(t)) grows as a power of the

number of vertices in the network (n(t)). In their study, the authors assume that there should exist

a ∈ [1, 2] such that e(t) = n(t)a. Moreover, the authors present several studies of networks that appear

to exhibit this property. More specifically, the network they studied represents e-mail exchanges in an

European research center, which is a bigger version of the one treated here. In their article, the authors

demonstrate that for this network, the constant a is approximately 1.12. They show that this relationship

is plausible by providing an R-squared value of 1. However, the study includes too few data points (18),

each corresponding to one month within the eighteen-month study period. Moreover, the data points are

98 Chapter 5. Analysis of Real World Networks

close to each other and of the same order of magnitude. Therefore, it is challenging to clearly establish

a relationship between the two quantities.

Growing Network Transformation Let us first deal with the growing-network transformation. This

transformation results in a sequence of 75 graphs G0, . . . , G74, where each Gi contains a subset of all

interactions that occurred before or during the i-th week of the study. Concerning the dynamics of the

graph, Figure 5.6a shows that both DynamicScores of vertices and edges decrease and tend toward zero.

This indicates that the graph orders do not increase exponentially. The peak value at the beginning is

a consequence of the construction of the graph sequence. This is not surprising, since the time-varying

graph is obtained by applying the Growing-Network transformation to the sequence of events, starting

from a null graph. Moreover, the graph order does not increase too much between two consecutive weeks.

This last point is illustrated Figure 5.6b. These two arguments put together imply that the dynamics of

the graph is collapsing and therefore the graph becomes more and more static.

0 20 40 60 800

5 · 10−2

0.1

0.15

t

D
yn

am
ic

Sc
or

es

DV
t

DE
t

(a) DynamicScores.

0 20 40 60 80
0

0.5

1

1.5

·104

t

n
t

nt
et

(b) et and nt.

Figure 5.6: DynamicScores, nt and et graph order evolution for the Growing Network transformation for
the E-mail network.

Time Interval Transformation Let us now consider the Time Interval transformation. The length

of the interval considered here is one week, meaning that every graph gathers information occurring

during one week. As for the Growing Network transformation, the obtained graph sequence is composed

of 75 graphs. One important thing to bear in mind concerning the transformation is that between two

consecutive steps, the two graphs do not cover a common time period. Having a DynamicScore lower

than 1 means some vertices and edges are conserved. Low values of the Vertices-DynamicScore are a

sign that large amounts of vertices are conserved between two consecutive weeks. On the opposite, high

values of the Edges-DynamicScore highlight significant changes in the composition of the vertices set.

It is possible to notice some peak values of the DynamicScores, nt and et (Figure 5.7a). These peaks

correspond to holidays such as summer and winter breaks. For other value, values of et and nt are slowly

increasing while the DynamicScores of these two values remain almost steady through time. However,

the Edges-DynamicScore is in average around 0.7, indicating that around 46% of the edges are conserved,

while the Vertices-DynamicScore is in average 0.2, which indicates that around 89% of the vertices are

5.2. Illustrative Case Study 99

conserved. These observations allow us to say that in average, user of the network does not change too

much while a non-negligible part of the edges are conserved in average every week.

0 20 40 60 800

0.2

0.4

0.6

0.8

1

t

D
yn

am
ic

Sc
or

es

DV
t

DE
t

(a) DynamicScores

0 20 40 60 80

0

1,000

2,000

3,000

t (week)

n
t

nt
et

(b) nt and et.

Figure 5.7: DynamicScores and graph order evolution for the Time Interval transformation.

Sliding Window Transformation Let us now consider the Sliding Window transformation. The

length of the time window is one week and the time shift is one day. Results obtained for this transfor-

mation are very different from the ones of the Time Interval transformation (the last paragraph). The

first difference is about the values of the DynamicScore. Indeed, both DynamicScores are clearly less

than half the values obtained for the Time Interval transformation. The second difference concerns the

time evolution of both DynamicScores which seems more sensitive than in the case of the Time Interval

transformation with regular peaks. Those regular peaks with small values indicate there is one day during

the week (Sunday) such that users and user exchanges do not change. This is represented on Figure 5.8b.

While et and nt are roughly the same for both transformation, it is therefore possible to say that using

the Sliding Window transformation helps represent smoother dynamics compared to the Time Interval

transformation.

0 100 200 300 400 5000

0.2

0.4

0.6

0.8

1

t (day)

D
yn

am
ic

Sc
or

es

DV
t

DE
t

(a) DynamicScores

0 100 200 300 400 500
0

500

1,000

1,500

2,000

2,500

t (day)

n
t

nt
et

(b) nt and et.

Figure 5.8: DynamicScores and graph order evolution for the Sliding Window transformation.

First-to-last Vertices and Edges Transformation The First-to-last transformation applied to the

email network chosen here is the one applied to both the vertices and the edges. It gathers information

week by week. For this transformation once a user sends or receives an e-mail, it is present in the network

100 Chapter 5. Analysis of Real World Networks

and will be removed in the graph representing the week just after it sends or receives its last e-mail. This

consideration is the same for the edges: once a user A sends at least one e-mail to B at week i, an arc is

introduced in Gi; this arc is removed at week i” if A sends at least one e-mail to B at week i” − 1 and

A never sends e-mails again to B. The evolution of DynamicScores, et and nt for this transformation

are gathered on Figure 5.9. The vertices DynamicScore is very low, indicating the set of vertices remains

steady through time. This is however not the case of the set of the edges, for which changes seem more

important. This might be interpreted as the fact that, even if the staff remains almost unchanged week

after week, pairs of people exchanging emails are mostly different each week. This hypothesis is strength-

ened by the observation that the Edges-DynamicScore remains almost constant while the number of arcs

is increasing during the first period, decreasing during the last period and almost constant between weeks

30 and 50. Thus, the high value of the Edges DynamicScore cannot be attributed to the change of the

number of edges, but to its composition.

One drawback is highlighted by this study. This concerns the last graphs produced by the generation.

Indeed, a side effect starting is observed from week 50 to the end of the experiment, with a decrease

similar to the increase in the number of vertices and edges related to the construction of the network.

This decrease does not indicate that users will never interact again, but at least by the time for the

simulation to end.

0 20 40 60 800

0.2

0.4

0.6

0.8

1

t

D
yn

am
ic

Sc
or

es

DV
t

DE
t

(a) DynamicScores

0 20 40 60 800

2,000

4,000

6,000

t

n
t

nt
et

(b) nt and et.

Figure 5.9: DynamicScores and graph order evolution for the First-to-last transformation.

Conclusion: as a conclusion to the analysis of this dataset, every transformation provides different

information on the analysis of the network. All these analyses are complementary one another. On the

one hand, the Growing Network transformation indicates a global network with a decreasing dynamic

and very few new vertices introduced in the network. On the other hand, the Time Interval and the

Sliding Window transformations indicates more impacting changes week after week, more important for

the Time Interval transformation. The First-to-last transformation highlights some potential behavior

of email communication practices between people. In addition the study of the DynamicScore indicates

that two different users do not keep exchanging e-mails until the end of the experiment.

5.2. Illustrative Case Study 101

5.2.1.2 Autonomous System

The dataset considered in this Section deals with the graph of routers comprising the Internet. It is

composed of sub-graphs called Autonomous Systems (AS). Each AS exchanges traffic flows with some

neighbors (peers). It covers 785 days of exchange between each AS ranging from November 8th, 1997

to January 2nd, 2000. The temporal network is composed of 3015 vertices and 10695 oriented edges for

the first graph of the sequence (November 8 1997) and goes up to 6474 vertices and 26467 oriented edges

for the last graph of the sequence (January 2nd, 2000). This network allows addition and deletion of

vertices, which means that some AS may disappear over time.

Leskovec et al. conducted a study in [31] to highlight temporal graph densification phenomenon as

explained in Section 5.2.1.1. In this paper, authors show a connection between the number of edges et

and the number of nodes nt at a given step t. This relation is mathematically represented as follows:

et = bnt
a. This relationship is illustrated by Figure 5.10. The model was validated using the Ordinary

Least Squares method, yielding a ≃ 1.18 and b = 0.87 with a R2 value of 0.997. The theoretical values

closely align with the observed data, and the exponent being significantly greater than 1. Moreover the

value of b is close to 1 and the dataset is composed of 785 entries, which underscores the robustness of

the analysis. This modeling does not highlight the change in the composition (addition and deletion) of

vertices and edges. The DynamicScore captures these changes and the purpose of the following para-

graphs is to illustrate how this metric allows such an understanding.

The study conducted here focuses on the different transformation on the sequence of events. The

goal is to analyze the dynamics of the network at different scales. In order to have enough samples

and a time length ensuring relevant analyses, the time length of almost all intervals is around one week.

Thus, the Time Interval transformation gathers events occurring during one week. The Sliding Widow

transformation has a window length of one week and a shift of one day. The Growing Network trans-

formation also gathers data week after week. Finally, in the First-to-last transformation for vertices and

for both vertices and edges, each snapshot will group interactions week by week. One important thing

to mention is that graphs presented here are non-oriented. Indeed, each data file gathering exchanges

between rooters contains both u, v, t and v, u, t. Let us now delve into the analysis of the network.

Growing Network Transformation The Growing Network transformation applied to the sequence

of events provides a time-varying graph with 104 snapshot graphs. Each graph Gi of the sequence gathers

events occurring during or before week i. Thus, this time-varying graph focuses only on addition of new

vertices in the network. The evolution of nt and et over time is represented on Figure 5.11b and the

evolution of DE
t and DV

t is represented on Figure 5.11a. Both the evolution of nt and DV
t indicates

a very low dynamics with few changes. This means that addition of new vertices in the global graph

is negligeable between two consecutive weeks. It is nonetheless possible to notice that the value of the

DynamicScore is roughly constant and non-zero. As the graph considered here is a growing graph, which

means no vertices are considered to disappear, the evolution of the size of the graph may be considered

102 Chapter 5. Analysis of Real World Networks

103.5 103.6 103.7

104.1

104.2

104.3

104.4

nt

e t

y = 0.87x1.18

et = f(nt)

Figure 5.10: Comparison between the number of vertices and the number of edges of each graph. Each
blue point represents a measured number of vertices and number of edges computed from the data
analysis. The dashed black line represents the theoretical expectation.

as an exponential. The exponent computed with the mean of the Vertices DynamicScore and Theorem

6, shows that the number of vertices in the global network (the graph of all routers that have existed)

could grow as nt = n0 (a)t with a = 1.013. However, the number of samples is small and the exponent

too close to 1, to confirm this trend in the evolution of nt. However, it is interesting to notice it.

0 20 40 60 80 1000

5 · 10−2

0.1

0.15

0.2

t

D
yn

am
ic

Sc
or

es

DV
t

DE
t

(a) DynamicScores.

0 20 40 60 80 100

0.5

1

1.5

2

2.5
·104

t

n
t

an
d
e t

nt
et

(b) nt and et.

Figure 5.11: DynamicScores, nt and et evolution for the Growing Network transformation for the Au-
tonomous System network.

Time Interval Transformation Let us study the Time Interval transformation. The length of the

interval considered here is one week, meaning all the graphs gathers information occurring during one

week. The evolution of DV
t and DE

t is represented on Figure 5.12a. The evolution of nt and et is

represented on Figure 5.12b. DynamicScores are slightly greater than DynamicScores measured on the

5.2. Illustrative Case Study 103

growing graph. Moreover, the evolution of the size of the graph is not too important. This indicates that

deletion and addition of vertices and edges are balanced with more addition than deletion in average.

Two peaks are observed which may be associated to different sorts of event occurring in the network.

It is either a lack of data occurring at some moments or a breakdown in the system. We do not have

access to this information. It is therefore impossible to state about the nature of these events and we

have chosen to ignore them in the interpretation of the analysis.

0 20 40 60 80 1000

5 · 10−2

0.1

0.15

0.2

t

D
yn

am
ic

Sc
or

es

DV
t

DE
t

(a) DynamicScores.

0 20 40 60 80 100
0

0.5

1

1.5
·104

t

n
t

an
d
e t

nt
et

(b) nt and et.

Figure 5.12: DynamicScores, nt and et evolution for the Time Interval transformation for the Autonomous
System network.

Sliding Window Transformation Let us study the Time Interval transformation. The length of the

interval considered here is one week and the shift is one day, meaning all the graphs gathers information

occurring during one week and two consecutive graphs are covering six common days. The evolution

of the DynamicScores is represented on Figure 5.13a and the evolution of nt and et is represented on

Figure 5.13b. DynamicScores are lower than the one obtained with the Time Interval transformation.

This shows that the network composition does not change too much. The Vertices-DynamicScore even

indicates that very few changes occur and thus that rooters remain almost the same from one day to

the very next one. As compared to the results obtained with the e-mail network, it seems there is no

regular pattern such as null values at periodic intervals. It is worth noting that for some network the

DynamicScore may highlight regular changes in the composition which is not observed in the evolution

of the graph order or in the evolution of the number of edges.

First-to-last Transformation Let us now study the FLTVE transformation. As for the other trans-

formation, the length of the time interval is one week, meaning interactions occurring during one week

between rooters are gathered in the same graph. The evolution of DynamicScores are represented of

Figure 5.14a and the evolution of nt and et are represented on Figure 5.14b. As for the previous trans-

formations, the DynamicScore is low indicating that connections between rooters and the presence of

rooters in the network are robust: once a connection is established or a new rooter is introduced, it

remains present in the network for a long time.

Conclusion The conclusion of this study on the Autonomous System (AS) network reveals several

key insights into the dynamic evolution of the network. By analyzing various temporal transformations

104 Chapter 5. Analysis of Real World Networks

0 200 400 6000

5 · 10−2

0.1

0.15

0.2

t

D
yn

am
ic

Sc
or

es

DV
t

DE
t

(a) DynamicScores.

0 200 400 600
0

0.5

1

1.5
·104

t

n
t

an
d
e t

nt
et

(b) nt and et.

Figure 5.13: DynamicScores, nt and et evolution for the Sliding Window transformation for the Au-
tonomous System network.

0 20 40 60 80 1000

5 · 10−2

0.1

0.15

0.2

t

D
yn

am
ic

Sc
or

es

DV
t

DE
t

(a) DynamicScores.

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

1.2

1.4

·104

t

n
t

an
d
e t

nt
et

(b) nt and et.

Figure 5.14: DynamicScores, nt and et evolution for the FTLVE transformation for the Autonomous
System network.

(Growing Network, Time Interval, Sliding Window, and First-to-Last), it is possible to understand the

changes within the network at different scales. The analysis of the Growing Network shows that the

addition of new vertices is relatively steady. Although the weekly growth is small, it follows a slight

exponential trend, suggesting that the total number of routers increases over time. However, this trend

is too weak to be definitively confirmed. The Time Interval transformation highlights a balance between

addition and removal of vertices and edges. The DynamicScores, which are slightly higher than those

of the Growing Network, indicate regular changes in the network structure. However, two unexplained

peaks are observed, which may point to specific events or data gaps. The Sliding Window transformation

reveals even fewer changes in the composition of the network, particularly from one day to the next. This

suggests notable stability, with routers remaining largely unchanged from one day to the following. The

First-to-Last (vertices and edges) transformation confirms the robustness of the network, where routers

and their connections, once established, tend to persist over time. This observation supports the idea

that Autonomous Systems form a relatively stable network within the broader Internet network. In

conclusion, this analysis demonstrates that the Autonomous System network exhibits a certain level of

temporal stability, with gradual additions of routers and occasional changes in connections. The low

dynamics changes, as measured by DynamicScores, indicate that the network evolves slowly but steadily,

remaining largely robust despite fluctuations.

5.2. Illustrative Case Study 105

5.2.2 Permanent Contacts

This section focuses on transformations where events are new permanent connections. This type of

connections are common in many growing structures of biological systems. Once a connection has been

established between two entities, this connection is never removed unless one of the two entities disappears.

The illustrative case considered in this section is the mycelium, or thallus, of the filamentous fungus named

Podospora anserina.

5.2.2.1 Data and Model

For building the dynamic graph, the data used have been provided by the CNRS, UMR 8236 –LIED,

Université Paris Cité, France, in the context of a joint work. For the purpose of their article [30], the

authors have studied the dynamics of the fungus in a constrained environment. The interested reader

can find the details about the experimental setup in [14].

Starting from a germinating ascospore, a type of seed, the mycelium continuously grows until it

reaches the limits of the culture area (a Petri dish). At that moment, the observation of the thallus

stops. The ascospore can be considered as the root of the network from which the mycelium grows. The

network is made of branches called hyphae. Over time, new hyphae are created at the occasion of what

is called branching events, when a new hypha emerges from an existing one. Two hyphae can also meet

and merge, an event called anastomosis. The graph model extracted from this mycelium is composed of

three types of nodes. Nodes with degree one correspond to the extremity of each hypha and are called

apexes. Branching and anastomosis events both create degree-three nodes. Finally, based on structural

hyphae properties, degree-two nodes are distributed along the hyphae. The image 5.15 illustrates part of

such a network.

Figure 5.15: A short portion of the mycelium of Podospora anserina, and its graph model. Blue, degree-
one, nodes are the apexes, yellow, degree-three, nodes are branching nodes and red, degree-two, nodes
are structural nodes, distributed along the hyphae. (Courtesy of Thibault Chassereau)

106 Chapter 5. Analysis of Real World Networks

The dynamics of the network is captured through series of images, called panoramas, taken every

18 minutes. Each panorama can be associated with a static graph. The biological experiment produces

70 panoramas, resulting in 70 time-stamped static graphs. As hyphae are not moving but only growing

during the experiment, nodes, once identified, never change. This allows the construction of the dynamic

graph. Figure 5.19 illustrates the geometric shape of the network.

Due to the nature of the connections between vertices, the only transformation considered here to

transform the sequence of events is the Growing Network transformation defined in the previous section.

However, according to biologists, it turns out that the dynamics of the fungus may be split in two phases.

In the first phase, the exploration of the environment is favored, while in the second phase, a densification

(from a spatial point of view) of the network can be observed, interpreted as the exploitation of resources.

As illustrated in Figure 5.19, the thallus spans an almost circular surface. At each time step, this surface

can be divided into two parts: an inner disk surrounded by a wide ring. According to biologists, it seems

that the exploration phase is more present in the ring, while the exploitation characterizes the inner disk.

Therefore, transformations studied here will try to find a way to characterize these two phases. The way

transformations are considered here is to cut the whole graph according to the position of nodes within

the mycelium. All nodes and incident edges belonging to the inner disk define a first dynamic graph.

The second dynamic graph is obtained by considering nodes and edges belonging to the surrounding

ring. Once this process is done, an analysis of the constructed time-varying graphs is performed. The

focus is on studying the Dynamic Scores (of vertices and edges) to determine the significance of this metric.

To build our time-varying graphs, we use data provided by our colleagues. This data includes temporal

information. Indeed, panoramas obtained every 18 minutes allow for the time-stamping of nodes. All data

were then gathered in Comma Separated Values (CSV) files listing sequences of timed events. Each row

in the file contains two vertex identifiers, u and v, their spatial coordinates, and the date at which each of

them appears in the network, tu and tv respectively. As the considered mycelium is a growing network,

the transformation of the sequence of events used is based on the filtering method developed in Section

5.1.2. Thus, the time-varying graph is obtained from the aggregation of every timed event following the

same principle used to transform a sequence of instantaneous contacts into a growing time-varying graph

(see Section 5.1.1.4).

5.2.2.2 Objectives

In addition to measuring the DynamicScore on this dynamic graph, a discussion with biologists led us to

consider an interesting question underlying the dynamics of the fungus as a two-phase dynamic. Indeed,

as previously mentioned, the biologists believe that two phases can be identified during the growth of the

mycelium. Our goal would be to identify these two phases by dividing, at each time step and according

to geometric arguments, the whole graph in two graphs.

To better understand the concept, let us go into more detail. Branching events can be of two types.

5.2. Illustrative Case Study 107

Apical branching, which occurs near the apex and is associated with the exploration phase. Lateral

branching, which occurs at any point along the hypha, but not near the apex, and is associated with

the exploitation phase. The densification, mentionned in the previous section, is mainly due to lateral

branching. One approach to distinguish these two phases is to divide the area occupied by the thallus

into two surfaces. Representing the area occupied as a disk of radius rt growing through time, the idea

is to to split that disk into a disk with a smaller radius and an outer ring. Several cut-off radius have

been studied ranging from 0% of rt to 90% of rt. Different time-varying graphs are built for every cut-off

representing only the outer ring. The DynamicScore is then computed on outer ring graphs. Results of

the analysis are presented in the following section.

5.2.2.3 Analysis

For the moment, only two datasets are available representing two different experiments. The authors of

[30] have already shown that the evolution of the number of vertices grows as an exponential.

The first performed analysis consists in the computation of the Vertex-DynamicScore and Edge-

DynamicScore on the whole dynamic graph. The results, reported on Figure 5.16, bring important

information about the mycelium and its evolution. After a starting phase (the 15 first dates), both DV
t

and DE
t seem to converge to a constant value (approx. 0.1). In the case of a strictly growing network,

this indicates exponential growth. Moreover, as can be observed in the image, both measures evolve in

exactly the same way, which means that the dynamics of the edges are similar to the dynamics of the

vertices. This indicates that the network, while growing, remains largely close to a tree structure. It is

worth mentioning, however, that due to anastomosis events, the network is not exactly a tree.

We also perform direct measurements on the evolution of the graph order and on the comparative

evolution of nodes and edges. Both are represented in Figure 5.17a for one of these experiments. As

highlighted by the results on DV
t and DE

t , these measures confirm that the evolution of the number of

edges is proportional to the number of vertices, a sign of a tree-like topology.

The second analysis is performed on the portion of the dynamic graph located in the ring. The

evolution of the Vertices-DynamicScore for all the cut-offs is illustrated on Figure 5.18. when the cut-off

is equal to 0% this means that the ring represents the whole graph, and the inner disk is null. As shown

in the graph, the curve for this case is exactly the one of Figure 5.16. When the value of the cut-off

increases, between two consecutive dates, some new nodes corresponding to the growth, appear in the

dynamic graph, while some nodes are removed from the dynamic graph. Indeed, as the radius of the

whole network increases between two consecutive dates, some nodes present in the ring at t, belong to

the inner disk at t + 1. This, of course, entails an increase in the value of DV
t . But, the general trend

over time, for cut-off values up to 70%, is a slow decrease toward a constant value. For larger values,

after 50 steps, the value of DV
t seems to increase. The stress on the 70% cut-off of the radius rt may

be explained as follows: to split a disk into two equivalent regions, it is sufficient to divide the radius

by
√

2. The area of a circle of radius R√
2 is indeed half the area of a circle of radius R and 1√

2 ≃ 0.707.

This would confirm some hypotheses expressed by some members of the team working on the fungus,

108 Chapter 5. Analysis of Real World Networks

Figure 5.16: Evolution of both DV
t and DE

t for the mycelium until the end of the experiment.

who emit the idea that a balance between exploration and exploitation may be found by splitting the

area occupied by the fungus into two equivalent surfaces. However, some further investigations should be

performed by also computing the evolution of DV
t for the inner disk. Indeed, the growth of the mycelium

is the addition of the growth occuring both in the inner disk and in the ring areas. The question of the

existence of a constant cut-off value leading to an equivalent contribution of both areas is still open.

It is worth mentioning that the model of the circle used to cut the growing structure is maybe not

accurate enough to observe a difference in the evolution of the DynamicScores. Discussions with the

team working on the fungus explained us that the area might rather be an ellipse than a perfect disk.

An illustration of the last graph in the time-varying graph is represented for one experiment is provided

on Figure 5.19. This Figure highlights that the structure of the filamentous fungus may be modeled as

a growing ellipse.

For the moment, the data analysis of this network has not been further investigated as this work has

been started recently and we lack of perspectives to carry this work further. However, we can still make

some assumptions and discuss different perspectives such as new ways to filter the whole time-varying

graph. Remarks about this consideration are for instance discussed in the following section where different

ways to filter the time-varying graphs are exposed.

5.2. Illustrative Case Study 109

0 10 20 30 40 50 60

0

0.5

1

1.5

·104

t

e t
an

d
n

t

Evolution of nt and et.

nt
et

(a) et and nt through time

0 0.5 1 1.5
·104

0

0.5

1

1.5

·104

nt

e t

Comparison between nt and et.

nt V.S. et

(b) et V.S. nt

Figure 5.17: Comparison between the evolution of nt and et for the whole growing dynamic graph of PA.

Figure 5.18: Evolution of DV
t through time for different cut-off values of r. A cut-off value of 0% means

that network is entirely contained in the ring. The inner disk is null.

5.2.2.4 Improving Filtering Methods

This section deals with several remarks aiming at improving filtering methods to obtain new analyses of

this network.

The Ellipse Model One way to improve filtering methods is to consider the area occupied by the

fungus as an ellipse instead of a disk. Indeed as explained in a previous paragraph, the area occupied

by the fungus may be modeled as an evolving ellipse as it better fits the evolution of the fungus in its

110 Chapter 5. Analysis of Real World Networks

Figure 5.19: The complete network after adding all the vertices and the edges. This picture represents
only the edges.

environment. The center of this ellipse may be set using the spore as it is the case for the circle model.

The division of the ellipse follows the same principle as in the case of disk but they now concerns the

width and the height of the ellipse. To find the values of the axes, it is possible to use inertia matrices.

The eigenvalues of the matrices may be used to then compute the width and the height of the ellipse as

well as its axes.

Filtering Branches One goal of the study about this mycelium is to observe a difference between the

exploration phase and the exploitation one. To this end, the filtering function may focus on selecting only

apical branching or lateral ones. Indeed apical branches are observed as branches used in the exploration

phase while lateral branches are used in the exploitation phase. However, obtaining information about

the nature of branches requires to set this information in the sequence of event, or at least to develop

algorithms aiming at deciding whether a branch is apical or lateral. Some recent works of our colleagues,

based on the angle between the mother hypha and the emerging one, as well as the position of the

emerging hypha with respect to the apex, allow them to identify apical branching from lateral ones.

These results were too recent to be exploited in our work.

General Observation

Transformation introduced in Section 5.1 have been applied to event sequences to obtain time-varying

graphs. In the context of instantaneous contacts, every transformation have been applied. Each transfor-

mation offers a vision of a network at a different scale. Gathering interpretations of these transformations

5.2. Illustrative Case Study 111

provide a global vision of a network dynamic. For instance, applied on an autonomous system network,

it has been shown that the network remains stable over time with a low dynamic at the week scale and

a global slow increasing trend. A similar analysis performed on the network of core members of a large

European research institution reveals a different evolution with a global decreasing dynamic and impact-

ing changes week after week.

In the context of sequence of permanent contacts, transformations have a different role. Here a grow-

ing time-varying graph is first obtained using the sequence of event. Then filters applied to the network

allow the extraction of a sub time-varying graph. This method have been applied to the network of a

filamentous fungus called Podospora Anserina. For this network different filters have be considered and

metrics have been applied to one category of filter: those cutting the area occupied by the fungus in two

distinct regions. Metrics have been applied to these transformations but for the moment, we do not have

enough data to precisely describe the dynamic of the network. Ideas have been developed to provide

future analyses on the network. Most of them focus on the way sub time-varying graphs are extracted.

Some simply change the geometry of the occupied area from a circle to an ellipse. Some go deeper and

focus on vertex nature. It is for instance possible to filter vertices considered as apical branches or lateral

ones.

Whatever the application, transformations studied here helps having a better understanding of the

dynamic of networks seen as time-varying graphs. The application of multiple transformation offer

different analysis at different scale of a single network. The union of all these transformations provide a

broader view on the evolution of this network. This work have focused on very specific network in which

edges model either instantaneous or permanent contacts. As a future perspective, it would be interesting

to apply these transformations to other networks to see their impact on the interpretation of network

dynamic. Example of candidates time-varying networks may be found in a survey of Peter Holme and

Jari Saramäki [24].

Conclusion

In conclusion, this data analysis section focused on applying the metrics defined in Chapter 3 to real-

world networks modeled as sequence of time-stamped events. The primary goal was to transform events

into time-varying graphs, taking into account the nature of the events. Events in the context can repre-

sent either instantaneous or permanent contacts. For instantaneous interactions, various techniques were

explored, including aggregation, time intervals, sliding windows, or first-to-last (where vertices and edges

exist from their first to their last appearance). In the case of permanent contacts, a cumulative graph is

first constructed and then filtered based on vertex or edge features.

These transformations provide comprehensive understanding of network dynamic through multiple

perspectives. the analysis spans different time scales, allowing us to identify networks that exhibit low

dynamics at the global level but high dynamics locally. It also enables the identification of networks

112 Chapter 5. Analysis of Real World Networks

with both global and local trends showing low incremental changes. For permanent contacts, filtering

methods were implemented and designed to study a filamentous fungus. Since the network is embedded

in a metric space, filters have been used to select vertices close to a fixed coordinate. However, this work

is not yet complete enough to provide a definitive analysis of network dynamics.

For future research, it would be also beneficial to extend this methodology to other types of contact

networks and to study different transformation techniques to gain a deeper understanding of the under-

lying dynamics of these networks. Further perspectives and ideas have been discussed to advance the

study of permanent contact networks.

CHAPTER 6

Conclusion

The early sections of this dissertation focus on the fundamental object of this study: graphs as explored

through both complex networks and time-varying graphs. In the analysis of complex networks, attention is

initially directed toward properties observed in real-world systems, such as the small-world phenomenon,

scale-free distributions, strong clustering, and navigability. From these observations, researchers have

designed mechanisms capable of producing graphs with these properties such as the Barabási-Albert and

Watts-Strogatz models.

The study of time-varying graphs builds on static graph theory by introducing the concept of time.

Unlike static graphs, where properties are analyzed at a single moment, time-varying graphs examine

properties over an entire sequence of graphs, with key metrics such as time-connectivity and reachability

coming into play. A few models, such as the Microcanonical Randomized Reference Model and the Edge-

Markovian Graph Generator, have been developed to create temporal graphs for the purpose of studying

these dynamic properties.

A critical intersection of these two fields lies in the emergence of dynamics, understood as iterative

processes that generate sequences of graphs from an initial condition. This dissertation centers on these

dynamics, treating them as the main object of study and using them to bridge the gap between complex

network theory and time-varying graph theory, thereby providing new insights into the evolving nature

of dynamic graphs.

The main contribution of this thesis lies in the study of dynamic graphs, particularly through the

investigation of iterative processes that generate them. A key question we explored is what occurs when

constraints are not imposed on the graph generator. Specifically, what happens when the number of

vertices in the graph is allowed to vary over time? This raises several important questions: First, is it

113

114 Chapter 6. Conclusion

possible for a graph to eventually become empty? Second, how can we quantify the changes that occur

between successive steps in an iterative process?

To address these questions, we introduced two key metrics. The first, sustainability, is defined as a

condition in which a graph generator produces instances that remain both non-empty and non-periodic

over time. This metric helps us determine whether the generated graphs maintain structural complexity,

avoiding collapse or repetitive patterns. The second metric, the DynamicScore, quantifies the changes that

occur between two consecutive time steps. This score is defined at both the vertex level (V-DynamicScore)

and the edge level (E-DynamicScore).

The initial observations from applying these metrics were insightful. When applied to well-known

iterative processes, such as the Barabási-Albert (BA) model, we found that the dynamic graphs pro-

duced by this model are sustainable. Additionally, we observed that both the V-DynamicScore and

E-DynamicScore decrease towards zero over time, indicating a stabilization in the network’s dynamics.

For the Edge-Markovian Graph Generator (EMGG), we demonstrated that sustainability is parameter-

dependent and that the E-DynamicScore is influenced primarily by a single parameter on average.

Following this, we explored the importance of having sustainable graph generators in addressing

broader issues. For example, if an iterative process produces sustainable graphs, is it possible for in-

formation introduced at an initial time step to persist over time? Additionally, how many vertices are

necessary to ensure that this information reaches all vertices present at a given future time? These

questions correspond to the problems of persistent information and information covering, respectively.

However, for both problems, we proved that knowing whether the graphs produced are sustainable is not

sufficient to provide definitive answers.

A more detailed study of a graph generator, even with simple parameters, revealed that determining

sustainability is not straightforward. This requires a systematic classification of the parameters into dis-

tinct families. The Degree Driven Dynamic Geometric Graph Generator (D3G3) served as a rich example

for the study of sustainability. We observed that certain parameter families result in the preservation of

a stable graph over time, ensuring sustainability. Additionally, a variant of this model, the Redistributed

Degree Driven Dynamic Graph Generator (RD3G3), was used to demonstrate that even when the evolu-

tion of the order of the graph can be estimated, further discussion and additional tools are still required

to definitively resolve the question of sustainability.

Another important finding emerged from the application of DynamicScores to the study of real-world

networks. When real networks are modeled as temporal sequences of instantaneous events, transform-

ing these events into temporal graphs and analyzing them using DynamicScores allows us to profile the

dynamics of the network. For example, a network may exhibit decreasing dynamics as its size grows,

while still displaying high dynamics week-to-week. Conversely, a network could experience strong growth

over time, yet demonstrate low dynamics from one week to the next. This dynamics profiling provides

115

valuable insights into how the structure and activity of real-world networks evolve over time.

An initial exploration into applying these metrics to networks where events model the creation of

permanent contacts has also been undertaken. By applying filters to the graphs obtained through suc-

cessive aggregation of interactions, coupled with the use of DynamicScores, we aim to extract temporal

subgraphs whose dynamics differ from those of the global graph and other subgraphs. However, the work

conducted so far has only laid the foundation for this analysis, and further research will be necessary to

draw more definitive conclusions.

Several perspectives for future research can be considered. First, regarding sustainability, new ques-

tions could be introduced, similar to those posed in communication problems. For instance, one could

investigate whether there exists a set of vertices that allows reaching all the vertices that have existed

throughout the evolution of a graph. It would also be interesting to explore other information diffusion

algorithms. This would broaden the study of information persistence and information coverage problems.

In terms of the study of the D3G3 generator, several open questions remain. For example, it would be

worth investigating the causes that allow a graph to maintain a growing structure. Further exploration

of different parameter families could also be undertaken. In fact, ongoing research on a variant of the

integer segment family aims to explain the what enable the maintenance of a growing geometric structure

in the above mentioned paragraphs.

Regarding the DynamicScore, several lines of work are possible. Some of them concern the study

of the D3G3 and RD3G3 models, for which we observe, but cannot yet prove, similar average Dynam-

icScore values across different parameter families. For example, in the case of segments, the average

V-DynamicScore is approximately 2
3 , which is not an insignificant value. Other potential directions in-

clude the work already initiated on real networks. For instance, one could use the vertices or edges

DynamicScore to split graphs in cases where the networks involve permanent contacts.

My Publications

[1] Vincent Bridonneau, Frédéric Guinand, and Yoann Pigné. DynamicScore: A novel metric for quan-

tifying graph dynamics. In Hocine Cherifi, Luis M. Rocha, Chantal Cherifi, and Murat Donduran,

editors, Complex Networks & Their Applications XII, pages 435–444. Springer Nature Switzerland.

[2] Vincent Bridonneau, Frédéric Guinand, and Yoann Pigné. Persistence of information in dynamic

graphs. In Proceedings of the French Regional Conference on Complex Systems, May 29-31, 2024,

Montpellier, France, pages 205–213. Zenodo.

[3] Vincent Bridonneau, Frédéric Guinand, and Yoann Pigné. Dynamic Graphs Generators Analysis: An

Illustrative Case Study. In David Doty and Paul Spirakis, editors, 2nd Symposium on Algorithmic

Foundations of Dynamic Networks (SAND 2023), volume 257 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 8:1–8:19, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik.

[4] Vincent Bridonneau, Frédéric Guinand, and Yoann Pigné. Asymptotic dynamic graph order evolution

analysis. Applied Network Science, 9(1):21, 2024.

117

Bibliography

[5] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, October 1999.

[6] Ginestra Bianconi, Richard K. Darst, Jacopo Iacovacci, and Santo Fortunato. Triadic closure as

a basic generating mechanism of communities in complex networks. Phys. Rev. E, 90:042806, Oct

2014.

[7] S Boccaletti, V Latora, Y Moreno, M Chavez, and D Hwang. Complex networks: Structure and

dynamics. Physics Reports, 424(4-5):175–308, 2006.

[8] Marián Boguñá, Dmitri Krioukov, and K. C. Claffy. Navigability of complex networks. Nature

Physics, 5(1):74–80, 2009. Number: 1 Publisher: Nature Publishing Group.

[9] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying

graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Sys-

tems, 27(5):387–408, 2012.

[10] Arnaud Casteigts, Michael Raskin, Malte Renken, and Viktor Zamaraev. Sharp thresholds in random

simple temporal graphs. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science

(FOCS), pages 319–326, 2022. ISSN: 2575-8454.

[11] Andrea E. F. Clementi, Claudio Macci, Angelo Monti, Francesco Pasquale, and Riccardo Silvestri.

Flooding Time of Edge-Markovian Evolving Graphs. SIAM Journal on Discrete Mathematics,

24(4):1694–1712, January 2010.

[12] John Conway et al. The game of life. Scientific American, 223(4):4, 1970.

[13] Josep Dı́az, Dieter Mitsche, and Xavier Perez. Dynamic random geometric graphs. arXiv preprint

cs/0702074, 2007.

[14] J. Dikec, A. Olivier, C. Bobée, Y. D’Angelo, R. Catellier, P. David, F. Filaine, S. Herbert, Ch.

Lalanne, H. Lalucque, L. Monasse, M. Rieu, G. Ruprich-Robert, A. Véber, F. Chapeland-Leclerc,

119

120 Bibliography

and E. Herbert. Hyphal network whole field imaging allows for accurate estimation of anastomosis

rates and branching dynamics of the filamentous fungus podospora anserina. Scientific Reports,

10(1):3131, Feb 2020.

[15] Anthony H. Dooley. Markov odometers. In Sergey Bezuglyi and Sergiy Kolyada, editors, Topics

in Dynamics and Ergodic Theory, London Mathematical Society Lecture Note Series, pages 60–80.

Cambridge University Press, 2003.

[16] Paul Erdos and Alfred Renyi. On random graphs i. math. Debrecen, 6:290–297, 1959.

[17] Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad.

sci, 5(1):17–60, 1960.

[18] William Feller. An introduction to probability theory and its applications. John Wiley & Sons, New

Jersey, USA, 1991.

[19] Laetitia Gauvin, Mathieu Génois, Márton Karsai, Mikko Kivelä, Taro Takaguchi, Eugenio Valdano,

and Christian L. Vestergaard. Randomized reference models for temporal networks, 2020.

[20] C. Gkantsidis, M. Mihail, and A. Saberi. Hybrid search schemes for unstructured peer-to-peer

networks. In Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Commu-

nications Societies., volume 3, pages 1526–1537, Miami, FL, USA, 2005. IEEE.

[21] Fab́ıola Greve, Luciana Arantes, and Pierre Sens. What model and what conditions to implement

unreliable failure detectors in dynamic networks? In Proceedings of the 3rd International Workshop

on Theoretical Aspects of Dynamic Distributed Systems, pages 13–17. ACM, 2011.

[22] Charles Robert Hadlock. Field theory and its classical problems. American Mathematical Society,

Rhodes Island, USA, 2000.

[23] Petter Holme. Network reachability of real-world contact sequences. Physical Review E, 71(4), 2005.

[24] Petter Holme and Jari Saramäki. Temporal networks. Physics Reports, 519(3):97–125, 2012. Tem-

poral Networks.

[25] Paul Jaccard. The distribution of the flora in the alpine zone.1. New Phytologist, 11(2):37–50, 1912.

[26] David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems for temporal

networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.

[27] Gueorgi Kossinets and Duncan J. Watts. Empirical analysis of an evolving social network. Science,

311(5757):88–90, 2006.

[28] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguñá.

Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, September 2010. Pub-

lisher: American Physical Society.

[29] Marcelo Kuperman and Guillermo Abramson. Small world effect in an epidemiological model. Phys-

ical Review Letters, 86(13):2909–2912, March 2001. arXiv:nlin/0010012.

Bibliography 121

[30] Clara Ledoux, Cécilia Bobée, Éva Cabet, Pascal David, Frédéric Filaine, Sabrina Hachimi,

Christophe Lalanne, Gwenaël Ruprich-Robert, Éric Herbert, and Florence Chapeland-Leclerc. Char-

acterization of spatio-temporal dynamics of the constrained network of the filamentous fungus po-

dospora anserina using a geomatics-based approach. PLOS ONE, 19(2):e0297816, 2024. Publisher:

Public Library of Science.

[31] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking

diameters. ACM Trans. Knowl. Discov. Data, 1(1):2, 2007.

[32] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:

//snap.stanford.edu/data, June 2014.

[33] Alessandro Muscoloni and Carlo Vittorio Cannistraci. A nonuniform popularity-similarity optimiza-

tion (nPSO) model to efficiently generate realistic complex networks with communities. New Journal

of Physics, 20(5):052002, May 2018.

[34] M. E. J. Newman. Spread of epidemic disease on networks. Physical Review E, 66(1):016128, July

2002.

[35] Fragkiskos Papadopoulos, Maksim Kitsak, M. Angeles Serrano, Marian Boguna, and Dmitri Kri-

oukov. Popularity versus similarity in growing networks. Nature, 489(7417):537–540, September

2012.

[36] Mathew Penrose. Random Geometric Graphs. Oxford University Press.

[37] Garry Robins, Pip Pattison, and Peng Wang. Closure, connectivity and degrees: new specifications

for exponential random graph (p*) models for directed social networks. Unpublished manuscript.

University of Melbourne, 2006.

[38] Nicola Santoro, Walter Quattrociocchi, Paola Flocchini, Arnaud Casteigts, and Frederic Amblard.

Time-Varying Graphs and Social Network Analysis: Temporal Indicators and Metrics, February

2011. arXiv:1102.0629 [physics].

[39] Georg Simmel. Soziologie. Duncker & Humblot Leipzig, 1908.

[40] Georg Simmel. Sociology: Inquiries into the Construction of Social Forms. BRILL, 2009. Google-

Books-ID: hD6xCQAAQBAJ.

[41] Steven H. Strogatz. Exploring complex networks. Nature, 410(6825):268–276, March 2001.

[42] JEFFREY TRAVERS and STANLEY MILGRAM. An experimental study of the small world prob-

lem**the study was carried out while both authors were at harvard university, and was financed by

grants from the milton fund and from the harvard laboratory of social relations. mr. joseph gerver

provided invaluable assistance in summarizing and criticizing the mathematical work discussed in

this paper. In Samuel Leinhardt, editor, Social Networks, pages 179–197. Academic Press, 1977.

[43] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,

393(6684):440–442, June 1998.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

122 Bibliography

[44] Bernard M Waxman. Routing of multipoint connections. IEEE journal on selected areas in commu-

nications, 6(9):1617–1622, 1988.

[45] Brad Williams and Tracy Camp. Comparison of broadcasting techniques for mobile ad hoc networks.

In Proceedings of the 3rd ACM international symposium on Mobile ad hoc networking & computing,

pages 194–205, 2002.

[46] B. Bui Xuan, A. Ferreira, and A. Jarry. COMPUTING SHORTEST, FASTEST, AND FOREMOST

JOURNEYS IN DYNAMIC NETWORKS. International Journal of Foundations of Computer Sci-

ence, 14(2):267–285, 2003.

[47] Konstantin Zuev, Marián Boguñá, Ginestra Bianconi, and Dmitri Krioukov. Emergence of Soft

Communities from Geometric Preferential Attachment. Scientific Reports, 5(1):9421, August 2015.

	Introduction
	Introducing Time in Graphs
	Graph
	Complex Networks Analysis
	Complex Networks Properties
	The Small-World Property
	Scale-free Networks
	Hyperbolic Geometry

	Strong Clustering Coefficient
	Triadic Closure
	Navigability

	Generation of Complex Networks
	The Watts-Strogatz Model
	The Barabási and Albert Model
	BA-based models
	Triadic Closure
	Popularity vs Similarity
	Conclusion

	Time in Graphs
	Formalism
	Problems and Properties in Graphs with Time
	Journey
	Connectivity
	Classification

	Generation of Time-Varying Graphs
	Generator of Edge-Markovian Graphs
	Simple Time-Varying Graphs Generation
	Generating Graph with a Given Feature

	Discussion on Time in Graphs
	Formalizing the Concept of Dynamic Graphs

	Qualifying and Quantifying Graph Dynamics
	Sustainability
	Definition
	Comparison to Existing Generative Processes
	Barabási-Albert Model
	Edge Markovian Graphs
	Known Properties of EMGG
	Density Evolution of Edge-Markovian Graphs
	Sustainability

	DynamicScore
	Definition
	Specific Values of DynamicScore
	Constant Graph Order
	Growing Network
	Linear Grow
	Exponential Growth
	Graph Densification

	Comparison to Generator Models
	Sequence of Erdos-Renyi Graphs
	Edge-Markovian Graphs
	Barabasi-Albert Generating Graphs

	Information Persistence Problem
	Problem Formulation
	Communication Strategy
	Constant Flooding
	Simple Flooding

	Studied Problems
	Remarks and First Results
	Time Complexity of the Spreading Algorithm

	Questions and Open Problems
	Questions Related to the Simple Flooding Algorithm
	Connection between Simple Flooding and Constant Flooding
	Sustainability and Information Persistence Problem

	Illustrative Case Study of Dynamic Graph Generators Analysis
	Definitions and Generative Model and Definitions
	Theoretical Analysis
	First Results on Sustainability
	Limit Case Analysis
	Case: SS = N and SC = N
	Case: SS = N and SC =
	Case: SS = and SC = N
	Case: SS is a non-empty finite set and SC =
	Case: SS = and SC is a non-empty finite set
	Graph Order Increase
	Case: SS = N and SC is a non-empty finite set
	Case: SS is a non-empty finite set and SC = N
	Summary of results

	General Cases
	Partition sets

	The Redistributed Model

	Segments
	S=0
	Sustainability
	Relationship with the Information Persistence Problem
	Study of Graph Evolution
	Graph Evolution and Sustainability
	One fixed point
	Two fixed points
	Three fixed points
	Building the Sustainable Interval

	Vertex DynamicScore
	Conjecture on the Sustainability
	The Purpose of the Non-redistributed Model

	Infinite Sets and Asymptotic Graph Order Evolution
	Intermediate Result
	The Equivalent and First Interpretation
	Generated Graphs Interpretation
	Exponential Increasing
	Exponential Decreasing
	Quasi Constant Evolution
	Sustainability of Small Generated Graphs

	Analysis of Real World Networks
	Transforming Events into Graphs
	Events as Instantaneous Contacts
	Time Interval
	Sliding Window
	First-to-last Vertices
	Growing Model
	Remarks

	Events as Permanent Contacts
	Filtering

	Illustrative Case Study
	Instantaneous Contacts
	Email Network
	Remarks about the study of Leskivec
	Growing Network Transformation
	Time Interval Transformation
	Sliding Window Transformation
	First-to-last Vertices and Edges Transformation

	Autonomous System
	Growing Network Transformation
	Time Interval Transformation
	Sliding Window Transformation
	First-to-last Transformation

	Permanent Contacts
	Data and Model
	Objectives
	Analysis
	Improving Filtering Methods
	The Ellipse Model
	Filtering Branches

	Conclusion

