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Maı̂tre de conférences , École des Ponts ParisTech (Navier
laboratory)

Invité



Résumé

La force de trâınée augmente généralement avec la vitesse d’écoulement, sauf dans certains
cas tels que les crises de trâınée ou les changements de forme brusques, comme l’élagage des ar-
bres par le vent. Bien que l’élagage réduise efficacement la trâınée tout en préservant l’intégrité
structurelle, il est irréversible. Une alternative aux changements de forme abrupts réside dans
les événements de snap-through dans des structures flexibles. L’origami offre un cadre promet-
teur pour concevoir de telles structures capables de changer de forme, permettant de définir des
trajectoires cinématiques et des propriétés mécaniques spécifiques, en particulier la bistabilité.

Cette thèse explore comment les techniques d’origami peuvent être utilisées pour moduler
les forces de trâınée, en s’appuyant sur des unités bistables capables de passer à un second état
stable soit par une trajectoire cinématique, soit par un degré de liberté caché lié à la flexion des
facettes. Ces unités peuvent soit se déformer de manière continue dans l’écoulement avec un
événement de snap-through , soit conserver des formes distinctes avant et après cet événement.
Les deux comportements entrâınent une évolution discontinue de la trâınée en fonction de la
vitesse d’écoulement. En ajustant les propriétés géométriques et mécaniques, il est possible de
moduler le comportement de transition et les forces de trâınée. Des expériences, appuyées par
des modèles aérodynamiques théoriques équilibrant les forces fluides et élastiques, ont permis
de concevoir des structures passives efficaces pour contrôler la trâınée dans des environnements
fluides. Un exemple est une vanne passive utilisant l’origami pour réguler le flux.

Deux unités d’origami sont étudiées : la base Waterbomb et la structure Miura ori. Ces
systèmes bistables interagissent de manière unique avec les forces fluides pour offrir des car-
actéristiques de trâınée modulables, comme des réductions brusques ou un contrôle ajustable
de l’écoulement. Des tests en soufflerie et des modélisations théoriques ont permis d’analyser
des paramètres tels que le rayon des cellules, la rigidité des plis et la géométrie des facettes,
facilitant la rétro-ingénierie de structures visant des objectifs aérodynamiques spécifiques.

La bistabilité et les transitions de snap-through de l’unité Waterbomb sont au cœur de
son fonctionnement Sous l’effet de l’écoulement d’air, cette unité se déploie, s’aplatit, puis passe
brusquement à une configuration profilée, entrâınant une chute soudaine de la trâınée. Ce com-
portement est régi par l’équilibre entre les forces fluides et élastiques, décrit par le nombre de
Cauchy. En modifiant des propriétés telles que la rigidité, le rayon des cellules et l’angle de repos,
les conditions critiques de snap-through et la réduction de la trâınée ont pu être contrôlées. La
combinaison de plusieurs unités a permis d’obtenir des sauts successifs de trâınée, démontrant le
potentiel d’une conception modulaire. Dans une configuration confinée, l’unité Waterbomb a agi
comme une vanne régulant l’écoulement. La chute de pression non linéaire reflète le comporte-
ment de trâınée observée en écoulement libre, avec des effets supplémentaires du confinement.
La combinaison d’unités en série ou en parallèle a permis un contrôle complexe de l’écoulement,
avec des applications potentielles comme des soupapes de décharge de pression ou des limiteurs
de débit. Cette polyvalence souligne son intérêt pour des systèmes de contrôle fluidique.

L’unité Miura ori, quant à elle, présente une trajectoire bistable différente, exploitant la



flexion des facettes comme degré de liberté caché. Contrairement à la déformation continue de
l’unité Waterbomb, elle passe directement entre deux états rigides sous l’effet du chargement
fluide, entrâınant une discontinuité abrupte de la trâınée qui sépare deux régimes avec des coeffi-
cients de trâınée constants. Des paramètres tels que l’angle du sommet, la longueur des facettes
et l’angle de montage permettent de contrôler sa rigidité et sa réponse aérodynamique. Les
expériences ont montré comment les variations géométriques influencent la trâınée, la combinai-
son de plusieurs unités a permis d’obtenir des comportements aérodynamiques modulaires.

Cette thèse met en avant l’origami comme une plateforme innovante pour façonner les in-
teractions fluide-structure. En exploitant la bistabilité, les unités d’origami produisent des
comportements trâınée-vitesse non linéaires avec des transitions abruptes. Les applications en-
visagées vont de l’atténuation des charges aérodynamiques à la détection de seuils de vitesse
ou à la régulation du débit. La combinaison de plusieurs unités permet de programmer les
réponses de trâınée, ouvrant de nouvelles perspectives pour des systèmes adaptatifs complexes.
Les structures déformables en origami représentent un changement de paradigme dans la concep-
tion aérodynamique, offrant des solutions autorégulées sans capteurs ou actionneurs externes,
et ouvrent de nouvelles possibilités pour le contrôle passif dans les environnements fluides.



Summary

The drag force typically rises with flow speed, except in cases like drag crises or abrupt
shape changes, such as wind-induced tree pruning. While pruning effectively reduces drag and
preserves structural integrity, it is irreversible. An alternative for abrupt shape changes is snap-
through events in flexible structures. Origami offers a promising framework for crafting such
shape-morphing structures, enabling desired kinematic pathways and mechanical properties, es-
pecially bistability.

This thesis investigates how origami techniques can tune drag forces, using bistable units
capable of transitioning to a second stable state through either a kinematic path or a hidden
degree of freedom arising from facet bending. These units either deform continuously in flow
with a snap-through event or retain distinct pre- and post-snapping shapes, both showing dis-
continuous drag changes with flow speed. Adjusting geometric and mechanical properties allows
fine-tuning of snapping behavior and drag forces. Experiments, supported by theoretical aeroe-
lastic models balancing fluid and elastic forces, enabled the development of efficient passive
drag-control structures, such as an origami-inspired valve for flow regulation.

Two origami units are studied: the Waterbomb base and the Miura ori structure. These
bistable systems interact uniquely with fluid forces, offering tunable drag features like sharp
reductions or adjustable flow control. Wind tunnel tests and theoretical modeling analyzed
parameters such as cell radius, fold stiffness, and facet geometry, enabling reverse-engineered
designs for specific aerodynamic goals.

The Waterbomb unit’s bistability and snap-through transition is key to its function. In
airflow, it unfolds, flattens, and snaps into a streamlined shape, triggering a sudden drag drop.
This behavior is governed by fluid-elastic force balance, captured using the Cauchy number.
Properties like stiffness, cell radius, and rest angle were tuned to control critical snapping con-
ditions and drag reduction. Combining units produced multiple drag transitions, demonstrating
modular design potential. In a confined setup, the Waterbomb acted as a flow-regulating valve.
The non-linear pressure drops reflected the drag behavior observed in open flow, with additional
effects from confinement. Arranging units in series or parallel configurations enabled complex
flow regulation, such as functioning as pressure relief valves or flow limiters. This versatility
highlights the potential for advanced fluidic control systems.

The Miura ori unit offers a different bistable pathway, using facet bending as a hidden de-
gree of freedom. Unlike the Waterbomb unit’s continuous deformation, it transitions directly
between two rigid states under fluid loading, leading to an abrupt drag discontinuity that sepa-
rates two regimes with constant drag coefficients. Parameters like vertex angle, facet length, and
mounting angle controlled its stiffness and aerodynamic response. Experiments showed how ge-
ometric variations influence drag, and combining units enabled modular aerodynamic behaviors.

This thesis highlights origami as a platform for shaping fluid-structure interactions. By lever-
aging bistability, origami units achieve non-linear drag-speed behaviors and sharp transitions.



Applications include reducing aerodynamic loads, detecting velocity thresholds, and limiting
flow rates. Combining multiple units enables programmable drag responses, advancing adaptive
system design. Origami morphing structures represent a paradigm shift in aerodynamic design,
offering self-regulating solutions without external sensors or actuators, and new possibilities for
passive control in fluid environments.
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1.1 Why do we need to tune the drag?

When an object moves through a fluid, it encounters a drag force. The drag force opposes the
motion of the object and depends on its shape, its size, its velocity and the surrounding fluid.
Let us look at the different scenarios that exist in real life where drag forces and their control
are necessary.

1.1.1 Drag as a foe: Applications that benefit from drag reduction

a b

Figure 1.1: Applications of drag reduction in aerospace engineering and sports. (a) Blended
wing-body aircraft[1]. (b) Drafting by cyclists[2].

Drag reduction is a crucial aspect in several fields where minimizing resistance due to fluid
flow can lead to significant improvements in performance, fuel efficiency, and cost savings. Some
of the typical scenarios are from aerospace and automotive engineering. An active field of re-
search is the aircraft design to make streamlined shapes, and smooth surfaces and the use of
advanced materials to reduce the pressure drag as well as the friction drag experienced by the ve-
hicle during the flight (Fig.1.1a)[1, 3]. Minimizing drag during re-entry or in low-earth orbit for
spacecraft and satellites helps conserve fuel and maintain stability[4]. Apart from the aviation
industry, the motor industry also benefits from drag reduction. Reducing drag on conventional
and sports cars makes them fuel efficient as well as faster[5]. This is achieved by adding devices
like spoilers, wings, or diffusers to make them aerodynamically more streamlined and control the
downward force on them. Ships and submarines also benefit from hull shaping, special coatings
and air lubrication systems to reduce the drag on hull and propellers and noise while maintaining
speed[6, 7].

Another field where drag reduction is important is sports. Much research goes into making
streamlined helmets, suits, and bike designs to reduce air resistance for cyclists to improve
their speed and endurance. For the team events cyclists shelter themselves in the wake of their
teammates to reduce their own drag. This technique called drafting (Fig.1.1b) is the most used
strategy to save energy [2, 8]. Similarly, drag-reduction strategies are employed in other sports
such as swimming and sailing. Studies of the impact of aerodynamic forces in sports equipment
like balls, shuttles and javelins also provide a competitive edge to athletes [9, 10].
Even though it may seem like drag forces are always bad and we need to reduce them, let us see
some devices which benefit from increased drag forces.

1.1.2 Drag as a friend: Applications that benefit from an increase in drag

While many applications focus on reducing drag to improve efficiency and performance, there
are scenarios where increasing drag is beneficial. For instance, parachutes, commonly used in
skydiving, space capsules, and emergency aircraft deceleration, rely on the increased drag to slow
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Figure 1.2: Applications of increase in drag in aerospace engineering and sports. (a) Air drogue
used for aerial refuelling[11]. (b) Air brakes on the sports car.

descent and ensure safe landings[12, 13]. Apart from deformable membranes like parachutes,
rigid plates or structures can also be used to increase drag for example High-performance racing
cars use air brakes that deploy panels to create additional drag (Fig.1.2b), enhancing deceler-
ation[14]. Similarly, Aircraft employ spoilers during landing to increase drag and reduce lift,
aiding in slowing down the aircraft[15]. Another possibility is to use a rigid structure covered
with a membrane having a high normal area as in the case of Fighter jets and space shuttles
which use drag chutes and drogues for rapid deceleration upon landing and to provide stability
during aerial refuelling (Fig.1.2a)[11, 16]. Some other instances include re-entry vehicles like
satellites or missiles utilizing drag to slow and stabilize their descent [17]. Drogues are used in
free-floating boats for control and stability in complex environments [18].

In each of these applications, increasing drag is a controlled and deliberate strategy to achieve
specific outcomes, such as deceleration and stability. This overview demonstrates the various
strategies employed to manage drag forces effectively. Let us look at the various strategies that
have been employed to control the drag forces.

1.1.3 Drag tuning strategies

Drag force can be either beneficial or detrimental to the same system, depending on its operating
conditions. For example, aircraft require reduced drag for fuel efficiency but increased drag for
safe landing deceleration. Similarly, sports cars are streamlined to reduce drag but use air brakes
for safety. This dual requirement highlights the necessity for systems that can dynamically
manage drag forces. Aerodynamic systems that can change shape are essential for efficiency and
manoeuvrability at different speeds. These shape-changing systems are broadly categorized into
active and passive components. Active components, require external actuators such as motors,
electric fields, and pneumatic devices to function. Passive components, on the other hand, utilize
inherent pressure forces and flow speed as actuators, offering a more self-sufficient approach.

Most existing drag control strategies are active. For instance, cars employ adaptive spoilers
and diffusers (Fig.1.3a) that adjust based on speed and driving conditions, significantly enhanc-
ing performance and safety[19]. Similarly, advanced aircraft wings constructed from carbon fibre
composites can morph and twist using actuators (Fig.1.3b), allowing for optimal aerodynamic
performance under various flight conditions [20]. Another innovative active strategy is the im-
plementation of adaptive surface roughness and texture, which can modify drag characteristics
dynamically[21, 22]. Despite their effectiveness, active systems have the drawback of relying
on external actuators, which adds complexity and potential failure points. This limitation is
addressed by passive systems, which operate without external energy input. A common passive
strategy involves incorporating flexibility into the structure. For example, MIT in collaboration
with NASA recently demonstrated a wing made from mechanical metamaterials that automat-
ically responds to changes in aerodynamic loading by shifting its shape (Fig.1.3c) through a
self-adjusting, passive reconfiguration process[23]. This technology mimics the adaptive capa-
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Figure 1.3: Drag control strategies employed for different applications. (a) Bugatti Veyron
operation modes [19]. NASA/MIT (b) morphing wing and (c) deformable wing undergoing its
twisting motions. Adapted from the NASA website.

bilities observed in nature, such as the way birds adjust their wing shapes during flight.
The ability to morph, or change shape, is highly desirable for several reasons, both in nature

and engineering. It allows organisms and machines to respond to varying external conditions,
improve interactions with other bodies, and manoeuvre effectively in different media such as
water or air. This adaptability enhances performance, safety, and efficiency across a wide range
of applications. In the following section, we will look into passive strategies employed by flexible
structures to change shape in response to different flow conditions, highlighting their potential
and advantages in various aerodynamic contexts.

1.2 Passive drag control strategy through flexibility and recon-
figuration

Flexible systems can bend without breaking under external forces, including those exerted by
surrounding fluids. However, industries have traditionally preferred rigid components over flex-
ible ones, especially in areas like aeronautics, turbines, and civil engineering. In these sectors,
flexible systems are often deemed unsuitable because they tend to deform and their susceptibil-
ity to instabilities and vibrations caused by fluid flow. Nonetheless, the advantages of flexibility
are well-documented in both the plant and animal kingdoms.

1.2.1 Plant life: Flexibility as defense mechanism

Flexibility is crucial for species adaptation to their environment. For example, a tree must
endure harsh conditions such as strong winds and storms. A rigid structure would make survival
difficult. To withstand these extremes, trees have developed a passive strategy that leverages
the flexibility of their leaves and sometimes branches. When exposed to wind, the leaves bend
and adjust their shape to the surrounding fluid flow. This reduces the force experienced by
the trees and prevents uprooting. These deformations are somewhat reversible, allowing the
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Figure 1.4: (a) A tree leaf bends in the wind and adapts its shape to the flow velocity[24] (b)
Photographs of bigleaf maple tree at increasing flow speed[25].

leaves to return to a flat surface in calm conditions to capture sunlight effectively. One of the
first studies to understand and characterize the shape change and consequently change in drag
force was conducted by S. Vogel, who initiated a set of experimental measurements on a single
leaf or a cluster of leaves attached to a branch ( Fig.1.4a) [26–28]. The study compared these
measurements to those of a rigid system, which experiences a quadratic drag law Fd ∼ U2,
and found that the deformation of the plant (Fig.1.4b) is accompanied by a process of drag
reduction. This phenomenon is captured through a scalar V , called the Vogel exponent, which
expresses the drag evolution with a weaker power law: Fd ∼ U2+V . Numerous studies have
followed, classifying plant species according to their flexibility and drag reduction capabilities
[24, 25, 29]. The process by which flexible structures change their shape and adapt to external
fluid loading is called reconfiguration. This strategy is particularly interesting to exploit because
it is passive and governed by structural properties. Let us look at the reconfiguration of model
systems.

1.2.2 Model system: First step towards understanding reconfiguration

Natural systems, like the veins in leaves or the wings of insects, exhibit complex shapes with
localized stiffness. To better understand how these deformable surfaces interact with fluid flow,
researchers have conducted investigations using simpler model systems with controlled geome-
tries and stiffnesses.

Alben et al.[33, 34] studied a flexible filament in a soap film flow, using a two-dimensional
fluid-elastic model to describe their experiments. They established a relationship between the
shapes and drag evolution, and identified a scaling of drag with flow velocity in this two-
dimensional setup. Following this, Schouveiler et al.[31]and Gosselin et al.[30] examined thin
disks cut along one radius or multiple radii, respectively. As shown in Fig.1.5a and b, deforma-
tion becomes more pronounced with increasing flow speed. Their studies demonstrated that the
flow-induced deformation and the resulting drag reduction are determined by a balance between
structural stiffness and fluid forces.
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Figure 1.5: Flow-induced deformation modes of a disk with different initial conditions. (a) a
disk cut along several radii equally spaced[30], (b) a disk with a single cut along the radii[31]
and (c) disk with no cuts[32].

These investigations revealed that geometry plays a critical role. The disks with multiple
cuts bend like cantilevered beams (Fig.1.5a), while a disk with a single radial cut rolls into a cone
shape (Fig.1.5b). In contrast, an uncut disk deforms into draped shapes that develop more lobes
as the flow speed increases (Fig.1.5c). The transition between shapes corresponds to changes in
the system’s energy configuration, which includes both fluid and elastic contributions[32].

These examples illustrate the variety of shapes and drag behaviours that can be achieved
through simple geometrical modifications. We will now explore the elastic and fluid forces acting
on the model system and discuss how to characterize these interactions.

Fluid loading on slender structures

The behaviour of fluid flow around an object can be described using the Reynolds number,
Re = UR/µ, where U is the flow velocity, R is a characteristic length, and µ is the kinematic
viscosity. In the experiments mentioned earlier (as well as in our own experiments), Re can reach
values as high as 105. This indicates that we are in an inertial regime where viscous forces can
be neglected, except in the turbulent wake formed downstream of the object. In such a regime,
the flow exerts normal dynamic pressure forces on the object, which can be divided into a drag
component (in the direction of the flow) and a lift component (perpendicular to the flow).

For a solid object with a fixed shape, the drag force is given by Fd = 1/2CdSρU
2, where

S is the reference area (often the projected frontal area), Cd is a dimensionless drag coefficient
dependent on the object’s shape, and ρ is the fluid density. The solid line in Fig.1.6a, represent-
ing the drag force on a rigid plate, shows a quadratic relationship with velocity, following U2

behaviour.

This quadratic relationship between drag and velocity is well-established for rigid, bluff
bodies. However, the scenario becomes more complex for flexible systems. As observed in
plants, fluid loading can cause shape changes that reduce the frontal area S exposed to the flow,
allowing the object to align more with the flow direction, thereby adopting a more streamlined
shape with a lower drag coefficient Cd. For flexible systems that are porous or in confined flows,
shape-dependent blockage can also alter the effective flow speed around the object.

Figure1.4a illustrates the change in the shape of the leaf which leads to drag reduction,
while the inset in Fig.1.6b shows a similar effect for a flexible plate[30]. As the flow velocity
increases, the flexible plate bends, significantly reducing its frontal area and resulting in a more
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Figure 1.6: (a) Evolution of the drag force with U for such a flexible plate (hollow markers),
compared to the drag on a rigid plate (black line) [30]. (b) Reconfiguration number R for three
different slender flexible systems: rectangular plates of varying size and stiffness, flexible filament
(both from [35]); short fibres tested in soap film flow by Alben et al.[33]. All are replotted as a
function of the Cauchy number.

streamlined shape. The impact of this shape change on drag is depicted in Fig.1.6a. At low
speeds, the flexible plate (represented by hollow squares) experiences similar drag to a rigid
plate (represented by solid circles). However, as the fluid load increases, the reconfiguration of
the flexible plate’s shape leads to a significant reduction in drag compared to the rigid case. The
drag force no longer follows a quadratic relationship with velocity but instead follows a power
law with a lower exponent, characterized by the Vogel coefficient V ≈ −2/3[26].

The specific power law relationship depends on the shape reconfiguration: different shapes,
such as a cone-rolling up or a bending filament, will reduce drag in distinct ways, resulting
in different Vogel exponents for each reconfiguration technique. Let us try to understand the
reconfiguration process through the lens of another non-dimensional number which balances the
fluid force and the elastic forces in the system.

Cauchy number

To balance the competition between elasticity and fluid forces, we introduce the dimensionless
Cauchy number, Cy, which represents the ratio of typical fluid loading on the structure to the
elastic restoring forces. For the thin strip mentioned earlier, it is defined as:

Cy =
fluid loading

elastic restoring force
=
ρU2WL2

EI
(1.1)

Where ρ is the density of the fluid, U is the flow velocity, W and L are the width and length
of the strip respectively and B = EI is the bending stiffness of the sheet. By plotting drag
measurements for deformable objects such as plates, filaments, and fibres with varying stiffness
against Cy (instead of U), we can improve our understanding of these fluid elastic interactions.

Additionally, Gosselin et al.[30, 33, 35] introduced the reconfiguration number R = Fd/Fd,r,
which compares the drag of flexible objects Fd to that of a rigid object with the same geometry
(Fd,r). We will use this dimensionless quantity to characterize the impact of deformability on
drag. As shown in Fig.1.6b, the data collapses onto a single curve, indicating that deformation is
indeed governed by the interplay between elasticity and fluid forces, as captured by the Cauchy
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Figure 1.7: (a) Sharp change in drag coefficient for bluff body shape similar to hatch-back cars,
on increasing the slant angle the flow separation in the near wake regime changes significantly[36].
(b) The sequential breakage of a walnut tree branch is illustrated by the progression of the
bending moment at the tree’s base, denoted as mb[37].

number. In Fig.1.6b, the reconfiguration number also highlights a transition between two drag
regimes. At low Cy, when fluid loading is small relative to structural rigidity, the plate or fibres
deform minimally, and their drag forces are similar to those of a rigid object (i.e. R ∼ 1). At
high Cy, the deformable system reconfigures, reducing drag and decreasing R. In the regime of
large deformation, R decreases with a constant logarithmic slope, indicating a new drag scaling
with flow speed.

For the flexible plate, the response is determined by bending stiffness, as bending is the pre-
ferred mode of deformation. However, if another deformation mode is involved, the denominator
of the Cauchy number will be adjusted to account for this new type of deformation. All the
reconfiguration studies mentioned so far have been conducted in a stationary regime, and our
work also focuses on a purely static framework.

In the section, we identified various non-dimensional numbers which are helpful to charac-
terize the reconfiguration process. Apart from reconfiguration, slender structures can also show
snap-through instability in external flow which leads to sudden shape change and it has been
utilized in various studies which we will discuss in the next two sections.

1.2.3 More than reconfiguration: drag discontinuity

As previously discussed, reconfiguration reduces the load on deformable bodies compared to non-
deformable ones. Despite this reduction, drag still increases with speed, although at a slower
rate. However, there are instances where drag decreases sharply with increasing velocity. One
such phenomenon, known as drag crisis, occurs due to a sudden change in flow regime when the
boundary layer transitions from laminar to turbulent, moving its separation point downstream
and narrowing the wake [38, 39]. Another example involves bluff body shapes characteristic of
hatchback cars, where increasing the slant angle alters the flow pattern in the near wake region.
This change causes the separation pattern to shift from quasi-axisymmetric (region 1) to a 3D
separation pattern (region 2), leading to a sharp change in the drag coefficient (Fig.1.7a)[36].

A similar scenario occurs with abrupt and significant shape changes in the body, such as
partial breakage in wind-induced tree pruning (Fig.1.7b). This process, observed by Lopez
et al.[37, 40], effectively reduces the drag force and preserves the integrity of the remaining
structure, though it is not reversible.

An attractive alternative to these irreversible changes is the occurrence of snap-through
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Figure 1.8: (a) A thin bent plate placed in an axial flow snaps to its other stable state when the
fluid loading increases, resulting in a wider micro-channel section locally[41]. (b) Snap through
at the Airfoil trailing edge with bistable elements leads to a reduction in drag coefficient[42].

events in flexible structures. The structures with several stable states during the snap-through
events rapidly transition from one equilibrium state to another. Let’s explore some scenarios
where snap-through events can occur.

1.2.4 Snap through events for functionality

The snap-through process in flexible structures is rapid and repeatable, and results in significant
shape changes. This characteristic makes it increasingly popular in engineering applications
such as switchable optical properties, reusable energy-trapping materials, microfluidic pumps,
and soft robotics [43–46]. Snapping instabilities are triggered by external inputs like point loads,
electrostatic forces, thermal effects, or fluid flows. For instance, a post-buckled sheet can snap
through and snap back in response to varying airflow speeds, allowing for the opening and closing
of an air inlet for flow regulation [47, 48]. Similarly, the snapping of a slender membrane or arc
has been used to adjust channel resistance for passive control of viscous flow (Fig.1.8a) [41, 49],
or to harvest energy from wind-induced snapping oscillations[50, 51].

The critical flow speed required to initiate such instabilities can be tuned using the nonlin-
ear structural mechanics of the post-buckled member. The system’s passive response to flow
makes it inherently autonomous, eliminating the need for complex actuation. Some studies
have focused on the impact of these rapidly changing geometries on aerodynamic loading. For
example, in wind turbines, bistable winglets or airfoil trailing edges autonomously transition to
another stable state, reducing excessive fluid loads[42, 52] (Fig.1.8b). Although the reported
drag reduction is about 15%[42], this is primarily due to a focus on lift applications, suggesting
that with appropriate designs, more substantial drag reductions are possible. One of the main
focuses of the thesis will be to achieve high drag reduction.

1.2.5 New lever to tune shape and forces in a fluid flow

As discussed before, deformable structures have the advantage of passively adapting their shape
to external fluid loads, providing a powerful means of regulating fluid loading. This reconfigu-
ration can notably reduce drag force, preventing damage or rupture in strong winds or currents.
Additionally, such deformations can serve functional purposes, such as in flexible valves, en-
hancing aerodynamic performance with deformable wings, or extracting energy. However, to
perform as desired, the structure must deform appropriately, necessitating an understanding of
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Figure 1.9: (a) A thousand cranes popularized by the story of Sadako Sasaki. (b) Instant
origami obtained by crushing a paper cone with a book shows similarity to the design of pine.
(c) A new type of artistic origami which uses crumpled paper despite flat sheets. Adapted from
documentary: From Paper to Bionics: Origami’s Incredible Impact on Science.

the underlying fluid-elastic mechanisms and methods to control them.

Most existing experimental and modelling studies focus on the interaction between fluids
and continuously flexible slender structures, like beams or plates, which are particularly prone
to deformation. Different behaviours are achieved by altering the stiffness resisting deformation
or the object’s geometry, such as the differing behaviours of rectangular plates and disks[30, 41].

In this PhD, we explore a new framework for designing components exposed to flows by
adding folds to thin surfaces—a technique derived from origami. Initially an art form, origami
has emerged as a promising engineering solution for fabricating structures with complex three-
dimensional deformation modes and predictable mechanical properties. For us, it represents a
new tool to tune deformation and drag forces in fluid flows. The following section presents this
technique in detail.

1.3 Origami Structures: A new strategy for controlled shape
morphing

1.3.1 A brief history of origami

Origami, the art of paper folding, has a rich history originating primarily from Japan, with
significant influences from China and Europe[53]. Paper, invented in China around 105 AD, led
to early paper folding traditions like zhe zhi. By the 6th century, Buddhist monks introduced pa-
per to Japan, where origami (from ”ori,” meaning folding, and ”kami,” meaning paper) evolved.
During Japan’s Heian Period (9th-12th centuries), origami was used in religious ceremonies and
by the elite. By the 17th century Edo Period, it spread among the general populace with classic
models like the crane and frog gaining popularity. The 19th century saw the publication of the
first origami instruction book, integrating origami into education. The 20th century brought
global recognition, largely due to Akira Yoshizawa, who developed a notation system and pop-
ularized modern origami. The story of Sadako Sasaki, a Hiroshima bombing victim who folded
1,000 cranes, symbolized peace and hope worldwide (Fig.1.9a). Advances in the late 20th and
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Figure 1.10: (a) Generalized Miura-ori tessellations approximating curved surfaces, with the
top row presenting simulations and the bottom row featuring physical models[54]. (b) An
origami sphere (with positive Gaussian curvature) and an origami hyperboloid (with negative
Gaussian curvature), are both constructed using curved crease origami techniques as outlined
by Mitani[55]. (c) Concentric pleating origami used to create Origami hyperbolic paraboloid
(“hypar”)[56].

21st centuries led to highly complex designs (Fig.1.9b and c) and applications in technology and
engineering. Origami continues to be a significant cultural symbol, blending art, mathematics,
and science, with key figures like Yoshizawa, Lillian Oppenheimer, and Robert Lang pushing
its boundaries. It is also becoming increasingly important in the Engineering and Mechanics
field. The presence of these creases on an initially flat surface creates a set of mechanical and
morphing properties that will be described in the following sections.

1.3.2 Shape morphing via origami

Three dimensional morphing

Forming intricate 3D structures from a flat sheet of paper requires introducing double curvature,
similar to that found in spherical or saddle-shaped geometries. This cannot be achieved through
inextensible deformations alone. Instead, the flat sheet must undergo in-plane distortions to
form double-curved sections. However, a major drawback of in-plane distortions is that this
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method is mainly suitable for soft elastic materials (like gel sheets) and involves intricate shape-
shifting programming or external stimuli to reach the desired shapes. Additionally, in-plane
distortions can disrupt any surface features printed on the 2D sheets, partially negating one of
the main benefits of 2D-to-3D transformations[57].

A better alternative for rigid materials and intricate surface details can be found in origami
techniques. These methods enable the creation or approximation of complex shapes through the
use of precise fold patterns, to transform flat sheets into 2D or 3D geometries. Several techniques
like origami tessellations, curved-crease origami, and concentric pleating are available for this
purpose[57]. We will only look at tessellations which we have used during the thesis.

Tessellations simply means putting similar units next to each other. One of the most
studied tessellations is Miura-ori. Schenk and Guest[58] demonstrated that a purely rigid Miura-
ori has only one degree of freedom, restricting it to in-plane folding and unfolding. However,
experiments with simple paper models reveal that folded sheets can also experience out-of-plane
deformations. Schenk and Guest[58] identified saddle and twist deformation modes, which are
possible in non-rigid Miura-ori structures where individual faces can bend. This characteristic
suggests that Miura-ori and similar origami tessellations could be promising candidates for
compliant shell mechanisms, as they can alter the global Gaussian curvature of the sheet through
unit cell-level deformations [59, 60].

Dudte et al.[54] used constrained optimization algorithms to solve the inverse problem of
fitting intrinsically curved surfaces with a generalized Miura-ori tessellation. Their work demon-
strated that generalized cylinders can be approximated using tessellations that are both flat-
foldable and rigid-foldable, as illustrated in Fig.1.10a. Fig1.10b and c, show different shapes
developed via curved creases and concentric pleating techniques.

The three techniques mentioned above are useful to add a desired curvature or to make a
desired 3D shape out of a flat 2D sheet of paper. Apart from just morphing a sheet from a
2D geometry to a 3D geometry, these techniques can be useful to morph these 3D geometries
from one shape to another, i.e., the structures built using origami techniques allow possible
shape change. Let us look at some of these existing shape-change strategies used for different
purposes.

Large shape change

Origami structures with large shape changes offer the ability to fold into a small, compact form
for easy storage and transportation and then unfold into a larger, functional structure when
needed. This is particularly useful in space applications, where components such as solar pan-
els(see Fig.1.11d) and antennas must be compact during launch and expand in space. In the
biomedical field, origami principles allow to making of surgical tools which require minimum
invasion and devices that can change shape within the body to perform complex tasks[63].
In robotics, these structures provide flexibility, adaptability, and multifunctionality, allowing
robots to navigate and operate in diverse environments. Architectural applications benefit from
origami-inspired designs through adaptable structures like folding roofs, bridges or walls for
ventilation or light control (see Fig.1.11a,b and c). Overall, origami structures combine func-
tionality with compactness and adaptability, offering innovative solutions across various fields.
This will be useful to influence the forces in a flow, which is one of the main objectives of the
thesis. Let us look into some interesting properties of origami structures which are used in
practical applications:

Let us look into the consequence of these folds on the mechanical properties of the material.
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Figure 1.11: Large shape changes in origami structures. (a) A folded cellular metamaterial
created by stacking individual Miura-ori sheets, which expands and contracts uniformly[58]. (b)
A deployable paper structure utilizing origami zipper tubes. (c) The deployment and retraction
sequence of a zipper-coupled tube system[61]. (d) An artist’s rendering of an origami-based
deployable solar array designed for space satellites[62].
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Figure 1.12: (a) Auxetic properties of architected origami materials are illustrated by the Miura-
ori sheets, which exhibit a unique combination of negative and positive Poisson’s ratios in
both in-plane and out-of-plane deformations[64]. (b) Stacked Miura-ori structures can achieve
desirable nonlinear stiffness characteristics, such as recoverable collapse through rigid folding,
with the reaction force during collapse adjustable by modulating internal pressure[65]. (c) Rigid-
foldable, generic degree-4 vertices exhibit multiple stable states, which can be customized by
adjusting sector angles, crease torsional stiffness, and rest angles[66].
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1.3.3 Folding induced new mechanical properties

Many studies on origami have concentrated on the kinematics of deformation and the geometric
relationships imposed by the patterns. However, origami has also garnered interest in the field of
mechanics. These structures uniquely derive their mechanical properties from the fold patterns
rather than the material of the sheets themselves. Therefore, they are categorized as meta-
sheets, a type of mechanical meta-material. Specifically, the focus is on engineering mechanical
properties by adjusting the fold patterns. Here, we present examples of unusual mechanical
behaviours observed in these structures[64, 67, 68].

Folding introduces fascinating mechanical properties such as auxetic behaviour. For instance,
a Miura-ori sheet expands transversely when stretched (see Fig.1.12a), unlike regular materials
that tend to contract[64]. Pressurizing stacked Miura-ori tubular channels creates nonlinear
relationships between the enclosed volume and external deformation, enabling pressure-induced
stiffness control with recoverable and programmable collapse and quasi-zero stiffness properties
(Fig.1.12b)[65]. Additionally, origami structures can exhibit discrete stiffness jumps due to the
self-locking properties of non-flat foldable designs[69].

Another notable feature of origami is multistability[46, 66, 70, 71], allowing foldable struc-
tures to remain stable in both compact and deployed states or even exhibit multiple stable shapes
for different purposes. For example, generic degree-4 vertices can have up to five stable states by
adjusting the rest angle and crease stiffness (Fig.1.12c). This characteristic is particularly useful
in developing new medical stents that need to be compact during surgery and then deployed in
place[63]. Multistability also enables rapid and significant shape changes in response to minor
external stimuli, such as varying flow velocities, as explored in our work.

1.3.4 Hidden degree of freedom: What if facets are not rigid?

So far, we have discussed origami structures and the unique properties that arise from them.
These properties can be accessed through rigid facet origami structures(rigid-foldable) or by
incorporating facet bending. An origami design is rigid-foldable if the transition from the flat
to the folded state occurs smoothly through bending at the creases only, thus, without bending
or stretching of the faces in between the creases. In other words, a rigid origami design could
be folded from rigid panels connected with hinges, which is desirable for deployable origami
structures made from rigid materials, such as solar panels, medical stents, or robots. Most of the
structures that will be discussed in this manuscript will be rigidly foldable. Some structures have
their folding kinematics—i.e., the possible shapes they can fold into—significantly influenced
by facet bending. One of the earliest examples is the new bending mode of the Miura-ori
tessellation (see Fig.1.13a), which emerges when considering facet bending, a mode not possible
under the rigid facet assumption[72]. Another example is the square twist origami, which has
two topologically disconnected configurations (folded and unfolded states in Fig.1.13b top) and
zero degrees of freedom. This means an origami structure made of rigid facets will remain in
its initial state, either folded or unfolded, without transitioning between the two. However,
introducing facet bending connects these disconnected states and allows the transition[73, 75].
Additionally, changing the plane angle of the unit makes it mono- and bi-stable (Fig.1.13b
bottom). Facet bending can also be used to introduce pop-through defects in the Miura-ori
tessellation, allowing fine-tuning of the sheet’s effective stiffness and the shape of the open
and closed unit (Fig.1.13c)[74]. Thus, relaxing the rigid facet assumption in origami structures
enables access to previously unreachable kinematic regions, leading to new possibilities. It also
offers a way to have stiff structures, that are kind of locked in a stable state, while being able
to morph. We have utilized this hidden degree of freedom to go between locked-in states in our
work, which will be discussed further in Chapter 3.

In summary, origami methods have shown great promise for mechanics and engineering. The
addition of folds overcomes certain limitations of regular sheets, which only deform isometrically
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Figure 1.13: (a) In-plane stretching and out-of-plane bending modes of the Miura ori tessela-
tion[72] (b) Top: Photographs of two topologically disconnected folded shapes of a square twist
unit. Bottom: Experimental demonstration revealing the mono and bistable solutions with the
plane angle (acute angle of the parallelogram)[73]. (c) Pop through defects in a Miura-ori pat-
tern as a result of facet bending. These defects form complex structures and can be useful to
program in-plane modulus[74].
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Figure 1.14: (a) Programmable unfolding process of the square-shaped soft robot using electric
field[76]. (b) Sequential magnetic actuation of generalized reverse creases Kresling assemblies
with multiple cells[77]. (c) Thermally responsive self-folding hydrogel when heated expels water
to take pyramidal shape[78]. (d) Self-propelled liquid crystal elastomer (LCE) rolling robot
beyond its activation temperature[79].

with constant Gaussian curvature, allowing the design of customized kinematics and mechanical
behaviours. Notably, mechanical studies have typically investigated the response of origami
sheets to only a few types of loading, usually applying in-plane uniaxial traction to characterize
stress-strain relationships. Next, let us explore some existing actuation techniques for origami
structures.

1.4 Origami mechanical response to stimuli

One of the ongoing challenges in the field of origami structures is to actuate them or make
them responsive to changes in their environment (which is a fluid environment for us). To
achieve this, it is necessary to be able to program their mechanical response to specific external
stimuli. Previous investigations have mainly focused on axial tensile loading to understand the
mechanical response of these structures. In the following, we will present other types of loading
to which origami has been subjected.

1.4.1 Local actuation

Origami structures can be actuated using various mechanisms tailored to specific applications.
The simplest method is manual manipulation, which is folding origami structures by hand, famil-
iar to everyone who has folded origami. Other techniques involve polymers and hydrogels that
respond to electricity and heat. Electroactive Polymers (EAPs) can change shape in response
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to an electric field, enabling precise control over the creases (Fig.1.14a)[76]. Magnetic actu-
ation, achieved by embedding magnetic materials within the structure, allows remote control
via magnetic fields, useful in confined or hazardous environments (Fig.1.14b)[77]. Thermally
responsive self-folding hydrogels fold when heated by releasing water (Fig.1.14c)[78]. Liquid
crystal elastomers (LCEs) actuate when heated beyond their activation temperature, exempli-
fied by self-propelled LCE robots (Fig.1.14d[79]). Other methods are to use Shape Memory
Alloys (SMAs), which return to a pre-defined shape when heated, enabling folding or unfolding
with temperature changes. Various smart materials can induce folding using different stimuli,
expanding the versatility of origami actuation. These methods are useful for locally actuating
creases to achieve a desired shape, though sometimes global actuation is preferred for some
instances.

1.4.2 Global actuation

Another way to actuate origami structure is by distributing the load on the facet as opposed to
actuating the creases, called global actuation. One of the most commonly used global actuation
mechanisms for origami is pneumatic actuation. Pneumatic actuation of origami structures
leverages air pressure to induce folding and unfolding, making use of the inherent flexibility and
lightweight nature of origami designs. This method works by inflating or deflating air chambers
embedded within the structure, causing it to change shape. It is particularly advantageous
due to its simplicity, efficiency, and significant movement capability. Applications include soft
robotics, where pneumatic actuators enable gentle, adaptable interactions with the environment
(Fig.1.15a)[80]; deployable structures in architecture, such as emergency shelters (Fig.1.15b)[70]
and space antennas. Pneumatic systems are lightweight and compact, offer a high force-to-weight
ratio, and are relatively simple to design and control. However, they do require a constant supply
of compressed air, precise control of air pressure, and durable materials to withstand repeated
cycles. Despite these challenges, pneumatic actuation provides a versatile and effective means
of controlling origami structures, valuable across various fields.

A recent advancement in origami actuation is dynamic actuation. Some mechanisms or
structures are kinematically constrained, but dynamic excitation causes the facets’ inertia to
deform the structure. If deformed sufficiently, some creases may snap through an unstable
equilibrium point, changing their fold direction and transforming the overall mechanism. A
study on the rectangular Miura ori unit cell, whose base is clamped to a rigid mount has shown
various possible dynamic transformations of the unit. A Y strip made up of multiple Miura
units combined can attain various possible configurations and the structure can be dynamically
actuated to go from one shape to the other as shown in Fig.1.15c and d. This transformation
can be actuated with a single electric motor[81] or spring-loaded cell[82] and is faster than the
previous actuation techniques. The important point to note is that this method requires low
stiffness and the transformation mostly occurs due to the hidden degree of freedom discussed in
the previous section.

The above pneumatic actuation mechanism shows the rich range of responses of origami
sheets to fluid loading. However, fluid is mainly used as a way to transmit uniform pressure
forces, and little use has been made of its motion in these studies so far. In the following, we will
discuss a few studies that have subjected origami designs to flows. Note, however, that most
of these studies focus exclusively on rigid structures that are fixed in a given configuration and
thus have no fluid-elastic coupling.

1.4.3 Origami in flow: Aerogami

Origami structures have been little studied in the field of fluid-structure interaction. J. Zhang
et al.[83], measured the drag force and visualize wake patterns for a fixed configuration of a
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Figure 1.15: (a) Soft gripper consisting of origami actuator and fibre. When pneumatically actu-
ated with the same pressure it takes a different shape depending on cable length[80]. (b) Pneu-
matic deployment of meter-scale inflatable shelter (schematic and experimental realization)[70].
(c) Dynamic transformation of a branching origami mechanism with five Miura vertices. A
sample of the different transformation paths that the mechanism can take[81]. (d) Dynamic
transformation of origami string with the help of bistable origami cell[82].
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Figure 1.16: (a) Flow around a Miura ori cell[83]. (b) An origami unit can be de-
ployed/compacted by a linear actuator connected to an Arduino and load sensor[84].

Miura-ori unit (fig1.16a) to determine which configuration generates the least drag. They relate
the generation of vortices induced by the folded shape to the decrease of forces. In a more active
situation (controlled by an external user), the work of Cozmei et al. investigates the use of
two folding patterns as surface controllers[84]. By actively changing the folding state (fig1.16b),
they can modify the frontal area exposed to the fluid and, as a result, the drag force. They
demonstrate that by adjusting the configuration of creases, they can achieve a targeted force
for a given flow. This work suggests that changing the configuration of a folded structure alters
its aerodynamic properties and that large shape shifts can lead to significant variations in fluid
loads. Another study used the design of an aerodynamic origami-inspired deployable fairing for
locomotives. The study depicted a reduction in the overall aerodynamic drag on the locomotive
by 16% at a 22m/s velocity[85]. Another study uses a magic ball origami pattern-inspired robot
that can change its body shape to ingest and expel water, creating a jet that propels it forward
similarly to cephalopods[86]. Later a study on the same structure was conducted to measure
its drag coefficient with different amounts of expansion[87]. One of the recent studies on the
origami structure in the flow is done in our group on the Waterbomb unit. It was shown that
the folding of the unit allows for large shape change, and this extreme reconfiguration reduces
the drag evolution with speed to the point that it reaches a plateau. The drag value at the
plateau can be tuned by mechanical and geometrical properties of the unit[88]. In line with
the previous study in this thesis, we are interested in studying deformable origami structures
(as opposed to ones with a fixed configuration) that passively adapt their shape to the fluid
environment. Given the large shape changes induced by the folding kinematics, we also expect
a new evolution of drag with flow speed that will depend on the pattern features.

1.5 Thesis outline

In this thesis, we seek to answer the following question: Can we use origami techniques to tune
the drag forces? To this end, we have to understand how folds impact the interaction of slender
structures with fluid flow. It departs from the traditional framework of fluid/structure interac-
tion as it involves unusual modes of deformations and mechanical properties. We are going to
explore origami as a platform to obtain unusual drag features, specifically tunable drag jump
which is the main aim of the thesis. We studied two fundamental origami units for this purpose.
We investigated those aspects with an approach combining experiments in wind tunnels and the-
oretical models. We studied the influence of various geometrical(length, opening angle, number
of folds) and mechanical parameters(stiffness) on the drag features and using that knowledge
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tried to reverse engineer the structures with complex desired features. This thesis is divided into
three main projects that were undertaken during the thesis. The first and second projects were
on the study of a Waterbomb unit in an open wind tunnel and under confinement. The third
chapter is on the study of the snap-through transition of the Miura ori unit via facet bending.
The detailed content of the chapter is as follows:

In the first chapter, we explore the Water Bomb unit, a fundamental origami structure known
for its bistable states and quick snap-through transitions. The unit has been used before in our
research group for its ability to have extreme shape change. In the chapter, we leverage the
unit’s bistability for drag applications for the first time. It demonstrates the unit’s potential for
significant drag reduction through abrupt shape changes, showing a marked drop in drag at a
specific flow speed. By systematically varying the unit’s geometrical and mechanical properties,
the study fine-tunes the drag discontinuity and the critical speed at which it occurs. Exper-
imental results are supported by a theoretical model. The model was then used for inverse
design, aiming to determine the origami parameters that achieve the desired drag collapse. A
few examples using the inverse design algorithm are shown as a proof of concept demonstrating
the possibility of merging multiple units to have multiple drag jumps.

The second chapter focuses on examining the application of Waterbomb unit as a valve, in
a confined configuration. A wind tunnel with a circular cross-section larger than the Origami
unit was designed for the study. The pressure drop across the confined unit was measured with
increasing flow rate, the graph being similar to the drag force depicts that the unit has non-
linear resistance. The study investigates the impact of the unit’s radius and stiffness. The same
parameters show a slightly different effect compared to the previous chapter because of the con-
finement that creates a blockage effect. The model from the first chapter is adjusted to account
for blockage effects and to compute the pressure loss across the origami unit. Additionally, we
examined the combination of valves in series, through both experiments and models based on the
unit’s resistance to flow, which shows that the two units can be added as resistance in series. This
model also suggests that units in parallel flow can function as a pressure relief valve, leading to a
sudden and amplified change in flow speed, which can be tuned by adjusting the units’ resistance.

The final chapter is about another well-known unit called Miura ori unit (or four vertex
unit). In contrast to the Waterbomb unit which deforms continuously from an initial shape to a
flat state pre-snapping, this unit retains its initial shape and snaps directly to the second stable
state. This is a consequence of the hidden degree of freedom arising from the facet bending in the
unit. Thus, the four-vertex origami structure transitions between two rigid configurations using
fluid loading. Adjusting the stiffness of this hidden degree of freedom allows us to control the
structure’s load-bearing capacity and compliance under fluid loading. Experiments were con-
ducted to investigate the effects of various geometrical and mounting parameters, which serve as
control factors to fine-tune the flipping process. Additionally, we demonstrated experimentally
the combination of multiple units in series to have multiple rigid configurations, resulting in
varied aerodynamic performance under different flow conditions.

We believe that the thesis will contribute to the nascent field of origami-based fluid-structure
interaction. We demonstrated various drag-tuning possibilities that can be utilized for various
functionalities. Origami-based structures can act as a design platform which provides finer
passive shape control in a fluid flow. Each chapter begins with a brief overview of the main
content and key objectives and concludes with a summary of the main results. Let us delve into
the details.
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Tunable drag drop via flow-induced
snap-through in origami

Fun fact: One of the earliest designs of the Waterbomb unit in France is observed in ‘Travaux
Recreatifs Pour les enfants de 4 a 10 Ans’ by Marie Koenig, which was published by Librairie
Hachette et Cie in Paris in 1898. The book describes the folding pattern to make the Waterbomb
structure which is shown to be utilized as a torch by the public.
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The content of this chapter is the subject of a paper submitted to the Journal
of Fluid Mechanics with some additional information.
This chapter is dedicated to the study of one of the fundamental origami units[89, 90] called
the Water bomb unit in the flow. This umbrella-like unit has two stable states and features a
rapid snap-through response as it transitions from one to the other. Origami structures have
already raised interest for drag control, due to their large morphing capabilities [83, 84, 88, 91].
In particular, a previous study in the group on the Waterbomb base showed that its extreme
reconfiguration tends to reduce drag to the point that it no longer increases with flow speed in
the regime of large deformation [88]. Here, we make use of its bistable nature, which has not
been utilized before for drag applications. Firstly, we demonstrate the potential for drag
collapse with this unit due to its large shape change. We show that it produces a discontinuous
evolution of drag with flow speed, marked by a sudden and significant drop as the structure
snaps through. Then we systematically vary the geometrical and mechanical properties of the
unit and show that it allows us to tune the drag discontinuity and the critical speed and
loading at which it occurs. Experiments are captured by a simplified theoretical model that is
further used for inverse design, which is finding the structural origami parameters that produce
a targeted drag collapse.
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2.1 Waterbomb unit

In this section, we give a brief overview of the Waterbomb unit cell highlighting its folding
kinematics while giving details on the fabrication process of the unit. The kinematics will later
be incorporated to make a fluid elastic model to depict the behaviour of the unit in airflow.

2.1.1 A unimodal and bistable origami mechanism

θ=θ
0

ψ
m

ψ
v

mountain fold
valley fold

 waterbomb N=8

�R

θ
0
�

a b

Figure 2.1: (a) Waterbomb unit with radius R, composed of eight alternating valley and moun-
tain folds with respective angles ψv and ψm, and with unimodal kinematics (for symmetric
folding) described by the angle θ. In the absence of loading, the unit sits in one of two stable
equilibria with angle θ0 and θ

∗
0. (b) The Waterbomb unit was laid flat to demonstrate the sector

angle between mountain and valley folds.

The Waterbomb base consists of a disk of radius R, featuring N creases with alternat-
ing mountain and valley folds distributed evenly with sector angle α around a central vertex
(Fig.2.1b). The present study assumes the unit to be rigid-foldable. Namely, facets are consid-
ered rigid, with all movement occurring at the joints, thus simplifying the kinematic analysis.
Additionally, we assume symmetry of motion, based on experimental observation, meaning that
all the mountain folds deflect by the same amount, and the same holds for the valley folds. As
a result, the mechanism reduces to one degree-of-freedom system [89, 92], where the shape of
the entire structure can be determined from a single variable, chosen as the angle θ between a
valley fold and the central axis passing through vertex (see Fig.2.1a).

Importantly, this unimodal origami mechanism has two stable equilibrium states and can
transition between them through snapping. When at rest, the folded unit sits in one of these
stable positions with its vertex pointing in one direction (see Fig.2.1a top). Upon applying an
external force, the structure flattens out towards a plane that represents an unstable equilibrium.
When displaced beyond this plane, it snaps through and moves to a second stable position with
the vertex pointing in the opposite direction (see Fig.2.1a bottom). These two stable positions
are characterized by angles θ0 and θ∗0, and although they may look similar in Fig.2.1left, they
are not mirror images of each other. The relationship between the angles of mountain and valley
folds, Ψm and Ψv (measured in terms of the deviation of straightness, see Fig.2.1a), and θ also
differs on both sides of the unstable equilibrium [89] as we will see in the next section.

2.1.2 Folding kinematics

The folding kinematics(how the unit folds) of the Waterbomb base have been described exten-
sively in previous work [88, 89, 93], and we only recapitulate here the main elements. The
derivation given here is for a traditional Waterbomb unit, but it can easily be modified for any
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Figure 2.2: (a) Waterbomb base, featuring the various relevant angles, and the unit vectors w2p

and w2p+1 aligned along the mountain and valley creases. (b) Variation of the dimensionless
projected area S = S/πR2 with the opening angle θ.

number of folds. The traditional version comprises a disk with a radius R, featuring N = 8 folds
that radiate from the centre and are separated by equal sector angles α = 2π/N . As discussed
in the previous section we assume that the facet do not deform and folding is symmetric.

In line with [88, 93], the folding kinematics is derived by using the unit vectors w2p and
w2p+1, which are aligned respectively with the mountain and valley creases, with p = 0, ..., 3
and w0 = w8. The components of these vectors in the Cartesian system coordinate, shown in
Fig.2.2a, are:

w2p = (sinϕ cos 2pα, sinϕ sin 2pα, cosϕ)

w2p+1 = (sin θ cos(2p+ 1)α, sin θ sin(2p+ 1)α, cos θ)
(2.1)

with ϕ the angle between valley folds and the central z-axis (see Fig.2.2a). The rigid facet
assumption, expressed as w2p.w2p+1 = cosα, establishes a relationship between θ and ϕ :

cosϕ cos θ − cosα(1− sin(ϕ) sin(θ)) = 0 (2.2)

Equation 2.2 can be rewritten as :

ϕ(θ) =


arccos

(
cosα cos θ

1 + sinα sin θ

)
for 0 ≤ θ ≤ π/2

arccos

(
cosα cos θ

1− sinα sin θ

)
for π/2 < θ ≤ π − α

(2.3)

The first relation describes the opening kinematics and the second one describes the closing
past the flat configuration θ = π/2. The angles of the mountain and valley folds denoted as ψm

and ψv respectively, can be expressed in terms of θ and ϕ [93]:

cosψv = cos 2θ

cosψm = cos 2ϕ
(2.4)

Their expression as a function of θ thus differs on each side of the flat configuration. By taking
the projection of the area of the unit in the xy-plane we obtain the projected area S, which
will later be used to describe the origami kinematics, rather than θ, since it is easily accessible
experimentally. The non-dimensional expression (normalizing by the area of the flat state πR2)
for the projected area S is given by:

S =
S

πR2
= n.ez = sin θ sinϕ (2.5)
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Where n is the unit vector normal to the facet defined by vectors w2p and w2p+1:

n =
w2p ×w2p+1

||w2p ×w2p+1||
(2.6)

The evolution of the dimensionless projected area S of the unit with the opening angle θ as the
unit opens up and closes is shown in Fig.2.2b. We see that S is 0 for θ = 0 and 135◦ denoting
fully closed states before and after snapping for the unit with 8 folds. Also, it reaches 1 for
θ = 90◦ when it is a flat disk. In a later section, we will see this plot for different numbers of
folds.

2.1.3 Elastic potential energy and bistability

a b

�

���

�

Figure 2.3: (a) Elastic potential energy landscape for the Waterbomb base, displaying two stable
states with angles θ0 and θ

∗
0, separated by an unstable planar state, for varying θ0. (b) Evolution

of θ∗0 with θ0. Corresponding dimensionless projected areas S0 and S∗
0 are shown in the inset.

The mechanical behaviour of the origami unit is modelled by treating its folds as elastic
hinges with rigidity κ and length R. The elastic potential energy comprises contributions from
the N/2 mountain folds and the N/2 valley folds:

Eel =
NκR

4
[(ψm − ψ0

m)2 + (ψv − ψ0
v)

2] (2.7)

Here, ψ0
m and ψ0

v denote the rest angles of the mountain and valley folds. Using the angle ex-
pressions from Eq.2.3 and Eq.2.4, Eel can be expressed as a function solely of θ and θ0. Fig.2.3a
shows the evolution of the normalized elastic potential energy Eel/κR as a function of θ for var-
ious rest angles θ0. The energy landscape features two wells corresponding to two stable states,
which are separated by an unstable flat state at θ = π/2. Smaller values of θ0 (corresponding to
compact states, light grey curve) have a higher energy barrier to overcome to transition to the
second stable state. The second equilibrium configuration is also correspondingly more compact
(higher θ∗0), resulting in a more pronounced shape change upon snapping. The relationship
between θ∗0 and θ0 can be numerically determined through energy minimization for a given θ0,
as illustrated in Fig.2.3b. The inset of Fig.2.3b also shows the evolution of the dimensionless
projected area S0 and S∗

0 for the two stable states, showing that the two states are not the
mirror image of each other and that the second one is always slightly more open than the first
one.
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Figure 2.4: (a) Elastic potential energy landscape for the Waterbomb base for a varying number
of folds N . (b) The folding kinematics of the Waterbomb unit with θ0 = 41◦ and different
numbers of folds. The red points correspond to the first and second stable states on the left and
right sides of the flat state respectively.

2.1.4 Elastic potential energy for different number of folds

We see that increasing the number of folds increases the potential energy barrier that the unit
needs to cross to go to the second stable state as depicted in Fig.2.4a. The unit with a higher
number of folds also has lower elastic potential energy for the second stable state. Also, the
normal area of the second stable state becomes lower with the increasing number of folds,
indicating the second stable state becomes more closed on increasing the number of folds (see
Fig.2.4b). Thus, changing the number of folds not only modifies the potential energy of the unit
but also modifies the folding pathway. This modification seems more pronounced in the closing
phase of the unit(θ > 90◦) in comparison to the opening phase(θ < 90◦).

2.1.5 Fabrication of the origami unit

Specimens are fabricated using a technique developed in a previous study [88] and inspired by
the literature [94, 95], which is based on layer superposition. The rigid facets are laser cut from
a 350µm thick sheet of Mylar (Polyethylene terephthalate, abbreviated as PET), which is then
attached to a thinner sheet using double-sided tape with a 2.5 mm spacing that forms the creases.
The unit is then hand folded and maintained in a desired configuration on a mount, placed in
a heating chamber for an hour at 75◦C, and then left to cool down at room temperature. See
Fig.2.5a for the fabrication process. It thus effectively prescribes the first stable state θ0 and the
corresponding second stable state θ∗0. One such unit with rest state 41◦ and its corresponding
second stable state is depicted in Fig.2.5b. This annealing process relaxes any residual stresses
that might have been created during folding [90] so that the first stable state is close to a zero-
energy state. Here, we have utilized the thermo-formable property of the material. As shown in
a previous study, the folds then operate as torsional springs, exhibiting elastic behaviour around
their assigned rest angle [88]. The side view and the bending of a single fold are depicted in
Fig.2.5c. By laser cutting, the radius and number of folds of the origami unit can be easily
modified. The rest angle is modified by putting the unit in the desired opening angle in the
mount whereas the stiffness can be adjusted by using different thicknesses of the thin sheet,
ranging from 40− 100µm.
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Figure 2.5: (a) Fabrication process using layer superposition. (b) Two stable states of the unit
for the rest angle 41◦ and (c) side view and bending of the fold.

Sheet Thickness (µm) 48 50 75 100

Fold stiffness κ(N) ×10−3 8 19 53 92

Table 2.1: Stiffness measured for folds made from sheets with different thicknesses.

2.1.6 Fold stiffness measurement

To measure fold stiffness, a prototype of a single crease was designed. Two facets are laser-cut
in a 350 µm thick sheet of Mylar and adhered to a thinner sheet using a double-sided tape with
a 2.5 mm spacing, constituting the flexural hinge. While keeping one of the facets vertically
fixed, we apply a variable point load to the geometrical centre of the free facet and extract the
opening angle of the fold Ψ (see Fig.2.6a). The opening angle in the absence of load is set to
Ψ0 ≈ 113◦ for all the tests, but note that the stiffness was found independent of Ψ0 in the
previous study of [88]. The fold acts as a torsional spring between two rigid facets, exhibiting
a linear relationship between the torque applied T (accounting for the weight of the hanging
facet as well) and the angular deviation Ψ − Ψ0 (see Fig.2.6b). The stiffness is extracted from
the slope as T = κL(Ψ−Ψ0), with L = 4 cm the crease length. Table 2.1 displays κ values for
the four thin sheets. Repeatability and robustness were assessed by measuring κ for eight folds
from a 50 µm sheet, resulting in an 8% variability based on standard deviation relative to the
mean value.

2.2 Drag collapse through snapping

In this section, we explore the behaviour of the Waterbomb unit in the presence of fluid loading
while shedding light on the influence of various geometrical and mechanical parameters on this
behaviour.

2.2.1 Experimental setup and typical drag collapse

For the experimental tests Origami units are subjected to a steady air flow generated by an open
jet wind tunnel with a square cross-section of width 40 cm and flow speed varied in 1− 16 m/s.
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Figure 2.6: (a) Fold stiffness is assessed by measuring the opening angle Ψ of a single fold while
applying a variable point force at the centre of the free facet. (b) Torque T as a function of
the angular deflection relative to the rest angle Ψ − Ψ0, for folds made from sheets of varying
thickness.

An elbow arm is used upstream, to hold the unit at its vertex in the centre of the cross-section
(see Fig.2.7a). This arm is connected to a six-component force sensor, measuring the drag
component of the fluid force in the direction of the flow. For each measurement, we average the
drag over 30 seconds and subtract the drag on the support system alone. The flow-induced shape
changes are characterized through the projected area S of the unit in the plane perpendicular
to the flow, captured by a camera placed downstream and extracted through Matlab custom
image analysis. The observed kinematics align with the unimodal mechanism described earlier,
which is rigidly foldable with motion restricted to the joint and exhibits rotational symmetry
of motion. The entire geometry of the unit can be reconstructed from S, which will be further
used as the observable to measure shape reconfiguration.

Fig.2.7b-c displays the results of a typical experiment. The unit is initially in its first stable
position θ0, with the concave side facing the flow. As the flow speed gradually increases, the cell
symmetrically opens up. The expansion of the frontal area, reported in Fig.2.7c, leads to a faster
increase of drag with flow speed (solid black curve in Fig.2.7b) compared to the classical U2 law
observed for a rigid cell frozen in its initial configuration (dashed grey curve in Fig.2.7b). When
the cell reaches the unstable flat state, it snaps to a more compact and streamlined configuration.
Note that slight cell vibrations make it challenging to precisely attain S/πR2 = 1. The sudden
reconfiguration results in a discontinuity in the drag force on the unit, and the shape change
is significant enough to produce a drag-drop by up to 69% among the specimens tested in this
study. As U is further increased, the unit closes up, reducing the frontal area exposed to flow.
This closing regime has been extensively studied in a previous study [88]; it features an increase
of drag that is slower than the quadratic U2 law for rigid objects, owing to the reduction in
frontal area combined with shape streamlining.

We thus observe a non-continuous evolution of drag with flow speed with a marked collapse.
This behaviour can be described by selected observable parameters, namely the critical flow
velocity of the snapping Uc, the maximum drag force reached just before snapping Fd,max,
and the subsequent drag drop ∆Fd. These parameters are prominent features characterizing
the discontinuity but are also relevant for practical applications, such as designing protection
devices or valves. They determine a maximum load, the amount of load reduction, or the critical
speed at which the structure would operate. In the following sections, we investigate how those
quantities are related to the origami geometrical and mechanical properties, specifically its size
R, rest configuration θ0, number of folds N , and fold stiffness κ. Before that, let’s quickly go
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Figure 2.7: Drag collapse through flow-induced snap-through of a bistable origami unit.(a)
Experimental setup for the drag measurement. The Waterbomb unit is mounted on the force
sensor with a 3D-printed elbow joint with a concave side facing the flow. The evolution of the
frontal area (S) is captured with the camera placed downstream. Evolution of (b) the drag
force Fd on the bistable origami cell when exposed to a uniform airflow with increasing velocity
U , and of (c) its dimensionless frontal area S/πR2 projected in the plane perpendicular to the
flow. The drag collapse observed in the snapping unit (with R = 5 cm, κ = 19 × 10−3 N and
θ0 = 41◦, black solid curves) is contrasted with the quadratic drag experienced by a rigid unit
with the same geometry (same R and θ0, grey dashed curves).
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Figure 2.8: Evolution of drag force Fd and dimensionless projected area S = S/πR2 with
flow speed U , for origami specimens with R = 5 cm, κ = 19 × 10−3 N and θ0 = 41◦. In (a),
experiments are replicated across five independent cells sharing the same parameters. In (b), the
same cell is tested three times, with re-annealing between each iteration. Data points represent
the mean values, and error bars indicate the standard deviation (the grey zone denotes the
variation in critical speed).

through the repeatability of the experiments and the percentage error in various measurements.

2.2.2 Repeatability of the experiments

To test the reproducibility of the experiments and of the fabrication process, we repeated ex-
periments in the wind tunnel for five distinct units fabricated with identical parameters R = 5
cm, κ = 19× 10−3 N and θ0 = 41◦ (which is the common configuration for all three parametric
series of origami cells). Fig.2.8a presents the mean values for drag and the cell projected area,
with error bars corresponding to the standard deviation. The grey region denotes the variation
in the critical speed for snap-through Uc. The associated relative errors are of the order of 7%,
9.5% and 5%, respectively for Fd, S/πR

2 and Uc. The higher spread in the projected area is
attributed to the use of instantaneously captured images, while the units tend to slightly flutter
when approaching the unstable planar state.

To pinpoint the primary source of error, we also conducted three repetitions of the exper-
iments using the same unit. Before each test, the unit underwent an hour of re-annealing in
the oven, followed by an additional hour of cooling at room temperature to ensure a consistent
initial cell configuration. The mean values and standard deviations for the measurements are
depicted in Fig.2.8b. The relative error in both plots is within 2%. The reduced variability com-
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Figure 2.9: Influence of the radius and fold stiffness on drag. Evolution of (a and c) the drag
force Fd and (b and d) the dimensionless frontal area S/πR2 as a function of flow velocity U ,
for origami units with different (a-b) radii R and (c-d) fold stiffness κ. The unit R = 5 cm,
κ = 19× 10−3N , N = 8 and θ0 = 41◦ is common to all graphs.

pared to Fig.2.8a suggests that the predominant source of variability comes from the fabrication
process rather than the experimental measurement method, notably concerning the detection of
the snap-through threshold.

2.2.3 Influence of size and stiffness

This section is designated to our exploration of the influence of different stiffness and radii on
the drag behaviour. We first vary the radius R of the unit, while keeping the stiffness to be
κ = 19× 10−3 N, the number of folds to be N = 8 and the rest angle to be θ0 = 41◦. Note that
fabrication produces a small variability in the rest angle among specimens, which is visible in
Fig.2.9b in the 6% dispersion in the dimensionless frontal area in the absence of flow (U = 0).
As shown in Fig.2.9a-b, all units exhibit the characteristic behaviour described earlier, that is
a non-continuous evolution of drag with flow speed with a sudden drop associated with the
snap-through of the origami unit. However, bigger units (darker red curves) initially experience
a higher fluid loading, because of the larger area exposed to the flow. As a result, they reach
the flat state S/πR2 = 1 faster and flip at a lower critical speed (see Fig.2.9b). Interestingly, in
Fig.2.9a, the maximum drag Fd,max experienced by the units before snapping is the same, and
they feature similar jumps amplitude ∆Fd. Changing the radius of the unit thus primarily shifts
the critical velocity Uc at which the drag collapse occurs, while preserving Fd,max and ∆Fd.

Fig.2.9c-d shows the results for origami cells with different fold stiffness, but the same size
R = 5 cm, number of folds N = 8 and rest angle θ0 = 41◦ (with a similar degree of variability
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Figure 2.10: Evolution of the dimensionless drag Fd = Fd/κ as a function of the Cauchy number
Cy = ρU2R2/κ for origami units with different radii R and fold stiffness κ (while maintaining
the same rest angle θ0 = 41◦ and number of folds N = 8). Experimental data are presented
with the same markers and colour code as in Fig.2.9.

as earlier). Stiffer units (darker blue curves) deploy slower with increasing U owing to larger
resistance to deformation, and reach the flat state at larger critical velocities (see Fig.2.9d).
The most rigid one does not reach this unstable point within the range of flow covered here.
Snapping at larger speeds Uc results both in higher drag peak values Fd,max and larger jumps
∆Fd (see Fig.2.9c). Stiffness thus affects all three drag features, offering an additional lever for
control.

The trends observed through variations in parameters reflect the interplay between external
fluid loading and elastic restoring forces of the origami unit, which governs the unit’s reconfig-
uration process. This fluid-elastic competition can be analyzed in terms of Cauchy number Cy,
as introduced in a previous study [88] and frequently used in the literature [30, 33, 96]. This
dimensionless number examines the relative magnitudes of the work done by fluid forces, ρU2R3,
and the elastic energy of folding, κR:

Cy =
ρU2R2

κ
(2.8)

In Fig.2.10, drag measurements are re-plotted in the dimensionless form Fd = Fd/κ as a
function of Cy, using the fold stiffness κ as a characteristic force scale, in line with [88]. Here,
we only report data for units with different stiffness κ and radius R, which share the same initial
rest configuration θ0 and number of folds N . Data collapse onto a master curve, with a drag
peak and subsequent jump that are solely set by the fold stiffness, and which occur at a critical
Cauchy number of Cy,c ≈ 14 for all units. The dimensionless quantities Cy and Fd capture the
effect of origami size and stiffness in fluid-elastic mechanisms. However, it does not account for
the more intricate influence of the rest angle θ0 and number of folds N as we will discuss in the
next section.
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Figure 2.11: Influence of the rest angle and number of folds on drag. Evolution of (a and c) the
drag force Fd and (b and d) the dimensionless frontal area S/πR2 as a function of flow velocity
U , for origami units with different (a-b) rest angle θ0 and (c-d) number of folds N . The unit
R = 5 cm, κ = 19× 10−3N , N = 8 and θ0 = 41◦ is common to all graphs.

2.2.4 Influence of the rest angle and the number of folds

Now we vary the degree of opening of the cell rest state θ0, while keeping the size, number of
folds and stiffness constant as R = 5 cm, N = 8 and κ = 19×10−3 N respectively. Starting from
a more compact rest state (dark green curves) delays the flipping towards higher flow velocities,
as depicted in Fig.2.11a. Intuitively, reaching the flat state that is further away requires greater
work from fluid loading. As was the case for the κ-series of units, snapping at greater Uc

results in larger maximal drag Fd,max in Fig.2.11a. As mentioned earlier and illustrated in the
schematics of Fig.2.3a, changing θ0 also affects the degree of closure of the second stable state.
Small θ0 (dark green) results in a larger collapse in the frontal area post-snapping compared to
units initially more opened (light green) in Fig.2.11b. It correspondingly leads to larger jumps
in drag ∆Fd in Fig.2.11a.

Finally, we vary the number of folds N , while keeping the size, stiffness and rest angle as
R = 5 cm, κ = 19 × 10−3 N and θ0 = 41◦ respectively. Increasing the number of folds has a
similar effect to changing θ0 i.e., it changes the energy barrier and the degree of opening of the
second stable state (Fig.2.3 and Fig.2.4). A consequence of this can be seen in Fig.2.11c, the unit
with a higher number of folds (black curve) flips at a higher flow rate leading to a larger change
in drag force in comparison to the unit with a lower number of folds (light grey curve). While
modifying the potential energy curve, the number of folds also modifies the folding pathway of
the unit (Fig.2.4b), unlike changing θ0. The units with a different number of folds post-snapping
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converge to a similar drag value(2.11c) and the frontal area evolution(2.11d) is also the same in
contrast to the units with different rest state where there is a clear distinction between different
units. As the influence of the rest state is more prominent on the jump and post-snapping
behaviour, it seems to be a better drag-tuning parameter than a number of folds. By changing
the four sets of parameters discussed above we can change the three drag characteristics Uc,
Fd,max, and ∆Fd.

2.3 Theoretical fluid-structure model

Next, we develop a simplified theoretical model to further explore and corroborate the link be-
tween the origami unit’s characteristics and drag. The Reynolds number for our experiments
falls within the range Re = UR/ν ≈ 103−105, where form drag predominates over friction drag,
and the latter is neglected.

2.3.1 Theoretical modelling

ex
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Figure 2.12: Parameterization used to compute the work of fluid forces on a facet defined by
the unit vectors w0 and w1.

To model the origami unit’s response to a flow, we adopt the same energy-based approach
from prior work on the Waterbomb unit’s closing dynamics of the Waterbomb in a flow [88].
We recapitulate here the main elements and extend it to include snapping. The unit’s static
equilibrium in a flow is determined by minimizing its energy Eel −W , which includes both the
elastic potential energy Eel, and the work done by fluid forces W as the unit deforms from its
initial rest state θ0 to an angle θ:

Eel −W =
NκR

4
[(ψm − ψ0

m)2 + (ψv − ψ0
v)

2]−N

∫ θ

θ0

∫
Sf

ρ(U .n)2dSfn.dX (2.9)

Where ρ denotes the density of the fluid and other quantities are introduced later. The second
term sums the work done by fluid loading on each facet (with area Sf = πR2/N), which is the
same for all of the facets due to the symmetry of motion. Fluid pressure forces acting on each
surface element of a facet are integrated along the local displacement dX. Note that n and
X are functions of the folding angle θ. Pressure is modelled using the momentum conservation
arguments, following the approach in [30–32, 88]. It scales with the momentum carried by the
flow in the direction perpendicular to the facet ρ(U .n)2, with n the normal unit vector as defined
in Eq.2.6.

As discussed in Ref.[88], friction forces likely become significant in regimes with substantial
deformation, where facets nearly align with the flow. However, this particular regime is not
reached in our present study. Consistent with earlier studies on the reconfiguration of flexible
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structures in a flow [30–32, 88], pressure is computed using conservation of momentum principles.
While simplified, this model has demonstrated effectiveness in capturing fluid-elastic behaviours
[30–32, 88]. It offers a reasonable approximation of more complex potential flow expressions [34,
88], which would be challenging to implement for three-dimensional geometries. The trajectory
X of each surface element of a facet is obtained from the kinematics analysis presented earlier.
We consider the facet of Fig.2.12 associated with the crease vector field w0 and w1. A point
on the facet is localized through the distance r ∈ [0, R] and polar angle β ∈ [0, α], as shown
in Fig.2.12. Its position vector is expressed as X = rer with er the radial unit vector. This
vector lies in the (w0,w1) plane and can thus be expressed as a linear combination of these two
vectors:

er =
w0 + Cw1

||w0 + Cw1||
=

w0 + Cw1√
1 + 2C cosα+ C2

with C verifying er.w0 = cosβ (2.10)

From Eq.2.10, the parameter C can be expressed as a function of α and β:

C =
− cosα(cos2 β − 1) + cosβ

√
(cos2 β − 1)(cos2 α− 1)

cos2 β − cos2 α
(2.11)

Deformation of the origami unit by dθ results in elementary displacements dX for points of
the facet :

dX = r
der
dθ

dθ =
rdθ√

1 + 2C cosα+ C2

(
dϕ

dθ
cosϕ+ C cos θ cosα,C cos θ sinα,−dϕ

dθ
sinϕ− C sin θ

)
(2.12)

The work done by fluid forces on all of the facets then writes:

W = −NR
3ρU2

3

∫ θ

θ0

sin2 θ sin2 ϕ

[
A
dϕ

dθ
sin θ +B sinϕ

]
dθ (2.13)

With A and B given by:

A =

∫ α

0

1√
1 + 2C cosα+ C2

dβ and B =

∫ α

0

C√
1 + 2C cosα+ C2

dβ (2.14)

The equilibrium angle θ of the unit in the flow is then given by the zeros of d(Eel −W )/dθ,
which yields the equation:

(ψm − ψ0
m)
dψm

dθ
+ (ψv − ψ0

v)
dψv

dθ
+

2

3
Cy sin

2 θ sin2 ϕ

[
A
dϕ

dθ
sin θ +B sinϕ

]
= 0 (2.15)

Where Cy = ρU2R2/κ is the same Cauchy number as defined for experiments. Eq.3.5 is numer-
ically solved using the nonlinear system solver fsolve of Matlab. The Cauchy number is varied
linearly from 0 to 50 in 500 steps, and the solver utilizes the value of θ obtained at the previous
iteration as a starting point (initializing at θ0 for Cy = 0). As θ approaches the flat state beyond
π/2 − ϵ, with ϵ = 0.01 radians, Eq.3.5 is then solved using the new set of equations describing
the angles in the closing part of the kinematics (given in Eq.2.3) with first starting point at
π/2 + ϵ.

From the equilibrium angle θ, we obtain the dimensionless projected surface S using Eq.2.5,
and the dimensionless drag force by projecting pressure fluid forces in the direction of the flow
ez:

Fd = Fd/κ = πCy sin
3 θ sin3 ϕ (2.16)
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Figure 2.13: Aeroelastic mechanism. Evolution of the dimensionless drag Fd = Fd/κ as a
function of the Cauchy number Cy = ρU2R2/κ (a) for origami units with different radius and
fold stiffness (while keeping the number of folds N = 8 and initial degree of opening θ0),(c)
different initial degrees of opening θ0 (while keeping the same R = 5 cm, number of folds N = 8
and κ = 19 × 10−3 N) and (d) for different number of folds N while keeping other parameters
fixed. Experimental data are presented with the same markers and colour code as in Fig.2.10
and Fig.2.11, and compared to theoretical predictions (solid curves). For different radii and
fold stiffness the theoretical curve is overlaid on the experimental curve in black. For the other
parameters, the theoretical curves are displayed in a separate graph for readability, and with
the same colour gradient as in experiments. (b) The black curve for normalized area S̄ depicts
the theoretical folding kinematics of the unit with red dots indicating the two stable states. In
the presence of the flow, the unit flips to a more closed state which leads to the drag jump (blue
curve).
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2.3.2 Comparison with experiments

Theoretical drag results are presented in Fig.2.13 in dimensionless form, considering a given
rest angle θ0 = 41◦ based on experiments (black solid line). The simplified model successfully
captures experimental features, displaying a peak in drag that remains unaffected by the unit’s
size and fold stiffness, followed by a sudden drop at a critical Cauchy number. Although the
model tends to overestimate Fd,max and ∆Fd, the quantitative agreement is reasonable, consid-
ering that no adjustable parameters were used and the simplifications made. The blue curve in
Fig.2.13b depicts the morphing of a Waterbomb base along its folding pathway (black curve)
when subjected to a flow with increasing speed U . This evolution is computed using the fluid-
elastic model. In the absence of flow, the unit resides in its first stable state (denoted by the
red point). As U rises, it unfolds, and upon reaching the flat unstable state (S̄ = 1), it abruptly
snaps towards a state that is more compact than the state S̄0 due to the fluid loading, this state
is close to the initial normal area S0. It is important to note that even though the units with
different rest configurations follow the same folding pathway(same evolution of S with θ), they
have different potential energy curves (Fig.2.3a). As depicted in the lower panel of Fig.2.13, the
model also effectively captures the impact of varying the initial rest angle θ0 and the number
of facets N on drag. A more compact unit exhibits a higher drag peak and jump, along with a
higher critical Cauchy number. Similarly, the unit with a higher number of folds tends to have a
higher drag peak, jump and critical Cauchy number. This model will be valuable for the inverse
design of origami units to achieve the desired drag, as we will discuss in the next section.

2.4 Inverse design approach

2.4.1 Inverse problem

We have characterized how the Waterbomb unit features influence its drag behaviour. We now
pose the question: “Can we identify the specific geometrical and mechanical origami parameters
that would lead to a targeted drag collapse in a uniform fluid flow?” More specifically, we
formulate the inverse problem where the objective is to find the optimal set of parameters
(R, κ, θ0) that will result in a collapse of drag, with a predefined target peak drag force F t

d,max

and jump ∆F t
d value at a critical flow speed U t

c . To address this, we use the model presented
earlier and validated experimentally, which establishes a relationship between the parameters
(R, κ, θ0) and the resulting drag characteristics (Fd,max,∆Fd, Uc). Even though the model can
take into account the influence of the number of folds (N), we did not use it because firstly we
lack a deeper understanding of it and secondly the number of folds can be integer numbers only
in real life which will reduce the possibilities in the experimental realizations of the units. So,
because of practical reasons, we fix N = 8 for inverse design.

The optimization is implemented numerically in Matlab using the trust-region-dogleg algo-
rithm of fsolve solver. As seen in the inverse design flow chart (Fig.2.14), we start with an
initial guess(R0, κ0, θ00) and using the model discussed in the previous section to obtain a non-
dimensional plot which is then converted to the dimensional plot, the values ∆F 0

d , F
0
d,max and

U0
c are then extracted from the graph and compared to the target drag curve. If the value

matches it returns the fabrication values (R, κ, θ0) else the initial guess is updated (using the
trust-region-dogleg algorithm) till the required convergence is achieved. Thus our optimization
loop solves the system of equations Fd − F t

d,max = 0, ∆Fd − ∆F t
d = 0 and Uc − U t

c = 0 with
respect to the origami unit’s features (R, κ, θ0). The algorithm finds a single solution, satisfying
the constraints by a maximum residual of O(10−19) within a hundred iterations.
To validate the inverse design approach, we test our prediction experimentally by fabricating
the optimized design and measuring the evolution of its drag with flow speed. While the specific
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Figure 2.14: Inverse design flow chart. Various steps followed during the process of inverse
design. We start with an initial guess (unit’s parameters i.e,R, κ and θ0) and desired target
drag features (Fd,max, ∆Fd and Uc) as the input for the optimization algorithm, which returns
us the fabrication values required to get the targeted drag curve.
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radius R and rest angle θ0 can be easily implemented through laser-cutting and an adjustable
mount during thermoforming, achieving an arbitrary fold stiffness κ is more challenging. This
limitation arises from the finite number of sheet thicknesses available for manufacturing the
folds. Let us describe the method used to change the stiffness of the folds before presenting the
results from the inverse design approach.

2.4.2 Achieving arbitrary stiffness

a b

L0
ls

c

Figure 2.15: (a) To adjust fold stiffness, slits of varying length ls and number ns, spaced at
5 mm intervals, are incorporated into the crease. (b) Stiffness κ of a slitted fold, relative to
the uncut fold stiffness κ0, as a function of the ratio of the remaining material length L = lsns
to the total length L0, for a fold made from a 75 µm sheet. The red point corresponds to a
stiffness that mimics an uncut fold made from a 50 µm sheet. (c) Evolution of the drag force
as a function of the flow velocity for two origami units with the same fold stiffness: one with
slitted folds (grey curve, corresponding to the red point in (b)) and the other with unslitted
folds (black curve, same curve as in Fig.2.8a). For both specimens, R = 5 cm and θ0 = 41◦.

The finite sheet thickness poses a constraint, particularly in the context of the inverse design
process requiring arbitrary κ. To address this, we employ a strategy inspired by prior work
[95] and introduce slits in the folds. Slits with length ls = 5 mm are evenly distributed along
the crease length L0, and span its width (see Fig.2.15a). Adjusting their number ns modulates
the effective length of the fold L = L0 − nsls, thereby changing its stiffness and facilitating the
attainment of diverse κ values. As shown in Fig.2.15b, the stiffness of a slitted fold scales linearly
with its effective length, with a 7% deviation from the expected linear relationship. The crease
stiffness is associated with the bending of the flexural hinge, so it scales linearly with the length
in the transverse direction of bending. This is seen previously in fig.2.6 with linear evolution of
torque with the fold angle.

To verify the minimal impact of slits on the interaction of the origami unit with the flow, we
conducted experiments with two specimens —one with slitted folds and another with unslitted
folds— both having the same stiffness. The stiffness of folds made from a 50 µm thick sheet is
replicated using a 75 µm thick sheet with slits corresponding to the red point in Fig.2.15b. As
shown in Fig.2.15c, these two specimens exhibit nearly identical drag curves, with only a slight
deviation at higher flow velocities. This similarity indicates that the slits have minimal impact
on the unit’s performance in the flow.

2.4.3 You get what you want!

To demonstrate our ability to control the drag behaviour(or show that our inverse design model
works), we create sets of specimens with one parameter gradually changing while keeping the
other two fixed. We first vary the targeted critical flow speed for snapping, as U t

c = [4, 7, 10] m/s,
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Figure 2.16: Targeting drag collapse features. (a) The inverse design approach consists of finding
the set of origami structural parameters (R, κ, θ0) that will lead to a collapse of drag with a
targeted maximum before snapping Fd,max, jump ∆Fd, and occurring at a defined critical flow
speed Uc. Evolution of drag with flow speed for physical prototypes of optimized origami designs,
which are calculated to produce a selective variation of (b) Uc, (c) ∆Fd, and (d) Fd,max, while
keeping the two remaining features identical. Respective target values of (Uc, ∆Fd, Fd,max) are
indicated in the Table 2.2

.

while prescribing constant peak drag value F t
d,max = 0.8 N and jump ∆F t

d = 0.6 N. The corre-
sponding optimized origami parameters (R, κ, θ0) are provided in the Table2.2. Consistent with
the differences observed earlier in Fig.2.13 between experiments and theory, the experimental
realizations exhibit lower values in Fig.2.16b, namely Uc = [3.7, 6.0, 8.8] m/s, Fd,max = 0.29 N
and ∆Fd = 0.10 N. Nevertheless, we successfully achieved a gradual variation in Uc while keep-
ing the other two parameters unchanged. Note that the optimized designs have the same rest
angle and fold stiffness, but varying radii, which is consistent with the previous results shown
in Fig.2.9a. We indeed demonstrated that Fd,max and ∆Fd are size-independent and, therefore,
determined by the specific combination of (κ, θ0). In Fig.2.16c and d, we systematically vary the
jump ∆Fd and peak Fd,max respectively (target values are reported in the Table2.2). Similarly,
although the physical samples have drag quantities below the target values, they still showcased
the intended selective variations. Our results confirm the validity of our inverse design approach,
but there are limitations to how closely we can match desired drag behaviours.

2.4.4 Discussion on the gap to the target

The differences between the experimental and theoretical curves arise primarily from the theo-
retical model employed in the optimization procedure. While it accurately captures the impact
of origami parameters on drag, it only provides semi-quantitative agreement with the experi-
mental data. Note that deviations between the targeted drag features and those of the resulting
optimized design in Fig.2.16 align with differences reported in prior experimental-theoretical
comparisons of Fig.2.13. Refining the model, notably using a more realistic representation of
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Target values Corresponding cell parameters

F t
d,max

(N)
U t
c (m/s) ∆F t

d (N) κ
(×10−3N)

R (cm) θ0(
◦)

0.8 4 0.6 21 4.6 47

0.8 7 0.6 21 6.5 47

0.8 10 0.6 21 11.4 47

0.8 7 0.5 27 6.5 56

0.8 7 0.7 16 6.5 33

0.65 7 0.6 11 5.9 25

0.95 7 0.6 32 7.1 56

Table 2.2: Fabrication parameters produced by the optimization algorithm, for given target drag
parameters.

����

����

a b

Figure 2.17: Fitting parameters. Relationship between the target values and the values obtained
experimentally for (a) the critical speed Uc, and (b) the drag peak Fd,max (in black) and jump
∆Fd (in blue).

the fluid dynamics, is thus expected to produce better quantitative results. To see if the gap
between the experiments and the model observed in inverse design is coherent with the previous
experiments. We have plotted the theoretical model in fig.2.13a, incorporating the linear fit
between the experiments and model from fig.2.17.

Experimentally obtained values of (Fd,max,∆Fd, Uc) are compared to the target values in
Fig.2.17. While the experimental values of Uc are reasonably close to the target ones (see
Fig.2.17a), values of Fd,max and ∆Fd are notably lower than the target values in Fig.2.17b.
However, this disparity is expected given the semi-quantitative agreement between the model
and experiments in Fig.2.13, where the model tends to overestimate drag. From the linear re-
lationships depicted in Fig.2.17, we can extract proportionality factors between target values
and the ones experimentally obtained, for both flow speed and drag (using Fd,max values). In
Fig.2.18, the model prediction from Fig.2.13 is re-plotted by re-scaling drag and flow speed
using these proportionality factors, showing a good alignment with the experimental data. De-
viations observed in the inverse design implementation are thus consistent with the initial level
of agreement between experiment and theory. Using a more refined fluid-elastic model is there-
fore expected to improve the closeness to the target in the inverse design process. Note that the
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Figure 2.18: Updated model incorporating the linear scaling. Fig.2.13 is reproduced with the
theoretical curve modified by re-scaling for flow velocity and drag using the proportionality
factors from Fig.2.17.

theoretical ∆Fd does not align satisfactorily with experimental data in Fig.2.18, as the devia-
tion between experimental and target drag value cannot be captured by a single proportionality
factor for both Fd,max and ∆Fd in Fig.2.17b.

2.4.5 Isolines: Shedding more light on parameters

This section is dedicated to gaining further insight into the influence of fabrication parameters
on the drag features. The 3D plots with fold stiffness κ, S(or rest angle θ0) and radius of the unit
R as the respective x, y and z axes depict the isolines with two of the drag features fixed and the
third one varying (Fig.2.19). These isolines lie across a line, in a plane or in 3D space depending
on which parameters are kept fixed. Two of the isolines are plotted for all the different cases
depicted in the figure. For the first case, where Fd,max and ∆Fd are fixed, and Uc is allowed to
evolve, the isoline obtained is parallel to the R axis (Fig.2.19a). This indicates that to change
Uc while other parameters are fixed we only need to change the radius of the unit while keeping
stiffness and the rest angle constant. This is the same observation we made about Fig.2.9a and
Fig.2.16a. Note, that these isolines can span the whole positive real line and any line parallel to
the R axis will be an isoline.

If we change ∆Fd while keeping Fd,max and Uc constant the isoline so obtained lies within
a plane parallel to the plane spanned by S and κ axes or we can say it is perpendicular to R
axis (Fig.2.19b). This indicates that the units which flip at the same critical speed Uc and have

a b c

Figure 2.19: Parametric influence on drag features. (a) Isoline with constant Fd,max and ∆Fd

and variable Uc is parallel to the R axis. (b) Isoline with constant Uc and Fd,max and variable
∆Fd lie within a plane perpendicular to the R axis. (c) Isoline with constant Uc and ∆Fd and
variable Fd,max span the whole 3D space.
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the same maximum drag before flipping Fd,max but different drag jump ∆Fd can be obtained by
changing the stiffness and rest angle while keeping radius fixed. This is similar to the observation
we made in the inverse design section Fig.2.16b (2nd,4th and 5th row of the Table2.2). It is
important to realize that even though these isolines lie in a plane, any other line in the plane
will not correspond to an isoline. That is to say that any random combination of κ and S for a
given radius will not have the same Uc and Fd,max. Also, these isolines cannot span the whole
plane as the upper limit on ∆Fd is set by Fd,max.

To change Fd,max while keeping ∆Fd and Uc fixed, we need to vary all the three fabrication
parameters as depicted in isolines in Fig.2.19c which span the whole 3D space. Similar to
previous cases any random line in 3D space will not be an isoline. These isolines also cannot
span the whole space as the lower limit is set by ∆Fd. In this section we saw that to change
only Uc we need to vary one parameter namely radius R, to change only ∆Fd we need to change
two parameters simultaneously i.e, stiffness κ and rest angle S and to change Fd,max we need to
change all three fabrication parameters simultaneously.

2.5 Conclusion

In this chapter, we leverage the Waterbomb base’s bistability to sharply reduce drag force with
flow velocity. A uniform airflow unfolds the origami unit, which, upon reaching a flat state,
undergoes a snap-through to a more streamlined shape, causing a sudden collapse of drag.
While the use of elastic deformation to mitigate drag increase with flow speed is not novel [26,
30–33, 96], here, a decrease is achieved through significant and abrupt shape changes over a
small increment of fluid input load. Importantly, the snap-through is tunable based on the cell
radius, fold stiffness, and rest angle, providing control over drag characteristics.
We show that the cell behaviour results from the quasi-static mechanical equilibrium between
actuating fluid loading and restoring elastic forces, captured by a Cauchy number. The snap-
through occurs at a fixed critical Cauchy number for a given initial degree of opening. The cell
rest angle serves as an additional control, influencing both snap-through onset and drag changes.
A compact cell reaches the unstable flat state at a higher Cy and transitions to a correspondingly
compact state, producing a larger drop in drag. These experimental features are captured by
a theoretical fluid-elastic model, portraying the cell as rigid facets with folds acting as elastic
hinges, and utilizing an empirical formulation for fluid pressure forces, consistent with prior
studies. The model effectively accounts for the influence of cell structural parameters on drag,
demonstrating reasonable predictiveness despite a tendency to overestimate drag. However, such
discrepancies are expected, considering the absence of adjustable parameters and the simplified
representation of fluid dynamics, which notably does not consider the object’s retroaction on
the flow.
The modelling framework provides the system equations to guide inverse design, intending to
identify the combination of structural parameters leading to a targeted drag collapse. Our
implementation showcases an advanced level of control, allowing selective adjustment of key
drag features: namely, the peak drag before snapping, the drag drop, and the critical flow speed
at which it occurs. Currently, quantitative predictability is contingent on the model’s accuracy.
Improved closeness to the target is anticipated with more refined fluid-elastic models, positioning
this work as promising proof of concept. It illustrates the potential of origami as a platform for
programming drag-vs-speed behaviour.
This programmability holds value for self-protection strategies, mitigating excessive aerodynamic
loads beyond a predetermined threshold. Force transitions above a tunable critical flow velocity
could also serve as a velocity threshold detector. The switch-like response of the Waterbomb
base also holds the potential for fluidic control in a channel, for example, acting as a relief valve.
It would obstruct conduct as it deploys and discharges the fluid beyond a predetermined pressure
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level, limiting pressure built up. In all these applications, morphing is driven aeroelastically,
enabling the component to autonomously respond to the local environment, and eliminating
the need for additional sensing and control systems. Such passive mechanisms allow for a more
streamlined structural design of the aerodynamic control surface.
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Figure 2.20: Leveraging multistability for a double drag collapse. A multistable origami structure
is formed through the assembly of two Waterbomb units, with different fold stiffness κ1 =
19 × 10−3 N and κ2 = 53 × 10−3 N and rest angle θ0,1 = 56◦ and θ0,2 = 71◦, and the same
radius R = 5 cm (inset). The successive snap-throughs lead to sequential drag collapses when
exposed to a uniform flow with increasing speed. Different states of the multistable assembly of
the Waterbomb units are indicated on the unit with a + and -. Both the units are in the first
stable state(++), Unit of lower stiffness in a second stable state(-) and higher stiffness in the
first stable state(+), Both the units are in their second stable state(–).

An advantage of origami is the ability to easily combine multiple bistable elements to pro-
duce multistable structures [74, 97–99]. An example is shown in Fig.2.20, featuring a chain
made of two Waterbomb cells with the same size and different rest angles and fold stiffness. It
produces two successive sharp transitions in the drag force. With sufficient spatial separation,
each unit is expected to have its independent flow velocity threshold initiating snap-through.
Other configurations might, however, lead to interactions between cells through external flow,
resulting in a more complex collective response, as observed in fluidic cellular origami (albeit
for internal pressurization) [97]. Alternatively, if cells share facets, they can also communicate
the mechanical state of one unit to its neighbour, forming logic elements [100]. This has the
potential to generate more complex snapping sequences and subsequent drag evolution with flow
speed for advanced adaptive functionalities.
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Passive flow control in a channel

Fun fact: The idea of a control valve dates back to the bronze plug cocks utilized by the
Romans in their aqueduct systems. The moving-stem (automatic) valve concept was pioneered
by James Watt in the late 18th century, as part of his fly-ball governor designed to regulate the
speed of his steam engine. The evolution of control valves continued alongside the advancements
of the steam age throughout the 19th century.
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In this chapter, we examined the use of a Waterbomb unit as a valve. We constructed a
setup integrating the origami unit into a pipe, allowing us to regulate pressure loss across the
unit with varying flow rates. The opening phase of the Waterbomb unit increases blockage in
the pipe, building up pressure, followed by a sudden release via snap-through that causes
discontinuity and results in a slower pressure buildup with a further increase in flow rate.
Unlike the previous chapter, this study focuses on the unit’s performance under confinement,
which introduces a significant blockage effect. Variations in structural parameters under
confinement led to differences from the previous results, which were addressed by modelling
the confinement’s effect as an effective speed experienced by the unit. Incorporating a
non-dimensional pressure drop and a modified Cauchy number based on this effective speed
allowed for a rescaling in the model. Tests on units in series were validated using a nonlinear
resistance toy model, which also explored the behaviour of units in parallel. This model, which
was challenging to test experimentally, suggests that parallel units could function as pressure
relief valves, leading to a sudden and amplified flow speed change. The resistance of the units
can be adjusted to fine-tune this effect.
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3.1 Introduction

A valve is a component in a piping system that regulates, directs or controls the flow. This is
done by opening, closing or partially obstructing the pipe. They can be found almost everywhere
spanning from industries to the tap in our houses. The two broader categories of valves include
the one that can be controlled manually or by some actuator called active valves and the second
type which can be driven by flow parameters like pressure or flow speed are called passive valves.
A detailed review of the microvalves can be found in the review by K. W Oh and C.H Ahn[101].
Passive valves are gaining popularity because of their ability to avoid external actuators, so
they tend to make the system autonomous. This makes the design easier to implement and
more adaptive. Valves are characterized by the relationship between pressure difference across
it and flow rate, tuning which can be useful in various fields. In soft robotics non-linear soft
valves with mechanical and fluidic hysteresis can be used to activate and reprogram up to five
actuators in sequences[102]. A multimodal pneumatic soft valve capable of passive resilient
reactions, triggered by faults, can be used to prevent or isolate damage in soft robots[103].

The mechanical passive valve can be made using flaps, membranes, spherical balls or mobile
structures. A few examples of such passive valves are depicted in Fig.3.1. Fig.3.1a depicts such

ba c

Figure 3.1: Different kind of passive valves and their flow characteristics[41, 104, 105]. (a)
Deformable membrane as a Valve acting as a diode allowing flow in one direction. The soft
valve (red) is compared with the rigid one (blue). (b) Arch utilizing bistability via snap-through
deformation to attain non-monotonic flow regulation. The curves are for different blocking
parameters (w0/d) with yellow being a lower value and blue with a higher value. (c) A sphere
attached to a spring for passive flow regulation.

a passive valve and its corresponding pressure curve for changing flow rate([104]). In the study,
two membranes were attached to the opposite walls of the channel such that they could com-
pletely block the channel by coming in contact with each other or allow maximum flow by moving
close to their respective walls. This geometry allowed them to act as semipermeable membranes,
by blocking the channel in one direction and opening it up in another direction. Introducing
bistability to the plate can even be used to achieve a non-monotonic pressure flow curve by
changing the hydraulic conductivity of the channel as depicted in Fig.3.1b. On increasing the
flow speed, the initially confined channel suddenly opens up beyond a critical speed of snapping
of the strip leading to a sudden pressure drop([41]). This flexible arch when used in parallel
with a rigid channel can act as a passive fluid fuse by shortcircuiting the rigid channel above a
critical flow rate. Another way to regulate the flow can be to add a rigid obstruction (spherical
ball) in the pipe and modify the blockage with the help of a spring as shown in Fig.3.1c([105]).
In these deformable structures, the balance between the fluid forces and elastic forces governs
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Figure 3.2: Experimental setup for the study of the Waterbomb unit indicating various compo-
nents. Not to scale.

the deformation and thus the flow regulation. Most of the studies for flow regulation using
deformable structures are concerned with flow control in narrow space([49, 106–108]), making
electronic components ([91, 109, 110]) and pneumatic actuation([83, 111–114]). To our knowl-
edge, origami structures have not been studied for valve applications. It is a good candidate to
get non-linear pressure flow rate behaviour because of its own non-linear mechanical properties.
In this chapter, we demonstrate the utility of the passive deformation of the Waterbomb unit
detailed in the previous chapter in response to fluid loading as a passive flow regulator or as a
pressure relief valve at moderate to high Reynolds number. The flow regime is not the same
as the applications of origami discussed so far but the concept can be implemented at a low
Reynolds number as well, which may show different behaviour than seen here.

3.2 Construction of tunnel

To study the effect of confinement on the Waterbomb unit, an open wind tunnel with a circular
cross-section is constructed. Let us discuss various components of the tunnel and their utility.

3.2.1 Constitution of wind tunnel and characterization of the flow

The tunnel is 310 cm long and has a circular crosssection of the inner diameter of D = 12.4cm.
It is divided into three parts, the inlet section of length 10D, with a flow straightener at the
entrance, a removable test section to mount the origami unit/obstructing object of length 5D
followed by another 10D section which allows the flow to develop again. A centrifugal fan is used
in the suction mode in order to generate the flow from right to left as depicted in Fig.3.2. The
fan speed is regulated by changing the rotation frequency with the help of a variable frequency
drive giving the inlet speed from 2 to 8m/s. As the fan operated at the same frequency may give
rise to different flow speeds depending on the amount of obstruction, thus a pitot-static probe
(coefficient 1.01) is placed 3.5D upstream of the obstruction aligned with the central axis of the
pipe in order to measure the instantaneous inlet flow speed. Four point pressure taps evenly
distributed along the circumference of the tube are placed 2.5D upstream and 8D downstream
of the plane of the Origami unit and connected to a differential pressure sensor in order to
measure the pressure difference between the two cross sections. The use of various components
is elaborated below.

Pitot-static probe: The Pitot-static probe also called the pitot tube determines local
velocity by assessing the pressure difference in combination with the Bernoulli equation. It is
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Figure 3.3: (a) Schematic of pitot tube used to measure the inlet velocity. (b) Honeycomb flow
straightener used at the inlet to reduce flow profile development length. (c) The average flow
profile across the pipe was measured via a pitot tube along the diameter compared with the
theoretical flow profile for turbulent flow.

composed of a slender, double-walled tube (see Fig.3.3a) that is aligned with the airflow and
connected to a differential pressure gauge. The inner tube is fully exposed to the flow at the
front, enabling it to measure the stagnation pressure at that point (point 1). The outer tube
is sealed at the front but has openings on its sides (point 2), which allow it to measure the
static pressure. For incompressible flow with sufficiently high speeds—where frictional effects
between points 1 and 2 are minimal—the Bernoulli equation is applicable and can be expressed
as follows.

P1

ρg
+
V 2
1

2g
=
P2

ρg
+
V 2
2

2g
(3.1)

As V1 = 0 because of stagnation conditions, the flow velocity becomes

V =

√
2(P1 − P2)

ρ
(3.2)

For practical purposes, the equation of the flow speed is multiplied by a pitot coefficient which
depends on the geometry of the pitot tube. In our case, it was 1.01 as mentioned before.
Flow straightener: A flow straightener significantly minimizes disturbances in a flow (Fig.3.3b).
As a result, these devices enable shorter upstream straight lengths and enhance measurement
accuracy during flow measurement.
Centrifugal fan: Centrifugal fans harness the kinetic energy of their impellers to drive the air
stream, displacing air radially and usually changing its direction by 90°. These fans operate as
constant-volume devices, meaning they maintain a relatively steady volume of air at a fixed fan
speed, rather than a constant mass. As static pressure increases, the volume flow rate decreases
when the fan speed remains constant. This relationship, known as the fan curve, is crucial in
selecting the appropriate fan for a given setup.

The area from the pipe inlet to the point where the boundary layer converges at the cen-
terline is known as the hydrodynamic entrance region, and the distance of this area is referred
to as the hydrodynamic entry length Lh. Flow within this entrance region is termed hydrody-
namically developing flow, as it is the zone where the velocity profile is still forming. Beyond
this region, where the velocity profile is fully developed and remains consistent, is called the
hydrodynamically fully developed region. The entry length depends on the Reynolds number;
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Figure 3.4: (a) Pressure variation along the flow section in the presence of an orifice plate. (b)
The pressure drop coefficient for various experiments compared with the theoretical curve(black
line).

however, for practical purposes in turbulent flows, it is often approximated as 10D. Addition-
ally, there is an exit length, which is significantly shorter than the entry length. In our setup, by
introducing the flow straightener we tried to reduce the entry length to have a fully developed
turbulent flow. Fig.3.3c, depicts the average velocity profile (average over 30s) measured along
the diameter of the pipe by moving the pitot tube in the vertical direction. The vertical distance
measured from the top (h) is non-dimensionalized using the diameter of the pipe (D). The flow
profile does not fully align with the theoretical profile found using empirical 1/7 power law[115],
which is u/Uc = (2h/D)1/7. Where Uc is the maximum flow velocity (we use 5.7 m/s from the
experimental data), h is the vertical location of the point of measurement of the speed and D is
the pipe diameter. It was not possible to have the flow profile of the whole tube as the length
of the pitot tube was less than the diameter of the pipe.

3.2.2 Pressure difference across a constriction

In the presence of a sudden change in the flow area in the tube, a considerable amount of swirl
forms, which leads to a significant amount of pressure loss. Fig.3.4a, shows the variation of
pressure along a flow section with an orifice plate measured with piezometer tubes. An orifice
disk is a disk which can fit in the pipe normally to the flow with a hole in the centre as depicted
in the 2D view in Fig.3.4a. We see that the pressure drops to the lowest value at P2, this point
is called the vena contracta. After that, the pressure again increases to reach a constant value
at P3. In the process, some pressure is permanently lost. Orifice flow meters which are used
to calculate the flow velocity can measure pressure at different locations by putting pressure
taps. They differ in their upstream and downstream location. Most of the conventional flow
meters use downstream pressure taps closer to vena contracta in order to get maximum pressure
difference, which is not possible in our case. As the Origami unit changes shape and thus the
location of its vena contracta will change as well. This makes it difficult to put pressure taps
very close to the origami downstream, thus to avoid any pressure change because of a shift in
the location of vena contracta, pressure taps are placed where the upstream and downstream
pressure are constant i.e., 2.5D and 8D upstream and downstream respectively. This is also
called full-flow or pipe taps.

The general formula for the total pressure drop across an orifice plate can be expressed using
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Figure 3.5: 2D schematic to show flow across the orifice device.

the expression from the previous studies for sharp edge orifice as [116, 117] :

P1 − P4 = (K1,4)2(
ρv22
2

) (3.3)

Where (K1,4)2 is called the pressure loss coefficient from 1 to 4 calculated based on the velocity
at 2 (see Fig.3.5). Where the pressure loss between the section 1 and 3 is calculated using the
continuity and the energy equation and the pressure loss between sections 3 and 4 is calculated
by the Carnot-Borda equation of expansion of the jet. These two loss coefficients were added to
get the net loss coefficient.

It has been shown that the coefficient can be approximated by the equation given by Idel’chik
and Ginzburg:

(K1,4)2 = (1− β2)2 +
1

2
(1− β2) + 1.41

√
(1− β2)(1− β2) (3.4)

Which only depends on the geometrical parameter of the orifice meter. Different shapes and
geometries were mounted in the wind tunnel to test if they aligned with theoretical eqn.3.4
(Fig.3.4b)[116, 118]. Firstly, we mounted orifice plates with inner diameters of 7.2cm and 5cm
and a thickness of 3mm, made by laser cutting acrylic sheet. Secondly, we mounted disks of
radius R = [4, 5, 5.5]cm. Thirdly, we mounted three rigid origami units fabricated with three
different rest angles (to modify the blockage), mounted with concave as well as convex orientation
facing the flow. They were fabricated with thick mylar sheets. Finally, we mounted a 3D printed
conical structure, with an apex angle of 30◦, and a slant height of 5cm, with 2mm thickness,
both in concave and convex orientation. All the obstructions were placed coaxially to the pipe of
the wind tunnel. Fig.3.4b, depicts the pressure drop coefficient for different blockages identified
as blockage ratio β =

√
Open area/Area of pipe. The open area is the normal area which is not

blocked by the obstruction. In the case of orifice plates, it will be the π/4D2, with D orifice
diameter, for disk it will be Area of pipe−πR2, with R being the radius of the disk. Similarly, it
can be defined for other shapes. We observe that the loss coefficient increases with the amount
of blockage and tends to follow the theoretical curve. The experiments with origami and cones
demonstrate that the pressure drop coefficient is higher when the concave side faces the flow
which can be seen in higher values of pressure drop coefficient for triangles pointing rightwards.
However, they are still close to each other, which indicates that the shape does not have a
significant influence on the pressure loss coefficient.
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Figure 3.6: (a) Pressure vs velocity plot for the origami unit (R = 5 cm, κ = 53 × 10−3 N,
N = 8 and θ0 = 41◦) in increasing flow rate. The inset depicts the unit mounted with a concave
side facing the flow in the test section.

3.3 Pressure drop across a confined Origami unit

The Waterbomb units for this study were fabricated using the layer superposition fabrication
method explained in detail in the previous chapter. Let us discuss a typical experiment for the
unit.

3.3.1 Experimental methods and typical curve

The Waterbomb origami unit is mounted coaxially with the pipe with a concave side facing
the flow in the removable test section with the help of a 3D-printed curved structure and a
metallic elbow structure. The flow speed is increased from 1m/s to 8 m/s in small steps. The
differential pressure drop is measured with the help of pipe taps. Pressure values across the taps
and pitot tube are averaged over 30 seconds for each speed imposed. The origamis of radius
R = [4, 4.5, 5, 5.5] cm, fold rigidity κ = [19, 53, 92, 129] × 10−3N with N = 8 folds and rest
angle θ0 = 41◦ were used during this study. Thus the maximum blockage percentage (origami
radius/pipe radius) varies from 64% to 89% for minimum and maximum radius respectively.
As the blockage is high, we expect to have a significant blockage effect. As depicted in Fig.3.6,
on increasing the flow speed the concave side flow facing unit opens up leading to increased
pressure difference(black curve) compared to rigid origami with the same rest angle in grey,
further, it reaches a flat unstable state from which it flips towards the second stable state, which
leads to discontinuity in the pressure measurement. The pressure post snapping increases at a
slower speed because of the reduction in normal area with increasing speed. We did not capture
the normal area because it was not possible to mount a camera upstream/downstream without
disturbing the flow. Note: the sudden change in the obstruction area post-snapping leads to a
sudden rise in flow speed as observed in the gap between the speed at maximum pressure and
post-snapped state. This is inherent to the setup and can be understood by considering that
the fan gives a higher flow rate for low obstruction at the same rotation frequency. Thus, a
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a b

Figure 3.7: Evolution of pressure difference with flow speed U, for origami specimens with R = 5
cm, κ = 53× 10−3 N and θ0 = 41◦. (a) The same unit is tested three times, with re-annealing
between each test. (b) Experiments for five similarly fabricated units. The grey region depicts
the standard deviation at different points and the strip indicates the standard deviation on the
critical speed.

fully open unit will have a lower flow rate at the same fan rotation frequency compared to a
post-snapped unit at the same frequency.

3.3.2 Repeatability of the experiments

To test the repeatability of the experiments and of the fabrication process, we repeated exper-
iments for five distinct units fabricated with identical parameters R = 5 cm, κ = 53 × 10−3 N,
N = 8 and θ0 = 41◦. Fig.3.7b presents the mean values for the pressure drop, with the grey
region corresponding to the standard deviation. The grey strip denotes the variation in the
critical speed for snap-through Uc. The associated relative errors are of the order of 2% and 3%,
respectively for ∆P and Uc.

We also conducted three repetitions of the experiments using the same unit. Before each
test, the unit underwent an hour of re-annealing in the oven, followed by an additional hour of
cooling at room temperature to ensure a consistent initial cell configuration. The mean values
and standard deviations for the measurements are depicted in Fig.3.7a. The relative error in
both plots is within 4%. The low error in both graphs indicates that the measurements are
reproducible.

3.3.3 Parametric variation

In this study, we will vary one of the parameters of the unit while keeping the other three
parameters fixed. This study is restricted to the variation of radius and crease stiffness of the
unit. The first one allows us to change the amount of maximum blockage whereas the second one
allows us to retain the maximum blockage while changing the potential energy of the unit. These
two were sufficient to understand the effect of blockage without adding complexity that comes
with other parameters N and θ0 (i.e., modifying potential energy curve and kinematics) so we
ended up restricting the investigation to these two. The parameters have a similar influence as
in the previous study on the drag, but deviations are observed due to confined geometry, which
is discussed as follows:

• Radius: In this parametric study we changed the radius of the unit from 4cm to 5.5cm
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Figure 3.8: Pressure drop across the Waterbomb unit as a function of upstream flow speed for
units with (a) increasing radius/blockage effect and (b) increasing fold stiffness. While changing
one parameter others are kept constant to R = 5cm, κ = 53× 10−3 N, N = 8 and θ0 = 41◦.

while keeping the other parameters fixed as κ = 53 × 10−3 N, N = 8 and θ0 = 41◦

(Fig.3.8a). We see that starting from a given rest angle the unit with a higher radius
experiences higher fluid forces at a given flow rate and thus tends to flip at a lower flow
speed. This trend is similar to the one observed in the drag force measurements though
the maximum pressure achieved is not the same for units with different radii. This is
attributed to the confinement, the inlet velocity seen by the unit changes with the amount
of area blocked by the unit.

• Stiffness: For this study, we changed the fold stiffness of the unit while keeping R = 5cm,
N = 8 and θ0 = 41◦ fixed (Fig.3.8b). Increasing the stiffness requires higher fluid loading
to overcome the potential energy barrier for the unit to flip. Thus the stiffer unit flips
at a higher flow speed. As the maximum blockage imparted by the unit is the same thus
blockage has the same effect on all the units.

The behaviour of the Waterbomb unit in the confined flow is governed by the competition
between the fluid forces and the elastic forces. Thus, we define a non-dimensional Cauchy
number, similar to the previous chapter but in spite of using the upstream velocity, we use
the effective velocity experienced by the unit. To find this velocity we use mass conservation
assuming that the blockage is due to a disk of the same radius as origami in a flat state i.e
vl = UAp/(Ap − S), where vl is local flow speed (effective velocity) seen by the origami unit,
U is upstream velocity, Ap and S are the normal area of the pipe and the origami respectively.
Thus the Cauchy number is modified to take into account the effect of blockage by using the
local velocity experienced by the unit. The velocity thus found was used to calculate the effective
Cauchy number C∗

y = ρv2l R
2/κ. Similarly, the pressure is also non-dimensionalized using the

area of the flat origami unit and the fold stiffness as ∆̄P = PπR2/κ. The rescaling is contrasted
in Fig.3.9 with the non dimensional Cauchy number obtained without the use of effective flow
speed (or using inlet velocity measured by the pitot tube). The better collapse of curve indicates
the need to introduce the effective flow speed. The rescaling works well except for the case of big
origami. The units with different stiffness had similar effects of confinement as their maximum
area is the same and the confinement effect for units with lower radius is taken into consideration
by introducing effective velocity. We believe this leads to a good rescaling. The biggest unit is
very close to the wall, which leads to additional effects that could not be accounted for by the
effective velocity, like the modification of the wall boundary layer leading to vortex shedding
near the wall[119].
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Figure 3.9: Fig.3.8 replotted using non-dimensional pressure drop with the (a) Cauchy number
and (b) modified Cauchy number.

3.4 Model

In the previous chapter, we devised an aero-elastic model which gives us the equilibrium shape
of the origami by the balance between the fluid forces and the elastic forces. In this chapter,
we will modify it by taking into account the effect of blockage by introducing local velocity. As
in the previous case where we evaluated the drag force on the unit, the pressure loss cannot be
evaluated by the simplified representation of the model. Anyhow, we show that the pressure loss
can be considered via eq.3.4, which solely depends on the obstruction without much influence
from the shape. Thus, we will try to obtain the obstruction in the pipe from the modified model
and use the equation to obtain the pressure loss.
The velocity used in the model is updated to the local velocity near the origami by using the
mass conservation, this velocity is a function of the blockage. So, to find the equilibrium shape
of the origami unit the equation to solve becomes:

(ψm − ψ0
m)
dψm

dθ
+ (ψv − ψ0

v)
dψv

dθ
+

2

3
C∗
y sin

2 θ sin2 ϕ

[
A
dϕ

dθ
sin θ +B sinϕ

]
= 0 (3.5)

Where the modified Cauchy number Cy∗ is dependent on the degree of opening and can be

obtained by mass conservation as Cy∗ = Cy(
Ap

Ap−A0
)2. Where Cy is the Cauchy number defined

with the inlet velocity U . The equation can now be solved numerically by using the modified
Cauchy number and we can extract the normal area of the unit from it. Where Ap is the
area of the pipe and Ao is the instantaneous area of origami. By using the eqn.3.4 and β =√

(Ap − S)/Ap we can estimate the corresponding pressure drop as :

P1 − P4 = (K1,4)1
1

2β4
ρv21 (3.6)

Similar to the previous chapter we vary the Cauchy number in steps of 0.01 as input and obtain
the pressure drop as well as modified Cauchy number as output. The units in experiments
suddenly go to higher C∗

y post snapping as compared to our model. This is discussed before
while talking about the sudden change in speed post snapping. In the model this effect is not
there thus post snapping the Cauchy number changes slightly, like in the previous chapter. The
introduction of the blockage effect into the model restricts the model to the computation of
dynamics to a maximum radius of 4.5cm for the initial opening angle of 41◦. Using the model
we can obtain the non-dimensional plot which scales for different stiffness values. For different
radii, it seems to re scale x-axis but does not seem to work on the axis (see Fig.3.10). The

67



3.5. Two units: More is different?
;A<

radius R(cm)

101 102

 Cy*

0

5

10

15

20

25

101 102
0

5

10

15

20

3.5
4
4.5

 Cy*

19
92
129

stiffness κ(N) 10-3 radius R(cm)
4
4.5
5
5.5

a b

Figure 3.10: (a) Experimental non dimensional curve adapted from Fig.3.9. (b) Theoretical
curves using non-dimensional numbers for different radius and fold stiffness. Both the parameters
are calculated using the local flow speed seen by the Origami unit calculated via conservation
of mass. The curve for different stiffness lies on the curve for different radii.

blockage may have introduced another length scale in the problem that needs to be accounted
for in non-dimensional pressure. We need to investigate this further to reach a conclusion or
make any claims on the general behaviour. The discrepancy between the flow profile and the
non-uniform front can be a source of error in the flow.

3.5 Two units: More is different?

The obvious question after investigating an individual unit is what happens when we have two
units. The experiment for two units mounted along the same axis in the closed wind tunnel
suggests that the pressure drop due to two units in series can be approximated as the sum
of the individual pressure drops (see figure3.11). Two units of different stiffness but other
parameters being the same are tested and the individual curve is plotted in red and green for
soft and stiffer units and the black curve is obtained when two units are mounted together
and separated horizontally by 20cm. The curves suggest that there is no interaction between
the units and they do not influence each other significantly. Following this observation and

0 2 4 6 8
0

50

100

150 �=8.1 10-3

�=92.0 10-3

Combined

Figure 3.11: Two Waterbomb units placed in series in the confined flow separated by 20cm. The
pressure drop across the system is depicted in the black curve. Green and red curves are the
pressure drops across the units tested individually.
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Figure 3.12: (a) Plot to find the resistance of the disk to the flow and the resistance of the
origami unit to the flow as a function of flow speed U (black). (b) The resistance to the flow
given by the toy model with initial quadratic growth and later inverse decay.

to explore other combinations (more than two units, or units in parallel) which are difficult
to implement experimentally, we made a toy model which assumes no interaction between the
units and assumes specific pressure vs flow characteristics for different units. We will exploit the
analogy between electronics and fluid mechanics, where the pressure difference in our case will
be equivalent to the voltage in an electronic circuit. The current will be equivalent to the flow
speed, though remember in pipe flow the relation between the flow speed and pressure is not
linear. The Waterbomb unit will be modelled as a non-linear resistance that depends on U which
will be R(U) = CDeltaP/U2, where C is a constant which depends on the geometry. For a rigid
obstruction, the pressure drop is given by ∆P = CU2, where C is a constant which depends on
the geometry of the obstruction. Thus for rigid object ∆P/U2 will be a straight line (see grey
curve in Fig.3.12a). When the same curve is plotted for the Origami unit, we see that the initial
opening part can be curve fitted to a second-order polynomial (though higher order polynomial
will be required for better fit ), for simplicity we will only assume it to be a quadratic function
(i.e, R(U) = C1U

2, with some constant C1) and the later part post-snapping to the inverse of
U (i.e, R(U) = C2/U) (black curve). Based on this our toy model will have an initial opening
part which leads to pressure drop as ∆P = C1U

4 and post snapping as ∆P = C2U . We have
incorporated ρ and 1/2 in the constants for simplicity. This provides us with two parameters to
dictate the shape of our curve C1 and C2, the third parameter is the flipping flow speed which
can also be incorporated into the model. Thus, taking this all into account the pressure vs
flow curve for a single unit in our toy model looks like Fig.3.12b. We will now incorporate the
model on the configuration in series and then apply it to more complicated parallel flow. This
implication even though have three tuning parameters, it doesn’t allow us to directly set the
maximum pressure and the pressure jump. The model can be modified further to incorporate
those.

3.5.1 Units in series

For the obstruction in series, the flow speed across both the obstructions remains the same
whereas the pressure drop across individual units adds up to give the effective pressure drop
across the whole system. In other words for units in series we can say :

∆Pnet = P1 + P2 = R(U1)U
2
1 +R(U2)U

2
2 = [R(U1) +R(U2)]U

2
net (3.7)
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Figure 3.13: (a) Model depicting Pressure vs flow rate characteristics of the units placed in
series. The green curve is the values across the first unit and the blue is for the second unit.
Grey is the values across the whole system. See the inset for a schematic and for the points
where the values are being measured. (b) By using multiple units in series we can limit the
maximum pressure drop in the system for a given region of flow speed.

As U1 = U2 = Unet in series. The results from the model for two such units are depicted in
Fig.3.13a. This indicates that the combined pressure drop across the pipe can be the sum of the
pressure drop across individual units. By using multiple units in series we can even limit the
maximum pressure drop across the system in a given flow regime (Fig.3.13b grey curve).

3.5.2 Units in parallel

For the units in parallel, the pressure drop across the two units remains the same as the pressure
drop across the system whereas the flow gets divided into two sections depending on the blockage.
So for the units in parallel, we have :

∆Unet = U1 + U2 =
√
P1/R(U1) +

√
P2/R(U2) (3.8)

With P1 = P2 = Pnet. For the units in parallel, an anticipated but interesting behaviour can
be seen. From Fig.3.14, we have two units let’s assume green has a bigger radius and higher
stiffness, this means that the drag on it will increase faster than the blue unit and it will flip
at a higher pressure value as well (Fig.3.9). Remember as they are in parallel the pressure
drop across both the units will be the same all the time and will equal the pressure drop of the
system. When we increase the flow rate of the system, first the blue unit reaches its critical
flow rate and flips to the second state leading to a discontinuity as seen in the blue and grey
curve. Because of this the pressure in the green curve also drops(the region from where higher
point density starts). After that, if we further increase the flow rate the pressure drop keeps on
increasing and most of the flow passes through the blue unit side (see Fig.3.14b where most of
the flow is through the blue curve). Once the critical pressure for the green unit is reached it
flips to the second state as well, and most of the flow passes through the green side now, which
leads to a large discontinuity in U1 and U2 (Fig.3.14b). Also, there is a large discontinuity in
the pressure. Thus, when the units are placed in parallel, we obtain a sudden flow change on
each side accompanied by a pressure drop in the system.
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Figure 3.14: Model depicting Pressure vs flow rate characteristics of the units placed in parallel.
(a) The green curve is the values across the first unit and the blue is for the second unit. Grey
is the values across the whole system. (b) The ratio of flow speed to the speed imposed across
two pipes in parallel is compared to indicate that initially most of the flow goes through the
pipe with the second unit (blue) but after the snapping of the first unit, there is a sudden jump
and further majority of the flow goes through the first unit side. See the inset for a schematic
and for the points where the values are being measured.
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Figure 3.15: A prospective application of the Waterbomb unit as a passive pressure relief valve
when placed in parallel to the main pipeline. The blue curve depicts the pressure across the pipe
with a blockage, by adding the Waterbomb unit in parallel we can set the maximum pressure
threshold, if the pressure in the pipe crosses that limit the Waterbomb unit will snap to release
the pressure in the system. This sudden release is depicted by (a) the sudden drop in pressure
and (b) the sudden drop in flow speed across the obstruction.
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3.6 Conclusion

In this project, we studied an application of the Waterbomb unit’s passive actuation in confined
flow. The pressure drop curves across the unit look similar to the one obtained for the drag force.
The differences in the pressure curve in contrast to drag curves appear to be a consequence of
confinement, which was taken into account by the effective velocity. By varying various physical
and geometrical parameters we were able to tune the flipping point and the pressure drop across
the unit. By modifying the Cauchy number and defining non-dimensional pressure the plot
rescale except for the cases where the blockage is too high (units with bigger R). Modifying
the model for the Waterbomb unit to incorporate the local flow speed experienced by the flow
allows us to be able to obtain the model for pressure drop across the unit. We further studied
two units in series and achieved multiple peaks in the pressure curve. Using the resistance of
the experimental unit we developed a toy model with similar behaviour and showed its ability
to capture the behaviour of two units, further, it indicates that by having multiple units in
series we can limit the maximum pressure in the system for a given flow range. The toy model
in parallel predicted a sudden pressure drop across the system leading to a sudden increase in
flow speed in one of the sections. This shows the ability of the Waterbomb unit as a passive
pressure relief valve. When placed in parallel to a pipe flow or an obstruction, the unit will be
able to flip at the critical pressure to release the pressure in the system as shown in Fig.3.15. By
modifying the unit’s parameters it is possible to fine tune the pressure threshold. In a pulsative
flow, at low flow rates pre-snapping, as the resistance in one direction will be much higher than
the other direction, the unit can act as a semipermeable membrane or can lead to directed
flow as shown by Brandenbourger et al.[104, 120]. The future implications can be to reverse
engineer the units to have the desired pressure curve or add multiple units to have interesting
pressure vs flow characteristics as shown in Park et al.[108]. In the study, it was shown that by
combining multiple non-linear resistances in series and parallel combinations, it is possible to
get rectangular, triangular and other interesting flow profiles.
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Chapter 4

Flow induced transition via hidden
degree of freedom

Fun fact:“Bull” by Emre Ayaroglu. Akira Yoshizawa invented the art of “wet-folding”.
Wet folding involves dampening paper to shape and mould it easily. This is an extreme example
of facet bending, where adding water makes the folded structure have smooth edges and they
look similar to sculptures. A small change leads to large implications.
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In this chapter, we utilized the hidden degree of freedom of the Miura ori origami structure
to transition from one rigid configuration to the second rigid configuration using fluid loading.
In the previous chapter, the snap-through transition occurred by moving along the folding
trajectory and passing through the flat unstable state, whereas in this chapter it occurs
through facet bending. The facet bending allows the folding which was not possible for the
structure with rigid facets. Tuning the stiffness of the hidden degree of freedom tunes the
load-bearing capacity of the structure and the compliance of the structure under fluid loading.
This will allow the structure to undergo large shape changes while maintaining resistance to
aerodynamic load with minimal deformation in the deployed state. Experiments were
conducted to study the influence of geometrical and mounting parameters which act as control
parameters to fine-tune the flipping. The structure can further be adapted to have multiple
rigid configurations by combining more vertices which shows different aerodynamic
performance under different flow conditions.
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4.1 Introduction

In the previous chapters, we saw that transitioning between equilibrium states for the Water-
bomb base requires passing through a flat state, which leads to a sudden reduction in drag
forces. In the opening phase as the crossectional area grows with the increasing flow speed, we
observe drag increase faster than the rigid case. This can be advantageous for various applica-
tions as we discussed in previous chapters. Another way to achieve drag discontinuity without
the initial increase in drag force can be the use of other bistable mechanisms, which do not
require passing through the flat state. An example is the degree-four vertex (where four folds
converge at a central vertex). The general four-vertex unit features two folding pathways that
intersect at the flat state (see Fig.4.1a lower panel). By choosing specific values of rest angles
and crease stiffness for the folds (Fig.4.1a), it is possible to attain a unit with two bistable
states, both lying on the same side of the flat state[66]. This configuration might result in an
initial increase in drag at a slower rate than the rigid mechanism before snap-through, depending
on the evolution of the frontal area and the shape’s streamlining. Such mechanisms are more
challenging to implement with our fabrication method, as they require individually prescribing
the rest angle of each fold through annealing before assembling the unit. Another interesting
option is snap-through allowed by facet bending (rather than motion along the folding branch
as we saw in the Waterbomb unit), which provides a ’hidden’ degree of freedom [81]. In our
study, we focus on a specific type of four-vertex unit known as the Miura-ori. This unit has two
collinear spinal creases and two peripheral creases that are mirror images of each other[66, 81].
The Miura-ori unit has two symmetric folding pathways: in one, the spinal creases are collinear
(with the angle from the flat state of lower and upper right facets being identical (θ1 = θ2)) and
the peripheral creases are flat; in the other, the spinal creases are offset by some angle (which
leads to the lower and upper facets to have angles as (θ1 = −θ2)) and the peripheral creases
have the same non-zero angles (see Fig.4.1b). An individual structure made up of rigid facets,
with deformation localized to the creases, is kinetically constrained to follow one of the folding
pathways and can transition from one to the other only via the flat state. Introducing facet
bending in the structure allows it to transition between states that were not possible under the
rigid foldable assumption[75]. A previous study on the square twist unit, which has zero degrees
of freedom but can still transition between two stable states via facet bending[58], highlights
the importance of this hidden degree of freedom[73]. The twisting and out-of-plane bending
mode of the Miura-ori sheet is also a consequence of facet bending. This bending allows it
to exhibit bistable states[121, 122], which can be fine-tuned by modifying the crease and facet
stiffness[123]. This can also be used to create pop-through defects to adjust the compressive
stiffness of the tessellated sheet[74, 124]. Another way to introduce multiple stable states is by
making stretchable creases or non-linear crease stiffness[71, 123, 125]. This changes the potential
energy curve for the rigid foldable unit and introduces multiple stable states which are easily
accessible.

Recent studies have shown another kind of bistable transition in this unit via dynamic
actuation. Dynamic actuation of the Miura unit, with its base held at a certain angle, has been
gaining traction for applications in soft robotics, enabling fast, reproducible actuation[81]. This
can be achieved by holding the lower facet and moving the whole system[126], by rotating the
lower facets[81], or by coupling the system to another bistable unit[82].

In our study, we use the same unit and employ fluid forces as the actuation mechanism,
exploring the transition between rigid states (Fig.4.1b) under the influence of airflow. This
transition can be easily tuned by tuning the stiffness coming from the hidden degree of freedom
via changing the geometrical parameters as we will discuss. This approach allows the unit
to undergo significant shape changes while maintaining resistance to aerodynamic loads with
minimal deformation in the initial state, thus ensuring a relatively constant drag coefficient.
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Figure 4.1: (a) The two folding pathways for non-generic four vertices unit depicted by two
lines on the energy plot as a function of one of the crease angles which guides the folding. The
two folding pathways intersect at the flat state and the unit shows three stable states. (b)
The folding pathways for Miura ori unit under rigid foldability assumption and the transition
between two states via the hidden degree of freedom from facet bending marked by red branch.

4.2 Miura ori unit

4.2.1 Folding kinematics

An origami structure is considered rigidly foldable if all the sector angles remain fixed and
all motion occurs at the creases. The Miura-ori is a rigid foldable unit, meaning it can be
completely folded via the motion of its creases. As we discussed before it can fold into parallel
configuration (θ1 = θ2) and antiparallel configuration(θ1 = −θ2) as shown in Fig.4.1b. For
the parallel configuration, the angle between the two lower facets and two upper facets are
identical and the peripheral crease remains flat. Whereas for the antiparallel configuration, the
angle between the lower facets and upper facets around the spinal creases are inverted (see
Fig.4.1θ1 = −θ2). The angle between the upper and lower spinal creases can be derived using
geometry and trigonometry[58, 72, 127, 128]. We will not give the whole derivation in this
chapter but for completeness, we will quickly give the method to be followed to derive the
equations and provide the final results which will be used in the later part of the chapter. The
derivation is adapted from the work of Kamrava et al.[127].

The unit can be described by a single degree of freedom; in this case, we use the angle β
between the mountain and valley folds as the parameter (Fig.4.2). By taking the dot product
between the vectors A⃗B and A⃗C, we obtain the relation:

cosϕ cos γ = cosα (4.1)

Considering the isosceles triangles, ABF and AED and using trigonometry, another relation can
be derived:

sinα sin θ/2 = sinϕ (4.2)

By combining these two equations and eliminating ϕ, we can express γ in terms of the other
parameters. Given that β = π − 2γ, we derive:
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Figure 4.2: (a) The geometry of the Miura ori unit used to derive the kinematic equation for
the unit, adapted from Kamrava et al.[127]. The facet on the right is equivalent to the lower
facets in our case (the figure on the right) and the ones on the left to the upper facets. (b)
The various geometrical features of the rectangular Miura ori unit were used for our study. The
mounting angle θ, vertex angle α, length of upper facet L2, length of lower facet L1 and the
angle characterizing the deformation of the unit measured from the vertical parallel state ϕ.

β = π − 2 arccos (
cosα√

1− (sinα sin θ/2)2
) (4.3)

Note that using this equation we can derive the value of ϕ shown in Fig.4.2b as ϕ = π−β, which
is the angle we will use in our geometry. Now, that we know how the Miura ori folds, let’s look
at the fabrication of the unit.

4.2.2 Fabrication process

For the study, we use a rectangular Miura ori unit. As discussed in the first chapter we use the
layer superposition technique to fabricate the Miura ori unit. The rigid facets(mylar sheet of
thickness 350µm) were laser cut and superposed on the thinner sheet with stiffness κ = 19×10−3

N using a double-sided tape. The crease width was taken to be w = 2mm and the width of each
of the facets was taken to be W = 3cm. In this study we do not impose any rest angle to the
unit so we skip the annealing process where we keep the unit in the oven thus the rest angle
for all the creases is 0◦. The fabrication allows us to vary the length of the upper facet L2 and
the vertex angle α (Fig.4.2b). To rigidify the upper facets of the unit and avoid upper facet
bending for the structure to snap we add a 3D printed frame to the upper facet which increases
the bending stiffness without affecting the potential energy curve of the unit (see discussion in
what sets the stiffness section). The length of the lower facet (measured along the central edge)
is always kept constant L1 = 4cm. While varying the vertex angle α, L2 is kept constant such
that the area of the flat sheet remains constant. If we increase the vertex angle that implies
that the area of the upper facet increases and the lower one decreases. As the units fabricated
using the layer superposition method are allowed to have facet bending and the crease thickness
is not negligible (2mm), it is better to test the two stable states of the units with respect to the
theoretical prediction. For this, we mounted the unit in parallel configuration on a 3D printed
piece to fix the lower facet angles to θ and pushed the upper facets by hand to snap to the
anti-parallel state. The green dots depict the opening angle ϕ∗ measured from a picture of the
mounted unit as a function of increasing vertex angles. The parallel configuration for all the
parameters is close to ϕ = 0 whereas the anti-parallel configuration for the bistable units is close
to the theoretical curve (dashed green line)(Fig.4.3). Similarly, the red curve for different θ and
the blue curve for different L2 also seems to follow the theoretical trend. The theoretical curve
is calculated from the eq.(4.3), where ϕ = π − β. The units follow the theoretical trend with
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Figure 4.3: Comparison of the rest angle in the antiparallel flipped state measured experimentally
(dots) with the theoretical value in the flipped state (dashed line) for different geometrical
parameters of the unit depicted in different colours.

slight discrepancies between the theoretical and experimental values coming from the fabrication
process. We believe better fabrication techniques will allow better correspondence between the
experiments and theory, but it is not the main objective of the thesis. To characterize the
fabricated unit we did a mechanical test.

4.2.3 Mechanical test: Stiffness of the unit

For the mechanical testing of the unit we followed the work of Liu et al.[81]. By fixing the lower
facets to a given mounting angle they applied a point force at the top of the upper crease. When
the torque is applied, the upper facet will deflect changing θ2 and ϕ (Fig.4.2). These deflections
are lumped into a single pseudojoint at the vertex (Fig.4.4b inset). This pseudo joint allows
the upper two facets to move independently of the lower two facets. To model the stiffness
of this pseudo joint, the upper edge of the upper spinal crease was attached to the Instron
machine via a thread and pulley system with negligible friction and slowly displaced (at a rate
of 30mm/min acquiring 2 data points for force and displacement each second) while keeping the
lower facet angle fixed to θ (Fig.4.4a). We mount the lower facet of the unit at a given angle
θ with the help of a 3D-printed part. The part is such that it shadows 2 cm of the lower facet
and the facet is attached to it with the help of a paper clip( we tried with screws first and the
results were not different so we decided to use a paper clip for ease of its use). As the units
were soft and the contribution of the mass of the unit to the potential energy was not easy to
separate from the potential energy coming from purely the elastic energy of the material, we
decided to experimentally calculate both of them together as they will contribute to the actual
experiments in the airflow. For this, the unit is mounted with the spinal crease facing vertically,
similar to the experiments done in the wind tunnel as we will discuss later. The force sensor
on the Instron machine measures the force as a function of displacement till the unit snaps. A
video(Nikon DSLR camera used at 60 fps) taken from the side to measure the angle by which
the upper facet has deflected with respect to the lower facet as well as the angle between the
pulling direction and the top facet is used to extract the angle for calculating the torque. As
the Instron machine moves vertically the unit connected to it by the thread and pulley system
displaces as a consequence it starts to deform changing θ2 and ϕ. In our case, we only measure
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Figure 4.4: (a) Experimental setup for obtaining the torque-angle curve using the Instron ma-
chine for unit mounted at angle θ. Different intermediate states during the bending process of
the unit are shown above the setup. (b) The torque-angle curve from the mechanical test using
the Instron machine depicts the mean value (black curve) with standard deviation over three
measurements as an error bar in the grey curve. The unit starts from the parallel state and flips
to the antiparallel state when ϕ is 21.5◦. The unit when loaded with incremental masses flips
when the torque reaches the maximum torque (green points). The prototype of the pseudo joint
is presented in the inset. (c) Integration of the torque over the angle (ϕ) gives the potential
energy curve. The red dot depicts the location of the maximum torque or the inflection point
on the potential energy curve. The data is is depicted for the specimen with θ0 = 50◦, α = 45◦

and L2 = 14 cm.

ϕ and using a Matlab code the force is converted to the torque applied to the unit as a function
of ϕ (Fig.4.4b). We see that as the unit is deformed it has an initial phase where the torque on
it increases with the angle ϕ, indicating a positive stiffness. After that, we reach a maximum
torque followed by a decrease in the torque with increasing angle. This decrease in torque
with the angle indicates a negative stiffness. On further increasing the deformation, the torque
decreases till the unit snaps (end of the curve in Fig.4.4b) to the antiparallel configuration. We
repeated the measurements three times for all the units to calculate the average and standard
deviation on them. We did another test in which in spite of using an Instron machine to displace
the endpoint of the unit (displacement test) we added a small mass to the endpoint (tension
test), the test indicates that whenever the (Fig.4.4b green)torque imparted by the mass exceeds
the maximum torque from Instron test, the unit flips to antiparallel configuration. Using the
Instron test, the potential energy of the unit can be calculated by integrating the torque along
the displacement. The maximum point on the torque curve corresponds to an inflection point
on the potential energy curve, it is indicated by a red dot on Fig.4.4c. This point marks the
transition between the positive and negative stiffness of the unit. We have developed the tools
for the test, let us now look at the origin of the mechanical property of the unit, and which part
of the fabricated unit plays the dominant role in tuning the mechanical property of the unit.

4.2.4 What sets the stiffness of the unit

In order to better understand the origin of the stiffness of the unit, i.e. does the hidden degree
of freedom result from bending modes of the facets if so which facets or it arises from bending
or twisting of creases, we tested units with different facets and crease thickness. For the first
test, we increased the thickness of the two lower facets making them twice and thrice thick while
maintaining the upper facet to a single sheet and crease of stiffness per unit length as 19×10−3 N.
The torque curve indicates that the lower facet thickness influences the maximum torque of the
unit significantly making it almost twice and thrice the value for a single facet value indicating
that the maximum torque grows proportionally to the lower facet thickness (Fig.4.5a). Secondly,
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Figure 4.5: (a) Influence of lower facet thickness, (b) upper facet thickness and (c) crease
stiffness on the torque of the unit. The lighter colours are for thinner sheets and the darker are
for thicker sheets. (d) All parameters’ influence is combined by plotting maximum torque as a
function of effective length set by bending modulus of the lower facet and crease stiffness. The
unit with parameters θ0 = 50◦,α = 45◦ and L2 = 14 cm made with single facet thickness and
crease stiffness of 19× 10−3N is common among all the graphs in black.
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Figure 4.6: Torque-angle curve for units with different (a) mounting angle (θ), (b) vertex angle
ϕ and (c) the upper facet length L2. The units with θ = 50◦, α = 45◦ and L2 = 14 are common
in all the graphs.

we vary the thickness of the upper two facets while maintaining the other parameters constant to
the lower facet of a single sheet and crease of stiffness per unit length as 19×10−3 N. Increasing
the facet thickness to twice increases the maximum torque of the unit slightly which is reduced
below the single sheet on adding the third layer of the sheet (Fig.4.5b). The observed change
lies within the standard deviations indicating that the upper facet thickness does not contribute
significantly to the stiffness of the unit or we do not have the experimental precision to see the
difference. Next, we vary the crease stiffness as κ = [3, 19, 53, 92]× 10−3N . Similar to the upper
facet, the crease stiffness does not modify the maximum torque significantly. Even though the
maximum torque does not increase monotonically and the change is not significant, the units
with crease stiffness 53 and 92 × 10−3N return back to the initial position when the loading
is removed indicating that the unit is monostable(Fig.4.5c). To compare the effect of all the
parameters together we plotted maximum torque as a function of the ratio of bending stiffness
of the lower facet and the torsional stiffness of the crease. The bending stiffness of the facets
was measured on a 14 cm long and 3 cm wide rectangular sheet while fixing one end and adding
increasing load to the other end. The plot indicates that for the whole range of the parameter,
the crease stiffness does not have a significant effect on the maximum torque whereas facet
thickness shows a linear increase in maximum torque (Fig.4.5d)[122]. In conclusion, the bending
stiffness of the lower facet has the maximum contribution to the stiffness and the maximum
torque of the unit, whereas the upper facet thickness and the crease stiffness do not contribute
significantly. Once we have identified which facets play the dominant role in the mechanical
properties of the unit, let’s test units with different geometries.

4.2.5 Parametric study

Let us discuss the influence of various geometrical parameters on the mechanical test of the
unit. For different measurements we varied α = [25◦, 35◦, 45◦, 55◦, 65◦], mounting angle or
the opening angle of lower facet θ = [30◦, 40◦, 50◦, 60◦, 70◦] and the length of the top facets
L2 = [12, 13, 14, 15, 16] cm. The first parameter was the mounting angle of the unit θ, we varied
it while keeping the other parameters fixed to α = 45◦ and L2 = 14 cm. As shown in the
previous studies[81] on decreasing the lower spinal angle from 70◦ to 30◦ (going from dark red
to light red curve) we observe an increase in the maximum torque of the unit (Fig.4.6a). As we
discussed previously, the stiffness comes dominantly from the bending of the lower facet. If the
unit is more closed (smaller angle) the lower facets need to bend more for the upper facets to
come to the flat state and flip, thus the unit with a lower angle has higher stiffness. Termination
of the torque curve indicates that the unit has snapped to the second stable state leading to
zero force afterwards which has not been plotted. Note we use different notations to define the
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angle between the lower facets compared to the previous studies[81]. The difference comes from
the fact that we use the half angle between the two facets and not the angle of one facet from
its unfolded state as done in previous studies.

Secondly, we vary the vertex angle of the unit while keeping the mounting angle as θ = 45◦

and upper facet length L2 = 14cm. On increasing the vertex angle from 25◦ to 65◦ we observe
that the maximum torque of the unit increases (Fig.4.6b, the angle is increasing from light green
curve to dark green curve). The reason for such a behaviour is not clear yet, but a plausible
reason can be, on increasing the vertex angle the effective length of the facet that bends for
the unit to flip increases. This can be validated by measuring the deformation or the stress
concentration of the lower facets during the bending process. We also observe that the unit
with lower vertex angles α = 25◦and 35◦ are monostable and can return to the initial position
when the load is removed. Thus for these units, as we increase the angle ϕ beyond their flipped
anti-parallel state, the torque on these units increases.

The third parameter we vary is the length of the upper facet while keeping the other two
parameters fixed as θ = 45◦ and α = 45◦. On increasing the length of the upper facet the length
of the upper spinal crease increases so that we anticipate an increase in stiffness or maximum
torque of the unit but no such trend is observed in our measurements (Fig.4.6b). We see that
the maximum torque of the smallest unit (L2 = 12 cm) is highest and it decreases with increas-
ing L2(from 13 cm till 15 cm ) and suddenly increases again for L2 = 16 cm. We currently
don’t have an understanding of this behaviour, the potential reason for this non-monotonic be-
haviour can be that the torque is not only set by the stiffness of the unit but also by the weight of
the unit. Decoupling these two influences can provide a further understanding of this parameter.

In this section we observed the influence of three variables the vertex angle, the mounting
angle and the length of the upper facets on the maximum torque and the stiffness of the unit. It
is not easy to reason for some of our observations and thus a mechanical model will be necessary
to better understand the influence of various parameters on the stiffness of the unit. In our
experiments, we were not able to decouple the influence of the weight and stiffness of the unit.
Using the model the effect of both these parameters would be studied independently. Also, it
will be possible to see the actual bending of the facet and to be able to identify the virtual crease
on the facet along which most of the bending is focused.

Even though most of the units tested were bistable, for some of the parameters the unit is
monostable i.e., after the force is removed the unit comes back to its initial parallel state for
example for the pair (θ, α) as (50◦, 25◦) and (50◦, 35◦), some of the units can be made monostable
by increasing the crease stiffness to κ = 53 × 10−3N and κ = 92 × 10−3N. Thus by choosing
different parameters, it is possible to make the unit mono-stable. The monostable units are
useful for their reversible nature, in the presence of flow the unit will deform to change shape
and come back to the initial state when the load is removed. Now, that we have characterized
the unit let’s see the behaviour of the units in the flow.

4.3 Snapping in flow via hidden degree of freedom

In the mechanical test, we saw that the unit can snap to the antiparallel configuration starting
from a parallel configuration when the torque on the unit increases beyond the maximum torque
(Fig.4.4b green curve). This external torque on the unit can be applied by the fluid forces leading
to snap through transition. Let us contrast this transition with the transition of the Waterbomb
unit.
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Figure 4.7: (a) The variation of drag force experienced by the Miura ori unit with increasing flow
speed with inset depicting the experimental process. The unit has parameters θ0 = 50◦,α = 55◦

and L2 = 14 cm. (b) Comparison between the folding dynamics of the Waterbomb and Miura
ori unit using the drag coefficient and (c) the normalized projected area as a function of non-
dimensional flow speed. The parameters for the Waterbomb unit used is R = 5cm, θ0 = 41◦,
N = 8 and κ = 19× 10−3N.

4.3.1 Drag on Miura ori unit and comparison with the Waterbomb unit

To measure the drag force on the fabricated Miura ori unit we mount the lower facet of the
unit at a given angle θ in the flow with the help of a 3D printed part and paper clip. This
whole structure was mounted on a six-component force sensor with the unit’s convex side facing
the flow and drag force was measured over 30 seconds(see inset of Fig.4.7a). The drag curve
indicates an initial region where the drag forces increase with increasing flow speed. Then when
the torque applied by the fluid forces exceeds the critical torque the unit snaps to the antiparallel
state. Further increase in the flow rate leads to an increase in the drag forces (Fig.4.7a). To see
the effect of the geometry on the drag forces and how close the behaviour of the unit is to the
rigid object we plotted the drag coefficient scaled with the drag coefficient of the initial state
Cd/Cd,0 with the non-dimensional speed (U/Uc), which indicates that the coefficient remains
almost constant in the two regions for the Miura unit in contrast to the Waterbomb unit where
the coefficient increases in the opening state and decreases in the closing state (Fig.4.7b). The
drag coefficient for the units is defined as Cd = 2Fd/ρU

2S, where S is the normal frontal area
of the unit to the flow defined in the initial state and Cd,0 is the first element of the Cd, which
is calculated at low flow speed around 1 m/s. A picture using the camera placed two meters
downstream was also taken to measure the frontal area to see if the unit maintains its shape
at different flow speeds. The projected area divided by the initial area indicates that the unit
remains rigid before and after snapping when compared to the Waterbomb unit, where the area
increased in the opening phase and decreased in the closing stage (Fig.4.7c). Thus we have a unit
which behaves like a rigid object before and after snapping whose snapping can be controlled
by the fluid load.

4.3.2 Monostable and bistable units

As discussed in the section on the mechanical study of the unit, some of the fabrication parame-
ters may lead to the monostability of the unit. The bistable unit once flipped cannot come back
to the initial position unless a flow in the inverse direction is applied to it. This limitation of
the unit is overcome in the monostable unit, which can return to its initial state in the absence
of load. The study of the bistable unit with L2 = 14 cm, θ = 50◦ and α = 55◦ in the airflow
leads to the drag force on the unit similar to Fig.4.7 while the flow speed is increased. When
the flow rate is decreased after the unit has snapped, we observe lower drag forces on the unit
as the unit retains its second stable state which has a lower normal area (4.8a). Also, from the
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Figure 4.8: Evolution of the drag force and the normalized projected area with the flow speed
for the bistable (a,b) and monostable (c,d) units. The flow is first increased to 12 m/s and then
reduced back to 0 m/s.

projected area we can see that the unit post-snapping is bending a bit with increasing flow as
seen in the decreasing area in the lower part of the curve (Fig.4.8b). In contrast, the monostable
unit (4.8c) with L2 = 14 cm, θ = 50◦, α = 45◦ and crease stiffness of κ = 53 × 10−3N depicts
continuous deformation with increasing flow rate. The unit comes back continuously to the ini-
tial state when the flow rate is reduced from the maximum flow rate. The drag force increases
and decreases continuously with a hysteresis which is also seen in the normalized area (4.8d).
We contrasted the dynamics of the Miura ori unit with the Waterbomb unit and highlighted
the possibility of making a monostable unit with it. Let us investigate the influence of various
parameters on the drag features attained by the unit.

4.3.3 Parametric study

For the parametric study of fabrication parameters on the drag features we used 12 units with
vertex angles ranging between α = 35◦ − 65◦, mounting angle or opening angle of lower facet
θ = 30◦ − 70◦ and the length of the top facets L2 = 12− 16 cm. Firstly, we vary the mounting
angle of the lower facet while keeping other parameters constant to α = 45◦ and L2 = 14
cm. Fig.4.9a shows the drag force experienced by units with increasing flow speed for different
mounting angles. The drag features are similar to what we discussed in the previous section.
Initially drag force increases similar to the case of rigid object, followed by transition which leads
to discontinuity and afterwards drag increases further. Before the snapping, the units with lower
mounting angles have lower frontal area and are more streamlined as a consequence the drag
on units with low mounting angles increases at a slower rate compared to the units with higher
mounting angles. As we can see in the potential energy curve (Fig.4.6a) the more closed the
initial shape of the unit is the stiffer it is and the higher its maximum torque. As a consequence
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Figure 4.9: Evolution of the drag force and the drag coefficient with the flow speed for the unit
with different (a,b) mounting angle θ, (c,d) vertex angle ϕ and (e,f) length of the upper facet
L2. The units with θ = 50◦, α = 45◦ and L2 = 14 are common in all the graphs.

of this and the low initial normal area, the unit with a lower mounting angle flips at a much
higher flow speed. The jump is higher in the unit mounted at a low angle because the unit flips
to a much closed antiparallel state (Fig.4.3). As the drag coefficient post snapping (Fig.4.9b) is
lower for the closed unit, the drag forces on it increase at a slower rate post snapping. The drag
coefficient is defined as (Cd = 2Fd/ρU

2S0), where S0 is the projected area of the unit in the
mounted state given by S = 2W (L1 + L2) sin (θ), where W is the width of the facet. The drag
coefficient indicates that the unit behaves rigidly before snapping and deforms slightly because
of facet bending in flow post-snapping leading to a reduction in the drag coefficient(4.9b). Thus,
by decreasing the mounting angle we can increase the maximum drag force experienced by the
unit as well as the drag jump.

Next, we vary the vertex angle while keeping the mounting angle θ = 50◦ and L2 = 14 cm.
As the initial frontal area for all the units is the same, the drag curve initially overlaps for all
the units. The unit with a lower vertex angle as it has lower τmax flips the first, followed by
units with higher vertex angles as seen in Fig.4.9c. From Fig.4.3, we see that ϕ∗ is higher for
higher α values, which indicates that the unit with a high vertex angle has an antiparallel shape
which has a compact shape or lower frontal area. Thus, post-snapping the unit with the highest
vertex angle has the least drag force on it. Also, we see that the drag coefficient for all the
units before snapping is identical and almost remains constant (Fig.4.9d). The coefficient for
the unit with α = 65◦ post snapping remains almost constant, this can be attributed to the fact
that its antiparallel state has ϕ > 90◦, thus the upper facets of the unit are shadowed by the
lower facets. Whereas in the other units, a part of the upper facets still sees the flow. The unit
with angle 35◦ is monostable and the snapping in this unit does not lead to any significant drag
change as we do not see discontinuity in this drag curve.

Lastly, we vary L2 while keeping the other parameters to θ = 50◦ and α = 45◦. As increasing
L2 increases the normal area to the flow thus in the pre-snapping phase the unit with maximum
L2 has a faster increase in drag forces as depicted in Fig.4.9e (darker blue curve has higher drag
force). As observed in the potential energy curve (Fig.4.6c) the maximum torque of the unit
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Figure 4.10: Non-dimensional plot using the non-dimensional drag force and the Cauchy number
for the unit with different (a) mounting angle θ, (b) vertex angle ϕ and (c) length of the upper
facet L2. The units with θ = 50◦, α = 45◦ and L2 = 14 are common in all the graphs.

decreases till L2 = 15 cm and increases again. A similar flipping trend for the units is also
observed in the drag forces curve (Fig.4.9). Post snapping only the lower facet of the units are
exposed to the flow, with a part of the upper facet seen by the flow as the unit doesn’t snap
beyond 90◦. Interestingly, the drag coefficient for the units is similar post snapping (Fig.4.9f),
this indicates that the balance between the weight and the elastic forces leads to a similar normal
area in all the units to have similar drag forces. The drag curve also indicates that by changing
the length of the upper facet, we can tune the flipping point and the drag jump while following
the same drag force curve post-snapping.

We demonstrate how three parameters of the unit modify the features of the drag curve. As
the dynamics of the unit are governed by the balance of the fluid and elastic forces we can define
the Cauchy number Cy = ρU2w2L2 sin

2 (θ)/κ similar to the previous chapters. Similarly, we
define a nondimensional drag force F̄d = Fdw sin (θ)/κ, where κ is the effective stiffness of the
pseudo joint found using the linear region of the torque displacement curve (see Fig.4.11b). The
curve for different mounting angle θ and vertex angle α shows a good rescaling pre-snapping
and at the snapping point (Fig.4.10a,b), indicative of the fact that the Cauchy number defined
can capture the influence of these two parameters. The length of the upper facet is well rescaled
in the opening part, but the flipping point did not rescale, thus we need to modify the Cauchy
number to account for the change in L2. This is also related to our lack of understanding of the
influence of L2 on the torque and effective stiffness of the unit.

4.4 Theoretical Model

We see that the unit when mounted at an angle θ in parallel configuration acts as a rigid
object before snapping to the anti-parallel shape as can be seen in the normalized projected
area (Fig.4.7c). The maximum torque experienced by the unit is within ϕ = 5◦ for most of the
cases as seen in mechanical test sections (Fig.4.6). This is indicative of the fact that the unit
can be treated as a rigid object before snapping. The energy approach will not be applicable
in this case as the unit needs to deform for us to calculate the work done by the fluid forces.
Thus we will apply moment balance by assuming that as the torque applied by the fluid force
overcomes the maximum torque from the mechanical test, the unit will snap to the anti-parallel
configuration.

Based on these observations we developed a simplified theoretical model by balancing the
torque on the unit due to fluid loading with the maximum torque observed in the mechanical
test, which allows us to obtain the critical flow speed for snapping. Let us calculate the torque
applied by the fluid forces on the upper facet made up of length L2 and Lc, the length of the
crease, which can be expressed as Lc = W/ sinα. We assume the unit to be mounted at angle
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Figure 4.11: (a) Geometry of the mounted Miura ori unit in the flow with the convex side facing
the flow with various unit vectors and geometrical parameters of the unit used for calculation.
The flow is in the positive y direction. (b) The torque-angle curve for one of the units depicting
the initial linear growth region coloured red was used to calculate the stiffness of the unit for
the non-dimensional plot.

θ (Fig.4.11a). This leads to the unit vectors along the spinal crease and the peripheral crease
being given by e⃗1 and e⃗2 respectively. A general vector on the upper facet is then given as a
linear combination of these two unit vectors i.e. r⃗ = l1e⃗1 + l2e⃗2. And a unit normal vector to
the surface is defined as n̂ = e⃗1×e⃗2

||e⃗1×e⃗2|| . The flow is assumed to be in the positive x direction. A
small area element in the form of a parallelogram is considered at a point whose position vector
is r⃗. The torque applied by the fluid forces on this element assuming fluid pressure of the form
P = ρ(U⃗ .n⃗)2 is given by:

dτ = r⃗ × d⃗F = r⃗ × n̂ρU2(n̂.e⃗y)
2dl1dl2 sinα (4.4)

The cross-product is given by:

r⃗ × n̂ = (l1e⃗1 + l2e⃗2)×
e⃗1 × e⃗2

||e⃗1 × e⃗2||
(4.5)

Using the vector identity: a⃗× (⃗b× c⃗) = (⃗a.⃗c)⃗b− (⃗a.⃗b)c⃗ and the angle between the two vectors α
the cross product reduces to:

r⃗ × n̂ =
l1(cosαe⃗1 − e⃗2) + l2(e⃗1 − cosαe⃗2)

sinα
(4.6)

The net torque on the upper facet can be calculated by integrating the torque on this area
element over the whole surface:

τFacet1 =

∫ L1

0

∫ L2

0
ρU2 sin

2 θ

sinα
(l1(cosαe⃗1 − e⃗2) + l2(e⃗1 − cosαe⃗2)) sin(α)dl1dl2 (4.7)

As a result, we obtain:

τFacet1 = ρU2 sin
2 θ

2
L2Lc[(L2 cosα+ Lc)e⃗1 − (L2 + Lc cosα)e⃗2) (4.8)

Similar to this we can define a third unit vector (e⃗3) along the other peripheral crease and by
following the same method we obtain the torque experienced by the other upper facet as:

τFacet2 = ρU2 sin
2 θ

2
LcLc[(L2 + Lc cosα)e⃗3 − (L2 cosα+ Lc)e⃗1]
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Which gives the total torque on the upper facets as:

τtotal = ρU2 sin
2 θ

2
L2Lc[(L2 + Lc cosα)(e⃗3 − e⃗2)] (4.9)

From the geometry of the unit and the axis as described in the figure, the vectors are given by:
e⃗2 = (sinα sin θ, sinα cos θ, cosα) and e⃗3 = (sinα sin θ,− sinα cos θ, cosα) Thus the net torque
can be re-written as:

τtotal = −ρU2 sin2 θL2Lc[(L2 + Lc cosα)] sinα sin θe⃗x (4.10)

Where e⃗x, e⃗y and e⃗z are unit vectors in the corresponding directions.
Thus the final equation to obtain the critical flow velocity of flipping becomes:

τmax = sinα sin θρU2 sin2 θL2Lc[(L2 + Lc cosα)]e⃗x (4.11)

Solving this non-linear equation for U , for the given values of θ and α using corresponding τmax

from the mechanical test gives us the critical flow speed. The experimental values are plotted
against the predicted values from the model for critical snapping velocity Uc in Fig.4.12b. The
points lie on a linear curve indicating that the trend is clearly reproduced for different values of
mount angle and the vertex angles. Thus we can say that the simplified model which assumes the
balance between the fluid torque and the maximum elastic torque works well and the assumption
of the unit being rigid pre-snapping is valid. To see what affects the drag jump in all our
measurements, we can plot the ratio of the drag coefficients Cd/Cd,0 with the non-dimensional
speed U/Uc (Fig.4.12). The graph indicates that increasing the post-snapping angle (ϕ∗) between
the spinal creases is proportional to the ratio of the drag coefficients.
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Figure 4.12: (a) Evolution of drag coefficient ratio (Cd/Cd,0) for the units with different opening
angles (θ) and vertex angles (α) indicating the decrease in the value with increasing post snapping
angles ϕ∗. (b) Comparison of the critical speed for snapping with the values obtained by the
model for the units with different α and θ.

4.5 Conclusion

In this chapter, we demonstrated that the four-vertex origami unit transitions from one rigid
configuration to another through a hidden degree of freedom, which arises from facet bending.
This facet bending leads to a drag discontinuity. This behaviour contrasts with the previous
chapter, where the folding pathway was governed by the system’s degree of freedom, allowing for
continuous deformation before and after the snap-through event. Mechanical characterization of
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Figure 4.13: Different possible configurations for a string made with three vertices. (a) The
upper part of the string flips first followed by the lower part with increasing flow speed. The
lower vertex angle is 65◦ and the upper 45◦. (b) The lower part of the unit flips first leading
to flipping of the whole string. Both the vertex angles are 45◦. All the creases had stiffness of
κ = 19 × 10−3N. (c) The string with all the monostable creases of stiffness κ = 93 × 10−3N
and vertex angles 45◦ depicting the folding pattern and reverting back of the unit after the flow
is turned off. (d) The string with the upper creases of κ = 19 × 10−3N and lower creases of
stiffness κ = 93× 10−3N and vertex angles 45◦ showing the flipping of the top part followed by
the folding of the lower part and the unit returning to the intermediate position when the flow
is turned off. The mount angle in all the cases is θ = 50◦.

the unit reveals that its effective stiffness is primarily due to the bending of the lower facet. By
varying the unit’s geometrical parameters (θ, ϕ, and L2), we can fine-tune the maximum torque
required for the transition. The mounting angle and vertex angle have a monotonic influence
on the maximum torque, which increases with a decreasing mounting angle and an increasing
vertex angle. In contrast, the length of the upper facet shows non-monotonic behaviour, with
the minimum torque occurring at L2 = 15 cm. Changing the geometry and mounting angle of
the unit allows us to control the mechanical properties, which influences the drag experienced
by the system. Experiments conducted in an air flow while varying these parameters elucidate
the influence of geometrical changes on the unit’s drag characteristics. Introducing the Cauchy
number, which balances fluid and elastic forces, indicates a need to rescale for mounting angle
and vertex angle, though modifications are necessary to account for the upper facet length. A
simple model, based on the observed rigid behaviour before snapping and the balance between
torque from fluid loading and the maximum torque required for the unit to flip, qualitatively
agrees with experimental data for the critical velocity for snapping in flow conditions. The future
direction to develop a solid mechanics simulation [68] and a refined shell model will improve upon
our current understanding of the observed dynamics.

The study can be extended to multiple units, also referred to as strings, allowing for larger
shape changes and more configuration possibilities[129]. By tuning the parameters and flow
speed, we can observe various configurations as depicted in Fig.4.13. If we use only the bistable
unit, then there are two possibilities, the upper part of the string flips first followed by the
lower part (Fig.4.13a) or the lower part flips first (Fig.4.13b). Introducing a monostable unit by
changing the crease stiffness can give rise to similar possibilities with the possibility for the unit
to invert back to one of the intermediate states in the absence of the flow (Fig.4.13c and d).

This study highlights the potential of origami structures to achieve multiple rigid shapes
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under different flow conditions. This shape change can be used to have different functionalities
for instance the two shapes can be used as an antenna which operates at different resonance
frequencies [130]. It can also serve as a memory unit, which will store the information about
the past flow conditions[99]. Similar to the previous chapter, these transitions can serve as
protective mechanisms, with the added benefit of returning to the initial position when the
load is removed. This research opens up possibilities for developing tunable, load-bearing, and
resilient structures that can self-actuate in omnipresent airflow[131].
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Conclusion and future prospects
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5.1 Conclusion

In this thesis, we studied the non-conventional fluid-structure interaction problem. The tech-
nique of origami gives interesting folding kinematics and mechanical properties, which were
leveraged to influence drag vs speed behaviour. Specifically, we use bistability which arises from
the geometry of the structure and via facet bending to have drag discontinuity with different
pre and post-snapping behaviour.

In the first chapter, we explore how the bistability of the Waterbomb base can be leveraged
to significantly reduce drag force as flow velocity increases. When subjected to uniform airflow,
the origami unit unfolds, and upon reaching a flat configuration, it undergoes a snap-through to
a more streamlined shape, leading to a sudden drop in drag. This approach uniquely achieves
drag reduction through abrupt and substantial shape changes in response to a small increase in
fluid input load. Notably, this snap-through behaviour can be tuned by adjusting the cell radius,
fold stiffness, and rest angle, allowing for precise control over drag characteristics. Our analysis
shows that the cell’s behaviour results from a quasi-static mechanical equilibrium between the
fluid-induced load and the restoring elastic forces, which is characterized by a Cauchy number.
The snap-through occurs at a critical Cauchy number specific to a given cell rest angle, which
also serves as an additional control factor, influencing both the onset of snap-through and the
resulting changes in drag. A theoretical fluid-elastic model captures these experimental observa-
tions, representing the cell as rigid facets with elastic hinges at the folds and using an empirical
formulation for fluid pressure forces. The modelling framework establishes the system equa-
tions needed for inverse design, enabling the identification of structural parameter combinations
that result in a desired drag reduction. Our implementation demonstrates advanced control
capabilities, allowing for selective adjustment of key drag features, including the peak drag be-
fore snapping, the magnitude of the drag reduction, and the critical flow speed at which it occurs.
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In the second chapter, we explored the application of the Waterbomb unit in confined
flow as a valve. A wind tunnel with a circular cross-section was developed and characterized,
followed by the mounting of the unit at the centre of the pipe. The passive adaption of the
unit with the flow gives rise to a non-linear pressure drop across the unit as the flow speed is
increased. Similar to the drag the pressure drop across the unit initially rises at a faster rate
with increasing blockage, followed by snap-through to give pressure discontinuity and further
increase in speed leads to a slow increase in pressure as the blockage is reduced. By altering var-
ious physical and geometrical parameters, we were able to adjust the flipping point and pressure
drop. Additionally, the effect of confinement is taken into account by introducing an effective
flow velocity which takes into account the blockage effect. By modifying the Cauchy number
using effective flow velocity and defining non-dimensional pressure, we observed a rescaling of
the plot, except in cases where the blockage was too high (units with larger R). Adapting the
model used in the first chapter to include local flow speed allowed us to accurately predict the
pressure drop across the unit. We also examined experimentally two units in series, achieving
multiple peaks in the pressure curve. Drawing on the analogy between the fluidic and electronic
systems, we developed a toy model to explore combinations of units. Firstly we studied two
units in series, followed by multiple units. The toy model was able to capture the behaviour of
two units and demonstrated that placing multiple units in series can maintain constant pressure
across the system for a specific flow range. The toy model was then applied to a more experi-
mentally challenging scenario with two units in parallel. With the model, we observe that a pipe
with an obstruction equipped with an origami unit in parallel can work as a flow rate limiter.
When the pressure drop because of obstruction increases beyond a critical value or when the
flow across it reaches a critical value, the unit in parallel can snap to short circuit the branch
with a sudden jump in velocity. By adjusting the unit’s parameters, it is possible to fine-tune
the pressure threshold. The switch-like response of the Waterbomb base could enable fluidic
control in channels, acting as a relief valve to limit pressure buildup by discharging fluid beyond a
predetermined pressure level. The unit may function as a semipermeable membrane to promote
directed flow, as shown by Brandenbourger et al[104, 120]. Flexible membranes were used to get
semipermiability, by blocking the channel in one direction and opening it in another direction.
The future potential lies in reverse engineering the units to achieve specific pressure curves or
combining multiple units to create unique pressure versus flow characteristics, as demonstrated
by Park et al.[108]. Combining multiple valves with non-monotonic pressure vs flow behaviour
in series and parallel allowed them to obtain triangular, square or other interesting pressure vs
flow curves. Furthermore, the sudden flow change in one chamber during parallel flow could
trigger rapid actuation of an attached component, as suggested by Qiao et al [132].

In the third chapter, we demonstrated that the Miura ori unit transitions between rigid
configurations through a hidden degree of freedom caused by facet bending, resulting in a drag
discontinuity. This behaviour contrasts with the previous chapter, where the folding pathway
allowed for continuous deformation before and after the snap-through event. Mechanical char-
acterization reveals that the unit’s effective stiffness mainly stems from the bending of the lower
facet. By adjusting the unit’s geometrical parameters—such as the mounting angle θ, the vertex
angle α, and the length of the upper facet l2—we can fine-tune both the stiffness and the max-
imum torque required for the transition. These adjustments control the mechanical properties
as well as the drag experienced by the system. Airflow experiments varying these parameters
clarify how geometrical changes affect the unit’s drag characteristics. Introducing the Cauchy
number, which balances fluid and elastic forces, rescales the drag data for mounting angle and
vertex angles, though modifications are required to incorporate the effect of the upper facet
length. A simple model based on the rigid behaviour before snapping and the balance between
torque from fluid loading and the maximum torque needed for the unit to flip aligns qualita-
tively with experimental data shown by comparing the critical velocity for snapping. The study
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also explored multiple units, or strings, enabling larger shape changes and more configuration
possibilities. The use of mono-stability and bi-stability, along with various connection methods,
offers numerous possibilities.

This thesis presents a promising proof of concept, demonstrating the potential of origami
structures for programming drag versus speed behaviour. This capability is valuable for self-
protection strategies, such as mitigating excessive aerodynamic loads beyond a set threshold or
serving as a velocity threshold detector. The snap-through behaviour of the Waterbomb base,
which involves passing through an unstable flat state, results in an initial drag increase, beneficial
for stabilization or speed reduction in applications like sea anchors, drogues, or aerial refuelling
stabilizers [16, 18]. This shape-adaptive drag offers better control and stabilization in varying
fluid environments. In spite of having a structure which deforms continuously to pass through
the flat state resulting in an initial increase in drag, we can also have a structure which has two
rigid states like a mounted Miura ori unit. This can be done via hidden degrees of freedom, such
as facet bending [81], which could enable significant shape changes while maintaining minimal
deformation and a relatively constant drag coefficient before snap-through.

Morphing driven by aeroelastic forces allows components to autonomously respond to the
local environment, eliminating the need for additional sensing and control systems and enabling
more streamlined aerodynamic control surfaces. However, the main limitation of these bistable
systems is the requirement of an external intervention or counter-flow to revert to their original
state. This limitation can be useful as well for example as a memory units that store information
about past fluid conditions[99]. Alternatively, monostable systems that snap through under load
but return to their original state when the load is removed could address this limitation [41,
47, 48]. Another advantage of origami is the ease of combining multiple bistable elements to
create multistable structures [74, 97–99]. For instance, a chain of two Waterbomb cells or
Miura ori string can produce successive sharp transitions in drag force, with each unit having
its independent flow velocity threshold for snap-through. Other configurations might lead to
interactions between cells through external flow, resulting in more complex collective responses,
as seen in fluidic cellular origami [97]. Shared facets between cells could enable communication
of mechanical states between units, forming logic elements [100], and generating more complex
snapping sequences and drag evolution with flow speed for advanced adaptive functionalities.

Some of the other possibilities that we have explored but not in very much detail are presented
below. These are some of the ideas that we have tested and can be the future direction for studies
of origami structures in an airflow.

5.2 Future Prospects

Flow visualization

In our model, we used a very simplified representation of fluid mechanics. It does not take
into account the retroaction of the object on the flow, we assume that the flow velocity seen by
the origami is that of undisturbed flow. We also did not include the effect of the wake region.
These limitations in our model may be the primary cause of the differences observed in the
experimental and theoretical models. A better understanding of the flow pattern around and
behind the origami unit will help in improving the model to incorporate these effects. This will
provide a better agreement between the experimental and theoretical curves, which will help in
better inverse design. These flow patterns can be observed with the help of flow visualization
or numerical simulation.

Fig.5.1, depicts the flow pattern around and behind the Waterbomb unit mounted in a water
channel of cross-section 20×20cm operated at a maximum flow speed of 3cm/s. These are some
of the preliminary results and do not correspond to the actual flow regime i.e., they are at a
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Figure 5.1: Flow visualization for the unit mounted in a water channel with the concave side
facing the flow using hydrogen bubbles.

lower Re, though they still give information on the flow patterns. For the visualisation, we
use a wire to generate hydrogen bubbles. The picture taken with the high-speed camera while
illuminating the region with LED lights clearly shows the vortex shed at the edges (Fig.5.1). A
more detailed experimental investigation is required to get further insight into the flow around
the unit. This investigation will be very useful in the case of several units combined in series,
or units downstream or upstream of an obstacle, where the flow perturbations generated by
one would influence the behaviour of the other. We observe that the snapping velocity for the
unit placed downstream of an obstacle can be changed by changing the distance between the
two. We also observe that the drag force on the two units placed in series (similar to the pipe
flow example) is not the sum of individual units and changes with the distance between them.
These observations are likely the influence of the interactions between the objects through flow.
Thus, a better understanding of the flow pattern will help in investigating these observations to
a deeper level.

5.2.1 Multiple jumps

In the conclusion section of the first chapter, we saw the combination of two Waterbomb units
can lead to multiple jumps. Those units were combined with the help of a rigid panel. To have
units with functionality or to have the desired folding pathway, the units need to be combined in
such a way that their kinematics are compatible which is not easy to achieve. An alternative to
this is to use facet bending. We show a method to achieve multiple jumps by adding a Miura ori
unit with a Waterbomb unit at its centre (Fig.5.2a). Starting from the concave side facing the
flow, the Miura facets start flipping one by one at different flow rates, which leads to asymmetric
folding of the unit. As a consequence of this, we saw three drag discontinuities in the same unit.
These jumps can be tuned by changing the unit’s parameters and the preliminary test shows
one such possibility.

Another method that leads to multiple jumps is making inverted origami or a shell structure,
where facet bending is easier than crease bending (Fig.5.2b). This unit is fabricated using a
thinner sheet of mylar with a thicker sheet at its creases and a large mounting angle. So, the unit
can deform only via facet bending and the creases are assumed to be very stiff. In the airflow
when mounted with a concave side facing the flow, a small asymmetry in the fabrication leads to
the upper half bending (similar to buckling of the beam) before the lower half as a consequence
we see a sudden reduction in drag force. On further increasing the flow the lower part of the
unit also bends leading to another drag drop. Though the examples presented here are not
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experimentally very robust they highlight interesting consequences of including facet bending in
the system. Further investigation is required to make these methods robust to achieve multiple
drag jumps in the flow.
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Figure 5.2: Multiple drag discontinuity achieved by (a) combining Waterbomb unit with Miura
ori unit and by (b) Waterbomb unit with rigid creases and flexible facets.

5.2.2 Different crease stiffness

Figure 5.3: Different folding pathways a flat Miura ori unit made with disk can take. The parallel
configuration (O1), where the spinal creases fold in the same directions (both mountains) and
the antiparallel configuration (O2) with spinal creases folding in opposite directions (mountain
and valley).

In Chapter 3 we talked about the Miura ori unit in great detail and looked at the two
possible folding pathways that the unit can take (parallel and anti-parallel). In this exploration,
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we looked at the influence of the crease stiffness on the folding behaviour of the unit. Starting
from a flat state, the unit with all creases of the same stiffness can spontaneously go to either
parallel configuration (O1) or antiparallel configuration(O2) (shown in Fig.5.3) for all the sector
angles. We observe that the unit can go to O1 in the first test and then O2 in the second test,
the choice of the orientation is random. If we increase the stiffness of the lower spinal crease, we
observe that the unit always chooses the O2 pathway. Thus modifying crease stiffness can be a
good strategy to choose a folding pathway. Another possibility to decide the folding pathway
is to give an initial angle to the unit and start by mounting it with the concave side facing the
flow. It was observed that this unit when exposed to an airflow always goes to the O1 folding
pathway. Thus imposing an initial angle can also act as a strategy to select the folding pathway.
This unit can be made to go to another folding pathway if in spite of using the steady flow with
increased speed, we use a gust of air. The unit when suddenly exposed to the high-velocity gust
goes to O2. This indicates the possibility of studying origami units in unsteady flow to achieve
other interesting behaviours.

5.2.3 Non-flat foldable unit

Figure 5.4: Drag force curve for non-flat foldable vertex four-unit with sector angles
(90◦, 90◦, 120◦, 60◦). The drag increases at a slow rate during the closing process and increases
faster post-locking. Figures are added to demonstrate the shapes at different data points.

All the structures we studied so far were flat foldable i.e., they are the structures that can
be folded into a plane or they become 2 dimensional when fully folded. The structures that
are not flat foldable usually end up with facets getting stuck with each other as a consequence
they show a sudden rise in stiffness also their final folded shape is a 3D structure. Fig.5.4 shows
one of the simplest non-flat foldable structures called non-generic degree four vertex unit. It
is made up of sectors angles (90◦, 90◦, 120◦, 60◦). The drag curve for the unit starting from a
convex shape indicates that in the initial part when the unit deforms, leads to a lower increase
in drag similar to reconfigurable slender/origami structures, as the facets come into contact, the
unit gets stuck in that shape and becomes rigid. Increasing the flow speed post-blocking leads
to a faster increase in drag. Changing the last two angles while keeping the first two fixed can
be used to tune the drag curve, by changing the shape of the blocked unit. This shows another
interesting drag feature enabled by origami other than the drag jump, which is a discontinuity
in the rate of increase of drag with the flow due to the sudden stiffening of the unit.
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5.2.4 Flow induced expansion of Miura ori tube

One of the following questions that comes to mind after studying a single unit is what happens
when we have multiple units. This is investigated by a Miura ori tube. A single Miura ori unit
fabricated with some rest angle other than 180◦ in the antiparallel configuration when mounted
with a concave side facing the flow tends to open up towards a flat state(similar to the Water-
bomb unit). Whereas when the same unit is mounted with a convex side facing the flow tends
to close. In both cases, the unit is pinned at the centre. Now what will happen when we merge
multiple such units? If the first vertex is pointing against the flow(convex shape), then the next
one will be pointing towards the flow and similarly, the following vertex will alternatively follow
the same pattern. This gives us a sheet in which alternating vertices tend to open and close
respectively. So, will the sheet open in flow or close? As a sheet will be able to bend in the
flow as well, we decided to make a tube which reduces the amount of bending[61] and reduces
the motion to only the expansion and contraction (1 degree of freedom). The aim was to study
how fluid forces at the individual level(units here), can affect the global deployment of a bigger
structure. The novelty of this exploration is the expansion normal to the flow as we will discuss.
All the experiments and modelling discussed below were done by Abhyuday Pandey, whom I
co-supervised during his third-year bachelor thesis.
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Figure 5.5: (a) Fabrication process of the Miura ori tube. Individual units were combined via
creases to form a string or sheet (a string with 4 units is shown in the left), which were then
stacked in inverted configurations to make a tube. (b) Experimental setup with Miura ori tube
mounted with the help of sliders on the rail to be able to expand in response to flow coming out
of a plane with the least amount of friction.

The tube is fabricated using the same fabrication technique used before with the Miura
strings merged with scotch tape and a small hole is made through each vertex to avoid stress
concentration and to help with the mounting. The final unit and merging process is depicted in
Fig.5.5a. A mount that allows the unit to expand and contract freely while avoiding out-of-plane
motion was fabricated (Fig.5.5b).

The tube was mounted using rails in its rest length in the wind tunnel and flow was increased
from 0− 13 m/s. The ends of the tube were free whereas the center was pinned. The length of
the tube is extracted with the help of pictures taken by a camera downstream. Fig.5.6a, shows
the expansion of the tube in response to the increasing flow with the flow direction out of the
plane. The extracted length of the tube is depicted in Fig.5.6b. Tests were conducted on tubes
with different crease stiffness and vertex angles. By changing these parameters we could control
the amount and rate of expansion with increasing flow rates.

A fluid-structure model following the energy approach used in Chapter 1 was developed for
the Miura tube. The facets were assumed to be perfectly rigid, and all folds act as torsion springs
(with identical stiffness per unit length) with a linear response. Another vital assumption is that
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Figure 5.6: (a) Expansion of Miura ori tube in a flow with increasing flow speed using the
pictures taken from a camera downstream and the (b) expansion measured as a function of
speed. The unit has a vertex angle of 55◦ and crease stiffness 2.5× 10−3N.

the presence of adjacent units does not affect how the flow interacts with and moves around
the tube and the tube extends uniformly, such that the work done on the whole tube can be
extrapolated from the work done on a single unit.
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Figure 5.7: Non-dimensional length L/L0 as a function of non-dimensional Cauchy number for
units with different crease stiffness. Experimental curves are depicted in red and the theoretical
curve is in black.

The balance between the potential energy and the work done by the fluid forces gives rise
to the following equation:

nρu2L1L2

κ| sin3 α|
cos2 ψ sin2 β

(
L2
1

dψ

dβ
sinβ + L2

2 cosψ

)
= (4n− 2)L1(θ − θ0)

dθ

dβ
+ 2nL2(ϕ− ϕ0)

dϕ

dβ
,

(5.1)
Where L1 and L2 are the length of the spinal and peripheral creases, θ and ϕ are angle of
mountain and valley folds, n is number of units, is stiffness per unit length of the creases, α is
the vertex angle of the unit, ψ is the angle between the peripheral facet and β is the angle used
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to define the motion of the unit. The equation is solved numerically to get the expansion of the
tube at increasing flow rates.

Similar to the previous studies we define the Cauchy number as Cy =
Cdρu

2L2
1

κ
to account

for the effect of the creases stiffness. The collapse of the data (Fig.5.7 red dots) on a curve
indicates that the Cauchy number can take into account the balance between the fluid and
elastic forces for the system. The model can predict a similar expansion of the tube with a
slight underestimation.

The preliminary results of this study provide good support for the intuitive understanding
of the behaviour of the tube. The model developed does not perfectly predict the extension of a
tube with given physical parameters at a given wind speed, but it is close enough to be useful.
The tubes did not return to their initial position when the flow was removed, indicating that
the friction forces on the rails were not negligible. This can be improved by making stiffer tubes
and we can incorporate the friction in the model. This study can be extended to other versions
of the Muira-Ori like the zipper tube, the aligned tube, and the internally coupled tubes [61].

In the thesis and the investigations presented here, we looked at the various origami units
and the usefulness of their mechanical properties to achieve different drag features. Which were
shown to be tunable using the various geometrical and mechanical properties of the units. We
hope that the study was able to illuminate the benefits and interesting behaviour of origami
structures in a flow and will ignite curiosity in the field of origami-based fluid-structure interac-
tions.

Thank you for reading this manuscript. This is all from my side. I bid you farewell. Au
revoir!
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ration in plants. C.R. Mécanique 340, 35–40 (2012).

97. Li, S. & Wang, K. W. Fluidic origami with embedded pressure dependent multi-stability:
a plant inspired innovation. J. R. Soc. Interface 12, 20150639 (2015).

105



Bibliography
;A<

98. Sengupta, S. & Li, S. Harnessing the anisotropic multistability of stacked-origami me-
chanical metamaterials for effective modulus programming. J. Intell. Mater. Syst. Struct.
29, 2933–2945 (2018).

99. Jules, T., Reid, A., Daniels, K. E., Mungan, M. & Lechenault, F. Delicate memory struc-
ture of origami switches. Phys. Rev. Res. 4, 013128 (2022).

100. Treml, B., Gillman, A., Buskohl, P. & Vaia, R. Origami mechanologic. Proc. Natl. Acad.
Sci. U.S.A. 115, 6916–6921 (2018).

101. Oh, K. W. & Ahn, C. H. A review of microvalves. Journal of micromechanics and micro-
engineering 16, R13 (2006).

102. Van Laake, L. C., de Vries, J., Kani, S. M. & Overvelde, J. T. A fluidic relaxation oscillator
for reprogrammable sequential actuation in soft robots. Matter 5, 2898–2917 (2022).

103. Pontin, M. & Damian, D. D. Multimodal soft valve enables physical responsiveness for
preemptive resilience of soft robots. Science Robotics 9, eadk9978 (2024).

104. Brandenbourger, M., Dangremont, A., Sprik, R. & Coulais, C. Tunable flow asymmetry
and flow rectification with bio-inspired soft leaflets. Physical Review Fluids 5, 084102
(2020).

105. Park, K. et al. Viscous flow in a soft valve. Journal of Fluid Mechanics 836, R3 (2018).

106. Christensen, A. H. & Jensen, K. H. Viscous flow in a slit between two elastic plates.
Physical Review Fluids 5, 044101 (2020).

107. Louf, J.-F., Knoblauch, J. & Jensen, K. H. Bending and stretching of soft pores enable
passive control of fluid flows. Physical review letters 125, 098101 (2020).

108. Park, K. et al. Fluid-structure interactions enable passive flow control in real and biomimetic
plants. Physical Review Fluids 6, 123102 (2021).

109. Preston, D. J. et al. A soft ring oscillator. Science Robotics 4, eaaw5496 (2019).

110. Decker, C. J. et al. Programmable soft valves for digital and analog control. Proceedings
of the National Academy of Sciences 119, e2205922119 (2022).

111. Napp, N., Araki, B., Tolley, M. T., Nagpal, R. & Wood, R. J. Simple passive valves for
addressable pneumatic actuation in 2014 IEEE International Conference on Robotics and
Automation (ICRA) (2014), 1440–1445.

112. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, au-
tonomous robots. nature 536, 451–455 (2016).

113. Di Lallo, A. et al. A novel approach to under-actuated control of fluidic systems in 2018
IEEE International Conference on Robotics and Automation (ICRA) (2018), 193–199.

114. Xu, S., Chen, Y., Hyun, N.-s. P., Becker, K. P. &Wood, R. J. A dynamic electrically driven
soft valve for control of soft hydraulic actuators. Proceedings of the National Academy of
Sciences 118, e2103198118 (2021).

115. De Chant, L. J. The venerable 1/7th power law turbulent velocity profile: a classical
nonlinear boundary value problem solution and its relationship to stochastic processes.
Applied Mathematics and Computation 161, 463–474 (2005).

116. Idelchik, I. E., Steinberg, M. & Martynenko, O. G. Handbook of hydraulic resistance
(Hemisphere publishing corporation New York, 1986).

117. Benedict, R. Loss coefficients for fluid meters (1977).

118. Gulsacan, B., Tokgoz, N., Karakas, E. S., Aureli, M. & Evrensel, C. A. Effect of ori-
fice thickness-to-diameter ratio on turbulent orifice flow: An experimental and numerical
investigation. International Communications in Heat and Mass Transfer 151, 107213
(2024).

106



Bibliography
;A<

119. Liu, Y., Liu, J. & Gao, F.-P. Strouhal number for boundary shear flow past a circular
cylinder in the subcritical flow regime. Ocean Engineering 269, 113574 (2023).

120. Ledesma-Alonso, R., Guzmán, J. & Zenit, R. Experimental study of a model valve with
flexible leaflets in a pulsatile flow. Journal of Fluid Mechanics 739, 338–362 (2014).

121. Walker, M. Mechanics of generically creased disks. Physical Review E 101, 043001 (2020).

122. Lechenault, F. & Adda-Bedia, M. Generic bistability in creased conical surfaces. Physical
review letters 115, 235501 (2015).

123. Iniguez-Rabago, A. & Overvelde, J. T. From rigid to amorphous folding behavior in
origami-inspired metamaterials with bistable hinges. Extreme Mechanics Letters 56, 101881
(2022).

124. Sareh, P. & Guest, S. D. Design of isomorphic symmetric descendants of the Miura-ori.
Smart Materials and Structures 24, 085001 (2015).

125. Faber, J. A., Arrieta, A. F. & Studart, A. R. Bioinspired spring origami. Science 359,
1386–1391 (2018).

126. Liu, C., Wohlever, S. J., Ou, M. B., Padir, T. & Felton, S. M. Shake and take: Fast
transformation of an origami gripper. IEEE Transactions on Robotics 38, 491–506 (2021).

127. Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R. & Vaziri, A. Origami-based
cellular metamaterial with auxetic, bistable, and self-locking properties. Scientific reports
7, 46046 (2017).

128. Foschi, R., Hull, T. C. & Ku, J. S. Explicit kinematic equations for degree-4 rigid origami
vertices, Euclidean and non-Euclidean. Physical Review E 106, 055001 (2022).

129. Kamrava, S., Mousanezhad, D., Felton, S. M. & Vaziri, A. Programmable origami strings.
Advanced Materials Technologies 3, 1700276 (2018).

130. Molaei, A., Liu, C., Felton, S. M. & Martinez-Lorenzo, J. Origami inspired reconfigurable
antenna for wireless communication systems. arXiv preprint arXiv:1805.10370 (2018).

131. Rivas-Padilla, J. R., Boston, D. M., Boddapati, K. & Arrieta, A. F. Aero-structural op-
timization and actuation analysis of a morphing wing section with embedded selectively
stiff bistable elements. Journal of Composite Materials 57, 737–757 (2023).

132. Qiao, C., Liu, L. & Pasini, D. Bi-shell valve for fast actuation of soft pneumatic actuators
via shell snapping interaction. Advanced Science 8, 2100445 (2021).

107



Titre : L’origami comme plateforme pour ajuster la force de traı̂née

Mots clés : Elasticité, Interaction fluide/structure, Origami/Kirigami

Résumé : La force de traı̂née augmente
généralement avec la vitesse de l’écoulement, sauf
dans certains cas spécifiques comme la crise de
traı̂née ou des changements brusques de forme,
comme lorsqu’un vent violent brise les branches
d’un arbre. Dans ce cas, la traı̂née exercée sur
l’arbre chute instantanément, lui permettant de main-
tenir son intégrité structurelle malgré l’irréversibilité
du phénomène. Une alternative intéressante pour
créer des changements brusques de forme est le
phénomène de ”snap-through” dans les structures
flexibles. La technique de l’origami offre un cadre
prometteur pour concevoir de telles structures, ca-
pables de passer d’un état d’équilibre à un autre.
En intégrant des plis spécifiques, il est possible de
contrôler la cinématique et les propriétés mécaniques
des structures, notamment leur multistabilité. Dans
cette thèse, nous avons étudié des cellules d’ori-
gami bistables capables de passer à un second état
stable, soit en suivant leur trajectoire cinématique,

soit par un degré de liberté ≪ caché ≫ résultant de la
flexion des faces. Ces cellules peuvent se déformer
continuellement dans un écoulement avant de pas-
ser à leur nouvel état, ou maintenir leur forme avant
et après la transition. Ces deux comportements en-
traı̂nent une variation discontinue de la traı̂née avec
l’augmentation de la vitesse d’écoulement. En ajus-
tant les propriétés géométriques et mécaniques, il
est possible de modifier la vitesse critique de retour-
nement et la force de traı̂née subie par l’élément.
Les résultats expérimentaux ont été validées par un
modèle théorique aéroélastique basé sur l’équilibre
les forces fluides et élastiques. Ce travail met en
avant l’origami comme une méthode prometteuse
pour créer des structures passives déployables ca-
pables de contrôler la traı̂née dans des environne-
ments fluides. Par exemple, nous avons démontré
expérimentalement qu’une structure en origami peut
fonctionner comme une valve passive pour réguler le
débit.

Title : Origami as a platform for tuning drag force
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Abstract : The drag force typically rises with flow
speed, except in cases like drag crisis or abrupt shape
changes, such as wind-induced tree pruning. While
pruning reduces drag sharply and maintains structu-
ral integrity, it is irreversible. An attractive alternative
for abrupt shape change is snap-through events in
flexible structures. Origami provides a promising fra-
mework for crafting such shape-morphing structures.
By prescribing specific folds, one can achieve the de-
sired kinematic pathway and mechanical properties,
particularly multistability. In this thesis, we studied bis-
table origami units capable of transitioning to a se-
cond stable state either by following the kinematic
path or by utilizing a hidden degree of freedom ari-
sing from facet bending. These units can either de-

form continuously in flow with a snap-through event or
maintain their shape before and after snapping to the
second state. Both behaviours show a discontinuous
evolution of drag with increasing flow speed. By adjus-
ting geometrical and mechanical properties, we can
modify and fine-tune the snapping event and the drag
force experienced by the unit. Experiments were cor-
roborated by a theoretical aero-elastic model that ba-
lances fluid forces with elastic forces. This work pre-
sents an origami design strategy for creating efficient
passive deployable structures capable of controlling
drag in fluid environments. For instance, we demons-
trated an origami structure functioning as a passive
valve to regulate flow.
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