
HAL Id: tel-04890515
https://theses.hal.science/tel-04890515v1

Submitted on 16 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterization of a Reliability Domain for Image
Classifiers
Adrien Le Coz

To cite this version:
Adrien Le Coz. Characterization of a Reliability Domain for Image Classifiers. Artificial Intelligence
[cs.AI]. Université Paris-Saclay, 2024. English. �NNT : 2024UPASG109�. �tel-04890515�

https://theses.hal.science/tel-04890515v1
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

024
UPA

SG1
09

Characterization of a ReliabilityDomain for Image ClassifiersCaractérisation d’un Domaine deFiabilité des Classifieurs d’Images

Thèse de doctorat de l’université Paris-Saclay
École doctorale n◦580 : sciences et technologies de l’information et de lacommunication (STIC)Spécialité de doctorat : InformatiqueGraduate School : Informatique et Sciences du Numérique. Référent : Faculté dessciences d’Orsay

Thèse préparée dans l’unité de recherche Traitement de l’information et systèmes(Université Paris-Saclay, ONERA) et à l’IRT SystemX,sous la direction de Stéphane HERBIN, directeur de recherche à l’ONERA,et le co-encadrement de Faouzi ADJED, ingénieur chercheur à l’IRT SystemX.

Thèse soutenue à Paris-Saclay, le 19 décembre 2024, par

Adrien LE COZ

Composition du jury
Membres du jury avec voix délibérative
Mathilde MOUGEOT PrésidenteProfesseure des universités, ENSIIE et ENS Paris-SaclayLiming CHEN Rapporteur & ExaminateurProfesseur des universités, École Centrale de LyonAhmed SAMET Rapporteur & ExaminateurMaître de conférences HDR, INSA StrasbourgFrédéric JURIE ExaminateurProfesseur des universités, Université de Caen

Titre : Caractérisation d’un Domaine de Fiabilité des Classifieurs d’ImagesMots clés : Intelligence Artificielle, Apprentissage Profond, Vision par Ordinateur, IA de Confiance
Résumé : Les réseaux de neurones profondsont révolutionné le domaine de la vision par or-dinateur. Ces modèles apprennent une tâchede prédiction à partir d’exemples. La classifica-tion d’images consiste à identifier l’objet princi-pal présent dans l’image. Malgré de très bonnesperformances des réseaux de neurones surcette tâche, il arrive fréquemment qu’ils setrompent de façon imprévue. Cette limitationest un frein à leur utilisation pour de nom-breuses applications. L’objectif de cette thèseest d’explorer des moyens de définir un do-maine de fiabilité qui expliciterait les condi-tions pour lesquelles un modèle est fiable.

Trois aspects ont été considérés. Le premierest qualitatif : générer des exemples extrêmessynthétiques permet d’illustrer les limites d’unclassifieur et de mieux comprendre ce qui lefait échouer. Le second aspect est quantita-tif : la classification sélective permet au mo-dèle de s’abstenir en cas de forte incertitude,et la calibration permet de mieux quantifierl’incertitude de prédiction. Enfin, le troisièmeaspect est d’inclure de la sémantique : desmodèles multimodaux qui associent images ettexte sont utilisés pour décrire textuellementles images susceptibles de provoquer de mau-vaises, ou inversement, de bonnes prédictions.

Title : Characterization of a Reliability Domain for Image ClassifiersKeywords : Artificial Intelligence, Deep Learning, Computer Vision, Trustworthy AI
Abstract : Deep neural networks have revo-lutionized the field of computer vision. Thesemodels learn a prediction task from examples.Image classification involves identifying themain object present in the image. Despite thevery good performance of neural networks onthis task, they often fail unexpectedly. This limi-tation prevents them from being used in manyapplications. The goal of this thesis is to ex-plore methods for defining a reliability domainthat would clarify the conditions under which amodel is trustworthy. Three aspects have been

considered. The first is qualitative : generatingsynthetic extreme examples helps illustrate thelimits of a classifier and better understand whatcauses it to fail. The second aspect is quantita-tive : selective classification allows the model toabstain in cases of high uncertainty, and cali-bration helps better quantify prediction uncer-tainty. Finally, the third aspect involves seman-tics : multimodal models that associate imagesand text are used to provide textual descrip-tions of images likely to lead to incorrect or,conversely, to correct predictions.

Contents

Acronyms V

Résumé en Français VII

1 Introduction 1
1.1 The Rise of Deep Learning . 1
1.2 Deep Learning Models Failures . 3
1.3 Trustworthy AI Initiatives . 4
1.4 The Initial Goal: Defining a Domain . 5
1.5 Summary of Contributions . 8

1.5.1 Use Generative Models to Illustrate Failures 8
1.5.2 Selective Classification and Calibration 10
1.5.3 Incorporating Textual Descriptions 10

1.6 Publications and Code . 11

2 Related Work 12
2.1 AI Safety . 12
2.2 Explainability . 13
2.3 Uncertainty and Failure Sources . 13

2.3.1 Failure Sources in the Model . 14
2.3.2 Failure Sources in the Data . 16

2.4 Classifier Failures Discovery . 19
2.5 Selective Classification . 20
2.6 Calibration . 21
2.7 Tools . 24

2.7.1 Generative Adversarial Networks (GANs) 24
2.7.2 Diffusion and Text-to-Image Models 27

3 A Qualitative View: Use Generative Models to Illustrate Failures 29
3.1 Introduction . 29
3.2 Background . 30
3.3 Generate Synthetic Failure Cases . 31

3.3.1 Generative Models to Explore the Data Space 31
3.3.2 GAN’s Latent Space Exploration Guided by a Classifier’s Gradient 32
3.3.3 Experiments and Results . 34

3.4 Generate Synthetic Uncertain Data . 38
3.4.1 GAN Conditioned by a Classifier’s Confidence 38
3.4.2 Experiments and Results . 39

3.5 Discussion . 42

III

4 A Quantitative View: Selective Classification and Calibration 46
4.1 Introduction . 46
4.2 Background . 47
4.3 Selective Classification Experiments . 51

4.3.1 Selection Functions . 51
4.3.2 Experiments and Results . 52
4.3.3 Towards Better Calibration . 54

4.4 Making Confidence Calibration Methods More Data-Efficient 54
4.4.1 Issues Related to Current Approaches 54
4.4.2 Top-versus-All Approach to Confidence Calibration 56
4.4.3 Experiments and Results . 59

4.5 Calibrate with Synthetic Data . 66
4.5.1 Use a Class Conditional GAN to Generate Calibration Data 66
4.5.2 Experiments and Results . 67

4.6 Discussion . 70

5 Incorporating Textual Descriptions 71
5.1 Introduction . 71
5.2 Background . 72
5.3 Textual Descriptions of Classifier Failures Using Text-to-Image Models . 73

5.3.1 Leveraging Text-to-Image Generative Models 73
5.3.2 Bayesian Optimization to Explore Faster 74
5.3.3 Experiments and Results . 77

5.4 Using Textual Attributes to Define a Reliability Domain 83
5.4.1 Semantic Binning for Semantic Selective Classification 83
5.4.2 Experiments with Synthetic Data 86
5.4.3 Experiments with Real Data . 89

5.5 Discussion . 92

6 Conclusion / Discussion 94
6.1 Is the Initial Goal Solved? . 94
6.2 A Look Back at 3 Years of AI Progress 96
6.3 Perspectives . 97

7 Appendix 101
7.1 Implementation Details . 101
7.2 Additional Results for Top-versus-All (TvA) Calibration 104

7.2.1 Theoretical Justification of TvA for Temperature Scaling 104
7.2.2 Additional Tables of Results . 106

Bibliography 115

IV

Acronyms

ADAS Advanced Driver-Assistance System. 3, 4

AI Artificial Intelligence. 1–6, 12, 13, 78, 93, 96, 97, 99

AURC Area Under the Risk-Coverage curve. 48, 49, 53

AUROC Area Under the Receiver Operating Characteristic curve. 49, 53, 54, 63, 65, 66,
86, 88–90, 100, 110

BBQ Bayesian Binning into Quantiles. 60

Beta Beta Calibration. 60

BO Bayesian Optimization. 77, 79–81

CoSim Cosine Similarity. 52, 53, 76, 85

CT Combinatorial Testing. 74, 75, 79, 103

DA Domain Adaptation. 6, 17, 94, 100

DC Dirichlet calibration. 59, 62, 63

DDPM Denoising Diffusion Probabilistic Model. 27, 73

DG Domain Generalization. 6, 17, 94, 100

DL Deep Learning. 2

DNN Deep Neural Network. 2–6, 13, 15, 18, 20–22, 77, 97

ECE Expected Calibration Error. 23, 49, 54, 56, 60–65, 67–69, 107–109, 113

FPR False Positive Rate. 49

GA Genetic Algorithm. 77, 79–81, 103

GAN Generative Adversarial Network. 8–10, 12, 17, 24–32, 38, 40–45, 47, 66–69, 94–
96

GP Gaussian Process. 77

GPU Graphics Processing Unit. 2, 15

V

HB Histogram Binning. 50, 60, 62, 65

ICL In-Context Learning. 63

Iso Isotonic Regression. 60

LLM Large Language Model. 1, 2, 12, 20, 28, 63, 64, 96, 97, 99, 100

ML Machine Learning. 1, 2, 5, 6, 12, 13, 103

MSP Maximum Softmax Probability. 10, 20, 21, 39–42, 47, 51, 53, 54, 70, 72, 87–91,
94, 98, 100

ODD Operational Design Domain. 5, 6, 13, 19, 74

OOD Out-of-Distribution. 6, 16, 17, 21, 22, 26, 51, 65, 70, 94, 97, 99, 100

OvA One-versus-All. 24, 50, 55, 58, 63

SAC Selective Accuracy Constraint. 49

SB Semantic Binning. 84, 86

SC Selective Classification. 6, 10–12, 20–22, 46, 50–54, 65, 66, 70, 84, 97, 98, 100

SD Stable Diffusion. 73, 78, 91, 101, 103

SSC Semantic Selective Classification. 83, 84, 86, 87, 89–91, 93, 95, 96, 99

TCP True Class Probability. 51–53

TI Textual Inversion. 85, 91, 92, 103

TPR True Positive Rate. 49

TS Temperature Scaling. 50, 59–63

TvA Top-versus-All. 24, 56–66, 98, 104, 106–108

VS Vector Scaling. 50, 59–63

XAI Explainable Artificial Intelligence. 8, 10, 12, 13, 29, 42, 71

VI

Résumé en Français

Contexte Les réseaux de neurones profonds ont révolutionné de nombreux domaines,
notamment la vision par ordinateur. Ces modèles d’apprentissage machine apprennent
une tâche de prédiction à partir d’exemples. Cette thèse considère la classification d’images,
qui consiste à identifier l’objet principal présent dans l’image. Malgré de très bonnes
performances des réseaux de neurones sur cette tâche, il arrive fréquemment qu’ils se
trompent de façon imprévue. Un modèle peut par exemple se tromper quand une image
diffère trop de ce qu’il a vu pendant son entraı̂nement. Les échecs relativement fréquents
de ces modèles sont un frein à de nombreuses applications. En réponse à ce problème,
des initiatives se sont crées pour développer l’intelligence artificielle de confiance. C’est
le cas du programme Confiance.ai, qui vise à développer les applications de l’intelligence
artificielle dans diverses industries françaises, notamment pour des applications critiques.

L’objectif de cette thèse est d’explorer des moyens de définir un domaine de fiabilité
qui expliciterait les conditions pour lesquelles un classifieur d’images est fiable. Étant
donné l’ampleur du sujet, différents aspects peuvent être étudiés. Le premier aspect con-
siste à prendre le point de vue de l’explicabilité. J’ai utilisé des modèles génératifs pour
créer des images illustrant les conditions de défaillance d’un classifieur. Le deuxième
aspect consiste à examiner le problème d’un point de vue plus quantitatif, en utilisant les
notions de classification sélective et de calibration. J’ai développé une nouvelle approche
pour améliorer la calibration des classifieurs. Enfin, le troisième aspect est l’intégration
de la sémantique en décrivant les échecs des classifieurs avec du texte. J’ai amélioré une
technique permettant de découvrir rapidement les défaillances des classifieurs en utilisant
des images synthétiques pour un modèle texte-image et j’ai incorporé des attributs textuels
dans la classification sélective.

Aspect Qualitatif : Utiliser des Modèles Génératifs pour Illustrer les Échecs Les
exemples extrêmes pourraient être un moyen de définir le domaine d’un classifieur : ils
donnent des indications sur ses limites. Cependant, ils sont généralement rares dans les
données disponibles car ils ont une faible probabilité de se produire. Utiliser des modèles
génératifs est une solution pour créer des exemples extrêmes synthétiques. Les Gen-
erative Adversarial Networks (GANs) peuvent transformer des vecteurs situés dans un
espace latent (entrée du modèle) en images réalistes (sortie du modèle). Ces modèles
sont entraı̂nés à générer des images synthétiques indistinguables des images des données
d’entraı̂nement. Ils construisent une représentation comprimée des images dans l’espace
latent, dont la dimension est réduite par rapport à l’espace des pixels. Cela permet de
représenter les images en fonction de leurs caractéristiques visuelles (par exemple, une
direction dans l’espace latent peut coder le contraste de l’image). Certains modèles
séparent les différentes caractéristiques visuelles, ce qui permet de modifier les images
une caractéristique à la fois (par exemple, changer la couleur des cheveux d’un portrait
sans modifier le reste). Ceci peut être utilisé pour expliquer la décision d’un classifieur en

VII

identifiant les attributs visuels qu’il utilise pour distinguer les classes.
J’ai développé un modèle génératif capable de créer des exemples extrêmes pour un

classifieur donné afin de caractériser ses échecs. Pour ce faire, le classifieur est couplé à un
GAN. Les données utilisées sont une version corrompue des données MNIST, qui sont des
images de chiffres manuscrits. Le bruit et le flou sont des caractéristiques des systèmes
d’imagerie qui peuvent altérer les performances de la classification. Ces caractéristiques
sont ajoutées au générateur pour une génération plus réaliste. La tâche du classifieur est
de reconnaı̂tre le chiffre présent dans l’image. Un modèle génératif est entraı̂né pour créer
des images synthétiques réalistes et construit un espace latent permettant la manipulation
de l’image. En particulier, nous pouvons détecter les directions de l’espace latent qui
ont le plus d’impact sur la classification, c’est-à-dire celles qui corrompent fortement les
images. La détection de ces directions se fait à l’aide du gradient de la prédiction du
classifieur par rapport aux vecteurs de l’espace latent. Nous pouvons ensuite visualiser
les attributs visuels en partant de certaines images et en les perturbant en fonction des
directions les plus impactantes. Par exemple, un zéro est principalement perturbé par les
attributs de forme et de contraste, et un neuf par les niveaux de bruit ou de flou. Cela
nous permet de visualiser les limites du classifieur. Il n’est pas robuste à certains attributs
visuels, car certains exemples extrêmes sont encore reconnaissables par l’œil humain.

J’ai ensuite essayé une approche différente en associant le classifieur à un GAN.
Cette fois, la confiance du classifieur conditionne directement la génération. La confi-
ance d’un classifieur est la probabilité qu’il attribue à sa prédiction. En effet, les classi-
fieurs prédisent un vecteur de probabilité, un pour chaque classe, à partir duquel la classe
prédite est déduite (celle qui correspond à la probabilité maximale). Souvent, les clas-
sifieurs se trompent lorsque la probabilité maximale est faible : le modèle hésite entre
plusieurs classes. En conditionnant le GAN avec la confiance du classifieur, nous pou-
vons directement guider la génération vers les images difficiles. Cette approche permet
de corrompre les images et de générer des exemples extrêmes. Cependant, les premiers
résultats montrent que la confiance pour une image générée n’est pas nécessairement celle
fixée comme condition pour le générateur. Les contraintes données par la condition sont
en effet difficiles à apprendre pour le générateur, car le comportement du classifieur est
imparfaitement résumé en un seul nombre. Néanmoins, le contrôle de cette condition
permet de mieux comprendre le comportement du classifieur.

Ces deux travaux ont montré que les GANs peuvent générer des exemples extrêmes
ou difficiles pour un classifieur donné. Cela permet d’illustrer les attributs visuels les plus
susceptibles de perturber la classification. Toutefois, les deux approches sont limitées par
le fait que les GANs ont du mal à générer de manière réaliste des images plus complexes,
telles que les images naturelles de l’ensemble de données ImageNet. Un autre objectif
était de définir les zones de l’espace latent qui correspondent à une bonne performance
du classifieur. Un domaine pourrait alors être défini dans l’espace latent. Cependant, la
structure de l’espace latent est complexe. En outre, la projection d’images dans l’espace
latent (inversion de GAN) est un processus complexe qui est nécessaire pour valider le
domaine de fiabilité.

Aspect Quantitatif : Classification Sélective et Calibration Une limitation des ex-
emples extrêmes synthétiques est qu’ils ne permettent pas de quantifier la fiabilité d’une
prédiction ni de définir un domaine de fiabilité. Je me suis donc intéressé aux domaines
de recherche de la classification sélective et de la calibration. Ils visent tous deux à an-
ticiper le moment où les prédictions d’un classifieur sont correcte ou non, mais avec des

VIII

objectifs différents. Ces notions sont liées au concept de domaine de fiabilité : la classifi-
cation sélective classe explicitement toutes les données en deux catégories : sélectionnées
ou rejetées, ce que nous pouvons considérer comme “in-domain” ou “out-domain”.

J’ai d’abord mené des expériences sur la classification sélective. L’objectif est de
rejeter les données de classification pour lesquelles la prédiction est susceptible d’être er-
ronée. L’un des principaux aspects de la classification sélective est la fonction de sélection
qui détermine quelles données sont sélectionnées ou rejetées. Elle est généralement basée
sur le seuillage d’un score de confiance. L’utilisation de la probabilité maximale prédite
par le classifieur est le moyen standard, mais des approches plus avancées apprennent
un réseau qui prédit un score de confiance. En pratique, mes expériences préliminaires
montrent que le moyen standard est en fait très performant.

Ensuite, en observant les similitudes entre la classification sélective et la calibration,
j’ai développé une nouvelle approche de calibration. La calibration vise à obtenir des
probabilités prédites représentatives de la probabilité de faire une prédiction correcte.
Lorsqu’un réseau prédit une classe avec une probabilité de 0,8, il devrait être correct dans
80 % des cas. Dans le cas contraire, il est trop ou pas assez confiant. Les méthodes de
calibration post-traitement peuvent améliorer la calibration des classifieurs pré entraı̂nés.
Ces méthodes cherchent à optimiser les paramètres ou à apprendre une fonction pour re-
calculer la confiance des prédictions. Des données de calibration, extérieures aux données
d’apprentissage, sont utilisées pour l’optimisation. Ces données sont généralement rares,
ce qui limite les méthodes standard de calibration. Pour résoudre ce problème, je trans-
forme le problème de la calibration d’un classifieur multiclasse en calibration d’un seul
classifieur binaire de substitution. Cette reformulation simple permet une meilleure util-
isation des méthodes de calibration existantes avec une modification minimale de leurs
algorithmes d’origine. Des expériences complètes en classification d’image et de texte
prouvent que l’approche améliore de manière significative les méthodes de calibration
existantes.

Une autre approche pour répondre au besoin de données de calibration consiste à
utiliser des données synthétiques. Un GAN conditionnel peut générer des données proches
des données d’apprentissage mais différentes, ce dont les méthodes de calibration post-
traitement ont besoin. Des expériences préliminaires montrent que l’utilisation de données
synthétiques est au moins aussi efficace que l’utilisation de données de validation stan-
dard. Toutefois, ces résultats pourraient ne pas s’appliquer à des données plus complexes,
qu’il est plus difficile de générer avec fidélité.

Aspect Sémantique : Incorporer des Descriptions Textuelles Le dernier aspect étudié
est l’incorporation de sémantique : l’utilisation du texte pour décrire le domaine du com-
portement approprié du classifieur. Des travaux récents utilisent des modèles génératifs
texte-to-image basés sur des modèles de diffusion. Ces modèles peuvent générer des im-
ages correspondant à des descriptions textuelles et identifier celles qui provoquent l’échec
d’un classifieur. Par exemple, on peut découvrir que les mouches sont parfois classées
comme des abeilles lorsqu’elles se trouvent à côté d’une fleur.

J’ai d’abord développé une méthode pour améliorer une approche existante. Cette
dernière utilise des modèles de diffusion pour générer des images correspondant à cer-
tains sous-groupes d’images définis par des attributs textuels (météo, localisation, couleur,
etc.). En raison du temps d’inférence élevé de ces modèles, seuls certains sous-groupes
peuvent être évalués. J’ai développé une méthode basée sur l’optimisation bayésienne qui
identifie rapidement les sous-groupes potentiellement problématiques. Ainsi, la découverte

IX

des sous-domaines conduisant à des échecs de classification est beaucoup plus exhaustive
et rapide.

La description des échecs à l’aide de texte permet de comprendre les limites du clas-
sifieur, mais n’aide pas à déterminer quand le classifieur est fiable. La classification
sélective peut définir un domaine de fiabilité basé sur des valeurs de score de confiance,
mais ne dit pas grand-chose sur le type de données qui est sélectionné ou rejeté. Le dernier
travail de cette thèse consiste à incorporer des descriptions textuelles dans la classifica-
tion sélective afin de décrire sémantiquement quand un classifieur fonctionne de manière
fiable. J’ai développé un moyen de filtrer les données susceptibles d’être erronées en ex-
ploitant les attributs textuels des données qui sont traduits en un score de confiance. Le do-
maine de fiabilité peut être décrit par une liste d’attributs textuels. Cependant, l’approche
nécessite de nombreuses données de validation annotées, ce qui n’est possible de manière
réaliste qu’en utilisant des modèles génératifs. Cela signifie que le domaine de fiabilité
reste dans le monde des images synthétiques et ne peut pas être validé avec des images
réelles.

Discussion et Perspectives La définition d’un domaine de fiabilité pour un classifieur
d’images (ou d’un réseau de neurones en général) reste un problème difficile à exprimer
clairement ainsi qu’à résoudre. Cette thèse a pu faire progresser ces deux aspects. Aussi,
elle ouvre plusieurs perspectives. Premièrement, je pense qu’il existe un fort lien théorique
et pratique entre la classification sélective et la calibration. C’est en me basant sur ce
lien que j’ai développé une nouvelle approche à la calibration. Il y a sans doute d’autres
travaux à réaliser. Deuxièmement, il serait intéressant d’évaluer les modèles multimodaux
(texte-image). Ces derniers se sont développés rapidement durant cette thèse. Malgré
des résultats impressionnants, ils sont aussi sujets à des échecs et biais. Troisièmement,
je trouve que beaucoup de termes liés aux échecs des modèles sont peu clairs et mal
définis. En effet, des termes comme “anomalie” ou “out-of-distribution” sont employés
différemment en fonction des articles de recherche. Les domaines de recherche actuels se
focalisent souvent sur une sous-partie des causes d’échecs possibles. Il serait intéressant
de clarifier tout cela, notamment en identifiant bien toutes les causes d’échecs possi-
bles et quels travaux existants s’y intéressent. Enfin, je pense qu’un travail nécessaire
serait de développer une procédure d’évaluation de domaine de fiabilité. Notamment en
rassemblant les travaux existants qui considèrent des modes d’échecs bien particuliers.
Les méthodes de détection d’échecs pourraient être évaluées simultanément sur plusieurs
aspects comme la détection de données out-of-distribution, d’anomalies, ou d’attaques
adverses.

X

Chapter 1

Introduction

1.1 The Rise of Deep Learning

In recent years, the field of Artificial Intelligence (AI) has experienced unprecedented
growth, revolutionizing various sectors such as healthcare, finance, transportation, and
entertainment (Deng, 2014; LeCun et al., 2015; Shinde and Shah, 2018; Christin et al.,
2019; Haghighat et al., 2020; Choudhary et al., 2022). Machine Learning (ML), a subset
of AI, refers to the development of algorithms that enable computers to learn from data
how to make predictions or decisions. This paradigm shift, from rule-based programming
to data-driven approaches, has been fueled by the exponential increase in computational
power, availability of vast amounts of data, and advances in algorithmic design.

ML encompasses various techniques and methods that allow systems to learn and
improve from experience without being explicitly programmed. It can be broadly cate-
gorized into three types: supervised learning, unsupervised learning, and reinforcement
learning.

In supervised learning, algorithms are trained on labeled datasets, where the input data
is paired with the correct output. Part of the data is used to train the predictive model,
which becomes able to generalize to unseen test data. Techniques such as support vector
machines (Boser et al., 1992) have been instrumental in advancing this domain. Common
applications include classification and regression tasks, where the goal is to predict labels
or continuous values, respectively. In image classification, the goal of the model is to
identify the main content of an image. For instance, classifiers can be trained to recognize
elements of everyday life, including animals, objects, and scenes. An example of a re-
gression model is a model trained to predict wind power output in the near future, which
is useful to manage the power grid.

Unlike supervised learning, unsupervised learning deals with unlabeled data. The ob-
jective is to uncover hidden patterns or structures within the data. Clustering algorithms
like k-means and dimensionality reduction techniques such as principal component anal-
ysis fall under this category. A very closely linked approach is self-supervised learning.
It aims to solve pretext tasks for which the labels are derived from the input data. Meth-
ods include contrastive learning or just supervised learning methods applied to the pretext
task (Jaiswal et al., 2020; Jing and Tian, 2020). For instance, Large Language Models
(LLMs), the base of modern chatbots like ChatGPT, are trained by masking parts of the
input text and training the model to predict the masked part.

Reinforcement learning focuses on training agents to make a sequence of decisions
by interacting with an environment. The agent learns to achieve its goals through trial

1

and error, receiving rewards or penalties based on its actions. This framework has led to
significant breakthroughs in fields like game playing, robotics, and autonomous systems
(Mnih et al., 2015; Silver et al., 2016; Arulkumaran et al., 2017). However, reinforcement
learning has difficulties solving many real-world problems due to the large amount of
interaction data necessary and the complexity of defining a good reward function.

The three learning paradigms described previously are now mostly based on Deep
Learning (DL). DL is a specialized subset of ML that was originally inspired by the struc-
ture and function of the human brain (LeCun et al., 2015). It uses artificial neural networks
with many layers, known as Deep Neural Networks (DNNs), to model complex patterns in
data. The hierarchical structure of DNNs allows for the automatic extraction of high-level
features from raw inputs, making them particularly effective for tasks involving image,
audio, and natural language processing.

Arguably, the modern era of AI started in 2012, when a deep convolutional neural
network (LeCun et al., 1989) called AlexNet won the ImageNet competition by a huge
margin (Krizhevsky et al., 2012). The competition is about recognizing the main object
in images of the ImageNet dataset (Deng et al., 2009) out of 1000 categories (animals,
objects...); see Figure 1.1. The AlexNet breakthrough was achieved by training a large
model on more than one million labeled images, using an efficient Graphics Processing
Unit (GPU) implementation. More than a decade later, DNNs are used for many appli-
cations, including LLMs for chatbots (OpenAI, 2023), computer vision systems (Pathak
et al., 2018; Liu et al., 2018), and image generators (Ramesh et al., 2022; Saharia et al.,
2022).

This thesis focuses on image classification models. Image classifier applications in-
clude disease diagnosis from medical images, scene recognition for autonomous vehicles,
anomaly detection in assembly lines, moderation in social networks, wildlife population
monitoring from camera traps, and automatic photo organization.

AlexNet

Figure 1.1: (Left) Examples of ImageNet test images with the top 5 most probable labels
and associated probabilities predicted by AlexNet. From (Krizhevsky et al., 2012).
(Right) Evolution of ImageNet competition error rates. In 2012, AlexNet outperformed
all other approaches, which did not improve much from the year before. After 2012, DL-
based approaches further reduced the error rate. From (Wikipedia, 2024c).

2

1.2 Deep Learning Models Failures

“an empty glass” “a family of five members” “a man descending a mountain” “there is no star in the night sky”

MidJourney 5.1 DALL-E (New Bing) Stable Diffusion XL Stable Diffusion 2.1

“a runner is about to sprint” “the soccer player throws the ball” “a woman proposing to a man” “a box with only a few chocolates”

Figure 1.2: Examples of failures of text-to-image generative models. Despite an im-
pressive ability to generate realistic images corresponding to a text prompt, these models
struggle with bias and concepts like quantity and negation. From (Tong et al., 2023).

Despite the rapid progress of DNNs, one major issue still prevents them from being
used for many applications: their lack of reliability. Indeed, they are prone to making
mistakes, and it is difficult to understand why or when they do so. While neural networks
are conceptually simple, they require a huge scale to tackle high-dimensional data such as
images or text, typically requiring millions or billions of internal parameters. This makes
the decision process opaque and hard to explain or interpret. The learning phase requires
data containing up to millions or billions of examples, and many companies keep details
of the training process and data private. Because the models learn to reproduce what is in
the training data, biases in the data are replicated by the model.

In critical systems such as medical or Advanced Driver-Assistance System (ADAS),
prediction errors can be life-threatening. Even in less critical systems, these errors are
still undesirable as they can lead to financial losses or damage a company’s reputation.

A first example is the case of facial recognition. Failures due to biased predictions
were one of the main criticisms of this technology, ultimately prompting companies like
Amazon, IBM, Microsoft, and Google to cease selling or developing it (Wen and Holweg,
2024). In particular, Amazon’s Rekognition software incorrectly matched 28 members of
the United States Congress as other people who have been arrested for a crime (Snow,
2018). Facial recognition software from Amazon, IBM, and Microsoft had higher er-
ror rates for people of color (Singer, 2019). Google Photos’ image classification model
categorized a black woman as a gorilla (BBC, 2015). Years later, the issue still is not
solved; only a temporary fix was developed: Google and Apple appear to have disabled
the models’ ability to label images as primates (Grant and Hill, 2023).

Another example of failure due to bias is Amazon’s AI recruitment tool. It showed
bias against women and was eventually shut down (Dastin, 2018).

IBM Watson for Oncology is a tool that helps oncologists make treatment decisions
for cancer patients. The tool’s concordance with physicians in China is not as high as
previously reported in other countries (Zhou et al., 2019). Developed in the United States,

3

its performance decreases when applied to a different situation.
Autonomous driving has been hyped for years, but current systems are not reliable

enough for wide deployment. Truly driverless cars, such as Waymo or Baidu’s taxis,
only operate in selected cities. Tesla’s “Full Self-Driving (Supervised)” is an optional
paid feature meant to work on any type of roadway, including residential and city streets
(Tesla, 2024). However, it is only available in the United States and Canada and remains at
SAE Level 2, meaning that the driver has to remain ready to take control at all times and is
responsible in case of an accident. Even Tesla’s base ADAS system, which includes lane-
centering and traffic-aware cruise control, is prone to failures. See Wikipedia (2024b) for
a list. Some of the failures are due to perception issues of computer vision systems.

More recently, AI capabilities are some of the most prominently advertised features
from smartphone manufacturers like Google and Apple. However, model failures are
frequent enough for users to lose trust in the product (Schoon, 2024). Examples of failures
from recent generative models are shown in Figure 1.2.

All the examples described in this section show that unpredictable failures are one of
the main barriers to deploying AI systems.

1.3 Trustworthy AI Initiatives

Figure 1.3: Confiance.ai Partners

Because DNNs fail in unpredictable ways, as described above, deploying them in
real-world systems is challenging. Many industrial critical systems require safety guaran-
tees, which current DNNs lack. Initiatives were developed around the world to promote

4

AI safety and trustworthiness, such as the European Union’s AI Act, OECD AI Princi-
ples, the Partnership on AI, and the European Union Aviation Safety Agency’s Machine
Learning Application Approval (MLEAP) project (MLEAP Consortium, 2024).

Confiance.ai1 is a French technological research program aiming to help industrials
integrate trustworthy AI in their critical systems. Launched in 2020 for a duration of 4
years, it is part of the “Securing, Certifying, and Enhancing the Reliability of Systems
Based on Artificial Intelligence” initiative, which is backed by the French government.
The project gathers methods and tools into a trustworthy environment development plat-
form. The program brings together an ecosystem of small, medium, and big companies,
start-ups, and research labs; see Figure 1.3.

Confiance.ai targets, in particular, critical applications in industry, mobility, energy,
environment, defense, and security. All these sectors belong to what the European Union’s
AI Act identifies as “high-risk” applications. Such applications will be subject to specific
demands, such as adequate risk assessment and a high level of robustness, security, and
accuracy.

Technological contributions of the program include an end-to-end method based on
Systems Engineering and Software Engineering for the engineering of a critical ML-based
system2, and a taxonomy proposing definitions for terms related to trustworthy AI, acces-
sible among other resources in an online catalog3. Scientific results include dozens of
publications4, including those from PhD theses financed by the program, such as this one.

1.4 The Initial Goal: Defining a Domain
In Systems Engineering: Operational Design Domain In autonomous driving and
trustworthy AI programs, such as Confiance.ai and MLEAP, a key objective is to express
high-level requirements of the “intended domain of use”. This is the goal of the Op-
erational Design Domain (ODD), a notion initially from autonomous driving and used
in systems engineering. It is defined as “the operating conditions under which a given
driving automation system or feature thereof is specifically designed to function, includ-
ing, but not limited to, environmental, geographical, and time-of-day restrictions, and/or
the requisite presence or absence of certain traffic or roadway characteristic” (On-Road
Automated Driving (ORAD) Committee, 2018). For example, the Mercedes-Benz au-
tomated driving system, DRIVE PILOT, has an explicit ODD. It includes use only on
the motorway, a speed limit of 60 km/h, use only during the day and on dry roads, lane
markings recognized by the system, and a vehicle ahead, which is registered as an in-
dicator of a traffic jam (Rocco, 2022). However, there is no agreement on the defini-
tion of ODD. Many variations exist, including extensions beyond autonomous driving
(Wikipedia, 2024a; Mehlhorn et al., 2023; Adedjouma et al., 2024). Further discussion
on this notion and how to use it in practice are beyond the thesis’s scope. This is why in
this thesis a simplified definition of an ODD is considered: “the conditions for which we
want/hope model predictions to be reliable”. Reliable means consistently good in qual-
ity or performance and able to be trusted (from Google’s English dictionary, provided by
Oxford Languages). A limitation of the notion of ODD is that it considers the condi-
tions set during the design phase, which might not hold in practice. DNNs’ behavior is

1https://www.confiance.ai
2https://bok.confiance.ai
3https://catalog.confiance.ai/
4https://hal.science/CONFIANCEAI

5

https://www.confiance.ai
https://bok.confiance.ai
https://catalog.confiance.ai/
https://hal.science/CONFIANCEAI

largely opaque, and design goals are not necessarily verified because many failures are
unpredictable, as described in section 1.2.

In Machine Learning: Notions of Domain As discussed in section 1.2, DNNs can
encounter various failure modes when deployed in the real world. In response to these
challenges, the research community has devoted considerable effort to developing meth-
ods to prevent or mitigate such failures. However, this effort is divided into subtopics
with specific hypotheses, goals, and methods. Below are some brief descriptions of topics
closely related to the notion of domain. More details are included in section 2.3.

In ML, data is viewed as a joint probability distribution P (X, Y) that represents the
likelihood of observing particular combinations of input features X and corresponding
output labels Y . After a model has been trained, it is deployed in the real world, in the
so-called testing phase, where it might experience distribution shifts.

Covariate shift is when the distribution of the input features P (X) changes. For in-
stance, at test time, images might have different lighting conditions or background varia-
tions. In this setting, the domain is the ensemble of examples having input features similar
to the ones seen during training. Domain Adaptation (DA) (Wang and Deng, 2018) and
Domain Generalization (DG) (Zhou et al., 2022) aim to robustify classifiers to such shifts.

Semantic shift is when the distribution of the output labels P (Y) changes. For in-
stance, at test time, a dog/cat classifier might have to process giraffe images. In this
setting, the domain contains all examples with the same labels as the ones seen during
training. Out-of-Distribution (OOD) detection, among other approaches, aims to detect
examples that do not belong to this domain (Yang et al., 2021).

Under the hypothesis that no shift happens, Selective Classification (SC) allows a
more flexible notion of domain based on a parametric selection function (Geifman and
El-Yaniv, 2017). It allows controlling the compromise between domain extension and
accuracy: a stricter selection rejects more data to increase the accuracy for selected data.

None of these domain-related notions seem comprehensive enough to ensure truly
reliable and trustworthy AI. None of the proposed solutions permit a reliable deployment
of models, as each only solves subproblems. For instance, detecting semantic shift does
not prevent errors coming from covariate shift or simply hard in-distribution data.

A Reliability Domain? This thesis considers the practical problem of identifying the
conditions for which a given image classifier actually works reliably. The objective is
to express a model’s Reliability Domain, defined as “the conditions for which model
predictions are reliable”. Contrary to the ODD, this is the evaluation phase rather than
the design phase. A given image classifier might fail for some conditions set during the
design phase (e.g., Tesla’s phantom braking where the vehicle brakes for no apparent
reason (Siddiqui, 2022)), or succeed for unforeseen conditions (e.g., DRIVE PILOT’s
vision system might still work for higher speed limits). This is illustrated in Figure 1.4.
Contrary to other related notions in ML (OOD, DA, or DG) where a domain is implicitely
defined, the aim here is to make it more explicit.

The considered setting is that the image classifier has already been developed, and the
goal is to assess in which conditions it can be used reliably. Focusing on evaluating fixed
pre-trained image classifiers ensures the generality of the approach: no specific changes
to the classifier are needed.

The initial intuition was to use extreme examples to define a domain. They would
describe the domain’s limits, and only data “inside” the limits would be considered in-

6

The World

Operational
Design Domain

Reliability
Domain

Figure 1.4: When deployed in the world, a computer vision model works reliably in some
conditions (Reliability Domain), which might differ from what was expected during the
design phase (Operational Design Domain).

Figure 1.5: Illustration of the initial intuition: define a reliability domain using extreme
examples delimiting its boundaries and linking classification performance to data descrip-
tion.

domain. This is a geometric view, which is represented in Figure 1.5. Because extreme
examples are supposedly rare, it might be necessary to generate them using recent image-
generation models. It is important to describe them by interpretable attributes, to make the
domain more understandable. As written in the initial thesis subject, defining a reliability
domain brings out the following questions (Q):

Q1 How can a domain be expressed? Does it have boundaries?

Q2 What are good examples to describe these limits? Can they be identified from
reference data or generated artificially? Can they be described by interpretable
characteristics or attributes?

Q3 Can extreme examples be characterized based on their contribution to the differ-
ent sources of error in learning? (Estimation, approximation, optimization, bias /
variance trade-off)

One main objective is to ensure the domain definition has practical applications and is
not limited to an abstract notion. Linking data descriptions to classification performance
supposedly allows better evaluations, explainability, and insights to improve the model
during development. The following uses (U) should thus be addressed:

7

U1 As a performance indicator of a given algorithm by providing more detailed infor-
mation than classical global metrics, and additional information on the local behav-
ior of the algorithms.

U2 As an explainability tool to intuitively analyze the overall behavior of the algorithm.

U3 As a development tool to control learning and the trade-off between domain exten-
sion/performance.

U4 As a means of specifying the data to be collected.

Section 6 discusses how the thesis results relate to the initial intuition and goals.

1.5 Summary of Contributions

A Qualitative View: Use Generative
Models to Illustrate Failures

Classifier to Characterize

GAN’s Latent Space
Exploration Guided by a

Classifier’s Gradient

GAN Conditioned by a
Classifier’s Confidence

A Quantitative View: Selective
Classification and Calibration

Selective Classification
Experiments

Making Confidence
Calibration Methods More

Data-Efficient

Calibrate with Synthetic
Data

Incorporating Textual
Descriptions

Textual Descriptions of
Classifier Failures Using

Text-to-Image Models

Using Textual Attributes to
Define a Reliability Domain

Q1 Q2 U2 U4 Q1 U1 U3 Q1 Q2 U1 U2 U3 U4

(Le Coz et al., 2022)

(Le Coz et al., 2023)

(Le Coz et al., 2024a)

(Le Coz et al., 2024b)

Figure 1.6: Overview of the different contributions divided in three chapters and which
Questions and Uses of a reliability domain definition they address.

Given the large scope of the topic, different aspects can be studied. The first aspect is
to follow the Explainable Artificial Intelligence (XAI) point of view. I leveraged genera-
tive models to create images illustrating the failure conditions of a classifier. The second
aspect is to look at the problem following a more quantitative view, using the notions of
selective classification and calibration. I developed a new approach to improve classifier
calibration. Finally, the third aspect is the integration of semantics by describing classifier
failures with text. I enhanced a technique to quickly discover classifier failures using syn-
thetic images for a text-to-image model and incorporated textual attributes into selective
classification.

1.5.1 Use Generative Models to Illustrate Failures
Extreme examples could be a way to define a classifier’s domain: they give hints

about its boundaries. However, they are generally rare in the available data because they
have a low probability of occurring. Chapter 3 studies generative image models to create
synthetic extreme examples. Generative Adversarial Networks (GANs) can transform

8

vectors located in a latent space (model input) into realistic images (model output). These
models are trained to generate synthetic images that are indistinguishable from the images
in the training data. They build a compressed representation of the images in the latent
space, whose dimension is reduced compared to the pixel space. This allows the images
to be represented according to visual characteristics (e.g., a direction in the latent space
can encode the image’s contrast). Some models separate different visual characteristics,
allowing for editing images one characteristic at a time (e.g., changing the hair color of a
portrait without modifying the rest). This can be used to explain the decision of a classifier
by identifying which visual attributes it uses to distinguish between classes.

I developed a generative model capable of creating extreme examples for a given
classifier to characterize its failures. For this, the classifier is coupled with a GAN. The
data used is a corrupted version of MNIST data, which are images of handwritten digits.
Noise and blur are features of imaging systems that can alter classification performance.
Those features are added to the generator for a more realistic generation. The task of the
classifier is to recognize which digit is present in the image. A generative model is trained
to create realistic synthetic images and builds a latent space allowing image manipulation.
In particular, one can detect the latent space directions that impact the classification the
most, i.e., those that strongly corrupt the images. The detection of these directions is done
with the gradient of the classifier’s prediction with respect to the latent space vectors. One
can then visualize the visual attributes by starting from some images and perturbing them
according to the most impactful directions. For instance, a zero is mainly perturbed by
shape and contrast attributes, and a nine by noise or blur levels, as seen in section 3.3. This
allows visualizing the limits of the classifier. It is not robust to certain visual attributes
because some extreme examples are still recognizable to the human eye. This work has
been published (Le Coz et al., 2022).

I then tried a different approach to couple the classifier with a GAN. This time, the
classifier’s confidence directly conditions the generation. The confidence of a classifier is
the probability it assigns to its prediction. Indeed, classifiers predict a probability vector,
one for each class, from which the predicted class is inferred (the one corresponding to
the maximum probability). Often, classifiers are wrong when the maximum probability is
low: the model hesitates between several classes. Conditioning the GAN with the classi-
fier’s confidence can directly guide the generation towards difficult images. This approach
allows corrupting images and generating extreme examples. However, the initial results
show that the confidence for a generated image is not necessarily the one set as a condi-
tion for the generator. The constraints given by the condition are indeed difficult for the
generator to learn, as the classifier’s behavior is imperfectly summarized into one single
number. Still, controlling this condition provides insights into the classifier’s behavior.
This work has been published (Le Coz et al., 2023).

These two works have shown that GANs can generate extreme or difficult examples
for a given classifier. This allows for illustrating the visual attributes most likely to disrupt
classification. However, the two approaches are limited by the fact that GANs struggle
to realistically generate more complex images, such as natural images from the ImageNet
dataset. Another goal was to define areas of the latent space that correspond to good
classifier performance. A domain could then be defined in the latent space. However,
the structure of the latent space is complex. Also, projecting images into the latent space
(GAN inversion) is a complex process that is necessary to validate the reliability domain.

9

1.5.2 Selective Classification and Calibration
In chapter 3, as described in the previous subsection, synthetic extreme examples were

used to better understand the classifier’s limits. However, they do not help quantify the
reliability of a prediction nor provide a way to define a reliability domain. Chapter 4
considers the research fields of selective classification and calibration. They both aim to
anticipate when classifier predictions are accurate or not but with different goals. These
fields are aligned with the notion of reliability domain: SC explicitly categorizes all data in
two categories: selected or rejected, which can be seen as “in-domain” or “out-domain”.

I first conducted experiments on SC. The goal is to reject classifying data for which
the prediction is likely to be wrong. A main aspect of SC is the selection function which
determines which data is selected or rejected. It is usually based on thresholding a confi-
dence score. Using the classifier’s Maximum Softmax Probability (MSP) is the standard
baseline, but more advanced approaches train a network to predict a better score. In prac-
tice, my preliminary experiments show that the standard baseline actually has a strong
performance.

Then, based on observing the similarities between SC and calibration, I developed
a new approach to calibration. Calibration aims to obtain predicted probabilities repre-
sentative of the probability of making a correct prediction. When a network predicts a
class with a probability of 0.8, it should be correct 80% of the time. Otherwise, it is
overconfident or underconfident. Post-processing calibration methods can improve the
calibration of pre-trained classifiers. These methods seek to optimize parameters or learn
a function to recalculate the confidence of predictions. Calibration data, external to the
training data, are used for optimization. This data is usually scarce, which limits standard
calibration methods. To address this issue, I transform the problem of calibrating a mul-
ticlass classifier into calibrating a single surrogate binary classifier. This straightforward
reformulation allows a better use of existing calibration methods with minimal change to
their original algorithms. Comprehensive image and text classification experiments prove
the approach significantly improves existing calibration methods. This work has been
published (Le Coz et al., 2025).

Another approach to tackle the need for calibration data is to use synthetic data. A
conditional GAN can generate data close to the training data but different, which is what
post-processing calibration methods need. Preliminary experiments show that using syn-
thetic data is at least as good as using standard validation data. However, these results
might not scale to more complex data, which is harder to generate with fidelity.

1.5.3 Incorporating Textual Descriptions
So far, we have studied the XAI aspect in chapter 3, and looked into SC and cal-

ibration, which allow for better quantification of prediction uncertainties in chapter 4.
Another aspect considered in chapter 5 is to include semantics: using text to describe the
domain of proper classifier behavior. Recent works use text-to-image generative models
based on diffusion models. These models can generate images corresponding to textual
descriptions and identify which ones cause a classifier to fail. For example, it can be
discovered that flies are sometimes classified as bees when they are next to a flower.

I first developed a method to improve an existing approach. This approach uses diffu-
sion models to generate images corresponding to certain subgroups of a domain defined
by textual attributes (weather, location, color, etc.). Due to the high inference time of
these models, only certain subgroups can be evaluated. I developed a method based on

10

Bayesian optimization that quickly identifies potentially problematic subgroups. Thus,
discovering sub-domains leading to classification failures is much more exhaustive and
faster. This work has been published (Le Coz et al., 2024).

Describing failures with text is similar to the work of chapter 3: it helps understand
classifier limits but does not help identify when the classifier is reliable. SC can define
a reliability domain based on confidence score values but does not express much about
which kind of data is selected or rejected. The final work in this thesis is to incorporate
textual descriptions into SC to describe semantically when a classifier works reliably. I
developed Semantic Selective Classification, a way to filter out data likely to be wrong by
leveraging textual attributes of the data that are translated into a confidence score. The
reliability domain can be described by a list of textual attributes. However, the approach
requires massive annotated validation data, which is realistically possible only when us-
ing generative models. This means that the reliability domain remains in the world of
synthetic images and cannot be validated with real images.

1.6 Publications and Code
Publications

(Le Coz et al., 2022) Adrien Le Coz, Stéphane Herbin, Faouzi Adjed. Leveraging gener-
ative models to characterize the failure conditions of image classifiers. The IJCAI-ECAI-
22 Workshop on Artificial Intelligence Safety (AISafety 2022), Jul 2022, Vienna, Austria.
〈hal-03797490〉

(Le Coz et al., 2023) Adrien Le Coz, Stéphane Herbin, Faouzi Adjed. Explaining an
image classifier with a generative model conditioned by uncertainty. Uncertainty meets
Explainability — Workshop and Tutorial @ ECML-PKDD 2023, Sep 2023, Torino, Italy.
〈hal-04194943〉

(Le Coz et al., 2024) Adrien Le Coz, Houssem Ouertatani, Stéphane Herbin, Faouzi Ad-
jed. Efficient Exploration of Image Classifier Failures with Bayesian Optimization and
Text-to-Image Models. Generative Models for Computer Vision - CVPR 2024 Workshop,
Jun 2024, Seattle, United States. 〈hal-04549384v2〉

(Le Coz et al., 2025) Adrien Le Coz, Stéphane Herbin, Faouzi Adjed. Confidence Cali-
bration of Classifiers with Many Classes. NeurIPS 2024, Dec 2024, Vancouver, Canada.
〈hal-04767144〉

Code

Most code written and used during the thesis can be found in the following GitHub
repository: https://github.com/allglc/phd/

11

https://hal.science/hal-03797490
https://hal.science/hal-04194943
https://hal.science/hal-04549384v2
https://arc.net/l/quote/ejycmhip
https://github.com/allglc/phd/

Chapter 2

Related Work

This thesis’s subject is not a clearly defined field in existing literature. However, it
is related to several existing fields, which I detail in this chapter. Defining a reliability
domain would ensure the safe deployment of AI systems, so it is related to AI Safety,
which is described in section 2.1. One of the thesis’ goals is also to understand what
makes a classifier fail, which provides insights into its behavior. This is also what the field
of Explainable Artificial Intelligence aims to do, as mentioned in section 2.2. We have
seen some high-level examples of failures in section 1.2 of the introduction; section 2.3
below provides technical details on failure sources. Related to identifying what makes a
classifier work reliably, recent works referenced in section 2.4 aim to discover what makes
a classifier fail. Selective Classification and calibration are research fields addressing the
prediction of failures and uncertainty quantification; they are described in sections 2.5
and 2.6, respectively.

Section 2.7 also introduces the literature on generative models, which are used as a
tool in this thesis. In particular, Generative Adversarial Networks are used to generate
extreme examples in chapter 3, and text-to-image diffusion models are used to textually
describe failures and the domain in chapter 5.

2.1 AI Safety
AI Safety is a field focused on ensuring that AI systems operate in safe, reliable ways

and are aligned with human values. As AI systems become more powerful and integrated
into various aspects of society, the risks associated with their deployment also increase.
AI Safety aims to mitigate the risks of causing harm to humans. This thesis is closely
related to AI Safety as it aims to identify the conditions for which given image classifiers
are reliable. Reliable predictions ensure a safe and trustworthy ML system.

AI Safety has many concrete problems. (Hendrycks et al., 2021) identify four cat-
egories of problems. Robustness research aims to build systems that endure extreme,
unusual, or adversarial events. Monitoring research aims to identify hazards, inspect
models, and help human ML system operators for deployed models. Alignment research
aims to safely optimize ML system objectives. Systemic safety research aims to address
broader contextual risks to how ML systems are handled, e.g., cybersecurity. For re-
inforcement learning agents, safety problems include avoiding negative side effects and
reward hacking, ensuring scalable oversight, safe exploration, and robustness to distri-
bution shift (Amodei et al., 2016). Recent LLM based chatbots pose new risks, such as
hallucinations, harmful content, disinformation, economic impacts, or overreliance, as

12

mentioned in GPT-4’s system card (OpenAI, 2023). Such risks require specific mitiga-
tions during pre-training, training, and production. Discussions on AI safety also deviate
towards speculative catastrophic and existential risks caused by superintelligent systems,
which are inexistent today (Hendrycks et al., 2023).

Safety is of primary importance in some industries. Autonomous driving systems
aim to provide a safe transportation method that can operate autonomously. Six levels
of driving automation exist, from driver support to full autonomy (On-Road Automated
Driving (ORAD) Committee, 2018). Notably, there is a need to define the conditions in
which a system can safely operate within its given capabilities. A vehicle must detect
when its capabilities do not guarantee a reliable operation and return to a safe state. This
brings the notion of ODD, which comes with challenges such as creating a clear defini-
tion, updating, monitoring, or evaluating (Mehlhorn et al., 2023; Adedjouma et al., 2024;
Czarnecki, 2018). Another industry with extremely demanding safety standards is the
aviation industry. The typical software development assurance V-cycle has to be adapted
to ML particularities (MLEAP Consortium, 2024). Challenges include data completeness
and representativeness, model reliability, evaluation, robustness, and stability. Critical use
cases include transcribing spoken instructions by air traffic controllers, automated visual
inspection of aircraft, or an airborne collision avoidance system.

2.2 Explainability
DNNs are black boxes, meaning that their inner workings are largely unknown. They

are large networks containing many layers of many parameters computing abstract rep-
resentations of the data used to make a prediction. The field of Explainable Artificial
Intelligence (XAI) provides methods to understand these objects better (Gunning et al.,
2019; Arrieta et al., 2020). XAI is usually associated with high-level notions such as
transparency, trustworthiness, fairness, etc. The work presented in chapter 3 is related
to XAI. However, its goal is slightly different: it explains what makes the classifier fail
rather than explaining how it makes its decision.

For computer vision, visual explanation techniques include saliency maps indicating
the image regions most relevant to the model’s decision (Selvaraju et al., 2020). However,
they do not explain how non-localized visual attributes such as color or texture participate
in the decision. This is what counterfactual explanations aim to do. They are alternative
inputs for which the predicted class changes when minimal modifications are applied to
the input visual features. An example is “if the animal’s ears become pointy, the classifier
increases the probability of predicting a cat rather than a dog”. As illustrated in Figure 2.1
below, controllable generative models are well-suited for creating visual counterfactual
explanations (Lang et al., 2021; Jeanneret et al., 2023; Augustin et al., 2023).

One limitation of XAI is to define what is a good explanation and whether it serves
the intended user or not (Miller, 2019).

2.3 Uncertainty and Failure Sources
As mentioned in section 1.2, many failures can occur when DNNs are deployed in the

real world. This section describes different possible sources of failures. Understanding
them is essential in the context of the thesis, which addresses the notion of reliability
domain. Many works from the research community aim to stop failures from occurring

13

Classifier

Generator

C
at

s/
 D

og
s

Att #
1

Att #
2

Att #
N

M
or
e

D
og

M
or
e

Ca
t

Attribute #1
(”Open/Closed Mouth”)

Attribute #2
(”Eye Shape”)

StylEx Automatically detected classifier attributes, and their counterfactual explanations

0.03

0.99

0.03

0.99

0.02

0.99

Attribute #N
(”Dropped/Pointed Ears”)

0.32

0.870.89

0.1

0.78

0.25

Figure 2.1: A controllable generative model permits the highlighting of the visual at-
tributes impacting the classifier predicted probability for given classes. From (Lang et al.,
2021).

by detecting them or robustifying the models. Unfortunately, several variations of the
problem exist, each with its own goals, hypothesis, and set of methods.

Errors and prediction uncertainty come from either the data (aleatoric), the model
(epistemic), or distribution shifts (Hüllermeier and Waegeman, 2021). Figure 2.2 repre-
sents graphically these uncertainty sources. Data uncertainty comes from the inherent
randomness in the data distribution and cannot be reduced. For image classification, an
example of data uncertainty is images that do not have a clear ground truth label because
they contain multiple objects or the object category is ambiguous (some dogs look like
cats). Model uncertainty is due to a lack of knowledge of a model and can be reduced
by improving the model and training data. It can be decomposed into bias and variance.
An example of model uncertainty due to bias is using a small neural network that does
not have enough capacity to solve the task correctly. An overparametrized neural network
can easily overfit its training data, and thus have a high uncertainty due to variance.

In practice, however, it is difficult to distinguish aleatoric and epistemic uncertainty. It
is thus not clear what level of performance a perfect model can achieve. For ImageNet im-
age classification, recent models outperform humans. See (Russakovsky et al., 2015) for
quantization of human performance. At this level of performance, uncertainty is probably
mostly aleatoric and thus difficult to reduce.

For clarity, failures coming from the model and the data are distinguished in the sub-
sections below. However, in practice, failures often come from the combination of a
model with the data. For instance, different models trained on the same data are more or
less susceptible to covariate shifts or adversarial attacks.

2.3.1 Failure Sources in the Model

Failures caused by the model can arise from a wrong model architecture choice or
suboptimal training. They can thus be reduced by improving model architecture and
training procedures.

Architecture The lack of knowledge of a model can come from a wrong choice of
architecture. For instance, convolutional neural networks are better adapted to process
images than fully connected networks. Another key factor is model capacity: the model
needs enough capacity to solve the task. Complex tasks require big networks with up

14

Figure 2.2: Illustration of different uncertainty sources for regression at the top and clas-
sification at the bottom. From left to right: data uncertainty, model uncertainty, and dis-
tribution shift. From (Gawlikowski et al., 2023)

to billions of learnable parameters (Kaplan et al., 2020). A good rule of thumb is that
the network should have enough capacity to be able to overfit the data, and overfitting
can be solved with regularization methods. For image classification, modern high-end
GPUs easily handle state-of-the-art image classification models. However, for embedded
devices such as smartphones, model size might be restricted (Howard, 2017).

Training The training process of a neural network is easy in principle but complex to
get right. Hyperparameters such as the number of epochs, the batch size, the optimizer
choice, or the learning rate have a big impact on the resulting model performance. Many
machine learning practitioners are familiar with tricks to optimize the training process,
using intuition and random or grid searches to find good hyperparameters. Also, DNNs
need a lot of data to learn a task. For image classification, at least tens of thousands of
labeled images are usually required before model accuracy saturation. Training a model
with insufficient data results in a high model uncertainty as the model struggles to gener-
alize to new data. Data augmentation techniques and synthetic data can help but hardly
replace real data (Perez and Wang, 2017).

This thesis considers already trained classifiers and do not aim to improve them.
Whatever architecture and training procedure, the goal is to evaluate model performance
using a data-centric view.

15

Training Data Distribution

well-classified

misclassified

Covariate shift Semantic shift

Adversarial Anomalies

Domain Adaptation
Domain Generalization

Adversarial
Defense

Selective
Classification

Anomaly
Detection

OOD
Detection

Figure 2.3: Non-exhaustive illustration of different failure sources described in this sec-
tion and the research fields addressing them.

2.3.2 Failure Sources in the Data
Many failures are due to data characteristics, from anomalies to adversarial attacks.

Many approaches were developed to detect problematic data to avoid making wrong pre-
dictions, as detailed below. See Figure 2.3 for an illustration.

Semantic Shift In general, training data comes from a given distribution, and test data
might come from a different distribution. Training data might not be representative
enough of the deployment environment. Semantic shift is when the distribution of the
output labels P (Y) changes, typically the model encounters new classes not seen during
training. A few research fields tackle this problem, such as semantic anomaly detection
(Ruff et al., 2021), novelty detection (Markou and Singh, 2003), open set recognition
(Geng et al., 2020), and OOD detection (Hendrycks and Gimpel, 2017). These fields are
quite related, and Yang et al. (2021) proposes to unify them into the notion of generalized
OOD. The notion of OOD is widely used and sometimes with different meanings. In
some cases, it refers to anomalies or rare samples. In most cases, contrary to the gener-
ality suggested by the expression, OOD refers exclusively to semantic shift. This is the
definition used here.

A few baselines for OOD detection apply to pre-trained networks without needing
access to OOD data. A straightforward way is to use a threshold on classifier confidence
(Hendrycks and Gimpel, 2017). For large-scale multi-class settings, using the maximum

16

logits performs better (Hendrycks et al., 2022). Using an energy score is another option
(Liu et al., 2020). Assuming that classifier features follow a class-conditional Gaussian
distribution, a confidence score can be derived from the Mahalanobis distance between
features of a test sample and the closest class-conditional Gaussian distribution. This
allows detecting both OOD and adversarial samples (Lee et al., 2018b).

While many approaches only use in-distribution data, some explicitly use OOD data.
ODIN follows this strategy and tunes coefficients, scaling the classifier probabilities to
better detect OOD data (Liang et al., 2018). Outlier Exposure makes an even better use
of available OOD data (Hendrycks et al., 2019).

Instead of improving an already trained classifier’s ability to detect OOD data, one
can train from scratch a classifier with the explicit goal of improving OOD detection.
For instance, using specific loss functions and synthetic OOD samples from a GAN (Lee
et al., 2018a). Assuming again that classifier features follow a class-conditional Gaussian
distribution, synthetic outlier features can be sampled directly from the feature space and
used to build native OOD into the model (Du et al., 2022). This work also extends the
approach to object detection. (Du et al., 2024) leverage a generative model to improve
OOD detection. A network learns how to represent training images in the text-conditioned
latent space of the generating model. Sampling embeddings in the low-probability regions
to condition the generation results in outlier images. These synthetic images are then used
to develop an OOD detection tool.

The lack of a unified benchmark is an issue causing many evaluations of approaches
to be unfair. A comprehensive comparison of OOD methods shows progress over the last
few years, but also that DeepEnsemble (Lakshminarayanan et al., 2017) remains a top
performer despite its age (Yang et al., 2022). Creating model-specific benchmarks allows
better comparisons and insights (Galil et al., 2023a).

OOD detectors might not be well-suited as runtime monitors as they aim to detect the
samples’ data sources instead of detecting samples leading to errors (Guérin et al., 2023).

Covariate Shift Covariate shift is when the distribution of the input features P (X)
changes at test time; typically, the image quality might be different.

Domain Adaptation (DA) is a specific form of transfer learning that leverages labeled
data from one or more related source domains to perform tasks in a target domain (Wang
and Deng, 2018). It generally assumes that a source domain has sufficient labeled data to
train a model, and that a target domain has limited labeled data (supervised), unlabeled
data (unsupervised), or both (semi-supervised). For the unsupervised setting, the hardest
one, some methods directly modify classifier training to align the model features across
domains. For instance, a loss should be added to minimize the difference in learned
feature covariances across domains during training (Sun and Saenko, 2016). Another
option is to incorporate a domain classifier whose performance is minimized to ensure
that features from the two domains are aligned and undistinguishable (Ganin et al., 2016).

Domain Generalization (DG) learn a model using data from a single or multiple re-
lated but distinct source domains in such a way that the model can generalize well to any
target domain (Blanchard et al., 2011; Zhou et al., 2022). It does not require the strong
assumption of DA: access to target domain data. One way is to minimize the dissimilarity
across source domains, which improves the generalization on target domains (Muandet
et al., 2013). Aligning the feature representation distributions across domains can be done
adversarially (Li et al., 2018).

Besides semantic and covariate shifts, concept drift can also be a problem (Lu et al.,

17

2018). It happens when the relation between labels and features P (Y |X) changes over
time. For instance, consumer behavior changes over time, and recommendation systems
should be updated accordingly. However, this is not a major issue in computer vision,
especially for natural image classification. Visual features that define a dog will not define
a cat in the future.

Adversarial Attacks DNNs are not robust to some specific small perturbations of their
inputs. Adversaries can add some optimized invisible noise to an image to completely
change the classifier prediction (Szegedy, 2013; Goodfellow et al., 2014b). This poses
security issues for models operating on digital images, such as social network moderation
tools. Fortunately, methods can detect if an attacker added invisible noise, e.g., (Lee et al.,
2018b), and specific training regimes can make networks robust to such attacks (Madry
et al., 2018; Cohen et al., 2019). Also, these attacks are not a threat in the physical world,
as the attacker does not have access to the digital images captured by a camera (and if
they do, adding an invisible noise is probably not the best attack method).

Adversarial patch attacks are more realizable in the physical world: adding an opti-
mized motif in the scene can fool classifiers (Brown et al., 2017). For instance, optimized
stickers applied on a stop sign in the physical world cause a classifier to misclassify it
(Eykholt et al., 2018). Adversarial patches can also be used as a black-box attack, mean-
ing that the attacker can build a patch without explicit knowledge of the attacked model
(Labarbarie et al., 2024). Transforming images at test time, e.g., smoothing salient regions
in the image (Naseer et al., 2019), is a possible way to defend against patches.

Anomalies and Corner Cases An anomaly is an observation that deviates considerably
from some concept of normality (Ruff et al., 2021). However, what constitutes normality
is unclear and often specific to an application or a method. Anomalies can be due to
covariate or semantic shifts, thus overlapping with other categories of failures described
above.

Errors can be introduced during the data acquisition process. For image classification,
it can be that the image quality does not permit the clear identification of the object or
that the label is ambiguous, e.g., if the image contains multiple objects. Labels can also
be noisy (Northcutt et al., 2021).

In the field of autonomous driving, corner cases are a related notion. They usually
denote situations occurring outside of the limits of normal operating parameters - specif-
ically, when multiple conditions happening together lead to system failure. For instance,
an autonomous car might function correctly under high rain or low luminosity but not
when those two conditions happen together. In section 3.3, corner cases are viewed as
examples at the boundary of the classifier’s decision. Some works study corner cases
in the context of Machine Learning. Many come from autonomous driving, where the
notion of corner cases is widely discussed. However, a big issue is the lack of a clear
definition of such a notion. Many works propose their own definition or use the term to
denote related concepts (e.g., anomaly). (Pei et al., 2017) and (Tian et al., 2018) consider
corner cases as “error-inducing inputs”. (Ouyang et al., 2021a,b) see them as “rare con-
ditions”, “misclassified data”, “analogous to bugs in traditional software”, “related to the
classifier boundary”. They also propose a mathematical definition expressing that corner
cases are samples susceptible to making the classifier prediction shift when a small per-
turbation is added. (Bolte et al., 2019) propose a specific definition for visual perception
in autonomous driving: “A corner case is given, if there is a non-predictable relevant ob-

18

ject/class in relevant location”. (Breitenstein et al., 2020, 2021) propose a systemization
of corner cases for automated driving. They divide corner cases into multiple levels from
low to high abstraction: from pixel level to scenario level. (Heidecker et al., 2019) ex-
tend the systemization to LiDAR and RADAR sensor modalities. (Heidecker et al., 2024)
propose a definition associated with a mathematical formulation.

From the various studies, two main goals emerged. The first goal is to generate syn-
thetic corner cases to evaluate a given model or augment the training data to improve
robustness. (Pei et al., 2017; Tian et al., 2018) generate synthetic data that maximize
neuron coverage and model behavior change. This data is generated by modifying ex-
isting images using a set of transformations such as rotation, blur, brightness, rain, fog,
etc. Works in sections 3.3 and 3.4 are related to this first goal. The second goal is to de-
tect corner cases to improve safety during deployment (warning system) and characterize
datasets for better training and testing (corner cases should be seen during training, and
evaluation data should include corner cases). (Ouyang et al., 2021a,b) develop a metric
to detect corner cases. It can capture testing data corner cases (abnormal images) or ad-
versarial examples. (Bolte et al., 2019) propose their own definition of corner cases and
a method to detect them. (Breitenstein et al., 2020, 2021; Heidecker et al., 2021) aim to
clarify the detection methods. A corner case dataset has been created to facilitate their
detection for autonomous driving (Li et al., 2022b).

In chapter 3, synthetic extreme examples are generated. They might be considered as
corner cases because they represent images close to the classifier decision boundary.

2.4 Classifier Failures Discovery
Recently, there has been a growing interest in detecting and describing failures or

“bugs” in image classification models. Especially since recent tools allow for the descrip-
tion of these failures with text. Such tools usually leverage large multimodal models that
allow linking images and text. A standard model for this task is CLIP (Radford et al.,
2021). The works described in this section are closely related to the goals of the thesis,
except that the point of view is the opposite: they study failures, while the thesis aims to
study successes. Identifying some failures is useful, but it does not imply that all other
cases lead to success.

One can use large labeled datasets and human verification to identify bugs (Gao et al.,
2023). To avoid these requirements, other approaches are based on generative models.
In particular, leveraging recent text-to-image generative models allows linking textual at-
tributes to classification performance. It is possible to identify bugs in a given classifier
by generating many images and then clustering and captioning the ones leading to classi-
fication failure (Wiles et al., 2022). For instance, the presence of a flower in the images
increases the likelihood of misclassification of flies into bees. However, the required com-
puting resources are enormous. (Vendrow et al., 2023) personalizes the generation to a
specific dataset to create distribution-shifted versions of the dataset. They can be used to
test classification models’ robustness to shifts.

(Metzen et al., 2023) identifies subgroups of data leading to degraded performance.
Starting from an ODD defined by domain experts and consisting of several semantic di-
mensions. An image classifier is tested on selected subgroups of this domain. Section 5.3
improves this work by deriving a guided and efficient exploration of the attributes.

To identify systematic failures of multimodal models, (Tong et al., 2023) propose
to first identify individual failures by finding sentences encoded similarly by the model

19

CLIP while they contain different information. An LLM categorizes these failures into
groups of systematic failures. These failures are found in many multimodal models that
use CLIP embeddings, such as text-to-image generators. Text representing absence or
presence, negations, or quantifiers is not properly encoded and often leads to failures.

An approach by (Jain et al., 2023) uses linear classifiers to automatically represent
model failure modes as directions in CLIP latent space. It enables the discovery and
captioning of challenging subpopulations for targeted model improvement. (Chen et al.,
2023a) leverages large pre-trained models to identify the important visual attributes of
the task and then predict the attribute values. For instance, for lipstick classification,
attributes include gender or age. Underperforming data slices can thus be detected and
associated with natural language descriptions. Work by (Rezaei et al., 2024) emphasized
the interpretability of the failures’ text descriptions. The Recognize Anything Model
(Huang et al., 2024; Zhang et al., 2024) is applied to tag images, followed by a brute-
force approach to evaluate combinations of tags leading to failures.

Slice discovery algorithms are automated methods that partition the data into high-
error and coherent (sharing attributes or characteristics) subsets. For image data, slices
can be discovered with clustering in the classifier’s feature space (d’Eon et al., 2022).
Using cross-modal embeddings, e.g., from CLIP, helps identify and describe the error
slices (Eyuboglu et al., 2022). However, the practical use of these slice discovery methods
is still unclear: coherence of the output slices does not imply that users can form correct
behavioral hypotheses, and different users form different hypotheses when shown the
same slice (Johnson et al., 2023).

2.5 Selective Classification

Figure 2.4: Risk-coverage curves for 3 image classification datasets (risk = 1-accuracy).
Data samples are selected according to the softmax response (SR), i.e. MSP values. Fil-
tering out, e.g., 50% of the data, significantly reduces errors in the selected data.

Selective Classification (SC), or classification with a reject option, aims to improve
a model’s prediction performance by trading off data coverage (Chow, 1957, 1970; El-
Yaniv and Wiener, 2010; Geifman and El-Yaniv, 2017; Hendrickx et al., 2024). It can be
evaluated with risk-coverage curves that plot this trade-off (see Figure 2.4). SC is done
with a reject option to filter out data that might result in wrong predictions. In the case
of a given DNN-based pre-trained classifier, Geifman and El-Yaniv (2017) studied how
to learn a rejection function that filters out data such that the classification error rate is
guaranteed to be below a desired value with a high probability. The rejection function

20

is based on a confidence-rate function, such as the softmax response (the maximum pre-
dicted probability output of a classifier, also called MSP or confidence). Geifman and
El-Yaniv (2017) showed that the classifier confidence outperforms MC-dropout Gal and
Ghahramani (2016) and Feng et al. (2023) showed that it also outperforms entropy. Using
an auxiliary model that predicts the true class probability of the classifier can improve
selective classification (Corbière et al., 2019, 2021).

The SC performance of a model increases and then decreases during training (Geif-
man et al., 2019). The phenomenon seems similar to DNNs’ overfitting. Averaging
confidence score values from several earlier snapshots of the model thus increases SC
performance, compared to only using the final trained version of the model.

Improving SC performance can be done by directly optimizing both classification and
rejection during training to learn a deep neural network whose performance is maximized
over the covered domain (for fixed target coverage, e.g., 80% of the dataset) (Geifman and
El-Yaniv, 2019). However, the improved performance of methods involving a customized
training might be due to training a more generalizable classifier rather than the proposed
selection mechanism (Feng et al., 2023).

(Fisch et al., 2022) introduce a SC variation where the goal is to reject examples with
“uncertain” uncertainties, i.e., that are miscalibrated. (Narasimhan et al., 2024) propose a
combination of SC and OOD detection methods in one framework.

A large empirical study by Galil et al. (2023b) provides insights regarding the re-
lation of SC and uncertainty quantification. Even though correlations between SC and
calibration metrics can be positive or negative depending on the model architecture, the
calibration method of Temperature Scaling (Guo et al., 2017) usually improves SC. The
SC performance also highly depends on the model architecture (ViT (Dosovitskiy et al.,
2021) being the best) and training regime (incorporating knowledge distillation (Hinton,
2015) has a positive impact).

2.6 Calibration

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

%
of

Sa
m

pl
es Global Accuracy

Avg. Confidence

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Confidence

A
cc

ur
ac

y

Perfect Calibration

(a) Before post hoc calibration.

0.0 0.2 0.4 0.6 0.8 1.0

Global Accuracy
Avg. Confidence

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Perfect Calibration

(b) After post hoc calibration.

Figure 2.5: Reliability diagrams for one ResNet-50 model trained on ImageNet. The
model was originally particularly underconfident, and a post hoc calibration step solved
the issue. Samples are binned according to classifier confidence values, and bin accuracies
are computed. A post hoc calibration step improves the calibration, with bin accuracies
closer to the perfect calibration target (plots at the bottom) and average confidence closer
to global accuracy (plots at the top).

21

Confidence Calibration To improve DNNs’s reliability, a key concern is to estimate
the probability of wrong decisions correctly. When models are expected to be embedded
in safety-critical systems (e.g., medical or transportation), estimating this probability is
crucial to mitigate catastrophic behavior. One way to address this question is to treat it
as an uncertainty quantification problem (Abdar et al., 2021; Gawlikowski et al., 2023),
where the uncertainty value computed for each prediction is considered as a confidence.
This confidence can be used to reject uncertain decisions proposed by the DNN (Geifman
and El-Yaniv, 2017), for out-of-distribution detection (Hendrycks and Gimpel, 2017), or
to control active learning (Li and Sethi, 2006) or reinforcement learning based systems
(Zhao et al., 2019). When confidence values reliably reflect the true probability of correct
decisions, i.e., their accuracy, a predictive system is said to be calibrated. For all samples
predicted with a confidence of 0.8, a calibrated model makes correct predictions 80% of
the time. In this case, confidence values can be used to reliably control decision-making.

DNNs outputs can be used to provide a confidence score at no cost, i.e., without
necessitating heavy estimation such as Bayesian sampling (Goan and Fookes, 2020) or
ensemble methods (Lakshminarayanan et al., 2017). Indeed, most neural architectures for
classification instantiate their decision as a softmax layer, where the maximum value can
be interpreted as the maximum of the posterior probability and, therefore, as a confidence.
Unfortunately, the uncertainty values computed in this way are often miscalibrated. DNNs
have been shown to be over-confident (Guo et al., 2017), meaning their confidence is
higher than their accuracy: predictions with 90% confidence might be correct only 80%
of the time. A later study (Minderer et al., 2021) suggests that model architecture impacts
calibration more than model size, pre-training, and accuracy. For ImageNet classifiers,
model families are correlated to calibration (Galil et al., 2023b).

These studies show that it is difficult to anticipate the calibration level of confidence
values computed directly from DNNs. Improving calibration can be done with a specific
training regime or a complementary post-processing calibration step. This calibration
process can be seen as a learning step that exploits data from a calibration set, distinct
from the training set, and is used to learn a function that maps classifier outputs into
better-calibrated values. This process is typically lightweight and decoupled from the
issue of improving model performance.

Calibration shares similarities with SC: they both aim to better estimate the predic-
tion uncertainties. While SC only requires a confidence score that provides a ranking of
predictions related to their correctness, calibration requires that the absolute value of the
confidence score represents the prediction uncertainty. Calibration does not directly help
define an reliability domain contrary to SC, but insights gained working on SC led to a
new approach for calibration described in section 4.4.

Calibration Notions There are various notions of multiclass calibration. One can con-
sider confidence (Guo et al., 2017), class-wise (Kull et al., 2017), top-r (Gupta et al.,
2021), top-label (Gupta and Ramdas, 2022), decision (Zhao et al., 2021a), projection
smooth (Gopalan et al., 2024), or strong (Vaicenavicius et al., 2019; Widmann et al.,
2019) calibration. For recent surveys, see (Filho et al., 2023) and (Wang, 2023). Sec-
tion 4.4 focuses on confidence calibration and not on the calibration of the full probability
vector. Indeed, confidence calibration is useful for many applications: SC (Geifman and
El-Yaniv, 2017), OOD detection (Hendrycks and Gimpel, 2017), or active learning (Li
and Sethi, 2006). For these applications, stronger notions of calibration are both difficult
and even useless as only a single confidence value is required.

22

Metrics Calibration can be visualized with reliability diagrams. Figure 2.5 shows an
example. It plots the accuracy as a function of confidence for two different situations.
Predictions are grouped into equal-size bins according to the confidence values, and ac-
curacies are calculated for each bin. For a perfectly calibrated model, the diagram shows
a function close to the identity: the bin accuracy equals the average bin confidence.

Several metrics have been proposed to quantify calibration error. The most common
is the Expected Calibration Error (ECE) (Naeini et al., 2015) (see Equation 4.2). ECE has
flaws: the estimation quality is influenced by the binning scheme, and it is not a proper
scoring rule (Gneiting and Raftery, 2007; Vaicenavicius et al., 2019; Nixon et al., 2019).
This means that the ECE can be minimized even for a predicted uncertainty far from
the true uncertainty, e.g., for a network that always predicts a probability equal to the
accuracy. Despite its flaws, ECE remains the standard comparison metric for confidence
calibration. Variants of ECE have also been developed: classwise-ECE (Kull et al., 2019),
ECE with equal mass bins (Nixon et al., 2019; Minderer et al., 2021), or top-label-ECE,
which adds a conditioning on the predicted class (Gupta and Ramdas, 2022). The Brier
score (Brier, 1950) is also used to measure calibration. This work mainly uses the standard
ECE, but more metrics are included in the Appendix.

Training Calibrated Networks Several solutions have been proposed in the literature
to improve calibration by training neural networks in specific ways, generally by making
use of a new loss term (Kumar et al., 2018; Thulasidasan et al., 2019; Karandikar et al.,
2021; Cheng and Vasconcelos, 2022; Chen et al., 2023b). While these methods directly
optimize calibration during the training phase of the networks, they require a high devel-
opment time, often compromise accuracy, and are not adapted to pre-trained foundation
models. That is why the thesis focuses on calibrating already-trained models.

Post-Processing (or Post Hoc) Calibration Another family of methods aims to cali-
brate already-trained models. This lowers the development time because it decouples the
accuracy optimization and the calibration. Note that the term “calibration” designates
both the model property defined above and the action of calibrating a model, i.e., im-
proving its calibration. In this thesis, calibration methods are divided into two categories:
scaling and binary.

Scaling methods are derived from Platt scaling (Platt, 1999) and optimize some pa-
rameters to scale the logits. Temperature Scaling is a popular simple post-processing cali-
bration method. The logits vector is scaled by a coefficient, which modifies the probability
vector in a non-linear way. Vector Scaling is more expressive and has good performance
in many cases (Guo et al., 2017; Nixon et al., 2019; Kull et al., 2019). Matrix Scaling
can also be considered for more expressiveness but is difficult to apply without overfitting
(Guo et al., 2017). Dirichlet Calibration (Kull et al., 2019) proposes a regularization strat-
egy for Matrix Scaling. (Zhang et al., 2020) developed Ensemble Temperature Scaling.
Scaling can be combined with binning (Kumar et al., 2019a). Instead of using the network
logits or probabilities, feature layers can also be exploited (Lin et al., 2022).

Another family of methods tackles binary classification. They are denoted as binary
methods. Histogram Binning (Zadrozny and Elkan, 2001) divides the prediction into B
bins according to the predicted probability. For each bin, a calibrated probability is com-
puted from the calibration data. The probability becomes discrete: it can only take B
values. With some modifications, it outperforms scaling methods (Gupta and Ramdas,
2022; Patel et al., 2020). Isotonic Regression (Zadrozny and Elkan, 2002) learns a piece-

23

wise constant function to remap probabilities. Bayesian Binning into Quantiles (Naeini
et al., 2015) brings Bayesian model averaging to Histogram Binning. Beta Calibration
(Kull et al., 2017) uses a beta distribution to obtain a calibration mapping.

In chapter 4, the Top-versus-All (TvA) approach reformulates the multiclass calibra-
tion problem to more efficiently use all these calibration methods, with little to no change
in their algorithms.

Multiclass to Binary Using binary calibration methods for a multiclass classifier re-
quires adapting the multiclass setting. This is usually done with a One-versus-All (OvA)
approach (Zadrozny and Elkan, 2002; Guo et al., 2017). The multiclass setting is decom-
posed into L OvA independent problems: one binary problem for each class. (Gupta and
Ramdas, 2022) introduce the notion of top-label calibration, i.e., confidence calibration
with additional conditioning on the predicted class (top-label). They describe a general
multiclass-to-binary framework to develop top-label calibrators. (Cheng and Vasconce-
los, 2022) derive L(L − 1)/2 pairwise binary problems. The approach requires training
the classifier from scratch, and its performance decreases with the number of classes.

The methods I-Max (Patel et al., 2020) and IRM (Zhang et al., 2020) use a shared
class-wise strategy to compute a single calibrator. The calibrator is applied to all class
probabilities separately, which means that the class probabilities ranking might change,
and so does the prediction.

The TvA approach developed in chapter 4 tackles this multiclass-to-binary problem.

2.7 Tools
Generative models are an essential tool for most of the thesis’ contributions. By gen-

erating images not present in the original data, new insights on a classifier can be gained.
Chapter 3 leverages Generative Adversarial Networks to generate extreme examples

for a given classifier. These models are introduced in subsection 2.7.1 below and de-
scribed more technically in section 3.2.

Text-to-image models based on diffusion models allow for describing classifier fail-
ures and a domain with text in chapter 5. They are introduced in subsection 2.7.2 below
and discussed in greater technical detail in section 5.2.

2.7.1 Generative Adversarial Networks (GANs)
GANs Generative Adversarial Networks (GANs), introduced by (Goodfellow et al.,
2014a), have rapidly become a cornerstone of deep learning research due to their ability
to generate realistic data in various domains, particularly in image synthesis. The original
GAN framework involves a minimax game between a generator, which creates synthetic
data, and a discriminator, which attempts to distinguish between real and generated data.
This adversarial process is described in more detail in section 3.2

Building on the original framework, numerous variants have been proposed to address
specific limitations and expand the capabilities of GANs. For instance, the generation can
be conditioned by a class label (Mirza and Osindero, 2014). Deep Convolutional GANs
(DCGANs) leverage convolutional layers to improve stability during training and pro-
duce higher-quality images (Radford, 2015). The Wasserstein GAN (WGAN) addresses
the instability and mode collapse issues inherent in traditional GAN training (Arjovsky

24

et al., 2017). BigGAN scales-up GANs to improve the fidelity of class-conditional image
synthesis for ImageNet at 128 × 128 resolution.

The StyleGAN family of models also pushed the boundaries of synthetic image qual-
ity. The original StyleGAN architecture, introduced by (Karras et al., 2019), offers a novel
approach to controlling the style and content of generated images by disentangling differ-
ent levels of detail. StyleGAN’s architecture allows for scale-specific control, resulting in
high-quality images with unprecedented levels of detail. In particular, synthetic faces can
be indistinguishable from real photos; see Figure 2.6. The original architecture was then
further improved (Karras et al., 2020b), made more data-efficient (Karras et al., 2020a),
and alias-free for better video and animation capabilities (Karras et al., 2021). However,
despite high-quality results for structured images such as faces, the performance is de-
graded for large unstructured datasets such as ImageNet. StyleGAN-XL aims to solve
this issue by scaling up the model (Sauer et al., 2022). Another variant introduced text
conditioning to make a GAN-based model competitive with recent text-to-image diffusion
models that became the new trend for image synthesis (Sauer et al., 2023).

Chapter 3 uses the StyleGAN2 architecture for its image quality and generation con-
trollability through latent space manipulation, as described in section 3.2.

Figure 2.6: Curated examples of synthetic faces generated by StyleGAN2 trained on
FFHQ dataset (Karras et al., 2019). From GitHub.

Image Editing Besides generating high-quality images, GANs offer the possibility of
image editing, thanks to latent space manipulation. The latent spaces of GAN models
frequently contain semantically meaningful directions. Navigating along these directions
allows for human-interpretable image transformations, such as zooming or recoloring.
Such directions can be discovered with various methods (Plumerault et al., 2020; Jaha-
nian et al., 2019; Voynov and Babenko, 2020; Härkönen et al., 2020). Many methods
specially adapted for the StyleGAN architecture, such as (Shen et al., 2020; Wu et al.,
2021; Patashnik et al., 2021; Ling et al., 2021; Alaluf et al., 2022a; Cui et al., 2022).
The main application is image editing, i.e., the ability to control the generated images
semantically as shown in Figure 2.7.

Chapter 3 takes inspiration from the field of image editing to illustrate a classifier’s
failures.

GAN Inversion As seen above, image editing with GANs is typically performed by
manipulating latent codes. When the starting point is sampled in the latent space, a syn-
thetic image is edited. To edit a real image, its latent code needs to be known, and GAN
inversion is about finding this code. This is a way to bridge the gap between real and
synthetic data. For instance, to edit a picture of my face, I first need to find the latent code
that would faithfully reconstruct the picture and then edit this code. See (Xia et al., 2022)
for a survey.

25

https://github.com/NVlabs/stylegan2-ada-pytorch

Figure 2.7: Image editing with latent space manipulation. For each group, two indepen-
dent manipulations are combined. It demonstrates the latent space disentanglement, as
visual attributes are represented along specific latent dimensions. From (Wu et al., 2021).

Because training GANs is often complex and time-consuming, GAN inversion uses
pre-trained models. Some approaches train an encoder on pairs (images – latent codes)
obtained by sampling latent codes and generating the associated images, (Tov et al., 2021)
propose an encoder regularized to control the proximity of the inversions to regions that
StyleGAN was originally trained on. (Alaluf et al., 2021) develop an encoder iteratively
predicting residuals to add to the latent code.

Another way is to use optimization methods to find the latent code, minimizing the
error between the target image and the generated image. The original inversion method
for StyleGAN2 uses optimization to find latent codes in W (Karras et al., 2020b). Hybrid
approaches encode an image into a latent code used as a starting point for optimization
(Zhu et al., 2016).

Different approaches are also possible. (Dinh et al., 2022; Alaluf et al., 2022b) use
a hypernetwork that predicts how to modify the generator weights to generate the target
image, starting from an initial latent code obtained by an encoder. (Parmar et al., 2022)
inverts complex images and allows editing by using different latent layers for different
regions of the images. Pivotal Tuning Inversion finds an initial latent code by optimization
and then fine-tunes the generator with regularization so that the generated image gets
closer to the target image (Roich et al., 2022). It is also possible to invert OOD images
by combining the edited part (face) with original details, such as a specific background
(Song et al., 2022).

The limitations of GAN inversion techniques are discussed in section 3.5.

Adversarial Autoencoders Related to GAN inversion, which operates on pre-trained
models, another family of approaches aims to learn an encoding jointly with the gen-
erator. Such approaches should provide better reconstruction results as the generator is
constrained by the encoder.

(Makhzani et al., 2015) propose an autoencoder architecture containing an encoder
that projects data in a latent space, a decoder that reconstructs data from latent codes, and
a discriminator. The discriminator predicts whether a latent code comes from an encoded
image or from the target prior distribution. The discriminator and the encoder (which
generates “fake” latent codes) are trained to minimize a standard adversarial loss, as in
GANs. A reconstruction loss is used to train the encoder and decoder. The resulting
models can be used to disentangle the style and content of images, perform unsupervised
clustering, reduce dimensionality, and visualize data. The concurrent works of (Donahue

26

et al., 2017) and (Dumoulin et al., 2017) also propose an architecture comprising an en-
coder, a decoder, and a discriminator. However, there is no need for a reconstruction loss.
The discriminator now receives pairs of either (image, encoded latent code) or (fake im-
age, latent code). The adversarial loss for this discriminator optimizes both the encoder
to generate realistic latent codes and the generator to generate realistic images. Such joint
encoder architectures can be scaled up to BigGAN (Donahue and Simonyan, 2019) or
StyleGAN (Pidhorskyi et al., 2020).

Related to section 3.3 of this thesis, (Lang et al., 2021) use an adversarial autoencoder
constrained by a given classifier to explain the classifier’s decision process. Figure 2.8
describes the architecture.

Figure 2.8: StyleEx architecture. The encoder, generator, and discriminator (not shown)
are jointly trained. Knowledge of the classifier is embedded into the encoder and generator
through specific loss functions. From (Lang et al., 2021)

2.7.2 Diffusion and Text-to-Image Models
Diffusion Models A family of generative models called diffusion models has been pro-
posed in recent years and has achieved remarkable results. Nowadays, many tech com-
panies have released text-to-image generation products, such as DALL-E from OpenAI
based on this model. The original idea is inspired by non-equilibrium statistical physics
(Sohl-Dickstein et al., 2015). A forward diffusion process iteratively destroys the data
distribution structure, typically by adding Gaussian noise. The reverse diffusion process,
restoring the data structure, is learned. This generative model can progressively transform
complete noise into structured data. The idea was improved by (Song and Ermon, 2019;
Ho et al., 2020). Denoising Diffusion Probabilistic Models (DDPMs) are a simpler varia-
tion of diffusion models. During training, images are sampled and corrupted with random
noise and a random timestep (which describes the amplitude of the corruption). The neu-
ral network learns to predict the noise that was added to the data by minimizing the mean
squared error between the predicted and real noise. When a small timestep is chosen, the
data is slightly corrupted, making the task easy for the network. But for high timesteps,
the data is barely recognizable. When sampling, a random starting point is sampled and
progressively restored by the network. To generate an image, the model must perform
the denoising operation many times, e.g., 1000. This causes diffusion models to be slow
for sampling a distribution, compared to, e.g., GANs, which only need one forward pass
of the network. (Nichol and Dhariwal, 2021) also learn the noise variance and use a co-
sine noise schedule to improve the original DDPM. They also studied the scalability and
showed that more compute leads to better sample quality. (Dhariwal and Nichol, 2021)

27

improved the architecture of diffusion models, which made them outperform GANs and
Variational Autoencoders (Kingma and Welling, 2013) in image generation for ImageNet.
In particular, time-dependent classifiers guide the reverse process to control the sample
fidelity versus diversity tradeoff. The same benefit can also be achieved with classifier-
free guidance (Ho and Salimans, 2022). Work has been done to accelerate the sampling.
For instance, (Song et al., 2021a) makes the sampling more than 10 times faster, with a
trade-off on generation quality.

Controlling the Generation An important characteristic of generative models is their
ability to conditionally generate data. A first type of conditioning is class conditioning.
Class information can be incorporated into normalization layers during training (Dhariwal
and Nichol, 2021) to create a conditional model. At test time, the reverse diffusion process
can be guided towards a given class (Dhariwal and Nichol, 2021; Song et al., 2021b; Ho
and Salimans, 2022)

Textual conditioning allows for generating complex and diverse images by prompting
them with text. Text information can be incorporated into the model through an embed-
ding used in a similar way as a class embedding, with classifier-free guidance controlling
the conditioning strength (Nichol et al., 2021). Using CLIP (Radford et al., 2021) as a pre-
trained frozen text encoder improves the generation quality (Ramesh et al., 2022; Rom-
bach et al., 2022). However, the numerous multimodal models based on CLIP all share
the same systematic failures (Tong et al., 2023). Another option is to use a pre-trained
frozen LLM as text encoder (Saharia et al., 2022). A major limitation of text-to-image
models is their need for enormous amounts of image-text pairs data, such as the LAION-
5B dataset (Schuhmann et al., 2022), which contains billions of examples. More details
for text-to-image models are found in section 5.2.

Besides text, conditioning can be segmentation maps, canny edges, or human pose
(Zhang et al., 2023) as seen in Figure 2.9. The generation can also be conditioned by
a concept illustrated by some example images. The images can be used to fine-tune
the generative model (Ruiz et al., 2023). Another way is to find the textual embedding
representing these images (Gal et al., 2022).

Chapter 5 leverages the Stable Diffusion model (Rombach et al., 2022), which makes
high-quality text-to-image generation accessible as it was published in open-source.

Input Canny edge Default “masterpiece of fairy tale, giant deer, golden antlers”

Input human pose Default “chef in kitchen”

“…, quaint city Galic”

“Lincoln statue”

Figure 2.9: Stable Diffusion can be controlled by text and ControlNet adds conditions
such as canny edges and human poses through fine-tuning. From (Zhang et al., 2023).

28

Chapter 3

A Qualitative View: Use Generative
Models to Illustrate Failures

3.1 Introduction

The growing use of image classifiers in many, sometimes critical, applications (e.g.,
medical diagnosis, autonomous driving, autonomous aircraft landing) reinforces the need
to understand their behavior. A key issue is to identify the causes for which such systems
are likely to fail to ensure the safety of their use. A related issue is to describe the nature
of uncertain data for a given classifier, as one can consider uncertainty as a measure of
potential failure.

XAI is currently considered as a tool to improve the trustworthiness of AI predictive
systems (Arrieta et al., 2020; Linardatos et al., 2021). Explainability studies have mainly
focused on providing so-called “post-hoc” explanations that are expected to somehow
justify the actual prediction of a trained model. Very few studies have addressed the issue
of identifying failure conditions. A related explanatory strategy is the design of counter-
factuals (Wachter et al., 2017; Goyal et al., 2019), which aim to identify what minimal
and meaningful input modification leads to a desired prediction change. In particular,
several works (Zhao et al., 2018; Sauer and Geiger, 2021; Lang et al., 2021; Jeanneret
et al., 2023) leverage generative models such as Generative Adversarial Network (GAN)
or diffusion models. Generative models have also been used to quantify the uncertainty
of a classifier (Oberdiek et al., 2022) or to discover causes of failures (Wiles et al., 2022).

In this chapter, the main goal is to leverage generative models to identify the failure
conditions and reasons for uncertainty of a given image classifier. Such generative models
can generate infinite amounts of failure cases or uncertain data (as seen by the classifier)
and provide a representation – an explanation – of what makes some data hazardous for
the classifier.

Section 3.2 introduces the generative models used. It first describes the standard GAN,
then the StyleGAN model and its latent space properties, which are exploited in the chap-
ter.

Section 3.3 addresses the question of identifying the failure conditions of a given im-
age classifier. To do so, I exploit the capacity of producing controllable distributions of
high-quality image data made available by recent GANs (StyleGAN2): the failure con-
ditions are expressed as directions of strong performance degradation in the generative

29

model latent space. This analysis strategy is used to discover extreme examples that com-
bine multiple sources of corruption and to compare, in more detail, the behavior of differ-
ent classifiers. The directions of degradation can also be rendered visually by generating
data for better interpretability. Some degradations, such as noise, can affect all classes,
whereas others, such as shape, are more class-specific. The approach is demonstrated on
the MNIST dataset, which has been completed by two sources of corruption: noise and
blur. It shows a promising way to better understand and control the risks of exploiting
artificial intelligence components for safety-critical applications.

Section 3.4 tackles a related challenge: identifying the sources of uncertainty in an
image classifier. Here, a GAN generates images conditionally to the classifier decision.
More specifically, I consider the classifier maximum softmax probability as an uncertainty
estimate and use it as an additional input to condition the generative model. The gener-
ative model is trained with this additional condition representing the classifier behavior.
This allows the generation of images that result in uncertain predictions, giving a global
view of which images are harder to classify. Increasing the uncertainty of a given image
illustrates the impact of an attribute, providing a more local understanding of the decision
process. The experiments performed on the MNIST dataset, augmented with corruptions,
are described in subsection 3.3.3.

Section 3.5 discusses the main findings, proposes a way to define a domain in a latent
space, and argues why it happens to be difficult to achieve.

3.2 Background
Generative Adversarial Networks (GANs) GANs are a type of generative model known
for their generation quality and the controllability offered by their latent (input) space. In
particular, they were shown to generate full-size images with high rendering quality. See
chapter 2 for more information. They are composed of two neural networks. A generator
G generates fake images from an input noise vector z. A discriminator D distinguishes
fake images from real ones from the training data, with D(x) being the predicted proba-
bility that x is a real image. The training is a competition between the two: the generator
tries to fool the discriminator, which in return seeks not to be fooled. The discriminator
aims to assign a probability of 0 for a fake image G(z) and a probability of 1 for a real
image x. More formally, the generator is trained to minimize the loss log(1−D(G(z))),
while the discriminator is trained to minimize the loss log(1−D(x)) + log(D(G(z))).

During the training process, the two neural networks improve each other until the
discriminator no longer distinguishes between real and fake data: it assigns 0.5 probability
to both real and fake images. GAN training is known to be unstable, so an equilibrium
has to be found: if the discriminator becomes much better than the generator, it “wins”,
and it is hard for the generator to improve and fill the gap, and vice-versa. Several losses
and regularization terms have been proposed to fix the issue (Arjovsky et al., 2017).

After training, only the generator is used to generate images from noise vectors (“la-
tent codes”). Interestingly, the generator is structured so that interpolations between two
latent codes result in a smooth semantic shift of an image into another; for instance, a digit
image of “8” is progressively transformed into a mixture of “1” and “8” before ultimately
becoming a “1”, as shown in Figure 3.6. This is not the case if the interpolation is done
in the pixel space.

30

StyleGAN This chapter uses in particular the model StyleGAN2, widely used for high-
quality face generation and edition. It has a unique architecture. Indeed, three different
“levels” of latent spaces can be considered. The first latent space, Z , is typically normally
distributed like many GANs and is the initial input space of the generator. Samples z ∈ Z
are forwarded to an intermediate latent space W using fully connected layers, resulting
in a more disentangled representation than Z (Karras et al., 2019). Using learned affine
transformations, samples w ∈ W are specialized into styles s. The space of styles, called
StyleSpace, shows a high degree of disentanglement (Wu et al., 2021). Latent spacesW
and S are highly disentangled, meaning that they encode distinct visual attributes along
different dimensions. This allows image editing, one attribute at a time (Wu et al., 2021).

A generated image results from an initial learned constant tensor that is progressively
up-sampled and transformed by residual convolution layers. The style vectors modulate
the convolution weights of each feature map for each generator layer. Styles applied at
low resolution affect high-level aspects (e.g., pose, hairstyle of a face), while at higher
resolutions, they affect small details (microstructure). The style vector determines what
the generated image looks like. The architecture is illustrated in Figure 3.1.

To give an idea of the complexity of the generative model, in the original StyleGAN2
version that generates images of size 10242, Z andW have 512 dimensions, S has 9088
dimensions, and the initial constant tensor has a size of 42 with 512 channels. This makes
a total of ≈ 25 million parameters.

tRGB
⊕

tRGB
⊕

512 x 512

1024 x 1024

tRGB
⊕

up

up

A

256 x 256

A

WZ mapping

A

s1
s2
stRGB

Figure 3.1: Illustration of StyleGAN architecture. The gaussian latent space Z is mapped
to an intermediate latent spaceW which is projected to styles s which modulate convolu-
tion weights. tRGB blocks project tensors of arbitrary channels into RGB images that are
upsampled and combined to form the final image. From (Wu et al., 2021).

3.3 Generate Synthetic Failure Cases

3.3.1 Generative Models to Explore the Data Space
Designing a probabilistic model in high-dimensional data space, such as image, video,

or sound, that is able to faithfully account for their diversity and informative features
is a difficult objective. Generative models such as GANs or generative invertible flows
(Kingma and Dhariwal, 2018) are ML techniques that provide means to give access to
such a distribution by direct sampling. They learn the parameters of a sampling process
and are able to generate data that mimic a given random distribution.

31

GANs exploit a representational latent space that can be sampled from a known low-
dimension distribution, often Gaussian, that is expected to encode enough information to
generate complete images. Generation is then produced by a decoding network that is
learned from target data samples. Recent approaches (Wang et al., 2021; Jabbar et al.,
2021; Saxena and Cao, 2021) can now generate high-quality, high-dimension data with
a photo-realistic rendering when applied to images and with good diversity and fidelity
levels. One possible application of generative models for safety objectives is to augment
data for testing various operational conditions as in (Zhang et al., 2018).

The latent space can also be used as a way to control the generation process, for
instance, to edit images (Härkönen et al., 2020; Wu et al., 2021; Ling et al., 2021). When
correctly disentangled, the latent space can be interpreted as a representation space where
each dimension encodes some interpretable visual attribute (Wu et al., 2021; Patashnik
et al., 2021). In the case of face image generation, these attributes could be hairstyle,
head orientation, eye color, glasses, etc. Navigating in the representational latent space
can also be used to identify the attributes that best characterize a given class (Lang et al.,
2021).

3.3.2 GAN’s Latent Space Exploration Guided by a Classifier’s Gra-
dient

The proposed approach is based on the exploration of how the latent space of a gener-
ative model differentiates between well and poorly-classified data by a given classifier, as
illustrated by Figure 3.2. In the following, I briefly describe the chosen generative model
and its latent space structure; explain how to find the dimensions of the latent space that
differentiate well-classified from misclassified data; describe how to manipulate images
to visualize the attributes; and see how one can estimate the accuracy of the classifier
conditionally to the location of the data in the latent space.

Figure 3.2: An illustration of the proposed approach. Starting from the latent space S
of StyleGAN, a population of images is generated. The images are classified and the
information on classification success is added in the space S, where the dimensions dis-
criminating well-classified vs. mis-classified images are found. These dimensions can
then be used to visually render the corresponding influential attributes.

Classifier and Data The first input of the approach is a learned image classifier C to be
analyzed. The approach assumes having access to model architecture and weights (“white
box” hypothesis). The application domain is handwritten digit recognition, and a corre-
sponding dataset is available (which was not necessarily used for learning the classifier).

32

Generative Model The second ingredient of the approach is a generative model that
can be controlled meaningfully. The StyleGAN2 architecture, described in section 3.2,
is used. This choice is motivated by several reasons: the quality of generated data, the
scalability to complex datasets, and the high degree of disentanglement of the latent space
StyleSpace. This disentanglement is particularly useful here, where it is exploited to
identify directions of classification performance degradation.

Finding Influential Dimensions in the Latent Space The dimensions of the latent
space S are expected to encode image attributes, such as shape, thickness, orientation,
and noise, in a rather disentangled way. This property allows defining a simple search
method that is able to identify the most influential dimensions regarding the accuracy of
a given classifier.

Gradient-Based Approach The proposed strategy ranks the dimensions according to
the gradient of the classifier output with respect to the StyleSpace input. The idea is to
score each dimension based on its ability to lower the output score of the true class. More
precisely, for each sample s in the StyleSpace, for which the true class is known, the
corresponding image x = G(s) is generated, and then classified according to C(x). Then
we can compute the gradient with respect to the dimension j in the style space of the i-th
classification output: ∇sj(Ci(G(s)), where i is the index of the true class encoded by s.
The gradient can be computed exactly by using an autograd algorithmic differentiation
provided in standard Deep Learning software environments – both the classifier and the
generator being available in such framework. The gradient is averaged over a population
of data as the score used to rank the dimensions.

Global and Class-Based Analysis Not all classes behave similarly when corrupted.
For instance, a 1 digit, usually written as a single stroke, is more easily identified than
a 3, which can be mis-classified as an 8 when there is noise. The impact of corruption
potentially depends on the class.

The approach to compute influential directions relies on an average over a population.
This population can be global or conditioned by the class, allowing a class conditional or
global discovery of influential directions.

Image Manipulation and Extreme Examples Starting from an image where the latent
space representation – the style vector – is known, we can modify this representation to
generate a modified image. In fact, once the influential dimensions are computed and if
the values of the style vector for those dimensions are changed, then the corresponding
visual attributes are modified for the generated image. Generating data that follow a
high-performance degradation is a simple heuristic: (1) start from a given point s0 in the
StyleSpace, (2) increment the influential dimension by a given amount, and (3) monitor
the sign of the increment being given by the sign of the gradient. Note that the starting
point s0 for exploration can be any point in the StyleSpace: it can be a “true” style,
computed by mapping to S a random z sampled in the input latent space Z , or any other
point directly sampled in S, for instance, an average of a given population of s data. In
the experiments of subsection 3.3.3, an “average” digit in the StyleSpace is computed as
the mean over a class conditional population.

The data space exploration along influential dimensions also allows the discovery
of extreme examples defined here as the examples for which a small degradation shifts

33

Figure 3.3: Samples of real corrupted data (left side) vs. generated data (right side)

(a) t-SNE in Z (b) t-SNE inW (c) t-SNE in S

Figure 3.4: t-SNE of generated samples in different latent spaces. Z does not encode the
class as class information is concatenated to latent codes z to form the input of the con-
ditional generator, and does not clearly differentiate well-classified from mis-classified
samples. W and S are able to separate the classes (the 10 clusters) and well-classified
from mis-classified samples, S doing it better thanW .

the classifier output from correct to incorrect classification. The experiments of subsec-
tion 3.3.3 show several examples of extreme examples discovered by this approach.

Accuracy Conditioned by Latent Space One can also use the latent space to under-
stand better the classifier accuracy. The data along the identified influential dimensions
potentially correlates with the classifier accuracy. A classifier can be characterized glob-
ally by its accuracy decrease when moving in the StyleSpace along influential dimensions,
which vary the amount of corruption. The decreasing slope characterizes globally the re-
silience to corruption of a classifier and can be used for comparison.

3.3.3 Experiments and Results

Implementation The dataset used to evaluate the approach is MNIST (LeCun et al.,
2010). More precisely, the original data was augmented by introducing corruptions to
simulate poor-quality data acquisition that may have an influence on class prediction.
In particular, corruptions are Gaussian Noise and Gaussian Blur from (Hendrycks and
Dietterich, 2019) because they have a significant impact on classification accuracy for a
classifier trained on clean data. Data are corrupted in the following way. The first half of
the dataset remains clean, and the second half is corrupted by two factors: blur and noise.
Both factors’ severity levels are randomly chosen between 1, 2, and 3. It ensures that most
of the samples remain visually recognizable. Random samples are shown in Figure 3.3.

The StyleGAN2 generative models contain three different latent spaces. It is generally
admitted that the so-called StyleSpace S is a more disentangled representation space.
Experiments show that the well-classified and misclassified samples are better separated
in this space, even though the generation was not constrained in any way by the classifier.

34

(a) Top dimensions

(b) Random dimensions

Figure 3.5: (3.5a) Histograms of values for the top 3 dimensions of S that discriminate
the most between well-classified and mis-classified images after generation. For those
top dimensions, it is clear that latent codes resulting in well-classified and mis-classified
images follow different distributions.
(3.5b) Histogram of values for 3 random dimensions of S. For those dimensions, no
difference is visible between the well-classified and mis-classified distributions.

We can visualize this in Figure 3.4 by using t-SNE projection (van der Maaten and Hinton,
2008).

After training on clean data, the classifier (a simple Convolutional Neural Network)
reaches an accuracy of 97% on the test data. The metric used to quantify the performance
of the generative model is the Fréchet Inception Distance (FID) (Heusel et al., 2017).
The generative model trained on corrupted data reaches an FID of 1.63 (computed by
comparing 50k generated images, unfiltered and without using truncation, to the 60k
images of the whole training dataset). This low value means a high generation quality.
A few samples, shown in Figure 3.3, demonstrate the capacity of the generative model to
encode various levels and types of corruption.

Influential Dimensions The method described in 3.3.2 is applied to rank dimensions
in the learned StyleSpace. To verify that several dimensions have a bigger impact on
performance than others, Figure 3.5 depicts a selection of histograms. The histograms are
computer for a specific dimension for the two populations, Smis and Swell, where Smis and
Swell define latent codes resulting in misclassified and well-classified images, respectively.
We can see that the values for the top dimensions follow different distributions for well-
classified vs. mis-classified images, whereas random dimensions do not discriminate,
meaning that the corresponding style attribute does not influence performance.

Figure 3.6 shows the impact of manipulating the latent codes by shifting values along
the most influential dimensions. Each column represents one of the top ten influential
dimensions, and each line represents a different shift value. We clearly observe various
types of image corruption that can be interpreted a posteriori when increasing the shift

35

Figure 3.6: Illustration of the degradation evolution starting from the same original im-
age for the ten most influential dimensions. Each column represents one of the top ten
influential dimensions; each line represents a different shift value (which also varies per
dimension). More specifically, a shift reference value is defined for each dimension as
the value that makes the classifier output equal to 0.50 for the corresponding generated
image, and each line represents a fraction of the dimension-specific shift reference value,
written on the left as progress. Above the images are displayed the StyleSpace dimension
index, an arrow representing the direction to follow (augment or reduce the value), and
the classifier output for the true class.

value: the first three dimensions seem to introduce more noise, dimensions 4, 5, and 10
deform the original shape, dimension 9 lowers the intensity, dimensions 6, 7 and 8 intro-
duce partial occlusions. Furthermore, using a generative model allows a large corruption
vocabulary and, in particular, allows shape deformation, a capacity that is not available in
filter-based frameworks like Imagenet-C (Hendrycks and Dietterich, 2019).

The last three lines of Figure 3.6 show images corresponding to a steep decrease of
the classifier output score (from 1.0 to 0). This is where the class prediction shifts and
where the generated image can be considered as an extreme example.

Accuracy in the Latent Space As explained in section 3.3.2, we can look at the clas-
sifier accuracy evolution when fed with populations of various corruption levels sampled
in the StyleSpace. Figure 3.7a shows this evolution on two different classifiers. The ac-
curacy degradation is representative of the robustness to corruptions of a classifier: the
classifier trained on clean data sees its accuracy decrease faster than the classifier trained

36

(a) Comparison of classifiers. The classifier
trained on clean data is less robust to corrup-
tions: its accuracy decreases faster than the clas-
sifier trained on corrupted data.

(b) Comparison of classes, for the classifier
trained on corrupted data. The robustness de-
pends on the class. For instance, predicting cor-
rectly 3 or 9 is harder than 0 or 7.

Figure 3.7: Classifier accuracy decreases when samples are far from the well-classified
center in the latent space.

Figure 3.8: Illustration of extreme examples found for each class. By starting from the
average image in StyleSpace for the class, its latent code in one of the top ten influential
dimensions is modified until the classifier shifts its prediction (softmax probability for
the given class falls to 0.50). Above the images are displayed the StyleSpace dimension
index, an arrow representing the direction to follow (augment or reduce the value), and
the classifier output for the true class.

on corrupted data. It also shows that it depends on the class: some classes are more diffi-
cult to predict than others. For Figure 3.7b, the lower start for the curve of all classes can
be explained by the fact that the well-classified center cannot work as well for all classes
as for one class (the center and dimensions vary for each curve).

Using most or all dimensions of S to compute the distance makes the curve not mono-
tonically decreasing. It is better to use fewer dimensions, e.g. 100, as it makes the accu-
racy curve decrease faster and monotonically. To clarify the curve, samples at too high
distance values are filtered out. For such values, the generation quality decreases and the
lower number of samples degrades the accuracy computation.

Identification of Extreme Examples The identification of extreme examples, as de-
scribed in section 3.3.2, is illustrated for the 10 classes in figure 3.8. For each class,
the impact of the 10 most influential dimensions is shown. The first column represents
the average image of each class, and the ten following columns represent the result of

37

a corrupted image for one single dimension. Dimensions are selected among the most
influential ones, by skipping those with no effect on the classification. It can be seen from
the figure that the visual results of extreme examples are specific for each class. Then, if
we compare digits 3 and 4, we can see that extreme examples of digit 4 are built by noise
adding or structure deformation, whereas the construction of extreme examples of digit 3
is characterized by class switching into digits 8, 1, and 5.

It is important to highlight that the obtained results from figure 3.8 are showing the
impact of each single dimension by keeping all other dimensions in their optimal values
(average image). The manipulation of a large set of dimensions could combine several
types of degradation and allow the identification of new extreme examples.

Analysis The current work addresses a relationship between data quality and model
performance by exploring the latent feature space of a generative model. Indeed, the
proposed approach allows for the identification of influential directions that deteriorate
the classifier performances and the discovery of extreme examples in this space. The
proposed approach is based on ranking the latent space dimensions using the classifier
output gradient with respect to the StyleSpace input.

Results show the impact and the influence of each identified direction in terms of per-
formance degradation of the classifier. These identified directions, separately or jointly,
allow a visual account of the degradation which could help in the interpretability and
explainability of deep learning classifiers.

Despite the first promising conclusions of this work, the approach has been demon-
strated only for generated and synthetic images. Its application to real data requires a
capacity to encode – or invert – any data in the latent space (Xia et al., 2022), to be able
to apply the degradation encoded by the influential directions.

Another perspective, is to evaluate the approach on more complex data to identify
other types of degradation attributes. Recent works on image manipulation show that
visual attributes can be controlled for more complex images (Wu et al., 2021; Patashnik
et al., 2021; Härkönen et al., 2020; Ling et al., 2021) and that generative models can be
applied to larger datasets such as ImageNet (Sauer et al., 2022). Those two advances
indicate the possibility of scaling-up the approach.

3.4 Generate Synthetic Uncertain Data

3.4.1 GAN Conditioned by a Classifier’s Confidence

In section 3.3, we have seen how to navigate a GAN’s latent space guided by a classi-
fier’s gradient to identify the visual attributes most influencing the classifier’s prediction.
The GAN was trained independently from the classifier. An alternative way to link the
GAN and the classifier is to directly incorporate classifier knowledge into the GAN dur-
ing training. This can be done through conditioning. A simple way to create a conditional
GAN (Mirza and Osindero, 2014) is to concatenate the condition embedding to the noise
vector as inputs for the generator and to the real or fake image as inputs for the discrim-
inator. Typically, the condition embedding is a one-hot embedding of the class to create
a class conditional GAN. Here, the conditioning is made with a classifier uncertainty
score, which embeds knowledge of the classifier into the GAN. The model architecture is
depicted in Figure 3.9.

38

There are several ways to define the classifier prediction uncertainty, e.g., entropy,
Maximum Softmax Probability (MSP) (Hendrycks and Gimpel, 2017), or true class prob-
ability (Corbière et al., 2021). Here, simple MSP is used as an uncertainty estimation,
which performs well to discriminate well-classified from misclassified data as seen in
section 4.3. MSP is added as an input condition to the generator. Then, after training,
the model can conditionally generate uncertain data to get insights into what impacts the
uncertainty. Data can also be manipulated to increase or decrease the uncertainty and
exhibit sources of uncertainty.

MSP values are computed from the classifier (with frozen weights). Several popu-
lations of uncertainty values are required to learn the generator. For the discriminator
used on real images, their associated MSP is computed. For the discriminator used on
fake images, the MSP value comes from the condition used by the generator. Note that
these values differ from the classifier’s outputs because of the imperfect generation. The
generator is conditioned by values sample from the real distribution of MSP. This dis-
tribution comes from computing the MSP of real images. Otherwise, the discriminator
would more easily make the difference between real and fake data, causing the generator
training to be harder. It is important to mention that the approach does not distinguish
between aleatoric and classifier-dependent epistemic uncertainty: the generative model is
used to sample globally uncertain data, whatever the origin of the uncertainty is.

real image MSP

class label

noise

generator

class label*

MSP* discriminator 0 / 1

(frozen)

classifier
fake image

image*

(a) During training time, the additional input MSP conditions
the generator. The discriminator evaluates if the combination
(class, MSP, image) is realistic.
For the discriminator, inputs are alternatively (class label,
MSP from classifier, real image) and (class condition, MSP
condition, fake image generated).

MSP

class label

noise

generator fake image

(b) After training, we can gen-
erate uncertain images (fix low
MSP and vary noise) or identify
sources of uncertainty for given
images (fix the noise and vary
MSP).

Figure 3.9: Training process and structure of the generator.

3.4.2 Experiments and Results

Two-Dimensional Moons Data The approach is first demonstrated with a simple prob-
lem using the moons dataset (Pedregosa et al., 2011). The data is 2-dimensional and looks
like two interleaving half-circles corresponding to the upper and lower moon classes. The
noise level can be adjusted, and here it is fixed to 0.3 to have an area where the two classes
are mixed, as seen in Figure 3.10a. A simple fully connected neural network is trained as
a classifier. The generator is based on a fully connected network conditioned by one-hot
class embedding and the MSP. The network has a latent space of dimension 8 and 5 lay-
ers. The conditioning is a concatenation of the class information as a one-hot embedding
vector (of dimension 2) and the MSP as a continuous value.

39

(a) Moons data with noise
level set to 0.3. The two
classes overlap in the middle.

(b) (left) Real data with colors representing the MSP computed
by the classifier. (right) Generated data with colors representing
the MSP used to condition the generation.

Figure 3.10: Results for moons dataset.

Figure 3.10b on the left shows the data, with colors representing the MSP obtained
when classifying the data. We can see that the MSP is close to 1 in the area where the
classes do not mix but gets lower in the middle area where the classes mix, representing
higher uncertainty. We can note that this uncertainty is mostly aleatoric: data can be of
either class in the middle region. Figure 3.10b on the right shows synthetic data condi-
tioned by MSP. The values are sampled from MSP computed on real data to follow the
same distribution. We can see similarities between the locations of real data with high
MSP and synthetic data conditioned by high MSP, and likewise for low MSP. The gener-
ator captured which kind of data is uncertain and can generate such data when conditioned
with low MSP.

For more quantitative results, the following process is applied: fix some MSP values
as conditions (“input confidence”), generate fake data, classify it, and obtain the MSP of
the classifier (“output confidence”). Ideally, both values should be the same every time.
As seen in Figure 3.12a, it is not necessarily the case, especially for lower values. Yet, the
two are correlated.

MNIST Let us now consider more complex data: images. The MNIST dataset contains
grey-value images of handwritten digits with ten classes (digits from 0 to 9). A Convo-
lutional Neural Network is trained to classify digits from images. First, clean MNIST
data is considered, but to make the problem more difficult, corrupted MNIST images are
also studied. Corruptions are Gaussian blur and noise from ImageNet-C (Hendrycks and
Dietterich, 2019). These corruptions are applied on a random half of the images, with a
random severity level out of 5 possible levels.

Introducing corruption results in a reasonable accuracy reduction compared to clean
MNIST: now 94.0% on the train set and 93.2% on the validation set (instead of 98.8% and
98.5%, respectively). Also, MSP values are more spread out. The GAN is now based on
the StyleGAN2 architecture to handle images, with additional conditioning for the MSP.
The default latent space dimension of 512 (for the noise) is used, as reducing it made the
training more difficult. The conditioning is a concatenation of a class embedding and the
MSP value.

We can generate uncertain images by fixing a low MSP value and varying the noise
input, as illustrated in Figures 3.11a and 3.11b bottom. Also, comparing Figures 3.11a

40

and 3.11b top versus bottom allows gaining insights into the classifier’s sources of uncer-
tainty by observing what makes given images more uncertain (by fixing noise inputs and
lowering the MSP condition). In this case, it is primarily shape, Gaussian noise, and blur
that perturbates the classifier.

The qualitative results in Figure 3.11a and 3.11b show that images generated with
the conditioning of MSP = 1 mainly result in “output” MSPs close to 1. “Output” MSP
values are more spread-out when conditioned with MSP = 0.7. Figure 3.12b shows that
“input” MSP and “output” MSP can be quite different. While not as good as on the
moons dataset, there is still some correlation. I hypothesize that the MSP is much less
well-defined on MNIST images than on the moons dataset. More substantial constraints
on the conditioning should be considered to improve the results.

Analysis The conditional GAN is an explicit generator of uncertain data that can be used
in several ways. It can give a global outlook by generating uncertain images on demand.
It can also corrupt images (transform them into their more uncertain form) to visualize
sources of local uncertainty. However, the MSP condition is not very well respected for
MNIST images. An explanation might be because the MSP does not contain sufficient
information to capture the classifier behavior, making the conditioning hard to learn. One
possible way to improve the generation would be to introduce another constraint and loss
to align the input and classifier dependent MSP computed on the generated image.

(a) clean MNIST

(b) corrupted MNIST

Figure 3.11: Samples of images generated with MSP condition fixed at 1 (top) and 0.7
(bottom). Above each image is shown the classifier prediction and probability. Images at
the bottom look harder, and the classifier is more uncertain.

41

(a) Moons data. (b) MNIST data.

Figure 3.12: MSP condition (“in”) vs. MSP computed by classifying the generated data
(“out”). Uncertainty conditioning works well when points are close to the diagonal: this
shows that the MSP condition corresponds roughly to the real MSP.

3.5 Discussion
In this chapter, generative models, more specifically GANs, were used to identify and

illustrate the failure conditions of a given image classifier to characterize. Two approaches
have been developed.

The first approach is described in section 3.3. A GAN is trained independently from
the classifier to characterize. Then, the classifier’s gradient is used to guide the naviga-
tion in the latent space to identify directions of strong performance degradation. Because
the latent space is highly disentangled, each direction encodes different visual attributes.
Visualizing these attributes helps understand what factors most impact the classifier’s per-
formance. One can also generate images at the limit of the classifier decision boundary,
helping identify specific zones in the latent space corresponding to high classification ac-
curacy.

The second approach is described in section 3.4. Now, knowledge of the classifier is
embedded into the GAN directly during training. The GAN is conditioned by the classi-
fier’s confidence/uncertainty score. This model can be used in two ways. Fix the latent
noise input and vary the uncertainty input to identify the main source of uncertainty for
a given image. Or, fix the uncertainty input and vary the latent noise input to generate
several images of a given uncertainty level to understand the difference between images
with high and low uncertainty.

These two approaches allow for a better understanding of a classifier by illustrating
what makes it fail or be more uncertain. This is a qualitative approach, making it closer to
the field of XAI. However, this thesis aims to define a domain, which requires more than
only a qualitative view. The initial idea was to define a domain in a latent space. I have
explored this idea, but several reasons made it difficult to achieve. I discuss these reasons
below.

42

The latent space Z would represent images according to the classifier predictions.
Work from section 3.4 is a step in that direction: classifier knowledge is embedded in
the GAN’s latent space thanks to specific conditioning during training. An ideal rep-
resentation would be a hypersphere where the distance to the center is linked with the
classification correctness: well-classified images near the center and misclassified images
farther from it. Figure 3.7 is a preliminary result in that direction.

A parameter λ would characterize a zone in the latent space Z, which defines the
domain Zλ. An image would belong to the domain if a selection function selects it.
For instance, a selection function could assess if the distance of the image’s latent code
to the hypersphere center is below a threshold λ. This domain would have a certain
accuracy (proportion of well-classified images in the domain) and a certain coverage of
the dataset (proportion of the dataset images that are in the domain). A compromise
between accuracy and coverage can then be tuned with λ. This is similar to selection
functions from the field of selective classification, which is the topic of section 4.3. The
process is illustrated in Figure 3.13.

encoder image

selection function

Figure 3.13: Image x is encoded into its latent representation z ∈ Z. A selection function
determines whether image x belongs to the domain Zλ.

A generative model would decode the latent codes from Z to images and help structure
the latent space according to visual attributes. This would allow evaluating the classifier
performance for different “zones” of the latent space. It would also illustrate the domain
boundaries, similar to the qualitative results of sections 3.3 and 3.4. The process is illus-
trated in Figure 3.14.

mapping classifier generated imagegenerator

Figure 3.14: Latent code z is mapped to a representation w in the generator’s latent space,
and transformed into a synthetic image. The synthetic image is visualized for qualitative
purposes or classified for performance evaluation.

Defining a domain following this concept requires many different elements that have
to be orchestrated together, including several neural networks: the encoder, the generator
(and the discriminator used during training), and the mapping. Training these networks
requires several loss functions, e.g., a reconstruction loss (encoded images should be re-
constructed faithfully by the generator), an adversarial loss (for the generator), and a loss
to structure Z according to the classifier behavior.

43

However, despite the concept’s potential, several limits prevent it from achieving the
objective of defining a domain.

Encoder Limits The encoder’s task is to map images according to the classifier pre-
diction: well-classified images should be far from misclassified ones in the latent space.
This means that the encoder needs to know the true class to some extent. If distinguishing
well-classified from misclassified images was easy for a network to learn, then the clas-
sifier should not have made the mistakes in the first place. The encoder having access to
the same training data as the classifier means that there is no reason that it could interpret
images better (otherwise, why not use the encoder as a better classifier?). Images that
are difficult to classify are also difficult to correctly encode. The approach would thus be
interesting only for specific settings, such as a small classifier in an embedded system.

Generator Limits The generator aims to reconstruct images from latent codes. How-
ever, for datasets with several classes, GANs are much harder to learn when not class-
conditioned. Class-conditional GANs are implicitly image classifiers. During training,
discriminators predict whether the combination of an image x and a label y is realistic:
they learn the relation between image and class. Generators aim to generate an image of a
given class that fools such imperfect discriminators. Class-conditional GANs sometimes
generate ambiguous images of a different class from the condition (e.g., an MNIST digit
looking more to a 4 than a 9, which was the condition). It means that evaluating a clas-
sifier on such images is flawed: the class condition is not necessarily respected. Again,
images that are difficult to classify are also difficult to generate correctly (i.e., for which
the class in the condition corresponds to the class of the image).

GAN Inversion Limits Another issue is the gap between real and synthetic data, which
is tackled by the field of GAN inversion. An image encoded in the latent space and an
image generated from this latent code can be quite different. Not all possible images are
represented in the latent space. When considering difficult data, every detail matters and
can explain the classification failure. The gap between real and synthetic data should be
as small as possible, but existing approaches are insufficient for what is required here. See
Figure 3.15 for examples of reconstructed images compared to the original ones.

In GAN inversion, there is usually a compromise between reconstruction error (how
close is the image generated from the latent code to the target image) and editing capabili-
ties (how well the image can be edited from latent code manipulations, some entanglement
or artifacts might appear) (Tov et al., 2021). Let us use the StyleGAN architecture as an
example. As target image representations might not exist in the original latent space W
of StyleGAN, more degrees of freedom are required to lower the reconstruction error. For
instance, it is possible to invert in W+, a higher dimensional latent space corresponding
to feeding different latent codes w ∈ W for each generator layer. As each layer handles
different levels of features (from high-level features like pose to low-level features like
hair color), this extended latent space allows the combining of features from different
latent codes. Inverting in this latent space results in lower reconstruction errors, but the
latent code in W+ might reside in regions not naturally explored during training (which
happens in W) and thus not well-behaved. This causes problems with editing, which
relies on the structure and disentanglement developed during the training. Conversely,
inverting in W results in more “natural” latent codes in regions explored during training,
but fewer degrees of freedom means less fidelity for the reconstructed image.

44

Figure 3.15: Examples of unseen images reconstructed by the generator after encoding
in the latent space. While images look similar, major attributes can differ, such as eye or
hair or skin color, or the presence of glasses. From (Pidhorskyi et al., 2020).

Optimization-based methods are noninjective: different latent codes can be found for
the same image, for instance, depending on the initialization.

Similarly, encoder-based methods usually provide better editability than optimiza-
tion methods but worse reconstruction. This is because encoder-based methods are more
likely to project images into “natural” zones of the latent space, as seen during training.
Optimization-based methods can explore the latent space more freely, including zones
not explored during training. These zones might allow a good reconstruction but poor
editability as they do not follow the latent space structure built during training.

One of the initial intuitions was to define a domain as a convex hull delimited by
extreme examples. Projecting new data in the space would indicate if it belongs to the do-
main. However, here is an interesting insight from Balestriero et al. (2021): “the behavior
of a model within a training set’s convex hull barely impacts that model’s generalization
performance since new samples lie almost surely outside of that convex hull”. This might
mean that the original intuition was flawed. It can also help explain the difficulty of GAN
inversion.

For all these reasons, the initial idea of defining a domain in a GAN’s latent space
seems harder than expected. The results of this chapter thus remain limited to a qualitative
study. The next chapter looks at the fields of selective classification and calibration, which
brings a quantitative view.

45

Chapter 4

A Quantitative View: Selective
Classification and Calibration

4.1 Introduction

In the previous chapter, we leveraged generative models to create hard-to-classify im-
ages to give hints about the classifier limits. Such extreme examples help understand
what can lead to classifier failure. However, they do not help predict the reliability of a
given prediction nor identify which data belongs to the reliability domain. To tackle those
issues, we need a different perspective. Selective Classification (SC) and calibration are
related research fields. SC allows a model to abstain when in doubt. The accuracy (the
proportion of correct predictions among the selected samples) is increased at the expense
of coverage (the proportion of selected samples). Calibration aims to obtain predicted
probabilities representative of the probability of making a correct prediction. These two
fields have different goals but share a similar concern: they both provide tools to anticipate
when classifier predictions are accurate or not, which are essential to define a reliability
domain.

Section 4.2 describes the notions of SC and confidence calibration with more technical
details than in the related work.

Section 4.3 is about comparing different scoring functions for SC through some exper-
iments. A standard baseline uses the maximum softmax probability predicted by the clas-
sifier as a confidence score to decide whether to keep or reject the data point. Preliminary
experiments on the dataset CIFAR-10 show that this baseline has a strong performance
and is not easily beaten by more advanced approaches.

Section 4.4 focuses on confidence calibration. For classification models based on neu-
ral networks, the maximum predicted class probability is often used as a confidence score.
This score rarely predicts well the probability of making a correct prediction and requires
a post-processing calibration step. However, many confidence calibration methods fail for
problems with many classes. To address this issue, I transform the problem of calibrating
a multiclass classifier into calibrating a single surrogate binary classifier. This approach
allows for more efficient use of standard calibration methods. Extensive experiments on
numerous neural networks used for image or text classification show that the approach
significantly enhances existing calibration methods.

46

Section 4.5 considers another approach to improve confidence calibration by using
generative models. Synthetic data can be used as calibration data to improve the calibra-
tion of CIFAR-10 image classifiers, with comparable or better results than using standard
validation data. Synthetic images are generated by a GAN trained on CIFAR-10’s training
data. However, GANs struggle with complex natural images, which restricts the approach
to simple and well-structured images.

Finally, section 4.6 discusses the chapter’s findings in the broader thesis context.

4.2 Background
Let us consider the classification problem where an input x ∈ X is associated with

a class label y ∈ Y = {1, 2, ..., L}. The neural network classifier f provides a class
prediction from a final softmax layer σ, transforming intermediate logits z into prob-
abilities. The classifier prediction is the most probable class ŷ = argmaxk∈Y fk(x)
with fk(x) referring to the probability of class k, and the confidence score is defined
as s(x) = maxk∈Y fk(x). Note that I use the term confidence to denote the Maximum
Softmax Probability (MSP).

Selective Classification A selective classifier (El-Yaniv and Wiener, 2010; Geifman
and El-Yaniv, 2017) is a pair (f, g), where f is a classifier and g : X → {0, 1} is a binary
selection function:

(f, g)(x) =

{
f(x), if g(x) = 1;

don’t know, if g(x) = 0.

The selection function is typically built from a confidence score s and a threshold α, with
1 being the indicator function:

gα(x) = 1[s(x) > α]

Ideally, the confidence score reflects true loss monotonicity, meaning that higher confi-
dence is equivalent to a lower loss: s(x1) ≥ s(x2) ⇐⇒ ℓ(f(x1), y1) ≤ ℓ(f(x2), y2).
In practice, the ideal confidence score is not available, but surrogate functions are pos-
sible. Using the classifier maximum predicted probability as confidence score s(x) =
maxk∈Y fk(x) is highly effective (Geifman and El-Yaniv, 2017).

A selective classifier is evaluated in terms of risk and coverage. The coverage is
the proportion of selected samples over the data distribution P : ϕ(g) = EP [g(x)]. The
(selective) risk is the average loss for the selected samples R(f, g) = EP [ℓ(f(x),y)g(x)]

ϕ(g)
.

Instead of using the risk with ℓ being the 0/1 loss, I prefer to use the accuracy as it is a
more widely used, which is 1−R(f, g).

To compare different confidence score definitions, we can plot accuracy-coverage
curves. Accuracy and coverage pairs are computed when varying the threshold values
α. Each value corresponds to a different set of selected data samples, for which the accu-
racy and coverage are computed. As α decreases, more data samples are selected, which
increases the coverage, and the accuracy should decrease. When using random selection,
the accuracy is a noisy estimate of the global accuracy for low coverages, and it converges
to the global accuracy for higher coverages.

47

䄀唀刀伀䌀㴀㜀㜀⸀㜀㜀
䄀唀刀䌀㴀㘀㠀⸀㐀㔀

䄀唀刀伀䌀㴀㠀㜀⸀㔀㈀
䄀唀刀䌀㴀㜀㘀⸀㄀㠀

䄀挀挀甀爀愀挀礀 㴀 　⸀㜀㐀
䔀爀爀漀爀 刀愀琀攀 㴀 　⸀㈀㘀

䄀挀挀甀爀愀挀礀 㴀 　⸀㠀㘀
䔀爀爀漀爀 刀愀琀攀㴀 　⸀㄀㐀

䄀挀挀甀爀愀挀礀 㴀 　⸀㠀㜀
䔀爀爀漀爀 刀愀琀攀㴀 　⸀㄀㌀

䄀唀刀伀䌀㴀㠀㠀⸀㐀㜀
䄀唀刀䌀㴀㈀㘀⸀㐀㠀

䈀椀最最攀爀 䄀唀刀伀䌀 椀猀 戀攀琀琀攀爀

匀洀愀氀氀攀爀 䄀唀刀䌀 椀猀 戀攀琀琀攀爀

Figure 4.1: Illustration of risk-coverage curves for different models. From (Galil et al.,
2023b).

An ideal oracle selection can be defined as first selecting all correctly classified sam-
ples and then selecting all the rest. This way of selecting data results in the best accuracy-
coverage curve. The accuracy is 100% for coverages up to the global accuracy value and
then converges to the global accuracy. The ideal selective accuracy a∗ is a function of the
coverage ϕ and the global accuracy A:

a∗(ϕ) =

{
1 if 0 ≤ ϕ ≤ A;

A/ϕ if A ≤ ϕ ≤ 1.

Here is where this equation comes from. The selective accuracy a∗ for a given coverage
ϕ is the accuracy of the ϕN samples selected out of the total number N of samples. Note
that the coverage is a set of discrete values: ϕ ∈ {1/N, 1/(N − 1), . . . , 1}.

a∗(ϕ) =
1

ϕN

ϕN∑
i=1

1[ŷi = yi]

For a coverage 0 ≤ ϕ ≤ A, the oracle selects all samples that are well-classified:
∀i ∈ {1, . . . , ϕN}, ŷi = yi which means that a∗(ϕ) = ϕN

ϕN
= 1.

For a coverage A ≤ ϕ ≤ 1, all samples are misclassified: ∀i ∈ {ϕN, . . . , N}, ŷi ̸= yi
which means that a∗(ϕ) = 1

ϕN

∑ϕN
i=1 1[ŷi = yi] =

1
ϕN

(
∑AN

i=1 1[ŷi = yi] +
∑ϕN

i=AN+1 1[ŷi =
yi]) =

1
ϕN

(AN + 0) = A/ϕ.
Figure 4.2 shows the accuracy-coverage curve of an oracle selector.
Instead of comparing curves, we can also use single-number metrics. A risk-coverage

curve can be summarized in a single number by computing the Area Under the Risk-
Coverage curve (AURC), optionally normalized (E-AURC) (Geifman et al., 2019). A
good selective classifier quickly rejects misclassified points as the coverage decreases.
Its risk-coverage curve decreases quickly and thus has a low AURC. Because there is
some irreducible risk (unless the classifier is perfect), the AURC can never reach 0. By

48

subtracting the AURC of an oracle classifier that knows which points are misclassified,
we get the E-AURC. A low value is desirable, with 0 being optimal.

Unfortunately, these metrics depend on the global accuracy value, making it hard to
compare classifiers with different accuracies, contrary to using the coverage at a Selective
Accuracy Constraint (SAC) or Area Under the Receiver Operating Characteristic curve
(AUROC) (Galil et al., 2023b).

SAC is, for instance, the coverage for an accuracy of 99%. It allows for comparing
different classifiers; the best selective classifier is not necessarily the one with the highest
global accuracy. The primary metric used in this chapter, and also by (Galil et al., 2023b),
is the AUROC. The Receiver Operating Characteristic curve is a graphical representation
of a binary classifier’s performance at various confidence thresholds. It is created by
plotting the True Positive Rate (TPR) against the False Positive Rate (FPR) at various
threshold settings. The TPR is the ratio of correctly predicted positive observations to all
actual positives. The FPR is the ratio of incorrectly predicted positive observations to all
actual negatives. A perfect classifier achieves an AUROC of 1 and a random classifier
has an AUROC of 0.5. A high AUROC means the confidence discriminates well between
the positive and negative observations. In this case, positive observations are the correct
predictions, and negative observations are the incorrect predictions.

Confidence Calibration of a Classifier This section uses the confidence calibration
definition from (Guo et al., 2017) that says that the classifier f is calibrated if:

P (ŷ = y|s = p) = p, ∀p ∈ [0, 1] (4.1)

where the probability is over the data distribution, ŷ is the predicted label, s is the con-
fidence, and y is the real label. Equation (4.1) expresses that the probability of being
correct when the confidence is around p is indeed p. For instance, if we consider the set of
predictions with a confidence of 90%, they should be correct 90% of the time. The condi-
tional probability of (4.1) is not rigorously defined mathematically (the event {s = p} has
zero probability), and interval-based empirical estimators are often used to define metrics
capable of evaluating how well (4.1) is satisfied. This is the case of ECE, which approx-
imates the calibration error by partitioning the confidence distribution into B bins. The
absolute difference between the accuracy and confidence is computed for each subset of
data in the bins. The final value is a weighted sum of the differences of each bin:

ECE =
B∑
b=1

nb

N
|acc(b)− conf(b)| (4.2)

where nb is the number of samples in bin b, N is the total number of samples, acc(b) is the
accuracy in bin b, and conf(b) is the average confidence in bin b. ECE can be interpreted
visually by looking at diagrams such as those of Figure 4.4: ECE computes the sum of
the red bars (difference between bin accuracy and average confidence) weighted by the
proportion of samples in the bin.

This chapter considers post-processing calibration, the scenario where a classifier
has already been trained, and the objective is to enhance its calibration. Post-processing
calibration methods aim to remap the classifier probabilities to better-calibrated values
without modifying the classifier. They typically use a calibration set different from the
training set to optimize parameters or learn a function. The calibration data is noted
Dcal = {(xi, yi)}Ni=1. I focus on post-processing calibration because it enables better

49

utilization of off-the-shelf models and separates model training (optimized for accuracy)
from calibration. These advantages significantly reduce the development cost of obtaining
a well-performing and well-calibrated model, contrary to optimizing calibration during
training.

I categorize the post-processing calibration methods considered in this section into
two groups: scaling methods and binary methods. Two standard methods are described
in the following paragraphs.

Temperature Scaling A standard scaling method is Temperature Scaling (TS). It in-
troduces a single learnable parameter T , called the temperature, that scales the classi-
fier logits. Classifier logits are unnormalized class scores output by the classifier be-
fore applying the softmax function. Given the logits vector z scaled by T , the softmax
function converts it into class probabilities, with the class probability vector written as
p(z, T) = exp(z/T)/

∑
j exp(zj/T). A temperature T = 1 corresponds to the standard

softmax. A temperature T > 1 softens the probabilities and makes the distribution more
uniform, typically reducing confidence. A temperature T < 1 sharpens the probabilities,
making them tend to more extreme values (0 or 1).

An extension of TS is Vector Scaling (VS) where there is one coefficient per class,
contained in vector v. The vector multiplies the logits vector term by term. Calibrated
probabilities are written p(z, v) = exp(z ◦ v)/∑j exp(zj.vj).

The temperature or vector coefficients are learned with optimization on a validation
set, typically with stochastic gradient descent. TS is a very effective and simple method,
usually used as the standard baseline in many calibration papers.

Because two predictions with the same pre-calibration confidences can differ regard-
ing the remaining class probabilities, calibrated confidences become different. Confidence-
based ranking of the data is thus impacted by TS, making the method influence SC per-
formance.

Histogram Binning Histogram Binning (HB) is a standard method used in the binary
setting (Zadrozny and Elkan, 2001). Examples from a validation set are sorted according
to their confidences and divided into B subsets called bins. The bins can be of equal size
(same range of confidence values) or equal mass (same number of examples per bin). Bin
accuracies are computed from the validation examples assigned in each bin. For instance,
one bin contains samples with confidence values between 0.6 and 0.7, and its estimated
accuracy is 0.72. At test time, a prediction with pre-calibration confidence falling in the
bin, e.g., 0.61, will be assigned the calibrated probability of 0.72.

HB discretizes the confidence values, as they now can take only B values. However,
these values are better calibrated.

Applying HB to the multiclass setting requires some multiclass to binary adaptation.
Typically, HB is applied to each class separately by considering the multiclass classifier
as a set of binary OvA classifiers.

50

4.3 Selective Classification Experiments

4.3.1 Selection Functions
A key aspect of SC is the selection function. It decides which data belongs to the

domain. When data is not selected, the selective classifier abstains. As in standard SC,
only in-distribution data is considered. The selective function should not be expected to
accurately filter out Out-of-Distribution data as it is a different problem. See (Narasimhan
et al., 2024) for a proposition of unifying these two settings. While SC can be improved
by specific classifier training approaches (Geifman and El-Yaniv, 2019; Feng et al., 2023),
this section studies how to improve SC for a given classifier. It allows for better use of
off-the-shelf classifiers without requiring important development efforts.

Selection Function From Confidence Scores A selection function based on threshold-
ing on the classifier Maximum Softmax Probability (MSP) is a powerful baseline (Geif-
man and El-Yaniv, 2017). Another choice is MC-dropout (Gal and Ghahramani, 2016),
which applies dropout (Srivastava et al., 2014) during both training and inference and
performs multiple forward passes to generate a distribution of predictions from which a
confidence score is computed. A different option is predictive entropy, which is computed
from the predicted probabilities and represents model uncertainty. Because MSP outper-
forms both MC-dropout (Geifman and El-Yaniv, 2017) and predictive entropy (Feng et al.,
2023), it is use here as the baseline for the confidence score.

Selection Function as a Trainable Model To improve over the MSP baseline, one
possibility is to train an auxiliary model to predict the failure of a fixed classifier (Corbière
et al., 2019, 2021), as mentioned in subsection 2.5. In particular, the model learns the
True Class Probability (TCP) of a given classifier. TCP is the probability assigned to the
true class (in opposition to the predicted class, whose probability is the MSP. TCP is an
indicator of failure as when the classifier fails, TCP < MSP (when the classifier is correct,
TCP = MSP). Also, because it is a continuous value, it contains more information than a
binary failure label. Below, I reproduce this approach and variations using different inputs
and outputs for the auxiliary model.

The auxiliary model predicts continuous values that are interpreted as a confidence (or
uncertainty) score, used by the selection function of Equation 4.2. Two different outputs
are studied:

• Failure prediction (denoted wellClassified): a binary classification to discrimi-
nate well-classified from misclassified samples.

• TCP: the classifier probability of the true class: as shown by (Corbière et al., 2019),
it can outperform using the classifier confidence (MSP).

An auxiliary model trained to predict these outputs can use different inputs for the
prediction. In (Corbière et al., 2019), the model first learns the head that predicts TCP
from features and then fine-tunes the features encoder initialized with a copy of the origi-
nal classifier feature encoder. The network thus combines information from features and
images. Here, the following inputs are considered:

• Classifier logits: the MSP is computed from logits, so they contain enough infor-
mation to perform at least as well as the MSP.

51

• Classifier features: should include more information than the logits.

• Image: directly use the raw image to make predictions (by fine-tuning a copy of the
whole classification model).

Selection Function with Distance to Clusters in Feature Space Selection functions
can also be inspired by work outside the scope of SC. (Sorscher et al., 2022), an article
about data pruning, shows that pruning some data can be done without much impact on
performance if the data chosen is easy and redundant and the dataset is big (for small
datasets, easy examples are more important than hard ones). The criterion to distinguish
“easy” from “hard” data is looking at distances between samples and their closest cluster
in feature space (clusters obtained from k-means). This criterion might be applied to SC,
which is a similar problem if we suppose that failures come from “hard” data.

After performing k-means clustering of training data in the embedding space of the
classifier, the difficulty of a data point is defined with the Cosine Similarity (CoSim) to
its nearest cluster centroid or prototype. Easy examples are the most prototypical. The
number of clusters is set to the number of classes. The method is not sensitive to the exact
value unless it differs from the number of classes by more than an order of magnitude.

4.3.2 Experiments and Results
Classifier The models are pre-trained classifiers from GitHub, using VGG (Simonyan
and Zisserman, 2015) and ResNet (He et al., 2016) architectures.

Data The data used is CIFAR-10 with modifications. If the auxiliary model is trained
on the standard training data, no learning is made, probably because the dataset contains
too few misclassified samples (the classifier train accuracy is above 99%). To solve this
problem, validation data (10000 samples, with an accuracy of ≈ 94%) is split into two
halves: the first for training and the second for testing. Data augmentation is necessary
on the training split to avoid overfitting. Note that the issue might not occur on complex
datasets for which the training accuracy is not as high, such as ImageNet.

Results An auxiliary model is trained to predict outputs representing failure from given
inputs. As mentioned in the previous section, different input and output choices are possi-
ble. When inputs are features, the classifier head is copied and fine-tuned; when inputs are
logits, the model is a small fully connected network; and when inputs are images, a full
classifier copy is fine-tuned. When the output is wellClassified, the model is trained
on the binary classification task of failure prediction using the binary cross-entropy loss;
when the output is TCP, the model is trained on a regression task using a mean squared
error loss.

Table 4.1 summarizes the results. For both models, the best results are obtained by
using logit inputs, and the output choice is not so significant. Using images as input is not
a good option, probably because the training is more complex. Gains from the baseline
are more important for ResNet, but it is because ResNet is not a good selective classifier
to begin with, compared with VGG, as shown in Figures 4.2 and 4.3. Using CoSim to
feature clusters does not outperform the baseline either.

These results can surely be improved with tweaks to the method and hyperparameter
optimization, but significant improvements are probably not to be expected. Work by

52

https://github.com/huyvnphan/PyTorch_CIFAR10

(Corbière et al., 2019) first learns a network from features to TCP, and then fine-tune
the whole feature encoder initialized as a copy of the classifier. Their results are, in my
opinion, not good enough to justify the effort compared to just using the MSP baseline,
which all classifiers provide without needing further development.

Table 4.1: Selection function models success

Model Method AUROC (↑) AURC (↓)
VGG-16-BN baseline (MSP) 0.922 0.008
VGG-16-BN images in - wellClassified out 0.706 0.027
VGG-16-BN features in - wellClassified out 0.923 0.008
VGG-16-BN logits in - wellClassified out 0.925 0.008
VGG-16-BN images in - TCP out 0.710 0.028
VGG-16-BN features in - TCP out 0.921 0.008
VGG-16-BN logits in - TCP out 0.928 0.007
VGG-16-BN CoSim between feature clusters 0.920 0.008

ResNet-50 baseline (MSP) 0.893 0.013
ResNet-50 images in - wellClassified out 0.630 0.042
ResNet-50 features in - wellClassified out 0.654 0.039
ResNet-50 logits in - wellClassified out 0.911 0.010
ResNet-50 images in - TCP out 0.566 0.051
ResNet-50 features in - TCP out 0.557 0.061
ResNet-50 logits in - TCP out 0.907 0.011
ResNet-50 CoSim between feature clusters 0.895 0.014

0.0 0.2 0.4 0.6 0.8 1.0
coverage

0.94

0.95

0.96

0.97

0.98

0.99

1.00

ac
cu

ra
cy

selection function
baseline (max softmax)
Oracle

(a) VGG

0.0 0.2 0.4 0.6 0.8 1.0
coverage

0.94

0.95

0.96

0.97

0.98

0.99

1.00

ac
cu

ra
cy

selection function
baseline (max softmax)
Oracle

(b) ResNet

Figure 4.2: Comparison of VGG and ResNet selective classifiers using logits as inputs
and TCP as the predicted confidence score.

Analysis - MSP is a Strong Baseline I tested two methods to improve SC perfor-
mance. The first one, training a model to predict the classification result (through binary
classification or regression of the loss or TCP), can beat MSP by a small margin in the
best case. The second method, using distances to clusters in a feature space, does not
perform better than MSP. The main conclusion of these preliminary experiments is that

53

0.0 0.2 0.4 0.6 0.8 1.0
coverage

0.94

0.95

0.96

0.97

0.98

0.99

1.00
ac

cu
ra

cy

baseline (max softmax)
cosine similarity
Oracle

(a) VGG

0.0 0.2 0.4 0.6 0.8 1.0
coverage

0.94

0.95

0.96

0.97

0.98

0.99

1.00

ac
cu

ra
cy

baseline (max softmax)
cosine similarity
Oracle

(b) ResNet

Figure 4.3: Comparison of VGG and ResNet selective classifiers using distance to feature
clusters as the predicted confidence score.

MSP is a strong baseline for SC. The simple methods here are not worth using because of
only minor improvements in the best case.

The main takeaway is that it is hard to beat the simple baseline of thresholding the clas-
sifier’s confidence in SC. I hypothesize that a well-trained classifier is already aware of its
uncertainty through its confidence: it already uses most information in the available data.
An external process (learning a selection function) using the same data does not work
much better. The confidence discriminates quite well incorrect predictions from correct
ones, even if not well-calibrated. A good selective function requires a score discrimi-
nating incorrect predictions from correct ones; only relative values matter. Calibration
measures if the absolute values of the confidence score reflect the correctness probability.

4.3.3 Towards Better Calibration
The SC strategies evaluated above and the post-processing calibration methods share

similarities. Both use validation data. In the first case, data is used to train a network
for predicting a confidence score, and in the second case, to learn a remapping function
that improves the confidence score calibration. Noting this similarity, I applied simple
and powerful calibration methods (temperature and vector scaling) to assess their impact
on SC. Because in SC, the important thing to predict is whether the prediction is correct
or not, I adapted the calibration loss to reflect only the binary task failure prediction.
This did not really improve the SC (measured by AUROC) but had a significant impact
on confidence calibration (measured by ECE). The following section, 4.4, studies this
insight in more detail.

4.4 Making Confidence Calibration Methods More Data-
Efficient

4.4.1 Issues Related to Current Approaches
Many post-processing calibration methods have been developed for binary classifica-

tion models (Platt, 1999; Zadrozny and Elkan, 2001, 2002). Applying these methods to

54

multiclass classifiers requires some adaptation. One standard approach reformulates the
multiclass setting into many OvA binary problems (one per class) (Zadrozny and Elkan,
2002). One limitation of this approach is that it does not scale well. When the number of
classes is large, the calibration data is divided into highly unbalanced subsets that do not
contain enough positive examples to solve the OvA binary problems.

Other methods based on Platt scaling (Platt, 1999) involve learning a set of parameters
whose size grows with the number of classes. For problems with many classes, they tend
to overfit, as demonstrated in this work. The following paragraphs describe more precisely
the issues of current approaches.

Behavior of Current Scaling Methods Scaling methods for calibration optimize one
or more coefficients that scale the logits vector to minimize the cross-entropy loss on cal-
ibration data defined as lCE = −∑L

k=1 1k=y · log(fk(x)) = − log(fy(x)). Minimizing
lCE therefore increases the probability of the true class.
We can distinguish two cases to understand what happens during the optimization: whether
the prediction ŷ is correct or not. In the first case, the confidence score is s = fy(x): mini-
mizing lCE increases the confidence fy(x). In the second case, the prediction is incorrect,
which implies that fy(x) < s. Minimizing LCE increases the probability of the true
class fy(x) but does not directly change the confidence (because s ̸= fy(x)). Instead,
the confidence (which was attributed to a wrong class) is indirectly lowered through the
normalization of the softmax layer.
. ↪→ Issue 1: Cross-entropy loss is inefficient for lowering confidence in wrong predic-
tions.

Some scaling methods have another issue. By design, the number of parameters op-
timized by Vector Scaling and Dirichlet Calibration grows with the number of classes.
When the number of classes is high, these methods overfit the calibration set as shown in
Figure 4.6.
. ↪→ Issue 2: Vector Scaling and Dirichlet Calibration overfit calibration sets with many
classes.

One-versus-All approach for binary methods The OvA calibration approach allows
adapting calibration methods for binary classifiers to multiclass classifiers. To do so,
it decomposes the calibration of multiclass classifiers into sets of L binary calibration
problems: one for each class k. For each problem, the considered probability is fk(x), and
the associated label 1y=k ∈ {0, 1}. When calibrating a classifier from data, each binary
problem is highly imbalanced, with a ratio between positive and negative examples equal
to 1

L−1
if the classes are equally sampled. For instance, for calibration on ImageNet data,

the ratio is 1/999. Out of 25000 examples, only 25 of them have a positive label.
. ↪→Issue 3: OvA approach leads to highly imbalanced binary problems.

At test time, each of the L class probabilities is calibrated by a separate calibration
model. The resulting probability vector can be normalized to ensure a unit norm. Be-
cause each class-conditioned probability is calibrated independently, an OvA strategy can
change their ranking, modifying the predicted class. In Table 7.7, reported in the Ap-
pendix, we see that accuracy is often negatively impacted in practice.
. ↪→Issue 4: OvA approach can change the predicted class and negatively impact the
accuracy.

55

4.4.2 Top-versus-All Approach to Confidence Calibration
General Presentation The proposed approach aims to solve all these identified issues.
It is based on one observation: in the calibration definition (4.1) evaluated using the stan-
dard ECE metric, only the confidence, i.e., the maximal probability, reflects the likelihood
of making an accurate prediction. The probabilities of other classes are not taken into
account. However, the standard approach to calibration uses the entire set of probabili-
ties, not just confidence, which introduces unnecessary complexity. The approach can be
simplified by reformulating the problem of calibrating multiclass classifiers into a single
binary problem. This problem can be phrased as: “Is the prediction correct?”. In this
setting, it is not the predicted probabilities vector that is calibrated; it is only a scalar: the
confidence. The remaining probabilities are discarded. This is equivalent to calibrating a
surrogate binary classifier that predicts whether the class prediction is correct. Since this
approach looks at the maximal probability, I call it Top-versus-All (TvA).

Replacing the standard approach by TvA is straightforward. Given the standard cali-
bration data Dcal = {(xi, yi)}Ni=1, a few data preprocessing steps are added. First, compute
the predictions ŷ and their correctness: yb = 1ŷ=y. Second, create the surrogate binary
classifier f b(x) = maxk∈Y fk(x). Finally, build the calibration set for the surrogate binary
classifier:

DTvA
cal = {(xi, y

b
i)}Ni=1 (4.3)

After this preprocessing, a standard calibration function g, e.g., Temperature Scaling, is
used to calibrate the binary classifier. The learning of the calibration function follows its
original underlying algorithm but uses the modified calibration data DTvA

cal .
Algorithm 1 describes the standard approach, and Algorithm 2 describes the TvA

approach in more detail and shows in blue the differences with the standard approach.
The TvA approach adds a preprocessing step to keep only the confidences instead of the
full probabilities vector. It can be seen as creating a surrogate “correctness” classifier and
its associated calibration data. The calibrator is learned for the surrogate classifier and
applied to the original classifier at inference time. Also, regularization is added for some
scaling methods. For binary methods, there is now only one binary calibrator instead of
one per class.

After this general presentation, the following paragraphs explain how TvA impacts
the two categories of calibration methods, scaling and binary.

Top-versus-All Approach for Scaling Methods Because the TvA setting reformulates
the calibration of multiclass classifiers into a binary problem, the natural loss is the binary
cross-entropy:

lBCE = −
(
yb · log s+ (1− yb) · log(1− s)

)
(4.4)

Minimizing this loss results in confidence estimates that more accurately describe the
probability of being correct, regardless of the L − 1 less likely class predictions. Using
the binary cross-entropy as a calibration loss makes an important difference compared to
the usual multiclass cross-entropy. The cross-entropy loss takes into account the proba-
bility of the correct class, while with TvA the binary cross-entropy takes into account the
probability of the predicted class (i.e., the confidence).

As for the standard approach, only two cases are possible. When the prediction is
correct, lBCE = − log(s) = − log(fy) = lCE . We get the same result as the cross-entropy
loss: minimizing it directly increases the confidence. But when the prediction is incorrect,
lBCE = − log(1− s) ̸= lCE . Minimizing the loss now directly decreases the confidence.

56

Algorithm 1 Standard approach
Input:
Dcal: {(xi, yi)}Ni=1 the calibration data
f : the multiclass classifier
g: a calibration function ▷ e.g., Temperature Scaling

Learn calibration function:
if g is scaling method then

loss l := Cross-Entropy
Learn g to calibrate f by minimizing l on

Dcal

else if g is binary method then
for k = 1 to L do ▷ One-versus-All approach

ybi ← 1yi=k

Dk
cal ← {(xi, ybi)}Ni=1

Learn gk to calibrate f on Dk
cal

end for
g ← (g1, g2, . . . , gL)

end if
Inference:
Use g to calibrate confidences from f

Algorithm 2 Top-versus-all approach
Input:
Dcal: {(xi, yi)}Ni=1 the calibration data
f : the multiclass classifier
g: a calibration function ▷ e.g., Temperature Scaling

Preprocessing:
ŷi ← argmaxk∈Y fk(xi) ▷ Compute class

predictions

ybi ← 1ŷi=yi ▷ Compute predictions correctness

f b ← maxk∈Y fk ▷ Create surrogate binary classifier

DTvA
cal ← {(xi, ybi)}Ni=1 ▷ Build binary calib. set

Learn calibration function:
if g is scaling method then

loss l := Binary Cross-Entropy
if g is vector or Dirichlet scaling

loss l← l + λlreg ▷ Add regularization

end if
Learn g to calibrate f b by minimizing l on

DTvA
cal

else if g is binary method then
Learn g to calibrate f b on DTvA

cal

end if
Inference:
Use g to calibrate confidences from f

This is a key difference compared to using the multiclass cross-entropy loss.
The impact of the reformulation can be seen for Temperature Scaling, which optimizes
a coefficient T that scales the logits zk. The reformulation generates stronger gradients
when the prediction is incorrect:∣∣∣∣∂lBCE

∂T

∣∣∣∣ > ∣∣∣∣∂lCE

∂T

∣∣∣∣ for s > 0.5 (4.5)

with ∂lBCE

∂T
= 1

T 2 · 1
s−1
· (maxk zk −

∑
k zk · fk) and ∂lCE

∂T
= 1

T 2 (zy −
∑

k zk · fk). See
Appendix 7.2.1 for the proof. Because for interesting problems, the confidence satisfies
s > 0.5 most of the time (as shown in Figure 4.4), the TvA approach strengthens the
gradients. The optimization of the temperature T is more efficient as confident incorrect
predictions are more heavily penalized. Applying Temperature Scaling usually results in
overconfident probabilities, but the TvA approach limits this overconfidence. This can be
seen experimentally in Table 7.6, which displays the average confidence of both methods.
. ↪→Solution for Issue 1: Use the binary cross-entropy loss resulting from TvA approach.

Regularization of Scaling Methods Overfitting of Vector Scaling and Dirichlet Cali-
bration can be reduced with a simple L2 regularization that penalizes the coefficients of
the vector v that are far from the reference value 1.

lreg(v) =
1

L

L∑
i=1

(vi − 1)2 (4.6)

57

This regularization allows these methods to take advantage of their additional expressive-
ness without being subject to overfitting. The loss for Vector Scaling becomes lBCE +
λlreg(v) where λ is a hyperparameter. Dirichlet Calibration uses additional matrix regu-
larization terms.
. ↪→Solution for Issue 2: Use L2 regularization.

Top-versus-All Approach for Binary Methods The TvA approach replaces the OvA
approach to apply binary methods to the multiclass setting. TvA transforms the multi-
class setting into a single binary problem that uses the binary calibration dataset (4.3). In
this dataset, the proportion of positive labels equals the classifier’s accuracy a. The ratio
between negative and positive examples is (1−a)N

aN
= 1

a
− 1. For a classifier with 80%

accuracy on ImageNet and a calibration dataset of 25000 examples, there are 5000 neg-
ative and 20000 positive examples (ratio of 1/4). This is still a bit imbalanced but orders
of magnitude smaller than the class-wise binary calibration datasets of the OvA approach
(ratio of 1/999).
. ↪→Solution for Issue 3: By not dividing the calibration data into class-wise datasets,
the TvA approach yields a much better balanced binary calibration problem.

The TvA approach operates on confidence alone, not the full class probabilities vector.
This means that the class prediction is already done, and the ranking of the class prob-
abilities does not change. The classifier’s prediction and accuracy are unaffected. This
scheme allows decoupling accuracy improvements (during training time) and calibration
(during post-processing calibration), thus avoiding compromises and reducing develop-
ment time.
. ↪→Solution for Issue 4: By operating on confidence alone, the TvA approach does not
impact the classifier’s prediction or accuracy for binary methods applied to the multiclass
scenario.

Comparison with Competing Approaches Works from (Patel et al., 2020) and (Zhang
et al., 2020) are competing methods because, like TvA, they are multiclass-to-binary re-
ductions. This is why TvA cannot be applied on top of them: they already transform the
multiclass problem into a binary one using a different strategy.

The shared class-wise strategy of (Patel et al., 2020) and the data ensemble strategy
of (Zhang et al., 2020) are described very briefly in subsections 3.2 and 3.3.2 of their
respective papers and not rigorously justified. My understanding is that these two strate-
gies do exactly the same thing. To build the calibration set, they concatenate all the class
probability vectors so that we get a big probability vector of size N.L (N samples and
L classes) as predictions and similarly concatenate the one-hot embedding of the target
class (a big vector with N ones and N.(L− 1) zeros) as targets. Then, they learn a single
calibrator. For each example, this calibrator aims to simultaneously increase the probabil-
ities for the target class (target is 1) and decrease all the other class probabilities (target is
0). The single calibrator is applied to each class probability separately, meaning that the
ranking of class probabilities can change, modifying the classifier prediction.

The TvA strategy derives from transforming the multiclass calibration into a single
binary problem. The intuition is to learn the calibrator on a surrogate binary classifier and
apply this calibrator to the original classifier. This binary classifier is built on top of the
original classifier (by applying the max function to the class probabilities vector). They
thus share their confidence. However, the binary classifier aims to solve a different task:
predicting the correctness of the original classifier. To build the calibration set, all the

58

confidences are concatenated (a vector of size N) as predictions and concatenate all the
correctnesses as targets (also a vector of size N). The correctness value of a given example
is 1 if the class prediction is correct; otherwise, it is 0. Then, a single calibrator is learned,
similar to the strategy above. However, there is a key difference: this calibrator aims to
increase the probabilities for correct predictions and decrease them for incorrect predic-
tions. Note that probabilities here are all confidences (the maximum class probabilities),
meaning only the confidences that the calibrator directly increases or decreases are con-
sidered. In the strategy from (Patel et al., 2020) and (Zhang et al., 2020), the calibrator
has to manage all class probabilities (L times more), even the ones that do not matter,
including the lowest class probabilities close to 0. This is less efficient (actually, while
this can surely be fixed, the original implementations of IRM and I-Max could not run on
ImageNet-21K). This point is closely linked to Issue 1: when the prediction is incorrect,
increasing the probability of the correct class indirectly decreases the confidence (strat-
egy from (Patel et al., 2020) and (Zhang et al., 2020)) while the TvA strategy directly
decreases the confidence.

I-Max is more complex because it modifies the Histogram Binning algorithm, while
the TvA approach does not. Additionally, (Lin et al., 2022) found that I-Max produces
unusable probability vectors. Indeed, they do not sum up to 1, and normalizing them
degrades the method’s performance.

The TvA approach with practicality and generality in mind. Contrary to (Patel et al.,
2020) and (Zhang et al., 2020), the generality of the TvA strategy is demonstrated by ap-
plying it on top of existing calibration baselines of different natures (scaling and binary).
One of the main goals is that practitioners can easily and quickly try the TvA approach,
using just a few lines of code, which can significantly improve the calibration perfor-
mance of their existing calibration pipeline while having no impact on the predicted class
by design (except for VS and Dirichlet calibration (DC)).

4.4.3 Experiments and Results
Datasets and Models For image classification, the datasets are CIFAR-10 (C10) and
CIFAR-100 (C100) (Krizhevsky et al., 2009) with 10 and 100 classes respectively, Ima-
geNet (IN) with 1000 classes, and ImageNet-21K (IN21K) (Ridnik et al., 2021) with 10450
classes. For text classification, the datasets are Amazon Fine Foods (AFF) (McAuley and
Leskovec, 2013) and DynaSent (DF) (Potts et al., 2021) for sentiment analysis with 3
classes, MNLI (Williams et al., 2018) for natural language inference with 3 classes, and
Yahoo Answers (YA) (Zhang et al., 2015b) for topic classification on 10 classes. Experi-
ment results are averaged over five random seeds that randomly split the concatenation of
the original validation and test sets into calibration and test sets.
The image classification models are ResNet (He et al., 2016), Wide-ResNet-26-10 (WRN)
(Zagoruyko and Komodakis, 2016), DenseNet-121 (Huang et al., 2017), MobileNetV3
(MN3) (Howard et al., 2019), ViT, ConvNeXt (Liu et al., 2022b), EfficientNet (Tan and
Le, 2019, 2021), Swin (Liu et al., 2021, 2022a), and CLIP (Radford et al., 2021). For text
classification, the models are RoBERTa (Liu et al., 2019) and T5 (Raffel et al., 2020).
More details about datasets, calibration set sizes, and model weights are in Appendix 7.1.

Baselines The Top-versus-All (TvA) reformulation and regularization (reg) can be applied
to different calibration methods. The following scaling methods were tester: TS and VS,
and DC (Kull et al., 2019) with the best-performing variant Dir-ODIR, which regular-

59

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

%
of

Sa
m

pl
es

Global Accuracy
Avg. Confidence

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Confidence

A
cc

ur
ac

y

Perfect Calibration

(a) ResNet-50 – original

0 0.2 0.4 0.6 0.8 1

Global Accuracy
Avg. Confidence

0 0.2 0.4 0.6 0.8 1
Confidence

Perfect Calibration

(b) ResNet-50 – TS

0 0.2 0.4 0.6 0.8 1

Global Accuracy
Avg. Confidence

0 0.2 0.4 0.6 0.8 1
Confidence

Perfect Calibration

(c) ResNet-50 – TSTvA

0.0 0.2 0.4 0.6 0.8 1.0

Global Accuracy
Avg. Confidence

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Perfect Calibration

(d) ResNet-50 – HBTvA

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

%
of

Sa
m

pl
es

Global Accuracy
Avg. Confidence

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Confidence

A
cc

ur
ac

y

Perfect Calibration

(e) ViT-B/16 – original

0 0.2 0.4 0.6 0.8 1

Global Accuracy
Avg. Confidence

0 0.2 0.4 0.6 0.8 1
Confidence

Perfect Calibration

(f) ViT-B/16 – VS

0 0.2 0.4 0.6 0.8 1

Global Accuracy
Avg. Confidence

0 0.2 0.4 0.6 0.8 1
Confidence

Perfect Calibration

(g) ViT-B/16 – VSreg TvA

0 0.2 0.4 0.6 0.8 1

Global Accuracy
Avg. Confidence

0 0.2 0.4 0.6 0.8 1
Confidence

Perfect Calibration

(h) ViT-B/16 – HBTvA

Figure 4.4: Reliability diagrams for ResNet-50 and ViT-B/16 when using TS, VS, and
HB on ImageNet. The subscript TvA signifies that the TvA reformulation was used, and
reg means regularization (4.6) was applied. As the methods improve the calibration, the
accuracy per bin gets closer to the true accuracy, and the average confidence gets closer
to the global accuracy.

izes off-diagonal and bias coefficients. Also, the following binary methods were tested:
HB (Zadrozny and Elkan, 2001) using for each case the best-performing variant between
equal-mass or equal-size bins, Isotonic Regression (Iso) (Zadrozny and Elkan, 2002),
Beta Calibration (Beta) (Kull et al., 2017), and Bayesian Binning into Quantiles (BBQ)
(Naeini et al., 2015). For comparison, methods with state-of-the-art results on problems
with many classes are included: I-Max (Patel et al., 2020) and IRM (Zhang et al., 2020).
More details on code implementations can be seen in Appendix 7.1.

Metrics The primary metric is the ECE (4.2) with 15 equal-width bins, and more met-
rics are provided in the Appendix. Class-wise metrics are not used because the problem
tackled here is confidence calibration. Also, they do not scale well when per-class data is
scarce, as discussed in the next paragraph.

Limits of classwise-ECE and top-label-ECE for a High Number of Classes Let us
define the ECE for class j: ECEj =

∑B
b=1

nb

N
|acc(b, j) − conf(b, j)|. The difference

compared to (4.2) is that now acc(b, j) corresponds to the proportion of class j in the bin.
Also, conf(b, j) now is the average probability given to class j for all samples in the bin.
Classwise-ECE (Kull et al., 2019) takes the average for all classes: ECEcw =

∑L
j=1 ECEj .

Classwise-ECE considers the full probabilities vectors: all the class probabilities for each
prediction. However, this metric does not scale to large numbers of classes. Let us see
why with an example.

Let us use a test set of N samples, N/L for each of the L classes (the dataset is

60

balanced), and a high-accuracy classifier fairly calibrated. The classifier predicts N prob-
ability vectors of length L. Predicted probabilities for class j are all the values of the
vector at dimension j. Because the classifier has a high accuracy and is fairly calibrated,
around N/L values are close to 1 (corresponding to mostly correct predictions), and the
remaining ones, around N −N/L, are close to 0 (because the predicted class is not class
j, and the predicted probability is high for another class).

To compute ECEj with equal size 15 bins, the predicted probabilities for class j are
partitioned into 15 bins. The first bin (with probabilities close to 0), contains n1 ≈
N − N/L samples while the last one (with probabilities close to 1) contains nB ≈ N/L
samples. The remaining bins are usually even more empty. That means that the calibra-
tion error in the first bin is weighted n1/nB = L− 1 times more than the last one. For the
1000 classes of ImageNet, L− 1 = 999. Figure 4.5 shows the number of samples (nb) in
each bin for an ImageNet classifier.

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

104

class probability for class 677

nu
m

be
ro

fS
am

pl
es

(l
og

sc
al

e)

0.0 0.2 0.4 0.6 0.8
class probability for class 537

0.0 0.2 0.4 0.6 0.8 1.0
class probability for class 845

Figure 4.5: Histograms of probabilities for 3 random classes (ViT-16/B on ImageNet).

Because the impact of the calibration error in the bin with the high probabilities is neg-
ligible relative to the bin with the low probabilities, the classwise-ECE mostly measures
whether probabilities close to 0 are calibrated. I argue this is not what we are interested
in: what matters more is the calibration of higher values of the probabilities.

Top-label ECE (Gupta and Ramdas, 2022) is another interesting metric that does not
scale to large numbers of classes either. Top-label-ECE divides data into subsets accord-
ing to the predicted class, computes the ECEs of these subsets, and averages them. For
an ImageNet test set of 25000 samples (25 per class), data is divided into 1000 subsets of
≈ 25 samples each (the classifier is high-accuracy, most of the time the predicted class is
equal to the true class). The ECE is computed for each subset containing only 25 sam-
ples. To compute the ECE, samples are typically partitioned into 15 bins. The number of
samples per bin does not allow a correct estimation of the average confidence or accuracy.

Top-versus-All Results For visual qualitative results, Figure 4.4 displays reliability di-
agrams (Niculescu-Mizil and Caruana, 2005). We can observe that initially, ResNet-50
is highly underconfident, and ViT-B/16 is slightly underconfident. Applying TS and VS
solves the underconfidence and makes the models slightly overconfident. TvA further
improves these methods, and the average confidence gets closer to the accuracy. HBTvA

is even better and approaches perfect calibration.
Table 4.2 shows the results of applying the TvA reformulation to several calibration

methods. For clarity, results are averaged over families of models (models based on the
same architecture) and the full results are available in Tables 7.2 and 7.3 of the Appendix.

61

Table 4.2: ECE in % (lower is better). The subscript TvA denotes that the reformulation
was applied to the calibration method. IRM and I-Max are competing methods. The best
method for a given model is in bold. Methods in purple impact the model prediction,
potentially degrading accuracy; methods in teal do not. Values are averaged over five
random seeds. Results are averaged over models of the same family. Detailed results for
all models can be seen in Tables 7.2 and 7.3 of the Appendix.

scaling methods binary methods

Dataset Models Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Iso IsoTvA BBQ BBQTvA HB HBTvA

C10 ConvNets 1.77 0.67 0.61 1.20 1.25 1.17 1.17 1.16 1.17 1.12 0.68 1.17 0.77 1.06 0.43
CLIP 5.03 1.03 0.94 0.78 0.73 2.56 1.85 2.56 1.84 1.05 0.86 1.39 0.86 1.82 0.73

C100 ConvNets 6.04 1.30 1.15 4.65 2.96 4.91 2.35 4.89 2.35 5.33 1.38 9.63 1.35 9.56 1.02
CLIP 10.37 2.90 2.57 2.54 2.51 7.78 2.86 7.55 1.84 2.53 1.61 7.48 1.48 7.23 1.39

IN ResNet 15.26 1.31 1.07 2.65 1.89 2.77 1.67 3.59 2.23 3.05 0.79 8.41 0.76 7.49 0.55
EffNet 15.72 0.68 0.48 3.48 2.59 3.67 1.26 3.65 1.23 2.83 0.68 6.55 0.64 4.39 0.43
ConvNeXt 16.46 0.82 0.58 3.67 2.25 4.05 1.37 4.04 1.35 2.97 0.75 7.41 0.68 5.13 0.52
ViT 4.40 0.81 0.61 4.09 2.96 4.31 2.02 4.31 1.99 3.60 0.77 6.64 0.73 6.59 0.52
Swin 5.85 0.75 0.49 3.63 2.91 4.04 1.70 4.03 1.67 3.19 0.74 7.09 0.71 5.39 0.48
CLIP 1.96 1.08 0.72 1.89 1.82 1.63 1.05 32.03 67.65 2.35 0.92 8.31 0.93 7.16 0.80

IN21K MN3 12.34 err. err. 8.69 4.39 2.52 2.40 58.84 81.16 2.00 0.21 err. 0.20 5.50 0.17
ViT-B/16 6.27 err. err. 8.92 6.55 2.38 1.54 8.22 3.20 2.14 0.22 err. 0.24 7.89 0.12

AFF T5 5.47 0.27 0.26 1.10 1.15 1.52 1.42 1.18 1.31 0.37 0.27 0.39 0.28 2.87 0.17
RoBERTa 7.37 0.30 0.28 2.40 2.33 1.41 1.85 1.38 1.68 0.52 0.27 0.75 0.35 4.02 0.20

DS T5 8.86 1.39 1.38 2.19 2.17 6.13 2.00 5.91 2.02 1.50 1.55 1.38 1.58 1.90 1.12
RoBERTa 16.12 1.56 1.50 12.07 12.07 14.66 6.80 13.90 5.57 1.71 1.53 1.64 1.14 1.05 0.91

MNLI T5 7.04 0.72 0.70 2.81 2.80 4.46 1.79 4.31 1.82 0.80 0.74 1.38 0.69 2.09 0.43
RoBERTa 9.22 0.89 0.71 5.72 5.72 6.99 1.92 6.59 1.99 1.00 0.92 1.67 0.84 1.02 0.60

YA T5 7.84 0.80 0.81 1.07 1.35 3.70 1.16 3.75 1.15 1.73 0.82 2.81 0.96 3.65 0.69
RoBERTa 19.59 0.97 0.79 12.39 12.38 16.47 2.52 16.07 2.21 1.92 0.99 5.00 0.75 3.41 0.58

In most cases, the TvA reformulation significantly lowers the ECE by dozens of percent.
Without TvA, binary methods often introduce noise into the prediction and degrade the
classifier’s accuracy (see Table 7.7), making them inapplicable in a practical setting. TvA
solves the issue as it only scales the confidence (after the prediction is made) and makes
binary methods outperform scaling methods. Improvements due to TvA are consistent
across models. However, exceptions are observed for the smaller models (ResNet-18, and
ResNet-34) and CLIP, for which considering cosine similarities as logits could explain
the different behavior. Results show that DC is sensitive to hyperparameter tuning, and
its performance is usually not much better than VS, which is consistent with (Kull et al.,
2019). In some cases, the optimization diverges and it leads to very poor results, e.g.,
for CLIP on ImageNet. Improvements due to TvA are also consistent across datasets
although they tend to increase with the number of classes. Improvements on ImageNet
are usually better than on CIFAR-100, whose improvements are usually better than on
CIFAR-10. This is notable with e.g., TS or HB. For text datasets with only three classes
(AFF, DS, and MNLI), TS does not benefit from TvA, but other methods do, despite
the small number of classes. According to (Chen et al., 2023b), TS is among the best
calibration methods for the text classification tasks considered here, even compared to
ones that retrain the model. Even so, the method HBTvA significantly outperforms it.

Some methods’ current implementations could not handle the large scale of ImageNet-
21K, resulting in out-of-memory errors written as “err.” in the Table. For I-Max and IRM,
this is because they consider the full probability vectors while TvA efficiently uses data
by considering only confidence values. Indeed, TvA handles this scale without difficulty.

62

Additional results are included in Appendix 7.2.2. Tables 7.2 and 7.3 contain the full
results for ECE, while the standard deviations are in Table 7.4. According to Table 7.6, we
observe that ImageNet networks are mostly underconfident. This is aligned with (Galil
et al., 2023b) and goes against previous knowledge on overconfidence, which was initially
believed to be linked to network size (Guo et al., 2017). Table 7.7 provides the accuracies
after calibration. Table 7.8 exhibits that ECE with equal-mass bins gives similar values as
standard ECE. In most cases, TvA also lowers the Brier score, except for Iso, which has
the lowest score overall as shown in Table 7.9. The reason why is unclear.

Calibration methods can also be applied to LLMs using In-Context Learning (ICL)
(Zhao et al., 2021b; Han et al., 2022; Jiang et al., 2023; Zhou et al., 2023; Abbas et al.,
2024) to tackle text classification tasks. The primary goal of these methods is to improve
model accuracy. TvA was not designed for this objective, but it can still be applied on top
of an existing method that improves the accuracy. TvA then lowers the calibration error
while keeping the accuracy gain. Results are in the Appendix in Table 4.3.

To summarize the results for practical use, the experiments show that Histogram Bin-
ning (within the TvA or I-Max setting) is the best calibration method overall, providing
ECE values consistently below 1%. This is the method I advise using. However, suppose
the underlying application requires a confidence with continuous values, e.g., to rank the
predictions in the case of selective classification. In that case, I advise using a method that
also improves the AUROC, shown in Table 4.4, such as Temperature Scaling or Isotonic
Regression.

Solving Overfitting with Regularization and TvA On ImageNet, VS and DC overfit
the calibration set, degrading the calibration on the test set. The lower performance of
VS relative to TS indicates this overfitting. As visualized in Figure 4.6, combining the
binary cross-entropy loss used in the TvA reformulation and an additional regularization
term prevents overfitting. The value λ = 0.01 works well across models. Initializing
the vector coefficients to 1

T
with T obtained by TSTvA helps further improve performance.

On the other hand, I found that penalizing values far from 1
T

instead of 1 degrades the
performance.

Influence of the Calibration Set Size The size of the calibration set influences the
performance of the different methods, as seen in Figure 4.7. TS and TSTvA do not benefit
from more data due to their low expressiveness. VS does not improve the ECE because
of the overfitting problem. In contrast, VSreg TvA benefits from more calibration data. With
enough data (≈ 15000), it outperforms TSTvA. Binary methods using the standard OvA
approach have poor performance and need a large amount of data to be competitive. Using
TvA, they get excellent performance with little data.

Results for LLMs Using In-Context Learning LLMs exhibit an ICLs capability, mean-
ing they can learn from just a few examples in the context. It works by constructing a
prompt that includes input-output pairs demonstrating the considered task, followed by a
query for a new input. See (Dong et al., 2022) for a survey. Recent works develop calibra-
tion methods whose main goal is to improve the performance of ICLs for LLMs, without
requiring a complicated model fine-tuning. (Zhao et al., 2021b) uses a customized variant
of Platt scaling (more specifically, Vector Scaling). Their method infers good values of the
vector scaling parameters in a data-free procedure. The idea is that for a “content-free”
input, e.g., “N/A”, the calibrated probability has a 50% chance (for a binary classification

63

50 100 150 200

5

10

epochs

E
C

E
te

st
[%

] VS
VSTvA
TSTvA
VSreg
VSreg TvA

Figure 4.6: Test ECE evolution during
training with ResNet-50 on ImageNet.
The combination of regularization and
TvA prevents overfitting of Vector Scaling.
Temperature Scaling with TvA is shown
for reference.

0
2
4
6
8

E
C

E
te

st
[%

]

BBQ HB Iso

BBQTvA HBTvA IsoTvA

5,000 10,000 15,000 20,000 25,000

2

3

4

calibration set size

E
C

E
te

st
[%

]

VS TS

VSreg TvA TSTvA

Figure 4.7: Influence of the calibration set
size for ResNet-101 on ImageNet. Binary
methods at the top and scaling methods at
the bottom.

Table 4.3: Calibration methods applied to in-context learning of LLMs. Accuracy and
ECE are in %.

Dataset TREC SST-5 DBpedia
Acc. (↑) ECE (↓) Acc. (↑) ECE (↓) Acc. (↑) ECE (↓)

Model Shots Method

GPT-J 6B

0

Uncalibrated 24.7 29.7 33.7 22.5 19.7 27.4
ConC 40.0 14.0 40.7 10.3 47.7 24.6
LinC 58.9 26.4 46.3 11.0 62.2 12.8
LinC+HBTvA 58.9 6.5 46.3 7.0 62.2 5.7

1

Uncalibrated 43.7 12.1 36.3 30.9 58.7 14.2
ConC 41.7 13.6 50.7 14.2 82.7 6.9
LinC 59.9 9.1 50.1 12.3 84.4 6.6
LinC+HBTvA 59.9 3.9 50.1 7.3 84.4 5.1

4

Uncalibrated 26.0 41.6 51.3 28.2 89.0 15.7
ConC 40.3 14.4 54.3 8.8 94.0 6.9
LinC 57.9 9.7 53.6 10.6 94.3 5.7
LinC+HBTvA 57.9 5.2 53.6 7.1 94.3 4.8

8

Uncalibrated 36.0 26.0 48.3 9.7 92.3 9.2
ConC 46.7 15.5 43.7 11.7 92.0 6.8
LinC 60.7 6.3 51.7 9.5 93.9 5.8
LinC+HBTvA 60.7 6.6 51.7 7.6 93.9 2.6

Llama-2 13B

0

Uncalibrated 48.7 21.4 34.0 17.6 54.3 19.7
ConC 71.7 18.7 33.3 17.2 75.3 17.2
LinC 73.3 11.4 47.6 11.3 84.4 16.2
LinC+HBTvA 73.3 9.3 47.6 6.7 84.4 4.1

1

Uncalibrated 63.0 8.6 41.3 29.4 90.7 11.4
ConC 76.0 5.9 41.0 12.6 92.3 5.2
LinC 79.7 6.3 48.7 12.1 93.1 4.4
LinC+HBTvA 79.7 6.0 48.7 9.6 93.1 3.0

4

Uncalibrated 60.0 12.0 50.7 37.6 94.0 9.9
ConC 71.3 6.9 51.3 18.6 95.3 3.8
LinC 75.6 8.0 52.9 15.1 95.3 3.8
LinC+HBTvA 75.6 4.0 52.9 7.6 95.3 2.2

8

Uncalibrated 70.0 5.2 55.0 7.0 94.7 5.9
ConC 73.7 12.6 44.0 22.8 94.3 3.9
LinC 73.5 9.4 50.2 14.4 95.3 3.9
LinC+HBTvA 73.5 7.0 50.2 4.2 95.3 2.1

64

task) of removing a bias toward the positive or negative class. Here, this method is de-
noted as ConC. (Abbas et al., 2024) builds on top of this work but uses a calibration set to
learn the scaling parameters by minimizing the cross-entropy loss. This can be considered
as Matrix Scaling. This method is denoted as LinC. (Zhou et al., 2023) proposes a per-
class normalization of the probabilities on a given batch. (Jiang et al., 2023) estimates the
in-context model label marginal p(y) from limited data and uses it to calibrate the model
probabilities. Paper (Han et al., 2022) uses a Gaussian mixture model.

In this section’s experiments, I tested a two-step calibration. First, the state-of-the-
art method LinC is applied to maximize the accuracy by learning scaling parameters on
a calibration set. Then, HBTvA is applied to scale the confidences to lower the calibra-
tion error ECE while preserving the accuracy gains. The same calibration set is used for
the two methods. LinC performance depends on hyperparameter values, but to keep the
experiments simple, I fixed the following values: 100 epochs, a learning rate of 0.001,
and 300 calibration samples. It means that the reported performance of LinC is subopti-
mal and could be enhanced even more. The experimental setting is the same as (Abbas
et al., 2024). The models used are GPT-J with 6B parameters (Wang and Komatsuzaki,
2021) and Llama-2 with 13B parameters (Touvron et al., 2023). The text classification
datasets are TREC (Voorhees and Tice, 2000) for question classification with 6 classes,
SST-5 (Socher et al., 2013) for sentiment analysis with 5 classes, and DBpedia (Zhang
et al., 2015a) for topic classification with 14 classes. The 0-shot, 1-shot, 4-shot, and 8-
shot learning settings were tested. Five different sets of 300 test samples were randomly
selected, and results are averaged over 5 seeds. The accuracy and ECE were evaluated
for each configuration. Please see Table 4.3 for the results. In most cases, LinC+HBTvA

achieves the best accuracy and ECE.

Selective Classification Results Even though calibration and SC are linked, improve-
ments in calibration do not directly translate to better SC. Table 4.4 shows the AUROC, a
metric for SC. HBTvA, the best calibration method overall, actually degrades the AUROC
in most cases. This can be explained by the fact that SC benefits from a continuous score
able to finely discriminate between certain and uncertain examples, allowing to control
the coverture – risk compromise, but HB discretizes the confidences into, e.g., 10 differ-
ent values. In general, TvA does not significantly improve the AUROC. The best method
overall for SC is the original Isotonic regression.

Limitations The TvA approach tackles confidence calibration and is unlikely to im-
prove performance for stronger notions of calibration, such as class-wise calibration.
However, confidence calibration is useful for many practical cases, such as SC (Geifman
and El-Yaniv, 2017), OOD detection (Hendrycks and Gimpel, 2017), or active learning
(Li and Sethi, 2006). Also, calibration improvements are less significant for problems
with few classes (≤ 10) than for problems with many classes, but the TvA approach still
provides the best results.

Analysis The experiments demonstrated that reformulating the confidence calibration
of multiclass classifiers as a single binary problem significantly improves the performance
of baseline calibration techniques. The competitiveness of scaling methods is increased,
and binary methods use per-class calibration data more efficiently without altering the
model’s accuracy. In short, the TvA reformulation enhances many existing calibration

65

Table 4.4: AUROC in % (higher is better). Methods in purple impact the model pre-
diction, potentially degrading accuracy; methods in teal do not. Improvements from the
uncalibrated model are colored in blue and degradations in orange. Results are averaged
over models of the same family. Detailed results for all models can be seen in Table 7.5
of the Appendix.

scaling methods binary methods

Dataset Models Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Iso IsoTvA BBQ BBQTvA HB HBTvA

C10 ConvNets 91.50 91.34 90.72 91.47 91.45 91.88 92.20 91.88 92.19 92.10 91.35 75.53 86.06 74.69 84.43
CLIP 91.36 91.27 91.59 91.46 91.46 92.07 92.28 92.21 92.36 91.25 91.18 88.50 90.57 88.59 90.02

C100 ConvNets 86.15 86.08 85.36 86.10 85.99 86.29 86.70 86.30 86.70 87.31 86.06 82.09 85.41 82.63 84.35
CLIP 83.30 83.30 83.21 84.30 84.29 84.82 86.01 84.88 86.09 85.33 83.19 86.09 83.19 85.97 83.04

IN ResNet 84.16 84.16 83.71 85.91 85.79 85.71 85.85 85.52 85.62 86.63 84.13 83.30 83.95 82.88 83.64
EffNet 84.42 84.41 83.73 86.31 86.04 84.98 85.33 84.96 85.32 86.94 84.37 81.76 84.37 80.31 83.71
ConvNeXt 82.31 82.32 81.71 85.17 84.80 84.71 85.01 84.71 85.01 86.94 82.27 81.54 82.25 80.07 81.80
ViT 85.93 85.93 85.21 86.45 86.27 85.51 85.63 85.51 85.65 87.04 85.90 81.11 85.71 81.10 85.09
Swin 85.31 85.33 84.58 86.20 85.97 85.02 85.25 85.02 85.24 87.01 85.31 80.67 85.28 80.31 84.48
CLIP 81.55 81.53 81.23 81.55 81.53 82.56 83.97 78.63 80.78 82.30 81.52 82.34 81.47 82.47 81.10

IN21K MN3 68.79 err. err. 67.80 65.89 80.00 81.00 61.24 51.94 79.62 68.77 err. 68.77 90.86 68.40
ViT-B/16 72.99 err. err. 74.36 73.17 79.78 81.42 76.29 78.92 79.66 73.10 err. 73.20 90.27 71.95

AFF T5 83.19 83.16 82.42 82.93 82.92 86.84 87.96 87.78 87.91 86.09 83.21 84.44 80.87 79.03 76.83
RoBERTa 85.70 85.58 81.34 85.67 85.67 86.50 87.50 87.57 87.45 85.64 85.69 81.57 75.04 75.71 74.33

DS T5 77.81 77.74 77.07 77.96 77.96 77.97 78.76 78.59 78.83 78.88 77.76 75.80 75.58 71.70 74.68
RoBERTa 75.67 75.49 72.79 75.82 75.82 75.74 75.99 75.83 76.09 76.11 75.56 62.90 66.72 59.50 68.38

MNLI T5 83.22 83.11 81.50 83.31 83.31 83.32 83.50 83.66 83.73 83.50 83.14 73.16 75.09 65.30 75.54
RoBERTa 82.97 82.91 79.44 83.07 83.07 83.03 83.30 83.22 83.32 83.28 82.91 68.34 72.44 60.82 73.72

YA T5 81.34 81.26 80.77 81.35 81.34 81.40 81.41 81.43 81.47 81.42 81.29 79.85 80.35 78.20 79.54
RoBERTa 78.88 78.83 76.72 79.11 79.11 79.02 79.08 79.14 79.44 79.11 78.81 74.72 72.93 73.43 70.43

methods with little to no change in their algorithm. Extensive experiments with state-
of-the-art image classification models on complex datasets and with text classification
demonstrate the approach’s scalability and generality.

Better calibration does not always improve Selective Classification. SC helps define
a domain having an estimation of the global accuracy (which holds when no distribution
shift happens). While SC is binary (data in or out), calibration offers finer uncertainty
quantification for each prediction. Including the notion of calibration in defining a relia-
bility domain is still unclear. One perspective of the thesis is to understand better the link
between calibration and SC, as explained in section 6.3.

4.5 Calibrate with Synthetic Data

4.5.1 Use a Class Conditional GAN to Generate Calibration Data
Another idea I briefly explored was to use synthetic data as calibration data. Note that

I only conducted preliminary experiments, and work in this section is not a major contri-
bution but rather opens a new perspective. This was inspired by working on calibration
in section 4.4 and GANs in chapter 3. Post-hoc calibration methods require data separate
from the training set, usually from the validation or test set, called calibration data. The
issue is that this data is usually scarce, and using part of the test set might degrade the
evaluation quality. In section 4.4, I developed the TvA approach to efficiently apply ex-
isting calibration methods, even when calibration data is scarce, which easily happens for
problems with many classes. An alternative approach described here is to compensate for
scarce real data by using synthetic data.

66

The proposed method is straightforward: train a class conditional GAN on the same
training data as the classifier and generate synthetic data for calibration. See Figure 4.8
for an illustration. The GAN is conditioned by the class: class is encoded as a one-hot
vector given to the generator as input. For calibration, the class condition is considered
the ground truth. Because some images are ambiguous, the classifier prediction and the
class condition can differ. In those cases, the classifier prediction is considered incorrect
for the calibration process. Because the class condition is an input, we can choose its
value. Here, because a balanced dataset with the same number of samples for each class
is used, classes are sampled uniformly.

Training data

Calibration data

Trained classifier

Calibrated classifier

Training data

Synthetic data

Trained classifier

Calibrated classifier

Trained GAN

Figure 4.8: The diagram on the left represents the standard pipeline: a trained classifier
is calibrated using calibration data usually sampled from the validation or test data. The
diagram on the right illustrates how to use synthetic data for calibration.

4.5.2 Experiments and Results

Setting Classifiers are pre-trained on CIFAR-10 (Krizhevsky et al., 2009), a simple
image classification dataset with 10 classes. The model architectures considered are:
DenseNet (Huang et al., 2017), GoogLeNet (Szegedy et al., 2015), Inception-v3 (Szegedy
et al., 2016), MobileNet-v2 (Sandler et al., 2018), ResNet (He et al., 2016), and VGG (Si-
monyan and Zisserman, 2015). The calibration methods tested are Temperature Scaling
and Vector Scaling. Several calibration datasets are compared. The standard calibration
approach uses the validation set, which is used for reference. Data augmentation tech-
niques are used for the validation dataset. The augmentations used are random crops,
horizontal flips, and synthetic data from the GAN trained on the same training data as the
classifier. For this data, the GAN’s class condition is the ground truth, and the classifier
prediction might differ because some images are ambiguous. The ECE is computed with
15 equal size bins.

Generative Model The GAN used is based on the StyleGAN2-ADA architecture, with
a conditional FID (Heusel et al., 2017) of 2.42, a rather good value. Figure 4.9 shows
some samples of real and synthetic images for all ten classes. The model implementation
and weights are from the official GitHub repository1.

1https://github.com/NVlabs/stylegan2-ada-pytorch

67

https://github.com/NVlabs/stylegan2-ada-pytorch

Figure 4.9: CIFAR10 images at the top, synthetic images from StyleGAN2-ADA at the
bottom, for all ten classes.

Synthetic Data for Calibration Table 4.5a shows the ECE results for different calibra-
tion datasets. All datasets contain 5000 examples. For Temperature Scaling, using the
standard validation set is the best choice most of the time. Using data augmentations does
not improve the ECE, and using synthetic data is worse. For Vector Scaling, augmenting
the validation data similarly does not improve the ECE. However, using the synthetic data
is at least competitive with the validation data and often better. Improvements are not
huge, but replacing real annotated data with synthetic data can be useful, especially when
calibration data is sampled from the test set, such as for ImageNet, leaving less data for
thorough evaluation.

Filtering High/Low Confidences I studied whether calibration data with low- or high-
confidence samples improves calibration. To do so, calibration data is either a random
half of the original validation data or the halves with the lowest or highest confidence
samples. All datasets thus contain 2500 examples. Results are shown in Table 4.5b. Us-
ing low-confidence samples is rarely better than random sampling. Using high-confidence
samples is even worse, probably because most samples correspond to correct predictions,
leading the calibration process to increase all probabilities. If controlling the confidence
of the calibration samples was useful, the confidence-conditioned GAN developed in sec-
tion 3.4 could have been used to improve the calibration, but it seems that using random
samples is better.

Analysis Using synthetic data for calibration leads to similar or improved results com-
pared to using validation data separate from the training data when using Vector Scal-
ing. Because calibration data needs to be different from the training and test data, gen-
erating synthetic calibration data is useful because the model training and evaluation re-
main unchanged, and the calibration improves. However, there are some limitations. For

68

Table 4.5: ECE in % computed on the test set for different CIFAR-10 models, lower is
better. Temperature Scaling and Vector Scaling methods are compared, and reference
values for the uncalibrated model are shown as a reference. Values are averages over five
seeds.

(a) Three calibration datasets compared: the validation set, the validation set using data augmen-
tation, and a synthetic dataset

Method Uncal. Temperature Scaling Vector Scaling
Dataset origin Val. Val. aug. Synth. Val. Val. aug. Synth.

DenseNet-121 2.22 1.77 1.84 3.18 1.89 1.88 1.78
DenseNet-161 2.12 1.99 2.05 3.49 1.94 2.01 1.90
DenseNet-169 2.54 2.07 2.18 3.36 1.95 1.93 1.99
GoogLenet 1.47 1.18 1.39 1.31 1.29 1.41 0.90
Inception-v3 1.98 1.55 1.55 2.60 1.46 1.42 1.67
MobileNet-v2 2.59 1.47 1.47 2.50 1.57 1.63 1.59
ResNet-18 2.03 1.72 1.76 2.59 1.44 1.58 1.25
ResNet-34 2.71 2.14 2.37 3.23 2.06 2.36 2.03
ResNet-50 2.27 1.57 1.48 2.69 1.79 1.73 1.46
VGG-11-BN 1.59 1.69 1.78 2.04 1.46 1.44 1.34
VGG-13-BN 1.19 1.17 1.22 1.73 1.12 1.31 1.29
VGG-16-BN 1.72 1.74 2.00 2.90 1.83 2.00 1.71
VGG-19-BN 2.07 2.17 2.47 3.32 2.09 2.38 2.01

(b) Three calibration datasets compared: a random half of the validation set, the half with the
lowest confidences, the half with the highest confidences

Method Uncal. Temperature Scaling Vector Scaling
Dataset origin Val. Val. low conf. Val. high conf. Val. Val. low conf. Val. high conf.

DenseNet-121 2.22 1.73 3.00 2.80 1.82 2.81 3.75
DenseNet-161 2.12 1.99 2.80 2.36 1.88 2.45 3.48
DenseNet-169 2.54 2.29 2.93 2.69 2.13 2.51 3.80
GoogleNet 1.47 1.22 1.02 2.01 1.25 1.13 5.31
Inception-v3 1.98 1.58 2.29 2.61 1.53 2.44 3.01
MobileNet-v2 2.59 1.49 2.52 3.44 1.49 2.83 8.99
ResNet-18 2.03 1.74 2.30 2.64 1.56 1.87 4.25
ResNet-34 2.71 2.19 3.31 3.49 2.17 2.81 5.42
ResNet-50 2.27 1.62 2.79 3.10 1.81 2.77 5.39
VGG-11-BN 1.59 1.66 1.88 2.79 1.43 1.56 7.28
VGG-13-BN 1.19 1.17 1.44 2.57 1.19 1.32 4.79
VGG-16-BN 1.72 1.68 2.60 3.22 1.72 2.70 4.99
VGG-19-BN 2.07 2.18 3.30 2.77 2.19 2.94 4.40

CIFAR-10, there are no significant calibration improvements when using more than a few
thousand samples, so generating more data is not useful. Selecting calibration samples
according to the classifier confidence does not improve calibration. The main limitation
is that generating images is difficult, and GANs do not work as well for more complex
data. The StyleGAN architecture was developed for structured images such as faces and
does not scale well to, e.g., ImageNet. A perspective is then to look at diffusion models
that can generate complex images of high quality.

69

4.6 Discussion
This chapter looked at SC and calibration. SC directly allows defining a reliability

domain using a threshold on a confidence score. One has to choose a good confidence
score, and we saw in this chapter that using the classifier maximum predicted probability
(MSP) is an excellent baseline. The choice of the threshold is made from an accuracy or
coverage constraint using some validation data. There are a few limits to this approach.
First, the “guaranteed” selective accuracy for a given threshold is estimated on validation
data and becomes invalid if new data does not come from the same distribution: it is not
robust to distribution shifts. For instance, let us suppose that a classifier is particularly bad
for one specific class, which is rare in the validation data. The estimated selective accu-
racy is not impacted much by it. However, if this class suddenly becomes more frequent
after deployment, the accuracy will be degraded. The selection function is designed with
and evaluated on in-distribution data only. It does not work for OOD data (e.g., images
of a new class) or against adversarial attacks because the classifier confidence for such
data might be high for completely incorrect predictions. This might not be a problem for
controlled deployment environments, which prevents OOD data and adversarial attacks.
Second, while the function defining in or out of domain is clear (thresholding on confi-
dence), it provides no insight into the semantics of “good” data versus “bad” data. It does
not help understand or improve the model.

Calibration helps estimate the uncertainty of single data points better, whereas SC only
gives a selective accuracy for all selected data. SC looks at relative confidence values to
rank data from “easy” to “hard”, while calibration requires absolute confidence values
that truly reflect the prediction uncertainty. Calibration helps quantify the criticality of
hard data points: how often do they lead to failure? Usually, better calibration leads to
better SC, but it depends on the models and calibration methods (see Table 4.2). It shares
the same limitations as SC: it only applies to in-distribution data and does not provide
semantic insights.

70

Chapter 5

Incorporating Textual Descriptions

5.1 Introduction
In the first chapter, we leveraged generative models to create hard-to-classify images

that illustrate the classifier limits, following an XAI point of view. In the second chapter,
we have explored selective classification and calibration, considering a more quantitative
point of view. These fields relate to uncertainty quantification and knowing when pre-
dictions are reliable to possibly abstain from making an uncertain decision. This chapter
studies another aspect: describing a classifier’s reliability with semantic attributes. The
goal is to build a link between data descriptions and classifier performance and use it to
define a reliability domain.

Section 5.2 describes diffusion models and the Stable Diffusion text-to-image gener-
ative model. These models are an essential tool to better apprehend the work done in this
chapter.

Section 5.3 looks at the identification of classifier failures using generative models, in
line with recent works (Wiles et al., 2022; Vendrow et al., 2023; Metzen et al., 2023). I first
describe the approach of Metzen et al. (2023) that identifies text-described subdomains
likely to lead to classifier failure. This work uses synthetic data generated from textual
descriptions to identify failures that might happen in the real world. Indeed, the real-world
performance of image classifiers might differ from what was estimated on a validation set.
In particular, classifiers may perform well for conditions frequently encountered during
training but poorly for other infrequent conditions.

Recent advances in text-to-image generative models make them valuable for bench-
marking computer vision models such as image classifiers: they can generate images
conditioned by textual prompts that cause classifier failures, allowing failure conditions
to be described with textual attributes. However, the generation cost becomes an issue
when many synthetic images need to be generated, which is the case when many different
attribute combinations need to be tested.

I propose an image classifier benchmarking method formulated as an iterative pro-
cess that alternates image generation, classifier evaluation, and attribute selection. Based
on Bayesian Optimization, this process efficiently explores the attributes leading to poor
behavior. Problematic subdomains – subsets of data sharing a textual description – are
identified much more quickly and extensively than in previous work.

Section 5.4 explores how such semantically-described subdomains can be used for se-

71

lective classification. In the previous section, the goal was to find problematic subdomains
likely leading to classification failure. Here, the goal is to identify in which conditions
the classifier is reliable to reconnect with the notion of reliability domain. To the best
of my knowledge, most related works look at classifier failures, not classifier successes.
Defining a domain requires knowing when the classifier is successful, and the ability to
identify some failures is not enough to do so.

We have seen in chapter 4 that selective classification is a way to define a reliability
domain by filtering out data for which the classification is likely to be wrong. The standard
way to filter data is to use a threshold on a confidence score computed for each prediction.
We have seen in section 4.3 that using the classifier’s MSP is a competitive and simple
approach. One issue with this approach is that the classifier confidence does not say much
about which kind of data is likely to work well. One key aspect of this thesis is to link
data description with classification performance: we want a semantic description of a
reliability domain.

In this section, I present Semantic Selective Classification: a way to filter out data
likely to be wrong by leveraging textual attributes of the data that are translated into a
confidence score using Semantic Binning. First, the attributes and their possible values are
defined. Then, images are grouped according to their attribute values. Each combination
of attribute values, or subdomain, is assigned a confidence score. The score value is
the subdomain accuracy estimated with validation data. This confidence score is then
used by standard selective classification to plot accuracy-coverage curves. Additionally,
for each accuracy-coverage point, we also get a list of attribute values describing the
domain. I experimented with synthetic data with annotated attribute values to show the
method’s potential and then with real data for which attribute values have to be estimated.
Experiments on real data bring out the inherent main limitation of the method: the need
for massive annotated validation data. Generating synthetic validation data with text-to-
image models and Textual Inversion does not produce good enough images to solve the
issue.

Finally, section 5.5 discusses the chapter’s findings.

5.2 Background
The Related Work chapter contains high-level information and references about dif-

fusion models. This section includes more technical details.

Diffusion Models Diffusion models can generate images from textual descriptions.
They are characterized by their ability to produce high-quality images through an iter-
ative denoising process. The core mechanism involves a forward diffusion process that
incrementally adds noise to an image until it becomes indistinguishable from Gaussian
noise. The reverse process, iteratively reconstructing the image from noise, is learned
during training. See Figure 5.1.

Mathematically, the forward process models the addition of noise over T timesteps as
xt =

√
αtxt−1 +

√
1− αtϵ, where ϵ is sampled from a standard normal distribution. αt

is the noise schedule that defines how much noise is added to the data during the forward
process at each time step. The choice of noise schedule, e.g., linear or cosine, affects both
the quality of the generated data and the stability of the model’s training. A model ϵθ is
trained to predict the noise added at each timestep. The model architecture is typically a

72

U-Net (Ronneberger et al., 2015), which is conditioned by time t, e.g., with a sinusoidal
embedding. The reverse process aims to recover the original image by removing the
predicted noise: x̂t−1 =

1√
αt
(xt − 1−αt√

1−αt−1
ϵθ(xt, t)).

�!<latexit sha1_base64="7yFrn0YPyuP5dVIvc7Tl2zcbS/g=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyaXYbmk2WJKvU0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhSln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tMEdokkkvVCbGmnAnaNMxw2kkVxUnIaTsc3cz89gNVmklxb8YpDRIcCxYxgo2V+m65x6WIFYuHBislH/tuxat6c6BV4uekAjkafferN5AkS6gwhGOtu76XmmCClWGE02mpl2maYjLCMe1aKnBCdTCZHz5Fp1YZoEgqW8Kgufp7YoITrcdJaDsTbIZ62ZuJ/3ndzERXwYSJNDNUkMWiKOPISDRLAQ2YosTwsSWYKGZvRWSIFSbGZlWyIfjLL6+SVq3qn1drdxeV+nUeRxGO4QTOwIdLqMMtNKAJBDJ4hld4c56cF+fd+Vi0Fpx85gj+wPn8AXOGk5o=</latexit>

xT �! · · · �! xt �����! xt�1 �! · · · �! x0
<latexit sha1_base64="l4LvSgM7PR7I/kkuy5soikK4gpU=">AAAEoXictVLditNAFE7XqGv92a5eejOYLexKLU0VFKRQ9EYvhCrb3YUklOlk2g6dnzBzYrcb8zK+lU/gazhJK6atuiB4YODM+T/n+8YJZwY6nW+1vRvuzVu39+/U7967/+CgcfjwzKhUEzokiit9McaGcibpEBhwepFoisWY0/Px/G3hP/9MtWFKnsIyoZHAU8kmjGCwplHjeygwzAjThNM4Kz/jSXaZj05zFHIlp5pNZ4C1VgsUkliB2TX/oQLYCpe/4rJwZhJM6NPMJyLPt9IM0SwBA0tOUaVGBs/8/J8mWVRH6eSjhtdpd0pBu4q/VjxnLYPR4d7XMFYkFVQC4diYwO8kEGVYA7P183qYGmr3meMpDawqsaAmykpEctS0lhhNlLZPAiqt1YwMC2OWYmwjiynNtq8w/s4XpDB5FWVMJilQSVaNJilHoFABL4qZpgT40irYntTOisgMa0zAkqC+0QbY/MquIfCcYssbsBH1UNIFUUJgGVePGfhR1qyj1YETXAaH/SqAnp836/lGftUfdNcFiqbBT8L2jouQdvE9iVAoVUyDWONFa5XVYlJSjezEPT+BlmCSiVQgw65or2vBaE0Y5z1e4D/VeBmhstwJyo5C0YeZ53vdo/z19lhVjly71+K6xRb/ZbO/rbLCS8HMwmVZ7W9zeFc567b95+3uxxde/82a3/vOY+eJc+z4zkun77xzBs7QIbUPNVP7Ustdz33vDtxPq9C92jrnkbMhbvAD81mObw==</latexit>

p✓(xt�1|xt)
<latexit sha1_base64="XVzP503G8Ma8Lkwk3KKGZcZJbZ0=">AAACEnicbVC7SgNBFJ2Nrxhfq5Y2g0FICsNuFEwZsLGMYB6QLMvsZDYZMvtg5q4Y1nyDjb9iY6GIrZWdf+Mk2SImHrhwOOde7r3HiwVXYFk/Rm5tfWNzK79d2Nnd2z8wD49aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj66nfvmdS8Si8g3HMnIAMQu5zSkBLrlmO3R4MGZBSLyAw9Pz0YeKmcG5P8CNekKDsmkWrYs2AV4mdkSLK0HDN714/oknAQqCCKNW1rRiclEjgVLBJoZcoFhM6IgPW1TQkAVNOOntpgs+00sd+JHWFgGfq4kRKAqXGgac7p0eqZW8q/ud1E/BrTsrDOAEW0vkiPxEYIjzNB/e5ZBTEWBNCJde3YjokklDQKRZ0CPbyy6ukVa3YF5Xq7WWxXsviyKMTdIpKyEZXqI5uUAM1EUVP6AW9oXfj2Xg1PozPeWvOyGaO0R8YX7+bCp4F</latexit>

q(xt|xt�1)
<latexit sha1_base64="eAZ87UuTmAQoJ4u19RGH5tA+bCI=">AAACC3icbVC7TgJBFJ31ifhatbSZQEywkOyiiZQkNpaYyCMBspkdZmHC7MOZu0ay0tv4KzYWGmPrD9j5N87CFgieZJIz59ybe+9xI8EVWNaPsbK6tr6xmdvKb+/s7u2bB4dNFcaSsgYNRSjbLlFM8IA1gINg7Ugy4ruCtdzRVeq37plUPAxuYRyxnk8GAfc4JaAlxyzclbo+gaHrJQ8TB/AjnvsmcGZPTh2zaJWtKfAysTNSRBnqjvnd7Yc09lkAVBClOrYVQS8hEjgVbJLvxopFhI7IgHU0DYjPVC+Z3jLBJ1rpYy+U+gWAp+p8R0J8pca+qyvTRdWil4r/eZ0YvGov4UEUAwvobJAXCwwhToPBfS4ZBTHWhFDJ9a6YDokkFHR8eR2CvXjyMmlWyvZ5uXJzUaxVszhy6BgVUAnZ6BLV0DWqowai6Am9oDf0bjwbr8aH8TkrXTGyniP0B8bXL+1hmu8=</latexit>

Figure 5.1: Illustration of the diffusion and reverse processes of a DDPM. From (Ho et al.,
2020).

Text-to-Image Model Stable Diffusion In this chapter, the Stable Diffusion (SD) model
is used. Because it is open-source, it is widely used in research. It is based on the Latent
Diffusion Models architecture (Rombach et al., 2022), illustrated in Figure 5.2. The ar-
chitecture’s main novelty is to operate the diffusion and reverse processes in a latent space
instead of the pixel space, such as in (Ho et al., 2020). As for DDPMs, the noise predictor
uses the U-Net backbone. It makes the training and inference of diffusion models more
efficient without degrading quality. Text, images, or semantics maps can condition the
generation. Text conditioning uses embeddings that are obtained with a pre-trained text
encoder (OpenCLIP-ViT/H for SD 2.1) and integrated into the model with cross-attention
(Vaswani et al., 2017). Training a text-to-image model requires a dataset of image-text
pairs. For SD, it is a subset of LAION-5B (Schuhmann et al., 2022), which contains more
than 5 billion image-text pairs crawled from the Internet.

Semantic

 Map

crossattention

Latent Space Conditioning

Text

Diffusion Process

denoising step switch skip connection

Repres

entations

Pixel Space

Images

Denoising U-Net

concat

Figure 5.2: Illustration of Latent Diffusion Models, the architecture behind SD. From
(Rombach et al., 2022).

5.3 Textual Descriptions of Classifier Failures Using Text-
to-Image Models

5.3.1 Leveraging Text-to-Image Generative Models
Recently, there have been massive improvements in multimodal models, especially

those combining textual and visual data like text-to-image generative models. These mod-

73

els have demonstrated an exceptional ability to understand and generate content that cap-
tures the nuanced interplay between text and images (Ramesh et al., 2022; Saharia et al.,
2022). This allows new ways of benchmarking image classifiers with generative mod-
els. Classifier performance can be studied in relation to the textual attributes of the data
(Wiles et al., 2022; Metzen et al., 2023; Vendrow et al., 2023). Despite their potential,
however, the practical utility of these generative models is still limited by the compu-
tationally intensive inference process of the underlying diffusion models. For example,
in (Wiles et al., 2022), testing whether the presence of a flower in an image causes the
classifier to sometimes mistake flies for bees, requires hardware with 20 × 4 TPUs.

(Metzen et al., 2023) developed a classifier evaluation process that starts with a tex-
tual description of the conditions the model is likely to encounter during use, an ODD.
It consists of many different combinations of attributes. To test a combination, they use
synthetic data from a text-to-image model. They then identify the combinations leading
to classifier errors. An example of systematic error identified is that minivans are mis-
classified as snowplows 30% of the time when they are small, orange, and in a forest
with snowy weather. Figure 5.3a describes the approach. One of its major limitations
is the combinatorial explosion. For the vehicle experiment in their paper, 18720 combi-
nations are possible, each requiring 16 image generations. Generating one image with
Stable Diffusion typically takes several seconds. Thus, there is a need to limit the number
of evaluated combinations. The authors use Combinatorial Testing (CT) (Nie and Le-
ung, 2011), and in particular n-wise testing. They test all possible interactions between a
specific number of parameters (n) to significantly reduce the number of test cases while
maintaining high coverage. For example, pairwise testing (2-wise) ensures that every pos-
sible pair of parameters is tested at least once. This method does not permit choosing the
number of combinations to test nor ranking them by importance. Also its performance
is not great: in the experiments of subsection 5.3.3, it does not select much better than
random choice.

5.3.2 Bayesian Optimization to Explore Faster

As an alternative to CT, I propose an efficient iterative process to explore the tex-
tual attributes leading to classifier failure. Below I describe the classifier studied, define
the evaluation domain and subdomains, describe the general pipeline to generate images
for the subdomains, and the proposed guided exploration of attributes. The process is
presented schematically in Figure 5.3b and more formally in Algorithm 3.

Image Classifier To demonstrate the approach without using considerable computing
power, the task considered is simple: binary classification of images containing dogs.
I construct a dog classifier from a classifier pre-trained on ImageNet. Out of the 1000
classes, 119 are different dog breeds. The classifier probabilities of these classes are
summed to get the dog probability and the rest gives the not-dog probability.

Define the Evaluation Domain and Subdomains An evaluation domain is defined as
the ensemble of environmental conditions under evaluation. These conditions are de-
scribed by textual attributes, each containing a finite number of values. They can be
categorical or continuous, but only categorical attributes are considered in this work. The
domain comprises all the possible attribute value combinations, which are called subdo-

74

Subdomain
weather: raining
location: forest
time: night
color: black
viewpoint: side

Generation

class: dog

Evaluation Domain
weather: {sunny, ...}
location: {beach, ...}
time: {day, night}
color: {black, white...}
viewpoint: {front, ...}

Subsample Classifier
Evaluation

Images

(a) Original method of (Metzen et al., 2023). Some subdomains are subsampled from the evalua-
tion domain using CT: a fixed number of subdomains that cover well the search space are selected.
This selection is actually not much better than random selection (see subsection 5.3.3).

Subdomain
weather: raining
location: forest
time: night
color: black
viewpoint: side

Prompt
"A side view of a black dog in the

forest, during the night, it is raining."

Text-to-Image
model

noiseGeneration

Classifier to
evaluate

class: dog

Evaluation Domain
weather: {sunny, ...}
location: {beach, ...}
time: {day, night}
color: {black, white...}
viewpoint: {front, ...}

Selection Accuracy
92%

Evaluation

Filtering
model

Images

(b) Illustration of the proposed method that alternates generation, evaluation, and selection. The
selection function selects the next subdomain to evaluate based on the feedback of the previous
evaluated subdomains. The right choice of the selection function achieves an efficient exploration
of the evaluation domain.

Figure 5.3: Comparison of the original method and the proposed one.

mains. The number of subdomains grows exponentially with the number of attributes
considered.

Here is a simple example. Two attributes are considered: the weather, which takes
two values: (sunny, cloudy), and the location, which takes two values: (city, forest).
The domain contains four subdomains, which are all the attribute value combinations:
(sunny & city), (sunny & forest), (cloudy & city), and (cloudy & forest).

As a starting point, the textual attributes to explore have to be defined. Expert knowl-
edge about the environmental conditions likely to perturbate the classification is required.
As the task is image classification of natural images of dogs, I define the following at-
tributes and associated values in parenthetis: weather (sunny, cloudy, raining, snowing),
location (at the beach, in the forest, in the city, inside a house, in a garden, in the desert,
in the mountains), time (day, night), color (white, black, brown, beige, gray, red, green,
blue), and viewpoint (front, side, rear). Invalid combinations, such as sunny weather

during night time, must be removed.

Generate Data Conditioned by Attributes The process contains the following steps:

• Prompt The first step is to create a textual prompt describing a single subdomain.
Following Metzen et al. (2023), the prompt template is: “A {viewpoint} view of a

75

Algorithm 3 Efficient Exploration of Image Classifier Failures
Input:
Dto eval the evaluation domain
Sto eval the list of subdomains to evaluate
f : the classifier
g: the generative model
h: the selection function
n: the number of allowed evaluations
Seval = ∅ the dataset of subdomains evaluations
s0 ∈ Sto eval: the initial selected subdomain
Explore subdomains:
for i = 0 to n do

Generation
build prompt pi from selected subdomain si
x̂i ← g(pi) ▷ generate and filter images from prompt
Evaluation
ŷi ← argmax f(x̂i) ▷ compute predicted classes
ai ← acc(y, ŷ) ▷ compute classifier accuracy
Selection
Seval ← Seval ∪ {(si, ai)} ▷ add result to dataset
Sto eval ← Sto eval \ si ▷ remove from list
si+1 = h(Seval, Sto eval) ▷ update h and select next

end for

{color} dog {location}, during the {time}, it is {weather}.”. Further prompt
engineering might be required to improve generation quality, as seen in Figure 5.9.

• Generate A text-to-image model generates images conditioned by the textual prompt.
The generation is not deterministic: the starting noisy image is random, and noise
is applied to each step of the reverse diffusion process. This means that one textual
conditioning leads to a variety of aligned images.

• Filter The generation is imperfect; sometimes, the synthetic image does not align
well with the textual prompt input. A filtering process is applied to limit this issue
using CLIP as a zero-shot subdomain classifier where a textual prompt defines each
of the subdomains. The Cosine Similarity between a generated image and all subdo-
mains prompts provides logits. Applying the softmax function to the logits provides
the predicted probabilities that the image corresponds to one subdomain rather than
another. If the prompt with the maximum probability is indeed the prompt used to
generate the image, the image is considered correct; otherwise, it is filtered out.

Guided Exploration of Attributes That Matter Because generating data conditioned
by the attributes described above is time-consuming, I propose an efficient exploration
of the critical attributes. An iterative process alternates the generation of images for a
subdomain, evaluates the classifier on the subdomain, and selects the next subdomain to
evaluate based on this feedback. I propose several selection functions below.

76

Genetic Algorithm Genetic Algorithm (GA) is an efficient optimization method based
on natural selection (Holland, 1992). Its principle is to start with a population of solutions.
The top performers are preserved, and a crossover operation generates children solutions
from pairs of parents. This new generation of solutions undergoes mutations with a small
probability, adding diversity.

Bayesian Optimization Bayesian Optimization (BO) (Jones, 2001; Garnett, 2023) is
often discussed in the context of Surrogate-Model Based Optimization (Zaefferer, 2018).
The aim is to evaluate the costly objective function as few times as possible. To this
end, an efficient model is used as its surrogate. BO typically relies on regression using
Gaussian Processs (GPs), a computational process generally known as Kriging. Despite
their ubiquity, thanks to many positive attributes, GPs have several drawbacks. The most
important one is its cubic complexity of estimating the probabilities, making them inef-
ficient as the observed data points increase. Their use is also contingent on selecting a
kernel and possibly a distance function. It is however possible to effectively apply the
general BO loop with alternative models, such as DNNs (Snoek et al., 2015), as well as
random forests (Hutter et al., 2011) and Bayesian neural networks (Garnett, 2023). The
method to efficiently explore the space of subdomains involves the same core loop at
the center of BO, relying on a predictive model to guide the search towards the critical
subdomains.

1. Selection: choose the next subdomain to evaluate using the model

2. Observation: evaluate the subdomain

3. Model update: add the new observation to the dataset

The selection policy generally means selecting the point which maximizes an acqui-
sition function. Many acquisition functions exist in the literature, and each presents a
different trade-off between exploration and exploitation. The selection policy is inspired
by Expected Improvement (Mockus et al., 1978), a widely used and generally effective
acquisition function. Using the model’s estimation of each subdomain’s quality, the sub-
domain selected is the one with the highest potential improvement over the current best
subdomain.

5.3.3 Experiments and Results

Below are experiments evaluating the different aspects of the approach. I provide in-
formation on the experimental setting, compare different selection functions, and display
qualitative results of classifier evaluation.

Classifier The classifier under study uses the ViT-B/16 architecture. Weights are from
torchvision (maintainers and contributors, 2016), following a pre-training on the Ima-
geNet dataset. The binary dog classifier’s accuracy on ImageNet validation data is more
than 99%. The goal is to assess if it can generalize well to data that is more diverse than
in the original dataset.

77

(a) “A side view of a brown
dog in the city, during the day,
it is sunny.”

(b) “A front view of a white
dog at the beach, during the day,
it is sunny.”

(c) “A rear view of a black dog
in the desert, during the day, it
is foggy.”

(d) “A front view of a red dog
in the city, during the day, it is
snowing.”

(e) “A front view of a white
dog at the beach, during the day,
it is sunny.”

(f) “A side view of a beige dog
in a garden, during the day, it is
raining.”

(g) “A rear view of a blue
dog in the mountains, during the
night, it is foggy.”

(h) A front view of a beige dog
inside a house, during the day, it
is sunny.

Figure 5.4: Samples of generated images with their associated prompt. Images on the top
row are classified as dogs, while those at the bottom are not. Note that some biases of the
generative model appear: sunglasses at the beach and an umbrella when raining.

Subdomains The number of possible attribute combinations is 1 class (dog) × 4
weathers × 7 locations × 2 times × 8 colors × 3 viewpoints = 1344. How-
ever, some of the combinations are impossible (e.g., “during the night, it is sunny” or “in
a house, it is snowing”). After filtering those, 1032 combinations remain, forming all the
possible subdomains to evaluate.

Generative Model Stability AI’s implementation1 of SD 2.1 is used as a text-to-image
generative model. Its architecture is based on Latent Diffusion Models, and text condi-
tioning uses a fixed pre-trained text encoder based on CLIP ViT/H. Generated images
have a 512 × 512 resolution, but they are resized to 256 × 256 to save disk space and
because resizing images at a lower resolution is already part of the classifier data prepro-
cessing. This model is treated as a black box random image generator conditioned by
textual input prompts.

Filtering Model Because the generation is noisy, it is necessary to filter out generated
images that do not align well with the textual input prompt. It requires using a subdomain
classifier that classifies generated images into one of the subdomains. This classifier is a
pre-trained CLIP ViT-L/14 adapted as a zero-shot classifier.

Baselines For comparison, other methods are used as baselines for selecting the subdo-
mains to evaluate.

1https://huggingface.co/stabilityai/stable-diffusion-2-1

78

https://huggingface.co/stabilityai/stable-diffusion-2-1

• The random selection simply randomly picks a subdomain to test in the list of the
remaining ones.

• The oracle knows all the subdomain’s accuracies in advance, and it chooses the
subdomains by order of increasing accuracy. This is the best way to select the
subdomains, but also the most costly as it requires knowing all the subdomain per-
formances.

• CT aims to test a limited number of combinations that cover well the search space.
In particular, I use n-wise testing from the library allpairspy (allpairspy). The
variable n varies from 2 (pairwise testing) to 5 (because there are 5 attributes). This
approach was used by (Metzen et al., 2023).

Method Details Two different approaches are tested:

• GA The population size is 20 and the library pymoo is used (Blank and Deb, 2020).

• BO The predictor takes a one-hot embedding of the subdomain attributes as input
to predict the accuracy. Random Forest Regressors (Breiman, 2001), Lasso (Tib-
shirani, 1996), Linear Regression, and Support Vector Regression (SVR) (Drucker
et al., 1996) are tested using scikit-learn (Buitinck et al., 2013). The methods
pre-train on 10 random subdomains to lower the variability of each run.

Metrics The metrics are: selected subdomain accuracies, average accuracy of selected
subdomains, and coverage of the 10% lowest accuracies subdomains. The Spearman rank
correlation evaluates the quality of the predictors.

Evaluating All Subdomains for Reference To validate the approach, the performance
results of all subdomains are saved as shown in Table 5.1. Because all evaluation results
are pre-computed, benchmarking the different selection functions is done by replacing the
generation and evaluation parts with a simple table look-up. This allows for comparing
different selection functions quickly and removes the variability originating from gener-
ating different images each time. 50 valid images were generated for each of the 1032
subdomains. It took approximately 200 hours to generate all images on one NVIDIA
V100 GPU. Sometimes, hundreds of images had to be generated to obtain 50 valid ones
after filtering. The expected evaluation time of one subdomain is 12 minutes, or 1 hour
for 5 subdomains.

Table 5.1: Reference evaluation data. The generation and evaluation steps are pre-
computed, and the results are saved in a table. A table look-up replaces these costly
steps to compare different selection functions quickly.

Subdomain # Viewpoint Color Time Location Weather Classif. acc.

0 side white day at the beach sunny 0.98
1 side white day at the beach snowing 0.94
2 side white day at the beach raining 0.86
...

1031 rear blue night in the mountains foggy 0.66

79

0 200 400 600 800 1,000

0.2

0.4

0.6

0.8

1

subdomains by order of evaluation

ac
cu

ra
cy

random
oracle
GA
BO

(a) Evolution of the accuracy of selected sub-
domains during the exploration (lower is bet-
ter). A moving average with a window size of
10 was used to improve clarity. GA and the BO
quickly select low-accuracy subdomains until
only higher-accuracy subdomains remain.

0 200 400 600 800 1,000

0.2

0.4

0.6

0.8

1

subdomains by order of evaluation

av
er

ag
e

ac
cu

ra
cy

CT
random
oracle
GA
BO

(b) Evolution of the average accuracy on sub-
domains already evaluated during the explo-
ration (lower is better). All methods converge
to the global accuracy. Combinatorial testing
is not much better than random selection, com-
pared to the GA and BO.

0 200 400 600 800 1,000

0

50

100

subdomains by order of evaluation10
%

lo
w

es
ta

cc
ur

ac
y

su
bd

om
ai

ns
co

ve
ra

ge
[%

]

CT
random
oracle
GA
BO

(c) Evolution of the 10% lowest accuracy sub-
domains coverage (higher is better). The 10%
(103) subdomains with the lowest accuracies
are identified, and the proportion covered by
the subdomains selected during the exploration
is computed. The BO finds all of them after
evaluating ≈ 300.

200 400 600 800 1,000

0.7

0.8

0.9

training set size

Sp
ea

rm
an

co
rr

el
at

io
n

on
te

st
se

t

RandomForestRegressor
LinearRegression
Lasso
SVR

(d) Spearman’s rank correlation coefficient for
different predictors and training set sizes. For
small training sizes, Lasso is the best by a small
margin while SVR is the worst. Lasso is cho-
sen as the default predictor because small train-
ing sizes are the most important to explore the
subdomains with limited time.

Figure 5.5: Different metrics to compare the quality of the subdomain selection when it-
erating on the loop generation, evaluation, and selection. In general, combinatorial testing
is not much better than random selection, and it only gives a few options for the number
of subdomains selected. GA and BO are much more efficient and can explore any given
number of subdomains according to the computation time available. Note that the x-axis
of 5.5a, 5.5b, and 5.5c could be replaced by GPU.hours going from 0 to ≈ 200. All plots
are averaged over 10 seeds and the standard deviations are shown.

Figure 5.4 shows samples of generative images with their input prompt. While not
perfect depictions of dogs, they are close enough to benchmark the classifier. Some im-
ages clearly depict dogs, yet the classifier fails to identify them. This highlights some of
its limits: for instance, the presence of sunglasses or a small umbrella piece makes the
classifier fail.

80

Benchmarking the Selection Functions The main goal of selection functions is to
quickly identify subdomains with low accuracy. To measure this, Figure 5.5 shows the
evolution of different metrics during the exploration . The main conclusion is that com-
binatorial testing (n-wise testing with n ∈ {2, 3, 4, 5}) is not much better than random
selection. Also, it has the disadvantage of restricting the number of selected subdomains:
this number cannot be tuned. GA is much better, and BO is even better. BO can suc-
cessfully identify all the 10% most critical subdomains (with lowest accuracies) after
evaluating ≈ 40% of all subdomains. This also proves that subdomain performance can
be precisely inferred from the domain attributes. This means that classifier failures can
be explained from the attributes, providing interesting insights into the classifier decision
process.

Figure 5.5d compares the Spearman’s rank correlation coefficient for different pre-
dictors. It measures the strength and direction of the monotonic relationship between two
ranked variables, here the predicted and test accuracies. A value close to 1 means the rela-
tionship between the two variables is monotonic. Lasso is chosen as the default predictor
for BO because it is the best method for small training set sizes. Indeed, the beginning
of the exploration, when the data is limited, is particularly important. Furthermore, it
showed less variability than, for example, random forests.

Figure 5.6 details subdomain accuracies for a specific step in the evaluation process:
when the number of evaluated subdomains equals 61 (the number of subdomains selected
by 3-wise testing). This also shows a clear advantage for GA and BO in quickly identify-
ing low-accuracy subdomains.

0 0.5 1
0

5

10

15

accuracy

su
bd

om
ai

n
co

un
t

random

0 0.5 1
0

5

10

15

accuracy

oracle

0 0.5 1
0

5

10

15

accuracy

3-wise testing

0 0.5 1
0

5

10

15

accuracy

GA

0 0.5 1
0

5

10

15

accuracy

BO

Figure 5.6: 3-wise testing selects 61 subdomains to evaluate. Most of them are high-
accuracy. It can be compared to the other methods when allowed to explore 61 subdo-
mains. GA and BO identify much more low-accuracy subdomains.

Qualitative Analysis of Classifier Failures The main focus of this work is to efficiently
detect the attributes with the most impact on classification performance. This can be used
to perform qualitative assessments of the classifier’s behavior when considering different
attributes. The BO approach is used to explore 300 subdomains. Figure 5.7 shows the
average accuracies for each attribute value. This shows the impact of each individual
attribute. Figure 5.8 displays the impact of all the possible combinations of the attributes
characterizing weather and location.

Summary of the Results Performing BO with Lasso as a selection function allows for a
much more efficient exploration of subdomains leading to classifier failures. For instance
the 100 subdomains with the lowest accuracy are all identified after exploring 400 out of
the 1032 subdomains. After only a few subdomains are evaluated, the selection function
is able to efficiently guide the exploration process.

81

si
de

fr
on

t

re
ar

0.6

0.8

viewpoint

ac
cu

ra
cy

su
nn

y

fo
gg

y

sn
ow

in
g

ra
in

in
g

0.6

0.8

weather

bl
ac

k
be

ig
e

re
d

w
hi

te
bl

ue
br

ow
n

gr
ay

gr
ee

n

0.6

0.8

color

da
y

ni
gh

t

0.6

0.8

time

at
th

e
be

ac
h

in
th

e
fo

re
st

in
th

e
m

ou
nt

ai
ns

in
th

e
ci

ty
in

th
e

de
se

rt
in

a
ga

rd
en

in
si

de
a

ho
us

e

0.6

0.8

location

Figure 5.7: Average accuracies for each value of each attribute. The 95% confidence
interval is also shown.

at
th

e
be

ac
h

in
a

ga
rd

en

in
th

e
ci

ty

in
th

e
de

se
rt

in
th

e
fo

re
st

in
th

e
m

ou
nt

ai
ns

in
si

de
a

ho
us

e

day / foggy

day / raining

day / snowing

day / sunny

night / foggy

night / raining

night / snowing

location

tim
e

/w
ea

th
er

0.5

0.6

0.7

0.8

0.9

Figure 5.8: Heatplot displaying the average accuracies for different attribute values.

Limitations Benchmarking classifiers with generative models has limitations, as ob-
served by other work (Wiles et al., 2022; Metzen et al., 2023). There can be occasional
misalignments between the prompt and the image due to bias or language limitations. For
instance, in this work, the viewpoint attribute is sometimes not the one requested in the
text prompt. Generator failures also happen for a few specific subdomains, e.g., nearly all
images for “A front view of a green dog in the mountains, during the night, it is raining.”
are in a cartoon style, which is not the case for snowing, see Figure 5.9. Prompt engineer-
ing is required to allow a rigorous benchmark of the classifier. Also, generated images do
not cover everything possible in the real world. The approach tackles the computing time
problem. Its main limitation is that there is no guarantee that a good selection function
will identify all problematic subdomains for an incomplete exploration. For instance, a
subdomain might be difficult for completely different reasons than the others. Thus, a se-
lection based on learning a relation between subdomain attributes and performance might
miss it.

82

Figure 5.9: In the top row, images are generated with the prompt “A front view of a green
dog in the mountains, during the night, it is raining.”. They are mostly in a cartoon style.
In the bottom row, the same prompt, but “raining” has been replaced by “snowing”. The
phenomenon disappears. Is this a generator failure? Careful prompt engineering, e.g.,
adding “a realistic image”, is required to ensure alignment between the textual prompt,
the generated images, and the expected images.

5.4 Using Textual Attributes to Define a Reliability Do-
main

5.4.1 Semantic Binning for Semantic Selective Classification

In the previous section, we saw a method to efficiently find attributes likely leading
to failure and establish a link between data description and classifier accuracy. In this
section, I associate these concepts with selective classification to instead study when the
classifier is reliable. The standard way to do selective classification is to keep only data
for which a confidence score is above a given threshold. Here, the idea is to use data
description to compute a confidence score used for selective classification.

Semantically Described Domain and Subdomains As in section 5.3, textual attributes
describe the images (e.g., background and size). These textual attributes have a finite
number of possible values (e.g., cloudy or sunny for the weather; small or big for the
size). Each image is described by a combination of attribute values (cloudy weather

and small size). One combination of attribute values is called a subdomain, and each
subdomain contains several images. Semantic Selective Classification (SSC) selects many
subdomains for which the classifications are likely to be correct to form a domain. The
method requires attribute values for each image. They can come from annotations if the
method is used to understand the classifier’s strengths and weaknesses. If the method is
used at test time, attribute values have to be estimated, e.g., by another model like CLIP.
Besides using high-level image features as attributes, I also use the classifier’s predicted
class as an attribute. Indeed, this characteristic can easily be estimated (with the classifier)
and is related to a misclassification likelihood.

83

Annotated validation data

class: elephant
background: desert
size: big
texture: default
orientation: 315°

class: camel
background: appartment
size: small
texture: grass
orientation: 225°

Classifier

Subdomain accuracy lookup table

background size ... acc.

desert small ... 95%

museum big ... 68%

...

temple normal ... 79%

Annotated test data

class: ?
background: desert
size: normal
texture: default
orientation: 315°

class: ?
background: temple
size: big
texture: grass
orientation: 225°

Classifier

Semantic binning
attributes values

confidence score

predicted class

Figure 5.10: Semantic Selective Classification (SSC). Validation data annotated with at-
tribute values is used to create a lookup table of subdomain accuracies. At test time,
images are assigned to their subdomain according to the attribute values, and the confi-
dence score is set as the subdomain accuracy, a process called semantic binning, which
resembles histogram binning, a calibration method.

Semantic Binning Here is how we can obtain a confidence score from data descriptions.
Validation data is first split into different subdomains according to the attribute values.
Then, the classification accuracy is computed for each subdomain. The confidence score
for a subdomain is set as the subdomain accuracy. At test time, data is assigned to their
respective subdomain according to the attribute values, and their confidence score is set
accordingly, using previously computed values.

I call this method Semantic Binning (SB) due to its similarity with the histogram bin-
ning calibration method (mentioned in section 4.4). Histogram binning divides calibration
data into bins according to their confidence values. Then, for each bin, the classifier accu-
racy is computed. The calibrated probability is set as the bin accuracy. At test time, data
is assigned to bins according to the confidence values, and their calibrated probability is
set as the bin accuracy computed with calibration data.

It can happen that at test time, we get an image belonging to a subdomain whose ac-
curacy was not estimated with validation data, e.g., because we have a fine description
that generates a large number of subdomains, some of which are not covered by the val-
idation data. In that case, a fallback process is needed to estimate the accuracy. Coarser
subdomains are thus considered by dropping some of the attributes. For instance, if a
specific combination of a background and a size was not seen on the validation data,
the size attribute is dropped. The estimated accuracy is the average accuracy for this
specific background, regardless of the size.

SB computes confidence scores used by a selection function as for standard Selective
Classification. The selection function uses a threshold on those confidence values to deter-
mine whether each image belongs to the domain. I call Semantic Selective Classification
the method of applying SC to confidence scores computed with SB.

84

Estimating the Attribute Values Below, I experiment with a dataset containing at-
tribute values annotations to validate the approach. However, in practice, such values
do not exist. A way to estimate them is by using a general foundation model like CLIP
(Radford et al., 2021). CLIP is used as a zero-shot attribute value classifier by using text
templates, e.g., “the background is a {forest, desert...}”. The attribute value leading to the
lowest Cosine Similarity between the text embedding and the image embedding is CLIP’s
prediction. See Figure 5.11 for an illustration.

I1·T2 I1·T3 …

I2·T1 I2·T3 …

I3·T1 I3·T2 …

⋮ ⋮ ⋮

I1·T1

I2·T2

I3·T3

(1) Contrastive pre-training

Image
Encoder

Text
EncoderPepper	the

aussie	pup

Pepper	the
aussie	pup

Pepper	the
aussie	pup

Pepper	the
aussie	pup

T1 T2 T3 …

I1

I2

I3

⋮

(2) Create dataset classifier from label text

plane

car

dog

⋮

bird

A	photo	of
a	{object}.

⋮

Text
Encoder

T1 T2 T3 TN

…

(3) Use for zero-shot prediction

Image
Encoder

I1 I1·T2 I1·TNI1·T1

…

…

A	photo	of
	a	dog.

TN

IN·T1 IN·T2 IN·T3

I1·TN

I2·TN

I3·TN

⋮

…IN

…

⋮ ⋱

IN·TN

I1·T3

Figure 5.11: CLIP training and use as a zero-shot classifier. From (Radford et al., 2021).

Getting Enough Validation Data per Subdomain Another requirement of the method
is to have sufficient validation data to estimate the accuracy for each subdomain reliably.
For instance, we would like to have images of birds in uncommon contexts. The idea is to
use synthetic data to augment the validation set. In particular, Textual Inversion (TI) (Gal
et al., 2023) allows to personalize image generation of text-to-image models. From a few
examples of a “concept,” e.g., a specific bird, the method finds the “textual embedding”
corresponding to the concept, i.e., the embedding leading to generating images close to the
few examples. This learned embedding can then be combined into sentences to generate
the concept in different contexts. See Figure 5.12 for an illustration.

Figure 5.12: Illustation of Textual Inversion. An optimization process finds the embed-
ding of a pseudo-word S∗ that matches the concept present in the input samples. The
pseudo-word can then be used in sentences to generate the concept in different contexts
or styles. From (Gal et al., 2023).

85

5.4.2 Experiments with Synthetic Data
Weak Classifier on PUG Animals Dataset The PUG Animals dataset (Bordes et al.,
2024) is a photorealistic synthetic image dataset with annotated factors of variations,
which are called attributes here. Images are produced with Unreal Engine, a game engine
that produces photorealistic environments. The dataset contains 215040 images using 70
animal assets, 64 backgrounds, 3 object sizes, and 4 textures under 4 different cam-
era orientations. All combinations of attributes are covered by the images with one
image for each combination. I use 50% of the data for training, 25% for validation, and
25% for test.

The classifier under study is based on the ViT-16-B architecture and pre-trained on
ImageNet. The classifier head (from features to logits) is fine-tuned on the training set
and reaches an accuracy of 73% on the test set. This is, for the purpose of validating the
approach, a weak classifier because fine-tuning the whole classifier results in a classifier
that is rarely incorrect (accuracy above 99%). For almost perfect classifiers, selective
classification is not useful.

As shown in Figure 5.13, some attribute values impact the classifier’s accuracy. Values
for orientation and texture attributes do not have a significant impact, but values of
background, class, and size matter more.

0

200

400

600

800

co
un

t

0

200

400

600

800

0

5000

10000

15000

0

2500

5000

7500

10000

12500

0

2500

5000

7500

10000

12500

class
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Global Accuracy

background
0.0

0.2

0.4

0.6

0.8

Global Accuracy

0.7 1.0 1.3
size

0.0

0.2

0.4

0.6

0.8

Global Accuracy

Default
Asphalt

Grass Sky

texture

0.0

0.2

0.4

0.6

0.8

Global Accuracy

0 45 225 315
orientation

0.0

0.2

0.4

0.6

Global Accuracy

Figure 5.13: Counts and average accuracies when test data is grouped by class and at-
tribute values. For a weak classifier and PUG data.

As a first experiment, very basic SSC can be done by only considering a single at-
tribute. In that case, the number of subdomains is equal to the number of possible attribute
values, which is very small. Let us use the object size attribute as an example. Three sub-
domains are possible: images with small, normal, and big size. SB assigns a confidence
score for each one: high confidence for big size (which has high accuracy), and lower for
small size (which has lower accuracy). SSC defines a domain as all data for which the
confidence score is lower than the threshold. For decreasing threshold values, the domains
are: only big sizes; big and normal sizes; big, normal, and small sizes. They corre-
spond to the three points in the accuracy-coverage curve of Figure 5.14. The figure also
compares different attribute choices. The best attribute is the predicted class: it has
the most impact on the classifier’s correctness. The background is also important. This
is aligned with the histograms of Figure 5.13, whose variability is linked to the attribute’s
impact on the classifier’s correctness. For a single number measure, the AUROC, a stan-
dard metric for selective classification, is shown in Table 5.2, which confirms the ranking

86

0.2 0.4 0.6 0.8 1.0
coverage

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

oracle
MSP
attribute(s)=['predicted class', 'size', 'texture']
attribute(s)=['predicted class']
attribute(s)=['background']
attribute(s)=['size']
attribute(s)=['texture']
attribute(s)=['orientation']

Figure 5.14: Accuracy-coverage curves. Using single attributes and the best attributes
combination vs. the baseline (MSP).

of the attributes: predicted class, background, size, texture, and orientation.

Looking at single attributes is very limited, so now let us combine several attributes.
Table 5.2 shows results for different combinations of attributes. The total number of
subdomains is the product of all possible attribute values and grows quickly. When the
number of subdomains is high, estimating subdomain accuracy with validation data be-
comes an issue. Because data is split into more subdomains, each subdomain contains
less data, and its accuracy is thus not well estimated. I fixed the minimal number of
validation examples in a subdomain to 3 in order to avoid extremely bad accuracy estima-
tions. This value is very small but representative of the usually small number of examples
per subdomain. There are now many subdomains with bad accuracy estimates on val-
idation data, and many subdomains are not even covered. For these subdomains, test
examples are assigned a confidence score using the fallback process described in subsec-
tion 5.4.1. According to Table 5.2, the best attribute combination is [predicted class,
size, texture]. Figure 5.14 shows its accuracy-coverage curve. Compared to just using
the predicted class, the additional attributes add information to predict classifier fail-
ures without creating too many subdomains (840). Adding the orientation degrades
the performance because this attribute is not by itself a good predictor of failure and also
because it multiplies the number of subdomains. For this combination of attributes, the
selected subdomains for a selective accuracy of 95% are listed in Table 5.3.

To conclude, SSC does not select data as well as the MSP but provides semantic in-
formation on the data “in-domain” vs. “out-domain.” Because of limited data, there is
a compromise between the description preciseness and the selective classification perfor-
mance: too fine descriptions lead to many subdomains for which the accuracy is poorly
estimated and does not generalize to test data. Also, the problem studied here is artificial:
the classifier is weak, so SSC is useful for detecting its limits that are linked to semantic
attributes. Fine-tuning all the classifier’s weights results in an almost perfect classifier.
The purpose of selective classification is to improve accuracy by trading off coverage, but
if the global accuracy is already > 99%, then selective classification has no benefit.

87

Table 5.2: Comparing different choices of attributes to define subdomains for PUG data.
The total number of subdomains is the total number of attribute value combinations. The
number of validation subdomains is the number of subdomains containing at least 3 vali-
dation examples (required to estimate the subdomain accuracy). The number of fallbacks
is the number of times a test example does not belong to any of the validation subdomains
and whose confidence score computation has to follow the fallback process. AUROC
measures the quality of the selective classification using a given confidence score.
Note that the baseline AUROC when using the classifier MSP as a confidence score is
0.913, and for random selection, the AUROC is 0.5.

Attributes considered # subdom. (valid/total) % fallbacks AUROC (↑)
predicted class 70 / 70 0% 0.742
background 64 / 64 0% 0.668
size 3 / 3 0% 0.642
texture 4 / 4 0% 0.556
orientation 4 / 4 0% 0.520
predicted class, background 4467 / 4480 1.54% 0.781
predicted class, background, size 9978 / 13440 24.3% 0.774
predicted class, background, size, texture 3835 / 53760 91.9% 0.751
predicted class, background, size, texture, orientation 557 / 215040 98.7% 0.745
background, size 192 / 192 0% 0.730
background, size, texture 768 / 768 0% 0.736
background, size, texture, orientation 3072 / 3072 0% 0.726
predicted class, size 210 / 210 0% 0.779
predicted class, size, texture 840 / 840 0% 0.787
predicted class, size, texture, orientation 3357 / 3360 0.04% 0.771

Table 5.3: List of 81 subdomains out of the 840 defined by using the combination of
the attributes: predicted class, size, and texture. These subdomains are those for
which the confidence threshold corresponds to 95% selective accuracy and 9% coverage
(4972/53760 test examples). Some subdomains are grouped in one line to save space.

Predicted class Size(s) Texture(s)

Ammonite Normal Default
Ammonite Big Default; Grass

Ant Big Default
Armadillo Normal Default; Asphalt; Grass; Sky
Armadillo Big Default; Sky

Bear Normal; Big Default
BlackRockFish Small; Normal Default

Camel Small Default; Sky
Camel Normal; Big Default

Capybara Small Asphalt
Capybara Normal Asphalt; Grass
Capybara Big Default
Caribou Normal Default

Cat Normal; Big Default
Cattle Small Sky

Dolphin Big Default
EarlessSeal Normal Default

Elephant Small Default; Asphalt; Grass; Sky
GiantAnteater Normal Default; Grass; Sky
GiantAnteater Big Default
GiantTortoise Normal Sky
GiantTortoise Big Default; Grass

Predicted class Size(s) Texture(s)

Goat Big Default
GoldBeetle Normal Default; Asphalt; Sky
GoldBeetle Big Default; Asphalt; Sky

Hippopotamus Normal; Big Default
Horse Normal; Big Default
Impala Normal Default

Koi Small Asphalt
Koi Normal Asphalt; Grass; Sky
Koi Big Default; Asphalt; Grass
Lion Small; Normal Default

Parasaurolophus Normal Default
Parasaurolophus Big Grass

Penguin Normal Grass; Sky
Penguin Big Default; Grass

PoisonDartFrog Big Default
Scorpion Big Default; Sky

Tapir Normal; Big Default
Triceratops Small Default; Grass; Sky
Triceratops Normal Default; Sky
Triceraptos Big Default

Turtle Normal Sky
Turtle Big Default; Grass; Sky

88

5.4.3 Experiments with Real Data
Estimating Attribute Values for Real Image Datasets The experiments above use
synthetic data for which attribute values are annotated. However, in practice, such anno-
tations are unlikely to exist. This paragraph considers a more realistic setting. The task
is fine-grained image classification of bird species with the dataset CUB-200-2011 (Wah
et al., 2011). It contains 11788 images of 200 bird species, with approximately 60 images
per class. The dataset is split into a training set of size 5994 and a testing set of size
5794. I use the training set as a validation set. Supposing that CUB data was not seen
during training, CLIP is used as a zero-shot classifier, with a test accuracy of 63%. It is
also used as an attribute value predictor for the background (sky, water, ground, plants,
and branches) and bird position (flying, swimming, and still), as seen in Figure 5.15.
To limit the impact of wrong prediction, I use a threshold on the predicted probability:
when the value is under 0.4 for the background or 0.7 for the position, the prediction
is set as “unknown”. These thresholds maximize the AUROC on validation data when
considering each attribute for subdomain definition. Figure 5.16 shows that the attribute
background and position have a moderate impact on the accuracy. Contrary to PUG
data, the attributes’ distribution is not balanced, e.g., there are few images of flying birds.

Table 5.4 and Figure 5.17 both show similar results. The attributes background and
position have a low selective classification performance: they do not correlate well with
classification correctness. Grouping these attributes is not much better. However, the
attribute predicted class performs well and even outperforms MSP as measured by
AUROC and selective accuracy for coverage > 30%. Combining the predicted class

with other attributes degrades the performance.
To conclude for this dataset, SSC based on the background and position attributes

values is not performing well at selecting data likely to be well-classified, as shown by
the accuracy-coverage curves of Figure 5.17 and AUROC in Table 5.4. Two reasons can
explain this: the attribute prediction is not reliable, and the attributes are not correlated

label: Gadwall
back_pred: on the water (0.99)

pos_pred: swimming (0.99)

label: Anna Hummingbird
back_pred: in plants (0.60)

pos_pred: flying (0.73)

label: Ruby throated Hummingbird
back_pred: on a branch (0.78)

pos_pred: still (0.66)

label: Heermann Gull
back_pred: on the ground (0.66)

pos_pred: still (0.53)

label: Bohemian Waxwing
back_pred: on a branch (0.94)

pos_pred: still (0.60)

label: Yellow headed Blackbird
back_pred: on the ground (0.77)

pos_pred: still (0.85)

label: Bronzed Cowbird
back_pred: on the ground (0.99)

pos_pred: still (0.84)

label: Common Raven
back_pred: on the ground (0.88)

pos_pred: still (0.88)

label: Pomarine Jaeger
back_pred: in the sky (0.65)
pos_pred: swimming (0.45)

label: Pied Kingfisher
back_pred: on a branch (0.80)

pos_pred: still (0.60)

Figure 5.15: Samples of CUB data, with zero-shot predictions from CLIP for the
background and position attributes, with the predicted probability in parenthesis.

89

0

20

40

60

co
un

t

0

2000

4000

6000

0

2000

4000

6000

class
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

in the sky

on the water

on the ground
in plants

on a branch
unknown

background_pred

0.0

0.2

0.4

0.6

flying
unknown

swimming still

position_pred

0.0

0.2

0.4

0.6

Figure 5.16: Counts and accuracies when test data is grouped by class and attribute values.
CLIP is applied as a zero-shot classifier and attribute predictor on CUB data.

Table 5.4: Comparison of different choices of attributes to define subdomains for CUB
data. The total number of subdomains is the total number of attribute value combina-
tions. The number of validation subdomains is the number of subdomains containing at
least 3 validation examples (required to estimate the subdomain accuracy). The number
of fallbacks is the number of times a test example does not belong to any of the vali-
dation subdomains and whose confidence score computation has to follow the fallback
process. AUROC measures the quality of the selective classification using a given confi-
dence score. Note that the baseline AUROC when using the classifier MSP as a confidence
score is 0.810, and for random selection, the AUROC is 0.5.

Attributes considered # subdom. (valid/total) % fallbacks AUROC (↑)
predicted class 192 / 200 0.22% 0.833
predicted background 6 / 6 0% 0.535
predicted position 4 / 4 0% 0.527
predicted background, predicted position 23 / 24 0% 0.551
predicted class, predicted position 371 / 800 4.19% 0.829
predicted class, predicted background 423 / 1200 7.58% 0.831
predicted class, predicted position, predicted background 545 / 4800 16.1% 0.829

with classifier correctness. By looking at samples, e.g., in Figure 5.15, we see that the
attribute predictions are not perfect but mostly correct. The second reason is thus more
likely to explain the low performance: these attributes just do not really correlate with the
classifier performance. However, filtering on the predicted class outperforms MSP.
For this dataset, predictions are mostly wrong for some predicted classes and the classifier
should abstain for these classes. Thus, selective classification can be improved when only
considering the predicted class attribute. As in the previous case, the weak classifier
could be improved with few-shot learning approaches.

Augmenting Real Images with Synthetic Data In the previous experiments, we have
seen that SSC requires validation data covering each combination of attributes in order
to estimate subdomain accuracies reliably. In practice, such data is either unavailable
or could be used for other important purposes, such as fine-tuning. To solve this issue,
an appealing idea is to use synthetic data. Recent techniques allow personalizing image
generation using text and images. In particular, with Textual Inversion applied to text-to-

90

0.0 0.2 0.4 0.6 0.8 1.0
coverage

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

MSP
attribute(s)=['prediction']
attribute(s)=['prediction', 'background_pred', 'position_pred']
attribute(s)=['background_pred', 'position_pred']
attribute(s)=['background_pred']
attribute(s)=['position_pred']

Figure 5.17: Accuracy-coverage curves. Using single attributes and attributes combina-
tions vs. the baseline (MSP). Attributes background and position are only slightly
discriminative for classification correctness, even when combined. Also, they do not im-
prove the performance over only using predicted class as attribute.

image models, we can generate variations of existing images using textual descriptions.
The approach here requires the generation of CUB-style birds in different contexts defined
by the attributes background and position.

The generative model used is Stable Diffusion 2.1. Code for the model and TI come
from the diffusers library (von Platen et al., 2022).10 sample images per class are used
for TI, and the initializer token is “bird”. The scheduler for generating images is DDIM
(Song et al., 2021a) with 50 inference steps.

Figure 5.18 shows qualitative samples highlighting the limit of the approach. Using
SD only conditioned by text is not good enough, in part because the image style is not the
same as CUB images. For instance, many synthetic images show a high level of blur in
the background, unlike real images. Also, some specific class names are not well known
by the generator. For instance, prompting rhinoceros auklet images produces a weird
combination of a rhinoceros and a bird. This is what TI aims to solve: learning new
concepts from a few examples. Unfortunately, it does not work well enough: birds are
not close enough to the original species, and the generator struggles to consider additional
conditions (e.g., “on the beach”).

To conclude, using synthetic images does not solve the issue of too few data per
subdomain simply because the images are not good enough. Neither the correct class
nor the context are reliably generated. Future generative models and better inversion
techniques would likely overcome these issues, but SD 2.1 and Textual Inversion, both
released in 2022, are not good or reliable enough for this use case.

Analysis Experiments on synthetic data with a weak classifier demonstrate promising
results for SSC. Combining the attributes of predicted class, size, and texture to
select data provides insights on how combinations of attributes impact classifier accuracy.

However, on real data there are the difficulties of annotating the images with at-
tributes and having validation data in large quantity. In the experiments, the attributes
of background and position do not have a big impact on classifier accuracy. Another
difficulty is thus the selection of important attributes.

91

(a) Some image samples used for Textual Inversion.

(b) Synthetic images generated from the textual prompt: “a high quality photo of a [class name]
on the beach”.

(c) Synthetic images generated after textual inversion from the textual prompt: “a high quality
photo of a [placeholder token] on the beach”. The placeholder token is a string for which the
embedding was learned by TI.

Figure 5.18: Comparison between real images and synthetic images, without and with
Textual Inversion. Two classes are shown: black footed albatross on the left side
and rhinoceros auklet on the right. Without TI, the image context (beach) is re-
spected, but the birds are not well generated, especially the rhinoceros auklet, whose
name seems confusing to the generator. TI aims to align the generated birds with the
provided samples but fails to do as well; it also struggles to respect the text prompt.

5.5 Discussion

Text-to-image models have great potential as useful tools for benchmarking image
classifiers by generating images of failure cases. However, since the highest-quality gen-
erators are based on diffusion models, their high inference time prevents large-scale image
synthesis for advanced evaluation. Section 5.3 starts from an evaluation domain described
by textual attributes. To efficiently explore the critical attribute combinations that cause
classifier failures, I propose to create an iterative process that alternates image generation,
classifier evaluation, and attribute selection. I compared different selection functions and
showed that they all outperformed the method used in previous work. I believe that the
approach can be further improved by using Neural Architecture Search methods, taking
advantage of low-fidelity evaluations. For example, the accuracy could be estimated with

92

20 images. The method would then use these low-fidelity evaluations to decide which
combination is worth testing with high-fidelity, say 200 images. In addition, for more
complex problems, one can use word embeddings from language models instead of one-
hot embeddings of finite attributes. The work of section 5.3 can potentially improve the
benchmarking of image classifiers with text-to-image models, as it addresses a major lim-
itation: computational time. It allows the exploration of larger domains and more precise
estimates of accuracies and class probabilities.

Instead of looking at a classifier’s failures, we can look at when it is reliable. This
is the topic of section 5.4. I have experimented with the idea of selecting data according
to attribute values to add a semantic dimension to selective classification. Results for
the synthetic PUG dataset are promising. However, for real images, such as the CUB
dataset, one has to find the attributes that matter and reliably estimate their values. Using
synthetic images to augment real images did not work because the generated images were
insufficient in quality.

Selective classification originally tackles filtering out samples likely to be misclassi-
fied among in-distribution data only. In this setting, the classifier is usually mostly robust
to the different attribute values, as those values have been seen during training. Because
different attribute values do not directly cause errors, SSC does not perform a good se-
lection of data that is likely to be misclassified. SSC makes more sense when there is
a form of distribution shift and when the considered attributes influence the classifier’s
correctness. This is the first limitation of SSC. Estimating the attribute values can also be
a problem. Large multimodal models can be used to predict values for general attributes,
but might introduce errors. Another limitation is the need for a certain amount of val-
idation data for each subdomain to estimate accuracy reliably. This limits the number
of attributes that can be considered. For each new attribute, the number of subdomains
is multiplied by the number of attribute values, quickly leading to a combinatorial explo-
sion. Subdomains can also be so precise that they only contain a few to no data. I explored
using synthetic data to augment the validation data, but the generated data is unrealistic
and does not align with the target attributes. Another issue is the determination of which
attributes to consider: some do not impact the accuracy. Works on discovering failures
might be a solution.

These limitations prevent Semantic Selective Classification from being generally ef-
fective for image classification. However, it should be interesting in particular settings like
a classifier under covariate shift, where large multimodal models can accurately predict
general attributes but not the class. The idea should benefit from advances in generative
AI. An interesting perspective is to study SSC applied to tabular data, where attribute
values could simply be the values of the input samples.

93

Chapter 6

Conclusion / Discussion

6.1 Is the Initial Goal Solved?
The contributions of this thesis are diverse and were divided into three chapters (3, 4,

and 5). Each chapter has its set of questions, tools, and uses. Let us now go back to the
original goal defined in section 1.4. Did the thesis work successfully solve the questions
(Q) asked and demonstrate the targeted uses (U)?

Q1 How can a domain be expressed? Are there boundaries? A domain can be ex-
pressed in several ways, but it depends on the definition. In many works on OOD detec-
tion, the domain is defined by the examples whose class was seen during training. Any
data of a different class should be detected as it is considered out of the domain. Many
OOD detection methods are a form of a binary classifier, which expresses the domain. In
DA and DG, the domain is defined by a specific dataset with specific characteristics. In
this thesis, the domain is defined as the set of data for which predictions are reliable. In
sections 3.3 and 3.4, the classifier is coupled with a GAN to generate examples at the limit
of the domain. These synthetic examples help identify the boundaries but do not provide
a clear way to express the domain, even when using the latent space as discussed in 3.5.

The notion of reliability domain is more aligned with selective classification. Standard
selective classification considers in-distribution data only. This is a reasonable hypothesis
for controlled production settings. The domain is expressed by the selection function,
which aims to predict whether the prediction is likely to be correct. In-domain selective
accuracy can be estimated and is higher than the global accuracy, as difficult data is filtered
out. The selection function usually uses a threshold on a confidence score, so the domain
size and performance can be controlled. Boundaries correspond to all data for which the
confidence score value equals the threshold. Section 4.3 showed that simply using the
classifier MSP as a confidence score provides great results, not easily improved by more
complex methods. It means that a well-trained classifier is well aware of its uncertainty for
in-distribution data. Selective classification is a straightforward way to express a domain.

However, it has two limitations. The first one is that selective accuracy is a global
metric in the domain and does not give additional information on individual examples.
This is what calibration aims to do: provide calibrated confidence scores for each ex-
ample. A calibrated confidence score not only ranks data for selective classification but
also quantifies the uncertainty. Instead of the binary view of selective classification, cal-
ibrated confidence scores provide better local insights by quantifying the uncertainty for
each example. In this thesis, two new approaches to improve confidence calibration were

94

developed: use a surrogate binary classifier in section 4.4 and use synthetic data in sec-
tion 4.5. However, how calibration can improve the domain expression remains unclear.
The second limitation is that neither selective classification nor calibration provides se-
mantic insights into the domain. The domain is expressed by a set of numbers describing
the data. Section 5.4 describes SSC, a new way to incorporate semantics into selective
classification. The domain is not expressed by a set of numbers but rather by textual
descriptions.

To summarize, selective classification is a good starting point for expressing a domain,
but it requires extensions such as calibration and incorporation of semantics.

Q2 What are good examples to describe these limits? Can they be identified from
reference data or generated artificially? Can they be described by interpretable
characteristics or attributes? Extreme examples are rare in reference data, by defini-
tion. Generative models can be used to create synthetic examples, but they have to be
coupled with the classifier in some way. In section 3.3, the classifier’s gradient guides the
GAN’s generation. In section 3.4, the classifier conditions the GAN during training. Both
methods allow the generation of artificial extreme examples. Interpreting these examples
requires human annotation based on the examples, e.g., noise and contrast are important
attributes.

Using text-to-image models helps automatically find textual descriptions. In sec-
tion 5.3, groups of difficult-to-classify data are generated and described with text. The
generator can be independent of the classifier, but a more efficient approach uses Bayesian
optimization to choose relevant textual attributes to evaluate using the classifier’s feed-
back. In section 5.4, the goal is complementary to describing limits: describe the in-
domain data.

Q3 Can extreme examples be characterized based on their contribution to the dif-
ferent sources of error in learning? (Estimation, approximation, optimization, bias
/ variance trade-off) Unfortunately, the contributions of this thesis do not have an an-
swer to this question.

U1 As a performance indicator of a given algorithm by providing more detailed
information than classical global metrics, and additional information on the local
behavior of the algorithms. Selective classification, studied in section 4.3, provides
more detailed information than classical global metrics because two models might share
the same global accuracy but have different selective accuracies because their confidence
scores are not of the same quality. Some models know their uncertainty better than others.
Confidence calibration, studied in sections 4.4 and 4.5 improves the uncertainty quantifi-
cation, improving information on local behavior at the sample level.

Chapter 5 groups data into textually described subgroups with an associated accuracy
value. It provides detailed local information at the subgroup level.

U2 As an explainability tool to intuitively analyze the overall behavior of the algo-
rithm. Chapter 3 provides two explainability tools: showing synthetic extreme exam-
ples and what visual attributes are the most important. However, human knowledge is
required to interpret them.

Chapter 5 also provides an explainability tool. Leveraging text-to-image models al-
lows the generation of subgroups of data with associated textual descriptions. Section 5.3

95

is about describing failure modes, while section 5.4 is about expressing the domain, which
includes data likely to be correctly classified.

U3 As a development tool to control learning and the trade-off between domain ex-
tension/performance. The trade-off between domain extension and performance can
be controlled with selective classification (section 4.3) or SSC (section 5.4). However,
only pre-trained classifiers were studied. The thesis does not explore how expressing a
domain can be used during the classifier’s learning phase. Addressing this use case could
leverage insights gained from training good selective classifiers (Geifman and El-Yaniv,
2019).

U4 As a means of specifying the data to be collected. Explainability results from
chapter 3 can be used to identify with human intervention which kind of data leads to
failure, and collect training data to fix these failures. Chapter 5 provides a better tool
that textually describes data likely to be misclassified or well-classified. Because text-
to-image models are used, synthetic data can be generated to evaluate the classifier and
estimate the impact of collecting specific real data.

6.2 A Look Back at 3 Years of AI Progress
Large Multimodal Models Large multimodal models integrate multiple modalities of
data (e.g., text, images, video, audio) to understand and generate complex representations.
In the last few years, many of these models were developed, for example CLIP (Radford
et al., 2021), BLIP (Li et al., 2022a), Flamingo (Alayrac et al., 2022), Stable Diffusion
(Rombach et al., 2022), Gemini (Gemini Team et al., 2023), and GPT-4 (OpenAI, 2023).
While LLMs were a hot topic during the thesis period, it seems multimodal models are
the way forward.

For this thesis, models combining images and text are particularly interesting. Chap-
ter 5 leverages such models to describe subgroups of images with textual attributes. Esti-
mating the performance of these subgroups creates a link between data descriptions and
classification performance, one of the main aspects of the initial thesis goal. Other recent
works mentioned in section 2.4 also use large multimodal models to describe classifier
failures. These models will likely continue to be used to better evaluate classifiers’ per-
formance.

GANs Diffusion Models At the beginning of the thesis, the state-of-the-art image gen-
erative models were GANs, e.g., BigGAN and StyleGAN. Many publications developed
ways to edit real images through latent space navigation and GAN inversion. However,
in the last few years, diffusion models have taken the lead. The research community
seems to have shifted toward this model family. Besides higher image quality and more
stable training than GANs, the ability to control the generation with text often results in
impressive results.

Closed Research The release of OpenAI’s ChatGPT at the end of 2022 provoked a
massive shift in the field of AI. A big part of research pivoted towards LLMs. Tremendous
computing power is now devoted to training such large models with hundreds of millions
of parameters. The Bitter Lesson still holds (Sutton, 2019).

96

One additional unexpected consequence is that research is becoming increasingly
closed. OpenAI does not really publish scientific papers anymore: details on their latest
models remain secret, with “technical reports” not revealing much information (OpenAI,
2023). The trend is followed by Google, which restructured its research teams a few
months after ChatGPT’s release. Indeed, its business model relying on search is being
threatened by new types of access to information enabled by LLMs. Now the company
produces “reports” on their latest models, where little information about model architec-
ture, training, and data are found (Gemini Team et al., 2023). This closing of research is
understandable as companies now sell access to these models as a product. On the other
hand, Meta does not sell access to models but does benefit from advances in the field, so
the company keeps pushing for open source. In short, we can expect future breakthroughs
to remain secret inside companies. This trend might tend to slow down research, but it
could be compensated by the exponential development of the field.

But When Do DNNs Work? I find it surprising that expressing when an DNN is correct
is not well covered by current research. To me, related work mostly tackles the reverse
problem: identifying or detecting some failures (see section 2.4). However, the possi-
bilities of failures are infinite, and being able to detect some of them does not guarantee
reliable behavior the rest of the time. Furthermore, failure modes are split into separate
research areas that only tackle one part of the problem. As mentioned in section 2.3, OOD
detection only tackles semantic shifts, not failure detection, and SC aims to detect failures
but supposes no shift happens, for instance.

This is why I believe the question “When is the prediction actually correct?” to be
of primary importance compared to the reverse problems of identifying failures in some
particular setting. Of course, addressing this question might be much harder in practice.

The question of AI reliability arises from deploying models. It thus might be more
important for companies selling and using DNNs than for academics. For autonomous
driving and medical systems, the consequences of DNNs’ prediction errors are deadly.
For AI based tools such as GPT-4 or Gemini, the consequences of errors (also called
hallucinations) can be financially disastrous as users lose their trust in the product. Accel-
erating the deployment of AI systems will accelerate research on the question. However,
as explained above, such research might not be publicly shared because of the financial
stakes.

I think there may be a disconnection between industry and academia on the ques-
tion of AI’s reliability: industry knows the real issues but does not share its solutions,
and academia proposes solutions to problems that might not be the ones encountered in
practice. Anyway, hopefully, some open or closed source tools will soon make AI more
trustworthy and thus more useful.

6.3 Perspectives

The goal of this thesis was not only to solve a problem but to define it clearly. I
believe that I have made a small bit of progress on both. Properly expressing a domain is
still unclear and perhaps unachievable (humans are imperfect in knowing when they are
right). One contribution of the thesis is the perspectives it opens.

97

Theoretical Link Between Selective Classification and Calibration In chapter 4, the
link between SC and calibration resulted in the new TvA approach to calibration. I believe
more work can be done to unify these two notions. For instance, perfect calibration might
imply optimal selective classification.

Recall the definition of perfect calibration from (Guo et al., 2017):

Pr
P
(ŷ = y|s(x) = p) = p, ∀p ∈ [0, 1] (6.1)

where the probability is over the data distribution P (X, Y) of inputs (e.g., images) and
labels, ŷ is the label predicted by classifier f , s(x) is the MSP of f for the input x, and
y is the real label. What matters is the absolute value of s, which should reflect true
probability.

From (Geifman et al., 2019), an optimal confidence score κ (for f) should reflect true
loss monotonicity in the sense that for every two labeled instances (x1, y1) ∼ P (X, Y)
and (x2, y2) ∼ P (X, Y),

κ(x1, ŷ1) ≤ κ(x2, ŷ2) ⇐⇒ Pr
P
[ŷ1 ̸= y1] ≥ Pr

P
[ŷ2 ̸= y2]. (6.2)

What matters is the relative values of κ, which should properly rank the examples.
To me, it seems possible that using the MSP a perfectly calibrated classifier, i.e. s

verifying Equation 6.1 implies s is an optimal confidence score for SC as defined by 6.2.
At least, there is probably a theoretical link between the two definitions.

However, even if that is the case, better calibration does not necessarily improve se-
lective classification. This is empirically proven in the section 4.4 results and in (Galil
et al., 2023b). It would be interesting to understand why. I think that the fields of calibra-
tion and SC could benefit from one another regarding methods or metrics, for instance.
Calibration (and uncertainty quantification in general) is not an end in itself: it requires a
purpose, such as filtering data likely to be misclassified, which is exactly what SC does.

Characterize Foundation Multimodal Models In this thesis, the object of interest is
an image classifier to characterize. However, in many cases, it is possible to adapt a
foundation model to the classification task, particularly a large multimodal model.

All the image classifier failure identification approaches cited in section 2.4 rely on
“oracle” large multimodal models such as CLIP or Stable Diffusion to evaluate a “bad”
classifier. Indeed, most of them use a low-performing classifier to evaluate, for instance,
based on the ResNet architecture, which is almost a decade old and outperformed by more
recent architectures. Then, they leverage large pre-trained models, considered oracles able
to perfectly describe images with text, to identify when the classifier fails. My question is:
why not just use the large pre-trained models for the classification task if they understand
the data so well? This limitation is not discussed in the papers, which usually justify
their motivation lightly: classifiers are biased and fail, and we should understand why.
In practice, if I have at disposition a bad classifier based on a decade-old architecture
and an “oracle” multimodal model, then why choose to use the bad classifier and do
extra work evaluating its failures with the multimodal model instead of directly using
the multimodal model? There is at least one scenario in which using a bad classifier on
purpose would make sense, which is to embed models in low-power devices. However,
even then, progress in quantization techniques and distillation, among others, allows the
use of powerful multimodal models such as Gemini Nano to run on smartphones (Gemini
Team et al., 2023).

98

In the experiments of section 5.4, the method SSC can filter out data based on at-
tributes in the setting of a weak classifier on synthetic data (subsection 5.4.2). However,
a properly trained classifier almost does not fail on this data, so the method becomes use-
less. Similarly, I expect all methods mentioned in section 2.4 to mostly stop working
at identifying failures when the classifier is realistically developed, e.g., by adapting the
large multimodal model used to identify failures.

Instead of pursuing this research niche of identifying failures of bad classifiers, I be-
lieve pursuing another direction is more useful: characterizing large foundation multi-
modal models. The advent of large multimodal and foundation models raises new ques-
tions. Such models are supposedly easily adaptable to many problems. For instance,
CLIP can be used as a zero-shot or few-shot classifier with good performance for many
datasets (Radford et al., 2021). It sometimes performs better than an image classifier
trained from scratch, especially if training data is scarce. However, despite being trained
on an enormous amount of data, it still has many failure modes. Some of the failures are
caused by bad text encoding (Tong et al., 2023) or bad image encoding (Tong et al., 2024).
The performance of vision-language models on downstream vision applications can even
be predicted only from how they encode the class labels (Zohar et al., 2024). Evaluating
these models is becoming challenging: some benchmarks include questions that can be
solved without any visual information, and models might be trained on evaluation data
(Chen et al., 2024). Good benchmarks should consider multi-dimensional aspects of the
model evaluation (see (Wang et al., 2023) for an example for LLMs).

Evaluating a large multimodal model’s general reliability seems a very hard problem.
However, a starting point might be to evaluate the model’s reliability when adapted to
simpler subtasks such as image classification. In that case, insights from this thesis could
be leveraged, as no assumption on the image classifier’s structure was made.

Clarify Failure Modes In my opinion, there is a clear lack of clarity of the terms
used in the research fields related to model failures. This includes “domain”, “out-of-
distribution”, “corner case”, “anomaly”, “operational design domain”, and many others.
In many cases, papers have their definition of the terms, which makes it hard to compare
and make sense of all these works.

As illustrated in Figure 2.3, the research fields addressing failures are mostly disjoint
and focus on specific subproblems. AI research would benefit from clarifying all these
subproblems, e.g., with an exhaustive survey paper. Works pointing in that direction seem
rare, but here are some references. Yang et al. (2021) aim to unify OOD detection, open
set recognition, novelty detection, and anomaly detection into the notion of generalized
OOD. Guérin et al. (2023) propose the notion of model scope, which denotes the set of
correct predictions, similar to the reliability domain discussed in the thesis. (Kumar et al.,
2019b) categorizes failure modes into intentional (e.g., perturbation attack, poisoning at-
tack) and unintentional (e.g., distribution shifts, corruptions).

A Reliability Benchmark Besides clarifying the different failure modes in a survey,
another required work is the development of a comprehensive reliability benchmark. Be-
cause reliability is multi-faceted, a comprehensive benchmark should measure different
dimensions that might compete with each other: a trade-off between different aspects
might exist. Such a benchmark could produce radar charts to compare the different as-
pects, as illustrated in Figure 6.1.

99

Existing metrics can directly be reused, typically the AUROC for Selective Classifica-
tion. However, metrics should be reformulated in some cases: the main goal is to identify
failures, not detect if a shift happens, for instance. For covariate shifts, the metrics should
measure whether the failure detection works for data under covariate shifts. For adver-
sarial attacks, the goal is not to detect if there is an attack but to detect when the attack
causes a failure. When a semantic shift happens, the classifier automatically fails (be-
cause it cannot predict a new class): in that case, predicting failure and if there is a shift
are equivalent and could again be measured by standard metrics for Out-of-Distribution
detection.

Methods to detect failures can come from either field, for instance using MSP as a
confidence score (Hendrycks and Gimpel, 2017; Geifman and El-Yaniv, 2017) or Maha-
lanobis distance (Lee et al., 2018b).

Here are a few references as a starting point. WILDS (Koh et al., 2021) is a curated
benchmark for covariate shift. It includes 10 datasets capturing a variety of distribution
shifts that commonly occur in real-world scenarios. They include variations across hospi-
tals in tumor identification, across camera traps in wildlife monitoring, and across differ-
ent times and locations in satellite imaging and poverty mapping. It is mostly for Domain
Generalization but can be used for unsupervised Domain Adaptation as well. OpenOOD
(Yang et al., 2022) is a benchmark mostly about semantic shift and generalized OOD.

SafeBench is a competition designed to stimulate research on new benchmarks that
assess and reduce risks associated with artificial intelligence. (Wang et al., 2023) is an
example of a comprehensive benchmark to evaluate the trustworthiness of LLMs. Ro-
bustBench (Croce et al., 2020) is a standardized benchmark of adversarial robustness.
Liao et al. (2021) list common problems in many evaluation benchmarks.

Quantitative evaluations are useful for making progress, so a reliability benchmark
would guide future research on the notion of reliability domain.

covariate shift

adversarial

in-distribution

semantic shift

anomalies

baseline A

baseline A

Figure 6.1: Concept of a radar chart evaluating the reliability of a classifier for baseline
methods detecting several types of failures.

100

https://www.mlsafety.org/safebench

Chapter 7

Appendix

7.1 Implementation Details
Models weights

• Model weights for StyleGAN come from NVIDIA https://github.com/NVlabs/

stylegan2-ada-pytorch.

• Model weights for CIFAR are from (Mukhoti et al., 2020).

• Model weights for ImageNet come from torchvision (maintainers and contributors,
2016).

• Model weights for ImageNet-21K are from (Ridnik et al., 2021).

• CLIP weights are from OpenAI’s Hugging Face.

• Stable Diffusion 2.1 weights are from StabilityAI’s Hugging Face.

• Original weights for T5 and RoBERTa come from the Transformers library (Wolf
et al., 2020). The models are fine-tuned for each task using prompt-based learning
(Liu et al., 2023). For more details, see (Chen et al., 2023b).

• GPT-J is from https://huggingface.co/EleutherAI/gpt-j-6b (Apache-2.0
license) and Llama-2 from https://huggingface.co/meta-llama/Llama-2-

13b (license).

Datasets

• MNIST is an image classification dataset that contains grey-value images of hand-
written digits with ten classes (digits from 0 to 9). The training set contains 60000
images, and the test set contains 10000 images.

• CIFAR-10 (C10) and CIFAR-100 (C100) (Krizhevsky et al., 2009) contain 60000
32x32 images corresponding to 10 and 100 classes, respectively. Data is split into
subsets of 45000/5000/10000 images for train/validation/test. When used for cal-
ibration, the original validation and test sets are concatenated and randomly split
into a calibration set of size 5000, and a test set of size 10000.

101

https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/NVlabs/stylegan2-ada-pytorch
https://huggingface.co/openai
https://huggingface.co/stabilityai/stable-diffusion-2-1
https://huggingface.co/EleutherAI/gpt-j-6b
https://huggingface.co/meta-llama/Llama-2-13b
https://huggingface.co/meta-llama/Llama-2-13b
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/blob/main/LICENSE.txt

• ImageNet (IN) (Deng et al., 2009) contains 1.3 million images from 1000 classes.
When used for calibration, following (Guo et al., 2017), the original validation test
of size 50000 is randomly split into a calibration set and a test set, both of size
25000.

• ImageNet-21K (IN21K) (Ridnik et al., 2021), in its winter21 version, contains 11
million images in the train set, and 522500 in the test set (50 for each of the 10450
classes). When used for calibration, the test set is randomly split into equal-sized
calibration and test set (261250 samples each, 25 per class).

• PUG Animals (Bordes et al., 2024) is a photorealistic synthetic image dataset with
annotated factors of variations. Images are produced with Unreal Engine, a game
engine that produces photorealistic environments. The dataset contains 215040 im-
ages using 70 animal assets, 64 backgrounds, 3 object sizes, and 4 textures

under 4 different camera orientations. All combinations of attributes are cov-
ered by the images with one image for each combination.

• CUB-200-2011 (Wah et al., 2011) is a dataset for fine-grained image classification
of bird species. It contains 11788 images of 200 bird species, with approximately
60 images per class. The dataset is split into a training set of size 5994 and a testing
set of size 5794.

• Amazon Fine Foods (McAuley and Leskovec, 2013) is a collection of customer
reviews for fine foods sold on Amazon. Reviews are categorized into bad, neutral,
and good. The original validation set size is 78741 and test size 91606. 78741
samples are randomly chosen for calibration and 91606 for test.

• DynaSent (Potts et al., 2021) is a dynamic benchmark for sentiment analysis con-
sisting of sentences annotated as positive, neutral, and negative. The original vali-
dation set size is 11160 and test size 4320. 11160 samples are randomly chosen for
calibration and 4320 for test.

• MNLI (Williams et al., 2018) contains pairs of sentences labeled as contradiction,
neutral, and entailment. The original validation set size is 19635 and test size 9815.
19635 samples are randomly chosen for calibration and 9815 for test.

• Yahoo Answers (YA) (Zhang et al., 2015b) contains question-answers pairs corre-
sponding to 10 different topics. The original validation set size is 14000 and test
size 60000. 14000 samples are randomly chosen for calibration and 60000 for test.

• TREC (Voorhees and Tice, 2000) contains questions categorized into 6 classes. The
training set contains 5500 labeled questions, and the test set contains another 500.

• SST-5 (Socher et al., 2013) contains 11855 sentences corresponding to 5 sentiments
(from very negative to very positive).

• DBpedia (Zhang et al., 2015a) contains text for topic classification with 14 classes.
The training set contains 560000 samples, and the test set 5000.

102

Codes

• Original implementation of StyleGAN: https://github.com/NVlabs/stylegan2-
ada-pytorch

• The library netcal (Küppers et al., 2020) (Apache-2.0 license) was used for binary
methods for calibration and reliability diagrams.

• Official implementation of temperature scaling: https://github.com/gpleiss/
temperature_scaling (MIT license).

• Official implementation of Dirichlet calibration: https://github.com/dirichletcal/
experiments_dnn (MIT license).

• Official implementation of I-Max: https://github.com/boschresearch/imax-
calibration (AGPL-3.0 license).

• Official implementation of IRM: https://github.com/zhang64-llnl/Mix-n-
Match-Calibration (MIT license).

• Calibration evaluation codes are from https://github.com/JeremyNixon/uncertainty-

metrics-1 (Apache-2.0 license) and https://github.com/IdoGalil/benchmarking-
uncertainty-estimation-performance (MIT license).

• I used PyTorch 2.0.0 (Ansel et al., 2024) (BSD-style license).

• CIFAR models are from (Mukhoti et al., 2020) https://github.com/torrvision/
focal_calibration (MIT license).

• ImageNet-21K models are from (Ridnik et al., 2021) https://github.com/Alibaba-
MIIL/ImageNet21K (MIT license).

• CLIP models are from HuggingFace’s Transformers library (Wolf et al., 2020)
(Apache-2.0 license).

• Pretrained language models are from Transformers (Wolf et al., 2020) and calibra-
tion codes from (Chen et al., 2023b) https://github.com/lifan-yuan/PLMCalibration
(MIT license).

• Code for the calibration of LLMs using ICL is from https://github.com/mominabbass/

LinC, itself built upon https://github.com/tonyzhaozh/few-shot-learning
(Apache-2.0 license).

• Genetic Algorithm code is from pymoo (Blank and Deb, 2020).

• Combinatorial Testing code is from allpairspy (allpairspy).

• ML models such as SVR, Lasso, Random Forest Regressor, and Linear Regression
are from scikit-learn (Buitinck et al., 2013).

• Stable Diffusion code is from the diffusers library (von Platen et al., 2022).

• Textual Inversion code is from the diffusers library (von Platen et al., 2022)
https://github.com/huggingface/diffusers/blob/main/examples/textual_

inversion/textual_inversion.py.

103

https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/gpleiss/temperature_scaling
https://github.com/gpleiss/temperature_scaling
https://github.com/dirichletcal/experiments_dnn
https://github.com/dirichletcal/experiments_dnn
https://github.com/boschresearch/imax-calibration
https://github.com/boschresearch/imax-calibration
https://github.com/zhang64-llnl/Mix-n-Match-Calibration
https://github.com/zhang64-llnl/Mix-n-Match-Calibration
https://github.com/JeremyNixon/uncertainty-metrics-1
https://github.com/JeremyNixon/uncertainty-metrics-1
https://github.com/IdoGalil/benchmarking-uncertainty-estimation-performance
https://github.com/IdoGalil/benchmarking-uncertainty-estimation-performance
https://github.com/pytorch/pytorch/blob/main/LICENSE
https://github.com/torrvision/focal_calibration
https://github.com/torrvision/focal_calibration
https://github.com/Alibaba-MIIL/ImageNet21K
https://github.com/Alibaba-MIIL/ImageNet21K
https://github.com/lifan-yuan/PLMCalibration
https://github.com/mominabbass/LinC
https://github.com/mominabbass/LinC
https://github.com/tonyzhaozh/few-shot-learning
https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py
https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py

7.2 Additional Results for Top-versus-All (TvA) Calibra-
tion

7.2.1 Theoretical Justification of TvA for Temperature Scaling

L is the number of classes, fk(x) the classifier estimated probability for class k and
data sample x, y the correct class, and the confidence s(x) := maxk fk(x). The cross-
entropy loss is lCE(x, y) = −

∑L
k=1 1{k = y} · log(fk(x)) = − log(fy(x)). Because the

last layer of the classifier is a softmax function, fy(x) = ezy∑
k ezk

with z the logits vector.
Note that I omit the writing variable x in the following for clarity.

Temperature scaling optimizes a coefficient T > 0 that scales the logits vector. Pre-
dicted probabilities become fy(x) =

ezy/T∑
k ezk/T .

Let us first develop the standard cross-entropy loss when temperature scaling is ap-
plied:

lCE = − log(fy) = − log(
ezy/T∑
k e

zk/T
) = −

(
log(ezy/T)− log(

∑
k

ezk/T)

)
= −zy

T
+log(

∑
k

ezk/T)

Let us compute its gradient:

∂lCE

∂T
=

zy
T 2

+
∂ log(

∑
k e

zk/T)

∂
∑

k e
zk/T

· ∂
∑

k e
zk/T

∂T
by application of the chain rule on the second term.

=
zy
T 2

+
1∑

k e
zk/T
·
∑
k

∂ezk/T

∂T

=
zy
T 2

+
1∑

k e
zk/T
·
∑
k

∂(ezk)1/T

∂T

=
zy
T 2

+
1∑

k e
zk/T
·
∑
k

log(ezk)

−T 2
(ezk)1/T

=
zy
T 2

+
1∑

k e
zk/T
·
∑
k

zk · ezk/T
−T 2

=
1

T 2

(
zy −

∑
k zk · ezk/T∑

k e
zk/T

)
=

1

T 2

(
zy −

∑
k

zk · ezk/T∑
j e

zj/T

)

=
1

T 2

(
zy −

∑
k

zk · fk
)

(7.1)

For the TvA approach, the problem becomes binary. The classification output be-
comes the confidence s(x) = maxj∈Y fj(x) and the ground truth label becomes a binary
representation of the prediction correctness: yb = 1ŷ=y with ŷ(x) = argmaxk∈Y fk(x)
and 1 the indicator function. The loss used is the binary cross entropy lBCE(x, y) =
−
(
yb · log s(x) + (1− yb) · log(1− s(x))

)
104

Let us compute the gradient:

∂lBCE

∂T
=

∂lBCE

∂s
· ∂s
∂T

= −
(
yb
1

s
+ (1− yb)

−1
1− s

)
· ∂s
∂T

= −
(
yb(1− s)

s(1− s)
− s(1− yb)

s(1− s)

)
· ∂s
∂T

=
s− yb

s(1− s)
· ∂s
∂T

=
s− yb

s(1− s)
·
∂ ezm/T∑

k ezk/T

∂T
because s = max

j

ezj/T∑
k e

zk/T
=

ezm/T∑
k e

zk/T
with zm = max

k
zk

=
s− yb

s(1− s)
·

∂ezm/T

∂T

∑
k e

zk/T − ezm/T ∂
∑

k ezk/T

∂T

(
∑

k e
zk/T)2

=
s− yb

s(1− s)
·

log(ezm)
−T 2 (ezm)1/T

∑
k e

zk/T − ezm/T
∑

k
log(ezk)
−T 2 (ezk)1/T

(
∑

k e
zk/T)2

=
s− yb

s(1− s)
· e

zm/T

T 2
· − log(ezm)

∑
k e

zk/T +
∑

k log(e
zk)(ezk)1/T

(
∑

k e
zk/T)2

=
s− yb

s(1− s)
· e

zm/T

T 2
· −zm

∑
k e

zk/T +
∑

k zk · ezk/T
(
∑

k e
zk/T)2

=
s− yb

s(1− s)
· 1

T 2
· s · −zm

∑
k e

zk/T +
∑

k zk · ezk/T∑
k e

zk/T

=
1

T 2
· s− yb

1− s
· −zm

∑
k e

zk/T +
∑

k zk · ezk/T∑
k e

zk/T

=
1

T 2
· s− yb

1− s
·
(∑

k zk · ezk/T∑
k e

zk/T
− zm

)
=

1

T 2
· y

b − s

1− s
·
(
zm −

∑
k zk · ezk/T∑

k e
zk/T

)
=

1

T 2
· y

b − s

1− s
·
(
zm −

∑
k

zk · ezk/T∑
j e

zj/T

)

=
1

T 2
· y

b − s

1− s
·
(
zm −

∑
k

zk · fk
)

(7.2)

There are two cases:

1. The prediction is correct: yb = 1 and zm = zy. Let us inject these in (7.2): ∂lBCE

∂T
=

1
T 2 · (zy −

∑
k zk · fk) = ∂lCE

∂T

We thus get the same gradient as the standard cross-entropy loss.

2. The prediction is incorrect: yb = 0 and zm > zy. (7.2) becomes: ∂lBCE

∂T
=

1
T 2 · s

s−1
· (zm −

∑
k zk · fk)

By comparing to (7.1), we have the term 1
T 2 ·(zm −

∑
k zk · fk) > 1

T 2 (zy −
∑

k zk · fk) =
∂lCE

∂T
and the remaining part of (7.2) | s

s−1
| > 1 when s > 0.5.

105

So to recapitulate, |∂lBCE

∂T
| > |∂lCE

∂T
| when s > 0.5, which corresponds to the vast

majority of data points as the classifier gets better calibrated. This is shown in Fig-
ure 4.4.
We also have lims→1 | s

s−1
| =∞. In practice, s is not close enough to 1 to generate

exploding gradients, so it just means that as confidences for wrong predictions gets
higher, so does the gradient to reduce the confidences.

The conclusion is that for correct predictions, the TvA approach does not change the
optimization, but for incorrect predictions, the gradient is stronger and penalizes more
heavily confident predictions that are wrong. This is also proven experimentally by look-
ing at Table 7.6 where we see that average confidences of temperature scaling with the
TvA approach (TSTvA) are lower than the ones using the standard approach (TS), for al-
most all networks. This makes the average confidences closer to the accuracy, showing
reduced overconfidence.

7.2.2 Additional Tables of Results

Table 7.1: Computing time (in seconds) of the calibration on ImageNet, using one
NVIDIA V100 GPU. The first column denotes the data preprocessing time, which in-
cludes computing the model logits for all calibration examples. Post-hoc calibration
methods do not usually require much computing power compared to classifier training.

Model Preproc. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA HB HBTvA Iso IsoTvA Beta BetaTvA BBQ BBQTvA

ResNet-50 141 2021 543 215 218 214 217 226 226 129 1 66 1 873 22 1156 2
ViT-B/16 151 7119 524 225 226 217 222 232 235 127 1 61 1 917 23 1169 2

106

Table 7.2: ECE in % (lower is better, best in bold) – full results for image classifica-
tion datasets. Averages on 5 seeds. Mean relative improvements from TvA are shown
(negative values for reductions of ECE). Methods in purple impact the model prediction,
potentially degrading accuracy; methods in teal do not. Values are averaged over five
random seeds.

(a) CIFAR-10
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 1.80 0.77 0.68 1.07 1.09 0.91 0.90 0.91 0.89 2.16 1.50 1.13 0.74 1.27 0.94 1.02 0.53
ResNet-110 2.57 0.53 0.54 1.32 1.36 1.35 1.33 1.35 1.34 2.97 1.40 1.20 0.56 1.45 0.67 1.42 0.37
WRN 1.21 0.78 0.64 1.10 0.92 1.19 0.97 1.19 0.97 1.75 1.46 1.16 0.82 0.88 0.78 0.79 0.52
DenseNet 1.52 0.60 0.59 1.32 1.61 1.21 1.47 1.19 1.47 2.04 2.05 0.98 0.58 1.07 0.71 1.00 0.30

Mean improvement ConvNets 3% 0% 1% -25% -39% -31% -57%

CLIP (ViT-B/32) 4.77 1.39 1.35 1.02 1.02 2.79 1.88 2.82 1.90 1.64 1.46 1.21 1.16 1.79 1.05 2.32 0.98
CLIP (ViT-B/16) 5.39 1.04 0.95 0.64 0.57 2.91 1.91 2.92 1.89 1.15 1.83 1.29 0.79 1.58 0.91 2.14 0.75
CLIP (ViT-L/14) 4.93 0.65 0.52 0.68 0.60 1.98 1.76 1.94 1.74 0.96 0.77 0.65 0.62 0.81 0.62 1.01 0.46

Mean improvement CLIP -8% -26% -26% 9% -16% -36% -59%

(b) CIFAR-100
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 6.56 1.37 1.35 4.93 2.97 5.23 2.24 5.22 2.24 5.59 3.39 5.70 1.40 10.07 1.47 9.62 1.17
ResNet-110 7.95 1.40 1.31 5.05 4.04 5.32 2.65 5.30 2.70 6.10 4.74 6.59 1.34 8.53 1.44 10.04 1.23
WRN 4.41 1.24 0.95 4.42 2.70 4.57 2.28 4.55 2.27 4.50 2.75 4.42 1.41 10.02 1.26 8.45 0.94
DenseNet 5.23 1.20 0.97 4.19 2.12 4.53 2.23 4.51 2.20 4.99 2.84 4.61 1.35 9.91 1.24 10.12 0.76

Mean improvement ConvNets -37% -52% -52% -36% -73% -86% -89%

CLIP (ViT-B/32) 9.51 2.22 1.80 2.22 2.12 8.74 3.49 7.97 1.98 6.52 2.71 2.35 1.47 8.11 1.21 8.13 1.23
CLIP (ViT-B/16) 10.63 3.33 3.04 2.71 2.74 8.64 3.04 8.14 1.80 7.09 2.53 2.78 1.74 7.41 1.76 7.09 1.48
CLIP (ViT-L/14) 10.96 3.15 2.86 2.68 2.66 5.96 2.06 6.54 1.74 6.44 1.99 2.46 1.62 6.93 1.47 6.46 1.46

Mean improvement CLIP -1% -63% -75% -64% -36% -80% -80%

(c) ImageNet
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-18 2.71 1.01 0.57 1.87 1.86 1.73 2.12 3.43 3.44 4.39 1.44 3.87 0.94 9.68 0.91 9.54 0.57
ResNet-34 3.63 0.84 0.56 1.77 1.80 1.87 2.02 3.46 2.98 4.97 1.11 4.08 0.83 9.17 0.85 8.42 0.60
ResNet-50 41.15 2.56 2.59 3.25 1.66 3.26 0.90 3.27 0.94 11.30 2.20 1.23 0.68 8.44 0.66 5.80 0.50
ResNet-101 13.56 0.82 0.58 3.72 2.22 4.22 1.62 4.20 1.58 9.21 1.87 3.01 0.71 6.35 0.61 6.18 0.52

Mean improvement ResNet -22% -26% -37% -76% -69% -91% -92%

EffNet-B7 12.61 0.61 0.40 3.71 2.96 3.84 1.41 3.82 1.35 9.32 2.27 2.93 0.65 6.93 0.58 4.89 0.40
EffNetV2-S 16.92 0.68 0.44 3.60 3.34 3.91 1.43 3.90 1.45 8.03 2.57 2.97 0.67 7.66 0.68 5.33 0.47
EffNetV2-M 24.88 0.80 0.70 3.77 2.71 3.84 1.16 3.82 1.14 8.32 1.79 2.89 0.75 6.55 0.75 4.36 0.49
EffNetV2-L 8.48 0.63 0.39 2.86 1.34 3.08 1.05 3.06 0.98 9.45 0.99 2.51 0.64 5.06 0.54 2.99 0.37

Mean improvement EffNet -27% -66% -66% -78% -76% -90% -90%

ConvNeXt-T 16.95 1.11 0.84 3.08 1.52 3.49 1.18 3.48 1.15 8.95 1.66 2.55 0.87 7.34 0.70 5.63 0.61
ConvNeXt-S 17.60 0.75 0.59 3.76 2.29 4.19 1.32 4.18 1.31 8.77 1.73 3.06 0.70 7.46 0.68 5.32 0.48
ConvNeXt-B 18.78 0.74 0.41 3.83 2.51 4.10 1.33 4.09 1.31 9.44 1.84 3.03 0.77 7.72 0.70 5.02 0.52
ConvNeXt-L 12.52 0.66 0.47 4.02 2.69 4.42 1.64 4.42 1.63 7.97 1.37 3.26 0.67 7.12 0.62 4.55 0.46

Mean improvement ConvNeXt -39% -66% -67% -81% -74% -91% -90%

ViT-B/32 6.37 0.77 0.60 4.02 2.17 4.67 1.82 4.66 1.77 6.58 1.68 3.58 0.84 9.51 0.73 7.76 0.53
ViT-B/16 5.61 0.86 0.54 3.80 3.25 4.29 1.93 4.27 1.92 7.36 2.29 3.39 0.79 5.88 0.71 6.79 0.51
ViT-L/32 4.27 0.83 0.75 5.00 3.89 5.37 2.53 5.37 2.49 6.33 2.57 4.43 0.76 9.31 0.79 7.39 0.61
ViT-L/16 5.17 0.99 0.77 5.77 4.63 5.29 2.62 5.27 2.58 7.44 3.05 4.10 0.85 6.83 0.78 7.38 0.54
ViT-H/14 0.60 0.60 0.40 1.84 0.88 1.95 1.22 2.00 1.17 7.84 0.75 2.48 0.62 1.67 0.63 3.62 0.42

Mean improvement ViT -31% -51% -53% -70% -78% -85% -92%

Swin-T 6.82 0.76 0.45 3.08 1.85 3.45 1.38 3.44 1.37 7.72 1.61 2.94 0.72 6.72 0.67 6.31 0.43
Swin-S 3.65 0.78 0.54 3.63 2.95 4.17 1.77 4.17 1.76 7.91 2.31 3.29 0.77 7.20 0.80 5.72 0.44
Swin-B 4.77 0.72 0.45 3.88 3.43 4.22 1.98 4.21 1.95 7.98 2.27 3.33 0.75 6.83 0.68 4.70 0.52
SwinV2-T 8.31 0.80 0.46 3.61 2.25 3.92 1.51 3.91 1.49 8.68 1.76 3.08 0.81 7.81 0.79 6.20 0.52
SwinV2-S 6.07 0.75 0.46 3.79 3.32 4.24 1.74 4.23 1.71 8.51 2.26 3.16 0.74 7.18 0.67 5.02 0.41
SwinV2-B 5.50 0.69 0.59 3.82 3.68 4.25 1.80 4.22 1.73 7.53 2.68 3.34 0.67 6.78 0.63 4.42 0.55

Mean improvement Swin -21% -58% -59% -73% -77% -90% -91%

CLIP (ViT-B/32) 1.50 0.96 0.75 1.70 1.58 1.38 0.92 36.01 70.52 3.57 0.82 2.22 0.84 8.12 0.88 6.63 0.82
CLIP (ViT-B/16) 1.80 1.31 0.75 1.92 1.89 1.61 0.87 34.02 66.04 4.53 1.08 2.35 1.01 8.48 0.91 6.98 0.74
CLIP (ViT-L/14) 2.57 0.97 0.67 2.04 1.99 1.89 1.36 26.06 66.40 5.95 1.35 2.49 0.92 8.33 1.01 7.86 0.84

Mean improvement CLIP -4% -36% 115% -77% -61% -89% -89%

(d) ImageNet-21K
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

MN3 12.34 err. err. 8.69 4.39 2.52 2.40 58.84 81.16 err. 1.02 2.00 0.21 err. 0.20 5.50 0.17
ViT-B/16 6.27 err. err. 8.92 6.55 2.38 1.54 8.22 3.20 err. 3.72 2.14 0.22 err. 0.24 7.89 0.12

Mean improvement -38% -20% -12% err. -90% err. -98%

107

Table 7.3: ECE in % (lower is better, best in bold) – full results for text classification
datasets. Averages on 5 seeds. Mean relative improvements from TvA are shown (nega-
tive values for reductions of ECE). Methods in purple impact the model prediction, poten-
tially degrading accuracy; methods in teal do not. Values are averaged over five random
seeds.

(a) Amazon Fine Foods
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 5.18 0.28 0.25 1.24 1.26 1.34 1.34 0.99 1.28 5.44 0.80 0.41 0.28 0.38 0.30 2.45 0.21
T5-large 5.76 0.26 0.26 0.97 1.04 1.70 1.49 1.36 1.34 5.71 1.63 0.33 0.26 0.40 0.26 3.29 0.14

Mean improvement T5 4% -6% 14% -78% -26% -28% -94%

RoBERTa 7.90 0.28 0.30 2.27 2.21 1.37 1.93 1.51 1.78 7.48 4.30 0.31 0.28 1.11 0.37 4.07 0.24
RoBERTa-large 6.83 0.32 0.25 2.52 2.44 1.45 1.78 1.24 1.57 6.36 4.45 0.72 0.26 0.38 0.34 3.96 0.16

Mean improvement RoBERTa -3% 32% 22% -36% -37% -39% -95%

(b) DynaSent
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 7.99 1.48 1.40 1.18 1.16 4.88 1.97 4.66 2.04 10.95 2.81 1.44 1.66 1.32 1.53 1.99 1.32
T5-large 9.73 1.30 1.36 3.20 3.19 7.38 2.03 7.15 2.00 11.81 4.72 1.56 1.45 1.44 1.62 1.80 0.92

Mean improvement T5 -1% -66% -64% -67% 4% 14% -41%

RoBERTa 17.37 1.67 1.59 13.20 13.20 15.84 7.83 15.02 6.40 18.36 10.48 1.68 1.64 1.76 1.19 1.26 1.06
RoBERTa-large 14.88 1.46 1.42 10.94 10.94 13.49 5.77 12.78 4.73 15.69 9.30 1.74 1.43 1.52 1.08 0.85 0.75

Mean improvement RoBERTa 0% -54% -60% -42% -10% -31% -14%

(c) MNLI
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 6.48 0.71 0.67 1.17 1.15 3.25 1.88 3.21 2.01 7.74 2.12 0.84 0.73 0.98 0.80 1.91 0.47
T5-large 7.59 0.74 0.72 4.46 4.45 5.66 1.71 5.41 1.64 8.20 4.43 0.77 0.76 1.78 0.57 2.28 0.40

Mean improvement T5 -1% -56% -54% -59% -7% -43% -79%

RoBERTa 10.26 0.90 0.81 6.52 6.52 7.83 2.03 7.38 2.12 11.06 6.16 0.87 0.94 1.25 0.93 1.20 0.60
RoBERTa-large 8.18 0.87 0.61 4.93 4.92 6.15 1.80 5.81 1.85 8.80 5.39 1.12 0.90 2.09 0.75 0.84 0.60

Mean improvement RoBERTa -0% -72% -70% -42% -6% -45% -39%

(d) Yahoo Anwsers
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 6.64 0.74 0.90 0.67 0.97 2.70 1.01 2.66 0.94 7.70 1.64 1.57 0.79 2.61 0.95 4.15 0.71
T5-large 9.04 0.87 0.72 1.47 1.73 4.70 1.31 4.84 1.36 10.34 2.39 1.90 0.85 3.01 0.98 3.15 0.67

Mean improvement T5 31% -67% -68% -78% -52% -66% -81%

RoBERTa 19.53 1.03 0.72 12.02 12.00 16.26 2.29 15.85 1.73 20.13 9.41 1.96 1.05 5.05 0.72 3.56 0.60
RoBERTa-large 19.65 0.90 0.86 12.77 12.75 16.67 2.75 16.30 2.70 20.18 10.19 1.87 0.94 4.96 0.78 3.26 0.57

Mean improvement RoBERTa -0% -85% -86% -51% -48% -85% -83%

108

Table 7.4: Standard deviations of ECE in % for 5 seeds.

(a) CIFAR-10
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 0.16 0.15 0.15 0.14 0.26 0.25 0.18 0.24 0.16 0.29 0.29 0.19 0.14 0.39 0.12 0.37 0.09
ResNet-110 0.10 0.22 0.08 0.12 0.10 0.14 0.16 0.12 0.15 0.14 0.21 0.22 0.18 0.24 0.20 0.17 0.19
WRN 0.09 0.17 0.21 0.29 0.21 0.25 0.07 0.25 0.08 0.09 0.57 0.23 0.20 0.19 0.22 0.26 0.24
DenseNet 0.11 0.08 0.16 0.12 0.18 0.09 0.09 0.09 0.08 0.13 0.78 0.14 0.05 0.15 0.08 0.19 0.10
CLIP (ViT-B/32) 0.12 0.49 0.35 0.17 0.13 0.31 0.37 0.30 0.32 0.29 0.32 0.13 0.44 0.48 0.41 0.39 0.32
CLIP (ViT-B/16) 0.17 0.36 0.33 0.19 0.10 0.22 0.15 0.22 0.13 0.13 0.91 0.18 0.27 0.09 0.26 0.11 0.29
CLIP (ViT-L/14) 0.05 0.22 0.21 0.11 0.09 0.11 0.15 0.10 0.16 0.22 0.15 0.19 0.18 0.21 0.11 0.18 0.09

(b) CIFAR-100
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 0.22 0.50 0.60 0.53 0.47 0.52 0.46 0.50 0.44 0.47 0.48 0.32 0.50 0.37 0.33 0.49 0.25
ResNet-110 0.28 0.23 0.25 0.38 0.39 0.35 0.31 0.33 0.31 0.33 0.59 0.28 0.34 0.60 0.21 0.56 0.11
WRN 0.19 0.24 0.38 0.27 0.14 0.25 0.30 0.24 0.33 0.16 0.28 0.23 0.46 0.71 0.57 0.33 0.32
DenseNet 0.10 0.24 0.17 0.26 0.13 0.30 0.20 0.35 0.22 0.60 0.79 0.24 0.45 0.68 0.28 0.31 0.22
CLIP (ViT-B/32) 0.14 0.25 0.20 0.05 0.14 0.13 0.27 0.48 0.45 0.32 1.17 0.26 0.25 0.49 0.23 0.40 0.46
CLIP (ViT-B/16) 0.21 0.35 0.42 0.30 0.37 0.40 0.37 0.42 0.48 0.74 1.00 0.50 0.42 0.54 0.42 0.37 0.51
CLIP (ViT-L/14) 0.17 0.33 0.53 0.16 0.19 0.23 0.24 0.19 0.32 0.34 1.14 0.25 0.24 0.39 0.30 0.27 0.09

(c) ImageNet
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-18 0.14 0.12 0.14 0.11 0.11 0.13 0.13 0.15 0.14 0.38 0.19 0.03 0.17 0.23 0.24 0.22 0.17
ResNet-34 0.12 0.16 0.24 0.12 0.10 0.14 0.20 0.13 0.17 0.54 0.10 0.24 0.17 0.19 0.21 0.06 0.13
ResNet-50 0.21 0.20 0.18 0.26 0.34 0.32 0.15 0.31 0.15 1.71 0.18 0.22 0.16 0.15 0.26 0.21 0.09
ResNet-101 0.15 0.11 0.22 0.11 0.18 0.18 0.25 0.17 0.25 1.02 0.08 0.19 0.11 0.23 0.16 0.25 0.14
EffNet-B7 0.07 0.13 0.11 0.10 0.12 0.15 0.18 0.14 0.22 1.91 0.17 0.13 0.10 0.16 0.16 0.11 0.06
EffNetV2-S 0.15 0.19 0.08 0.17 0.19 0.22 0.21 0.22 0.17 1.10 0.24 0.26 0.15 0.32 0.15 0.20 0.24
EffNetV2-M 0.18 0.12 0.13 0.17 0.15 0.16 0.26 0.18 0.22 1.10 0.47 0.13 0.10 0.24 0.15 0.26 0.06
EffNetV2-L 0.11 0.07 0.12 0.15 0.12 0.21 0.17 0.18 0.19 1.64 0.23 0.25 0.07 0.33 0.17 0.41 0.13
ConvNeXt-T 0.16 0.08 0.12 0.25 0.28 0.29 0.30 0.28 0.33 1.57 0.42 0.31 0.12 0.22 0.21 0.15 0.10
ConvNeXt-S 0.14 0.26 0.18 0.23 0.17 0.24 0.27 0.23 0.28 1.17 0.21 0.15 0.12 0.14 0.14 0.29 0.08
ConvNeXt-B 0.20 0.09 0.16 0.30 0.26 0.36 0.33 0.36 0.32 2.12 0.36 0.33 0.10 0.11 0.06 0.40 0.12
ConvNeXt-L 0.16 0.10 0.09 0.26 0.17 0.21 0.27 0.20 0.28 1.33 0.12 0.28 0.14 0.26 0.19 0.33 0.13
ViT-B/32 0.20 0.17 0.19 0.29 0.17 0.34 0.34 0.37 0.30 0.99 0.12 0.31 0.15 0.21 0.16 0.28 0.14
ViT-B/16 0.15 0.07 0.13 0.26 0.17 0.35 0.36 0.35 0.34 0.54 0.24 0.28 0.08 0.23 0.11 0.23 0.10
ViT-L/32 0.10 0.15 0.11 0.19 0.10 0.28 0.22 0.28 0.22 0.31 0.17 0.29 0.11 0.20 0.16 0.23 0.14
ViT-L/16 0.22 0.24 0.39 0.19 0.15 0.35 0.36 0.35 0.37 0.81 0.12 0.30 0.28 0.31 0.23 0.21 0.32
ViT-H/14 0.15 0.18 0.09 0.21 0.28 0.19 0.20 0.20 0.22 0.75 0.15 0.20 0.19 0.34 0.16 0.29 0.18
Swin-T 0.17 0.13 0.19 0.19 0.12 0.20 0.16 0.20 0.16 0.70 0.10 0.23 0.15 0.34 0.20 0.12 0.17
Swin-S 0.10 0.18 0.18 0.19 0.19 0.21 0.25 0.22 0.20 0.48 0.27 0.24 0.16 0.22 0.27 0.30 0.14
Swin-B 0.07 0.14 0.16 0.21 0.25 0.24 0.30 0.21 0.32 0.80 0.11 0.28 0.21 0.24 0.15 0.34 0.13
SwinV2-T 0.10 0.09 0.14 0.15 0.10 0.22 0.20 0.20 0.20 1.63 0.07 0.29 0.13 0.32 0.22 0.11 0.16
SwinV2-S 0.14 0.06 0.17 0.18 0.16 0.26 0.21 0.25 0.27 1.29 0.08 0.31 0.09 0.29 0.14 0.19 0.21
SwinV2-B 0.10 0.10 0.18 0.14 0.13 0.24 0.17 0.24 0.20 0.57 0.09 0.16 0.13 0.11 0.11 0.21 0.04
CLIP (ViT-B/32) 0.20 0.33 0.34 0.25 0.20 0.18 0.17 0.73 1.83 0.51 0.18 0.36 0.35 0.23 0.24 0.17 0.37
CLIP (ViT-B/16) 0.11 0.27 0.12 0.12 0.10 0.17 0.10 1.08 3.69 0.71 0.62 0.18 0.17 0.22 0.13 0.10 0.15
CLIP (ViT-L/14) 0.16 0.10 0.11 0.07 0.16 0.10 0.05 0.96 18.76 1.01 0.45 0.15 0.15 0.23 0.15 0.29 0.21

(d) ImageNet-21K
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

MN3 0.04 err. err. 0.10 0.07 0.07 0.08 7.34 17.87 err. 0.23 0.08 0.06 err. 0.04 0.04 0.05
ViT-B/16 0.08 err. err. 0.09 0.16 0.08 0.04 0.23 0.18 err. 0.29 0.10 0.06 err. 0.06 0.05 0.05

(e) Amazon Fine Foods
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 0.09 0.06 0.10 0.05 0.05 0.07 0.15 0.08 0.14 0.08 0.09 0.11 0.06 0.06 0.04 0.14 0.06
T5-large 0.09 0.06 0.07 0.06 0.05 0.02 0.18 0.07 0.23 0.09 0.28 0.07 0.05 0.05 0.07 0.13 0.05
RoBERTa 0.12 0.08 0.06 0.14 0.14 0.07 0.05 0.06 0.12 0.15 0.04 0.07 0.07 0.06 0.09 0.12 0.08
RoBERTa-large 0.10 0.11 0.06 0.09 0.10 0.05 0.16 0.09 0.26 0.13 0.07 0.08 0.04 0.07 0.13 0.12 0.05

(f) DynaSent
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 0.51 0.21 0.39 0.35 0.28 0.60 0.54 0.52 0.47 0.69 0.55 0.22 0.20 0.42 0.33 0.49 0.54
T5-large 0.28 0.32 0.31 0.20 0.20 0.28 0.20 0.38 0.33 0.60 0.48 0.21 0.35 0.31 0.58 0.32 0.47
RoBERTa 0.67 0.41 0.58 0.65 0.65 0.63 0.49 0.60 0.63 0.54 0.28 0.57 0.45 0.33 0.30 0.16 0.17
RoBERTa-large 0.48 0.25 0.44 0.43 0.43 0.45 0.42 0.45 0.35 0.40 0.69 0.48 0.31 0.94 0.25 0.34 0.34

(g) MNLI
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 0.17 0.19 0.20 0.23 0.22 0.20 0.21 0.23 0.18 0.18 0.35 0.23 0.18 0.37 0.24 0.17 0.15
T5-large 0.27 0.16 0.13 0.35 0.34 0.30 0.40 0.34 0.38 0.21 0.21 0.21 0.14 0.12 0.23 0.23 0.26
RoBERTa 0.41 0.33 0.23 0.36 0.36 0.37 0.38 0.36 0.40 0.34 0.20 0.17 0.34 0.18 0.27 0.45 0.21
RoBERTa-large 0.13 0.13 0.18 0.12 0.12 0.13 0.16 0.13 0.17 0.19 0.21 0.28 0.16 0.19 0.26 0.27 0.16

(h) Yahoo Answers
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 0.04 0.20 0.36 0.07 0.24 0.18 0.25 0.17 0.29 0.22 0.74 0.18 0.23 0.22 0.31 0.76 0.23
T5-large 0.07 0.12 0.13 0.10 0.20 0.15 0.08 0.18 0.09 0.33 0.23 0.15 0.13 0.25 0.28 0.22 0.09
RoBERTa 0.09 0.19 0.26 0.09 0.09 0.09 0.25 0.11 0.29 0.11 0.44 0.21 0.11 0.30 0.26 0.36 0.30
RoBERTa-large 0.06 0.15 0.18 0.06 0.06 0.07 0.29 0.10 0.32 0.10 0.20 0.17 0.13 1.25 0.24 0.26 0.18

109

Table 7.5: AUROC in % (higher is better). Methods in purple impact the model pre-
diction, potentially degrading accuracy; methods in teal do not. Improvements from the
uncalibrated model are colored in blue and degradations in orange.

(a) CIFAR-10
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 92.09 91.79 91.30 92.01 91.98 92.71 92.76 92.71 92.76 90.94 92.09 92.29 91.87 75.63 85.53 75.78 84.69
ResNet-110 92.26 92.25 91.53 92.19 92.18 92.18 92.31 92.16 92.30 91.33 92.26 92.40 92.20 73.44 85.01 74.46 84.56
WRN 91.17 91.17 90.36 91.21 91.19 91.80 92.32 91.82 92.31 90.45 91.17 92.28 91.18 75.99 86.62 73.91 85.38
DenseNet 90.46 90.15 89.68 90.48 90.45 90.84 91.40 90.84 91.39 89.98 90.46 91.46 90.12 77.07 87.07 74.61 83.07
CLIP (ViT-B/32) 89.85 89.72 89.73 89.97 89.97 90.73 91.07 90.95 91.14 90.58 89.85 90.28 89.66 88.86 89.41 88.01 88.76
CLIP (ViT-B/16) 91.00 90.96 90.72 91.10 91.10 91.79 91.99 91.88 92.06 91.75 91.00 90.69 90.83 89.36 90.57 89.12 89.97
CLIP (ViT-L/14) 93.22 93.15 94.32 93.32 93.31 93.69 93.78 93.79 93.87 93.17 93.22 92.78 93.05 87.29 91.73 88.65 91.33

(b) CIFAR-100
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 85.80 85.78 85.03 85.73 85.62 85.92 86.50 85.91 86.51 85.49 85.80 87.19 85.69 81.21 85.31 81.90 83.90
ResNet-110 85.03 84.99 83.76 84.94 84.85 84.82 85.34 84.84 85.33 84.57 85.03 86.32 84.97 80.54 84.47 81.40 82.93
WRN 87.59 87.52 87.02 87.59 87.48 87.83 88.17 87.85 88.14 87.45 87.59 88.65 87.46 83.59 86.46 83.77 85.69
DenseNet 86.17 86.02 85.64 86.12 86.00 86.60 86.79 86.59 86.79 86.01 86.17 87.09 86.11 83.02 85.42 83.47 84.86
CLIP (ViT-B/32) 83.06 83.14 82.99 83.74 83.70 83.95 85.16 83.99 85.02 84.17 83.06 84.61 82.95 85.59 83.00 85.61 82.82
CLIP (ViT-B/16) 82.57 82.55 82.51 83.65 83.66 83.95 85.29 84.04 85.76 84.18 82.57 84.45 82.51 85.76 82.46 85.62 82.24
CLIP (ViT-L/14) 84.26 84.22 84.14 85.51 85.50 86.56 87.57 86.62 87.50 85.64 84.26 86.94 84.11 86.92 84.12 86.67 84.07

(c) ImageNet
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-18 85.73 85.70 85.37 85.64 85.65 85.63 85.88 85.30 85.39 84.39 85.73 86.12 85.69 83.19 85.40 83.73 85.03
ResNet-34 86.18 86.19 85.78 86.11 86.10 86.25 86.38 85.86 85.99 84.64 86.18 86.41 86.14 82.26 85.77 83.03 85.77
ResNet-50 80.53 80.54 80.12 85.93 85.69 85.60 85.57 85.58 85.57 82.34 80.53 86.91 80.49 85.27 80.52 83.63 79.96
ResNet-101 84.18 84.20 83.57 85.96 85.71 85.38 85.56 85.34 85.53 82.38 84.18 87.09 84.18 82.48 84.11 81.16 83.80
EffNet-B7 84.92 84.84 84.10 86.61 86.34 85.18 85.51 85.18 85.52 81.91 84.92 87.14 84.87 81.57 84.94 80.38 84.26
EffNetV2-S 85.77 85.87 85.29 87.02 86.86 85.30 85.67 85.28 85.68 82.55 85.77 87.42 85.72 82.44 85.75 80.86 84.80
EffNetV2-M 82.36 82.36 81.58 85.26 84.92 83.66 84.19 83.64 84.23 80.51 82.36 86.51 82.32 81.24 82.23 79.45 81.71
EffNetV2-L 84.63 84.58 83.96 86.33 86.05 85.77 85.94 85.75 85.87 82.27 84.63 86.70 84.55 81.78 84.56 80.56 84.08
ConvNeXt-T 82.35 82.31 81.84 85.47 85.18 85.60 85.57 85.59 85.59 81.93 82.35 86.97 82.29 82.58 82.30 81.44 81.88
ConvNeXt-S 82.29 82.36 81.87 85.27 84.88 84.81 85.01 84.81 85.01 81.22 82.29 86.98 82.26 81.29 82.20 79.78 81.86
ConvNeXt-B 82.27 82.27 81.70 85.13 84.75 84.40 84.88 84.40 84.90 80.87 82.27 87.01 82.22 81.79 82.25 79.89 81.69
ConvNeXt-L 82.35 82.35 81.42 84.81 84.38 84.04 84.58 84.04 84.54 80.24 82.35 86.79 82.32 80.49 82.23 79.15 81.75
ViT-B/32 85.57 85.60 85.10 86.31 86.13 85.95 85.98 85.93 85.98 83.56 85.57 87.16 85.54 83.39 85.55 82.69 85.11
ViT-B/16 85.52 85.55 84.92 86.32 86.12 85.36 85.53 85.34 85.56 81.82 85.52 87.19 85.50 81.56 85.39 81.21 85.09
ViT-L/32 85.42 85.45 84.78 85.93 85.73 85.19 85.29 85.20 85.30 82.07 85.42 87.25 85.41 81.51 85.40 81.42 85.09
ViT-L/16 85.85 85.83 84.63 86.16 86.00 84.33 84.65 84.32 84.64 80.96 85.85 86.97 85.83 79.76 85.66 80.08 84.85
ViT-H/14 87.28 87.24 86.60 87.53 87.34 86.74 86.71 86.77 86.78 82.15 87.28 86.65 87.22 79.33 86.54 80.08 85.32
Swin-T 85.68 85.71 85.04 86.50 86.34 85.79 85.86 85.80 85.86 83.14 85.68 87.10 85.66 82.15 85.64 81.39 85.16
Swin-S 85.37 85.36 84.75 85.99 85.78 84.99 85.20 85.00 85.20 80.92 85.37 86.92 85.35 80.25 85.32 80.05 84.80
Swin-B 84.11 84.26 83.38 85.26 84.91 83.93 84.18 83.92 84.20 79.78 84.11 86.55 84.19 78.94 84.24 79.09 83.09
SwinV2-T 85.80 85.79 85.10 86.74 86.56 85.82 86.04 85.80 86.02 83.06 85.80 87.29 85.78 82.58 85.76 81.47 85.26
SwinV2-S 85.75 85.75 85.03 86.61 86.39 85.19 85.51 85.19 85.50 81.77 85.75 87.18 85.74 80.54 85.75 80.41 84.73
SwinV2-B 85.15 85.13 84.19 86.07 85.82 84.43 84.70 84.40 84.65 80.31 85.15 86.99 85.16 79.57 84.98 79.42 83.86
CLIP (ViT-B/32) 80.56 80.56 80.24 80.59 80.57 81.73 83.21 77.72 77.92 81.14 80.56 81.43 80.52 81.85 80.53 82.14 80.18
CLIP (ViT-B/16) 81.12 81.08 80.96 81.16 81.15 82.28 83.64 78.10 84.57 81.52 81.12 82.17 81.10 82.33 81.07 82.42 80.76
CLIP (ViT-L/14) 82.98 82.95 82.50 82.90 82.86 83.66 85.07 80.09 79.86 82.75 82.98 83.29 82.93 82.85 82.80 82.87 82.36

(d) ImageNet-21K
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

MN3 68.79 err. err. 67.80 65.89 80.00 81.00 61.24 51.94 err. 68.79 79.62 68.77 err. 68.77 90.86 68.40
ViT-B/16 72.99 err. err. 74.36 73.17 79.78 81.42 76.29 78.92 err. 72.99 79.66 73.10 err. 73.20 90.27 71.95

(e) Amazon Fine Foods
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 85.04 84.99 84.32 85.11 85.11 87.84 87.99 88.09 88.02 87.46 85.04 87.03 85.04 85.53 83.47 80.53 79.41
T5-large 81.33 81.34 80.52 80.75 80.74 85.84 87.94 87.47 87.80 87.27 81.33 85.15 81.38 83.35 78.27 77.53 74.25
RoBERTa 83.52 83.50 80.50 83.34 83.34 84.96 86.75 86.44 86.56 86.27 83.51 83.93 83.51 81.62 75.17 75.80 73.35
RoBERTa-large 87.88 87.67 82.18 87.99 87.99 88.04 88.25 88.70 88.33 88.40 87.88 87.34 87.88 81.52 74.92 75.63 75.30

(f) DynaSent
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 78.01 77.80 77.51 78.12 78.12 78.11 78.34 78.31 78.31 78.20 78.01 78.57 77.91 76.88 76.81 74.14 76.04
T5-large 77.61 77.69 76.63 77.81 77.81 77.82 79.18 78.87 79.35 78.83 77.61 79.20 77.61 74.72 74.34 69.26 73.32
RoBERTa 75.16 75.15 72.77 75.30 75.30 75.23 75.47 75.60 76.05 75.31 75.16 76.10 75.06 64.47 66.97 59.47 68.49
RoBERTa-large 76.18 75.83 72.80 76.34 76.34 76.25 76.52 76.05 76.12 75.67 76.18 76.13 76.06 61.33 66.46 59.53 68.27

(g) MNLI
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 84.44 84.39 83.31 84.51 84.51 84.55 85.01 85.07 85.15 84.59 84.44 84.89 84.37 79.85 80.50 70.97 78.39
T5-large 82.01 81.83 79.68 82.10 82.10 82.08 81.99 82.26 82.30 82.14 82.01 82.11 81.92 66.48 69.68 59.63 72.69
RoBERTa 82.36 82.33 79.46 82.50 82.50 82.48 82.83 82.82 82.89 82.78 82.36 82.99 82.32 67.99 72.67 60.25 73.19
RoBERTa-large 83.58 83.49 79.43 83.63 83.63 83.58 83.78 83.63 83.75 83.49 83.58 83.58 83.50 68.68 72.21 61.39 74.25

(h) Yahoo Anwsers
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 81.60 81.53 81.10 81.61 81.61 81.64 81.65 81.63 81.65 81.59 81.60 81.70 81.53 80.46 80.81 78.99 80.03
T5-large 81.09 81.00 80.45 81.08 81.07 81.16 81.17 81.22 81.29 81.07 81.09 81.15 81.05 79.24 79.89 77.41 79.06
RoBERTa 78.63 78.59 76.52 78.80 78.80 78.73 78.70 78.90 79.07 78.68 78.63 78.86 78.57 74.45 73.17 73.20 67.91
RoBERTa-large 79.13 79.08 76.92 79.41 79.41 79.30 79.46 79.37 79.81 79.34 79.13 79.35 79.04 75.00 72.69 73.67 72.96

110

Table 7.6: Average confidence in %. Methods in purple impact the model prediction;
methods in teal do not. Overconfidence (average confidence > accuracy) is shown in
violet and underconfidence (average confidence < accuracy) in brown.

(a) CIFAR-10
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 94.9 96.6 94.9 94.8 95.6 95.2 95.6 95.5 95.6 95.5 96.8 95.1 95.3 94.9 94.9 94.9 94.9 95.0
ResNet-110 94.6 97.1 94.9 94.8 95.7 95.3 95.7 95.7 95.7 95.7 97.5 95.0 95.4 94.8 94.8 94.8 94.8 94.8
WRN 95.8 95.9 96.1 96.0 96.8 96.5 96.8 96.3 96.8 96.3 97.4 96.0 96.5 96.0 96.2 96.0 96.2 96.0
DenseNet 95.0 95.7 95.0 94.9 95.9 95.6 96.0 95.6 95.9 95.6 96.9 95.2 95.5 95.0 95.1 95.0 95.1 94.9
CLIP (ViT-B/32) 88.2 83.4 87.5 87.3 87.7 87.8 87.5 88.5 87.6 88.5 89.8 88.4 89.7 87.9 89.2 87.9 88.8 87.9
CLIP (ViT-B/16) 90.2 84.8 89.8 89.5 89.8 90.1 89.4 90.4 89.5 90.5 91.7 90.9 91.9 90.2 91.3 90.2 90.8 90.2
CLIP (ViT-L/14) 95.3 90.4 95.0 88.7 94.9 95.0 94.5 94.8 94.6 94.8 95.7 96.0 96.2 95.2 95.9 95.2 95.7 95.2

(b) CIFAR-100
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 76.7 82.9 77.2 77.0 80.9 76.9 81.4 77.5 81.4 77.4 80.3 78.0 81.5 76.9 74.0 76.9 75.6 76.8
ResNet-110 75.0 82.8 75.5 75.3 79.6 75.5 80.0 76.2 80.0 76.2 79.3 76.9 80.6 75.2 71.4 75.2 73.0 75.3
WRN 79.6 83.0 79.5 79.3 83.0 79.3 83.4 79.7 83.3 79.7 81.1 79.6 83.2 79.3 75.5 79.3 77.3 79.3
DenseNet 76.3 81.0 76.2 76.0 79.6 76.0 80.1 76.6 80.1 76.6 78.7 75.6 79.9 75.8 72.6 75.8 74.0 76.0
CLIP (ViT-B/32) 62.3 52.8 60.7 60.1 63.3 62.3 59.0 63.9 58.3 63.5 60.7 62.9 65.2 62.3 57.0 62.3 57.8 62.3
CLIP (ViT-B/16) 66.7 56.0 64.5 63.9 66.9 67.1 62.7 68.4 62.0 67.9 64.0 66.5 68.5 66.9 61.0 66.9 62.1 67.0
CLIP (ViT-L/14) 76.0 65.0 73.9 73.4 76.1 76.0 74.1 78.6 73.4 78.4 73.5 74.6 78.5 76.0 72.8 76.0 73.4 75.9

(c) ImageNet
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-18 69.8 72.0 69.6 69.2 69.4 69.7 70.3 70.8 71.4 70.7 65.5 69.4 73.1 69.8 65.3 69.8 67.8 69.8
ResNet-34 73.2 76.8 73.4 72.9 73.5 73.1 74.4 74.3 75.2 74.2 68.3 73.2 76.8 73.3 70.3 73.3 72.4 73.3
ResNet-50 80.8 39.7 78.5 77.9 84.0 82.2 84.2 80.2 84.2 80.2 69.3 81.2 81.6 80.9 71.1 80.9 74.7 80.9
ResNet-101 81.9 68.3 81.7 81.4 85.5 83.4 86.0 83.1 86.0 83.1 72.5 82.2 84.5 82.0 78.2 82.0 80.6 82.1
EffNet-B7 84.2 71.6 84.2 84.0 87.8 85.7 88.3 85.5 88.3 85.5 75.0 84.2 87.0 84.0 82.2 84.1 84.0 84.1
EffNetV2-S 84.3 67.3 84.2 84.0 87.9 85.6 88.2 85.3 88.2 85.2 76.3 84.7 86.8 84.2 81.2 84.2 83.5 84.2
EffNetV2-M 85.1 60.2 84.9 84.7 88.8 86.6 89.1 85.9 89.1 85.8 76.8 84.9 87.7 85.1 81.8 85.2 84.4 85.1
EffNetV2-L 85.8 77.3 85.7 85.4 88.6 86.9 88.9 86.7 88.9 86.6 76.4 85.8 88.1 85.6 84.2 85.6 85.9 85.7
ConvNeXt-T 82.5 65.6 82.0 81.7 85.6 84.0 85.9 83.3 85.9 83.2 73.5 81.9 84.7 82.5 78.9 82.5 81.2 82.5
ConvNeXt-S 83.6 66.0 83.5 83.2 87.4 85.3 87.8 84.7 87.8 84.7 74.9 83.1 86.3 83.6 80.7 83.6 82.9 83.6
ConvNeXt-B 84.0 65.3 83.9 83.7 87.8 85.6 88.2 85.0 88.2 85.0 74.6 84.0 86.7 84.0 81.2 84.1 83.4 84.1
ConvNeXt-L 84.4 71.9 84.5 84.3 88.4 86.2 88.8 85.8 88.8 85.8 76.6 84.5 87.4 84.5 82.6 84.5 84.3 84.5
ViT-B/32 75.9 69.6 75.9 75.6 79.9 77.3 80.5 77.4 80.4 77.3 69.3 75.7 78.9 75.9 71.0 75.9 73.7 76.0
ViT-B/16 81.0 75.5 81.2 81.0 84.8 82.6 85.3 82.8 85.3 82.7 73.8 81.2 84.0 81.0 78.8 81.0 80.5 81.1
ViT-L/32 77.0 74.2 77.3 77.2 81.6 78.8 82.2 79.0 82.2 79.0 71.7 77.0 80.8 76.9 73.9 76.9 76.0 76.9
ViT-L/16 79.6 78.8 80.1 80.0 84.5 81.7 85.1 82.1 85.1 82.1 72.9 80.1 83.6 79.7 78.3 79.7 79.8 79.7
ViT-H/14 88.6 89.0 88.6 88.4 90.4 89.3 90.5 89.5 90.5 89.5 80.8 88.4 90.8 88.6 88.7 88.6 89.3 88.7
Swin-T 81.5 74.7 81.3 81.1 84.5 82.6 85.0 82.7 85.0 82.6 73.7 81.3 84.0 81.5 78.8 81.5 80.9 81.4
Swin-S 83.2 79.9 83.3 83.1 86.8 84.6 87.3 84.7 87.3 84.7 75.3 83.7 86.1 83.1 81.7 83.1 83.1 83.2
Swin-B 83.6 79.7 83.8 83.6 87.5 85.4 88.0 85.6 88.0 85.5 75.8 83.6 86.7 83.5 82.8 83.5 84.0 83.5
SwinV2-T 82.0 73.7 82.1 81.9 85.6 83.4 86.0 83.4 86.0 83.4 73.4 82.2 84.7 82.2 79.4 82.2 81.5 82.2
SwinV2-S 83.7 77.7 83.8 83.7 87.5 85.2 88.0 85.4 88.0 85.3 75.3 84.1 86.7 83.7 82.3 83.7 83.8 83.7
SwinV2-B 84.1 78.9 84.3 84.1 87.9 85.7 88.4 85.8 88.4 85.8 76.7 84.5 87.1 84.2 83.1 84.1 84.3 84.2
CLIP (ViT-B/32) 57.3 57.3 57.1 56.7 57.9 57.5 59.3 60.1 67.1 70.7 55.4 57.1 61.8 57.2 52.7 57.2 55.0 57.2
CLIP (ViT-B/16) 62.9 62.6 62.5 62.1 63.4 63.2 64.6 65.6 69.9 66.2 60.2 62.5 67.4 63.0 59.4 63.0 61.4 63.0
CLIP (ViT-L/14) 70.1 72.1 70.0 69.8 70.9 70.3 73.0 72.8 76.9 66.6 65.7 70.5 74.6 70.1 67.3 70.1 69.2 69.9

(d) ImageNet-21K
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

MN3 15.4 27.7 err. err. 24.0 17.4 35.5 33.3 71.9 81.2 err. 15.1 35.1 15.3 err. 15.3 15.7 15.3
ViT-B/16 19.2 21.4 err. err. 25.5 21.9 43.4 41.3 48.7 41.5 err. 19.3 42.8 19.2 err. 19.1 20.6 19.2

(e) Amazon Fine Foods
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 89.8 95.0 89.8 89.8 90.2 90.3 90.8 91.5 90.7 91.6 96.0 89.5 90.5 89.8 90.4 89.8 90.2 89.8
T5-large 91.6 97.3 91.6 91.6 92.0 91.9 92.3 93.3 92.3 93.3 97.8 91.6 92.1 91.6 92.1 91.6 91.9 91.6
RoBERTa 90.0 97.8 90.0 90.0 92.2 92.2 90.6 91.7 90.7 91.7 98.0 90.0 90.5 90.0 90.4 90.0 90.2 90.0
RoBERTa-large 91.4 98.2 91.5 91.5 93.9 93.9 92.3 93.3 92.3 93.3 98.3 91.5 92.1 91.5 91.9 91.5 91.7 91.4

(f) DynaSent
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 78.8 86.8 78.5 78.5 78.9 78.8 83.6 80.5 83.4 80.6 89.7 78.5 78.9 78.3 78.7 78.3 78.4 78.2
T5-large 82.2 91.8 81.8 81.7 85.0 85.0 89.5 83.9 89.3 83.9 94.1 82.2 82.2 81.6 82.0 81.6 81.8 81.6
RoBERTa 77.7 95.1 77.9 77.8 90.9 90.9 93.5 85.4 92.7 84.1 96.1 78.3 78.4 77.8 78.0 77.7 78.0 77.8
RoBERTa-large 81.2 96.0 81.2 81.2 92.1 92.1 94.6 86.7 94.0 85.9 96.9 80.5 81.7 81.0 81.4 80.9 81.3 81.0

(g) MNLI
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 88.4 94.8 88.5 88.5 89.4 89.4 91.6 90.2 91.6 90.3 96.1 89.0 88.7 88.5 88.6 88.5 88.4 88.5
T5-large 90.1 97.6 90.0 89.9 94.5 94.5 95.7 91.7 95.5 91.7 98.3 90.2 90.2 89.9 90.1 89.9 90.0 89.9
RoBERTa 86.4 96.7 86.1 86.1 92.9 92.9 94.2 88.4 93.8 88.5 97.5 86.1 86.5 86.1 86.2 86.0 86.1 86.1
RoBERTa-large 88.9 97.1 88.8 88.7 93.8 93.8 95.0 90.6 94.7 90.7 97.7 88.9 89.1 88.7 88.9 88.7 88.8 88.7

(h) Yahoo Answers
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 75.3 82.0 75.6 75.4 75.1 74.6 78.0 76.1 78.0 76.0 82.9 74.8 76.5 75.4 75.4 75.4 75.0 75.4
T5-large 75.6 84.6 75.8 75.6 75.4 74.8 80.3 76.3 80.5 76.4 85.8 75.9 77.0 75.6 75.8 75.6 75.3 75.6
RoBERTa 72.4 91.9 72.6 72.5 84.4 84.4 88.6 74.6 88.6 74.7 92.8 72.0 74.4 72.3 72.7 72.3 72.4 72.3
RoBERTa-large 72.8 92.5 73.1 73.0 85.6 85.6 89.5 75.6 89.3 76.1 93.2 72.6 74.8 72.9 73.2 72.9 73.0 73.0

111

Table 7.7: Accuracy in % (higher is better). Methods in purple impact the model pre-
diction, potentially degrading accuracy; methods in teal do not. Because classifiers can
be well calibrated when not accurate (by having low accuracy and low confidence), it
is important to monitor the accuracy or having methods that preserve the accuracy by
design.

(a) CIFAR-10
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 94.89 94.92 94.89 94.89 94.89 94.84 94.83 94.84 94.83 94.84 94.89 94.83 94.89 94.72 94.89 94.70 94.89
ResNet-110 94.55 94.53 94.51 94.55 94.55 94.50 94.52 94.51 94.52 94.55 94.55 94.42 94.55 94.40 94.55 94.32 94.55
WRN 95.79 95.80 95.76 95.79 95.79 95.68 95.73 95.68 95.74 95.80 95.79 95.63 95.79 95.65 95.79 95.59 95.79
DenseNet 94.99 94.98 94.97 94.99 94.99 95.05 95.05 95.05 95.05 94.99 94.99 94.86 94.99 94.74 94.99 94.80 94.99
CLIP (ViT-B/32) 88.17 88.16 87.92 88.17 88.17 90.29 90.28 90.38 90.33 90.18 88.17 90.36 88.17 90.29 88.17 90.18 88.17
CLIP (ViT-B/16) 90.23 90.16 90.01 90.23 90.23 92.33 92.30 92.40 92.33 92.10 90.23 92.21 90.23 92.19 90.23 91.90 90.23
CLIP (ViT-L/14) 95.28 95.22 88.91 95.28 95.28 96.48 96.50 96.49 96.48 96.31 95.28 96.31 95.28 96.39 95.28 96.25 95.28

(b) CIFAR-100
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 76.71 76.64 76.72 76.71 76.71 76.63 76.50 76.65 76.50 76.67 76.71 76.24 76.71 76.01 76.71 74.89 76.71
ResNet-110 75.00 75.00 74.91 75.00 75.00 75.00 74.94 75.00 74.94 74.96 75.00 74.66 75.00 74.14 75.00 73.12 75.00
WRN 79.57 79.52 79.42 79.57 79.57 79.36 79.34 79.36 79.36 79.51 79.57 79.08 79.57 78.57 79.57 77.35 79.57
DenseNet 76.26 76.31 76.21 76.26 76.26 76.31 76.31 76.33 76.31 76.30 76.26 76.07 76.26 75.48 76.26 74.42 76.26
CLIP (ViT-B/32) 62.33 62.18 61.60 62.33 62.33 67.77 67.33 66.31 63.95 66.40 62.33 66.48 62.33 63.85 62.33 64.06 62.33
CLIP (ViT-B/16) 66.66 66.62 66.10 66.66 66.66 71.35 71.02 70.18 68.48 70.04 66.66 70.21 66.66 67.38 66.66 67.55 66.66
CLIP (ViT-L/14) 75.96 75.87 75.67 75.96 75.96 80.09 79.87 79.96 79.02 79.38 75.96 79.52 75.96 77.29 75.96 77.05 75.96

(c) ImageNet
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-18 69.77 69.76 69.37 69.77 69.77 69.81 69.21 68.12 67.60 69.72 69.77 69.24 69.77 68.34 69.77 66.65 69.77
ResNet-34 73.23 73.19 72.77 73.23 73.23 73.19 72.70 71.96 71.53 73.10 73.23 72.81 73.23 72.21 73.23 70.46 73.23
ResNet-50 80.85 80.80 80.26 80.85 80.85 80.93 80.81 80.94 80.81 80.60 80.85 80.47 80.85 78.13 80.85 78.49 80.85
ResNet-101 81.86 81.83 81.54 81.86 81.86 81.77 81.65 81.80 81.66 81.74 81.86 81.44 81.86 80.82 81.86 79.80 81.86
EffNet-B7 84.16 84.18 84.06 84.16 84.16 84.45 84.31 84.45 84.30 84.27 84.16 84.09 84.16 83.71 84.16 82.72 84.16
EffNetV2-S 84.27 84.19 83.99 84.27 84.27 84.33 84.23 84.34 84.22 84.26 84.27 83.88 84.27 83.52 84.27 82.55 84.27
EffNetV2-M 85.06 85.05 84.90 85.06 85.06 85.28 85.19 85.28 85.17 85.10 85.06 84.87 85.06 84.19 85.07 83.72 85.06
EffNetV2-L 85.80 85.78 85.60 85.80 85.80 85.88 85.83 85.89 85.87 85.89 85.80 85.58 85.80 85.23 85.80 84.25 85.80
ConvNeXt-T 82.50 82.49 82.18 82.50 82.50 82.44 82.29 82.45 82.28 82.45 82.50 82.10 82.50 81.51 82.50 80.37 82.50
ConvNeXt-S 83.65 83.59 83.36 83.65 83.65 83.63 83.55 83.63 83.55 83.64 83.65 83.28 83.65 82.89 83.65 81.84 83.65
ConvNeXt-B 84.04 84.01 83.78 84.04 84.04 84.09 83.98 84.10 83.96 84.04 84.04 83.68 84.04 83.22 84.04 82.34 84.04
ConvNeXt-L 84.38 84.37 84.23 84.38 84.38 84.41 84.32 84.41 84.34 84.44 84.38 84.12 84.38 83.98 84.38 82.92 84.38
ViT-B/32 75.95 75.91 75.69 75.95 75.95 75.81 75.65 75.83 75.66 75.85 75.95 75.36 75.95 74.59 75.95 73.13 75.95
ViT-B/16 81.04 81.01 80.90 81.04 81.04 81.00 80.88 81.01 80.87 80.96 81.04 80.63 81.04 80.38 81.04 79.06 81.04
ViT-L/32 76.96 76.94 76.84 76.96 76.96 76.79 76.73 76.79 76.72 76.88 76.96 76.37 76.96 76.04 76.96 74.55 76.96
ViT-L/16 79.64 79.64 79.59 79.64 79.64 79.80 79.67 79.81 79.68 79.66 79.64 79.47 79.64 79.20 79.64 77.82 79.64
ViT-H/14 88.62 88.61 88.48 88.62 88.62 88.62 88.50 88.59 88.46 88.63 88.62 88.34 88.62 88.33 88.62 87.24 88.62
Swin-T 81.49 81.45 81.28 81.49 81.49 81.55 81.42 81.55 81.42 81.44 81.49 81.07 81.49 80.77 81.49 79.43 81.49
Swin-S 83.21 83.20 83.04 83.21 83.21 83.13 83.02 83.13 83.03 83.21 83.21 82.79 83.21 82.74 83.21 81.40 83.21
Swin-B 83.60 83.57 83.53 83.60 83.60 83.75 83.61 83.76 83.59 83.63 83.60 83.39 83.60 83.40 83.60 82.16 83.60
SwinV2-T 82.02 82.01 81.83 82.02 82.02 82.12 81.98 82.13 82.00 82.05 82.02 81.66 82.02 81.27 82.02 80.08 82.02
SwinV2-S 83.74 83.73 83.64 83.74 83.74 83.81 83.71 83.80 83.72 83.72 83.74 83.56 83.74 83.34 83.74 82.31 83.74
SwinV2-B 84.10 84.12 84.03 84.10 84.10 84.14 84.06 84.16 84.08 84.16 84.10 83.81 84.10 83.79 84.10 82.53 84.10
CLIP (ViT-B/32) 57.34 57.32 56.94 57.34 57.34 59.80 59.57 31.10 0.18 58.93 57.34 59.54 57.34 57.25 57.34 56.05 57.34
CLIP (ViT-B/16) 62.89 62.91 62.43 62.89 62.89 65.61 65.28 35.86 0.18 64.62 62.89 65.07 62.89 63.24 62.89 62.18 62.89
CLIP (ViT-L/14) 70.15 70.14 69.89 70.15 70.15 72.66 72.25 50.88 0.17 71.57 70.15 72.30 70.15 70.59 70.15 69.36 70.15

(d) ImageNet-21K
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

MN3 15.36 err. err. 15.36 15.36 37.26 34.95 13.07 0.02 err. 15.36 35.62 15.36 err. 15.36 21.17 15.36
ViT-B/16 19.18 err. err. 19.18 19.18 45.42 42.70 40.54 40.70 err. 19.18 43.72 19.18 err. 19.18 28.46 19.18

(e) Amazon Fine Foods
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 89.81 89.83 89.83 89.81 89.81 90.04 90.18 90.31 90.34 90.59 89.81 90.60 89.81 90.58 89.81 90.64 89.81
T5-large 91.57 91.58 91.61 91.57 91.57 91.67 91.82 92.04 91.98 92.10 91.57 92.14 91.57 92.14 91.57 92.11 91.57
RoBERTa 89.95 89.95 89.98 89.95 89.95 89.99 90.15 90.29 90.21 90.56 89.95 90.59 89.95 90.59 89.95 90.54 89.95
RoBERTa-large 91.42 91.50 91.48 91.42 91.42 91.42 91.64 91.74 91.69 91.94 91.42 91.95 91.42 91.90 91.39 91.91 91.42

(f) DynaSent
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 78.83 78.88 78.82 78.83 78.83 78.84 78.83 78.82 78.86 78.81 78.83 78.70 78.83 78.71 78.83 78.73 78.83
T5-large 82.20 82.16 82.19 82.20 82.20 82.20 82.23 82.32 82.25 82.35 82.20 82.31 82.20 82.19 82.20 82.29 82.20
RoBERTa 77.72 77.67 77.71 77.72 77.72 77.72 77.74 77.76 77.70 77.77 77.72 77.75 77.72 77.86 77.72 77.97 77.72
RoBERTa-large 81.19 81.29 81.33 81.19 81.19 81.19 81.19 81.24 81.44 81.28 81.19 81.50 81.19 81.51 81.19 81.66 81.19

(g) MNLI
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 88.35 88.35 88.38 88.35 88.35 88.36 88.39 88.39 88.39 88.41 88.35 88.34 88.35 88.28 88.35 88.37 88.35
T5-large 90.07 90.10 90.14 90.07 90.07 90.07 90.15 90.20 90.21 90.07 90.07 90.15 90.07 90.06 90.07 90.16 90.07
RoBERTa 86.41 86.40 86.43 86.41 86.41 86.41 86.42 86.45 86.48 86.44 86.41 86.37 86.41 86.41 86.41 86.38 86.41
RoBERTa-large 88.89 88.90 88.92 88.89 88.89 88.90 88.96 88.98 89.02 88.90 88.89 88.95 88.89 88.86 88.89 88.92 88.89

(h) Yahoo Answers
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 75.35 75.35 75.26 75.35 75.35 75.34 75.34 75.36 75.35 75.24 75.35 75.30 75.35 75.22 75.35 75.25 75.35
T5-large 75.57 75.60 75.56 75.57 75.57 75.59 75.55 75.69 75.66 75.53 75.57 75.70 75.57 75.62 75.57 75.67 75.57
RoBERTa 72.38 72.37 72.35 72.38 72.38 72.39 72.43 72.74 73.05 72.72 72.38 73.00 72.38 72.87 72.38 72.91 72.38
RoBERTa-large 72.84 72.83 72.81 72.84 72.84 72.83 72.88 73.01 73.40 72.98 72.84 73.48 72.84 73.29 72.84 73.38 72.84

112

Table 7.8: ECE with 15 equal mass bins in % (lower is better). Methods in purple impact
the model prediction, potentially degrading accuracy; methods in teal do not.

(a) CIFAR-10
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 1.81 0.71 0.62 1.33 1.24 1.28 1.29 1.28 1.29 2.03 1.55 0.93 0.70 2.45 0.47 2.33 0.46
ResNet-110 2.58 0.48 0.51 1.78 1.72 1.74 1.74 1.72 1.75 2.91 1.56 0.99 0.43 2.59 0.34 2.71 0.23
WRN 1.80 0.58 0.51 1.74 1.75 1.48 1.52 1.49 1.52 1.74 2.09 0.98 0.62 2.07 0.54 2.15 0.46
DenseNet 2.04 0.56 0.46 2.00 2.07 1.48 1.70 1.47 1.70 2.03 2.45 0.78 0.56 2.71 0.69 2.75 0.29
CLIP (ViT-B/32) 4.73 1.33 1.30 0.93 0.91 2.76 1.79 2.80 1.80 1.66 1.34 1.06 1.05 2.15 1.47 2.47 0.90
CLIP (ViT-B/16) 5.38 1.12 1.01 0.59 0.48 2.91 1.91 2.87 1.87 1.21 1.80 1.05 0.87 1.63 0.91 2.41 0.63
CLIP (ViT-L/14) 4.90 0.54 0.50 0.56 0.48 1.98 1.74 1.93 1.72 0.96 0.94 0.55 0.46 0.98 0.51 0.96 0.37

(b) CIFAR-100
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 6.53 1.55 1.26 5.00 3.54 5.15 2.31 5.14 2.30 5.54 3.90 5.60 1.44 10.10 2.08 10.97 1.19
ResNet-110 7.83 1.27 1.18 5.31 4.24 5.11 2.86 5.07 2.90 5.97 4.95 6.49 1.30 9.72 2.11 10.89 1.13
WRN 4.33 1.07 0.95 4.36 2.79 4.46 2.38 4.45 2.37 4.40 2.85 4.28 1.22 10.29 0.94 9.99 0.83
DenseNet 5.16 1.12 0.86 4.25 2.30 4.47 2.26 4.48 2.25 4.83 2.94 4.50 1.37 10.46 1.27 10.60 1.07
CLIP (ViT-B/32) 9.51 2.10 1.74 1.86 1.78 8.72 3.49 7.97 1.99 6.51 2.75 2.32 1.25 7.95 2.13 7.99 1.35
CLIP (ViT-B/16) 10.64 3.35 3.04 2.66 2.72 8.68 3.15 8.20 1.72 7.03 2.55 2.68 1.77 7.14 2.12 7.13 1.52
CLIP (ViT-L/14) 10.96 3.14 2.94 2.47 2.53 6.01 2.05 6.57 1.74 6.52 1.93 2.39 1.64 6.65 1.66 6.48 1.44

(c) ImageNet
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-18 2.59 0.78 0.55 1.86 1.82 1.71 2.07 3.36 3.35 4.36 1.39 3.85 0.75 9.84 0.65 9.45 0.56
ResNet-34 3.61 0.74 0.52 1.75 1.75 1.81 2.02 3.40 2.91 4.86 1.11 4.04 0.71 9.17 0.68 9.29 0.64
ResNet-50 41.15 2.75 2.60 3.19 1.76 3.23 1.10 3.22 1.13 11.30 2.22 1.29 0.76 8.24 0.98 5.45 0.52
ResNet-101 13.55 0.79 0.56 3.69 2.34 4.21 1.60 4.18 1.56 9.21 2.10 3.01 0.63 7.84 1.00 6.68 0.46
EffNet-B7 12.60 0.51 0.48 3.84 2.94 3.82 1.58 3.81 1.56 9.31 2.32 2.93 0.56 6.91 0.71 6.06 0.39
EffNetV2-S 16.92 0.63 0.40 4.04 3.32 3.91 1.69 3.89 1.67 7.98 2.52 2.96 0.65 7.58 0.92 6.50 0.58
EffNetV2-M 24.88 0.90 0.67 3.78 2.66 3.83 1.35 3.82 1.34 8.31 1.83 2.88 0.73 6.68 1.08 5.38 0.54
EffNetV2-L 8.48 0.60 0.44 2.84 1.49 3.06 0.94 3.05 0.90 9.45 1.18 2.51 0.62 6.03 0.78 5.30 0.37
ConvNeXt-T 16.95 1.17 0.87 3.08 1.67 3.47 1.21 3.46 1.17 8.95 1.83 2.55 0.82 7.64 0.99 6.01 0.67
ConvNeXt-S 17.60 0.76 0.56 3.80 2.56 4.19 1.44 4.18 1.41 8.77 2.02 3.06 0.71 7.36 0.79 6.07 0.51
ConvNeXt-B 18.77 0.68 0.44 3.81 2.67 4.09 1.44 4.07 1.44 9.44 2.18 3.03 0.73 7.48 1.04 6.04 0.58
ConvNeXt-L 12.51 0.65 0.43 4.02 2.90 4.42 1.82 4.41 1.77 7.89 1.59 3.26 0.63 7.05 0.78 6.27 0.41
ViT-B/32 6.37 0.71 0.61 4.10 2.49 4.64 1.90 4.62 1.84 6.53 1.75 3.58 0.71 9.24 0.74 8.30 0.58
ViT-B/16 5.56 0.75 0.53 4.19 3.18 4.27 2.09 4.25 2.07 7.24 2.39 3.38 0.70 7.68 0.93 7.12 0.57
ViT-L/32 4.13 0.85 0.75 5.30 4.20 5.37 2.67 5.37 2.64 6.19 2.80 4.42 0.72 9.18 1.03 8.64 0.63
ViT-L/16 5.17 1.02 0.59 5.92 5.20 5.28 2.74 5.26 2.69 7.36 3.59 4.10 0.76 7.82 1.29 8.32 0.60
ViT-H/14 0.61 0.56 0.35 1.75 0.83 1.88 1.08 1.92 1.05 8.06 0.70 2.46 0.60 3.96 0.53 4.64 0.41
Swin-T 6.82 0.77 0.49 3.10 1.82 3.43 1.33 3.43 1.27 7.70 1.67 2.94 0.71 7.52 0.90 6.87 0.48
Swin-S 3.57 0.59 0.52 3.92 2.98 4.17 1.84 4.17 1.82 7.88 2.33 3.29 0.59 6.78 0.83 6.97 0.50
Swin-B 4.65 0.60 0.35 4.36 3.71 4.22 2.04 4.21 2.04 7.89 2.81 3.33 0.63 6.50 0.78 6.64 0.41
SwinV2-T 8.31 0.72 0.46 3.62 2.21 3.92 1.60 3.90 1.59 8.66 1.83 3.07 0.71 7.97 0.67 6.84 0.52
SwinV2-S 6.06 0.64 0.45 4.18 3.32 4.24 1.88 4.23 1.83 8.46 2.34 3.15 0.56 7.04 0.79 6.75 0.50
SwinV2-B 5.27 0.61 0.46 4.42 3.68 4.25 1.95 4.22 1.88 7.47 2.74 3.33 0.57 6.56 0.75 6.53 0.42
CLIP (ViT-B/32) 1.51 1.00 0.73 1.62 1.56 1.42 0.81 36.01 70.52 3.59 0.84 2.25 0.98 7.88 1.04 6.66 0.79
CLIP (ViT-B/16) 1.78 1.25 0.74 1.90 1.88 1.60 0.80 34.02 66.04 4.51 1.07 2.31 0.95 8.17 0.83 6.96 0.71
CLIP (ViT-L/14) 2.54 1.17 0.64 2.03 2.04 1.79 1.32 26.06 66.39 5.93 1.50 2.39 1.10 9.03 0.88 7.87 0.84

(d) ImageNet-21K
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

MN3 12.34 err. err. 8.69 4.43 2.51 2.38 58.84 81.16 err. 1.14 1.93 0.28 err. 0.31 5.53 0.19
ViT-B/16 6.54 err. err. 9.03 6.86 2.34 1.55 8.18 3.20 err. 3.72 2.14 0.21 err. 0.43 7.90 0.17

(e) Amazon Fine Foods
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 5.17 0.28 0.22 1.35 1.36 1.35 1.43 0.99 1.30 5.44 0.87 0.47 0.29 1.14 0.21 2.51 0.21
T5-large 5.76 0.27 0.22 1.82 1.84 1.71 1.67 1.37 1.35 5.71 1.81 0.75 0.26 1.97 0.17 3.18 0.17
RoBERTa 7.89 0.33 0.23 2.27 2.21 1.46 2.11 1.60 1.90 7.47 4.29 0.45 0.32 2.73 0.22 3.76 0.21
RoBERTa-large 6.82 0.34 0.18 2.53 2.45 1.47 2.13 1.29 1.93 6.35 4.21 0.56 0.28 2.81 0.24 3.68 0.16

(f) DynaSent
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 7.92 1.76 1.33 1.60 1.60 4.78 2.12 4.58 2.20 10.85 2.83 1.46 1.89 2.00 1.51 1.58 1.21
T5-large 9.62 1.56 1.02 3.34 3.33 7.26 2.00 6.98 2.07 11.71 4.67 1.79 1.64 1.50 1.36 1.75 1.09
RoBERTa 17.34 2.38 1.59 13.14 13.14 15.80 7.68 14.96 6.35 18.34 10.36 1.69 2.36 2.45 1.27 2.15 1.08
RoBERTa-large 14.80 1.51 1.14 10.88 10.87 13.43 5.53 12.71 4.53 15.63 9.09 1.93 1.41 2.78 1.09 2.90 0.61

(g) MNLI
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 6.46 0.90 0.64 1.22 1.20 3.21 1.91 3.20 1.98 7.73 2.11 0.86 0.90 1.55 0.58 1.83 0.45
T5-large 7.58 0.77 0.51 4.40 4.39 5.63 1.74 5.31 1.69 8.20 4.43 1.11 0.79 1.77 0.40 2.18 0.35
RoBERTa 10.25 0.98 0.76 6.47 6.47 7.80 2.34 7.33 2.40 11.02 6.07 1.00 1.02 2.56 0.77 3.07 0.64
RoBERTa-large 8.17 1.00 0.56 4.91 4.90 6.13 1.85 5.74 1.84 8.80 5.26 1.24 0.95 2.02 0.48 2.50 0.49

(h) Yahoo Answers
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 6.64 0.83 0.90 0.71 0.98 2.66 0.92 2.64 0.88 7.68 1.68 1.47 0.86 3.52 0.86 4.78 0.72
T5-large 9.04 0.88 0.68 1.46 1.71 4.67 1.26 4.82 1.27 10.32 2.36 1.81 0.86 3.72 0.89 4.89 0.65
RoBERTa 19.53 1.06 0.79 12.02 12.00 16.26 2.18 15.85 1.70 20.13 9.36 1.94 0.99 5.15 0.72 6.48 0.62
RoBERTa-large 19.65 1.00 0.92 12.76 12.75 16.67 2.74 16.29 2.68 20.18 10.11 1.87 0.94 6.53 0.74 6.70 0.60

113

Table 7.9: Brier score of the predicted class in 10−2 (lower is better). Methods in purple
impact the model prediction, potentially degrading accuracy; methods in teal do not.

(a) CIFAR-10
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 3.75 3.64 3.64 3.67 3.66 3.67 3.65 3.66 3.65 3.82 3.69 3.67 3.63 4.05 3.76 4.00 3.78
ResNet-110 3.95 3.64 3.65 3.75 3.72 3.72 3.73 3.73 3.73 4.02 3.73 3.62 3.64 4.21 3.76 4.25 3.80
WRN 3.06 3.02 3.02 3.11 3.08 3.11 3.07 3.11 3.07 3.17 3.10 3.02 3.03 3.37 3.09 3.43 3.13
DenseNet 3.68 3.54 3.56 3.69 3.67 3.65 3.62 3.65 3.62 3.78 3.70 3.56 3.53 4.01 3.58 4.01 3.67
CLIP (ViT-B/32) 7.63 7.37 7.33 7.27 7.26 6.31 6.19 6.24 6.16 6.43 7.33 6.35 7.35 6.42 7.37 6.62 7.36
CLIP (ViT-B/16) 6.48 6.08 6.07 6.02 6.01 5.15 5.05 5.12 5.03 5.21 6.15 5.20 6.09 5.24 6.08 5.39 6.13
CLIP (ViT-L/14) 3.62 3.20 3.22 3.15 3.15 2.65 2.61 2.63 2.61 2.74 3.20 2.64 3.19 2.76 3.18 2.74 3.19

(b) CIFAR-100
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 12.75 11.96 12.02 12.44 12.14 12.39 11.93 12.39 11.92 12.50 12.16 12.08 11.99 14.26 12.12 13.65 12.01
ResNet-110 13.86 12.69 12.74 13.29 12.94 13.27 12.82 13.26 12.82 13.37 13.11 13.07 12.70 14.88 12.80 14.24 12.75
WRN 11.05 10.72 10.74 11.05 10.85 11.03 10.71 11.03 10.72 11.08 10.82 10.77 10.75 12.65 10.82 12.07 10.86
DenseNet 12.49 12.09 12.10 12.33 12.16 12.30 12.04 12.30 12.04 12.47 12.16 12.11 12.07 14.06 12.13 13.41 12.11
CLIP (ViT-B/32) 17.25 16.20 16.12 15.88 15.90 15.98 14.72 16.03 15.09 15.92 16.28 14.97 16.23 15.55 16.31 15.36 16.25
CLIP (ViT-B/16) 17.21 16.01 15.94 15.42 15.41 15.37 13.98 15.44 14.06 15.49 15.87 14.39 15.85 14.69 15.92 14.52 15.88
CLIP (ViT-L/14) 14.78 13.33 13.27 12.70 12.71 11.53 10.67 11.69 10.90 12.59 13.17 11.00 13.16 11.56 13.18 11.38 13.15

(c) ImageNet
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-18 13.93 13.86 13.85 13.94 13.93 13.92 13.92 14.48 14.53 14.50 13.87 13.89 13.87 15.56 13.90 15.02 13.93
ResNet-34 13.15 12.97 12.99 13.04 13.05 12.99 13.05 13.54 13.53 13.70 12.99 13.13 12.99 14.92 13.01 14.43 13.08
ResNet-50 29.79 12.25 12.33 10.95 10.88 10.98 10.92 10.98 10.92 13.14 12.07 10.71 12.02 11.90 12.08 11.08 12.12
ResNet-101 12.65 10.72 10.79 10.65 10.51 10.70 10.51 10.70 10.51 11.97 10.77 10.35 10.71 11.72 10.74 11.40 10.75
EffNet-B7 11.28 9.59 9.69 9.71 9.55 9.72 9.51 9.72 9.50 11.02 9.70 9.41 9.60 10.71 9.62 10.35 9.65
EffNetV2-S 12.39 9.40 9.45 9.66 9.48 9.71 9.50 9.71 9.50 10.61 9.55 9.37 9.43 10.64 9.46 10.37 9.50
EffNetV2-M 16.05 9.72 9.83 9.59 9.44 9.55 9.32 9.54 9.31 10.64 9.78 9.18 9.72 10.40 9.76 10.02 9.78
EffNetV2-L 9.80 8.99 9.08 8.90 8.82 8.93 8.83 8.93 8.84 10.28 9.01 8.81 9.00 9.96 9.01 9.70 9.03
ConvNeXt-T 14.02 10.87 10.96 10.39 10.33 10.40 10.33 10.40 10.32 11.79 10.89 10.13 10.87 11.61 10.90 11.14 10.91
ConvNeXt-S 13.62 10.30 10.35 10.16 10.02 10.16 9.95 10.15 9.95 11.32 10.36 9.78 10.32 11.27 10.35 10.83 10.37
ConvNeXt-B 13.86 10.14 10.20 10.05 9.89 10.01 9.79 10.01 9.79 11.36 10.20 9.60 10.14 11.11 10.18 10.63 10.19
ConvNeXt-L 11.58 9.88 9.99 9.92 9.76 9.99 9.70 9.99 9.71 10.97 9.92 9.46 9.88 10.96 9.90 10.46 9.94
ViT-B/32 12.68 12.22 12.26 12.35 12.17 12.53 12.33 12.54 12.32 13.28 12.26 12.11 12.24 13.72 12.26 13.40 12.30
ViT-B/16 11.02 10.65 10.71 10.89 10.72 11.01 10.84 11.01 10.83 11.98 10.73 10.59 10.66 12.09 10.67 11.84 10.72
ViT-L/32 12.15 11.92 12.02 12.35 12.11 12.49 12.21 12.49 12.21 13.20 12.02 11.92 11.93 13.87 11.96 13.45 12.04
ViT-L/16 11.39 11.13 11.22 11.73 11.46 11.88 11.57 11.88 11.57 12.82 11.28 11.13 11.11 13.21 11.15 12.71 11.22
ViT-H/14 7.46 7.47 7.51 7.49 7.46 7.57 7.59 7.57 7.59 8.79 7.46 7.58 7.47 8.60 7.48 8.46 7.52
Swin-T 11.09 10.59 10.64 10.64 10.53 10.71 10.64 10.71 10.63 11.68 10.64 10.51 10.61 11.89 10.63 11.66 10.66
Swin-S 10.14 9.98 10.04 10.23 10.06 10.32 10.12 10.32 10.13 11.40 10.06 9.95 9.98 11.48 10.00 11.14 10.06
Swin-B 10.18 9.90 10.00 10.21 10.05 10.22 10.10 10.23 10.10 11.42 10.01 9.82 9.91 11.46 9.93 11.06 10.00
SwinV2-T 11.06 10.33 10.39 10.45 10.29 10.54 10.38 10.54 10.38 11.65 10.38 10.25 10.34 11.69 10.36 11.43 10.37
SwinV2-S 10.05 9.61 9.67 9.91 9.72 10.01 9.78 10.01 9.77 11.13 9.70 9.57 9.62 11.13 9.64 10.70 9.69
SwinV2-B 10.00 9.64 9.70 9.97 9.79 10.04 9.82 10.03 9.83 11.05 9.76 9.59 9.64 11.21 9.66 10.78 9.73
CLIP (ViT-B/32) 17.76 17.75 17.72 17.75 17.76 17.05 16.37 31.17 50.78 17.52 17.74 17.24 17.76 18.05 17.79 17.38 17.81
CLIP (ViT-B/16) 16.99 16.99 16.89 16.98 16.98 16.12 15.54 30.53 44.73 16.74 16.97 16.22 16.98 17.14 16.99 16.54 17.03
CLIP (ViT-L/14) 14.96 14.91 14.93 14.97 14.99 14.17 13.67 26.10 47.35 14.95 14.91 14.32 14.92 15.39 14.93 14.87 14.99

(d) ImageNet-21K
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

MN3 14.08 err. err. 13.35 12.71 17.17 16.26 49.94 69.66 err. 11.95 17.06 11.93 err. 11.93 10.70 11.95
ViT-B/16 13.51 err. err. 13.54 13.49 18.14 17.11 20.10 18.22 err. 12.96 18.12 12.76 err. 12.77 12.91 12.96

(e) Amazon Fine Foods
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 7.78 7.27 7.30 7.27 7.27 6.93 6.85 6.73 6.75 7.32 7.30 6.69 7.28 6.77 7.29 7.19 7.33
T5-large 7.02 6.34 6.36 6.40 6.40 6.11 5.94 5.76 5.82 6.57 6.46 5.80 6.34 5.92 6.38 6.42 6.41
RoBERTa 8.66 7.30 7.35 7.42 7.42 7.22 7.02 6.87 6.99 8.12 7.85 6.86 7.30 7.11 7.48 7.70 7.37
RoBERTa-large 7.43 6.15 6.23 6.30 6.29 6.18 6.01 5.89 6.00 6.96 6.85 5.86 6.14 6.21 6.49 6.74 6.22

(f) DynaSent
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 14.68 13.96 13.96 13.89 13.89 14.15 13.88 14.09 13.87 15.40 14.02 13.84 13.98 14.00 14.05 14.21 13.96
T5-large 13.67 12.48 12.52 12.52 12.52 13.08 12.21 12.82 12.16 14.16 12.80 12.14 12.50 12.43 12.62 12.78 12.54
RoBERTa 18.98 14.96 15.09 17.03 17.03 18.16 15.53 17.66 15.15 19.39 16.62 14.67 14.97 15.60 15.64 15.96 15.01
RoBERTa-large 16.14 13.21 13.35 14.65 14.65 15.54 13.51 15.29 13.37 16.66 14.70 13.09 13.20 13.91 13.83 14.20 13.25

(g) MNLI
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 8.95 8.21 8.25 8.21 8.21 8.35 8.19 8.29 8.17 9.33 8.28 8.14 8.22 8.28 8.29 8.65 8.24
T5-large 8.56 7.49 7.52 7.76 7.76 7.98 7.46 7.88 7.41 8.80 7.98 7.40 7.49 7.80 7.78 8.07 7.54
RoBERTa 11.50 9.60 9.67 10.24 10.23 10.57 9.57 10.36 9.54 11.80 10.48 9.44 9.60 10.06 10.03 10.48 9.60
RoBERTa-large 9.30 8.04 8.12 8.40 8.40 8.65 8.04 8.56 8.03 9.57 8.72 7.98 8.05 8.40 8.39 8.71 8.12

(h) Yahoo Answers
Model Uncal. IRM I-Max TS TSTvA VS VSreg TvA DC DCreg TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 14.70 14.18 14.21 14.14 14.15 14.22 14.14 14.21 14.13 14.98 14.20 14.14 14.18 14.41 14.24 14.75 14.24
T5-large 15.23 14.25 14.29 14.23 14.25 14.44 14.21 14.41 14.12 15.66 14.28 14.18 14.24 14.49 14.33 14.83 14.29
RoBERTa 20.95 15.94 16.12 17.57 17.56 19.20 15.92 18.84 15.54 21.23 17.15 15.64 15.94 16.75 16.55 17.20 15.99
RoBERTa-large 20.94 15.68 15.86 17.57 17.57 19.23 15.59 18.96 15.30 21.21 17.14 15.38 15.68 16.71 16.42 17.15 15.72

114

Bibliography

Momin Abbas, Yi Zhou, Parikshit Ram, Nathalie Baracaldo, Horst Samulowitz,
Theodoros Salonidis, and Tianyi Chen. Enhancing in-context learning via linear probe
calibration. arXiv preprint arXiv:2401.12406, 2024. 63, 65

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mo-
hammad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra
Acharya, and others. A review of uncertainty quantification in deep learning: Tech-
niques, applications and challenges. Information fusion, 76:243–297, 2021. Publisher:
Elsevier. 22

Morayo Adedjouma, Bernard Botella, Javier Ibanez-Guzman, Kevin Mantissa, Chauk-
Mean Proum, and Asma Smaoui. Defining operational design domain for au-
tonomous systems: A domain-agnostic and risk-based approach. In SOSE 2024
- 19th annual system of systems engineering conference, Tacoma, United States,
June 2024. URL https://hal.science/hal-04613329. tex.hal id: hal-
04613329 tex.hal local reference: Confiance.ai tex.hal local reference+duplicate-1:
EC6 tex.hal version: v1. 5, 13

Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle: A residual-based stylegan
encoder via iterative refinement. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 6711–6720, 2021. 26

Yuval Alaluf, Or Patashnik, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, and
Daniel Cohen-Or. Third time’s the charm? image and video editing with stylegan3. In
European conference on computer vision, pages 204–220. Springer, 2022a. 25

Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and Amit Bermano. Hyperstyle:
Stylegan inversion with hypernetworks for real image editing. In Proceedings of
the IEEE/CVF conference on computer Vision and pattern recognition, pages 18511–
18521, 2022b. 26

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Has-
son, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, and others.
Flamingo: a visual language model for few-shot learning. Advances in neural informa-
tion processing systems, 35:23716–23736, 2022. 96

allpairspy. 79, 103

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan
Mané. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565, 2016. 12

115

https://hal.science/hal-04613329

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voz-
nesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, An-
jali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will
Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalam-
barkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason Liang,
Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsch, Matthias Reso, Mark
Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet, Eikan Wang,
Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou, Richard Zou,
Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster
machine learning through dynamic python bytecode transformation and graph compi-
lation. In 29th ACM international conference on architectural support for program-
ming languages and operating systems, volume 2 (ASPLOS ’24). ACM, April 2024.
doi: 10.1145/3620665.3640366. URL https://pytorch.org/assets/pytorch2-

2.pdf. 103

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In International conference on machine learning, pages 214–223. PMLR,
2017. 24, 30

Alejandro Barredo Arrieta, Natalia Diaz-Rodrıiguez, Javier Del Ser, Adrien Bennetot,
Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina,
Richard Benjamins, and others. Explainable Artificial Intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AI. Information fusion,
58:82–115, 2020. Publisher: Elsevier. 13, 29

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath.
Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34
(6):26–38, 2017. Publisher: IEEE. 2

Maximilian Augustin, Yannic Neuhaus, and Matthias Hein. Analyzing and explaining
image classifiers via diffusion guidance. arXiv preprint arXiv:2311.17833, 2023. 13

Randall Balestriero, Jerome Pesenti, and Yann LeCun. Learning in high dimension always
amounts to extrapolation. arXiv preprint arXiv:2110.09485, 2021. 45

BBC. Google Apologises for Photos App’s Racist Blunder, July 2015. URL https:

//www.bbc.com/news/technology-33347866. Publisher: BBC News. 3

Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related clas-
sification tasks to a new unlabeled sample. Advances in neural information processing
systems, 24, 2011. 17

J. Blank and K. Deb. pymoo: Multi-objective optimization in python. IEEE access :
practical innovations, open solutions, 8:89497–89509, 2020. 79, 103

Jan-Aike Bolte, Andreas Bar, Daniel Lipinski, and Tim Fingscheidt. Towards corner case
detection for autonomous driving. In 2019 IEEE Intelligent vehicles symposium (IV),
pages 438–445. IEEE, 2019. 18, 19

Florian Bordes, Shashank Shekhar, Mark Ibrahim, Diane Bouchacourt, Pascal Vincent,
and Ari Morcos. Pug: Photorealistic and semantically controllable synthetic data for

116

https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://www.bbc.com/news/technology-33347866
https://www.bbc.com/news/technology-33347866

representation learning. Advances in Neural Information Processing Systems, 36, 2024.
86, 102

Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the fifth annual workshop on Computa-
tional learning theory, pages 144–152, 1992. 1

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001. Publisher: Springer.
79

Jasmin Breitenstein, Jan-Aike Termöhlen, Daniel Lipinski, and Tim Fingscheidt. Sys-
tematization of corner cases for visual perception in automated driving. In 2020 IEEE
intelligent vehicles symposium (IV), pages 1257–1264. IEEE, 2020. 19

Jasmin Breitenstein, Jan-Aike Termöhlen, Daniel Lipinski, and Tim Fingscheidt. Cor-
ner cases for visual perception in automated driving: some guidance on detection ap-
proaches. arXiv preprint arXiv:2102.05897, 2021. 19

Glenn W Brier. Verification of forecasts expressed in terms of probability. Monthly
weather review, 78(1):1–3, 1950. 23

Tom B Brown, Dandelion Mané, Aurko Roy, Martin Abadi, and Justin Gilmer. Adversar-
ial patch. arXiv preprint arXiv:1712.09665, 2017. 18

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,
Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grob-
ler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux.
API design for machine learning software: experiences from the scikit-learn project.
In ECML PKDD workshop: Languages for data mining and machine learning, pages
108–122, 2013. 79, 103

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong
Duan, Jiaqi Wang, Yu Qiao, Dahua Lin, and others. Are we on the right way for
evaluating large vision-language models? CoRR, 2024. 99

Muxi Chen, YU LI, and Qiang Xu. HiBug: On human-interpretable model debug. In
Thirty-seventh conference on neural information processing systems, 2023a. URL
https://openreview.net/forum?id=4sDHLxKb1L. 20

Yangyi Chen, Lifan Yuan, Ganqu Cui, Zhiyuan Liu, and Heng Ji. A Close Look into
the Calibration of Pre-trained Language Models. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1343–1367, Toronto, Canada, 2023b. Association for Computational Linguistics.
23, 62, 101, 103

Jiacheng Cheng and Nuno Vasconcelos. Calibrating Deep Neural Networks by Pairwise
Constraints. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 13709–13718, 2022. 23, 24

Kamal Choudhary, Brian DeCost, Chi Chen, Anubhav Jain, Francesca Tavazza, Ryan
Cohn, Cheol Woo Park, Alok Choudhary, Ankit Agrawal, Simon JL Billinge, and oth-
ers. Recent advances and applications of deep learning methods in materials science.

117

https://openreview.net/forum?id=4sDHLxKb1L

npj Computational Materials, 8(1):59, 2022. Publisher: Nature Publishing Group UK
London. 1

C. Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on Infor-
mation Theory, 16(1):41–46, 1970. doi: 10.1109/TIT.1970.1054406. 20

C. K. Chow. An optimum character recognition system using decision functions. IRE
Transactions on Electronic Computers, EC-6(4):247–254, 1957. doi: 10.1109/TEC.
1957.5222035. 20

Sylvain Christin, Éric Hervet, and Nicolas Lecomte. Applications for deep learning in
ecology. Methods in Ecology and Evolution, 10(10):1632–1644, 2019. Publisher:
Wiley Online Library. 1

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via
randomized smoothing. In international conference on machine learning, pages 1310–
1320. PMLR, 2019. 18

Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, and Patrick Pérez.
Addressing failure prediction by learning model confidence. Advances in Neural Infor-
mation Processing Systems, 32, 2019. 21, 51, 53

Charles Corbière, Nicolas Thome, Antoine Saporta, Tuan-Hung Vu, Matthieu Cord, and
Patrick Perez. Confidence estimation via auxiliary models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(10):6043–6055, 2021. Publisher: IEEE.
21, 39, 51

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nico-
las Flammarion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench:
a standardized adversarial robustness benchmark. arXiv preprint arXiv:2010.09670,
2020. 100

Audrey Cui, Ali Jahanian, Agata Lapedriza, Antonio Torralba, Shahin Mahdizadehagh-
dam, Rohit Kumar, and David Bau. Local relighting of real scenes. arXiv preprint
arXiv:2207.02774, 2022. 25

Krzysztof Czarnecki. Operational design domain for automated driving systems. Taxon-
omy of Basic Terms “, Waterloo Intelligent Systems Engineering (WISE) Lab, Univer-
sity of Waterloo, Canada, 1, 2018. 13

Jeffrey Dastin. Amazon Scraps Secret AI Recruiting Tool that Showed Bias Against
Women. Reuters, 2018. URL https://www.reuters.com/article/us-amazon-

com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-

tool-that-showed-bias-against-women-idUSKCN1MK08G. 3

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009. 2, 102

Li Deng. A tutorial survey of architectures, algorithms, and applications for deep learning.
APSIPA transactions on Signal and Information Processing, 3:e2, 2014. Publisher:
Cambridge University Press. 1

118

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

Greg d’Eon, Jason d’Eon, James R Wright, and Kevin Leyton-Brown. The spotlight: A
general method for discovering systematic errors in deep learning models. In Proceed-
ings of the 2022 ACM conference on fairness, accountability, and transparency, pages
1962–1981, 2022. 20

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021. 27, 28

Tan M Dinh, Anh Tuan Tran, Rang Nguyen, and Binh-Son Hua. Hyperinverter: Improv-
ing stylegan inversion via hypernetwork. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 11389–11398, 2022. 26

Jeff Donahue and Karen Simonyan. Large scale adversarial representation learning. Ad-
vances in neural information processing systems, 32, 2019. 27

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learn-
ing. In International conference on learning representations, 2017. URL https:

//openreview.net/forum?id=BJtNZAFgg. 26

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun,
Jingjing Xu, and Zhifang Sui. A survey on in-context learning. arXiv preprint
arXiv:2301.00234, 2022. 63

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International conference on learning repre-
sentations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy. 21

Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alex Smola, and Vladimir
Vapnik. Support vector regression machines. In M.C. Mozer, M. Jordan, and
T. Petsche, editors, Advances in neural information processing systems, volume 9.
MIT Press, 1996. URL https://proceedings.neurips.cc/paper_files/paper/

1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf. 79

Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don’t
know by virtual outlier synthesis. arXiv preprint arXiv:2202.01197, 2022. 17

Xuefeng Du, Yiyou Sun, Jerry Zhu, and Yixuan Li. Dream the impossible: Outlier imagi-
nation with diffusion models. Advances in Neural Information Processing Systems, 36,
2024. 17

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier
Mastropietro, and Aaron Courville. Adversarially learned inference. In Interna-
tional conference on learning representations, 2017. URL https://openreview.

net/forum?id=B1ElR4cgg. 27

Ran El-Yaniv and Yair Wiener. On the foundations of noise-free selective classifi-
cation. Journal of Machine Learning Research, 11(53):1605–1641, 2010. URL
http://jmlr.org/papers/v11/el-yaniv10a.html. 20, 47

119

https://openreview.net/forum?id=BJtNZAFgg
https://openreview.net/forum?id=BJtNZAFgg
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.neurips.cc/paper_files/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf
https://openreview.net/forum?id=B1ElR4cgg
https://openreview.net/forum?id=B1ElR4cgg
http://jmlr.org/papers/v11/el-yaniv10a.html

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao,
Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on
deep learning visual classification. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1625–1634, 2018. 18

Sabri Eyuboglu, Maya Varma, Khaled Kamal Saab, Jean-Benoit Delbrouck, Christo-
pher Lee-Messer, Jared Dunnmon, James Zou, and Christopher Re. Domino: Dis-
covering systematic errors with cross-modal embeddings. In International confer-
ence on learning representations, 2022. URL https://openreview.net/forum?

id=FPCMqjI0jXN. 20

Leo Feng, Mohamed Osama Ahmed, Hossein Hajimirsadeghi, and Amir H. Abdi. To-
wards better selective classification. In The eleventh international conference on
learning representations, 2023. URL https://openreview.net/forum?id=5gDz_

yTcst. 21, 51

Telmo Silva Filho, Hao Song, Miquel Perello-Nieto, Raul Santos-Rodriguez, Meelis Kull,
and Peter Flach. Classifier Calibration: A survey on how to assess and improve pre-
dicted class probabilities. Machine Learning, 112(9):3211–3260, September 2023.
ISSN 0885-6125, 1573-0565. doi: 10.1007/s10994-023-06336-7. arXiv: 2112.10327
[cs, stat]. 22

Adam Fisch, Tommi S. Jaakkola, and Regina Barzilay. Calibrated selective classification.
Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL https:

//openreview.net/forum?id=zFhNBs8GaV. 21

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik,
and Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image gen-
eration using textual inversion. arXiv preprint arXiv:2208.01618, 2022. 28

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal
Chechik, and Daniel Cohen-or. An image is worth one word: Personalizing text-
to-image generation using textual inversion. In The eleventh international confer-
ence on learning representations, 2023. URL https://openreview.net/forum?

id=NAQvF08TcyG. 85

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In international conference on machine learning,
pages 1050–1059. PMLR, 2016. 21, 51

Ido Galil, Mohammed Dabbah, and Ran El-Yaniv. A framework for benchmarking Class-
out-of-distribution detection and its application to ImageNet. In The eleventh interna-
tional conference on learning representations, 2023a. URL https://openreview.

net/forum?id=Iuubb9W6Jtk. 17

Ido Galil, Mohammed Dabbah, and Ran El-Yaniv. What can we learn from the selective
prediction and uncertainty estimation performance of 523 imagenet classifiers? In The
eleventh international conference on learning representations, 2023b. URL https:

//openreview.net/forum?id=p66AzKi6Xim. 21, 22, 48, 49, 63, 98

120

https://openreview.net/forum?id=FPCMqjI0jXN
https://openreview.net/forum?id=FPCMqjI0jXN
https://openreview.net/forum?id=5gDz_yTcst
https://openreview.net/forum?id=5gDz_yTcst
https://openreview.net/forum?id=zFhNBs8GaV
https://openreview.net/forum?id=zFhNBs8GaV
https://openreview.net/forum?id=NAQvF08TcyG
https://openreview.net/forum?id=NAQvF08TcyG
https://openreview.net/forum?id=Iuubb9W6Jtk
https://openreview.net/forum?id=Iuubb9W6Jtk
https://openreview.net/forum?id=p66AzKi6Xim
https://openreview.net/forum?id=p66AzKi6Xim

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training
of neural networks. Journal of machine learning research, 17(59):1–35, 2016. 17

Irena Gao, Gabriel Ilharco, Scott Lundberg, and Marco Tulio Ribeiro. Adaptive testing
of computer vision models. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 4003–4014, 2023. 19

Roman Garnett. Bayesian optimization. Cambridge University Press, 2023. 77

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee,
Matthias Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana
Roscher, and others. A survey of uncertainty in deep neural networks. Artificial Intel-
ligence Review, 56(Suppl 1):1513–1589, 2023. Publisher: Springer. 15, 22

Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks.
Advances in neural information processing systems, 30, 2017. 6, 20, 21, 22, 47, 51, 65,
100

Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an inte-
grated reject option. In International conference on machine learning, pages 2151–
2159. PMLR, 2019. 21, 51, 96

Yonatan Geifman, Guy Uziel, and Ran El-Yaniv. Bias-reduced uncertainty estimation for
deep neural classifiers. In International conference on learning representations, 2019.
URL https://openreview.net/forum?id=SJfb5jCqKm. 21, 48, 98

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac,
Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, and oth-
ers. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023. 96, 97, 98

Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Recent advances in open set
recognition: A survey. IEEE transactions on pattern analysis and machine intelligence,
43(10):3614–3631, 2020. Publisher: IEEE. 16

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and
estimation. Journal of the American statistical Association, 102(477):359–378, 2007.
Publisher: Taylor & Francis. 23

Ethan Goan and Clinton Fookes. Bayesian neural networks: An introduction and survey.
Case Studies in Applied Bayesian Data Science: CIRM Jean-Morlet Chair, Fall 2018,
pages 45–87, 2020. Publisher: Springer. 22

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances
in neural information processing systems, 27, 2014a. 24

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014b. 18

Parikshit Gopalan, Lunjia Hu, and Guy N Rothblum. On computationally efficient multi-
class calibration. arXiv preprint arXiv:2402.07821, 2024. 22

121

https://openreview.net/forum?id=SJfb5jCqKm

Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. Counter-
factual visual explanations. In International conference on machine learning, pages
2376–2384. PMLR, 2019. 29

Nico Grant and Kashmir Hill. Google’s Photo App Still Can’t Find Gorillas. And Neither
Can Apple’s. The New York Times, May 2023. URL https://www.nytimes.com/

2023/05/22/technology/ai-photo-labels-google-apple.html. 3

David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf, and Guang-
Zhong Yang. XAI—Explainable artificial intelligence. Science robotics, 4(37):
eaay7120, 2019. Publisher: American Association for the Advancement of Science.
13

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern
neural networks. In International conference on machine learning, pages 1321–1330.
PMLR, 2017. 21, 22, 23, 24, 49, 63, 98, 102

Chirag Gupta and Aaditya Ramdas. Top-label calibration and multiclass-to-binary reduc-
tions. In International Conference on Learning Representations, January 2022. 22, 23,
24, 61

Kartik Gupta, Amir Rahimi, Thalaiyasingam Ajanthan, Thomas Mensink, Cristian Smin-
chisescu, and Richard Hartley. Calibration of Neural Networks using Splines. In Inter-
national Conference on Learning Representations, December 2021. 22

Joris Guérin, Kevin Delmas, Raul Ferreira, and Jérémie Guiochet. Out-of-distribution
detection is not all you need. In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pages 14829–14837, 2023. Number: 12. 17, 99

Arya Ketabchi Haghighat, Varsha Ravichandra-Mouli, Pranamesh Chakraborty, Yasaman
Esfandiari, Saeed Arabi, and Anuj Sharma. Applications of deep learning in intelligent
transportation systems. Journal of Big Data Analytics in Transportation, 2:115–145,
2020. Publisher: Springer. 1

Zhixiong Han, Yaru Hao, Li Dong, Yutao Sun, and Furu Wei. Prototypical calibration
for few-shot learning of language models. In The eleventh international conference on
learning representations, 2022. 63, 65

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016. 52, 59, 67

Florian Heidecker, Maarten Bieshaar, Bernhard Sick, HJ Hof, M Fritz, C Krauß, and
O Wasenmüller. Towards corner case identification in cyclists’ trajectories. In Proc. of
CSCS, pages 1–2, 2019. 19

Florian Heidecker, Jasmin Breitenstein, Kevin Rösch, Jonas Löhdefink, Maarten
Bieshaar, Christoph Stiller, Tim Fingscheidt, and Bernhard Sick. An application-driven
conceptualization of corner cases for perception in highly automated driving. In 2021
IEEE intelligent vehicles symposium (IV), pages 644–651. IEEE, 2021. 19

122

https://www.nytimes.com/2023/05/22/technology/ai-photo-labels-google-apple.html
https://www.nytimes.com/2023/05/22/technology/ai-photo-labels-google-apple.html

Florian Heidecker, Maarten Bieshaar, and Bernhard Sick. Corner cases in machine
learning processes. AI Perspectives & Advances, 6(1):1, January 2024. ISSN
2948-2143. doi: 10.1186/s42467-023-00015-y. URL https://aiperspectives.

springeropen.com/articles/10.1186/s42467-023-00015-y. 19

Kilian Hendrickx, Lorenzo Perini, Dries Van der Plas, Wannes Meert, and Jesse Davis.
Machine learning with a reject option: A survey. Machine Learning, 113(5):3073–
3110, 2024. Publisher: Springer. 20

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to
common corruptions and perturbations. In International conference on learning repre-
sentations, 2019. URL https://openreview.net/forum?id=HJz6tiCqYm. 34, 36,
40

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In International conference on learning rep-
resentations, 2017. URL https://openreview.net/forum?id=Hkg4TI9xl. 16, 22,
39, 65, 100

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with
outlier exposure. In International conference on learning representations, 2019. URL
https://openreview.net/forum?id=HyxCxhRcY7. 17

Dan Hendrycks, Nicholas Carlini, John Schulman, and Jacob Steinhardt. Unsolved prob-
lems in ml safety. arXiv preprint arXiv:2109.13916, 2021. 12

Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joseph Kwon, Moham-
madreza Mostajabi, Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution
detection for real-world settings. In International conference on machine learning,
pages 8759–8773. PMLR, 2022. 17

Dan Hendrycks, Mantas Mazeika, and Thomas Woodside. An overview of catastrophic
ai risks. arXiv preprint arXiv:2306.12001, 2023. 13

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash
equilibrium. Advances in neural information processing systems, 30, 2017. 35, 67

Geoffrey Hinton. Distilling the Knowledge in a Neural Network. arXiv preprint
arXiv:1503.02531, 2015. 21

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022. 28

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in neural information processing systems, 33:6840–6851, 2020. 27, 73

John H Holland. Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. MIT press, 1992. 77

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, and others. Searching for
mobilenetv3. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 1314–1324, 2019. 59

123

https://aiperspectives.springeropen.com/articles/10.1186/s42467-023-00015-y
https://aiperspectives.springeropen.com/articles/10.1186/s42467-023-00015-y
https://openreview.net/forum?id=HJz6tiCqYm
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=HyxCxhRcY7

Andrew G Howard. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017. 15

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 59, 67

Xinyu Huang, Youcai Zhang, Jinyu Ma, Weiwei Tian, Rui Feng, Yuejie Zhang, Yaqian Li,
Yandong Guo, and Lei Zhang. Tag2Text: Guiding vision-language model via image
tagging. In The twelfth international conference on learning representations, 2024.
URL https://openreview.net/forum?id=x6u2BQ7xcq. 20

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based opti-
mization for general algorithm configuration. In Learning and intelligent optimization:
5th international conference, LION 5, rome, italy, january 17-21, 2011. Selected papers
5, pages 507–523. Springer, 2011. 77

Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Dis-
covering interpretable gan controls. Advances in neural information processing sys-
tems, 33:9841–9850, 2020. 25, 32, 38

Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine
learning: An introduction to concepts and methods. Machine learning, 110(3):457–
506, 2021. Publisher: Springer. 14

Abdul Jabbar, Xi Li, and Bourahla Omar. A Survey on Generative Adversarial Networks:
Variants, Applications, and Training. ACM Computing Surveys, 54(8):157:1–157:49,
October 2021. ISSN 0360-0300. doi: 10.1145/3463475. 32

Ali Jahanian, Lucy Chai, and Phillip Isola. On the” steerability” of generative adversarial
networks. arXiv preprint arXiv:1907.07171, 2019. 25

Saachi Jain, Hannah Lawrence, Ankur Moitra, and Aleksander Madry. Distilling
model failures as directions in latent space. In The eleventh international confer-
ence on learning representations, 2023. URL https://openreview.net/forum?

id=99RpBVpLiX. 20

Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and
Fillia Makedon. A survey on contrastive self-supervised learning. Technologies, 9(1):
2, 2020. Publisher: MDPI. 1

Guillaume Jeanneret, Loic Simon, and Frédéric Jurie. Adversarial counterfactual visual
explanations. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 16425–16435, 2023. 13, 29

Zhongtao Jiang, Yuanzhe Zhang, Cao Liu, Jun Zhao, and Kang Liu. Generative calibra-
tion for in-context learning. arXiv preprint arXiv:2310.10266, 2023. 63, 65

Longlong Jing and Yingli Tian. Self-supervised visual feature learning with deep neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence,
43(11):4037–4058, 2020. Publisher: IEEE. 1

124

https://openreview.net/forum?id=x6u2BQ7xcq
https://openreview.net/forum?id=99RpBVpLiX
https://openreview.net/forum?id=99RpBVpLiX

Nari Johnson, Ángel Alexander Cabrera, Gregory Plumb, and Ameet Talwalkar. Where
does my model underperform? a human evaluation of slice discovery algorithms. In
Proceedings of the AAAI conference on human computation and crowdsourcing, vol-
ume 11, pages 65–76, 2023. Number: 1. 20

Donald R Jones. A taxonomy of global optimization methods based on response surfaces.
Journal of global optimization, 21:345–383, 2001. Publisher: Springer. 77

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for
neural language models. arXiv preprint arXiv:2001.08361, 2020. 15

Archit Karandikar, Nicholas Cain, Dustin Tran, Balaji Lakshminarayanan, Jonathon
Shlens, Michael C Mozer, and Becca Roelofs. Soft calibration objectives for neu-
ral networks. Advances in Neural Information Processing Systems, 34:29768–29779,
2021. 23

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for gen-
erative adversarial networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4401–4410, 2019. 25, 31

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo
Aila. Training generative adversarial networks with limited data. Advances in neural
information processing systems, 33:12104–12114, 2020a. 25

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. Analyzing and improving the image quality of stylegan. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 8110–8119,
2020b. 25, 26

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehti-
nen, and Timo Aila. Alias-free generative adversarial networks. Advances in neural
information processing systems, 34:852–863, 2021. 25

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013. 28

Durk P Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 Con-
volutions. In Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. 31

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Ak-
shay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena
Gao, and others. Wilds: A benchmark of in-the-wild distribution shifts. In Interna-
tional conference on machine learning, pages 5637–5664. PMLR, 2021. 100

Alex Krizhevsky, Geoffrey Hinton, and others. Learning multiple layers of features from
tiny images, 2009. 59, 67, 101

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing sys-
tems, 25, 2012. 2

125

Meelis Kull, Telmo M. Silva Filho, and Peter Flach. Beyond sigmoids: How to ob-
tain well-calibrated probabilities from binary classifiers with beta calibration. Elec-
tronic Journal of Statistics, 11(2):5052–5080, January 2017. ISSN 1935-7524, 1935-
7524. doi: 10.1214/17-EJS1338SI. Publisher: Institute of Mathematical Statistics and
Bernoulli Society. 22, 24, 60

Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, and
Peter Flach. Beyond temperature scaling: Obtaining well-calibrated multi-class prob-
abilities with dirichlet calibration. Advances in neural information processing systems,
32, 2019. 23, 59, 60, 62

Ananya Kumar, Percy S Liang, and Tengyu Ma. Verified uncertainty calibration. Ad-
vances in Neural Information Processing Systems, 32, 2019a. 23

Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. Trainable Calibration Measures for
Neural Networks from Kernel Mean Embeddings. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, pages 2805–2814. PMLR, July 2018. ISSN:
2640-3498. 23

Ram Shankar Siva Kumar, David O Brien, Kendra Albert, Salomé Viljöen, and Jeffrey
Snover. Failure modes in machine learning systems. arXiv preprint arXiv:1911.11034,
2019b. 99

Fabian Küppers, Jan Kronenberger, Amirhossein Shantia, and Anselm Haselhoff. Mul-
tivariate confidence calibration for object detection. In The IEEECVF conference on
computer vision and pattern recognition (CVPR) workshops, June 2020. 103

Pol Labarbarie, Adrien CHAN-HON-TONG, Stéphane Herbin, and Milad Leyli-abadi.
Optimal transport based adversarial patch to leverage large scale attack transferabil-
ity. In The twelfth international conference on learning representations, 2024. URL
https://openreview.net/forum?id=nZP10evtkV. 18

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. Advances in neural informa-
tion processing systems, 30, 2017. 17, 22

Oran Lang, Yossi Gandelsman, Michal Yarom, Yoav Wald, Gal Elidan, Avinatan Has-
sidim, William T Freeman, Phillip Isola, Amir Globerson, Michal Irani, and others.
Explaining in style: Training a gan to explain a classifier in stylespace. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 693–702, 2021.
13, 14, 27, 29, 32

Adrien Le Coz, Stéphane Herbin, and Faouzi Adjed. Leveraging generative mod-
els to characterize the failure conditions of image classifiers. In The IJCAI-
ECAI-22 workshop on artificial intelligence safety (aisafety 2022), Vienna, Aus-
tria, July 2022. URL https://hal.science/hal-03797490. tex.hal id: hal-
03797490 tex.hal local reference: Confiance.ai tex.hal local reference+duplicate-1:
EC5 tex.hal version: v1. 9, 11

Adrien Le Coz, Stéphane Herbin, and Faouzi Adjed. Explaining an image clas-
sifier with a generative model conditioned by uncertainty. In Uncertainty meets
explainability | workshop and tutorial @ ECML-PKDD 2023, Torino, Italy,

126

https://openreview.net/forum?id=nZP10evtkV
https://hal.science/hal-03797490

September 2023. URL https://hal.science/hal-04194943. tex.hal id: hal-
04194943 tex.hal local reference: Confiance.ai tex.hal local reference+duplicate-1:
EC5 tex.hal version: v1. 9, 11

Adrien Le Coz, Houssem Ouertatani, Stéphane Herbin, and Faouzi Adjed. Efficient
exploration of image classifier failures with bayesian optimization and text-to-image
models. In Generative models for computer vision - CVPR 2024 workshop, Seattle,
United States, June 2024. URL https://hal.science/hal-04549384. tex.hal id:
hal-04549384 tex.hal local reference: Confiance.ai tex.hal local reference+duplicate-
1: EC5 tex.hal version: v2. 11

Adrien Le Coz, Stéphane Herbin, and Faouzi Adjed. Confidence calibration of classifiers
with many classes. In Advances in Neural Information Processing Systems, volume 37,
2025. 10, 11

Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne
Hubbard, and Lawrence Jackel. Handwritten digit recognition with a back-propagation
network. Advances in neural information processing systems, 2, 1989. 2

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010. 34

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436–444, 2015. Publisher: Nature Publishing Group UK London. 1, 2

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated
classifiers for detecting out-of-distribution samples. In International conference
on learning representations, 2018a. URL https://openreview.net/forum?id=

ryiAv2xAZ. 17

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework
for detecting out-of-distribution samples and adversarial attacks. Advances in neural
information processing systems, 31, 2018b. 17, 18, 100

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with
adversarial feature learning. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5400–5409, 2018. 17

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In Inter-
national conference on machine learning, pages 12888–12900. PMLR, 2022a. 96

Kaican Li, Kai Chen, Haoyu Wang, Lanqing Hong, Chaoqiang Ye, Jianhua Han, Yukuai
Chen, Wei Zhang, Chunjing Xu, Dit-Yan Yeung, and others. Coda: A real-world road
corner case dataset for object detection in autonomous driving. In European conference
on computer vision, pages 406–423. Springer, 2022b. 19

Mingkun Li and I.K. Sethi. Confidence-based active learning. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 28(8):1251–1261, August 2006. ISSN 1939-
3539. 22, 65

127

https://hal.science/hal-04194943
https://hal.science/hal-04549384
https://openreview.net/forum?id=ryiAv2xAZ
https://openreview.net/forum?id=ryiAv2xAZ

Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. In International conference on learning represen-
tations, 2018. URL https://openreview.net/forum?id=H1VGkIxRZ. 17

Thomas Liao, Rohan Taori, Inioluwa Deborah Raji, and Ludwig Schmidt. Are we learn-
ing yet? a meta review of evaluation failures across machine learning. In Thirty-fifth
conference on neural information processing systems datasets and benchmarks track
(round 2), 2021. 100

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Taking a Step Back with KCal: Multi-
Class Kernel-Based Calibration for Deep Neural Networks. In The Eleventh Interna-
tional Conference on Learning Representations, September 2022. 23, 59

Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Explainable AI:
a review of machine learning interpretability methods. Entropy. An International and
Interdisciplinary Journal of Entropy and Information Studies, 23(1), 2021. ISSN 1099-
4300. doi: 10.3390/e23010018. URL https://www.mdpi.com/1099-4300/23/1/

18. Number: 18 tex.pubmedid: 33375658. 29

Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim, Antonio Torralba, and Sanja Fi-
dler. Editgan: High-precision semantic image editing. Advances in Neural Information
Processing Systems, 34:16331–16345, 2021. 25, 32, 38

Jin Liu, Yi Pan, Min Li, Ziyue Chen, Lu Tang, Chengqian Lu, and Jianxin Wang. Appli-
cations of deep learning to MRI images: A survey. Big Data Mining and Analytics, 1
(1):1–18, 2018. Publisher: TUP. 2

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham
Neubig. Pre-train, prompt, and predict: A systematic survey of prompting methods in
natural language processing. ACM Computing Surveys, 55(9):1–35, 2023. Publisher:
ACM New York, NY. 101

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-
distribution detection. Advances in neural information processing systems, 33:21464–
21475, 2020. 17

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019. 59

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted win-
dows. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 10012–10022, 2021. 59

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue
Cao, Zheng Zhang, Li Dong, and others. Swin transformer v2: Scaling up capacity
and resolution. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 12009–12019, 2022a. 59

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and
Saining Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 11976–11986, 2022b. 59

128

https://openreview.net/forum?id=H1VGkIxRZ
https://www.mdpi.com/1099-4300/23/1/18
https://www.mdpi.com/1099-4300/23/1/18

Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. Learning
under concept drift: A review. IEEE transactions on knowledge and data engineering,
31(12):2346–2363, 2018. Publisher: IEEE. 17

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In Interna-
tional conference on learning representations, 2018. URL https://openreview.

net/forum?id=rJzIBfZAb. 18

TorchVision maintainers and contributors. TorchVision: PyTorch’s computer vision li-
brary, 2016. URL https://github.com/pytorch/vision. 77, 101

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey.
Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015. 26

Markos Markou and Sameer Singh. Novelty detection: a review—part 2:: neural network
based approaches. Signal processing, 83(12):2499–2521, 2003. Publisher: Elsevier.
16

Julian John McAuley and Jure Leskovec. From amateurs to connoisseurs: modeling
the evolution of user expertise through online reviews. In Proceedings of the 22nd
international conference on world wide web, Www ’13, pages 897–908, New York,
NY, USA, 2013. Association for Computing Machinery. ISBN 978-1-4503-2035-1.
Number of pages: 12 Place: Rio de Janeiro, Brazil. 59, 102

Marcel Aguirre Mehlhorn, Andreas Richter, and Yuri A.W. Shardt. Ruling the operational
boundaries: a survey on operational design domains of autonomous driving systems.
IFAC-PapersOnLine, 56(2):2202–2213, 2023. ISSN 2405-8963. doi: https://doi.org/
10.1016/j.ifacol.2023.10.1128. URL https://www.sciencedirect.com/science/

article/pii/S2405896323015318. 5, 13

Jan Hendrik Metzen, Robin Hutmacher, N Grace Hua, Valentyn Boreiko, and Dan Zhang.
Identification of systematic errors of image classifiers on rare subgroups. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pages 5064–5073,
2023. 19, 71, 74, 75, 79, 82

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Arti-
ficial intelligence, 267:1–38, 2019. Publisher: Elsevier. 13

Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil
Houlsby, Dustin Tran, and Mario Lucic. Revisiting the Calibration of Modern Neural
Networks. In Advances in Neural Information Processing Systems, volume 34, pages
15682–15694. Curran Associates, Inc., 2021. 22, 23

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014. 24, 38

MLEAP Consortium. EASA research – machine learning application approval (MLEAP)
final report. Horizon Europe research and innovation programme report, European
Union Aviation Safety Agency, May 2024. URL https://www.easa.europa.eu/

en/downloads/139926/en. 5, 13

129

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://github.com/pytorch/vision
https://www.sciencedirect.com/science/article/pii/S2405896323015318
https://www.sciencedirect.com/science/article/pii/S2405896323015318
https://www.easa.europa.eu/en/downloads/139926/en
https://www.easa.europa.eu/en/downloads/139926/en

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Os-
trovski, and others. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015. Publisher: Nature Publishing Group UK London. 2

Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of Bayesian meth-
ods for seeking the extremum. Towards Global Optimization, 2(117-129):2, 1978.
Publisher: Amsterdam: Elsevier. 77

Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization
via invariant feature representation. In International conference on machine learning,
pages 10–18. PMLR, 2013. 17

Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and
Puneet Dokania. Calibrating Deep Neural Networks using Focal Loss. In Advances
in Neural Information Processing Systems, volume 33, pages 15288–15299. Curran
Associates, Inc., 2020. 101, 103

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining Well Cali-
brated Probabilities Using Bayesian Binning. Proceedings of the AAAI Conference on
Artificial Intelligence, 29(1), February 2015. ISSN 2374-3468. tex.copyright: Copy-
right (c). 23, 24, 60

Harikrishna Narasimhan, Aditya Krishna Menon, Wittawat Jitkrittum, and Sanjiv Kumar.
Plugin estimators for selective classification with out-of-distribution detection. In The
Twelfth International Conference on Learning Representations, 2024. URL https:

//openreview.net/forum?id=DASh78rJ7g. 21, 51

Muzammal Naseer, Salman Khan, and Fatih Porikli. Local gradients smoothing: Defense
against localized adversarial attacks. In 2019 IEEE winter conference on applications
of computer vision (WACV), pages 1300–1307. IEEE, 2019. 18

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image gener-
ation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741,
2021. 28

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion proba-
bilistic models. In International conference on machine learning, pages 8162–8171.
PMLR, 2021. 27

Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with su-
pervised learning. In Proceedings of the 22nd international conference on Machine
learning, ICML ’05, pages 625–632, New York, NY, USA, August 2005. Association
for Computing Machinery. ISBN 978-1-59593-180-1. 61

Changhai Nie and Hareton Leung. A survey of combinatorial testing. ACM Computing
Surveys (CSUR), 43(2):1–29, 2011. Publisher: ACM New York, NY, USA. 74

Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran.
Measuring calibration in deep learning. In CVPR workshops, volume 2, 2019. 23

130

https://openreview.net/forum?id=DASh78rJ7g
https://openreview.net/forum?id=DASh78rJ7g

Curtis G Northcutt, Anish Athalye, and Jonas Mueller. Pervasive label errors in test sets
destabilize machine learning benchmarks. arXiv preprint arXiv:2103.14749, 2021. 18

Philipp Oberdiek, Gernot Fink, and Matthias Rottmann. Uqgan: A unified model for
uncertainty quantification of deep classifiers trained via conditional gans. Advances in
Neural Information Processing Systems, 35:21371–21385, 2022. 29

On-Road Automated Driving (ORAD) Committee. Taxonomy and definitions for terms
related to driving automation systems for on-road motor vehicles. manual, June 2018.
URL https://doi.org/10.4271/J3016_201806. 5, 13

OpenAI. GPT-4 system card, 2023. URL https://cdn.openai.com/papers/gpt-4-

system-card.pdf. 2, 13, 96, 97

Tinghui Ouyang, Vicent Sanz Marco, Yoshinao Isobe, Hideki Asoh, Yutaka Oiwa, and
Yoshiki Seo. Corner case data description and detection. In 2021 IEEE/ACM 1st
workshop on AI engineering-software engineering for AI (WAIN), pages 19–26. IEEE,
2021a. 18, 19

Tinghui Ouyang, Vicent Sanz Marco, Yoshinao Isobe, Hideki Asoh, Yutaka Oiwa, and
Yoshiki Seo. Improved surprise adequacy tools for corner case data description and
detection. Applied Sciences, 11(15):6826, 2021b. Publisher: MDPI. 18, 19

Gaurav Parmar, Yijun Li, Jingwan Lu, Richard Zhang, Jun-Yan Zhu, and Krishna Ku-
mar Singh. Spatially-adaptive multilayer selection for gan inversion and editing. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 11399–11409, 2022. 26

Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Style-
clip: Text-driven manipulation of stylegan imagery. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 2085–2094, 2021. 25, 32, 38

Kanil Patel, William H Beluch, Bin Yang, Michael Pfeiffer, and Dan Zhang. Multi-
class uncertainty calibration via mutual information maximization-based binning. In
International conference on learning representations, 2020. 23, 24, 58, 59, 60

Ajeet Ram Pathak, Manjusha Pandey, and Siddharth Rautaray. Application of deep learn-
ing for object detection. Procedia computer science, 132:1706–1717, 2018. Publisher:
Elsevier. 2

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011. 39

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In proceedings of the 26th symposium on operating
systems principles, pages 1–18, 2017. 18, 19

Luis Perez and Jason Wang. The effectiveness of data augmentation in image classifica-
tion using deep learning. arXiv preprint arXiv:1712.04621, 2017. 15

131

https://doi.org/10.4271/J3016_201806
https://cdn.openai.com/papers/gpt-4-system-card.pdf
https://cdn.openai.com/papers/gpt-4-system-card.pdf

Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco Doretto. Adversarial latent
autoencoders. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 14104–14113, 2020. 27, 45

John Platt. Probabilistic outputs for support vector machines and comparisons to regu-
larized likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.
Publisher: Cambridge, MA. 23, 54, 55

Antoine Plumerault, Hervé Le Borgne, and Céline Hudelot. Controlling generative mod-
els with continuous factors of variations. In ICLR 2020-eighth international conference
on learning representations, 2020. 25

Christopher Potts, Zhengxuan Wu, Atticus Geiger, and Douwe Kiela. DynaSent: a dy-
namic benchmark for sentiment analysis. In Chengqing Zong, Fei Xia, Wenjie Li, and
Roberto Navigli, editors, Proceedings of the 59th annual meeting of the association for
computational linguistics and the 11th international joint conference on natural lan-
guage processing (volume 1: Long papers), pages 2388–2404, Online, August 2021.
Association for Computational Linguistics. 59, 102

A Radford. Unsupervised representation learning with deep convolutional generative ad-
versarial networks. arXiv preprint arXiv:1511.06434, 2015. 24

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, and others.
Learning transferable visual models from natural language supervision. In Interna-
tional conference on machine learning, pages 8748–8763. PMLR, 2021. 19, 28, 59,
85, 96, 99

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of Machine Learning Research, 21
(140):1–67, 2020. 59

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hi-
erarchical text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125, 1(2):3, 2022. 2, 28, 74

Keivan Rezaei, Mehrdad Saberi, Mazda Moayeri, and Soheil Feizi. PRIME: Prioritiz-
ing interpretability in failure mode extraction. In The twelfth international confer-
ence on learning representations, 2024. URL https://openreview.net/forum?

id=QrEHs9w5UF. 20

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. ImageNet-21K
pretraining for the masses. In Thirty-fifth conference on neural information processing
systems datasets and benchmarks track (round 1), 2021. 59, 101, 102, 103

Nicolas La Rocco. Level-3-Fahren mit 130 km/h: Mercedes gestaltet nächste ODD
für Drive Pilot aus, August 2022. URL https://www.computerbase.de/2022-

08/level-3-fahren-mit-130-km-h-mercedes-gestaltet-naechste-odd-

fuer-drive-pilot-aus/. tex.timestamp: 13:10. 5

132

https://openreview.net/forum?id=QrEHs9w5UF
https://openreview.net/forum?id=QrEHs9w5UF
https://www.computerbase.de/2022-08/level-3-fahren-mit-130-km-h-mercedes-gestaltet-naechste-odd-fuer-drive-pilot-aus/
https://www.computerbase.de/2022-08/level-3-fahren-mit-130-km-h-mercedes-gestaltet-naechste-odd-fuer-drive-pilot-aus/
https://www.computerbase.de/2022-08/level-3-fahren-mit-130-km-h-mercedes-gestaltet-naechste-odd-fuer-drive-pilot-aus/

Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel Cohen-Or. Pivotal tuning for
latent-based editing of real images. ACM Transactions on graphics (TOG), 42(1):1–13,
2022. Publisher: ACM New York, NY. 26

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
mer. High-resolution image synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 10684–
10695, 2022. 28, 73, 96

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, Octo-
ber 5-9, 2015, proceedings, part III 18, pages 234–241. Springer, 2015. 73

Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon, Wojciech
Samek, Marius Kloft, Thomas G Dietterich, and Klaus-Robert Müller. A unifying
review of deep and shallow anomaly detection. Proceedings of the IEEE, 109(5):756–
795, 2021. Publisher: IEEE. 16, 18

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir
Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven
generation. In Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition, pages 22500–22510, 2023. 28

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, and others. Imagenet
large scale visual recognition challenge. International journal of computer vision, 115:
211–252, 2015. Publisher: Springer. 14

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
and others. Photorealistic text-to-image diffusion models with deep language under-
standing. Advances in neural information processing systems, 35:36479–36494, 2022.
2, 28, 74

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018.
67

Axel Sauer and Andreas Geiger. Counterfactual generative networks. In International
conference on learning representations, 2021. URL https://openreview.net/

forum?id=BXewfAYMmJw. 29

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large
diverse datasets. In ACM SIGGRAPH 2022 conference proceedings, pages 1–10, 2022.
25, 38

Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and Timo Aila. Stylegan-t: Un-
locking the power of gans for fast large-scale text-to-image synthesis. In International
conference on machine learning, pages 30105–30118. PMLR, 2023. 25

133

https://openreview.net/forum?id=BXewfAYMmJw
https://openreview.net/forum?id=BXewfAYMmJw

Divya Saxena and Jiannong Cao. Generative adversarial networks (GANs) challenges,
solutions, and future directions. ACM Computing Surveys (CSUR), 54(3):1–42, 2021.
Publisher: ACM New York, NY, USA. 32

Ben Schoon. Google’s vision for pixel 9 is great, but doesn’t escape my biggest problem
with AI, 2024. URL https://9to5google.com/2024/08/25/google-pixel-9-

ai-problem/. Authority: 9to5Google. 4

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wight-
man, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman,
and others. Laion-5b: An open large-scale dataset for training next generation image-
text models. Advances in Neural Information Processing Systems, 35:25278–25294,
2022. 28, 73

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-CAM: visual explanations from deep networks
via gradient-based localization. International journal of computer vision, 128:336–
359, 2020. Publisher: Springer. 13

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans
for semantic face editing. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9243–9252, 2020. 25

Pramila P Shinde and Seema Shah. A review of machine learning and deep learning
applications. In 2018 Fourth international conference on computing communication
control and automation (ICCUBEA), pages 1–6. IEEE, 2018. 1

Faiz Siddiqui. Tesla drivers report a surge in ’phantom braking’. The Washington Post,
February 2022. URL https://www.washingtonpost.com/technology/2022/02/

02/tesla-phantom-braking/. 6

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, and others. Mastering the game of Go with deep neural networks and tree
search. nature, 529(7587):484–489, 2016. Publisher: Nature Publishing Group. 2

K Simonyan and A Zisserman. Very deep convolutional networks for large-scale image
recognition. In 3rd international conference on learning representations (ICLR 2015).
Computational and Biological Learning Society, 2015. 52, 67

Natasha Singer. Amazon Is Pushing Facial Technology That a Study Says Could Be
Biased. The New York Times, 2019. URL https://www.nytimes.com/2019/01/24/

technology/amazon-facial-technology-study.html. 3

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan
Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian opti-
mization using deep neural networks. In International conference on machine learning,
pages 2171–2180. PMLR, 2015. 77

Jacob Snow. Amazon’s Face Recognition Falsely Matched 28 Members of Congress
With Mugshots, 2018. URL https://www.aclu.org/news/privacy-technology/

amazons-face-recognition-falsely-matched-28. Publisher: ACLU of North-
ern California. 3

134

https://9to5google.com/2024/08/25/google-pixel-9-ai-problem/
https://9to5google.com/2024/08/25/google-pixel-9-ai-problem/
https://www.washingtonpost.com/technology/2022/02/02/tesla-phantom-braking/
https://www.washingtonpost.com/technology/2022/02/02/tesla-phantom-braking/
https://www.nytimes.com/2019/01/24/technology/amazon-facial-technology-study.html
https://www.nytimes.com/2019/01/24/technology/amazon-facial-technology-study.html
https://www.aclu.org/news/privacy-technology/amazons-face-recognition-falsely-matched-28
https://www.aclu.org/news/privacy-technology/amazons-face-recognition-falsely-matched-28

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, An-
drew Y Ng, and Christopher Potts. Recursive deep models for semantic composition-
ality over a sentiment treebank. In Proceedings of the 2013 conference on empirical
methods in natural language processing, pages 1631–1642, 2013. 65, 102

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermodynamics. In International confer-
ence on machine learning, pages 2256–2265. PMLR, 2015. 27

Haorui Song, Yong Du, Tianyi Xiang, Junyu Dong, Jing Qin, and Shengfeng He. Editing
out-of-domain gan inversion via differential activations. In European conference on
computer vision, pages 1–17. Springer, 2022. 26

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit mod-
els. In International conference on learning representations, 2021a. URL https:

//openreview.net/forum?id=St1giarCHLP. 28, 91

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019. 27

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Er-
mon, and Ben Poole. Score-based generative modeling through stochastic differen-
tial equations. In International conference on learning representations, 2021b. URL
https://openreview.net/forum?id=PxTIG12RRHS. 28

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Be-
yond neural scaling laws: beating power law scaling via data pruning. Advances in
Neural Information Processing Systems, 35:19523–19536, 2022. 52

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014. Publisher: JMLR.
org. 51

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain
adaptation. In Computer vision–ECCV 2016 workshops: Amsterdam, the netherlands,
october 8-10 and 15-16, 2016, proceedings, part III 14, pages 443–450. Springer, 2016.
17

Richard S. Sutton. The bitter lesson, 2019. URL http://www.incompleteideas.net/

IncIdeas/BitterLesson.html. 96

C Szegedy. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013. 18

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1–9, 2015. 67

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826, 2016. 67

135

https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International conference on machine learning, pages 6105–6114.
PMLR, 2019. 59

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In
International conference on machine learning, pages 10096–10106. PMLR, 2021. 59

Tesla. Model 3 owner’s manual. manual, Tesla, Inc., 2024. URL https:

//www.tesla.com/ownersmanual/model3/en_us/GUID-2CB60804-9CEA-4F4B-

8B04-09B991368DC5.html. 4

Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes, Tanmoy Bhattacharya, and
Sarah Michalak. On Mixup Training: Improved Calibration and Predictive Uncertainty
for Deep Neural Networks. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. 23

Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing of
deep-neural-network-driven autonomous cars. In Proceedings of the 40th international
conference on software engineering, pages 303–314, 2018. 18, 19

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 58(1):267–288, 1996. Publisher:
Oxford University Press. 79

Shengbang Tong, Erik Jones, and Jacob Steinhardt. Mass-producing failures of mul-
timodal systems with language models. In Thirty-seventh conference on neural in-
formation processing systems, 2023. URL https://openreview.net/forum?id=

T6iiOqsGOh. 3, 19, 28, 99

Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes
wide shut? exploring the visual shortcomings of multimodal llms. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 9568–9578,
2024. 99

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, and
others. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023. 65

Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. Designing
an encoder for stylegan image manipulation. ACM Transactions on Graphics (TOG),
40(4):1–14, 2021. Publisher: ACM New York, NY, USA. 26, 44

Juozas Vaicenavicius, David Widmann, Carl Andersson, Fredrik Lindsten, Jacob Roll,
and Thomas Schön. Evaluating model calibration in classification. In The 22nd inter-
national conference on artificial intelligence and statistics, pages 3459–3467. PMLR,
2019. 22, 23

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal
of Machine Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/

papers/v9/vandermaaten08a.html. 35

136

https://www.tesla.com/ownersmanual/model3/en_us/GUID-2CB60804-9CEA-4F4B-8B04-09B991368DC5.html
https://www.tesla.com/ownersmanual/model3/en_us/GUID-2CB60804-9CEA-4F4B-8B04-09B991368DC5.html
https://www.tesla.com/ownersmanual/model3/en_us/GUID-2CB60804-9CEA-4F4B-8B04-09B991368DC5.html
https://openreview.net/forum?id=T6iiOqsGOh
https://openreview.net/forum?id=T6iiOqsGOh
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in neural information processing systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/

paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. 73

Joshua Vendrow, Saachi Jain, Logan Engstrom, and Aleksander Madry. Dataset inter-
faces: Diagnosing model failures using controllable counterfactual generation. arXiv
preprint arXiv:2302.07865, 2023. 19, 71, 74

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif
Rasul, Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven
Liu, and Thomas Wolf. Diffusers: State-of-the-art diffusion models, 2022. URL
https://github.com/huggingface/diffusers. 91, 103

Ellen M. Voorhees and Dawn M. Tice. Building a question answering test collection.
In Proceedings of the 23rd annual international ACM SIGIR conference on research
and development in information retrieval, Sigir ’00, pages 200–207, New York, NY,
USA, 2000. Association for Computing Machinery. ISBN 1-58113-226-3. doi: 10.
1145/345508.345577. URL https://doi.org/10.1145/345508.345577. Number
of pages: 8 Place: Athens, Greece. 65, 102

Andrey Voynov and Artem Babenko. Unsupervised discovery of interpretable directions
in the gan latent space. In International conference on machine learning, pages 9786–
9796. PMLR, 2020. 25

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations with-
out opening the black box: Automated decisions and the GDPR. Harv. JL & Tech., 31:
841, 2017. Publisher: HeinOnline. 29

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. Technical Report CNS-TR-
2011-001, California Institute of Technology, 2011. 89, 102

Ben Wang and Aran Komatsuzaki. GPT-j-6B: a 6 billion parameter autoregres-
sive language model, May 2021. URL https://github.com/kingoflolz/mesh-

transformer-jax. 65

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang,
Chejian Xu, Zidi Xiong, Ritik Dutta, Rylan Schaeffer, and others. DecodingTrust: a
comprehensive assessment of trustworthiness in GPT models. In NeurIPS, 2023. 99,
100

Cheng Wang. Calibration in deep learning: a survey of the state-of-the-art. arXiv preprint
arXiv:2308.01222, 2023. 22

Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. Neurocomput-
ing, 312:135–153, 2018. Publisher: Elsevier. 6, 17

Zhengwei Wang, Qi She, and Tomas E Ward. Generative adversarial networks in com-
puter vision: A survey and taxonomy. ACM Computing Surveys (CSUR), 54(2):1–38,
2021. Publisher: ACM New York, NY, USA. 32

137

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://github.com/huggingface/diffusers
https://doi.org/10.1145/345508.345577
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

Yuni Wen and Matthias Holweg. A phenomenological perspective on AI ethical failures:
The case of facial recognition technology. AI & SOCIETY, 39(4):1929–1946, August
2024. ISSN 1435-5655. doi: 10.1007/s00146-023-01648-7. URL https://doi.org/

10.1007/s00146-023-01648-7. 3

David Widmann, Fredrik Lindsten, and Dave Zachariah. Calibration tests in multi-class
classification: A unifying framework. Advances in neural information processing sys-
tems, 32, 2019. 22

Wikipedia. Operational design domain - Wikipedia, the free encyclopedia, 2024a. URL
https://en.wikipedia.org/wiki/Operational_design_domain. 5

Wikipedia. List of Tesla Autopilot crashes - Wikipedia, the free encyclopedia, 2024b.
URL https://en.wikipedia.org/wiki/List_of_Tesla_Autopilot_crashes. 4

Wikipedia. ImageNet - Wikipedia, the free encyclopedia, 2024c. URL https://en.

wikipedia.org/wiki/ImageNet. 2

Olivia Wiles, Isabela Albuquerque, and Sven Gowal. Discovering bugs in vision models
using off-the-shelf image generation and captioning. In NeurIPS ML safety workshop,
2022. 19, 29, 71, 74, 82

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge cor-
pus for sentence understanding through inference. In Marilyn Walker, Heng Ji, and
Amanda Stent, editors, Proceedings of the 2018 conference of the north American
chapter of the association for computational linguistics: Human language technolo-
gies, volume 1 (long papers), pages 1112–1122, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics. 59, 102

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M.
Rush. Transformers: State-of-the-art natural language processing. In Proceedings of
the 2020 conference on empirical methods in natural language processing: System
demonstrations, pages 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.
101, 103

Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace analysis: Disentangled
controls for stylegan image generation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 12863–12872, 2021. 25, 26, 31, 32, 38

Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, and Ming-Hsuan
Yang. Gan inversion: A survey. IEEE transactions on pattern analysis and machine
intelligence, 45(3):3121–3138, 2022. Publisher: IEEE. 25, 38

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution
detection: A survey. arXiv preprint arXiv:2110.11334, 2021. 6, 16, 99

138

https://doi.org/10.1007/s00146-023-01648-7
https://doi.org/10.1007/s00146-023-01648-7
https://en.wikipedia.org/wiki/Operational_design_domain
https://en.wikipedia.org/wiki/List_of_Tesla_Autopilot_crashes
https://en.wikipedia.org/wiki/ImageNet
https://en.wikipedia.org/wiki/ImageNet
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng,
Haoqi Wang, Guangyao Chen, Bo Li, Yiyou Sun, and others. Openood: Benchmarking
generalized out-of-distribution detection. Advances in Neural Information Processing
Systems, 35:32598–32611, 2022. 17, 100

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from
decision trees and naive Bayesian classifiers. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML ’01, pages 609–616, San Francisco,
CA, USA, June 2001. Morgan Kaufmann Publishers Inc. ISBN 978-1-55860-778-1.
23, 50, 54, 60

Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multi-
class probability estimates. In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’02, pages 694–699, New
York, NY, USA, July 2002. Association for Computing Machinery. ISBN 978-1-58113-
567-1. 23, 24, 54, 55, 60

Martin Zaefferer. Surrogate models for discrete optimization problems. 2018. 77

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016. 59

Jize Zhang, Bhavya Kailkhura, and T Yong-Jin Han. Mix-n-match: Ensemble and com-
positional methods for uncertainty calibration in deep learning. In International con-
ference on machine learning, pages 11117–11128. PMLR, 2020. 23, 24, 58, 59, 60

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-
image diffusion models. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 3836–3847, 2023. 28

Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
DeepRoad: GAN-based metamorphic testing and input validation framework for au-
tonomous driving systems. In Proceedings of the 33rd ACM/IEEE international con-
ference on automated software engineering, pages 132–142, 2018. 32

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks
for text classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in neural information processing systems, volume 28. Curran
Associates, Inc., 2015a. URL https://proceedings.neurips.cc/paper_files/

paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf. 65, 102

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for
text classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in neural information processing systems, volume 28. Curran Asso-
ciates, Inc., 2015b. 59, 102

Youcai Zhang, Xinyu Huang, Jinyu Ma, Zhaoyang Li, Zhaochuan Luo, Yanchun Xie,
Yuzhuo Qin, Tong Luo, Yaqian Li, Shilong Liu, and others. Recognize anything: A
strong image tagging model. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 1724–1732, 2024. 20

139

https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

Shengjia Zhao, Michael Kim, Roshni Sahoo, Tengyu Ma, and Stefano Ermon. Calibrating
predictions to decisions: a novel approach to multi-class calibration. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances
in neural information processing systems, volume 34, pages 22313–22324. Curran
Associates, Inc., 2021a. URL https://proceedings.neurips.cc/paper_files/

paper/2021/file/bbc92a647199b832ec90d7cf57074e9e-Paper.pdf. 22

Xujiang Zhao, Shu Hu, Jin-Hee Cho, and Feng Chen. Uncertainty-based Decision Mak-
ing Using Deep Reinforcement Learning. In 2019 22th International Conference on
Information Fusion (FUSION), pages 1–8, July 2019. 22

Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adversarial exam-
ples. In International conference on learning representations, 2018. URL https:

//openreview.net/forum?id=H1BLjgZCb. 29

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use:
Improving few-shot performance of language models. In International conference on
machine learning, pages 12697–12706. PMLR, 2021b. 63

Han Zhou, Xingchen Wan, Lev Proleev, Diana Mincu, Jilin Chen, Katherine Heller, and
Subhrajit Roy. Batch calibration: Rethinking calibration for in-context learning and
prompt engineering. arXiv preprint arXiv:2309.17249, 2023. 63, 65

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain gener-
alization: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(4):4396–4415, 2022. Publisher: IEEE. 6, 17

Na Zhou, Chuan-Tao Zhang, Hong-Ying Lv, Chen-Xing Hao, Tian-Jun Li, Jing-Juan Zhu,
Hua Zhu, Man Jiang, Ke-Wei Liu, He-Lei Hou, and others. Concordance study between
IBM Watson for oncology and clinical practice for patients with cancer in China. The
oncologist, 24(6):812–819, 2019. Publisher: Oxford University Press. 3

Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative visual
manipulation on the natural image manifold. In Computer vision–ECCV 2016: 14th
european conference, amsterdam, the netherlands, october 11-14, 2016, proceedings,
part V 14, pages 597–613. Springer, 2016. 26

Orr Zohar, Shih-Cheng Huang, Kuan-Chieh Wang, and Serena Yeung. Lovm: Language-
only vision model selection. Advances in Neural Information Processing Systems, 36,
2024. 99

140

https://proceedings.neurips.cc/paper_files/paper/2021/file/bbc92a647199b832ec90d7cf57074e9e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/bbc92a647199b832ec90d7cf57074e9e-Paper.pdf
https://openreview.net/forum?id=H1BLjgZCb
https://openreview.net/forum?id=H1BLjgZCb

	Acronyms
	Résumé en Français
	Introduction
	The Rise of Deep Learning
	Deep Learning Models Failures
	Trustworthy AI Initiatives
	The Initial Goal: Defining a Domain
	Summary of Contributions
	Use Generative Models to Illustrate Failures
	Selective Classification and Calibration
	Incorporating Textual Descriptions

	Publications and Code

	Related Work
	AI Safety
	Explainability
	Uncertainty and Failure Sources
	Failure Sources in the Model
	Failure Sources in the Data

	Classifier Failures Discovery
	Selective Classification
	Calibration
	Tools
	Generative Adversarial Networks (GANs)
	Diffusion and Text-to-Image Models

	A Qualitative View: Use Generative Models to Illustrate Failures
	Introduction
	Background
	Generate Synthetic Failure Cases
	Generative Models to Explore the Data Space
	GAN's Latent Space Exploration Guided by a Classifier's Gradient
	Experiments and Results

	Generate Synthetic Uncertain Data
	GAN Conditioned by a Classifier's Confidence
	Experiments and Results

	Discussion

	A Quantitative View: Selective Classification and Calibration
	Introduction
	Background
	Selective Classification Experiments
	Selection Functions
	Experiments and Results
	Towards Better Calibration

	Making Confidence Calibration Methods More Data-Efficient
	Issues Related to Current Approaches
	Top-versus-All Approach to Confidence Calibration
	Experiments and Results

	Calibrate with Synthetic Data
	Use a Class Conditional GAN to Generate Calibration Data
	Experiments and Results

	Discussion

	Incorporating Textual Descriptions
	Introduction
	Background
	Textual Descriptions of Classifier Failures Using Text-to-Image Models
	Leveraging Text-to-Image Generative Models
	Bayesian Optimization to Explore Faster
	Experiments and Results

	Using Textual Attributes to Define a Reliability Domain
	Semantic Binning for Semantic Selective Classification
	Experiments with Synthetic Data
	Experiments with Real Data

	Discussion

	Conclusion / Discussion
	Is the Initial Goal Solved?
	A Look Back at 3 Years of AI Progress
	Perspectives

	Appendix
	Implementation Details
	Additional Results for Top-versus-All (TvA) Calibration
	Theoretical Justification of TvA for Temperature Scaling
	Additional Tables of Results

	Bibliography

