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LPT, Université Paul Sabatier

Peter Schlagheck : Professeur
Université de Liège
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Résumé

Transport stationnaire dans des fluides quantiques de basse dimension-
alité : Du mouvement superfluide à la résistance ondulatoire

Les fluides quantiques, tels que les condensats de Bose-Einstein ou les superfluides de lu-
mière – deux systèmes d’intérêt dans ce manuscrit – offrent des plateformes fascinantes pour
explorer des phénomènes physiques fondamentaux sous des conditions extrêmes. L’un des
aspects cruciaux de ces systèmes est leur comportement face à des perturbations, pouvant
entrâıner des transitions entre différents régimes de transport pour des vitesses critiques bien
définies. L’objet de notre étude est donc d’examiner un fluide quantique s’écoulant à une
vitesse donnée et rencontrant un obstacle aux paramètres arbitraires. Nous avons développé
des modèles intégrant le potentiel non-linéaire d’interaction, permettant de traiter divers sys-
tèmes tels que les atomes froids ou les fluides de lumière, et d’aller au delà des résultats bien
connus dans la communauté. Nous avons commencé par explorer les systèmes unidimension-
nels, cherchant à établir une carte complète des régimes de transport stationnaires possibles.
Notre attention s’est d’abord portée sur le régime superfluide, avec une étude analytique
et numérique approfondie de la vitesse critique de superfluidité, montrant une dépendance
non-triviale des paramètres du problème. Ce travail a ensuite été étendu aux superfluides de
lumière en incluant un traitement systématique des pertes, montrant qu’elles ne modifient pas
fondamentalement nos résultats tant qu’elles restent linéaires et homogènes. S’ensuit l’étude
d’un autre régime de transport stationnaire à une dimension, à des vitesses supersoniques.
Grâce à des méthodes similaires, nous avons mis en lumière une autre vitesse critique, la
séparatrice supersonique, et l’avons étudiée analytiquement et numériquement en fonction
des paramètres du problème. Cette étude a révélé l’existence d’états ayant une dynamique
similaire à celle du régime superfluide, mais à des vitesses supersoniques. Enfin, nous avons
exploré la superfluidité dans des systèmes bidimensionnels. Afin d’aller au delà des résul-
tats préexistants, nous avons développé un modèle tenant compte de la compressibilité du
fluide, la non-linéarité du système, et la pénétrabilité de l’obstacle. L’analyse conjointe de
notre modèle et des simulations a mis en évidence deux mécanismes distincts pour briser
la superfluidité, dépendant de l’amplitude de l’obstacle. Nous avons ensuite réalisé diverses
simulations numériques afin d’avoir une vision plus concrète de ces phénomènes, et avons
entamé une étude préliminaire sur l’éjection des vortex dans le fluide quantique. En accord
qualitatif avec des résultats expérimentaux récents obtenus pour d’autres types d’obstacles,
notre modèle simplifié constitue un pas en avant dans l’étude de la superfluidité, avec des
implications potentielles pour d’autres plateformes expérimentales, au-delà des atomes froids.

Mots clés : Superfluidité, Fluides quantiques, Transport quantique,

Vortex
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Abstract

Stationary transport in low dimensional quantum fluids: From super-
fluid motion to wave resistance

Quantum fluids, such as Bose-Einstein condensates and superfluids of light – two systems of
interest in this manuscript – offer fascinating platforms for exploring fundamental physical
phenomena under extreme conditions. A crucial aspect of these systems is their behavior
when encountering perturbations, which can lead to transitions between different transport
regimes at well-defined critical velocities. The objective of our study is to examine a quantum
fluid flowing at a given velocity past an obstacle with arbitrary parameters. We developed
models that incorporate various nonlinear interaction potential, enabling us to address var-
ious systems such as cold atoms and quantum fluids of light, and to extend beyond the
well-established results in the field. We began by exploring one-dimensional systems, aiming
to establish a comprehensive map of the possible stationary transport regimes. Our ini-
tial focus was on the superfluid regime, for which we conducted an in-depth analytical and
numerical study of the critical velocity for superfluidity, revealing a nontrivial dependence
on the system’s parameters. This work was then extended to superfluids of light, with a
systematic treatment of losses, showing that they do not fundamentally alter our previous
results as long as they remain linear and homogeneous. This was followed by the study of
another stationary transport regime in one dimension, specifically at supersonic velocities.
Using similar methods, we highlighted another critical velocity, the supersonic separatrix,
and studied it analytically and numerically as well. This study revealed the existence of
states with dynamics similar to those of the superfluid regime, but at supersonic velocities.
Finally, we explored superfluidity in two-dimensional systems. To go beyond previous results,
we developed a model that accounts for the compressibility of the fluid, the nonlinearity of
the system, and the penetrability of the obstacle. The combined analysis of our model and
simulations revealed two distinct mechanisms for the breakdown of superfluidity, depending
on the amplitude of the obstacle. We then conducted several numerical simulations to gain
a more concrete understanding of these phenomena, and initiated a preliminary study on
vortex ejection in the quantum fluid. In qualitative agreement with recent experimental re-
sults obtained for other types of obstacles, our simplified model marks a step forward in the
study of superfluidity, with potential implications for other experimental platforms beyond
cold atoms.

Keywords: Superfluidity, Quantum fluids, Quantum transport, Vortex
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présents quoi qu’il advienne, et qui m’ont toujours encouragée quels que soient les choix que
je fasse, qu’ils soient avisés ou non.

Enfin bref, vous l’aurez compris, merci à tous !
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Introduction

“When Kapitza and the great theoretical physicist Landau, followed by
physicists such as Fritz London, Lars Onsager, Richard Feynman and
other greats, came on board, there was a tremendous surge of
excitement, which lasted for many years and helped bring the subject to
its present state of understanding”

R. Donnelly [1]

The story of superfluidity is a testament to the unexpected and often astonishing discov-
eries that have emerged from the realm of fundamental physics. Its history is intertwined
with the development of quantum mechanics and the exploration of matter at extremely
low temperatures. The phenomenon of superfluidity, characterized by its complete absence
of viscosity and other remarkable behaviors, was first observed in the early 20th century,
challenging classical physics and opening the door to the investigation of new quantum phe-
nomena. Here are the main points of the long and tortuous history of superfluidity, leading
to the theory as we know it today. For a more detailed account of the historical part, we
invite the reader to refer to Refs. [1–5].

The early stages of superfluidity

Onnes & the premises of superfluidity

The roots of superfluidity can be traced back to the early 20th century when the race to
liquefy gases was at its peak. It was on July 10th 1908 that Kamerlingh Onnes’ group in
Leiden achieved a groundbreaking feat by successfully liquefying helium for the first time
with cryostats. Though the concept was unknown at the time, the foundations for the study
of superfluidity were laid.

A few years later, Onnes’ team observed the superfluid transition in liquid helium on
August 2nd 1911, supposedly the very same day they observed superconductivity in mercury.
They indeed noticed a peculiar property when cooling helium down to extremely low temper-
atures: The ability to flow without dissipation, a hallmark of superfluidity [6, 7]. For a long
time, liquid helium stood as the sole example of a simple bosonic quantum liquid displaying
a superfluid behavior until the creation of the first gaseous condensates in 1995 in the groups
of E. Cornell and C. Wieman in Boulder [8], and the group of W. Ketterle at MIT [9].

Even though Onnes’ primary focus was in practice on liquid helium, it is not what he
is most renowned for. It is indeed for his serendipitous discovery of superconductivity in
1911 that he was awarded the Nobel Prize in 1913 “for his investigations on the properties of
matter at low temperatures which led, inter alia, to the production of liquid helium” [10].

A shared discovery in 1937

It is no wonder that the next important step also took place both in Leiden and with liquid
helium as after Onnes’ discovery, his laboratory possessed a monopoly on liquid helium for

1
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Figure 1: Left: Phase diagram of 4He as a function of the pressure and the temperature. The liquid
shows a phase transition to a superfluid phase (He II) at the λ−point (Tλ = 2.17 K and P = 1
atm), but also all along the λ−line (in red). Right: Specific heat data C of 4He as a function of the
temperature T − Tλ. C shows a discontinuity as the temperature drops past the λ−point, heralding
the transition from normal He I to superfluid He II. Figure from Ref. [12].

a while. Over the next 30 years, researchers worked on the interesting phase transitions of
liquid helium, but the situation remained still until Keesom and his daughter discovered in
1930 that helium-4 (also written 4He) had two different liquid states called “He I” and “He
II”, respectively above and below Tλ = 2.17 K for a pressure of about 1 atm [11]. This point,
called the λ−point, determines the so-called λ−transition, from which normal fluid helium
(He I) goes to superfluid He II (see the left panel of Fig. 1). Interestingly, this point is called
like this because the graph of the specific heat capacity as a function of temperature (for a
given pressure) resembles the Greek letter lambda λ at the transition (see the right panel of
Fig. 1).

In the wake of 1938, a first explanation for the nature of 4He below the λ−point was given
in two seminal papers [13, 14], in which the goal was to show that a small viscosity could be
responsible for the large apparent thermal conductivity. This intuition was proved right, and
the authors showed experimentally that liquid helium could flow through small channels with
apparently zero viscosity. In other words, the fluid flows without any resistance. As explained
by Kapitza, “by analogy with superconductors, [...] the helium below the λ−point enters a
special state which might be called superfluid”. For the first time, the concept of superfluidity
was mentioned [3], and the nature of He II was then recognized as a manifestation of it.

But who between the Russian or the Canadians gets to have the primacy of the discovery,
as both papers were published side by side in Nature in January 1938, respectively on page 74
and 75? That question was up to debate for a while as P. Kapitza received the Nobel Prize in
1978 for superfluidity-related works, more precisely“for his basic inventions and discoveries in
the area of low-temperature physics”. However, credit where credit is due, and it is nowadays
commonly admitted that superfluidity was independently discovered in December 1937 by P.
Kapitza in Moscow [13], and J. F. Allen and A. D. Misener in Cambridge [14].

This new domain of physics really became a hot topic of the moment, attracting the
interest of many renowned researchers. This was the case for example of Landau, at that
time a promising young researcher at the Physical Technical Institute in Kharkov, who was
engaged to work with Kapitza in Moscow on that new mysterious phenomenon occurring close
to absolute zero temperature. Ultimately, he became one of the pioneers of the domain, and
laid the groundwork of the theory of superfluidity that later led to his obtention of the Nobel
Prize in 1962 “for his pioneering theories for condensed matter, especially liquid helium”.

2



INTRODUCTION

Figure 2: Left: An atomic gas at high temperature, the atoms behave as independent particles. Center:
As the temperature decreases, the de Broglie wavelength λth increases and the classical vision starts
to fail. Right: λth is of the order of the interatomic distance when the temperature decreases even
further. If the particles are bosons, all the wave packets overlap, and the atoms form a giant matter
wavefunction, the BEC.

The advent of various theories: From liquid helium to cold atoms

Bose-Einstein condensation (BEC)

The explanation of the wave-particle duality is one of the most important results of quantum
mechanics: It states that any quantum entity can exhibit both a wave and a particle behavior
depending on the experimental circumstances. As a consequence, to each atom with a given
velocity (or momentum) is associated a wave with a given wavelength. The existence of a
perfectly localized particle is precluded by Heisenberg’s uncertainty principle ∆x∆p ≥ ~/2:
It is not possible to simultaneously know the position x and velocity v = p/m of a given
particle. Instead, a particle is described using a wave packet, and its size is quantified by the de
Broglie wavelength λth ∝ ~/

√
kBT at finite temperature T . At typical room temperature, this

wavelength is usually negligible compared to the average interatomic distance, and a quantum
view of the system is not necessary because the spatial extension of each wave packet is really
small: The atoms behave as independent classical particles. In low-temperature quantum
fluids however, the atoms slow down and their de Broglie wavelength λth is of the order of
the average interatomic distance. The overlapping between each wave packets results in the
inability to distinguish individual particles, as they all occupy the same quantum state with
minimal energy if they are bosons. This gives rise to a macroscopic coherent system known
as the condensate1 (see Fig. 2).

According to the Penrose-Onsager criterion [15], true BEC exists when the one-body den-
sity matrix (OBDM) tends to a constant – the condensed fraction n0 – for a large separation
between two arbitrary points in space:

lim
|r−r′|→∞

ρ(r, r′) = lim
|r−r′|→∞

〈Φ̂†(r)Φ̂(r′)〉 = n0, (1)

with Φ̂†(r) (Φ̂(r)) the field operator creating (annihilating) a particle at point r. Physically,
this mathematical definition means that BEC is present whenever a finite fraction of the
particles occupies the state of lowest energy. This is called off-diagonal long-range order
(ODLRO) as it involves the nondiagonal components of the one-body density matrix [15–17].

Different behaviors can be expected for the OBDM depending on the temperature and the
dimensionality of the system. We invite the reader to refer to [18] for a detailed calculation of
the OBDM in various dimensions. In D = 3, the most important parameter is the temperature
of the system: If T > Tc, the distribution exponentially decays to zero over a distance close

1This phenomenon is exclusive to bosonic particles, as Pauli’s exclusion principle prohibits it for fermions.
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Figure 3: Left: Sketch of the one-body density matrix ρ(s) for a 3D weakly interacting Bose gas below
(solid line) or above the critical temperature Tc (dashed line). The convergence of the OBDM to a
finite value for T < Tc indicates the presence of a BEC. Right: Idem, but for a 2D system. The upper
dashed line corresponds to the powerlaw algebraic decay obtained at T < Tc. Even though the OBDM
does not converge for s→ +∞, is is still finite when reaching the boundary L of the system: We talk
of quasicondensate.

to the de Broglie wavelength. There is no long-range order, and true BEC is not possible. On
the contrary, if T < Tc, the one-body density matrix is also decaying over the same distance
but does not vanish [19], such that lims→∞ ρ(s) = n0. The system is a true BEC as there
is ODLRO. A representation of the one-body density matrix for D = 3 is provided in the
left part of Fig. 3, as a function of the modulus s = |r − r′| of the separation between two
arbitrary points in space.

Things become more complicated in D = 1 and D = 2: Strictly speaking, true BEC is not
supposed to occur in dimensions lower than D = 3 because long-range order (LRO) does not
exist at finite temperatures [20, 21], as the phase fluctuations are too important. Yet, one can
generally define a coherence length, on which the phase fluctuations are small enough, and
below which the system exhibits coherence. When the typical size L of the system is smaller
than this length – which is usually the case in most experiments – the system is locally similar
to a true BEC: We then talk of quasicondensate [22]. In that case, the system can be divided
into different blocks of size the coherence length, each being considered as a true condensate.
The only difference is that the phases of different blocks are not correlated with each other.

In D = 2, the density matrix does not converge to a finite value but instead shows the
presence of an algebraic powerlaw decay [23] (top dashed line in the right part of Fig. 3) much
slower than for T > Tc (the exponent depends on the temperature of the system). Particles
far away from each other will still be correlated over the size L of the system, indicating the
possibility of phase transition at sufficiently low temperature: This is called quasi-long-range
order (QLRO). Note that phase fluctuations are negligible in 2D. There are only thermal
fluctuations in the system, so the OBDM will converge to a finite value at T = 0: True BEC
is possible.

In 1D, the situation is even more dire because in addition to thermal fluctuations, the
OBDM also presents phase fluctuations at T = 0, which lead to a powerlaw decay. One
finds that the thermal fluctuations can be neglected in the limit of small temperature such
that kBT �

√
µkBTd, with µ the chemical potential and Td the temperature of quantum

degeneracy. In the end, at finite temperature the OBDM usually exhibits an exponential
decay, making it impossible for BEC to occur. When kBT �

√
µkBTd, this transforms

into an algebraic powerlaw decay, resulting into a quasicondensate over the size L of the
system. At T = 0 however, the presence of phase fluctuations prevents the OBDM from
converging to a finite value, and true BEC is not possible. The OBDM and the possibility of
quasicondensation in 1D will be further discussed in Sec. 1.1.2.

To sum up, Bose-Einstein condensation is a phenomenon that, albeit supposed to be
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restricted to 3D bosonic systems, can actually occur in any dimension and at low temperatures
if the typical size L of the experiment is small enough that the phase coherence is maintained
over the whole system. The particles then all occupy a single ground state, which population
is so large that is gives rise to a coherent macroscopic system.

A link between BEC and superfluidity? The superfluidity of liquid helium below Tλ = 2.17 K
has long been, since its discovery in 1938, one of the major research topics in low-temperature
physics. Indeed Fritz London developed, shortly after its discovery, an innovative theory
suggesting that the superfluidity of 4He actually resulted from the Bose-Einstein condensation
of said atoms, as they are bosons at very low temperature. This theory was notably supported
by the fact that the λ−transition and condensation temperatures of liquid helium are very
close, namely Tλ = 2.17 K and TC = 3.13 K respectively (note that Tλ comes from an
experimental measurement, whereas TC is a theoretical prediction). This proximity then
suggests a fundamental correlation between the two phenomena. However, according to
Landau, the involvement of quantum statistics seemed unjustified, and the link proposed by
London unfounded. Why would superfluidity be associated with Bose-Einstein condensation,
which is applicable solely to bosons? This skepticism arose particularly because superfluidity
resembles superconductivity, a phenomenon observed for fermions. It was not until the late
1950s with the development of the BCS theory [24] that it became clear that electrons actually
form Cooper pairs, i.e. bosons which can undergo Bose-Einstein condensation, thus leading
to superconductivity. London’s intuition was proved right, which Landau never admitted [5].

The two-fluid model

Several explanations were developed simultaneously to explain superfluidity in liquid helium,
notably by London and Tisza [25–27], who presented a hydrodynamic description of superfluid
helium based on a two-fluid model. This entailed an interaction-less mixture of a condensate
and a normal liquid, each having its own velocity field and density. The sum of both the
condensed and the normal densities (respectively ns and nn) must be constant and equal
to the total density of the fluid: n = ns + nn. The condensed part is the one exhibiting
superfluidity, flowing without friction and not carrying entropy. Its proportion increases as
the temperature decreases, going from ns(T = Tλ)/n = 0 to ns(T = 0)/n = 1. Conversely, the
normal fraction carries all the entropy and behaves like an ordinary fluid, viscous, composed of
“classical” particles subjected to thermal excitations [5]. Both parts satisfy the hydrodynamic
equations (4) to (8) provided in Ref. [28], and are at the origin of two sound velocities in He
II [29].

This model was then more rigorously developed by Landau [28, 30], but with different
interpretations for its components. He considered the superfluid as the ground state of the
quantum fluid (regardless of its statistics), and the normal part as a gas of elementary exci-
tations. This led to a rather peculiar spectrum of excitations for liquid helium, as shown in
Fig. 4. He then arrived at the conclusion that “every weakly excited state can be considered
as an aggregate of single ‘elementary excitations’”, which are divided in two categories: At
small momenta, the excitations are phonons propagating at the speed of sound in the fluid,
with linear dispersion relation ε = cp. A minimum appears at larger momenta, giving rise to

another type of excitations called rotons, with dispersion relation ε = ∆ + (p−p∗)2
2µ , µ being

the effective mass, ∆ the minimum energy of rotons, and p∗ the impulsion at the minimum.

One equation to rule them all

A theoretical description of liquid helium remained quite complex and superfluidity in such
systems not entirely understood, mainly because of the significant interactions between the
particles, which complicates the physics as further proved by the appearance of a roton part
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Figure 4: Spectrum of excitations of liquid helium, as proposed by Landau. It has a low energy branch
that corresponds to phonons, as well as a higher energy branch associated to rotons. ∆ is the energy
of the roton minimum.

in the dispersion relation of liquid helium (see Fig. 4). Only 10% of the atoms enter the con-
densed fraction, which is not enough to experimentally observe Bose-Einstein condensation.
Important progress was then made in the understanding of more diluted quantum fluids such
as BECs, which are described by simpler interactions, making a theoretical description more
accessible. Initially, these weakly interacting systems had few experimental representations
and were mostly theoretical, but the advent of ultracold gases in the 1990s opened the way
to a vast domain of physics that remains very active today.

One of the main characteristics of a generic quantum fluid is interactions between particles.
While overlooking them makes it easier to derive analytical solutions for the dynamics, they
are necessary for superfluidity to occur. In a typical ultracold quantum gas, the average
interparticle distance is much larger than the range of the interatomic potential. This means
that these particles are generally far apart from each other because the system is dilute, and
only binary collisions between the particles need to be considered. The detailed form of the
potential is however not relevant, and this two-body interaction potential can be replaced by
a contact potential [31], which simplifies the mathematical treatment:

V (|ri − rj |) = gδ(ri − rj), (2)

where g = 4π~2as/m. In such dilute systems at low temperatures, s-wave scattering is
predominant, and the scattering length as is the only parameter needed to characterize the
strength of the interactions. Its value can be computed using the Born approximation within
the framework of scattering theory [19, 31]. Experimentally, the scattering length as can
be tuned via Feshbach resonances [32], making it possible to change its sign, and work with
either repulsive (as > 0) or attractive (as < 0) interactions.

For a fully condensed system, all N particles are in the same state φ(r): It is thus possible
to build a many-body wavefunction, which can be expressed as the product of N fundamental
single-particle wavefunctions (Hartree-Fock approximation) [19]

Φ(r1, r2, ..., rN , t) = φ(r1, t)× φ(r2, t)× ...× φ(rN , t). (3)
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Each single-particle wavefunction will be subjected to the Hamiltonian

H =
N∑

i=1

(
p2
i

2m
+ U(ri)

)
+

1

2

N∑

i 6=j
V (|ri − rj |), (4)

with U(ri) an external potential acting on the particle i2, and V (|ri − rj |) the interaction
potential previously defined in Eq. (2).

In order to find the expression of φ, we use a variational approach on the total energy
E[φ] = 〈φ|H|φ〉. This energy functional is given by

E[φ] = N

∫
dr φ∗(r)

(
− ~2

2m
∇2 + U(r)

)
φ(r) +

gN(N − 1)

2

∫
dr |φ(r)|4. (5)

Note that as the number of particles N is really large, then N(N − 1) ∼ N2. A solution for
the wavefunction can be found by minimizing this energy functional with a constraint on the
normalization of the wavefunction:

∫
dr |φ(r)|2 = 1. Using a Lagrange multiplier µ, one has

to compute δ
(
E[φ]− µN

∫
dr |φ(r)|2

)
= 0. This leads to

(
− ~2

2m
∇2 + U(r) + g|ψ(r)|2

)
ψ(r) = µψ(r), (6)

where we introduced ψ(r) =
√
Nφ(r), with

∫
dr |ψ(r)|2 = N this time. |ψ(r)|2 can then be

interpreted as the density at point r: |ψ(r)|2 = n(r). The Lagrange multiplier µ corresponds
here to the chemical potential, such that µ = ∂NE. This equation is the time-independent
Gross-Pitaevskii equation [19, 33, 34], which describes the ground state of a quantum system
composed of identical interacting bosons.

On the other hand, obtaining the time-dependent Gross-Pitaevskii equation is harder, and
involves using the action principle (see Ref. [31] for the full derivation). We simply consider
here that it is possible to substitute i~∂t by µ by analogy with the Schrödinger equation. We
thus obtain

i~∂tψ(r, t) =

(
− ~2

2m
∇2 + U(r, t) + g|ψ(r, t)|2

)
ψ(r, t). (7)

The terms on the right-hand side of Eq. (7) are respectively the kinetic energy with the
Laplacian, U(r, t) represents an external trap or an obstacle within the fluid, and g|ψ(r, t)|2
is the nonlinear interactions between the atoms. This equation is nonlinear as stated by the
g|ψ(r, t)|2ψ(r, t) term, and, as a result, does not agree with the superposition principle as a
linear combination of two solutions of Eq. (7) is not a solution.

Equation (7) holds a significant importance as it provides a rigorous theoretical frame-
work for studying bosonic systems with weak interactions. More precisely, it is a nonlinear
Schrödinger equation that describes the time evolution of a wavefunction associated with a
gas of interacting bosons. It accounts for interactions between particles in the gas and is
often used to study phenomena such as Bose-Einstein condensation, collective excitations,
and solitons. This approach allows for a precise description of superfluidity and, thus, will
be the most important equation in this manuscript.

Bogoliubov and the model in weak interactions

Deriving exact analytical solutions to the Gross-Pitaevskii equation (7) remains challenging
because of its nonlinearity. However, it is possible to investigate certain limiting behav-
iors to gain insights into the fundamental properties of weakly interacting quantum fluids,
particularly by examining how the fluid responds to small perturbations.

2This potential can for example be an external trap in which the system is confined, or an impurity within
the fluid. We consider the latter in this manuscript.
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In 1947, Bogoliubov showed that BEC can occur in the case of a Bose gas in weak
interactions [35], laying the groundwork for the future observation of BEC in alkaline gases
in 1995 [8, 9]. His initial goal was to study the elementary excitations in weakly interacting
Bose systems, and understand the nature of these excitations and how they influence the
properties of BECs and superfluidity. We provide here a classical version of his canonical
transformations (the Bogoliubov transformations [35]), leading to a peculiar energy spectrum.

In this approach, we consider a Bose gas in the presence of a localized obstacle that induces
a small perturbation. We define the chemical potential µ∞ from its value far away from the
obstacle: It is the characteristic energy of the system. The weakly perturbed solution is such
that

ψ(r, t) = [ψ(r) + δφ(r, t)] e−iµ∞t/~, (8)

with U(r, t) = U(r). After linearizing Eq. (7) around the stationary solution, one obtains
the following coupled system

i~∂t
(
δφ
δφ∗

)
= L

(
δφ
δφ∗

)
(9)

with operator L defined as

L =

(
− ~2

2m∇2 + U + 2g|ψ|2 − µ∞ gψ2

−gψ∗2 ~2
2m∇2 − U − 2g|ψ|2 + µ∞

)
. (10)

By diagonalizing the operator L, one can access the spectrum of the elementary excitations
with its eigenvalues ω, and the modes with the eigenvectors (u, v) of the system

L
(
u(r)
v(r)

)
= ~ω

(
u(r)
v(r)

)
. (11)

This system yields the Bogoliubov-de Gennes equations. Once they are solved, one obtains
the wavefunction of the weakly perturbed system as a linear combination of the eigenmodes

ψ(r, t) =
[
ψ(r) + u(r)e−iωt + v∗(r)eiωt

]
e−iµ∞t/~. (12)

u(r) and v(r) are crucial quantities as they characterize quasiparticle modes created by the
perturbation of the quantum fluid. In the end, the wavefunction is a linear combination
of u(r) and v(r), describing the elementary excitations of the weakly interacting Bose gas.
Because of the interactions, not all particles remain condensed and some are excited out of
the condensate, reducing the density of the system: This is the quantum depletion [35, 36].

A simple case: The homogeneous gas The easiest treatable case is that of the Bose gas when
U(r) = 0. In the homogeneous case, the density is spatially uniform throughout the system,
such that n0 = |ψ|2. The spectrum of the elementary excitations of the system is given by
the Bogoliubov dispersion relation E(k) = EB(k), obtained after diagonalizing the operator
L:

EB(k) =

√
~2k2
2m

[
~2k2
2m

+ 2gn0

]
. (13)

In the right-hand side of Eq. (13), the first term ~2k2/2m corresponds to the kinetic energy of
a free particle, and the shift 2gn0 is due to the interactions between particles, with gn0 = µ0
being the chemical potential of the weakly interacting gas.

Two really different limits arise depending on the value of k, and then on the wavelength
of the excitation λ ∼ 1/k. This allows us to introduce a characteristic length-scale of the
problem, the healing length ξ0 of the homogeneous and stationary quantum fluid. It is
mathematically defined as being the separation between the two different limits reachable
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Figure 5: Bogoliubov excitation spectrum for a weakly interacting Bose gas at zero temperature. The
dashed lines represent the asymptotic limits of low energy (green) and high energy (blue), leading
respectively to a phononic or a free particles behavior. The transition between these two different
regimes takes place for excitation wavelengths close to the healing length ξ0.

in EB(k), and is obtained through ~2k2/2m = 2gn0, which is equivalent to k = 2/ξ∞, with
ξ0 = ~/√mgn0. The two different limits in the Bogoliubov dispersion can be seen in Fig. 5,
and are as follow

• k � 1/ξ0 (long-wavelength perturbation): E(k) = ~k
√
gn0/m. The dispersion relation

is linear in p = ~k. This is characteristic of phonons of velocity c0 =
√
gn0/m, c0 being

the speed of sound. It is interesting to note that the speed of sound is linked to the
chemical potential through µ0 = mc20.

• k � 1/ξ0 (small-wavelength perturbation): E(k) = ~2k2/2m+ gn0. This is the disper-
sion relation of free particles, with the kinetic energy ~2k2/2m = p2/2m being shifted
by the term gn0 = µ0 stemming from the interactions between particles.

The healing length ξ0 then corresponds to the separation between phononic and free particle
behavior. This dispersion relation is an important result of the theory of superfluidity, and
has been experimentally validated in many experiments with atomic BECs [37–40], quantum
fluids of light with exciton-polaritons [41], in hot atomic vapors [42, 43] or nonlocal nonlinear
liquids [44].

Concerning the amplitude of the quasiparticle modes u(r) and v(r), we search for them
as plane waves uke

ik·r and vke
ik·r, with the normalization condition u2k − v2k = 1, leading to

u2k =
1

2

(
~2k2
2m + gn0

EB(k)
+ 1

)
≈ 1

2

(
EB(k)
~2k2
2m

+ 1

)
, (14a)

v2k =
1

2

(
~2k2
2m + gn0

EB(k)
− 1

)
≈ 1

2

(
EB(k)
~2k2
2m

− 1

)
. (14b)

In the low energy limit, one finds u2k ≈ v2k ≈
√
mgn0

~k . The excitation is a superposition of
plane waves with wavevectors k and −k with the same coefficients. The dispersion relation
is linear: It is a sound wave. On the other hand, in the high energy limit, u2k ≈ 1 and v2k ≈ 0:
The quasiparticle is a free particle, and with a quadratic dispersion.
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The critical velocity for superfluidity

Driven by the need to explain the unusual behaviors previously witnessed in liquid helium,
Landau formulated a criterion to see whether a system is superfluid or not, based on the fact
that energy dissipation is only possible through the emission of elementary excitations for a
superfluid (in other words either phonons or rotons for liquid helium). The conceptual model
relies on energetic considerations and examines the stability of the superfluid flow, aiming to
predict the critical velocity at which the transition to superfluidity occurs.

Originally proposed by Landau in 1941, this criterion defines the mere existence of a crit-
ical velocity for superfluidity, which is a fundamental aspect of the theory of superfluidity.
Below this speed, the fluid experiences no resistance in the presence of small external per-
turbations (e.g. the rugosity of the capillary walls in the original experiments [13, 14], or
an impurity in the fluid). More precisely, in the superfluid regime, the fluid does not lose
any kinetic energy by emitting long-wavelength excitations as long as its velocity relative
to the impurity is less than a certain critical velocity. This characteristic of quantum fluids
results from a collective response of the system that is absent in the case of a non-interacting
gas. The critical velocity is related to the spectrum of elementary excitations of the system
through Landau’s criterion [30]

vc = min
p

[
E(p)

p

]
, (15)

and is calculated over all possible values of momentum, with E(p) the dispersion relation of
the elementary excitations in a generic fluid at rest. If v∞ < vc, there will be no sponta-
neous formation of elementary excitation, indicating that the considered system is superfluid.
Following this criterion, the critical velocity for superfluidity is given by the roton minimum
observed in Fig. 4 for liquid helium.

When looking at the Bogoliubov excitation spectrum in Fig. 5, one can see that the
Landau criterion is applicable to the weakly interacting Bose gas at zero temperature3. Note
that the presence of an obstacle U(r) 6= 0 will induce small variations in the density, which is
not constant anymore. We consider here n∞ the unperturbed density at infinity, allowing us
to define the chemical potential µ∞. In that case, the derivation of the Bogoliubov dispersion
relation is more complex because the density varies spatially. However, when the typical
energy of the potential U(r) is much smaller than that of the interactions µ∞ = gn∞, the
two limits of EB(k) obtained for k � 1/ξ∞ and k � 1/ξ∞ are still valid, leading to either
a phononic or a free particle behavior. The system possesses a nonzero critical velocity
for superfluidity given by the sound velocity c∞ =

√
gn∞/m, and dissipation results from

the emission of phonons (a density wave through the fluid) beyond vc = c∞. Below it, no
elementary excitations are emitted in the fluid. However, the critical velocity decreases as
the interactions between particles decrease, and will disappear in the limit of an ideal gas of
free particles, in which case E(p) = p2/2m, leading to vc = 0. Interactions between particles
is then a requirement to observe superfluidity.

To sum up, the behavior of a weakly interacting Bose gas varies depending on its velocity,
describing two distinct regimes: The subsonic regime, devoid of any disturbances, in which
the fluid exhibits a superfluid behavior; And the supersonic regime, in which superfluidity is
destroyed due to the emission of excitations. The velocity at which this transition occurs is
given by the Landau criterion, and is the sound velocity in the system.

Yet, in the majority of experiments involving obstacles bigger than small impurities, the
critical velocity for superfluidity appears to be lower than the one predicted by Landau, and,
ever since the vast improvements brought to the theory of superfluidity in the mid-twentieth
century, the question of why this is the case remained. Landau’s approach for liquid helium is

3Even if the Landau criterion was originally developed for liquid helium without an obstacle, it also treats
the elementary excitations of the system.
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Figure 6: False color image of the velocity distribution of a cloud of sodium atoms in a trap. In (a)
the cloud is cooled to temperatures just above the transition. (b) is obtained just after the condensate
appeared, and (c) is the condensate after the evaporative cooling. In this experiment, the temperature
of the cloud after condensation is ∼ 2 µK, and the number of atoms is around 5 × 105, for densities
exceeding 1014 cm−3. Figure from [9].

indeed only applicable to weakly interacting quantum fluids if the impurities are weak enough
so that the fluid is only minimally disturbed by their presence, as stronger impurities can
create excitations even at v∞ < vc. The critical velocity for superfluidity is then necessarily
lower than the speed of sound. Still, its precise determination is nontrivial and continues to
challenge theoreticians, mostly because of the interactions between particles.

Most of the time, the Gross-Pitaevskii equation does not admit a simple analytical so-
lution in the presence of an external potential, and numerical investigations are needed to
determine the critical velocity. Yet, in some very special cases, it is possible to analytically
treat the problem, and obtain exact expressions for the critical velocity for superfluidity going
beyond the previous results given by Landau. This is the case for example in one-dimensional
systems when the obstacles within the fluid are simple: Narrow [45–47] or wide [45, 48, 49]
compared to the healing length, and even random potentials [48, 50, 51]. In one dimension,
the breakdown of superfluidity typically manifests through the repeated emission of solitons
from the obstacle [19, 45, 47, 52], which are the one-dimensional counterpart of the vortices
predicted by Feynman [53] in higher dimensions. This notably explains the presence of a
nonzero drag force [47, 54–57], characteristic of a nonsuperfluid flow regime.

Because of the complexity of the equations in dimensions higher than one, the vast ma-
jority of the studies have been carried out numerically, and most of the analytical results in
two dimensions were obtained for wide obstacles of simplified geometries [49, 58–61]. This
breakdown of superfluidity results in the repeated emission of vortices from the obstacle
[62–64].

The long-awaited observation of BEC

The theoretical framework for BEC was established, and the next logical step was to obtain
an experimental proof of its existence, as theorized long ago in the 1920s [65]. While studying
superfluidity in liquid helium was straightforward experimentally but challenging to model
due to the strong interactions, weakly interacting Bose gases offered ideal platforms for the-
oretical studies of superfluidity, but had still not been observed because of the complexity
of the experimental setups. They were a grail for researchers as their quasi-100% condensed
fraction constituted a much better deal than the ∼ 10% liquid helium previously provided.

By the mid-1990s, the stage was set for the observation of Bose-Einstein condensates
thank to the development of new experimental techniques. The significant progress in laser
cooling, coupled with the innovation of magnetic traps for confining and manipulating ultra-
cold atoms, played a pivotal role in the creation of magneto-optical traps (MOTs) [66]. This
was then further improved with evaporative cooling methods [67], which allowed to cool the
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Figure 7: Observation of an Abrikosov vortex lattice in an atomic BEC after different stirring times
with a laser beam. The lattices are respectively composed of 16 (A), 32 (B), 80 (C) and 130 (D)
vortices. Figure from Ref. [72]

atoms down to temperatures close to absolute zero, making the quantum mechanical nature
of the particles appear. Eventually, the groups of Cornell and Wieman at Boulder, and
Ketterle at MIT managed to reach the required temperatures (below 170 nK) and densities
for monoatomic alkali gases to undergo a phase transition and enter the BEC state [8, 9]
(see Fig. 6). Their groundbreaking discovery earned them the 2001 Nobel Prize “for the
achievement of Bose–Einstein condensation in dilute gases of alkali atoms, and for early
fundamental studies of the properties of the condensates”, paving the way for decades of
research on cold atoms.

Following these improvements, the study of superfluidity slowly migrated to cold atoms,
for which the Gross-Pitaevskii theory provides a really accurate framework. Many setups
with atomic BEC were developed, some focusing on creating quasi-2D or quasi-1D BECs by
tightly confining the particle with the aid of a shallow trap in one or two directions, resulting
in “pancake” or “cigar”–shaped BECs. The existence of a critical velocity has for instance
been experimentally observed in alkaline condensates [68–71]. As a result many theoretical
investigations of the critical velocity for superfluidity emerged in the past decades [45–51],
leading to the state of the art as we know it today.

An unconventional rotation

Building upon previous works in the 1950s by Penrose and Onsager [15, 16], Ginzburg and
Pitaevskii [73], later followed by Feynman [53], introduced the concept of a macroscopic
wavefunction ψ =

√
neiφ, where n represents the density and φ the phase of the system.

The superfluid velocity is related to the gradient of the phase as v = ~
m∇φ, resulting in the

superfluid being irrotational, thereby deviating from conventional rotation. The circulation
on a closed loop C is then

Γ =

∮

C
v · dl =

~
m

∮

C
∇φ =

h

m
k, (16)

with k an integer. Rotation in quantum physics is really a peculiar phenomenon: In the
celebrated “rotating bucket” experiment (i.e. an experiment putting a quantum fluid on
rotation), no motion of the superfluid is observed for small enough rotation frequency. Beyond
a certain rotation velocity, the circulation can only increase in discrete steps of h/m, leading to
the appearance of an integer number k of particular topological structures known as vortices
[53].

Following the first experimental detection of a quantum of circulation around a fine wire
in liquid helium II [74], many experiments similar to the rotating bucket experiment were
developed in which the fluid is stirred with a laser beam, leading to the observation of the
formation of vortex arrays in BEC for given stirring frequencies [70, 72, 75, 76] (see Fig. 7),
and to further studies on vortices properties [77, 78] (for a complete description, refer to Ref.
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[79]). Interestingly, the vortices organize into a triangular array to maximize the distance
between them, following the same structure as predicted by Abrikosov for superconductors
[80–82].

Vortices are then an important feature of superfluids, but they do not only appear when
rotating a quantum fluid: More generally, they can be emitted in the wake of an obstacle.
The emission of said quantized vortices is crucial as it is one of the mechanisms leading to
a critical velocity lower than Landau’s prediction: Once the critical velocity is exceeded,
pairs of vortices with opposing circulation – the analog of dark solitons in 1D – will emerge
downstream of the obstacle [83, 84], causing dissipation and a nonzero drag force [85]. This
is notably the criterion used in Chap. 3 to determine whether the system is superfluid or not.
The precise determination of the critical velocity for superfluidity is however highly nontrivial
in 2D as the periodic shedding of vortices strongly depends on the parameters of the obstacle
in the fluid [61, 62, 86].

Beyond the superfluid regime

When the velocity of the fluid is slightly above the critical velocity for superfluidity, a nonsta-
tionary regime takes place, in which the energy dissipation is nontrivial. This regime strongly
differs from the superfluid regime: No analytical solutions are possible, and it exhibits really
different features.

Depending on the dimensionality of the system and its parameters, a whole zoology of
nonlinear structures can appear repeatedly within the fluid, such as trains of solitons [87, 88],
vortices [55, 62, 70, 89–92], snake instabilities [55, 92–94], vortex tangles [95, 96], shock
waves [97–100], etc. In 2D, the dissipation mechanism in the nonstationary regime can for
example lead to the irregular vortex shedding, or possibly more intriguing shedding patterns
such as the Bénard-von Kármán vortex street [101–103]. The dynamics of such structures is
however highly nontrivial and chaotic, and is the object of the study of quantum turbulence
[95, 104–107]. Its study has been made easier with the high control one now has on the
main characteristics of the experiments (interactions, density, number of atoms, trapping
configurations...), but also strongly relies from the theoretical side on numerical simulations.

At some point, the velocity is so high that it exceeds a second important threshold [52,
108, 109] – the supersonic separatrix, referred to as vs in this manuscript – and the fluid enters
yet again another regime of transport. Just like the superfluid regime, it is stationary but
corresponds to another family of solutions to the time-independent Gross-Pitaevskii equation
[52]. vs then determines the separation between the nonstationary turbulent regime previously
defined, and the stationary supersonic regime we are now interested in.

In this regime of transport, the flow almost behaves like a BEC without interactions
because the kinetic energy is so high that we can virtually neglect them. The transmission
of the fluid across a barrier is not perfect, and there is a nonzero drag force meaning energy
dissipation. Yet, in some very restricted cases, it is possible to have a perfect transmission
coefficient even in the nonsuperfluid phase, due to resonant transport [110–113] – this is
however not the norm. Contrarily to the superfluid regime in which the fluid was only
perturbed around the obstacle, the density profile is now characterized by the emission of
long-range nonlinear excitations only in the wake of the obstacle.

To conclude, in the presence of a localized obstacle, several regimes of transport can
exist depending on the velocity of the fluid, the amplitude of the obstacle, its width, etc.
They exhibit really different characteristics, whether be it for the type of excitations emitted,
the density profile, or the energy dissipation. As an example, we provide an overview of the
conditions leading to these different regimes in Fig. 8, for a δ−peak obstacle [47]. It is a phase
diagram representing the injection velocity vs. the amplitude of the considered obstacle.
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Figure 8: Phase diagram of the possible regimes for a quantum fluid in the presence of a δ−peak
obstacle, as a function of the injection velocity v∞ and the dimensionless parameter ξλ, with λ
the amplitude of the obstacle. The grey shaded areas correspond to the domain of existence of the
stationary solutions: The bottom one is the superfluid regime, the top one is the stationary supersonic
regime, and the white in-between zone is the nonstationary regime. The insets represent the typical
density profiles obtained for the corresponding flow parameters. Figure from Ref. [47].

The dawn of a new era for quantum fluids

The emergence of new experimental platforms: Quantum fluids of light

While superfluidity was historically observed in liquid helium and later demonstrated in Bose-
Einstein condensates, it is important to recognize that this phenomenon is not exclusive to
atomic systems: It is only required that the system present a large number of indiscernible
particles, and exhibit collective behaviors and a macroscopic coherence. Many examples arise
in the domain of condensed matter and do not necessarily require low temperatures. Among
them stand superconductors, lasers [114, 115], neutron stars [116, 117], nuclear systems [117],
etc.

The exploration of superfluidity thus extends beyond traditional contexts, and in recent
decades, significant strides have been made in its understanding in unconventional media.
Superfluidity of light – one of the systems of interest in this manuscript, along with BECs –
has for instance been a focus of exploration in the past decades, first with exciton-polaritons
fluid4 in a planar semiconductor microcavity [118–120], laying the groundwork for the emer-
gence of the field. What about the interactions, since photons are not supposed to interact
with each other? In such systems, photons couple to excitons to form polaritons, and it is the
interactions between the excitons that induce effective interactions between the polaritons.
As for their mass, photons are indeed mass-less particles, but since light is confined within
a microcavity structure, it leads to a parabolic-like dispersion relation, giving an effective
mass to exciton-polaritons. The quasi-particles thus adopt a collective behavior and form a
quantum fluid of light [121], in which one can for example observe the formation of a po-
lariton Bose-Einstein condensate [118, 122] (and this at higher temperatures than for atomic

4Photons are confined and strongly coupled to excitons.
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Figure 9: Sketch of the experimental setup. The narrow red beam creates a z−invariant localized
optical defect which acts as an obstacle in the transverse plane (x, y). The large green beam creates
a 2D fluid of light evolving along the z−axis. The input angle θin of the green beam with respect to
the red one is linked to the input velocity of the fluid, and can be experimentally tuned via a spatial
spatial light modulator. Figures (a), (b) and (c) represent three numerical simulations of the typical
evolution of the 2D fluid of light across the nonlinear crystal. The propagation coordinate z plays the
role of time. Figure courtesy of Claire Michel.

systems5), or many other hydrodynamic features such as solitons [119], vortices [123], the
apparition of turbulence, etc.

Even though quantum fluids of light were historically studied with exciton-polaritons, the
main drawback of such systems is that losses can be important (cavity losses coming from the
mirrors, absorption, decay of the polaritons, etc.), and the system needs to be continuously
pumped to compensate for them. This adds a lot of complexity, and one needs a more
elaborate model to describe the dynamics of the system.

Subsequent experiments in nonlinear optics have thus been implemented to bypass the
need for a cavity (therefore the very short lifetime of the polaritons6), reducing losses in
the system: Such conservative fluids of light are closer to the dynamics described by the
Gross-Pitaevskii equation. For instance, one can observe the superfluidity of light in atomic
vapors [42, 43, 124, 125], as well as in setups consisting in nonlinear photorefractive crystals
[54, 55, 99, 100, 126, 127], or nonlinear liquid materials [44, 128–130]. These devices notably
allow to precisely control the photon interactions strength, as well as the type of nonlinearity.

Focus on a setup: Nonlinear photorefractive crystals

In the present manuscript, the systems we are particularly interested in are quantum fluids
of light in propagating geometries [131–133], such as in nonlinear crystals [54, 55], or in hot
atomic vapors [42, 124, 134].

We chose to exemplify the results presented in this manuscript for the former, as performed
in Nice by Michel and Bellec [54, 55]. The experimental setup is represented in Fig. 9: In
the considered system, the fluid is generated using a laser (green beam) propagating in a
nonlinear crystal (Strontium-Barium Niobate in the present case). The obstacle encountered
by the fluid is a non-permanent optical defect generated via photorefractive effect: Another
laser (red beam) is included into the setup to locally modify the optical properties of the
material. As it propagates, it induces a redistribution of electrons and holes in the crystal,

5The exciton-polaritons are bosonic quasi-particles which are much lighter than alkali atoms, and for which
condensation occurs at standard cryogenic temperatures.

6The mirrors delimiting the cavity are not perfectly reflecting and do not trap light with a 100% efficiency.
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creating a non-uniform charge distribution along its path. This, in turn, locally modifies the
refractive index of the medium where it is the strongest. A repulsive obstacle is thus created
as the refractive index is decreased along the path of the laser, creating a local potential
barrier for photons. This makes it a platform reusable at will because as soon as the laser is
turned off, the charge distribution returns to its initial form, and the refractive index becomes
constant again in the crystal, “erasing” the obstacle.

By modifying the characteristics of the laser acting as the fluid (namely, the intensity and
the input angle of the green beam), it is possible to highlight different intensity regimes and
thus to study the superfluid transition. As a result, it is possible to observe superfluidity
in such systems, for instance through the observation of dispersive shock waves [98, 99], the
optical equivalent of drag force [54], or even the emergence of quantized vortices [55].

After earlier efforts to characterize light as a gas of photons [135], potentially exhibiting
a superfluid behavior under specific assumptions [115, 136], subsequent theories emerged to
describe light superfluidity with the nonlinear Schrödinger equation (see Ref. [121] for a
whole overview).

An analogy with atomic systems

Such systems in their easiest form can be described by a weak interaction theory, just like
atomic systems, leading to a hydrodynamic description of light [121, 132]. The propagation
in the z direction of a continuous laser beam along a nonlinear photorefractive crystal and
across an optical obstacle is ruled by the 2D nonlinear Schrödinger equation for the complex
envelope of the optical field E(r = (x, y), z) [137]

i∂zE = − 1

2kne
∇2

rE
︸ ︷︷ ︸

kinetic

− kδn
(
|Eobst|2

)
E︸ ︷︷ ︸

potential

− k∆n
(
|E|2

)
E︸ ︷︷ ︸

interactions

− iα

2
E

︸︷︷︸
losses

. (17)

More formally, this equation derives from the Maxwell equations, leading to the Helmholtz
equation for the electric field. Several approximations (scalar, paraxial and monochromatic
approximations) are then needed to obtain NLS, and can be found in Refs. [137, 138] for the
full derivation.

It is notable that there is a direct correspondence between the nonlinear Schrödinger equa-
tion describing such optical systems and the Gross-Pitaevskii equation for atomic systems:
The same terms are accounted for, albeit from different origins. The main differences are as
follow.

• Evolution term: The temporal evolution is replaced by a spatial evolution along the
propagation axis (denoted z here).

• Wavefunction: The equation pertains to the envelope E of the optical field instead of
the usual ψ. Where we once had the density defined as n = |ψ|2, it is now the intensity
that is expressed as I = |E|2. This wavefunction is a complex number, and can be
decomposed into its modulus

√
I and a phase. The gradient of the optical phase arg(E)

gives the local velocity v = ∇r arg(E)/nek, with ne the refractive index of the crystal,
i.e. the optical analog of the mass. In the paraxial limit, this simplifies to v ≈ θin/ne,
with θin the angle between the green beam and the propagation axis.

• Kinetic energy: The relevant dynamics takes place in the (x, y) plane. The propagation
constant k = 2π/λ of the fluid (represented by the green beam in the setup depicted in
Fig. 9) plays the role of an effective mass in the transverse plane.

• Potential energy: δn is the z−invariant refractive index depletion induced by the obsta-
cle (represented by the red beam in Fig. 9). It represents an obstacle whose amplitude
and width depend respectively on Iobst and the diameter of the red beam.
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• Interaction energy: We work with ∆n < 0, responsible for the defocusing nonlinear
response of the crystal, and which induces photon-photon interactions. This equation
perfectly mimics a Bose gas in weak repulsive interactions, in the presence of an obstacle.
The expression of ∆n is unspecified here but can take different forms, and acts as a
“signature”for the system. In the photorefractive nonlinear crystals as studied in [54, 55]

it is given by a saturable nonlinearity g|E|2
|E|2+E2sat

, with Isat the saturation intensity of the

material. On the other hand in hot atomic vapors [42, 43, 124, 125], it is given by none
other than the Kerr nonlinearity g|E|2, which is the same as in BECs.

• Losses: This term describes possible losses during the propagation inside the crystal,
due to the absorption of the material.

It is also possible to define an analog healing length ξ∞, and an analog speed of sound c∞,
for which the expressions will slightly differ depending on the type of system considered.

In the end, Eq. (17) is just a reformulation of the Gross-Pitaevskii equation: Quantum
fluids of light are formally analogous to Bose-Einstein condensates, and really good candidates
to explore the physics of quantum fluids, and more generally of low-temperature physics. As
a result, the interest in such full-optical systems is steadily growing, both theoretically and
experimentally, as they offer a deeper understanding of light propagation in diverse media.

Setups to simulate quantum physics and beyond

All in all, these various experimental platforms offer a thorough insight into the underlying
physical mechanisms at low temperature. They can serve as quantum simulators [139–141]
as they provide a vast field of possibilities to mimic many-body physics with light [142] or
matter [143], for systems whose properties are still generally unknown. This is achievable
because experimentalists have now a complete control over many parameters of the system
such as the interactions, the temperature, the geometry in which the system is trapped, the
number of particles, etc.

They also facilitate the replication of physics beyond the reach of traditional experimen-
tation, such as, for example, analog black holes and the Hawking effect [144–149]. They thus
form versatile platforms, really convenient for investigating numerous phenomena.
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TOOLBOX
For the reader to have a better grasp on the different concepts, we provide in this section
the various tools necessary to follow the different chapters. They notably include the dimen-
sionless equation used to describe both BECs and quantum fluids of light, and the types of
nonlinearities one can expect when working with these systems.

Dimensionless equation

In this manuscript, the main equation is the previously defined Gross-Pitaevskii equation (or
its analog NLS), which can be used to describe the dynamics of various systems including
atomic BECs or quantum fluids of light. The most general expression one can think of is

iA∂Tψ(r, T ) = −B
2
∇2ψ(r, T ) + U(r)ψ(r, T ) + ε

(
|ψ|2

)
ψ(r, T )− iα

2
ψ(r, T ), (18)

with n(r, T ) = |ψ(r, T )|2. All the quantities A, B, T , U(r), ε(n) and α permit to characterize
the type of system one is working with. Here, the Laplacian is D–dimensional, making Eq.
(18) valid in any dimension.

In order to have a more general theory, we want to work with a dimensionless form of
this equation so that, in the end, we only need to specify the expression of the nonlinearity
to determine what type of system we are working with. A way to do that is to perform the
following change of variables

t =
µ∞T

A
, r̃ =

r

ξ∞
, ψ̃(r̃, τ) =

ψ(r, T )√
n∞

, Ũ(r̃) =
U(r)

µ∞
, ε̃(ñ) =

ε(n)

µ∞
and α̃ =

α

µ∞
.

To simplify the treatment of the problem, we consider that the system is homogeneous at
infinity, far from the perturbation induced by the external potential U(r). We can thus
define quantities such as the uniform density n∞, the chemical potential µ∞ = ε′(n∞)n∞

(the typical energy of the system), and the healing length ξ∞ =
√

B
µ∞

, which we use to

rescale the problem. Now, the lengths, densities and energies will respectively be expressed
in units of ξ∞, n∞ and µ∞.

The dimensionless form that we derive from this change of variables in order to describe
all these situations readsa

i∂tψ̃ = −1

2
∇2ψ̃ + Ũ(r̃)ψ̃ + ε̃(ñ)ψ̃ − iα̃

2
ψ̃, (19)

with ñ(r̃, t) = |ψ̃(r̃, t)|2 being the density (intensity) associated with the dimensionless
wavefunction ψ̃(r̃, t).
We will more often than not work with this dimensionless equation, in which the only
parameter determining the type of system we are working with is the nonlinearity ε̃(ñ).

aFor the sake of simplicity, we will drop the tildes in the different chapters.

Reducing the dimensionality of the problem

In this manuscript, a focus is directed towards the physics of low-dimensional interacting
quantum systems, which are fascinating in the sense that they are forced to adapt, and adopt
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new behaviors that are not the norm in three dimensions. The confinement to reduced di-
mensions induces a change of dynamics, enhancing effects like interactions and correlations.
Superfluidity is no exception, and its properties are well impacted by a change of dimension-
ality. Notably, quantum gases, whether of matter or of light, appear as particularly suitable
platforms for observing this type of physics as a high degree of control is now attained by
experimentalists.

If the Gross-Pitaevskii equation was first derived in three dimensions in the 1960s, this
theory is quite general and remains applicable in lower dimensions. A 2D version is for
example provided in Eq. (17) to describe the dynamics of a paraxial fluid of light in a
photorefractive crystal [54, 55]. Changing the dimension in the mathematical description
is an easy feat, as it does not have an impact on the structure of the equation. The main
change is that the equation will apply to the transverse wavefunction ψ(r = (x, y), t) for 2D
systems, and the wavefunction along the propagation axis ψ(z, t) for 1D systems; It will also
change the value of the coupling constant g7. Experimentally speaking, it is however more
complicated to reduce the dimension of the system: If the concepts are basically the same for
1D and 2D systems, different setups are required depending on the desired outcome. This is
usually performed by confining the system in harmonic traps of frequencies tailored to freeze
the dynamics in one or two dimensions, leading to systems of peculiar geometries, such as
“pancake”–shaped [8, 9, 150] or “cigar”–shaped BECs [69], whose dynamics are respectively
quasi−2D and quasi−1D.

What type of nonlinearities

An important feature of the model we use with the Gross-Pitaevskii equation (19) is that
it is possible to describe the dynamics of very different physical systems depending on the
expression of the nonlinear interactions ε(|ψ|2) between the particles.

All along this manuscript, we will work with an unspecified expression for ε(|ψ|2), allowing
us to derive a general theory. Yet, our results will often be exemplified for several types of
systems, among which stand BECs and quantum fluids of light in photorefractive crystals.
We present here different possibilities for the expression of the nonlinear interaction potential
ε(|ψ|2), and the systems they are associated with.

Ultracold atomic Bose gases The most general nonlinearity used to describe ultracold atomic
Bose gases is the powerlaw nonlinearity, given by the Hartree-Fock potential ε(n) = gnν , and
which scales as a positive power of the density n(r, t) = |ψ(r, t)|2. Depending on the dimen-
sionality and the dilution regime of the system, the value of the exponent ν will differ:

• In the one-dimensional regime, when the system is dilute such that nas � 1 (with as
the s-wave scattering length of the two-body interaction potential), one has ν = 1 and
ε(n) = gn. This is the original expression of the nonlinear interaction potential, derived
from the quartic interaction Hamiltonian in the Gross-Pitaevskii theory.

• Still in 1D but in the other dilution regime nas � 1, ν = 1/2 leading to ε(n) = gn1/2

[151, 152]: This is the radial Thomas-Fermi regime, in which the kinetic energy term
can be neglected in comparison with the mean-field interaction energy.

• In 2D when the system is dilute enough, i.e. na2s � as/l
8 with l the typical length of

the harmonic trap used to reduce the dimension of the system, one has ν = 1 leading
to ε(n) = gn.

7This is of no importance in our treatment as the dimensionless form of the nonlinearity does not involve
the value of g.

8But also larger than (as/l)
2 exp

[
−
√

2πl/as
]

to prevent the gas from entering the 2D analog of the Tonks-
Girardeau regime, in which case ε(n) = g| ln

(
nl2
)
|/n.
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• On the contrary in the high density limit in 2D, i.e. na2s � as/l, one has ν = 2/3, and
thus ε(n) = gn2/3 [153].

Quantum fluids of light As a first approximation, quantum fluids of light can generally be
described using a saturable nonlinearity ε(n) = gn/(n+nsat) with nsat the saturation intensity.
This is for example characteristic of saturable medium like the nonlinear photorefractive
crystals as used in Ref. [54, 55]. Here, the g coefficient is such that g = πN3r33E0/λ0,
with N and r33 respectively the mean refractive index and the electro-optic coefficient of the
crystal along the extraordinary axis, E0 the amplitude of an electric field applied along the
c−axis, and λ0 the wavelength of the laser representing the fluid in free space.

For a saturated system such that n � nsat, this expressions reduces to ε(n) = gn. This
limit can be encountered in nonlinear optics, in which case it is referred to as Kerr nonlinearity.
This is the case for example in quantum fluids of light with condensed exciton-polaritons [154],
or in hot atomic vapors [42, 124], in which it describes the phenomenon where the refractive
index of a media locally and instantaneously changes as a response to the electric field as it
passes through it. We only study the self-defocusing case in this manuscript (positive ε(n)).

Focus on the 2 systems of interest in this manuscript

In this section, we provide the relevant ways to obtain Eq. (19) when starting from the
equations expressed in their natural units. We do so for the 2 main nonlinearities used in
this manuscript.

Atomic BECs Even if the results of this manuscript are usually given for the original ε(n) =
n, some results may also be provided for the general powerlaw nonlinearity. We thus derive
the dimensionless equation for ε(n) = gnν . The original equation reads

i~∂tψ = − ~2

2m
∇2ψ + U(r)ψ + ε

(
|ψ|2

)
ψ. (20)

Note that we did not consider losses in ultracold atomic gases. We obtain the dimensionless
Eq. (19) with the parameters

A = ~, B =
~2

m
, τ =

µ∞T

~
, ε̃(ñ) =

ñν

ν
and ξ∞ =

~√
mµ∞

.

The healing length is also given by ξ∞ = ~/mc∞, leading to µ∞ = mc2∞ = ε′(n∞)n∞, and
thus defining the speed of sound for a powerlaw nonlinearity

c∞ =

√
νgnν∞
m

. (21)

Paraxial fluids of light As previously explained, the propagation of a quantum fluid of light
in a photorefractive crystal is ruled by NLS, an analog of the Gross-Pitaevskii equation. The
expression of the nonlinearity is ε(n) = gn/(n+nsat), with nsat the saturation intensity. The
original equation reads

i∂zψ = − 1

2k
∇2ψ + U(r)ψ + ε

(
|ψ|2

)
ψ − iα

2
ψ, (22)

where we have included photonic losses as performed in Ref. [55], as they are not negligible
and can play an important role in the dynamics of the system. Through misuse of language,
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we also have replaced the electric field E (and the intensity I) by respectively ψ and n. One
recovers the dimensionless form (19) using the same change of variables, with

A = 1, B =
1

k
, τ = µ∞z, ε̃(ñ) =

(
1 +

1

ñsat

)2 ñ

1 + ñ/ñsat
and ξ∞ =

√
1

kµ∞
,

and with ñsat = nsat/n∞. One can re-express the healing length as ξ∞ = 1/kc∞, leading to
µ∞ = kc2∞ = ε′(n∞)n∞, and allowing us to define an analog speed of sound

c∞ =

√
ε′(n∞)n∞

k
=

√
gñsat
k

1

1 + ñsat
. (23)
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Thesis outline
As the reader can attest, this manuscript centers on the breakdown of superfluidity in low-
dimensional quantum fluids, with a particular emphasis on the critical velocity for superfluid-
ity. This theme is central to the research presented here, and is the focus of two of the three
chapters in this thesis, specifically in the context of one-dimensional and two-dimensional
systems. The manuscript is divided as follows:

• Chapter 1: We begin by establishing the theoretical framework for one-dimensional sys-
tems, revisiting important preliminary results from the linear-response theory, that are
essential for the nonperturbative treatment we perform. A detailed report is provided
on how to obtain the critical velocity vc for quantum fluids in the presence of obstacles
of various geometries, using both analytical and numerical methods. Additionally, we
incorporate losses due to absorption into our model, and treat them analytically, of-
fering a thorough description of the breakdown of superfluidity in the one-dimensional
mean-field regime.

• Chapter 2: This chapter is dedicated to exploring another velocity of interest – the
supersonic separatrix vs – that demarcates the boundary between the superfluid and
the nonstationary regimes. Employing a Hamiltonian approach, we derive results for
the supersonic separatrix in systems similar to those studied in the previous chapter.
A focus is also shed to quantum fluids in the presence of attractive obstacles, leading
to the characterization of possible resonances in vs.

• Chapter 3: We extend the one-dimensional model to two dimensions, starting with
an analysis of the limitations of the linear-response theory in 2D. A new method is
introduced to derive exact analytical results for vc in 2D systems. In this context, the
fluid is now allowed to pass through the obstacle while another part circumvents it
– a phenomenon not observed in one-dimensional systems. This behavior results in
different mechanisms for the breakdown of superfluidity, depending on the amplitude
of the obstacle.
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Critical velocity for superfluidity in one
dimension
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The goal of this chapter is to perform a complete study of the critical velocity vc for
superfluid motion of a quantum fluid past a localized obstacle in the one-dimensional Gross-
Pitaevskii regime. This study is not restricted to weakly perturbative obstacles, yielding results
going beyond the celebrated Landau criterion. In addition, we generalize the Gross-Pitaevskii
equation to possibly nonquartic interaction Hamiltonians, allowing us to derive results for
general nonlinear interaction schemes, regardless of the nature of the considered quantum
fluid. This allows, for example, for a treatment of superfluidity in the so-called paraxial fluids
of light in saturable media, a system of interest in this manuscript. We also take one-photon
absorption into account as they can play an important role in the dynamics of such optical
systems, and treat them with an adiabatic approach. Our generic results provide a very broad
picture of the critical velocity for superfluidity in the one-dimensional mean-field regime.

Article linked to the chapter:

J. Huynh, M. Albert and P.-É. Larré, “Critical velocity for superfluidity in the one-
dimensional mean-field regime: From matter to light quantum fluids” – Phys. Rev. A
105, 023305 (2022)
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CHAPTER 1. CRITICAL VELOCITY FOR SUPERFLUIDITY IN ONE DIMENSION

1.1 One-dimensional mean-field regime

1.1.1 1D Gross-Pitaevskii equation

In this section, we delve into the exploration of superfluidity within a one-dimensional quan-
tum fluid of bosonic particles flowing along the x−axis, whose dynamics is captured by the
1D reduction of the introduced Gross-Pitaevskii equation provided in the introduction. In
this framework, all particles are assumed to be in the same quantum state, characterized by
a single one-dimensional wavefunction ψ(x, t), verifying

i∂tψ =

[
−1

2
∂2x + U(x) + ε(n)

]
ψ1, (1.1)

where n(x, t) = |ψ(x, t)|2 is the linear density of the system.

• The potential U(x) describes a static localized obstacle within the fluid. We take it in
the form U(x) = U0f(|x|/σ) is, with U0 its single extremum located at x = 0, and σ
its typical range, so that the extremum of f(|x|/σ) is f(0) = 1, and f → 0 as |x| � σ.
Depending on the sign of U0, this obstacle will be either repulsive (U0 > 0) or attractive
(U0 < 0).

• The nonlinear term ε
(
|ψ|2

)
describes interactions between the particles constituting

the quantum fluid. It is often known to be of the form ε(n) = n, but we consider it here
as a generic, local and instantaneous function of the density to describe various types
of quantum fluids, including the so-called quantum fluids of light. We refer the reader
to the TOOLBOX section provided in the introduction for the possible expressions for
the nonlinearity.

1.1.2 Validity of the one-dimensional Gross-Pitaevskii equation

The Mermin-Wagner theorem of statistical physics states that no phase transition leading
to the formation of a single-particle mean-field state ψ can occur in one dimension at finite
temperature. Yet, provided certain conditions are met, the 1D Gross-Pitaevskii equation
(1.1) still provides an accurate description of the system. In this subsection, we clarify the
validity of Eq. (1.1) for a 1D atomic Bose gas characterized by the usual ε(n), and in the
absence of obstacle U(x), to represent a system without impurities.

Condition on the size of the system We start this discussion with the quantum many-body
Hamiltonian in one dimension

Ĥ =

∫
dx Φ̂†(x)

[
−1

2
∂2x +

1

2
Φ̂†(x)Φ̂(x)

]
Φ̂(x). (1.2)

The Gross-Pitaevskii approach to this 1D description consists in neglecting all quantum
fluctuations of the Bose field Φ̂, and replace it with the classical field ψ(x) = 〈Φ̂(x)〉. To see

the validity of this approach, we express Φ̂ as Φ̂(x) = exp{iθ̂(x)}
√
n̂(x), with

[
n̂(x), θ̂(x′)

]
=

iδ(x − x′), and calculate the one-body density matrix (OBDM) ρ(x, x′) = 〈Φ̂†(x, t)Φ̂(x′, t)〉.
Several hypothesis are required to further simplify the OBDM for a homogeneous system,
namely

• Being in the weakly interacting regime.

• A low temperature such that kBT <
√
µkBTd, with Td = ~2n2/m the temperature of

quantum degeneracy. Here n is the typical density of the homogeneous system.

1This equation will later be refined in Sec. 1.3.4 by adding a term corresponding to particle losses.
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• Looking at the long-range behavior such that |x− x′| � 1.

Provided these conditions are met, the OBDM can be expressed as [18]

ρ(x, x′) ≈
√
n(x)n(x′) exp

{
−FT (x− x′)−FQ(x− x′)

}
, (1.3)

where

FT (x) =
kBT√
µkBTd

|x|
ξ
, (1.4a)

FQ(x) =
1

π

√
µ

kBTd
ln

{ |x|
ξ

}
. (1.4b)

The fluctuations can then be separated into two components

• FT , which originates from the thermal fluctuations, and are responsible for the ex-
ponential decay of the one-body density matrix. They are however negligible in the
low-temperature regime when kBT �

√
µkBTd.

• The remaining term FQ, which originates from the phase fluctuations of Φ̂ at T = 0,
leads to an algebraic decrease of the OBDM. Yet, this behavior is negligible for systems
of size L such that

1

π

√
µ

kBTd
ln

{
L

ξ

}
� 1, (1.5)

i.e.

L� lφ = ξ exp

{
π

√
kBTd
µ

}
. (1.6)

One can observe long-range coherence in such conditions for the temperature and the size of
the system: This is the criterion formulated by Penrose and Onsager [15]. The description
of Φ̂ as a classical field ψ is then possible because the fluctuations disappear, and the use of
the one-dimensional reduction of the Gross-Pitaevskii equation is justified.

What about the interactions in 1D? In general, the temperature of a quantum fluid is not
necessarily low, nor are the interactions weak. Many other regimes can exist depending on
the value of the temperature and the interactions. Figure 1.1 provides a brief overview of
these regimes as a function of the temperature T and the number of atoms N (linked to the
interactions) for a quantum fluid in a harmonic trap of transverse frequency ω.

The regime of interest for us is one of a dilute Bose gas of typical density n, but also
of weak interactions. The interaction parameter γ is obtained by comparing the interaction
energy Ei = n (as we consider Bose gases) vs. the kinetic energy Ek. In one dimension,
the usual density of the system is proportional to the inverse of its size, such that L = 1/n,
leading to

Ek ∼
~2

mL2
∝ n2 → γ =

Ei
Ek
∼ 1

n
.

When corroborating it with Fig. 1.1, this indeed means that the regime of interest for us is the
one represented in the top-left corner of Fig. 1.1. In the end, the validity of our model relies
on a gas dilute enough to reduce the collisions between atoms (and then the kinetic energy)
and to be ultracold, but also not too dilute to remain in the weakly interacting regime.

1.1.3 A few basic solutions with obstacle

We conclude this discussion on the validity of the mean-field approach for 1D Bose gases,
and from now on, we will stay within the framework of an unspecified nonlinear interaction
potential ε(n). It is first instructive to look at a few elementary solutions of Eq. (1.1) in the
presence of a defect U(x).

25



CHAPTER 1. CRITICAL VELOCITY FOR SUPERFLUIDITY IN ONE DIMENSION

Figure 1.1: Phase diagram for a one-dimensional Bose gas in a harmonic trap of transverse frequency
ω. It is represented as a function of the temperature and the number of atoms. The regime of interest
in this manuscript corresponds to the top-left corner, in which a true condensate is possible. Figure
from Ref. [18].

Quantum fluid trapped in a box

It is possible to exactly solve Eq. (1.1) for a BEC trapped in a box, such that U(x) = 0 for
x ∈ [0, L], and is infinite otherwise. In the absence of interactions, all the particles occupy
the ground state of the trap, which is a sine wave. However, once the interactions come into
play, this scenario cannot persist: The density tends to become uniform under the effect of
collisions between particles. Gradually, the density flattens, approaching near homogeneity
far from the trap walls, but always drops abruptly to zero at the edges of the box, over a
characteristic length ξ∞. This provides a physical interpretation for the healing length: It is
the length necessary for the fluid to have a fully-recovered density after being perturbed.

It is pretty straightforward to obtain the exact analytical expression for the wavefunction
for the first half of the box ψ(x) =

√
n∞ tanh (x/ξ∞), with ξ∞ =

√
1/µ∞ (the second half of

the solution being the mirror to this first solution). This solution is illustrated in Fig. 1.2.

Thomas-Fermi approximation

Things are a bit more complicated when there is no restriction on the obstacle U(x), but
it remains possible to obtain approximate solutions to Eq. (1.1). Usually, the number of
particles in the experiment is very large, and the chemical potential µ∞, representing the
interaction energy between the particles, is much more important than the kinetic energy.
In that case, it is possible to obtain an analytical solution of Eq. (1.1) for the density by
neglecting the kinetic term. It is indeed legitimate to make such an assumption because as
the repulsive interactions become more important, the condensate will expand and become
spatially uniform (except close to the boundaries of the system), thus minimizing its kinetic
energy. One is then left with the implicit relation defining the density

n(x) = ε−1 (µ∞ − U(x)) , (1.7)

for an arbitrary nonlinear interaction potential ε(n). The “usual” density profile one has
when working with this standard nonlinearity is n(x) = µ∞ − U(x), with µ∞ the chemical
potential stemming from the time-dependent part of the wavefunction exp{−iµ∞t/~}. This
is the Thomas-Fermi approximation [19], which provides a simple and intuitive way to under-
stand the density distribution of quantum fluids in trapping potentials without requiring a
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0 L
x

n
(x

)

ξ∞ ξ∞

Figure 1.2: Density profile n(x) = |ψ(x)|2 of a BEC trapped in a box of size L. The density is uniform
everywhere except close to the boundaries of the system, where it abruptly drops to zero, over a
characteristic distance corresponding to the healing length ξ∞.

detailed knowledge of the wavefunction. Note that even though we bring up the topic of the
Thomas-Fermi approximation in this chapter on the one-dimensional case, it remains valid
in dimensions higher than one.

Even if the Thomas-Fermi approximation neglects the kinetic part of Eq. (1.1), it still
provides an accurate analytical prediction for the density, which must vanish at the so-called
Thomas-Fermi radius R, solution of U(R) = µ∞. It is however important to note that this
approximation is not valid anymore in the vicinity of R, in which case a full resolution of
Eq. (1.1) is necessary, allowing for the removal of the discontinuity of the derivative of the
density at this point. This can be seen for example in Fig. 1.3, in which the Thomas-Fermi
approximation shows an abrupt cancellation of the density for x = R.

1.1.4 Hydrodynamic description

Let us go back to the Gross-Pitaevskii equation (in the absence of losses), without any
assumptions on its contributions. We look for the evolution of the density and the phase of
the quantum fluid, and re-express Eq. (1.1) into equations on the velocity and density fields,
which can be done with the Madelung transform, using a phase-density representation for
the wavefunction ψ(x, t) =

√
n(x, t)eiθ(x,t). The velocity field v(x, t) is linked to the phase

θ(x, t) through its derivative: v(x, t) = ∂xθ(x, t).

This makes it possible to cast the 1D Gross-Pitaevskii equation into two coupled hydro-
dynamics equations for the velocity and density fields

∂tv = −∂x
(
v2

2
+ U(x) + ε(n)− 1

2

∂2x
√
n√
n

)
(1.8a)

∂tn+ ∂x (nv) = 0. (1.8b)

These equations are analogous to those found in classical hydrodynamics, allowing us to draw
parallels and interpret the dynamics of our quantum fluid through the lens of hydrodynamics.
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Figure 1.3: Density profile of atoms interacting with repulsive forces in a spherical trap, as a function
of the distance from the center of the trap in units of aho (the typical size of the spherical trap). Solid
line: Solution of the stationary Gross-Pitaevskii equation. Dashed line: Thomas-Fermi approximation.
Figure from Ref. [155].

Equation (1.8a) is similar to the Euler equation for a classical inviscid fluid, with the
exception that it contains an additional term proportional to ∂2x

√
n/
√
n. In ultracold gases,

this term is called the “quantum pressure” and is of quantum origin, whereas it stems from
paraxial diffraction in the context of quantum fluids of light. Equation (1.8b) is the continuity
equation for the number of particles, as there are no losses yet: The number of particles in
the system is conserved.

How to obtain vc from there? Many criteria to determinate whether a system is super-
fluid or not are possible (presence of a long-range order, of vortices, existence of a drag
force, etc.). In the present manuscript, we study the response of a quantum fluid to an
obstacle via the hydrodynamic equations (1.8b). Our criteria for a superfluid flow are

• A stationary solutions for the velocity and density fields v(x, t) = v(x) and n(x, t) =
n(x).

• Unperturbed profiles far away from the obstacle, such that v(|x| � σ) = v∞ and
n(|x| � σ) = n∞.

We search for the conditions of existence of the solutions of Eqs. (1.8) meeting these
criteria. The existence of said solutions is conditioned by the value of the injection
velocity v∞: The last value of v∞ for which such solutions for a superfluid flow exist is
the critical velocity for superfluidity vc.

1.2 The perturbative approach

Before going into a detailed calculation of the critical velocity for superfluidity vc for generic
parameters of obstacles, it is instructive to investigate the dynamics of the system when it is
weakly excited. This is necessary to lay the foundations of this manuscript, and will provide
a first value for vc in the perturbative regime.

The most straightforward approach to obtain the low energy excitations involves solving
the hydrodynamic equations (1.8) employing a perturbative method. In the absence of obsta-
cle U(x), it is easy to obtain a stationary and uniform solution (n∞, v∞). Let us assume now
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that a really small obstacle is present in the fluid, with typical amplitude U0 much smaller
than the chemical potential µ∞, so that it only slightly modifies the homogeneous stationary
solution (n∞ + δn(x, t), v∞ + δv(x, t)) via elementary excitations. By linearizing Eqs. (1.8)
around the equilibrium state (n∞, v∞), an approximate solution for this small perturbation
can be derived.

In this manuscript, we often derive results for Gaussian obstacles. We do so for several
reasons: In most quantum fluid experiments (both of matter or light), the laser beams used
to generate the obstacle often have a Gaussian transverse profile. Such an obstacle also has
the advantage of being easily numerically represented as it presents no discontinuity, and
yields simple analytical developments in the limits of wide and narrow σ (in the latter, we
recover a δ−peak obstacle).

1.2.1 From superfluid subsonic motion to supersonic wave resistance

We consider an obstacle in the fluid of the form U(x, t) = U(x)eηt, with η � 1. The obstacle
is then really slowly switched on (on a time scale much bigger than any other characteristic
time in the system), so that the fluid can gradually adapt to the changes induced, without
generating anything else than elementary excitations. In this adiabatic approach, the fluid is
almost at equilibrium at each time, and one can use the linear-response theory. This allows
us to derive the differential equations for the phase and density variations

∂t

(
δn
δθ

)
=

( −k∞∂x −n∞∂2x
−ε′(n∞) + 1

4n∞
∂2x −k∞∂x

)(
δn
δθ

)
+

(
0

−U(x)

)
, (1.9)

with θ(x, t) = −ηt+ k∞x+ δθ(x, t). These equations are then solved in Fourier space, which
yields both the Bogoliubov dispersion relation [19]

EB(k) =

√
k2

2

(
k2

2
+ 2ε′(n∞)n∞

)
(1.10)

after diagonalizing the system with the chemical potential µ∞ = ε′(n∞)n∞. The expression
of the density corrections δn(x) in the fluid become [156]

δn(x, t) =
2n∞
4π2

∫
dk dω

k2

2

Û(k, ω)

(v∞k − ω)2 − E2
B(k)

ei(kx−ωt). (1.11)

The Fourier transform of the obstacle is easily obtained: Û(k, ω) = 2πU0f̂(k)δ(ω − iη), and
simplifies the density corrections to a stationary expression2

δn(x)

n∞
=

∫
dy U(y)χ(x− y), (1.12)

where χ(x − y) is the linear-response function (or Green’s function, or susceptibility), given
by

χ(x− y) =
1

2π2

∫
dk

k2

2

eik(x−y)

(v∞k − i0+)2 − E2
B(k)

. (1.13)

It admits different expressions depended on whether the system is subsonic or supersonic.

2The integration over ω will have two consequences: It will change ω into iη in the denominator, which
is then transformed into a i0+ term in Eq. (1.13); And it will yield a eηt prefactor, which is close to 1 since
η � 1. The time dependence is then neglected in the following.
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Figure 1.4: Density corrections δn(x)/n∞ in units of U0/µ∞ (left) and λ/µ∞ (right) in the subsonic
regime for an input fluid velocity v∞ = 0.5c∞. The obstacle is considered to be a Gaussian of
amplitude U0/µ∞ � 1 and width σ ∼ ξ∞ (in orange) in the left panel, whereas the right panel
represents the density variation for a δ−peak obstacle of amplitude λ. For a δ−peak, the density dip
is localized around the obstacle, and is compensated over a distance of order ξ∞. On the other hand,
the perturbation takes place over a length comparable to the typical width σ for a Gaussian obstacle.

Subsonic flow

In the subsonic regime, the Green’s function admits two purely imaginary poles given by

k± = ±2iκ
ξ∞
− i0+, with κ =

√
1− v2∞

c2∞
. One then has

χ(x− y) =
1

2π2

∫ +∞

−∞
dk

k2

2

eik(x−y)

(v∞k − i0+)2 − E2
B(k)

= − 1

πµ∞κ
e−2κ|x−y|/ξ∞ . (1.14)

The integral over k in Eq. (1.13) has been solved in the complex plane using the residue
theorem. This then yields exact analytical results for the density variations when specifying
the form of the obstacle:

δn(x)

n∞
∝ − λ

µ∞

1

κ
e−2κ|x|/ξ∞ (1.15)

for a δ−peak obstacle of amplitude λ = U0F (σ) in the subsonic regime, with F (σ) being
the integral of the typical shape of the obstacle f(|x|/σ) over the whole real axis. In that
particular case, δn(x) simply corresponds to the linear-response function χ(0) (the same
applies by extension to δv(x), albeit with a different Green’s function).

For a Gaussian obstacle of amplitude U0, the expression for the density variations reads

δn(x)

n∞
∝ − U0

µ∞

e(κσ/ξ∞)2

κ

{
e−2κx/ξ∞

[
1 + erf

(
x

σ
− κσ
ξ∞

)]
+ e2κx/ξ∞erfc

(
x

σ
+

κσ
ξ∞

)}
.

(1.16)
These analytical expressions reveal that the density corrections not only depend on the

obstacle parameters, but also on the rescaled initial velocity of the fluid v∞/c∞ through the
dependence in κ. In the subsonic regime, the presence of a repulsive obstacle potential will
generate a localized density hole around the obstacle when v∞/c∞ < 1. The density profile
is then described by evanescent waves with the healing length ξ∞ as a characteristic range
around the obstacle. This is illustrated in Fig. 1.4 for a δ−peak (right) as well as for a
Gaussian obstacle (left), where the dimensionless fluctuations are expressed in units of λ/µ∞
and U0/µ∞, very small units in the perturbative approach. Schematics of the obstacles are
represented in orange and are expressed in units of µ∞.

These very weak density corrections are rapidly compensated, and an unperturbed profile
is restored over a distance of the order of the healing length for a δ−peak, and σ for a Gaussian
obstacle. Thus, we are indeed in the superfluid regime: The presence of the obstacle has no
long-range influence on the fluid.

30



CHAPTER 1. CRITICAL VELOCITY FOR SUPERFLUIDITY IN ONE DIMENSION

−5 0 5
x/ξ∞

−1.0

−0.5

0.0

0.5

δn
(x

)/
n
∞

v∞

−5 0 5
x/ξ∞

v∞

Figure 1.5: Density corrections δn(x)/n∞ in units of U0/µ∞ (left) and λ/µ∞ (right) in the supersonic
regime for a perturbative Gaussian obstacle of width σ ∼ ξ∞ (in orange) in the left panel, and an
input velocity v∞ = 1.5c∞. The right panel represents the same thing but for a δ−peak obstacle.
Long-range excitations are emitted in the wake of the obstacle.

Supersonic flow

Similarly to the subsonic case, we can determine the density correction associated with the
presence of the obstacle using Eq. (1.12). The only difference lies in the fact that the Green’s
function will differ: Its poles in the supersonic regime are now mostly real, with a really small

imaginary part, such that k± = ± 2κ
ξ∞
− i0+, with κ =

√
v2∞
c2∞
− 1. It is now given by

χ(x− y) =
1

2π2

∫ y

−∞
dk

k2

2

eik(x−y)

(v∞k − i0+)2 − E2
B(k)

=
1

2πµ∞κ
sin

[
2κ(x− y)

ξ∞

]
. (1.17)

As the poles are located in the inferior half-plane, the integration for x > y is null. The residue
theorem is used again for the integration over x < y, and yields for the density corrections

δn(x)

n∞
∝ λ

µ∞

1

κ
sin

[
2κx

ξ∞

]
Θ(−x) (1.18)

for a δ−peak obstacle, and with Θ(x) the Heaviside step function. Following the same method,
one can also obtain the expression for a Gaussian obstacle

δn(x)

n∞
∝ U0

µ∞

e−(κσ/ξ∞)2

κ
Im

{
e2iκx/ξ∞erfc

(
x

σ
+
iκσ

ξ∞

)}
. (1.19)

While these density corrections exhibit dependencies on v∞/c∞ (through κ) and on the
obstacle parameters similar to the subsonic scenario, the solution takes on a distinctive form.
It is important to note that we are no longer in the superfluid regime, as the fluid velocity
surpasses the critical velocity, but a regime of stationary flow still exists [52]. The presence
of the obstacle significantly influences the density profile, which is fundamentally different to
that in the subsonic regime as can be seen in Fig. 1.5. In that case the radiation condition
[157] imposes for the wake to be located ahead of the obstacle (upstream), and the fluid
remains unperturbed downstream. This explains the constant density far from the obstacle
for x > 0. In other words, the velocity of the obstacle is larger than the velocity of the
Bogoliubov excitations, which provide an estimate of the speed of sound, thus explaining
why no wave can radiate downstream. Mathematically, this is linked to the presence of the
−i0+ term in the poles of the response function χ(x− y): As there are no poles in the upper
half-plane, the density corrections are null for x > 0. This is a classical phenomenon not
restricted to quantum fluids, that can be evidenced in many systems such as ship waves (this
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Figure 1.6: Illustration of a classical supersonic fluid encountering an obstacle in its path. The white
arrow indicates the direction of the flow, and the velocity of the water is larger than the speed of the
waves at the surface, since there are no excitations downstream. Photo courtesy of Quentin Glorieux.

is the Kelvin wake pattern [158]), or even a simple stick in a water flow as can be seen in Fig.
1.6.

Upstream, the emission of long-wavelength waves is observed, with the wavelength de-
creasing as the fluid velocity increases. This phenomenon is known as Bogoliubov-Čerenkov
radiation [159]. The term draws an analogy with the Čerenkov effect in electromagnetism,
where a charged particle moving faster than the speed of light in a medium emits long-range
light radiation [160]. However, the concept of Čerenkov radiation can be extended to any sys-
tem in which the source moves uniformly through a homogeneous medium at a speed greater
than a critical value. Exceeding the speed of sound, much like surpassing the speed of light,
leads to specific phenomena. For instance, when an aircraft exceeds Mach 1, it generates a
characteristic supersonic boom. In the present case, the sound waves depicted in Fig. 1.5 are
emitted upstream of the flow, traveling at a speed lower than that of the fluid. These waves
serve as the linear counterpart to shock waves produced by a supersonic aircraft.

Given the results in the previous paragraphs, the critical velocity for superfluidity in the
perturbative approach is given by the speed of sound c∞. This is the same velocity as the one
predicted by the Landau criterion, which seems coherent as, even if he considered a system
without obstacle, he also treated the case of elementary excitations.

The drag force as indicator for superfluidity

By definition, the superfluid-nonsuperfluid transition is characterized by the sudden emission
of excitations, which are at the origin of dissipation in quantum fluids. This results in a
nonzero drag force experienced by the obstacle for velocities larger than the critical velocity
for superfluidity. If a particle moves within a superfluid with a velocity lower than the critical
velocity, its motion is non-dissipative. The superfluid regime is then usually associated with
the cancellation of the drag force experienced by the obstacle, as studied in ultracold atomic
gases [161] or cavity exciton-polaritons [56, 162, 163]. On the other hand, the nonsuperfluid
regime is characterized by the presence of a nonzero drag force. While the first experiments
often relied on indirect measures of a heating in the system [156, 164], more recent setups have
been developed, which now provide a direct method to obtain the drag force. For example
in Ref. [54], the authors extract a direct analog of the drag force exerted by a fluid of light
and measured the associated displacement of the obstacle; Which has also more recently been
done in hot atomic vapors in Ref. [134].

The force experienced by the obstacle subjected to the quantum fluid is expressed as
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Fd = 〈ψ| ∂xU(x) |ψ〉 =
∫
dxn(x, t)∂xU(x) [47], where the average is taken over the condensed

state. This expression for the drag force comes from Ehrenfest theorem for a fluid particle
of wavefunction ψ experiencing a potential U(x). The integral with the constant part n∞ of
the density is null, and the only contribution to the drag force will come from the density
corrections previously derived.

In the subsonic case, a step-to-step analytical calculation of Fd with the expressions (1.15)
or (1.16) (for the δ−peak or the Gaussian respectively) shows that one is left with the integral
of an odd function over a symmetric interval. The drag force in the subsonic regime is then
necessarily zero since the density corrections are symmetrical, implying that the obstacle has
no influence on the flow, which remains superfluid.

The supersonic regime is fundamentally different from the subsonic regime: When the
fluid velocity exceeds the critical superfluidity velocity c∞, this force arises due to the pos-
sibility of emitting elementary Bogoliubov excitations. A detailed calculation starting from
the expression of the density corrections defined in Eq. (1.17) shows that the drag force for
supersonic velocities is not null (as the density variations are not symmetrical anymore), and
reads

Fd = i
n∞U

2
0

µ∞

∫ +∞

−∞
dx dk

keikx

(k − k−)(k − k+)
f ◦ f(x) (1.20)

with ◦ the composition operator, which is the same as Eq. (41) from Ref. [163]. For large
values of κ (i.e. v∞ � c∞), this reduces to

Fd =
2n∞U

2
0

µ∞

∣∣∣∣f̂
(

2κ

ξ∞

)∣∣∣∣
2

. (1.21)

In this regime, the drag force is nonzero and generally decreases as |f̂(2κ/ξ∞)|2 [47, 163],
where f̂(k) is the Fourier transform of the obstacle potential. Specific calculations show that
the drag force is constant for a δ−peak

Fd,δ =
2n∞λ

2

µ∞
. (1.22)

It is interesting to note that this expression does not depend on the ratio v∞/c∞: This
saturation of the drag force to a constant value is an artifact of the δ−peak. A full derivation
of the drag force for a δ−peak obstacle when the constraint λ � µ∞ is lifted (i.e. the
nonperturbative regime) is provided in Sec. 2.2.2.

For a Gaussian obstacle, one obtains

Fd,G =
2n∞U

2
0

µ∞

e−2(κσ/ξ∞)2

κ
Im

{∫
dx e−(x−iκσ/ξ∞)2erfc

(
x+

iκσ

ξ∞

)}
, (1.23)

the exponential decay e−2(κσ/ξ∞)2 being recovered through Eq. (1.21) with the expression of
the obstacle. These different expressions for the drag force are represented in Fig. 1.7 as a
function of v∞/c∞, in units of n∞U

2
0 /µ∞.

An in-depth study of density corrections in the supersonic regime reveals that as v∞
increases, the amplitude of the emitted waves becomes smaller. Indeed, as the fluid velocity
increases, so does the kinetic energy. At a certain point, it surpasses the energy barrier
created by the obstacle: The obstacle is increasingly less perceived by the fluid, leading to a
reduction in the amplitude of the waves generated by the obstacle. Consequently, Fd → 0 in
the limit of a velocity much greater than the speed of sound. One must however be careful
because this close-to-zero drag force for supersonic velocities is not synonymous with a return
to a superfluid regime: For high velocities, the kinetic energy is so big that the dynamics of
the quantum fluid is as if the interactions were not present. Superfluidity is thus prevented
by kinetic effects.
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Figure 1.7: Drag force experienced by a Gaussian obstacle of typical width of σ ∼ ξ∞ (δ−peak
obstacle) in plain orange (dashed blue) line, as a function of the velocity of the fluid. Fd is expressed
in units of n∞λ

2/µ∞ for the δ−peak, and n∞U
2
0 /µ∞ for the Gaussian obstacle. In the superfluid

regime, there is no dissipation, ergo Fd = 0, whereas when v∞ > c∞, this force becomes nonzero and
depends on the shape of the obstacle.

1.2.2 Validity of the perturbative approach

To establish the range of validity of the perturbation theory, we treat the extreme case where
there is a really deep density dip close to the obstacle, i.e. when the density fluctuations
deviate significantly from the unperturbed density. We then look at the results obtained
with the response function evaluated at x − y = 03. For the perturbation theory to remain
applicable, a crucial requirement is that |δn(x = 0)|/n∞ � 1. Utilizing the outcomes from
Eq. (1.15), this condition can be expressed as

ε :=
λ/µ∞√

1− (v∞/c∞)2
� 1. (1.24)

Contrary to intuition, this parameter is not solely determined by the amplitude of the
obstacle (which must necessarily remain small compared to the interactions), but also by the
fluid velocity. This velocity dependence imposes a significant constraint on the system, and
the condition (1.24) may not be satisfied for all fluid velocities. When the velocity of the
fluid approaches the speed of sound, the Bogoliubov excitations will pile up in the vicinity of
the obstacle, resulting in nonlinear waves of high amplitude, that cannot be treated within
the perturbation theory [52, 163] as |δn(x = 0)|/n∞ is no longer small. Hence, we exit the
domain of validity of the linear-response theory when approaching velocities close to the speed
of sound.

However, credit must be given to the perturbative approach, which allows for the dis-
tinction between two types of flow: Subsonic superfluid and supersonic nonsuperfluid. The
critical velocity marking the boundary between these two regimes is that of sound, aligning
with what Landau’s criterion predicts for the weakly interacting Bogoliubov regime.

3This is equivalent to work with the results obtained for a δ−peak obstacle.
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1.3 Beyond the perturbative approach

Predicted by Landau, the existence of a critical velocity below which the system is superfluid
has found validation in numerous experimental works [68–71] and has become a cornerstone
in the study of superfluidity. Yet, these studies have shown that the actual critical velocity is
usually lower than the one predicted by Landau, as noticed by Landau himself concerning 4He
superfluidity [165]. Indeed, Landau’s method provides the same results as the perturbative
approach, in which we assume that the perturbation induced by the obstacle is small. This
is however not usually the case in experimental setups.

Theoretical investigations have thus been led to gain more insight into this phenomenon,
and exact analytical results have been obtained in the one-dimensional case [45, 47]. In these
papers, the authors investigate the flow of a BEC through localized obstacles of different
geometries, in terms of the obstacle’s parameters and of the velocity of the fluid. They
obtain exact expressions for the critical velocity for superfluidity through the existence (or
not) of a steady flow solution unperturbed far away from the localized obstacles considered
in their work, as well as the drag force.

The main motivation of this chapter is to, in a similar way to what has been done before,
derive analytical expressions for the critical velocity for superfluidity of a quantum fluid
flowing past a localized nonperturbative obstacle. However, our results go beyond previous
works: By considering a generic nonlinearity ε

(
|ψ|2

)
, we are in principle able to derive

the value of the critical velocity for many types of systems. We give specific results for
various expressions of the nonlinear interaction potential, namely a powerlaw nonlinearity
ε(n) = nν (often exemplified for ν = 1), and quantum fluids of light in saturable media
ε(n) = n/(n+nsat) (refer to the TOOLBOX for more details). In addition, while most of the
previous studies have been performed for the two extreme cases of obstacles of characteristic
range smaller or larger than the healing length ξ∞ of the homogeneous fluid, the present
manuscript provides a description that ranges from narrow (Sec. 1.3.1) to wide obstacles
(Sec. 1.3.2), with a numerical study to interpolate the behavior of the critical velocity in
between these two extreme regimes (Sec. 1.3.3). Finally, some systems call for taking losses
into account, as it is the case for experiments on light superfluidity in which losses are caused
by photonic absorption. Particle losses, if present, are accounted for and are analytically
treated within an adiabatic approximation, which is numerically verified in Sec. 1.3.4.

In this section, we characterize the critical velocity for superfluidity as a function of the
obstacle’s parameters (its amplitude U0 and width σ), and notably obtain vc(σ) for any value
of U0, starting from the hydrodynamic equations (1.8) with our criteria for a superfluid flow.

In the stationary regime, it is possible to combine the two Eqs. (1.8) into a single one:
The continuity equation (1.8b) yields an expression for the velocity v(x) = v∞n∞/n(x),
which is then injected into Eq. (1.8a). This yields

1

2

∂2x
√
n√
n

+
v2∞
2

(
1− 1

n2

)
+ ε(1)− ε(n) = U(x), (1.25)

where n(x) → 1 as |x| � σ. The superfluid stationary regime exists as long as this
equation admits solutions: The last velocity v∞ for which there exists a stationary
solution is the critical velocity for superfluidity.

After linearizing Eq. (1.25) for large |x| with n(x) = 1 + δn(x) (and keeping the terms
proportional to δn), one is left with the equation ∂2xδn(x) − 4(ε′(1) − v2∞)δn(x) = 0. This
equation admits vanishing solutions if v∞ < ε′(1), meaning that the system is superfluid
provided the flow is subsonic. This imposes a huge constraint on the range of possible v∞’s
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in the following study, namely that superfluidity only occurs at subsonic speeds v∞ < 14.

1.3.1 Narrow obstacle

If the range of the obstacle is much smaller than the healing length (in the dimension-
less units, σ � 1), the potential U(x) can be approximated with a Dirac delta function:
U(x) = U0F (σ)δ(x), with for example F (σ) =

√
πσ for a Gaussian obstacle with f(|x|/σ) =

exp
{
−x2/σ2

}
. We provide detailed calculations leading to the critical velocity for superflu-

idity vc for such a narrow obstacle. The main equation to solve is

1

2

∂2x
√
n√
n

+
v2∞
2

(
1− 1

n2

)
+ ε(1)− ε(n) = 0, (1.26)

except at x = 0, where the δ−peak obstacle is located, and for which one obtains a condition
on the derivative [52]

∂xn(0+)− ∂xn(0−)

4n0
= U0F (σ). (1.27)

The resolution of Eq. (1.26) for x 6= 0 yields

(∂xn)2

8n
+
v2∞
2

(
n+

1

n

)
+ nε(1)− E(n) = E, (1.28)

with E(n) =
∫
dn ε(n) and E = v2∞ + ε(1) − E(1) the integration constant defined with the

density n = 1 at |x| → ∞. This yields the value of the derivative of the density evaluated at
x = 0

∂xn(0±) = ±
√

8n0

[
−n0

v2∞
2

(
1− 1

n0

)2

− n0ε(1) + ε(1)− E(1) + E(n0)

] 1
2

. (1.29)

As the velocity is lower than the speed of sound, we will necessarily have a dip in the density
at x = 0 for repulsive obstacles. As a result, the density at x = 0 is n0 < 1 , and its derivatives
are respectively ∂xn(0−) < 0 and ∂xn(0+) > 0. The situation is the opposite for attractive
obstacles: There is a density bump at x = 0 such that n0 > 1, and so ∂xn(0−) > 0 and
∂xn(0+) < 0. Combining Eqs. (1.27) and (1.29), one is left with

U (n0, v∞) := sgn(1− n0)
√

2

[
−v

2
∞
2

(
1− 1

n0

)2

− ε(1) +
ε(1)− E(1) + E(n0)

n0

] 1
2

= U0F (σ).

(1.30)
We represent Eq. (1.30) in Fig. 1.8 for ε(n) = n and v∞ = 0.5. Note that it remains

qualitatively the same for other values of v∞ < 1, and for a powerlaw nonlinearity (the case
of the saturable nonlinearity is peculiar, and will be explained at the end of the section). We
can see that, when U0 > 0, Eq. (1.30) admits solutions provided that U0F (σ) < Umax =
U (n0,min) as there is always at least one intersection with the curve. n0,min is defined such
that it is solution of ∂n0U (n0,min) = 0. We obtain the implicit relation

n0,min

1− n0,min
[ε(1)− E(1) + E(n0,min)− ε(n0,min)n0,min] = v2∞. (1.31)

As Umax(v∞) is a decreasing function of v∞, the condition U0F (σ) < Umax(v∞) to admit
solutions is equivalent to v∞ < vc, where the critical velocity vc is implicitly given by

Umax(vc) = U0F (σ). (1.32)
4It is important to note that stationary solutions to Eq. (1.25) do exist for v∞ > 1 but for another family

of solutions, which will lead to another regime of transport for the fluid (not superfluid anymore). This is the
object of Chap. 2.

36



CHAPTER 1. CRITICAL VELOCITY FOR SUPERFLUIDITY IN ONE DIMENSION

0 n̄ 0

n 0,
m

in 1

n0 (units of n∞)

−|U0F (σ)|

0

U0F (σ)

Umax

U
(n

0
,v
∞

)
(u

n
it

s
of
µ
∞
ξ ∞

)

Figure 1.8: Fictitious potential U (n0, v∞) as a function of n0, for v∞ = 0.5 and ε(n) = n. When the
obstacle is repulsive (U0F (σ) > 0), it is graphically shown that Eq. (1.30) admits up to two solutions
(the physical one being the larger, as the density is supposed to go to 1 as the obstacle vanishes).
Superfluidity is lost for the value of v∞ for which there is no crossing between U0F (σ) and U (n0, v∞).
Concerning attractive obstacles, superfluidity is never lost (at least for ε(n) = n) as Eq. (1.30) always
admits one solution, and so vc = 1.

In the end, the equations defining the critical velocity for superfluidity for a δ−peak
obstacle are the following

U0F (σ) =
√

2

[
−v

2
c

2

(
1− 1

n0,c

)2

− ε(1) +
ε(1)− E(1) + E(n0,c)

n0,c

] 1
2

, (1.33a)

n0,c
1− n0,c

[ε(1)− E(1) + E(n0,c)− ε(n0,c)n0,c] = v2c . (1.33b)

Repulsive obstacles

Simplified expressions (albeit still implicit) can be derived from these implicit equations
when specifying the nonlinearity characterizing the system. We then obtained the following
expression for ε(n) = n [45, 52]

[
1− 20v2c − 8v4c + (1 + 8v2c )

3
2

] 1
2

2
√

2vc
= U0F (σ). (1.34)

No easy analytical expression can be derived for a saturable nonlinearity or a general
powerlaw nonlinearity on the other hand, as it would not be possible to invert Eq. (1.33b)
to obtain n0,c, and these equations must be solved numerically. These critical velocities are
represented in Fig. 1.9 for ε(n) = n (in blue) and saturable nonlinearities with saturation
intensities nsat ∈ {0.1, 1, 10} (in orange). It can be seen that as the amplitude of the obstacle
gets smaller, the critical velocity tends to vc = 1: This is in accordance with the Landau
criterion. On the contrary when U0F (σ) increases, vc tends to 0. This is expected as the
stronger the obstacle, the easier it is to break superfluidity.
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Figure 1.9: Critical velocity for superfluidity for a repulsive δ−peak obstacle. These results are shown
for a different nonlinearities as indicated in the legend.

Attractive obstacles

For attractive obstacles (U0 < 0), stationary solutions always exist for ε(n) = n and superflu-
idity is never lost: The flow can be superfluid for all v∞ < 1 (there is always an intersection
between −|U0F (σ)| and U (n0, v∞) as shown in Fig. 1.8), hence the critical velocity in that
case is equal to Landau’s critical speed vc = 1 in our dimensionless units.

On the other hand it is not the case for a saturable nonlinearity: For some parameters,
the fictitious potential U (n0, v∞) tends to a plateau at −

√
2 + 2nsat − v2∞ for large values of

n0, so that there is no intersection between U0F (σ) and the curve. This is conditioned by the
value of the saturation intensity, such that if nsat < v2∞/2 − 1, the system is not superfluid
anymore. As shown in Fig. 1.10, the larger nsat, the larger the range of negative values of
U (n0, v∞) for which superfluidity exists: The saturation intensity needs to be really small for
superfluidity to be broken. In practice, this condition is not really restrictive as it is possible
to experimentally tune the value of nsat to large values (as is the case in the experiment of
[55]), making it possible to observe the superfluid regime.

Density profile

The density profile is sharp at x = 0 for a narrow obstacle, with a discontinuous derivative.
It can be shown that the fundamental solution is formed by two portions of grey solitons (as
the interactions are repulsive, there is a density dip), whose centers are located at ±x0.

More generally, dark solitons are a solution of the 1D Gross-Pitaevskii equation with
repulsive interactions. They consist in waves, very robust against perturbations, that can
propagate over long distances without deformation. This interesting property is possible
thanks to the competition between the dispersive and nonlinear terms in the Gross-Pitaevskii
equation. Solitons can appear and are studied in many domains, among which stands classical
hydrodynamics [166, 167] (in which they were originally discovered [168]) or nonlinear optics
[138, 169]. More importantly in this context, they can exist in quantum fluids such as Bose-
Einstein condensates [170–173] or quantum fluids of light [121, 174].

The analytical solution for such a soliton for ε(n) = n was originally proposed in Ref.
[175], and can also be found in Refs. [19, 176]. It reads

n(x± x0) = n∞

[
v2∞ +

(
1− v2∞

)
tanh2

{√
1− v2∞(x± x0)

}]
. (1.35)
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Figure 1.10: Fictitious potential U (n0, v∞) as a function of n0, for v∞ = 0.5 and a saturable non-
linearity. For repulsive obstacles, the observed behavior is the same as for ε(n) = n; The change lies
in the case of attractive obstacles. A saturation to a plateau at U (n0, v∞) = −

√
2 + 2nsat − v2∞ is

observed for large values of n0, as shown in grey dashed lines for various values of nsat. The curves
saturate to U (n0, v∞) = −1.39 for nsat = 0.1, −1.94 for nsat = 1 and −4.66 for nsat = 10, and
superfluidity is thus broken when |U0F (σ)| is larger than these plateaux.
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Figure 1.11: Density profile in the case of a δ−shaped obstacle, for v∞ = 0.5. The physical solution
(plain line) is formed by two portions of grey solitons (dashed lines), centered at x = x0.

This density profile is represented in Fig. 1.11. Equation (1.35) shows that the density dip
gets deeper as v∞ decreases. In the limit of v∞ = 0, one has a motionless black soliton,
whereas when v∞ = 1, the soliton totally disappears. The velocity of the soliton is then
bounded by the speed of sound.

It is interesting to note that Eq. (1.34) can also be derived from the expression of the
solitonic density profile provided in Eq. (1.35). Following the calculations performed in [45],
we present this method, starting from expression of the density Eq. (1.35). This, together
with the condition on the derivative given in Eq. (1.27), leads implicitly to the possible values
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Figure 1.12: 2D representation of Eq. (1.36) as a function of v∞ and x0, for several values of λ =
U0F (σ) ∈ {0.2, 0.8, 1.4}. For example, one can see with the black dashed line that when v∞/c∞ > 0.68,
Eq. (1.36) with λ = 0.2 has no solutions anymore for x0, defining the critical velocity for this given
amplitude. This vc coincides with the results obtained in Fig. 1.9.

of x0 through the relation

λ = U0F (σ) =
(1− v2∞)3/2 tanh

(√
1− v2∞x0

)
sech2

(√
1− v2∞x0

)

v2∞ + (1− v2∞) tanh2
(√

1− v2∞x0
) , (1.36)

which is represented in Fig. 1.12. One can see that for a given value of λ = U0F (σ), there
are up to two possible values for x0 depending on the injection velocity v∞. As long as v∞ is
lower than a critical value (namely, vc), there are two solutions and superfluidity can exist.
The value of v∞ for which there is no solution anymore for x0 defines vc.

Equation (1.36) can be re-expressed as a polynomial after the change of variable X =

tanh
(√

1− v2∞x0
)

(note that X > 0 as x0 > 0), which yields

X3 + λ(1− v2∞)−1/2X2 −X + λv2∞(1− v2∞)−3/2 = 0. (1.37)

This can in turn be simplified into

X̃3 + pX̃ + q = 0, (1.38)

with

X̃ = X +
λ

3
(1− v2∞)−1/2, (1.39a)

p = −
(

1 +
λ

3
(1− v2∞)−1/2

)
, (1.39b)

q =
1

3
+

(
v2∞ +

2λ2

27

)
(1− v2∞)−1/2. (1.39c)

Equation (1.38) can be analytically solved and one can obtain its roots X̃ using Cardano’s
formula, but it is only necessary to study its discriminant ∆ to obtain vc. Equation (1.38) has
three distinct real roots when ∆ > 0, and one real and two complex-valued conjugate roots
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if ∆ < 0. This change in the nature of the solutions for ∆ = 0 exactly gives the condition to
derive vc. This condition reads

q2

4
+
p3

27
= 0, (1.40)

and transforms after calculation into

λ =

[
1− 20v2c − 8v4c + (1 + 8v2c )

3
2

] 1
2

2
√

2vc
. (1.41)

One recovers Eq. (1.34) from the main text, which implicitly gives the critical velocity for
superfluidity in the case ε(n) = n.

1.3.2 Wide obstacle

In the case of slowly-varying obstacles, i.e. when the typical size of U(x) is much larger than
the healing length (σ � ξ∞), the gradients of the obstacle are so small that the fluid can
almost be considered uniform. It is (as a first approximation) as if the obstacle were flat,
neglecting all dependence on σ. It is then possible to perform an analytical expansion of
the potential around its maximum value U0 such that U(x) = U0

(
1− |∂2xf(0)|x2/2σ2

)
. The

critical velocity can be obtained as being a constant for a given value of U0, to which we add
a small perturbation which includes the dependence on σ: vc(U0, σ) = vc,0(U0) + δvc(U0, σ).

We will first treat the case of vc,0(U0), which is the part of the critical velocity that does
not depend on the width σ of the obstacle: This is called the hydraulic approach, in which
the dispersion term can be neglected. We then perform a Taylor expansion of the various
observables around the hydraulic solutions in order to take into account the gradients of the
obstacle as performed in Ref. [45], allowing us to obtain an analytical expression for the small
correction in σ. Finally, we tackle the problem of the critical velocity for obstacles of really
large amplitude, which goes beyond the hydraulic approach as the density depletion becomes
really important, and requires a specific treatment. The combination of these results will
provide a good description for the critical velocity for wide obstacles.

Hydraulic approach

As a first approximation, we consider the obstacle to be constant everywhere, taking its
maximum value U0. The density is then constant as well, and takes the value n(x) = n(x =
0) = n0. As the obstacle is flat, Eq. (1.25) reduces to

U0 =
v2∞
2

(
1− 1

n20

)
+ ε(1)− ε(n0) := V (n0, v∞). (1.42)

Solving this equation for a given nonlinearity gives an expression for vc,0, the critical velocity
to the zeroth order in σ, as a function of U0. In a similar fashion to what has been done
for narrow obstacles, we can graphically solve this equation as represented in Fig. 1.13.
V (n0, v∞) is here represented as a function of n0 in the case of ε(n) = n (though nothing
fundamentally changes for a saturable nonlinearity).
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Figure 1.13: Fictitious potential V (n0, v∞) as a function of n0 for v∞ = 0.3 and ε(n) = n. For
repulsive obstacles, Eq. (1.42) admits up to two solutions, and superfluidity is again lost for the value
of v∞ for which there are no solutions anymore. Concerning attractive obstacles, superfluidity is never
lost as Eq. (1.42) always admits two solutions no matter the expression of ε(n).

Again, we search for the values of v∞ for which this equation has solutions for the density.
As shown graphically in Fig. 1.13, solutions exist as long as U0 < Vmax = V (n0,min, v∞).
n0,min gives the position of the maximum of V (n0, v∞): ∂n0V (n0,min, v∞) = 0, which
yields the relation

v2c,0 = ε′(n0,min)n30,min. (1.43)

This equation, combined with Eq. (1.42), and applied to the critical parameters vc,0 and
n0,min, yields

v2c,0
2

(
1− 1

n20,min

)
+ ε(1)− ε(n0,min) = U0. (1.44)

This provides the implicit relations necessary to obtain the hydraulic approximation for
the critical velocity for superfluidity. vc,0 is represented in Fig. 1.14 as a function of the
amplitude of the obstacle.

It is easily seen in Fig. 1.14 that, for the two considered nonlinearities at least, vc,0(U0) al-
ways abruptly goes to zero for any form of ε(n), but for different values of U0. The maximum
value possible for U0 before completely losing superfluidity depends on the value of the satu-
ration intensity nsat. A more thorough study of Eq. (1.44) reveals indeed that the hydraulic
approach is valid only if U0 < U0,max = ε(1). For the nonlinearities used in this manuscript,
we found that U0,max = 1 for ε(n) = n, and U0,max = (1 + nsat)/nsat for a saturable one.
Beyond this threshold values, the obstacle transforms into an infinitely large classical barrier,
the density becomes null and the fluid is separated into two independent parts on both sides
of the obstacle. In reality for a finite-sized obstacle, vc is not strictly null and the barrier
can be crossed via tunneling even if its amplitude exceeds the maximum value because of the
quantum pressure. The question of how to obtain results for obstacles larger than U0,max is
however not captured within this hydraulic approach as the quantum pressure is neglected,
and is the object of another part of this section, albeit only for σ � 1.

Concerning attractive obstacles (U0 < 0), one can see that Eq. (1.42) always admits two
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Figure 1.14: Critical velocity for superfluidity vc,0 obtained in the hydraulic approximation, for a wide
repulsive obstacle. These results are shown, as for the narrow obstacle, for various nonlinearities as
indicated in the legend. Each curve drops to zero for U0 = U0,max, respectively given by U0,max ∈
{1, 10, 1.1, 2} for ε(n) = n and saturable nonlinearities with nsat ∈ {0.1, 1, 10}.

solutions, meaning that superfluidity is never lost: The critical velocity for superfluidity is
given by the Landau criterion vc = c∞ (1 in our dimensionless units). It is interesting to note
that this criterion is also valid for a saturable nonlinearity, which was not always the case for
a δ−peak obstacle as shown in the previous section.

When the obstacle U(x) is smooth enough (i.e. its gradients are small), the fluid behaves
almost as if it were uniform, and it becomes possible to define quantities at each point
x such as the local speed of sound c(x) = [ε′(n)n(x)]1/2: This is the local density
approximation (LDA) [48, 177].
The local Landau criterion states that as long as the velocity of the fluid does not exceed
this local speed of sound, the system is superfluid: This translates to v(x) < c(x). Using
the continuity equation, this condition can be re-expressed as

v∞ < vc,LL =
[
ε′(n)n3

]1/2
. (1.45)

Given that there is a different speed of sound at each point x, superfluidity will be broken
where this local speed of sound c(x) is minimal, i.e. where the obstacle is maximal, and
thus where the density is minimal. Equation (1.43) is then just a reformulation of the
local Landau criterion for the point where the density is minimal, such that n(x) = n0,min.

Correction to the hydraulic approach

The critical velocity can be more precisely defined when taking into account the gradients of
the obstacle to the lowest order in 1/σ, that were so far neglected in the hydraulic approach
[108]. Following the method proposed in [45], we improve the hydraulic expression vc,0 by a
correction proportional to a power of σ, and generalize it to other types of nonlinearities. To
treat that case, we perform Taylor expansions of the various relevant quantities in powers of
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1/σ → 0 around the hydraulic solution (n0,min, vc,0) but with yet unknown dependencies on
σ. The solution is of the form

vc = vc,0 + δvcσ
a, (1.46a)

n = n0,min + δnσb, (1.46b)

U = U0

(
1− |∂

2
xf(0)|

2
x2σc

)
, (1.46c)

x = yσd. (1.46d)

The various coefficients are adapted to have a coherent Taylor development, and are given
by a = −4/3, b = −2/3, c = −4/3 and d = 1/3. After solving Eq. (1.25) order by order in σ
taking into account Eqs. (1.46), one obtains

• Order σ0

v2c,0
2

(
1− 1

n20,min

)
+ ε(1)− ε(n0,min) = U0. (1.47)

This is the equation obtained in the hydraulic approach, treated in the previous section.

• Order σ−2/3

v2c,0 = ε′(n0,min)n30,min. (1.48)

We recover the local Landau criterion.

• Order σ−4/3

This is the equation to solve to obtain the correction to the hydraulic approach, as it is
the first order for which δvc appears in the expansion. The first intermediate step in the
calculations leads to

∂2yδn = Aδn2 +Bδvc − Cy2, (1.49)

with the coefficients
A = 2

[
3ε′(n0,min) + n0,minε

′′(n0,min)
]
, (1.50a)

B = 4vc,0

[
1

n0,min
− n0,min

]
, (1.50b)

C = 2U0n0,min|∂2xf(0)|. (1.50c)

Equation (1.49) can be further simplified and transforms to

∂2z∆n = ∆n2 + ∆vc − z2, (1.51)

with the change of variables z = (AC)
1
6 y, ∆n = A

2
3C−

1
3 δn and ∆vc = A

1
3BC−

2
3 δvc.

This simplified equation describes a saddle-node bifurcation. Its two solutions depend
on the value of ∆vc, and exist as long as −∞ < ∆vc < ∆vc,crit. Analytical expressions for
these solutions are given for |∆vc| � 1 in Ref. [45], and are plotted in Fig. 1.15. As ∆vc
approaches the critical value, these asymptotic solutions are no longer valid and one has to
solve Eq. (1.51) numerically. The two solutions get closer until they merge, and the superfluid
transition occurs when ∆vc = ∆vc,crit, which is determined numerically as ∆vc,crit ≈ 1.466.

Finally, by taking into account the variations of the obstacle, we are able to obtain the
small correction to the hydraulic approach

δvc =
1.466C

2
3

A
1
3B

, (1.52)

which leads to
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Figure 1.15: Two asymptotic solutions of Eq. (1.51) as given in Ref. [45] for ∆vc = −5. As ∆vc
increases and approaches its critical value, the two solutions get closer. They merge for ∆vc,crit ≈
1.466, in which case Eq. (1.51) no longer has a solution. The consequence in our case is that
superfluidity is lost.

vc = vc,0(U0) +
1.466

2
5
3

(
U0|∂2xf(0)|n0,min

) 2
3

vc,0

(
1

n0,min
− n0,min

)
[3ε′(n0,min) + n0,minε′′(n0,min)]

1
3

1

σ
4
3

. (1.53)

The critical velocity for superfluidity mainly depends on the part determined to the zeroth
order in σ, i.e. vc,0(U0), and so its main dependence is on U0, the amplitude of the obstacle.
The shape of the obstacle is only important for the correction to vc,0 via its second derivative
at x = 0 and its width: The larger σ, the smaller this correction. This means that for a really
large obstacle, the critical velocity tends to vc,0(U0), the value obtained in the hydraulic
approach. Going from a flat obstacle to the “real” obstacle implies that the potential seen by
the fluid will be less important, and as a result vc increases5: The quantum pressure is then
favorable to superfluidity.

Josephson treatment of the problem for a wide obstacle

So far, the method used in the previous sections to determine the critical velocity for a very
wide obstacle presents a problem when U0 approaches its maximum value U0,max, which is the
amplitude of the obstacle for which the fluid is exactly separated in two independent parts
in the zero gradient approximation, and for which superfluidity breaks down. In practice,
these gradients can no longer be neglected, especially close to the obstacle, where the density
depletion is pretty important and the variation of density not negligible. In reality, the critical
velocity for U0 > U0,max is not strictly zero, although it is really small. With the amplitude
of the obstacle greater than the energy E of the stationary state, the system now consists of
two quantum reservoirs isolated from each other by the potential; We tackle this problem as
a Josephson junction.

5This is indeed demonstrated by the fact that the correction in σ−4/3 is positive as n0,min < 1.
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Figure 1.16: Schematics of the obstacle potential in green, both of large width σ and large amplitude
U0. A linear expansion is performed close to the classical turning points −xc, such that U − E ≈
(x+ xc)F (in red). This approximation is valid on a layer of width d.

We assimilate our system to two reservoirs (called left and right) of typical energy E, but
of different phases θL and θR, separated by the previously defined barrier. Given this phase
difference between the two reservoirs, a current of particles is established through tunneling.
It is defined in the Josephson approach as j = jc sin (θR − θL), with j = i(ψ∂xψ

∗−ψ∗∂xψ)/2,
and jc being the critical current. This current j is proportional to the velocity through the
relation j = n(x)v(x) = v (n∞ = 1 in our dimensionless units), so finding the critical current
is equivalent to finding the critical velocity.

The calculation of the critical velocity in this approach will be two-fold. We first need to
compute the total wavefunction of the system, which is composed of the wavefunction coming
from each reservoir. Only then will it be possible to compute the critical velocity with the
expression of the current in the Josephson approach. These calculations are exemplified for a
nonlinear interaction potential of the form ε(n) = nν , but remain quite similar for a saturable
nonlinearity.

Calculation of the wavefunction As the system is considered superfluid, we start from the
time-independent 1D Gross-Pitaevskii equation

− 1

2
∂2xψ + (U − E)ψ + ε

(
|ψ|2

)
ψ = 0. (1.54)

Let now ±xc be the classical turning points, i.e. the boundaries of the obstacle such
that E = U(±xc). In the following, we compute the left solution by working around −xc,
and the right solution is deduced by symmetry. A sketch of this is presented in Fig. 1.16.
Close to that boundary, one can carry out a linear expansion of the obstacle such that locally
U(x) − E = (x + xc)F , as performed in [155], where F is the modulus of the external force
F = ∂xU at x = −xc. Equation (1.54) then transforms into

− 1

2
∂2xψ + (x+ xc)Fψ + ε

(
|ψ|2

)
ψ = 0. (1.55)

To further simplify it, we introduce another space variable χ = (x+xc)/d, such that 2Fd3 = 1,
in which d is a typical thickness of the boundary. The new rescaled Gross-Pitaevskii equation
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takes the form

− ∂2χψ + χψ + 2d2ε
(
|ψ|2

)
ψ = 0. (1.56)

In the following, it is convenient to specify the expression of the nonlinear interactions.
Let us explicitly treat the case of a powerlaw nonlinearity with ε(n) = nν . With the rescaling

ψ = (2d2)−
1
2ν φ, Eq. (1.56) simplifies to

− ∂2χφ+ χφ+ φ1+2ν = 0. (1.57)

To solve this equation and obtain the wavefunction for a wide obstacle of large amplitude,
we will need to make some approximations on the system. Depending on whether we treat
the problem inside or outside of the barrier, different terms will be neglected.

• Classically allowed region: U < E

Outside the potential barrier, the gradients of the obstacle are so small that the kinetic term
is much smaller than the interactions. One can use the Thomas-Fermi approximation, leading
to the relation

φout = (−χ)
1
2ν , (1.58)

which, with the proper rescaling, transforms into

ψout =
(
− χ

2d2

) 1
2ν

= (E − U(x))
1
2ν . (1.59)

• Classically forbidden region: U > E

Inside the barrier, the obstacle is so strong that the nonlinear term can be neglected, and Eq.
(1.57) turns into the Airy equation, whose asymptotic solution is

φin =
A

2
√
πχ1/4

exp

{
−2

3
χ3/2

}
, (1.60)

with A a numerical constant. This is equivalent to using the WKB approximation [178] with
1/σ → 0 (instead of the usual ~→ 0), with the classical turning points satisfying U(x) = E.
Using the same change of variable as before, this solution transforms into

ψin =
A

2
√
πd(2d2)

1
2ν

1

[2(U − E)]
1
4

exp

{
−
√

2

∫
dx′
√

(U − E)

}
. (1.61)

One recovers the usual wavefunction obtained in the WKB approximation.

We now have two asymptotic limits for the solutions inside and outside the obstacle. In
order to find the complete wavefunction, we numerically solve the dimensionless equation
(1.57) using a RK4 algorithm. This can be seen in Fig. 1.17, on which is represented the
numerical solution of the dimensionless wavefunction, as well as both asymptotic solutions.
The value of A is numerically defined and comes from an ad hoc adjustment of φin in order
to have the best fit possible with the numerical solution inside the obstacle.

The fact that the obstacle has both a large amplitude and width will have two conse-
quences: First, the interactions between particles described by the nonlinear potential ε(n)
become negligible, simplifying the model. The left and right wavefunctions can then be ap-
proximated with the asymptotic expressions we found in the classically forbidden region6 with

6Even if we do not use the previous results for the classically allowed region, they were necessary in order
to compute the value of the constant A.
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Figure 1.17: Rescaled left wavefunction as a function of the dimensionless variable χ for ε(n) = n. The
orange (green) curve is the analytical solution obtained in the Thomas-Fermi (WKB) approximation
to treat the problem outside (inside) the obstacle. The purple curve is the numerical solution of Eq.
(1.57) obtained with a RK4 algorithm. A is chosen to yield the best fit possible with the numerical
solution. The white zone corresponds to the classically allowed region, whereas the grey one is the
forbidden region inside the obstacle.

the WKB approximation. Additionally, there is no overlap in the obstacle between the wave-
function of each reservoir, making it so that the total wavefunction is a linear combination
of these two wavefunctions: It then reads ψ = ψR + ψL, with

ψR =
A

2
√
πd(2d2)

1
2ν

1

[2(U − E)]
1
4

exp

{
−
√

2

∫ xc

x
dx′
√

(U − E)

}
eiθR , (1.62a)

ψL =
A

2
√
πd(2d2)

1
2ν

1

[2(U − E)]
1
4

exp

{
−
√

2

∫ x

−xc
dx′
√

(U − E)

}
eiθL . (1.62b)

The prefactor highly depend on the parameters of the obstacle U(x) and E, which are also
hidden in the expression of d.

Now that we have an analytical expression for the wavefunction, it is possible to use the
expression of the current in order to estimate the critical velocity for superfluidity. After
calculation, one finds

j =
A2

2πd(2d2)
1
ν

exp

{
−
√

2

∫ xc

−xc
dx′
√

(U − E)

}
sin(θR − θL), (1.63)

and then

vc =
A2

2πd(2d2)
1
ν

exp

{
−
√

2

∫ xc

−xc
dx′
√

(U − E)

}
. (1.64)

This critical velocity is proportional to a nontrivial prefactor involving the parameters of
the system, and the numerical parameter A, but the most important part is the exponential
decay. The value of the critical velocity for superfluidity in the case of a wide obstacle of
large amplitude is then exponentially small, and is ruled by the physics taking place on the
tunnel path between the two classical turning points.
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Case of a saturable nonlinearity For a saturable nonlinearity of the form ε(n) = n/(n+nsat)
with nsat the saturation intensity, the calculations are more tricky as the equivalent of Eq.
(1.57) includes a nontrivial nonlinear form for the interaction potential

− ∂2χφ+ χφ+
φ3

1 + φ2/K
= 0, (1.65a)

K = 2d2
(1 + nsat)

2

nsat
. (1.65b)

Nevertheless, an in-depth study of K shows that it scales as

(1 + nsat)
2

n

[√
E

σ
ln
U

E

]− 4
3

. (1.66)

Even for its minimum value for nsat = 1, K remains really large provided σ and U0 are large.
Equation (1.65a) then transforms into Eq. (1.57), and one can follow the same approach for
the calculations as for ε(n) = n. This yields

vsatc =
√
nsatvc, (1.67)

with vc given by Eq. (1.64).

1.3.3 Obstacle of arbitrary width

So far, we have obtained analytical results in both limits σ � 1 and σ � 1. We now focus
on the in-between case of obstacles of arbitrary width σ – which is not analytically solvable
– and treat it numerically, allowing us to interpolate our previous limits.

To solve the stationary problem defined by Eq. (1.25), we treat it with a imaginary-time
numerical method via a relaxation algorithm, which will then be studied for long evolution
times. We start the integration with a solution that has the right asymptotic properties
n(x, τ = 0) = 1 and let it evolve in “time” through the following fictitious dynamical system

∂τn =
1

2

∂2x
√
n√
n︸ ︷︷ ︸

QP [n]

+
v2∞
2

(
1− 1

n2

)
+ ε(1)− ε(n)

︸ ︷︷ ︸
U [n]

−U(x), (1.68)

with τ a fictitious-evolution numerical time. If the superfluid solution exists, it should be an
attractor of Eq. (1.68), and if not, the system is not superfluid. The critical velocity is given
by the value of v∞ for which the algorithm does no longer converge towards an attractor with
the correct boundary conditions at infinity.

Following the explicit Euler method with an unperturbed density profile as initial con-
dition, this approach enables us to determine the density profile for specified values of U0

and σ. Knowing n(x), it is an easy task to derive vc: The larger v∞, the more depleted the
density will be at the position of the obstacle, and the solution disappears when v∞ exceeds
vc. This is represented in Fig. 1.18. The goal of our simulation is to find this vc as a function
of σ, for a given value of U0 and various nonlinearities.

In the following, it becomes necessary to specify the shape of the obstacle, which we chose
as a Gaussian obstacle U(x) = U0e

−x2/σ2
. The numerical approach then allows us to obtain

Fig. 1.19, in which all the different results are encompassed. It represents the critical velocity
for superfluidity with respect to the width of the obstacle, for a given amplitude U0 = 0.5.
The blue and orange markers (squares, dots, crosses) stand respectively for ε(n) = n and a
saturable nonlinearity with nsat ∈ {0.1, 1, 10}, and the black dotted and dashed lines represent
the analytical limits previously obtained for the limiting cases σ � 1 and σ � 1. These limits
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Figure 1.18: Density profiles obtained with our algorithm, for ε(n) = n, U0 = 0.3, σ = 30 and different
initial velocities v∞ ∈ {0.15, 0.3, 0.37}. The larger the velocity, the more impacted the density profile
around the obstacle. The solution disappears beyond v∞ = 0.37, meaning that it is the critical
velocity for superfluidity. Note that this is also the result obtained with the hydraulic approach for
large obstacles.
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Figure 1.19: Critical velocity for superfluidity as a function of the width of the Gaussian obstacle
U(x) = U0 exp

{
−x2/σ2

}
, for U0 = 0.5. vc is plotted for different expressions of ε(n) as indicated

in the legend. The asymptotic results previously obtained in the limits σ � 1 and σ � 1 are also
included in black dotted and dashed lines, and are in agreement with the numerical simulation.

are in agreement with the numerical results obtained with our algorithm, which gives credit
to the relaxation method used. For the sake of clarity, these limits are only represented for
ε(n) = n and ε(n) = n/(n+nsat) with nsat = 0.1, but it has been verified that the results for
nsat = 1 and nsat = 10 are also in agreement with the numerics.

The critical velocity shows a monotonic behavior in σ between the two different limits
of narrow and wide obstacles, going from vc = 1 for σ → 0, to the limit obtained in the
hydraulic approximation for large values of σ. Surprisingly enough, these limits seem to be
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Figure 1.20: Critical velocity for superfluidity as a function of the width of the Gaussian obstacle
U(x) = U0 exp

{
−x2/σ2

}
, for various U0 ∈ {0.5, 1, 2}. vc is plotted for ε(n) = n/(n + nsat) with

nsat = 1. When U0 = U0,max, vc drops to zero for large values of σ. The Josephson treatment of the
case (σ, U0) � 1 is not represented here as the correction is exponentially small and would not be
visible.

valid for almost the whole range of σ values, except between σ ∈ [1, 2], in which case the
numerical simulation links these asymptotic results. Note that in the limit nsat � 1, one
recovers the results obtained for ε(n) = n, which makes sense as the saturable nonlinearity
becomes proportional to the density if nsat � 1.

Figure 1.20 also represents the critical velocity as a function of σ for a Gaussian obstacle,
a saturable nonlinearity with nsat = 1, but this time for various values of U0 (see legend).
When comparing the results for these different U0, one can see that the higher the barrier,
the lower vc. The range of velocities for which it is possible to observe superfluidity then gets
more and more restricted as U0 increases. In the limit where U0 is above its maximum value
(U0 = U0,max = (1 + nsat)/nsat for a saturable nonlinearity), superfluidity is broken, at least
in the small gradients approximation. Even though the Josephson treatment for σ � 1 and
U0 > U0,max shows that the critical velocity is not strictly null, in practice the result obtained
for vc is exponentially small and cannot be represented with the vertical scale used in Fig.
1.20.

All in all, these figures allow us to make the distinction between two different regimes of
transport: The various curves represent separatrices between superfluid and nonsuperfluid
regimes, and correspond to the disappearance of the stationary solutions of Eq. (1.25). In
other words, for a given set of parameters (v∞, σ, U0), the system can either be superfluid
(under the different curves), or nonstationary and not superfluid anymore (above it).

1.3.4 Treatment of the losses

So far, we have considered conservative systems. We are now interested in the effect of losses
on the dynamics of the quantum fluid. The Gross-Pitaevskii equation describing the system
becomes

i∂tψ =

[
−1

2
∂2x + U(x) + ε

(
|ψ|2

)
− iα

2

]
ψ, (1.69)
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with α representing the rate of the photonic absorption. The hydrodynamic Eqs. (1.8) will
be consequently modified, especially Eq. (1.8b) which now acquires a negative source term:

∂tn+ ∂x (nv) = −αn, (1.70)

meaning that the number of particles is not conserved in the presence of particle losses.
The critical velocity for superfluidity having a strong nontrivial dependence on n(x), it will
obviously be impacted. The treatment of losses might differ depending on the experimental
setup, but they are usually unavoidable when dealing with quantum fluids of light, and have
been shown to lower the critical velocity for superfluidity [56, 162, 163].

In the experiments described in [54, 55], photon absorption along the photorefractive
crystal is described by linear homogeneous losses, and are estimated to represent about 30%
of the initial light intensity after propagation through the crystal. Yet, superfluidity remains
even with such losses. We chose to use an adiabatic treatment of the losses [43, 179] (which
will be detailed further on), and compare it to the critical velocity obtained after a brute force
numerical integration of the time-dependent Gross-Pitaevskii equation. Both approaches are
detailed in the following paragraphs, with a comparison of their results.

Adiabatic approach

In this paragraph, we explain the adiabatic approximation we used to derive the critical ve-
locity for superfluidity from the fictitious dynamical system depicted in Eq. (1.68). If the
losses manifest on a time scale 1/α much larger than any other time scale in the problem, it is
reasonable to assume that the dynamics of the fluid must adiabatically follow the time vari-
ations of its unperturbed density, which decays exponentially as n∞(t) = n∞(0) exp{−αt}.
This is equivalent to treat the fluid as if it were in a stationary state at each time t, and all
the quantities used to define the dimensionless problem must be replaced with their instan-
taneous unperturbed counterparts derived from n∞(t). The number of particles will then
decrease in time because of the absorption, and as a result, all the other quantities will be
modified. For ε(n) = n, one has:

• c∞(t) =
√
n∞(t) = c∞(0) exp{−αt/2},

• µ∞(t) = n∞(t) = µ∞(0) exp{−αt},

• ξ∞(t) = ~/
√
n∞(t) = ξ∞(0) exp{αt/2}.

As a consequence, the width and amplitude of the obstacle are also rescaled as

• U0/µ∞(t) = U0 exp{αt}/µ∞(0),

• σ/ξ∞(t) = σ exp{−αt/2}/ξ∞(0).

In the end, the results will certainly strongly depend on the loss rate α, but also on the
arbitrarily chosen integration time t.

Our adiabatic approach then amounts to compute vc through the same algorithm as
before, used in the absence of losses, but with rescaled values for U0 and σ as we work
with a given integration time t. We present results for t = 75 and α ∈ {0, 0.002, 0.01}
(respectively in units of ~/µ∞(0) and µ∞(0)/~) and for ε(n) = n. For example when α = 0.01
and U0/µ∞(0) = 0.2, the fictitious problem must be solved with the rescaled quantities
U0/µ∞(t) = 0.232 and σ/ξ∞(t) = 0.928σ/ξ∞(0). This leads to vc as a function of σ, which
is later represented in Fig. 1.22 in plain lines for values of α ∈ {0, 0.002, 0.01}. This time
integration t = 75, along with the chosen loss rates, corresponds to a situation of adiabatic
transport and is in agreement with experiments of Ref. [54], as it amounts to losses around
30% of the initial light intensity after a propagation in the crystal for the largest value of α
we considered here.
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Figure 1.21: Computation of the instantaneous drag force Fd at the final evolution time t = 75, for
a Gaussian obstacle of amplitude U0 = 0.2, as a function of the injection velocity v∞, both without
and with losses (respectively left α = 0 and right α = 0.001). On the left panel, the critical velocity
is well defined because the transition in the drag force is sharp. On the right panel, the losses blur
the transition and vc is hardly definable. We arbitrarily chose it to be around the velocity for which
Fd amounts to 5% of its value at v∞ = c∞(t).

Numerical integration

Another method to obtain vc is performed in the reference frame of the moving obstacle, ob-
tained after the Galilean transformation U(x, t) = U0 exp

{
−(x+ v∞t)

2/σ2
}

, which is equiva-
lent to the configuration studied so far. We numerically integrate the time-dependent Gross-
Pitaevskii equation with such a moving obstacle, compute the drag force, and extract vc from
its behavior. Indeed, when Fd is null (or negligible) the system is superfluid, and superfluidity
is broken when Fd 6= 0. The velocity at which this transition in the drag force occurs is vc.
We represent in Fig. 1.21 the instantaneous drag force at a given time t, which is sufficient
to observe the superfluid-nonsuperfluid transition and deduce vc from there. In practice, one
would need to average several instantaneous measures over a sufficient integration time to
obtain a “well-defined” drag force, thus getting rid of the the important variations from one
point to the other.

In the configuration where losses are neglected, this transition is sharp and well defined:
The drag force is null until v∞ = vc, and then it increases. On the other hand when losses
are included, the situation is more complicated: The drag force is not zero even at small
velocities, and assigning a value to the critical velocity is not possible anymore. The losses
will smooth the transition, and the well-defined critical velocity transforms into a crossover
zone [56, 162, 163] , going from a regime where the drag force is negligible to a regime of
wave resistance, in which the drag force does impact the system. These two situations are
roughly depicted in Fig. 1.21.

In order to have a good approximation of vc in the presence of losses, we arbitrarily choose
the superfluid crossover to occur around the value of v∞ for which the drag force experienced
by the obstacle corresponds to 5% of its value at v∞ = c∞(t) (the zone in which we gradually
go from a superfluid to a nonsuperfluid regime occurs between v2% and v8% with our criterion).
This yields a pretty good approximation for vc(σ) for a given value of U0, which is depicted
in Fig. 1.22 with different markers for the various loss rates α ∈ {0, 0.002, 0.01}.

Comparison between the two approaches

In order to see if our use of the adiabatic approximation is relevant of not, we compare in
Fig. 1.22 the critical velocities obtained either through the adiabatic approximation (plain
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Figure 1.22: Critical velocity for superfluidity as a function of the width of the Gaussian obstacle
U(x) = U0 exp

{
−x2/σ2

}
, for ε(n) = n, and in the presence of losses with rate α ∈ {0, 0.002, 0.01}.

The dimensionless propagation time is chosen to be t = 75, and the obstacle height without losses
is U0/µ∞(0) = 0.2. The various markers correspond to the critical velocity obtained after the brute
force numerical integration of the Gross-Pitaevskii equation with absorption. The critical velocity is
now replaced by a crossover zone of given extension, accounting for the smoothness of the transition
in the drag force experienced by the obstacle (for more explanations, see main text). The curves
represent the critical velocity deduced from the numerical integration of Eq. (1.68) with our adiabatic
approach.

lines), or through a computation of the drag force after the brute force numerical integration
of the Gross-Pitaevskii equation (markers and shaded areas). Note that in addition to the
drag force, we also computed the density profile in order to validate the crossover zone we
found, to see if excitations were emitted or not. These critical velocities are represented in
Fig. 1.22, both for an integration time of t = 75 and the values of the loss rate previously
provided.

As we can see, the agreement between the shaded areas and the curves obtained after
numerical integration of the out-of-equilibrium problem in the adiabatic evolution approxi-
mation is excellent. This adiabatic approach is then valid (at least for the small values of α
we used), and allowed us to account for an analytical description of the dissipation induced
by the absorption of the media in which the fluid propagates. It is interesting to note that
this treatment of the losses in the adiabatic evolution approximation is valid in any dimension
D, and thus also applies to the bidimensional case discussed in Chap. 3. Consequently, the
approach will not be reiterated in subsequent chapters to avoid redundancy.

1.4 Conclusion

This chapter was dedicated to the determination of the critical velocity for superfluidity vc of
a generic quantum fluid encountering a localized obstacle, for which we obtained an analytical
expression as a function of the parameters of the obstacle (i.e. its width σ and amplitude
U0). This was done within the framework of the 1D Gross-Pitaevskii equation. The results
we obtained are several-fold, and go beyond the Landau criterion, which validity is restricted
to the perturbative regime, by working with obstacles of arbitrary amplitudes. Our study
extends beyond the conventional one-dimensional Gross-Pitaevskii equation, allowing us to
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treat various types of quantum fluids described by different expression for the nonlinear
interaction potential. Most of our results are exemplified for the usual nonlinearity ε(n) = n,
and for a saturable nonlinearity characteristic of superfluids of light in saturable media, which
is relevant for ongoing experiments on hot atomic vapors or photorefractive nonlinear crystals.

We derive analytical results for the critical velocity for superfluidity in the limiting cases
of narrow and wide obstacles, which were tackled with diverse approaches, for other nonlin-
earities than the usual ε(n) = n. In addition, these limits were numerically interpolated by
addressing the case of obstacles of arbitrary widths with an original algorithm treating the
problem as a fictitious dynamical system. This yields results consistent with the previously
derived analytical limits, providing a complete description of vc(σ) for a given amplitude U0.
Lastly, we also go beyond previous works by incorporating losses effect in our theoretical
model, and obtained accurate results for the critical velocity for systems subject to losses
through an adiabatic approach.

Interestingly, our theoretical model also exhibits the existence of another family of sta-
tionary solutions for the Gross-Pitaevskii equation, but meeting different criteria than our
requirements for superfluidity (notably, the density profile is now perturbed close to the
obstacle). This heralds the existence of another important separatrix, this time in the su-
personic regime, which characterizes the transition between a nonstationary and a stationary
regime. The next logical step would then be to continue the study in one dimension, derive
this separatrix and characterize the other types of stationary transport existing for velocities
higher than the critical velocity for superfluidity. This is the subject of Chap. 2. In addition,
a few perspectives on the one-dimensional case will be addressed in the general conclusion.
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One-dimensional stationary transport at
supersonic velocities
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This second chapter is dedicated to the study of another regime of transport for quantum
fluids in one dimension, which is also stationary, but does not exhibit superfluid character-
istics, as stated by the presence of a nonzero drag force. We focus on the properties of this
regime at velocities much larger than the speed of sound, and characterize the critical super-
sonic velocity vs marking the separation between this regime and the nonstationary turbulent
regime. Unexpectedly, this regime exhibits a possible superfluid-like behavior for given sets of
parameters (U0, v∞), but only for attractive obstacles. This is linked to the presence of res-
onances in the transmission spectrum of the system, for which we provide a complete study.
We also characterize this other stationary regime via an exact calculation of the drag force
for narrow obstacles, obtaining results going beyond previous studies.

Article linked to the chapter:

J. Huynh, F. Hébert, P.-É. Larré and M. Albert, “Stationary transport above the critical
velocity in a one-dimensional superflow past an obstacle” – EPL 143, 46005, (2023)
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Figure 2.1: Typical phase diagram of the possible stationary flows in the presence of a localized obstacle
(represented in red in the insets), as a function of the injection velocity v∞ and the amplitude of the
obstacle U0. The asymptotic flow is here from right to left, as depicted by the left-pointing arrows in
panels (a-d). The different regimes range from superfluid (light blue), to nonstationary nonsuperfluid
(white), to stationary nonsuperfluid (dark blue). The dotted curve in the left panel corresponds to the
set of parameters (U0, v∞) leading to a superfluid-like solution in the supersonic phase. Panels (a),
(b), (c) and (d) represent the density profiles n(x) associated with each point in the main figure, and
were obtained after a numerical simulation with ε(n) = n and for a rectangular obstacle potential, as
represented in red dashed line in panels (a–d).

The transport properties described by the Gross-Pitaevskii equation (1.1) are much richer
than only the superfluid behavior presented in Chap. 1: Three different regimes of transport
are indeed possible for a quantum fluid moving at velocity v∞ across an obstacle – all along
this chapter, the asymptotic flow is from right to left (see Fig. 2.1) – and the determination
of whether the system is in one regime or another highly depends on the parameters of
said obstacle. These regimes are represented in Fig. 2.1, along with the associated density
profiles corresponding to each point (a), (b), (c) and (d). Chapter 1 focuses on what happens
below the critical velocity for superfluidity vc, showing that the flow is stationary and only
perturbed close to the obstacle: This is the superfluid regime, presented in Fig. 2.1 (a). When
the velocity is higher than vc, two different regimes can take place, neither being superfluid.

• At velocities slightly above vc, the flow is no longer stationary, and one can observe
the repeated emission of nonlinear excitations [52, 55, 69, 180] such as solitons. This
situation is depicted in Fig. 2.1 (b), where the quantum fluid is partially reflected and
transmitted by the obstacle, leading to the appearance of nonlinear structures in both
directions. Superfluidity is thus broken, and quantum turbulence may potentially arise
for extreme parameters [95, 104–107].

• When the velocity of the obstacle exceeds yet another threshold, referred to as the su-
personic separatrix vs in this manuscript [52, 108, 109], the fluid enters a new regime of
stationary transport. In this regime, the kinetic energy is so high compared to the in-
teraction energy that the dynamics could almost be described by the linear Schrödinger
equation: Part of the fluid is transmitted through or reflected by the obstacle. This
creates a standing wave with a density modulation upstream, as shown in Fig. 2.1 (c).
In our case, the fluid moves from right to left past an obstacle at x = 0, so that the
perturbation appears upstream in the positive−x region of space.

Interestingly, the possibility of perfect transmission remains due to resonant transport
[110–112]. There indeed exists a given set of parameters (U0, v∞) for which backscatter-
ing is suppressed, as shown in Fig. 2.1 (d). Even if this dynamics mimics the superfluid
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regime [113], it remains however debatable to say whether it is truly superfluid or not,
as it occurs at supersonic velocities.

While several of the results presented in this chapter were already discussed in Ref. [52],
we re-derive them with different methods and provide explicit expressions for concrete cases,
relevant for experimental studies of transport properties of quantum fluids described by a
generalized Gross-Pitaevskii equation. We thus provide the reader with a comprehensive
study, yielding a clear map of the different possible regimes of transport for a quantum fluid.

While Chap. 1 treated the superfluid regime (light blue in Fig. 2.1), the present chapter
particularly deals with the supersonic stationary regime (dark blue), for which the analytical
treatment does not entirely deviate from the methods used in Chap. 1. We thus obtain
exact analytical expressions for the supersonic separatrix vs for different obstacle parameters
and fluid velocities. We again derive asymptotic results for various nonlinear interaction
potentials, for obstacles of characteristic width either much smaller or much larger than the
healing length, and for both positive and negative amplitudes this time. A focus is shed on
the case of attractive obstacles, which exhibit resonances and the possibility for a regime of
perfect transport at these supersonic velocities. We numerically and analytically characterize
these resonances for a toy model consisting in a supersonic flow of a lossless Gross-Pitaevskii
quantum fluid with ε(n) = n, past a square-well obstacle potential of arbitrary depth and
width.

2.1 A Hamiltonian-like formulation

The system we consider in this chapter is the exact same as in Chap. 1, to the exception
that the velocity of the fluid is now supersonic, i.e. v∞ > c∞, leading to another regime of
stationary transport. In our model, the dynamics of the system is also ruled by the Gross-
Pitaevskii equation (1.1) for the order parameter ψ, but we do not take particle losses into
account in this chapter. The considered obstacles will also mostly be Gaussian obstacles,
though we will illustrate the phenomenon of resonances in Sec. 2.5 for attractive obstacles
through a simpler model consisting of a squared obstacle U(x) = U0Θ(σ/2 − |x|), for which
tractable analytical results are possible. Both types of obstacles have a single extremum U0

(positive or negative) at x = 0, and are localized such that U(x) vanishes for |x| � σ, with
σ the typical range of the obstacle. While small quantitative differences will obviously arise
between the study of these two obstacles, the transport through a square well is qualitatively
similar to that observed in the more realistic (from an experimental point of view) case of a
Gaussian obstacle.

A hydrodynamic description of the problem is again obtained through the Madelung
representation ψ(x, t) = A(x)eiφ(x)e−iµ∞t, with n(x) = A(x)2 the local density, v(x) = ∂xφ
the local velocity and µ∞ the energy of the stationary state. From this description, the
Gross-Pitaevskii equation transforms into an imaginary and a real part, yielding the system

n(x)v(x) = j, (2.1a)

∂2xA = 2

[
U(x) + ε(n) +

j2

2A4
− µ∞

]
A. (2.1b)

As previously explained in Sec. 1.2, the radiation condition [157] imposes the boundary
conditions of the system: The density profile n(x) must remain unperturbed downstream
(x → −∞ in our case, since the fluid flows from right to left) with density n∞ and velocity
v∞ (and thus a current j = n∞v∞), and the perturbation occurs upstream. This is different
from the superfluid case, in which the fluid needed to remain unperturbed everywhere but at
the vicinity of the obstacle. This asymptotic condition at x→ −∞ imposes ∂xA = 0 at this
point, defining a typical energy scale µ∞ = ε(1) + v2∞/2.
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Figure 2.2: Schematic behavior of the fictitious potential W (n) as a function of n for v∞ > c∞, and
ε(n) = n. When the fictitious particle has an energy Ecl, the density of the fluid will oscillate between
n1 and n2. The inset displays the special case v∞ = c∞, in which case the fictitious particle is at rest
if its energy is that of the saddle-point.

Interestingly enough, this can be rephrased in terms of a Hamilton-like problem de-
scribing the dynamics of a fictitious classical particle of position A(x) =

√
n(x) and

momentum p(x) = ∂xA(x) at effective time x [52, 181]. The equation of motion of the
system given by Eq. (2.1b) arises from the Hamilton-like equations of motion

∂xA = ∂pH , (2.2a)

∂xp = −∂AH , (2.2b)

with the associated Hamiltonian

H (A, p) =
p2

2
+ W (A2)− U(x)A2, (2.3)

and the fictitious potential

W (A2 = n) =
v2∞
2

(
n+

1

n

)
+ nε(1)− E(n), (2.4)

with E(n) =
∫
dn ε(n). The typical shape of the fictitious potential W (n), conditioned by

the values of the chemical potential µ∞ and the flux j, is depicted in Fig. 2.2 for ε(n) = n
and v∞ > c∞. It is usually such that limn→0 W (n) = +∞ and limn→+∞W (n) = −∞,
with a local minimum Wmin (maximum Wmax) obtained for n∞ = 1 (nmax > 1). The
solutions A(x) of the Hamiltonian problem then coincide with “classical” trajectories in
the potential W (n), with corresponding energy Ecl.

This grey box is crucial for the comprehension of Chap. 2, as our study relies on a classical
approach to solving a wave problem. We encourage the reader to keep in mind that, in the
fictitious particle picture, A(x) is the equivalent of the position and x of the effective time.

In some configurations (viz. for a saturable nonlinearity) the local maximum Wmax van-
ishes. This obviously impacts the determination of vs, but does not prevent the system from
entering this stationary regime. The only requirement is that the fictitious potential always
admit a local minimum.
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How to determine vs?

In the absence of an external potential, the Hamiltonian given by Eq. (2.3) is time-
independent and the energy Ecl of the classical particle is conserved. The free solutions
of the Gross-Pitaevskii equation can be obtained from the possible trajectories of the
classical particle in the potential W (A2 = n). One can then obtain an analytical expres-
sion for the supersonic separatrix vs by solving the Hamilton equations with the energy
Ecl associated with the considered obstacle.
As long as Wmin < Ecl < Wmax, the particle will oscillate in W (n): This is the supersonic
stationary regime. This is no longer the case if Ecl < Wmin or Ecl > Wmax because the
particle would not be trapped anymore and the density could take any possible value:
The dynamics is no longer stationary, and excitations are continuously generated. The
boundary between these two cases is by definition given by the supersonic separatrix
vs, and corresponds to the last stationary solution, linking a nonstationary regime to a
stationary one as shown in Fig. 2.1. The supersonic separatrix vs is then characterized
by Ecl = Wmax.

What happens for weak obstacles?

When U(x) = 0, solutions with Ecl = Wmin or Ecl = Wmax (i.e. n = n∞ or n = nmax) corre-
spond respectively to the supersonic and the subsonic superfluid solutions. As v∞ approaches
c∞, these two critical velocities vs and vc merge and become identical and equal to the speed
of sound c∞, as shown in Fig. 2.1 for U0 = 0. This is linked to the structure of the fictitious
potential W (n), that now exhibits a saddle-point for v∞ = c∞ (see the inset of Fig. 2.2).
The presence of a weak obstacle with U0 � 1 will not alter the structure of this saddle-node
bifurcation, but will instead trigger the instability. This bifurcation between two behaviors
can be seen in Fig. 2.1 for U0 � 1.

Density profile

In the presence of a scattering potential U(x), the density profile of the quantum fluid in
the supersonic stationary regime is linked to the shape of the fictitious potential W (n), and
exhibits the presence of nonlinear waves upstream. Classically speaking, the dynamics of
the particle inside this potential is as follows: It starts unperturbed at x = −∞ (where
U(x) = 0) with density n∞ = 1 (A(−∞) = 1), and experiences a kick of energy when
meeting the obstacle. Its energy then goes from Wmin to Ecl, and the particle oscillates
between n1 and n2 (the first two solutions of W (n) = Ecl) after this encounter. Graphically,
the “particle” will evolve on the orange line between the two grey dots represented in Fig.
2.2. Concerning the density profile, this means that between x = −∞ and the obstacle, the
flow is unperturbed, and n(x) is a (possibly nonlinear) wave oscillating between n1 and n2
upstream. This situation is roughly depicted in the inset (c) of Fig. 2.1.

As in Chap. 1, the aim of this chapter is to obtain a complete phase diagram representing
the supersonic separatrix vs as a function of the parameters of the obstacle inside the fluid
(either the amplitude, or the width). To do so, we first derive analytical results in the two
opposite limits of narrow and wide obstacles, which are then interpolated by a numerical
simulation of the Gross-Pitaevskii equation.
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2.2 Narrow obstacle

The study of narrow obstacles will be twofold: We will first derive the analytical expression of
the supersonic separatrix vs, and then provide the full calculations leading to the expression
of the drag force for obstacles of arbitrary amplitudes, going beyond previous results obtained
in the perturbative regime. The results obtained in this section for vs and the drag force,
put together with those of Sec. 1.3.1, will provide a complete vision of the different existing
stationary regimes for the system in the presence of a narrow obstacle.

2.2.1 Supersonic separatrix

In a similar fashion to what has been derived in Sec. 1.3.1 (see also Refs. [45, 47, 52]),
we treat the case of a narrow obstacle by replacing it with a δ−peak obstacle of amplitude
U0F (σ) such that U(x) = U0F (σ)δ(x), with F (σ) = σ being the integral of Θ(σ/2 − |x|)
over the whole real axis. One can then obtain an analytical expression for the supersonic
separatrix by searching for the solutions of Eq. (2.1b) (which is actually the same as Eq.
(1.26)). The same approach is employed by separating the integration space into different
parts: downstream (x < 0), x = 0, and upstream (x > 0).

• Downstream (x < 0): Because of the radiation condition [157], the density perturbation
is null everywhere for x < 0, and the density profile is flat.

• At x = 0, one obtains the same condition on the derivative given by Eq. (1.27), except
that ∂xn(0−) = 0. This condition can be simplified to [52]

∂xn(0+) = 4n0U0F (σ) (2.5)

• Upstream (x > 0): We obtain

(∂xn)2

8n
+ W (n) = Ecl,δ, (2.6)

with Ecl,δ = 2U2
0F

2(σ) + v2∞ + ε(1)−E(1) defined thanks to the condition (2.5) with n0 = 1.
From this, it is now possible to obtain an analytical expression for the supersonic separatrix
vs. Several methods can be employed, and are detailed in the following paragraphs.

Method 1: Graphical resolution

The first method we present to obtain vs from Eq. (2.6) is basically the same employed as in
Chap. 1, and is based on a study of the fictitious potential W (n) displayed in Fig. 2.2. The
procedure is as follows

• Obtain nmax(vs) through ∂nW (nmax) = 0.

• Inject nmax(vs) into W (n) to obtain Wmax.

• Solve Ecl,δ(vs) = Wmax.
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In the end, this method yields an implicit relation for the supersonic separatrix as a
function of the amplitude λ = U0F (σ) of the δ−peaked obstacle

|λ| = 1√
2

[
v2s
2

(
√
nmax(vs)−

1√
nmax(vs)

)2

+ ε(1)[nmax(vs)− 1]

+ E(1)− E(nmax(vs))

] 1
2

. (2.7)

It is important to note that Eq. (2.7) is valid no matter the sign of λ = U0F (σ), meaning
that the supersonic separatrix will be the same whether the obstacle is attractive or repulsive.
This symmetry1 is a peculiarity of the δ−peak model, and will be broken as σ increases, or in
other words, when the velocity of the flow is large enough so that the associated de Broglie
wavelength is small enough to resolve the details of the potential. This will notably lead to
the appearance of resonances for vs, and will be the object of Sec. 2.5.

Exact analytical results can be derived from this method when specifying the expression
of the nonlinear interaction potential. For example, for ε(n) = n, one has

nmax(vs) =
v2s + vs

√
v2s + 8

4
, (2.8)

which leads to the implicit relation for vs [52]

|λ| =
√
vs(v2s + 8)3/2 + v4s − 20v2s − 8

4
√

2
. (2.9)

The derivation is however more complex when looking at a more complicated nonlinearity
such as the saturable one, for which ε(n) = n/(n+nsat). In the latter case, it is still possible
to obtain nmax analytically:

nmax(vs) =
v2s(1 + nsat) + vs

√
8nsat(1 + nsat) + v2s(1− nsat)2

2(2 + 2nsat − v2s)
, (2.10)

but the last step, i.e. the resolution of Ecl,δ = Wmax, has to be performed numerically to
obtain vs. These results are encompassed in Fig. 2.3, in which vs is represented as a function
of the amplitude of the δ−peak for the nonlinearities indicated in the legend. As Eq. (2.9)
involves the absolute value of the amplitude of the δ−peak, the supersonic separatrix vs is
an even function of λ ≶ 0.

One can see that although ε(n) = n is supposed to be a limiting case of the saturable
nonlinearity when nsat � 1, important deviations can be observed between the blue and
orange dotted curves. As a matter of fact, for saturable systems, the potential W (n) may be
such that it has no local maximum depending on the value of nsat, leading to the saturation of
vs at large U0F (σ). This saturation is all the more quickly reached as the saturation intensity
nsat is low (see, e.g., the nsat = 0.1 curve in Fig. 2.3). Figure 2.4 displays the corresponding
fictitious potential W (n) for this precise value of nsat. One can see that for velocities lower
than v∞ =

√
2 + 2nsat, the fictitious potential W (n) has the same behavior as for ε(n) = n

(i.e it goes to −∞ as n→ +∞). However, when the injection velocity exceeds that threshold,
W (n) has no local maximum anymore, and the fictitious particle is always trapped no matter
its energy. It will then always oscillate around the minimum of W (n), and all the solutions

1Symmetry not present for the critical velocity for superfluidity vc, as it is always equal to the speed of
sound for attractive obstacles.
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Figure 2.3: Supersonic separatrix vs as a function of the absolute value of the amplitude of a δ−peak.
These results are shown for various nonlinearities, as indicated in the legend. The curves are the ana-
lytical results we obtained, whereas the black dots come from a numerical simulation, and correspond
to the value of the velocity for which the drag force (in the stationary regime) becomes nonzero, for
given values of |λ|.
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Figure 2.4: Fictitious potential W (n) for a saturable nonlinearity with nsat = 0.1. The various
colors represent this potential for different values of v∞ ∈ {1.4,

√
2.2, 1.6}. These three velocities

lead each to different cases: For v∞ = 1.4, the fictitious potential behaves as the one for ε(n) = n;
whereas for v∞ = 1.6, it has no local maximum anymore. The value separating these two cases is
v∞ =

√
2 + 2nsat =

√
2.2, which is the saturation value of vs as can be seen in Fig. 2.3 in plain orange

line.

for nsat satisfying this condition are stationary. This notably translates into the saturation
of vs at large values of |U0F (σ)|, explaining the plateaux seen in Fig. 2.3 for nsat = 0.1 and
nsat = 1, with respective values of vs =

√
2.2 and vs = 2 (note that there also exists a plateau

for nsat = 10 at vs =
√

22, which is not displayed here, as it happens at larger |U0|).
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Method 2: The “polynomial way” for a powerlaw nonlinearity ε(n) = nν/ν, ν ∈ N

As previously explained, the solutions of Eq. (2.6) are fixed by the condition W (nmax) = Ecl,δ,
which admits i roots. These roots 0 ≤ n1 ≤ n2 ≤ · · · ≤ ni are solutions of

2nE(n)− 2n2µ∞ + 2nEcl,δ − v2∞ = 0, (2.11)

with µ∞ = v2∞/2 + ε(1) and Ecl,δ = 2λ2 + v2∞ + ε(1) − E(1). These i roots must be real for
the regime to be stationary, and, as a result, the discriminant of Eq. (2.11) must be positive.
This imposes a condition on the value of U0F (σ), and this is what defines the supersonic
separatrix vs.

To solve Eq. (2.11), it is convenient to work with a nonlinearity ε(n) whose antiderivative
E(n) is expressed as an integer-valued polynomial. For example for a powerlaw nonlinearity,
one gets E(n) = n1+ν/(ν + ν2) and in that case Eq. (2.11) is a polynomial P (n) of degree
2 + ν

P (n) = an2+ν + bn2 + cn+ d = 0, (2.12)

with the coefficients

a =
2

ν(1 + ν)
, (2.13a)

b = −
(
v2∞ +

2

ν

)
, (2.13b)

c = 2v2∞ + 4λ2 +
2

1 + ν
, (2.13c)

d = −v2∞. (2.13d)

Finally, the supersonic separatrix is implicitly given by the condition on the discriminant of
Eq. (2.12)

∆P =
ν(1 + ν)

2
(−1)

(2+ν)(1+ν)
2 Resn(P, ∂nP ) > 0, (2.14)

with Resn(P, ∂nP ) being the resultant of P (n) and ∂nP (n), i.e. the determinant of their
Sylvester matrix SP,∂nP [182], whose size is (3 + 2ν)× (3 + 2ν).

Results for ν = 1: We test this method for ε(n) = n, and verify if these results are in
accordance with the ones obtained with the previous method. The polynomial given by Eq.
(2.11) is now

P (n) = n3 −
(
v2∞ + 2

)
n2 +

(
2v2∞ + 4λ2 + 1

)
n− v2∞ = 0, (2.15)

which is the same as Eq. (A12) from [183]. It is of order 3 and its derivative is of order 2,
meaning that the Sylvester matrix associated with these two polynomials is of size 5× 5, and
reads

SP,∂nP =




1 b c d 0
0 1 b c d
d 0 1 b c
3 2b c 0 0
0 3 2b c 0



. (2.16)

Its discriminant, given by Eq. (2.14), reads

∆P = −16
{

16λ6 +
(
−v4∞ + 20v2∞ + 8

)
λ4 − (v2∞ − 1)3λ2

}
> 0. (2.17)

This equation has 6 solutions for λ, among which two are null, two are purely imaginary, and
two are real and with opposite signs. When plotting Eq. (2.17) in Fig. 2.5 for an arbitrary
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U0F (σ)

0∆
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Figure 2.5: Typical discriminant ∆P as defined by Eq. (2.17), for v∞ > c∞. The shaded area
corresponds to the domain of validity of the equation ∆P > 0. The supersonic separatrix is defined
by the last value of U0F (σ) for which ∆P > 0, i.e. ±λmax.

value v∞ > c∞, one can realize that this condition is satisfied provided |λ| ∈ [0, λmax]. In the
end, the supersonic separatrix is defined by |λ| = λmax, whose expression is found to be

|λ| =
√
vs(v2s + 8)3/2 + v4s − 20v2s − 8

4
√

2
. (2.18)

This is the exact same expression that was obtained with the previous method.
The concepts behind this more mathematical method might seem easier to grasp than

those of the previous section, but this method also has its limitations. Its ingenuity lies on
the fact that by choosing a powerlaw nonlinearity, one is left with only a polynomial. In
addition to that, it is not necessary to solve it, only to obtain its discriminant2. In theory, it
would then be possible to solve the problem for any powerlaw nonlinearity, even though the
resolution gets harder because of the size of the Sylvester matrix. However, the advantage
of this method is also its main drawback: It only stands for a powerlaw nonlinearity with
ν an integer. Some systems of interest described by a powerlaw nonlinearity but with a
noninteger ν (refer to the TOOLBOX in the introduction) are thus not described by this
method. Treating the case of the saturable nonlinearity is also not feasible since we would
not have a polynomial to solve.

Method 3: A numerical vs from the calculation of the drag force

Another way to obtain the supersonic separatrix vs is to compute the drag force experienced
by the obstacle as a function of the injection velocity v∞ > c∞, and to extract from these data
the first value of v∞ for which this drag force admits a well-defined stationary expression.
Even though the calculations are much more complicated as the drag force is a highly non-
trivial function of the amplitude of the obstacle, it remains possible to numerically determine
this limit. Detailed calculations are provided in Sec. 2.2.2 for ε(n) = n, and the supersonic
separatrix vs computed from the drag force is represented in Fig. 2.3 in black markers for
several values of λ = U0F (σ). The results provided via this method are in perfect accordance
with previous results obtained with methods 1 and 2.

2This is quite convenient as so far, only polynomials only up to degree 4 have known analytical solutions.
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2.2.2 Exact expression for the drag force

While many studies to determine the drag force in weakly interacting quantum fluids have
been led [47, 57, 156, 184, 185], these results rely on the linear-response theory and then
only treat the case of obstacles of small amplitudes. This yields a single critical velocity (the
Landau critical speed), separating two stationary regimes of transport: A superfluid one with
zero drag, and a regime of wave resistance with a nonzero drag (see Chap. 1).

In this section, we provide the full calculations leading to the analytical expression of the
drag force in the stationary supersonic regime for a repulsive δ−shaped obstacle of arbitrary
amplitude λ = U0F (σ), and for ε(n) = n. We recall the expression of the drag force exerted
by the fluid onto the obstacle, as provided in Chap. 1

Fd =

∫ +∞

−∞
dxn(x, t)∂xU(x). (2.19)

Based on this, a natural way to compute it3 is to first derive the density profile, and the
calculations are then pretty straightforward given the simplicity of the obstacle. It yields, as
shown in this section, a highly nontrivial function of the parameters of the system.

We remind that in the perturbative regime (i.e. when the amplitude of the obstacle is
really small compared to the chemical potential) – as already demonstrated in Sec. 1.2 – the
drag force is a Heaviside step function for a δ−shaped obstacle [47, 57, 163], and its value for
v∞ > c∞ is Fd,pert. = 2λ2. In this section, we improve this result by going beyond the limits
imposed by the linear-response theory.

Calculation of the density

The first step to obtain the expression of the drag force from Eq. (2.19) is to derive the
exact expression of the density n(x). For a δ−peak obstacle, this density profile differs a
lot depending on the considered position x. The radiation condition imposes that the wake
must be located upstream, where the density is highly perturbed and exhibits the presence
of nonlinear waves. On the other hand, the fluid is unperturbed downstream. We remind the
equation to obtain the upstream density of the quantum fluid in the presence of a δ−peak
obstacle, provided at the beginning of the chapter

(∂xn)2

8n
+ W (n) = Ecl,δ, (2.20)

with W (n) = v2∞
2

(
n+ 1

n

)
+ n − n2

2 and Ecl,δ = 2λ2 + v2∞ + 1/2 for ε(n) = n. The equation
W (n) = Ecl,δ admitting three roots 0 < n1 < n2 < n3 (see Fig. 2.2), one can re-express Eq.
(2.20) as

(
∂xn

2

)2

= n3 − 2n2µ∞ + 2nEcl,δ − v2∞ = (n− n1)(n− n2)(n− n3), (2.21)

with

µ∞ =
n1 + n2 + n3

2
=
v2∞
2

+ 1, (2.22a)

Ecl,δ =
n1n2 + n1n3 + n2n3

2
, (2.22b)

v2∞ = n1n2n3. (2.22c)

One can recover the values of n1, n2 and n3 as functions of λ and v∞, which, in the end,
are the only unknown parameters here. We search for bounded solutions of Eq. (2.21), as we

3Note that it is also possible to compute the drag force through the stress tensor (see [47, 163]).
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know that the density in the stationary supersonic regime will necessarily oscillate between
n1 and n2 (see Fig. 2.2). This equation, derived from the Gross-Pitaevskii equation, admits
spatially periodic stationary solutions which were first studied by Tsuzuki [186], Korteweg
and de Vries [187]: They are called “cnoidal waves” because they can be expressed in terms of
the Jacobi elliptic cosine function. The density profile then takes this form, and reads [188]

n(x) = n1 cos2 [φ(x)] + n2 sin2 [φ(x)] , (2.23)

which leads to

∂xn = (n2 − n1) sin [2φ(x)]
dφ

dx
. (2.24)

Combining Eqs. (2.23) and (2.24) in Eq. (2.21), one then obtains

∂xn = (n2 − n1) sin [2φ(x)]

√
(n2 − n1) cos [2φ(x)] + 2n3 − n1 − n2

2
, (2.25)

and so by identification,

dφ

dx
=

√
(n2 − n1) cos [2φ(x)] + 2n3 − n1 − n2

2
. (2.26)

The solution for the phase is given by the Jacobi amplitude [189]

φ(x) = am
[√
n3 − n1x+ C, k

]
, (2.27a)

k =
n2 − n1
n3 − n1

∈ [0, 1[, (2.27b)

leading to the density profile [188]

n(x) = n1 + (n2 − n1) sn2
[√
n3 − n1x+ C, k

]
. (2.28)

Here sn [x, k] = sin [am(x, k)] is the Jacobi elliptic sine function, and C a constant chosen to
match the density on either side of the obstacle. One finds that C = −K/2, with

K =

∫ 1

0

dt√
1− t2

√
1− kt2

, (2.29)

where the period of the sn [x, k] function is 4K [190]. This density profile in the supersonic
regime is a cnoidal-wave solution, and is represented in Fig. 2.6.

Calculation of the drag force

Once we have the density profile, it is pretty straightforward to compute the drag force from
its expression, with a δ−peaked obstacle U(x) = λδ(x), and the expression of the density
profile previously provided in Eq. (2.28) with n1, n2 and n3 being functions of λ and v∞.

However, as this expression for the density is valid in the stationary supersonic regime
only, the input velocity v∞ must be larger than the supersonic separatrix vs(λ) implicitly
given by Eq. (2.9). In the end, the only free parameter in the problem is the amplitude λ of
the obstacle.
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Figure 2.6: Density profile n(x)/n∞ in the supersonic regime for a δ−peak obstacle of amplitude
λ = 0.5. As imposed by the radiation condition, cnoidal waves given by Eq. (2.28) are emitted
upstream, whereas the density profile is flat downstream.

The calculation of the drag force leads to

Fd(x) = λ(n2 − n1)
√
n3 − n1 cn

[
−K

2
, k

]
sn

[
−K

2
, k

]
dn

[
−K

2
, k

]
, (2.30)

valid for

|λ| <
√
vs(v2s + 8)3/2 + v4s − 20v2s − 8

4
√

2
, (2.31)

with cn [x, k], sn [x, k] and dn [x, k] being respectively the Jacobi elliptic cosine, Jacobi
elliptic sine and the Jacobi delta amplitude. Equation (2.30) provides a simple explicit
expression for the drag force experienced by a point-like obstacle immersed in a stationary
supersonic 1D quantum flow. To the best of our knowledge, this has not been explicited
yet in the literature on quantum transport.

We represent this drag force in Fig. 2.7 (normalized by 2λ2, its constant value at super-
sonic speeds obtained in Chap. 1 within the linear-response theory) for several amplitudes
λ ∈ {0.1, 1, 2, 4} as a function of the input velocity v∞, and for ε(n) = n. These results give
credit to the drag force obtained in the perturbation theory as one can see that as the am-
plitude of the obstacle decreases, the supersonic separatrix tends to Landau’s critical speed
(vs/c∞ → 1), and the drag force above this velocity threshold tends to the result of the
linear-response theory, i.e. Fd/2λ

2 → 1.
A larger amplitude λ will shift the maximum of the drag force towards higher values of

v∞, which is logical as the higher the amplitude of the obstacle, the higher the supersonic
separatrix. Based on these results, one can recover the curve of the supersonic separatrix as
a function of the amplitude λ by looking at the values v∞ for which Eq. (2.30) (defined in
the stationary regime) exists, for a given value of λ. The simulation for various amplitudes
of obstacle permits to reconstruct the curve of vs(λ) (see the black dots in Fig. 2.3), which
is in perfect agreement with the theoretical expression for vs provided by Eq. (2.9), giving
credit to our analytical expression for the drag force.

Another consequence of an increasing λ is that the maximum value of the drag force will
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Figure 2.7: Drag force Fd rescaled by its perturbative value Fd,pert. = 2λ2 as a function of the injection
velocity v∞, for different amplitudes λ ∈ {0.1, 1, 2, 4}. The black dashed lines represent the asymptotic
limit for v∞ � 1, but remain valid for intermediate velocities. The higher λ, the higher the maximum
of the drag force and the velocity for which the drag force starts. This velocity is represented in grey
dashed line for each value of λ, and corresponds to the supersonic separatrix vs.

also increase. Concerning the algebraic decrease at large velocity, an asymptotic development
of Eq. (2.30) for v∞ � 1 shows that

Fd = 2λ2 +
λ4

v2∞
= Fd,pert.

[
1 +

1

2

(
λ

v∞

)2
]
. (2.32)

This is represented in black dashed lines in Fig. 2.7, and yields a really good fit to represent
the decreasing portion of the drag force. The resistance is thus larger for an obstacle of
large amplitude than a perturbative one, explaining the bump in the drag force for velocities
slightly above vs. At high velocity, the kinetic energy possibly exceeds the barrier and the
obstacle is less and less perceived, making the perturbative treatment relevant. The drag
force then decreases to its value Fd = Fd,pert. obtained in the linear-response theory.

Summary

To conclude this section on the drag force for δ−shaped obstacles of arbitrary amplitudes λ,
we gather all the results we have concerning vc, vs and Fd and plot them together. These
results are encompassed in Fig. 2.8, and are presented for given amplitudes of obstacle (λ = 1
in the top row, and λ = 4 in the bottom row). The left column represents the phase diagram
(λ, v∞) with the different separatrices: The critical velocity for superfluidity vc (Eq. (1.34))
for v∞ < 1, and the supersonic separatrix vs (Eq. (2.9)) for v∞ > 1. The right column
corresponds to the associated rescaled drag force given by Eq. (2.30). It admits different
behaviors depending on the regime, which are as follows:

• In the stationary subsonic regime, the drag force is found to be null as long as v∞ < vc:
This characterizes a superfluid flow, as detailed in Chap. 1.

• In the stationary supersonic regime (for v∞ > vs), the analytical expression of Fd is
given by Eq. (2.30). The drag force suddenly increases for v∞ = vs(λ), and reaches its
maximum close to this value. The way it decreases is then dictated by Eq. (2.32), until
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Figure 2.8: Left column: Phase diagram (λ, v∞) with the subsonic and supersonic separatrices respec-
tively for v∞ < 1 and v∞ > 1. Right column: Drag force as a function of the injection velocity, with
the asymptotic limit for v∞ � 1 in black dashed lines. The grey area is the nonstationary regime.
The two rows both stand respectively for λ = 1 and λ = 4.

it reaches a constant value for v∞ � 1 – the value obtained in the perturbative regime:
Fd,pert. = 2λ2.

• What about the nonstationary regime for velocities between vc and vs? In that case, the
system displays a complicated time-dependent evolution associated with a quasiperiodic
nucleation of nonlinear excitations such as solitons in the present 1D setting, and the
expression for the drag force provided in Eq. (2.30) is not valid anymore as it relies
on stationary solutions. In this intermediate regime, the drag force fluctuates a lot but
can be evaluated numerically in average, over a large integration time so as to capture
a large number of dissipative events, as performed in Ref. [47] in 1D, or Ref. [183] in
2D. This nonstationary regime is represented by the shaded grey area in Fig. 2.8, and
one can see that the higher λ, the bigger the gap created by the nonstationary regime
in the drag force.
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Figure 2.9: Schematic behavior of the fictitious potential W (n) as a function of n for v∞ > c∞ and
ε(n) = n, obtained in the Hamiltonian approach. The classical energy of the fictitious particle in the
wide obstacle regime is not constant anymore, and n0,min corresponds to the inflection point of W (n).

2.3 Wide obstacle

Back to the supersonic separatrix, we now derive results in the case of wide obstacles such
that σ � 1. This can be done within both frameworks of the Hamiltonian approach provided
in the previous section, or even the method used in Sec. 1.3.2.

Method 1: Using the Hamiltonian formulation

The Hamiltonian approach in terms of the fictitious particle in the potential W (n) is still
valid for a wide obstacle. In that case, the fictitious particle would adiabatically follow the
slow variations of the effective potential WU (n) := W (n) − U(x)n, and would remain at its
minimum as long as it exists. It is then only a matter of finding the saddle-node of the
equation, which yields n0,min, and inserting it in Eq. (2.34), thus obtaining vs,0(U0). This
time, the only difference is that Ecl,w = U0n0,min + C.

Graphically speaking, vs is obtained for the values of (U0,C) such that Ecl,w is tangent
to the fictitious potential W (n) at its inflection point n0,min, as represented in Fig. 2.9. The
procedure to obtain vs is the following

• Define the inflection point n0,min through the condition ∂2xW (n0,min) = 0.

• Solve Ecl,w(vs) = W (n0,min).

Method 2: The hydraulic approximation

We momentarily leave the Hamilton formulation of the problem, and go back to the method
used in Sec. 1.3.2: We perform a series expansion of the obstacle in powers of the width σ,
such that U(x) = U0 − |∂2xU0|x2/2σ2, and first treat the hydraulic case of the flat obstacle
following the same method.

The stationary equation to solve is then given by the fictitious potential V (n0, v∞) = U0

defined in Eq. (1.42), and represented in Fig. 2.10. This equation admits two stationary
solutions, the first one vc,0 < 1 being the critical velocity for superfluidity, with n0,min < 1
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Figure 2.10: Fictitious potential V (n0, v∞) as a function of n0 for v∞ = 2 and ε(n) = n. For repulsive
obstacles, there are up to two solutions, and the supersonic separatrix vs,0 is obtained for the value of
v∞ for which there are no solutions anymore. Concerning attractive obstacles, there are always two
solutions.

the density at x = 0. The other solution is the one we are interested in in this chapter: It is
obtained for supersonic velocities such that vs,0 > 1, which yields n0,min > 1, characteristic
of the emission of long wavelength waves.

Again, we solve this equation for a given nonlinearity, which yields the expression for the
supersonic separatrix vs,0 as a function of U0 in the hydraulic approach. This equation has
solutions as long as U0 < Vmax = V (n0,min, v∞).

This yields the implicit equation necessary to obtain vs,0 as a function of U0

v2s,0
2

(
1− 1

n0,min

)
+ ε(1)− ε(n0,min) = U0, (2.33)

with
v2s,0 = ε′(n0,min)n30,min, (2.34)

which is actually the same as for the critical velocity for superfluidity vc,0, except that
now we need supersonic solutions.

Note that Eq. (2.33) defines the same fictitious potential as in Sec. 1.3.2, but the range
of reachable n0 changes due to the constraint vs,0 > 1. It is represented in Fig. 2.10 for
ε(n) = n and v∞ = 2. It is interesting to see that the values of possible densities at x = 0
are not bound this time, as n0,min can take any value larger than 1.

In then end, this hydraulic method is just a re-expression of the Hamiltonian approach
previously explained. The condition Vmax(n) = U0 is nothing but the derivative of Ecl,w =
W (n) (i.e. the condition in the Hamiltonian approach) with respect to n, evaluated at
n = n0,min. It is thus normal to recover the exact same result for vs,0.
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Figure 2.11: Supersonic separatrix vs,0 as a function of the amplitude of a repulsive obstacle of large
σ. The results are obtained for the nonlinearities provided in the legend.

2.3.1 Repulsive obstacles

It is possible to obtain exact analytical results for vs,0 with respect to the amplitude of the
obstacle (as the width is supposed to be large) for ε(n) = n

vs,0 =

[
2(U0 − 1) + 3

(
U0 − 1 +

√
U0(U0 − 2)

)− 1
3

+ 3
(
U0 − 1 +

√
U0(U0 − 2)

) 1
3

] 1
2

. (2.35)

Similar results were obtained numerically for a saturable nonlinearity.

The solutions for vs,0 are represented in Fig. 2.11 as a function of the amplitude U0 of
the wide obstacle, for the same nonlinearities as in the previous sections. One can see that
as U0 increases, the supersonic separatrix vs,0 takes on higher values: A bigger obstacle will
induce more nonlinear emissions inside the fluid, making the transition towards a stationary
solution more complicated. When comparing Fig. 2.11 with the allure of vs for the δ−peak,
one can see that vs,0 does not reach a plateau to a given value when working with a saturable
nonlinearity. This behavior is then really an artifact of the δ−peak. It is also interesting to
note that the deviation with the curve for ε(n) = n (blue curve) is less pronounced than for
the superfluid case (see Fig. 1.13).

Concerning the possible correction to the following order in σ, the method used in Sec.
1.3.2 (and in Refs. [45, 191]) is not applicable anymore as it relies on the fact that n(x) =
n0,min + δn(x), with δn/n0,min � 1, i.e small density fluctuations around x = 0. This is not
the case as n0 ∈ [1, n0,min], and there is no restriction on the value of n0,min, since v∞ can
take any value larger than 1. A comparison with the numerical simulation of the problem
shows that if it exists, this correction is actually negligible when σ � 1, and the hydraulic
approach is sufficient. It will be numerically demonstrated in the following Sec. 2.4 that
when σ diminishes, this correction slowly increases, thus reducing the value of vs

4.

4This is the opposite of the superfluid regime, in which this correction tended to increase the value of the
critical velocity for superfluidity. The gradient of the potential U(x) thus favor the stationarity of the flow.
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2.3.2 Attractive obstacles

For the case of attractive obstacles, the fictitious potential presented in Fig. 2.10 shows that,
again, there is always a solution to the equation V (n0, v∞) = U0 no matter the value of the
input velocity: vs,0 = 1 for wide attractive obstacles. This, combined with the result of the
previous chapter vc,0 = 1, shows that the stationary regime is never broken for wide attractive
obstacles: One goes continuously from a superfluid regime to a stationary nonsuperfluid one,
never encountering turbulence. This is however not true anymore for obstacles of arbitrary
width, as it has been shown in the previous section that the supersonic separatrix for a narrow
obstacle is the same for repulsive or attractive obstacles.

2.4 Gaussian obstacle of arbitrary width

As in the superfluid case, the width of the obstacle has an important impact on the shape of
the supersonic separatrix, and we have to numerically solve the problem in order to obtain the
shape of this separatrix for obstacles of arbitrary widths. This study allows us to interpolate
the two different asymptotic results obtained in both limits of σ � 1 and σ � 1.

We numerically solve the Hamilton equations Eqs. (2.2) with the Hamiltonian defined in
Eq. (2.3) with a RK4 algorithm, which is equivalent to solving the following system

∂xA = p, (2.36a)

∂xp =
v2∞
A3
− 2

(
v2∞
2
− U(x) + ε(1)− ε

(
A2
))

A, (2.36b)

with (A(−∞) = 1, ∂xA(−∞) = 0) as initial condition, meaning that the density profile is
flat far downstream from the obstacle, and equal to n∞. The numerical resolution of Eqs.
(2.36) with the RK4 algorithm provides the density of the quantum fluid everywhere in space
for a given value of v∞, and of the potential U(x). Our criterion to obtain the supersonic
separatrix from that is to run several simulations with a decreasing v∞ (starting from a point
in the phase space far in the stationary region), and then to look for the first value of v∞ for
which the density diverges or becomes negative at the position of the obstacle, meaning that
the regime is not stationary anymore.

2.4.1 Repulsive obstacles

We run the simulation for a Gaussian obstacle U(x) = U0e
−x2/σ, U0 = 1, and various ex-

pressions of ε(n), yielding the results for the supersonic separatrix vs as a function of σ
represented in Fig. 2.12. The supersonic separatrix is an increasing function of U0, until it
reaches its value obtained in the hydraulic approach when σ � 1.

The analytical limits found in the previous sections are again in perfect agreement with the
numerical results obtained after solving the Hamiltonian problem. For the sake of clarity, the
results for the saturable nonlinearity are only represented for nsat ∈ {0.1, 1}. It is interesting
to note that for saturable systems, the range of validity of the analytical limits depends on the
value of nsat: The smaller nsat (i.e., the more saturated the system), the shorter the validity
range of our analytical result in the limit σ � 1. This can be clearly seen in Fig. 2.12, in
which the limit for σ � 1 (black dotted line) starts to deviate from the numerical solution
for nsat = 0.1.

We also represent this supersonic separatrix in the bottom part of Fig. 2.12 for the same
Gaussian obstacle as a function of σ for different values of U0 ∈ {0.1, 0.5, 1, 2}, and for a
saturable nonlinearity. After comparing the curves for these different U0, one can clearly
see that the higher the barrier, the higher the supersonic separatrix, meaning that range of
values of the parameters (σ, v∞) leading to a nonstationary regime is more important than
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Figure 2.12: Top: Supersonic separatrix vs as a function of the width σ of a Gaussian obstacle of
amplitude U0 = 1, for different expressions of ε(n) (see legend). The asymptotic results obtained
in both limits of narrow and wide obstacles are represented in black dotted and dashed lines. The
agreement with the numerical results is good, but their validity span for narrow obstacles is smaller
as nsat decreases in the case of a saturable system. Bottom: Supersonic separatrix vs as a function
of the width for Gaussian obstacles of various amplitudes U0 ∈ {0.1, 0.5, 1, 2}. vs is plotted for
ε(n) = n/(n+ nsat) with nsat = 0.1.

for a smaller U0. This was also the case in the subsonic regime: In the end, the bigger (U0, σ),
the easier it is for the system to be in a nonstationary regime.

2.4.2 Resonances for attractive obstacles

The numerical simulation for attractive obstacles reveals that vs(σ) = 1 for many values of
σ: We call this “resonances” in a sense that these points where vs = 1 are associated with a
perfect transmission across the obstacle, as will be demonstrated in Sec. 2.5. The top part
of Fig. 2.13 – representing vs as a function of σ for different nonlinearities – also shows that
the number of resonances gets larger as σ increases, and that the curve of vs can be delimited
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Figure 2.13: Top: Supersonic separatrix vs as a function of the width σ of an attractive Gaussian ob-
stacle of amplitude U0 = −1, for different expressions of ε(n) (see legend). One can see the appearance
of resonances for given values of σ, that are slightly shifted as σ increases and nsat decreases. Bot-
tom: Supersonic separatrix vs as a function of the width for Gaussian obstacles of various amplitudes
U0 ∈ {−1,−0.1}. vs is plotted for ε(n) = n/(n+ nsat) with nsat = 0.1.

by an envelope structure, which expression is undefined yet.

The bottom part of Fig. 2.13 represents the supersonic separatrix, again as a function of
σ and for a saturable nonlinearity, but for various values of U0. For the sake of clarity, we only
have represented it for U0 ∈ {−1,−0.1}. One can see that the effect of U0 on the envelope
vs and the position of the resonances is also important: The larger U0, the more numerous
the resonances and the higher the envelope of vs. The supersonic separatrix is thus highly
nontrivial for such a Gaussian obstacle, as the position of the resonances and the envelope of
vs will both vary with σ, U0 and ε(n) (and nsat for a saturable nonlinearity).

This phenomenon of resonances is quite peculiar, and necessitates further investigation to
better understand their nature: What is their origin? How are they distributed? We provide

77



CHAPTER 2. ONE-DIMENSIONAL STATIONARY TRANSPORT AT SUPERSONIC
VELOCITIES

in Sec. 2.5 a thorough characterization of these resonances and the envelope of vs, focusing
on a simpler obstacle – a square-well potential instead of an attractive Gaussian defect –
making it possible to derive analytical results.

2.5 Characterizing the resonances for attractive obstacles

Gaussian attractive obstacles lead to an interesting shape for vs by exhibiting the presence
of nonlinear-resonances. We show in this section that these resonances are associated with
lines of perfect transmission across the attractive obstacle, and that this can be assimilated
to “superfluid-like” solutions for supersonic velocities, connecting the superfluid regime to the
supersonic one, never leaving the stationary regime. These solutions are of great interest, but
only exist on specific curves in the (U0, v∞) diagram, and do not form a continuous family of
solutions like in the subsonic superfluid regime.

While several of the results we present were already discussed in Ref. [52], the resonances
we characterize in this section were not the main focus of those authors. Here, we provide a
comprehensive approach that leads to various explicit results, highlighting the implications
of these resonances on the dynamics of the system.

In this section, we use the Hamiltonian approach provided in Sec. 2.1 and predict the
existence of these resonances in terms of the fictitious potential W (n). We derive these results
for a toy-model consisting in squared obstacles U(x) = U0Θ(σ/2−|x|) of arbitrary amplitude
U0 and width σ, and for ε(n) = n. This simpler system allows us to derive exact analytical
results for the characterization of the resonances.

2.5.1 Origin of the resonances

We first provide a complete study of the lobe structure corresponding to resonances seen
for attractive obstacles, meaning the shape of the envelope of vs, and the fact that these
resonances are associated with lines of prefect transmission in the (U0, v∞) plane.

Transmission coefficient

The transmission and reflection coefficient of a plane wave diffracted by a square well are
usually well known in the linear case (i.e. ε(n) = 0), leading to an easy description of the
position of the resonances [178], for which the reflection is suppressed. This is however not
the case anymore when including the interactions between particles, as it is generally not
possible to separate the incoming and reflected waves. Yet, it remains possible to obtain a
good description of these coefficients, as well as the positions of the resonances in the weak
backscattering limit where δn/n∞ � 1 [181, 192]. In this approximation, the transmission
coefficient reads [181]

T =

(
1 +

∆E

2(v2∞ − 1)

)−1
, (2.37)

with ∆E the energy difference of the fictitious particle between its final (x = +∞) and initial
(x = −∞) states: ∆E = H [A, p]|x=+∞−H [A, p]|x=−∞, with an initial profile corresponding
to the equilibrium A = 1 and p = 0 (flat density profile).

The numerical results based on Eq. (2.37) are summarized in Fig. 2.14, where the color
bar shows the transmission coefficient of the fluid of a function of the injection velocity v∞
and the amplitude U0 < 0 of the rectangular well, for a given value of σ. The colored zone
corresponds to the stationary regime, and clearly exhibits resonances. It is separated from
white zones of undefined transmission by the supersonic separatrix vs. The lines of perfect
transmission are shown to follow exactly the nontrivial structure of the stability diagram and
are drawn as orange dotted curves, while the white dashed curve represents the envelope of
vs.
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Figure 2.14: Phase diagram (U0, v∞) (in the natural units of the superfluid) of a quantum fluid flowing
across attractive square well potentials of respective widths σ = 1 (top) and σ = 4 (bottom), and
for ε(n) = n. The transmission across the barrier is associated with the color bar and is maximum
along the orange dotted curves, which determine the position of the resonances. The white dashed
line represents the envelope of vs. The tag numbers 1–3 are associated with three cases: Above the
envelope, below it but in the stationary regime, and below it in the nonstationary regime. These
different regimes will be explained in the following sections.

When comparing the top and bottom figures (respectively, for σ = 1 and σ = 4), one can
see that the number of resonances gets larger as σ increases. At some point, for an arbitrarily
large value of σ, the resonances are so thin and numerous that they are not distinguishable
from one another anymore, to the extent that the supersonic separatrix would be given by
vs = 1 in the limit σ � 1, closing the nonstationary gap. One can also see that for such
an obstacle, the envelope of vs bears no dependence on σ as it remains the same while the
width increases. This is different to the previous case of the Gaussian obstacle, for which this
envelope was a decreasing function of σ.

Analytical results can be obtained for both the envelope of vs and the lines of perfect
transmission, and rely on the thorough study of the fictitious potential W (n). Depending on
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W (n−)

W (n2)

E0 W (n)

W0(n)

Figure 2.15: Classical fictitious potentials W (n) and W0(n) in the case of an attractive square well in
the configuration 1. W (n) is for |x| > σ/2, and W0(n) for x ∈ [−σ/2, σ/2] inside the well.

its shape (and on the value of U0 and v∞), one can be in either the configurations 1, 2 or 3
presented in Fig. 2.14. An explanation is provided in terms of the fictitious particle within
this potential.

Before the excitations caused by the square well potential, the fictitious particle is at rest
from x = −∞ to x = −σ/2 with constant density n∞ and energy E∞ = W (n∞), and is
located at the bottom of the fictitious potential W (n). As x increases, it reaches the well
and undergoes a kick of energy ∆E = E0−E∞, going from (n∞, E∞) to (n∞, E0) in the new
fictitious potential W0(n) = W (n) + |U0|n. This corresponds for example to the right vertical
arrow in Fig. 2.15. As it is not at equilibrium in W0, it will oscillate between n∞ and n−
(the other solution of W0(n−) = E0) as it progresses in the obstacle, and will return to W
with density ñ when x = σ/2, as represented by the left vertical arrow in Fig. 2.15.

Following Ref. [52], we define L̃, corresponding to the distance between n∞ and ñ per-
formed in W0, and L0 the distance of a round-trip between n∞ and n−, i.e. the period of the
oscillations of the fictitious particle in W0

L̃ =
1√
2

∫ √n∞
√
ñ

dA√
E0 −W0(A)

, (2.38a)

L0 =
√

2

∫ √n∞
√
n−

dA√
E0 −W0(A)

. (2.38b)

Several cases leading to different dynamics for the fluid are then possible depending on
the values of U0, v∞ and σ.

Case 1: Periodic orbits above the envelope of vs

Stationary solutions always exist no matter U0, σ and v∞ when the energy of the fictitious
particle at x = σ/2, i.e. W (ñ), is such that W (ñ) < W (n−) < W (n2). That way, the
fictitious particle is confined and oscillates as shown in Fig. 2.15, leading to a periodic orbit.

In the configuration where ñ = n−, one has W (ñ) = W (n−) = W (n2): The fictitious
particle returns to the fictitious potential W with exactly the energy of the local maximum of
W (n). This defines the envelope of vs, separating two cases: One where stationary solutions

80



CHAPTER 2. ONE-DIMENSIONAL STATIONARY TRANSPORT AT SUPERSONIC
VELOCITIES
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Figure 2.16: Same caption as Fig. 2.15 but for the configuration 2.

always exist (as illustrated by the tag number 1 of Fig. 2.14), and one where the existence
of such solutions is conditioned by the value of σ. An analytical expression can be obtained
for that envelope and can be found in Eqs. (34) and (35) of Ref. [52]

1− F (v∞)

2U0
= G(v∞, U0), (2.39a)

F (v∞) =

[
v2∞
4

(
1 +

√
1 +

8

v2∞

)
− 1

]
×
[

5v2∞
4

+ 1− 3v2∞
4

√
1 +

8

v2∞

]
, (2.39b)

G(v∞, U0) =
v2∞ + 1

2
+ U0 −

[(
v2∞ + 1

2
+ U0

)2

− v2∞

] 1
2

. (2.39c)

Given Eqs. (2.39), we have the confirmation that the envelope of vs does not depend on
σ for an attractive square well obstacle. The resonances will then never disappear, and the
envelope will always be the same no matter the width of the obstacle. This is different for a
Gaussian obstacle, for which the envelope of vs does depend on σ, and decreases until it is not
distinguishable anymore from vc = 1. It stems from the fact that when the fictitious particle
is excited after encountering W0(n) at x = −σ/2, it will either experience a flat obstacle, or
an obstacle which amplitude depends on σ (Gaussian obstacle). Since the structure of the
resonances is linked to the shape of the fictitious potential W0(n) (and of U(x)), it is then
normal that the envelope of the resonances depends on σ for a Gaussian obstacle.

Case 2: Periodic orbits below the envelope of vs

Figure 2.16 shows the other configuration possible for stationary states to exist, subjected to
the condition W (ñ) < W (n2) < W (n−). It translates to the fact that the distance traveled
by the fictitious particle in W0 is such that the energy W (ñ) of the particle at x = σ/2
is still lower than the maximum of W , so periodic orbits can exist. On the other hand,
W (ñ) could in principle be larger than W (n2) for other values of σ. Stationary solutions
exist for values of σ associated with distances performed in W0(n) comprised in the interval
[0, L̃] ∪ [L0 − L̃, L0 + L̃] ∪ [2L0 − L̃, 2L0 + L̃] . . . , describing the lobe-like shape seen in Fig.
2.14, and corresponding to the tag number 2.
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Figure 2.17: Same caption as Fig. 2.15 but for the configuration 3. In that case, there are no stationary
solutions anymore.

Concerning the exact position of the resonances, they first appear on the line v∞ = 1
and link the superfluid regime to “superfluid-like” solutions in the supersonic regime, making
the transition continuous and never leaving the stationary regime. They are obtained when
the two extrema of the fictitious potential W (n) merge in a unique saddle-point located at
n = n∞. The fictitious particle cannot oscillate anymore, and the only possibility for a
stationary state to exist is when the excited fictitious particle exits W0(n) with the same
density it had when entering it, meaning L̃ = 0.

More generally, when the fictitious particle performs an arbitrary number of round-trips
in the excited potential W0(n) so that its energy after exiting the obstacle is exactly the one
it had before the excitation, a resonance forms between the width of the obstacle and the
wavelength of the cnoidal wave of the oscillating particle, causing a perfect transmission, and
linking the superfluid regime to the stationary nonsuperfluid one. The equation of these lines
of perfect transmission, represented in orange dotted curves in Fig. 2.14, is then given by
αL0 = σ, with α an integer.

Case 3: Free states in the nonstationary regime

When W (n2) = W (ñ) = W (n−), the energy of the fictitious particle is above the one of the
local maximum of W (n) as can be seen in Fig. 2.17. No oscillation in W is possible, and no
periodic orbits can exist: The system is not stationary anymore, corresponding to the white
zones in Fig. 2.14, associated with the tag number 3.

2.5.2 Separation between the resonances

We further characterize the resonances by looking at their starting point on the line v∞ = 1:
We want to see if their distribution in the nonlinear case ε(n) = n follows the same distribution
as in the linear case, i.e. for ε(n) = 0. It is not possible to analytically define them when
ε(n) = n because the usual approach in terms of incident and reflected waves is not possible
anymore. In that case, the positions of the resonances are slightly shifted compared to the
linear case as discussed in Refs. [110, 111]. We numerically compute them using Eq. (2.37).

When neglecting the interactions between particles however, it is possible to define the
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Figure 2.18: Rescaled value of the separation between the resonances for a square well obstacle as a
function of the index k of the resonance. The colored dots, triangles and squares stand respectively
for σ =∈ {2, 4, 8} in the nonlinear regime ε(n) = n, and are obtained after a numerical simulation of
Eq. (2.37). The black dashed curve is the theoretical value for the linear case ε(n) = 0.

exact position of the resonances because the transmission coefficient is easily tractable [193]

T =


1 +

U2
0

4E(E − U0) sin2
[√

2(E − U0)σ
]



−1

. (2.40)

A resonance occurs when the transmission coefficient T = 1, leading to the condition on the
amplitude of the obstacle

U0,k = E − k2π2

2σ2
, (2.41)

with k the number of the resonance. To get rid of the energy offset, we focus on the distance
between two consecutive resonances, and thus introduce the rescaled separation between each
consecutive resonances

∆Uresc.(k) =
2σ2

(2k + 1)π2
|U0,k+1 − U0,k| . (2.42)

We plot this rescaled separation in Fig. 2.18 as a function of the index k. This function
is constant in the linear case and is represented in black dashed line, whereas the various
markers are numerically obtained for different values of σ in the nonlinear case (see legend).
As Eq. (2.42) gets rid of the σ−dependence, the curves for the various σ are supposed to
collapse on the curve for the linear case. This is the case as one can see in Fig. 2.18, but
for larger and larger values of k as σ increases. The deviation from the black curve is clear
for small values of k (all the more that σ is large), meaning that the separation between the
two first resonances (for example) in the nonlinear case is really different from that obtained
in the linear case. Note that we have less data for σ = 2 than for the rest because such an
obstacle leads to less resonances in the numerical integration we performed.

2.5.3 Resonances in the density profile of the fluid

We numerically obtained the density profiles of the fluid for obstacles of fixed σ = 4 but
varying U0, and for a constant velocity v∞ = 3.5. Based on the data provided in Fig. 2.14,
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Figure 2.19: Top: Density profiles for several chosen parameters in the (U0, v∞) plane (for the sake
of clarity, the different curves are shifted to avoid overlapping). The flow goes from right to left
with constant velocity v∞ = 3.5, and encounters a square-well obstacle of width σ = 4 and varying
amplitudes U0 ∈ {−5.14,−9.05,−11.4}. For U0 = −5.14 and U0 = −9.05, one is almost located on
the sixth and seventh lines of perfect transmission, as circled in blue and green in the bottom part
of the figure – There are indeed respectively 6 and 7 oscillations in the well. The orange curve is
obtained for U0 = −11.4, which does not correspond to a perfect transmission (see the orange circle
in the bottom figure): This can be seen in the density profile, which is a nonlinear wave upstream.
Bottom: We recall the value of the transmission coefficient as a function of U0 and v∞: The orange,
green and blue circle define the values we are interested in, and are respectively associated with the
density profile in the top part.

we chose values of U0 representing different dynamics (refer to the orange, green and blue
circles in the bottom part of Fig. 2.19). This is represented in the top part of Fig. 2.19, where
the blue and green lines stand respectively for U0 = −5.14 and U0 = −9.05, both supposedly
located on the sixth and seventh line of perfect transmission (k = 6 and k = 7). In these
cases, the density is locally perturbed at the position of the obstacle, and is flat otherwise:
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Figure 2.20: Friction force exerted by a fluid of supersonic velocity v∞ = 3.5 on a square obstacle as
a function of its amplitude, for two different widths σ = 1 and σ = 4. The values of U0 for which
Fd = 0 are located on the lines of perfect transmission.

This is a superfluid-like dynamics. The only difference between the two is that as k increases,
so does the number of nodes and oscillations in the density profile.

For U0 = −11.4, the transmission coefficient is lower than one and does not correspond
to a resonance anymore. The density profile, represented in orange, is thus similar to the one
in the supersonic regime when U0 > 1: It corresponds to cnoidal waves. Their period can
be determined within our approach with the fictitious potential W , and is given by the time
taken by the fictitious particle to go from ñ to the second solution to W (n) = W (ñ) (see Fig.
2.15 for example).

2.5.4 Resonances associated with a zero drag force in the supersonic regime

We also characterized the friction exerted onto the obstacle by numerically evaluating the
drag force, as given by Eq. (2.19). We used for this the density profiles computed in the
previous section. Contrarily to the δ−peak, for which Fd was close to be constant (except
for v∞ really close to vs), the drag force for attractive obstacles is now an ever-oscillating
function. It is represented in Fig. 2.20 as a function of U0, for v∞ = 3.5, and for σ = 1 and
σ = 4, and clearly exhibits resonances for given values of U0.

For example for σ = 4, the force drops to zero for U0 = −5.14 and U0 = −9.05, which
corresponds indeed to the density profiles obtained in Fig. 2.19. When the force drops to
zero, the transmission is maximum: The fluid experiences no friction along these lines of
perfect transmission, leading to a “superfluid-like” behavior for supersonic velocities.

2.6 Conclusion

In a similar fashion to Chap. 1, in which treated the superfluid regime, the present chapter
was mostly dedicated to the determination of the supersonic separatrix vs, i.e., the separation
between the nonstationary regime, and the second regime of stationary transport at higher
velocities. Using several methods (Hamilton approach or hydraulic approximation which, in
the end, are equivalent), we derive exact analytical results for vs for repulsive and attractive
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Gaussian obstacles of various widths and amplitudes, and also for different expressions of the
nonlinear interaction potential ε(n). A detailed study of the drag force exerted by the fluid
onto a narrow obstacle is also performed, providing results going beyond the linear-response
theory.

These results, put together with those obtained in Chap. 1, allow us to complete the
phase diagrams of the different critical velocities vc and vs in the (U0, v∞) and (σ, v∞) planes,
and have a complete description of the different regimes of transport possible for the quantum
fluid. We respectively encompass vc and vs in Figs. 2.21 as a function of the amplitude of
the obstacle, for σ � 1 (top), σ = 1 (middle) and σ � 1 (bottom). These different vc’s and
vs’s are represented for ε(n) = n in blue, and the associated blue shaded area represents the
stationary regime (either subsonic or supersonic). For the sake of completeness, the results for
a saturable nonlinearity are also represented in orange, albeit only in the two analytical limits
σ � 1 (top) and σ � 1 (bottom), for readability concerns. Here are the main characteristics
of each systems, depending on the width of the obstacle.

• σ � 1: The supersonic separatrix for repulsive obstacles is, similarly to vc in the
superfluid regime, a monotone function of U0 whose lowest value is provided by the
hydraulic limit (bottom). vs is a symmetric function of the amplitude of the obstacle as
it only depends on |U0F (σ)|; This symmetry is later broken when σ increases. Finally,
it exhibits a saturation in the case of a narrow obstacle, which is also interpreted as an
artifact of the δ−distribution.

• σ ∼ 1: A new interesting behavior is observed for attractive obstacles: The symmetry
in vs provided by the δ−peak is broken as soon as we leave the limit of narrow obstacle,
and the attractive part of the phase diagram exhibits the presence of resonances in
vs(U0). An in-depth characterization of these resonances is provided in Sec. 2.5 for an
attractive rectangular defect, in which we derive both their position and the envelope
of the supersonic separatrix. This allows us to make the distinction between 3 zones in
which the dynamics will differ in the phase diagram provided in Fig. 2.14. Above the
envelope of vs where the solution is always stationary, and under it where the solution
is either stationary (between the lobe structure and the envelope) or not (under the
lobe structure). The density profile becomes symmetric for these resonances, and the
friction disappears as the quantum fluid is totally transmitted through the obstacle:
Such solutions are reminiscent of a superfluid regime, which normally occurs only at
subsonic velocities. Interestingly, Ref. [113] also shows the presence of such resonances
for peculiar values of v∞ > vc, for which the excitations are fully suppressed, leading
to a “superfluid-like” behavior at supersonic velocities. These velocities are close to
the velocities leading to a perfect transmission across the obstacle in the linear case
(i.e. when ε(n) = 0), thus assimilating these resonances to a nonlinear counterpart of
the Ramsauer-Townsend effect [178]. These results were however derived for repulsive
square obstacles, but are actually not contradictory with this manuscript. Indeed, the
lines of perfect transmission we derived in Sec. 2.5 are slightly curved and thus still
exist for positive values of U0, even if their origin stems form negative values of U0.

• σ � 1: For a Gaussian obstacle, these resonances, associated with lines of perfect
transmission – and so with superfluid-like solutions – slowly disappear in the limit
σ � 1 (bottom)5. In the end for attractive obstacles, one goes continuously from
vs > 1 to vs = 1 as σ increases, via the appearance of resonances. In the limit σ � 1,
the resonances are so numerous and their envelope is so low that it becomes impossible
to differentiate it from vs = 1: The supersonic separatrix vs is then identical to the
critical velocity for superfluidity vc, and the nonstationary regime totally disappears.

5Note that for a square well obstacle, the resonances always exist since the envelope of vs does not merge
with vc = 1, but the resonances are so numerous that the nonstationary regime is not distinguishable anymore.
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Figure 2.21: Critical velocities as a function of the amplitude of a narrow (top), moderately wide
(middle, σ ∼ 1) and wide (bottom) Gaussian obstacle, for the various nonlinearities indicated in the
legend. The frontier in the subsonic regime v∞ < 1 corresponds to the critical velocity for superfluidity
vc, whereas the frontier in the supersonic regime v∞ > 1 is the supersonic separatrix vs. The shaded
area corresponds to the stationary regimes for ε(n) = n, whereas the white one is the nonstationary
regime, in which solitons are repeatedly emitted for a repulsive obstacle. All the results in the top
and bottom figures are analytical, whereas those for σ ∼ 1 were obtained numerically.
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In strong contrast to the 1D geometry studied in Chap. 1, the continuity equation is not
integrable in 2D. In this dimension, different analytical approaches of the quantum hydro-
dynamic equations are thus in order to evaluate the critical velocity for superfluid motion.
These approaches rely on Janzen-Rayleigh expansions of the velocity potential and appropri-
ate continuity conditions for the flow fields at the boundary of the obstacle. Supported by
numerical simulations, they reveal that for a wide obstacle, the critical speed is a nontrivial
nonmonotonic function of the amplitude of the obstacle, with two different branches depending
on whether the obstacle is penetrable or not, and corresponding to two distinct mechanisms
for the breakdown of superfluidity. The present chapter is devoted to detailing these results.
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Figure 3.1: Left: Schematics of the experimental setup of Ref. [195]. The obstacle is generated by
a repulsive Gaussian beam (blue) that moves within the condensate with constant velocity. Right:
Critical velocity vc/cs (with cs the speed of sound) with respect to the relative amplitude of the
barrier V0/µ, for various widths σ/ξ of obstacle (see the inset for vc(σ)). The critical velocity reaches
a minimum around V0 = µ, and increases to reach a plateau for large V0, which depends on σ.
Interestingly, the minimum exhibited around V0 = µ disappears as σ decreases. Figures from Ref.
[195].

Historically, the study of superfluidity in systems described by the Gross-Pitaevskii the-
ory regained momentum with the long-awaited experimental realization of BECs in atomic
systems in 1995 [8, 9]. Following this, subsequent experiments appeared, particularly in three
dimensions [39, 68, 69], which explored superfluidity by stirring the quantum fluid using an
external laser beam. This method has also been applied to two-dimensional setups, as demon-
strated in Ref. [164] for a disk-shaped Bose gas. The authors examine the heating rate of
the Bose gas in response to the local perturbation caused by the laser beam, and correlate
this heating with the transition from a superfluid state to a normal gas. The authors of
Ref. [194] even go further, showing that the onset of heating occurs due to the creation of
vortex-antivortex pairs.

In a simpler setup – a planar quantum fluid flowing against a rigid obstacle, similar to the
original experiments with liquid helium – Frisch et al. developed one of the earliest theoretical
models to calculate the critical speed of superfluid motion [58]. In this reference, the authors
used the Gross-Pitaevskii framework to derive the well-known critical value vc =

√
2/11 (in

units of the speed of sound) for wide impenetrable disks. This study also revealed that the
transition to the nonsuperfluid regime in 2D is marked by the emission of vortex-antivortex
pairs, rather than solitons as observed in 1D systems. The dynamics of these vortices after
emission depends heavily on the parameters of the system, paving the way for the study of
quantum turbulence. Rica later refined this method in Ref. [59] – the very same method we
employ in this chapter – leading to a more precise value vc = 0.369773.

In Ref. [195], the authors experimentally realize the previously-mentioned setup to study
the critical velocity for vortex shedding in a BEC, or in other words vc. Their experiment
involves sweeping an obstacle of amplitude V0 and width σ, generated by a repulsive Gaussian
laser beam within a highly oblate BEC (as illustrated in the right part of Fig. 3.1), and then
identifying the velocity at which vortices are emitted. The critical velocity for superfluidity
is then determined from the probability distribution of vortex dipole formation in the BEC.
For one of the first times, the authors provide results for penetrable obstacles (V0 < µ the
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chemical potential), thereby going beyond Frisch’s results, which apply only to impenetrable
obstacles. This is also one of the main objectives of this chapter – obtaining vc(V0). As shown
in the right part of Fig. 3.1, they find that the critical velocity does not vanish as V0 → µ,
unlike the 1D case. Instead, it reaches a nonzero minimum and then increases to a plateau.
The value of this plateau depends solely on σ (as shown in the inset), validating the results
of Refs. [58, 59] for V0 > µ. Interestingly, they attribute these two distinct behaviors in vc to
different mechanisms of vortex shedding, which depend on the penetrability of the obstacle.
This concept will also be explored later in this chapter.

In recent decades, numerous theoretical studies have sought to explain experimental obser-
vations related to the breakdown of superfluidity in two-dimensional atomic systems. Many
of these studies have focused on the nucleation of vortices in quantum fluids [63, 101, 196–
198], while other have extended the analysis to obtain vc as a function of the width of the
obstacle [49, 60, 101, 199, 200]. Very recently, Ref. [61] provided a numerical study of vc
as a function of the amplitude of the obstacle, building upon previous experimental results
from the same team [195], described in the previous paragraph. This study extends beyond
the rigid obstacle model developed in Ref. [58] by considering penetrable obstacles, of am-
plitude not necessarily larger than the chemical potential of the gas (impenetrable-obstacle
regime of Frisch, Rica, Josserand, Pomeau and coworkers) and possibly lower than the lat-
ter (penetrable-obstacle regime). This approach is particularly relevant for experimentalists
working with cold atoms (but also quantum fluids of light), where the obstacles are often
generated by lasers with intensities comparable to the chemical potential of the system.

The study of superfluidity however extends beyond atomic systems, with significant ex-
periments also conducted on polaritons in semiconductor microcavities [41, 201–203], later
resulting in the clear evidence of superfluid motion in Ref. [118]. The authors observed the
suppression of scattering from the defect when the velocity of the fluid is lower than the
speed of sound, giving credit to the Landau criterion in such systems. In the nonsuperfluid
state, the density profile of the system exhibits Čerenkov nonlinear radiations upstream and
a Mach cone in the wake of the obstacle. Subsequent theoretical works aimed to explain these
results in nonlinear optical systems [121, 162], further exploring superfluidity in polaritons in
microcavities. These systems are analyzed within the mean-field Gross-Pitaevskii framework,
leading to similar results to those observed for Bose gases, albeit within the context of quan-
tum fluids of light. Various experimental setups have also been explored: Following Frisch’s
pioneering work, Ref. [204] focuses on the dynamics of a resonantly driven exciton-polariton
flowing against an obstacle, demonstrating vortex emission when the velocity exceeds a cer-
tain threshold. This configuration is particularly relevant to our study, as it is similar to the
one studied in this chapter.

More recently, new types of quantum fluids of light have been developed to bypass the
need for a cavity and reduce losses in the system. In this manuscript, we particularly focus on
quantum fluids of light in propagating geometries, such as photorefractive crystals [54, 55].
These experiments notably observed a vanishing drag force as the velocity approaches vc, as
well as the absence of long-range wave emission and the presence of vortices in the wake of
the obstacle above that threshold (see the top part of Fig. 3.2, representing the intensity
of the fluid for specific values of the velocity). Ultimately, these observations provide an
experimental basis for estimating vc. This critical velocity, as represented in the bottom part
of Fig. 3.2, will be the central focus of Chap. 3, particularly in the case of wide obstacles.
Here, vc is illustrated as a function of the width d/ξ of the defect, revealing a spectrum
of nonlinear structures that emerge when crossing the superfluid threshold. The associated
intensity profiles represented in the top part of Fig. 3.2 further illustrate the fluid’s behavior
above vc.

Yet, while vc has been extensively studied through simulations and experiments, few
analytical results aside from Ref. [61] exist when considering the penetrability of the obstacle,
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Figure 3.2: Top: Intensity of the 2D fluid of light in the transverse plane at the output of the
nonlinear photorefractive crystal (for more details, we invite the reader to refer to the introduction
of the manuscript). The fluid of light is here generated by a tilted laser beam propagating through
a nonlinear photorefractive crystal, while the obstacle is created by another laser beam that locally
modifies the refractive index. Insets (a–f) are obtained for various values of the input velocity and
diameter of the obstacle, as indicated by the red cross. Bottom: Experimental diagram of the various
phases of the fluid of light passing by an obstacle, as a function of the velocity v/cs of the fluid, and the
diameter d/ξ of the obstacle (cs being the sound velocity in this case). The main focus of the present
chapter is on the lower separatrix. The various regimes range from normal (white) to superfluid (dark
green). The green scale in between separated by the circles corresponds to the observation of turbulent
coherent structures: Vortex pairs, snake instabilities and solitons. Tags (a–f) are associated with the
intensity profiles in the top part. Figures courtesy of Claire Michel, extracted from [55].

and even less for nonlinearities different from the standard ε(n) = n, i.e. those describing
quantum fluids other than BECs, such as paraxial superfluids of light for instance. The
aim of this chapter is to complement our results in 1D discussed in Chap. 1, and develop
a new model to describe vc for these more realistic obstacles (albeit with large width σ),
thereby going beyond Frisch’s results. Additionally, we extend this model to various types
of nonlinearities to account for different experimental setups, ranging from BECs with a
powerlaw nonlinearity, to the quantum fluids of light with a saturable nonlinearity that are
central to this manuscript.

3.1 Two-dimensional mean-field regime

This section is part of a broader study in Chap. 3, which explores superfluidity in a two-
dimensional quantum fluid of bosonic particles. While the dynamics of the system does not
change much compared to the one-dimensional case, the shift to two dimensions introduces
significant analytical challenges. We provide in this section the detailed model of our system
– later used to derive the critical velocity for superfluidity in this more complex setting – as
well as some preliminary results from the linear-response theory.
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3.1.1 Analytical model and hydrodynamic equations

The dynamics of our system is, similarly to Chap. 1, ruled out by the Gross-Pitaevskii
equation, in the absence of losses. We now focus on its two-dimensional reduction

i∂tψ(r, t) =

[
−1

2
∇2 + U(r) + ε(n)

]
ψ(r, t), (3.1)

where n(r, t) = |ψ(r, t)|2 is the density of the quantum fluid. We again derive the hydro-
dynamic equations using the Madelung transformation, in order to obtain equations on the
density and velocity fields. The Gross-Pitaevskii equation thus transforms into the following
system

∂tv +∇
[
v2

2
+ U(r) + ε(n)− 1

2

∇2√n√
n

]
= 0, (3.2a)

∂tn+∇ · (nv) = 0, (3.2b)

where the velocity v(r, t) = ∇φ(r, t) is expressed in units of the speed of sound c∞ =√
n∞ε′(n∞)/m or k. The interpretation of these equations is the same as in Chap. 1, and we

invite the reader to refer to Sec. 1.1.4 for more details.
Finally, different condition are expected for a superfluid motion. The solutions must be

stationary, which removes the dependence in time in Eqs. (3.2) and leads to time-independent
density and velocity fields n(r) and v(r). The fluid must also be devoid of any hydrodynamic
disturbance far away from the obstacle [58]. At infinity, one then has n(r) = n∞ = 1 and
v(r) = v∞ = (v∞, 0) with v∞ > 0 (the flow is from left to right). With these different
assumptions, the hydrodynamic equations (3.2) simplify to

v2

2
+ U(r) + ε(n)− 1

2

∇2√n√
n

=
v2∞
2

+ ε(1), (3.3a)

∇ · (nv) = 0, (3.3b)

Contrary to the method used in Chap. 1, the continuity equation (3.3b) does not simplify
into a simple condition, and cannot be injected into Eq. (3.3a) to characterize the system
with a single equation, yielding the critical velocity as the last solution of this equation: The
system is not integrable anymore. We then use an analog method inspired from classical fluid
mechanics to derive vc, as performed in [58, 59]. This method is several-fold, and its different
steps will later be detailed in Sec. 3.2.

3.1.2 The perturbative approach

Let us first study two-dimensional systems within the linear-response theory. In a similar ap-
proach to that performed in Chap. 1, we begin the study of superfluidity in 2D by examining
the simplest case: A very small obstacle. This allows us to apply the linear-response theory
for a weakly perturbating obstacle, as we did in one dimension in Sec. 1.2. The density
fluctuations of the quantum fluid in this framework are given by

δn(r)

n∞
=

∫
drU(r′)χ

(
|r − r′|

)
, (3.4)

where the Green’s function of the system is

χ(r − r′) =
1

2π2

∫
dk
k2

2

eik·(r−r
′)

(v∞ · k − i0+)2 − E2
B(k)

, (3.5)

and the Bogoliubov dispersion relation is

EB(k) =

√
k2

2

[
k2

2
+ 2gn∞

]
. (3.6)
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The passage in higher dimension complicates the problem, as the Green’s function now
involves a double integral of a complex function, which is in general hard to solve analytically.
After converting the problem to polar coordinates and changing variables to q = kξ∞, the
response function becomes

χ(|r − r′|) = − 2

π2
Re

{∫ π/2

−π/2
dθ

∫ +∞

0
dq
qe
i q
ξ∞
|r−r′| cos(θ−φ)

q2 − q2∗

}
, (3.7)

with φ being the angle between k and r − r′. As in Sec. 1.2, the poles of the integral are

q∗ = ±2
√

1− v2∞
c2∞

cos2 θ − i0+. These poles are either real (with a small imaginary part) for

supersonic velocities, or purely imaginary for subsonic velocities. Even if Eq. (3.7) seems
hard to solve analytically, it remains possible to provide the next step of the calculations of
the Green’s function. Equation (3.7) thus transforms to

χ(|r − r′|) = − 2

π2
Re

{
−1

2

∫ π/2

−π/2
dθ
(
eαq∗Ei[−αq∗] + e−αq∗Ei[αq∗]

)
}
, (3.8)

with α = |r−r′|
ξ∞

cos(θ − φ).

It is interesting to look at the specific value of χ(r) at the origin, as the Green’s function
is actually the response function of the system to the perturbation caused by a δ−peaked
obstacle at r = 0. By performing a Taylor expansion of the integrand around |r − r′| → 0,
i.e. α → 0, one can deduce its behavior close to the origin. The Green’s function simplifies
to

χ(|r − r′|) = − 2

π
Re

{
−γ − 2

∫ π/2

0
dθ ln [αq∗]

}
. (3.9)

Let us now study more in details this simplified Green’s function for a specific value of the
velocity. We start off with the easiest analytical case possible for Eq. (3.7), i.e. the system
at rest with v∞ = 0 (and the angle φ = 0). In that case, the density profile is symmetric,
but this symmetry arises solely because the velocity of the fluid is null; As soon as the fluid
begins to move, this symmetry is broken. The density fluctuations are localized around the
δ−peak obstacle U(x) = λδ(x), with λ = U0F (σ) its amplitude. The numerical integration
leads to

δn(r)

n∞
= −2λ

π
K0

[
2|r|
ξ∞

]
, (3.10)

with K0 the modified Bessel function of the second kind, and of order zero. This result is
then validated by our calculations, since Eq. (3.9) reduces to

χ(|r − r′|) = − 2

π

(
−γ − ln

[ |r − r′|
ξ∞

])
, (3.11)

which is nothing more than the series expansion of − 2
πK0

[
2|r−r′|
ξ∞

]
around |r− r′| → 0, with

γ the Euler-Mascheroni constant.

These density fluctuations at zero velocity are illustrated in Fig. 3.3, where one can see
a clear divergence at the origin, which is logarithmic. This divergence was indeed predicted
given that the density of a fluid perturbed by a δ−peak obstacle must necessarily be null at
the origin in dimension higher than one [205]. Whenever the velocity of the fluid increases
and is not zero anymore, this divergence still does not vanish: In the extreme case v∞ = c∞,

the Green’s function presents the same divergence in − ln
[
|r−r′|
ξ∞

]
. This presents a significant

issue, as the validity of the linear-response theory relies on the fact that |δn(r)/n∞| � 1
everywhere – a condition that is unfortunately not satisfied here, even more so that the
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Figure 3.3: Density fluctuations of the fluid in the presence of a δ−peak obstacle of amplitude λ = 0.1
and zero velocity, as given by Eq. (3.10). The profile is symmetric and exhibits a singularity at the
origin, making it so that the linear-response theory fails.

corrections are such that |δn(r)/n∞| > 1, and the density fluctuations exhibit a singularity
at r = 0.

Ultimately, the linear-response theory inevitably fails for a δ−peak in two-dimensions
because the density must be zero at the origin, which contradicts the assumptions of this
approach. This is different from the one-dimensional case, where the system’s geometry
forces the fluid to cross the obstacle in order to maintain the current continuity. This ensures
that the density is never null, making the perturbative treatment valid.

Nevertheless, the perturbation theory yields acceptable results far away from the origin,
and it is ultimately in this region of space that one can determine whether energy radiation
occurs or not. Two different behaviors arise depending on the velocity of the fluid:

• If v∞ < c∞: There are no density fluctuations for r → ∞ and the density is flat, i.e.
n(r) = n∞ = 1.

• If v∞ > c∞: Following Ref. [206], it can be shown that, upstream, Čerenkov radiations
are emitted outside a cone; For example if one considers a cut at y = 0, then the density
along x upstream of the obstacle reads

n(x) = 2U0

√√√√√√

(
v2∞
c2∞
− 1
)1/2

π
(
2v2∞
c2∞

+ 1
)
|x|

cos

[
−2

√
v2∞
c2∞
− 1x− π

4

]
. (3.12)

Despite the logarithmic divergence at the origin, the linear-response theory predicts a drastic
change of behavior in the density profile at v∞ = c∞ far from the obstacle. This denotes a
superfluid transition in agreement with the Landau criterion.
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3.2 The method to obtain the critical velocity for superfluidity

Building on the analytical model presented at the beginning of the present chapter, we now
extend the analysis to encompass nonperturbative obstacles of arbitrary amplitude and width,
thus going beyond the linear-response theory. In this section, we provide the method to obtain
an analytical expression for the critical velocity for superfluidity in two dimensions, which
is composed of several steps. This method is then applied to the two different cases of
impenetrable and penetrable obstacles, leading to the emergence of two mechanisms for the
breakdown of superfluidity.

3.2.1 Step 1: Superfluid condition in the hydraulic approach

In Chap. 1, we derived a condition for superfluidity by obtaining an implicit expression for
the density through the “Euler”-like equation, integrating the continuity equation, and then
combining the two. This resulted into a single equation on the density, parametrized by
v∞. The critical velocity for superfluidity corresponded to the first velocity v∞ for which
the stationary solutions to that equation disappeared. However, this method is not possible
anymore in two dimensions, because the continuity equation is not integrable as it is presented
in Eq. (3.3b). Therefore, we must develop a different approach to determine the condition
for superfluid motion in 2D.

Fortunately, it is still possible to exploit the dependence of n(r) on v(r) in 2D, obtained
from Eq. (3.3a) by re-expressing the continuity equation in the hodograph plane [207], where
it transforms into a linear PDE in the new coordinates (v, θ)

∂2vΦ +
1

nv
∂v(nv)∂vΦ +

1

nv2
∂v(nv)∂2θΦ = 0, (3.13)

where Φ(v) = v · r − φ(r) is the Legendre transform of the velocity potential φ(r). The full
derivation of Eq. (3.13) is provided in Appendix A.1.

Equation (3.13) is then studied with the method of characteristics, to determine a condi-
tion on n and v for which no perturbation can propagate along a characteristic curve whose
equation θ = θ(v) is provided by the relation

dθ

dv
= ±

√
− 1

nv2
∂v(nv). (3.14)

The calculations leading to this result are provided in Appendix A.2. For the motion to be
superfluid, Eq. (3.14) must be complex-valued for all v, in which case Eq. (3.13) is elliptic.
Since n and v are always positive, the condition for superfluid motion is

∂v(nv) > 0. (3.15)
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Generalized local Landau criterion
Equation (3.3a) can be rearranged in the form

E(n) = ε(n) +Q(n) = ε(1)− U(r)− v2 − v2∞
2

, (3.16)

where Q(n) = −1
2
∇2√n√

n
is the quantum pressure. Differentiating this equation with

respect to v(r), one gets

∂vn = − [∂nE(n)]−1 v = − [∂nε(n) + ∂nQ(n)]−1 v, (3.17)

which yields

∂v(nv) = n+ v∂vn = n
(

1− v [n∂nε(n) + n∂nQ(n)]−1 v
)
> 0 (3.18)

for the superfluid condition (3.15). Identifying n∂nε(n) to the square of the local speed
of sound c(r), one finally obtains the superfluid condition in the form

v(r)
[
c2(r) + n(r)∂nQ (n(r))

]−1
v(r) < 1, (3.19)

valid ∀r. This is nothing but the local Landau criterion at zero quantum pressure.
Condition (3.19) extends the latter criterion beyond the hydraulic approach, with a
renormalization of the square of the local speed of sound by the operator

n(r)∂nQ(n(r)) = n(r)
1

4

[
1

n(r)
∇
(∇n(r)

n(r)

)
−∇

( ·
n(r)

)]
. (3.20)

In this chapter, we work within the hydraulic approach, i.e. Q(n)→ 0. With this assump-
tion, the condition for superfluid motion (3.19) reduces to the well-known result v2(r) < c2(r),
with c(r) =

√
n(r)∂nε the local speed of sound. This constraint is also equivalent to the same

inequality with v(r) and c(r) respectively replaced by their maximum vmax and minimum
cmin, reached where the density of the quantum fluid is minimum. In the end, this means

v2max < nmin∂nε(nmin). (3.21)

This condition is valid if ∂nε(n) is a monotonically increasing function, which is verified
for the nonlinearities we considered in this manuscript. In the end, the condition v(r) <
c(r)⇔ ∂v(nv) > 0: The local Landau criterion is not merely phenomenological – It also has
a mathematical foundation as it is formally obtained from the ellipticity of the continuity
equation (3.15).

In the hydraulic approach, the density profile is implicitly given by

ε(n(r)) = ε(1)− U(r)− v2(r)− v2∞
2

. (3.22)

The density nmin used in the local Landau criterion (3.21) is obtained when U(r) and v(r)
are maximum, such that

ε(nmin) = ε(1)−max [U(r)]− v2max − v2∞
2

. (3.23)

In the end, one only needs to find the maximum velocity vmax(v∞,max [U(r)]) to obtain the
superfluid condition from Eq. (3.21).
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What type of obstacle? In order to obtain the expression of vmax, one has to solve the
continuity equation (3.3b), which notably requires specifying the shape of the obstacle in
our model. We consider it as one of the simplest possible: A disk, i.e. a constant piece-wise
obstacle. We thus treat the problem using polar coordinates, simplifying the calculations, and
allowing us to derive exact results. We also consider that the typical radius σ of the obstacle
is really large compared to the healing length ξ∞, thus justifying the use of the hydraulic
approximation. The obstacle is then defined by

U(r) =

{
U0 if r < σ,

0 otherwise.
(3.24)

A Gaussian-shaped obstacle would have been ideal for our model, given its common use in
real experiments with BECs or with paraxial fluids of light. However, such a potential does
not allow for a full analytical treatment beyond a certain point. Additionally, we found that
these results obtained from a Gaussian potential are similar to those from our simpler model.
Therefore, our disk-shaped obstacle is well-suited, and provides an appropriate framework
for vc in 2D, yielding results consistent with those obtained from more realistic obstacles.

We can now derive the condition for superfluid motion for the same nonlinearities as
before, which are as follows.

Powerlaw nonlinearity ε(n) = nν/ν: Equation (3.21) becomes

1− νU0 + v2∞

[
ν

2
− v2max

v2∞

(
1 +

ν

2

)]
> 0. (3.25)

Saturable nonlinearity ε(n) = (1 + β)2 n
1+βn with β = 1/nsat: The condition for superfluid

motion is more complicated, and reads

4
[
(1 + β)2 −

(
1− β2

)
U0 − β U2

0

]
− 2v2∞

[
v2max

v2∞

(
3 + 2β(U0 + 2) + β2

)
− 1− 2β U0 + β2

]

− βv4∞
(
v2max

v2∞
− 1

)2

> 0. (3.26)

After deriving the value of vmax, the condition for superfluidity is nothing more than a
polynomial in v∞, which resolution leads to v∞ < vc.

3.2.2 Step 2: Solving the hydrodynamic equations in the incompressible approxi-
mation

Now that we have specified a condition for superfluid motion, we need to find the expression of
the maximum velocity vmax in the fluid in order to derive the critical velocity for superfluidity.
To do so, we must solve the hydrodynamic equations (3.3), again treated in the hydraulic
approximation (Q (n(r)) → 0) – This is an important assumption, which is also one of the
limitations of our model.

Following the treatment performed in Ref. [58], we assume that the typical radius σ of
the obstacle is such that σ � ξ∞. In this problem, the healing length ξ∞ is an important
scale that enters into play twice: It determines the typical radius of a vortex core, as well as
the thickness of the boundary layer that forms around the obstacle. As the radius σ of the
disk is large compared to ξ∞, one can deduce as a first approximation an asymptotic solution
in which the quantum pressure term is neglected in Eq. (3.3a): This amounts to neglecting
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what happens in the boundary layer. From there, one can infer an analytical expression for
the density field of the quantum fluid moving at velocity v(r)

n(r) = ε−1
[
ε(1)− U0 −

χ

2

( |∇φ(r)|2
v2∞

− 1

)]
, (3.27)

where χ = v2∞ denotes the asymptotic compressibility [19] of the superfluid in units of
1/(mass × v2∞). In the incompressible limit χ → 0, the density given by Eq. (3.27) is a
constant piece-wise function that reads

n(r) =

{
ε−1 [ε(1)− U0] if r < σ,

1 otherwise.
(3.28)

In this case, ∇ · v(r) = 0, and the velocity potential φ (defined as v = ∇φ) satisfies the
Laplace equation, a well-known problem for incompressible potential flows around a circular
cylinder in classical fluid mechanics. Given the shape of the obstacle, we can provide the
exact analytical expression of the density profile in the incompressible limit, for two different
nonlinear interaction potentials (in their rescaled forms).

Powerlaw nonlinearity ε(n) = nν/ν:

n(r) = [1− νU0]
1
ν . (3.29)

Saturable nonlinearity ε(n) = (1 + β)2 n
1+βn with β = 1/nsat:

n(r) =

1
1+β

[
1− U0

1+β

]

1− β
1+β

[
1− U0

1+β

] . (3.30)

We remind that we need to solve the continuity equation (3.3b) to obtain vmax, and then
the critical velocity for superfluidity. This equation can be re-expressed as

n(r)∇2φ0(r) +∇n(r)∇φ0(r) = 0, (3.31)

which is nothing but the Laplace equation ∇2φ0(r) since the density profile is constant in
the hydraulic approach.

The boundary conditions We complement this problem with the proper boundary condi-
tions. Two types of boundary conditions are used: The asymptotic boundary condition at
infinity; And the boundary condition at the interface of the obstacle, which strongly depends
on the value of U0.

Far from the obstacle (r � σ), the fluid must remain unperturbed, i.e. n(r) = n∞ = 1,
and the asymptotic boundary condition is always the same no matter the amplitude of the
obstacle. We have a uniform flow upstream v(r � σ) = (v∞, 0), meaning that in polar
coordinates the velocity potential is

φ(r � σ) = v∞r cos θ for r � σ. (3.32)

Different dynamics can then take place depending on whether the obstacle is impenetra-
ble, or penetrable. It is important to treat these different cases with the proper boundary
conditions at x = σ. They strongly differ depending on the amplitude U0 of the obstacle, and
are provided in Secs. 3.3 and 3.4, in which we derive exact analytical results for vc for both
the impenetrable and the penetrable regimes respectively, and for two different nonlinearities.
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How is the penetrability of the obstacle accounted for in the equations?
To determine whether an obstacle is penetrable or not, one argument is to impose that
the density must always be positive in the incompressible approximation. Referring to
Eq. (3.27) with χ = 0, one can see that the density is positive if

ε(1)− U0 > 0, (3.33)

leading to U0 < ε(1), an upper bound for the penetrability of the obstacle. In the end,
U0 < ε(1) means a penetrable obstacle, and U0 > ε(1) an impenetrable one.

After solving the Laplace equation ∇2φ0(r) with the proper boundary conditions, one
obtains φ0, deduces vmax, and solves the superfluid condition to obtain the critical velocity
for superfluidity in the incompressible approximation.

3.2.3 Step 3: Solving the hydrodynamic equations beyond the incompressible ap-
proximation using Janzen-Rayleigh expansions

As a matter of fact, using the approximation χ→ 0 is not entirely justified because the fluid
is not strictly incompressible. One has to take into account the fact that the density field
will drastically change in the vicinity of the obstacle and possibly cross it, but these changes
will take place continuously and not abruptly. It is then not possible to neglect the spatial
dependence of the density. We derive these “new” density profiles for the previously-stated
nonlinearities, which are as follows.

Powerlaw nonlinearity ε(n) = nν/ν:

n(r) =

[
1− νU0 −

νχ

2

( |∇φ(r)|2
v2∞

− 1

)] 1
ν

. (3.34)

Saturable nonlinearity ε(n) = (1 + β)2 n
1+βn with β = 1/nsat:

n(r) =

1
1+β

[
1− U0

1+β −
χ

2(1+β)

(
|∇φ(r)|2
v2∞

− 1
)]

1− β
1+β

[
1− U0

1+β −
χ

2(1+β)

(
|∇φ(r)|2
v2∞

− 1
)] . (3.35)

The variations we add to the density profile n(r) compared to the incompressible approxi-
mation provided in Eqs. (3.29) and (3.30), albeit nonnegligible, are still small enough that
we can treat them perturbatively through an expansion of the velocity potential in powers of
χ� 1.

This problem of a potential compressible flow over a circular obstacle was first tackled
by Janzen and Rayleigh in the 1910s [208, 209]. Following Ref. [59], we refine the results
obtained for the incompressible approximation by searching for the velocity potential in the
Janzen-Rayleigh form, i.e. a power series in χ to the highest order possible:

φ(r) = φ0(r) + φ1(r)χ+ ...+ φk(r)χk + ..., (3.36)

with χ � 1 and k > 0 being the index of the expansion in powers of χ. This expansion of
the velocity potential in powers of χ is then injected into the expression of n(r) provided in
Eq. (3.27), leading to an expansion of the density around the incompressible solution, for
χ� 1. Ultimately, the higher the value of k, the more accurate the correction to the critical
velocity added to the incompressible solution. However, it is still important to note that while
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Janzen-Rayleigh expansions offer a nonnegligible corrections to vc, these corrections are still
smaller than those that could be obtained by incorporating the quantum pressure term to go
beyond the hydraulic approximation.

Additionally, Janzen-Rayleigh expansions can sometimes exhibit oscillatory behaviors as
the number of terms in the expansion increases. This oscillation arises from the perturba-
tive nature of the method, where higher-order terms in the series can grow larger, causing
oscillations around the exact solution. In conclusion, even though the expansion provided a
meaningful correction to vc, it would not be advisable to extend the expansion to significantly
higher orders.

One now almost has all the tools to solve the differential problem, and obtain an analytical
expression for the vc,k’s taking into account the Janzen-Rayleigh expansion. The only missing
part is the maximum velocity vmax, which must be injected into the condition for superfluid
motion (3.15) to obtain the critical velocity.

Knowing the density profile with the Janzen-Rayleigh expansion, it is now possible to
obtain the equation describing the dynamics of the quantum fluid in the presence of the
cylindrical obstacle. It is given by the continuity equation (3.3b), which develops into

n(r)∇2φ(r) +∇n(r)∇φ(r) = 0, (3.37)

with n(r) defined in Eq. (3.27), and φ(r) in Eq. (3.36). This equation must then be solved
order by order in χ.

We now provide the explicit expression of the continuity equation for two different non-
linearities. These equations are computed order by order in χ, which leads to the estab-
lishment of recurrence relations between the different φk(r)’s of the Janzen-Rayleigh ex-
pansion. From there, one can find the expression of the maximum velocity for a given
k, given by vmax,k = |∇φk(σ, π/2)|, and the total maximum velocity is given by vmax =
vmax,0 + vmax,1χ+ ...+ vmax,kχ

k.

Powerlaw nonlinearity ε(n) = nν/ν: Equation (3.37) becomes

[
1− νU0 −

νχ

2

(
v2

v2∞
− 1

)]
∇2φ =

χ

2v2∞
∇(v2)∇φ. (3.38)

When expanding this equation order by order in the compressibility χ in the density and
velocity potential, one can deduce a recurrence relation between the different φk’s

(1− νU0)∇2φk+1 = −ν
2
∇2φk +

1

2v2∞

k∑

j=0

[
∇φk−j · ∇(v2)j + ν∇2φk−j(v

2)j
]
, (3.39)

where we introduced (v2)k =
∑k

j=0∇φk−j∇φj for the sake of readability. The resolution of
these Poisson equations for each φk will lead to the different vmax,k we are searching for.

Saturable nonlinearity ε(n) = (1 + β)2 n
1+βn with β = 1/nsat: For a saturable nonlinearity,

Eq. (3.37) becomes

[
A−Bχ

(
v2

v2∞
− 1

)
− Cχ2

(
v2

v2∞
− 1

)2
]
∇2φ =

χ

2v2∞
∇(v2)∇φ, (3.40)

with

A = 1− U0(1− β)

1 + β
− βU2

0

(1 + β)2
, (3.41a)
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B =
1 + 2βU0 − β2

2(1 + β)2
, (3.41b)

C =
β

4(1 + β)2
. (3.41c)

The expression for the recurrence relation between the various ∇φk’s is given by

A∇2φk+2 = −B∇2φk+1 + C∇2φk +
1

2v2∞

k+1∑

j=0

[
∇φk+1−j · ∇(v2)j + 2B∇2φk+1−j(v

2)j
]

− 2C

v2∞

k∑

j=0

∇2φk−j(v
2)j +

C

v4∞

k∑

j=0

∇2φk−j

(
j−i∑

i=0

(v2)i(v
2)j

)
. (3.42)

Similarly, we deduce the values of each vmax,k from the different expressions of φk obtained
after solving the Poisson equation for each k.

3.2.4 In short...

As the reader can attest, the procedure to analytically derive the critical velocity for
superfluidity involves several important steps and various mathematical methods. The
present section provides a short account of the method used to derive the critical velocity
for superfluidity up to an arbitrary order in the compressibility.

• Using a Janzen-Rayleigh expansion of the velocity potential around the incom-
pressible solution to solve the problem, we perturbatively solve the hydrodynamic
equations in the hydraulic approximation for a disk-shaped obstacle of arbitrary
amplitude to obtain the expression of the velocity potential φk(r) for each k.

• The maximum velocity is that at the poles of the obstacle: By injecting it to
the new condition for superfluid motion – strictly equivalent to the local Landau
criterion – we can obtain an exact analytical expression for the critical velocity for
superfluidity for a given order in the perturbative expansion.

3.3 Impenetrable obstacles U0 > ε(1)

As previously shown in Chap. 1 for one-dimensional systems, the critical velocity for super-
fluidity becomes exponentially negligible when the obstacle amplitude gets larger than ε(1),
regime within which the defect is classically impenetrable and the fluid is, in the hydraulic
approach, cut into two disconnected part. This is not the case anymore in a 2D setting, in
which the fluid is able to go around the obstacle, yielding a possibly nonzero critical speed
vc. The case of the two-dimensional impenetrable obstacle was first studied in 1992 by Frisch
et al. in Ref. [58], in which the authors obtained the expression of the critical velocity for
superfluidity for a supposedly impenetrable disk-shaped obstacle in the incompressible ap-
proximation, yielding vc,0 =

√
2/11 for ε(n) = n (and corresponding to the order k = 0 of

the Janzen-Rayleigh expansion, though this method was not used at the time). A few years
later, this model was refined by Rica in Ref. [59], in which he presented the inclusion of the
compressibility via the Janzen-Rayleigh expansion for low χ, computed order by order the
full superfluid flow around the disk, and derived a refined value of the critical velocity for
superfluidity. This paper provides vc,k’s up to the 11th order in χ, converging to vc,11 = 0.369
for ε(n) = n.
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In this section, we go beyond these previous results that stood for the impenetrable
regime only by deriving exact analytical expressions for vc,k for a powerlaw or a saturable
nonlinearity. Using the method previously explained, we compute results respectively up to
order k = 6 and k = 4 in the Janzen-Rayleigh method, and verified their correspondence
with the results obtained by Rica in Ref. [59] in the appropriate limits.

3.3.1 Boundary condition at r = σ

Since the obstacle is impenetrable, the dynamics of the system is as follows: The fluid cannot
cross it and is forced to go around it, which is only possible because the system is bidimen-
sional. As a result, the density for r < σ is null (but not necessarily at r = σ), and the
Gross-Pitaevskii equation (3.1) only applies for r > σ, in which case U0 = 0.

The boundary condition we implement for the impenetrable obstacle pertains to the
derivative of the velocity potential, and must be valid for each order k of the Janzen-
Rayleigh expansion. It is quite simple – making it valid no matter the expression of the
nonlinear interaction potential ε(n) – and reads

∂rφk(σ) = 0 ∀θ, (3.43)

i.e. the normal velocity is null at r = σ since the flow cannot cross the obstacle. The
velocity of the fluid is thus purely tangential at r = σ: This is the no-slip boundary
condition of classical hydrodynamics [207], generally used for solid boundaries.

This case is reminiscent of the dynamics of a potential flow around a disk in classical fluid
mechanics, with the same stagnation points at the rear side and the front side of the obstacle
(r = σ, θ ∈ {0, π}). The point of maximum velocity is obtained at the poles of the obstacle,
i.e. vmax = v(σ,±π/2), as we explicitly show below.

3.3.2 The incompressible solution

The case of the incompressible solution for an impenetrable obstacle is peculiar in a sense
that almost all the results are the same no matter the expression of the nonlinear interaction
potential ε(n): They obey the same continuity equation with same boundary conditions, thus
leading to same velocity potential φ0(r), and maximum velocity vmax,0. The only difference
when changing ε(n) will be the condition for superfluidity, which will be provided by Eqs.
(3.25) or (3.26) for a powerlaw or a saturable nonlinearity respectively. Since the obstacle
is impenetrable, the fluid is restricted to the region r > σ where the obstacle is null. Con-
sequently, the hydrodynamic equations (3.2) must be solved without obstacle, which greatly
simplifies the problem as it is equivalent to formally consider U0 = 0. As a result, the critical
velocity vc,0 will not depend on the parameters of the obstacle but rather only the parameters
of ε(n) (i.e. ν for the powerlaw nonlinearity, or β for the saturable nonlinearity).

To obtain the zeroth-order critical velocity vc,0, one first has to solve the continuity
equation with χ = 0, which reduces to ∇ · v(r) = 0, and by extension to Laplace’s equation

∇2φ0(r) = 0, (3.44)

which, in polar coordinates, reads

1

r
∂r (r∂rφ0) +

1

r2
∂2θφ0 = 0. (3.45)

104



CHAPTER 3. CRITICAL VELOCITY FOR SUPERFLUIDITY IN TWO DIMENSIONS

−2 −1 0 1 2
x/σ

−2

−1

0

1

2

y
/σ

0.0

0.5

1.0

1.5

2.0

|∇
φ

0
(r

)|/
v ∞

Figure 3.4: Norm of the velocity field v0(r) = ∇φ0(r) in the incompressible approximation (k = 0) and
for an impenetrable obstacle. v0(r) is derived from the expression of the velocity potential provided in
Eq. (3.47), valid for any ε(n). The boundary condition implemented imposes that the normal velocity
must be null at r = σ, leading to v0(σ, {0, π}) = 0, corresponding to the stagnation points of classical
hydrodynamics. Similarly, the maximum of velocity is obtained at the poles of the obstacle and is
vmax,0 = v0(σ,±π/2) = 2v∞. The obstacle is represented by a disk of radius σ.

The resolution of Laplace’s equation in polar coordinates is a well-known problem of classical
physics that can be solved using the separation of variables, such that φ(r, θ) = R(r)Θ(θ).
The resolution leads to a general solution of the form

φ0(r, θ) = a0 + b0 ln r +
∞∑

n=1

[
Anr

n + Cnr
−n] cosnθ +

∞∑

n=1

[
Bnr

n +Dnr
−n] sinnθ, (3.46)

where the various coefficients a0, b0, An, Bn, Cn and Dn are obtained using the boundary
conditions given by Eqs. (3.32) and (3.43). In our case, we remind that the asymptotic
boundary condition is φ0(r � σ, θ) = v∞r cos θ, which imposes that a0 = b0 = 0, each
Bn = 0, An = 0 for n > 1, and A1 = v∞. The condition at the interface of the obstacle,
i.e. ∂rφ0(σ, θ) = 0, imposes that each Dn = 0, and that C1 = A1σ

2. In the end, the velocity
potential in the incompressible approximation reads

φ0(r) = v∞r

[
1 +

σ2

r2

]
cos θ, (3.47)

from which one infers vmax,0 = |∇φ0(σ,±π/2)| = 2v∞. The velocity field in the incompressible
approximation (χ = 0) is represented in Fig. 3.4, where one can clearly see the stagnation
points at the boundaries of the obstacle for θ ∈ {0, π}, as well as the points of maximum
velocity for θ = ±π/2.

The role of ε(n) now comes into play as one has to apply the superfluid condition, and so
to solve Eqs. (3.25) or (3.26) – which are functions of ν or β – with vmax,0 = 2v∞.

Powerlaw nonlinearity ε(n) = nν/ν: From vmax,0 = 2v∞, one can use the condition for
superfluid motion given by Eq. (3.25) applied to our problem, which transforms to

1 + v2∞

[ν
2
− 4

(
1 +

ν

2

)]
> 0. (3.48)
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The resolution of this polynomial leads to

v∞ < vc,0 =

√
2

8 + 3ν
. (3.49)

When ν = 1, one recovers the expression of the critical velocity vc,0 =
√

2/11 = 0.426401,
first established in Ref. [58].

Saturable nonlinearity ε(n) = (1 +β)2 n
1+βn with β = 1/nsat: Similarly to the previous case,

one uses the expression of the maximum velocity vmax,0 = 2v∞ in the condition for superfluid
motion for a saturable system given by Eq. (3.26). This polynomial reads

4(1 + β)2 − 2v2∞
[
4
(
3 + 4β + β2

)
− 1 + β2

]
− βv4∞(4− 1)2 > 0, (3.50)

and its resolution leads to

v∞ < vc,0 =
1

3

√√
(1 + β)3(121 + 25β)

β
−
(

5β + 16 +
11

β

)
. (3.51)

One also recovers vc,0 =
√

2/11 = 0.426401 obtained by Frisch et al. in Ref. [58] by taking
the limit β → 0, i.e. nsat � 1, in which case ε(n) = n.

3.3.3 A fast convergence in vc,k for k > 1

Things are more complicated when including the compressibility in the problem, because the
density will explicitly depend on the position, so the continuity equation does not reduce to
∇2φk(r) = 0. We invite the reader to refer to Appendix B.1 and B.2 for the full calculations
up to order k = 4 for powerlaw or saturable nonlinearities. Given the form of the Poisson
equation we have to solve for φk(r) (i.e. polynomials multiplied by cosines), it is convenient
to use the Ansatz [210]

φk(r) =
rp+2

(p+ 2)2 − n2 cosnθ, (3.52)

which is a particular solution of ∇2φk = rp cosnθ provided that (p+ 2)2−n2 6= 0, and which
is used for each term composing the equation. However, there is always a term not satisfying
this condition and for which the Ansatz is not usable. We thus include this recalcitrant term
with a different Ansatz which reads Anr

n cosnθ, where the constants An’s are defined using

ε(n): Powerlaw ε(n): Powerlaw ε(n): Saturable
ν = 1 ν = 2/3 β = 1

vc,0 0.426401 0.447661 0.491711
vc,1 0.390253 0.407540 0.442709
vc,2 0.380105 0.396282 0.429186
vc,3 0.375853 0.391606 0.423677
vc,4 0.373684 0.389243 0.420935
vc,5 0.372438 0.387897 −
vc,6 0.371663 0.387066 −

Table 3.1: Explicit values for the critical velocity for superfluidity vc,k when including the com-
pressibility χ with the Janzen-Rayleigh expansion up to order k. These results are obtained in the
impenetrable regime U0 > ε(1), and for different nonlinearities. The convergence is quite fast, and
yields a 0.2% difference between orders k = 5 and k = 6 for the powerlaw nonlinearity, and a 0.6%
difference between orders k = 3 and k = 4 for the saturable nonlinearity.
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Figure 3.5: Both subfigures represent the critical velocity for superfluidity for an impenetrable disk of
typical radius σ � ξ∞. The curves for the various k’s stand for different orders in the Janzen-Rayleigh
expansion. Top: vc,k up to k = 6 for a powerlaw nonlinearity as a function of the exponent ν. For
ν = 1, one recovers the results of Refs. [58, 59] for each value of k. Bottom: vc,k up k = 4 for a
saturable nonlinearity, as a function of β = 1/nsat. One also recovers the results of Ref. [58] for β → 0
and k = 0. One can clearly see that the higher k, the better the convergence towards the refined value
of vc.

the boundary conditions. In the end, the total velocity potential will be a superposition of
all the solutions for each term composing the Poisson equation. It is possible to derive an
exact expression for the velocity potential no matter the index k > 1 of the Janzen-Rayleigh
expansion:

φk(r) = v∞r


cos[(2k + 1)θ]

k+1∑

i=1

Ai,k
σ2i

r2i
+

k−1∑

i=0


cos[(2i+ 1)θ]

2k+1∑

j=1

Bi,j,k
σ2j

r2j




 , (3.53)

where the coefficients Ai,j and Bi,j,k are computed thanks to the boundary conditions.
The various expressions obtained for vc,k’s for the different nonlinearities were then com-

puted numerically from the expressions of φk(r), and are respectively represented in the top
and bottom part of Fig. 3.5 for a powerlaw nonlinearity as a function of ν, and for a sat-
urable nonlinearity as a function of β. The various vc,k’s are represented up to k = 6 and
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k = 4, and show that the higher the order in the Janzen-Rayleigh expansion, the better the
convergence towards the refined value of the critical velocity for superfluidity. These results
are also explicitly provided in Table 3.1 for ν = 1, ν = 2/3 and β = 1. We explicitly chose
these parameters for ν and β because they correspond to two-dimensional dilute BECs with
na2s � as/l, na

2
s � as/l for ν = 1 and ν = 2/3 respectively (refer to the TOOLBOX for

more details). Note that these results show a one-to-one correspondence with the results of
Ref. [59] for ν = 1. The choice of β = 1 is typically representative of an intermediate value
of nsat, which is achievable in quantum fluids of light experiments.

3.3.4 How is superfluidity broken?

Relying on the local Landau criterion, it is legitimate to infer that superfluidity will be
broken where the local speed of sound is minimum, i.e. where the velocity is maximum,
and the density is the most depleted. Intuitively, this should happen at the boundary of the
obstacle, as validated by Fig. 3.4, which shows that the velocity is maximum at the poles of
the obstacle. We thus performed a numerical simulation of the problem, obtaining results for
the density profile reminiscent of the first simulations performed by Frisch et al. in Ref. [58].

This simulation consists in the propagation of a disk of radius σ, initially at rest in the
fluid at x = 20, using a finite-difference method in real space [211, 212]. It is two-fold: First a
propagation in imaginary time t = −iτ to compute the ground state of the system, and then,
starting from the ground state, we let it evolve in real time to obtain the exact dynamics
of the system. The impenetrability of the disk is encompassed in the boundary condition
(3.43). The velocity of the obstacle is then slowly switched on up to a given value of v∞,
helping to maintain the system close to an equilibrium state: This adiabatic ramping prevents
quenching effects that would break superfluidity. We have typically used a rectangular grid
of size Lx = 200 and Ly = 150, with Nx = Ny = 1200 points. Note that this imbalance
between the space increment in x and y is of no consequence, even more so that we are
mostly interested in the dynamics along the x−axis. The results obtained in Fig. 3.6 are
obtained for ε(n) = n, and after an evolution time T = 125 (25000 iterations with dt = 0.005),
for σ = 5, U0 = 1 and v∞ = 0.52. Referring to the top part of Fig. 3.5, these parameters
lead to a dynamics in which superfluidity is well and truly broken.

It is possible to draw an analogy between the system we study and the motion of an almost
inviscid classical fluid: Both have a boundary layer of small extension, in which the dynamics
takes place. For a classical fluid, boundary layer separation will occur no matter the velocity of
the obstacle, destroying the symmetry and resulting in a nonzero drag force. This is however
not always the case for our system due to its quantum nature: When v∞ < vc, nothing of
interest will happen and the density will only show a depletion moving at velocity v∞ where
the obstacle is located. The density profile is symmetric, and the obstacle experiences no
drag. As soon as v∞ > vc (which is the case here), nonlinear structures of typical radius the
healing length will be emitted from the north and south poles of the obstacle. This can be
seen for example in the top part of Fig. 3.6, where the density profile is close to zero inside the
obstacle1, and clearly exhibits the presence of zero-density points, more or less periodically
ejected from the poles of the disk [62, 200, 213]: Vortex-antivortex pairs are created. The
disk sheds vortices that have a velocity slower than v∞, and that form a vortex street that
trails behind it. This creates periodic fluctuations in the drag force [161], that decreases as
the vortices move downstream, but increases whenever a new pair of vortices is created.

1Even though the density at the center of the obstacle is supposed to be strictly null, in practice the
fluid can always cross the barrier by tunneling (see Sec. 1.3.2, though for a treatment in 1D), leading to
an exponentially small density inside. Although in practice U0 = 1 does not represent a purely impenetrable
obstacle (U0 → +∞), it is sufficient to observe the emission of vortices typically associated with the breakdown
of superfluidity in such cases. Therefore, this mechanism is not restricted to purely impenetrable obstacles,
but also occurs for obstacles of lower amplitudes.
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Figure 3.6: Top: Density profile of the equivalent system consisting of a supposedly impenetrable
disk (U0 = 1) moving at velocity v∞ = 0.52 x̂ in a quantum fluid, characterized by ε(n) = n. Since
v∞ > vc, the system is not superfluid, as attested by the formation of vortices at the poles of the
obstacle that are then more or less periodically emitted. Middle: Representation of the vorticity ω of
the system. The vortices that are emitted are of opposite circulation. Bottom: Velocity field around
the second pair of vortices. Those in red rotate anticlockwise whereas those in blue rotate clockwise:
The global vorticity is null.

We also represented the vorticity in the middle part of Fig. 3.6, i.e. the rotational
ω = ∇× v of the velocity field. The breakdown of superfluidity follows this scheme: As the
obstacle moves within the fluid, a nonzero curl starts to accumulate at the boundary of the
obstacle (positive in the top half-plane, and negative in the lower half-plane, as can be seen
in the bottom part of Fig. 3.6 where the velocity field is represented around the second pair
of vortices), slowly focusing at its poles (σ,±π/2) where the velocity is maximum. At some
point, the vorticity exceeds a maximum value, resulting in the ejection of vortices from the
obstacle, that are then convected downstream. This process is then repeated as long as the
obstacle moves within the fluid.
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Figure 3.7: Top: Norm of the vorticity ω+ in the upper half-plane (rescaled by the vorticity ω∗ of
the first vortex) as a function of the integration time T . The green zones correspond to the period
between the time the vortex starts to be distinguishable, and the time of ejection from the obstacle:
A vortex is emitted at the end of the plateau. In between these green zones, the vorticity slowly
increases all around the obstacle, until it focuses on the upper pole and the process repeats. Bottom:
The tags (a–c) represent the vorticity of the system, associated with the different points in the upper
figure. Tag (a) shows that the vorticity is distributed everywhere on the obstacle at the beginning of
the green zone; Tag (b) represent the moment of maximum focus of the vorticity, corresponding to the
emission of vortices; Tag (c) shows an anomaly in the vorticity (which is not supposed to decrease)
due to interactions between vortices.

This phenomenon is also illustrated in Fig. 3.7, where we have represented the norm of
the vorticity ω+ of the upper half-plane (rescaled by ω∗ the vorticity of the first vortex) as a
function of the integration time T . Note that we did not represent the vorticity of the lower
half-plane as it is the exact same but with a negative sign, given that the total vorticity is
null. The green zones characterize the period of formation of the vortices: The beginning
of the zones corresponds to the moment the considered vortex starts to focus on a single
point close to the upper pole (see Subfig. (a)), and the end of the green zone is the time of
emission of said vortex (see Subfig. (b)). No vorticity is created during that period, thus
explaining the various plateaux. Just after a vortex is emitted, the vorticity increases and
is distributed everywhere on the upper part of the obstacle, until it focuses again and the
process starts anew. Interestingly, the vorticity decreases around T = 180: This comes from
the fact that the vortices start to interact with each other (see Subfig. (c)), modifying the
value of the vorticity and making it harder to define a proper period of formation of vortex
(explaining why we do not have a plateau for the last vortex). After this time, it is thus
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impossible to properly define the time of emission of the vortex as it is blurred out by the
interactions between the previous pairs. Lastly, the green zones are all of different extension,
highlighting the fact that the process of formation of vortices is not regular as the dynamics
is not stationary: It is thus impossible to define a frequency of emission of the vortices in our
case.

In conclusion, we found that as soon as v∞ = vc, the breakdown of superfluidity in the
impenetrable regime typically manifests by the formation of a pair of quantized vortices of
opposite circulation at the poles of the obstacle where r = (σ,±π/2) [58, 60, 61]. This is due
to an excess of vorticity that builds up in the vicinity of the obstacle as it moves within the
fluid, and as long as at least one pair of vortices is emitted, superfluidity is destroyed. Once
vortices are ejected, the process begins anew, and pairs of vortices are regularly formed.

3.4 Penetrable obstacles U0 < ε(1)

If the study of superfluidity in 2D was first applied to impenetrable obstacles (as performed
in Refs. [58, 59, 214]) with then an emphasis on their widths [49, 55, 60, 199], more recent
works have led us to wonder about the dependence of vs in the amplitude of the obstacle
[60, 61, 195], some even showing a nontrivial dependence in U0 that has yet to be fully
characterized. This is all the more relevant for experimentalists since, in most setups, U0 is
one of the tunable parameters. To our knowledge, the case of penetrable obstacles is much
less documented from a theoretical point of view, even if Ref. [60] briefly tackles that problem
numerically, though for narrow obstacles.

The calculations are much more complex than for impenetrable obstacles since the fluid
can now pass across the obstacle, and the full treatment of the problem involves separating
the space into two domains r < σ and r > σ. There is a clear mathematical distinction
between these two domains: For r > σ, the obstacle U(r) = 0, and one must then consider
U0 = 0 in the equations. For r < σ however, the obstacle is not null anymore and the problem
is treated with U0 6= 0. It is thus really important to make the distinction between the case
of an impenetrable (U0 > ε(1)) and a penetrable obstacle (U0 < ε(1)), as the latter leads to
more complicated boundary conditions. One now has to match two solutions for the velocity
potential φ and its derivative: Inside where U0 6= 0, and outside where U0 = 0.

This section provides new results going beyond the previous studies that stood only for
impenetrable obstacles. We first provide the boundary conditions for the velocity potential
and its derivative, matching the solutions between r = σ− and r = σ+. Contrary to the
results obtained in the impenetrable regime in Sec. 3.3, the boundary condition is now much
more complicated and acquires a dependence on U0. We go beyond these previous results
that stood for the impenetrable regime by deriving exact analytical expressions for vc,k for
penetrable obstacles, and for a powerlaw or a saturable nonlinearity. However, due to the
complexity of the problem, we only pushed the expansion up to the order k = 2 in the
compressibility, which is already enough to have a relatively well-converged result. This is
more than sufficient in practice, considering the inherent errors in potential experiments and
the substantial physics of the critical velocity in its incompressible limit, as shown in the
previous section.

3.4.1 Boundary conditions at r = σ

First of all, we provide the boundary conditions at different points in the system. The
asymptotic boundary condition defined by Eq. (3.32) is still valid for r � σ. Also, the
velocity potential is finite everywhere, especially at r = 0, which imposes a strong constraint
on the expression of φk inside the obstacle.
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Since the fluid can cross the obstacle, the density inside is now properly defined and
needs to be matched with the density outside, adding a second boundary condition.
These matching conditions for the velocity potential and its derivative now become

φ|r=σ− = φ|r=σ+ , (3.54a)

[n∂rφ]r=σ− = [n∂rφ]r=σ+ . (3.54b)

The first condition imposes that the phase of the fluid must be continuous at the interface
r = σ of the obstacle, i.e. no phase jump. The second expresses the continuity of the
radial current in the limit of large σ. It stems from Eq. (3.3b), i.e. the continuity
equation ∇ · (nv) = ∂r(nvr) + ∂θ(nvθ)/r = 0 integrated along an arbitrary radial cut
of a thin annulus of median radius σ → ∞. In this case, the orthoradial contribution,
∝ 1/σ, vanishes, leaving one with the continuity of the radial current nvr at r = σ, i.e.
Eq. (3.54b).

This second condition defined by Eq. (3.54b) is much more complicated than Eq. (3.43)
for the impenetrable obstacle because its dependence on n(r) induces a nontrivial mixing of
the φk’s and their radial derivatives. Yet, it is still possible to derive a recurrence relation
between each order in the compressibility.

For example for a powerlaw nonlinearity, one has

∞∑

h,i,j=0

(
−ν

2

)h( 1
ν

h

)(
h

i

)
i!∏∞
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r=σ+

}
= 0. (3.55)

It is also possible to obtain analytical results for a saturable nonlinearity, but we did not
derive a recurrence relation and rather solved it with Mathematica. Given the complexity of
the boundary conditions, which renders the analytical treatment of the problem unreasonable
(cf. Eq. (3.55) for example), we derived analytical results up to k = 2 (the results for k = 1
are provided in Appendix C) and treated the problem numerically for higher orders.

3.4.2 A dual treatment of the problem

Considering a penetrable obstacle significantly complicates the problem, as it requires solving
it in two distinct regions. There is a clear distinction between the dynamics outside the
obstacle for r > σ, where the obstacle is null and the problem must be mathematically
treated with U0 = 0 (reminiscent of the impenetrable case), and the dynamics inside the
obstacle for r < σ, where there is no further constraints on the amplitude of the obstacle
than U0 < ε(1). These two cases are ruled out by different Poisson equations, resulting in
different expressions for the velocity potentials φ(r) inside and outside the obstacle.

In theory, two different critical velocities could be derived depending on whether one uses
the velocity potential φk inside or outside the obstacle in the superfluid condition. However,
in practice, only one of these critical velocities is physically meaningful; The other is merely
a mathematical artifact stemming from our model. In the impenetrable regime, there is only
one critical velocity because we only treat the problem for r > σ where U0 = 0. However, for
a penetrable obstacle, even though we separate the problem into two distinct regions (inside
and outside the obstacle), the Landau criterion remains unaffected by this distinction and is
unique. Superfluidity is broken where the local speed of sound is maximum, i.e. where the
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Figure 3.8: Critical velocity for k = 0 as a function of the amplitude of the penetrable obstacle. Two
velocities are possible, and are derived either from the velocity potential inside (green curve) or outside
the obstacle (blue dashed curve). When U0 = ε(1), the blue curve reaches the exact same value as
vc,0 obtained for the impenetrable obstacle. In the end, the “real” critical velocity is the lowest, i.e.
the one stemming from inside the obstacle.

density is minimum and U(r) is maximum: This occurs inside the obstacle. Deriving a second
critical velocity from the velocity potential outside the obstacle makes no sense because it
does not exist.

Yet, it remains relevant to mathematically derive this“ghost branch”. In Fig. 3.8, we have
plotted both critical velocities as a function of the amplitude of the obstacle (which must be
lower than ε(1) since the obstacle is penetrable). These results were derived for k = 0 in the
Janzen-Rayleigh expansion, and for ε(n) = n. As seen in Fig. 3.8, the “real” critical velocity
will indeed be the smallest one, originating from within the obstacle. Although this “ghost
branch” has no physical meaning, it is interesting because its value at U0 = ε(1) perfectly
matches up the value of the one obtained in Sec. 3.3 in the impenetrable regime for U0 > ε(1).
At this point, vc,0 = 0.426401, which is the same value as obtained in Refs. [58, 59]. This
perfect match actually makes sense because in both cases, we are deriving the critical velocity
from the velocity potential outside the obstacle.

3.4.3 The incompressible solution

Even though we have just explained why we derived the critical velocity inside the obstacle,
it is still necessary to compute the velocity potential outside the obstacle, to match it with
the velocity potential inside at r = σ. In this paragraph, we then derive the critical velocity
for superfluidity using the expression of the velocity potential inside the obstacle, as well as
the superfluid conditions with U0 6= 0.

We provide here analytical results for the incompressible solution (χ = 0), and we do so
for a powerlaw and a saturable nonlinearity. The 0th order in k is indeed quite easy since one
has to solve the same 2D Laplace equation inside and outside the obstacle, and then match
the solutions at r = σ.

Powerlaw nonlinearity: We first derive the density profile n(r), needed in the boundary
condition for the derivative of the velocity potential. Its expression is given by Eq. (3.29),
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i.e.

n(r) =

{
n0 = [1− νU0]

1
ν if r < σ,

1 otherwise.
(3.56)

Using the very same method as in the impenetrable case, implemented with the previously
defined boundary conditions (3.54), as well as the asymptotic conditions at r � σ (also
adding the fact that the velocity potential must be finite at r = 0), one obtains for the
velocity potential

φ0(r) = v∞r cos θ

{
2

1+n0
if r < σ,

1 + σ2

r2
1−n0
1+n0

otherwise.
(3.57)

From there, one finds that the maximum velocity is reached inside the obstacle, and is the
same everywhere. It reads

vmax,0 =
2v∞

1 + [1− νU0]
1
ν

. (3.58)

After solving the superfluid condition (3.25) which now reads

1− νU0 + v2∞

[
ν

2
− 4
(
1 + [1− νU0]1/ν

)2
(

1 +
ν

2

)]
> 0, (3.59)

one obtains the critical velocity for k = 0

v∞ < vc,0 =

√√√√
1− νU0

4
(
1 + ν

2

) [
1 + (1− νU0)

1
ν

]−2
− ν

2

. (3.60)

Saturable nonlinearity: Following the exact same scheme, we first derive the density profile
using Eq. (3.30)

n(r) =

{
n0 = 1+β−U0

1+β+βU0
if r < σ,

1 otherwise.
(3.61)

With the aid of the boundary conditions (3.54), one obtains the velocity potential to the 0th

order in k, which also reads

φ0(r) = v∞r cos θ

{
2

1+n0
if r < σ,

1 + σ2

r2
1−n0
1+n0

otherwise,
(3.62)

albeit with a different expression for n0. The maximum velocity potential is then given by

vmax,0 = 2v∞
1 + β + βU0

2 + 2β + βU0 − U0
, (3.63)

and is also reached everywhere inside the obstacle.
Things become more complicated when computing the critical velocity for superfluidity

since the superfluid condition (3.26) is a fourth-order polynomial in v∞

4
[
(1 + β)2 − (1− β)2U0 − βU2

0

]
− 2v2∞

[
4

(
1 + β + βU0

2 + 2β + βU0 − U0

)2

(3 + 2β(U0 + 2) + β2)

− 1− 2βU0 + β2

]
− βv4∞

[
4

(
1 + β + βU0

2 + 2β + βU0 − U0

)2

− 1

]2
> 0. (3.64)

Its resolution leads to

v∞ < vc,0 =

√
−b−

√
b2 − 4ac

2a
, (3.65)
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Figure 3.9: Critical velocity for superfluidity vc,0 in the incompressible approximation as a function
of the amplitude U0 of a penetrable obstacle (U0 < ε(1)). The velocity is computed for a powerlaw
nonlinearity for ν = 1 (green dashed line) and ν = 2/3 (plain blue line), and for a saturable nonlinearity
with β = 1/nsat = 1 (purple dotted line).

with

a = −β
(
v2max,0

v2∞
− 1

)2

, (3.66a)

b = −2

(
β2 − 2U0β − 1 +

v2max,0

v2∞
(3 + β2 + 2β(2 + U0))

)
, (3.66b)

c = 4
[
(1 + β)2 − βU2

0 − U0(1− β2)
]
. (3.66c)

The expressions of vc,0 provided by Eqs. (3.60) and (3.65) (respectively for the powerlaw
and the saturable nonlinearity) are represented in Fig. 3.9 as functions of U0/ε(1), for ν = 1,
ν = 2/3 and β = 1. According to the Landau criterion, all the curves converge to vc,0 = 1 for
U0/ε(1) → 0. Also, the curves vanish when U0/ε(1) → 1: This comes from the fact that in
the penetrable regime, superfluidity is broken where the density is minimum (i.e. inside the
obstacle), and as U0/ε(1) → 1, the density inside tends to zero. This results in a zero local
sound velocity, and since it is an upper bound for the critical velocity for superfluidity, then
vc = 0 as well.

This is reminiscent of what happens in the 1D case in the hydraulic approximation (see
Sec. 1.3.2), where the critical velocity strictly drops to zero as soon as the obstacle becomes
impenetrable, cutting the fluid into two disconnected parts. Actually, this strict cancellation
of vc is not physical, and arises from the fact that we neglected the quantum pressure in our
analytical model. Indeed, vc must be a continuous function that smoothly matches with its
value obtained in the impenetrable regime, as we will later see in the numerical section – in
agreement with the experiments of Ref. [195] and corroborated with the numerics of Ref.
[61].

3.4.4 Analytical results for k > 1 and comparison with numerics

Aside from the incompressible solution, we analytically derived expressions for vc,k up to
order k = 2 for both a powerlaw and a saturable nonlinearity. The complexity of the problem
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Figure 3.10: Critical velocity for superfluidity vc,k as a function of the amplitude U0 of a penetrable
obstacle (U0 < ε(1)). The velocity is represented for different orders k in the Janzen-Rayleigh ex-
pansion (k = 0 and k = 2) for a powerlaw nonlinearity for ν = 2/3 (blue lines), and for a saturable
nonlinearity with β = 1/nsat = 1 (darker blue lines). For the sake of readability, neither curves are
represented for k = 1.

increases a lot due to the matching condition at the boundary of the obstacle, which is why
we only provide analytical expressions for k = 1 (for powerlaw and saturable nonlinearities)
in Appendix C.1 and C.2 respectively. In terms of the velocity potential, our approach varies
depending on whether one is inside or outside the obstacle.

• For r > σ (outside the obstacle): We use an Ansatz similar to that employed for the
impenetrable obstacle, which is given by Eq. (3.53). This Ansatz is suitable because
the boundary conditions at r = σ and far from the obstacle are similar to those in the
impenetrable case.

• For r < σ (inside the obstacle): The velocity potential must be finite at r = 0. We use
the same Ansatz as for the impenetrable case, provided by Eq. (3.52), and treat the
divergent terms accordingly. Here, the velocity potential is thus expressed as a series of
polynomials in r (with positive powers this time) multiplied by cosines, ensuring that
the potential remains finite at the origin. This time however, we do not provide an
exact expression for the velocity potential given the complexity of the problem.

The various expressions we obtained for vc,k are illustrated in Fig. 3.10, plotted as a
function of U0/ε(1). These results, which apply to both a powerlaw nonlinearity with ν = 2/3
and a saturable nonlinearity with β = 1/nsat = 1, exhibit the same limits as those found in
the incompressible approximation. Given that the difference in the curves between k = 1
and k = 2 is relatively small, we only have included results for k = 0 and k = 2 in the
figure. Detailed results for ν = 1, ν = 2/3 and β = 1 are explicitly provided in Table. 3.2 for
U0 = ε(1)/2 up to the order k = 2. The convergence is quite fast, with only a ∼ 1% difference
between the orders k = 1 and k = 2, regardless of the expression of the nonlinearity. This
convergence is notably faster than that observed for an impenetrable obstacle, where the
difference between the orders k = 1 and k = 2 was ∼ 3%.

A numerical simulation of a system similar to ours is performed in Ref. [61], albeit for a
Gaussian obstacle of varying amplitude and ε(n) = n only. They notably study the critical
velocity for superfluidity in this two-dimensional configuration, and observe that for wide
σ, vc exhibits a peculiar behavior: It decreases for U0 < ε(1), reaches a minimum around
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ε(n): Powerlaw ε(n): Powerlaw ε(n): Saturable
ν = 1 ν = 2/3 β = 1

vc,0 for U0 = ε(1)/2 0.480375 0.440415 0.538037
vc,1 for U0 = ε(1)/2 0.442265 0.404897 0.488021
vc,2 for U0 = ε(1)/2 0.437787 0.400805 0.482573

Table 3.2: Explicit values for the critical velocity for superfluidity vc,k when including the compress-
ibility χ with the Janzen-Rayleigh expansion up to order k = 2. These results are obtained in the
penetrable regime for U0 = ε(1)/2, and for different nonlinearities. The convergence is also quite fast,
and yields a ∼ 1% difference between orders k = 1 and k = 2 no matter the nonlinearity.

U0 = ε(1), and increases again to a constant value for U0 > ε(1). This dip marks the
transition between the two regimes of interest: Penetrable and impenetrable. These results
are in accordance with the experimental results of Ref. [195], which also report a dip in the
critical velocity near U0/ε(1) = 1 for the same Gaussian obstacle. This behavior is more or
less consistent with our analytical findings, except that we did not find a minimum around
U0 = ε(1) but rather a discontinuity: vc vanishes for U0 → 1, and is constant for U0 > 1.

In order to better understand the discrepancy between our analytical results and the
numerics of Ref. [61], we performed a similar numerical simulation, but with a disk-shaped
obstacle to remain consistent with our model, and for different expressions of the nonlinear
interaction potential. This allows us to obtain a comprehensive view of vc across different
obstacle amplitudes, and to better understand the nature of this minimum. This simulation
involves solving the full problem in imaginary-time, thereby accounting for the quantum
pressure. We modeled a smoothed-out circular barrier of radius σ/ξ∞ = 10 and a shoulder of
width w = 1 to avoid numerical errors due to sharp gradients. The simulation was conducted
on a grid with typical dimensions Lx = 400 and Ly = 100, with a spatial step δx = 0.25 and
an imaginary-time step δτ = 0.01. We start the integration from an initial condition, and
let it evolve in imaginary time using an explicit finite-difference scheme [211, 212, 215] with
periodic boundary conditions, going up to τmax ∼ 104.

We compute the ground state in imaginary time, starting from a zero velocity. From
there, we slowly increase the velocity v∞ between each simulation with an increment of
δv = 0.016 ∗ 2π/Lx, until reaching the critical velocity for superfluidity. For further details
on the method, refer to Refs. [61, 216]. Note that while the method used for computing vc is
similar to that used for obtaining the density profiles (see Figs. 3.6 and later 3.12), the entire
simulation is performed in imaginary time rather than just the ground state, as we did in
Sec. 3.3.4 to obtain the real-time dynamics of the system and see the nucleation of vortices.

We determine vc as the velocity for which the system no longer converges to a stationary
solution at long time. Specifically, vc is identified by observing the system’s behavior: At
velocities higher than vc, the system exhibits the emission of hydrodynamic perturbations that
move perpendicularly to the flow around the obstacle [61], indicating a nonsuperfluid state.
When v∞ < vc, these perturbations disappear, and the imaginary-time evolution converges
to a stationary state. At the transition, the shedding frequency of nonlinear structures from
the obstacle is expected to diverge due to a critical slowing-down, which makes it challenging
to observe the transition within our finite-time window. Consequently, we have changed our
criterion, and defined the nonsuperfluid regime as the one where we observe the emission of at
least two perturbations. This adjustment accounts for the fact that the first pair of vortices
often results from the transient response of the obstacle, which velocity was not adiabatically
ramped to prevent quenching effects. The error bars in Fig. 3.11 arise from the discretization
of the velocity in our numerical approach. They account for the fact that we choose vc to be
comprised between the last velocity for which one excitation is emitted and the first velocity
for which two excitations are emitted, thus explaining why they are the same size as δv.
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Figure 3.11: Top: Critical velocity for superfluidity as a function of U0/ε(1) for ε(n) = n. The
purple dots correspond to the numerical simulation, whereas the red lines are the analytical limits we
found using the Janzen-Rayleigh expansion. These results were obtained for k = 2 in the penetrable
regime (plain line), and k = 3 in the impenetrable regime (dashed line). The numerical and analytical
results are in agreement, except close to the transition around U0/ε(1) = 1. Bottom: Same critical
velocity, but for three different interaction potentials this time, i.e. a saturable nonlinearity with
β = 1/nsat = 1 (green triangles) and a powerlaw nonlinearity with ν = 1 (purple circles) and ν = 2/3
(blue squares). All three curves follow the same behavior and exhibit their minimum around the same
value of U0/ε(1) ∼ 1, although for slightly different values of vc. The red dashed lines represent the
analytical limits we found for vc in the impenetrable regime, and for k = 3 in the Janzen-Rayleigh
expansion of the velocity potential, and show a really good agreement with the numerics.

These results for the critical velocity are represented in the top part of Fig. 3.11 as
a function of U0/ε(1), and for ε(n) = n. The purple curve corresponds to the numerical
simulation, whereas the green curves are the analytical limits we previously defined for k = 2
for penetrable obstacles, and for k = 3 for impenetrable obstacles. The agreement between
the numerical simulation and our analytical prediction is good in both limits U0/ε(1)� 1 and
U0/ε(1)� 1, validating the existence of two different solutions in these regimes. The existence
of these two branches comes from the fact that superfluidity is either broken inside the obstacle
(penetrable obstacle), or outside of it (impenetrable obstacle). Two different mechanisms for
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the breakdown of superfluidity then exist: The emission of vortices outside of the obstacle
when U0/ε(1) > 1, and something happening inside the obstacle when U0/ε(1) < 1, which
will later be explained in Sec. 3.4.5.

Contrary to our analytical prediction however, the critical velocity is actually a continuous
function that smoothly connects the penetrable and impenetrable regime. Notably, vc exhibits
a nonzero minimum value close to the transition threshold U0/ε(1) = 1 (vc ' 0.28 for U0/ε '
0.8). This minimum can be explained as follows: In the penetrable regime, as U0 increases,
the density inside the obstacle becomes more and more depleted. This depletion leads to
a decrease in the local Landau velocity and, consequently, vc. As U0/ε(1) approaches 1,
the density inside the obstacle is so low that excitations cannot form within it anymore.
At this transition, the points of emission of the excitations responsible for the breakdown
of superfluidity are thus shifted from the interior of the obstacle towards the exterior (the
boundary layer), where the density is more important. This increased density at the boundary
layer results in a higher vc, thus explaining the presence of a minimum in vc just before the
transition. Additionally, the fact that the minimum observed in the numerical simulation is
not null can be attributed to the quantum pressure term, which was neglected in the analytical
treatment. This term tends to smooth out density gradients in the penetrable-barrier regime,
resulting in a higher density within the obstacle, and thus a higher local speed of sound and
a nonzero critical velocity. The omission of this term in our analytical model explains why
we predicts vc = 0 at the transition. Contrary to the 1D case, this term is now nonnegligible
because the fluid is never cut into two independent parts.

The bottom part of Fig. 3.11 shows vc as a function of U0/ε(1) for three different in-
teraction potentials, as indicated in the legend. Despite the different interaction potentials,
the qualitative behavior of vc remains consistent across all cases. Specifically, the curves and
their minimum value are just shifted, even if their position remains approximately the same
around U0/ε(1) ∼ 0.7 − 0.8. We found a really good agreement with our analytical results
no matter the expression of the nonlinearity (as can be seen in the top part of Fig. 3.11,
although for ε(n) = n only), but only represented it for U0 > ε(1) (red dashed lines) for the
sake of clarity.

3.4.5 How is superfluidity broken?

The formation of a rarefaction wave

When the velocity of the obstacle is below the critical velocity vc, the fluid remains in a
superfluid state. In this regime, the density profile is disturbed only around the obstacle,
and superfluidity is maintained. However, when the obstacle’s velocity reaches or exceeds
vc, superfluidity is disrupted. To illustrate this, we conducted a numerical simulation of
the system for parameters leading to a penetrable obstacle in the nonsuperfluid regime, i.e.
U0 = 0.7, σ = 5 and v∞ = 0.5 (in which case vc = 0.276). The top part of Fig. 3.12 shows the
density profile of the fluid. Unlike the case of the impenetrable obstacle, the density does not
drop to zero inside a penetrable obstacle. Instead, superfluidity is broken within the obstacle,
at the point where the density is the lowest.

As the obstacle moves, a rarefaction wave forms within it [60], which is very probably
a Jones-Roberts soliton [217]. This soliton is a finite-amplitude density wave that typically
manifests as a pair of vortex-antivortex pair. As shown in Sec. 1.3.1, the depth of a dark
soliton is linked to its velocity v∞, which in our case determines its energy, and then its shape
and depth [218]. At high velocity (low energy), the separation between the vortex and the
antivortex is very small, causing the vortex cores to almost overlap. This behavior is evident
inside the obstacle, as shown in the bottom part of Fig. 3.12, where we have represented
the vorticity. On the contrary at lower velocity (which happens when the soliton reaches
the boundary of the obstacle), the distance between the two cores increases. At this stage,
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Figure 3.12: Top: Density profile of the equivalent system consisting of a near impenetrable disk
moving at velocity v∞ = 0.5 x̂ in a quantum fluid, characterized by ε(n) = n. Since v∞ > vc, the
system is not superfluid, as attested by the formation of vortices at the boundary of the obstacle that
are then more or less periodically emitted. Bottom: Representation of the vorticity ω of the system.
A rarefaction wave appears: Inside the obstacle, the velocity of the perturbation is important and
the distance between the two cores is too small. As the wave reaches the boundary of the obstacle,
its velocity decreases and the two cores become distinguishable: Vortices of opposite circulation are
emitted from the boundary. Those in red rotate anticlockwise whereas those in blue rotate clockwise.

the two vortices of opposite circulation become clearly distinguishable, each exhibiting a zero
density at their centers.

Similarly to Sec. 3.3 for an impenetrable obstacle, we also represented in Fig. 3.13
the vorticity ω+ in the upper half-plane (rescaled by the vorticity ω∗ of the first vortex) as a
function of the integration time T . Again, we represented in green the time between which the
vortices are distinguishable for the first time, and then emitted (see Subfig. (a)), in which case
the vorticity is focused on two singular points corresponding to the vortices. In between these
zones, the vorticity slowly increases because of the formation of the rarefaction wave within
the obstacle, and the creation of vorticity at the boundary of the obstacle. The extension
of these green zones is reduced compared to the impenetrable case, because the vortices are
not slowly built up, but rather originate from the breaking of the rarefaction wave inside
the obstacle when it reaches its boundaries. Interestingly, the frequency of emission of the
vortices seems more regular than for the impenetrable case, but the number of vortices is too
low to define a proper frequency.

In the impenetrable regime, the vorticity is null everywhere inside the obstacle, as illus-
trated in Fig. 3.6. This is no longer the case when U0 < ε(1): The rarefaction wave inside
the obstacle has a nonzero vorticity (see the bottom part of Fig. 3.12), and corresponds to
“ghost-like” vortices that are initially too close to be clearly distinguishable. As the velocity
of the wave decreases slightly, these “ghost-like” vortices evolve into a pair of well-defined
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Figure 3.13: Top: Norm of the vorticity ω+ in the upper half-plane (rescaled by the vorticity ω∗ of
the first vortex) as a function of the integration time T . The green zones correspond to the period
between the time the vortex starts to be distinguishable, and the time of ejection from the obstacle:
During that time, the vorticity is more or less constant. In between these green zones, the vorticity
increases because of the formation of a rarefaction wave within it, as well as the built-up of vorticity
all around the obstacle. Bottom: The associated tags (a–b) represent the vorticity of the system,
associated with the different points in the upper figure. Tag (a) shows the moment of emission of
the vortices, for which the vorticity is focused on two singular points; Tag (b) shows the built-up of
vorticity associated to the rarefaction wave.

vortices of opposite circulation. These vortices are then repeatedly emitted, more or less
close to the poles of the obstacle.

Properties of the shedding of vortices

Close to the superfluid transition, the frequency of emission of said vortices tends to zero
(corresponding to the divergence of the nucleation time [219]), making it hard to define the
exact critical velocity since the simulation runs during a finite time. The vortex shedding
frequency then increases, supposedly linearly with v∞ − c∞2 [220].

Another important feature is that as the velocity of the obstacle increases and exceeds vc,
the shedding increases and becomes more and more irregular, creating a turbulent wake, and
the point of emission of vortices slowly migrates towards the rear side of the obstacle [214].
When the velocity is even larger, different pairs of vortices will be too close and will start

2The data extracted from our simulation is not precise enough to corroborate that fact since we collect
data each 500 iteration, which is too large to see the linear dependence of the shedding frequency.
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Figure 3.14: Top: Angle of emission θ of the first pair of vortices as a function of the velocity of the
obstacle, for U0 = 0.7 (dark blue dots) and U0 = 1 (lighter blue triangles). The colored dashed lines
represent the corresponding theoretical critical velocity vc, which are supposed to be the first values
for which we can get data. This was however not the case since the integration time was too short
to observe the emission of vortices for such values of v∞. The figure shows that θ is an increasing
function of v∞, which growth slows down at some point because several pairs of vortices are formed
at the same time. Bottom: Same angle of emission θ as a function of U0 this time, and for v∞ = 0.5.
This figure, along with the top part, shows that the smaller U0 and the larger v∞, the larger the
deviation from the theoretical prediction θ = 90◦. The top panel on the right represents a schematics
of the angle θ, and the bottom one is a reminder of vc as a function of U0, and is here to show for
which parameters (U0, v∞) we computed θ.

to interact with each other, potentially leading to the formation of turbulent structures for
restricted set of parameters [101, 103].

The numerical simulation we performed allowed us to study the angle of emission of
the first pair of vortices as a function of the velocity, in both cases of the penetrable and the
impenetrable obstacle. This is represented in the top part of Fig. 3.14, for U0/ε(1) ∈ {0.7, 1},
and σ = 5. Note that we did not obtain data for v∞ < 0.45 for U0 = 1 and v∞ < 0.4 for
U0 = 0.7, since the simulation time we used was too short to see vortices appear below
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that. In any case, it was not possible to obtain data for velocities lower than v∞ = 0.369
and v∞ = 0.276 (respectively for U0 = 1 and U0 = 0.7), which correspond to the value of
the critical velocity for superfluidity extracted from Fig. 3.12 for ε(n) = n (one then has
ε(1) = 1), and which are represented in dashed lines.

In accordance with Ref. [214], we found that the angle of emission θ of the first pair
of vortices (i.e. the angle between the x−axis and the upper vortex, see Fig. 3.14) is an
increasing function of the velocity of the obstacle. Also, θ seems to converge to the theoretical
value of θ = 90◦, at least for U0 = 1 (because of the divergence of the nucleation time close
to the transition, we do not have enough data for U0 = 0.7 to draw the same conclusion). At
some point around v∞ = 0.5, the growth rate of θ is slowing down. This seems to coincide with
the fact that the shedding frequency is so large that two pairs of vortices are almost ejected
at the same time, which influences the angle of emission of the first pair. It is also interesting
to note that even though it is not represented here, the different curves for U0/ ∈ {0.7, 1} do
not collapse into a single curve when representing θ as a function of v∞/vc(U0) (where one
has vc ∈ {0.276, 0.369} respectively). This could stem from the fact that the mechanisms to
break superfluidity down differ: For U0 = 0.7 it is a rarefaction wave whereas for U0 = 1 it is
vortices at the boundary of the obstacle.

The top part of Fig. 3.14 also shows that the smaller U0, the larger θ, which is validated
by the bottom part of Fig. 3.14, representing θ as a function of U0/ε(1), and for v∞ = 0.5.
The small panel in the right part of the figure is here to help the reader in the comprehension
of the different simulations we ran: It is a reminder of vc as a function of U0, and the various
colored markers represent the values of (U0, v∞) for which we obtained θ.

3.5 Conclusion

This chapter focused on determining the critical velocity for superfluidity in 2D. To achieve
this, we employed the method used in Refs. [58, 59] – leading to analytical results much more
complex than those of Chap. 1 – and extended it to obstacles of possibly large amplitude,
as well as various expressions of the nonlinear potential ε(n). To summarize this method: In
2D, the continuity equation is no longer integrable. To address this, we re-express it in the
hodograph plane, leading to a new condition for superfluid motion based on the ellipticity
of the continuity equation – a condition strictly equivalent to the local Landau criterion in
the hydraulic approximation we consider throughout this chapter. This condition relies on
knowing the maximum velocity as a function of v∞, and requires solving the hydrodynamic
equations within the hydraulic approximation. We do it for a disk-shaped obstacle using
Janzen-Rayleigh expansions of the velocity potential around the incompressible flow limit.
Finally, after solving the condition for superfluid motion with said value of vmax, one can derive
an exact analytical expression for the critical velocity for superfluidity vc in two dimensions.

Our analytical results for vc as a function of U0 and for a large σ indicate that two distinct
behaviors are expected, depending on whether the obstacle is penetrable (U0/ε(1) < 1) or
impenetrable (U0/ε(1) > 1). On the one hand, vc decreases as a function of U0 and goes to
zero when the obstacle is penetrable. On the other hand, vc is expected to remain constant
once the obstacle becomes impenetrable.
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We explain these different behaviors by the existence of two distinct mechanisms for
breaking superfluidity in 2D, which are as follows.

• If the obstacle is impenetrable – as previously studied in Refs. [58, 59], although
only for ε(n) = n – superfluidity is broken at the obstacle’s boundary by the nucle-
ation of vortices of opposite circulation within the boundary layer. As the obstacle
moves through the fluid, these vortices are periodically emitted, supposedly at an
angle θ = 90◦. However, in agreement with Ref. [214], we demonstrate in Sec.
3.4.5 that this angle of emission is actually greater (at least for the first pair of
vortices), and is highly dependent on both U0 and v∞.

• For a penetrable obstacle, the mechanism leading to the breakdown of superfluidity
is different, as a dynamics within the obstacle is now possible. Superfluidity is
disrupted where the density is the lowest – inside the obstacle – by the formation
of a rarefaction wave. As this soliton evolves within the obstacle and reaches the
boundary of the disk, it then triggers the nucleation of a pair of vortices. Similarly
to classical fluid mechanics for high Reynolds number flows, the emission of these
vortices is due to boundary layer separation [214], occurring near the rear side at
θ > π/2 (again, refer to Sec. 3.4.5), despite the maximum velocity being reached
at (σ,±π/2).

We also performed a numerical simulation of the system to capture the actual behavior
at the transition between penetrable and impenetrable regimes. Following the method used
in Ref. [61], we found that vc exhibits a minimum, likely around U0/ε(1) = 0.7− 0.8, which
is consistent with the experimental and numerical results reported in Refs. [61, 195] for
Gaussian obstacles. Our analytical results are also in good agreement with these numerical
simulations. Ultimately, this demonstrates that our simplified model with a large disk is
qualitatively adequate for describing real experimental systems.

Despite this good agreement, some discrepancies are observed between our analytical and
numerical results, particularly near the transition. Instead of dropping to zero, vc smoothly
links the penetrable and impenetrable regimes instead. This difference arises because our
analytical model neglects the quantum pressure, while the numerical simulation accounts for
it. This term is indeed significant, as it reduces the density gradients when the obstacle is
penetrable, leading to a higher density inside. According to the local Landau criterion, this
increases the local speed of sound and, consequently, the critical velocity for superfluidity.
Thus, near the transition, vc does not exactly drop to zero but increases to connect with
the value obtained in the impenetrable regime. Additionally, another potential source of
discrepancy could be that in our simulation, we modeled the dynamics of a smoother obstacle
rather than one with sharp boundaries, which could have a marginal effect on vc.

Although this consideration goes beyond the scope of the present chapter (as our results
are derived only for σ � 1), further studies indicate that the dependence of vc in σ is also
nontrivial, as shown in Refs. [49, 60, 101, 199], albeit for impenetrable obstacles. It is indeed
shown that vc gradually decreases as σ increases, and reaches a plateau for σ � 1 at the
theoretical value vc = 0.369773 obtained in the hydraulic approach, as derived by Rica in
Ref. [59]. Note that the value of this plateau for σ � 1 is slightly lower than the one we
derived for ε(n) = n, as we did not push the Janzen-Rayleigh expansion up to the same order
as Rica. The results of Ref. [49] – i.e. not a plateau for σ � 1 but rather vc ∝ 1/σ in 2D and
3D – are thus inconsistent with several theoretical (Refs. [58, 59, 61], including our work)
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and experimental studies [195] as they predict a zero critical velocity for large obstacles. This
likely stems from the Ansatz they use for the density profile, which presents a cusp in 2D at
r = 0 for a cylindrical obstacle, and which has no θ−dependence even in the presence of a
nonzero flow at infinity.

Interestingly, the existence of a minimum in the critical velocity for superfluidity at the
transition between the penetrable and impenetrable regimes appears to depend on the width
of the obstacle. Specifically, Refs. [61, 195] show that the minimum around U0 = ε(1)
gradually disappears as σ decreases. This likely results from the quantum pressure playing
a more significant role for thin obstacles than for wider ones. Since it tends to increase the
value of vc (as discussed Chap. 1), its minimum value will increase as σ decreases. We even
anticipate that for σ � 1, the obstacle might be too thin for a perturbation to form within
it, leading instead to the formation of a pair vortices at its poles.
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Conclusion

In this thesis manuscript, we have provided a thorough theoretical study of the stationary
flow of a quantum fluid past a localized obstacle in both one and two dimensions. In partic-
ular, we have characterized the critical velocities separating the stationary-transport phases
of the quantum flow, in the parameter space of both the obstacle and interaction poten-
tials. We have investigated the subsonic velocity below which the quantum fluid flows in a
superfluid way, in both 1D and 2D, as well as the supersonic velocity marking entry into
the stationary dissipative regime of cnoidal waves, in 1D. The analysis has been performed
both analytically and numerically within the framework of the nonlinear Schrödinger equa-
tion and its associated Madelung hydrodynamic equations, for localized obstacle potentials
of arbitrary penetrability and for local interaction potentials of various dependencies on the
fluid density. This has made it possible to push the theoretical state of the art towards
a more comprehensive and realistic modeling of quantum-transport experiments using, for
instance, Bose-condensed ultracold atomic vapors or paraxial beams of superfluid light in
low-dimensional geometries. The main results of each chapter are summarized below.

In Chap. 1, we derived exact analytical results for the critical velocity for superfluidity vc
in one-dimensional systems, as a function of the amplitude and the width of the obstacle, and
of the parameters of the nonlinear interaction potential ε(n). This analysis was conducted
for repulsive obstacles in both the narrow and wide widths limits – discussed respectively in
Sec. 1.3.1 and 1.3.2. Our initial hydraulic approximation for wide obstacles suggested that vc
should exactly drop to zero when the obstacle’s amplitude exceeds a certain threshold value.
However, we refined our model in Sec. 1.3.2 to account for the possibility of tunneling across
the barrier, which remains possible regardless of the obstacle’s amplitude. This refinement
led to exponentially small corrections to the critical velocity in such cases.

To complement these analytical results, we developed a relaxation algorithm in imaginary
time for the stationary superfluid problem, and performed numerical simulations in Sec.
1.3.3 to capture the behavior of the critical speed at intermediate obstacles widths, going
beyond the limits previously considered. The numerical results closely matched our analytical
predictions, providing a comprehensive understanding of the transition between the very
distinct regimes of superfluid and nonstationary flows.

Finally, in Sec. 1.3.4, we extended our model to include linear and homogeneous losses,
making it applicable to systems such as quantum fluids of light – an area relevant to ongoing
experiment conducted by teams we work in collaboration with. By applying a relevant adia-
batic evolution approximation, we found that while these losses reduce the value of vc, they
do not fundamentally alter its behavior. The critical velocity remains a decreasing function
of σ and U0 which agrees with the Landau criterion in the limit U0 � 1, in which case vc is
given by the speed of sound in the system.

While Chap. 1 focused on determining vc, a critical velocity central to understanding su-
perfluidity, Chap. 2 explores another important velocity: The supersonic separatrix vs – still
for one-dimensional systems. This velocity marks the boundary between the nonstationary
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regime and a distinct stationary regime characterized by nonsuperfluid transport. Using a
Hamiltonian approach, we respectively derived exact analytical expressions for vs in the nar-
row and wide obstacle limits in Secs. 2.2 and 2.3, employing a methodology similar to that
used in the previous chapter. Additionally, we performed numerical simulations in Sec. 2.4
to investigate vs for intermediate values of σ, notably revealing that vs exhibits resonances
for values of σ lying between the narrow and wide limits.

In Sec. 2.5, we further analyzed these resonances using a toy model of a square well,
showing that they are closely linked to lines of perfect transmission across the obstacle at
velocities exceeding vc. These transmission lines connect the superfluid and stationary su-
personic regimes, suggesting that the fluid exhibits a superfluid-like dynamics under these
specific conditions.

Overall, both Chap. 1 and Chap. 2 contribute to the broader study of the various regimes of
transport possible in a 1D quantum fluid. The results from these chapters, when combined
in a single figure, offer a comprehensive characterization of the different regimes defined by
vc and vs. While we derived exact expressions for vc in specific limits of σ, it is particularly
intriguing to investigate its behavior when σ lies between these limits – which was done using
numerical simulations. This is illustrated in Fig. 4.1 (identical to the one in the introductory
part of Chap. 2) – a phase diagram that maps the various regimes possible as a function of
both U0 and v∞, and specifically for a square well with typical width σ = 1. In this case, all
curves are derived numerically.

In this figure, the grey and black lines represent vc and vs, respectively. These lines
demarcate the superfluid regime (light purple) – where the density profile is symmetric and
disturbed only in the vicinity of the obstacle (as seen in Subfig. (a)) – from the nonstationary
regime (in grey). The latter is characterized by the repeated emission of nonlinear structures
that will interfere with each other, potentially leading to a turbulent profile, as shown in
Subfig. (b). The supersonic nonsuperfluid regime is depicted in darker purple, and displays
two distinct behaviors depending on the obstacle’s parameters. In most cases, a part of the
fluid is transmitted across the barrier while another is reflected, resulting in the asymmetric
density profile shown in Subfig. (c), featuring a cnoidal wave ahead of the obstacle and no
perturbation downstream3. Finally, the pink dots indicate a line of perfect transmission along
which a different dynamics occurs, achieved under very specific conditions. Here, the fluid
exhibits a superfluid-like behavior due to a resonance between the width of the obstacle and
the wavelength of the cnoidal wave, as depicted in Subfig. (d), where the density profile
resembles that of Subfig. (a).

Chapter 3 focused on the critical velocity for superfluidity in two-dimensional systems, high-
lighting the complexities introduced by a higher dimensionality. We began by demonstrating
in Sec. 3.1.2 that the linear-response theory fails when dealing with a δ−peak obstacle, re-
vealing the need for a more sophisticated approach to determine vc in 2D systems. Yet, it
yields results consistent with the Landau criterion when examining the density profiles far
from the origin, where the Green’s function indeed exhibits a logarithmic divergence.

In this context, the critical velocity cannot be obtained from the conservation of the cur-
rent as in one dimension, because the continuity equation in two dimensions is not integrable
anymore. We thus developed a multi-step method, detailed in Sec. 3.2, in which we per-
turbatively treated the continuity equation around an incompressible limit by expanding the

3An exact calculation of the density profile – as well as the expression of the drag force – is provided in
Sec. 2.2.2 for a δ−peak obstacle.
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Figure 4.1: Phase diagram illustrating the possible regimes of transport for a 1D quantum fluid
characterized by ε(n) = n flowing from right to left with velocity v∞, in the presence of a square
well obstacle of amplitude U0 and width σ = 1 (depicted in red in Subfigs. (a–d)). Depending
on the value of (U0, v∞), three distinct dynamics can occur: A superfluid regime (light purple),
a potentially turbulent nonstationary regime (grey), and a stationary nonsuperfluid regime (darker
purple). In the latter, a superfluid-like dynamics can still occur under specific conditions that lead
to a perfect transmission across the obstacle. Subfigs. (a–d) show the typical density profiles of the
fluid, corresponding to the tags in the main figure.

velocity potential using a Janzen-Rayleigh expansion, and by considering the hydraulic limit
(i.e. neglecting the quantum pressure). In this limit, the density obeys an algebraic equation
rather than a differential one, making it possible to derive a new condition for superfluid
motion.

Our analysis revealed that the critical velocity vc is highly dependent on the obstacle’s
amplitude and is – contrary to the results obtained in Chap. 1 – a nonmonotic function of U0.
It is characterized by two branches (obtained respectively for penetrable and impenetrable
obstacles), which correspond to two different mechanisms for the breakdown of superfluidity.
In Secs. 3.3 and 3.4, we respectively analytically derived vc to the highest possible order
in the Janzen-Rayleigh expansion for different nonlinear interaction potential ε(n), showing
that the critical velocity is a nonmonotonic function of the amplitude U0 of the obstacle
(contrarily to the 1D case). We then performed a imaginary-time numerical simulation of the
system in Sec. 3.4.4 in order to characterize the real behavior of vc at the transition between
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Figure 4.2: Top: Critical velocity vc as a function of the amplitude U0/ε(1) of the obstacle, for σ � 1
and ε(n) = n. The green lines are the analytical limits found in the penetrable and impenetrable
regime, whereas the purple line comes from a numerical simulation of the problem, and reveals the
true behavior at the transition. Bottom: Subfigs. (a–c) represent the density profile of the quantum
fluid for the parameters associated with tags in the main figure. Tag (a) illustrates the formation of
a rarefaction wave, tag (b) shows the nucleation of vortices at the poles of the obstacle, and tag (c)
illustrates the transition towards a turbulent regime for an important velocity.

penetrable and impenetrable obstacles, and found that it exhibits a minimum. All these
results are encompassed in the top part of Fig. 4.2, representing vc as a function of U0/ε(1).
The analytical limits we found are represented in green, and are in really good agreement
with our numerics (purple), except in the transition zone (in grey), where vc is smoothed out
in order to link the two different regimes.

Finally, we explored the mechanisms underlying the breakdown of superfluidity in Sec.
3.3.4 and 3.4.5. Depending on the flow parameters, this breakdown is driven either by the
nucleation of vortices at the poles of the obstacle (impenetrable obstacle, tag (b) in Fig. 4.2),
or by the formation of a rarefaction wave within it (penetrable obstacle, tag (a) in Fig. 4.2).
We also briefly studied the properties of vortex emission under various flow parameters, and
found that under extreme parameters, the system exhibits quantum turbulence (see tag (c)).
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Figure 4.3: Evolution of the velocity probability distribution over time for t/τ ∈ {0, 2, 4, 6}, with
characteristic time τ = mvc/Fd,pert, and Fd,pert the amplitude of the force obtained in the linear-
response theory. As time increases, the probability to have |v∞| > vc slowly migrates towards lower
velocities – depopulating these states – and stacks on |v∞| = vc.

The research conducted during this thesis has been the subject of the publication of three
peer-reviewed articles, each introduced at the beginning of the respective chapters. However,
our work over the past three years has extended beyond these publications, exploring several
additional avenues that hold promising potential for future research.

Building on our work in the 1D regime, we have initiated the exploration of the dynamics
of a gas of impurities of mass m moving at supersonic velocities, subjected to the same drag
force as modeled in Chap. 2 for a δ−peak obstacle, and obtained preliminary results. We
began by developing a simple model for the equation of evolution of the velocity probability
distribution. This was then followed by a numerical approach, where we considered an initial
off-centered Gaussian distribution. Our results show that, over time, the states with |v∞| > vc
are gradually depleted, while a peak emerges in the distribution at |v∞| = vc, as illustrated
in Fig. 4.3. As the integration progresses, the distribution appears to converge toward an
equilibrium state in which the probabilities to have |v∞| > vc become null, and are stacked
on |v∞| = vc instead. We also conducted a study of the convergence time, examining how
it varies with the parameters of the problem. This work presents intriguing perspectives
by demonstrating thermalization towards a highly unconventional state, which could be of
significant interest for experimentalists.
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Another important perspective to the present one-dimensional study would be to under-
stand and include the effects of quantum fluctuations on the superfluid-nonsuperfluid tran-
sition, thus going beyond the mean-field approach we used all along this manuscript. Such
fluctuations can indeed play a crucial role in the behavior of a quantum fluid, especially in
1D where correlations are enhanced. For example in the mean-field approach we employed,
the drag force linked to energy dissipation (causing a loss of inertia and a deceleration of the
system) is strictly null in the superfluid regime. This is what we relied on to determine the
critical superfluid velocity (modulo the losses, which smooth the transition around the critical
value). However, once quantum fluctuations are taken into account, the system is submitted
to a force that is much more complex, as shown in Refs. [57, 156, 184, 185, 221, 222] for
example for interacting Bose gases beyond the Gross-Pitaevskii regime. This nonnegligible
change in our criterion for superfluid motion then calls for the development of new analytical
models to study superfluidity when accounting for the quantum fluctuations.

A significant collaboration has been established with C. Michel and M. Bellec from the
experimental team “Waves in Complex Systems” in Nice, focusing on quantum fluids of light
in photorefractive crystals. The primary objective is to better qualify the key experimental
results presented in Ref. [55], specifically the phase diagram shown in Fig. 3.2. Our goal is
to predict the critical velocity in their 2D system using our model, and to confront it to their
experimental results. This is an ongoing project, as we are currently developing a numerical
model to accurately simulate the obstacle used in their experiments, before computing vc.
This is illustrated in the top part of Fig. 4.4, where the green line represents a radial cut of
the obstacle present in their experiment (obtained from a measurement of the intensity profile
with the quantum fluid at rest with zero velocity), whereas the dashed line corresponds to
the fit we use in out numerical simulation. The obstacle we generate then corresponds to this
radial cut revolved around the origin, so that there is a revolution symmetry. The bottom part
of Fig. 4.4 represents the intensity profile of the quantum fluid of light moving at v∞ = 0.707
in the presence of the previously-defined obstacle with an amplitude U0 = 0.207. The winglet
structure is also present, but there is no revolution symmetry around the origin anymore
because of the nonzero current. Such parameters for (U0, v∞) correspond to the superfluid
regime, as we found that stationary solutions start to disappear for vc ∈ [0.785, 0.801]. We
then compared it to a calculation of vc for a Gaussian obstacle of the same amplitude, and the
same integral as the positive part of the experimental obstacle, and obtained the exact same
interval for vc. The peculiarity of the experimental obstacle, i.e. the presence of winglets
on either side, does not impact the value of the critical velocity. This stands as long as the
obstacle is far in the penetrable regime and superfluidity is broken inside of it, which is the
case that is experimentally relevant. When it is impenetrable however, the winglet structure
becomes important because superfluidity is broken at the boundary of the obstacle; This
regime is not achievable at the moment in the experiment we are referring to.

Additional discussions are also underway with Q. Glorieux’s team at LKB, who possess
experimental resources to determine vc in a different setup (hot atomic vapors). This would
provide an opportunity to further test our model with another system. Experiments with
quantum fluids of light are particularly promising because, like cold atom experiments, they
can probe the penetrable regime.

Along similar lines, a deep interest is also shed to the dynamics of vortices in 2D systems
after their emission. Specifically, we have begun investigating the separation distance between
vortices in the same pair as a function of the velocity of the obstacle. In the spirit of Ref.
[101], a key objective could be to identify the specific parameters that lead to a fully turbulent
regime, as shown in tag (c) of Fig. 4.2. Additionally, we aim to potentially observe von
Kármán vortex street by breaking a symmetry in the system, either by altering the shape or
properties of the obstacle, or introducing noise into the initial ground state in the simulation.
This could provide a deeper insight into the transition from orderly vortex dynamics to more
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Figure 4.4: Top: The green curves represents a radial cut of the experimental obstacle. To deduce vc
from data as close as possible to the experiments but avoid errors in our simulation, we model it with
a fit of the obstacle, represented in dashed line. The obstacle presents a winglet structure on each
side, which is not present in the case of a Gaussian obstacle, but which does not impact the value of
vc in a significant way. Bottom: Intensity profile obtained from a quantum fluid of light propagating
from left to right at velocity v∞ = 0.707, in the presence of an obstacle modeled by our numerical fit.
This corresponds to a superfluid state, as shown by the absence of nonlinear structures.

complex, chaotic behaviors in quantum fluids.
Lastly, a promising direction for future research could involve investigating the transition

to superfluidity for systems in the presence of asymmetric obstacles, several of them, or
even with disordered potentials as performed in Refs. [48, 50] for example, and see how the
critical velocity for superfluidity connects to the properties of the potential, if it fluctuates,
if we recover the same limits as derived in this manuscript, etc. This would allow us to test
the robustness of the approach we present under more complex conditions, and potentially
observe new nontrivial aspects of the critical velocity.

133



CONCLUSION

134



Appendix A

How to determine the condition for
superfluidity in 2D?

As it is, the continuity equation∇·(nv) = 0 is hardly solvable in the xy−plane using Cartesian
coordinates. It then becomes necessary to perform a change of variables, and derive a “new”
continuity equation, easier to solve.

It seems natural to work with polar coordinates given the symmetry of the problem. The
velocity of the quantum fluid is easily obtained: v(r) = (vx = v cos θ, vy = v sin θ). We thus
want to transform the continuity equation ∇ · (nv) = 0, acting on the Cartesian coordinates
(x, y), into an equation on the polar coordinates (v, θ).

A.1 Passage in the hodograph plane

A.1.1 Change of variables (x, y)→ (v, θ)

Following the method provided in Sec. 116 of Ref. [207], it is possible to obtain the continuity
equation for the velocity components (vx, vy), and then by extension for the polar coordinates
(v, θ). This involves working in the hodograph plane (vxvy−plane) instead of the physical
plane (xy−plane).

Let us define the Legendre transform Φ(v, θ) = v ·r−φ: We then have dΦ = x d(v cos θ)+
y d(v sin θ). From there, one can easily infer the expressions of x and y

x = ∂vΦ cos θ − ∂θΦ
sin θ

v
, (A.1a)

y = ∂vΦ sin θ + ∂θΦ
cos θ

v
, (A.1b)

and the derivatives

∂vx = cos θ ∂2vΦ +
sin θ

v2
∂θΦ−

sin θ

v
∂2vθΦ, (A.2a)

∂θx = − sin θ ∂vΦ−
sin θ

v
∂2vΦ− cos θ

v
∂θΦ + cos θ∂2vθΦ, (A.2b)

∂vy = sin θ ∂2vΦ− cos θ

v2
∂θΦ +

cos θ

v
∂2vθΦ, (A.2c)

∂θy = cos θ ∂vΦ +
cos θ

v
∂2vΦ− sin θ

v
∂θΦ + sin θ∂2vθΦ. (A.2d)

I



APPENDIX A. HOW TO DETERMINE THE CONDITION FOR SUPERFLUIDITY IN
2D?

A.1.2 The continuity equation using a Jacobian notation

Let J
[
(A,B)(x,y)

]
be the Jacobian matrix of the application (x, y) 7→ (A,B); Its determinant

is such that

Det
(
J
[
(A,B)(x,y)

])
=

∣∣∣∣
∂xA ∂yA
∂xB ∂yB

∣∣∣∣ . (A.3)

When applying this method to our problem, the continuity equation ∇·(nv) = 0 in Cartesian
coordinates (x, y) can be re-expressed in terms of a Jacobian notation. One has ∂x(nvx) +
∂y(nvy) = 0, which is equivalent to

Det
(
J
[
(nvx, y)(x,y)

])
−Det

(
J
[
(nvy, x)(x,y)

])
= 0. (A.4)

The change of variables for the continuity equation involves the determinant of the Ja-
cobian matrix of the application (x, y) 7→ (v, θ), defined as Det

(
J
[
(x, y)(v,θ)

])
. One then

has

∇ · (nv) =
{

Det
(
J
[
(nvx, y)(x,y)

])
−Det

(
J
[
(nvy, x)(x,y)

]) }
Det

(
J
[
(x, y)(v,θ)

])
= 0. (A.5)

This equation obeys the chain rule, making it possible to simplify it further, and work exclu-
sively with the polar coordinates (v, θ):

∇ · (nv) = Det
(
J
[
(nvx, y)(v,θ)

])
−Det

(
J
[
(nvy, x)(v,θ)

])
= 0. (A.6)

Using the expressions of the derivatives provided in Eqs. (A.2), one obtains Eq. (3.13), i.e.
the “new” continuity equation in the variables (v, θ)

∂2vΦ +
1

nv
∂v(nv)∂vΦ +

1

nv2
∂v(nv)∂2θΦ = 0. (A.7)

A.2 A condition for superfluid motion with the method of character-
istics

A.2.1 General method of characteristics to solve second-order scalar PDE

The method of characteristic is often used in physics to solve PDEs, by transforming the
equation into a system of characteristics [223], i.e. curves along which the PDE becomes an
ODE. Let us treat the most general case defined by

a∂2xu+ 2b∂x∂yu+ c∂2yu+ d∂xu+ e∂yu = g, (A.8)

where u, a, b, c, d, e, g are functions of x and y. We first convert this equation to a coupled
first-order system. The second-order PDE can then be written as

A∂x∇u+B∂y∇u = C, (A.9)

with

A =

(
a 0
0 1

)
, (A.10a)

B =

(
2b c
−1 0

)
, (A.10b)

C =

(
g − d∂xu− e∂yu

0

)
. (A.10c)
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2D?

Characteristics are determined by dy
dx = λ, with λ the eigenvalue of B − λA, and are thus

given by ∣∣∣∣
2b− λa c
−1 −λ

∣∣∣∣ = 0, (A.11)

which leads to λ = (b±
√
b2 − ac)/a.

The characteristics of a PDE are a convenient quantity for gaining insight into a PDE, as
they provide information on the nature of its solutions. They are lines along which distur-
bances can possibly propagate. 3 families of characteristics can exist depending on the value
of λ, and will determine the type of solution one has

• Two distinct real eigenvalues if b2 > ac: The PDE is hyperbolic.

• Two distinct complex eigenvalues if b2 < ac: The PDE is elliptic.

• One real eigenvalue if b2 = ac: The PDE is parabolic.

Any small disturbance will propagate with a finite velocity along the characteristics of the
equation if λ is real. The case we are interested in corresponds to elliptic PDEs, since nothing
can propagate along an imaginary characteristic. Thus, if λ is complex, there is no curve in
the {x, y} plane along which a perturbation of the field u may propagate. In other words,
the motion is superfluid.

A.2.2 The condition for superfluidity applied to our problem

To solve Eq. (A.7) with the method of characteristic, we consider a = 1, b = 0, c = 1
nv2

∂v(nv),
d = 1

nv∂v(nv), e = 0 and g = 0, with x→ v and y → θ. This leads to

λ =
dθ

dv
= ±

√
− 1

nv2
∂v(nv). (A.12)

For λ to be imaginary, one necessarily needs ∂v(nv) > 0 since n and v are always positive.
This is the condition for superfluid motion provided in Eq. (3.15).
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Appendix B

Exact resolution of vc,k for an
impenetrable obstacle

We provide in this section the detailed calculations leading to the exact analytical expression
for the critical velocity for superfluidity in the impenetrable regime, for a powerlaw nonlin-
earity and a saturable nonlinearity. These results are really complicated as each order k in
the Janzen-Rayleigh expansion depends on the previous orders. We provide the various φk’s
up to the order k = 4 for each nonlinearity (even though we went up to order 6 for a saturable
nonlinearity) and then compute the vc,k’s from these expressions.

B.1 Results for a powerlaw nonlinearity: ε(n) = nν/ν

B.1.1 The incompressible solution: k = 0

One has to solve Laplace’s equation for the velocity potential φ0

∇2φ0(r) = 0. (B.1)

The resolution with the proper boundary conditions φ(r � σ) = v∞r cos θ and ∂rφk(σ) = 0
leads to the exact expression of the velocity potential

φ0(r) = v∞r

[
1 +

σ2

r2

]
cos θ, (B.2)

and thus vmax = vmax,0 = 2v∞.

To obtain the critical velocity for superfluidity to the zeroth order in the compressibil-
ity (i.e. in the incompressible approximation), one has to use the following condition for
superfluidity

1 + v2∞

[
ν

2
− v2max

v2∞

(
1 +

ν

2

)]
> 0. (B.3)

This condition is a second-order polynomial in v∞, which solution is easily obtained. In
the end, the resolution leads to

v∞ < vc,0 =

√
2

8 + 3ν
. (B.4)

One recovers the celebrated result obtained in Ref. [58] for ν = 1, i.e. vc,0 =
√

2/11.
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APPENDIX B. EXACT RESOLUTION OF VC,K FOR AN IMPENETRABLE
OBSTACLE

B.1.2 Solution for k = 1

One can obtain the equation to determine φ1(r) using the recurrence relation (3.39). Since
∇2φ0 = 0, this simplifies to

∇2φ1(r) =
1

2v2∞
∇φ0∇(v2)0, (B.5)

with (v2)0 = |∇φ0|2. The resolution with our Ansatz defined by Eq. (3.53), as well as the
boundary condition ∂rφk(σ) = 01 leads to

φ1(r) = v∞r

[(
13σ2

12r2
− σ4

2r4
+

σ6

12r6

)
cos θ +

(
− σ2

4r2
+

σ4

12r4

)
cos 3θ

]
. (B.6)

One can then easily determine vmax,1 = |∇φ1(σ,±π/2)|, thus leading to vmax = vmax,0 +

χvmax,1 = v∞

(
2 + 7v2∞

6

)
.

The condition for superfluidity is still the same as Eq. (B.3), which is a fourth-order
polynomial in v∞. In the end, its resolution leads to

v∞ < vc,1 =
1

2
√

7

√
−24− 9ν +

√
1248 + 768ν + 81ν2

2 + ν
. (B.7)

B.1.3 Solution for k = 2

Using the expressions for ∇2φ0(r) and ∇2φ1(r) we previously found, the recurrence relation
given by Eq. (3.39) simplifies to

∇2φ2(r) = −ν
2
∇2φ1 +

1

2v2∞

[
∇φ0∇(v2)1 +∇φ1∇(v2)0 + ν∇2φ1(v

2)0
]
, (B.8)

with (v2)1 = 2∇φ0∇φ1. The resolution for φ2(r) with our Ansatz leads to

φ2(r) = v∞r

[(
(411 + 68ν)σ2

240r2
− (32 + 3ν)σ4

24r4
+

(39 + 4ν)σ6

48r6
− (5 + ν)σ8

16r8

+
(11 + 3ν)σ10

240r10

)
cos θ +

(
− 19σ2

48r2
− (25 + 61ν)σ4

240r4
+

3(1 + ν)σ6

16r6
− (5 + 3ν)σ8

120r8

+
σ10

144r10

)
cos 3θ +

(
σ2

16r2
+

(1 + ν)σ4

16r4
− (4 + 3ν)σ6

80r6

)
cos 5θ

]
, (B.9)

and thus with vmax = vmax,0 + χvmax,1 + χ2vmax,2 = v∞

(
2 + 7v2∞

6 + (281+71ν)v4∞
120

)
. The con-

dition for superfluidity is still given by Eq. (B.3), but now leads to a sixth-order polynomial
in v∞, for which we did not obtain an analytical expression.

B.1.4 Solution for k = 3

The velocity potential φ3(r) is obtained from the recurrence relation (3.39), which simplifies
to

∇2φ3(r) = −ν
2
∇2φ2 +

1

2v2∞

[
∇φ2∇(v2)0 +∇φ1∇(v2)1 +∇φ0∇(v2)2

+ ν∇2φ2(v
2)0 + ν∇2φ1(v

2)1

]
, (B.10)

1Since φ(r) = φ0(r) + χφ1(r) + χ2φ2(r) + ..., the boundary condition at infinity defined by φ(r � σ) =
v∞r cos θ is already satisfied by φ0(r). It then does not apply to φk(r) with k ≥ 1.

VI



APPENDIX B. EXACT RESOLUTION OF VC,K FOR AN IMPENETRABLE
OBSTACLE

with (v2)2 = 2∇φ0∇φ2 + |∇φ1|2. After resolution with the proper boundary conditions, the
velocity potential φ3(r) becomes

φ3(r) = v∞r

[((
60ν2 + 459ν + 853

)
σ14

20160r14
−
(
24ν2 + 252ν + 533

)
σ12

1440r12

+

(
108ν2 + 1557ν + 3898

)
σ10

2880r10
−
(
180ν2 + 2607ν + 7870

)
σ8

2880r8
+

(
60ν2 + 2235ν + 9613

)
σ6

2880r6

+

(
472ν2 + 4224ν + 10571

)
σ2

3360r2
− (489ν + 2248)σ4

720r4

)
cos θ +

(
−
(
60ν2 + 369ν + 659

)
σ12

6720r12

+

(
180ν2 + 1203ν + 1595

)
σ10

4320r10
−
(
180ν2 + 4839ν + 6055

)
σ8

7200r8
+

(
60ν2 + 1281ν + 1430

)
σ6

960r6

−
(
13920ν2 + 129456ν + 111455

)
σ4

100800r4
+

(6ν + 17)σ14

1440r14
− (17ν + 154)R2σ2

240r2

)
cos 3θ

+

((
60ν2 + 159ν − 5

)
σ10

6720r10
−
(
8ν2 + 10ν − 5

)
σ8

96r8
+

(
30420ν2 − 39339ν − 130670

)
σ6

302400r6

− (6ν + 5)σ12

1440r12
+

(388ν + 545)σ4

960r4
+

σ14

1728r14
+

25σ2

192r2

)
cos 5θ

+

((
20ν2 + 41ν + 17

)
σ8

1344r8
−
(
4ν2 + ν − 8

)
σ6

192r6
− (2ν + 3)σ4

32r4
− σ2

64r2

)
cos 7θ

]
. (B.11)

The maximum velocity is now given by vmax = vmax,0 + χvmax,1 + χ2vmax,2 + χ3vmax,3 =

v∞

(
2 + 7v2∞

6 + (281+71ν)v4∞
120 + (916100+520119ν+75420ν2)v6∞

151200

)
. The condition for superfluidity is

an eighth-order polynomial in v∞, which is numerically solved.

B.1.5 Solution for k = 4

Similarly to the previous sections, we obtain the velocity potential φ4(r) after resolution of
the Poisson equation, now given by

∇2φ4(r) = −ν
2
∇2φ3 +

1

2v2∞

[
∇φ3∇(v2)0 +∇φ2∇(v2)1 +∇φ1∇(v2)2 +∇φ0∇(v2)0

+ ν∇3φ2(v
2)0 + ν∇2φ2(v

2)1 + ν∇2φ1(v
2)2

]
, (B.12)

with (v2)3 = 2 (∇φ0∇φ3 +∇φ1∇φ2). We again use our Ansatz for φ4(r), leading to
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φ4(r) = v∞r

[((
420ν3 + 5027ν2 + 19552ν + 24316

)
σ18

483840r18
−
(
2130ν2 + 27057ν + 71137

)
σ4

10080r4

−
(
300ν3 + 4901ν2 + 21728ν + 29010

)
σ16

53760r16
+

(
4320ν3 + 82356ν2 + 417060ν + 608605

)
σ14

241920r14

−
(
11340ν3 + 216477ν2 + 1250934ν + 2035135

)
σ12

302400r12
+

(
4860ν3 + 155241ν2 + 1072320ν + 1990930

)
σ10

172800r10

−
(
18900ν3 + 961875ν2 + 7511022ν + 16090280

)
σ8

1209600r8
+

(
1175580ν2 + 14262588ν + 38212105

)
σ6

3628800r6

+

(
76608ν3 + 823638ν2 + 3254982ν + 4721945

)
σ2

725760r2

)
cos θ

+

((
852ν2 + 5073ν + 7613

)
σ18

403200r18
−
(
1260ν3 + 13401ν2 + 54327ν + 71465

)
σ16

362880r16

+

(
3780ν3 + 50247ν2 + 189318ν + 222896

)
σ14

241920r14
−
(
8100ν3 + 221415ν2 + 935166ν + 1030970

)
σ12

403200r12

+

(
12600ν3 + 255660ν2 + 1295193ν + 1400360

)
σ10

302400r10

+

(
35040ν2 + 279749ν + 301605

)
σ6

44800r6
−
(
1580400ν3 + 22266000ν2 + 93707574ν + 82126265

)
σ4

18144000r4

−
(
944ν2 + 9400ν + 30641

)
σ2

26880r2
−
(
18900ν3 + 1704015ν2 + 15791469ν + 18073850

)
σ8

3024000r8

)
cos 3θ

+

(
−
(
3780ν3 + 140187ν2 + 252771ν + 54970

)
σ8

120960r8
+

(
3780ν3 + 31383ν2 + 88227ν + 61820

)
σ14

725760r14

−
(
10500ν3 + 82035ν2 + 179444ν + 82510

)
σ12

403200r12
+

(
37800ν3 + 2169360ν2 + 4779801ν + 1705895

)
σ10

4233600r10

+
(9ν + 23)σ18

10368r18
−
(
2556ν2 + 11007ν + 12595

)
σ16

604800r16
+

(
28020ν2 + 341009ν + 459205

)
σ4

201600r4

+

(
1008000ν3 + 13613240ν2 + 8320429ν − 17187945

)
σ6

14112000r6
+

(68ν + 881)σ2

3840r2

)
cos 5θ

+

(
σ18

20736r18
− (9ν + 5)σ16

17280r16
+

(
852ν2 + 1065ν − 575

)
σ14

403200r14
−
(
80568ν2 + 152307ν + 30610

)
σ6

241920r6

−
(
420ν3 + 1247ν2 − 1467ν − 2915

)
σ12

120960r12
+

(
100ν3 + 75ν2 − 436ν − 440

)
σ10

2560r10

+

(
−2274300ν3 + 10795227ν2 + 40214880ν + 26537750

)
σ8

50803200r8
−(653ν + 1075)σ4

1920r4
− 31σ2

768r2

)
cos 7θ

+

((
−28ν3 − 57ν2 + 6ν + 44

)
σ10

4608r10
+

(
4ν3 − 9ν2 − 48ν − 38

)
σ8

512r8
+

3
(
4ν2 + 9ν + 4

)
σ6

256r6

+
5(3ν + 5)σ4

384r4
+

σ2

256r2

)
cos 9θ

]
. (B.13)
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The maximum velocity is now given by vmax = vmax,0+χvmax,1+χ2vmax,2+χ3vmax,3+χ4vmax,4,
which reduces to

vmax = v∞

(
2 +

7v2∞
6

+
(281 + 71ν)v4∞

120
+

(916100 + 520119ν + 75420ν2)v6∞
151200

+

[
1991ν3

4032
+

1669625ν2

338688
+

86755847ν

5292000
+

115656949

6350400

]
v8∞

)
. (B.14)

This leads to a tenth-order polynomial in v∞ to solve in order to obtain the condition for
superfluidity. Again, we perform this step numerically.

Even though we still have exact analytical expressions for φk(r) up to order 6, writing
them would be quite cumbersome as it would take too much space. Concerning the obtention
of vc,k from these velocity potentials, we numerically solved the condition for superfluidity
for k ≥ 2 since it is a 2(k + 1)−order polynomial in v∞.

B.2 Results for a saturable nonlinearity: ε(n) = (1 + β)2 n
1+βn with

β = 1/nsat

B.2.1 The incompressible solution: k = 0

The resolution for φ0(r) is quite similar to that for the powerlaw nonlinearity: One has to
solve the same Laplace’s equation for the velocity potential φ0

∇2φ0(r) = 0, (B.15)

with the same boundary conditions φ(r � σ) = v∞r cos θ and ∂rφk(σ) = 0, thus leading to
the same expression for φ0(r)

φ0(r) = v∞r

[
1 +

σ2

r2

]
cos θ. (B.16)

The maximum velocity is then also given by vmax = vmax,0 = 2v∞.
The only difference occurs on the condition for superfluidity, which highly depends on the

expression of the nonlinear interaction potential ε(n). For a saturable nonlinearity, one thus
has to solve

4(1 + β)2 − 2v2∞

[
v2max

v2∞

(
3 + 4β + β2

)
− 1 + β2

]
− βv4∞

(
v2max

v2∞
− 1

)2

> 0. (B.17)

This condition is now a fourth-order polynomial in v∞, which solution is

v∞ < vc,0 =
1

3

√√
(1 + β)3(121 + 25β)

β
−
(

5β + 16 +
11

β

)
. (B.18)

One also recovers the celebrated result obtained in Ref. [58] in the limit β → 0, i.e. vc,0 =√
2/11.

B.2.2 Solution for k = 1

One can obtain the equation to determine φ1(r) using the recurrence relation (3.42) this time.
Since ∇2φ0 = 0, this simplifies to the same equation as for the powerlaw nonlinearity

∇2φ1(r) =
1

2v2∞
∇φ0∇(v2)0, (B.19)
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with (v2)0 = |∇φ0|2. The resolution with our Ansatz defined by Eq. (3.53), as well as the
boundary condition ∂rφk(σ) = 0 also leads to

φ1(r) = v∞r

[(
13σ2

12r2
− σ4

2r4
+

σ6

12r6

)
cos θ +

(
− σ2

4r2
+

σ4

12r4

)
cos 3θ

]
, (B.20)

with the same vmax,1 = |∇φ1(σ,±π/2)|, thus leading to vmax = vmax,0+χvmax,1 = v∞

(
2 + 7v2∞

6

)
.

Contrary to the resolution for the powerlaw nonlinearity, the condition for superfluidity
is provided by (B.17), which leads to an eighth-order polynomial in v∞, which needs to be
solved numerically.

B.2.3 Solution for k = 2

Using the expressions for ∇2φ0(r) and ∇2φ1(r) we previously found, the recurrence relation
given by Eq. (3.42) simplifies to

∇2φ2(r) = −1

2

1− β
1 + β

∇2φ1 +
1

2v2∞

[
∇φ0∇(v2)1 +∇φ1∇(v2)0 +

1− β
1 + β

∇2φ1(v
2)0

]
, (B.21)

with (v2)1 = 2∇φ0∇φ1. This is now a different equation than for the powerlaw nonlinearity.
The resolution for φ2(r) with our Ansatz leads to

φ2(r) =
v∞r

8(1 + β)

[(
(479 + 343β)σ2

30r2
− (35 + 29β)σ4

3r4
+

(43 + 35β)σ6

6r6
− (3 + 2β)σ6

r8

+
(7 + 4β)σ10

15r10

)
cos θ +

(
− 19(1 + β)σ2

6r2
+

(−43 + 18β)σ4

15r4
+

3σ6

r6
− 15(4 + β)σ8

2r8

+
(1 + β)σ10

18r10

)
cos 3θ +

(
(1 + β)σ2

2r2
+
σ4

r4
− (7 + β)σ6

10r6

)
cos 5θ

]
, (B.22)

and thus vmax = vmax,0 + χvmax,1 + χ2vmax,2 = v∞

(
2 + 7v2∞

6 + v4∞
60

176+105β
1+β

)
. The condition

for superfluidity is still given by Eq. (B.17), but now leads to a twelfth-order polynomial in
v∞, for which we did not obtain an analytical expression.

B.2.4 Solution for k = 3

Using the recurrence relation (3.42), the Poisson equation to solve to obtain the velocity
potential φ3(r) reads

∇2φ3(r) = −1

2

1− β
1 + β

∇2φ2 +
β

4(1 + β)2
∇2φ1 +

1

2v2∞

[
∇φ0∇(v2)2 +∇φ1∇(v2)1 +∇φ2∇(v2)0

+
1− β
1 + β

(
∇2φ2(v

2)0 +∇2φ1(v
2)1
)
− β

(1 + β)2
∇2φ1(v

2)0

]
+

1

4v4∞

β

(1 + β)2
∇2φ1(v

2)0(v
2)0,

(B.23)

with (v2)2 = 2∇φ0∇φ2 + |∇φ1|2.
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Its resolution leads to the analytical expression of the velocity potential

φ3(r) = v∞r

[((
227β2 + 823β + 686

)
σ14

10080(β + 1)2r14
−
(
305β2 + 1042β + 809

)
σ12

1440(β + 1)2r12

+

(
2449β2 + 7688β + 5563

)
σ10

2880(β + 1)2r10
−
(
5443β2 + 15560β + 10657

)
σ8

2880(β + 1)2r8
+

(
3719β2 + 9583β + 5954

)
σ6

1440(β + 1)2r6

−
(
1759β2 + 4496β + 2737

)
σ4

720(β + 1)2r4
+

(
2273β2 + 6890β + 5089

)
σ2

1120(β + 1)2r2

)
cos θ

+

((
11β2 + 34β + 23

)
σ14

1440(β + 1)2r14
−
(
175β2 + 629β + 544

)
σ12

3360(β + 1)2r12
+

(
286β2 + 1505β + 1489

)
σ10

2160(β + 1)2r10

−
(
698β2 + 5965β + 5537

)
σ8

3600(β + 1)2r8
+

(
209β2 + 2800β + 2771

)
σ6

960(β + 1)2r6
+

(
4081β2 − 208990β − 254831

)
σ4

100800(β + 1)2r4

−
(
137β2 + 308β + 171

)
σ2

240(β + 1)2r2

)
cos 3θ

+

((
β2 − 10β − 11

)
σ12

1440(β + 1)2r12
−
(
52β2 + 35β − 107

)
σ10

3360(β + 1)2r10
+

(
7β2 + 18β − 13

)
σ8

96(β + 1)2r8

−
(
60911β2 + 291760β + 139589

)
σ6

302400(β + 1)2r6
+

(
157β2 + 1090β + 933

)
σ4

960(β + 1)2r4
+

σ14

1728r14
+

25σ2

192r2

)
cos 5θ

+

((
−2β2 + 7β + 39

)
σ8

672(β + 1)2r8
+

(
5β2 + 20β + 3

)
σ6

192(β + 1)2r6
−
(
β2 + 6β + 5

)
σ4

32(β + 1)2r4
− σ2

64r2

)
cos 7θ

]
,

(B.24)

and thus to vmax = vmax,0 + χvmax,1 + χ2vmax,2 + χ3vmax,3, with

vmax,3 =
v6∞

151200

471401β2 + 1756780β + 1511639

(1 + β)2
. (B.25)

The condition for superfluid motion is now given by a 16th−order polynomial in v∞, which
is obviously solved numerically to obtain vc.

B.2.5 Solution for k = 4

The Poisson equation we derive to obtain the velocity potential φ4(r) is now given by

∇2φ4(r) = −1

2

1− β
1 + β

∇2φ3 +
β

4(1 + β)2
∇2φ2 +

1

2v2∞

[
∇φ0∇(v2)3 +∇φ1∇(v2)2

+∇φ2∇(v2)1 +∇φ3∇(v2)0 +
1− β
1 + β

(
∇2φ3(v

2)0 +∇2φ2(v
2)1 +∇2φ1(v

2)2
)

− β

(1 + β)2
(
∇2φ2(v

2)0 +∇2φ1(v
2)1
) ]

+
1

4v4∞

β

(1 + β)2
(
∇2φ2(v

2)0(v
2)0 + 2∇2φ1(v

2)1(v
2)0
)
,

(B.26)
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with (v2)3 = 2 (∇φ0∇φ3 +∇φ1∇φ2). We again use our Ansatz for φ4(r), leading to

φ4(r) = v∞r

[((
9371β3 + 52409β2 + 90673β + 49315

)
σ18

483840(β + 1)3r18
−
(
11883β3 + 64225β2 + 107081β + 55939

)
σ16

53760(β + 1)3r16

+

(
269581β3 + 1388775β2 + 2214255β + 1112341

)
σ14

241920(β + 1)3r14
−
(
494669β3 + 2397657β2 + 3637251β + 1756943

)
σ12

151200(β + 1)3r12

+

(
1068991β3 + 4846749β2 + 6981669β + 3223351

)
σ10

172800(β + 1)3r10
−
(
9522233β3 + 40391583β2 + 55375827β + 24582077

)
σ8

1209600(β + 1)3r8

+

(
25125097β3 + 99840747β2 + 128365923β + 53650273

)
σ6

3628800(β + 1)3r6
−
(
23105β3 + 92820β2 + 119877β + 50162

)
σ4

5040(β + 1)3r4

+
Eσ2

r2

)
cos θ+

((
1696β3 + 8757β2 + 13830β + 6769

)
σ18

201600(β + 1)3r18
−
(
29279β3 + 157107β2 + 263241β + 140453

)
σ16

362880(β + 1)3r16

+

(
80045β3 + 467211β2 + 838287β + 466241

)
σ14

241920(β + 1)3r14
−
(
309119β3 + 2095329β2 + 3949461β + 2195651

)
σ12

403200(β + 1)3r12

+

(
348227β3 + 2837637β2 + 5402823β + 2963813

)
σ10

302400(β + 1)3r10
−
(
1983748β3 + 18876573β2 + 34649142β + 17794117

)
σ8

1512000(β + 1)3r8

+

(
28448β3 + 305953β2 + 585702β + 308197

)
σ6

22400(β + 1)3r6
−
(
22185β3 + 82523β2 + 101323β + 40985

)
σ2

26880(β + 1)3r2
+
Dσ4

r4

)
cos 3θ

+

(
−
(
2072β3 + 13011β2 + 24018β + 13079

)
σ16

302400(β + 1)3r16
+

(
598β3 + 46065β2 + 130512β + 92605

)
σ14

362880(β + 1)3r14

+

(
25399β3 − 54331β2 − 392219β − 354489

)
σ12

403200(β + 1)3r12
−
(
471173β3 + 176928β2 − 4565073β − 4346428

)
σ10

2116800(β + 1)3r10

+

(
30697β3 + 63744β2 − 185247β − 225854

)
σ8

60480(β + 1)3r8
+

(
73108β3 + 514733β2 + 855742β + 414117

)
σ4

100800(β + 1)3r4

+
(7β + 16)σ18

5184(β + 1)r18
+

(813β + 949)σ2

3840(β + 1)r2
+
σ6C

r6

)
cos 5θ +

(
−
(
394β2 + 1127β − 671

)
σ14

201600(β + 1)2r14

+

(
207β3 + 2335β2 + 3593β + 905

)
σ12

40320(β + 1)3r12
−
(
29β3 + 759β2 + 1831β + 701

)
σ10

2560(β + 1)3r10
+

σ18

20736r18
− 31σ2

768r2

+

(
41129β2 + 45556β − 263485

)
σ6

241920(β + 1)2r6
+

(2β − 7)σ16

8640(β + 1)r16
− (211β + 864)σ4

960(β + 1)r4
+
Bσ8

r8

)
cos 7θ

+

(
Aσ10

r10
−
(
3β3 + 57β2 + 161β + 91

)
σ8

512(β + 1)3r8
−
(
3β2 − 8β − 51

)
σ6

256(β + 1)2r6
+

5(β + 4)σ4

192(β + 1)r4
+

σ2

256r2

)
cos 9θ

]
, (B.27)

with

A =
1

9

(
5
(
3β2 − 8β − 51

)

256(β + 1)2
+

7
(
3β3 + 57β2 + 161β + 91

)

512(β + 1)3
− 5(β + 4)

64(β + 1)
− 1

256

)
, (B.28a)

B =
−607603β3 + 32516943β2 + 117495303β + 75273557

50803200(β + 1)3
, (B.28b)

C = −6451567β3 + 31380212β2 + 24067783β − 2876862

7056000(β + 1)3
, (B.28c)

D = −9104291β3 + 148003101β2 + 332257449β + 199680239

18144000(β + 1)3
, (B.28d)

E =
2213993β3 + 10798227β2 + 17154975β + 8877173

725760(β + 1)3
. (B.28e)

The maximum velocity is given by vmax = vmax,0 + χvmax,1 + χ2vmax,2 + χ3vmax,3 + χ4vmax,4,
with

vmax,4 =
v8∞

127008000

794391527β3 + 4765768797β2 + 8804616453β + 5084105183

(β + 1)3
. (B.29)
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OBSTACLE

The superfluid condition is now a 20th−order polynomial in v∞, which is also solved numeri-
cally. In a similar fashion to what we did for the powerlaw nonlinearity, we have thus derived
exact analytical expressions for φk(r) up to order 4, and used them to numerically solve the
condition for superfluidity, which is now a 4(k + 1)−order polynomial in v∞.
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Appendix C

Exact resolution of vc,k for a penetrable
obstacle for k = 1

In this section, we provide the exact results for vc,k for penetrable obstacles. Although our
analysis extends up to k = 2, the complete results would require several pages to display.
Therefore, we have limited the presentation here to k = 1 here.

Building upon the results obtained in the incompressible approximation (provided in Sec.
3.4.3), one can derive the results for k > 1. One has to solve the problem twice: Inside and
outside the obstacle, and then treat the boundary accordingly to match perfectly the two
solutions and find the relevant φk, which is the one inside the obstacle.

The Poisson equation to solve to obtain φint1 (r) and φext1 (r) is provided by Eq. (3.39) and
reads

(1− νU0)∇2φ1(r) =
1

2v2∞
∇φ0∇(v2)0. (C.1)

C.1 Results for a powerlaw nonlinearity: ε(n) = nν/ν

Inside the obstacle (r < σ)

Equation (C.1) actually reduces to the Laplace equation since (v2,int)0 is a constant. Using
our Ansatz to solve this equation, as well as the fact that the velocity potential must be finite
at r = 0, one obtains

φint1 (r) = v∞r

[
a cos θ +

br2

σ2
cos 3θ

]
. (C.2)

Outside the obstacle (r > σ)

The Poisson equation does not reduce to the Laplace equation this time, complexifying the
expression of the velocity potential outside the obstacle

φext1 (r) = v∞r

[


Aσ2

r2
+

σ6
((

1
1−νU0

)1/ν
− 1

)3

12r6
((

1
1−νU0

)1/ν
+ 1

)3 −
σ4
((

1
1−νU0

)1/ν
− 1

)2

2r4
((

1
1−νU0

)1/ν
+ 1

)2


 cos θ

+



Bσ4

r4
−
σ2
((

1
1−νU0

)1/ν
− 1

)

4r2
((

1
1−νU0

)1/ν
+ 1

)




]
cos 3θ. (C.3)
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FOR K = 1

After using the proper boundary condition at the interface

φint1 (σ) = φext1 (σ) (C.4a)

(1− νU0)
1
ν ∂rφ

int
1 (σ)− 1

2
(1− νU0)

1
ν
−1[(v2,int(σ))0 − 1]∂rφ

int
0 (σ)

= ∂rφ
ext
1 −

1

2
[(v2,ext(σ))0 − 1]∂rφ

ext
0 (σ), (C.4b)

one obtains

a =

(
1

1−νU0

)1/ν
(1− νU0)1/ν

(νU0 − 1)

((
1

1−νU0

)1/ν
+ 1

)3

((1− νU0)1/ν + 1)

+
2
(

1
1−νU0

)2/ν
(1− νU0)1/ν

(νU0 − 1)

((
1

1−νU0

)1/ν
+ 1

)3

((1− νU0)1/ν + 1)

−
3
(

1
1−νU0

)3/ν
(1− νU0)1/ν

(νU0 − 1)

((
1

1−νU0

)1/ν
+ 1

)3

((1− νU0)1/ν + 1)

+
2νU0

(
1

1−νU0

)3/ν
3(νU0 − 1)

((
1

1−νU0

)1/ν
+ 1

)3

((1− νU0)1/ν + 1)

−
2
(

1
1−νU0

)3/ν
3(νU0 − 1)

((
1

1−νU0

)1/ν
+ 1

)3

((1− νU0)1/ν + 1)

− 2νU0

3(νU0 − 1)

((
1

1−νU0

)1/ν
+ 1

)3

((1− νU0)1/ν + 1)

+
2

3(νU0 − 1)

((
1

1−νU0

)1/ν
+ 1

)3

((1− νU0)1/ν + 1)

, (C.5a)

b = −

((
1

1−νU0

)1/ν
− 1

)2

6

((
1

1−νU0

)1/ν
+ 1

)2

((1− νU0)1/ν + 1)

, (C.5b)

A = a+

(
5
(

1
1−νU0

)1/ν
+ 7

)((
1

1−νU0

)1/ν
− 1

)2

12

((
1

1−νU0

)1/ν
+ 1

)3 , (C.5c)

B =

4b

((
1

1−νU0

)1/ν
+ 1

)
+
(

1
1−νU0

)1/ν
− 1

4

((
1

1−νU0

)1/ν
+ 1

) . (C.5d)

From there, one can deduce the expression of the maximum velocity using the expression of
φint1

vmax = vmax,0 + χvmax,1

= v∞

(
2

1 + (1− νU0)1/ν
+

v2∞

6(νU0 − 1)

((
1

1−νU0

)1/ν
+ 1

)3 (
(1− νU0)1/ν + 1

)×

[(
6(1− νU0)

1/ν + 4
)( 1

1− νU0

)1/ν

+
(

18(1− νU0)
1/ν + 7

)( 1

1− νU0

)2/ν

− νU0

(
4

(
1

1− νU0

)1/ν

+ 7

(
1

1− νU0

)2/ν

+ 1

)
+ 1

]
×
[(

1

1− νU0

)1/ν

− 1

])
. (C.6)

The last step is to solve the condition for superfluid motion given by Eq. (3.25)

1− νU0 + v2∞

[
ν

2
− v2max

v2∞

(
1 +

ν

2

)]
> 0. (C.7)

with the previously defined vmax, leading to a fourth-order polynomial in v∞. This step is
performed numerically given the complexity of the maximum velocity.
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FOR K = 1

C.2 Results for a saturable nonlinearity: ε(n) = (1 + β)2 n
1+βn with

β = 1/nsat

Inside the obstacle (r < σ)

Interestingly, Eq. (C.1) also simplifies into the Laplace equation since (v2,ext)0 is a constant.
Using our Ansatz to solve this equation, as well as the fact that the velocity potential must be
finite at r = 0, one obtains the exact same solution as for the powerlaw nonlinearity (except
for the value of the constants a and b)

φint1 (r) = v∞r

[
a cos θ +

br2

σ2
cos 3θ

]
. (C.8)

Outside the obstacle (r > σ)

Similarly to the previous section, the Poisson equation does not reduce to the Laplace equation
outside the obstacle. The velocity potential outside the obstacle is given by

φext1 (r) = v∞r

[(
Aσ2

r2
+

(β + 1)3σ6U3
0

12r6(2(β + 1) + (β − 1)U0)3
− (β + 1)2σ4U2

0

2r4(2(β + 1) + (β − 1)U0)2

)
cos θ

+

(
Bσ4

r4
− (β + 1)σ2U0

4r2(2(β + 1) + (β − 1)U0)

)
cos 3θ

]
. (C.9)

The boundary conditions at the interface now read

φint1 (σ) = φext1 (σ) (C.10a)

1 + β − U0

1 + β + βU0
∂rφ

int
1 (σ)− 1

2

(
1 + β

1 + β + βU0

)2

[(v2,int(σ))0 − 1]∂rφ
int
0 (σ)

= ∂rφ
ext
1 −

1

2
[(v2,ext(σ))0 − 1]∂rφ

ext
0 (σ). (C.10b)

Using these matching condition, one can derive the expression of the various constant in the
velocity potentials

a =
−6(β + 1)3 + 2β2U3

0 + 2β
(
−β2 + β + 2

)
U2
0 − (β + 1)2(7β − 3)U0

(2(β + 1) + (β − 1)U0)3
, (C.11a)

b = − (β + βU0 + 1)2

(2(β + 1) + (β − 1)U0)2
, (C.11b)

A =
1

12

(
12a− (β + 1)3U3

0

(2(β + 1) + (β − 1)U0)3
+

6(β + 1)2U2
0

(2(β + 1) + (β − 1)U0)2

)
, (C.11c)

B =
8b(β + 1) + 4b(β − 1)U0 + (β + 1)U0

8(β + 1) + 4(β − 1)U0
. (C.11d)

Again, the expression of the maximum velocity using the expression is deduced from the
velocity potential φint1 inside the obstacle, leading to

vmax = vmax,0 + χvmax,1

= v∞

(
2(β + βU0 + 1)

2β + βU0 − U0 + 2
+ v2∞

βU0

(
8(β + 1)2 + β(3β − 1)U2

0 + 2
(
5β2 + 4β − 1

)
U0

)

(2(β + 1) + (β − 1)U0)3

)
.

(C.12)
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Finally, we must solve the condition for superfluid motion given by Eq. (3.26) with this
expression for the maximum velocity, i.e.

4
[
(1 + β)2 −

(
1− β2

)
U0 − βU2

0

]
− 2v2∞

[
v2max

v2∞

(
3 + 2β(U0 + 2) + β2

)
− 1− 2βU0 + β2

]

− βv4∞
(
v2max

v2∞
− 1

)2

> 0. (C.13)

The numerical resolution of this polynomial leads to the expression of vc,1 for a penetrable
obstacle.

XVIII



Bibliography

Bibliography

[1] R. J. Donnelly, “The Discovery of Superfluidity,” Physics Today, vol. 48, pp. 30–36, 07
1995. 1

[2] L. P. Pitaevskii, “50 years of Landau’s theory on superfluidity,” Journal of Low Tem-
perature Physics, vol. 87, no. 3, pp. 127–135, 1992.

[3] S. Balibar, “The Discovery of Superfluidity,” Journal of Low Temperature Physics,
vol. 146, pp. 441–470, 01 2007. 2

[4] A. J. Leggett, “Superfluidity,” Rev. Mod. Phys., vol. 71, pp. S318–S323, 03 1999.

[5] S. Balibar, “Laszlo Tisza and the two-fluid model of superfluidity,” Comptes Rendus
Physique, vol. 18, pp. 586–591, 11 2017. 1, 5

[6] D. Van Delft and P. Kes, “The discovery of superconductivity,” Physics Today, vol. 63,
pp. 38–43, 09 2010. 1

[7] D. Van Delft, “Little cup of helium, big science,” Physics Today, vol. 61, pp. 36–42, 03
2008. 1

[8] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Ob-
servation of Bose-Einstein Condensation in a Dilute Atomic Vapor,” Science, vol. 269,
pp. 198–201, 07 1995. 1, 8, 12, 19, 91

[9] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn,
and W. Ketterle, “Bose-Einstein Condensation in a Gas of Sodium Atoms,” Phys. Rev.
Lett., vol. 75, pp. 3969–3973, 11 1995. 1, 8, 11, 12, 19, 91

[10] W. S. Book, Nobel Lectures, Physics 1901-1921. Elsevier Publishing Company, Ams-
terdam, 01 1967. 1

[11] W. H. Keesom and A. P. Keesom, “New measurements on the specific heat of liquid
helium,” Physica, vol. 2, pp. 557–572, 03 1935. 2

[12] M. J. Buckingham and W. M. Fairbank, “The Nature of the Lambda Transition,”
Progress in Low Temperature Physics III, 1961. 2

[13] P. Kapitza, “Viscosity of Liquid Helium below the λ-Point,” Nature, vol. 141, p. 74, 01
1938. 2, 10

[14] J. F. Allen and A. D. Misener, “Flow of Liquid Helium II,” Nature, vol. 141, p. 75, 01
1938. 2, 10

[15] O. Penrose and L. Onsager, “Bose-Einstein Condensation and Liquid Helium,” Phys.
Rev., vol. 104, pp. 576–584, 11 1956. 3, 12, 25

XIX

https://doi.org/10.1063/1.881467
https://doi.org/10.1063/1.881467
https://doi.org/10.1063/1.881467
http://link.springer.com/10.1007/BF00114902
http://link.springer.com/10.1007/BF00114902
http://link.springer.com/10.1007/BF00114902
http://link.springer.com/10.1007/BF00114902
http://link.springer.com/10.1007/BF00114902
http://dx.doi.org/10.1007/s10909-006-9276-7
http://dx.doi.org/10.1007/s10909-006-9276-7
http://dx.doi.org/10.1007/s10909--006--9276--7
https://link.aps.org/doi/10.1103/RevModPhys.71.S318
https://link.aps.org/doi/10.1103/RevModPhys.71.S318
https://link.aps.org/doi/10.1103/RevModPhys.71.S318
https://www.sciencedirect.com/science/article/pii/S163107051730097X
https://www.sciencedirect.com/science/article/pii/S163107051730097X
https://www.sciencedirect.com/science/article/pii/S163107051730097X
https://www.sciencedirect.com/science/article/pii/S163107051730097X
https://pubs.aip.org/physicstoday/article/63/9/38/386608/The-discovery-of-superconductivityA-century-ago
https://pubs.aip.org/physicstoday/article/63/9/38/386608/The-discovery-of-superconductivityA-century-ago
https://pubs.aip.org/physicstoday/article/63/9/38/386608/The--discovery--of--superconductivityA--century--ago
https://pubs.aip.org/physicstoday/article/61/3/36/413299/Little-cup-of-helium-big-scienceOne-hundred-years
https://pubs.aip.org/physicstoday/article/61/3/36/413299/Little-cup-of-helium-big-scienceOne-hundred-years
https://pubs.aip.org/physicstoday/article/61/3/36/413299/Little--cup--of--helium--big--scienceOne--hundred--years
https://www.science.org/doi/abs/10.1126/science.269.5221.198
https://www.science.org/doi/abs/10.1126/science.269.5221.198
https://www.science.org/doi/abs/10.1126/science.269.5221.198
https://link.aps.org/doi/10.1103/PhysRevLett.75.3969
https://link.aps.org/doi/10.1103/PhysRevLett.75.3969
https://link.aps.org/doi/10.1103/PhysRevLett.75.3969
https://link.aps.org/doi/10.1103/PhysRevLett.75.3969
https://linkinghub.elsevier.com/retrieve/pii/S0031891435901288
https://linkinghub.elsevier.com/retrieve/pii/S0031891435901288
https://linkinghub.elsevier.com/retrieve/pii/S0031891435901288
http://dx.doi.org/10.1038/141074a0
http://dx.doi.org/10.1038/141074a0
http://dx.doi.org/10.1038/141074a0
https://www.nature.com/articles/141075a0
https://www.nature.com/articles/141075a0
https://www.nature.com/articles/141075a0
https://link.aps.org/doi/10.1103/PhysRev.104.576
https://link.aps.org/doi/10.1103/PhysRev.104.576
https://link.aps.org/doi/10.1103/PhysRev.104.576
https://link.aps.org/doi/10.1103/PhysRev.104.576


BIBLIOGRAPHY

[16] O. Penrose, “CXXXVI. On the quantum mechanics of helium II,” The London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of Science, vol. 42, pp. 1373–
1377, 06 1951. 12

[17] C. N. Yang, “Concept of Off-Diagonal Long-Range Order and the Quantum Phases of
Liquid He and of Superconductors,” Rev. Mod. Phys., vol. 34, pp. 694–704, 10 1962. 3

[18] D. S. Petrov, Bose-Einstein Condensation in Low-Dimensional Trapped Gases. PhD
thesis, Universiteit van Amsterdam, 2003. 3, 25, 26

[19] L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation and Superfluidity. Oxford
University Press, Oxford, 01 2016. 4, 6, 7, 11, 26, 29, 38, 100

[20] N. D. Mermin and H. Wagner, “Absence of Ferromagnetism or Antiferromagnetism
in One- or Two-Dimensional Isotropic Heisenberg Models,” Phys. Rev. Lett., vol. 17,
pp. 1133–1136, 11 1966. 4

[21] P. C. Hohenberg, “Existence of Long-Range Order in One and Two Dimensions,” Phys.
Rev., vol. 158, pp. 383–386, 06 1967. 4

[22] Y. Kagan, B. V. Svistunov, and G. V. Shlyapnikov, “Influence on inelastic processes of
the phase transition in a weakly collisional two-dimensional Bose gas,” Soviet Journal
of Experimental and Theoretical Physics, vol. 66, pp. 314, 08 1987. 4

[23] M. Schwartz, “Off-diagonal long-range behavior of interacting Bose systems,” Phys.
Rev. B, vol. 15, pp. 1399–1403, 02 1977. 4

[24] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic Theory of Superconduc-
tivity,” Phys. Rev., vol. 106, pp. 162–164, 04 1957. 5

[25] L. Tisza, “Transport Phenomena in Helium II,” Nature, vol. 141, p. 913, 05 1938. 5
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[94] F. Claude, S. V. Koniakhin, A. Mâıtre, S. Pigeon, G. Lerario, D. D. Stupin, Q. Glo-
rieux, E. Giacobino, D. Solnyshkov, G. Malpuech, and A. Bramati, “Taming the snake
instabilities in a polariton superfluid,” Optica, vol. 7, pp. 1660–1665, 12 2020. 13

[95] M. Kobayashi and M. Tsubota, “Quantum turbulence in a trapped Bose-Einstein con-
densate,” Phys. Rev. A, vol. 76, p. 045603, 10 2007. 13, 58

[96] E. A. L. Henn, J. A. Seman, G. Roati, K. M. F. Magalhães, and V. S. Bagnato,
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superflow past a potential barrier of arbitrary penetrability,” Phys. Rev. A, vol. 109,
p. 013317, 01 2024. 117

[217] C. A. Jones and P. H. Roberts, “Motions in a Bose condensate. IV. Axisymmetric
solitary waves,” Journal of Physics A: Mathematical and General, vol. 15, pp. 2599, 08
1982. 119

[218] H. Proud, Soliton structures in Bose-Einstein condensates. PhD thesis, University of
Birmingham, 2018. 119

[219] K. Fujimoto and M. Tsubota, “Nonlinear dynamics in a trapped atomic Bose-Einstein
condensate induced by an oscillating Gaussian potential,” Phys. Rev. A, vol. 83,
p. 053609, 05 2011. 121

[220] B. Jackson, J. F. McCann, and C. S. Adams, “Dissipation and vortex creation in Bose-
Einstein condensed gases,” Phys. Rev. A, vol. 61, p. 051603, 04 2000. 121

[221] D. C. Roberts, “Force on a moving point impurity due to quantum fluctuations in a
Bose-Einstein condensate,” Phys. Rev. A, vol. 74, p. 013613, 07 2006. 132

[222] B. Reichert, Z. Ristivojevic, and A. Petković, “The Casimir-like effect in a one-
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