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Titre Optimisation de la consommation mémoire pendant l’apprentissage

Résumé L’intelligence artificielle (IA) a connu une croissance remarquable ces dernières
années, prouvant son utilité dans un large éventail de domaines, notamment la
reconnaissance d’images, le traitement du langage naturel et les systèmes autonomes.
Ce succès est largement dû à l’accès à des jeux de données toujours plus vastes et au
développement de réseaux neuronaux profonds (Deep Neural Networks, DNNs) de taille
et de complexité toujours plus importantes, permettant aux systèmes d’IA d’atteindre des
niveaux de performance sans précédent. Cependant, la taille croissante des réseaux soulève
des défis importants, en particulier lorsqu’il s’agit d’entraîner les modèles gigantesques sur
des ressources de calcul dont la mémoire est limitée. La gestion efficace de la mémoire
pendant l’apprentissage est devenue une question cruciale pour garantir que les systèmes
à ressources limitées sont en mesure de réaliser l’apprentissage de gros modèles d’IA.

Il existe plusieurs stratégies pour gérer les contraintes de mémoire lors de
l’entraînement des réseaux neuronaux. L’empreinte mémoire peut être distribuée sur
plusieurs ressources ou compressée à l’aide d’algorithmes spécialisés qui minimisent
la perte d’information. Cette thèse se concentre sur les techniques de réduction de
la mémoire sans perte, principalement à des scénarios avec une seule ressource de
calcul. Les approches clés comprennent d’une part la réduction de l’empreinte mémoire
des activations intermédiaires en en supprimant certaines et en les recalculant lorsque
nécessaire et d’autre part la réduction de la mémoire utilisée pour les paramètres
en les transférant vers et depuis une mémoire RAM de plus grande capacité. Nous
avons développé des algorithmes d’optimisation qui intègrent ces techniques, réduisant
efficacement le pic de mémoire tout en maintenant des temps d’itération d’entraînement
efficaces. Nos solutions sont mises en œuvre dans un environnement open-source, testé
et compatible avec les principales bibliothèques d’IA telles que PyTorch, HuggingFace et
DeepSpeed.

Mots-clés apprentissage, mémoire, IA
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Title Optimizing memory usage when training Deep Neural Networks

Abstract Artificial Intelligence (AI) has seen remarkable growth in recent years,
proving its utility across a wide range of fields including image recognition, nature
language processing and autonomous systems. This success is largely driven by access
to increasingly large datasets and the development of Deep Neural Networks (DNNs)
with greater complexity and size, allowing AI systems to achieve unprecedented levels
of performance. However, the growing scale of tasks presents significant challenges,
particularly when it comes to training these massive models on devices with limited
memory capacity. Efficiently managing memory during training has become a critical
focus to ensure that even resource-constrained systems can handle complex AI tasks.

There are several strategies to address memory constraints in neural network
training. Memory footprints can be distributed across multiple devices or compressed
using specialized algorithms that minimize information loss. This thesis focuses on
lossless memory-saving techniques, primarily applied to single-device scenarios. The key
approaches include reducing the memory cost of intermediate activations by discarding
and recomputing them when required, and managing parameter memory costs by
swapping them to larger capacity RAM. We have developed optimization algorithms that
integrate these techniques, effectively lowering peak memory usage while maintaining
efficient training iteration times. Our solutions are implemented in an open-source
framework, tested and compatible with leading AI libraries such as PyTorch, HuggingFace,
and DeepSpeed.

Keywords training, memory, AI
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Summaries

Background
Deep neural networks (DNNs) have been found useful in various tasks, including image
recognition, natural language processing, and autonomous systems. Thanks to the
development of computer hardware, more and more complicated architectures of DNNs
have been designed and trained with large amounts of data. There are different ways to
pattern in the data set learned by a neural network model, of which the most widely used is
forward and backward propagation. The procedure of forward and backward propagation
is as follows: (1) A batch of data samples is passed through the neural networks that
make predictions (called forward pass). (2) A predefined loss function is applied to the
predictions to measure the quality of the neural network training. (3) A sequence of
computations (called the backward pass) according to the chain rule is used to obtain the
gradient of each parameter in the network with respect to the loss. (4) The parameters are
updated based on the gradients according to various optimization algorithms. Although
recent works have demonstrated that the pure forward method can also train neural
networks effectively, the forward-backward propagation method is still the most widely
applied method for training a neural network. Due to the high computational demands
of forward and backward propagation, the training process is often deployed on Graphics
Processing Units (GPUs). In a standard training task of AI models, all data related to the
training task is stored in VRAM and swapped between processing cores for computation.

In recent years, DNNs of unprecedented size have been trained and even open-sourced,
such as GPT [44], Bloom [60], Llama [56], and Mixtral [27]. A major challenge in
training these networks is the dramatic increase in their memory requirements. A
typical GPU can have a VRAM size between 2GB and 160GB, but a typical large
model training can require 100-1000 GB of memory. Therefore, multiple GPUs are often
used for large model training to distribute the memory footprint across multiple devices.
When fewer computing resources are available, networks trained on general datasets
can often be efficiently fine-tuned for specific tasks. The computational requirements
of fine-tuning are typically much lower than training a network from scratch for general
tasks, while the memory requirements remain at a similar level. Two primary solutions
are widely used in the AI community to address memory constraints in neural network
training are parallelism and model compression. Parallelism distributes the memory
footprint across multiple devices, significantly reducing the memory load on each device.
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Summaries

However, this approach requires the availability of multiple devices, which may not
always be practical. Alternatively, the memory footprint can be compressed by using
less precise representations for computations. Techniques such as quantization or matrix
decomposition, as pioneered by LoRA [20], compress large matrices without sacrificing
too much information. However, these methods inevitably lead to some loss of precision,
which can affect the training results, even if the accuracy loss is minimal.

Given these limitations, our work explores an alternative approach to maximize
applicability without compromising model performance. Our objective is to recompile
AI models in a way that alleviates memory constraints without altering the final output
or relying on multiple devices. We focus on two key techniques:

• Re-materialization: This technique reduces memory consumption by discarding
selected activations during the forward pass and recomputing them as needed during
the backward pass. This effectively reduces the number of tensors stored in memory.

• Offloading: Using CPU memory, which is generally larger and less expensive than
GPU memory, we offload selected data to reduce GPU memory contention.

• In addition, other strategies, such as optimizing computation directly on the CPU,
are being considered to further improve memory efficiency.

Contribution
In this thesis, we present works to efficiently reduce the memory requirement in deep
neural network training. Our approach targets the static model, which is optimized by
forward-backward propagation. We also demonstrate the performance of our work on a
single GPU, although it can be extended to data parallelism across different devices. Our
work can be used in the following way: given a PyTorch Module and a sample input, an
efficient algorithm is applied to recompile the module so that a new module can produce
the exact same result while keeping memory usage under a given threshold at the price
of additional training time. Under different training scenarios, our algorithms aim to
minimize the time cost of a training iteration. Our work is built on top of PyTorch, and
we have made the framework compatible with some of the most popular libraries such as
HuggingFace, DeepSpeed, and PEFT. Our goal is to provide a seamless experience for
researchers and engineers who want to train deep neural networks with limited resources.

Rockmate Our first work focuses on providing automated re-materialization solutions
tailored to available memory resources. Given a PyTorch nn.Module and a sample input,
Rockmate automatically recompiles it into a new nn.Module that produces exactly the
same results while keeping the peak memory usage within a given limit. To minimize the
recomputation time required for re-materialization, we combine the algorithms proposed
in Checkmate [25] and Rotor [3]. The Rockmate algorithm can thus be efficiently
applied to most popular model architectures, such as GPTs [44]. Rockmate works
by decomposing the model into a sequence of blocks , where each block is solved by an
adapted version of Checkmate to provide multiple options for re-materialization. These

Optimize memory usage in NN training 2
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options are further combined in an adapted version of Rotor, which finally generates
the re-materialization schedule of the whole model. In our experiments, we test models
with large training batches running on NVIDIA GPUs to measure real-world training
iteration time. We show that Rockmate can significantly reduce the memory peak while
adding negligible training time in real-world tasks. The work of Rockmate is presented
in Chapter 2. For certain types of models such as GPTs, Rockmate can efficiently
provide re-materialization solutions that reduce memory requirements without adding
significant iteration time. It works well for models that can be represented in a sequence
of blocks where each block is not too large, making GPTs the perfect targets. However,
Rockmate has limitations when applied to models with more complex or differently
structured architectures. For a wider range of architectures that do not fit this pattern,
we present our next work.

Hiremate While Rockmate works efficiently on GPTs, it may not work on other
architectures that cannot be represented as a sequence of small blocks . In these
cases, generating multiple options for large blocks in Rockmate can be excessively
time-consuming. We propose our second work, Hiremate, to address this limitation.
For a model with arbitrarily complex architectures, a recursive partitioning algorithm
is applied to decompose its graph representation into a hierarchical structure of graphs:
each graph contains only a limited number of nodes, where each node can represent
a subgraph with a large set of operations. We further develop a new ILP solver,
H-Ilp, which generates a re-materialization schedule given the graph and memory limits.
Unlike Checkmate, H-Ilp accepts that each node can be executed in multiple ways
corresponding to the solutions of the subgraph it represents. As the subgraphs are being
solved recursively, their re-materialization plans are recursively combined in a bottom-up
approach, eventually producing a solution for the entire model. Hiremate includes
not only H-Ilp, but also other solvers, including Checkmate and Rotor, to provide
solutions when the target graph has a desirable structure. We again demonstrate the
solution efficiency and re-materialization performance of H-Ilp with experiments. This
work is presented in chapter 3. We consider Hiremate to be the ultimate solution to the
re-materialization problem, since it includes various algorithms and has no restrictions
on model architectures. However, while re-materialization solutions reduce the memory
footprint of activations, model parameters can still become a bottleneck. This issue is
beyond the capabilities of Hiremate and is addressed in our next work.

Offmate To further reduce the memory footprint of the various components in
large model training, we propose Offmate, a solution specifically designed to reduce
parameter-related memory costs. Several approaches, including offloading and CPU
optimization, are integrated into Offmate, building upon re-materialization strategies
introduced in previous work. Since Offmate extends the range of possible operations
during scheduling, the optimization algorithm suffers from high complexity. To address
this, we introduce a number of assumptions to simplify the problem while preserving the
most impactful options in the solution. As a final product of our thesis, Offmate allows
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the fine-tuning of a 7 billion parameter Llama [56] model on a 12GB machine, achieving
a 10× memory reduction at only a 20% overhead in training time. This makes it possible
for individual researchers and AI enthusiasts using consumer GPUs to fine-tune large
models without having access to high-end hardware. The performance and effectiveness
of Offmate is detailed in Chapter 4.

All source code is available as open source in the git repository https://github.com/
topal-team/rockmate.
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Contexte
Les réseaux neuronaux profonds (DNN en Anglais) se sont révélés utiles dans diverses
tâches, notamment la reconnaissance d’images, le traitement du langage naturel et
les systèmes autonomes. Grâce au développement des équipements informatiques, des
architectures de plus en plus complexes de réseaux neuronaux profonds ont été conçues
et entraînées avec de grandes quantités de données. Il existe différentes façons de former
des motifs dans l’ensemble de données utilisé pour l’apprentissage d’un modèle de réseau
neuronal, dont la plus répandue est la propagation avant et arrière. La procédure de
propagation vers l’avant et vers l’arrière est la suivante : (1) Un lot d’échantillons de
données passe par les réseaux neuronaux qui font des prédictions (appelé « forward pass
», ou "passe avant"). (2) Une fonction de perte ("loss function") prédéfinie est appliquée
aux prédictions pour mesurer la qualité de l’apprentissage du réseau neuronal. (3) Une
séquence de calculs (appelée "backward pass" ou "passe arrière") selon la règle de la
chaîne (chain rule) est utilisée pour obtenir le gradient de chaque paramètre du réseau
par rapport à la perte. (4) Les paramètres sont mis à jour sur la base des gradients selon
divers algorithmes d’optimisation. Bien que des travaux récents aient démontré qu’une
méthode s’appuyant uniquement sur la passe avant peut également permettre d’entraîner
des réseaux neuronaux de manière efficace, la méthode de propagation avant-arrière reste
la méthode la plus largement appliquée pour l’entraînement d’un réseau neuronal. En
raison des exigences de calcul élevées liées à la propagation avant et arrière, le processus
de formation est souvent déployé sur des unités de traitement graphique (GPU). Dans
une tâche d’apprentissage standard de modèles d’IA, toutes les données liées à la tâche de
formation sont stockées dans la VRAM et échangées entre les cœurs de traitement pour
le calcul.

Ces dernières années, des réseaux DNN d’une taille sans précédent ont été appris et
même mis en libre accès, comme GPT [44], Bloom [60], Llama [56], et Mixtral [27]. L’un
des principaux défis de l’apprentissage pour ces réseaux est l’augmentation considérable de
leurs besoins en mémoire. Un GPU typique peut avoir une taille de VRAM comprise entre
2 et 160 Go, mais la formation d’un grand modèle typique peut nécessiter 100 à 1000 Go
de mémoire. C’est pourquoi plusieurs GPU sont souvent utilisés pour l’apprentissage de
grands modèles afin de répartir l’empreinte mémoire sur plusieurs périphériques. Lorsque
moins de ressources informatiques sont disponibles, les réseaux formés sur des ensembles
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généraux de données peuvent souvent être affinés de manière efficace pour des tâches
spécifiques. Les exigences de calcul de cet affinage sont généralement beaucoup plus
faibles que la formation d’un réseau à partir de zéro pour des tâches générales, tandis que
les exigences de mémoire restent à un niveau similaire. Deux solutions principales sont
largement utilisées dans la communauté de l’IA pour répondre aux contraintes de mémoire
dans la formation des réseaux neuronaux : le parallélisme et la compression des modèles.
Le parallélisme répartit l’empreinte mémoire sur plusieurs périphériques, ce qui réduit
considérablement la charge de mémoire sur chaque périphérique. Toutefois, cette approche
nécessite de disposer de plusieurs périphériques, ce qui n’est pas toujours possible. Il est
également possible de réduire l’empreinte mémoire en utilisant des représentations moins
précises pour les données et les calculs. Des techniques telles que la quantification ou la
décomposition matricielle, mises au point par LoRA [20], permettent de comprimer de
grandes matrices sans sacrifier trop d’informations. Toutefois, ces méthodes entraînent
inévitablement une perte de précision qui peut affecter les résultats de l’apprentissage,
même si la perte de précision est minime.

Compte tenu de ces limitations, notre travail explore une approche alternative pour
maximiser l’applicabilité sans compromettre la performance du modèle. Notre objectif est
de recompiler les modèles d’IA d’une manière qui atténue les contraintes de mémoire sans
altérer le résultat final ou dépendre de plusieurs périphériques. Nous nous concentrons
sur deux techniques clés :

• Re-matérialisation : Cette technique réduit la consommation de mémoire en
éliminant certaines activations au cours de la passe avant et en les recalculant selon
les besoins au cours de la passe arrière. Cela permet de réduire efficacement le
nombre de tenseurs stockés en mémoire.

• Délestage : En utilisant la mémoire du CPU, qui est généralement plus grande et
moins chère que la mémoire du GPU, nous déchargeons les données sélectionnées
pour réduire la contention de la mémoire du GPU.

• D’autres stratégies, telles que l’optimisation directe des calculs sur le CPU, sont
également envisagées pour améliorer encore l’efficacité de la mémoire.

Contribution
Dans cette thèse, nous présentons des travaux visant à réduire efficacement les besoins
en mémoire dans le cadre de de l’apprentissage des réseaux neuronaux profonds. Notre
approche cible un modèle statique, qui est optimisé par la propagation avant-arrière. Nous
démontrons également la performance de notre travail sur un seul GPU, bien qu’il puisse
être étendu au parallélisme de données sur différents périphériques. Notre travail peut être
utilisé de la manière suivante : étant donné un module PyTorch et un échantillon d’entrée,
un algorithme efficace est appliqué pour recompiler le module de sorte qu’un nouveau
module puisse produire exactement le même résultat tout en maintenant l’utilisation
de la mémoire en dessous d’un seuil donné au prix d’un temps d’apprentissage accru.
Dans différents scénarios d’apprentissage, nos algorithmes cherchent à minimiser le coût
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en temps d’une itération d’apprentissage. Notre travail s’appuie sur PyTorch, et nous
avons rendu le cadre compatible avec certaines des bibliothèques les plus populaires telles
que HuggingFace, DeepSpeed et PEFT. Notre objectif est de fournir une expérience
transparente aux chercheurs et aux ingénieurs qui souhaitent entraîner des réseaux
neuronaux profonds avec des ressources limitées.

Rockmate Notre premier travail se concentre sur la mise à disposition de solutions de
rematérialisation automatisées et adaptées aux ressources mémoire disponibles. Étant
donné un PyTorch nn.Module et un échantillon d’entrée, Rockmate le recompile
automatiquement dans un nouveau nn.Module qui produit exactement les mêmes résultats
tout en maintenant le pic d’utilisation de la mémoire dans une limite donnée. Pour
minimiser le temps de recalcul nécessaire à la rematérialisation, nous combinons les
algorithmes proposés dans Checkmate [25] et Rotor [3]. L’algorithme Rockmate
peut donc être appliqué efficacement à la plupart des architectures de modèles populaires,
telles que GPTs [44].

Rockmate fonctionne en décomposant le modèle en une séquence de blocks , où chaque
block est géré par une version adaptée de Checkmate afin de fournir de multiples options
de rematérialisation. Ces options sont ensuite combinées dans une version adaptée de
Rotor, qui génère finalement l’ordonnnacement des opératios de rematérialisation de
l’ensemble du modèle. Dans nos expériences, nous testons les modèles avec de grands
lots de formation fonctionnant sur des GPU NVIDIA afin de mesurer le temps d’itération
de l’apprentissage dans le monde réel. Nous montrons que Rockmate peut réduire
de manière significative le pic de mémoire tout en ajoutant un temps d’apprentissage
négligeable dans les tâches réelles. Le travail de Rockmate est présenté dans le chapitre 2.
Pour certains types de modèles tels que les GPT, Rockmate peut fournir efficacement des
solutions de re-matérialisation qui réduisent les besoins en mémoire sans ajouter un temps
d’itération significatif. Il fonctionne bien pour les modèles qui peuvent être représentés
sous la forme d’une séquence de blocks où chaque block n’est pas trop grand, ce qui
fait des modèles comme GPT des cibles parfaites. Cependant, Rockmate a des limites
lorsqu’il est appliqué à des modèles ayant des architectures plus complexes ou structurées
différemment. Nous présentons ci-après nos prochains travaux portant sur un plus large
éventail d’architectures qui ne correspondent pas à ce modèle.

Hiremate Si Rockmate fonctionne efficacement sur les GPT, il peut ne pas
fonctionner sur des architectures qui ne peuvent pas être représentées sous la forme d’une
séquence de petits blocks . Dans de tels cas, la génération de multiples options pour les
grands blocks dans Rockmate peut en effet prendre beaucoup de temps. Nous proposons
notre deuxième contribution, Hiremate, pour répondre à cette limitation. Pour un
modèle avec une architecture arbitrairement complexe, un algorithme de partitionnement
récursif est appliqué pour décomposer sa représentation sous forme de graphe en une
structure hiérarchique de graphes : chaque graphe ne contient qu’un nombre limité
de nœuds, où chaque nœud peut représenter un sous-graphe avec un large ensemble
d’opérations. Nous développons également un nouveau solveur ILP, H-Ilp, qui génère
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un programme de re-matérialisation en fonction du graphe et des limites de mémoire.
Contrairement à Checkmate, H-Ilp accepte que chaque nœud puisse être exécuté de
plusieurs manières correspondant aux solutions du sous-graphe qu’il représente. Comme
les sous-graphes sont résolus récursivement, leurs plans de rematérialisation sont combinés
récursivement dans une approche ascendante, produisant finalement une solution pour
l’ensemble du modèle. Hiremate inclut non seulement H-Ilp, mais aussi d’autres
solveurs, y compris Checkmate et Rotor, pour fournir des solutions lorsque le graphe
cible a la structure souhaitée. Nous démontrons à nouveau l’efficacité de la solution et les
performances de re-matérialisation de H-Ilp à l’aide d’expériences. Ce travail est présenté
dans le chapitre 3. Nous considérons Hiremate comme la solution ultime au problème
de la re-matérialisation, puisqu’il inclut divers algorithmes et n’a pas de restrictions sur
les architectures de modèles. Cependant, si les solutions de rematérialisation réduisent
l’empreinte mémoire des activations, les paramètres du modèle peuvent toujours devenir
un obstacle. Cette question dépasse les capacités de Hiremate et est abordée dans les
travaux qui suivent.

Offmate Pour réduire davantage l’empreinte mémoire des différents composants
lors de l’apprentissage de grands modèles, nous proposons Offmate, une solution
spécialement conçue pour réduire les coûts mémoire liés aux paramètres. Plusieurs
approches, y compris le délestage et l’optimisation sur l’unité centrale (CPU), sont
intégrées dans Offmate, en s’appuyant sur les stratégies de re-matérialisation introduites
dans des travaux antérieurs. Étant donné qu’Offmate étend la gamme des opérations
possibles lors de l’ordonnancement, l’algorithme d’optimisation souffre d’une grande
complexité. Pour y remédier, nous introduisons un certain nombre d’hypothèses pour
simplifier le problème tout en préservant les options les plus importantes dans la solution.
En tant que produit final de notre thèse, Offmate permet le réglage fin d’un modèle
Llama [56] de 7 milliards de paramètres sur une machine de 12 Go, permettant ainsi une
réduction de la mémoire d’un facteur 10 pour seulement un surcoût de 20% dans le temps
d’apprentissage. Cela permet aux chercheurs individuels et aux passionnés d’IA utilisant
des GPU grand public d’affiner de grands modèles sans avoir accès à du matériel haut de
gamme. Les performances et l’efficacité de Offmate sont détaillées dans le chapitre 4.

L’ensemble du code source est disponible en open source dans le dépôt git https:
//github.com/topal-team/rockmate.
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Chapter 1

Context

1.1 Backgrounds

1.1.1 Artificial Intelligence (AI)

The formal inception of Artificial intelligence (AI) began in the mid-20th century. In 1956,
the Dartmouth Conference, organized by John McCarthy, Marvin Minsky, Nathaniel
Rochester, and Claude Shannon, is widely considered the birth of AI as an academic
discipline. However, the limitations of these systems and the difficulty of capturing
real-world complexity led to periods of reduced funding and interest, known as AI winters.
The field experienced a resurgence in the 1980s and 1990s with advancements in machine
learning, driven by increased computational power and the advent of neural networks. In
2012, AlexNet [31] has made breakthrough in the ImageNet [12] classification task, thanks
to the development of Deep neural networks (DNNs). Since then, DNNs become the
driving force of AI and succeed in multiple fields including image recognition, translation
and game playing.

The most recent prominence moment for AI came with the release of Chat-GPT [44],
showing the dominating capabilities of the Large Language Models (LLMs). LLMs have
demonstrated good performance in various language-related domains, including question
answering, code generation, and natural language translation. Inspired by the transformer
structure [58], LLMs with different architectures such as GPT [44], Bloom [60], Llama [56]
and Mistral [27] have been trained and demonstrate excellent performance on general
tasks. Based on these large pre-trained models, which require a significant amount of
resources to train, many more specialized models have been proposed and contribute to
a variety of fields such as law [22], medicine [61], and finance [35].

1.1.2 Tasks and Accelerators

The artificial intelligence (AI) models are trained to learn the pattern of collected data so
that insightful predictions can be made to practical tasks. The life cycle of AI models can
be split into two phases: training and inference. Training an AI model involves feeding
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it large amounts of data and allowing it to learn patterns and relationships within that
data through algorithms and iterative optimization. This process adjusts the trainable
parameters to minimize errors in its predictions. Inference, on the other hand, applies
the trained model to generate predictions on real tasks. During inference, the model uses
the knowledge it gained during training to analyze and interpret the new data, producing
results quickly and efficiently without further learning. In this thesis, we focus on the
phase of training AI models.

The typical training procedure of an AI model involves a cycle of forward and backward
passes through the network. It begins with the forward pass, where input data is fed into
the model, passing through its layers in a predefined order. Each layer performs specific
computations, transforming the data until the final layer produces the outputs. The
output of each layer is called intermediate activations, serving as the input of the next
layer. A loss function is defined on the predicted outputs, often based on comparing the
predicted results to the true targets, (if known for the training samples). It is assumed
that lowering the loss makes the model more accurate, thus trainable parameters in the
model should be modified accordingly. In the backward pass, the gradient of the loss with
respect to intermediate activations and model parameters are calculated by the chain
rule. The former is released during the computation of backpropagation while the latter
is the target of forward and backward propagation thus stored in memory. At the end of
backpropagation, the gradient of the loss function with respect to each model parameter
is generated, indicating how changes to each parameter contribute to reducing the loss.
An optimization algorithm, like Stochastic Gradient Descent (SGD), uses these gradients
to update the trainable parameters of the model in a direction that reduces the loss. This
process is repeated over many iterations, allowing the model to progressively learn and
improve its predictive accuracy.

Due to the high demand on computations in forward and backward passes, the training
process is often deployed on Graphics Processing Units (GPUs). GPUs are crucial in
AI model training due to their ability to perform parallel processing efficiently. Unlike
CPUs, which are designed for general-purpose computing, GPUs excel at performing
highly parallel computations simultaneously. This makes them ideal for the large-scale
matrix multiplications that are fundamental in training deep learning models. By
leveraging thousands of efficient cores, GPUs can process vast amounts of data in
parallel, significantly speeding up the training process. The power of GPUs also rely
on the optimized memory access patterns. A Video Random-Access Memory (VRAM) is
designed to be physically close to GPUs (often integrated onto the graphic cards), usually
serving as a buffer for GPUs to lower the latency. The latest VRAM technology is called
high-bandwidth memory (HBM), which can be found on most dedicated GPUs since
2010s. A typical GPU may have VRAM size between 2GB and 160GB. In a standard
training task of AI models, all the data related to the training task is stored in VRAM
and swapped between processing cores for computations. This makes the size of VRAM
a common bottleneck for training large AI models. Modern LLMs often takes hundreds
to thousands of GPUs to train in parallel. For example, the 175-billion-parameter GPT-3
requires 1024 NVIDIA A100 GPUs to train in 34 days by estimation [42], which potentially
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cost millions of dollars.
Since training LLMs from scratch is increasingly expensive, many studies have been

performed based on pre-trained models. Fine-tuning is a process in AI model development
where a pre-trained model is further trained on a more specific dataset to be adapted to
a particular task. Initially, the model is trained on a large, generic dataset, capturing a
wide range of features and patterns. During fine-tuning, this pre-trained model undergoes
additional training on a smaller, task-specific dataset. This process allows the model to
leverage the general knowledge it acquired initially while specializing in the nuances of the
new data. Fine-tuning is especially useful when the task-specific dataset is limited in size,
as it benefits from the robustness and generalization capabilities of the pre-trained model.
This approach not only speeds up training but also often results in better performance
compared to training a model from scratch, making fine-tuning a powerful technique in
transfer learning and a cornerstone in the development of specialized AI applications.

However, a common challenge for fine-tuning LLMs is the memory bottleneck of the
training process. While the number of desired computational operations significantly
reduces in fine-tuning, the requirement of fitting the training-related data on GPU VRAM
tends to stay consistent. In particular, most billion-parameter models can hardly be stored
on consumer graphics cards, which typically have between 8GB and 24GB of video RAM
(VRAM). Depending on the choice of hyperparameters and optimization settings, the
training process may require substantially more memory than the VRAM available on
a single GPU. It is thus difficult to participate in LLM fine-tuning without access to
large-scale computational resources.

1.1.3 Memory requirement

In this section, we analyze the memory requirement in training AI models. The memory
footprint when training a large model consists of several parts:

• intermediate activations with size Mact. Mact depends on the input batch size and
which can be rebuilt using re-materialization to reduce the associated peak memory
usage;

• model parameters with size Mparam;
• parameter gradients with size Mp_grad. Mp_grad is equal to the size of all trainable

parameters;
• optimizer states with size Mopt_st. Mopt_st depends on the optimizer chosen for the

task.
Once the model is selected, the size of Mparam depends only on the data type of

the parameters. Both Mp_grad and Mopt_st are proportional to the number of trainable
parameters. If methods like weight-freezing or Parameter Efficient Fine-Tuning (PEFT)
are applied, Mp_grad can be significantly smaller than Mparam. Mopt_st also depends on
the optimizer. Specifically, Adam optimizer [28] and its derived optimizers family store
momentum and variance for each parameter gradient, which makes Mopt_st = 2×Mp_grad

if the same data type is used.
Depending on the training setup, parameters may be updated after every iteration or
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Figure 1.1: Memory requirement of different parts. Black line shows the summation of
all part.

every several iterations (usually called gradient accumulation); the latter requires to keep
all the parameter gradients in VRAM which makes the memory peak Mact + Mparam +
Mp_grad + Mopt_st. On the other hand, it is common to update parameters and release
their gradients after every iteration. In this case, parameter gradients size increases during
backward phase while intermediate activation size decreases. The peak memory is then
smaller than Mact + Mparam + Mp_grad + Mopt_st.

For example, the relative sizes of each part when training a full-precision Llama2-7B
model with batch size 4 and sequence length 512 are Mparam = Mp_grad = 25GB and
Mact = 41GB. If the model is optimized with the Adam optimizer, Mopt_st = 50GB. If
gradient accumulation is not used and updates are performed during the backward phase,
parameter gradients can be removed from memory at each iteration, so that Mp_grad

and Mact are not always required simultaneously. A simplified demonstration of memory
requirements of different parts is shown in Figure 1.1. The peak memory usage for the
corresponding training task is expected to be 125GB < Mact+Mparam+Mp_grad+Mopt_st =
141GB, which is still not feasible on any consumer GPU.

1.2 Related Works
In this section, we explore a range of solutions for reducing memory requirements in AI
model training, from simulated algorithms to software deployment. We cover the existing
approaches within the following categories:

1. Training simplification, reducing memory requirements by changing the training
task (for example, using compression or lower precision);

2. Parallelism, distributing the data over multiple devices;
3. Re-materialization, deleting and recomputing intermediate activations to reduce the
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memory peak;
4. Offloading, swapping memory between GPU VRAM and CPU RAM;
5. Software that uses one or more of the approaches above to handle practical training

tasks.

1.2.1 Training Simplification

Modifying the training task in specific ways can effectively reduce memory usage and
often speed up training. However, this comes at the cost of potentially impacting training
precision. It is well-known that deep learning models are often overly complex for their
tasks [64], and certain disturbance or simplification of the model have been found to
improve the generalization capability [54]. Therefore, it is challenging to assess how
different simplification methods will impact training performance.

Lower precision The basic example of simplifying a training task is using half precision
to represent numerical values. While single precision (float32) is typically the default
data type for model and activations, half precision (float16 or bfloat16) can be
employed instead. For GPUs that support these data types, training or fine-tuning in
half precision can significantly accelerate the training process. Mixed-precision [40] is a
method that uses half precision for the forward and backward passes while retraining single
precision for the optimizer states to update model parameters accurately. This approach
reduces the size of intermediate activations by half and speedup training remarkably.
However, mixed-precision increases the memory usage of model parameters since both
half precision and single precision copies of model parameters are saved. Overall, it may
not reduce the total memory requirement.

Affine quantization A more sophisticated approach is integer quantization. The most
popular implementation uses int8, which stores 256 values to represent the numerical
values stored in float32. The idea of affine quantization [23] is to project the range
of values in float32 to the space in int8. A value x in float32 can be written as
x = S × (xq − Z), where xq is the quantized value in int8. The quantized values can be
obtained by: xq = round(x/S+Z) for any given x within a certain range. Once the scale S
and the zero-point Z are determined, only values within certain range can be represented
in this scheme. Values outside this range are usually clipped to the closest representable
value. Due to the limited space of int8, different values of x may be mapped to the same
quantized value xq. The information loss can affect the training results, necessitating
sophisticated algorithms to tune the quantization scheme.

Parameter Efficient Fine-Tuning Parameter-Efficient Fine-Tuning (PEFT) is an
advanced approach in machine learning that focuses on fine-tuning a subset of model
parameters, rather than the entire model. By selectively adjusting only the most critical
parameters, PEFT maintains high accuracy and generalization capabilities, making it
particularly valuable in scenarios where computational efficiency and resource constraints
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are paramount. PEFT has gained popularity for its ability to achieve competitive results
with fewer parameters, thereby enhancing the scalability and practicality of deploying
large models in real-world applications. In particular, the Low-Rank Adaptation (LoRA)
family [20, 14] has shown that using a small fraction of the training parameters can achieve
good performance on various tasks. We use the following example to illustrate the idea
of LoRA: consider a layer y = Wx where x ∈ Rn is the input vector, y ∈ Rn is the output
vector, and W ∈ Rn×n is the weight matrix. During the optimization of W , one copy of
gradient and two copies of optimizer states (assuming the Adam optimizer is used) are
stored in memory. If parameters are stored in single precision (4 bytes), the optimization
stage requires 4(4n2 + O(n)) bytes memory in total. In LoRA, on the other hand, it
is assumed that the pre-trained W is a good representation of the current layer and
only requires a minor adjustment for fine-tuning. Therefore, the layer can be redefined as
y = Wx+ABx, where A ∈ Rn×r and B ∈ Rr×n are the only trainable matrices. The layer
can thus be written as y = W ′x where W ′ = W + AB. With r ≪ n, replacing W ′ with
AB provides less flexibility but reduces the memory requirement to n2 + O(n) + O(rn).
Other PEFT methods include training only the input embedding layer [1], training hidden
states [38], and training with a sparse mask over the weights [55].

1.2.2 Parallelism

Using multiple devices has become a popular approach for training large AI models. In
addition to speeding up the training procedure by leveraging the combined computational
power of multiple devices, it may also reduce the memory requirement on any single device.
Various methods have been proposed to improve training efficiency, depending on how
the training tasks are distributed across multiple devices.

Data parallelism Data parallelism is a fundamental technique in parallel training [11].
This approach involves dividing a large batch of input data into smaller chunks and
sending them to different devices (usually the same type of GPUs). While each device
holds the same copy of the model, the gradients generated during backpropagation are
different on each device due to the variety of sample input. After the backward pass,
the devices communicate the generated gradients to obtain the average gradients of loss
over all the entire batch of input data. The averaged gradients will be used to optimize
the parameters before the next iteration. If the input data is distributed over N devices,
the activation size on each device is divided by N . However, data parallelism does not
reduce the parameter-related memory usage since each device keeps a full copy of the
model. Moreover, the gradients obtained on each device need to be exchanged after each
iteration, causing a high communication cost on large size models.

Model parallelism When the model size is too large, it can be beneficial to split
the parameters across different devices. These techniques are called model parallelism.
Depending on how the parameters are divided onto different devices, there are multiple
strategies for model parallelism.
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It is a common choice to split the parameters layer-wise so that each device only needs
to hold the parameters of a few layers of the neural networks. Unlike data parallelism, the
computation of different devices in model parallelism depend on each others, thus only
one device (or multiple devices corresponding to the same layers) is utilized at a time in
the naive approach. The efficiency can be significantly improved if multiple devices can
be utilized at the same time. Pipeline parallelism [41, 63, 17, 15, 34, 39] is the method
to split the input batch of data into smaller micro-batches, allowing different devices to
synchronize their computation. After the device handling the first layer has computed the
first micro-batch, it will start computing the second micro-batch while the next device
begins computing the second layer of the first micro-batch. By smartly synchronizes the
computations, different devices will be in use most of the time. The communication cost
of pipeline parallelism is only the activations passed between different devices, which are
the input data of a layer. In transformer architectures, the input of each layer is at least
one order of magnitude smaller than the total activations size of the layer, making pipeline
parallelism a low-communication approach. Pipeline parallelism could significantly reduce
the memory requirements of each device with reasonably low overhead by splitting the
task smartly.

When a singe layer of the neural network is too large, it can be beneficial to split
the parameters across tensor axes. Megatron-LM [53] proposed tensor parallelism to
parallelize the matrix multiplication Y = XA as :

X = [X1, X2] , A =

[
A1

A2

]
,

so that [Y1, Y2] = [(X1A1) , (X2A2)]. Adaptation is required for the case when non-linear
operations are applied after the matrix multiplication. Communication occurs when
outputs need to be used for the same computation. Unlike data parallelism, which splits
the computation across the bacth-axis, tensor parallelism distributes the weight matrix A,
reducing the memory requirements for parameters. Combining tensor parallelism with
data parallelism allows a memory-intensive computation to be distributed across multiple
devices.

The combination of pipeline parallelism and tensor parallelism is designed to achieve
low latency on modern architectures of GPU clusters. The NVIDIA technology NVLink
enables bandwidth between 100 GB/s to 1 TB/s for GPUs within a server, making it
ideal for high communication cost parallelism (for example, tensor parallelism and data
parallelism). Communication between servers in a cluster, typically realized through PCI
Express with bandwidth an order of magnitude lower than NVLink’s, is sufficient to
handle the lower communication cost of pipeline parallelism. Alpa [67] uses integer linear
programming and dynamic programming to obtain a near-optimal combined parallelism
solution for a given cluster.

Optimize memory usage in NN training 15



1. Context

1.2.3 Re-materialization

In order to reduce the memory requirements of a training task, certain selected
intermediate activations can be released during the training iteration and recomputes
when needed. This approach is called re-materialization. Historically, re-materialization
strategies have their origins in the checkpointing techniques developed in the context of
automatic differentiation (AD). Because of this application context, these works have
focused mainly on the case of homogeneous chains, i.e. models consisting of a sequence
of identical blocks. In this context, it is possible to find optimal solutions and even closed
form formulas can be derived to automatically find the activations to keep and the ones to
delete. The classical gradient checkpoint strategies allow to select a subset of intermediate
activations to store during the forward pass and allowing the others to be released and
recomputed during the backward pass. A more general form of re-materialization could
consist of recomputing backward operations to re-generate the activation gradients as
well. The re-materialization algorithm explores the balance in the trade-off between
the computation time and the memory efficiency. For a n-layer homogeneous chain of
deep neural network, gradient checkpoint can achieve O(log n) memory consumption of
activations with O(n log n) time cost [8].

Transformer models If the computational graph of a model is determined, fixed
decisions can often be made easily for operations to be recomputed. Megatron-LM [30]
uses selective activation recomputation on transformer-based models, where only certain
pre-defined operations will be recomputed. It is efficient in the transformer-based models
but provides no insight on general forms of models. FlashAttention [10, 9] uses a similar
idea for the specific Attention module of transformers where some selected intermediate
tensors are recomputed during the backward pass.

Arbitrary models For heterogeneous models, sophisticate algorithms are useful to
achieve memory usage reduction with lower timer overhead. Without knowing the detailed
computational cost, re-materialization decisions can be made dynamically during the
training process [29]. On the other hand, most approaches for static neural networks
involve inspecting the computational cost and propose a desired schedule based on the
requirements. It is proved to be NP-Complete in the strong sense to find the optimal
schedule on any heterogeneous models given a fixed budget for peak memory usage [7].
Near-optimal solutions are found for different situations with limitations [7, 24, 2].

On heterogeneous sequential models, Rotor [7] has been proposed to find the optimal
re-materialization schedule within a reasonable time through dynamic programming (DP).
In the strict sequential models, all the intermediate activations are used exactly once
during forward. With some limitations, Rotor could work on models that are not strictly
sequential where activations can be used more than once in the local operations. For
example, ResNet [19] contains residual block where one layer relies on not only the
previous layer but also the layer before. These locally non-sequential blocks do not disrupt
the overall sequential-like structure of the model. For models with such so-called skip
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connections, the connected parts, such as a residual block are considered as one layer in
Rotor. The decisions are made on whether to compute or delete all the activations in the
layer as a unit.

With the weak limitation of assuming a fixed order of computation nodes,
Checkmate [24] uses integer linear programming (ILP) to obtain an optimal
re-materialization solution over any computational graph. Unlike Rotor, Checkmate
allows backward operations to be recomputed as well. Although the ILP model can
find the optimal solution with minimal limitations, it involves O(n2) binary variables,
where n is the number of nodes in the graph. For large neural networks with hundreds
to thousands of nodes, Checkmate is not feasible for obtaining an optimal solution in a
reasonable amount of time.

Moccasin [2] is a model based on Checkmate, replacing the ILP as a Constraint
Programming (CP) formulation. The key contribution of Moccasin is to limit the
number of times a node can be recomputed, significantly reducing the complexity of the
optimization model. In practice, the authors found that recomputing each node at most
twice is often sufficient for general computational graph. Although this approach markedly
lowers the complexity compared to Checkmate’s ILP, the Moccasin CP optimization can
still take hours to obtain an optimal solution.

1.2.4 Offloading

The modern architecture of GPUs typically featured dedicated VRAM, which is generally
fixed in size and an order of magnitude lower than the size of CPU RAM. Hence, one could
exploit the larger space on CPU RAM to form a hierarchical memory accessing structure.
When the activations and parameters exceed the capacity of VRAM, they can be offloaded
to CPU RAM and paged back to VRAM when needed. Note that this approach relies on
the bandwidth between VRAM and RAM, which is usually 10-24 GB/s bidirectional per
GPU realized through PCI Express. Assuming the size of VRAM is between 10 and 100
GB and the size of communication amount is within 10 to 1000 GB, the communication
time can take from seconds to tens of seconds, which is usually not negligible during
a training iteration. It is thus crucial to properly synchronize the communication and
computation when performing offload. If scheduled properly, communicating can be fully
overlapped with computation operations, eliminating any additional time costs. Unlike
re-materialization, offloading can be useful to reduce the memory requirements of not only
intermediate activations but also model parameters.

Activation offloading Several methods use activation offloading [50, 5, 6] to reduce
the memory requirement of training. Based on Rotor [7], POFO [6] successfully combines
re-materialization and activation offloading on sequential models. In order to simplify the
problem, POFO assumes that offloading can only happen during the forward phase and
prefetching during the backward phase. In addition, POFO assumes that memory of a
tensor can be released and allocated continuously before its communication is finished.
With the assumptions to simplify the problem, an optimal solution can be found through
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POFO in a reasonable amount of time. Based on Checkmate [24], the authors of
POET [45] added activation offloading to the ILP. The objective of ILP is also modified
to minimize the energy cost of the training iteration. The energy objective can be easily
written as a linear function of computation cost and communication cost. Due to the
high complexity of ILP, a default solving time limit of 10 minutes is used in POFO to
ensure reasonable solving results on large models. Both algorithms can effectively reduce
the time overhead of re-materialization by exploiting communication bandwidth.

Parameter offloading To limit memory consumption, some recent works focus on
strategies for offloading model parameters during the training phase. The first strategy
is proposed in [46], which introduces the L2L (Layer-to-Layer) algorithm. For a graph
typically consisting of a sequence of encoders, the L2L algorithm uses a synchronous
parameter server on the CPU to keep a copy of the model parameters while storing only
the layer in use on the GPU. A strategy for adapting the size of the mini-batch is then
proposed, in order to use the largest possible mini-batch given this systematic strategy of
layer offloading. Closed-form formulas are proposed to estimate the training time (for all
identical layers). This strategy was then adapted in ZeRO-Offload [49] to offload optimizer
states to the CPU. It allows significant memory savings with the Adam optimizer while
achieving higher throughput compared to L2L [46]. However, ZeRO-Offload [49] keeps all
parameters in the GPU (in single precision), which requires significantly more memory
than L2L when the model is very deep. Despite the optimizations proposed in [49], it
has been recently observed in [37] that approaches such as L2L [46] or ZeRO-Offload [49]
generate a very large amount of traffic on the PCI Express bus between the CPU and the
GPU. Since PCI bus bandwidth is limited, this traffic may become a bottleneck and slow
down the whole training process significantly. For this purpose, it is proposed to offload
only a subset of layers, typically the first half of layers in [37].

Combined offloading Some methods proposed for offloading any tensor [33, 57, 21],
so that they can be applied to both activations and parameters. In [33, 21], the tensors
that have been unused for the longest time are preferred candidates for offloading.
AutoSwap [57] relies on priority scores to select the best candidates for offloading, but it is
limited to the case of a single memory peak, which is appropriate for activation offloading,
but not for parameter offloading. The schedule of transfers is similar for all the above
methods: offloading is performed as soon as possible, and prefetching is performed as late
as possible, trying to prevent idle time before the operation requiring prefetched data.
Despite their generalization, these methods have some drawbacks: in particular, they do
not fully take into account the benefits of offloading parameters during the backward
phase.

1.2.5 Software

In this section, we present some software tools that provide implementations for practical
training/fine-tuning of neural networks with limited resources.
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FlashAttention [10, 9] Tailored for transformer-based models, FlashAttention is now
adapted into many frameworks to support large language models (LLMs) training.
It redefines the implementation of the attention layer, significantly reducing the
memory required for intermediate activations. By optimizing memory access on the
GPU, FlashAttention can also effectively accelerate the training of the model. Since
FlashAttention optimizes the memory access of CUDA operations, the implementation
depends on the hardware architecture of GPUs.

ZeRO [47] The library ZeRO, which developed by Microsoft, supports distributed
training of neural networks. ZeRO has several stages that exploit different resources
for training:

• ZeRO-1 partitions the optimizer states onto different devices, and each device will
handle the optimization of part of the network but running forward and backward
computations of the entire network.

• ZeRO-2 also partitions the model parameter gradients onto different devices.
• Finally, ZeRO-3 partitions the model parameters onto different devices. This

requires a high communication cost since each device needs to collect the model
parameters during the forward and backward passes.

Further works based on ZeRO framework exploit more resources.
• ZeRO-Offload [49] adds CPU optimization to the framework so that optimizer states

are created on CPU RAM directly. Model parameter gradients are offloaded to CPU
RAM before the optimization, and updated parameters are loaded back to GPU
VRAM in every iteration before they are used for computations.

• ZeRO-Infinity [48] further exploits the space of NVMe disk to store the model
parameters. It also optimizes the bandwidth usage for data movements.

QLoRA [14] Specifically designed for fine-tuning, QLoRA was proposed to integrate
quantization and low-rank adaptation. It also includes a paged-optimizer that offloads
the optimizer states to CPU RAM. It is integrated into many frameworks including
HuggingFace libraries, which allows the users to easily apply it on their fine-tuning tasks.

Rotor [7] Rotor is a library designed for models in the form of torch.nn.Sequential.
It implements the algorithm of Rotor [7] and POFO [6] for sequential PyTorch models,
given a fixed memory budget. It is important to note that models defined as
torch.nn.Sequential may not be strictly sequential in terms of atomic operations. In
such cases, non-sequential blocks, such as Residual blocks in ResNet, will be considered
as a single layer in Rotor.

1.3 Operations in PyTorch Modules
In this section, we use an example model to introduce the computational graph for
PyTorch Modules and the possible execution order of the operations in order to reduce
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the memory requirements. We define a simple model with the Python code shown in
Code 1.2. Note that all the parameters are named as wi while the activations and inputs
are named xi. The following sections explain how to obtain a computational graph of
operations and tensors, from which possible solutions can be proposed based on different
assumptions.

1 import torch
2 def forward(x0):
3 x0_ = x0.transpose ()
4 x1 = torch.matmul(x0_ , w1)
5 x2 = torch.matmul(x1, w2)
6 x3 = x1 + x2
7 x4 = torch.matmul(x3, w4)
8 return x4

Code 1.2: Toy Example

1.3.1 Dependencies between Operations

Given a PyTorch Module, we define a graph builder called rk-GB to obtain its
computational graph. rk-GB works as follows: based on torch.export, the model
is inspected with a sample input to generate the computational graph, detailing
dependencies between operations. Operations that do not allocate GPU memory (e.g.
transpose() in the example) are merged so that each node in the graph has at least
one output tensor node with GPU memory allocation. An example computational graph
for the forward phase is shown in Figure 1.3. In the graph, circles represent tensors
occupying memory, while squares represent functions generating tensors. F1, F2, F3, F4

correspond to the code in line 4, 5, 6, 7 in Code 1.2. Line 3 is not considered as a node
in the graph since no memory allocation is needed from this operation. An arrow from a
tensor to a function indicates that the function takes the tensor as input, and an arrow
from a function to a tensor represents that the tensor is generated from the function.

X0 F1 X1 F2 X2 F3 X3 F4 X4

Figure 1.3: Forward graph

We separate the representations of the forward operations (noted as Fi) and their
outputs (noted as Xj) in the graph. They are called cNode and aNode, short for
computation node and allocation node. These representations are useful when the
operations may have multiple outputs. In practice, it is hard to obtain atomic operations
in PyTorch. The computational nodes obtained through torch.export may indeed create
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multiple tensors and allocate more memory than the size of the final output tensor.
Specifically, some tensors are created and saved only for the backpropagation. Unlike
xj defined explicitly in Code 1.2, those tensors are referred only in .grad_fn of other
tensors. In the later chapters, we refer to those tensors as phantoms and apply special
rules to them since they are created only in forward and used in backward. The choice
of separating computation and allocation representations in the graph has other benefits,
which are explained through the later chapters with more specific scenarios.

We present the computational graph in Figure 1.4 for the forward and backward
phases. The parameters are also represented in the graph. A graph containing forward
and backward dependencies of a model is called FB-Graph. Any FB-Graph is a directed
bipartite graph, where any edge is between a cNode and an aNode, representing the
dependency between a tensor allocation and a computation. If the direction is from
cNode to aNode, it means the tensor is computed through the computation operation;
otherwise, it means the tensor is needed by the computation operation.

Note that multiple functions may have the same output tensor. For example, node
G1 shows the case where one tensor is generated from two different functions: ∂loss

∂X1
=

∂loss
∂X2

∂X2

∂X1
+ ∂loss

∂X3

∂X3

∂X1
, where two functions corresponding to the two terms on the right-hand

side are computed separately. In this case, memory is allocated after the execution of any
function (B2 or B3 for G1), but the tensor is only complete when all associated functions
are executed before it can be taken as input by the further operations.

Another special node is Loss. As its name suggests, it represents the loss function
which occurs after the forward phase. As described in Section 1.1.2, the loss value
represents the quality of the output predictions of a model and the purpose of
forward-backward propagation is to reduce the loss values over the training dataset. In
the example provided in Code 1.2, we do not show the loss function explicitly. It could be
as simple as the average over the output X4, or an entire model with multiple operations.
The key feature of Loss node is that is can be arbitrary complicated and we are often
interested at the memory saved before it. Every FB-Graph must contain one and only
one Loss node.

In PyTorch AutoGrad, the functions shown in Graph 1.4 are executed in the order
defined by source code. Note that the order specified by the code may neither be the
only nor the optimal order. The tensors generated during the execution (intermediate
activations) will be deleted as soon as they are no longer needed for the further functions.
For instance, X3 in Graph 1.4 will be deleted after F4 because no further functions depend
on it. All the other tensors will be kept in memory until the backward phase since they
are needed for backward. The parameters are not deleted in the default execution, and
their gradients GW will be used by the optimization after the backward phase.

1.3.2 Execution of Operations

The target of our algorithms is to generate a schedule of operations which satisfies two
conditions:
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X0 F1 X1 F2 X2 F3 X3 F4 X4

G0 B1 G1 B2 G2 B3 G3 B4 G4

Loss

W1 W2 W3

GW1 GW2 GW3

Figure 1.4: Forward and backward graph

• Operations are executed with the correct inputs present. For example, B1 can only
be executed with G1 correctly computed, which requires both B2 and B1 executed.

• The maximum memory allocation of all the present tensors does not exceed a
predefined size, which is usually the size of GPU VRAM.

Different strategies can be applied to find the schedule that satisfies the two conditions
above. In the following sections, we provide two simple examples using re-materialization
and offloading. To avoid complicating the problem, we do not assign sizes to each tensor,
thus not quantifying the second condition.

Re-materialization As discussed in Section 1.2.3, re-materialization is the method
of deleting tensors during execution and recomputing them when needed. We use the
model in Figure 1.4 to provide an example of a re-materialization solution. Assume we
choose to delete and recompute X2, the forward and backward execution can be written
as code 1.5. We need to define backward functions B() to not automatically traversing
the entire AutoGrad graph. In this example, we removed the size of X2 from the memory
requirement between F4 and B4 at the cost of extra time to compute F2. Note that it
may not reduce the peak memory of the overall iteration, which depends on the size of
different tensors.

Note that the Loss node is also possible to recompute in practice, but we do not
consider this possibility within the scope of this thesis.

Offloading Another approach to reduce memory requirement is offloading, which
involves swapping data between GPU VRAM and CPU RAM. Code 1.6 shows a
possible solution for the model from Figure 1.4 using the offloading techniques. Unlike
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1 import torch
2 def forward(x0):
3 x0_ = x0.transpose ()
4 x1 = torch.matmul(x0_ , w1)
5 x2 = torch.matmul(x1, w2)
6 x3 = x1 + x2
7 del x2
8 x4 = torch.matmul(x3, w4)
9 # x3 is deleted automatically by PyTorch here

10 return x4
11

12 def backward(g4):
13 g3 = B4(x3 , g4 , w3)
14 x2 = torch.matmul(x1, w2)
15 g2 = B3(x2 , x1 , g3)
16 g1 = B2(x1 , g2 , w2)
17 g0 = B1(x0 , g1 , w1)

Code 1.5: Toy Example with Re-materialization

re-materialization, offloading may not incur additional time per iteration because
offloading and prefetching operations can occur simultaneously with computation
operations in different CUDA streams. However, it raises the complexity of scheduling
due to the dependencies between operations. For example, computation of backward
function B2 needs to wait for the prefetching of W1 to be finished, which starts only after
memory is allocated on GPU. Consequently, it is complicated to find the optimal schedule
and heuristic approaches are required in practice.

Our contribution In this thesis, our contribution is to find the optimal or near
optimal solutions to PyTorch modules under various assumptions, primarily focusing on
re-materialization and offloading approaches. Our final deliverable is a practical software
tool designed for customized training tasks, facilitating efficient management of memory
resources during model execution.
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1 import torch
2 def forward(x0):
3 x0_ = x0.transpose ()
4 x1 = torch.matmul(x0_ , w1)
5 with torch.cuda.stream(offload_stream):
6 w1_cpu.copy_(w1)
7 x2 = torch.matmul(x1, w2)
8 del w1
9 x3 = x1 + x2

10 x4 = torch.matmul(x3, w4)
11 # x3 is deleted automatically by PyTorch here
12 return x4
13

14 def backward(g4):
15 g3 = B4(x3 , g4 , w3)
16 x2 = torch.matmul(x1, w2)
17 g2 = B3(x2 , x1 , g3)
18 with torch.cuda.stream(prefetch_stream):
19 w1.copy_(w1_cpu)
20 g1 = B2(x1 , g2 , w2)
21 g0 = B1(x0 , g1 , w1)

Code 1.6: Toy Example with Offloading
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Chapter 2

Rockmate

2.1 Introduction
As discussed in Section 1.2.3, re-materialization is a method to reduce the memory
requirements of a training task by deleting a selection of intermediate activations and
recomputing them when needed. Multiple approaches have been proposed to balance
the tradeoff between the memory requirement reduction and the time overhead in
re-materialization. One classical problem is to minimize the recomputing time while
the peak memory is constrained to a given budget. In this chapter, we present our
work Rockmate, which combines two existing algorithms Rotor and Checkmate.
This introduction presents the formulation of Checkmate and Rotor, along with their
strength and limitations. Specifically, we show that the existing works Checkmate and
Rotor are not ideal for solving the optimization problem on models structured as a long
sequence of blocks, for example GPT [44]. Rockmate works exceptionally well for those
neural networks by smartly combining Checkmate and Rotor.

2.1.1 Checkmate

In this section, we introduce the Integer Linear Programming (ILP) formulation of
Checkmate [25]. Unlike the FB-Graph defined in Section 1.3.1, Checkmate is based
on a computational graph where a computation operation and its output tensors are
wrapped into a single node. The graph is defined as follows: A computation graph
G = (V,E) is a directed acyclic graph with n nodes V = {v1, . . . , vt}, where vi represents
the i-th operation in a PyTorch model. The re-materialization solution of the model can
be represented as a sequence of vi. The sequence is unrolled into T stages and only allows
a computation node to be computed once per stage. St,i ∈ {0, 1} indicates whether the
results of operation i is saved in memory at stage t − 1 until stage t. Rt,i ∈ {0, 1} is a
binary variable reflecting whether computation node ci is computed at time stage t. The
breaking down of a re-materialization schedule into the binary variable representation is
showed in Figure 2.1.

If given infinite memory budget, the Linear Programming model can be formalized as:
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Rt,i: compute operation i
during stage t
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operation i between
stage t− 1 and stage t

operation i
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e

Figure 2.1: Visualization of Checkmate formulation where the middle columns shows a
sequence of operations being (re)computed in order, and its representation in ILP variables
is showed on the right. The left side shows when the tensor are saved in memory.

argmin
R,S

n∑
t=1

t∑
i=1

CiRt,i

subject to
Rt,j ≤ (Rt,i + St,i) ∀t,∀i→ j

St,i ≤ Rt−1,i + St−1,i ∀t ≥ 2,∀i,∑
i

S1,i = 0,∑
t

Rt,n ≥ 1,

Rt,i, St,i ∈ {0, 1}∀t∀i
Ci is the time cost of operation i. The constraints ensure that each operation is

computed with its input in memory and the tensors can only be generated from the
source computation.

To represent the memory usage of a schedule, a new variable FREE as FREEt,i,k =
1 for (vi, vk) ∈ E if vi is deallocated in stage t after evaluating node vk otherwise 0.

Ut,k is defined as the bytes of memory in use after evaluating vk. Before
evaluating vk+1, vk and its dependencies (parents) may be deallocated if there are no
future uses. Then, an output tensor for the result of vk+1 is allocated, consuming memory
Mk+1.

Ut,k+1 = Ut,k − mem_freed t (vk) +Rt,k+1Mk+1,

where mem_freedt (vk) is the amount of memory freed by deallocating vk and its
parents at stage t. Let

DEPS[k] = {i : (vi, vk) ∈ E} , and USERS[i] = {j : (vi, vj) ∈ E}
denote parents and children of a node, respectively. Then, in terms of auxiliary variable

FREEt,i,k, for (vi, vk) ∈ E,
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mem_freedt (vk) =
∑

i∈DEPS[k]∪{k}

Mi ∗ FREEt,i,k , and

FREEt,i,k = Rt,k ∗ (1− St+1,i)︸ ︷︷ ︸
Not checkpoint

∏
j∈USERS[i]

(1−Rt,j)︸ ︷︷ ︸
Not dep.

where the second factor ensures that Mi bytes are freed only if vi is not checkpointed
for the next stage. The final factors ensure that FREEt,i,k = 0 if any child of vi is computed
in the stage, since then vi needs to be retained for later use.

In order to write it in a linear form, the authors use the following formulation which
is an equivalent:

FREEt,i,k ∈ {0, 1}
1− FREEt,i,k ≤ num_hazards (t, i, k)

κ (1− FREEt,i,k) ≥ num_hazards (t, i, k)

where
num_hazards (t, i, k) = (1−Rt,k) + St+1,i +

∑
j∈USERS[i]

j>k

Rt,j

and κ is the maximum value which num_hazards can assume. Once the memory
representation is written in linear form, constraints Ut,k ≤Mbudget is enough to make sure
the ILP solution respects the memory budget.

The major limitation of Checkmate is the high complexity. Checkmate ILP
formulation contains O(|V ||E|) binary variables. In some large models, when each node
represents a single PyTorch operation, |V | and |E| can be hundreds to thousands. The
high complexity of the ILP formulation prevents Checkmate from being applied to large
models.

2.1.2 Rotor

In this section, we present the Dynamic Programming (DP) formulation of Rotor [4].
The algorithm is based on the memory persistence assumption:

Assumption 2.1.1. Any checkpointed value is kept in memory until it is used in the
backward phase.

Rotor works for sequential networks which can be seen as a chain of blocks , each
having one input and one output. For a chain of length L, we denote by CBP (s, t,m) the
optimal execution time to process the chain from stage s to stage t with peak memory at
most m, assuming that the input tensors xs−1 and gt are stored in memory, but the size of
xs−1 should not be counted in the memory limit m. We also introduce x̄i to represent the
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tensors passed from forward of the i-th layer to its backward operations. The following
notations are used in the formulation:

F1 F2 · · · FL−1 FL loss

B1 B2 B3 · · · BL Bloss

x0 x1 x2 xL−2 xL−1 xL xL+1

gL+1gLgL−1g3g2g1g0

x0 x1 x2 xL−1 xL

x̄1 x̄2 x̄3 x̄L−1
x̄L x̄L+1

Operation Input Output Time Overhead

F all
ℓ Forward(save all) {xℓ−1}{

x̄ℓ−1

} {xℓ−1, x̄ℓ}{
x̄ℓ−1, x̄ℓ

} uℓ
f oℓf

F ck
ℓ Forward(save input) {xℓ−1}{

x̄ℓ−1

} {xℓ−1, xℓ}{
x̄ℓ−1, xℓ} uℓ

f oℓf

F∅
ℓ Forward(save nothing) {xℓ−1} {xℓ} uℓ

f oℓf

Bℓ Backward {gℓ, x̄ℓ, xℓ−1}{
gℓ, x̄ℓ, x̄ℓ−1

} {gℓ−1}{
gℓ−1, x̄ℓ−1

} uℓ
b oℓb

ms,t
∅ = max

(
|gt|+ |xs|+ osf , |gt|+ max

s+1≤j<t

(
|xj−1|+ |xj|+ ojf

))
ms,t

all = max
(
|gt|+ |x̄s|+ osf , |gs|+ |x̄s|+ osb

)
ms,t

∅ for 1 ≤ s ≤ t ≤ L+ 1 denotes the minimum possible memory to compute all F∅

steps from s to t, and ms,t
all for 1 ≤ s ≤ t ≤ L+1 denotes memory peak to run F all

s and Bs.
CBP (s, t,m), the optimal time for any valid persistent sequence to process the chain

from stage s to stage t ≥ s with available memory m, is given by

CBP (s, s,m) =

{
us
a + us

b m ≥ ms,s
all

∞ m < ms,s
all

(2.1)

CBP (s, t,m) = min (C1(s, t,m), C2(s, t,m)) (2.2)

C1(s, t,m) =


mins′=s+1...t

∑s′−1
k=s uk

f + CBP (s′, t,m− xs′−1)

+CBP (s, s′ − 1,m) m ≥ ms,t
∅

∞ m < ms,t
∅

C2(s, t,m) =

{
us
f + CBP (s+ 1, t,m− x̄s) + us

b m ≥ ms,t
all

∞ m < ms,t
all

, where

Authors of Rotor [4] prove that Algorithm 1 and Algorithm 2 compute an optimal
sequence, for all input arguments.
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Algorithm 1: Compute optimal persistent schedule for a chain of length L with
memory M .

1 Initialize table C of size (L+ 1)× (L+ 1)×M ;
2 for 1 ≤ s ≤ L+ 1 and 1 ≤ m ≤M do
3 Initialize C[s, s,m] with Equation 2.1 ;

4 for s = 1, . . . , L do
5 for t = s+ 1, . . . , L+ 1 do
6 for m = 1, . . . ,M do
7 Compute C[s, t,m] with Equation 2.2 ;

8 return OptRec(C, 1, L+ 1,M − x0) ;

Algorithm 2: OptRec(C, s, t,m) – Obtain optimal persistent sequence from the
table C

Input : C, s, t,m
Output: Optimal persistent sequence

1 if C[s, t,m] =∞ then
2 return Infeasible ;

3 else if s = t then
4 return (F s

all, B
s) ;

5 else if C[s, t,m] = Cck(s, s
′, t,m) then

6 S ← (F s
ck, F

s′+1
ck , . . . , F s

ck) ;
7 S ← (S,OptRec(C, s′, t,m− xs′−1)) ;
8 return (S,OptRec(C, s, s′ − 1,m)) ;

9 else
10 return (F s

all,OptRec(C, s+ 1, t,m− xs), B
s) ;

x

layer

+x+ F (x)

F (x)

identity

Figure 2.2: ResNet [19] contains residual blocks shown here.
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For the non-sequential networks where activations can be used more than once in
the local operations, Rotor works with certain limitations. For example, ResNet [19]
contains residual block (as shown in Figure 2.2) where one layer relies on not only the
previous layer but also the layer before. These locally non-sequential blocks do not disrupt
the overall sequential-like structure of the model. For models with such so-called skip
connections, the connected parts, such as a residual block are considered as one layer in
Rotor. The decisions are made on whether to compute or delete all the activations in
the layer as a unit.

Our contribution summary The main idea of this chapter is to combine the ideas of
(i) Checkmate, which finds good solutions in the case of general graphs but is slow, and
(ii) Rotor, which finds the optimal solution only in the case of sequential networks, can
find the solution quickly.

The GPT neural networks are not completely sequential, but they can be decomposed
in a sequence of blocks, where each block contains several operations. It is a typical
example where, in order to use Rotor, it is necessary to aggregate all the operations of
the same block together. Rotor therefore decides at the scale of the whole block whether
to keep all the data or to delete them all during the forward phase. Checkmate, on
the other hand, sees the whole graph describing the model and can therefore decide,
independently and at the level of each operation, whether to keep its data or not.

The solution we propose is called Rockmate; a pseudo-code is provided in
Algorithm 3 and explained below. The main idea is to apply Checkmate inside each
block and to apply Rotor on the complete sequence of blocks. For this purpose,
it is necessary to obtain the complete graph of all operations of the neural network, and
to adapt both Checkmate and Rotor to this new setting.

2.2 Algorithm

2.2.1 Sketch of the Algorithm

Rockmate works as follows: given a torch.nn.Module, it first generates the whole
data-flow graph of forward operations and then it divides it into a sequence of blocks
(rk-GB, described in Section 2.3). Based on this, it uses a refined version of Checkmate
on each block independently to generate sub-solutions (rk-Checkmate, Section 2.4).
Finally, it combines these sub-solutions with an adapted version of Rotor to obtain
a global solution (rk-Rotor, Section 2.5). The sketch of Rockmate’s algorithm is
described in Algorithm 3.

The first phase is called rk-GB (for GraphBuilder). It occurs on line 2 of Algorithm 3
and is described in more details in Section 2.3. rk-GB takes as input a model expressed as
a PyTorch nn.Module and automatically (i) extracts the Directed Acyclic Graph (DAG)
of all the operations performed in the model, (ii) divides it into a sequence of blocks and
(iii) detects all the blocks which have identical structures. For each unique block, the
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Figure 2.3: Simplified example of running Rockmate on a GPT model. Left:
Dependency graph of the first part of the model, where transformer blocks are shown in
gray, and Rockmate blocks are identified in red. Right: (top) a schedule corresponding
to the first three blocks; (bottom) indication of which activations are saved (green) or
not (white) for each block, and the intervals during which they are present in memory.
Saving fewer activations leads to more recomputation and thus longer backward time.

processing times of all operations and the sizes of all intermediate data that are produced
by these operations are measured. These measurements (graphs of each block, labeled
with the execution times and memory footprints of the produced data) contain all the
necessary information to find the re-materialization sequence.

In the second phase of Rockmate (lines 3-7 of Algorithm 3), we consider each single
block independently. Rotor fails to compute very good re-materialization strategies
because it can only choose between two options: keep all or delete all activations in the
block. In Rockmate, we use a refined version of Checkmate to generate a larger set
of re-materialization strategies. This refined version is denoted as rk-Checkmate and
described in Section 2.4.

A re-materialization strategy is characterized by (i) the memory peak during the
execution of the block (either during forward or backward) and (ii) the total size of
the internal activations of the block that are kept between the forward phase and the
backward phase. The first one ensures that this strategy can be executed within a given
memory limit. The second one allows the dynamic program to know how much memory
will be left for the next blocks. The number of different options to consider is a parameter
of Rockmate. Since rk-Checkmate is applied at the level of a block (and not on the
whole network), the corresponding graph is small enough that the runtime remains small,
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Algorithm 3: Rockmate
1 Input: module, input, MGPU

2 [blocks] = rk-GB (module, input)
3 budgets = [(Mpeak,Msave)] (quantized)
4 sols = []
5 for b ∈ [blocks] do
6 for (Mpeak,Msave) ∈ budgets do
7 sols[b].add(rk-Checkmate (b, Mpeak, Msave))

8 Sequence = rk-Rotor (sols, MGPU)
9 rkMod = CodeGeneration(Sequence)

10 Output: rkMod

even for generating the whole family of strategies. Moreover, as rk-GB automatically
detects identical blocks, rk-Checkmate is performed only on unique types of blocks (for
instance, GPT2 models only involve five unique types of blocks).

The third phase of Rockmate (line 8 of Algorithm 3, described in Section 2.5) is called
rk-Rotor and computes the global re-materialization strategy. rk-Rotor features an
adapted dynamic program of Rotor that, instead of having two solutions per block, can
exploit the different re-materialization strategies computed during the second phase. The
output of rk-Rotor therefore consists in a schedule which describes which block should
be computed, in which order, and with which re-materialization strategy. If necessary,
some blocks can be computed without keeping any data at all, and thus be recomputed
later (possibly several times).

Finally, this schedule is transformed into a new PyTorch nn.Module, which performs
all the corresponding elementary operations in the correct order. The resulting
module computes exactly the same gradients as the original version while respecting
a global constraint on the memory usage of activations, at the cost of duplicating some
computations. The execution of the forward phase is based on the Python code obtained
via torch.export. In Rockmate, we detach the operations during the forward phase,
so that the full network is represented as many small autograd graphs. This allows the
backward operations to be performed separately, thus deletions of tensors can be easily
inserted between two backward operations.

2.3 rk-GB, Graph Builder
The computational graph is explicit in TensorFlow, for which Checkmate was originally
implemented. In PyTorch, however, graphs need to be obtained by certain tools. We
developed a tool named rk-GraphBuilder (rk-GB) which takes as input a nn.Module
and an example input for it, and builds the data-flow graph of the module. Having an
example input is necessary to inspect the time and memory cost of all the operations used
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during forward and backward phases.

Obtaining the graph rk-GB does not require any modification or annotation of the
module source code, instead it uses torch.export to trace the forward execution of the
module on the example input. This function executes the forward code and provides the
list of all primitive operations used. Based on this list, we build a forward graph where
each node represents one assignment. However, multiple variables may share the same
memory space due to view and in-place operations in PyTorch. Such variables need
thus be kept or removed together when performing re-materialization.

Since checkpointing consists of being able to forget and recompute data, we want
each node to represent exactly one data tensor. Due to viewing and in-place operations,
different assignments can refer to the same data. Therefore, rk-GB merges all the nodes
sharing the same memory space to obtain a simplified forward graph. In a process we call
simplification. In the simplified forward graph every node consists of one main operation
which creates the data, and some secondary assignments concerning the shapes, views or
in-place operations. For a 12-layer GPT model, the number of nodes decreases from 934
to 185 after simplification.

The simplified forward graph is further partitioned into a sequence of blocks: each
block only depends on the previous block. This sequence is required by rk-Rotor. For
a 12-layer GPT model, this results in 26 blocks, where each Transformer layer is separated
into a Multi-Head Attention block and a MLP block.

Identical blocks Afterwards, rk-GB goes through all the blocks to recognize identical
blocks, i.e. blocks whose computational graphs are the same. Since rk-GB is
deterministic, two blocks representing the same function share the same graph structure,
including the same topological ordering of nodes. Following this ordering, rk-GB checks
equivalency node by node. A group of identical blocks can be measured and solved
together to improve the solving time. Identifying identical blocks is an optimization of
the Rockmate solving time but does not change its solution quality. In the case where
two blocks are topologically identical but defined with different source code, Rockmate
could wrongly declare them different. Although, this would not change the memory gains
or the computational overhead. For a 12-layer GPT model, this procedure identifies only
5 identical blocks from the 26 rk-blocks produced after separation.

FB-Graph One underlying assumption in the original Checkmate graph model is that
each operation has exactly one output data. However, when several forward operations
share the same input, the corresponding backward operations contribute to the same data
(by summing all the contributions). This means that removing the result of one of these
backward operations has an impact on the other operations, which can not be taken into
account in the graph model of Checkmate. Additionally, some elementary operations
in PyTorch actually create intermediate data (they are called saved_tensors), which can
be deleted independently of the output of the operation.
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For these reasons, we introduce a new graph called FB-Graph, which contains two
categories of nodes: Computation and Data. A cNode represents an operation, labeled
with the time it takes and the temporary memory overhead during execution. An aNode
represents a data tensor stored in the memory. An aNode can be forgotten to free memory,
and restored by recomputing the corresponding cNodes. An edge between a cNode and
an aNode represents the execution dependency between the operation and its output
data tensors. As discussed in Section 1.3.1, there is a special kind of aNodes, which is
generated in forward and only used in backward stage. They are called phantoms in this
thesis. The phantoms are special in practice because we can avoid generating them with
torch.no_grad() mode when executing the forward operation. Therefore, they will be
handled differently from the other aNodes. We also define a loss node of each FB-Graph to
represent the operations happening between the forward cNodes and the backward ones.
If the FB-Graph represents the forward-backward propagation of a PyTorch nn.Module,
the loss node represents the loss function (usually defined separately) of the output; if
the FB-Graph represents a part of the nn.Module, the loss node represents not only the
loss function, but also the forward and backward operations between the last forward
cNode and the first backward cNode. The benefits of considering such a FB-Graph is to
enable finer re-materializations, such as releasing memory from a subset of outputs of one
operation. The final product of rk-GB is a sequence of FB-Graphs.

2.4 rk-Checkmate

Given a FB-Graph, it is a non-trivial problem to find the optimal execution schedule
of all the operations within a given memory limitation. To solve this problem, we use
rk-Checkmate, an Integer Linear Programming (ILP) adapted from Checkmate [25].
Just like Checkmate, rk-Checkmate requires a topological order of all the operations,
which is provided by rk-GB.

rk-Checkmate provides several improvements over the original Checkmate
formulation.

First, additional variables are introduced to represent the execution of each cNode
separately from the memory allocation of each aNode. Constraints are also adapted to
ensure that the execution order follows the dependencies between computational nodes
and allocation nodes. In the case where one operation generates multiple outputs, there
are multiple aNodes depending on the same cNode. Deleting these outputs is considered
separately in rk-Checkmate, whereas they are grouped together in the Checkmate
formulation. For example, this improvement is useful for an operation that produces two
large outputs, each required by a different operation: with rk-Checkmate, it is possible
to delete the second output before performing the operation that requires the first output,
which reduces the memory usage.

Second, rk-Checkmate takes into account the temporary memory usage of all
operations: because of temporary data allocated and deleted during the operation, the
peak memory might be higher than the size of input and output. Checkmate ignores
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this possibility, and thus may produce solutions whose actual peak memory is higher than
the budget.

Finally, since rk-Checkmate is aware of the separation between forward and
backward phases, it is possible to include a constraint on the memory usage when going
from the forward to the backward phase. This constraint expresses the limit Msave on
the size of the activations which are kept in memory between both phases of a block (and
thus, during the execution of the following blocks). This memory occupancy is necessary
to control the overall memory cost of all the blocks.

In the following sections, we provide the ILP formulation of rk-Checkmate.

2.4.1 Optimization Problem

The input to the optimization problem is a FB-Graph and budgets of the memory usage
at the end of forward stage and the peak memory usage over the forward and backward
stages. The FB-Graph is generated with inspection through real executions, thus each
cNode has known time and memory overhead cost. The memory overhead of a cNode
is defined as the difference between the peak memory usage during the execution of the
corresponding operation and the memory saved at the end of execution. Similarly, the
memory cost of saving each aNode is included with the FB-Graph. Within the Rockmate
framework, the FB-Graph input to rk-Checkmate represents only a block of the model,
but it could be any PyTorch module potentially. The target of rk-Checkmate is to
find a schedule with the minimal computation time, which executes every node of the
FB-Graph at least once with the correct dependencies within the memory budgets.

The FB-Graph input to rk-Checkmate is a directed acyclic graph, which contains:
• I allocation nodes {a1, . . . , aI} and T computational nodes {c1, . . . , cT},
• edges of type ai → ck and ck → ai that show dependencies between computational

operations and allocation. For example, ai is used to perform computation ck, and
computation ck outputs allocation ai as a result. One computational node can have
several incoming allocation nodes and vice versa.

Main variables Following the definition of Checkmate, a schedule generated by
rk-Checkmate is unrolled into T stages where every computational node can be
executed at most once during each stage. We use staget to represent the period starting
after the result of computation ct−1 is obtained for the first time and ends when the
computation ct is firstly performed. During one stage, several computations from {ck}k≤t

and deletions might happen.
The solution of the ILP formulation provides a schedule R (low-triangular

binary matrix T × T ) that determines which computations should be performed during
each stage.

Rt,k =

{
0, otherwise
1, if we compute ck during the staget

.
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If k corresponds to the forward nodes, we add a fast-forward option as

R′
t,k =

{
0, otherwise
1, if we compute ck during the staget with torch.no_grad

.

Note that we have Rt,k+R′
t,k ≤ 1 so that one operation cannot be both fast-forwarded

and forwarded normally at the same time. In Checkmate, only two options can be
selected for a node, representing executing it or not. In Rockmate, we add one more
option to represent the possibility of executing the operation with torch.no_grad. Note
that phantoms nodes of the corresponding forward will not be generated at all. Comparing
to the case where phantoms are generated and then immediately deleted, the fast-forward
option will have lower memory cost within the execution. For the j-th pair of forward
and backward operations, we use fwd(j) and bwd(j) to represent the indices of forward
and backward nodes. Note that not every forward node has the corresponding backward
(some operations do not require gradient), thus fwd(j) is not j in most cases. The size
of phantom j is denoted as |phantomj|.

Each stage can be seen as a sequence of steps. During stept,k computation ck is done
(or not if the schedule doesn’t require that, i.e. if Rt,k = 0) and some tensors are deleted.

Also, the solution of ILP provides an information S about allocation nodes
saved during each stage. As discussed in Section 1.3.1, there can be multiple cNodes
contributing the same aNode, and all the contributions must be complete before the
aNode is used as an input. We define variable S to represent the dependencies between
cNode and aNode in the FB-Graph.

St,(k,i) =

{
1, if the contribution of computation ck to tensor ai is saved before starting staget

0, otherwise
.

Consider all edges in the FB-Graph that connect computation nodes with their children
allocation nodes,

ChildrenOfComp := {(k, i)| ai ∈ children(ck), k = 1, . . . , T},

and let their number equals |ChildrenOfComp| = Ec→a. Then, S can be seen as binary
matrix of size T ×Ec→a. Since phantom nodes are handled differently, we do not consider
them in c → a. The dependencies of phantom nodes will be handled with an additional
variable:

Sp
t,j =

{
1, if phantoms j is saved before starting staget

0, otherwise
.

Objectives Given memory budget, ILP finds schedule R, S such that the computational
costs ∑

1≤k<t≤T

CkRt,k
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are minimized given feasibility and memory constraints (where Ck is a cost of computation
ck).

2.4.2 Feasibility Constraints

Consider all edges in the FB-Graph that connect allocation nodes with their parent
computation nodes

ParentsOfAlloc := {(k, i)| ck ∈ parents(ai), i = 1, . . . , I}

ChildrenOfAlloc := {(k, i)| ck ∈ children(ai), i = 1, . . . , I}
then a set of edges, which connects each allocation node with its children and parent
computation nodes, can be expressed as

The following constraints for ILP should hold

T∑
t=1

T∑
k=t+1

Rt,k +R′
t,t = 0, (2.3)

which ensures that we can recompute only operations that have been executed during
previous stages.

∑
e

k′−1∑
t=1

St,e = 0, (2.4)

where e = (k′, i), e ∈ ChildrenOfComp. It ensures that before the first computation,
allocation cannot be saved.

T∑
t=1

Rt,t +R′
t,t = T, (2.5)

which ensures that ct is executed at the end of staget.

T∑
t=1

Rt,kloss = 1, (2.6)

where kloss is the index of the node that computes the loss. It ensures that the loss is
computed only once during the forward-backward phase. The purpose and function of
loss is discussed in Section 1.3.1.

St+1,e ≤ St,e +Rt,k +R′
t,k, (2.7)

where e = (k, i) ∈ ChildrenOfComp and t = 1, . . . , T − 1. It ensures that the results of
a tensor can only be generated from the execution of the source computational nodes.

R′
t,k +Rt,k ≤ R′

t,k′ +Rt,k′ + St,e, (2.8)
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where k ∈ children(i), e = (k′, i), e ∈ ChildrenOfComp, and t = 1, . . . T . It ensures that
all computations ck which are required for generation of allocation ai are present, where
ai is an input allocation for computation ct.

Sp
t,j ≤ Rt,fwd(j), (2.9)

phantoms can only be generated by the corresponding forward.

Rt,bwd(j) ≤ Rt,fwd(j) + Sp
t,j, (2.10)

The backward operations will require phantoms to be alive or having forward operations
to generate them during the same stage.

2.4.3 Memory Constraints

Note that variable S represents whether the computation of an allocation node is done,
but not directly represents the memory allocation of the tensor. We introduce a binary
matrix P of size T × I, where

Pt,i =

{
1, if we have tensor ai in memory at the end of staget
0, otherwise

.

with
I∑

i=1

k∑
t=1

Pt,i = 0, where k = min{k′|ck′ ∈ parents(ai)}. The tensor should allocate

memory if any of the source operations are executed and the result is stored:

Pt,i ≥ St,(k,i)/|parents(ai)|, (2.11)

St,e ≤ Pt,i, (2.12)

where e = (k, i) ∈ ChildrenOfComp and t, k = 1, . . . , T.
We remind that each stage can be seen as a sequence of steps, such that during one

step, one computation (or not if the schedule doesn’t require that) and some tensors are
deleted.

To represent the presence of certain tensors at different steps stept,k of each stage
staget, we introduce the following two variables create and delete:

createt,i,k ∈ {0, 1},∀k ∈ ParentsOfAlloc[i]: whether tensor ai is created during stept,k
at stage staget.

deletet,i,k ∈ {0, 1},∀k ∈ (ParentsOfAlloc[i] +ChildrenOfAlloc[i]): whether tensor i
is deleted during stept,k at stage staget.
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Comparing to Checkmate delete shares the same function as the FREE variable
in Checkmate as described in Section 2.1.1. However, create is introduced only in
rk-Checkmate because an aNode can now have multiple sources. Thus, it is not obvious
which source cNode created the memory allocation of the aNode without knowing the
schedule explicitly.

To make it easy to represent the memory occupancy of different tensors, we define an
expression for t = 1, . . . , T and (k, i) ∈ ChildrenOfAlloc ∪ ParentsOfAlloc:

alive[t, i, k] = Pt,i +
∑
k′≤k

createt,i,k′ −
∑
k′≤k

deletet,i,k′ ∈ {0, 1}.

A tensor ai is either alive or deleted immediately after the computation of parent
nodes:

alive[t, i, k] + deletet,i,k ≥ Rt,k, (2.13)

A tensor ai is retained during staget if it is alive during the last possible step of
staget−1:

alive[t, i, k] = Pt,i, (2.14)

where k = max(ParentsOfAlloc[i], ChildrenOfAlloc[i])
A tensor can only be created from the parent computation:

createt,i,k ≤ Rt,k (2.15)

A tensor should be deleted if it would not be needed or saved in the current stage:

deletet,i,k = Rt,k ∗ (1− Pt+1,i) ∗
∏

k′∈children(ai)|k′>k

(1−Rt,k′) (2.16)

Similar to the FREE variable in Checkmate, the formulation of delete can be written
in a linear form:

deletet,i,k ∈ {0, 1}
1− deletet,i,k ≤ num_hazards (t, i, k)

κ (1− deletet,i,k) ≥ num_hazards (t, i, k)

where

num_hazards (t, i, k) = (1−Rt,k) + (1− Pt+1,i) ∗
∑

k′∈children(ai)|k′>k

(1−Rt,k′)

and κ is the maximum value that num_hazards can achieve.
No tensor should be alive after the final stage that it is concerned:

alive[T, i, k] = 0, k = max(ParentsOfAlloc[i] ∪ ChildrenOfAlloc[i]) (2.17)
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Let Ut,k denotes the memory saved at the end of stept,k during staget and Mi is the
memory required to store tensor ai, then

Ut,1 =
I∑

i=1

MiPt,i +
I∑

i=1

Mi createt,i,1 −
I∑

i=1

Mi deletet,i,1.

Ut,k = Ut,k−1 +
I∑

i=1

Mi createt,i,k −
I∑

i=1

Mi deletet,i,k.

If k is forward and it corresponds to the forward-backward pair j, then

Ut,k+ = |phantomj|(Sp
t,j +Rt,k)

.
If k is backward and it corresponds to the forward-backward pair j, then

Ut,k− = |phantomj|(Rt,k)

.
The peak memory at stept,k during staget is within memory budget:

tmpMkRt,k + Ut,k +
∑
∀i

Mideletet,i,k ≤Mpeak∀t, t′, (2.18)

Ukloss,kloss ≤Msave, (2.19)

where tmpMk is the temporary memory overhead needed in the computation node ck.
Mpeak and Msave are the given limits of peak memory within the schedule and the
save memory at the loss. The values chosen for Mpeak and Msave are discussed in
Section 2.6.0.0.1.

2.4.4 Schedule Construction

A feasible schedule can be constructed from the solution of rk-Checkmate. With the
variables t and k from 0 to T − 1, each stept,k is considered to add operations to the
schedule. Rt,k = 1 indicates the cNodek is added to the schedule. Also, if deletet,i,k = 1
for any i, the deletion of aNodei is added to the schedule. The pseudocode to construct a
schedule can be found in Algorithm 4.

2.5 rk-Rotor

Models like GPT [44] can be considered as a sequence of blocks where each block consists
of several operations. The complexity of the blocks introduces the motivation of adapting
Rotor to rk-Rotor.
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Algorithm 4: Construction of schedule based on the rk-Checkmate solution
1 Initialize sched = []
2 for t = 1, . . . , T do
3 for k = 1, . . . , t do
4 if Rt,k=1 then
5 Add Compute (cNodek) to sched;

6 for i = 1, . . . , I do
7 if deletet,i,k=1 then
8 Add Delete (aNodei) to sched;

9 return sched

Rotor case 1:

Fs Fs+1 Fs+2 · · · Ft−1 Ft

Bs Bs+1 Bs+2 · · · Bt−1 Bt

subproblem from s+ 1 to t

Rotor case 2:

Fs F··· Fi−1 Fi F··· Ft

Bi B··· Bt

subproblem from i to t
Fs F··· Fi−1

Bs B··· Bi−1

subproblem from s to i− 1

rk-Rotor improved case 1:

FsFs Fs+1 Fs+2 · · · Ft−1 Ft

BsBs Bs+1 Bs+2 · · · Bt−1 Bt

subproblem from s+ 1 to t

Figure 2.4: Diagram representing the different cases for the dynamic program. Green
arrows represent materialized activations. Green, yellow and red blocks represent internal
activations to the blocks , which are respectively completely, partially, or not saved.
Colored backgrounds on the subproblems represent how much memory is occupied by
these activations.
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2.5.1 Formulation Notations

Assume our model is a sequence of L blocks , numbered from 0 to L− 1. For each block ,
we have 1 + B budget options, where option 0 does not save any intermediate aNode,
and each of the other B options saves a different amount of aNodes. We denote by F o

i

the forward computation of block i with option o, and if o > 0, Bo
i is the corresponding

backward computation. Since F 0
i does not store any intermediate aNode, we consider that

it does not have a corresponding backward computation.
The input activation of Fi is xi, and its output is xi+1. Similar to the Rotor paper [3],

for each option o > 0, we denote by x̄o
i the union of xi and of all the intermediate aNode

generated by F o
i . For ease of notation, we will also use xi and x̄o

i to denote the size of the
corresponding aNode.

For any computation, we use tmp(·) to denote the temporary memory usage of this
computation: this is the amount of memory that needs to be available for this computation
to succeed, and that is released afterwards. We also use r(·) to denote the running time
of a computation mode. As an example, since the input and output aNodes need to be
in memory, the memory usage for running F 0

i is xi + xi+1 + tmp(F 0
i ), and this takes time

r(F 0
i ). Note that both r(·) and tmp(·) depend on the computation mode of the given

layer.
We follow the memory persistence assumption 2.1.1 from Rotor [7], which

significantly reduces the complexity of the optimization algorithm by excluding solutions
that are rarely optimal in practical cases.

2.5.2 Algorithms

Rotor In the dynamic programming algorithm of Rotor, an optimal solution for the
forward-backward computation from block s to t with memory m can be of two different
types: either the first block s is computed only once, or more than once. In the first case,
the computation starts with computing block s and keeping all intermediate aNodes that
are needed during backward, and continues with an optimal solution for blocks s+ 1 to t
(with less memory available). In the second case, the computation starts with computing
blocks s to s+ i for some i, stores the result of s+ i, continues with an optimal solution
for blocks s + i to t, and finally recomputes from s to s + i with an optimal solution for
this part. Note that no intermediate aNode is saved for blocks s to s+ i.

In each case, the subproblems that need to be solved have a smaller value of t − s.
Assuming that the solutions to these smaller problems are known, the algorithm can make
the choice that leads to the smallest overhead among all valid choices, ie those for which
the memory usage is not higher than the budget m. We can thus iteratively compute
optimal solutions until we find the solution for the complete model.

rk-Rotor In the rk-Rotor context, we have several options for the first case: instead
of storing all the intermediate aNodes, a selected subset of intermediate aNodes can be
stored for the first block s. Different choices of subsets lead to different memory usage
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for storing the intermediate aNodes and for computing the backward operation. There
is thus a larger set of options to choose from, but the main idea is still there: assuming
that solutions to all smaller problems are known, we can select the option that yields the
lowest overhead among all options which respect the memory budget. An illustration of
comparing Rotor with rk-Rotor is represented on Figure 2.4, where the bottom shows
the improved case of rk-Rotor.

We use the fact that blocks are identical to avoid solving several times the same ILP.
Although rk-Checkmate generates the same set of solutions for the identical blocks , they
are treated differently in rk-Rotor, which happen to have the same available options.
rk-Rotor can indeed choose different solutions for these layers. In practice, different
solutions are usually chosen: the conditions are different for the first layers of the model
compared to the last layers. In addition, one single layer might be recomputed several
times. Before the last forward stores (a subset of) intermediate aNodes for backward, the
previous forward execution stores no intermediate aNode at all. This is exemplified in
Figure 2.3: the left shows the dependency graph, where each color represents a different
type of operation. The right shows a possible execution, where a layer is shown transparent
if its output is not saved. The bottom-most block and the top-most block in this Figure are
identical (same operations), but they use different solutions on the right (save a different
set of aNodes).

2.5.3 DP Formulation

We denote by Opt(s, t,m) the optimal execution time for computing the sequence from
block s to block t, assuming that the input xs will be kept in memory. There are two
possible cases for the start of this computation:

Case 1 If block s is only computed once in this sequence, then it is computed with one
of the F o

i options for o > 0 so that it is possible to perform the backward computation.
This requires to have at least tmp(F o

i ) available memory for the forward and at least
tmp(Bo

i ) available for the backward. The corresponding execution time is r(F o
i ) + r(Bo

i ),
and the memory available for the rest of the computation is m − x̄o

i . The best choice is
given by:

Opt1(s, t,m) = min
valid option o

r(F o
i ) + r(Bo

i ) + Opt(s, t,m− x̄o
i ). (2.20)

In this equation, an option is considered valid only if the temporary memory requirements
for the forward and backward computations are satisfied. Note that memory requirements
for any option generated by rk-Checkmate is known.

Case 2 If block s is computed more than once, then its first computation does not need
to keep any intermediate aNode. It is thus computed with F 0

s , and the choice now is
about which is the next activation to be kept in memory. Let us denote by i the index
activation kept in memory, so that activations xs+1, xs+2, . . . , xi−1 are discarded just after
being used. It is possible to compute xi by performing F 0

s , F
0
s+1, . . . , F

0
i−1. Once this
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activation is computed and stored in memory, optimizing the rest of the computation
becomes a subproblem: we need to compute the optimal execution time from block i to
t. Afterwards, since no activation was stored between blocks s and i, this corresponds to
another subproblem, from s to i. The best choice is given by:

Opt2(s, t,m) = min
valid i with s < i < t

r(F 0
s )+r(F 0

s+1)+· · ·+r(F 0
i−1)+Opt(i, t,m−xi)+Opt(s, i,m)

(2.21)
In this equation, a choice is considered valid if the temporary memory requirements for
all computations F 0

s , F
0
s+1, . . . , F

0
i−1 are satisfied.

In both cases, if there is no valid choice, the corresponding min value is considered to
be +∞. Finally, the optimal decision for our problem is computed with:

Opt(s, t,m) = min
(
Opt1(s, t,m),Opt2(s, t,m)

)
(2.22)

Additionally, if s = t+1, only the first case can be considered, but this time the rest of
the computation is empty. We can thus compute Opt(s, s+1,m) for all s and all m. The
resulting algorithm is close to the Rotor algorithm, using the updated Equation (2.20),
and is provided in Algorithm 5.

Algorithm 5: rk-Rotor for L blocks with memory m.
1 for m = 1, . . . ,M do
2 for k = 1, . . . , L do
3 for s = 1, . . . , L+ 1− d do
4 Compute Opt(s, s+ k,m) with Equation (2.22)

5 return rk-Rotor-Build(Opt, 1, L+ 1,m− x0) (See Alg. 6)

Algorithm 6: rk-Rotor-Build(Opt, s, t,m) – Computation of the schedule
1 if Opt(s, t,m) =∞ then
2 return Infeasible

3 else if s = t+ 1 and Opt(s, t,m) = Opt1(s, t,m) with option o then
4 return (F o

s , B
o
s)

5 else if Opt(s, t,m) = Opt2(s, t,m) with choice i (Equation (2.21)) then
6 return (F 0

s , F
0
s+1, . . . , F

0
i−1,rk-Rotor-Build(Opt, i, t,m−

xi),rk-Rotor-Build(Opt, s, i,m))

7 else
8 o← option such that Opt(s, t,m) = Opt1(s, t,m) (Equation (2.20))
9 return (F o

s ,rk-Rotor-Build(Opt, s+ 1, t,m− x̄o
s), B

o
s)
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2.6 Performance analysis
Complexity With a model that contains L blocks , and a memory of size M , the
Rotor algorithm has a complexity in O(L3M): for each value of s, t and m, there are
O(L) choices to consider. In the Rockmate case, with B budget options, the dynamic
programming algorithm considers O(L+B) choices at each step, and thus has a complexity
in O(L2M(L+B)).

Sub-optimality of the solution Although both rk-Checkmate and rk-Rotor
obtain optimal solutions for the given sub-tasks, the final Rockmate solution is not
always optimal on the overall network. Two reasons can lead to sub-optimality in
Rockmate: (i) since the number of memory budgets is finite, only a limited number of
execution schedules are produced by rk-Checkmate. (ii) in rk-Rotor, intermediate
aNodes are only stored to improve the execution time of the backward phase. However,
if the forward phase of a block is executed several times, it might be beneficial to store
some intermediate tensors on the first pass, and use it to compute the output faster on
subsequent passes. This possibility is not considered in rk-Rotor: forward passes in
case 2 do not save any intermediate aNode.

2.6.0.0.1 Budget Selection For each block, rk-Checkmate will be applied with
different values for the memory budgets Mpeak and Msave, as explained Algorithm 3. We
first compute the minimum and maximum possible values for Mpeak. The maximum value
Mpeak is the same as the peak memory usage of the PyTorch autograd schedule, since the
memory usage of our re-materialization schedule should not exceed the original module.
The minimum value of Mpeak is chosen as the maximum temporary memory usage over
all cNodes. Note that this minimum value may not be feasible, and we do not have
an efficient algorithm to find the minimal feasible Mpeak for any given FB-Graph. The
number of budgets is a hyperparameter of Rockmate. The values of Mpeak are evenly
spaced within [min_peak;max_peak]. Given one value for Mpeak, the values of Msave

are evenly spaced within [output_size;Mpeak]. This ensures that all pairs (Mpeak,Msave)
given to rk-Checkmate are relevant. Note that the number of schedules generated from
rk-Checkmate can be smaller than the number of given budget pairs for two reasons:
(i) different budgets may lead to the same optimal solution, especially when the pairs of
(Mpeak,Msave) have similar values. In this case, the same solutions will be combined as
one. (ii) some selected Mpeak may not be feasible for the given FB-Graph, leading to no
solution for the corresponding budget pairs.

The identical blocks are solved only once with the same budgets, so that all identical
blocks have the same set of block-level execution options provided to rk-Rotor.
However, rk-Rotor sees all of these blocks as different parts of the sequence, which
just happen to have the same set of options. In the resulting sequence, each identical
block may be executed with a different option in the output of rk-Rotor.
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2.7 Experiments
In this section, we present empirical results to demonstrate the capability of Rockmate
on different models and machines.

Two types of machines are used in our experiments: an NVIDIA Tesla V100 16GB
GPU with a 32-core Intel Skylake CPU, or an NVIDIA Tesla P100 16GB GPU with 32-core
Intel Broadwell CPU. All the training computations are performed with the GPU, thus all
the experiments will refer to the GPU types in the latter sections. Since our experiments
are conducted thoroughly on the same machine, the ILP/DP solving are corresponding
to the CPU type. We use the open source PuLP library to build the ILP models, but
the commercial solver GUROBI is called to solve them.

For each experiment, we report the average iteration time of 15 iterations with
standard deviations. The measured memory cost includes only the activations. In
practice, we measure the size of the model parameters and their gradients, and remove
them from the real peak memory measured by torch.cuda.max_memory_allocted().
Without specified, all the model parameters and sample data are in single precision (float
point 32).

2.7.1 Budgets Selection
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Figure 2.5: Iteration time with recomputation overhead versus peak memory required by
activations. For different plots, we control the number of peak memory and save memory
of rk-Checkmate solving. For example, (6,6) means 6 peak budgets each combined
with 6 save budgets.

The key difference between Rotor and Rockmate is that Rockmate considers
different options to execute a block . The number of options is controlled by the number
of budgets used in rk-Checkmate, which directly affect the times rk-Checkmate is
called and the overall solving time. Figure 2.5 shows how the number of budget options
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influences the quality of the Rockmate solution. We observe that even for the networks
with complicated blocks , the budget selection of (6,6) should allow rk-Checkmate to
find fine-grained options for rk-Rotor. Even though raising the number of budgets will
increase the rk-Checkmate solving time, we choose to use higher number of budgets
to guarantee performance of Rockmate. In the rest of the chapter, we use the number
of budgets as (10,10) in other experiments. In the next section, we study the results
of Rockmate efficiency where we find the rk-Checkmate solving time is currently
acceptable, where proper efficiency can be achieved through this setting.

2.7.2 Performance vs. Solving Time
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Figure 2.6: Iteration time in logarithmic scale with recomputation overhead versus peak
memory required by activations. Budgets are set as the half of maximum peak memory
usage for PyTorch execution. For this experiment, ILP solving time is not limited.

In this section, we compare the solving time and performance of Rockmate,
Checkmate and Rotor on GPT2 networks with 1-6 layers. For each network, we
choose the budget as half of the peak activation memory used in PyTorch execution. No
limitation of ILP solving is set in this experiment, and Checkmate is solved until the
optimal solution is found.

For all three algorithms, we present the solving time including all the procedures in the
framework, including rk-GB inspection time to obtain the time and memory cost of the
operations. For Rockmate, both solving time of rk-Checkmate and rk-Rotor are
included in the reported solving time. As shown in Figure 2.6, Rockmate achieves very
similar throughput to Checkmate with the same budget, while Rotor is worse. The
solving time of Checkmate is exponential in the number of blocks, exceeding 30 hours
on the 10-blocks GPT2. On the other hand, the solution time of Rockmate remains
almost constant because the same rk-Checkmate models are applied to all identical
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Transformer blocks. Despite the significant difference in solution time, Rockmate
achieves similar or better overhead than Checkmate within the same budget.

2.7.3 Performance on Different Networks

In this section, we compare the performance of Rockmate and Rotor on different
networks and machines over a range of memory budgets. Figure 2.7 and 2.8 show the
computational overhead in terms of peak memory usage during the forward-backward
computations. For the same memory peak, Rockmate has a lower overhead than Rotor
in most cases. For ResNet models, Rockmate does not show a significant improvement
over Rotor, especially when the neural networks are deep enough, in which cases Rotor
has more re-materialization options. On the other hand, Rockmate shows much better
performance than Rotor on GPT2 networks. For GPT2-large, it is noteworthy that
Rockmate saves 50% memory by introducing only 5% overhead, while Rotor has more
than 10% overhead for the same budget. In addition, Rockmate allows training with a
smaller memory budget.
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Figure 2.7: Iteration time with recomputation overhead versus peak memory required by
activations. The experiments are conducted on NVIDIA Tesla P100 GPU.
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Figure 2.8: Iteration time with recomputation overhead versus peak memory required by
activations. The experiments are conducted on NVIDIA Tesla V100 GPU.

The reason why Rockmate significantly outperforms Rotor is that there are
"cheap" operations inside a Transformer block, such as dropout and gelu. The tensors
generated by these operations consume a lot of memory, but there is almost no cost to
recompute these operations. Because Rotor rematerializes one block at a time, it cannot
take advantage of the "cheap" operations to optimize performance. Rockmate works
particularly well on models with a sequential-like structure, where each part complicated
structure. Also note that a minimum feasible budget is applied to every model, which
is lower for Rockmate than for Rotor. With more memory available, Rotor finds a
solution with less time consumed.
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2.8 Conclusion
In this chapter, we propose Rockmate, a fully automatic tool that takes as input a
PyTorch model in the form of a nn.Module and a memory limit for activations and
automatically generates another nn.Module, perfectly equivalent from the numerical
point of view, but that fulfills the memory limit for activations at the cost of a small
computational overhead. This work is published at the International Conference on
Machine Learning conference 2023 and was accepted as an oral presentation [66]. Through
experiments on various models, we show that the computation time of the resulting
nn.Module is negligible in practice and that the computational overhead is acceptable,
even for drastic reductions in memory footprint. Rockmate is therefore a tool that can
transparently allow increasing model size, data resolution and batch size without having
to upgrade GPUs. This work opens several new scientific questions. First, Rockmate is
very efficient for graphs that can be written as a sequence of blocks, which corresponds
to numerous models in practice but not to all of them, which raises the question of
its extension to any type of graph. Then, the combination of Rockmate with data
parallelism is trivial, but the question of finding a partition of the model adapted to
model parallelism that balances well the computational load and the memory footprint
on the different nodes is also an open problem.
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Chapter 3

Hiremate

As we have observed, training modern neural networks poses a significant memory
challenge, as storing intermediate results during the forward and backward passes requires
considerable memory resources. To address this issue without affecting model accuracy,
re-materialization techniques have been introduced to recompute selected intermediate
results instead of storing them, thus fulfilling the memory size constraint. Rockmate
introduced in the last chapter can efficiently generate re-materialization schedules which
satisfy the memory constraints with minimized time overhead. However, Rockmate
is adapted to sequential structure: the size of a block is not limited in the framework,
which raises uncertainty for the solving time when applying rk-Checkmate to it. In
this chapter, we introduce a new framework Hiremate, based on a new hierarchical
approach that provides generality and quality: we can handle any class of network graphs
and satisfy the memory constraint with a low computational overhead during training.
The framework exhibits low algorithmic complexity, making it possible to scale up and
handle very large models. The framework automatically builds a dataflow graph from a
PyTorch model, decomposes the graph hierarchically, and then builds an nn.Module that
executes forward and backward passes within the given memory budget.

3.1 Introduction
Modern Neural Networks (NN) undergo several important evolutions which have
consequences on the computation and memory requirements, from the first vision networks
like ResNet-50 [62] to Natural Language Processing transformer-based models [58] like
GPT. The increasing size of models and the resolution of data pose significant challenges
for storing both weights and activations. Initially, models had chain-like structures, such
as sequences of convolutional layers. These evolved into chains of complex blocks, like
chains of Transformer blocks in GPT-like models. Recently, neural networks exhibit
increasingly complex dependency graph structures between layers, such as UNO [59],
which is structured as a U-Net of complex blocks, and encoder-decoder transformers [58],
which feature very long skip connections.

Re-materialization is an efficient technique to limit the memory requirements related
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to activations during training. As discussed in Chapter 2, the idea of re-materialization
is to avoid storing all the necessary activations because of the subsequent dependencies
during the Forward phase and the Backward phase (those related to the backpropagation
mechanism). Some activations are computed and then deleted to free up memory, and
they will be re-computed later when needed. For simple chains [4] and chains of complex
blocks (see Chapter 2), re-materialization has shown its efficiency: it is often possible to
save 50% of memory for a computational overhead of about 10 to 15%.

In practice, training hardware often has fixed memory limit. Consequently, the
practical objective is to minimize the computational time required to execute the forward
and backward passes while adhering a predefined memory budget. This problem has
been proven NP-Hard in [43] in the case of general dependency graphs represented as
general data-flow graphs. Some solutions, such as TW-Remat [32] or Checkmate [24]
have nevertheless been designed to deal with the case of general graphs. However,
both face limitations related to the computational cost and scalability of the algorithm
that generates the re-materialization strategy, as well as the overhead introduced during
the training phase. Another line of research is to propose re-materialization strategies
whose computational cost and overhead are controlled, as in Rotor [4] and Rockmate
introduced in Chapter 2. These strategies, while effective, are generally limited in scope
as they are designed for specific classes of dependency graphs where a chain structure (or
potentially complex blocks) can be identified.

The work presented in this chapter is at the convergence of these research lines
and we propose a computationally efficient, low-overhead solution that can address
general graphs. Our framework Hiremate is based on a hierarchical decomposition
approach of the computation graph, to find a re-materialization strategy for any graph
of dependencies between layers. When the graph is too large to be handled directly by
Integer Linear Programming approaches, we decompose it into a graph of complex clusters,
potentially with several levels in the hierarchy to manage very large graphs. Efficient
solutions for different memory budgets are generated for each of the clusters at the bottom
of the hierarchy, using different approaches from the literature. Then, we provide a new
Integer Linear Programming (ILP) formulation to efficiently recombine these low-level
solutions into candidate solutions for the higher levels of the hierarchy. Furthermore,
Hiremate is fully compatible with the autograd mechanism of PyTorch, so that no
modification of the code is required to use it. With a single line, the user can automatically
control the memory usage of their neural network: model = HRockmate(model, sample,
memory_budget).

To achieve this result, we rely on the following main contributions:
• A data-flow graph decomposition algorithm H-Partition that builds a hierarchy of

blocks of reasonable sizes (to keep an acceptable computational complexity) while
minimizing the memory size of the interfaces between the blocks.

• A new linear programming solver H-Ilp adapted to this hierarchical decomposition.
• A general framework for integrating any existing (or future) re-materialization

strategy at any level of the hierarchy, and combining their strengths.
The rest of the chapter is organized as follows. The framework of Hiremate is
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presented in Section 3.2 which covers graph decomposition, partial problems resolution
and global re-materialization strategy reconstruction. Section 3.3 introduces the
partitioning algorithm in details. Section 3.4 covers the ILP formulation of our major
solver H-Ilp. The experimental results of Hiremate are presented in Section 3.5.

3.2 Hiremate

Problem statement We associate each neural network with a data-flow graph, where
each node represents a tensor-level computation. A schedule is a sequence of elementary
computations and tensor deletions that performs the forward and backward passes for
one training iteration.

Let us consider a model with L layers, where layers may have non-sequential
dependencies (the i-th layer may depends on the j-th layer with any j < i.) Let Fi

and Bi denote the forward pass and backward pass associated with layer i and Di denotes
the deletion of the output of Fi. We assume a user-defined loss function L is conducted
between the forward and backward pass of the last layer. Then, for a model that is
a sequence of 3 layers, a schedule corresponding to the standard autodiff training can
be written as F1F2F3LB3B2B1, while F1F2D1F3LB3D3F1F2B2D2F1B1 is another valid
schedule, yielding a smaller peak memory since it does not require storing all intermediate
activations simultaneously. The re-materialization optimization problem is to find
a schedule whose peak memory is below a given budget and whose execution
time is as small as possible.

Building on the ideas presented in Rockmate introduced in Chapter 2, we propose
the following assumption: The global optimal or near-optimal re-materialization
schedule can be constructed by combining re-materialization schedules from
different parts of the graph. While Rockmate focuses on sequential networks,
we extend this idea to non-sequential networks, introducing two key challenges:
(1) partitioning the graph into distinct components, and (2) integrating the local
re-materialization schedules into a cohesive global schedule. The first challenge is
relatively straightforward in sequential models but requires more sophisticated solutions
in non-sequential ones. Similarly, rk-Rotor addresses the second challenge efficiently
in sequential models, but not in non-sequential ones. In the following sections, we briefly
introduce the approaches in Hiremate to tackle both challenges for graphs of arbitrary
structure.

Figure 3.1 outlines the main steps of the Hiremate approach. In the first step, using
the graph building tool adapted from Chapter 2, a data flow graph of the input module is
obtained. In the second step, the H-partition algorithm (see Section 3.2.1) recursively
partitions the graph into subgraphs of manageable sizes. Steps 3, 4, and 5 of Figure 3.1
describe the H-Solver algorithm (see Section 3.2.2), which builds a training schedule.
Starting at the lowest level of decomposition, the algorithm computes schedules for each
subgraph under different memory budgets to explore various time-memory tradeoffs,
providing several options (i.e ways to (re)compute operations and store activations during
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1. Original graph

2. Partitioned graph

3. Solving bottom-level subgraphs
with different solvers & budgets

memory

time

4. Recursively solving
higher-level subgraphs

direct solvers

hierarchical solvers

5. Merging schedules
into final solution

Figure 3.1: Hiremate takes a PyTorch nn.Module and creates a nn.Module, which
provides same outputs while satisfying peak memory budget constraints B during training.
The solving procedure of Hiremate can be divided into the following steps: (1)
Obtain data-flow graph G from the PyTorch module. (2) Recursively partition G with
H-Partition (Section 3.2.1) into small-size subgraphs. (3)-(5) Obtain a re-materialization
schedule from G with budget B using H-Solver (Section 3.2.2). (6) Produce a new
nn.Module whose execution follows the schedule.

forward and backward passes through the subgraph) for the nodes at higher levels. This
procedure continues until the top-level graph is solved (i.e a schedule is found) for a single
memory budget corresponding to the overall memory available for activations.

Note that the current implementation of the general scheme described above and in
Figure 3.1 is fully modular. While an efficient and effective approach is implemented and
tested for both partitioning and solving, we encourage users to propose new algorithms
and apply them within the Hiremate framework.

3.2.1 Partition Framework

In this section, we introduce the process of partitioning the computational graph. In the
Rockmate context, a computational graph consists of two types of nodes: computation
nodes (cNode) that represent PyTorch atomic operations and allocation nodes (aNode)
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that represent PyTorch tensors. In Hiremate, we address the challenge of managing
large graphs by grouping nodes to create a more abstract representation of dependencies.
The goal of Hiremate’s partitioning step is to reduce the size of the problems to be
solved without compromising the overall solution quality. The outcome of this step is a
hierarchical decomposition into subgraphs, where each node at a given level represents an
set of nodes at the level below.

Representation Instead of keeping the computational graph with thousands to tens of
thousands of nodes, we seek for representation of graphs with tens of nodes. To achieve
that, we define the following concepts to establish the partitioning framework:

Definition 3.2.1. H-Cluster: a set of PyTorch forward operations and their
corresponding backward operations.

Definition 3.2.2. H-Graph: a directed bipartite graph contains cNodes and aNodes,
where each edge connects a cNode and a aNode. A cNode represents either a single
PyTorch atomic operation or a set of PyTorch atomic operations, and a aNode represents
either a single PyTorch tensors or a set of PyTorch tensors. The inputs of a cNode are
all the aNodes which are used in the operations within the cNode, and the outputs of a
cNode are all the aNodes produced by the operations within the cNode.

Within this chapter, we slightly update the definition of cNode and aNode which
were defined for FB-Graphs in Section 1.3.1. The major difference is about the
granularity of their representations. In Rockmate, a cNode represents the smallest
group of computation operations obtained through the rk-GB, while in this chapter we
intentionally merge several operations together and represent them as one node in some
H-Graphs. Also, one H-Cluster can be partitioned in different ways, and thus can be
represented by multiple H-Graphs. Our goal is to develop the algorithm that can represent
a H-Cluster with thousands to tens of thousands of operations using a H-Graph with only
tens of nodes, while preserving the ability to find a well-performing schedule. Figure 3.2
provides an example of one H-Cluster being partitioned into two different H-Graphs.

Forward and backward Typically, a H-Cluster contains both forward and backward
parts. 1 The forward and backward parts of the H-Cluster are represented by a pair of
cNodes in the higher level H-Graph. As illustrated in Figure 3.2, the inputs and outputs
of a forward cNode correspond to all the inputs and outputs of PyTorch operations it
contains. Within a H-Cluster, many tensors are created by forward cNodes and used
only by the backward cNodes. They are handled together in a highly efficient manner,
which is achievable only when the forward and backward cNodes are paired.

The cNodes in H-Graph are ordered topologically. In a Rockmate graph, cNodei does
not depend on the output of cNodej when i < j. Similarly, in a H-Graph, we maintain
the property for cNode:

1An exception occurs when all the forward operations in the H-Cluster do not require gradients,
resulting in no backward operation being included.

Optimize memory usage in NN training 56



3. Hiremate
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Backward subgraph
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Data

Figure 3.2: One H-Cluster can be partitioned in different ways as shown in the top
figures. They will make different H-Graphs as shown in the bottom figures. Rectangles
in the bottom figures show the clusters of the higher level.

Property 1. For cNodei and cNodej with i < j, we denote their corresponding
H-Clusters as Ci and Cj. There is no forward operation fa in Ci and fb in Cj such
that fa depends on the output of fb. Also, there is no backward operation ba in Ci and bb
in Cj such that bb depends on the output of ba.

Loss node Similar to the block in Rockmate, every H-Graph in Hiremate contains a
loss node, which represents the operations that happen between the end of forward part
of the graph and the beginning of the backward part. Figure 3.3 shows the example of
one H-Graph and what its loss node represents. Viewed as a single node in the current
subgraph, loss node acts as a placeholder between forward and backward operations, while
excluding the dependencies outside the graph.

Property 2. There is one and only one loss node in a H-Graph. It is a descendant of all
the forward cNodes and an ancestor of all the backward cNodes.

In the latter sections, we introduce the detailed algorithms used for partitioning the
graph.

3.2.2 Solving Framework

In this section, we introduce the framework of combining re-materialization schedules
hierarchically. A H-Cluster contains a subset of the computational operations. Similar
to the schedule defined in the Rockmate, we define a re-materialization schedule as:
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Figure 3.3: Visualization of the leftmost H-Cluster in the bottom of Figure 3.2

Definition 3.2.3. Schedule: a sequence of cNodes and aNodes. An aNode is alive when
all the input cNodes have been executed, and is removed when itself appears in the
sequence. A schedule is valid if: (1) every cNode in the graph appears at least once in
the sequence; (2) whenever a cNode is computed, all its input aNodes are alive. When all
the cNodes in the sequence represent only one PyTorch operation, the schedule is called
a bottom schedule.

The solving framework of Hiremate aims to provide an effective re-materialization
schedule for the main H-Cluster, which contains all the PyTorch operations in the model.
There are two approaches to build the re-materialization schedule for the computational
graph:

1. Construct from all computational nodes it contains, requiring no partitioning;
2. Combining the re-materialization of the subsets of the graph, requiring a partitioned

subsets of computational nodes.
The first approach, requiring no hierarchical structure, can be implemented using

existing re-materialization algorithms like Rotor [7] and Checkmate [24]. The simplest
method for creating a re-materialization schedule for a computational graph is to compute
each node (representing one PyTorch atomic operation) exactly once, with tensors being
deleted as soon as they are no longer needed. This naive re-materialization approach
represents the PyTorch autograd implementation.

When the number of computational nodes becomes too large for a solver to efficiently
handle, the second approach become a more viable alternative. We first demonstrate that
combining re-materialization schedules from subgraphs is an effective strategy.

Definition 3.2.4. Interface nodes Inter(G): given a H-Cluster C, Inter(C) are all the
aNodes that have dependencies with aNode, which do not belong to C. They can also be
seen as the inputs or the outputs of the H-Cluster.

Lemma 3.2.1. Assume a graph G is partitioned into sorted H-Clusters C1, . . . , Cm with
property 1, and S1, . . . , Sm are valid bottom schedules of C1, . . . , Cm containing no deletion
of Inter(Ci). For any given valid schedule S of G consisting of a sequence of cNodefi and
cNodebi denote the forward and backward cNodes of the i-th H-Cluster, replacing cNodefi
and cNodefi in the schedule by Sf

i and Sb
i makes a valid bottom schedule of the H-Cluster

of G.
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Proof. 1. Every computational node in G belongs to one of the subgraph C, so that the
computation appears in the final schedule at least once. 2. A PyTorch operation o in the
final schedule may depend on two types of aNodes: (1) the ones appearing in only one
Ci, (2) the ones appearing in more than one Ci. For the first type, it is guaranteed by the
valid schedule Si that it is alive; for the second type, it appears explicitly in G so that the
original schedule S guarantees that it is alive. Note that no deletion of the second type
appears in Si.

In addition to the naive approach, we employ various solvers to combine the
re-materialization schedules from subgraphs. Each solver, operating under specific
constraints and objectives, aims to provide a valid schedule of the given H-Graph. The
applicability of a solver decides whether it can solve a given H-Graph in a reasonable
time. The solving procedure illustrated in Figure 3.1 works from bottom to top: each
H-Cluster is solved by applying all the solvers (if applicable) to all the possible H-Graphs
of the H-Cluster. The produced schedules are stored along with the H-Cluster and may
be selected and used by solvers at higher level.

While all solvers can be used at any level, not all are capable of operating hierarchically.
A solver is called hierarchical when it can be applied on different levels of H-Graph only if
it can read and combine multiple schedules of every cNode in the given H-Graph. When
a cNode represents a big set of operations, the solver is required to consider different
schedules to realize the cNode in its solution. On the other hand, a direct solver allows
only a single way to realize a cNode. Hence, they can only solve the bottom H-Graph
where each cNode represents a single PyTorch operation.

Lemma 3.2.1 indicates that valid schedule of the overall computational graph can be
produced by combining the schedules of subgraphs. Sophisticated solvers can be designed
to make the smart combination. Furthermore, since the combination can be conducted
recursively, the size of each H-Graph can be limited according to the complexity of the
solver. We use this framework to balance the efficiency and the performance of the solving
algorithm.

Specifically, we propose H-Ilp as the main hierarchical solver. H-Ilp is an Integer
Linear Program (ILP) formulation that provides an optimal schedule within a given
memory budget. It can be applied to subgraphs of arbitrary structure, but using it on
large subgraphs may lead to unreasonably long solution times. Therefore, it is only applied
to subgraphs with a sufficiently small number of nodes, like 10 to 20. This algorithm is
inspired by rk-Checkmate introduced in Chapter 2 and Checkmate [24]. Extending
an ILP-based approach to a graph of arbitrary size and structure, which is hierarchically
decomposed into subgraphs of manageable size, is a significant contribution of this work
and is detailed in Section 3.4.

Additionally, two pre-existing algorithms are adapted to the Hiremate framework.
First, H-TWRemat is a wrapper around the TW-Remat implementation [52] of a
heuristic based on a treewidth decomposition approach [32]. This wrapper enables the
heuristic to be used with PyTorch, whereas it was previously available only for TensorFlow.
Second, rk-Rotor is the dynamic programming algorithm from Chapter 2, which
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provides very effective schedules for (forward) graphs consisting of a sequence of potential
complex subgraphs. Although limited in general applicability, it has low solving time.

In the next two sections, we introduce the detailed methods of H-Partition and
H-Ilp.

3.3 H-Partition Algorithm

3.3.1 Sketch of Partitioning Algorithm

In this section, we introduce the algorithm used in Hiremate to partition a large size
graph into smaller subgraphs. Note that the algorithm is applied on the forward graph
so that all their corresponding backward operations will automatically be grouped into
the same H-Cluster. The subgraph sizes are bounded by two main parameters: M l

denotes the maximum number of nodes in a lower-level subgraph, and M t denotes the
maximum number of nodes in the top-level graph. Since it is advantageous to allow a
longer solution time for the top-level graph, we use M t ≥M l. Our partitioning algorithm
is a greedy heuristic described in Algorithm 7. Each iteration consists of four main
steps: forming candidate groups, selecting the best candidate according to our evaluation
criterion, merging the selected candidate, and updating the candidates. Each step is
described below.

Forming candidate groups For each node x in G, we consider a(x), the closest
common ancestor of all direct predecessors of x (a common global ancestor is added in
case G has multiple entry points). We create four candidate groups with all nodes on all
paths from a(x) to x, depending on whether x and/or a(x) are included. Any candidate
group with more than M l nodes is discarded.

Selecting the best candidate When selecting the best group among all candidates,
our goal is to avoid incurring too much memory pressure when the group is used as a
subgraph. The memory pressure depends directly on the size of the input and output
values. It also depends, although not as directly, on the length of the schedule during
which they will be alive, which we evaluate by the number of original nodes in the
subgraph. We use the following score function s(C) for a candidate C:

sα(C) =

 ∑
x input or output

value of C

memory size
of x

 · (# of original
nodes in C

)α
, (3.1)

where α is a hyperparameter whose default value is 0.5.
Updating the candidates Once the best candidate C has been chosen, it becomes

a group: all its nodes are considered together from now on. However, it is not yet a
subgraph: if it is not too large, it can be merged with other groups later in the same
phase to reduce the number of groups. The remaining candidates are updated: in each
candidate C ′ whose intersection with C is not empty, we add all other vertices of C to
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ensure that all vertices of C are kept together. If this union contains more than M l nodes,
this candidate C ′ is no longer acceptable and is removed.

After partitioning, Hiremate identifies subgraphs that correspond to the execution
of the same piece of code to avoid solving the same optimization problem multiple times.

Algorithm 7: H-Partition algorithm
1 Input: data-flow graph G
2 Result: a recursive partition of G
3 Parameters: max high-level size M t, max lower-level size M l, score parameter α
4 while G has more than M t nodes do
5 C ← ⋃

x∈G candidate group containing all nodes between x and a(x) ;
6 while C is non empty and G has more than M t nodes do
7 Select candidate C which minimizes sα (eq. 3.1);
8 Wrap the nodes of C into a group;
9 Update C;

10 Consider all groups as subgraphs ;
11 Update G so that each subgraph is considered as a node;

12 return partitioned graph

Original graph

Build small groups

Consider groups as nodes

Build small groups

High-level graph

Hierarchical decomposition

Figure 3.4: Visualization of recursive partitioning of the forward graph with 3 levels of
hierarchy

In the rest of this section, we analyze the H-Partition algorithm, whose description is
reproduced in Algorithm 7. We prove that the partition computed by this algorithm is
always valid, in the sense that the resulting subgraphs do not contain any cycle. When
merging a subgraph into a node on the higher level, all edges related to a vertex of the
subgraph are attached to the resulting node. To ensure that this does not result in a
cycle, we guarantee that all of the subgraphs are convex in the graph theoretic sense, as
defined in Section 3.3.2.
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3.3.2 Convexity

We first provide some graph notations. Given two nodes a and b, we write a→ b if there
is a direct edge from a to b, and a⇝ b if there is a path of any length from a to b. Paths
of length 0 are also valid, so that a ⇝ a is always true. With these notations, we can
define the convexity of a subgraph:

Definition 3.3.1. A subgraph C of a graph G is convex if for any two elements a, b in
C, C contains all nodes of G on any path from a to b. This can be written as:

∀a, b ∈ C, ∀u ∈ G, (a⇝ u and u→ b)⇒ u ∈ C

Merging a convex subgraph C into a node n does not create new cycles into the graph:
such a new cycle would be a path starting at n and going back to n, going through another
node u /∈ C. If C is convex, any path from a node of C to another node of C only goes
through nodes of C, which ensures the absence of cycles.

3.3.3 Candidate Groups

The candidate groups Cx formed on line 5 of Algorithm 7 contain all nodes on all paths
from a(x) to x, where a(x) is the common ancestor to all direct predecessors of x. They
have the following property, where h(Cx) = a(x):

Property 3. A subset C of nodes is a valid candidate group, if and only if there exists
a head h(C) such that:

If u ∈ C and v → u, then v ∈ C or v = h(C) (3.2)
If u ∈ C, then h(C)⇝ u (3.3)

This property ensures their convexity:

Lemma 3.3.1. Any candidate group C which satisfying Property 3 is convex.

Proof. Consider a and b in C, and u in G such that a ⇝ u and u → b. There are two
cases:

• If u ̸= h(C), then since b ∈ C and u→ b, according to (3.2) we have u ∈ C.
• If u = h(C), then since a ∈ C, by (3.3), we have u ⇝ a. Since G is acyclic, this

implies u = a ∈ C.
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3.3.4 Update of Candidates

As discussed in Section 3.3.1, once the best candidate C has been chosen, it becomes a
group: all its nodes will be considered together from now on. The remaining candidates
are updated: in any candidate C ′ whose intersection with C is nonempty, we add all the
other nodes of C to ensure that all nodes of C remain together. The following results
show that the resulting set of nodes is still a valid candidate group; in particular it is also
convex.

Lemma 3.3.2. If C and C ′ are valid candidate groups with C∩C ′ ̸= ∅, then h(C)⇝ h(C ′)
or h(C ′) ⇝ h(C). Furthermore, if h(C) ̸= h(C ′), then the first case implies h(C ′) ∈ C
and the second case implies h(C) ∈ C ′.

Proof. Let u ∈ C ∩ C ′, and consider v ∈ G such that v → u. If no such v exists, then u
is the source of G and u = h(C) = h(C ′). If v ∈ C ∩ C ′, we can start over with u = v.

We now have u ∈ C ∩ C ′, and v /∈ C ∩ C ′ with v → u. We have three cases:
• If v ∈ C and v /∈ C ′: from (3.2) applied to C ′, we have v = h(C ′) ∈ C, and from

(3.3) applied to C we get h(C)⇝ h(C ′).
• Symmetrically, if v /∈ C and v ∈ C ′, we get h(C ′)⇝ h(C).
• If v /∈ C and v /∈ C ′: from (3.2) applied to both C and C ′, we get v = h(C) = h(C ′).

Theorem 3.3.2. If C and C ′ are valid candidate groups with C∩C ′ ̸= ∅, then D = C∪C ′

is a valid candidate group.

Proof. From Lemma 3.3.2, we know that h(C)⇝ h(C ′) or h(C ′)⇝ h(C). We define the
head of D as h(D) = h(C) in the first case, and h(D) = h(C ′) otherwise. For simplicity,
we assume in the following that h(C)⇝ h(C ′); the other case is symmetrical.

It is clear that D satisfies (3.3): consider any u ∈ D. If u ∈ C, then h(D) = h(C)⇝ u
by (3.3) applied to C. If u ∈ C ′, then h(D) ⇝ h(C ′) by assumption and h(C ′) ⇝ u by
(3.3), so that in both cases h(D)⇝ u.

We now prove that D satisfies (3.2). Let u ∈ D and v → u with v /∈ D. We distinguish
two cases:

• If u ∈ C ′, then since v /∈ C ′, by (3.2) applied to C ′ we get v = h(C ′); and since
v /∈ C, the contrapositive of Lemma 3.3.2 yields h(C ′) = h(C) = h(D). Thus
v = h(D).

• If u ∈ C, then v /∈ C and (3.2) applied to C yields directly v = h(C) = h(D).

This completes the validity proof of Algorithm 7: all candidate groups in C satisfy
Property 3 all along the execution of the algorithm, both when they are created (line 5)
and when they are updated (line 9). This implies that all subgraphs created line 11 are
convex.
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3.3.5 Identification of Identical H-Clusters

To further improve the efficiency of Hiremate, we adapt an idea from Rockmate to
reuse the solutions on identical problems. In Rockmate, we identify the blocks that share
the same operations of cNodes, and reuse the solutions from rk-Checkmate for identical
blocks . In Hiremate, each H-Cluster also contains a topologically sorted list of cNodes
which follows the order of PyTorch source code. Similarly, we can easily identify two
H-Clusters to be identical when all the cNodes in their list contain the same functions.
This does not require to solve the difficult graph isomorphism problem. All the identical
H-Clusters share the same set of re-materialization solutions from different solvers.

3.3.6 Complexity Analysis of H-Partition

The complexity of Hiremate depends mostly on the number N of nodes in the graph.
Obtaining the dataflow graph with rk-GB has a complexity O(N) and is very fast
in practice. With our current implementation, recursively partitioning the graph with
H-partition has a complexity of O(N2 logN). This step is also fast for graph sizes up
to N = 1000, but handling very large graphs would require more work on the graph
algorithms: recursively partitioning a graph of size N = 105 takes 2 hours on an Intel
Xeon Gold processor. For graphs with larger sizes, further optimization in the algorithm
and its realization is required.

3.4 H-Ilp Hierarchical Formulation
In this section, we provide details on H-Ilp formulation, the hierarchical re-materialization
approach based on solving linear programming problem.

3.4.1 Context

The input to H-Ilp optimization is an arbitrary graph H, where each cNode represents a
subgraph. Similar to rk-Checkmate from Rockmate 2, dependencies are carried by
aNodes, that represent values that can be saved in memory. A value is said to be alive
at some time in a schedule if it is stored in memory at that time. The memory usage
at a given time in a schedule is the sum of the memory sizes of all values alive at that
time, and the peak memory of a schedule is the largest memory usage over the length of
the schedule. The H-Ilp formulation computes the schedule with minimum running time
whose peak memory remains below a specified memory budget B. We denote by T the
number of cNodes, by I the number of aNodes. cNodes are numbered in a topological
order.
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3.4.1.1 Compute options and phantom nodes

The novelty of H-Ilp compared to rk-Checkmate is that each cNode can represent a
subgraph of the original graph. Such a cNode can be computed with one of several options.
Each of these options represents a possible schedule for the forward and backward phases
of the subgraph.There is a strong link between the forward and the respective backward
computations, and each backward computation should be performed with the same option
as its corresponding forward computation. As defined in Section 3.2.1, a pair of a forward
and the corresponding backward nodes is a H-Cluster. For a H-Cluster j, its forward
and backward cNodes are denoted Fj and Bj respectively.

Forward

Backward
Forward subgraph

Backward subgraph
Loss, between

forward & backward
Data

Figure 3.5: Hiremate recursively finds schedules for each subgraph. Different schedules
correspond to different memory budget constraints (options) and hence have different
values for memory/time ratio, peak memory, size of the saved data, and time for the
backward computation.

In H-Ilp, we also introduce an explicit representation of the data saved in memory
between a forward computation and its corresponding backward. We call them phantom
nodes, and we update the formulation by considering them as special aNodes, with two
specificities:

• a phantom node is always created by its forward computation, can only be deleted
by its backward computation, and is not required by any other cNode. In the
formulation, we can take advantage of this by not including additional variables
expressing whether the phantom node is deleted or not.

• values saved in an phantom node (and thus the associated memory size) depend on
the option used for the forward and backward computations. For this reason, the
formulation contains additional variables that specify which option of each phantom
node exists in memory during each stage.

Even though a phantom node represents multiple tensors, it is considered as a single
node in the graph. In this formulation, we consider schedules in which for a given
phantom node, only one option is present in memory at a given time. We do not consider
the phantom node being incrementally generated by several forward options: once a
phantom node is generated, it must be used in backward, and either completely deleted
or completely saved for the recomputation of backward.
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3.4.1.2 Note about input dependencies

3.4.1.2.1 Option-specific dependencies An output value of the forward
computation (i.e., an aNode which is computed during forward and used by another
cNode) is never included in the phantom node. However, it happens that an output value
is also used within the forward computation to produce other results. An example could
be:

1 def compute(a):
2 x = f(a)
3 y = g(x)
4 return x, y

In this example, the value x is both an output of the H-Cluster and used to produce y.
In that case, the backward schedule might choose either to use x as input to be able to
perform the backward of g() (if having it in memory between forward and backward fits
in the budget), or to recompute it during backward. The implication is that for a given
H-Cluster, each option leads to specific dependencies for the backward cNode, depending
on which inputs is used by the corresponding schedule. If option o of a computation node
k depends on value d, we denote this as d

o−→ k.

3.4.1.2.2 Multiple predecessors An aNode can have several predecessors. This
happens in backward when computing gradients: each computation is a contribution to
the same memory slot (gradients are accumulated). A successor of such an aNode can
only be processed if all its contributions have been computed.

3.4.2 Formulation

The schedule is divided into T stages. The goal of stage t is to compute cNode t for the
first time. In the following, we denote cNodes with index k, aNodes with index d, options
with index o, stages with index t and H-Cluster (a pair of forward and corresponding
backward nodes) with index j.

In contrast to rk-Checkmate, phantom nodes have adaptive memory size in the
context of H-Ilp. With respect to different options chosen for each H-Cluster, different
number of tensors can be saved for the same phantom node. For any aNode d, let sd be
the amount of memory required to store d; and for any H-Cluster j and option o, let pj,o
be the amount of memory required to store option o of the phantom node of H-Cluster
j. Phantom nodes are not considered as aNode in the formulation, since they are treated
with their own variable constraints.
F is the set of final aNodes. The graph contains a specific loss node, which represents

the computations that take place between the forward and backward passes of our graph.
If G is the main highest-level graph, this represents the computations of the loss for the
training; if G is any subgraph, loss node also contains other computations from the rest
of the graph, as shown in Figure 3.5. The index of the loss node is l.
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3.4.2.1 Variables

The H-Ilp formulation only contains binary variables, which can take the value 0 or 1.
The values of some variables are represented in Figure 3.6.
Comptk,o is 1 if and only if node k is computed with option o during stage t.
P t
d is 1 if and only if aNode d is present in memory before stage t.

St
k,d for k predecessor of d is 1 if and only if the contribution of cNode k has been included

in aNode d before stage t.
Sptj,o is 1 if and only if the phantom node of H-Cluster j is saved with option o before

stage t.
Ct

k,d is 1 if and only if aNode d is created when computing node k during stage t
Dt

k,d is 1 if and only if aNode d is deleted after computing node k during stage t
For any cNode k and any stage t, we denote by sumComptk =

∑
o Comptk,o the

equivalent of the Rt,k variable of rk-Checkmate introduced in Section 2.4, which is
equal to 1 if node k is computed during stage t (with any option). Note that the solution
of sumComptk ∈ {0, 1} since there can only be one way of executing the cNode at each
step. The time cost of executing cNode k with option o is marked as timek,o.

1
2
3
1
4
3
5
6
2
3
4
7
1
4
6
8

Rt
i,o

operation i

Spti,o

operation i

tim
e

Figure 3.6: An adapted view of H-Ilp formula, corresponds to Figure 2.1.

3.4.2.2 Objective

The objective is to minimize the total running time, expressed as

min
∑
i,t,o

Compti,o ∗ timek,o

3.4.3 Validity Constraints of H-Ilp

The principles for a schedule to be valid, as introduced in Section 3.2.2, is that (i) every
cNode is computed at least once and (ii) all computation has valid inputs in memory. In
the ILP formulation,
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3.4.3.1 Boundary constraints

In this section, we add the boundary conditions for ILP variables. These constraints
ensure that the phantoms will be properly generated for the backward.
Node k > t can not be computed in stage t following the topological order:

∀t,∀k > t, sumComptk = 0. (3.4)

No phantom j from node Fj > t is saved before stage t:

∀t,∀j s.t. Fj > t,∀o, Sptj,o = 0. (3.5)

No result of cNode k can be saved in any stage before stage k:

∀k → d,∀t ≤ k, St
k,d = 0. (3.6)

aNode d is not in memory before any of its predecessors:

∀d,∀t ≤ min{k|k → d}, P t
d = 0. (3.7)

After the last stage, all final aNodes should be in memory:

∀d ∈ F ,∀k → d, ST
k,d + sumCompTk = 1. (3.8)

Node t is executed in stage t:

∀t, sumComptt = 1. (3.9)

The loss node is executed only once:∑
t

sumComptl = 1. (3.10)

3.4.3.2 Data dependencies

We introduce the data dependency constraints in this section, corresponding to the second
valid condition mentioned above. Note that each aNode may have different contributions
and all of them should be alive and kept in memory when the aNode is used as an input.

aNode d with at least one contribution k is alive:

∀t,∀k → d, St
k,d ≤ P t

d. (3.11)

New contribution k to aNode d only appears by being computed:

∀t < T, ∀k → d, St+1
k,d ≤ St

k,d + sumComptk. (3.12)

cNode k′ requires all contributions k to input node d:

∀t,∀k → d→ k′, sumComptk′ ≤ sumComptk + St
k,d. (3.13)

Option-specific dependencies:

∀t, ∀j,∀o,∀k → d
o−→ Bj ComptBj ,o

≤ sumComptk + St
k,d. (3.14)
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3.4.3.3 Options-related valid constraints

The H-Ilp formulation contains constraints relative to the choice of options and the
management of phantom nodes. Namely:
At most one option for each computation

∀t, ∀k,
∑
o

Comptk,o ≤ 1 (3.15)

Only one option of a phantom node is in memory

∀t,∀j,
∑
o

Sptj,o ≤ 1 (3.16)

A phantom node is only created by its Fj

∀t,∀j,∀o, Spt+1
j,o ≤ Sptj,o + ComptFj ,o

(3.17)

A phantom node is only deleted by its Bj

∀t,∀j,∀o, Spt+1
j,o ≥ Sptj,o + ComptFj ,o

− ComptBj ,o
(3.18)

Computing Bj requires the phantom node

∀t, ∀j,∀o, ComptBj ,o
≤ Sptj,o + ComptFj ,o

(3.19)

3.4.3.4 Alive status of values

A cNode k is related to an aNode d if k → d or d → k. We denote this with k ↔ d. For
an aNode d, only cNodes k that are related to d can affect its alive status. For any t, if k
is related to d, we denote with At

k,d the alive status of node d during stage t after cNode k
(and also after performing all deletions mandated by variables D). In stage t after cNode
k, an aNode d is alive if it was stored before stage t or created in stage t before node k,
and not deleted until then, so that we can write:

∀t,∀k ↔ d, At
k,d

.
= P t

d +
∑

k′→d,k′≤k

Ct
k′,d −

∑
k′↔d,k′≤k

Dt
k′,d (3.20)

In the above equation and in the following, we use .
= to denote an alias definition, so

that At
k,d can be replaced by the right-hand side in any constraint, whereas the = sign is

used to denote a constraint that is added to the formulation.

3.4.3.5 Constraints related to liveness

As in rk-Checkmate in Chapter 2, liveness of an aNode and its contributions from
source cNodes are considered separately in the ILP formulation. Here, we introduce the
liveness constraints, preparing for the memory usage representation in the next section.
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aNode d is either alive or not:

∀t, ∀k ↔ d, 0 ≤ At
k,d ≤ 1 (3.21)

d is alive if computed and not deleted

∀t,∀k → d, At
k,d ≥ sumComptk −Dt

k,d (3.22)

Value d can only be created by a node k that is really computed

∀t,∀k → d, Ct
k,d ≤ sumComptk (3.23)

Value d is alive after stage t if and only if it is alive after its last related node k

∀t < T, ∀d, P t+1
d = At

max{k|k↔d},d (3.24)

One additional constraint states that a value d is deleted after cNode k in stage t if
it is not used afterwards: neither by later cNodes k′ > k in the same stage t, nor in the
next stage t+ 1. This can be stated as:

∀t,∀k ↔ d, Dt
k,d = 1

if and only if sumComptk = 1

and P t+1
k = 0

and
∑

d→k′,k′>k

sumComptk′ = 0

However, this constraint is not linear. It can be linearized in the similar way as in
the original Checkmate paper [24]: if we denote by hk,d = 2 + |{k′|d→ k′, k′ > k}| the
number of equalities in the above statement, it is equivalent to:

∀t,∀k ↔ d, Dt
k,d ≥ sumComptk − P t+1

k −
∑

d→k′,k′>k

sumComptk′ (3.25)

∀t,∀k ↔ d, hk,d(1−Dt
k,d) ≥ 1− sumComptk + P t+1

k +
∑

d→k′,k′>k

sumComptk′ (3.26)

3.4.4 Memory Usage Constraints

We denote by U t
k the memory usage after computing node k in stage t, similar to

rk-Checkmate.
Then, U t

k can be expressed as a linear combination of the formulation variables. Indeed,
the memory usage before starting stage t is

Mt
.
=

∑
d

sd · P t
d +

∑
j,o

pj,o · Sptj,o. (3.27)
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Then, the increment when computing a forward node k = Fj during stage t is

IFk
.
=

∑
k→d

sd · Ct
k,d −

∑
k↔d

sd ·Dt
k,d +

∑
o

pj,oComptk,o. (3.28)

When computing a backward node k = Bj during stage t, the increment is

IBk
.
=

∑
k→d

sd · Ct
k,d −

∑
k↔d

sd ·Dt
k,d −

∑
o

pj,o

(
ComptFj ,o

+ Sptj,o − Spt+1
j,o

)
(3.29)

The expression within the parenthesis is equal to 1 only if the allocated node j is deleted,
and 0 otherwise. Indeed, since Bj is the only cNode that can use it, Spt+1

j,o = 0 means
that phantom node j can be deleted right after Bj. Constraint (3.18) ensures that if
ComptBj ,o

= 0, then the expression within the parenthesis is also 0.
Finally, we can express U t

k iteratively (similar to Checkmate and rk-Checkmate
formulations):

∀t, U t
0
.
= Mt + IF0 (3.30)

∀t,∀k = Fj, U t
k
.
= U t

k−1 + IFk (3.31)
∀t,∀k = Bj, U t

k
.
= U t

k−1 + IBk (3.32)

Thanks to the U t
k definitions, we can express constraints to ensure that the memory

usage is always within the memory budget B. If we detail a single step k of some stage
t, it corresponds to (a) allocating memory for the newly created values (according to Ct

k,d

variables), (b) computing cNode k, (c) freeing the memory of the deleted values (according
to variables Dt

k,d). The variable U t
k corresponds to the saved memory after (c), while the

real peak memory usage should be found during (b). In addition, the computation of node
k with some option o might incur a memory overhead (by allocating temporary values),
which we denote by mk,o. In total, in rk-Checkmate, the memory budget constraints
are written as:

∀t,∀k, U t
k +

∑
o

mk,o · Comptk,o +
∑
k↔d

sd ·Dt
k,d ≤ B. (3.33)

3.4.4.1 Correction Terms

The formulation described so far expresses correctly the memory usage between cNodes.
This is sufficient in the context of rk-Checkmate, where the cNodes represent basic
operations. For H-Ilp however, each node represents a complete sequence of basic
operations, whose peak memory can not be estimated in isolation: it depends on whether
the input values are needed after its execution. After the H-Ilp formulation is solved,
the actual schedule is modified: the memory deallocations for the values freed in step (c)
above are performed as early as possible, possibly during the schedule of node k (in the
middle of step (b)).

This means that the memory overhead mk,o during the computation of option o of node
k might depend on whether some values are alive before or after computing cNode k. For
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example, if the corresponding schedule deletes a value in the middle of computation, its
memory overhead mk,o assumes that the deletion is delayed until the end of the schedule.
If that value is actually not needed later in the higher-level schedule computed by H-Ilp,
it will be deleted within the schedule, what may or may not change the memory overhead.

In the following, we present how to modify the memory budget constraint to account
for this kind of situation. Consider a specific stage t, and an option o (and thus a schedule)
for node k. For simplicity of presentation, let us consider only inputs; the situation with
outputs is similar and symmetric. Consider a substep i of the schedule. We compute
the memory overhead at this substep as mi

k,o, assuming that value deletion happens after
the computation of this schedule of node k. We denote by Fi the set of values which are
not used in the following substeps of that schedule. Within the schedule computed by
H-Ilp, values in Fi are deleted after substep i if and only if they are deleted after step k.
Hence, the actual memory usage of substep i is mi

k,o−
∑

d∈Fi
sd ·Dt

k,d. The corresponding
memory constraint is given by

∀t,∀k, ∀o, ∀i, U t
k +mi

k,o · Comptk,o +
∑
k↔d

sd ·Dt
k,d −

∑
d∈Fi

sd ·Dt
k,d ≤ B (3.34)

We write one constraint for each option and each substep. Since all the correction
terms are negative, and all mk,o are at least 0, if Comptk,o is 0, this constraint is weaker
than (3.33). We write such a constraint for each substep of the schedule, and this provides
a more precise assessment of the memory usage of the solution. The case of output values is
the same, except that we care whether the output value is created during the computation
of node k, which is represented with variable Ct

k,d.
An interesting remark is that it is not necessary to write one constraint for each

substep: if the set of inputs not needed after substeps i and j are the same (Fi = Fj), we
can keep only one of both constraints (the one with the larger memory usage mi

k,o). The
number of constraints is thus bounded by min(number of substeps, 2|{inputs}|+|{outputs}|).
In practice, the number of different constraints remain low enough. In addition, these
constraints are only introduced when solving the top-level graph, where the constraint to
remain under budget B is required to be as accurate as possible.

3.4.5 Option Selection

The number of binary variables in the H-Ilp formulation scales linearly with the total
number of options across all nodes. To control the size of variables and make the
hierarchical solving more efficient, we include in H-Ilp a hyperparameter No that imposes
a limit on the total number of options in the input H-Graph. To stay within this limit, we
may need to select only a few options from all the schedules generated at the lower level.

To do so, we first decide how many options to assign to each cNode based on the total
number of No. The number assigned to cNode k is: Nk = min(1, No ∗ # options in cNode k

# options in H-Graph).
We assume that cNode with more operations have more complicated structure, thus it is
more meaningful to assign more options to them.

Optimize memory usage in NN training 72



3. Hiremate

memory

time

×

×

×

×

×
×

1st

2nd

3rd

4th

Figure 3.7: Schedules selection for a H-Cluster. Each × represents a schedule with
certain time and memory cost, and the circled one are selected in the given order.

To avoid wasting resources when several very similar options are available for a cNode,
we then greedily select the schedules whose memory peaks are farther apart from each
other: starting with the schedule with the highest memory peak, then the one with the
lowest memory peak, then the one closest to the middle, and so on. An example of
schedule selection is provided in Figure 3.7.

3.4.6 Complexity Analysis of H-Ilp

Solving H-Ilp is the most time-consuming step of the Hiremate framework. Thanks to
our hierarchical approach, this step actually has linear complexity. In fact, the hierarchical
decomposition has a logarithmic depth, and the total number of subgraphs is O(N/M t),
where N is the total number of nodes and M t is the size of each subgraph. Solving a
subgraph of size M l for a number O of budget options only requires solving O Integer
Linear Programs, whose sizes and solving times do not depend on N . Moreover, all ILPs
at the same level are completely independent and can be run in parallel. We do not have
the implementation of running multiple ILP solving processes on the same machine but
this can be feasible in practice.

3.5 Experimental Evaluation
In this section, we present empirical results to demonstrate the capability of Hiremate
on different models and machines.

Two types of machines are used in our experiments: an NVIDIA Tesla V100 16GB
GPU with a 32-core Intel Skylake CPU, or an NVIDIA Tesla P100 16GB GPU with
32-core Intel Broadwell CPU. Since Hiremate is improved based on Rockmate, which
can efficiently solve different architectures of AI models, we provide experimental results
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on ILP solving time comparison which is affected by the CPU type. We use the open
source PuLP library to build the ILP models, with the commercial solver GUROBI to
solve them up to optimal states. We do not run experiments on non-optimal solutions
since it highly depends on the random initial states.

For each experiment, we report the average iteration time of 15 iterations with
standard deviations. The measured memory cost includes only the activations. In
practice, we measure the size of the model parameters and their gradients, and remove
them from the real peak memory measured by torch.cuda.max_memory_allocted().
Since Hiremate is a framework that includes different algorithms, we use the specific
names for algorithms and their combinations in the experiments, such as H-Ilp or
Rockmate. When H-Ilp is applied to a subgraph, the budgets are automatically
computed according the mechanism introduced in Section 2.6.0.0.1.

3.5.1 Visualization of Partition

In this section, we demonstrate how a Transformer model is partitioned in Hiremate.
Unlike, GPTs, a Transformer model is not typically considered as sequential. The
architecture of Transformer is shown in Figure 3.8. For a n-layer model, there are n
encoder layers and n decoder layers. It cannot be partitioned into 2n blocks since there
are dependencies between the encoders and decoders.

Figure 3.8: Demonstration of Encoder-Decoder Transformer from [58]. This graph shows
only the forward pass of the neural network.
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If we try to follow the partition in Rockmate which separates different parts of the
model sequentially, the result is shown in Figure 3.9. When n is large, there will be a
block containing hundreds of nodes, which makes it impossible to apply rk-Checkmate
on it.
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BottomNode(__3_addmm)
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Cluster size: 6

BottomNode(__41_clone_1)
clone.default
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Cluster size: 6

BottomNode(__384_getitem_78)
getitem
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OUTPUTS:
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Figure 3.9: Visualization of 2-layer Transformer partitioned sequentially, using the
rule introduced in Rockmate. Note that two decoder layers are wrapped into one
(Cluster_6_Ano_id5) and its dependencies from other encoder layers are not shown
in the graph. Due to the limit of space, we do not present the dependencies between
those 60 nodes.
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In Hiremate, we partition the graph recursively so that the every graph in the final
structure has limited number of nodes. An example of partitioning a 6-layer Transformer
is shown in Figure 3.10 and 3.11. As introduced in Section 3.3, the partitioning proceeds
from bottom to top. Whenever the graph is too large, some nodes will be chosen to group
as one which creates a subgraph. In our example, the encoder side of the model is grouped
as one subgraph, which is presented in the right plot of Figure 3.10. This subgraph
contains several H-Clusters, one is particularly large which contains 139 nodes. This
H-Cluster is shown in Figure 3.11. After the partitioning, every graph in the structure
has a limited size thus can be efficiently solved by H-Ilp.
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addmm.default
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Cluster size: 191

PN(P_Cluster_26_Ano_id_13)
Cluster size: 24
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Figure 3.10: Left: visualization of the top level graph for a 6-layer Encoder-Decoder
Transformer. Right: visualization of the Cluster_2_Ano_id2 in the left figure.
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Figure 3.11: Visualization of the Cluster_6_Ano_id6 in Figurse 3.10.

3.5.2 Efficiency

In Figure 3.12, we show the solving time of H-Ilp on Transformers. Note that H-Ilp
can solve 24-layer Transformer within 2 hours. Note that Hiremate is run once before
the entire model training, so 12 minutes is clearly acceptable. By controlling the total
number of nodes in each graph with the H-partition algorithm, H-Ilp is able to efficiently
generate the solution for complex model.
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Figure 3.12: Solving time of H-Ilp on different layers of Transformers. For the model
with 6 layers, 6 encoder layers and 6 decoder layers are involved. The reported preparing
time includes partitioning and solving of H-Ilp on all the subgraphs.

3.5.3 Performance

In this section, we compare the performance of H-Ilp with Checkmate and Rockmate.
We only use the models that can be efficiently solved by those algorithms. Figure 3.13
shows the performance of H-Ilp on sequential networks. Those networks can be efficiently
solved by Rockmate, which makes it a good benchmark for the performance of H-Ilp.
Another baseline of the re-materialization performance is obtained from Rotor. Overall,
H-Ilp finds good quality solutions on different sequential models.

Overall, Hiremate acts as a general solution that includes H-Ilp, Rotor,
Rockmate, and Checkmate. Our experimental results consistently show that
Hiremate performs on par with these baseline algorithms, demonstrating its versatility
and effectiveness in optimizing memory utilization for a wide range of network
architectures.

3.5.4 Ablation Study

Without graph partitioning, H-Ilp is equivalent to rk-Checkmate, which provides an
optimal solution for a given topological order of operations. In another experiment,
we control the depth of the hierarchy in the H-partition by limiting the size of each
subgraph. The results in Figure 3.14 show that H-Ilp maintains similar results in terms
of solution quality as the depth of the hierarchy increases. This is a critical issue in
practice for scalability. Indeed, when the number of nodes in the graph becomes very large,
the solution is to increase the depth of hierarchical decomposition in order to maintain
reasonable graph sizes at each level (and thus reasonable execution times). Figure 3.14
demonstrates that this increase in depth, even for a fixed model size, does not degrade
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Figure 3.13: Experiments on sequential networks: Rockmate are tailored for those
models, as discussed in Chapter 2.

performance significantly.
Specifically, we found that the performance improvement gained by increasing the

subgraph size is less obvious when the budgets are small. For Transformer, we observe that
the H-Ilp solution with 20 nodes limitation may even perform worse than the ones with
less nodes. A possible explanation is that we control the same budget selection mechanism
for all the experiments, which is equal distributed intervals between the minimum and
maximum feasible budgets. The minimum budget is related to the usage of the maximum
memory usage of single cNode, while the maximum budget depends on summation of them.
Therefore, when the same number of intervals are applied, the graphs with larger size will
have larger interval width which makes less options towards the lower memory side. It
also suggests that a better budget selection mechanism may improve the performance of
H-Ilp.
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Figure 3.14: Experiments on 6-layer encoder-decoder Transformer and GPT2-small with
different nodes limitations of subgraphs in the hierarchical structure.
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3.6 Discussion and Conclusion
This chapter introduces the Hiremate framework, which offers both theoretical and
practical advances in re-materialization for PyTorch models. This work has been
summarized in the paper Hiremate [18]. Hiremate provides a solution that can find
very effective solutions in terms of overhead during training, comparable to those of the
literature for problems of small size or with a particular graph structure, but without
these limitations. On the practical side, Hiremate integrates seamlessly with PyTorch,
improving the memory-time tradeoff and efficiency, and is fully compatible with PyTorch
Autograd. The theoretical contributions include a hierarchical approach and an original
linear programming formulation H-Ilp. Although Hiremate focuses on computational
graphs with primitive operations, the hierarchical approach with linear complexity is
potentially applicable to other intensive tasks targeting graphs resulting from tiling. The
framework also incorporates previous approaches, ensuring state-of-the-art results. The
only remaining limitation of Hiremate is that it is not adapted to dynamic neural
network architectures, where the structure of the computational graph depends on the
input. An important feature of Hiremate is that the code is fully modular, and
it is possible for external contributors to introduce a new graph partitioner or solver
at any level of the hierarchical decomposition. We hope that this modularity will
stimulate research and further improvement of Hiremate. Future research may include
exploring how to integrate offloading into the optimization problem to reduce the need
for recomputation, and how to optimally combine re-materialization with pipelined model
parallelism. Advances in these areas hold promise for improving the performance and
efficiency of deep learning systems.
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Chapter 4

Offmate

4.1 Introduction
In the previous chapters, we have introduced the methods to reduce the activation memory
cost of DNNs training. In this chapter, we introduce Offmate, which reduces the overall
memory cost of training a large model, including the cost related to model parameters.
The motivation of targeting at memory cost of parameters comes from the development
of Large Language Models (LLMs). Inspired by the transformer structure [58], various
LLMs such as GPT [44], Bloom [60], Llama [56] and Mistral [27] have been developed and
demonstrate excellent performance on general tasks. These models are typically trained
on multiple GPU devices [48, 53], and the memory footprint is distributed across the
GPUs. Based on the large pre-trained models, which require a significant amount of
resources to train, fine-tuned models have been proposed and contribute to a variety of
fields such as law [22], medicine [61], and finance [35]. Compared to training an LLM from
scratch, fine-tuning is more accessible to broader communities of artificial intelligence (AI)
enthusiasts because it requires less data, less computing power, and less training time.

However, a common challenge for fine-tuning LLMs is the memory bottleneck of
the training process. Most billion-parameter models can hardly be stored on consumer
graphics cards, which typically have between 8GB and 24GB of video RAM (VRAM).
Depending on the choice of hyperparameters and optimization settings, the training
process can require far more memory than the VRAM available on a single GPU.
While most LLMs are pre-trained using parallel approaches across hundreds of GPUs,
many works like QLoRA or ZeRO [14, 49] have been proposed to allow fine-tuning of
LLMs on a single GPU. Most methods reduce memory requirements by simplifying the
training process, such as lowering the data precision or reducing the number of trainable
parameters. These strategies have proven to be efficient without significantly degrading
the accuracy of the resulting model.

In this chapter, we focus on fine-tuning on a single consumer-grade GPU
without degrading the performance of the model at all. We introduce Offmate to
reduce memory requirements for LLMs fine-tuning with a very low overhead in training
time. Offmate efficiently reduces the memory footprint of both activation and weights
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during training iterations by selectively combining recomputation of some operations and
offloading data and computations to CPU. This combination makes it possible to train
an entire large model within the memory footprint of a single transformer block. Without
changing the data precision or the optimization settings, Offmate enables fine-tuning of
billion-size models on a consumer-grade GPU such as RTX 3060 12GB. Unlike Parameter
Efficient Fine-Tuning (PEFT) methods that reduce memory requirements by simplifying
the training task, Offmate preserves the exact numerical results of the training. This
makes it compatible with other memory-saving techniques including PEFT.

This chapter presents the following contributions:
• an efficient, fully asynchronous PyTorch framework for full-duplex communication

between GPU and RAM, overlapped with independent computations on both GPU
and CPU;

• an optimization algorithm based on an Integer Linear Programming formulation,
which optimizes over all techniques for reducing memory requirements;

• the Offmate tool, which takes any PyTorch model (including from HuggingFace)
and with a one-line instruction seamlessly modifies it to fit into memory without
approximation;

• an extensive experimental study highlighting the low overhead of our approach
compared to the state-of-the-art solutions.

4.2 Motivation

4.2.1 Memory Requirement

The memory requirement in training AI models is presented in Section 1.1.3. We show
the definition and example sizes of each part of memory requirements again, as the work
of Offmate aims to tackle the usage of all different components of memory footprint.

The memory footprint when training a large model consists of several parts:
• intermediate activations with size Mact. Mact depends on the input batch size, which

can be rebuilt using re-materialization to reduce the associated peak memory usage;
• model parameters with size Mparam;
• parameter gradients with size Mp_grad. Mp_grad is equal to the size of all trainable

parameters;
• optimizer states with size Mopt_st. Mopt_st depends on the optimizer chosen for the

task.
Once the model is selected, the size of Mparam depends only on the data type of

the parameters. Both Mp_grad and Mopt_st are proportional to the number of trainable
parameters. If methods like weight-freezing or PEFT are applied, Mp_grad can be
significantly smaller than Mparam. Mopt_st also depends on the optimizer. Specifically,
Adam optimizer [28] and its derived optimizers family store momentum and variance for
each parameter gradient, so that Mopt_st = 2 ×Mp_grad in the case when the same data
type is used.
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Figure 4.1: Schematic representation of memory requirement of different parts. Black line
shows the summation of all part.

If parameter gradients are accumulated through multiple iterations (usually called
gradient accumulation), they should be kept in memory during the whole training
iteration. In this case, the memory peak is Mact + Mparam + Mp_grad + Mopt_st. On the
other hand, it is also common to update parameters and release their gradients after every
iteration. In this case, parameter gradients size increases during backward phase while
intermediate activation size decreases. As depicted in a schematic manner in Figure 4.1,
the peak memory is then smaller than Mact + Mparam + Mp_grad + Mopt_st.

For example, the relative sizes of each part when training a full-precision Llama2-7B
model with batch size 2 and sequence length 512 are Mparam = Mp_grad = 25GB and
Mact = 24GB. If the model is optimized with the Adam optimizer, Mopt_st = 50GB,
so that the total memory requirement is 124GB. If gradient accumulation is not used,
parameter gradients can be removed from memory at each iteration, and Mp_grad and
Mact are not always required simultaneously. Still, the peak memory usage for such a
training task is expected to be around 100GB, which is not feasible on any consumer
GPU. Offmate efficiently reduces the memory usage of all the parts and manages to
train this model on a machine with 12GB GPU VRAM and 128GB CPU RAM.

4.2.2 Memory Efficient Solutions

Multiple approaches have been proposed to reduce the memory footprint in neural
network training. Parameter Efficient Fine-Tuning (PEFT) methods have been proven
effective in reducing the memory requirements of LLM tuning. By efficiently simplifying
the training task, many algorithms have demonstrated that it is possible to achieve
comparable performance as full model fine-tuning while using substantially lower resource.
In particular, the LoRA family [20, 14] has shown that using a small fraction of the training
parameters can achieve good performance on various tasks. Quantization has also been
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found useful to significantly reduce memory requirements in LLM training [13, 36]. Other
methods include training only the input embedding layer [1], training hidden states [38],
and training with a sparse mask over the weights [55].

However, the PEFT methods may suffer from lower performance, requiring extensive
experiments across various models and fine-tuning tasks to justify their applications. On
the other hand, there are other memory-efficient methods which do not compromise the
training results. The main approaches are outlined as follows:

Re-materialization Inspired by gradient checkpointing, other re-materialization
strategies [25, 6, 7, 2] have been proposed to build efficient schedules for recomputation
by solving optimization problems. The previous chapters in our thesis are also providing
solutions in re-materialization. Those methods can significantly reduce the memory usage
of intermediate activations (Mact) at the cost of recomputing time.

Activation offloading Approaches that offload activations from GPU to CPU memory
have also been found to be effective in both training [49, 48, 5] and inference [51]. A hybrid
combination of re-materialization and offloading has been proposed in [6, 45] to reduce
the memory usage of activations.

Parameter offloading ZeRO-Offload [49] reduces the GPU memory usage of
parameters (Mparam) by offloading them to CPU RAM. Furthermore, ZeRO-Infinity [48]
extends the approach by offloading parameters to both CPU RAM and NVMe disk during
training. This method makes it possible to handle unprecedented large models.

CPU optimization ZeRO-Offload [49] reduces the memory usage of optimizer states
(Mopt_st) by storing full-precision optimizer states in CPU RAM and performing Adam
optimization steps directly on the CPU. The optimizer states are thus generated and
updated only on CPU, saving the bandwidth to move them between CPU and GPU.
This method reduces the memory footprints on GPU without increasing communication
overhead, but the CPU optimization speed may become a bottleneck to limit the training
efficiency.

Optimizer states offloading In QLoRA [14], the authors proposed Paged Optimizer
which offloads the optimizer states generated on GPU to CPU RAM. This reduces the
memory usage of optimizer states (Mopt_st) by leveraging the bandwidth between CPU
RAM and GPU VRAM.

A comparison of different approaches is presented in Table 4.1. Our work, Offmate,
integrates all the approaches mentioned above, providing a comprehensive solution to
reduce memory usage during training. The framework and implementation details of
Offmate are explained in the following sections.
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Methods Mact Mparam Mp_grad Mopt_st

Rockmate 1
n
× 1× 1× 1×

ZeRO-Offload 1
n
× 1× 1

n
× 1

n
×

PEFT 1× 1× a× a×
Offmate 1

n
× 1

n
× 1

n
× 1

n
×

Table 4.1: Theoretical reduction of memory usage by different methods. Assuming the
same precision is used in all methods. n is the number of layers to apply those methods.
a is the fraction of trainable parameters in PEFT.
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...

x3m−2 x3m−1

Figure 4.2: Instance used in the NP-completeness proof of Theorem 4.2.1. Node size
represents execution times: for ui = 0, for ui = 1; the size of the parameters is
represented by node thickness and written above.

4.2.3 Complexity

Finding optimal strategies for the memory-efficient solutions listed in Section 4.2.2 is
inherently complex. Indeed, it has been proven in Rotor [3] that the re-materialization
problem for a sequential neural network is NP-Hard. Similarly, it has been proven in
POFO [5] that the activation offloading is strongly NP-Complete. In this section, we
analyze the complexity of parameter offloading problem without re-materialization or
CPU optimization. We show that the parameter offloading problem itself is NP-Complete
in a strong sense so that introducing simplifying assumptions is necessary to Offmate.

The decision problem associated to the parameter offloading optimization problem is
the following:

Problem 1 (OFF (L,MGPU , β)). Consider the training phase of an L-layer network. Let
the operation time of the forward and backward phase of the i-th layer be denoted by
uFi

and uBi
. Given a GPU with memory MGPU and bidirectional bandwidth β between

the GPUs and the main memory, is there a valid schedule of offloading, deleting, and
prefetching operations such that the training cycle can be completed with execution time
at most T?

Theorem 4.2.1. OFF (L,MGPU , β, 1) is NP-complete in the strong sense.

Proof. Obviously, OFF (L,MGPU , β, 1) is in NP: given a schedule of all operations and
communications, one can check in polynomial time that the execution is valid and fits
within the execution time T .
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being offloaded

being prefetched

Figure 4.3: Instance and schedule used in the NP-completeness proof of Theorem 4.2.1.

We establish that this problem is NP-complete using a reduction to the 3-Partition
problem, which is known to be NP-complete in the strong sense.

The 3-Partition problem can be formulated as: given a set of integers
{x0, x2, . . . , x3m−1} such that

∑
i xi = mV , decide if it is possible to partition it into

m parts {S1, . . . , Sm} such that for any j ≤ m, |Sj| = 3 and
∑

i∈Si
xi = V .

Given an instance for OFF (L,MGPU , β, 1), for which the existence of a valid schedule
without any idle time implies the existence of a solution to the 3-partition problem, and
a solution to the 3-partition problem leads to a feasible schedule for this instance.

Given an instance of 3-partition, we build the following instance of Problem 1 depicted
in Figure 4.3:

• L = 5m, β = V, MGPU = mV + V, T = 2m
• uFi

= 0 and |ai| = 0 for all i, except uF2m = m
• uBi

= 0 and |wi| = V for i = 2k − 1, k ∈ {1, . . . ,m}
• uBi

= 1 and |wi| = 0 for i = 2k, k ∈ {1, . . . ,m}
• uBi

= 0 and |wi| = xi−2m for 2m+ 1 ≤ i ≤ 5m
We claim that this instance can be scheduled in time T = 2m if and only if there exists
a solution for the 3-partition instance.

Let us first assume that there exists a solution to the 3-partition instance, i.e., sets
(Sj)1≤j≤m such that

∑
i∈Sj

xi = V , and let us build a feasible schedule, as illustrated in
Figure 4.3.

Before F1, the GPU memory contains all wi for i ≤ 2m, so the available memory is
MGPU −

∑2m
i=1 |wi| = V . The forward operations for the first 2m layers take no time.

With V free memory at the beginning of F2m, prefetching wi+2m for i ∈ S1 and offloading
w1 can start simultaneously. After 1 time unit, both transfers are over, since |w1| =∑

i∈S1
|wi+2m| = V . Prefetching wi+2m for i ∈ S2 and offloading w3 can start immediately.
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By the end of F2m, all wi for i > 2m are prefetched into memory and all w2k−1 for k ≤ m
are offloaded.

With wi for i > 2m in memory and V free memory for the gradient, F2m+1 to F5m

and B5m to B2m+1 can also be done in no time. After the end of B2m+1, the free memory
is given by MGPU −

∑5m
i=2m+1 wi = V . During B2m, w2m−1 is prefetched and wi+2m for

i ∈ S1 is offloaded, allowing B2m−1 to start without delay. This pattern is repeated up
to B1. After B1, all wi for i ≤ 2m are in GPU memory, and deleting δw1 provides V
units of free memory. From there, a new cycle can start. In this schedule, all offloading
and prefetching operations are overlapped with the computations, resulting in a cycle
execution time of uF2m +

∑m
k=1 uB2k

= 2m.
Let us now assume that there exists a valid schedule with duration T = 2m, i.e.

without idle time on the processing device. Since the execution time between F2m+1 and
B2m+1 is 0, all wi for i > 2m must be stored in memory before starting F2m+1 to avoid idle
time. The memory usage is then

∑5m
i=2m+1 |wi| = mV . If any w2k−1 for k ∈ {1, . . . ,m} is

also stored in memory, the usage would be mV +V and there is no space for the gradient
computed by the backward operation. Therefore, all w2k−1 for k ∈ {1, . . . ,m} must be
offloaded before F2m+1.

To start B2m−1 immediately after B2m, w2m−1 must be prefetched and there should
be at least V free memory for the gradient δw2m−1. Given the state at the end of B2m+1

described above, the schedule must prefetch w2m−1 within time uB2m , and free enough
memory to make room for δw2m−1. Let W be the amount of memory offloaded during
B2m. The memory constraint to start B2m−1 without delay implies that W ≥ V , and
the bandwidth constraint implies that W ≤ V . Together we have W = V , which means
that there exists a set S1 such that

∑
i∈S1
|wi+2m| = V, i > 2m. By repeating the same

argument, we can identify m subsets Sj such that
∑

i∈Sj
|wi+2m| = V , which gives a

solution to the 3-Partition problem and completes the proof.

This proof actually shows a stronger result: even if the set of parameters to offload is
given, finding an optimal schedule is still NP-complete. In fact, in the above proof, the
set of parameters to offload provides no information about how to solve the 3-partition
instance.

4.3 Method

4.3.1 Our Approach

In Offmate, we focus on reducing the memory footprint without any modification to the
training result in any way. There are two major benefits: (1) this ensures that the model
retains its original generalization capabilities, making fine-tuning applicable to all use
cases where the original architecture is competitive. (2) In cases where lower precision or
fewer trainable parameters are known to be valid, our solution can be seamlessly applied
to the new model, further reducing the memory footprint.

Optimize memory usage in NN training 89



4. Offmate

Therefore, Offmate performs the same training task as the original model and
ensures maximum compatibility. Offmate leverages the Hiremate framework [18] and
an Integer Linear Programming (ILP) formulation to efficiently combine all techniques:
re-materialization, weight and activation offloading, CPU optimization, and optimizer
state paging.

To reduce Mparam, parameters can be offloaded onto CPU RAM. To reduce Mp_grad,
parameters are optimized immediately when the associated gradients are generated and no
gradient accumulation is applied. To reduce Mopt_st, for parameters which are optimized
on GPU, the optimizer states can either be kept on GPU or offloaded to CPU RAM
and moved back to GPU before the next optimization step. Offmate also considers
CPU optimization: this allows parameters to be optimized on CPU, in which case
optimizer states will always be kept in CPU RAM. This idea was originally proposed in
ZeRO-Offload [49], where it was noted that since it is possible to (i) offload the gradient
of a parameter, (ii) optimize on the CPU, and (iii) prefetch the new optimized parameter,
CPU optimization involves the same amount of data transfers as regular offloading.

The main contribution of Offmate is to perform a holistic optimization of all
these techniques simultaneously, so that different parameters can be handled by different
techniques to minimize the iteration time within a limited memory budget. This strategy
makes it possible to train the entire model within the memory requirements of a single
block: in the context of very tight memory budgets, all data related to other blocks
can indeed be offloaded to the CPU RAM. When more memory is available, Offmate
automatically reduces the amount of offloaded data.

4.3.2 High Complexity

While combining different approaches maximize the memory reduction capability of
Offmate, it does induces a high complexity of the problem. In Section 4.2.3, we have
shown that many approaches are NP-Hard when they are considered independently. The
exceptional high complexity of Offmate arises due to two key factors:

Synchronize operations We consider the training device is equipped with both a CPU
and a GPU, allowing multiple operations to occur concurrently: (i) GPU computing,
(ii) CPU computing, (iii) copying data from CPU to GPU, (iv) copying data from
GPU to CPU. However, these operations are not completely independent in practice.
Certain resources such as memory bandwidth between CPU and RAM is shared by both
CPU computing and offloading. Synchronizing these diverse operations requires careful
consideration of memory consumption and dependencies between tasks. For example,
offloading an activation cannot occur until the forward pass has finished generating it, and
optimizing a parameter on the CPU must wait until its corresponding gradient has been
offloaded from the GPU to the CPU. This interdependency adds significant complexity
to managing operations efficiently.
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Figure 4.4: All operations performed in a step. Mgmt represents management operations
performed on CPU, Act represents activation offloading or prefetching, and Self
represents offloading the weights of the current layer.

Large size of model Offmate targets at models that cannot fit into the single
GPU memory. In practice, the targeted models generally contain billions of parameters
which are represented in hundreds to thousands of tensors. Consequently, the number of
operations involved is of a similarly high order of complexity.

Finding an optimal solution that combines multiple approaches becomes a significant
challenge due to this complexity. Therefore, it is crucial to balance solving efficiency
and memory reducing effectiveness within the Offmate framework. In the following
sections, we discuss the decisions made to enhance the efficiency of the solution process
while maintaining its overall effectiveness.

4.3.3 Framework

Offmate follows the similar pattern of solving proposed in Chapter 2 (Rockmate)
and Chapter 3 (Hiremate). We assume the the graph consists of different blocks , each
representing an arbitrary computational task graph from part of the module. These blocks
are also sorted in a topological order, even though their dependencies are not necessarily
sequential. Unlike Hiremate, no hierarchical solving is applied for re-materialization,
therefore the internal structure of each block is not a main concern to us. Each block is
provided with some execution schedules. For the top-level main graph, we use a different
ILP solver O-Ilp to include offloading and CPU optimization. The detailed formulation
of O-Ilp is described in Section 4.3.

The solution of O-Ilp is a set of steps associated with the blocks , where each step
involves four operations: executing a forward or backward schedule of a block , offloading
some parameters, optimizer states or activations to RAM, prefetching some other
previously offloaded data back to GPU memory, and performing an optimization step for
some parameters on the CPU. The total time required for each step is determined by the
longest duration among these four types of operations. A visual sketch of the operations
performed in a step is provided in Figure 4.4, highlighting the dependencies between some
of these operations, the memory allocation and deletion, and the management overhead
incurred on the CPU.

The execution of these steps is cyclic: after all steps have been executed, the execution
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resumes from the first step with a new input batch. This implies that a valid schedule
must ensure the consistency of the set of parameters that are offloaded into RAM between
the start and end of the schedule. For notational simplicity, when summing values over
an interval of time steps, we assume that the index wraps around at 0, so that for a > b,∑b

t=a Yt is
∑2L

t=a Yt +
∑b

t=0 Yt.
The overall framework of Offmate works as follows: we use rk-GB introduced

in Chapter 2 (Rockmate) to obtain the computational graph, and run the recursive
partitioning proposed in Chapter 3 (Hiremate) to generate hierarchical graph
representations. Next, the H-Ilp solver is applied to every subgraph to generate the
re-materialization schedule according to different memory requirements. Finally, the
O-Ilp solver combines these re-materialization schedules incorporating offloading and
CPU optimization approaches. The solution of O-Ilp is further post processed for code
generation. The recompiled module is presented to the users, delivering the same outputs
as the original module while keeping the memory consumption within the predefined
budget.

4.3.4 Assumptions

As discussed in Section 4.3.2, the major challenge for Offmate is balancing the
efficiency and effectiveness. To simplify the optimization problem, we make the following
assumptions:

No parameter offloading below the top level Offmate uses a hierarchical ILP
solving similar to Hiremate. Schedules of each block handles only activations, detailed
in Section 4.4. Also, no hierarchical solving is applied to each block to make complicated
re-materialization schedules. Since activation is only part of the memory footprint
concerned in Offmate, we further reduce its flexibility to balance the complexity and
performance.

Activations are offloaded at the step when they are generated Activations are
offloaded at the step in which they are produced, reducing the number of variables in
the ILP formulation by restricting offloading decisions to sub-schedules. The algorithm is
detailed in Section 4.4.

Only one schedule selected for every block To avoid introducing quadratic number
of binary variables to represent re-materialization, we use only one schedule for each block
in Offmate. There are 2L steps in the schedule, each with known dependencies of
activation/parameter groups. Note that using single schedule does not exclude the usage
of re-materialization since the selected schedule may include recomputation within the
backward step.

All parameters are on GPU for executing a block Multiple parameter tensors
can be required for executing a block . In practice, they can be swapped between RAM
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and VRAM during the execution such that part of the memory is allocated on VRAM.
However, representing the status of every single tensor will significantly increase the
complexity of O-Ilp. Therefore, we assume that all required tensors must be present
on the GPU for the duration of executing the blocks . This simplifies the management of
parameters during computation.

Memory allocation once per step In line with the previous assumption, we assume
that memory allocation and deallocation occur only once at every step. Thus, the
offloading/prefetching operations within a step require full memory allocation at the
beginning. Both assumptions help us to use a single variable to represent each type
of operations (offloading/prefetching) on a parameter or activation group in any given
step, which will be variable Oflwt and Prfw

t in Section 4.5.

Represent fractional offloading in ILP During a step, the amount of
parameters/activations offloading/prefetching is represented as the fraction of a group.
Each group includes multiple tensors used within the same blocks . This fractional
representation enables the use of continuous variables in ILP to capture the amount
of offloading/prefetching, providing simpler representation comparing to employing a
variable for each tensor.

Offloading is implemented only on whole tensors Although fractional offloading
is represented in ILP, the actual implementation of offloading and prefetching is applied
only for whole tensors. While it is technically possible to copy parts of a tensor between
devices, the memory allocation can become expensive when they are done multiple times
for every tensor. After solving the ILP, a greedy algorithm is applied to convert these
fractional decisions into a group of full tensors out of the candidates group to manage the
memory copying/allocation. The algorithm is described in details in Section 4.6.

No gradient accumulation Parameters are optimized immediately after their
gradients are obtained, avoiding keeping parameter gradients on GPU for a long time.
However, when gradients for a parameter are generated across different blocks (such as in
the case of weight-sharing), partially generated gradients may still occupy GPU memory
temporarily until optimization is complete.

No memory deallocation on CPU To enhance efficiency and enable asynchronous
transfers between CPU and GPU, pinned memory is utilized to avoid incurring costly
memory allocation overhead. The memory buffers are kept on RAM for the whole training
process. This also ensures that optimizer states for parameters optimized on the CPU
remain in CPU memory throughout the entire training process.
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4.4 Preparing the blocks
Following the assumptions made in the previous section, we prepare the blocks with
execution schedules. Three different re-materialization schedules are provided to each
block , without solving optimization problems:

1. Executing as PyTorch, without re-computation.
2. Executing forward, while deleting activations as soon as they have no more users

during forward. This schedule stores nothing at the end of forward except the
outputs. Therefore, all the forward operations will be called again at the beginning
of backward.

3. Executing forward, deleting activations that are generated by the cheap operations.
We identify operations whose computational load is smaller than the time required to
offload and prefetch their output data. All the stored activations will be offloaded
to CPU at the end of forward. In practice, those offloading operations can start
right after the tensors are generated. This algorithm is inspired by the selective
re-computations from Megatron-LM [53].

Each schedule offers a choice to execute the given block with different requirements
for the activations. Either computing time or bandwidth can be sacrificed to reduce the
memory cost. Those schedules appear as options in O-Ilp. They provide the standard
solutions to handle the activation memory, without adding high complexity to the ILP
formulation.

4.5 O-Ilp

4.5.1 Optimization Problem

The target of our optimization is to minimize the time cost of each training iteration,
including the synchronization of different operations. With the assumptions stated above,
the resulting optimization problem to be solved by O-Ilp is the following: given a set of
L blocks , and for each block i, (1) a list of ni re-materialization and activation offloading
schedules (called options) without taking into account the memory cost of the parameters,
and (2) the set Pi of all parameters used by that block . We distinguish between interface
activations, which are passed from one block to another, and internal activations, which
are stored in the forward phase of a block to be used during the backward phase. Each
option o of block i may store on the GPU a different set of internal activations whose
memory usage is denoted as So

i , and may offload another set of internal activations whose
memory usage is denoted as Oo

i . We denote by T o
t the computation time of option o

of the t-th computation (the forward computation if t ≤ L, otherwise the backward
computation). For options that involve activation offloading, this computation time also
includes the delay incurred by waiting for communications to complete (offload for forward
computations, prefetch for backward computations).

The total size of a parameter w is denoted by |w|, and the size of its trainable part
is denoted by |w|g. If several tensor parameters are used by the same blocks , they are
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considered together as a single parameter, where some parts may be trainable and others
not. We denote by B(t) and At the executed block and the size of the interface activations
and gradients present in memory during step t. For a given parameter w, we refer to fw
as the first step that makes use of w, and to gw as the step that computes the last gradient
related to w.

We denote with αG and αC the update speeds of optimizing a parameter on the GPU
and on the CPU respectively. We denote with β the bandwidth of the communication link
between the CPU and the GPU, and with H the time required for the CPU to handle the
management of all the other operations in the step (submitting the kernels to the GPU),
which we estimate as a constant in all steps.

4.5.2 Linear Programming Formulation

The formulation involves the following variables:

∀i ≤ L,∀o ≤ ni, Compoi ∈ {0, 1} (4.1)
∀t ≤ 2L, T imet ≥ 0 (4.2)
∀t ≤ 2L,∀w, Stowt , Oflwt , P rfw

t , StoO
w
t , OflOw

t , P rfOw
t ∈ [0, 1] (4.3)

∀w,∀fw < t < gw, Optwt ∈ [0, 1] (4.4)

Compoi is 1 if block i is executed with option o, and 0 otherwise. These variables satisfy
∀i,∑oCompoi = 1. Timet ≥ 0 represents the duration of step t. Stowt , Oflwt , Prfw

t , Optwt
are the fractions of parameter w that is respectively stored on GPU, offloaded, prefetched
and optimized on CPU during step t. Finally, StoOw

t , OflOw
t and PrfOw

t represent
similar decisions on the optimizer states linked to w. We denote as Xw =

∑fw
t=gw

Optwt
the fraction of parameter w which are optimized on CPU at some point, which is also the
fraction of optimizer states stored on the CPU.

We now enumerate the constraints. First, the computation of a block i requires all its
parameters (4.5) and the optimization is performed with the last backward step (4.6).

∀t ≤ 2L,∀w ∈ PB(t), Sto
w
t ≥ 1 (4.5)

∀w, StoOw
gw ≥ 1−Xw (4.6)

Second, parameters and optimizer states not optimized on CPU must either be in the
GPU or offloaded (4.7, 4.8), and bringing a parameter or optimizer state back to the GPU
requires prefetching it (4.9, 4.10).
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∀t, w, Stowt +
t∑

t′=gw

Oflwt′ ≥ 1 (4.7)

StoOw
t +

t∑
t′=gw

OflOw
t′ ≥ 1−Xw (4.8)

∀t, w, Stowt+1 ≤ Stowt + Prfw
t (4.9)

StoOw
t+1 ≤ StoOw

t + PrfOw
t (4.10)

Third, performing the optimization on CPU requires fetching the optimized part
of the parameter (4.11), the number of parameters optimized on CPU is at most the
number of offloaded parameters (4.12), and parameters waiting to be optimized cannot
be prefetched (4.13).

∀w, |w|g
fw∑

t′=gw

Optwt′ ≤ |w|
fw∑

t′=gw

Prfw
t′ (4.11)

∀t,∀w, |w|g
t∑

t′=gw

Optwt′ ≤ |w|
t∑

t′=gw

Oflwt′ (4.12)

∀t,∀w, |w|g(Xw −
t∑

t′=gw

Optwt′ ) ≤ |w|(1− Prfw
t − Stowt ) (4.13)

We denote by k the number of optimizer states per trainable value, which depends on the
optimizer. We can express the global memory constraint as (4.17), where Wt, Ot, and St

represent respectively the memory usage during step t of parameters, optimizer states,
and stored internal activations:

Wt =
∑
w

|w| (Stowt + Prfw
t ) (4.14)

Ot =
∑
w

k|w|g (StoOw
t + PrfOw

t ) (4.15)

St =
∑

i≤B(t)

∑
o

So
i · Compoi (4.16)

∀t, Wt +Ot + St + At ≤MGPU (4.17)

We also express a memory constraint for the memory of the CPU. It contains all the
parameters of the model, the offloaded activations and optimizer states, as well as the
optimizer states and gradient of each parameter optimized on CPU:∑

w

|w|+
∑
i,o

Oo
i · Compoi +

∑
w

|w|g
∑
t

(k ·OflOw
t + (k + 1) ·Optwt ) ≤MCPU (4.18)
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To avoid GPU idle time, we allow optimization operations on the CPU to be performed
during the training iteration, overlapping with computation and communication
operations. Our formulation also allows a parameter to be offloaded in the same step
as the one it is used, but these operations cannot overlap. By denoting as Lt the time
spent offloading parameters and optimizer states for the block of step t, we can express
the time Timet of step t as:

Lt =
1

β

∑
w∈PB(t)

|w|Oflwt + |w|gOflOw
t

(GPU Fwd) ∀t ≤ L, T imet ≥
∑
o

CompoB(t)T
o
t (4.19)

(GPU Bwd) ∀t > L, T imet ≥
∑
o

CompoB(t)T
o
t +

1

αG

∑
w∈PB(t)

(1−Xw)|w|g + Lt (4.20)

(Prefetch) ∀t, T imet ≥
1

β

∑
w

(|w|Prfw
t + k|w|gPrfOw

t ) (4.21)

(Offload) ∀t, T imet ≥
1

β

∑
w

(|w|Oflwt + k|w|gOflOw
t ) (4.22)

(CPU) ∀t, T imet ≥ H +
1

αC

∑
w

|w|gOptwt (4.23)

The objective is then to minimize the overall duration
∑

t Timet.

4.5.3 Adaptation: Batch Size Selection

The formulation introduce above, like all other approaches for re-materialization, assumes
that the batch size is fixed, so that the forward and backward computation times are
measured using samples of real size. For re-materialization problems, we assume that all
the time and memory costs are proportional to the batch size (although time is usually
not strictly proportional in practice). Therefore, changing the batch size is equivalent to
changing the memory limit. In O-Ilp, on the other hand, only T o

t , So
t and Oo

t are affected
by the batch size of the training task. All parameter-related operations (offload, prefetch,
optimization, update) only depend on the model size and the bandwidth between the
GPU and RAM. This makes batch size of the input task an interesting factor to optimize.

In this section, we present a variant of Offmate ILP, which also considers batch size as
a variable to be optimized, under the assumption that computation times is proportional
to the batch size. Users interested in fine-tuning tasks whose final accuracy is not sensitive
to batch size can thus enable batch size tuning to achieve better overall throughput.

The natural way to do this would be to add a variable b to the ILP formulation and
multiply all computation times by b. However, this would result in a quadratic (non
linear) formulation. See for example the global memory constraint 4.17, which would
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become:

∀t, Wt +Ot + b
∑

i≤B(t)

∑
o

So
i · Compoi + b · At ≤MGPU ,

where both b and Compoi are variables in the formulation. Instead, we change the scale
and divide all parameter-related times and memory by b. For this equation, this yields:

∀t, 1
b
Wt +

1

b
Ot +

∑
i≤B(t)

∑
o

So
i · Compoi + At ≤

1

b
MGPU ,

where
1

b
Wt =

∑
w

|w|
(
1

b
Stowt +

1

b
Prfw

t

)
This can be done while keeping a linear formulation by introducing a continuous

variable r ∈ [0, 1], which represents 1
b

and is interpreted as a fraction of the parameters
to be used. We then view all parameter-related variables as bounded in [0, r] instead of
[0, 1]: instead of writing 1

b
Stowt with Stowt ∈ [0, 1], we write Stowt with Stowt ∈ [0, r]. The

resulting formulation remains linear, with nearly the same constraints as before.
Some constraints where the constant 1 is used to represent the entirety of the

parameters need to be modified, as follows:

∀t ≤ 2L,∀w, Stowt , Oflwt , P rfw
t , StoO

w
t , OflOw

t , P rfOw
t ≤ r (4.3’)

∀w,∀fw < t ≤ gw, Optwt ≤ r (4.4’)
∀w ∈ PB(t), Sto

w
t ≥ r −Xw (4.5’)

∀w, StoOw
gw ≥ r (4.6’)

∀t, Stowt +
t∑

t′=gw

Oflwt′ ≥ r (4.7’)

∀t, StoOw
t +

t∑
t′=gw

OflOw
t′ ≥ r −Xw (4.8’)

∀t, ∀w, |w|g(Xw −
t∑

t′=gw

Optwt′ ) ≤ |w|(r − Prfw
t − Stowt ) (4.13’)

∀t, Wt +Ot + St + At ≤MGPU · r (4.17’)

∀t > L, T imet ≥
∑
o

CompoB(t)T
o
t +

1

αG

∑
w∈PB(t)

(r −Xw)|w|g + Lt (4.20’)

This adapted formulation is evaluated in Section 4.8.3.

4.6 Post-processing
The schedule obtained with ILP is feasible because it fits within the memory constraints,
but the assumption of offloading fractional tensors (discussed in Section 4.3.4) introduces
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Algorithm 8: Greedy grouping for parameter w

1 Input: Stowt , Oflwt for all t, Tw = set of all tensors in w
2 Output: Offload, Prefetch, Delete
3 def select(set, value) = knapsack()
4 Initialize ofl = ∅
5 Initialize alive = Tw
6 for t ∈ steps from gw do
7 if |w| ·∑t

t′=gw
Oflwt′ > |ofl| then

8 set = Tw \ ofl Offload [t] = select(set, |w| ·∑t′ Oflwt′ − |ofl|)
ofl = ofl ∪Offload [t]

9 if |w| · Stowt < |alive| then
10 set = ofl ∩ alive Delete[t] = select(set, |alive| − |w| · Stotw)

alive = alive \ Delete[t]
11 if |w| · Stowt > |alive| then
12 set = Tw \ alive
13 kept = select(set, |set| − |w| · Stotw + |alive|)
14 Prefetch[t] = set \ kept
15 alive = alive ∪ Prefetch[t]

challenges in practice. Even though it is possible to copy a part of a tensor from one
device to another, it requires a buffer to maintain the other part before releasing the
memory. Both allocating the buffer and copying the data can lead to significant overhead
in memory and execution time. To optimize execution, we choose to offload and prefetch
whole tensors instead of fractional ones, leveraging the fact that parameters within a block
are generally stored across multiple tensors. The goal of the post-processing step is as
follows: for each parameter w and each time step t, to select a subset of tensors from w,
ensuring that at each step, we offload and delete at least as much memory as required by
the ILP solution, and prefetch at most what the solution requires. These constraints will
ensure that the resulting schedule still fits in the GPU memory budget.

To achieve this, we use a greedy algorithm which repeatedly solves a particular case
of the knapsack problem: given a set of tensors and a target value, find a subset whose
size is larger but as close as possible to the target value. Algorithm 8 presents the main
algorithm of this post-processing step.

For a given parameter w, Algorithm 8 starts with step gw where all tensors are present
in GPU memory, and successively selects tensors to offload so that the total offloaded size
at step t is at least |w|∑t

t′=gw
Oflwt . At each step, if some memory needs to be freed,

some tensors are chosen from the set of already offloaded but not yet deleted tensors,
again ensuring that at least the required amount of data is deleted. On the contrary, if
the amount of available data is too low, some tensors are chosen from the set of deleted
tensors, ensuring that at most the required amount of data is prefetched. This results in
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Figure 4.5: Tracing step from torch.cuda.profiler().

a new solution whose memory usage is never larger than the memory usage of the original
ILP solution, and which only transfers entire tensors.

Once Algorithm 8 has selected which tensors to offload and prefetch, we identify
candidate tensors for CPU optimization: those that are offloaded to the CPU after the
backward computation, and are prefetched before the forward computation. We use the
select function once to globally select a sufficiently large set of tensors that will be
optimized on CPU. Once this is done for all parameters w, the optimization operations of
the selected tensors are greedily scheduled into the time steps in order of increasing block
index, since blocks with lower index have a smaller range between backward and forward
computation.

Finally, the optimizer states are also grouped to offload and prefetch. For this purpose,
we run Algorithm 8 on optimizer states, with StoOw

t and OflOw
t as input, and where Tw

is the set of optimizer states that have not been selected for optimization on CPU.

4.7 Additional Improvements

4.7.1 CPU Management

In Section 4.3 we assumed that different types of operations can be synchronized at the
same time. In practice, different types of operations will interact with each others, which
results in time overhead comparing to the simulation. Specifically, we do not optimize
the single-threaded Python code, thus all the operations happening in a single step are
submitted to CPU at the beginning of the step. Indeed, many of the operations are
realized through CUDA, which occupies little CPU time, but they are not negligible
comparing to the makespan of one step. The CPU optimization operations are scheduled
after the CUDA operations to be handled through CPU, which differs from the assumption
that CUDA operations are independent with the CPU optimization ones. Therefore, we
adjust the O-Ilp algorithm to include a constant CPU time cost at each step as term H
in constraint 4.23. This is justified in the visualization of the tracing of one step as shown
in Figure 4.5.
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4.7.2 Grouping of CPU Memory Allocations

In the ILP formulation of Section 4.3, Constraint 4.18 expresses the constraint for CPU
memory usage. The left side of Constraint 4.18 only contains data that need to be
present in memory during an unmodified PyTorch execution, so the total amount of
memory cannot be higher than the extrapolated memory usage on an infinite-memory
GPU. However, we observed in practice that the CPU memory usage can be higher. This
is due to the way PyTorch allocates pinned memory on CPU: to increase the possibility
of reusing pinned memory buffers, PyTorch rounds up the data size to the next power of
2, which leads to high memory overhead in allocation when the desired tensor size is not
a power of 2.

To obtain the best possible communication performance in Offmate, all the
offloading is realized by moving data to a pinned memory buffer on the CPU memory,
which is not reallocated between iterations. Indeed, unlike parameter gradients and
activations, which may appear in different time periods on GPU memory, all the CPU
memory allocations are performed at the first iteration and never released until the
training is over. This PyTorch behavior is thus not useful for Offmate, and can incur a
significant CPU memory overhead.

To overcome this issue and to allow Offmate to run on unmodified distribution of
PyTorch for easier adoption, we include a heuristic in Offmate to reduce this memory
overhead on CPU. Except for the parameters scheduled to be optimized by CPU, all other
CPU allocations correspond to tensors that need to be offloaded from the GPU: they are
not involved in computation but merely used for storing the data. Therefore, we analyze
the sizes of all the required CPU allocations and merge them with a heuristic algorithm
to obtain groups of size almost 2n, and directly ask PyTorch to allocate the grouped data.
All offload and prefetch operations are then performed with the corresponding parts of
the allocations on CPU. This heuristic grouping allows Offmate to use at most as much
CPU memory as an original, unmodified PyTorch execution on CPU.

4.8 Experiments
In this section, we evaluate the performance of Offmate on real fine-tuning scenarios.
Offmate relies on torch.export() to obtain the task graph of the model. All
experiments are run on PyTorch 2.3 and LLMs are loaded from HuggingFace Transformers
v4.36. Library peft v0.11 is used to apply PEFT methods like LoRA on those models.
To avoid memory fragmentation issues, we set the target memory budget to 2GB less
than the total available GPU memory for ILP solving. Unless otherwise specified, all
experiments are performed on a computer with an NVIDIA RTX 3060 GPU and an Intel
Core i3-10105F CPU, where the GPU-to-CPU bandwidth is measured to be 10.4GB/s.
The Integer Linear Program is solved using the default solver provided in the open source
PuLP library1. For all experiments in this section, we use three options for each block

1https://github.com/coin-or/pulp
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Figure 4.6: Average iteration time vs. number of hidden layers (full size models, with 32
or 40 layers, correspond to the right-most point in each plot). Batch size is 4 and sequence
length is 512. The extrapolated PyTorch memory usage is marked on top of each graph.
Adam optimizer is used for all the experiments. With LoRA, less than 1% parameters
are trainable thus Mp_grad and Mopt_st are negligible. The LoRA model from peft is not
compatible with ZeRO.

and limit the ILP solving time to 20 minutes to provide ready-to-use results. We also
assume all the trainable parameters are updated with the Adam optimizer [28] during
each iteration.

4.8.1 Fine-tuning Tasks

In this experiment, we study the performance of Offmate on four fine-tuning tasks:
Phi-2-3B [26] and Llama2-7B [56] in floating-point 32 precision, Llama2-13B in bfloat16,
and Llama2-7B with LoRA [20]. We evaluate the performance of Offmate compared to
the following approaches:

1. PyTorch (Extrapolated): assuming the peak memory and iteration time of PyTorch
execution depends linearly on the number of hidden layers, we measure the PyTorch
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execution on small number of layers until it is out of memory, then extrapolate to
predict the expected result on the full-size model.

2. Paged Optimizers proposed in QLoRA [14], using the implementation from
HuggingFace Trainer. This experiment does not include quantization or low-rank
adapters, only swapping the optimizer states between GPU and RAM.

3. ZeRO-2 [47], which uses ZeRO stage 2 and offload the optimizer states to
RAM; ZeRO-Infinity [48], which uses ZeRO stage 3 to offload optimizer states
and parameters, with default configuration. NVMe offload is not used in our
experiments. Gradient checkpointing is also enabled through HuggingFace Trainer.

4. Rockmate introduced in Chapter 2, which can significantly reduce the memory usage
from activations.

Since not all approaches can perform fine-tuning on the complete model, we present
on Figure 4.6 the iteration time as a function of the number of hidden layers included
in the model, where the right-most point corresponds to the full-size model. Figure 4.6
shows that Offmate is able to perform all the fine-tuning tasks with significantly lower
time overhead. Specifically, Offmate is able to fine-tune a full-size Llama2-7B on a
consumer-grade GPU, reducing the memory usage from 120 GB to 10 GB with only
20% overhead in the execution time comparing to the expected time without memory
constraint.

Paged Optimizer, ZeRO-2 and Rockmate do not reduce all sources of memory and
thus cannot perform fine-tuning as soon as the model size gets too big. ZeRO-Infinity has
a more aggressive approach where all data are indiscriminately offloaded; this enables
processing larger models, but induces a significant time overhead: the overhead of
ZeRO-Infinity can reach more than 200%. It also induces Out of memory (OOM) on
CPU RAM. Offmate avoids this problem by applying the CPU RAM constraint 4.18 in
the ILP formulation.

4.8.2 Execution Tracing

We provide on Figure 4.5 a trace obtained from torch.profiler for the execution
of one backward step on Llama2-7B, to be compared with the theoretical Figure 4.4.
This figure highlights how Offmate is able to efficiently overlap both computation and
communication to limit the idle time in practice. We also provide in Figure 4.7 a trace
of the complete execution of all steps, which shows the high resource utilization and the
similarity between the expected schedule and the actual execution. A CPU management
time of H = 50ms is used in ILP constraint 4.23.

The visualization of the execution trace shows that Offmate handles the operations
in practice properly even though multiple assumptions were made in Section 4.3.4.

4.8.3 Batch Size

In this section, we evaluate the quality of the batch selection function of O-Ilp introduced
in Section 4.5.3. When the batch selection is turned on, a dynamic batch size is used in
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Figure 4.7: Annotated trace of a train iteration from Llama2-7B. This result corresponds
to the rightmost point in Figure 4.6 of Llama2-7B.

rk-GB to allow for dynamic size in each operation. The dynamic_shapes function in
torch.export is added in PyTorch 2.3. In the left of Figure 4.8, we present the selected
batch size for different layers of Llama2-7B. Note that the optimized value of batch size is a
continuous variable, which is rounded in our experiment to get the best value. In the right
of Figure 4.8, we present the throughput of training 32-layer Llama2-7B when different
batch sizes are used without selection. In O-Ilp with batch size selection, number 4 is the
rounded value for the optimized value. As shown in the throughput experiment, the batch
size 4 is indeed the optimal value in ILP, but the measured results favors batch size 5 a bit
more. The difference between the ILP throughput and the Scheduled throughput is due to
the post-processing introduced in Section 4.6, where ILP solutions with continuous values
are translated to practical operations. The difference between Scheduled throughput and
the measured throughput is due to different behaviors in executing the operations. For
instance, CPU optimization may take longer time than expected when multiple types of
operations are processed during the same step, as discussed in Section 4.7.1. Overall,
we show that the result of batch size selection in O-Ilp is insightful but not necessarily
optimal in practice. This is inevitable when a series of complicated operations is being
simplified in the theoretical formula.

4.8.4 Ablation Study

In Table 4.2 we show the ablation study about the performance of Offmate on
Llama2-7B on two different machines. Specifically, we compare the results when CPU
optimization or activation offload are disabled.

Note that CPU RAM usage can become a bottleneck without the tensor merging
introduced in Section 4.7.2. The number reported in Table 4.2 is the usage by Offmate,
which is close to the limit of available RAM in the tested machine.
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Figure 4.8: Batch size selection of Llama2-7B. Left: for models with different layers,
suggested batch size value (continuous) from O-Ilp. Right: For 32-layer model,
throughput (batch/time) using fixed batch sizes.

GPU:VRAM CPU:RAM Bandwidth αcpu αgpu

RTX 3060 12GB Intel i3-10105F 128GB 10.4GB/s 1.1GB/s 16.6GB/s
Method RAM usage VRAM usage Time Overhead
OffMate 105.7 GB 9.6 GB 13.1 s 120.3%

w/o CPU optim 96.1 GB 9.5 GB 15.2 s 139.5%
w/o Act offload 100.8 GB 9.9 GB 14.7 s 135.0%

Table 4.2: Comparing the results with Llama2-7B on two different machines (top and
bottom). αC and αG represents the optimization speed on CPU and GPU. Input size is
(4, 512) which costs 40.8GB of activation size. Overhead is defined as the extra measured
iteration time divided by PyTorch (Extrapolated) time shown in Figure 4.6. RAM usage
does not include the system usage.

So far, we tested Offmate only with the RTX 3060 which is not very powerful as a
consumer-grade GPU. When the GPU is slow, it gives sufficient space for the offloading
and CPU optimization to overlap, which challenges the extension of Offmate to other
platforms. In this experiment, we test Offmate with other GPUs that are more powerful.
In Figure 4.9, we present the results of applying Offmate on other devices. This
machine comes with a 128 GB AMD EPYC 7502 CPU and a 16 GB RTX 4080 GPU.
Comparing to the RTX 3060 GPU, the RTX 4080 GPU offers approximately 8 times
higher GPU computing speed, but its PCIe bandwidth is only twice as fast. As a result,
re-materialization is a preferred choice comparing to activation offloading. O-Ilp also
takes into account the available CPU RAM, which is not sufficient for around 80 GB of
activations. The overhead is mostly caused by re-materialization, which has a relative
fixed overhead of 30 to 50%. Also note that in this context, CPU optimization is not
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quite useful since the activations are much more significant than the parameters.
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Figure 4.9: Offmate on different devices. The batch size chosen by O-Ilp is 10 for the
model on RTX 4080.

4.9 Conclusion
This chapter presents Offmate, a framework for efficiently reducing memory
requirements when fine-tuning LLMs on a single consumer-grade GPU. This work has been
summarized in the paper Offmate [65]. Offmate relies on integer linear programming
to combine different memory-reducing approaches in a holistically optimized manner,
ensuring efficient use of all available resource (computing, storage, communication).

It comes with certain limitations:
• Offmate does not support NVMe offload as ZeRO-Infinity. As shown in Table 4.2,

the RAM size could become a bottleneck to fine-tune very large models.
• Offmate does not perform any approximation in training, but optimizing on CPU

may change the results depending on the precision. Indeed, due to differences in
machine computation, the same task running on CPU or GPU may produce slightly
different results, and we confirm that the results obtained by Offmate are within
this range.

• Furthermore, O-Ilp requires that all parameters of a block are available when it
is executed. A more fine-grained structure within blocks could help reduce the
minimum memory required by offloading in the middle of block computations.

• Finally, we rely on a number of assumptions to limit the solving time of the ILP
formulation. Different trade-offs between realism and tractability could be explored
and may result in more efficient solutions. Specifically, we do not use a complicated
H-Ilp to generate the re-materialization solutions for every block in the experiments
(which is available in the framework) for the consideration of solving time. If the
ILP formulation is better optimized, it might allow for higher flexibility of different
approaches.

Experiments presented in Section 4.8 show that Offmate significantly outperforms
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the State-of-the-Art approaches and enables efficient fine-tuning of LLMs from
HuggingFace Transformers. For Llama2-7B model, Offmate achieves a 10× reduction
in GPU memory at the cost of a 20% increase in training time, without modifying
the training task (e.g., lowering data precision or reducing the number of trainable
parameters). We also show that Offmate can be combined with parameter-efficient
fine-tuning methods such as LoRA [20]. Offmate is an easy-to-use framework that can
enable fine-tuning on resource-constrained machines and is expected to have a significant
impact for individual AI researchers. Future research efforts could add support for
gradient accumulation or allow fine-grain offloading within a block to further reduce the
minimum memory requirement.
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In this thesis, we address the challenge of reducing memory requirements in neural network
training. We achieve this by integrating several techniques, including re-materialization,
offloading, and CPU optimization. Our final product is an automated tool that compiles
a PyTorch nn.Module to fit within a specified memory budget. Unlike traditional model
compression techniques, our approach ensures that the recompiled module produces the
same outputs as the original, maintaining accuracy while managing memory efficiently.
The trade-off is a slight increase in training iteration time, which we minimize through
optimization algorithms designed for different scenarios.

Our first contribution, Rockmate, focuses solely on re-materialization. Given a
PyTorch module, Rockmate decomposes the model into a sequence of blocks . We then
apply an Integer Linear Programming (ILP) algorithm to generate multiple execution
options for each block . These options are integrated using a Dynamic Programming (DP)
model to create an overall schedule for the entire model, ensuring that memory usage
remains within the given budget. This method is detailed in Chapter 2. Rockmate is
particularly effective for popular large language models such as GPTs [44] and Llama [56].

To extend our work to accommodate more complex architectures where individual
blocks are too large for ILP optimization, we developed Hiremate. Hiremate uses a
recursive partitioning algorithm to break down the computational graph into multiple
levels of smaller subgraphs, each with limited size. We then adapt the ILP solver to
generate re-materialization schedules recursively, moving from the smallest subgraphs
at the lower levels to the larger ones at the top. The adapted ILP solver allows for
multiple execution options for each node in the graph, incorporating solutions from lower
levels. This flexible framework, introduced in Chapter 3, supports various partitioning
and solving algorithms, making it adaptable to any model architecture.

After the memory cost of activations is efficiently reduced, we focus on minimizing
parameter-related memory usage. To achieve this, we propose Offmate, which leverages
the computational power of both GPUs and CPUs as well as the communication
bandwidth between them. We also simplify the optimization algorithm to ensure
that solutions are generated within a reasonable time frame. The empirical results of
Offmate, presented in Chapter 4, demonstrate a 10× memory reduction in a typical
fine-tuning task, with only a 20% increase in iteration time.

In summary, we have developed efficient optimization algorithms and implemented
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them within the Rockmate framework 2, making it easy-to-use for PyTorch models
on NVIDIA GPUs. Our approach offers an effective solution for reducing memory
requirements in neural network training across a wide range of scenarios. In the following
sections, we explore potential applications of our work beyond the scope covered in this
thesis, discussing how these techniques might be extended to other areas.

With the recursive partitioning proposed along with Hiremate in Chapter 3, our work
is not strictly limited to a specific type of architectures. However, there are still different
architectures that are challenging to us. First, our partitioning algorithms introduced in
Section 3.3 are with O(n2 log n) complexity, which is manageable for classical networks
where thousands of operations are included in the graph. To solve the long-context
issue in Transformers, state-space models are proposed including Mamba [16], where
the operations are applied on each token instead of each sentence. As a result, the
computational nodes in the graph can easily go up to 1 million. Models with those
architectures will raise a great challenge to Hiremate: although H-Ilp can efficiently
operate across multiple levels, the partitioning process would take an excessively long
time to complete. To adapt Hiremate for these models, a more efficient partitioning
algorithm is needed.

In this thesis, we focus on forward-backward training of neural networks, but our work
is not limited to this scenario. For inference and non-backward training tasks, there is
no activations saved from forward to backward, but it is still possible to have output of
operations stored in memory which can be released by re-materialization. For example,
in Transformers, the KV-cache is used during inference to store information generated
for each token, which is then reused when processing future tokens. It is a common
way to store the KV-cache in memory during the inference to avoid recomputing them.
However, storing KV-cache can be memory consuming when the purpose is to produce
a long sequence. Applying re-materialization in such cases could help manage memory
usage without exceeding device limits. This approach can be extended to other models
where significant memory is consumed by information that can be regenerated. Besides
re-materialization, Offmate provides offloading solution for computational graph with
known time/memory cost, which works on cases without backward as well.

Our work can also be extended to parallelism, while our experiments are conducted
with a single device only. All our optimization algorithms consider only one memory
budget, which makes it trivial to solve the parallelism problem with homogeneous memory
requirements, like data parallelism. Regarding the other parallel training schemes, it is
possible to consider the solutions provided in our framework and integrate them in a
higher level to leverage the usage of different devices. The hierarchical solving approach
could be especially useful in this case.

Within this thesis, we demonstrate all the experiments with PyTorch modules and
NVIDIA GPUs. They are not necessary to apply our optimization algorithms. If
one wishes to use a different deep learning framework, it is necessary to extract the
computational graph with known time and memory cost of each node before using our

2https://github.com/topal-team/rockmate
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optimization models. To recompile the model, it is also necessary to understand how
to execute each node independently. For non-CUDA devices, a profiling tool must be
available to measure the time and memory cost of different operations.

Overall, we have provided well-performed solutions to the problem of training neural
networks with memory-limited device, and provided practical tools to users who wish
to train PyTorch module on NVIDIA GPUs. Our work enables individual researchers
and AI enthusiasts to contribute to the decentralized AI community without the
need for expensive, cutting-edge hardware. This thesis also builds the framework to
integrate further development of different partitioning and solving algorithms, allowing
for extensions to different scenarios in deep learning.
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