
HAL Id: tel-04891249
https://theses.hal.science/tel-04891249v1

Submitted on 16 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development of an algebraic multigrid solver for the
indefinite Helmholtz equation

Clément Richefort

To cite this version:
Clément Richefort. Development of an algebraic multigrid solver for the indefinite Helmholtz equa-
tion. Computer Science [cs]. Université de Bordeaux, 2024. English. �NNT : 2024BORD0297�.
�tel-04891249�

https://theses.hal.science/tel-04891249v1
https://hal.archives-ouvertes.fr


THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR

DE L’UNIVERSITÉ DE BORDEAUX

ECOLE DOCTORALE MATHEMATIQUES ET INFORMATIQUE

Informatique

Par Clément RICHEFORT

Développement d’un solveur multigrille algébrique pour l’équation de
Helmholtz indéfinie

Sous la direction de : Pierre RAMET

Soutenue le 27 Novembre 2024

Membres du jury :

M. Pierre RAMET Professeur Université de Bordeaux Directeur
M. Edmond CHOW Professeur Georgia Institute of Technology Rapporteur
Mme. Stéphanie CHAILLAT Directrice de Recherche CNRS Rapportrice
M. Ulrich RÜDE Professeur FAU Erlangen-Nürnberg Examinateur
Mme. Vandana DWARKA Chargée de Recherche TU Delft Examinatrice
M. Matthieu LECOUVEZ Docteur CEA Invité
M. Robert D. FALGOUT Docteur Lawrence Livermore National Laboratory Invité





Acknowledgements

Ces trois dernières années furent autant l’occasion d’approfondir mes connaissances
en algèbre linéaire numérique que de grandir sur bien d’autres aspects! Ce manuscrit
resterait incomplet si n’y étaient mentionnés quelques-uns parmi ceux qui peupleront
à tout jamais mes souvenirs de thèse.

Merci à mon directeur de thèse, Pierre Ramet, dont l’accompagnement et l’ensemble
des conseils prodigués furent irréprochables. Il y a plus de quatre ans maintenant, je
t’envoyai cet interminable email plein de questions comme je sais si bien les écrire.
Tu répondis point par point, et m’accordas de ton temps pour discuter recherche
alors que l’on ne se connaissait pas encore. Je ne suis pas certain que tous en eu-
ssent fait autant. Pour sûr, mon aventure au CEA commença grâce au soin que tu
as pris à me répondre, et je t’en serai toujours reconnaissant. Je te remercie aussi
pour ta bienveillance et la facilité avec laquelle il est possible de te parler. Merci
à Matthieu Lecouvez de m’avoir ouvert les portes du CEA. J’ai toujours l’email en
sauvegarde, où, enfin, tu m’annonças que la thèse m’était attribuée. J’ai dû le lire
une vingtaine de fois déjà. La finesse de tes observations m’impressionnera toujours
et mes travaux ont beaucoup profité de ton esprit résolument scientifique. Comme
je te l’ai dit, ce fut un réel plaisir de travailler avec toi et j’espère en avoir encore
l’occasion. Voilà que ce souhait demeure à tout jamais gravé dans mon manuscrit!
Je remercie mon troisième encadrant de thèse Rob Falgout, dont la contribution à
ces travaux de recherche est inestimable. Je te sais bien entouré pour traduire le
français, alors sache que te visiter en Californie fut une de ces grâces desquelles je
resterai éternellement reconnaissant. Ton ardeur à la tâche et la pertinence de tes
analyses m’ont beaucoup apporté. Plus que tout le reste, c’est ton sourire devant le
tableau blanc que je m’appliquerai à imiter dans toute de ma carrière. La recherche
t’amuse, et c’est précisément ce qui fait ton excellence. Rob, merci pour tout.

Je remercie mes deux rapporteurs Stéphanie Chaillat et Edmond Chow pour leurs
relectures du manuscrit et leurs présences à la soutenance. Stéphanie, merci pour
l’exhaustivité de tes commentaires et pour le gentil message qui leur était associé,
ça m’aura mis dans d’excellentes dispositions pour la soutenance. Quant à toi Ed-
mond, par deux fois ta curiosité scientifique nous poussa à discuter ensemble. La
première fut à Copper, la seconde dans le bureau de Pierre. C’est toujours épatant
de voir d’excellents chercheurs démontrer un réel intérêt pour le travail des étu-
diants. J’aimerais également remercier mes deux examinateurs Vandana Dwarka
et Ulrich Rüde pour la pertinence de leurs questions. Je suis sûr que l’on aura
l’occasion d’échanger à nouveau, et ce sera avec très grand plaisir. La passion se



transmet, et si je m’épanouis autant à gratter des formules d’algèbre sur le papier,
c’est aussi parce que Serge Petiton fut mon professeur. Un grand merci, j’espère
pouvoir transmettre mon goût pour la recherche avec autant de talent que vous.

Merci au CEA de m’avoir ouvert ses portes. En particulier, merci à Geneviève
Maze-Merceur qui, avec Matthieu, m’avez donné la chance de travailler sur ce sujet
de thèse. Merci à Chantal, Olivier, Agnès, Murielle, Pierre, Frédéric, Justine, Aman-
dine, Emmanuele, Ilyès, Bruno, Sébastien, et Matthias, parce que vos salutations
quotidiennes ont fait du labo un très chaleureux environnement de travail. Je remer-
cie également Alexis Touzalin, illustration Larousse du terme "Bon gars" et vétéran
du 205, pour sa remarquable gentillesse. Je peine encore à comprendre ton sujet
de thèse, mais je sais par avance que tu la clôtureras avec brio. Je suis également
heureux d’avoir pu partager mon bureau avec Roxanne Delville-Atchekzai. Puisque
tu as déjà reçu le titre de la meilleure présentation de thèse en 180 secondes, je sais
que tu vas tout déchirer pour ta soutenance! Je garderai aussi un excellent souvenir
de tous les doctorants, et remercie l’INRIA pour son accueil.

Lorsque l’air sera plus humide, et que d’épais nuages couvriront le ciel, la nostalgie
me renverra à mes deux étés passés au Lawrence Livermore National Laboratory.
Merci de m’avoir accueilli, et merci à mes chefs de service de m’avoir laissé partir.
Pensée pour mon co-bureau du LLNL et dorénavant ami Taoli Shen, avec qui j’aurais
la joie de repartir aux sommets de la Sierra Nevada ou aux confins des Canyonlands.
Merci à Sarah Osborn pour les s’mores, les BBQs, la Subaru et tout l’équipement
de camping. Plus globalement, merci pour ton accueil, ton sourire et ta générosité!
Enfin, merci à Claire Henze de m’avoir invité plusieurs fois à dîner sous son toit.
Claire, tu as une superbe famille, et je te remercie pour ton attachement singulier à
la France.

Mon séjour bordelais fut l’occasion de bien des rencontres. Raj’, mon foie se sou-
viendra toujours de toi, non pas tant pour nos apéros au Simone, mais surtout à
cause d’un bel uppercut droit intercalé un mardi soir du mois de Mars. J’écourterai
l’exposé ici, car j’ai déjà usé de mon droit de réponse le surlendemain en t’envoyant
un joli crochet dans la narine. T’en as pas encore fini de mon amitié, car je compte
bien continuer à te savater la tronche. Fabien, nous nous sommes rencontrés sur le
tard, mais ce fut un réel plaisir de discuter avec toi. Avec Estelle, vous êtes de cet
équipage que j’aimerais garder pour longtemps. Quant à mon ami et parrain Benoît,
je suis heureux de t’avoir compté parmi mes collègues. Débouler en grandes pompes
dans ton bureau pour discuter apologétique fut toujours très instructif. Certes, nos
conversations prennent parfois un tournant plus gras, mais d’entre toutes je dois
avouer que ce sont celles que je préfère. J’aurai grand plaisir à te revoir bientôt avec
Manon. Je salue Yassine, fidèle ami d’école d’ingénieur dont les années à venir me
rapprocheront encore.

Merci à ma famille d’avoir été là pour la soutenance comme dans tous les mo-
ments importants. On ne se fait jamais tout seul, et vous en êtes pour beaucoup.
Papa, Maman, Lilou, et Harry, je vous aime énormément.



Enfin, au surplomb de toutes les grâces reçues au cours de ces trois années de
thèse, celle du baptême fut la plus belle. Seigneur Jésus, tu es venu me chercher
et m’a aimé le premier. Je relis toute ma vie à la lumière de notre rencontre :
tu étais là depuis le début. Seigneur, merci. Je remercie également la paroisse de
Saint Michel, et notamment le Père Henri Duc-Maugé pour son accompagnement
spirituel. Les prêtres s’effacent toujours un peu devant les compliments, mais tout
de même, je vous remercie pour le travail monumental que vous abattez. Merci
à Patricia, Madeleine, et Sœur Michèle pour le suivi des catéchumènes. Merci au
groupe des jeunes pros et aux prêtres d’être venus pour la soutenance. J’aimerais
aussi te remercier chère Astrid, car notre rencontre fut déterminante. Souviens-toi
toujours des lasagnes.



Résumé : La simulation numérique de phénomènes physiques complexes requiert
généralement la résolution de systèmes d’équations linéaires. La méthode de réso-
lution doit tirer profit des infrastructures modernes de calcul, et passer à l’échelle
d’un parallélisme accru. En particulier, les méthodes multigrilles répondent à cette
exigence de scalabilité, et permettent de résoudre une grande variété de problèmes
dont le noyau a un aspect géométriquement lisse, et où les matrices de discrétisation
sont symétriques définies positives.

Cette thèse vise à étendre les méthodes multigrilles à l’équation de Helmholtz, dont
le noyau est oscillant et la matrice de discrétisation indéfinie. En particulier, le
lisseur doit capturer les grandes valeurs propres indépendamment du signe et les
opérateurs d’interpolation doivent ici propager une information oscillante et incon-
nue lors de la phase d’initialisation de la méthode. Enfin, la correction grossière perd
ses propriétés de minimisation car la matrice indéfinie ne génère aucune norme. Par
conséquent, une correction grossière alternative doit être développée pour garantir
la contraction de l’erreur au fil des itérations. L’objectif est d’obtenir une méthode
multi-niveaux convergente, et en un nombre d’itérations constant indépendant de la
taille du problème. De nombreuses expériences numériques sont présentées tout au
long de cette thèse.

Abstract : The numerical simulation of complex physical phenomena generally
requires to solve systems of linear equations. The solver should benefit from mod-
ern computing machines and scale on highly parallel architectures. In particular,
multigrid methods are scalable methods that enable the resolution of a wide range
of problems where the discretization matrix is symmetric positive definite and the
near-kernel space geometrically smooth.

In this thesis, our target is to extend multigrid methods to the oscillatory and
indefinite Helmholtz equation. Each multigrid operator should be adapted to these
challenging properties. In particular, the smoother should capture large eigenval-
ues independently of the sign. Moreover, the range of interpolation should now
approximate the oscillatory near-kernel space that is unknown at the set-up phase
of multigrid. Last, indefinite matrices do not generate a norm. As a consequence,
the coarse correction has no minimization properties and can amplify the error.
In this thesis, we present an alternative coarse correction that contracts the error
properly. We target a multil-level method that converges in a constant number
of iterations independently of the matrix size. Various numerical experiments are
presented throughout this thesis.
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Résumé étendu

Notre compréhension de la physique repose sur des modèles mathématiques met-
tant en relation diverses variables. Bien qu’une analyse théorique des équations
du modèle puisse fournir beaucoup d’information, elles permettent aussi de simuler
numériquement certains phénomènes physiques complexes, dangereux, ou trop chers
à reproduire par l’expérience. Toutefois, ces équations appartiennent au monde con-
tinu. Par conséquent, elles doivent être discrétisées pour que la logique binaire du
monde informatique puisse les appréhender. Cette étape si cruciale de la simulation
numérique a demandé beaucoup d’efforts de recherche, et donna lieu à différentes
techniques de discrétisation comme la méthode des éléments finis par exemple. Dans
de nombreux cas, la simulation numérique d’un phénomène physique se ramène à
la résolution d’un système d’équations linéaires désigné par la relation matricielle
Ax = b. Ici, le vecteur x de taille n contient les variables inconnues du problème.
Conformément au modèle continu, la matrice A représente la transformation dis-
crétisée pour passer de x à b.

En théorie, inverser la matrice suffit à résoudre le système. Une telle opération
serait hélas beaucoup trop coûteuse en pratique, mais de nombreuses alternatives
existent. Un paramètre important à prendre en compte dans le choix de la méth-
ode de résolution du système concerne la plateforme de calculs. L’augmentation
progressive des puissances de calculs provenait d’abord des progrès réalisés sur la
fréquence des processeurs, avant d’arriver à stagnation dans les années 2000. Doré-
navant, l’approche consiste à ajouter de plus en plus de processeurs, en les couplant
parfois avec des accélérateurs dédiés à certaines tâches bien spécifiées. Un code est
dit “scalable” si la multiplication du nombre de processeurs par p divise son temps
d’exécution par p. Ce critère de scalabilité est extrêmement important dans le choix
de la méthode. Deux catégories de méthodes se distinguent à ce jour. La première
catégorie est celle des méthodes directes, visant à factoriser la matrice A en deux
matrices plus faciles à inverser. Ces méthodes sont robustes, mais difficilement scal-
ables. La deuxième catégorie regroupe l’ensemble des méthodes itératives. Elles
fonctionnent en raffinant, au fil des itérations, une approximation x̃ de la solution
x jusqu’à atteindre une différence suffisamment petite.

Dans ce contexte, le CEA étudie le comportement électromagnétique d’objets com-
plexes en trois dimensions. Ici, c’est la discrétisation des équations de Maxwell
qui permet la simulation d’un tel phénomène physique, et la résolution du système
s’effectue à l’aide d’une méthode de décomposition de domaine. Cette méthode con-
siste à résoudre de plus petits systèmes associés à des sous-domaines du domaine
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global. A chaque itération de la méthode, les approximations locales sont trans-
mises à l’approximation de la solution globale, jusqu’à atteindre convergence. Bien
que cette méthode permette la résolution des équations de Maxwell discrétisées,
elle manque de scalabilité. Pour mettre la méthode à l’échelle des prochaines ma-
chines exaflopiques, une première idée consisterait à augmenter le nombre de sous-
domaines. Cependant, la théorie indique qu’augmenter le nombre de sous-domaines
décroît la vitesse de convergence de la méthode. La seconde option consisterait
à augmenter la taille des sous-domaines, mais les problèmes locaux sont résolus à
l’aide de méthodes directes qui manquent aussi de scalabilité. Pour ces raisons, le
CEA recherche une méthode alternative afin d’anticiper l’arrivée des prochains su-
percalculateurs.

Une piste prometteuse est d’adapter les méthodes multigrilles pour la résolution
des équations de Maxwell. Sous certaines conditions d’implémentation, ces méth-
odes peuvent être scalables. Le principe des méthodes multigrilles est d’accélérer
le calcul de la solution en tirant profit d’une collection de problèmes grossiers de
plus petites tailles. A chaque itération, le problème le plus petit est résolu à l’aide
d’une méthode directe. L’approximation grossière est ensuite propagée du niveau le
plus grossier jusqu’au plus fin par l’intermédiaire d’opérateurs d’interpolation. Au
passage de chaque niveau, l’approximation est raffinée à l’aide d’un lisseur.

Initialement, un tel procédé visait la résolution de problèmes elliptiques dont les
matrices de discrétisation sont symétriques définies positives, et dont l’espace asso-
cié aux plus petites valeurs propres a une forme géométriquement lisse. Pour ce qui
suit, nous utiliserons le terme “near-kernel space” de la littérature scientifique pour
désigner cet espace. Les différents opérateurs multigrilles tirent profit de telles car-
actéristiques. Premièrement, les méthodes itératives dites “stationnaires” comme les
méthodes de Jacobi ou de Gauss-Seidel sont en général de très bons lisseurs dans le
cas où les valeurs propres sont positives. Deuxièmement, l’aspect géométriquement
lisse du near-kernel space facilite sa propagation par les opérateurs d’interpolation.
Par exemple, une simple moyenne de points grossiers est parfois suffisante pour in-
terpoler un point du niveau fin. Enfin, la matrice étant symétrique définie positive,
elle génère une norme attribuant certaines propriétés de minimisation à l’opérateur
de correction grossière.

Dans le cadre des équations de Maxwell, la matrice de discrétisation est indéfinie et
son near-kernel space a un aspect oscillant. Cette thèse vise à adapter chacun des
opérateurs multigrilles à ce contexte particulièrement exigeant en considérant une
équation de Helmholtz dans un premier temps. En particulier, le lisseur doit traiter
les grandes valeurs propres, qu’elles soient positives ou négatives. Les opérateurs
d’interpolation, quant à eux, doivent propager efficacement le near-kernel space os-
cillant. Enfin, la matrice ne génère aucune norme puisqu’elle est indéfinie. Par
conséquent, l’opérateur de correction grossière perd ses propriétés de minimisation
et n’offre plus aucune garantie de convergence à la méthode multigrille.

La plupart des algorithmes développés au long de cette thèse fonctionnent sur la
base d’heuristiques permettant de contrôler la complexité des différents opérateurs



en jeu. Cependant, nous cherchons d’abord à rendre la méthode convergente en
un nombre d’itérations constant indépendamment de la taille du problème. De fu-
turs travaux de recherche devront être entrepris pour la rendre plus efficace. Pour
faciliter l’exposé de cette thèse, nous commençons par réintroduire quelques fonda-
mentaux sur les méthodes multigrilles au Chapitre 2. Le Chapitre 3 dresse l’état
de l’art des méthodes multigrilles pour Helmholtz, et détaille le problème de la
correction grossière dans le cas indéfini en introduisant le concept de pollution. Ce
concept connecte l’erreur d’interpolation avec la correction grossière. En particulier,
nous concluons de cette théorie que la correction grossière sera toujours susceptible
d’amplifier l’erreur dans le cas indéfini, quand bien même l’opérateur d’interpolation
serait précis. Chacun des trois chapitres suivants s’attelle à un opérateur multigrille
en particulier. Le Chapitre 4 présente un lisseur polynomial développé à partir des
équations normales pour capturer les grandes valeurs propres indépendamment du
signe. Un opérateur d’interpolation adapté à l’aspect oscillant du near-kernel space
est introduit au Chapitre 5. Nous ouvrons ce chapitre en étudiant une approxi-
mation de l’opérateur idéal classique, puis le comparons à une approche différente
basée sur une stratégie de minimisation de moindres carrés appliquée à une ap-
proximation du near-kernel space. Des illustrations du phénomène d’amplification
de l’erreur opérée par la correction grossière sont présentées au début du chapitre
6, et justifient le développement d’une correction grossière alternative basée sur la
minimisation d’une norme euclidienne. Enfin, le Chapitre 7 expose les résultats
d’expériences numériques.

Sauf cas extrêmement indéfinis, les expériences numériques montrent que notre
méthode à deux-niveaux converge là où la correction grossière traditionnelle am-
plifie l’erreur. Le spectre d’une matrice extrêmement indéfinie est plus susceptible
de comporter des valeurs propres proches de zéro particulièrement sensibles à la
pollution associée aux grandes valeurs propres. En l’état, nous voyons deux moyens
pour accélérer la convergence de la méthode dans ce cas. Le premier vise à réduire
la pollution en améliorant l’opérateur d’interpolation, tout en limitant le nombre
d’éléments non nuls. Un second moyen consisterait à filtrer davantage les grands
vecteurs propres dans l’espace de minimisation de la correction grossière alternative.
Toutefois, de tels efforts devront être réitérés à mesure que les valeurs propres seront
petites.

Enfin, les expériences numériques montrent qu’une des méthodes multi-niveaux
résout l’équation de Helmholtz avec conditions de bords absorbantes en un nom-
bre d’itérations constant indépendamment de la taille du problème, et jusqu’à six
niveaux. Cependant, les opérateurs ne semblent pas encore assez creux pour aboutir
à une implémentation scalable. Une piste de recherche consisterait à travailler sur
des approximations plus creuses des matrices grossières afin de gagner en perfor-
mance. Dans le cas symétrique défini positif, de telles approximations des matrices
grossières pourraient rendre la méthode divergente si certaines conditions théoriques
ne sont pas satisfaites. Dans notre cas, la correction grossière alternative fonctionne
sur un principe de minimisation en norme euclidienne, et règle d’emblée ce problème.



Notations
To simplify the discussion in what follows, we use the term "small/large eigenvector"
to mean an eigenvector with small/large eigenvalue in magnitude. We similarly say
"positive/negative eigenvector" when referring to the eigenvalue sign. Additionally,
capital italic Roman letters (A,E,P) denote matrices and bold lowercase letters de-
note vectors (u,v, r,α). Other lowercase letters denote scalar (σ, λ), while capital
calligraphic letters denote sets and spaces (C,F ,K).

The following list dresses the main mathematical objects used in this manuscript.

Matrices

A Matrix of the linear system Ax = b of size n× n
V Set of eigenvectors of A
Vc Set of eigenvectors associated with the nc smallest eigenvalues in magnitude
Vf Set of eigenvectors associated with the nf largest eigenvalues in magnitude
T Set of test vectors of size n× κ
P Interpolation operator of size n× nc

P∗ Ideal interpolation operator of size n× nc

RT Coarse variable operator of size n× nc

S Fine variable operator of size n× nf

R̂T Least-squares coarse variable operator of size n× nc

Ŝ Least-squares fine variable operator of size n× nf

P̂ Interpolation operator built on the least-squares variable operators of size n× nc

E Error propagation matrix of the coarse correction
pd(A

2) Polynomial smoother of degree d built on normal equations
qd+1(A

2) Error propagation matrix of the polynomial smoother pd(A2)
Kf Block of pollution of size nf × nc

Π(Q) l2-orthogonal projection onto the range of Q
ΠM (Q) M -orthogonal projection onto the range of Q
Wp Alternative coarse correction’s minimization space at the pth iteration of size n× p
Zp Orthonormal operator associated with Wp of size n× p
Hp Hessenberg matrix associated with Wp of size p× p

Vectors

x Solution to the linear system Ax = b
b Right-hand side of the linear system Ax = b
x̃ Approximation of the solution to the linear system Ax = b
e Error between the solution x and its approximation x̃
r Residual or right-hand side of the linear system Ae = r
vi Eigenvector of A associated with the ith largest eigenvalue λi in magnitude



Scalars and integers

α Shift of the shifted Laplacian matrices (1.2) and (1.3), α = (kh)2

k Wavenumber
h Mesh size
κ Number of test vectors in T
d Degree of the polynomial smoother
a Lower-bound of the interval [a, b] for the selection of the Chebyshev nodes
b Upper-bound of the interval [a, b] for the selection of the Chebyshev nodes
λi ith largest eigenvalue in magnitude of A
n Total number of points
nc Number of selected C-points
nf Number of F -points, i.e., nf = n− nc

τ Parameter that controls the number of selected columns of Ŝ
m Parameter that controls the pattern of non-zero entries in the SPAI approach

Sets

C Group of interpolation C-points
F Group of F -points
Si Group of strongly connected neighbors to the ith point
Ci Group of C-points strongly connected to the point i
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Chapter 1

Introduction

Our understanding of physic relies on mathematical models that describe the evo-
lution of a set of variables with respect to eventually numerous parameters. In
particular, partial differential equations are the main among many mathematical
tools on which are based these models, and intrinsically provide information by con-
necting the physical variables together. While a theoretical analysis of these special
equations reveals a lot of information, they also enable the numerical simulations of
physical phenomena that are often too complex, expensive and sometimes dangerous
to experiment in practice.

Since partial differential equations belong to the abstract and continuous world
of mathematics, they need to be discretized to fit into the finite and binary world
of computers. Hence, a wide field of numerical analysis regards their discretization,
and led to the development of different approaches such as finite element or finite
difference methods for instance. In practice, simulating a discretized physical quan-
tity often requires to solve a linear system of equations written Ax = b in matrix
form, where the vector x of size n corresponds to the discretized unknown variables.

In theory, the system can be solved by inverting the matrix exactly. However, in
practice, the inversion is computationally expensive and cheaper methods are pre-
ferred instead. Direct methods are the most robusts as they compute a convenient
factorization of the matrix to enable a practical resolution of the system. Their
downside is that they are difficult to scale on modern supercomputers and follow
an O(n3) complexity in general. Alternatively, iterative methods follow an O(n2)
complexity as they mostly rely on matrix vector products. However, their conver-
gence is problem-dependent and can be very slow if the matrix is ill-conditioned for
instance. For this reason, an important field of research in numerical linear algebra
aims at designing cheap preconditioners that decrease the condition number of the
matrix to accelerate the convergence.

The underlying motivation of this thesis is to simulate the electromagnetic behav-
ior of three-dimensional complex objects on the most recent exascale machines. To
do so, the French Alternative Energies and Atomic Energy Commission (CEA) al-
ready developed a software for solving the Maxwell’s equations by combining a finite
element method with an integral equation. The system arising from the finite ele-
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ment discretization is currently solved by way of a domain decomposition method.
This approach works iteratively by solving the sub-systems associated with the sub-
domains that cover the entire discretization domain. Certain limitations of this
method appear as the computing resources are growing. On the first hand, increas-
ing the number of sub-domains deteriorates the convergence of the method. On
the other hand, increasing the size of the sub-domains performs badly as direct
solvers lack scalability on exascale machines. Through this thesis, the CEA wants
to investigate multigrid as an alternative iterative method to domain decomposition.

The basic principle of multigrid is to use a collection of coarser problems that accel-
erates the convergence to the solution. A direct method is applied to the coarsest
matrix, and the coarsest solution is interpolated up to the finest level. On each level,
the approximation is refined with what we call a “smoother”. Multigrid methods are
known to be scalable and follow an O(n) complexity for sparse matrices and a good
implementation. Multigrid methods are among the best solvers for a broad class
of elliptic problems. However, they are not designed for indefinite matrices and ex-
tending them to oscillatory problems such as electromagnetism or acoustic is still an
open question. Thereby, the final goal of this research program is to solve Maxwell’s
equations with multigrid, but the first step addressed in this thesis is to design a
multigrid solver for the Helmholtz equation, as this problem is also indefinite and
characterized by an oscillatory near-kernel space.

In fact, solving the indefinite Helmholtz equation is notably challenging. Find-
ing a suitable and scalable iterative method that converges in a constant number of
iterations independent of the matrix size remains an open question. In particular for
multigrid, three main issues arise when solving the indefinite Helmholtz equation.
First, Helmholtz has negative eigenvalues that are amplified when using traditional
smoothers such as Jacobi or Gauss-Seidel for instance. Secondly, eigenvectors as-
sociated with the smallest eigenvalues in magnitude are not geometrically smooth
as in elliptic problems for which multigrid methods are known to be particularly
efficient. For Helmholtz, these smallest eigenvectors are oscillatory. Therefore, find-
ing a suitable interpolation operator that interpolates the oscillatory near-kernel
space from the coarsest level to the finest one is not simple. Lastly, the indefinite
nature of the discretization matrix breaks the very convenient equivalence between
the Galerkin coarse correction and a minimization problem in A-norm. This issue
makes the theory inapplicable because the coarse correction loses its minimization
properties. As a consequence, nothing guarantees the robustness of the method in
the indefinite case and numerical experiments actually show that the method may
diverge.

Our goal is to design a method that works algebraically and does not rely on prior
knowledge of the underlying PDE. This choice is motivated by the ambition to solve
a broader class of indefinite problems in the future such as Maxwell’s equations.
With that aim, our contributions can be split into four parts. After detailing the
state of the art of multigrid for Helmholtz, we introduce the concept of “pollution”
to better explain why the classical coarse correction appears hopeless in the indef-
inite case. This concept will be particularly important in this manuscript. Our
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next contribution regards the smoother. We show that a Chebyshev polynomial
smoother built on normal equations damps the large negative and positive eigenval-
ues in magnitude. Moreover, it also guarantees to preserve the smallest magnitude
eigenvalues, which is especially important for constructing the interpolation opera-
tor introduced in the chapter that follows. In our case, the range of interpolation
should be able to approximate the unknown oscillatory set of small eigenvectors.
Therefore, extracting an approximation of the near-kernel space from the initial
matrix is necessary. Our polynomial smoother makes it possible because it damps
the large eigenvectors without touching the smallest ones. With this approximation
of the near-kernel space, a sparse approximation of the ideal interpolation operator
is constructed from an initial tentative interpolation operator built from a least-
squares minimization strategy. The third part focuses on the problem of the coarse
correction. In particular, we will see that the coarse correction is not guaranteed to
contract the error in the indefinite case, even though the interpolation operator has
good approximation properties. For this reason, we introduce an alternative coarse
correction based on a Euclidean norm minimization. Lastly, numerical experiments
are presented to challenge our method based on different parameters.

The main underlying motivation in our research is to find a scalable method for
solving indefinite problems such as Maxwell or Helmholtz equations. As the main
trouble for solving such a difficult class of problems with multigrid regards the con-
vergence, this thesis targets an algebraic multigrid method that can solve Helmholtz
in a constant number of iterations and independently of the problem size, but do
not answer the question of scalability yet. While our alternative method obviously
considers the question of computational complexity, more work should be under-
taken in the future to make it more practical.

As major difficulties of solving the Helmholtz equation arise from its indefinite na-
ture, we first focus on the two-dimensional shifted Laplacian (SL2D) matrix whose
continuous problem is defined as follows

(SL2D CP) ⇔
{
−∆u− k2u = f in Ω = [0, 1]× [0, 1]

u = 0 on ∂Ω . (1.1)

Define α = (kh)2, and ngrid the grid size. The continuous shifted Laplacian problem
(1.1) is discretized by way of a second order finite different scheme, such that the
5-point stencil of the resulting discretization matrix A is defined by

A ∼ 1

h2




−1
−1 4− α −1

−1


 with h :=

1

ngrid + 1
. (1.2)

In two dimensions, the size of the resulting discretization matrix is n = n2
grid. Once

n is fixed, the only varying parameter on which the discretization matrix A relies
is the shift α. In fact, α controls the indefiniteness of the matrix. The prob-
lem gets more indefinite (i.e., the proportion of positive and negative eigenvalues
reaches an equilibrium) as the shift α gets closer to 4 (the diagonal of A in (1.2)
gets closer to zero). Moreover, higher shift leads to a more oscillatory problem.
Extreme shifts lead to poor discretization but are interesting to make the problem
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as hard as possible for the solver development. Throughout this manuscript, we
always write the shift α as the discretization coefficient kh squared. For instance,
α = 0.6252 corresponds to a problem discretized with 10 points per wavelength ω
(h = ω/10 = 2π/10k ⇔ kh = 0.625). The discretization matrix (1.2) has convenient
structural properties that multigrid can benefit from. To challenge our method, we
also work with the 9-point discretization matrix

A ∼ 1

h2



−1 −1 −1
−1 8− α −1
−1 −1 −1


 . (1.3)

Both discretization matrices (1.2) and (1.3) are Hermitian indefinites. This property
is assumed in the following theoretical developments as it enables a convenient dis-
cussion based on eigenvalues and eigenvectors. Certain boundary conditions lead to
non-hermitian indefinite matrices and therefore require to work with singular vectors
for exactness. Since the difficulty of non-hermitian Helmholtz matrices is mostly due
to their indefinite nature as well, we still rely on the eigenvectors/eigenvalues termi-
nology for ease of discussion, and do not resort to singular vectors as we should for a
rigorous development that consider all kind of matrices. We also note that matrices
resulting from both stencils (1.2) and (1.3) are singular if α equals an eigenvalue
of the Laplacian matrix. As working on the shifted Laplacian model problem (1.1)
is only aimed at challenging our multigrid method with respect to the degree of
indefiniteness of the problem, we always assume these matrices to be non-singular
by setting the shift properly.

In their respective chapters, all of the three core components of our alternative
multigrid method that are the smoother, the interpolation operator, and the coarse
correction, are stressed in the two-level case and for different shifts α. The last
Chapter 7 also addresses the multilevel case when replacing the Dirichlet boundary
conditions by absorbing boundary conditions in (1.1).

The Chapter 2 introduces few fundamental ideas on iterative and multigrid methods
that we use throughout this manuscript. The Chapter 3 presents a survey of past
attempts of multigrid methods for Helmholtz. We also introduce our concept of
“pollution” within Chapter 3 to better explain why the traditional coarse correction
appears hopeless for indefinite problems. The next Chapter 4 addresses the design of
an appropriate smoother for Helmholtz based on Chebyshev polynomials. Then, the
design of good interpolation rules that approximate the oscillatory near-kernel space
of the Helmholtz equation is presented in Chapter 5, and the alternative coarse cor-
rection aimed at contracting the error in the indefinite case is introduced in Chapter
6. Numerical experiments with extension to the multilevel case are discussed in
Chapter 7. We end this manuscript with a conclusion and perspectives for future
research in Chapter 8.



Chapter 2

Multigrid fundamentals

Before dipping into algebraic multigrid methods for Helmholtz, let us recall few
fundamental concepts that will help the discussion throughout this manuscript. A
system of linear equations can be solved directly by a convenient factorization of the
initial matrix A, or iteratively by refining an approximation of the solution start-
ing from an initial guess x(0). In direct methods [52, 23], the solution is computed
without iteration, and the precision only depends on the numerical round-off error.
Despite their robustness, they lack scalability on modern high-performance comput-
ing architectures, and their total number of floating operations follows in general
a O(n3) complexity. Iterative methods [25, 66, 71] scale better with most of them
having O(n2) complexity. While the convergence of an iterative method is problem-
dependent, they allow a trade-off between precision and computing complexity.

To better highlight the strength of multigrid and also because most classical it-
erative methods such as Jacobi, Gauss-Seidel or polynomial methods are still used
in most sophisticated multigrid algorithms today, we reintroduce some of the most
fundamental concepts of iterative methods.

2.1 Basics of iterative methods

Let e(k) be the error between the solution x and its approximation x(k) at the kth
iteration. Also, let r(k) be the residual, such that

e(k) = x− x(k) , r(k) = Ae(k) = b− Ax(k). (2.1)

Let M−1 be a practical approximation of the inverse of A. At every iteration, the
new approximation x(k+1) is computed by multiplying the residual r(k) as follows

x(k+1) = x(k) +M−1r(k). (2.2)

Thereafter, the residual is updated following (2.1). In addition, let EM be the error
propagation matrix, such that

EM := I −M−1A. (2.3)

This operator will be particularly useful in the next chapters to study the different
operators that compose multigrid. In certain cases, it is possible to derive from EM

25
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the damping factors associated with the eigenvectors of A. These damping factors
are crucial in this manuscript. Substituting (2.2) in (2.1) leads to the recurrence
relation

e(k) = x− x(k) = x−
(
x(k−1) +M−1r(k−1)) = x− x(k−1) −M−1Ae(k−1)

= e(k−1) −M−1Ae(k−1) =
(
I −M−1A

)
e(k−1) = EMe(k−1) (2.4)

It follows that the recurrence relation (2.4) corresponds to the geometric series

e(k) = (EM)ke(0), (2.5)

where the matrix EM is the quotient. The norm of the remaining error at the kth
iteration is bounded as follows

||e(k)||2 = ||(EM)ke(0)||2 ≤ ρ(EM)k||e(0)||2, (2.6)

where ρ(EM) is the spectral radius of the error propagation matrix EM . Because any
geometric series converges if its quotient is strictly lower than one, then the iterative
method converges if ρ(EM) < 1. Moreover, (2.6) shows that a lower spectral radius
leads to a faster convergence. Let ϵ = 10−q be the relative tolerance, where q is a
given number of digits. The iterative method satisfies the desired error tolerance
when

||e(k)||2
||e(0)||2

=
|| (EM)k e(0)||2
||e(0)||2

≤ ϵ = 10−q. (2.7)

From (2.5), this condition is satisfied if

ρ(EM)k ≤ 10−q ⇔ k ≥ − q

log10 ρ(EM)
. (2.8)

The quantity − log10 ρ(EM), called the asymptotic convergence rate, links the aver-
age number of iterations required with the number of exact digits expected.

2.1.1 Stationary methods

Stationary iterative methods work by way of a simple approximation M−1 of the
inverse matrix A−1, where M results from the splitting

A =M −N. (2.9)

The matrix M should satisfy a trade-off between providing fast convergence and
being practical to inverse. Let D be the diagonal of A, and L and U be the lower
and the upper parts respectively, such that

A = D + L+ U. (2.10)

One of the most straightforward iterative methods is to approximate the inverse of
A by the inverse of its diagonal D. This approach characterizes the so-called Jacobi
method. Setting M = D in (2.3) leads to the error propagation matrix

ED = I −D−1A. (2.11)
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Updating the approximation of the solution by applying D−1 is cheap, and conve-
nient to implement in parallel. As shown by the following element-wise formulation,
the approximation is updated by dividing each entry of the residual by its corre-
sponding diagonal entry

x
(k+1)
i = x

(k)
i +

r
(k)
i

aii
. (2.12)

A variant of Jacobi called weighted-Jacobi adds a weight w to the diagonal inverse
D−1, such that the entry wise formulation and the error propagation matrix become

x
(k+1)
i = x

(k)
i + w

r
(k)
i

aii
, Ew−1D = I − wD−1A. (2.13)

Gauss-Seidel relaxation is another classical method that works by settingM = D+L.
The shape of M being lower triangular, each element can be updated conveniently
with a forward substitution. This feature leads to the following element-wise formu-
lation

x
(k+1)
i = x

(k)
i +

r
(k)
i −

∑
j<i aijx

(k+1)
j

aii
. (2.14)

In comparison with the Jacobi method where each entry are updated independently,
Gauss-Seidel updates each new entry with the most recent approximation entries.
Although this feature makes the method more sequential by nature, it may be
possible to apply a pivoting strategy to improve the parallelism. Accordingly, the
error propagator matrix of the Gauss-Seidel method is defined by

ED+L = I − (D + L)−1A. (2.15)

Despite their popularity, these stationary methods are not further discussed in this
Chapter as we barely mention them in the rest of the manuscript.

2.1.2 Polynomial methods

Chebyshev polynomials will play an important role in our multigrid method for
Helmholtz. Let us now introduce this approach to anticipate the Chapter 4 dedicated
to our polynomial smoother. The eigenvalues λi of the matrix A are the roots of its
characteristic polynomial pA, such that

pA(λ) :=
n∏

i=1

(λ− λi) =
n∑

i=0

ρiλ
i ⇒ ∀λi ∈ σ(A) , pA(λi) = 0. (2.16)

The ρi in (2.16) simply correspond to the coefficients of the characteristic polynomial.
The Cayley-Hamilton theorem states that replacing λ by A in the characteristic
polynomial leads to the zero matrix. This property can be observed by the equality

pA(A)vi = pA(λi)vi = 0, (2.17)

where vi is the ith eigenvector of A associated with the eigenvalue λi. As a conse-
quence, the Cayley-Hamilton theorem implies the following equivalence

pA(A) =
n∑

i=0

ρiλ
i = 0 ⇔ A−1 =

n∑

i=1

− ρi
ρ0
Ai−1. (2.18)
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In other words, A−1 can be written as a polynomial of A. While generating such
a polynomial of degree n is generally too expensive, polynomial iterative methods
work by way of a truncation of the inverse polynomial formulation. Accordingly, a
good polynomial p of degree d ≤ n satisfies

pd (A) ≈ A−1. (2.19)

As in many other stationary methods, this polynomial can be applied many times
as an approximate inverse of the matrix until reaching a small relative residual
norm, by setting M−1 = pd(A). In this case, the error propagation matrix of such a
polynomial iterative method is defined by

qd+1(A) := I − pd(A)A, (2.20)

where pd(A) is the inverse approximate used at each iteration. Note that the sub-
script of qd+1 is incremented due to the post-multiplication of pd by A. A good
inverse approximation should be a minimizer of the spectral radius of its associated
error propagation matrix. From (2.17), finding such a polynomial is made through
solving the minimization problem

pd = argmin
p∈Pd

ρ (1− p(A)A) = argmin
p∈Pd

max
λ∈σ(A)

|1− p(λ)λ| . (2.21)

with Pd the space containing all the real polynomials of degree d. In practice, the
spectrum is unknown. Instead, d interpolation points xi are chosen within a given
interval [a, b]. If all the eigenvalues of the initial matrix A are contained in the
interval (i.e., λi ∈ [a, b] , i = 1, . . . , n), then the spectral radius is bounded as
follows

ρ (qd+1(A)) = max
λi∈σ(A)

|1− pd(λ)λ| ≤ max
x∈[a,b]

|1− pd(x)x| . (2.22)

To design a standalone solver based on a polynomial that approximates the inverse,
a and b can be chosen as lower and upper estimates of the smallest and largest
eigenvalues respectively. If A is positive, one algebraic manner of determining the
bounds of the interval is to compute a few power iterations to estimate the largest
eigenvalue for the upper-bound b, and set the lower-bound a = 0. Both smallest and
largest eigenvalues can also be deduced from analytic information if accessible. Once
the interval [a, b] is established, the polynomial function pd(x) can be constructed to
approximate the inverse function x−1 [53] by selecting d+ 1 interpolation points xi
within the interval. In what follows, we call qd+1(x) := 1− pd(x)x the error propa-
gation function, which is the homologous of the error propagation matrix qd+1(A) of
(2.20) but with respect to the scalar x. Accordingly, the polynomial should satisfy
the d+ 1 following constraints

i = 0, . . . ,m , xi ∈ [a, b] , pd(xi) =
1

xi
⇔ qd(xi) = 0. (2.23)

These conditions are satisfied by using the Lagrangian formula

pd(x) :=
d+1∑

i=1

1

xi

d+1∏

j=1 , j ̸=i

x− xj
xi − xj

. (2.24)
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Moreover, because the selected nodes xi are the roots of qd, we have

qd+1(x) =
d+1∏

i=1

x− xi
−xi

. (2.25)

Note that the polynomial pd is null at zero, such that

pd(0) = 0 ⇔ qd+1(0) = 1. (2.26)

2.1.2.1 Chebyshev polynomials

The Cauchy’s bound Theorem recalled in Section A.1 states that the error of the
polynomial function in approximating x−1 is bounded by a function of interpolation
points. In other words, we need to find the relevant set of d+1 interpolation points
xi that minimizes the error. Precisely, it appears that the roots of the first kind
Chebyshev polynomial constitute the best set of interpolation points. Let Td+1 be
the first kind Chebyshev polynomial of degree d+ 1 defined by

∀t ∈ [−1, 1] , Td+1(t) = cos [(d+ 1) arccos(t)] . (2.27)

Also, define θ := arccos(t). As developed in Appendix A.1, (2.27) can be expended
to arrive at the three-term recurrence relation

T0(t) = 1 , T1(t) = t , Td+1(t) = 2tTd(t)− Td−1(t). (2.28)

The d+ 1 roots of Td+1 are given by

ti = cos
(2i+ 1)π

2(d+ 1)
. (2.29)

One can demonstrate that the superior bound of the unitary polynomial 2−dTd+1 is
the smallest among all the unitary polynomials of degree d + 1. In particular, one
can show that

1

2d
∥Td+1∥∞ =

1

2d
≤ sup
−1≤x≤ 1

{∣∣∣∣∣
d+1∏

i=1

(x− xi)
∣∣∣∣∣

}
(2.30)

Therefore, designing the polynomial pd by selecting the interpolation points xi as
the roots of a Chebyshev polynomial minimizes the error of the Cauchy’s bound. In
that way, we need to remap the roots ti of Td+1 into the domain [a, b], which leads
to

ci :=
b+ a

2
+
b− a
2
× ti. (2.31)

Selecting the nodes ci of (2.31) as interpolation points provides the best polynomial
function that approximates the inverse function x−1 within the interval [a, b]. It
follows that they are the roots of qd+1 such that

pd(ci) =
1

ci
⇔ qd+1(ci) = 1− pd(ci)ci = 0. (2.32)
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Moreover, we have qd+1(0) = 1. The error propagation function can finally be
written as follows

qd+1(x) =
d+1∏

i=1

(x− ci)
−ci

=
d+1∏

i=1

(x− b+a
2
− b−a

2
ti)

b−a
2
ti − b+a

2

=

(
b− a
2

)d+1(
b− a
2

)−d−1 [d+1∏

i=1

(
2x−b−a
b−a − ti
ti − b+a

b−a

)]
. (2.33)

Lastly, and since the nodes ti are the roots of Td+1, the error propagation function
qd+1 can finally be derived as the rescaled Chebyshev polynomial

qd+1(x) =
Td+1

(
b+a−2x
b−a

)

Td+1

(
b+a
b−a
) . (2.34)

Because the roots are chosen to minimize the error between the polynomial function
pd(x) and the inverse function x−1 within the interval [a, b], the error propagation
function (2.34) has the smallest superior bound within [a, b]. In other words, the
Chebyshev polynomial provides the best damping factor for the eigenvalues of A
that belongs to the interval [a, b].

2.1.2.2 Convergence

Let us finish this introductory discussion on Chebyshev polynomial methods by a
few words on the convergence. Assuming b bounds the largest eigenvalue such that
λmax ≤ b, the Chebyshev polynomial iterative method is convergent if the error
propagation function qd+1(x) is bounded by one within (0, b]. As explained in [3],
remark that Td+1(t) equals 1 for t = 1 and is strictly monotonically increasing
for t > 1. Hence, the denominator of (2.34) is strictly greater than one because
b+a
b−a > 1. Moreover, the numerator is upper bounded by one for x ∈ [a, b] because
b+a−2x
b−a ∈ [−1, 1]. As a consequence, |qd+1(x)| < 1 on the interval [a, b]. Lastly,

because qd+1 is strictly monotonically decreasing for x ∈ [0, a] and equals one at
zero, then

∀x ∈ (0, b] , |qd+1(x)| < 1 ⇒ ρ (qd+1 (A)) < 1. (2.35)

2.1.3 Krylov methods

As stated in (2.18) of the previous section, the Cayley-Hamilton theorem implies
that, for a given matrix A, there exists a unique polynomial of maximal degree
n that is equal to the inverse matrix A−1 (i.e., pn(A) = A−1). Consequently, the
solution to the linear system Ax = b satisfies

x = A−1b = p(A)b =
n−1∑

i=0

ρiA
ib. (2.36)

Let Kd be the Krylov subspace of size d ≤ n and Qd be the n×d rectangular matrix
whose columns compose an orthonormalized basis of Kd, such that

Kd := span
{
b, Ab, . . . , Ad−1b

}
and range(Qd) = Kd. (2.37)
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Since a Krylov vector is the multiplication of a positive power of A with the right-
hand side b, (2.36) implies that the solution x belongs to the Krylov space Kn of
size n. Neither constructing the polynomial pn(A) or seeking the solution within the
Krylov space Kn of full size n helps in terms of computational complexity. Similarly
to the previous polynomial approximation approach that is based on generating a
polynomial of smaller degree d, the approximation is returned through generating a
Krylov subspace of smaller size d ≤ n. In practice, the Krylov space is augmented
iteratively by orthonormalizing each new Krylov vector against all the previous ones.
This step is generally called the Arnoldi procedure. The orthonormalization coef-
ficients are stored in the (d + 1) × d Hessenberg matrix denoted by H̄d, and the
new Krylov vector is stored into the orthonormal set Qd that also contains all the
previous ones. The form of the Hessenberg matrix H̄d is given in Appendix A.2 with
the Arnoldi process summarized in Algorithm 7.

That said, the Arnoldi procedure gives the well-known relation

AQd = Qd+1H̄d. (2.38)

Given the approximation x(k) and the residual r(k) = b−Ax(k) of the kth iteration,
the method consists of minimizing the residual of the next iteration by solving

x(k+1) = x(k) + argmin
x̃∈Kd

∥r(k) − Ax̃∥2. (2.39)

To do so, GMRES first calls the Arnoldi procedure (see Algorithm 7) to construct
the subspace Kd. Secondly, the method minimizes the quantity (2.39) by taking
benefit from both the orthonormality of Qd and the convenient Hessenberg shape of
H̄d to compute

x(k+1) = x(k) +QdH
−1
d QT

d r
(k), (2.40)

where Hd is obtained from H̄d by deleting its last row. In practice, Given’s rotations
are used to turn Hd into an upper triangular matrix, and we apply a backward
substitution to solve the system. This efficient approach that characterizes GMRES
is further recalled in Appendix A.2.

2.2 Multigrid methods

Choosing one iterative method over another is problem-dependent. Stationary meth-
ods are easy to implement, but converge slowly as the problem size increases. The
convergence analysis of Krylov methods is generally more tricky because of their
right-hand side dependency, but this feature also makes them more adaptive. Nev-
ertheless, all these methods have in common the same obstacle : the error composed
of small eigenvectors is more difficult to eliminate. Likewise, the construction of
Krylov subspaces relies on matrix powers, which tends to amplify the prevalence of
large eigenvectors in the minimization space over the small ones. For this reason,
finding a good preconditioner that accelerates the convergence of iterative methods
is still a major topic of research [65].

The aim of any multigrid method [13] is to accelerate the convergence to the solu-
tion by projecting these difficult small eigenvectors onto a subspace spanned by the
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columns of a sparse interpolation operator P . In fact, multigrid can be used both
as a preconditioner or as a standalone solver [49]. For details regarding the paral-
lelization of multigrid, we refer to the survey [17]. At every iteration of the method,
a coarse correction computes the best approximation of the solution that belongs
to the coarse space by minimizing the error in A-norm. Naturally, the A-norm re-
quires the matrix to be SPD. We make this assumption throughout this section to
introduce the fundamental ideas that govern multigrid. Assuming the coarse level
is defined by way of the Galerkin triple matrix formula

Ac = P TAP, (2.41)

the coarse correction of a two-level method satisfies

PA−1c P Tr = argmin
x̃∈span{P}

||x− x̃||A. (2.42)

More details on the variational properties (2.42) of the coarse correction can be
found in [72, Section A.2.4]. The left member of (2.42) can be interpreted as an
approximate inverse of A but restricted within the range of P . Similarly to (2.3),
the error propagation matrix associated with the two-level coarse correction is given
by

E := I − PA−1c P TA = I − ΠA (P ) . (2.43)
As for any projection method, the error propagation matrix of the coarse correction
E satisfies

E2 =
(
I − PA−1c P TA

) (
I − PA−1c P TA

)

=
(
I − P (P TAP )−1P TA

) (
I − P (P TAP )−1P TA

)

= I − 2P (P TAP )−1P TA+ P (P TAP )−1P TAP (P TAP )−1P TA

= I − P (P TAP )−1P TA = E. (2.44)

It follows from (2.44) that the eigenvalues of E either equal 0 or 1, and the set of
eigenvectors associated with zero eigenvalues belongs to the range of interpolation.
In other words, the coarse correction captures the space spanned by the columns of
P , whereas the space spanned by (I−PP T ) is invariant. For this reason, the coarse
correction depends on how efficient is the interpolation operator in approximating
the difficult and usually small eigenvectors. Deeper analysis on the effect of the
coarse correction can be found in [13, 69, 81].

Assuming the coarse correction eliminates the difficult eigenvectors generally char-
acterized by a slowly varying shape in the elliptic context, it is coupled with ν
iterations of what we call a smoother. In general, the smoother corresponds to a
stationary method such as Jacobi or Gauss-Seidel as introduced in Section 2.1.1.
The term “smoother” simply designates that the ν iterations eliminate the high fre-
quencies composed of large eigenvectors from the remaining error. Subsequently,
the new residual is characterized by a smooth shape. Hence, the coarse correction
should capture the new residual composed of low frequencies and associated with
small eigenvalues. The smoother is applied before each restriction and after each
interpolation to eliminate the transferred errors. Algorithm 1 recaps these steps
that form a two-level cycle.



2.2. MULTIGRID METHODS 33

Algorithm 1 Two-level cycle
1: Inputs : b right-hand side, x̃ approximation of x or initial guess, r = b−Ax̃ residual
2: A initial matrix, M smoother, P interpolator
3: for j = 1, ν do ▷ ν iterations of pre-smoothing are applied
4: x̃← x̃+M−1r
5: r ← b−Ax̃
6: end for
7: rc ← PT r ▷ The smoothed residual is restricted to the coarse level
8: ẽc ← Solve(Ac, rc) ▷ The direct method is applied on the coarse system
9: x̃← x̃+ P ẽc ▷ The coarse solution is interpolated to the fine level

10: r ← b−Ax̃
11: for j = 1, ν do ▷ ν iterations of post-smoothing are applied
12: x̃← x̃+M−1r
13: r ← b−Ax̃
14: end for
15: Output : x̃ approximation of x at the end of the cycle

In multilevel methods (more than two levels), the projection is repeated recursively
until reaching a coarse matrix for which the factorization by a direct solver is fast,
and made practical by enforcing the sparsity of Pl, with l the level index in the
matrix hierarchy. In the literature, Pl is called an interpolation operator precisely
because it interpolates the information from the level l + 1 to l. This operator also
determines the coarse projection subspace of each level l by enabling the construction
of the coarse matrices. In most symmetric applications, these coarse matrices are
constructed following the Galerkin formula Al+1 = P T

l AlPl. Because the multilevel
setup is equivalent to a two-level method recursively applied to solve the coarse
system, we consider by default a two-level method to simplify the further discussion.
Two-level methods are generally not of practical interest but help the introduction
of major ideas on which multilevel methods rely.

2.2.1 Geometric Multigrid

Geometric multigrid methods [13, 78] assume the initial matrix to result from the
discretization of a continuous problem over a grid Ωh, with h the mesh size. A coarse
matrix in the geometric setting can conversely be translated as a discretization over
a coarser grid ΩH where H > h. In this context, the interpolation operator P h

H

should enable the transfer from one grid to another such that

P h
H : RnH → Rnh and (P h

H)
T : Rnh → RnH . (2.45)

In most common geometric multigrid methods, the coarse mesh size is generally
twice that of its parent in the grid hierarchy. In that case, each coarse level has
two times fewer variables in one dimension, four times fewer in two dimensions, and
eight times fewer in three dimensions. Let GL be the hierarchy of L grids defined as
follows

GL :=
(
Ωh,Ω2h, . . . ,Ω2Lh

)
. (2.46)

Accordingly, each matrix of the hierarchy results from the discretization of the same
continuous problem over its associated grid in GL, which gives

AL := (Ah, A2h, . . . , A2Lh) . (2.47)

In the geometric multigrid setting, a coarse discretization matrix of the collection
(2.47) is not necessarily equivalent to the Galerkin triple matrix product (2.42).
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Hence, the variational properties are not always satisfied in the geometrical case,
which makes the convergence of the method more difficult to guarantee.

As mentioned previously, multigrid methods originate [40] for solving elliptic prob-
lems characterized by a dichotomy between low and high frequency eigenvectors,
each respectively associated with small and large eigenvalues. Since the near-kernel
space of elliptic problems is geometrically smooth [16] and the smoother mostly tar-
gets high frequencies, the coarse grid hierarchy should preserve the geometrically
smooth information of the fine level. In particular, the Laplacian of linear functions
equals zero, so P is generally designed to contain the constant function in its range.
In particular, solving either the coarse problem illustrated by Figure 2.1b or Fig-
ure 2.1c provides a relevant approximation of the slowly varying eigenvector plotted
on Figure 2.1a. The remaining matter is about finding an interpolation operator
P that focuses on the geometrically smooth information captured from either of
both coarse problems to the finest level. Enforcing P to contain the constant vector
should satisfy this requirement in this example.
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Figure 2.1: Smallest eigenvector of a 2D Laplacian matrix with respect to the mesh size

Thereby, the goal of creating a set PL−1 of L−1 interpolation operators is to enable
the propagation of the geometrical smoothness captured on the coarsest level up to
the finest. Define

PL−1 :=
(
P h
2h, P

2h
4h , . . . , P

2(L−1)h
2Lh

)
. (2.48)

A standard rule of interpolation is to approximate each non-coarse variable by com-
puting the mean of its neighboring coarse variables. Hence, linear vectors that are
by definition the smoothest among all the vectors of Ωh, are contained in the range
of interpolation.

Example 1. Let Ah be a one-dimensional Laplacian matrix with mesh size h. Con-
versely, let A2h be its coarse counterpart discretized with a mesh size 2h, and P h

2h be
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the interpolation operator that links Ah with A2h defined as follows

P h
2h =

1

2




2
1 1

2
1

. . .
1
2
1 1

2




, A2h =
1

4h2




2 −1
−1 2 −1

. . .
−1 2 −1

−1 2




(2.49)

The Galerkin coarse matrix is linked with the coarse discretization matrix as follows

1

2

(
P h
2h

)T
AhP

h
2h = A2h. (2.50)

Let the smoother of the two-level method be weighted Jacobi with w := 2
3
. Accord-

ingly, define the error propagation matrix of the overall two-level method by

ETG := (I − h2

3
Ah)(I −

1

2
P h
2hA

−1
2h

(
P h
2h

)T
Ah)(I −

h2

3
Ah). (2.51)

Figure 2.2 represents the damping factors of Ah eigenvectors with respect to their
associated eigenvalue, and for different methods.
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Figure 2.2: Contraction rates of the coarse correction with the Damping factors of the smoother
and the two-grid method

As expected, Figure 2.2 shows that the coarse correction works in complementar-
ity with the smoother. Indeed, while the smoother damps the large and oscillatory
eigenvectors, the coarse correction captures the slowly varying small eigenvectors.

Enforcing the equivalence between the coarse correction and a minimization prob-
lem (see (2.43)) is not always simple. In Example 1, (2.50) shows that the coarse
discretization matrix A2h is related to the Galerkin coarse-grid. Scaling the coarse
correction with the additional term 1/2 allows us to rediscretize the problem instead
of computing the triple matrix product while preserving the minimization proper-
ties of the coarse correction. This equivalence does not hold for all kind of coarse
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discretization matrices and interpolation rules. In fact, the Galerkin coarse-grid
correction defined by the triple matrix product P TAP [47] was introduced to enable
the equivalence between the coarse correction and solving a minimization problem
in A-norm.

2.2.2 Algebraic Multigrid

For some problems, establishing a grid hierarchy that captures the geometrically
smooth near-kernel space on the coarsest-level as in (2.46) is not simple. The
Figure 2.3 represents the remaining error after several smoothing iterations for an
anisotropic problem defined as follows

(Anisotropic Diffusion)⇔





−
(
a
∂2u

∂x2
+ b

∂2u

∂y2

)
u = f in [0, 1]2

a = b for x ≤ 1/2
a≫ b for x > 1/2

(2.52)

This anisotropic example arises from [35], which illustrates the interest of algebraic
multigrid. It shows that the geometrical smoothness can follow a special direc-
tion for which traditional geometrical coarsening approaches perform badly. Hence,
finding a more general framework that better track the geometrical smoothness has
been a major topic of research on multigrid methods. The comparison between the
geometrical coarse correction and its algebraic counterpart is illustrated in Figure
2.4.
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Figure 2.3: Remaining error with respect to the number of smoothing steps for a 2D Anisotropic
Equation

Moreover, while multigrid methods are mostly used to solve PDE equations, extend-
ing the method to any kind of linear systems has also motivated the development of
a more flexible approach based on the matrix entries only.

2.2.2.1 Expressing the geometrical smoothness in terms of matrix entries

Algebraic Multigrid methods (AMG) [35] originally aimed at solving elliptic prob-
lems. Hence, the goal is to design P to approximate the geometrical smoothness by
looking at the matrix entries only. In fact, the only geometrical information require-
ment in the method is the geometrical smoothness assumption of the near-kernel
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space. Hence, AMG first seeks an efficient coarse / non-coarse variable splitting de-
noted by the sets C/F . In a second pass, interpolation rules are constructed based
on the interactions between both set of variables.

Both the design of interpolation rules and the splitting strategy of variables are
based on geometrical smoothness in terms of matrix entries. Accordingly, let e be
a vector of the near-kernel space of A such that

eTAe≪ 1. (2.53)

For instance, it is well known that the null space of the Laplacian operator is the
space of linear functions. Thereby, assuming the constant vector belongs to the
near-kernel space of A, it is reasonable to assume that A has row sum zero, which
gives

aii = −
∑

j ̸=i

aij. (2.54)

From (2.54), one can expend (2.53) to arrive at

eTAe =
∑

i<j

(−aij)(ei − ej)2 ≪ 1. (2.55)

As a slow variation is characterized by a small difference (ei − ej)2, it follows that
a smooth error varies slowly in the direction of large negative entries of the matrix.
Therefore, these large entries are very important in the design of good interpolation
rules aimed at propagating the geometrical smoothness of the near-kernel space.

2.2.2.2 Coarse and non-coarse variables splitting

The choice of coarse variables in the algebraic setting is important to construct a
matrix hierarchy that preserves the geometrical smoothness of the near-kernel space.
Equation (2.55) shows that this geometrical smoothness is characterized by the large
entries of A. Then, the set of coarse variables C should contain the nodes that are
the most “strongly connected” to the others by way of the largest entries of the
matrix. In that way, we define the set Si of variables which are strongly connected
to ei, such that

Si :=
{
j , −aij ≥ θ max

k ̸=i
(−aik)

}
. (2.56)

with θ ∈ [0, 1]. Choosing a relevant θ can be tricky, but its general purpose is to
make the eligibility of strongly connected variables more flexible.

While coarse variables are the most strongly connected to others, the non-coarse
variables conversely correspond to variables that are strongly connected to the coarse
ones. This splitting strategy can be described sequentially as follows : at each it-
eration the node with the largest card (Si) is inserted into in the group of coarse
variables C, and its strongly connected nodes that belong to Si are put in the group
of non-coarse variables F . Both steps are repeated until all variables are assigned
either in C or F , such that

nc := Card(C) , nf := Card(F) , nc + nf = n. (2.57)

This C/F splitting is parallelizable in many ways [49, 80, 24].
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2.2.2.3 Interpolation rules of non-coarse variables

Once all variables are assigned to the appropriate sets, the interpolation rules can
finally be designed. Especially, the interpolation operator should approximate the
geometrically smooth near-kernel space accurately. While coarse variables can sim-
ply be injected to the fine level, the purpose of the development that follows is to
introduce appropriate interpolation rules for the non-coarse variables. Reordering
the interpolation operator in terms of coarse and fine variables gives an interpolation
operator of the form

(Pec)i =

{ ∑
j∈Ci wijej if i ∈ F
ei if i ∈ C ⇔ P =

[
Wf

Ic

]
, (2.58)

with ec a coarse vector of size nc. Naturally, the nc×nc identity block Ic corresponds
to the injection of coarse variables, while the block Wf of size nf × nc contains the
weights of interpolation wij for the interpolation of the non-coarse variables. These
weights now need to be defined.

First, let us define three sets for each non-coarse variable i ∈ F , such that :

• Ci = C ∩ Si is the set of strongly connected coarse variables

• Fi = F ∩ Si is the set of strongly connected non-coarse variables

• Ni = {j , aij ̸= 0} ∩ S̄i is the set of weakly connected variables

It follows that the right member of (2.54) can be split into three parts

aiiei = −
∑

j∈Ci
aijej −

∑

j∈Fi

aijej −
∑

j∈Ni

aijej , i ∈ F (2.59)

where each part contributes in determining an appropriate interpolation rule for ei.
First, one can use the matrix entries of the set Ci as follows

ei ≈ −
∑

j∈Ci

aij
aii

ej. (2.60)

While this simple interpolation formula may be enough for certain problems, it can
be improved with the second sum over the set Fi. However, non-coarse variables
can not be used for interpolation. Instead, they can be approximated by the coarse
variables that belongs to Ci and by using the interpolation formula provided by
(2.60), such that

−
∑

j∈Fi

aijej ≈ −
∑

j∈Fi

aij

∑
k∈Ci ajkek∑
k∈Ci ajk

. (2.61)

The small entries associated with variables of Ni are added to the diagonal entry
of ei (assuming ej ≈ ei for all weakly connected variables), which finally gives the
weights of interpolation of (2.58)

wij := −
aij +

∑
k∈Fi

aik×akj∑
l∈Ci akl

aii +
∑

k∈Ni
aik

. (2.62)
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Since algebraic multigrid methods do not rely on geometric information (except the
geometrical smoothness assumption of the near-kernel space), coarse matrices are
constructed by way of the Galerkin formula (2.41).

The following Figure 2.4 compares the remaining error after the geometric coarse
grid correction with the remaining error after the algebraic coarse correction on the
anisotropic problem (2.52). Contrary to Figure 2.4c, the shape of Figure 2.4b varies
slowly along the y-axis because the geometric multigrid coarsening does not follow
the proper direction of the near-kernel space that characterizes anisotropic problems.
Conversely, the remaining error after the algebraic coarse grid correction oscillates
uniformly, except on the axis x = 1

2
where the error reaches its maximal value. In

fact, the remaining error in Figure 2.4c is small in amplitude and high in frequency
precisely because the algebraic setting enables more flexible interpolation operators
that better track the geometrically smooth near-kernel space.
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Figure 2.4: Remaining error after 10 iterations vs. 10 iterations plus a Geometric Coarse Grid
Correction vs. 10 iterations plus an Algebraic Coarse Grid Correction for a 2D Anisotropic

problem

2.2.3 Ideal Framework

Although the classical AMG approach presented in Section 2.2.2 has proven to
work remarkably well for a wide variety of problems, the original developpment
of AMG heuristics was built upon the assumption that the off-diagonal entries are
nonpositives [70], which can limit its applicability. New algebraic methods have been
developed to address this issue such as AMGe [11, 48, 15] or Smoothed Aggregation
[75, 73, 74]. An ideal framework [38, 39, 79] generalizes the algebraic multigrid
concepts to address even broader classes of problems. More precisely, it gives more
guidance in the design of multigrid methods such as the ideal interpolation given a
fine variable space where the smoother should be the most effective. This feature
is the major contribution of the ideal theory. Likewise, the ideal framework offers
valuable ideas for the development of a multigrid method for the Helmholtz equation.

2.2.3.1 Motivations

The guidance of AMGe theories [11] was not only to design interpolation to approx-
imate geometrical smoothness, but to satisfy the following heuristic :
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“Interpolation should be able to approximate an eigenvector with error bound pro-
portional to the size of the associated eigenvalue”.

In that way, define R the operator that selects the nc coarse variables from the
initial domain. Hence, the interpolation of coarse variables is denoted by the oper-
ator Q := PR. For the sake of convenience, we assume RP = Ic such that Q is a
projection operator onto the range of P . The interpolation operator obeys with the
above heuristic if it satisfies the so-called weak approximation property, such that

∀e ∈ Cn\ {0} , µ(Q, e) :=
∥(I −Q) e∥22
∥e∥2A

≤ K, (2.63)

for some constant K. The constant K provides a uniform bound to the two-grid
convergence rate, by way of the following inequality that can be derived from (2.63)

∥ETG (P )∥2A ≤ 1− 1

K
. (2.64)

In other words, satisfying the weak approximation property is a sufficient condition
for two-grid method uniform convergence [77, 73]. While the numerator corresponds
to the interpolation error from the coarse variables, (2.63) highlights how critical
the interpolation of small eigenvectors is due to the denominator. In fact, the mea-
sure increases as e gets closer to the near-kernel space. Hence, the measure µ(Q, e)
is minimal when P minimizes the interpolation error of eigenvectors in proportion
with the inverse of their associated eigenvalues.

To design a coarse correction that also works in complementarity with a general form
of smoother M , the range of interpolation should approximate the subspace that
the smoother damps the least. In what follows, we assume that M̃ :=MT +M −A
is SPD, which implies that the smoother designated by M is convergent (see House-
holder John Theorem in [63, Corollary 2.10]). Accordingly, the new approximation
property provided by the ideal framework is satisfied if

∀e ∈ Cn\ {0} , µM(Q, e) :=
∥(I −Q) e∥2

M̃

∥e∥2A
≤ K. (2.65)

This is the main difference with the AMGe theory, which assumes a classical form of
smoother that generally damps large eigenvectors characterized by high frequencies.
In the ideal theory, the Euclidean norm of the numerator in (2.65) is replaced by the
M̃ -norm. Thereby, the ideal framework generalizes the algebraic multigrid setting
because no assumption is required on M as long as M̃ is SPD. In fact, one can
even imagine a coarse grid correction that works complementary with a near-kernel
space smoother. For instance, block smoothers have been developed in the context
of definite Maxwell’s equations for damping its local near-kernel components [18,
19, 20].

2.2.3.2 Ideal interpolation

As in the classical algebraic setting, this generalized framework [38, 39] relies on an
initial separation of coarse and non-coarse variables designated by the sets C and F



2.2. MULTIGRID METHODS 41

respectively. In addition, the theory resorts to a coarse variable operator denoted
by RT and a fine variable operator denoted by S, such that

RT : Rnc → Rn , and S : Rnf → Rn. (2.66)

Naturally, because both sets C and F does not intersect

RS = 0 ⇔ Range(RT ) ∩ Range(S) = ∅. (2.67)

In fact, the space defined by the coarse variable operator RT should be handled
by the coarse correction, whereas the fine variable operator S defines the space
where the smoother should work the best, in compliance with the complementarity
principle. Moreover, the interpolation error is maximal for vectors in the range of
S, whereas the error is zero for vectors in the range of P , such that

(I −Q)S = S , (I −Q)P = 0. (2.68)

Beyond its benefits on the convergence analysis of algebraic multigrid methods, the
generalized framework also provides the interpolation operator P∗ that minimizes
the generalized measure µM(Q, e) of (2.65). This interpolator called ideal is defined
as follows

P∗ := argmin
P

max
e̸=0

µM(Q, e) =
(
I − S

(
STAS

)−1
STA

)
RT . (2.69)

Accordingly, the minimum µ∗M of µM(Q, e) is reached for P = P∗ such that

µ∗M =
1

λmin

(
(STMS)−1 (STAS)

) , (2.70)

and the ideal two-grid convergence rate is bounded as follows

∥ETG(P∗)∥2A ≤ 1− 1

µ∗M
= 1− λmin

((
STMS

)−1 (
STAS

))
. (2.71)

The left operator (I−S(STAS)−1STA) in (2.69) is an error propagation matrix of a
projection onto the space spanned by S in A-norm. The fine variable space range(S)
should be handled by the smoother but not by the coarse correction. Hence, the
ideal interpolation operator works by removing from range(RT ) the S-related infor-
mation that can be captured by the smoother.

Similarly, µ∗M depends on how efficient M is in damping the S-space. Conversely,
(2.70) reveals what we could call an ideal smoother. Assuming STS = If for conve-
nience, and letting Mf be defined by

Mf = S
(
STAS

)−1
ST , (2.72)

then injecting (2.72) into (2.70) gives

µ∗Mf
= 1 ⇒ ∥ETG e∥2A = 0. (2.73)

In other words, one iteration of the ideal coarse correction plus one iteration Mf is
equivalent to a direct method, such that

(
I − P∗

(
P T
∗ AP∗

)−1
P T
∗ A
)(

I − S
(
STAS

)−1
STA

)
= 0. (2.74)
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2.2.3.3 Connection with the classical algebraic multigrid setting

Coarse and non-coarse variables simply result from a selection of nodes in the clas-
sical algebraic setting, so both associated RT and S are injection operators of coarse
and non-coarse variables respectively. These classical variable operators will be stud-
ied for Helmholtz in Chapter 5. Recalling the shape of P as established in (2.58),
we have

P :=

[
Wf

Ic

]
, R :=

[
0 Ic

]
, S :=

[
If 0

]T
, (2.75)

where A is reordered in terms of coarse and fine variable connection blocks such that

A =

[
START STAS
RAS RART

]
=

[
Aff Afc

Acf Acc

]
(2.76)

Remark that the condition RS = 0 prescribed by the ideal theory (2.67) is satisfied
in this setting. Injecting both variable operators defined in (2.75) in the formula of
ideal interpolation (2.69) gives

P∗ =

[
−A−1ffAfc

Ic

]
. (2.77)

The resulting coarse matrix is a Schur complement, which corresponds to the coarse
variable block of A subtracted from fine variable related information

P T
∗ AP∗ = Acc − AcfA

−1
ffAfc. (2.78)

Section A.3 presents an idealistic scenario given another pair of coarse and non-
coarse variable operators. The example also appears in [38, Corollary 3.4].

2.2.3.4 Interest and practical implementations

Design of algebraic multigrid methods is generally driven by the theory. The ideal
framework provides a theoretical definition of an ideal interpolation based on an
initial pair of coarse and fine variables, and inspired an extensive amount of practi-
cal multigrid methods. Certain problems have convenient structural properties that
can be exploited to construct the ideal interpolation and the Schur complement at
lower cost. For certain discretization stencils such as the 5-point stencil introduced
in (1.2), separating coarse and non-coarse variables based on a Red-Black coloring
scheme gives a diagonal Aff block. Hence, both ideal interpolation and Mf can be
computed exactly, which gives an exact solver as highlighted in (2.74).

Although rarely computed exactly, the strategy of approximating the ideal inter-
polation and its compatible smoother as in (2.74) drives reduction methods [62, 84],
and has proven to solve a wide variety of problems. In particular, Multigrid-In-Time
[36] solvers tackle time-dependent problems and resort extensively to reduction-
based ideas. Other reduction-based methods approximate the ideal interpolation
operator by solving an optimization problem that seeks the best set of coarse vari-
ables [61, 85] to enable a more practical approximate inverse of the fine variable
block Aff in (2.77).
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2.2.4 Optimal Framework

As described in the previous section, the term “ideal” is used because P∗ minimizes
the measure (2.65) given an initial coarse and non-coarse variable splitting. Such
a splitting is used in most classical algebraic multigrid settings in practice, so the
ideal framework is interesting as a guide for algorithm development. However, the
bound on the convergence rate provided in (2.71) is not sharp, which means that for
some problem, there might exist another interpolation operator based on different
coarse variables that work better than one particular P∗.

2.2.4.1 Optimal approximation property

The optimal framework provides the “optimal” interpolation operator P# for a given
smoothing matrixM , such that the resulting convergence rate of the method is sharp
[73, 10]. Let ΠM̃ be the M̃ -orthogonal projection onto Range(P ) defined as follows

ΠM̃ := P
(
P TM̃P

)−1
P TM̃ such that ΠM̃e = argmin

ẽ∈Range(P )

∥e− ẽ∥M̃ . (2.79)

In a multigrid cycle, the best among all possible interpolation operators minimizes
the interpolation error in proportion with the inverse of associated eigenvalues as
in the weak-approximation property (2.63), but also the overlap with the smoother.
This feature is the key for a good complementarity between the coarse correction
and the smoother. Here, the measure provided by the optimal framework is

∀e ∈ Cn\ {0} , uM̃(P, e) :=
∥(I − ΠM̃)e∥2M̃

∥e∥2A
. (2.80)

Here again, the M̃ -norm amplifies over theA-norm the eigenvectors that the smoother
struggles to capture, and the denominator emphasizes the small eigenvectors.

2.2.4.2 Optimal interpolation and generalized eigenvalue problem

Let P# be the optimal interpolation operator that minimizes µM̃(P, e) such that

P# := argmin
P

max
e ̸=0

µM̃(P, e). (2.81)

The following lemma can be found in [10, Lemma 1] and connects the form of the
optimal interpolation operator with the solution to a generalized eigenvalue problem.

Lemma 1. Let P : Rnc → Rn be full rank and let σ1 ≤ σ2 ≤ . . . ≤ σn and
w1,w2, . . . ,wn denote the eigenvalues and eigenvectors of the generalized eigenvalue
problem

Awi = σiM̃wi. (2.82)
Then the optimal convergence rate of the two-grid method is given by

∥ETG (P#)∥2A = 1− 1

µ#

M̃

with µ#

M̃
=

1

σnc+1

, (2.83)

where the optimal interpolation operator P# satisfies

Range(P#) = span ({w1, . . . ,wnc}) . (2.84)
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The two-grid convergence rate provided by (2.83) is the best among all the possi-
ble interpolation operators P for a given smoother M . Worth noting how similar
is (2.83) to the convergence rate provided by the ideal theory in (2.71). Since the
space spanned by P is damped by the coarse correction, the overall convergence rate
depends on the remaining space and how the smoother damps it. In other words,
the eigenvalue σnc+1 represents the deviation of the smoother in approximating the
energy that goes in the direction of least captured eigenvector wnc+1.

That said, the condition (2.84) is difficult to satisfy because computing the nc small-
est eigenvectors of the generalized eigenvalue problem (2.82) is expensive. In addi-
tion, P should have a reasonable sparsity to remain practical.

Finally, [10, Lemma 2] demonstrates that both ideal and optimal frameworks are
reconnected if the coarse and the fine variable operators RT

# and S# satisfy

Range
(
RT

#

)
= {w1 , . . . ,wnc} , Range (S#) = {wnc+1 , . . . ,wn} . (2.85)

As a consequence, the ideal interpolation operator resulting from (2.85) is also op-
timal, and has the form

P# = P∗ = (I − S#(S
T
#AS#)

−1ST
#A)R

T
#, (2.86)

such that the optimal convergence rate (2.83) is given by

µ#
M =

1

σnc+1

=
1

λmin

((
ST
#MS#

)−1
(ST

#AS#)
) . (2.87)



Chapter 3

Multigrid for Helmholtz

The multigrid theory introduced in Chapter 2 exhibits the importance of a coarse
correction that works in complementarity with the smoother (e.g., Figure 2.2). In
elliptic problems, usual smoothers capture oscillatory errors associated with large
positive eigenvalues. Hence, a good coarse correction results from an interpolation
error that minimizes the remaining smooth errors associated with small positive
eigenvalues. For these reasons, the geometrical smoothness of the near-kernel space
and also the symmetric positive definiteness of the matrix are two key assumptions
in most of multigrid methods.

Nevertheless, these convenient assumptions do not hold for all problems. This con-
cern was first mentioned by Bakhvalov in the 1960s [4] and further developed by
Brandt in the 1980s [9] for both nearly singular and slightly indefinite problems. In
certain cases, the traditional smoothers do not satisfy the Householder-John The-
orem [63, Corollary 2.10] and amplify certain eigenvectors as a consequence. In
particular in the indefinite case, the traditional smoothers based on the station-
ary methods introduced in Section 2.1.1 tend to amplify the negative eigenvectors
generally characterized by a slowly varying shape. The initial matrix may have
negative eigenvalues but a positive constant diagonal as in (1.2). In that case, a
Jacobi method would approximate the negative eigenvectors in the wrong direction.
While the amplification of the error may only slow the convergence down, it can
also lead to divergence if the coarse correction does not capture the amplified error
properly. Moreover, certain types of coarse correction do not satisfy the variational
properties that ensure their robustness. The latter issue happens in certain geomet-
rical settings because the coarse matrices arise from a rediscretization of the initial
continuous problem. Hence, they are not equivalent to the Galerkin triple matrix
product (2.41). While these methods may provide fast convergence in practice, they
can easily amplify the error if the problem is nearly singular or indefinite.

Typically, Helmholtz problems are characterized by indefinite matrices for which
traditional smoothers and coarse corrections do not perform as in the SPD case.
The Helmholtz equation can be seen as a shifted Laplacian equation where geomet-
rically smooth eigenvectors (i.e., low Fourier modes, see Figure 3.1b) can be negative
eigenvectors because of the shift. In the same way, the smallest eigenvectors of the
shifted Laplacian (1.2) are higher in frequency (see Figure 3.2b). As a consequence,
three main issues arise when solving the Helmholtz equation with multigrid. First,

45
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usual smoothers amplify the negative eigenvectors as already mentioned. Secondly,
small eigenvectors for which the interpolation error should be minimum are not
geometrically smooth because of the shift. In fact, the near-kernel space of the
Helmholtz equation is oscillatory, and interpolation operators should be designed to
approximate it regardless of its inconvenient shape. Lastly, the discretization matrix
is indefinite, which breaks the connection between Galerkin-based coarse corrections
and energy-norm minimization principles.

In this chapter, we begin with a survey of the past attempts aimed at adapting
multigrid methods to the indefinite and oscillatory Helmholtz equation. We con-
clude this chapter by demonstrating how the coarse correction can be corrupted by
the error of interpolation through a concept of “pollution”, although P has good
approximation properties of the target near-kernel space.

3.1 State of the art on multigrid for Helmholtz

While other solvers exist for Helmholtz [55, 14], we only present multigrid solver
based attempts. The Section 3.1.1 emphasizes the difficulties encountered by multi-
grid by way of a simple one-dimensional model problem. In this section, both the
smoother and the coarse correction are analyzed with respect to the discretization
coefficient kh to stick with the terminology of the literature, whereas we use α in the
rest of the manuscript. The connection between the discretization coefficient kh and
the shift α in (1.2) is provided by the relation α = (kh)2. Therefore kh also measures
how indefinite the resulting discretization matrix is. For instance, kh = 0.625 cor-
responds to 10 per wavelength ω (h = ω/10 = 2π/10k ⇔ kh = 0.625), which means
shifting the eigenvalues of the one-dimensional Laplacian matrix by α = 0.6252 to
the negative. Coarser discretization yields larger kh, and subsequently more nega-
tive eigenvalues.

3.1.1 One-dimensional spectral analysis of the multigrid operators

The spectral analysis of two-grid methods often relies on the one-dimensional Laplace
modal analysis [44, chapter 2] also developed in [13, chapter 5]. This very classi-
cal development has been extended in [29, 33] to the following one-dimensional
Helmholtz model problem

(1D model problem) ⇔
{
−∆u− k2u = f in Ω = [0, 1]

u = 0 on ∂Ω , (3.1)

on which is based the discussion of this section. Thereupon, the finite difference
discretization matrix resulting from (3.1) used in this discussion is

A :=
1

h2
Tridiag

(
−1, 2− (kh)2 ,−1

)
, h :=

1

n+ 1
(3.2)

where k is the wavenumber, h the mesh size and n the size of A. The model problem
(3.1) is convenient to study because a Fourier analysis gives the exact eigenvalues
and eigenvectors of A. The discretization matrix A defined in (3.2) is a shifted
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Laplacian matrix whose eigenvalues and eigenvectors are defined as follows

λhj =
2− 2 cos(jπh)

h2
− k2 , vh

j = [sin(jπlh)]nl=1 , ∀ j = 1, . . . , n. (3.3)

The three eigenvectors associated with the three smallest magnitude eigenvalues in
the non-shifted case are illustrated in Figure 3.1b, whereas Figure 3.2b portrays
their counterparts when the discretization coefficient is kh = 0.625. As mentioned
in the introduction of this section, the indefiniteness of the matrix depends on the
discretization coefficient kh. We say that the matrix is highly indefinite when kh is
close to

√
2 because its spectrum is characterized by a balance between negative and

positive eigenvalues. We also note that the matrix becomes negative definite when
kh > 2. Now that the model problem on which relies this chapter is introduced, let
us detail how the multigrid operators are affected by the discretization coefficient
kh when applied to Helmholtz.
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Figure 3.1: 1D Laplace eigenvalues and the three smallest eigenvectors
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Figure 3.2: 1D Helmholtz eigenvalues and the three smallest eigenvectors, kh = 0.625

3.1.1.1 The problem of the smoother

Let us consider a Jacobi smoother as introduced in the Section 2.1.1 dedicated
to stationary iterative methods. Applied to the discretization matrix (3.2), the
approximate inverse in the Jacobi method is D := Diag (A). The error propagation
matrix is defined by

EJac := I −D−1A = − 1

2− (kh)2
Tridiag (1, 0, 1) . (3.4)
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The error propagation matrix EJac has the same eigenvectors asA, but its eigenvalues
are given by

λj (EJac) = 1− λhj

2− (kh)2
=

2 cos(jπh)

2− (kh)2
. (3.5)

The Jacobi method applied to the model problem (3.1) converges if its spectral
radius is strictly less than one. As a consequence, we have

|λj (EJac)| < 1 ⇔ |cos (jπh)| <
∣∣∣∣∣1−

(kh)2

2

∣∣∣∣∣ , j = 1, . . . , n. (3.6)

The condition of convergence provided by (3.6) is especially difficult to satisfy for the
largest values of the cosine function reached when j ≈ 1 and j ≈ n (i.e., cos(πh) ≈ 1
and cos(nπh) ≈ −1). The region j ≈ 1 corresponds to the negative eigenvalues of
A whose associated eigenvectors are geometrically smooth. Conversely, the region
j ≈ n corresponds to the largest eigenvalues of A whose associated eigenvectors
are very oscillatory. In other words, both smooth and very oscillatory modes are
amplified in this case. By contrast, intermediate eigenvectors are damped because
the cosine function is smaller, which helps satisfy the condition of convergence (3.6).
We also remark that the right term |1− (kh)2 /2| decreases as the discretization co-
efficient kh tends to

√
2. As a consequence, the number of modes that Jacobi is able

to damp decreases as the mesh discretization gets coarser, and more eigenvectors
are amplified.

The weighted-Jacobi smoother introduced in Section 2.1.1 helps the damping of
a certain portion of the spectrum. In the context of solving the Helmholtz equa-
tion, adding a weight still provides a significant help in damping the very oscillatory
modes that unweighted Jacobi tends to amplify. Let λmid be the midpoint between
the largest negative and positive eigenvalues, such that

λmid :=
λh1 + λhn

2
. (3.7)

Assuming λmid is positive, the optimal weight wopt that allows us to efficiently
damp the half most oscillatory eigenvectors whose eigenvalues belongs to the in-
terval [λmid, λ

h
n] is obtained by solving

1− wopt
λmid

2− (kh)2
= −

(
1− wopt

λhn
2− (kh)2

)
. (3.8)

which leads to the optimal weight for the one-dimensional model problem (3.1)

wopt =
2− (kh)2

3− (kh)2
. (3.9)

Below figures plot the damping factor of each eigenvector with one Jacobi smoothing
iterations with respect to the discretization coefficient kh and for two values of the
weight w.

As expected, Figure 3.3 highlights how Jacobi with no weight amplifies both small
and large eigenvalues with respect to kh. Even though adding the optimal weight



3.1. STATE OF THE ART ON MULTIGRID FOR HELMHOLTZ 49

0 1 2 3

−1

0

1

λh
j

λ
j
(E

J
a
c
)

w = 1.0
w = wopt

(a) kh = 0.3125, pts / wavelength = 20

0 1 2 3

−1

0

1

λh
j

λ
j
(E

J
a
c
)

(b) kh = 0.625, pts / wavelength = 10

0 1 2 3

−1

0

1

λh
j

λ
j
(E

J
a
c
)

(c) kh = 0.9375, pts / wavelength = 7

−1 0 1 2

−4

−2

0

2

4

λh
j

λ
j
(E

J
a
c
)

(d) kh = 1.25, pts / wavelength = 5

Figure 3.3: Damping factors of the Jacobi method with respect to kh and w.

(3.9) improves the capture of oscillatory modes, the smooth ones associated with
negative eigenvalues are still amplified. The two-grid method would diverge in this
case if the coarse correction does not contract these eigenvectors sufficiently.

While this analysis has been performed for Jacobi, the reasoning is the same for
other traditional stationary methods such as Gauss-Seidel or Richardson.

3.1.1.2 The problem of the coarse correction

This section illustrates the difficulty that the coarse correction encounters when
solving the indefinite Helmholtz equation. In particular, applying the classical ge-
ometrical setting to the model problem (3.1) reveals the interaction between the
discretization coefficient and the robustness of the coarse correction. The next de-
velopment originates from [29].

Let the number of fine variables n be odd, so that the N := n−1
2

coarse variables
correspond to interior points of the fine grid. Let AH be the coarse counterpart
of Ah := A with coarser mesh size H := 2h. Naturally, the associated coarse-
grid eigenvectors are vH

j = [sin(jπlH)]Nl=1. One can show that the first N fine-grid
eigenvectors are related to the last N fine-grid eigenvectors by the relation

[
vh
j

]
i
= (−1)i+1

[
vh
n+1−j

]
i

, j = 1, . . . , N. (3.10)
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In addition, let the coarse-to-fine transformation be given by the uniform interpola-
tion operator

[
P h
He

H
]
i
:=

{
eH
i/2 if i even,

eH
(i−1)/2 + eH

(i+1)/2 if i odd, 1 ≤ i ≤ n. (3.11)

Note that P h
H is the very classical form of interpolation introduced in (2.49) and is

often called “linear” or “uniform”. From both equations (3.10) and (3.11), it follows
that

P h
Hv

H
j = c2jv

h
j − s2jvh

n+1−j , j = 1, . . . , N, (3.12)

with cj := cos( jπh
2
) and sj := sin( jπh

2
). Since coarse variables are interior points of

the fine grid, the fine-to-coarse average transfer operator

PH
h :=

1

2

(
P h
H

)T (3.13)

can be formulated element-wise as follows
[
PH
h eh

]
i
:=

1

4

([
eH
]
2i−1 + 2

[
eH
]
2i
+
[
eH
]
2i+1

)
, j = 1, . . . , N. (3.14)

Therefore, the following mapping properties of the restriction operator when applied
to the jth fine-grid eigenvector vj are given by

PH
h vh

j =





c2jv
H
j , 1 ≤ j ≤ N

0, j = N + 1
−c2jvH

n+1−j, N + 2 ≤ j ≤ 2N + 1
. (3.15)

Then, let E be the error propagation matrix of the coarse correction such that

E := I − P h
HA
−1
H PH

h Ah (3.16)

While (3.12) shows that the interpolation of coarse-grid eigenvectors results in a
combination of fine-grid eigenvectors, (3.15) shows that the restriction of fine-grid
eigenvectors results in a combination of coarse-grid eigenvectors. Both properties
allow us to derive the remaining error after applying the coarse correction to vj by

Evh
j =





(
1− c4j

λhj
λHj

)
vh
j + s2jc

2
j

λhj
λHj

vh
n+1−j, 1 ≤ j ≤ N

vh
j , j = N + 1

(
1− c4j

λhj
λhn+1−j

)
vh
j + s2jc

2
j

λhj
λhn+1−j

vh
n+1−j, N + 2 ≤ j ≤ 2N + 1

As a consequence, the two-dimensional spaces spanned by the pairs of complemen-
tary fine-grid eigenvectors are invariant under E such that

E
[
vhj , vn+1−j

]
=
[
vhj , vn+1−j

]
Ej, j = 1, . . . , N, (3.17)
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where the 2× 2 matrix Ej is defined as follows

Ej :=




1− c4j
λhj
λHj

s2jc
2
j

λhn+1−j
λHj

s2jc
2
j

λhj
λHj

1− s4j
λhn+1−j
λHj


 , j = 1, . . . , N. (3.18)

Hence, the contraction rate of the fine-grid eigenvector vh
j is

vTj Evj = [Ej]1,1 = 1− c4j
λhj
λHj

. (3.19)

Moreover, since fine and coarse eigenvalues can be respectively formulated by

λhj =
4

h2
s2j − k2 and λHj =

4

h2
s2jc

2
j − k2, (3.20)

the ratio of the fine eigenvalue over the coarse eigenvalue in (3.19) equals

λhj
λHj

=
s2j −

(
kh
2

)2

s2jc
2
j −

(
kh
2

)2 = 1 +
s4j

s2jc
2
j −

(
kh
2

)2 . (3.21)

Equation (3.21) highlights the effect of the discretization coefficient on the effec-
tiveness of the coarse correction. For instance, very fine and very coarse meshes
yield positive and negative definite discretization matrices respectively, such that
the coarse correction never amplifies the modes in either scenario. However, this
statement is not true for intermediate mesh sizes. In particular, the ratio (3.21)
tends to explode when 2sjcj ≈ kh (i.e., λHj ≈ 0). The coarse correction operates as
a contraction on vj if

∣∣vT
j Evj

∣∣ < 1 ⇔





(kh)2 < 4s2jc
2
j

(
1− s2jc

2
j

2− c4j

)
, if 2sjcj > kh

(kh)2 > 4s2j , if 2sjcj < kh,

. (3.22)

The quantity s2jc2j is symmetric, such that

s2jc
2
j = sin

(
jπh

2

)2

cos

(
jπh

2

)2

= sin

(
π

2
− jπh

2

)2

cos

(
π

2
− jπh

2

)2

= sin

(
(n+ 1− j) πh

2

)2

cos

(
(n+ 1− j) πh

2

)2

= s2n+1−jc
2
n+1−j. (3.23)

In the case where 2sjcj > kh, the symmetry of s2jc2j implies that the coarse cor-
rection amplifies any of the N first fine-grid eigenvectors vh

j if the complementary
eigenvector vhn+1−j is amplified. Conversely, the coarse correction damps any of the
N last fine-grid eigenvector vh

n+1−j if the complementary eigenvector vh
j is damped.

In the other case where 2sjcj < kh, the relation s2n+1−j = c2j implies that the coarse
correction amplifies any of the last N eigenvectors if the complementary is amplified,
and damps any of the first N eigenvectors if the complementary is damped. Such a
symmetry in the effect of the coarse correction appears in Figure 3.4. Beyond the
amplification of certain modes, the blue curves are also characterized by a linear
growth due to the increasing coefficient c4j that weights the ratio λhj /λHj in (3.19).
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Figure 3.4: Contraction rates of the coarse correction with respect to kh.

The discussion of this section focused on the problem of the smoother and of the
coarse correction on a simple one-dimensional Helmholtz model problem. Typically,
stationary smoothers and the coarse correction require the positive definiteness of
the initial matrix, which is not true for Helmholtz. Thus, these operators obligate
a special attention when designing a multigrid method in the indefinite case. In
addition, the near-kernel space of the Helmholtz equation is oscillatory so that the
interpolation rules used in elliptic problems are not appropriate for transferring
the smallest eigenvectors through the grid hierarchy. While finding a smoother
and a coarse correction that enable the convergence of the method is challenging
when tackling indefinite problems, designing a fast and practical method makes the
problem even more demanding. Before elaborating on the problems of the coarse
correction through the concept of pollution introduced in Section 3.2.1, we present
the major contributions aimed at designing an appropriate multigrid method for the
indefinite Helmholtz equation.

3.1.2 Alternative smoothers for Helmholtz

As introduced above, stationary smoothers are not suitable smoothers for damp-
ing the negative eigenvalues that characterize the indefinite Helmholtz equation.
The Kaczmarz method [44, 9] is often presented as a good alternative smoother for
Helmholtz. One iteration of this smoother is equivalent to a Gauss-Seidel relax-
ation sweep on normal equations, and therefore leads to the following entry-wise
formulation

x
(k+1)
i = x

(k)
i + aij

r
(k)
i −

∑
j<i aijx

(k+1)
j

|aii|2
, (3.24)
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where aij denotes the complex conjugate of aij. While Kaczmarz does not amplify
the error, the damping of the oscillatory modes tends to be slower than classical
smoothers in the positive case. Subsequently, finding a method that enables fast
convergence in the indefinite case motivated the community to investigate more
options. Since Jacobi offers both effective and straightforward parallel implementa-
tions, a two-step version has been developed in [45]. This extension of Jacobi makes
it applicable to the indefinite Helmholtz equation. An extensive presentation of this
smoother can also be found in [34]. Let E2Jac be the error propagation matrix of
the two-step Jacobi smoother such that

E2Jac :=
(
I − w1D

−1A
) (
I − w2D

−1A
)
. (3.25)

Also, define
δ := (2− (kh)2)/h2. (3.26)

The eigenvalues of E2Jac can be formulated as follows

λj (E2Jac) = f (λj(A)) , with f (λ) =

(
1− w1

λ

δ

)(
1− w2

λ

δ

)
. (3.27)

In fact, the method is called “two-step” because it relies on two separate smooth-
ing iterations, each associated with weights w1 and w2 respectively. As discussed
previously, the weight can have a strong impact on Jacobi’s convergence properties,
and is usually employed to speed-up the damping of most oscillatory modes. In the
context of solving indefinite equations with this two-step smoother, both weights
are mostly chosen to avoid the amplification of negative eigenvalues.

Setting the weights w1 and w2 depends on three cases. The first case applies to
shifted Laplacian matrices whose diagonal are positive (i.e., kh <

√
2). In that

case, the midpoint λmid defined in (3.7) is positive. The two-step Jacobi variant
should damp the half most oscillatory modes the fastest. Conversely, its slowest
damping rate should be for near-zero eigenvalues, as in the positive definite case.
Both conditions are respectively expressed as follows

f (λmid) = −f (λn) and f ′ (0) = 0. (3.28)

Moreover, the f function of (3.27) is a polynomial of degree 2 with only one extremal
point reached at 0, such that f(0) = 1. From both conditions (3.28), one can derive
the following weights

w1 =
2
√
2√

(λ1 + λn)
2 + 4λ2n

, w2 = −w1. (3.29)

To compare the two-step variant of Jacobi with the original, we assume a reduction
factor ϵ = 1/3 of the largest eigenvector after one single-step Jacobi smoothing for a
Laplace problem. We consider the largest and most oscillatory eigenvector because
we assume that the coarse correction focuses on the negative and geometrically
smooth eigenvectors. More details on the provided numbers can be found in [34].
When smoothing the one-dimensional model problem (3.2) by using the two-step
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Jacobi variant with weights (3.29), the required number of iterations to reach the
same reduction factor is

ν ≥ − log ϵ

log ((6− 2k2h2)/(10− 6k2h2 + k4h4))
. (3.30)

For kh = 0.5, we need to compute ν = 3 iterations to reach the same reduction
factor, and ν = 5 iterations for kh = 1. While the convergence is guaranteed in this
first scenario, the method requires more computations to reach the convergence of
the positive case. This phenomenon is illustrated in Figure 3.5a, where orange and
blue curves represent respectively the damping factors after a one-step Jacobi itera-
tion with the weight (3.9) and one iteration with the two-step alternative. While the
orange curve exceeds one for negative eigenvalues, it demonstrates better damping
factors than the blue curve for large positive eigenvalues.

The conditions for setting both weights are slightly different in the second scenario
where λmid < 0 < λn. This time, the effectiveness of the smoother is ensured by
enforcing the f function in (3.27) to reach 1 for the largest negative eigenvalue. The
curve plateaus around zero by enforcing the derivative of the f function to be null
at λ = 0. The conditions for this second scenario are given by

f ′ (0) = 0 and f (λ1) = −1, (3.31)

which gives the weights

w1 =

√
2 |δ|
|λ1|

, w2 = −w1. (3.32)

Here, the number of iterations required to reach a reduction factor of ϵ = 1/3 is

ν ≈ − log ϵ

2

(
k4h2

π2

)2

= O
(
k2
)
. (3.33)

Equation (3.33) highlights how expensive the two-step Jacobi smoother can be in
that scenario. In fact, the number of iterations required to damp the largest eigen-
vector as fast as for a Poisson Equation depends on the square of the wavenumber
k. Figure 3.5b) plots how slow the damping of the largest eigenvector is, despite the
convergence of the method. This feature is especially problematic because the coarse
correction is usually built on the uniform interpolation operator (3.11) that tracks
slowly varying modes associated with large negative eigenvalues. Authors in [34]
recommend using Chebyshev polynomial or Krylov methods instead. For instance,
authors use the latter on intermediate levels of the multigrid hierarchy instead as
the problem gets very indefinite.

In the final case where δ ≤ −2 (i.e., λn < 0), the problem is negative definite.
Therefore, the choice of both weights are aimed at maximizing the damping of even-
tually near-zero oscillatory modes. Good conditions are given by

f (λ1) = 1 and f

(
λ1
2

)
= −f (λn) . (3.34)
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These conditions lead to the weights

w1 =
2
(
2 +
√
2
)
δ

λ1 +
(
2 + 2

√
2
)
λn

, w2 =
2
(
2−
√
2
)
δ

λ1 +
(
2− 2

√
2
)
λn
. (3.35)

Hence, the required number of iterations for damping the most oscillatory mode is

ν ≥ log ϵ

log (8− k2h2)2 / (−64 + 16k2h2 + k4h4)
(3.36)

Again, the damping rate of the two-step Jacobi variant is illustrated in Figure 3.5c,
where the large eigenvector appears to be damped efficiently. If the discretization
coefficient is large enough, the two-step method can be replaced by a classical one-
step Jacobi method with weight

w =
2− k2h2

3− k2h2 − 2 sin
(
πh
2

) . (3.37)

The number of iterations to be performed in the single step alternative becomes

ν ≥ − log ϵ

log (k2h2 − 3)
, (3.38)

which converges to one as the discretization coefficient increases.
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Figure 3.5: Damping factors of the Jacobi method and its two-step variant with respect to kh.

3.1.3 Wave-Ray Multigrid & Multiple Coarse Corrections

The first Wave-Ray method for solving Helmholtz is presented in [8] and mainly
relies on geometric multigrid ideas. This method has been applied to the First
Order System Least-Squares formulation of the Helmholtz equation [56], and later
extended with algebraic multigrid ideas [60, 58]. The summary that follows works on
the two-dimensional model problem (1.1), as only two wave-propagation directions
compose a one-dimensional solution. For more details related to this summary of
wave-ray methods, we refer to the simpler implementation proposed in [59].

As mentioned in the previous section, the goal of multigrid is to project difficult
eigenvectors associated with small eigenvalues onto an appropriate coarse space.
Assuming only these difficult small eigenvectors remain after a few smoothing iter-
ations, the remaining error eh on the finest level satisfies
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Aeh ≈ 0. (3.39)

We remark that the oscillatory propagative waves denoted by v̂θ := eιkSθ(x,y) are
solutions to the homogeneous Helmholtz equation

−∆v̂θ + k2v̂θ = −∆eιkSθ(x,y) + k2eιkSθ(x,y) = 0, (3.40)

with Sθ (x, y) = x cos θ + y sin θ and for θ ∈ [0, 2π]. Note that we express v̂θ in two
dimensions in order to emphasize the infinite number of propagative plain waves
that solves the homogeneous equation, whereas the one-dimensional case is charac-
terized by two directions only. The three-dimensional case would require adding the
azimuthal angle in the definition of v̂θ. From both equations (3.39) and (3.40), it
comes naturally to write the remaining error as a combination of propagative plain
waves, such that

eh =

∫ 2π

0

aθv̂θdθ ≈
nθ∑

j=1

aθj v̂θj , (3.41)

where nθ is a positive integer, and aθj corresponds to a smooth envelope function
called a "ray". As in the right member of (3.41), each ray is associated with a prop-
agative plain wave v̂θj . Applying the homogeneous Helmholtz differential operator
to one wave-ray couple gives the equality

−∆aθj v̂θj + k2aθj v̂θj = Lθjaθj v̂θj , (3.42)

where Lθj is the following Helmholtz differential operator

Lθj := −∆+ 2ιk
(
sin θθj∂x − cos θθj∂y

)
. (3.43)

Let Lh
θj

be a discretization matrix of (3.43). From Equation (3.41), the residual can
therefore be approximated by

rh = Aeh ≈
nθ∑

j=1

Lh
θj
aθj v̂θj . (3.44)

The key idea of the Wave-Ray method is to compute each ray aθj independently
by projecting them onto a dedicated coarse space. Contrary to the remaining error
eh, rays are more likely to be geometrically smooth, and therefore much easier to
project onto a coarse space. To summarize, a Wave-Ray cycle starts as a classi-
cal multilevel cycle until reaching the separation level indexed by ls. Multiple ray
residuals are then extracted from the residual of the separation level, and treated
separately on independent coarse grid hierarchies. The latter step is therefore called
Multiple Coarse Corrections.

Letting rl be the residual of the lth level, the first step is to restrict the residual of
the finest level onto a coarser separation level ls. The restriction is generally per-
formed through an average restriction operator denoted by P l+1

l as in (3.14). Such
a restriction operator discards the oscillatory modes, and therefore exhibits the ge-
ometrical smoothness on coarse levels. Omitting intermediate smoothing iterations,
the restriction of the residual to the separation level is made by applying

rls = P ls
ls−1 · · ·P

l+1
l · · ·P 1

0 r
0. (3.45)
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Note that, until the separation level ls, coarse matrices result from discretizations of
the initial differential operator, including boundary conditions. On the separation
level ls, the second step is to split the residual into nθ separate ray residuals by
introducing proper phase-shifts, such that

rls
θi
:= rlse−ιkSθi

(x,y) =

nθ∑

j=1

Lls
j a

ls
j v̂

ls
j e

−ιkSθi
(x,y)

= Lls
θi
als
θi
+

nθ∑

j ̸=i

Lls
θj
als
θj
v̂ls
θj
e−ιkSθi

(x,y)

= r̂ls
θi
+

nθ∑

j ̸=i

r̂ls
θj
e−ιk(Sθi

(x,y)−Sθj
(x,y)). (3.46)

From both equations (3.44) and (3.46), we see that the residual r̂ls
θi

is the right-hand
side of the linear system

Lls
θi
als
θi
= r̂ls

θi
, (3.47)

where als
θi

is the geometrically smooth ray envelope coupled with the propagative
plain wave vls

θi
. This time, coarse matrices Ll

θi
with l ≥ ls result from independent

coarse discretizations of the differential operator (3.43). The sets of coarse points
are selected to follow the direction of propagation of the plane wave vls

θi
. Examples

of coarse variable selection are given in [59]. Also, we note that because of the
phase shift, the right member sum is more oscillatory, and subsequently reduced by
the next average restriction operations that target geometrical smoothness. Then,
phase-shifted residuals rls

θi
are coarsened repeatedly until reaching a small enough

level space lc, such that

rlc
θi
= P lc

lc−1 · · ·P
l+1
l · · ·P ls+1

ls
rls
θi
. (3.48)

Rays are approximated at the coarsest level by solving the nθ coarse systems

Llc
θi
âlc
θi
= rlc

θi
. (3.49)

The solution âlc
θi

of the coarse system (3.48) is an approximation of alc
θi

because the
restriction of the residual rls

θi
in (3.48) still contains pollution related to the right

member of (3.46). The third step is to interpolate ray approximations up to the
separation level ls,

âls
θi
:= P ls

ls+1 · · ·P l
l+1 · · ·P lc−1

lc
âlc
θi
. (3.50)

Hence, a good condition of convergence is

als
θi
≈ âls

θi
. (3.51)

The approximation at the separation level ls is constructed by merging wave-ray
approximation couples as follows

ẽls =

nθ∑

j=1

âls
θj
vθj . (3.52)
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Naturally, the approximation of the level ls is then interpolated back to the finest
level such that

ẽ0 = P 0
1 · · ·P l

l+1 · · ·P ls−1
ls

ẽls . (3.53)

This approach works as a standalone solver and enables a suitable coarse grid cor-
rection for Helmholtz. The numerical experiments presented in [59] demonstrate
good performances for constant wavenumbers and fine mesh discretization. While
the presented approach is built on geometrical multigrid ideas, a multiple Galerkin
coarse grid correction method can be found in [58]. One downside is however that it
remains challenging to adapt the method to varying wavenumber, and the number of
independent coarse corrections per cycle may increase as the matrix becomes more
indefinite.

3.1.4 Complex Shifted Laplacian

The indefinite Helmholtz equation is not only challenging for multigrid, but difficult
by itself. Smaller wavelength in the continuous problem requires a finer mesh dis-
cretization, so that the resulting linear system becomes very large as the wavenumber
k increases. For this reason, iterative methods such as GMRES (see Section 2.1.3)
are preferred over direct ones when solving that kind of problem as they scale better
on modern supercomputers. However, it is well known that their convergence speed
depends on the condition number of the initial matrix. Helmholtz matrices may
be ill-conditioned depending on the discretization coefficient kh, which tends to de-
crease the convergence speed. The latter often justifies the use of a preconditioner in
the iteration of the method to enhance the convergence, and the speed-up depends
on the condition number of the preconditioned matrix. Hence, finding a practi-
cal preconditioner that significantly decreases the number of iterations is generally
problem-dependent and opened a vast field of study in numerical linear algebra.

In particular for Helmholtz, most classical preconditioners such as the incomplete
LU factorization do not provide a substantial speed-up in the convergence of Krylov
solvers. This concern motivated the design of a new class of preconditioners called
“shifted Laplacian preconditioners” specially dedicated to solving Helmholtz. Helmholtz
matrices can be decomposed as follows

A = L− k2I +B, (3.54)

where L denotes the Laplacian matrix, I the identity, and B the boundary condition
matrix. This new class of preconditioners for Helmholtz originates from the 1980s
[5] and was aimed at enhancing the conjugate gradient method on normal equations
(CGNR) by approximating the solution to the Laplacian system Lx = b by one
SSOR [82] iteration. While the convergence rate of CGNR without preconditioning
follows a O(h2) law, Bayliss et al. stated that the convergence rate is O(1) for small
mesh size h when solving the Laplacian system exactly. Approximating the solution
by one SSOR iteration naturally yields a convergence rate in between both extrema.

In the same paper, the authors indicated that solving the Laplacian system with
multigrid enables an h-independent convergence rate. This idea of introducing multi-
grid cycles to accelerate CGNR has further been developed a year later in [43], and
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demonstrated dramatic improvements on the convergence. In the 2000s, Laird and
Giles pushed the idea further by adding a positive real shift to the Laplacian [54],
giving the first shifted Laplacian preconditioner. The first complex shifted Laplacian
(CSL) was finally introduced in [31], and compared with both previous Laplacian
and real shifted Laplacian preconditioners.

Let Hγ,β be the CSL preconditioner defined as follows

Hγ,β = L+ (γ + ιβ) k2I +B with γ ≥ 0 and β ∈ R. (3.55)

The matrix Hγ,β is similar to the initial matrix as decomposed in (3.54), except that
the wavenumber has a positive real part and an imaginary part.

3.1.4.1 Exact inversion on the simple one-dimensional model problem

Let us tackle the one-dimensional problem (3.1). We set B = 0 to satisfy the
Dirichlet boundary conditions. This section relies on the analysis developed in [31].
Accordingly, we assume that the CSL preconditioner is inverted exactly to better
demonstrate its best case scenario effect on the initial system. We address its ap-
proximation by multigrid further in this section. In our case, the iterative method
should converge to the solution to the left preconditioned linear system

H−1γ,βAx = H−1γ,βb. (3.56)

This assumption on the explicit inversion of the preconditioner enables a discussion
on the best case scenario and will help a further comparison with the multigrid cycle
approximation. As defined previously, let sj := sin( jπh

2
). Here, both A and Hγ,β

have the same eigenvectors, but the latter has eigenvalues

λj (Hγ,β) =
4

h2
s2j + (γ + ιβ) k2. (3.57)

Naturally, it follows that the eigenvalues of the left-preconditioned matrix (3.56) are

λj
(
H−1γ,βA

)
=

s2j −
(
kh
2

)2

s2j + (γ + ιβ)
(
kh
2

)2 . (3.58)

To accelerate the convergence of Krylov iterations, the condition number of the
preconditioned system (3.56) should be minimized with respect to the coefficients
γ and β defined in (3.56). Since the initial matrix is indefinite, we compute the
condition number of the squared left-preconditioned matrix as follows

κ2 := κ
((
H−1γ,βA

)∗ (
H−1γ,βA

))
=
λhmax

((
H−1γ,βA

)∗ (
H−1γ,βA

))

λhmin

((
H−1γ,βA

)∗ (
H−1γ,βA

)) . (3.59)

Define ϵ := min
j

(
s2j −

(
kh
2

)2). The condition number (3.59) can be derived by

κ2 =

{
1
4

(
1 + 2γ

γ2+β2

) (
(kh)2 / (2ϵ)

)2
if γ2 + β2 ≤ 1,

1
4

(
(1 + γ)2 + β2

) (
(kh)2 / (2ϵ)

)2
, if γ2 + β2 ≥ 1

. (3.60)
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More details on the different steps that led to (3.60) can be found in Appendix A.4
or in [31] as well. One can show that the condition number (3.60) is minimal when
γ2 + β2 = 1. Hence, the best preconditioner in the real shifted case is reached for
γ = 1. In the complex case with condition γ2 + β2 = 1, κ2 is minimal if γ = 0,
which implies that β = 1. Let us now compare the three preconditioners H0 := H0,0,
H1 := H1,0 and Hι := H0,1. For ease of notation, let us define the eigenvalues of the
one-dimensional Laplacian matrix by

µj := 4s2j/h
2, (3.61)

such that the squared initial matrix eigenvalues are defined by

λj (A
∗A) =

(
µj − k2

)2
. (3.62)

Using the plain Laplacian preconditioner gives

λj
((
H−10 A

)∗ (
H−10 A

))
=

(
1− k2

µj

)2

. (3.63)

In the same way, eigenvalues of the real shifted Laplacian preconditioned matrix are

λj
((
H−11 A

)∗ (
H−11 A

))
=

(
1− 2k2

µj + k2

)2

, (3.64)

whereas eigenvalues resulting from the complex shifted preconditioner are

λj
((
H−1ι A

)∗ (
H−1ι A

))
= 1− 2µjk

2

µ2
j + k4

. (3.65)

The Figure 3.6 represents the four spectra of matrices provided by (3.62) (in blue),
(3.63) (in red), (3.64) (in green) and (3.65) (in orange) for different values of the
discretization coefficient kh. The first figure 3.6a plots the four spectra with no re-
striction on the x domain, whereas figures 3.6b, 3.6c and 3.6d represent them within
a narrower interval to better distinguish their respective behavior around the origin.

Figure 3.6a reveals that the plain Laplacian preconditioner presents the highest
eigenvalues in magnitude (see around x = −100 or x = 20 for instance), which can
lead to a large condition number. By contrast, eigenvalues of both shifted Lapla-
cian preconditioned matrices represented by orange and green marks are contained
within a bounded interval. Among both types of shifted preconditioners, it appears
that the complex shifted preconditioner offers the sparsest concentration of eigenval-
ues around the origin, which decreases the condition number and therefore speeds
up the convergence. The plain Laplacian has the potential to provide a significant
help in the limited case where the shift is lower than the smallest eigenvalue (i.e.,
0 < k2 < µ1). Beyond that very particular case, the complex shifted Laplacian
generally provides a twice smaller condition number and therefore represents the
best option among the three preconditioners. More details in the comparison of
condition numbers can be found in Appendix A.4.
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Figure 3.6: Spectrum of the preconditioned matrix for different complex shifted Laplacian
preconditioners

3.1.4.2 Optimizing the CSL and resolution by Multigrid

The previous development was limited to the one-dimensional model problem for
ease of discussion, and also assumed that the inverse of the CSL was known exactly
to demonstrate its effectiveness in the best case. Approximating the inverse by an
incomplete-LU factorization has been tried in [32] in comparison with geometric
multigrid iterations. In [30], the complex shifted Laplacian is approximated using
geometric multigrid iterations to speed-up Krylov methods such as BiCGSTAB or
GMRES for solving a two-dimensional heterogeneous Helmholtz problem. Algebraic
multigrid has later been implemented as a replacement of the geometric setting in
[2, 6].

Building more sophisticated multigrid cycles enhances the convergence of these
methods, but they are still impacted by the small eigenvalues of the preconditioned
system that tend toward zero as the wavenumber increases. Consequently, the con-
dition number increases with the wavenumber, which results in a linearly growing
number of iterations. To speed up the convergence of iterative methods when solv-
ing Helmholtz, the preconditioner should remain as close as possible from the initial
matrix while being easy to solve, with multigrid for instance. The complex shifted
preconditioner has been generalized in [30] as follows

Hβ1,β2
:= L− (β1 − ιβ2)k2I , (β1, β2) ∈ R2. (3.66)
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This generalized form now allows the shift to be negative in order to more closely
match with the initial indefinite problem. In the most recent development of the
method, the shifted preconditioner in fact nearly always include the original nega-
tive wavenumber (i.e., β1 = 1). Nevertheless, the question of choosing an optimal
complex shift β2 remains central in the method. Letting Hh

β1,β2
and HH

β1,β2
be the

fine and coarse discretization of the complex shifted Laplacian respectively, the one-
dimensional two-grid analysis applied to the operator (3.66) gives the ratio

λj
(
Hh

β1,β2

)

λj
(
HH

β1,β2

) = 1 +
s4j

s2jc
2
j −

(
kh
2

)2
(β1 − ιβ2)

. (3.67)

Naturally, the ratio (3.67) of eigenvalues has the same form as in (3.21). Hence,
Figure 3.7 shows how the multigrid coarse correction behaves with respect to the
eigenvector and depending on the value of β2. These figures are plotted over the blue
curves of Figure 3.4 that pictures the coarse correction without CSL preconditioner.

0 1 2 3

−1

0

1

λh
j

∣ ∣ v
T j
E
v
j

∣ ∣

β1, β2 = 1, 0 β1, β2 = 1, 1
β1, β2 = 1, 0.5 β1, β2 = 1, 0.3

(a) kh = 0.3125

0 1 2 3

−1

0

1

λh
j

∣ ∣ v
T j
E
v
j

∣ ∣

(b) kh = 0.625

0 1 2 3

−1

0

1

λh
j

∣ ∣ v
T j
E
v
j

∣ ∣

(c) kh = 0.9375

−1 0 1 2

−1

0

1

λh
j

∣ ∣ v
T j
E
v
j

∣ ∣

(d) kh = 1.25

Figure 3.7: Contraction rate of the coarse correction with respect to kh and β2 of the complex
shifted Laplacian preconditioner.

For all cases, β1 is set to 1 to match the initial problem, and only β2 varies. The
blue curve corresponds to the initial matrix, whereas the three others correspond
to complex shifted matrices. The green curve is associated with the smallest β2
among the three preconditioners, and seems attracted by the amplified eigenvalues
of the initial problem. While a smaller shift matches the initial problem better,
large shifted problems are easier to solve. For instance, choosing β2 = 0 yields a
preconditioner equals to the initial matrix A. Such a preconditioner is therefore the
best theoretical preconditioner for Helmholtz. Alternatively, increasing β2 separates
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the preconditioner from the initial problem but enables a practical approximation of
the inverse with multigrid. Hence, a trade-off has to be found between both extrema.

This concern has been discussed in [42] and split into two questions. The first asks
“what is the largest shift for which wavenumber-independent convergence is guaran-
teed? ” [42]. The second asks “how large a shift is needed for its effective inversion
by multigrid? ” [21]. While the former suggests that β2 ∼ O (k−1), the answer for
the latter is β2 ∼ O (1). Therefore, finding a shift that addresses both questions is
particularly difficult. This issue motivated the community to boost the convergence
of Krylov methods by “deflating” the small and difficult eigenvalues in addition to
the approximation of the CSL inverse by multigrid [67, 68, 67].

These deflation methods have proven to accelerate the overall convergence of the
preconditioned Krylov methods for Helmholtz, but the convergence still suffers for
large wavenumbers. The authors [26] show that small eigenvalues get closer to zero
when using the classical interpolation operators due to a misalignment between fine
and coarse grid discretizations. They address this issue by implementing a higher-
order interpolation operator based on Bézier curves that is defined as follows

[
P h
He

H
]
i
:=





1
8

(
eH
(i−1)/2 + 6eH

(i)/2 + eH
(i+1)/2

)
if i even,

1
2

(
eH
(i−1)/2 + eH

(i+1)/2

)
if i odd,

1 ≤ i ≤ n. (3.68)

To the best of our knowledge, the first wavenumber-independent multigrid conver-
gence appeared from this setting. The two-grid cycle has later been extended to
a multilevel method in [27]. One other substantial improvement from [27] is that
the complex shift can get decreased up to β2 = k−1 by replacing the unstable usual
multigrid smoothers that tends to amplify the negative eigenvalues by a few GM-
RES iterations. A year later, the first standalone multigrid method [28] emerged.
While numerical experiments do not suggest a wavenumber-independent convergence
yet, they demonstrate the potential of multigrid in solving the Helmholtz problem
when combining the complex shifted Laplacian preconditioner, higher-order inter-
polation scheme, and GMRES smoothing iterations. The authors also developed
the convergence theory of two-grid methods, based on the positive-definiteness of
the approximate inverse formed by the coarse correction plus the post-smoothing
operation.

3.2 Corruption of the coarse correction in the indefinite case

Now that we have summarized past research on solving the Helmholtz equation
with multigrid, it is time to introduce our concept of “pollution” to emphasize why
the classical coarse correction appears hopeless for indefinite problems. In fact, we
will see that this pollution can corrupt the coarse correction and consequently lead
to divergence, even though the interpolation operator P has good approximation
properties. In particular, we will see that the contraction or amplification of an
eigenvector after applying the coarse correction depends on a mix between small
and large eigenvalues, and that the combination of eigenvalues depends on what
we call a “block of pollution”. The next developments highlight that the pollution
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arising from the largest eigenvectors has a strong impact on the coarse correction,
especially for small eigenvectors.

3.2.1 Introduction to the concept of pollution

In Chapter 5.1, we show that our interpolation operator should have good approx-
imation properties for the set of smallest eigenvectors denoted by Vc (see (5.6)).
The pollution is what makes the difference from the actual target space Vc and its
best representation provided by the interpolation operator P . The following theo-
rem links the interpolation error of a small eigenvector vi of Vc with what we call
a “pollution block” denoted by Kf . For what follows, we denote the l2-orthogonal
projection by

Π(P ) := P
(
P TP

)−1
P T . (3.69)

Theorem 1. Let A be an n × n matrix, and V its orthonormal set of eigenvec-
tors, each associated with the corresponding element of the diagonal eigenvalue ma-
trix Λ. Also, let P be an n × nc interpolation operator. Assuming V T

c P is non-
singular, we write the linear decomposition of the post-scaled interpolation operator
as P

(
V T
c P
)−1

= V K, where K is the following n× nc matrix of coefficients

K := V TP (V T
c P )

−1 =

[
Ic
Kf

]
. (3.70)

The block Ic corresponds to the identity matrix of size nc × nc, and the block Kf

is a nf × nc matrix such that Kf := V T
f P (V

T
c P )

−1. The interpolation error of the
eigenvector vi of Vc is given by

vT
i (I − Π(P ))vi = 1−

[(
Ic +KT

f Kf

)−1]
i,i
, (3.71)

where [·]j,k denotes the entry (j, k) of the bracketed matrix.

Proof. First, note that post-multiplying P by any non-singular matrix Mc of size
nc × nc does not change the l2-projection

(PMc)((PMc)
T (PMc))

−1(PMc)
T = PMcM

−1
c (P TP )−1M−T

c MT
c P

T

= P (P TP )−1P T = Π(P ) . (3.72)

In particular for Mc = (V T
c P )

−1,

I − Π(P ) = I − P (P TP )−1P T

= I − P (V T
c P )

−1 (P (V T
c P )

−1)TP (V T
c P )

−1)−1 (P (V T
c P )

−1)T . (3.73)

Since P (V T
c P )

−1 = V K, it follows that

I − Π(P ) = I − (V K)((V K)T (V K))−1(V K)T

= I − V K(KTK)−1KTV T . (3.74)

For any eigenvector vi of A, let ei := V Tvi be the canonical unit vector with
a one at the ith position and zero elsewhere. Assuming vi ∈ Vc (i ≤ nc), the
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vector ci := KTei of size nc is also a unit vector with a one at the ith position.
Consequently, the damping factor of vi ∈ Vc is

vT
i (I − Π(P ))vi = vT

i V (I −K(KTK)−1KT )V Tvi

= eT
i (I −K(KTK)−1KT )ei

= 1− cTi (K
TK)−1ci = 1−

[
(Ic +KT

f Kf )
−1]

i,i
. (3.75)

Since the l2-projection is unchanged by the post-multiplication of P , we assume for
what follows that K has the form (3.70). The block Kf designates what we call
“pollution”. This block of pollution causes a small difference between an eigenvector
vi of Vc and its best representation in the range of P . The entry [Kf ]j,i designates
the contribution of the jth large eigenvector of Vf to the interpolation error of the ith
smallest eigenvector of Vc. When the ith column of Kf is null, then the interpolation
error of vi equals zero, such that

[Kf ]:,i = 0 ⇔
(
I − Π(P )

)
vi = 0. (3.76)

However, in practice, a null column is unlikely to be satisfied for Helmholtz, because
P should be sparse for cost considerations and the smallest eigenvectors are usually
unknown. Moreover, the near-kernel space of the Helmholtz equation is oscillatory.
This makes the construction of good interpolation rules more difficult, and tends
to pollute the interpolation range. In fact, Theorem 1 indicates that the error of
interpolation is probably unavoidable because the columns of Kf are unlikely to be
zero. Illustrations of the pollution block Kf are given throughout Chapter 5 for
different interpolation operators.

3.2.2 Corruption of the coarse correction in the indefinite case

At this stage, let us demonstrate how the pollution can corrupt the coarse correction
in the indefinite case. Consider the contraction of the nc small eigenvectors Vc,
assuming the nf large eigenvectors Vf are damped by the smoother.

Theorem 2. Let the matrix K be defined as in (3.70). The contraction of an
eigenvector vi of Vc after the coarse correction is given by

vT
i Evi = 1− λi

[(
Λc +KT

f ΛfKf

)−1]
i,i
. (3.77)

Proof. By the same reasoning of the proof for Theorem 1, we note that post-
multiplying P by any non-singular matrix Mc of size nc × nc does not change the
coarse correction

(PMc)((PMc)
TA(PMc))

−1(PMc)
T = P (P TAP )−1P T (3.78)

Subsequently for PMc = P (V T
c P )

−1 = V K, we have

ΠA (P ) = P (P TAP )−1P TA

= (V K)((V K)TA(V K))−1(V K)TA

= V K(KTΛK)−1KTΛV T , (3.79)
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and the error propagation matrix of the coarse correction can therefore be written

E = V (I −K(KTΛK)−1KTΛ)V T . (3.80)

Defining the Euclidean basis vectors ei and ci as in the proof of Theorem 1, it follows
that the contraction of vi ∈ Vc is

vT
i Evi = vT

i V (I −K(KTΛK)−1KTΛ)V Tvi

= eT
i (I −K(KTΛK)−1KTΛ)ei

= 1− λicTi (KTΛK)−1ci = 1− λi
[(
Λc +KT

f ΛfKf

)−1]
i,i
. (3.81)

Theorem 2 shows that the effect of the coarse correction relies on a combination of
the small eigenvalues Λc plus the large eigenvalues Λf , such that the mix is given
by the entries of the pollution Kf . In the SPD case, the effectiveness of the coarse
correction is well known. If all eigenvalues are positive, one can remark that

∀i ≤ nc , 0 ≤
[(
Λc +KT

f ΛfKf

)−1]
i,i
≤
[
Λ−1c

]
i,i
= λ−1i ⇒ 0 ≤ vT

i Evi ≤ 1. (3.82)

Therefore, the coarse correction always acts as a contraction on vi regardless of the
block of pollution Kf . However, in the indefinite case, the property (3.82) does not
hold. In fact, a necessary condition for the coarse correction to be a contraction is

∀i ≤ nc ,
∣∣vT

i Evi

∣∣ ≤ 1⇒ 0 ≤ λi

[(
Λc +KT

f ΛfKf

)−1]
i,i
≤ 2. (3.83)

From (3.83), it follows that each diagonal entry should have the same sign as the
associated eigenvalue, and be smaller than twice the inverse of the eigenvalue in
magnitude. Nothing guarantees such conditions in the case where the small and
large eigenvalues have mixed sign. Especially for very small eigenvalues, the mix
can easily lead to a diagonal entry of the opposite sign even though Kf is small,
because its entries are weighted by the large eigenvalues Λf . Therefore, a good
interpolation operator can still cause the coarse correction to amplify the error.
For very near-zero eigenvalues, even round-off error can lead to divergence in the
indefinite case. The following 2× 2 example better illustrates how the pollution can
cause divergence when A is indefinite.

Example 2. Let A be a 2 × 2 matrix, and v1 and v2 its eigenvectors respectively
associated with eigenvalues |λ1| < |λ2|. Let P be an interpolation operator of size
2× 1 targeting the smallest eigenvector v1, such that

P = v1 + ϵv2. (3.84)

From definition (3.70), the K matrix can be derived by

K = V TP
(
vT
1 P
)−1

= [v1,v2]
T · [v1 + ϵv2] =

[
1
ϵ

]
. (3.85)

From Theorem 2, the action of the coarse correction on v1 is given by

vT
1 Ev1 = 1− λ1

[(
Λc +KT

f ΛfKf

)−1]
1,1

= 1− λ1
λ1 + ϵ2λ2

(3.86)
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Figure 3.8: Contraction of the coarse correction with respect to the pollution

The Figure 3.8 plots the action of the coarse correction on v1 for λ1 > 0 with
respect to the pollution block KT

f ΛfKf = ϵ2λ2. A first observation is that the coarse
correction does not amplify the smallest eigenvector if both eigenvalues have the same
sign. If both eigenvalues are oppositely signed, then the coarse correction amplifies
v1 when ϵ2λ2 < −λ1/2. Therefore, the condition on the pollution Kf = ϵ that drives
the error of interpolation is particularly difficult to satisfy for a small value of λ1
and a large value of λ2.

Figure 3.8 in Example 2 helps understand how improving P affects the coarse cor-
rection. Looking at the right segment of the x-axis, ϵ2λ2 has the same sign as the
target eigenvalue λ1. This scenario is similar to the SPD setting, where improv-
ing P by decreasing the pollution coefficient ϵ enhances the contraction of v1 (i.e.,
v1Ev1 decreases while remaining positive). The left part of the x-axis corresponds
to the counter case where ϵ2λ2 has the opposite sign of λ1. Since ϵ gets larger as P
worsens, then v1Ev1 is slightly greater than one when P has terrible approximation
properties for v1 and where λ2 has λ1 opposite sign. In that case, correcting P
potentially brings ϵ2λ2 within the contraction interval [−λ1/2 , 0], but it can also
shift the pollution around the critical point where ϵ2λ2 ≈ −λ1. In that particular
case, the error explodes and the method diverges extremely fast.

When the matrix gets larger than the previous 2 × 2 example, the pollution is
not defined by a single coefficient ϵ but by the block Kf of (3.70). The same obser-
vations still apply for all problem sizes despite this difference of notation, such that
decreasing the entries of the pollution block Kf improves the contraction performed
by the coarse correction in the SPD case. In that positive context, decreasing the
entries of Kf improves the contraction, such that

Kf ≈ 0 ⇒
[(
Λc +KT

f ΛfKf

)−1]
i,i
≈ λ−1i ⇒ vT

i Evi ≈ 0. (3.87)

This feature cannot be generalized to the indefinite case. In fact, good interpolation
rules enable the coarse correction to contract the error only if the condition (3.83) is
satisfied. Decreasing the entries ofKf still improves the l2-orthogonal projection, but
it does not necessarily have the same effect on the coarse correction. For instance,
decreasing the entries of Kf associated with the positive eigenvalues increases the
prevalence of negative eigenvalues in the mix KT

f ΛfKf . In that scenario, the right
term of (3.77) in Theorem 2 is more likely to be negative, and the coarse correction
prone to amplify eigenvectors associated with positive eigenvalues.
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The next theorem derives a more general condition on the spectral radius ρ(KT
f ΛfKf )

for the coarse correction to be a contraction of the smallest eigenvalues in the indef-
inite case based on the concept of pollution.

Theorem 3. If A is indefinite, then

ρ
(
KT

f ΛfKf

)
≤ 1

2
|λ1| ⇒ ∀vi ∈ Vc ,

∣∣vT
i Evi

∣∣ ≤ 1 (3.88)

Proof. Define MK = Ic + Λ−1c KT
f ΛfKf . From the shape of the matrix K defined in

(3.80), we have

V T
c EVc = V T

c V (I −K(KTΛK)−1KTΛ)V TVc

= Ic − (KTΛK)−1Λc

= Ic − (Ic + Λ−1c KT
f ΛfKf )

−1Λ−1c Λc

= Ic −M−1
K . (3.89)

Hence, it follows that

∀vi ∈ Vc , vT
i Evi = eT

i V
T
c EVcei = 1− eT

i M
−1
K ei. (3.90)

where ei is the ith vector of the Euclidean basis in Rnc . Therefore, |vT
i Evi| ≤ 1 if

∀vi ∈ Vc , −1 ≤ vT
i Evi ≤ 1 ⇔ 0 ≤ eT

i M
−1
K ei ≤ 2. (3.91)

We begin by deriving a condition for the right bound of (3.91), and will show that
it also satisfies the left one. Let x and y be two vectors of Rn linked by the relation
x =Mky. The right bound is satisfied if

max
x ̸=0

||M−1
K x||
||x|| = max

y ̸=0

||y||
||MKy||

=

(
min
y ̸=0

||MKy||
||y||

)−1
≤ 2. (3.92)

Therefore, the condition (3.92) is equivalent to

min
y ̸=0

||MKy||
||y|| ≥

1

2
. (3.93)

Let σi(M) be the ith largest singular value of a given matrix M . In a same way,
λi (M) designates the ith largest eigenvalue in magnitude of M (we omit the matrix
between parenthesis when referring to the initial matrix A). In addition, let us recall
the following triangle inequality ||y+z|| ≥ ||y||− ||z|| , ∀y, z ∈ Rnc . Thus, we have
that

min
y ̸=0

||MKy||
||y|| = min

y ̸=0

||y + Λ−1c KT
f ΛfKfy||

||y|| ≥ min
y ̸=0

(
1−
||Λ−1c KT

f ΛfKfy||
||y||

)

= 1−max
y ̸=0

||Λ−1c KT
f ΛfKfy||
||y|| (3.94)

= 1− σnc

(
Λ−1c KT

f ΛfKf

)
.
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It follows that the condition (3.93) is satisfied if σnc(Λ
−1
c KT

f ΛfKf ) ≤ 1
2
. Finally,

since σnc(Λ
−1
c KT

f ΛfKf ) ≤ σnc(K
T
f ΛfKf )/σ1 and the singular values coincide with

eigenvalues in magnitude because both Λc and KT
f ΛfKf are Hermitian, the right

bound of (3.91) is satisfied if

|λnc

(
KT

f ΛfKf

)
| = ρ

(
KT

f ΛfKf

)
≤ 1

2
|λ1|. (3.95)

We now address the left bound of (3.91) assuming the condition (3.95) holds. Our
goal is to prove that all the diagonal entries of M−1

K are positive. In that way, let
F (M) be the field of values of a given matrix M of size nc such that

F (M) := {x∗Mx | ∀x ∈ Cnc , x∗x = 1} . (3.96)

If M is Hermitian, one can show that (e.g., [51, chapter 4])

min
x∗x=1

x∗Mx = λmin (M) and max
x∗x=1

x∗Mx = λmax (M) . (3.97)

Accordingly, let F (Λc) and F (KT
f ΛfKf ) be the field of values of Λc and KT

f ΛfKf

respectively. Since A is non-singular, then 0 /∈ F (Λc). Therefore, the spectrum of
Λ−1c KT

f ΛfKf is included as follows (e.g., [50, chapter 1])

λj
(
Λ−1c KT

f ΛfKf

)
∈ F

(
KT

f ΛfKf

)
/F (Λc) , j = 1, . . . , nc. (3.98)

The set ratio in (3.98) has the usual algebraic interpretation such that

∀ψ ∈
F
(
KT

f ΛfKf

)

F
(
Λc

) , −
max
x∗x=1

∣∣x∗KT
f ΛfKfx

∣∣

min
x∗x=1

∣∣x∗Λcx
∣∣ ≤ ψ ≤

max
x∗x=1

∣∣x∗KT
f ΛfKfx

∣∣

min
x∗x=1

∣∣x∗Λcx
∣∣ . (3.99)

Furthermore, matrices Λc and KT
f ΛfKf are Hermitian so the property (3.97) holds

for both of them. Because the spectrum belongs to the set ratio as in (3.98), we
have

−|λ1|−1 ·
∣∣λnc

(
KT

f ΛfKf

)∣∣ ≤ λj
(
Λ−1c KT

f ΛfKf

)
≤
∣∣λnc

(
KT

f ΛfKf

)∣∣ · |λ1|−1. (3.100)

Therefore, assuming the condition (3.95) is satisfied, it follows

λj
(
Λ−1c KT

f ΛfKf

)
≥ −

∣∣λnc

(
KT

f ΛfKf

)∣∣× |λ1|−1 ≥ −
1

2
. (3.101)

Adding one to each member of the inequality (3.101) finally gives

λj (MK) = λj
(
I + Λ−1c KT

f ΛfKf

)
≥ 1

2
(3.102)

Hence, the condition (3.95) implies that all eigenvalues of MK are positive. Sub-
sequently, det (MK) > 0. The adjugate formula for the inverse of MK shows that
diagonal entries are positive if the determinant of principal sub-matrices are also
positive. Denote by [ · ]Ω−i

the principal sub-matrix obtained by deleting the ith
row and column of a matrix. Since Λc is diagonal, one can show that

[
Λ−1c KT

f ΛfKf

]
Ω−i

= [Λc]
−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

. (3.103)
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As in (3.98), the spectrum is included such that

λj

(
[Λc]

−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

)
∈ F

([
KT

f ΛfKf

]
Ω−i

)
/F
(
[Λc]Ω−i

)
, j = 1, · · · , nc − 1.

and therefore the following bound holds

λj

(
[Λc]

−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

)
≥ −

∣∣∣λnc−1
([
KT

f ΛfKf

]
Ω−i

)∣∣∣× |λ1|−1. (3.104)

The matrix KT
f ΛfKf being Hermitian, Cauchy’s interlace theorem states that

λj
(
KT

f ΛfKf

)
≤ λj

([
KT

f ΛfKf

]
Ω−i

)
≤ λj+1

(
KT

f ΛfKf

)
, j = 1, · · · , nc − 1.

(3.105)
As a consequence, and from the inequality (3.101), we have

λj

(
[Λc]

−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

)
≥ −

∣∣λnc

(
KT

f ΛfKf

)∣∣× |λ1|−1 ≥ −
1

2
. (3.106)

Hence, eigenvalues of principal sub-matrices also satisfy

λj

(
[MK ]Ω−i

)
= λj

(
Inc−1 + [Λc]

−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

)
≥ 1

2
. (3.107)

Because eigenvalues of the principal sub-matrices are positive, so are the determi-
nants. From the adjugate formula of M−1

K , it follows that

eT
i M

−1
K ei =

[
M−1

K

]
i,i
=

det
(
[MK ]Ω−i

)

det
(
MK

) ≥ 0, i = 1, · · · , nc (3.108)

As a consequence, both left and right bounds of (3.91) are satisfied. Finally,

ρ
(
KT

f ΛfKf

)
≤ 1

2
|λ1| ⇒ ∀vi ∈ Vc ,

∣∣vT
i Evi

∣∣ ≤ 1 (3.109)

The condition provided by Theorem 3 is that the spectral radius of the block
KT

f ΛfKf should not exceed half of the smallest eigenvalue in magnitude. No as-
sumption can be made on the sign of eigenvalues in the indefinite case, so that the
condition prevents the coarse correction from amplifying the error in the case where
eigenvalues are oppositely signed. Applied to the previous example 3.8, Theorem 3
states that |ϵ2λ2| < |λ1|/2. That said, the condition is extremely strict and probably
impossible to satisfy in practice for very small eigenvalues. In a practical method, the
block Kf will never be sufficiently small for solving all types of indefinite problems
because of a potentially near-zero eigenvalue.



Chapter 4

Smoother for Helmholtz

The main attempts in solving Helmholtz with multigrid ideas have been introduced
in the previous Chapter 3. By comparison to these methods, our algorithm works
purely algebraically and uses standard components of traditional multigrid methods,
such as a smoother, an interpolation operator, and a coarse correction. However,
each component needs to be adapted to the indefinite and oscillatory nature of the
Helmholtz equation. This chapter opens the presentation of our alternative method
by discussing the question of a good smoother for Helmholtz.

The Helmholtz equation is characterized by negative eigenvalues that makes the
choice of a good smoother difficult. Moreover, traditional smoothers such as Jacobi
amplify certain modes. With the aim of developing an algebraic multigrid method
for Helmholtz, an alternative smoother has to be designed. Both Kaczmarz and the
two-step variant of Jacobi introduced in Chapter 3 are good smoothers that fix the
amplification of negative eigenvalues, but often at the cost of a slow convergence
when the problem gets more indefinite.

In this chapter, we target a smoother with good convergence properties for eigen-
vectors associated with large magnitude eigenvalues and independently of their sign.
To do so, our smoother will rely on Chebyshev polynomials introduced in Section
2.1.2. In accordance with the complementarity principle, minimizing the overlap
between the action of the smoother and of the coarse correction accelerates the con-
vergence of the method. Hence, a smoother whose behavior on the spectrum is a
priori known will make the construction of good interpolation rules more convenient.
While this feature helps the theoretical understanding of the method, it will also
have a practical benefit. In particular, Chapter 5 details how we use the smoother
to generate an approximation of the optimal interpolation space. In a similar man-
ner, we will see in Chapter 6 that the smoother can help improve our alternative
coarse correction. Another complication is maintaining good smoothing properties
in a multilevel setting. Each new coarse matrix is computed by coarsening its fine
parent with an interpolation operator that targets small eigenvectors. Therefore,
each new coarse matrix in the multilevel hierarchy is more indefinite than its fine
parent, until reaching an exact balance between negative and positive eigenvalues.
This observation is illustrated in Chapter 7, where Figure 7.6 portrays the eigenval-
ues of each matrix of a multilevel hierarchy.

71
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Krylov iterations are good polynomial smoothers in the indefinite case but they
minimize the global residual norm regardless of the eigenvalues and are right-hand
side dependent. Hence, the polynomial changes at each iteration. Even though
they can give good convergence in practice, their behavior on the spectrum of the
matrix remains difficult to predict. To better motivate our interest in an alternative
smoother, Figure 4.1 represents the polynomials extracted from GMRES for two
different residuals. Each residual results from a combination of three eigenvectors
of the initial matrix. In this example, the size of the Krylov basis is set to 3, as the
number of eigenvectors that compose both residuals. We observe that the roots of
the polynomials correspond to the associated eigenvalues, such that the polynomial
provided by GMRES is the best for one given residual. However, these polynomials
are not necessarily appropriate for all residuals. Whereas the blue curve indicates
that the associated polynomial does not amplify a single eigenvector, the red curve
shows the opposite, such that both eigenvectors associated with eigenvalues around
λ = 1 and λ = 3 are amplified. This huge difference between both curves is only due
to a small change in the linear combination of eigenvectors in the residual. Because
GMRES can amplify the eigenvectors for the sake of minimizing the residual, Krylov
methods are not convenient in this setting despite their remarkable versatility.

0 1 2 3 4

-5

-3

-1
0
1

3

5

λ

q m
+
1
(λ
)

λj r = v0 + v5 + v9 r = v1 + v5 + v9

Figure 4.1: Polynomials generated by GMRES for different residual. The degree of each
polynomial equals the number of eigenvectors that compose the residual.

By contrast with the right-hand side dependent polynomials that can amplify certain
eigenvectors, we prefer to work with a fixed polynomial that decreases the norm of
the residual by treating each eigenvector independently. The figures 4.2a and 4.2b
represent the damping factors of Chebyshev polynomial smoothers, and show that
small eigenvalues are not increased, whereas the large ones are damped. Note that
the interval [a, b] in each caption corresponds to the interval in which the Chebyshev
roots of our polynomial smoother are selected as best interpolation points. Hence,
preventing all eigenvectors from being amplified motivates our choice to resort to
Cheybsyev polynomials for what follows.

We fix the problem of negative eigenvalues by designing the Chebyshev polynomial
smoother on normal equations. The choice of the interval in which the Chebyshev
roots are generated is discussed in the context of designing an algebraic multigrid
method for Helmholtz. In particular, one important constraint is to maximize the
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Figure 4.2: Spectrum of the error propagation matrix for different Chebyshev polynomials

complementarity principle with the coarse grid correction. Therefore, the size of
the interval should map the expected proportion of eigenvectors that the Chebyshev
polynomial smoother is supposed to damp efficiently. Lastly, numerical experiments
will allow us to compare our alternative smoother with GMRES on the eigenvectors
of the initial matrix.

4.1 Polynomial smoothers for Helmholtz

In Section 2.1.2.1, we recalled that Chebyshev polynomials provide the best approx-
imation of the inverse function x−1 within an interval [a, b]. This feature enables
the design of the polynomial smoother with the best convergence rate in the in-
terval. For Helmholtz, such a smoother should damp both negative and positive
eigenvalues, whereas the interval [a, b] should be continuous. One way to ensure
that both positive and negative eigenvectors are damped is to consider a normal
equation polynomial smoother. In general, the degree d of the polynomial should be
greater than one to damp positive and negative eigenvectors. Resorting to normal
equations enables the polynomial to treat eigenvalues with respect to their magni-
tude rather than their sign, which is equivalent to working with even powers of A if
the matrix is Hermitian.

Let pd(A2) be a polynomial of degree d that approximates (A2)−1. From Equation
(2.20), let qd+1(A

2) be the associated error propagation matrix of the polynomial
smoother such that

qd+1(A
2) := I − pd(A2)A2. (4.1)

Additionally, let vi be an eigenvector of A associated with the eigenvalue λi. Hence,

qd+1(λ
2)vi = (1− pd(λ2i )λ2i )vi. (4.2)

As introduced previously, the polynomial smoother pd(A2) is an inverse approximate
of (A2)−1 resulting from the polynomial function pd(x) that approximates the inverse
function x−1 from d+1 interpolation points xi. The inverse function is particularly
difficult to interpolate for values of x around zero. Hence, the interpolation points
should be selected in the interval of large eigenvalues. Note that this choice is in
accordance with most multigrid methods, where the smoother generally eliminates
the large eigenvectors, contrary to the coarse correction that is generally designed
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to target the small eigenvectors. The next section details how choosing a relevant
interval in which selecting the interpolation points.

4.1.1 Constructing an appropriate target interval

The selection interval for the Chebyshev interpolation points denoted by xi plays a
crucial role in the convergence of the method. Used as a standalone solver, one can
set a = 0 and choose b = λn so that the polynomial is the best approximation of
the inverse function for the entire spectrum of the matrix. As a multigrid smoother
however, the polynomial should maximize the complementarity principle. In other
words, the smoother should capture information that the coarse correction does
not. As mentioned, a polynomial approximate inverse is naturally bad at damping
eigenvectors associated with near-zero eigenvalues. This characteristic is highlighted
by (2.26). Even though we assume ATA to be non-singular, its spectrum is likely to
contain near-zero eigenvalues where qd+1(λ) is very close to one. In fact, constructing
a polynomial aimed at approximating the inverse function x−1 is more precise for
large values of x. For this reason, we define our Chebyshev polynomial to damp
the largest magnitude eigenvalues. To maximize the complementarity between the
smoother and the coarse correction, the percentage of damped eigenvalues should
approximate the proportion of non-coarse variables. Therefore, the interval [a, b]
should satisfy

λi ∈ [−|b|,−|a|] ∪ [|a|, |b|] ⇔ λ2i ∈
[
a2, b2

]
, i = nc, . . . , nf . (4.3)

Whereas the upper-bound is set to include the largest eigenvalue in the interval, the
lower-bound a is chosen in a second time to include nf/n of eigenvalues.

4.1.1.1 Choosing a in proportion with b

One way to determine a good interval without preliminary information [1, 3] is to
compute a few power iterations to determine b by an overestimation of the largest
eigenvalue λn, and choose the lower-bound a according to b. With the perspective
of damping the nf largest eigenvalues in the interval, a rough and simple rule is to
set a :=

nf

n
b. For instance, if the coarsening factor is 0.5 (i.e., nc =

n
2
), then one can

choose the lower-bound to be a = 1
2
b. This process is straightforward but assumes

that eigenvalues are uniformly separated.

The following figure 4.3 portrays polynomials of different degrees where the interval
is generated by this approach. The model problem is the two-dimensional shifted
Laplacian SL2D introduced in (1.1). In Figure 4.3a, the shift is α = 0.6252 so we
set |b| = |λn| = 7.6. Setting the lower-bound as half the upper-bound gives |a| = 3.8
in this example. In Figure 4.3b, α = 22 = 4, such that |b| = 4 and |a| = 2. In
both cases, polynomials barely oscillate within the interval because the intervals are
relatively narrow. Moreover, the lower-bound a is far enough from the origin to not
be impacted by Gibbs oscillation phenomena. In other words, the inverse function
is accurately approximated by the polynomial pd within the interval. While largest
eigenvalues are easily damped by the smoother, the capture of intermediate ones
can be improved by increasing the interval size.
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Figure 4.3: Polynomials generated by setting |a| = 1
2 |b|, with b = λn

We achieve this in what follows by computing the spectral density approximation
in order to better estimate the lower-bound a based on the proportion that needs
to be damped by the polynomial smoother.

4.1.1.2 Estimating the spectrum of the matrix

Because eigenvalues of multigrid matrices are not necessarily uniformly separated,
the above process may lack accuracy. In this section, we present an algebraic op-
tion based on a rough approximation of the matrix spectral density. More details
on this technique can be found in [57]. This spectral density allows us to deter-
mine which portion of the spectrum should be damped by the smoother. While it
may be reasonable to assume uniform distribution of eigenvalues on the finest level,
spectral properties of coarse matrices are difficult to predict in algebraic multigrid.
In fact, the purpose of this spectral approximation approach is especially to design
an algebraic multilevel method for general indefinite and eventually non-Hermitian
problems.

Setting the interval in this case works by first estimating the upper-bound b by
a few power iterations as mentioned in Section 4.1.1.1. The lower-bound a is cho-
sen based on the spectral density approximation, so that the probability within the
interval [a, b] equals the target proportion, for instance half of the total area in a
scenario of exact balance between coarse and non-coarse variables.

Let ϕ(t) be the distribution function that represents the probability of finding an
eigenvalue at each point of an interval [−1, 1]. The spectral density function ϕ is ap-
proximated by a linear combination of orthogonal Chebyshev polynomial functions
as defined in (2.27), such that

ϕ(t) =
∞∑

j=1

µjTj(t) ≈
nµ∑

j=1

µjTj(t). (4.4)

Because Chebyshev functions Tj are naturally defined over [−1, 1], the approxima-
tion in (4.4) should target the spectral density of the scaled matrix

B :=
A− cI
d

, with c :=
λmin + λmax

2
and

λmax − λmin

2
. (4.5)
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In the next section, different scaling approaches are discussed. Yet, we assume that
the spectrum of B belongs to the interval [−1, 1]. Subsequently, the coefficients
µj of the distribution function ϕ(t) in (4.4) can be derived by a moment matching
procedure, such that

µj =
2− δj1
nπ

× Trace(Tj(B)). (4.6)

As usual, n designates the matrix size, whereas δj1 denotes the Kronecker symbol.
The trace in (4.6) that needs to be computed for each coefficient µj of the spectral
density function can be estimated by a stochastic process based on a set of nvec
random and orthogonal vectors zl, such that

Trace(Tj(B)) = E[zT
l Tj(B)zl] ≈

1

nvec

nvec∑

l=1

zT
l Tj(B)zl. (4.7)

Each entry of zl in (4.7) is generated randomly following a normal distribution with
zero mean and a unit standard deviation. The vectors Tj(B)zl can be computed
successively from the three-term recurrence that characterizes Chebyshev polyno-
mial functions as defined in (2.28). However, it is well known that the accuracy
of polynomial approximations is affected by Gibbs oscillations. One common prac-
tice to address this concern is to approximate the distribution function of (4.4)
by a Chebyshev-Jackson approximation instead. The slight difference is that each
coefficient µj is modulated by a weight gnµ

j as follows

ϕ(t) ≈ ϕ̂(t) =

nµ∑

j=1

µjg
nµ

j Tj(t). (4.8)

Defining ζnµ
:= π

nµ+1
, the regularization weights of (4.8) are given by

g
nµ

j :=

(
1− j

nµ+1

)
sin ζnµ cos kζnµ +

1
nµ+1

cos ζnµ sin kζnµ

sin ζnµ

. (4.9)

Before pursuing this further, let us summarize the spectral density approximation
step. The spectral density function is approximated by a linear combination of
Chebyshev functions, where each coefficient µj is given by (4.6). Each coefficient
requires computing a stochastic trace estimation as described in (4.7). Once these µj

are obtained, they should be weighted by the coefficients gnµ

j to finally end with the
spectral density approximation denoted by ϕ̂ in (4.8). The overall spectral density
approximation phase is also given in Algorithm 2.
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Algorithm 2 Spectral density approximation

1: B ← A/|b|
2: for l = 1, nvec do
3: ẑl ← RandomVector(n, µ = 0, σ = 1) ▷ zl are generated randomly following N (0, 1)
4: for j = 1, l do
5: zl ← zl − z∗

j zl · zj ▷ Orthonormalization of the random vector
6: end for
7: zl ← zl/||zl||2
8: ẑl ← zl
9: w ← Bẑl − zl

10: for j = 1, nµ do
11: µj ← µj + ẑ∗

l Bẑl ▷ Stochastic Trace approximation iteration
12: u← w
13: w ← ẑl
14: ẑl ← Bw − u ▷ Three-term recurrence relation
15: end for
16: end for
17: for j = 1, nµ do
18: µj ← µj × g

nµ

j
2−δj1
nπnvec

▷ µj are averaged and weighted by g
nµ

j .
19: ϕ̂← µj × cos(j arccos(ti)), ∀ti ∈ {−1, 1}h. ▷ {−1, 1}h is a discretized interval of [−1, 1]
20: end for
21: return ϕ̂

The next step is to integrate the density function ϕ̂ in (4.8) from the upper-bound to
the left, until reaching the desired area under the curve (i.e., the correct proportion
of eigenvalues). The resulting lower-bound in the re-scaled interval [−1, 1] should
finally be remapped to the interval of the initial matrix with the aim of finally
obtaining the correct value of a2 in (4.3). This last step depends on the chosen
scaling approach for the matrix B, and is therefore discussed in the next sections.

4.1.1.3 Scaling with the initial matrix

This section exposes a first approach for choosing the scaled matrix B in (4.5). Both
estimates λmin and λmax should be chosen so that the spectrum of B belongs to the
interval [−1, 1] of the spectral density function. Accordingly, in the indefinite case,
λmin and λmax should encapsulate negative and positive eigenvalues. Assuming that
b is an upper-bound of A eigenvalues, one rough strategy for choosing the scaled
matrix B is by setting

λmax := |b| and λmin := −|b|. (4.10)

This choice is especially relevant in the case of a balance between positive and
negative eigenvalues, for instance, when α gets closer to 4 in the SL2D model problem
(1.1). Injecting (4.10) in (4.5), the scaled matrix B based on the initial matrix A
has the form

B :=
A

|b| . (4.11)

The Figure 4.5 plots two experiments of the spectral density approximation approach
on the SL2D model problem with shift α = 4, and using the scaling matrix B
of (4.11). In this case, the maximal eigenvalue is b = 4. The spectral density
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approximations illustrated in Figure 4.7b resort to a fixed number nvec of random
vectors zl in the stochastic trace approximation step (4.7), whereas the number nµ

of Chebyshev functions in (4.4) varies. Conversely, Figure 4.7a represents the same
experiment but with nµ fixed and a varying number nvec of random vectors. While
the former shows that larger nµ fits the variation of the spectral density function
better, the latter reveals that increasing nvec gives smoother estimations.
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Figure 4.4: Density of State of the SL2D matrix with shift α = 2.02

Once the spectral density function ϕ̂ is approximated with ϕ̂, one can integrate it
to determine a good interval [−|b|,−|a|]∪ [|a|, |b|] that satisfies (4.3). Therefore, the
next step consists of applying an area approximation using trapezoid integration to
determine the value a, such that a proportion nf/n eigenvalues are covered by the
interval [−|b|,−|a|] ∪ [|a|, |b|]. As the polynomial smoother should damp the large
eigenvalues magnitude-wise, we can sum up the density of negative eigenvalues with
the density of positive eigenvalues, such that

∀ t ∈ [0, 1] , ϕ̂+(t) = ϕ̂(t) + ϕ̂(−t). (4.12)

Recall that the upper-bound of ϕ̂+ is 1 and maps b. Therefore, we seek the lower-
bound ta such that nf/n of the area under the curve of ϕ̂+ belongs to [ta, 1]. In
practice, ta is computed by integrating ϕ̂+ as follows

ta = argmin
t∗∈[0,1]

(
nf

n
−
∫ 1

t∗

ϕ̂+(t)dt

)

≈ 1− ht × argmin
i∗

(
nf

n
−

i∗∑

i=0

ϕ̂+(1− hti) + ϕ̂+(1− hti− ht))
2

× ht
)
, (4.13)

where ht is a stepping size. Lastly, the estimated lower-bound ta has to be remapped
on the initial interval to return the correct value for |a|. From (4.5), we have

|a| = |b| · ta. (4.14)

The interval [a2, b2] therefore constitutes a purely algebraic interval for the roots of
the Chebyshev polynomial smoother based on A2. The lower-bound estimation is
summarized by Algorithm 3, and illustrated in Figure 4.5.
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Algorithm 3 Construction of the interval [a, b] based on spectral density approximation

1: ϕ̂← ComputeSpectralDensity(A,b) ▷ From Algorithm 2
2: ϕ̂+ ← ϕ̂(t) + ϕ̂(−t) ∀ti ∈ {0, 1}ht

. ▷ {0, 1}ht
is a discretized interval of [0, 1]

3: end for
4: area← 0, t← 1
5: while area < nf/n do
6: ta ← t− ht

7: area← area + ht/2×
(
ϕ̂+(ta) + ϕ̂+(t)

)
▷ Integration using trapezoid formulas

8: t← t− ht

9: end for
10: |a| = |b|ta/2 ▷ Lower-bound ta needs to be re-scaled to the initial matrix spectrum

Integrating the spectral density function offers a wider interval by enabling a more
accurate estimation for the lower-bound a2 than selecting a in proportion with b. In
Figure 4.5a, |a| = 2.6 for α = 0.6252 whereas |a| = 1.2 for α = 2.02 in Figure 4.7a.
These numbers are smaller than the lower-bound estimates portrayed by figures 4.3a
and 4.3b. Despite more important oscillations, the resulting polynomials portrayed
in 4.6 prove to damp a larger proportion of eigenvalues.
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Figure 4.5: Density of State of the SL2D matrix by setting λmin = −|b| in (4.5)
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Figure 4.6: Spectrum of qd+1 with roots selected in [a, b] in (4.5)

Let us discuss one downside of this scaling approach based on the initial matrix. It
is well known for the model problem SL2D that none of its eigenvalues belongs to
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[−|b|,−α]. However, the area that the density curve covers within this interval is
not strictly zero as it should be. This is due to the density function that smoothly
grows from −|b| to the actual non-zero probability area which begins at −α. In other
words, the rough estimation λmin = −|b| for the definition of the scaled matrix in
(4.5) creates a gap that impacts the shape of the curve, and subsequently degrades
the lower-bound estimation. For instance, the blue histogram in the background
of Figure 4.8a is symmetric contrary to the curve in the foreground. As the conse-
quence, the lower-bound estimate |a| is slightly shifted from the middle peak. This
rough estimation of the largest negative eigenvalue λmin is probably enough in the
context of designing a good polynomial smoother for Helmholtz as highlighted by
Figure 4.6.

One geometrical approach for fixing this issue when solving the Helmholtz SL2D
model problem is to set the lower bound as the smallest eigenvalue and the upper
bound as the largest eigenvalue, such that λmin = −α and λmax = 8 − α. In that
case, the scaled matrix of (4.5) would be

B :=
A− (4− α)I

4
=

1

4
· (A−Diag(A)) (4.15)

A second algebraic strategy for solving the gap issue caused by the useless portion
[−|b|,−α] is to work on normal equations, but at the price of doubling the number
of matrix vector products in the overall spectral density approximation. The next
section discusses this second approach.

4.1.1.4 Scaling with the normal equation matrix

Scaling on the normal equation matrix ATA is convenient to determine the density
function in magnitude, but at the cost of doubling the number of matrix vector
products in the spectral density approximation phase. In that case, the lower-
bound λmin can simply be set to 0 if the matrix is squared. The upper-bound b of
the Chebyshev nodes interval can still be computed by a few power iterations as
in the previous scaling approach. Here, we assume that b corresponds to an upper-
bound of the largest eigenvalue of the normal equation matrix ATA. Estimating the
lower-bound a using the spectral density approximation still requires to rescale the
normal equation matrix. In this second scaling approach, we set

λmin = 0 and λmax = b (4.16)

such that the scaled matrix B of (4.5) becomes

B =
2A∗A

b
− I. (4.17)

Since the eigenvalues of B are positives, its spectral density approximation does
not need to be summed up with the negative portion as in (4.12). The lower-
bound estimations for the same shifts as for Figure 4.3 are illustrated in 4.7. These
numerical experiments do not emphasize any incidence of the shift on the accuracy of
the spectral density approximation. The red curve fits the variation of the histogram
accurately except for near-zero eigenvalues. In comparison with the previous figure,
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Figure 4.8 plots different Chebyshev polynomials after estimating the lower-bound
with the spectral density setting. Especially, these figures reveal how large the
interval of eigenvalues is compared to the remaining portion that should be treated
by the coarse correction, while containing 50% of the spectrum only.
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Figure 4.7: Interval estimation of [a, b] for ATA
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Figure 4.8: Spectrum of qd+1 with roots selected in [a, b] for ATA

Both scaling approach can be used to determine a good interval [a2, b2] for select-
ing the Chebyshev interpolation points. Thereafter, the Lagrangian formula (2.24)
enables the computation of the coefficients of the polynomial pd(ATA) that approx-
imates the inverse of ATA.

4.1.2 Numerical experiments on the smoother

Used as a standalone solver, the main goal when designing an iterative method is to
minimize its convergence rate. However, in our case, the smoother is implemented
within the multigrid cycle, and is therefore coupled with an additional coarse grid
correction. As discussed previously, the keystone that drives convergence of a multi-
grid method is the complementarity between both operators. For fast convergence,
the smoother should be effective where the coarse correction is not and vice versa.
To emphasize this feature of our Chebyshev polynomial, let us first analyze the effect
of the GMRES method on each eigenvector of the initial matrix.
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Since Krylov methods are right-hand side dependent, it is not insightful to extract
the eigenvalues of its error propagation matrix. Let r(0) be the initial residual. We
compute the residual r(1) after one single smoothing step. Both residuals can be
decomposed as a linear combination of eigenvectors as follows

r(0) =
n∑

i=1

β
(0)
i vi and r(1) =

n∑

i=1

β
(1)
i vi. (4.18)

For each eigenvector vi, Figure 4.9 plots the ratios |β(1)/β(0)| with respect to the
eigenvalues for two different shifts. In this first experiment, three Krylov vectors are
generated to construct the basis. This numerical experiment is run 25 times. Each
gray mark represents the effect of the method on one particular eigenvector and for
each of the 25 initially random residuals r(0). The blue marks correspond to the
average of the gray marks for each eigenvector.

The left Figure 4.9a that corresponds to the shifted case α = 0.6252 illustrates
how efficient the Krylov iterations are in damping the large positive eigenvectors.
However, the smallest magnitude eigenvalue remains untouched, and the negative
small eigenvalue on its left gets amplified. In a similar way, the right Figure 4.9b
shows that the damping factors of large positive eigenvalues oscillate around zero,
and that the largest negative eigenvalue is also amplified when increasing the shift
to α = 1.752.
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Figure 4.9: Effect of ν = 1 smoothing step of GMRES(3) on the eigenvectors of the SL2D
problem for two different shifts.

Similar observations can be made in Figure 4.10 when increasing the size of the
minimization space to 6 Krylov vectors. Moreover, Figure 4.10b reveals that not
only the largest negative eigenvalues are amplified, but also the intermediate ones.
In fact, nothing guaranties a symmetric behavior of the Krylov method between the
negative and positive eigenvalues. Due to the right-hand side dependency, it remains
difficult to predict its effect in all cases and for each eigenvector, especially for the
coarse matrices of a multilevel hierarchy. Subsequently, the coarse correction may
need to hit several separated intervals of the spectrum to satisfy the complementarity
principle when using a Krylov method as a smoother.
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Figure 4.10: Effect of ν = 1 smoothing step of GMRES(6) on the eigenvectors of the SL2D
problem for two different shifts.

The smoother will play an important role in the design of good interpolation rules
and in the coarse correction process. We refer to chapters 5 and 6 for more details
on these topics. The fact that GMRES eventually amplifies certain regions of the
spectrum motivated us to design an alternative smoother whose spectral behavior
is a priori known and guaranteed to not amplify any eigenvector. The Chebyshev
polynomial smoother behaves the same independently of the right-hand side, and
shares the same eigenvectors with the initial matrix. Subsequently, it follows that
the ratios β(1)

i /β
(0)
i correspond to the eigenvalues of the error propagation matrix

qd+1(A
TA) in absolute values. As a consequence, the gray marks are all the same

and hidden behind the average blue marks in Figure 4.11. In this experiment, one
iteration of the Chebyshev polynomial smoother with normal equations is applied,
and the degree is set to 3. Moreover, the degree of the error propagation matrix is
3 with respect to ATA, which corresponds to a polynomial of degree 6 with respect
to A in the Hermitian case.
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Figure 4.11: Effect of ν = 1 smoothing step of our normal equations polynomial smoother with
degree 6 on the eigenvectors of the SL2D problem for two different shifts.

The Chebyshev polynomial smoother with normal equations prevents any amplifi-
cation of the eigenvectors as discussed in Section 2.1.2.2. This convenient feature
enables a better knowledge of which space the coarse correction should target, and
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will help the construction of the interpolation operator in Chapter 5. This benefit
may be at the price of smaller damping factors, as it is apparent when comparing
Figure 4.11a with Figure 4.10a. However, it enables the convergence of the smoother
in the indefinite case, and is therefore extremely useful in cases where the proportion
of negative and positive eigenvalues tends to be the same. In particular, compar-
ing 4.11b with 4.10b highlights that the polynomial smoother seems to offer similar
damping properties to GMRES, while preventing each eigenvector from being am-
plified. These smoothing properties help in the multilevel case, as coarser matrices
in the multigrid hierarchy tend to be very indefinite as illustrated in Figure 7.6 for
instance.

However, when the proportion of positive and negative eigenvalues gets unbalanced,
for instance, for small shifts, certain roots are “wasted” on the side where only a
few eigenvalues are located. In the future, it would be interesting to avoid nor-
mal equations to allow more flexible smoothing properties. Different polynomials
may still prevent the amplification of certain eigenvectors while offering even better
convergence properties.

4.2 Intermediate Conclusion

In this chapter, we introduced a Chebyshev polynomial smoother with normal equa-
tions to damp the large magnitude eigenvalues independently of their signs. The
Chebyshev framework provides the best polynomial inverse approximate of the ini-
tial matrix for a given interval. Hence, the choice of the interval is important, and
can be defined in several ways. While geometrical information can help, we also
introduced a purely algebraic approach based on a spectral density approximation
of the initial matrix.

Used as a stand-alone solver, the convergence of our polynomial smoother can be
outperformed by Krylov methods, but its effect on the spectrum is known in ad-
vance and ensures that no eigenvector is amplified in the smoothing process. As
discussed in chapters 5 and 6, these features are key in the design of a good inter-
polation operator, but also in the contraction rate of an adapted coarse correction
for Helmholtz.



Chapter 5

Interpolation rules for Helmholtz

The complementarity between the smoother and the coarse correction drives the
convergence of multigrid methods. In Chapter 4, we introduced a smoother that
damps the large eigenvalues of the Helmholtz matrix magnitude-wise. Accordingly,
the coarse correction should capture the small magnitude eigenvalues. The design of
an appropriate interpolation operator P is especially important because the coarse
correction works by projecting the residual onto the range of interpolation. There-
fore, the span of P should approximate the space that the smoother damps the least,
while keeping a practical structure that counts as few non-zero entries as possible.

Authors introduced several approximation properties that P should satisfy to max-
imize the effectiveness of the coarse correction. The optimal framework introduced
in Chapter 2 provides the range of the best theoretical interpolation operator for a
given smoother (2.85). In our case, the optimal interpolation operator prescribed
by the theory should span the oscillatory space of eigenvectors associated with small
magnitude eigenvalues. In what follows, and as in Chapter 3, we designate this space
by Vc. However, the optimal framework does not address the question of practical
implementation. In a different manner, the ideal theory provides a more practical
form of interpolation based on a set of coarse and fine variable operators. Such an
ideal interpolation operator is usually dense and subsequently impractical. However,
it allows approximations aimed at satisfying a trade-off between sparsity and good
interpolation rules.

The ideal interpolation operator P∗ based on the classical coarse and fine variable
operators RT and S (2.75) can yield good convergence in practice. However, the
variable operators are not designed with the perspective of addressing Helmholtz.
As a consequence, it is difficult to predict the efficiency of an approximation P of the
classical ideal interpolation operator P∗. Alternatively, we introduce a new coarse
variable operator R̂T based on a least-squares minimization strategy. Thereafter,
we construct its orthogonal fine variable counterpart Ŝ such that R̂Ŝ = 0. Here, the
process of approximating the ideal interpolation P̂∗ is more predictable because R̂T

and Ŝ are better initial approximations of the theoretical complementarity required.
In this second approach, P̂ denotes the approximation of P̂∗.

Throughout this chapter, we discuss the approximation properties of our interpola-

85
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tion operator along with its complexity and its effect on the concept of “pollution”
introduced in 3.2. With the aim of evaluating the approximation properties of the
different operators in this chapter, we use the l2-orthogonal projection Π(P ) defined
in (3.69). We say that a vector v is “close” to the range of P if vT (I − Π(P ))v ≈ 0.
Conversely, we say that v is “poorly approximated” by P when vT (I − Π(P ))v ≈ 1.

5.1 Guidance of the optimal theory

To design a good interpolation operator for Helmholtz, we start by looking at the
optimal interpolation range prescribed by the theory. As prescribed by Lemma 1,
given a smoothing matrix M−1 that approximates A−1, the optimal interpolation
operator P# satisfies

Range(P#) = span ({u1, . . . ,unc}) , (5.1)

where ui is the ith eigenvector associated with the ith largest eigenvalue µi in
magnitude of the generalized eigenvalue problem

Aui = µiMui. (5.2)

The range of optimal interpolation in (5.1) corresponds to the space spanned by
eigenvectors ui associated with the smallest eigenvalues µi in magnitude, which
corresponds to the space that the smoother damps the least. In our case, we use
a Chebyshev polynomial smoother of degree d, such that pd(A2) approximates the
inverse matrix A−2. Therefore, the generalized eigenvalue problem (5.2) becomes

A2ui = µi

(
pd(A

2)
)−1

ui. (5.3)

Recall that vi is the eigenvector associated with the ith largest magnitude eigenvalue
λi. Because both A2 and pd(A2) have the same eigenvectors, we have ui = vi. From
(5.3), it follows that

µi = λ2i pd(λ
2
i ). (5.4)

In addition, recall that qd+1(A
2) = I − pd(A2)A2 is the error propagation matrix of

pd(A
2). Hence, eigenvalues of the generalized eigenvalue problem (5.3) are finally

given by
µi = 1− qd+1(λ

2
i ). (5.5)

The polynomial smoother damps an eigenvector v slowly if its associated eigenvalue
λ ≈ 0, such that qd+1(λ

2) ≈ 1. Therefore, the most difficult eigenvector for our poly-
nomial smoother is v1. As a consequence, the smallest eigenvalue of the generalized
eigenvalue problem (5.3) is µ1 = 1 − qd+1(λ

2
1) ≈ 0 assuming λ1 ≈ 0. From (5.2),

the optimal theory states that v1 is the most important to include in the range of
the optimal interpolation operator. The same reasoning applies for all of the other
eigenvectors of Vc as well.

To summarize, the optimal range finally corresponds to the space spanned by the
small eigenvectors of Vc, including the near-kernel space, since the polynomial smoother
damps the complementary subspace Vf faster. In other words, the optimal interpo-
lation operator satisfies

Range(P#) = span (Vc) . (5.6)
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5.2 Classical framework

The optimal theory prescribes the range of the best interpolation operator, but no
insight on its practical form. Conversely, the ideal theory does not prescribe the op-
timal interpolation operator, but the best interpolation operator that can be derived
from a given set of coarse and fine variable operators. Still, the ideal interpolation
operator minimizes the interpolation error of eigenvectors in proportion with the
inverse of associated eigenvalues. Hence, even the “classical” ideal interpolation op-
erator P∗ of (2.77) should have good approximation properties of the near-kernel
space of Vc. However, the quality of an approximation P of P∗ is less evident. New
variable operators based on a least-squares minimization strategy will be introduced
in the next section to address this issue. But first, let us discuss on the properties
satisfied by approximations of P∗.

5.2.1 Classical variable operators and ideal interpolation operator

The splitting between coarse and fine variables has been done since the early days
of multigrid method research. In classical multigrid settings, the coarse and fine
variable splitting is simply based on an initial selection of nc C-points and nf F -
points. In classical AMG, the selection of the coarse variables is aimed at tracking
the geometrical smoothness of the near-kernel space of elliptic problems by way of the
strength of connection rule (2.56). In our case, the near-kernel space is oscillatory.
Hence, we measure the connection between the entries magnitude-wise and define
the strong connection groups as follows

Si :=
{
j , |aij| ≥ θ max

k ̸=i
(|aik|)

}
. (5.7)

The nc selected C-points are those with the most strongly connected points, and
their neighbors form the group of F -points. Let the rows and the columns of A be
permuted based on their C-points and F -points affiliation. We assume that A has
the form (2.76). Then, recall that the classical coarse and fine variable operators
are respectively defined by

RT = [0 Ic]
T and S = [If 0]T . (5.8)

The ideal interpolation operator works by removing the S-related space that the
smoother should handled from range(RT ) to better target the information that the
coarse correction should capture, such that

P∗ :=
(
I − ΠA (S)

)
RT =

(
I − S

(
STAS

)−1
STA

)
RT . (5.9)

When using the variable operators (5.8), let us recall that the ideal interpolation
operator has the form

P∗ =

[
−A−1ffAfc

Ic

]
. (5.10)

Assuming A defines a norm (which is not true in the indefinite case), constructing
each column of P∗ is equivalent to solving the nc minimization problems

[P∗]:,i = RT
:,i − si with si := argmin

s̃∈Range(S)
||RT

:,i − s̃||A i = 1, . . . , nc. (5.11)
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For this reason, choosing a relevant set of coarse and fine variable operators is
crucial in the design of a multigrid method. For instance, Figure 5.1 presents the
error of interpolation of every eigenvector vi using the measure (3.69) for both oper-
ators RT and S. One clear observation is that none of the classical variable operators
distinguishes the smallest eigenvectors of Vc from the largest of Vf . In other words,
the classical coarse variable operator RT does not have good approximation property
for the oscillatory near-kernel space that characterizes Helmholtz. Conversely, the
range of the classical fine variable operator S does not approximate the space for
which the polynomial smoother introduced in Chapter 4 is the most effective.
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Figure 5.1: Error of the l2-projection onto the range of classical variable operators RT and S and
of the ideal interpolation operator P∗ for two different shifts

Nevertheless for Helmholtz, the classical definitions in (5.8) may still lead to a good
ideal interpolation operator since P∗ is the optimal minimizer of the quantity µM in
(2.65). Because this quantity is weighted by the inverse of an A-norm, the classical
ideal interpolation operator focuses on the smallest eigenvectors very well, as illus-
trated in Figure 5.1.

In the next section, we address one approximation approach of P∗ based on the
set (5.8). When applying a red-black C/F splitting for the 5-point stencil matrix
(1.2), then the block Aff is diagonal. In that particular case, P∗ is practical. To
prevent our approximations from benefiting from this special property, we consider
the 9-point stencil (1.3) in this chapter. The analysis remains the same, the only
difference is the structure of the initial matrix A that challenges our approximations
better in the 9-point stencil case.

Hence, Figure 5.2 plots the l2-projection error of the different operators in the
9-point stencil case. Again, the variable operators have approximately the same
effects on each eigenvector, whereas the resulting ideal interpolation operator offers
good approximation properties of the near-kernel space. As highlighted in (5.11),
applying the left operator of the ideal formula removes the information contained in
the range of Ŝ by minimizing an approximation error in A-norm. Even though such
a norm does not exist in the indefinite case, ignoring this problem may still give in-
teresting results in practice as depicted by the green curves. However, plugging the
normal equations guarantees the minimization principle of the ideal interpolation
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operator. We discuss this additional step in Section 5.2.3. In Figure 5.2, the orange
curves depict a smaller error when resorting to normal equations.
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Figure 5.2: Error of the l2-projection onto the range of classical variable operators and ideal
interpolation operator for the model problem SL2D-9S with and without normal equations

5.2.2 Ideal approximation based on the SPAI approach

One well-known practical issue of the ideal interpolation operator (5.9) is related to
the generally dense inverse matrix of the fine block Aff in (5.10). To circumvent
this problem, an approximation based on sparsity constraints should be applied, as
a good interpolation operator P should also count the fewer non-zero entries pos-
sible. A first approach to control its density is to compute a Sparse Approximate
Inverse (SPAI) of Aff . These SPAI techniques have originally been developed by
Federickson and Brenson [41, 76]. In fact, they generally consist of computing the
closest sparse approximation of a matrix inverse under constraints on the output
pattern P of non-zero entries. The inverse approximation minimizes the quantity
||I − AM ||F subject to P , where M corresponds to the constrained approximate
inverse. In our case, we can compute an approximation of A−1ff using these SPAI
techniques and inject it in (5.10). This approach can also be useful in the reduction
setting as it also gives an approximation for Mf in (2.72), as in [84].

A second approach is to approximate the nf × nc matrix A−1ffAfc of (5.9) at once.
This approach relies on the generalized SPAI technique developed [46] which mini-
mizes the quantity of general form ||B −AW ||F , where B and A respectively stand
for the right member Afc and Aff in our case.

When resorting to SPAI techniques, the classical ideal interpolation operator can be
approximated by

P =

[
W
Ic

]
, with W :=

{
argmin

W̃

||Afc − AffW̃ ||F
subject to W̃i,j ∈ P

, (5.12)

where P corresponds to the pattern of non-zero entries. We discuss the choice of the
pattern further. Hence, the approximation based on (5.12) can give excellent results
in the classical setting if A−1ff is also sparse or diagonally dominant. For instance,
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we mentioned that using a red-black C/F splitting on 5-point stencil matrices leads
to a purely diagonal block Aff . The interpolation operator constructed by way of
(5.12) is ideal. More sophisticated C/F splitting heuristics have been investigated
to enable a convenient form of Aff in the general case, as in [61, 83].

In practice, the computation of the sparse block W is made by solving a least-
squares minimization problem for each column. The entire process is summarized
by Algorithm 4 and more details can be found in [84].

Algorithm 4 Sparse Approximate Inverse for the construction of P̂
1: for j = 1, nc do

2: J ←
{
i | (i, j) ∈ Pm

(
RT

f

)}

3: I ←
{
i | (i, j) ∈ P

([
ŜTAŜ

]
:,J

)}

4: Qj , Rj ← QR Factorization
([

ŜTAŜ
]
I,J

)

5: [W ]I,j ← R−1
j QT

j

[
ŜTAR̂T

]
I,j

6: end for
7: return W

As the accuracy of P depends on the sparsity constraints enforced on W , we inves-
tigate the quality of approximation based on different augmented sparsity patterns.
Hence, define m the number of new entries that are added on the top and bottom
of each initial non-zero entry of a given pattern, as illustrated in Figure 5.3.
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(c) m = 2

Figure 5.3: Augmentation of the pattern with respect to m

We control the sparsity pattern of W by augmenting the pattern of AffAfc + Afc

denoted by Pm(AffAfc + Afc). In [84], the pattern P0(AffAfc + Afc) is used to
construct the approximation of P∗. Figure 5.4 highlights the effect of approximation
on the l2-projection error. In particular, augmenting the pattern seems to have a
strong impact, such that m = 1 is sufficient to provide an almost perfect approxi-
mation of the ideal interpolation. Lastly, we do not notice any significant difference
between m = 1 and m = 2 in this case, certainly because P is already close to P∗
for m = 1.
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Figure 5.4: Error of the l2-projection onto the range of the classical ideal approximations using
the SPAI approach for the model problem SL2D-9S with respect to m - without normal equations

5.2.3 Normal Equations

In the SPD case, the construction of P∗ results from the minimization of an error in
A-norm (5.11). Such a norm does not exist in the indefinite case. Figure 5.4 shows
that ignoring this concern can still provide good approximation properties of Vc in
practice. However, we noticed a better convergence of our multilevel experiments
in Chapter 7 when using the normal equations in the approximation of the ideal
interpolation operator. Moreover, Figure 5.2 shows that it decreases the error of the
l2-projection. Hence, we also consider the normal equations in this chapter, such
that the ideal interpolation operator has the form

P∗ :=
(
I − ΠATA (S)

)
RT =

(
I − S

(
STATAS

)−1
STATA

)
RT . (5.13)

This time, constructing each column of P∗ is equivalent to solving the following
minimization problems regardless of the indefinite nature of the initial matrix A,
such that

[P∗]:,i = RT
:,i − si with si := argmin

s̃∈Range(S)
||RT

:,i − s̃||ATA i = 1, . . . , nc. (5.14)

Assuming the same coarse-fine permutation of the initial matrix as in (2.76), the
resulting normal equations matrix has the form

ATA =



AT

ffAff + AT
cfAcf AT

ffAfc + AT
cfAcc

AT
fcAff + AT

ccAcf AT
ccAcc + AT

fcAfc


 . (5.15)

Substituting the normal equations matrix (5.15) in the former minimization problem
(5.12) gives

W :=





argmin
W̃

||AT
ff

(
Afc − AffW̃

)
+ AT

cf

(
Acc − AcfW̃

)
||F

subject to W̃i,j ∈ P
. (5.16)

where W is the fine variable block of interpolation in P . Equation (5.16) reveals that
approximating the classical ideal interpolation operator with normal equations is
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equivalent to solving two minimization problems of the form (5.12) simultaneously.
Here again, sub-matrices involved in the normal equation minimization problem
(5.16) are nicely structured as in the original minimization problem (5.12). Although
the structure of ATA is probably more tricky, it may be reasonable to expect an
appropriate sparse blockW with a convenient the C/F splitting. Figure 5.5 plots the
l2-projection error of each eigenvector using the SPAI approximation with normal
equations. The sparsity patterns enforced on W are the same as in Figure 5.4.
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Figure 5.5: Error of the l2-projection onto the range of the classical and least-squares ideal
approximations with the SPAI approach for the model problem SL2D-9S with respect to τ - with

normal equations

While 5.2 shows that the l2-projection error of the ideal interpolation P∗ is better
with the normal equations, Figure 5.5 reveals that using normal equations yields a
stronger difference between the approximation P and the ideal interpolation operator
P∗. In fact, the structure of ATA is more difficult and it is not surprising that the
approximate inverse return by solving (5.16) is subsequently less accurate.

5.2.4 Effect on the pollution

In this section, we discuss the effect of the ideal approximation step through the
concept of pollution introduced in Section 3.2. In Section 3.2.2, we have seen that
the pollution associated with large eigenvalues has the strongest impact on the
coarse correction, especially for eigenvectors associated with small eigenvalues in
magnitude. Moreover, the contraction rate depends on a mix between negative and
eigenvalues through the block of pollution Kf . In what follows, we analyze what
type of pollution the ideal approximation phase decreases promptly. Throughout
this section, the target ideal interpolation has normal equations.

5.2.4.1 The 5-point stencil case

Let us first analyze the pollution Kf when applying the previous approach to the
5-point stencil problem (1.2). Figure 5.6 represents the entries of Kf with respect
to the pattern augmentation degree m and for the shift α = 0.6252. Alternatively,
Figure 5.7 corresponds to the shift α = 1.752. Both Figures 5.6a and 5.7a represent
the entries of Kf when no approximation of the ideal interpolation operator is ap-
plied, such that P = RT . Black pixels designate max amplitude entries, red pixels
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correspond to intermediate amplitudes (between 10% and 1% of the largest am-
plitude), pink pixels represent small amplitudes (between 1% and 0.1%), and gray
pixels denote extremely small entries (below 0.1%). Naturally, white pixels repre-
sent strictly zero entries. The x-axis corresponds to the indexes of Vc, whereas the
y-axis corresponds to the indexes of Vf . For instance, the entry (j, i) of Kf in (3.70)
gives the pollution arising from the large eigenvector vj ∈ Vf in the l2-projection of
the small eigenvector vi ∈ Vc. Note that, because we use normal equations, P is an
approximation of P∗, even in the 5-point stencil case.
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(c) P, m = 1

Figure 5.6: Entries of the pollution block Kf with respect to τ and for α = 0.6252 - The 5-point
stencil case

First, the diagonal shape of Kf in Figure 5.6a reveals that the coarse variable op-
erator RT interacts in a very particular way with the small eigenvectors of 5-point
stencil matrix. Large and small eigenvectors are probably linked by a relation of the
form (3.10) in the two-dimensional problem as well.

Beyond that point, Figure 5.6 shows that approximating the ideal interpolation
operator decreases the number of pink pixels. More precisely, the pollution of the
smallest eigenvectors is eliminated when setting m to 0 although a few red pixels
appear on the top. The red pixels are cleaned by increasing m to 1, except on the
top right-hand corner where the cluster of red pixels remains.

The evolution of the pollution is more difficult to clarify for the larger shift α = 1.752.
For sure, setting m = 1 decreases the pollution entries globally, without a clear
distinction between the pollution entries associated with small and large eigenvectors
of Vf however.

5.2.4.2 The 9-point stencil case

Let us repeat the same experiments on the 9-point stencil model problem (1.3).

In both Figures 5.8 and 5.9, we observe that improving the approximation of P∗
tends to decrease the pollution of the smallest eigenvectors first. The most polluted
area for m = 1 corresponds to the largest eigenvectors of Vc.
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Figure 5.7: Entries of the pollution block Kf with respect to m and for α = 1.752 - The 5-point
stencil case
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Figure 5.8: Entries of the pollution block Kf with respect to m and for α = 0.6252 - The 9-point
stencil case
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Figure 5.9: Entries of the pollution block Kf with respect to m and for α = 1.752 - The 9-point
stencil case

We conclude this section by noting that approximating the ideal interpolation op-
erator tends to decrease the pollution of the smallest eigenvectors of Vc first. This
feature is especially important as the smallest eigenvectors are the most sensitive to
the pollution, for the reasons explained in Section 3.2.2.
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5.2.5 Complexity

While approximating the ideal interpolation operator improves the coarse variable
operator by decreasing its pollution, a trade-off has to be found with the resulting
fill-in of the coarse grid operator. In what follows, we only study the sparsity pattern
of the interpolation operators and of the coarse matrices for α = 0.6252 as increasing
the shift do not change the complexity significantly.

5.2.5.1 Complexity of the interpolation operator

stencil RT m = 0 m = 1 m = 2 P∗

5-pts 0.5 2.3 2.3 2.3 2.3

9-pts 0.5 3.8 6.6 8.6 13.8

(a) Without normal equations

RT m = 0 m = 1 m = 2 P∗

0.5 2.3 4.8 7.4 25.5

0.5 3.8 6.8 8.8 24.8

(b) With normal equations

Table 5.1: Average number of non-zero entries per row with respect to m when approximating
the ideal interpolation operator with the SPAI approach

Naturally, Table 5.1 shows that increasing m leads to more non-zero entries in P .
Moreover, the ideal interpolation operator P∗ with normal equations is denser. How-
ever, we used the same sparsity pattern to control the fill-in of P when approximating
P∗ with or without normal equations. As a consequence, the sparsity of P remains
the same in both cases. Extending the pattern of non-zero entries when the target
ideal interpolation has normal equations should improve P , but at the cost of higher
complexity.

5.2.5.2 Complexity of the coarse grid

Recall that Ac = P TAP is the coarse grid operator computed through the Galerkin
triple matrix product, as introduced in (2.41). Dark green and red pixels in Figure
5.10 respectively designate positive and negative entries whose magnitude are greater
than 10% of the largest magnitude entry. Light green and pink pixels respectively
designate positive and negative entries with magnitude between 10% and 1% of the
largest. Gray pixels designate remaining non-zero entries, regardless of their signs.

In accordance with Table 5.1, both figures show that the density increases with m.
Nevertheless, the loss of sparsity is mostly due to the appearance of very near-zero
entries represented in gray, whose magnitude are lower than 10−3 × ||P ||∞. This
feature hints that an additional sparsification approach may be applicable to reduce
the complexity of the coarse matrices.

5.3 Least-squares minimization framework

The process of approximating P∗ is generally difficult to predict, because the classic
variable operators RT and S are not approximations of the theoretical complemen-
tarity required. In this section, we design a least-squares coarse variable operator
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Figure 5.10: Fill-in of the coarse matrix Ac with respect to m for the 9-point stencil problem and
with normal equations

denoted by R̂T that targets the potentially oscillatory set of small eigenvectors Vc.
As we assume no available information on the near-kernel space, we approximate
it by way of a set of test vectors denoted by T . As prescribed by the theory, we
thereafter define the fine variable operator Ŝ to satisfy the l2-orthogonality with
R̂T . The least-squares variable operators R̂T and Ŝ respectively target Vc and Vf
and enable a new and more predictable approximation P̂ of the ideal interpolation
operator P̂∗.

In this second framework, we design the ideal approximation P̂ by restricting the
minimization space in (5.11) to a few columns of Ŝ only. Contrary to the classic
ideal approximation P that works better when the fine inverse block has a conve-
nient structure, P̂ is designed by removing smoother related information contained
in the columns of Ŝ from the range of R̂T (which initially approximates the span of
Vc through the set T ). This approach improves the complementarity between the
smoother and the coarse correction.

5.3.1 Approximating Vc by a set of test vectors

In a pure algebraic setting, the near-kernel space of the Helmholtz equation is un-
known. Using the smallest eigenvectors Vc to construct the optimal interpolation is
not practical, as it requires computing the nc smallest eigenvectors exactly. Instead,
we compute a cheaper approximation of Vc by way of a set of vectors generated by
smoothing a number κ of initially random vectors.

We approximate the oscillatory and potentially large near-kernel space by smooth-
ing a set of random vectors with the polynomial smoother developed in Chapter 4.
We recall that the error propagation matrix of the Chebyshev polynomial smoother
is qνd+1(A

2). Define the columns of T by a set of κ smoothed random vectors zl, such
that

T:, l = qνd+1(A
2)zl with zl = random(n) , l = 1, . . . , κ, (5.17)

where T:, l designates the lth column of T (i.e., the lth test vector). Naturally,
increasing κ enlarges the set, whereas adding more smoothing steps tends to ac-
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centuate the prevalence of small eigenvectors in the span of T as the polynomial
smoother damps the largest ones faster.
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Figure 5.11: Error of the l2-projection onto range(T ) with respect to κ and ν with α = 1.752

The Figure 5.11 plots the error between each eigenvector and its l2-projection (3.69)
in the range of T with respect to the number κ of test vectors and the number
ν of smoothing steps. As expected, the layering of red, blue, and green marks
shows that increasing κ improves the approximation of the smallest eigenvectors.
Additionally, adding more smoothing steps emphasizes the smallest eigenvectors.
Marks associated with large eigenvectors are very close to one in both figures 5.11a
and 5.11b, which means that T is quasi-orthogonal with Vf . Even though a small
number of test vectors cannot represent the entire and potentially large near-kernel
space accurately, the subspace still provides a rough approximation of the smallest
eigenvectors of Vc and excludes the largest ones. These features will be helpful in
the construction of appropriate interpolation rules for Helmholtz.

5.3.2 Construction of the least-squares variable operators

The set T of smoothed random vectors forms an approximation of the vector space
that good interpolation rules should produce in theory. Hence, we construct the new
coarse variable operator R̂T by applying a least-squares minimization strategy on
it. This approach starts by initializing the set of points C/F . We denote by nc and
nf their respective sizes. For Helmholtz, such a dichotomy is inspired by the clas-
sical strength of connection rule (2.56) that originally tracks geometrically smooth
information. Because the near-kernel space of Helmholtz is potentially oscillatory,
strong connection groups Si are only constructed to evaluate the importance of each
point to the others based on the magnitude of matrix entries. The points strongly
connected to the ith point belong to the group (5.7). From these strong connection
groups (5.7), the selection of C remains the same as in the classical AMG set-up
phase.

For what follows, let us now assume rows of T are permuted in terms of coarse
and fine points, such that

T =

[
Tf
Tc

]
. (5.18)
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In theory, the set of test vectors T is exactly in the range of the coarse variable
operator R̂T if there exists a set of coarse vectors T ′

c of size nc × κ that satisfies

T = R̂TT
′
c . (5.19)

This property is for instance enforced in the smoothed aggregation method [75, 74,
12] by splitting the set between disjoint aggregates over the entire domain to initiate
a tentative block interpolation operator. In most applications targeted by smoothed
aggregation methods, the near-kernel space is known in advance and can be plugged
into T directly. In our case, the set of vectors only provides a rough approximation
of the near-kernel space, so that enforcing the strict equality of (5.19) is not a re-
quirement. Moreover, the size κ of the set is arbitrary and potentially too large for
a practical implementation of the smoothed aggregation method.

Subsequently, we opt for a least-squares minimization strategy that will construct
each row of the new coarse variable operator R̂T as the best average interpolation
rules for T . The following development is inspired from [7]. Ordering the points
based on their affiliation to the groups of C-points and F -points, a good form of
coarse variable operator is

R̂T =

[
RT

f

Ic

]
. (5.20)

The C-points are interpolated to the finer level by way of a simple injection rule
corresponding to the nc×nc identity block Ic. The block RT

f designates the interpo-
lation rules of F -points. From (5.20), the interpolation of C-points with the coarse
variable operator naturally satisfies

Tc = IcTc. (5.21)

Equation (5.21) highlights that interpolation of C-points is exact, due to the identity
block Ic. Our approach consists of defining a sparse and relevant block RT

f in R̂T

that minimizes the interpolation error of F -points in the set T . A good coarse
variable operator for the propagation of the set of test vectors T satisfies

Tf ≈ RT
f Tc. (5.22)

Accordingly, we seek a practical coarse variable operator that minimizes the Eu-
clidean distance between the Tf and RT

f Tc under the constraint of a non-zero pattern
on the block RT

f .

To this end, let i be an F -point and r̂i be the vector containing the non-zero ele-
ments of the ith row of R̂T . The idea is to construct each F -point interpolation rule
by minimizing the squared difference between F -values of T and their interpolation
from strongly connected C-points designated by Ci, such that

Ci := Si ∩ C. (5.23)

Subsequently, the non-zero entries in the ith row of the coarse variable operator are
given by the indexes of the set Ci. Denote by Ti,: a row vector containing the ith
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values of each test vector, and TCi,l a vector containing the values in T:,l of the Ci in
(5.23). Then, we define the ith row of the coarse variable operator by

∀i ∈ F , r̂i = argmin
r̂∈Ccard(Ci)

κ∑

l=1

wl (Ti,l − r̂ · TCi,l)2 =: argmin
r̂∈Ccard(Ci)

Li(r̂), (5.24)

where wl are scaling weights. For instance, good weights are wl = 1/|λl| if T contains
eigenvectors. In our case, the contribution of eigenvectors is statistically the same
for each column of T , as they arise from the same smoothing process of initially
random vectors. In what follows, we fix wl = 1 in (5.24). Finding the minimum of
the convex loss function Li is equivalent to solving

∇Li(r̂i) = 0. (5.25)

Equation (5.25) can be rewritten element-wise

∂Li(r̂i)

∂r̂ij
=

κ∑

l=1

2wl(Ti,l − r̂i · TCi,l)TCij ,l = 0 , j = 1, . . . , card(Ci). (5.26)

Finally, (5.26) leads to a system of linear equations to solve for each F -point

r̂iTCiWT T
Ci = TiWT T

Ci , (5.27)

where the non-zero elements of the ith row of R̂T are contained in the solution
r̂i. The matrix is full rank and the solution in (5.27) is unique if we have at least
κ = max i {Card(Ci)} locally linearly independent test vectors. Even if it is sta-
tistically always the case when starting from random candidate vectors, the matrix
singularity can be detected during the factorization of TCiWT T

Ci . In that special
case, a pseudo-inverse can be computed to find an optimal solution in the least
squares sense. For what follows, we set the maximal size of Ci to 4 to control the
sparsity of R̂T .

As detailed previously, the ideal interpolation operator is constructed by projecting-
out the Ŝ-related information that should be handled by the smoother from the
range of R̂T . This has the effect to maximize the complementarity between the
smoother and the coarse grid correction that depends on P̂ . Now that we have a
least-squares coarse variable operator R̂T for Helmholtz, the form of Ŝ has to be de-
fined. Following the theory [38], the least-squares coarse and fine variable operators
should satisfy

range
(
R̂T
)
⊕ range

(
ŜT
)
= nc + nf = n and R̂Ŝ = 0. (5.28)

In fact, there exists an infinite number of fine variable operators Ŝ that satisfies
(5.28). However, the resulting ideal interpolation operator remains the same regard-
less of the form of Ŝ as long as (5.28) is satisfied. Subsequently, one straightforward
l2-orthogonal set of variable operators is

R̂T =

[
RT

f

Ic

]
and Ŝ =

[
If
−Rf

]
, such that R̂Ŝ =

[
Rf Ic

] [ If
−Rf

]
= 0. (5.29)
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Recall that the set T is composed of small eigenvectors of Vc due to the Chebyshev
polynomial smoother that primarily damps Vf and R̂T is designed to interpolate it
correctly. By orthogonality, the space spanned by Ŝ is mostly composed of large
eigenvectors that are easily damped by the smoother. Therefore, the aim of the
ideal framework in this oscillatory context is to improve the coarse variable operator
by removing the information related to these large eigenvectors, as they are already
captured by the Chebyshev polynomial smoother of Chapter 4. The Figure 5.12
illustrates the interaction of eigenvectors in the range of R̂T (in blue) and Ŝ (in red)
with respect to the number κ of test vectors in T . This figure can be compared to
the analogous Figure 5.1 that plots the same quantity but for the classical variable
operators defined in (5.8).
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Figure 5.12: Error of the l2-projection onto the range of the least-squares variable operators R̂T

and Ŝ with respect to the number κ of test vectors

By contrast to the classical setting, Figure 5.12 shows that the range of R̂T contains
a good approximation of the smallest eigenvectors of Vc. Whereas the prevalence of
small and large eigenvectors are the same in the range of the classical coarse variable
operator RT , the least-squares counterpart R̂T gives a much better approximation
of Vc. Conversely, the fine variable operator has good approximation properties for
large eigenvectors of Vf . A last and expected observation is that the interpolation
error of R̂T for small eigenvectors of Vc decreases as more test vectors are added in
T . The same observation applies for Ŝ with the large eigenvectors of Vf .

Let P̂∗ be the ideal interpolation operator resulting from the least-squares vari-
able operators R̂T and Ŝ. Figure 5.13 represents the error of interpolation of P̂∗
with respect to the number κ of test vectors in T .

First, note that the error for small eigenvectors decreases with κ, as it does for R̂T

in Figure 5.12 as well. Analogous to Figure 5.1 depicting the error of P∗, the least-
squares ideal interpolation operator P̂∗ appears slightly less accurate for the smallest
eigenvalue. This inconvenience is due to the large eigenvectors that interact with
R̂T for small values of κ but tends to vanish as more test vectors are generated. In
all cases, intermediate small positive eigenvectors are better approximated and large
negative ones are better ignored.



5.3. LEAST-SQUARES MINIMIZATION FRAMEWORK 101

0 2 4 6
0

0.2

0.4

0.6

0.8

1

λi

v
T i

( I
−

Π
( P̂

∗))
v
i

P̂∗

5

10

15

(a) α = 0.6252

−2 0 2 4
0

0.2

0.4

0.6

0.8

1

λi

(b) α = 1.752

Figure 5.13: Error of the l2-projection onto the range of the least-squares ideal interpolation
operator P̂∗ with respect to the number κ of test vectors

In what follows, the number of test vectors used in the construction of R̂T is al-
ways fixed to κ = 15. Let us also recall that a red-black selection of C/F -points to
5-point stencil matrices leads to a diagonal block Aff in the classical case. There-
fore, we also considered the 9-point stencil problem (1.3) to challenge our methods.
Accordingly, Figure 5.14 plots the l2-projection error of eigenvectors for R̂T , Ŝ, and
P̂∗ for two shifted 9-point stencil matrices.
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Figure 5.14: Error of the l2-projection onto the range of least-squares variable operators and ideal
interpolation operator for the model problem SL2D-9S with and without normal equations

As discussed previously, the classical variable operators (5.8) ignore eigenvalues asso-
ciated with eigenvectors. This observation appears distinctly in Figure 5.2. Despite
this observation, P∗ still minimizes the quantity (2.65), and therefore appears as a
good interpolation operator for the smallest eigenvector in Figure 5.2. However, the
error grows fast as the magnitude of the eigenvalue increases, even if the associated
eigenvector belongs to Vc in general.

Alternatively in Figure 5.14, we observe that the least-squares variable operators
have a special treatment for each eigenvector, such that the range of R̂T approxi-
mates the span of Vc better and the range of Ŝ approximates the span of Vf better.
It follows that the least-squares ideal interpolation operator P̂∗ is not only good for
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the smallest eigenvector, but for all the smallest eigenvectors of Vc.

In other words, both classical and least-squares ideal interpolation operators seem
to be good interpolation operators of the smallest eigenvector, but P̂∗ appears more
efficient for a broader portion of Vc. This feature is obvious when comparing both
figures 5.2b and 5.14b around |λi| ≈ 2 for instance. Lastly, orange marks represent
the error when using normal equations in the definition of ideal interpolation. Com-
paring Figure 5.14 with 5.2, it seems that normal equations benefits P∗ better than
P̂∗ in this case.

5.3.3 Ideal approximation based on the subspace restriction approach

The SPAI approach introduced in Section 5.2.2 benefits from the underlying struc-
ture of the fine block. In this least-squares framework, it is not clear if the fine block
ŜTAŜ has convenient structure that could help it. Moreover, the least-squares coarse
and fine variable operators are designed to designate what the coarse correction and
the smoother should respectively capture. Restricting the search space of the mini-
mization problem (5.11) to a few columns of Ŝ still provides an ideal approximation
P̂ of P̂∗ aimed at improving the complementarity between the coarse correction and
the smoother. In fact, constructing the approximation P̂ by restricting the columns
of Ŝ is equivalent to computing the ideal P̂∗ but with less fine-related information.
Additionally, the fine variable operator Ŝ is sparse. Subsequently, restricting the
search space of Ŝ controls the sparsity of the ideal approximation P̂ .

In that way, let Xj be the injection operator of ones and zeros of size nf × nj

that selects nj columns of Ŝ, ŜXj, and such that nj ≤ nf . Also, let I be the set
of column indexes for which Xj contains a one entry. It follows that applying the
operator Xj to Ŝ gives

ŜXj =
[
Ŝ
]
:,I
. (5.30)

As shown in Algorithm 5, it is not necessary to form the injection matrix Xj ex-
plicitly in practice. Nevertheless, we use this term for ease of notation and to
better connect the approximation with the minimization principle that drives this
approach. In fact, the only difference between the exact ideal interpolation and its
approximation arises from the restriction of the search space given by Xj. Note
that the restricted search space is still l2-orthogonal with the least-squares coarse
variable operator, such that

R̂ŜXj = 0, (5.31)
as required by the ideal theory. Similarly to (5.11), let sj be defined by

sj := ŜXj

(
XT

j Ŝ
TAŜXj

)−1
XT

j Ŝ
TAR̂T

:,j. (5.32)

Since indefinite matrices do not generate a norm, we are not guaranteed a minimiza-
tion property for sj. The effect of injecting the normal equations matrix in (5.34)
will be discussed in Section 5.3.4. That said, the columns of the least-squares ideal
approximation are computed by

P̂:,j = R̂T
:,j − sj = R̂T

:,j − ŜXjρj, (5.33)
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where ρj is the solution to the nj × nj linear system

XT
j Ŝ

TAŜXjρj = XT
j Ŝ

TAR̂T
:,j. (5.34)

In this subspace restriction approach, the trade-off between sparsity and accuracy
is enabled by choosing the columns of Ŝ based on the entries of ŜTAR̂T

:,j. In fact,
each entry corresponds to the A-inner product between a column of the fine variable
operator and the jth column of the coarse variable operator. A large entry designates
a column of Ŝ that contributes a lot to the solution to the problem (5.32). The
column selection phase iterates until the entries associated with the selected columns
represent a percentage τ of the entire set of non-zero entries. At each iteration,
the column of Ŝ associated with the largest entry of ŜTAR̂T

:,j is selected, which is
equivalent to extending Xj with the Euclidean basis vector with one at the index
of the chosen column and zeros elsewhere. Because the columns with the largest
entries in ŜTAR̂T

:,j are selected first, the set of selected columns is the smallest set
that satisfies

||XjŜ
TAR̂T

:,j||22 ≥ τ × ||ŜTAR̂T
:,j||22, with τ ∈ [0, 1] . (5.35)

When τ increases, more and more Ŝ-related information of Vf that the smoother
already damps is removed from the range of R̂T , such that P̂ becomes a better
interpolation operator for what should be treated on the coarse level. Although
setting τ = 1 selects all the columns associated with the non-zeros of ŜTAR̂T

:,j,
the remaining columns associated with zero entries are omitted. As a consequence,
the matrix XT

j Ŝ
TAŜXj still corresponds to a principle sub-matrix of ŜTAŜ. This

second ideal approximation approach is recapped in Algorithm 5.

Algorithm 5 Subspace restriction approach to approximate the ideal interpolation operator
1: for j = 1, nc do

2: I ← Sort Rows Ascending Order
(
ŜTAR̂T

:,j

)

3: While ||ŜTAR̂I,j ||2 > τ × ||ŜTAR̂:,j ||2 do

4: I ← I \ {I1} ▷ I1 contains the smallest entry in ŜTAR̂I,j

5: end while

6: ρj ←
([

ŜTAŜ
]
I,I

)−1

·
[
ŜTAR̂T

:,j

]
I

7:
[
P̂
]
:,j
← R̂T

:,j − [S]:,I · ρj

8: end for

9: return P̂

Figure 5.15 indicates increasingly better approximation properties of P̂ as τ grows.
We note how close P̂ for τ = 1.0 is from the ideal interpolation operator P̂∗. The
complexity of these interpolation operators are discussed in Section 5.3.6.1.
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Figure 5.15: Error of the l2-projection onto the range of the least-squares ideal approximations
with the subspace restriction approach for the model problem SL2D-9S with respect to τ -

without normal equations

5.3.4 Normal equations

Injecting normal equations in this ideal approximation approach ensures that the
resulting ideal approximation P̂ satisfies minimization properties, such that injecting
ATA in (5.32) leads to

sj := argmin
s̃∈Range(ŜXj)

||R̂T
:,j − s̃||ATA = ŜXj

(
XT

j Ŝ
TATAŜXj

)−1
XT

j Ŝ
TATAR̂T

:,j. (5.36)

This time, each row of ŜTATAR̂T
:,j corresponds to the ATA-inner product of every

column of Ŝ with the jth column of R̂T . Therefore, the number of selected columns
is likely to grow when using normal equations, which adds more fill-in in the resulting
P̂ and also increases the computational cost of the overall method. Figure 5.16 is
analogous to 5.15 but with normal equations. The gain does not appear clearly in
this case, but numerical experiments in Section 7.2 appeared very important when
running the multilevel experiments of Chapter 7.
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Figure 5.16: Error of the l2-projection onto the range of the classical and least-squares ideal
approximations with the subspace restriction approach for the model problem SL2D-9S with

respect to τ - with normal equations
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5.3.5 Effect on the pollution

Let us discuss the effect of the ideal approximation phase in this least-squares frame-
work. The colors of the pixels in the following figures are described in Section 5.2.4.
Again, below experiments result from both 5-point stencil and 9-point stencil exper-
iments. Lastly, we target the ideal interpolation operator P̂∗ with normal equations
to ensure its minimization properties (see (5.14) and (5.36)).

5.3.5.1 The 5-point stencil case

We begin with the 5-point stencil case. Figure 5.17 and 5.18 map the entries of the
pollution block Kf for three different values of τ and two values of α. A first and
obvious observation for both shifts is that the left bottom hand corners get cleaned
from red and pink pixels as τ increases. In other words, the pollution of the smallest
eigenvectors of Vc arising from the largest eigenvectors of Vf decreases the fastest as
P̂ gets better.
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Figure 5.17: Entries of the pollution block Kf with respect to τ and for α = 0.6252 - The 5-point
stencil case
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Figure 5.18: Entries of the pollution block Kf with respect to τ and for α = 1.752 - The 5-point
stencil case

Furthermore, the pollution seems more important for α = 1.752. However, setting
τ = 1.0 decreases the pollution to an equivalent order of magnitude in both cases.
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5.3.5.2 The 9-point stencil case

Alternatively, Figure 5.19 and Figure 5.20 represent the entries of Kf in the 9-point
stencil case. Again, the pollution for α = 1.752 is more important. While the effect
of the ideal approximation phase is unclear for τ = 0.5, setting τ = 1.0 decreases the
pollution of the smallest eigenvectors drastically. Still, Figure 5.16 shows that the
l2-projection error decreases when increasing τ to 0.5, although it does not appear
distinctly when looking at the pollution in figures 5.19b and 5.20b. In comparison
with the previous Figure 5.8 and Figure 5.9 of the classical setting, approximating
P̂ seems to have a better impact in this least-squares setting. In fact, both least-
squares variable operators approximate the subspaces that the coarse correction and
the smoother should capture respectively. This feature allows us to construct an
interpolation operator that improves the complementarity principle even further as
τ grows. It is the main benefit of the subspace restriction approach, and is certainly
what makes the convergence of the multilevel methods experiments presented in
Chapter 7 better than with the SPAI based approaches of Section 5.2.
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Figure 5.19: Entries of the pollution block Kf with respect to τ and for α = 0.6252 - The 9-point
stencil case

1 25 50

1

25

50

i

j

(a) τ = 0.0 (P̂ = R̂T )

1 25 50

1

25

50

i

j

(b) τ = 0.5

1 25 50

1

25

50

i

j

(c) τ = 1.0

Figure 5.20: Entries of the pollution block Kf with respect to τ and for α = 1.752 - The 9-point
stencil case
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5.3.6 Complexity

As in Section 5.2.5, let us now discuss the complexity of the interpolation operator
and of the coarse grid operator with respect to τ . For each numerical experiment,
the shift is set to α = 0.6252.

5.3.6.1 Complexity of the interpolation operator

Again, we open the discussion by studying the number of non-zero entries of P̂ con-
tained in Table 5.2. Because the maximal size of Ci in (5.24) is set to 4 for both
stencil scenarios, it follows that the number of non-zero entries in R̂T is approxi-
mately the same. Surprisingly, Table 5.2 shows that P̂ is denser in the 5-point stencil
case. In the 9-point stencil case, the sparsity remains approximately the same with
or without normal equations for small values of τ . Conversely when setting τ = 1.0,
P̂ turns much denser in the 9-point stencil case. The vector

bj := ŜTAR̂T
:,j (5.37)

in (5.35) surely contains more entries in the 9-point stencil case, but the distribution
of entries in magnitude is probably less uniform than in 5-point stencil case. In fact,
Algorithm 5 selects the columns of Ŝ such that a proportion τ of the values in bj in
magnitude are selected. Therefore, fewer columns may be selected for a same value
of τ in one case, even though its sparsity pattern has more non-zero. Alternatively,
setting τ = 1.0 selects all the columns of Ŝ associated with a non-zero entry of bj.
Because the 9-point stencil leads to denser matrix, P̂ has more non-zero entries as
well for τ = 1.0.

stencil R̂T τ = 0.3 τ = 0.6 τ = 1.0 P̂∗

5-pts 2.3 7.25 10.6 14.8 50

9-pts 2.2 5.8 8.7 17.3 49.5

(a) Without normal equations

R̂T τ = 0.3 τ = 0.6 τ = 1.0 P̂∗

2.3 6.8 9.9 14.8 50

2.2 5.9 9.3 24.7 49.5

(b) With normal equations

Table 5.2: Average number of non-zero entries per row with respect to τ when approximating the
ideal interpolation operator with the subspace restriction approach

By comparing Table 5.2 with Table 5.1, it appears that the subspace restriction
approach with the least-squares variable operators generally leads to more fill-in
of the interpolation operator than the first based on the classical set of variable
operators. Improving the sparsity of P̂ is a topic of future research.

5.3.6.2 Complexity of the coarse grid

The Figure 5.21 portrays the sparsity pattern of the coarse matrix resulting from
the least-squares ideal approximations with the subspace restriction approach. The
initial matrix results from the 9-point stencil (1.3), and the target ideal interpolation
has normal equations. The Figure 5.21 is the counterpart of Figure 5.10, so we refer
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to Section 5.2.5 for the colors of the pixels. This time, the Galerkin coarse matrix
is computed by way of the triple matrix product

Âc = P̂ TAP̂ . (5.38)

1 25 50
1

25

50

i

j

(a) τ = 0.0

1 25 50
1

25

50

i

j

(b) τ = 0.5

1 25 50
1

25

50

i

j

(c) τ = 1.0

Figure 5.21: Fill-in of the coarse matrix Âc with respect to τ for the 9-point stencil problem and
with normal equations

Here again, the fill-in of the coarse matrix mostly results from small entries, and
it may be possible to approximate them by Non-Galerkin matrices. Sparser Non-
Galerkin matrices have been developed to reduce the complexity of coarse operators
in AMG [37]. The heuristics of this approach are based on the geometrical smooth
assumption of near-kernel space, as in most elliptic problems. Extending Non-
Galerkin coarsening to the oscillatory near-kernel space of the Helmholtz equation
is a topic of further research. In the indefinite case, the Galerkin triple matrix is not
enough to guarantee the coarse correction to contract the error in all cases. Subse-
quently, we present a new alternative coarse correction in Chapter 6 that properly
contracts the error. Injecting a Non-Galerkin matrix as a sparse approximation of
the Galerkin coarse grid might degrade the convergence, but will never lead to an
amplification of the error with our alternative coarse correction.

5.4 Intermediate Conclusion

In traditional multigrid methods originally aimed at solving elliptic problems, the
interpolation operator relies on the geometrical smoothness of the near-kernel space.
Such a convenient assumption does not exist for Helmholtz. The ideal interpolation
operator with the classical variable operators can be good for Helmholtz, but it is
unclear if an approximation of it can give sufficient results in the multilevel case
because the variable operators are not designed to represent the complementarity
between our polynomial smoother and the coarse correction.

By plugging the polynomial smoother developed in Chapter 4 into the optimal
framework recalled in Lemma 1, it appears that the range of interpolation should
approximate the oscillatory space of smallest eigenvectors denoted by Vc. Hence,
we looked for an appropriate coarse variable operator that has good approximation
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properties of the eigenvectors of Vc, and, by orthogonality, a fine variable operator
that approximates the eigenvectors of Vf . Hence, it led to the development of a
least-squares approximation of the ideal interpolation operator. This operator is a
better interpolation operator in the general case because the coarse variable operator
is designed to approximate the span of Vc. In addition, the coarse variable operator
is improved by removing smoother related information contained within the range
of the least-squares fine variable operator.

Lastly, we have shown that the ideal approximation phase focuses on decreasing
the pollution of the smallest eigenvectors arising from the large eigenvectors. This
type of pollution is the most problematic on the contraction rate of the coarse cor-
rection, and can lead to divergence. In the next chapter, we illustrate this issue and
present an alternative coarse correction that fixes the divergence scenarios.
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Chapter 6

Coarse Correction for Helmholtz

In previous chapters, we first introduced a Chebyshev polynomial smoother aimed
at damping eigenvectors independently of their signs, and then presented an inter-
polation operator whose range approximates the oscillatory near-kernel space of the
Helmholtz equation. However, one more important issue inherent to the indefinite
nature of Helmholtz remains. In the SPD case, the discretization matrix A defines
a norm. As a consequence, applying the coarse correction to the right-hand side b is
equivalent to computing the best approximation that minimizes its difference with
the solution in A-norm, as in (2.42). Such an A-norm does not exist in the indefinite
case. In the context of constructing appropriate interpolation rules for Helmholtz,
the lack of variational properties in the A-orthogonal projection motivated us to use
the normal equations in the ideal interpolation definition, even though working with
A can provide good results in practice. The same concern applies for the coarse
correction. Using A may result in good convergence rates, but it can also lead to
slow convergence. Worse still, the coarse correction may even amplify the error and
lead to divergence. This issue is formalized through the new concept of “pollution”
in Chapter 3.2. In particular, we have shown that even a good interpolation oper-
ator can lead to a coarse correction that amplifies the error. Although numerical
experiments of Chapter 7 reveal that improving the ideal approximation yields faster
convergence, it is not enough for ensuring that the coarse correction operates as a
contraction on the error. Subsequently, an alternative coarse correction is necessary
for indefinite cases.

We begin this chapter by illustrating the effect of the coarse correction when us-
ing the least-squares ideal approximation operators developed in Section 5.3. In
particular, we will see that divergence can happen in certain cases, even though the
interpolation operator satisfies good approximation properties. With the goal of
addressing the divergence concern, we present an alternative coarse correction that
guarantees convergence without assumption on the nature of the matrix.

6.1 Alteration of the coarse correction in the indefinite case

While both smoothers and interpolation operators are now designed to face two
inconvenient properties of the Helmholtz equation, signed eigenvalues and oscillatory
near-kernel space, the effectiveness of the classical coarse correction is not guaranteed

111
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in an indefinite context. Even worse, the classical coarse correction can amplify
the error, although the interpolation operator has good approximation properties,
and lead to divergence. Before discussing an alternative coarse correction, let us
highlight how the matrix indefiniteness can corrupt the classical coarse correction
with a simple illustration.

6.1.1 Illustration of the error amplification

Figure 6.1 plots the smallest eigenvector v1 (in green) of a two-dimensional shifted
Laplacian matrix, its best representation within the range of interpolation (in blue)
and the result of the coarse correction when applied to v1 (in red).
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Figure 6.1: Smallest eigenvector v1 vs. its l2-projection Π(P )v1 vs. its coarse correction
ΠA (P )v1, for P̂ and P̂∗ and with respect to α

Numerical experiments related to Figure 6.1 are made through a 5-point stencil dis-
cretization of the shifted Laplacian matrix. The coarse correction is built on the
least-squares ideal approximation introduced in Section 5.3. In this experiment, the
columns of Ŝ are chosen by setting τ = 1. On the right side, both figures 6.1b and
6.1d rely on the exact least-squares ideal interpolation operator denoted by P̂∗. Both
top figures correspond to the case where α = 0.6252, whereas the two bottom figures
are for α = 1.7082. As expected, the smallest eigenvector gets more oscillatory as
the shift α grows.

A first observation is that blue and green curves align almost perfectly in all four
of Figure 6.1, meaning that the least-squares interpolation operator introduced in
Chapter 5 offers a good approximation to the potentially oscillatory smallest eigen-
vector. Even though the l2-orthogonal projection of v1 within the range of P̂∗ fits
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better, P̂ still demonstrates excellent approximation properties for both shifts. In
figures 6.1a and 6.1b, where α = 0.6252, the red coarse correction vectors are rel-
atively close to their respective green smallest eigenvector. The slight difference
between both is only a matter of amplitude. As we would naturally expect, the
coarse correction built on P̂∗ returns a better coarse correction vector than the
coarse correction with P∗. However, the second shifted case α = 1.7082 tells another
story. In figures 6.1c and 6.1d, the oscillations of the coarse correction vectors and
of the smallest eigenvectors are synchronized, however their directions are reversed.
While the difference between blue and green curves indicates a very small interpo-
lation error, the smallest eigenvector is not contracted by the coarse correction, but
amplified. This time, the amplification error is even more important when using the
ideal interpolation operator P̂∗ although the l2-orthogonal projection of the smallest
eigenvector is better than its counterpart P̂ .

The same experiments applied to the classical ideal interpolation are discussed in
Section A.7.

6.1.2 On how improving the interpolation can increase the error ampli-
fication

In Chapter 5, we introduced the concept of “pollution”. Let us recall the definition
of the K matrix priorly given in (3.70), such that

K := V TP (V T
c P )

−1 =

[
Ic
Kf

]
. (6.1)

In particular, Theorem 1 connects the error of interpolation with the pollution block
Kf . We also recall that an entry (j, i) of Kf corresponds to the contribution of the
jth large eigenvector of Vf to the l2-orthogonal projection onto range(P ) of the
ith small eigenvector of Vc. Let us recall from the Section 5.2.4 and Section 5.3.5
that improving the ideal approximation tends to decrease the magnitude entries of
Kf in proportion with their associated eigenvalues. However, we also discussed that
improving the interpolation can decrease the pollution and bring it to a critical point
where the error explodes extremely fast. This phenomenon is illustrated in Figure
3.8 on a simple 2×2 example. In our case, we observe this feature by comparing the
red curves of Figure 6.1c and Figure 6.1d. Here, using the exact ideal interpolation
operator amplifies the error even more importantly than an approximation of it.
The following lemma helps understand this concern in the more general case.

Lemma 2. Let ϕi be defined as follows

ϕi := λi −
([(

Λc +KT
f ΛfKf

)−1]
i,i

)−1
. (6.2)

The coarse correction contracts an eigenvector vi of Vc if and only if

∣∣vT
i Evi

∣∣ < 1 ⇔ ϕi

λi
<

1

2
. (6.3)
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Proof. First, injecting (6.2) in (3.77) gives

vT
i Evi = 1− λi

λi − ϕi

. (6.4)

Subsequently, the coarse correction operates as a contraction of vi if

−1 < 1− λi
λi − ϕi

< 1 ⇔ 0 <
λi

λi − ϕi

< 2. (6.5)

From Equation (6.5), we finally ends with the necessary condition

1

2
< 1− ϕi

λi
⇔ ϕi

λi
<

1

2
. (6.6)

From Lemma 2, the coarse correction contracts vi if and only if

∣∣vT
i Evi

∣∣ < 1 ⇔





ϕi ∈
(
−∞, λi

2

)
if λi > 0

ϕi ∈
(
λi
2
,+∞

)
if λi < 0

. (6.7)

Moreover, (6.4) highlights that the contraction of vi is zero if the difference ϕi is zero,
but also reveals the critical point ϕi = λi for which the error explodes. To elaborate
on this discussion, Figure 6.2a represents ϕ1 and Figure 6.2b represents vT

1 Ev1 for
several approximations of the ideal interpolation operator and α = 0.6252. The
x-axis represents the degree of approximation τ plus the ideal case.
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Figure 6.2: ϕ1 and vT
1 Ev1 with respect to P̂ and for α = 0.6252

In Figure 6.2, the eigenvalue associated with v1 is λ1 = 0.00788199. A first observa-
tion is that decreasing the magnitude of ϕ1 by improving P̂ improves the capture of
v1 in this case. This feature was already highlighted by comparing both previous fig-
ures 6.1a and 6.1b, where the ideal interpolation operator had better approximation
properties and consequently enabled the coarse correction to better approximate the
smallest eigenvector v1.
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Figure 6.3: ϕ1 and vT
1 Ev1 with respect to P̂ and for α = 1.7082

By comparison, Figure 6.3 correlates ϕ1 with vT
1 Ev1 in the case where the shift

equals α = 1.7082, and where λ1 = −0.0054. In that case, none of the interpolation
operators enables the coarse correction to contract the smallest eigenvector. As a
consequence, the method diverges in all cases. The left Figure 6.3a indicates an
improvement of the approximation properties of the interpolation operator for large
values of τ , as ϕ1 converges to the full contraction point ϕ1 = 0. However, the
full contraction point represented by the dashed blue line is higher than the critical
exploding point designated by the solid red line at ϕ1 = λ1. In other words, getting
closer to the condition of contraction ϕ1 = λ1/2 requires crossing the critical point
ϕ1 = λ1.

While designing a better interpolation operator in the positive case always implies
a better contraction rate, it eventually brings ϕi closer to the critical point in the
indefinite case. This phenomenon explains why the ideal coarse correction of Figure
6.1d returns an amplified reversed approximation of v1 relative to its counterpart of
Figure 6.1c.

As illustrated in Figure 6.1, a good interpolation operator with small Kf can still
cause divergence although it satisfies good approximation properties. The classical
coarse correction appears hopeless for indefinite problems.

6.2 The alternative coarse correction

As discussed in the previous section, the classical coarse correction is not equivalent
to a minimization problem in the indefinite case, and improving P will never be
enough to remedy this loss of equivalence. Moreover, because the interpolation op-
erator developed in Chapter 5 targets the smallest eigenvectors of each level, every
coarser matrix is more indefinite than its fine parent. Then, as the number of coarse
levels increases, the balance between negative and positive eigenvalues reaches an
equilibrium, and makes the effectiveness of the classical coarse correction difficult
to predict. Nevertheless, Figure 6.1 shows that the interpolation operator has good
approximation properties for the oscillatory near-kernel space. In particular, the
Figure 6.1 suggests that only the direction of the coarse correction vector has to be
changed; the shape is correct. Hence, a coarse correction that amplifies or flips the
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smallest eigenvectors can still provide pertinent information for solving the system.

In this section, we propose to minimize the approximation error in a proper norm
for indefinite problems and within a space composed of vectors returned by the clas-
sical coarse correction. Moreover, to decrease the eigenvector pollution, each coarse
correction vector is smoothed by the polynomial smoother of Chapter 4.

6.2.1 General considerations on GMRES

The Generalized Minimal RESidual (GMRES) method [64, 66] approximates the
solution in a Krylov subspace by minimizing the residual in the Euclidean norm.
The method can solve any class of matrix system since the norm is valid independent
of the context, which is of particular interest for the indefinite case. Let us first define
some notation before introducing the alternative coarse correction. Let Wp be the
n×p rectangular matrix containing the p orthonormalized Krylov vectors such that

range (Wp) = span
{
b, Ab, A2b, . . . , Ap−1b

}
. (6.8)

Each column of Wp is orthonormalized following a Gram-Schmidt process. The co-
efficients of the orthonormalization are stored in the rectangular Hessenberg matrix
H̄p of size p+1× p. The square matrix Hp is of size p× p and obtained from H̄p by
deleting its last row. Both matrices Wp and Hp are linked by

AWp = Wp+1H̄p and W T
p AWp = Hp, (6.9)

which leads to the following equality

min
x̃∈range(Wp)

∥b− Ax̃∥2 = min
ρp∈Cp

∥b− AWpρp∥2 = min
ρp∈Cp

∥W T
p b−Hpρp∥2. (6.10)

In practice, GMRES takes advantage of the convenient Hessenberg shape of H̄p to
construct an upper triangular matrix by applying Given’s rotations. The minimiza-
tion of the residual then relies on a backward substitution. The relation (6.9) can
be generalized [22] to any arbitrary subspace Wp = [w1, . . . ,wp] such that

argmin
x̃∈range(Wp)

||b− Ax̃||2 = WpH
−1
p ZT

p b with AWp = ZpHp, (6.11)

and where Zp denotes the orthonormalized basis of AWp. Note that the Arnoldi
relation (6.11) does not define any particular recurrence relation sinceWp is arbitrary
and not necessarily designed by successive matrix vector products. In addition, the
only matrix that needs to be orthonormal in the generalized setting is Zp.

6.2.2 Minimization within a space of coarse correction vectors

As mentioned in the introduction of this section, the interpolation operator has
good approximation properties for the oscillatory near-kernel space. Even though
the small eigenvectors that constitute each coarse correction vector are likely to be
oriented in the wrong direction or amplified because of the pollution effect intro-
duced in Section 6.1, they still provide useful information about the near-kernel
space. Hence, the major idea of the alternative coarse correction is to recycle the
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potentially wrong oriented coarse correction vectors to design a subspace in which
the residual is minimized in Euclidean norm.

Let Wp be the set of coarse correction vectors of the pth iteration linked by the
Arnoldi relation (6.11) with its orthonormal counterpart Zp. Accordingly, let wj ∈
Wp and zj ∈ Zp denote the jth vectors of the set Wp and Zp respectively. For
ease of discussion, we introduce this alternative coarse correction with a two-level
method. The multilevel case will be addressed in the next chapter with numerical
experiments.

At each iteration p, the classical coarse correction returns a new coarse correc-
tion vector that is smoothed by the Chebyshev polynomial smoother presented in
Chapter 4. This new smoothed coarse correction vector is thereafter added to the
previous set as follows

Wp = [Wp−1 , wp] with wp = qνd+1(A
2)P

(
P TAP

)−1
P Tr(p), (6.12)

where r(p) designates the residual at the pth iteration. Once the coarse correction
vector is smoothed and that Wp is formed, the set Zp is extended as follows

Zp = [Zp−1 , zp] with zp =
1

hp,p

(
Awp −

p−1∑

j=1

hj,p · zj

)
, (6.13)

where coefficients hj,p result from the orthonormalization process of the new vector
Awp. These coefficients are stored in the squared upper triangular matrix

Hp =




h1,p

Hp−1
...

hp−1,p
0 · · · 0 hp,p


 with hj,p =

{
⟨zj, zp⟩ if j < p
||zp||2 if j = p

. (6.14)

Even though the notation is similar to the Arnoldi relation of Krylov methods, recall
that Wp and Zp do not correspond to Krylov subspaces, but are filled successively
as the multigrid cycle is iterated. Krylov subspaces lead to a particular form of
the Arnoldi relation (6.11), where Hp is Hessenberg because Zp has one more col-
umn than Wp, and that a particular recurrence relation links both subspaces (i.e.,
range(Wp) is a subspace of range(Zp+1) in Krylov methods). In our case, Algorithm
6 presents the alternative two-level cycle, and can be compared with Algorithm 1
which recaps the classical two-level cycle.

While Equation (6.12) gives the recursive form of Wp, one can derive a more general
formula by letting ETG(Wp) be the two-grid method with the alternative coarse
correction at the pth iteration, such that

ETG (Wp) = qνd+1

(
A2
)
·
(
I −WpH

−1
p ZT

p A
)
· qνm+1

(
A2
)
. (6.15)

Therefore, the general form of Wp at the pth iteration is

Wp = [w1, . . . ,wp] , (6.16)
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Algorithm 6 Two-level pth cycle with the alternative coarse correction
Inputs : b right-hand side, x̃ approximation of x, r = b−Aũ residual

M smoother, P interpolation operator
for j = 1, ν do

x̃← x̃+ p(A2)r
r ← b−Ax̃

end for
rC ← PT r
eC ← Solve(PTAP, rC)
w ← qνd+1(A

2)PeC
ŵ, Hp ← Orthonormalize(w, Zp−1)
Wp, Zp ← [Wp−1 , w] , [Zp−1 , ŵ]
for j = 1, ν do

x̃← x̃+ p(A2)r
r ← b−Ax̃

end for
x̃← x̃+WpH

−1
p ZT

p r
r ← b−Ax̃
Output : x̃ approximation of x at the end of the cycle

with each vector of Wm being defined by

wj = qνd+1 (A
2) · ΠA (P ) · ETG (Wj−1) e(j−1)

= qνd+1 (A
2) · ΠA (P ) ·∏j−1

k=0ETG (Wk) e
(0) , j = 1, . . . , p , (6.17)

and where e(j) corresponds to the error between the solution x and the approxi-
mation x(j) at the jth iteration (x(0) is the initial guess). Incidentally, since Zp

is constructed by orthonormalizing the left multiplication of Wp with A, its range
naturally satisfies

range (Zp) = range (AWp) . (6.18)

6.2.3 Effect of the pollution on the alternative coarse correction

Let us discuss the effect of the pollution on the alternative coarse correction. The
Section 6.1 demonstrated that the pollution block Kf impacts the classical coarse
correction. Because the minimization space Wp is generated with the classical coarse
correction by way of (6.12), the block of pollution still impacts the contraction of
the small eigenvectors of Vc when using the alternative coarse correction. To better
understand this phenomenon, let us first demonstrate that applying the alternative
coarse correction is equivalent to solving a normal equations problem.

Theorem 4. Let Wp be the minimization space of smoothed coarse correction vectors
as prescribed by equations (6.16) and (6.17). Accordingly, let Zp and Hp be the
corresponding Arnoldi operators. Hence, applying the alternative coarse correction
is equivalent to solving the normal equations problem restricted to the minimization
space Wp, such that

WpH
−1
p ZT

p A = ΠATA (Wp) . (6.19)

Proof. From the Arnoldi relation (6.11), we have

Zp = AWpH
−1
p , Hp = ZT

p AWp = H−Tp W T
p A

TAWp. (6.20)
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Substituting (6.20) in (4), it naturally follows that solving the minimization prob-
lem (6.11) is equivalent to solving the normal equation system within the subspace
spanned by Wp such that

WpH
−1
p ZT

p A = Wp

(
W T

p A
TAWp

)−1
HT

p Z
T
p A

= Wp

(
W T

p A
TAWp

)−1
W T

p A
TA

= ΠATA (Wp) . (6.21)

As stated by Theorem 4, applying the alternative coarse correction amounts to solv-
ing a normal equations problem. Resorting to the Euclidean norm in (6.11) prevents
the divergence by squaring the eigenvalues of the initial problem as the next Theo-
rem 5 demonstrates. The downside of this approach is that the gap between small
and large magnitude eigenvalues increases. As a consequence, the contraction of the
smallest eigenvectors is impacted due to the pollution arising from the large ones.

Theorem 5 formalizes this issue in the hypothetical case where the minimization
space contains only one vector. In fact, this particular case happens after the first
multigrid cycle. As we will later discuss on the effect of additional smoothing steps
on the coarse correction vectors, we first address the case where W1 is constructed
without smoothing the coarse correction vector. For ease of notation, define ai the
ith column of the inverse of KTΛK such that

ai :=
[(
KTΛK

)−1]
:,i

, ai,i =
[(
KTΛK

)−1]
i,i
. (6.22)

Theorem 5. Let the minimization space W1 of the alternative coarse correction be
defined by a single coarse correction vector as in the first multigrid cycle, such that

vi ∈ Vc , W1 = ΠA(P )vi, (6.23)

and Z1 and H1 the associated Arnoldi operators as prescribed by equations (6.13)
and (6.14) respectively. Therefore, the alternative coarse correction contracts vi at
a rate

vT
i

(
I −W1H

−1
1 ZT

1 A
)
vi = 1− λ2ia

2
i,i

aT
i

(
Λ2

c +KT
f Λ

2
fKf

)
ai

. (6.24)

Proof. First, recall from Theorem 4 that applying the alternative coarse correction
amounts to solving a normal equation problem, such that

vT
i

(
I −W1H

−1
1 ZT

1 A
)
vi = 1− vT

i W1

(
W T

1 A
TAW1

)−1
W T

1 A
TAvi. (6.25)

Secondly, let the Euclidean basis vectors ei and ci be defined as in the proof of
Theorem 1. Since vi belongs to the set of smallest eigenvectors Vc and that the
classical coarse correction can be formulated with the K matrix as in (3.79), then
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W1 has the form

W1 = ΠA (P )vi = V K
(
KTΛK

)−1
KTΛV Tvi

= λiV K
(
KTΛK

)−1
KTei

= λiV K
(
KTΛK

)−1
ci

= λiV Kai. (6.26)

As a consequence of (6.26), we have

vT
i W1 = vT

i ΠA (P )vi

= λiv
T
i V Kai

= λiai,i

, (6.27)

and, in a similar way, we also obtain

W T
1 A

TAvi = vT
i ΠA (P )ATAvi

= λ3iv
T
i V Kai

= λ3iai,i

. (6.28)

Equation (6.26) also implies that left multiplying W1 by the initial matrix A gives

AW1 = AΠA (P )vi = λiAVKai = λiV ΛKai, (6.29)

such that the middle term of the right member in (6.25) is

W T
1 A

TAW1 = vT
i (AΠA (P ))T AΠA (P )vi = λ2ia

T
i K

TΛ2Kai. (6.30)

Injecting equations (6.27), (6.28), and (6.30) in the contraction rate formula (6.25)
written in normal equation form finally leads to

vT
i

(
I −W1H

−1
1 ZT

1 A
)
vi = 1− vT

i W1

(
W T

1 A
TAW1

)−1
W T

1 A
TAvi

= 1− λ4ia
2
i,i

λ2ia
T
i

(
Λ2

c +KT
f Λ

2
fKf

)
ai

= 1− λ2ia
2
i,i

aT
i

(
Λ2

c +KT
f Λ

2
fKf

)
ai

. (6.31)

In fact, Theorem 5 highlights that resorting to the alternative coarse correction
squares the eigenvalues involved in the formula of the contraction rate. This prop-
erty tends to silence the smallest eigenvalues over the largest, which decreases the
contraction of the near-kernel space. Naturally, decreasing the entries of the pollu-
tion block Kf by improving the interpolation operator limits this issue. For instance,
in the case where the range of P contains vi exactly, then the ith column of Kf is
zero such that the vector ai only contains ai,i on its ith entry and zero elsewhere. As
a consequence, the contraction is zero. However, in general, the trade-off between
sparsity and approximation properties of P makes the pollution unavoidable. Even
though it may be possible to reduce the entries of Kf enough to achieve good conver-
gence, the pollution is likely to remain a strong limitation for the alternative coarse
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correction as well, which can potentially slow the convergence down dramatically.

For this reason, smoothing the classical coarse correction vectors in W1 by way
of the polynomial qνd+1(A

2) as prescribed by (6.12) compensates for this effect by
reducing the prevalence of large eigenvectors in the minimization space. This idea
of damping the large eigenvalues to reveal the smaller ones is also used to generate
a relevant set of test vectors for the construction of the coarse variable operator
introduced in Section 5.3.2.

The next theorem highlights the effect of the additional smoothing steps applied
to the coarse correction vector.

Theorem 6. Let the minimization space W1 of the alternative coarse correction be
defined by a single smoothed coarse correction vector as in the first multigrid cycle,
such that

vi ∈ Vc , W1 = qνd+1

(
ATA

)
ΠA (P )vi. (6.32)

and Z1 and H1 the associated Arnoldi operators as prescribed by equations (6.13)
and (6.14) respectively. Therefore, the alternative coarse correction contracts vi at
a rate

vT
i

(
I −W1H

−1
1 ZT

1 A
)
vi = 1− q2νd+1 (λ

2
i )λ

2
ia

2
i,i

aT
i

(
q2νd+1 (Λ

2
c) Λ

2
c +KT

f q
2ν
d+1

(
Λ2

f

)
Λ2

fKf

)
ai

. (6.33)

Proof. This proof follows the same development than the proof of Theorem 5. In
this setting, the alternative coarse correction is built on a single smoothed coarse
correction vector such that

W1 = qνd+1

(
ATA

)
ΠA (P )vi = λiV q

ν
d+1

(
Λ2
)
Kai. (6.34)

Injecting qνd+1(A
2) in both equations (6.27) and (6.28), we obtain

vT
i W1 = λiq

ν
d+1

(
λ2i
)
ai,i and W T

1 A
TAvi = λ3i q

ν
d+1

(
λ2i
)
ai,i. (6.35)

Similarly to (6.30), we have

W T
1 A

TAW1 = λ2ia
T
i

(
q2νd+1

(
Λ2

c

)
Λ2

c +KT
f q

2ν
d+1

(
Λ2

f

)
Λ2

fKf

)
ai. (6.36)

For the same reason that the alternative coarse correction is equivalent to solving
a normal equation problem of the form (6.25), one can inject the three terms of
equations (6.35) and (6.30) such that

vT
i

(
I −W1H

−1
1 ZT

1 A
)
vi = 1− vT

i W1

(
W T

1 A
TAW1

)−1
W T

1 A
TAvi

= 1− q2νd+1 (λ
2
i )λ

2
ia

2
i,i

aT
i

(
q2νd+1 (Λ

2
c) Λ

2
c +KT

f q
2ν
d+1

(
Λ2

f

)
Λ2

fKf

)
ai

. (6.37)

This time, the eigenvalues involved in the contraction rate of Theorem 6 are not only
squared, but also weighted by the damping factors of the Chebyshev polynomial
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smoother. In particular, the polynomial smoother introduced in Chapter 4 has been
especially designed to damp the largest eigenvalues in magnitude. This feature is
of particular interest in this case because the entries Kf associated with the largest
eigenvalues of Λf are those degrading the contraction rate the most. The following
example illustrates the benefits of this feature on the simple 2×2 example of Section
3.2.
Example 3. Consider again Example 2, where A is a 2 × 2 matrix, with v1 and
v2 its eigenvectors respectively associated with eigenvalues |λ1| < |λ2|. Recall from
(3.84), that the interpolation operator P targets v1 as follows

P = v1 + ϵv2 and vT
1 ΠA (P )v1 =

λ1
λ1 + ϵ2λ2

. (6.38)

Let W1 be the minimization space of dimension 1 containing a single smoothed coarse
correction vector, such that

W1 = qd+1(A
2)ΠA(P )v1. (6.39)

In addition, let Z1 and H1 be the associated Arnoldi operators as prescribed by equa-
tions (6.13) and (6.14) respectively. From Theorem 6, the alternative coarse correc-
tion contracts v1 at a rate

vT
1

(
I −W1H

−1
1 ZT

1 A
)
v1 = 1− q2d+1(λ

2
1)λ

2
1

q2d+1(λ
2
1)λ

2
1 + q2d+1(λ

2
2)ϵ

2λ22
. (6.40)

For ease of discussion, let us assume that the smallest eigenvector v1 is preserved
by the smoother, such that qd+1(λ

2
1) = 1 (recall that this assumption would be true

for λ1 = 0). The contraction rate can be written as a function of λ1/λ2, such that

vT
1

(
I −W1H

−1
1 ZT

1 A
)
v1 = 1− 1

1 + q2d+1(λ
2
2)ϵ

2 (λ2/λ1)
2 . (6.41)

Figure 6.4 illustrates the contraction of v1 after applying the alternative coarse cor-
rection with respect to the pollution and the polynomial smoother. The red curves
are equivalent to the contraction rate prescribed by Theorem 5 where no additional
smoothing step of the coarse correction vector is applied. Conversely, the three other
curves represent the contraction rates for different ratios of the smallest eigenvalue
over the largest, and when the coarse correction vector is smoothed by the Chebyshev
polynomial.

As expected, the smoother improves the contraction by counterbalancing the squared
large eigenvalue λ2 that weights the pollution. Moreover, Figure 6.4 exhibits the im-
portance of the additional smoothing step of the coarse correction vector as the gap
between the smallest and the largest eigenvalues increases.

The filtering of large eigenvectors aimed at increasing the prevalence of the smallest
ones is enabled because the Chebyshev polynomial smoother does not hit the near-
zero eigenvalues. By contrast, applying GMRES to the coarse correction vectors
of Wp may decrease the prevalence of small eigenvectors as it has no guarantee
to preserve them due to the right-hand side dependency. This feature is another
argument that motivated the development of Chebyshev polynomials smoother in
Chapter 4.
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Figure 6.4: Contraction of the small eigenvector v1 with the alternative coarse correction with
respect to the pollution and the polynomial smoother

6.2.4 Numerical experiments on the alternative coarse correction

Let us now apply one iteration of the alternative coarse correction to the two-
dimensional shifted Laplacian problem with respect to the number ν of smoothing
steps of the coarse correction vector. Here again, we target the smallest eigenvector
v1 as it is the most critical component. After one cycle, the minimization space
W1 contains only one smoothed coarse correction vector, as prescribed by (6.32).
Figure 6.5 plots the approximations returned by the alternative coarse correction
depending on four different shifts α and several values of ν. As in the previous fig-
ures 6.1a and 6.1c, we use the ideal approximation operator P̂ with the least-squares
minimization strategy. For each figure of 6.5, the green curve corresponds to the
target smallest eigenvector v1, whereas the red curve designates the approximation
ΠA(P )v1 returned by the classical coarse correction. The same green and red curves
corresponding to the shifts α = 0.6252 and α = 1.7082 also appear in figures 6.1a
and 6.1c dedicated to the amplification phenomena of the classical coarse correction.

On the first hand, Figure 6.5 shows that the yellow curves are completely flat on
three of the four figures. Such poor approximations of v1 are due to the lack of
smoothing that counterbalances the squaring of eigenvalues in the contraction rate
formula (6.24). On the other hand, adding more smoothing steps improves the
approximation drastically, except on Figure 6.5d where the approximations remain
near zero. Another important remark regards the shifted case α = 1.4352 illustrated
in Figure 6.5c. In that case, the approximation returned by the classical coarse



124 CHAPTER 6. COARSE CORRECTION FOR HELMHOLTZ

correction in red is amplified; and also leads to divergence. By contrast the alterna-
tive coarse correction recovers the solution as ν increases. Additionally, it is worth
noting that ν = 2 smoothing steps of the coarse correction vector for α = 0.6252

returns a better approximation of v1 than the classical coarse correction.
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Figure 6.5: Smallest eigenvector v1 vs. approximations returned by the alternative coarse
correction for W1 = qνm+1(A

2)ΠA(P )v1 with respect to ν and α

More observations can be made by looking at the eigenvalue of each target small-
est eigenvector. The eigenvalues λ1 associated with each v1 are printed in their
respective captions. In particular, we remark that the value of λ1 for α = 0.93752 of
Figure 6.5b is the largest among the four. This explains the small oscillations of the
yellow curve that are perfectly synchronized on those of v1 in green, even though
no smoothing is applied to the coarse correction vector. Such an approximation is
not really satisfying for good convergence in practice, but it exhibits the correlation
between the approximation accuracy of the small eigenvectors and their associated
eigenvalues in magnitude. Conversely, the smallest eigenvalues among the four are
for α = 0.6252 and α = 1.7082. While additional smoothing steps help the contrac-
tion in the former case, all of the three approximations in the latter remain around
zero due to larger entries of the pollution block Kf (one can compare the pollution
for α = 0.6252 and α = 1.752 in figures 5.17 and 5.18 respectively).

To summarize, the alternative coarse correction remedies the problem of divergence,
and enables fast convergence even for certain cases where the classical coarse cor-
rection amplifies the error, such as the shifted case α = 1.4352. For certain other
cases, the alternative coarse correction still suffers from the pollution effect, as for
α = 1.7082. Even though the interpolation operator has good approximation prop-
erties for v1 as illustrated in Figure 6.1c, the pollution may remain too big for very
small eigenvalues. In that case, the pollution affects both coarse correction methods
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dramatically. Whereas the classical coarse correction eventually amplifies the error
and leads to divergence, the alternative one remains slow at recovering the solution.
Several options exist to accelerate the convergence in such a critical case, but at
the cost of computational complexity. A first approach consists of increasing the
exponent ν in (6.33) to decreases the damping factors q2νd+1(Λ

2
f ) since the smoother

is convergent (see Section 2.1.2.2 of Chapter 4). A second approach consists of
increasing the polynomial degree d. This technique helps decrease the oscillations
of the error propagation function on large eigenvalues and consequently brings the
diagonal entries of q2νd+1(Λ

2
f ) closer to zero as well. Both ideas help decrease the

contraction rate in (6.33), and therefore speed-up the convergence of the method.

In practice, the multigrid cycle is iterated several times, such that the minimization
space of the alternative coarse correction contains more than a single vector. While
our discussion of the single iteration case enhances the understanding of the coarse
correction, adding more vectors naturally improves the approximation of the solu-
tion. In fact, the general form of Wp as multigrid is iterated is given by (6.16) and
(6.17). The following Figure 6.6 concludes this discussion by iterating the multigrid
method with the alternative coarse correction in the same setting as Figure 6.5. The
number of smoothing steps is set to ν = 2, and the number of iterations goes from
p = 2 to p = 50. Again, we let the solution be x = vi to better identify the behavior
of the method on the most critical eigenvector. In addition, the red curve repre-
sents the approximation returned by the multigrid cycle with the classical coarse
correction after 5 iterations.
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Figure 6.6: Smallest eigenvector v1 vs. approximations returned by multigrid with classical
coarse correction vs. approximations returned by multigrid with the alternative coarse correction

for Wp with respect to the number p of multigrid cycles and the shift α - ν = 2

While multigrid with the classical coarse correction recovers the smallest eigenvector
v1 for α = 0.6252 (see Figure 6.6a) and α = 0.93752 (see Figure 6.6b), the approxi-
mation gets even worse as the number of iterations p increases for α = 1.4352 (see



126 CHAPTER 6. COARSE CORRECTION FOR HELMHOLTZ

Figure 6.6c) and α = 1.7082 (see Figure 6.6d). Regarding multigrid with the al-
ternative coarse correction, the approximation curves fit with the solution after 5
iterations, except in the critical case α = 1.7082 where the method barely oscillates
even after 20 iterations. More numerical experiments with random solutions x are
discussed in the next chapter.

6.3 Intermediate conclusion

The first part of this chapter illustrated how the coarse correction can amplify the
error and lead to divergence. The concept of pollution of interpolation introduced
in Section 3.2 enables a better understanding of this issue. In particular, we demon-
strated that small eigenvectors are the most impacted, and can get easily amplified
by the coarse correction although the interpolation operator has good approxima-
tion properties and the pollution is small.

To address this issue, we introduced an alternative coarse correction based on an Eu-
clidean norm minimization. Our solution is to augment a coarse correction subspace
at each multigrid cycle with the vector returned by the classical coarse correction.
At each iteration, the residual is therefore minimized in Euclidean norm within the
coarse correction subspace. We also show that resorting to the Euclidean norm is
equivalent to working with normal equations. Although it fixes the problem of di-
vergence, it also affects the contraction of small eigenvalues. To address this issue,
each coarse correction vector of the minimization subspace is smoothed with the
polynomial smoother introduced in Chapter 4. More experiments on the overall
method can be found in the next chapter.



Chapter 7

Numerical Experiments

The previous chapters introduced three standard multigrid components in the con-
text of solving the Helmholtz equation : a smoother aimed at damping the large
eigenvalues in magnitude, an interpolation operator whose range approximates the
oscillatory space of small eigenvectors, and an alternative coarse correction that does
not amplify the error. This chapter presents more numerical experiments, and is split
into two parts. The first one applies our two-level method to the two-dimensional
shifted Laplacian model problems of (1.2) and (1.3). The second part presents the
multilevel case and several benchmarks on a two-dimensional Helmholtz problem
with absorbing boundary conditions.

In this chapter, the smoother corresponds to the Chebyshev polynomial built on
the normal equations, and its interval is determined by the spectral density approx-
imation method presented in Section 4.1.1, such that the number nµ of coefficients
µj in the moment matching procedure in (4.6) is fixed to 15, and nvec fixed to 5.
The degree d of the polynomial is set to 3. Regarding the construction of the least-
squares coarse variable operator R̂T , the number of smoothed test vectors in (5.17)
is fixed to κ = 15, and the number of interpolation points in (5.24) never exceeds 4
(i.e., max i∈F {Card(Ci)} = 4). For each following experiment, the given parameter
ν also determines the number of smoothing steps of the test vectors and the number
of smoothing steps of the coarse correction vectors contained in the minimization
space of our alternative coarse correction.

7.1 The Two-level case

This section presents the results of different two-level methods on the two-dimensional
shifted Laplacian matrices (1.2) and (1.3). The figures below show the number of
iterations with respect to the shift α and depending on the type of coarse correction
and the number of smoothing steps ν.

Since the number of iterations is presented with respect to the shift α, let us recall
that the matrix is the most indefinite when α = 22 for the 5-point stencil discretiza-
tion matrix (1.2), in the sense that the spectrum reaches a balance between negative
and positive eigenvalues. In the same way, the matrix is highly indefinite around
α = 32 for the 9-point stencil discretization matrix (1.3). Moreover, the near-kernel
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space becomes more oscillatory as α increases. Lastly, we measure the cost of each
method through the two-grid operator complexity ϕTG defined by

ϕTG :=
nnz(A) + nnz(Ac)

nnz(A)
with Ac = P TAP. (7.1)

Naturally, the method is cheaper when ϕTG is closer to 1. As multigrid works by
iterating the cycle until convergence, we set the tolerance of the relative residual
norm to 10−6, and the maximal number of iterations to 100. While we use normal
equations in the multilevel extension presented in the next section, we stick to the
initial matrix in the approximation of ideal interpolation as no substantial difference
in terms of convergence appeared when running the numerical experiments in the
two-level case.

7.1.1 Benchmarks on the 5-point stencil shifted Laplacian matrix

7.1.1.1 Classical variable operators with SPAI

The Figure 7.1 plots the number of iterations of four two-level methods applied to
the 5-point stencil discretization matrix (1.2). In this first experiment, the interpo-
lation operator is an approximation of the classical ideal interpolation operator P∗
of Section 5.2.2. The number of iterations and the operator complexity of Table 7.1
are given with respect to the pattern augmentation degree m.
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Figure 7.1: Number of iterations of two-level methods using the SPAI to approximate the ideal
interpolation from the classical variable operators RT and S - The 5-point stencil case
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In the 5-point stencil case, the classical fine variable block Aff = STAS is strictly
diagonal. Therefore, the SPAI technique computes its inverse exactly and the in-
terpolation operator is ideal regardless of the pattern augmentation degree m. This
convenient structural property implies that all the three curves in Figure 7.1 fit per-
fectly, and appear blended in a single green curve. However, in a multilevel setting,
the fine variable block does not remain diagonal throughout the grid hierarchy be-
cause the pattern of coarse matrices are unlikely to have the same structure, and
probably contain more non-zero entries. For this reason, the next section applies
the same two-level setting to a 9-point stencil discretization matrix to prevent our
analysis from any bias relative to this convenient structural property.

None of the four experiments with the classical ideal interpolation operator in Fig-
ure 7.1 diverged, regardless of the indefiniteness of the 5-point stencil matrix. The
peaks in Figure 7.1a, Figure 7.1b and Figure 7.2d reach the maximal number of
iterations because the convergence is too slow but not because the coarse correction
amplified the error. Alternatively, the third Figure 7.2c shows that increasing the
number of smoothing steps to ν = 4 enables the two-level method with the classical
ideal interpolation operator to converge in less than 100 iterations for all shifts. As
we will see further with experiments on the 9-point stencil matrix, this behavior
is exceptional, and happens only because the initial matrix in this case enables a
practical ideal interpolation operator that the SPAI approach can perfectly match.
While the error in not amplified by the coarse correction in this case, we recall the
method may diverge although P is ideal, as Figure 6.1d illustrates. Lastly, we ob-
serve that the values of ϕTG are all the same in Table 7.1, because the interpolation
operator is ideal for all values of m in this particular case.

m 0 1 2
ϕTG 1.81 1.81 1.81

Table 7.1: Operator complexity of the two-level method using the SPAI approach to approximate
the ideal interpolation from the classical variable operators RT and S with respect to m - The

5-point stencil case

7.1.1.2 Least-squares variable operators with the subspace restriction approach

By contrast, Figure 7.2 plots the number of iterations of the two-level method us-
ing the least-squares variable operators (5.29). Here, the ideal approximation is
computed by way of the subspace restriction approach, of in Section 5.3.3.

This setting does not benefit from the underlying structure of the initial matrix A,
contrary to the classical setting illustrated in Section 7.1.1.1. This time, the peaks
on the left figures 7.2a and 7.2c represent divergence.

While most failures arise around α = 22, both red and blue curves reach the maxi-
mal number of iterations for intermediate shifts as well. Increasing the fine variable
minimization subspace to τ = 1.0 helps in certain cases, but it is not always suffi-
cient. The most dramatic improvement provided by the alternative coarse correction
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Figure 7.2: Number of iterations of two-level methods using the subspace restriction approach to
approximate the ideal interpolation from the least-squares variable operators R̂T and Ŝ - The

5-point stencil case

illustrated in Figure 7.2b and 7.2d appears to be for sudden peaks arising for in-
termediate values of τ . Moreover, increasing the number of smoothing iterations
helps, as it also improves the minimization space of the alternative coarse correc-
tion. Although the alternative correction prevents divergence, it does not fix the
slow convergence issue that we notice for highly indefinite problems. Lastly, the
operator complexity given by Table 7.2 grows quickly with τ when coupling the
least-squares variable operators with the subspace restriction approach.

τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ϕTG 1.81 3.00 3.47 3.69 3.93 4.16 4.35 4.55 4.73 4.87 5.15

Table 7.2: Operator complexity of the two-level method using the subspace restriction approach
to approximate the ideal interpolation from the least-squares variable operators R̂T and Ŝ with

respect to τ - The 5-point stencil case

7.1.2 Benchmarks on the 9-point stencil shifted Laplacian matrix

7.1.2.1 Classical variable operators with SPAI

With the aim of challenging our algebraic two-level methods, it is more appropriate
to avoid the convenient structural properties from which benefits the SPAI approach
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when resorting to the classical variable operators RT and S. Hence, we also bench-
mark our methods on the 9-point discretization matrix whose stencil is defined in
(1.3). In this case, the Aff matrix is not diagonal. As a consequence, SPAI returns
an inexact approximation of the ideal interpolation.
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Figure 7.3: Number of iterations of two-level methods using the SPAI to approximate the ideal
interpolation from the classical variable operators RT and S - The 9-point stencil case

Contrary to the 5-point stencil matrix characterized by convenient structural prop-
erties, these red curves reveal that the two-level method diverges when applying the
classical coarse correction, even for small values of α. Comparing figures 7.3a and
7.3c, it appears that adding more smoothing steps does not address the divergence.
Increasing the pattern of non-zero entries helps for certain small values of the shift
α as it brings P closer to the ideal interpolation operator and therefore decreases
the pollution Kf . However, it is still not sufficient to fix the amplification of the
coarse correction in all cases.

By contrast, figures 7.3b and 7.3d show that the divergence peaks arising for small
values of α are fixed by the alternative coarse correction. Moreover, all three curves
have approximately the same shape. The main difference is that the number of
iterations associated with m = 0 slightly increases for values of α where the classical
setting diverges. Increasing m flatten the curves, and enables solving the system in
fewer iterations. Doubling the smoothing steps does not accelerate the convergence
significantly in this case.
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Finally, Table 7.4 presents the operator complexity of this two-level setting with
respect to m. While increasing m from 0 to 1 reduces iterations but increases the
number of non-zero entries in P , the structure remains the same for m = 2, probably
because the ideal approximation P is already close to its ideal form P∗.

m 0 1 2
ϕTG 2.07 2.83 2.83

Table 7.3: Operator complexity of the two-level method using the SPAI approach to approximate
the ideal interpolation from the classical variable operators RT and S with respect to m - The

9-point stencil case

7.1.2.2 Least-squares variable operators with the subspace restriction approach

Lastly, Figure 7.4 plots the number of iterations with respect to α when using the
least-squares variable operators with the subspace restriction approach in the 9-point
stencil case.
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Figure 7.4: Number of iterations of two-level methods using the subspace restriction approach to
approximate the ideal interpolation from the least-squares variable operators R̂T and Ŝ - The

9-point stencil case

Here again, figures 7.4a and 7.4c show that the classical coarse correction amplifies
the error and leads to divergence even for small shifts. Increasing τ apparently helps
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convergence, but the coarse correction remains likely to amplify the error. Certain
divergence scenarios when ν = 2 are fixed by doubling the number of smoothing it-
erations. Doing so improves the set of test vectors in approximating the near-kernel
space, and therefore leads to a better least-squares minimization coarse variable op-
erator and participates in decreasing the pollution Kf . Although the best setting for
the classical coarse correction is τ = 1 and ν = 4, it remains difficult to derive a gen-
eral setting that ensures the convergence of the standard method with the classical
coarse correction in all cases. The alternative coarse correction is necessary, even
though the convergence remains too slow for highly indefinite problems. Figures
7.4b and 7.4d represent the same experiment with the alternative coarse correction.
The peaks around α = 32 show a slow convergence because of near-zero eigenval-
ues. Except for these extremely indefinite cases, the method converges. Moreover,
increasing τ or ν provides a better convergence rate, but at the cost of complexity.
The numbers of the operator complexity are given in Table 7.4 with respect to τ .
These numbers are smaller than in Table 7.1, because the initial 9-point stencil dis-
cretization matrix A is denser and yields a larger denominator in the definition of
the operator complexity (7.1).

τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ϕTG 1.86 2.35 2.51 2.75 2.93 3.15 3.34 3.43 3.69 3.95 4.16

Table 7.4: Operator complexity of the two-level method using the subspace restriction approach
to approximate the ideal interpolation from the least-squares variable operators R̂T and Ŝ with

respect to τ - The 9-point stencil case

7.2 Extension to the Multilevel case

The following numerical experiments demonstrate the convergence of multilevel
methods when applied to two-dimensional Helmholtz problems with absorbing bound-
ary conditions. The continuous problem is

(Helmholtz + A.B.C.) ⇔
{
−∆u− k2u = f on Ω
∂nu− ιku = 0 on ∂Ω . (7.2)

In these experiments, the continuous model problem (7.2) is discretized with a finite
difference scheme such that the resulting discretization matrix has a 5-point sten-
cil pattern similar to (1.2), plus the coefficients resulting from the discretization of
absorbing boundary conditions. The only differences with the shifted Laplacian ma-
trices are the absorbing boundary conditions that prevent the discretization matrix
from being singular. As a consequence, the discretization matrix is indefinite, com-
plex and non-Hermitian. The restriction operation is made through the transpose
conjugate P ∗ or P̂ ∗, and the squared matrix in the Chebyshev polynomial smoother
is replaced by A∗A. In the numerical experiments that follow, the discretization
coefficient kh is set to 0.625 (i.e., 10 points per wavelength) but the wavenumber
k varies. Since kh is constant, the mesh size h decreases as k is growing. As a
consequence, the matrix size grows with the wavenumber. The size of each matrix
level with respect to k is given in Figure 7.5.
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Figure 7.5: Matrix size of each level with respect to the wavenumber k

In this section, we resort to the alternative coarse correction only, where ZT is re-
placed by its conjugate counterpart Z∗ in (6.11).

In addition, let l be the level index in the hierarchy. Similarly to the two-level
experiments of Section 7.1, the cost of the method is discussed with the operator
complexity variable given by

ϕMG :=
nnz(A1) +

∑lmax

l=2 nnz(Al)

nnz(A1)
with Al+1 = P T

l+1AlPl+1 , A1 := A. (7.3)

Intermediate matrices have more non-zero entries and more complex structures.
Therefore, approximations of the ideal interpolation are much harder to generate
than in the two-level case. Using normal equations in this context ensures that the
ideal interpolation operator satisfies variational properties because A∗A generates
a norm. Whereas we omitted normal equations for the approximation of the ideal
interpolation operator in the two-level setting, we generally noticed better perfor-
mance when using them into the ideal approximation phase of our multilevel method.
We therefore use normal equations in the ideal approximation step.

7.2.1 Classical Ideal approximations

First, let us try the multigrid method with the interpolation operator resulting from
the classical variable operators (5.8) and the sparse ideal approximate inverse (5.16).

We begin with Figure 7.6 which represents the complex eigenvalues of each level
for k = 20 and m ∈ {0, 1}. Despite the 5-point stencil structure of the initial ma-
trix, the SPAI does not benefit from the diagonal form of Aff because of the normal
equations in the design of P . As a consequence, P is not the exact ideal interpola-
tion but an approximation that depends on m. It explains why the eigenvalues of
the second level matrices in red are different on both figures. That said, it clearly
appears that, as the matrix gets coarser, the spectrum gets more contracted toward
the origin. Hence, the proportion of positive and negative real parts reaches an
equilibrium from the fourth level, and the imaginary parts decrease magnitude-wise
with the level index. In that sense, we can say that each new coarse matrix is more
indefinite than its upper parent in the hierarchy.
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Figure 7.6: Eigenvalues for each level with respect to m for k = 20 and kh = 0.625

As explained in Section 4.1.2, designing a polynomial smoother with normal equa-
tions is especially relevant for highly indefinite matrix. Since the polynomial smoother
of each level is constructed algebraically, let us study their damping factors with re-
spect to the eigenvalues of each level. The polynomial of the finest level is illustrated
in Figure 7.7a, whereas polynomials of intermediate levels are illustrated in Figure
7.7b and 7.7c. The y-axis corresponds to the damping factor with respect to the
squared modulus of the eigenvalues represented by the x-axis.
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Figure 7.7: Damping factors of the Chebyshev polynomials for each level with respect to m for
k = 20 and kh = 0.625

The number of generated Chebyshev roots is set to d+ 1 = 3 in these experiments.
Therefore, the degree of the polynomial error propagation matrix is also 3. Ex-
cept the polynomial represented by the red curve, we notice that all of the other
polynomials have their smallest root located before half of the largest magnitude
eigenvalue. This observation is due to the spectral density approximation phase
that defines the appropriate interval of eigenvalues to be damped by the smoother.
Setting the lower-bound of the interval under the assumption that the spectrum is
uniformly distributed can either lead to a narrower interval where intermediately
large eigenvalues are least damped, or lead to a slower capture of the largest eigen-
values due to more oscillations within a wider interval than necessary.
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Finally, Figure 7.8 illustrates the number of iterations with respect to the wavenum-
ber k and depending on the number of levels. Figure 7.8a corresponds to the case
where no pattern extension is applied (i.e., m = 0), whereas Figure 7.8b shows the
convergence when m = 1. We first observe that the number of iterations generally
increases as more levels are added. This observation is not uncommon in classical
multigrid methods in the SPD case, since increasing the number of levels is equiva-
lent to recursively approximating the inverse of the coarsest matrix by an additional
two-level method. However, this general trend has no guarantee to hold in every
cases in our setting, for instance for k = 140 in Figure 7.8a where the five-level
method converges faster than its three levels counterpart. In fact, the amplification
of small eigenvectors by the classical coarse correction may be more important as
more levels are added, which may benefit the alternative coarse correction by in-
creasing their prevalence in the minimization space. Ideally, we want the iteration
count to be bounded, but we notice that the number of iterations grows with the
wavenumber k, although increasing m accelerates the convergence and leads to a
slower growth. Despite the gain provided by augmenting the pattern to m = 1, the
purple curve of the six level method reaches the dashed red line. In other words, the
six-level methods failed to converge in less than 100 iterations for larger values of k
in both cases. This issue is probably because the SPAI approach struggles finding
a relevant sparse approximation of P∗ as coarse matrices contain more non-zero en-
tries. As we observe failure for 6 levels, we did not consider adding more levels in
these experiments.¨
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Figure 7.8: Number of iterations with respect to the wavenumber k and m, for ν = 2

Figure 7.9 shows that doubling the number of smoothing steps slightly accelerates
the convergence, but the general trends observed in Figure 7.8 remain the same. We
remind that increasing ν not only damps large magnitude eigenvectors faster, but
also improves the prevalence of small eigenvectors within the minimization space
of the alternative coarse correction by refining the coarse correction vectors. We
refer to Section 6.2 for more details on our alternative coarse correction. Lastly, we
remark that the convergence rate slightly decreases with k when m = 1, but still
reaches the maximal number of iterations when resorting to 6 levels.
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Figure 7.9: Number of iterations with respect to the wavenumber k and m, for ν = 4

Finally, Figure 7.10 plots the operator complexity ϕMG defined in (7.3). While
setting m = 1 gives good convergence up to 5 levels, it is at the cost of more
expensive operators. Improving the sparsity of the coarse levels is a topic of future
research.
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Figure 7.10: Operator complexity with respect to the wavenumber k and m

7.2.2 Least-squares variable operators plus Ideal Subspace Restriction

We end this chapter with the interpolation operator P̂ that relies on the least-squares
variable operators R̂T and Ŝ introduced in Section 5.3.2. While the set of test vec-
tors used in the least-squares minimization strategy is initialized randomly on the
finest level, we choose each coarse level to proceed from the restriction of its fine
level parent set in the hierarchy. Thereafter, these coarse test vectors are smoothed
by the Chebyshev polynomial smoother as usual. Our motivation is that each gen-
erated set is an approximation of the near-kernel space, and each new interpolation
is designed to capture it. Subsequently, restricting the fine level parent test vectors
always provides a better initial guess than initializing the new coarse set randomly.

Secondly, the ideal approximation operator P̂ results from the ideal subspace re-
striction approach of Section 5.3.3. Whereas the previous figures are plotted with
respect to m, we now apply our method with respect to τ . Let us recall that τ
controls the number of selected columns of Ŝ in the ideal approximation phase. In
particular, τ = 0.0 means no ideal approximation phase, such that no column of Ŝ
is selected. In fact, P̂ = R̂T in that case. Conversely, we recall that setting τ = 1.0
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means selecting all the columns of Ŝ associated with non-zeros in the quantity (5.35).
Although τ = 1.0, P̂ is not the exact ideal but an inexact approximation of it.
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Figure 7.11: Eigenvalues if each level with respect to τ for k = 20 and kh = 0.625

Let us begin with Figure 7.11, which plots the complex eigenvalues of each matrix
in the multigrid hierarchy, for τ = 0.0 and τ = 1.0. The same observations than for
7.6 can be made in this case. The matrix becomes more indefinite with the level
index, and the concentration of eigenvalues around zero seems more important when
increasing the value of τ . In addition, we also remark that the real part has a larger
amplitude in this setting than in Figure 7.6.
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Figure 7.12: Damping factors of the Chebyshev polynomials of each level with respect to τ for
k = 20 and kh = 0.625

The latter observation has an incidence on the shape of the polynomial of Figure
7.12. Figure 7.11 reveals that the spectrum of the second matrix contains eigenvalues
of larger magnitude compared to the previous setting. As a consequence, it natu-
rally follows that the interval for generating the Chebyshev roots is larger as well.
Increasing the size of the interval means more oscillations of the polynomial within
the interval, and results in a slower damping rate for the largest magnitude eigenval-
ues. Another observation is that the largest magnitude eigenvalues of the last three
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levels appear detached from the others. This phenomenon has the same incidence
on the shape of the resulting polynomial. For the sake of capturing only a few of
these eventually extreme eigenvalues, the polynomial becomes more oscillatory.
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Figure 7.13: Number of iterations with respect to the wavenumber k and τ , for ν = 2

Finally, Figure 7.13 shows that the number of iterations grows faster with the
wavenumber k when fewer columns of Ŝ are selected to approximate the least-squares
ideal interpolation operator. The number of iterations remains almost constant only
when τ = 1.0 as illustrated in Figure 7.13d. Hence, it appears that selecting all the
columns associated with a non-zero entries in (5.37) has a strong incidence on the
method. Coarse matrices get denser as more levels are added. Hence, the number
of selected columns increases and each column may have an equivalent importance.
Subsequently, omitting a few of these columns by decreasing τ has more impact on
deeper levels.
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Figure 7.14: Number of iterations with respect to the wavenumber k and τ , for ν = 4
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Figure 7.14 illustrates the same parameters but with ν = 4 smoothing steps instead
of 2. While the general trends are the same, the number of iterations globally de-
creases when doubling the number of smoothing steps. Figure 7.15 portrays the
operator complexities of each method.

Setting τ = 1 enables the method to converge with nearly constant iteration counts
up to five levels according to Figures 7.13 and 7.14, but the operator complexity
shown in Figure 7.15 is too high for a practical implementation yet. Even though
we kept cost considerations in mind, and therefore developed an approximation
based on sparsity constraints, the question of finding more practical operators for
indefinite problems is an important topic for the next research on multigrid for
Helmholtz. Nevertheless, Figure 7.13 and Figure 7.14 show promising results of
our alternative method in solving the indefinite Helmholtz equation with absorbing
boundary conditions in a constant number of iterations independently of the matrix
size and k.
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Figure 7.15: Operator complexity with respect to the wavenumber k and τ



Chapter 8

Conclusion and Perspectives

The CEA studies the electromagnetic behavior of three-dimensional complex ob-
jects. In this context, numerical linear algebra comes into play when solving the
discretized Maxwell’s equations. Iterative algorithms are often preferred as they
perform better on modern supercomputers. To this day, the linear system of equa-
tions is solved by way of a Domain Decomposition Method. At each iteration,
independent sub-problems are solved and transmitted to the approximation of the
global solution. This approach is robust and allows a better understanding of wave
propagation phenomena. However, computing the solution to the local problems
requires a direct solver that lacks scalability. To anticipate the release of the next
exascale machines, the CEA started investigating alternative methods that scale
better than the current domain decomposition method, and multigrid methods are
among the most promising ones in that perspective.

However, they strongly rely on theoretical assumptions that do not hold when
applied to the Maxwell’s equations. More precisely, the discretization matrix is
indefinite and has a large and oscillatory near-kernel space. To design a multigrid
method for wave propagation problems, the smoother should be adapted to damp
potentially large negative eigenvalues and the interpolation designed for approxi-
mating the span of the oscillatory near-kernel space correctly. Another important
issue is that the keystone coarse correction loses its minimization properties because
the matrix does not generate a norm in the indefinite case. With the final aim
of solving Maxwell’s equation, the CEA opened this thesis to investigate an alge-
braic multigrid method for solving the indefinite and oscillatory Helmholtz equation.

In Chapter 2, we recalled a few multigrid fundamentals to help the discussion
throughout this manuscript. Then, we summarized the state of the art of multigrid
for Helmholtz in Chapter 3 and introduced the concept of “pollution” to highlight
the relation between the interpolation error and the coarse correction. In particular,
we demonstrated that the traditional coarse correction can easily amplify the error
associated with small eigenvectors, although the range of interpolation approximates
the near-kernel space properly. This traditional coarse correction appears hopeless
in the indefinite case. In the next three chapters, we tackled the three main compo-
nents of multigrid methods that are : the smoother, the interpolation operator, and
the coarse correction.
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In Chapter 4, we presented a Chebyshev polynomial smoother built on normal equa-
tions that damps the large eigenvalues magnitude-wise, regardless of their signs. In
the setup phase of our smoother, it is necessary to define an appropriate interval for
the selection of the Chebyshev nodes. Hence, we introduced an algorithm based on
spectral density approximation techniques to determine the interval algebraically,
i.e., without prior geometrical or spectral knowledge on the problem. Then, Chap-
ter 5 addresses the question of interpolation, where we introduced an approximation
of the ideal interpolation operator based on least-squares variable operators. The
underlying motivation of this new approach is to make the process of ideal approx-
imation more predictable than its classical counterpart, because the least-squares
variable operators are better initial approximations of the theoretical complemen-
tarity required. Moreover, the column restriction approach with normal equations
provides minimization properties to the ideal approximation operator. Then, we
opened Chapter 6 by illustrating a case where the traditional coarse correction am-
plifies the error, even if the interpolation operator approximates the near-kernel
space correctly. To remedy the divergence scenarios, we finally introduced an alter-
native coarse correction based on Euclidean norm minimization. This alternative
coarse correction now operates as a contraction of this error, contrary to the tradi-
tional one that may amplify it.

The last Chapter 7 benchmarks our two-level method on two different shifted Lapla-
cian discretization matrices and various shifts. In addition, we presented a multilevel
extension that we apply on the two-dimensional Helmholtz equation with absorb-
ing boundary conditions. The two-dimensional shifted Laplacian experiments show
that our two-level alternative method converges for most shifts where the traditional
method diverges. However, the alternative setting remains slow for intermediate
shifts that yield extremely indefinite matrices. These matrices are not only char-
acterized by an even proportion of negative and positive eigenvalues, but also by
a larger distribution of near-zero eigenvalues. Although our alternative two-level
method fixes divergence of traditional methods, its convergence remains too slow
in these extreme cases because the pollution still impacts the contraction of the
near-zero eigenvalues dramatically. Accelerating the convergence for highly indef-
inite matrices is another important question that will allow us to add more levels
in the multilevel extension as well. At this stage, we see two ways for accelerating
the convergence of the method. The first consists of improving interpolation in or-
der to reduce the pollution, while maintaining good sparsity to make the method
practical. The second is to better filter the large eigenvectors that decrease the
prevalence of the smallest eigenvectors in the minimization space of the alternative
coarse correction. While our polynomial smoother already damps the large eigen-
values appropriately without hitting the smallest ones, better filtering approaches
may exist as well. That said, we can always find even more demanding problems
by playing with the shift. The pollution will always have a strong impact on near-
zero eigenvalues. The Helmholtz problem with absorbing boundary conditions has
closer connections with real-world applications, and has also been considered in our
works. In particular, our multilevel extension solves the two-dimensional Helmholtz
equation with absorbing boundary conditions in a constant number of iterations
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independently of the matrix size, and with a number of levels that goes up to 6.
Moreover, no prior knowledge of the problem is required by our method. While mak-
ing the method more practical is a topic of future research, our numerical results in
terms of convergence are promising for solving indefinite problems with multigrid.
The setting of these successful multilevel results requires to select all the columns
of the least-squares fine variable operator associated with the non-zero entries of
(5.37) in the ideal approximation phase. This requirement is due to the fill-in of
coarse matrices that grows with the level index. Naturally, decreasing the number
of selected columns of the fine variable operator impacts the convergence more dra-
matically on coarse levels that have more non-zero entries.

Improving the sparsity of the coarse matrices is a topic of future research that
will make the method more practical. One idea is to consider non-Galerkin ma-
trices. Even in the SPD case, traditional multigrid methods may diverge if these
non-Galerkin approximations are not spectrally equivalent to their Galerkin counter-
parts. However, in our setting, they would only help produce the coarse correction
vectors of the minimization space. Subsequently, the divergence issue is already
fixed by our framework since the alternative coarse correction contracts the error
in Euclidean norm in all cases. Nevertheless, the impact on the convergence rate
remains an open question. The design of our multigrid operators implicitly relies
on normal equations (e.g., polynomial smoother on normal equations, ideal approx-
imation with normal equations, coarse correction through Euclidean minimization).
Therefore, developing an algebraic multigrid methods for normal equations matrices
is a completely different research direction that we also considered throughout this
thesis. In particular, the normal equations matrix of the 5-point stencil problem
(1.2) decouples into two separate problems for α = 4. This feature can benefit
reduction-based algorithms. While this direction of research may give promising
results in the future, one remaining difficulty is that squaring the matrix brings the
small eigenvalues even closer to zero, which makes them even more sensitive to the
pollution. Lastly, the research on multigrid for definite Maxwell problems is also
progressing. One promising research direction is to consider block smoothers to treat
the local near-kernel components [18]. In the future, it may be interesting to merge
these new ideas with our work to finally design an algebraic multigrid method for
indefinite Maxwell’s equations.
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Appendix

A.1 Cauchy’s bound Theorem and Chebyshev roots as inter-
polation points

The following theorem, generally attributed to Cauchy, states that the error of the
polynomial of interpolation is bounded by a function of interpolation points.
Theorem 7 (Cauchy’s bound theorem). Let f be a d+ 1 times differentiable func-
tion, and pd be a polynomial of degree d constructed from d+ 1 interpolation points
xi, as defined in (2.24). The error between f and its polynomial interpolation pd is
bounded as follows

|f(x)− pd(x)| ≤
Md+1

(d+ 1)!
∥wd+1∥∞, (A.1)

where

Md+1 := sup
a≤x≤b

{∣∣f (d+1)(x)
∣∣} and wd+1(x) :=

d+1∏

i=1

(x− xi). (A.2)

In our context, the f function is x−1. What Cauchy’s bound of Theorem 7 reveals is
that the error of interpolation relies on the unitary polynomial wd+1 with roots xi.
Thus, the aim of finding a relevant set of d+1 interpolation points xi is to minimize
such a function. As mentioned in Section 2.1.2.1 of Chapter 2, the roots of the first
kind Chebyshev polynomial (2.27) constitutes the best set of interpolation points.
As recalled in [66], the fact that Td+1 in (2.27) is a polynomial can be induced from
the trigonometric relation

cos(θ) cos(dθ) =
1

2
[cos(θ − dθ) + cos(θ + dθ)] (A.3)

which is equivalent to

cos((d+ 1)θ) = 2 cos(θ) cos(dθ)− cos((d− 1)θ). (A.4)

Hence, equations (2.27) and (A.4) lead to the three-term recurrence relation (2.28).
From the three-term recurrence relation of (2.28), the leading coefficient of Td+1 is
2d. As a consequence, the polynomial can be rewritten

Td+1(t) = 2d
d+1∏

i=1

(t− ti). (A.5)
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Moreover, one can demonstrate that the superior bound of the unitary polynomial
2−dTd+1 is the smallest among all the unitary polynomials of degree d + 1. In
particular, one can show that

1

2d
∥Td+1∥∞ =

1

2d
≤ ∥wd+1∥∞ , (A.6)

where wd+1 can be any unitary polynomial as defined in (A.2) of Theorem 7. Then,
designing the polynomial pd by selecting the interpolation points xi as the roots of
a Chebyshev polynomial (i.e., wd+1 =

1
2d
Td+1) minimizes the Cauchy’s bound (A.1).

A.2 Further developments on GMRES

For ease of discussion in what follows, let qi be the ith column of Qd, and hj,i denote
the entry (j, i) of H̄d. The orthonormalized set of Krylov vectors denoted Qd can be
written

Qd = [q1, . . . , qd] where qi ⊥ qi+1 i = 1, . . . , d− 1. (A.7)

Moreover, the Hessenberg matrix of the Arnoldi relation (2.38) has the form

H̄d =




h1,1 . . . h1,i . . . h1,d

h2,1
. . . ...

0
. . . hi,i hi,d

... . . . . . . . . . ...

... . . . . . . hd,d
0 . . . . . . 0 hd+1,d




(A.8)

Algorithm 7, called Arnoldi procedure, summarizes the Krylov basis construction
process.

Algorithm 7 Arnoldi procedure

1: q1 ← b/∥b∥2 ▷ The first Krylov vector is the normalized right-hand side b
2: for i = 1, d do
3: w ← Aqi ▷ Each new Krylov vector first results from matrix vector products
4: for j = 1, i do
5: hj,i ← ⟨qj ,w⟩ ▷ The Gram-Schmidt coefficients are stored in Hd

6: w ← w − hj,iqj ▷ The new vector is orthonormalized against all the others
7: end for
8: if ∥w∥2 > 0 do ▷ i.e., if Aqi /∈ vect {q1, . . . , qi}
9: hi+1,i ← ∥w∥2

10: qi+1 ← w/hi+1,i ▷ The basis is augmented with the orthonormalized vector Aqi
11: end if
12: end for



Let Ḡi be the ith Given’s rotation matrix such that

Ḡi :=




1 0 . . . . . . . . . 0

0
. . . ...

... ci si
...

... −si ci
...

... . . . 0
0 . . . . . . . . . 0 1




, ci :=
hi,i√

h2i,i + h2i+1,i

and si :=
hi+1,i√

h2i,i + h2i+1,i

.

(A.9)
Also, let Gd := Ḡd . . . Ḡ1 be the unitary matrix resulting from the product of the d
Given’s rotations. Multiplying H̄d with Gd returns the (d+ 1× d) upper triangular
matrix

Ūd := GdH̄d =




u1,1 . . . u1,i . . . u1,d

0
. . . ...

... . . . ui,i ui,d

... . . . . . . ...

... . . . ud,d
0 . . . . . . . . . 0




(A.10)

The next development shows that minimizing the residual amounts to solve a trian-
gular system of linear equations

min ∥r(k+1)∥2 = min
ρ̃d∈Cd

∥r(k) − AQdρ̃d∥2 = min
x̃∈Kd

∥r(k) − Ax̃∥2 (A.11)

= min
ρ̃d∈Cd

∥r(k) −Qd+1H̄dρd∥2 = min
ρ̃d∈Cd

∥Qd+1(β
−→e 1 − H̄dρd)∥2

Define β := ∥r(k)∥2 with q1 = r(k)

β
, and gd+1 := βGd

−→e 1. Since both Qd+1 and Gd

are unitary

min ∥r(k+1)∥2 = min
ρ̃d∈Cd

∥Qd+1(β
−→e 1 − H̄dρd)∥2 = min

ρ̃d∈Cd
∥β−→e 1 − H̄dρd∥2 (A.12)

= min
ρ̃d∈Cd

∥βGd
−→e 1 −GdH̄dρd∥2 = min

ρ̃d∈Cd
∥gd+1 − Ūdρd∥2 (A.13)

Denote by Ud and gd the (m×m) upper triangular matrix and the vector of size d ob-
tained from Ūd and gd+1 by deleting their last row and component gd+1 respectively.
It follows

min ∥r(k+1)∥22 = min
ρ̃d∈Cd

∥gd+1 − Ūdρ̃d∥22 = min
ρ̃d∈Cd

|gd+1|2 + ∥gd − Udρ̃d∥22. (A.14)

It follows that the residual is minimized for

ρd = U−1d gd ⇔ min ∥r(k+1)∥22 = |gd+1|2 . (A.15)

Because the solution to the minimization problem lies in Kd, the approximation is
updated as follows

x(i+1) = x(i) +Qdρd. (A.16)



A.3 Idealistic example of ideal interpolation

Define coarse and fine spaces respectively in directions of small and large eigenvectors
denoted by the sets Vc and Vf respectively such that

RT := Vc , S := Vf . (A.17)

Since eigenvectors are orthonormal, the necessary condition RS = 0 is satisfied.
Injecting (A.17) in the definition of ideal interpolation (2.69) gives

P∗ = RT = Vc and P T
∗ AP∗ = Diag(λ1, . . . , λnc). (A.18)

This idealistic dichotomy enabled by P∗ maximizes the complementarity principle.
The near-kernel space contained in Vc is solved directly at the coarsest level while
the large eigenvectors of Vf remains in the smoothing space.

A.4 Additional developments on the condition number of
CSL preconditioned matrices

As shown in [31], the numerator of (3.59) can be approximated by

λhmax

((
H−1γ,βAh

)∗ (
H−1γ,βAh

))
≈ max

{
1,

1

γ2 + β2

}
. (A.19)

Secondly, letting ϵ := min
j

(
s2j −

(
kh
2

)2), the denominator is

λhmin

((
H−1γ,βAh

)∗ (
H−1γ,βAh

))
=

ϵ2
(
ϵ+ (1 + γ)

(
kh
2

)2)2
+ β2

(
kh
2

)4 . (A.20)

Assuming the smallest eigenvalue of the Helmholtz matrix is very small (i.e., ϵ
(
kh
2

)2 ≪(
kh
2

)4 and ϵ2 ≈ 0), the minimal eigenvalue can be approximated by

λhmin

((
H−1γ,βAh

)∗ (
H−1γ,βAh

))
≈ 4

(1 + γ)2 + β2

(
2ϵ

(kh)2

)2

. (A.21)

As written in (3.60), the condition number of the squared left preconditioned matrix
(3.59) is given by

κ2 =

{
1
4

(
1 + 2γ

γ2+β2

) (
(kh)2 / (2ϵ)

)2
if γ2 + β2 ≤ 1,

1
4

(
(1 + γ)2 + β2

) (
(kh)2 / (2ϵ)

)2
, if γ2 + β2 ≥ 1

. (A.22)

Let us compare the action of each preconditioner in the particular case where (0 <
k2 < µ1). The minimal and the maximal eigenvalues of each of the four matrices
are respectively reached for indexes j = 1 and j = n. To compare the condition
numbers of the plain and real shifted Laplacian preconditioned matrices, the ratio
between both minimal eigenvalues is given by



λmin

((
H−10 A

)∗ (
H−10 A

))

λmin

((
H−11 A

)∗ (
H−11 A

)) =
(µ1 + k2)

2

µ2
1

> 1. (A.23)

Regarding maximal eigenvalues, one finds that

lim
µn→∞

λmax

((
H−10 A

)∗ (
H−10 A

))
= lim

µn→∞
λmax

((
H−11 A

)∗ (
H−11 A

))
= 1. (A.24)

Consequently, the Laplacian preconditioner with no shift offers a better condition
number than the real shifted preconditioner when the wavenumber is smaller than
the minimal eigenvalues. In the same way, comparing minimal eigenvalues of the
plain Laplacian preconditioner with the complex shifted preconditioner gives

λmin

((
H−10 A

)∗ (
H−10 A

))

λmin ((H−1ι A)∗ (H−1ι A))
=

(µ1 + k2)
2

µ2
1 + k4

> 1. (A.25)

As in (A.24), we have

lim
µn→∞

λmin

((
H−10 A

)∗ (
H−10 A

))
= lim

µn→∞
λmin

((
H−1ι A

)∗ (
H−1ι A

))
= 1. (A.26)

Here again, the plain Laplacian preconditioner provides a smaller condition number
than the complex shifted preconditioner in that first case where 0 < k2 < µ1.

In the second scenario where the wavenumber is greater than the minimal eigen-
value of the Laplacian (i.e., µ1 < k2 < µn), the maximal eigenvalue of the Laplacian
preconditioner with no shift becomes

λmax

((
H−10 A

)∗ (
H−10 A

))
= max

{(
µn − k2
µn

)2

,

(
µ1 − k2
µ1

)2
}
. (A.27)

Equation (A.27) shows that the maximal eigenvalue increases dramatically as µ1 gets
closer to zero. This feature is illustrated by the extreme left mark in Figure 3.6a.
Let us now compare it with both real and complex shifted Laplacian preconditioned
matrices. The maximal eigenvalue of the former is

λmax

((
H−11 A

)∗ (
H−11 A

))
= max

{(
µn − k2
µn + k2

)2

,

(
µ1 − k2
µ1 + k2

)2
}
. (A.28)

whereas the maximal eigenvalue of the latter is

λmax

((
H−1ι A

)∗ (
H−1ι A

))
= max

{
(µn − k2)2
µ2
n + k4

,
(µ1 − k2)2
µ2
1 + k4

}
. (A.29)

One can demonstrate that their spectra are upper bounded such that

lim
µn→∞

λmax

((
H−11 A

)∗ (
H−11 A

))
= lim

µ1→0
λmax

((
H−11 A

)∗ (
H−11 A

))

= lim
µ1→0

λmax

((
H−1ι A

)∗ (
H−1ι A

))

= lim
µn→∞

λmax

((
H−11 A

)∗ (
H−11 A

))
= 1. (A.30)



For a minimal eigenvalue of the same magnitude, shifted preconditioners provide
a better condition number in the case where at least one eigenvalue of the initial
Helmholtz problem is negative. Assuming the smallest eigenvalue of index d is near
zero, then the associated Laplacian eigenvalue is µm ≈ k2 + ϵ. It naturally follows

λmin

(
(H−1ι A)

∗
(H−1ι A)

)

λmin

((
H−11 A

)∗ (
H−11 A

)) =
(µm + k2)

2

µ2
m + k4

=
4k4 + 4k2ϵ+ ϵ2

2k4 + 2k2ϵ+ ϵ2
≈ 2. (A.31)

In theory, the complex shifted Laplacian offers the best condition number among the
three preconditioners. In the first hand because it bounds the maximal eigenvalue,
in the other because its minimal eigenvalue is twice larger than its real shifted
counterpart.

A.5 Least-squares variable operators with SPAI
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Figure A.1: Error of the l2-projection onto the range of the classical and alternative ideal
approximations using the SPAI approach for the model problem SL2D-9S with respect to m

A.6 Classical variable operators with the subspace restriction
approach

A.7 Alteration of the coarse correction with classical variable
operators and SPAI

The Figure A.3 plots the same experiments as in Figure 6.1 but for a 9-point dis-
cretization stencil of the two-dimensional shifted Laplacian matrix. In this experi-
ment, we use the classical variable operators RT and S. Top figures correspond to
α = 0.6252, whereas the shift associated with bottom figures is α = 2.12. Both left
figures A.3a and A.3b use the approximation P of the classical ideal interpolation
P∗ given by the SPAI approach and with normal equations, as described in Section
5.2.2. Conversely, the right figures correspond to the classical ideal interpolation
operator P∗. Here again, blue and green curves fit well, but the coarse correction



−2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

λi

(a) Classical variable operators RT and S -
α = 0.6252

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

λi

v
T i

(I
−

Π
(P

∗)
)
v
i

τ = 1.0 0.75 0.5

0.25 0.0 P∗

(b) Classical variable operators RT and S -
α = 1.752

Figure A.2: Error of the l2-projection onto the range of the classical ideal approximations with
the subspace restriction approach for the model problem SL2D-9S with respect to τ
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Figure A.3: Smallest eigenvector v1 vs. its l2-projection Π(P )v1 vs. its coarse correction
ΠA (P )v1, for two different shifts

vector is amplified for α = 2.12. Moreover, the previous observation in the compari-
son between the ideal interpolation and its approximation holds in this case as well.
Decreasing the interpolation error for α = 0.6252 improves the coarse correction
vector, whereas it induces a stronger amplification when α = 2.12.
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