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Résumé: Dans cette thèse, on s’intéresse
à la simulation d’écoulements compressibles à
l’aide de méthodes numériques implicites de
type solveurs de Riemann, telles que la méth-
ode de Roe ou le schéma HLLC. L’objectif est
de développer des extensions faible nombre de
Mach afin de préserver la précision des solu-
tions discrètes dans la limite bas Mach. Ce
type d’écoulement est souvent rencontré dans la
simulation de configurations industrielles, carac-
térisées par la présence de zones plus ou moins
étendues à faible vitesse.

On se focalise sur la composante hyperbolique
des équations de Navier-Stokes, qui constitue le
cœur du problème d’analyse numérique abordé
dans cette thèse, les équations d’Euler. On y
expose une analyse approfondie et détaillée re-
traçant un sujet de recherche vieux de plusieurs
décennies, qui présente encore d’importants dé-
fis, même pour ce modèle académique. La lit-
térature recense un grand nombre d’extensions
possibles pour le schéma de Roe, qui sont
généralement faciles à implémenter. Ces ex-
tensions consistent à modifier certains termes
de la dissipation numérique, en amplifiant ou
diminuant leur contribution dans la limite faible
nombre de Mach (on parle de « rescaling »
de la dissipation numérique). Elles permettent
par ailleurs d’obtenir une solution discrète com-
pressible approchant la solution analytique is-
sue de la théorie du potentiel pour le prob-
lème incompressible, sans pour autant intro-
duire une détérioration des résultats dans le
régime compressible. La capture des ondes de
choc pour les écoulements transsoniques et su-
personiques reste quasiment inchangée. Cepen-
dant, il existe plusieurs études suggérant de
faire preuve de vigilance quant au choix de la
formulation de ce type de correction. Il est
connu de la littérature que des pertes de stabil-
ité numérique sont généralement observées, ainsi
que des risques d’apparition de problèmes de
découplage vitesse-pression, détériorant forte-
ment la précision globale de la solution dis-
crète dans les faibles vitesses. Ces travaux se

fondent sur deux corrections très différentes du
schéma de Roe, issues de la littérature scien-
tifique, et qui présentent des propriétés discrètes
distinctes. La première approche, proposée par
C.-C. Rossow, amplifie les sauts de pression en
introduisant une vitesse artificielle du son, tan-
dis que la seconde, développée par F. Rieper,
vise à uniquement atténuer les sauts de vitesse.
Ces deux approches illustrent deux stratégies
majeures fréquemment utilisées dans les exten-
sions à faible nombre de Mach. Nous com-
mençons tout d’abord par l’analyse asympto-
tique discrète de l’approche proposée par C.-
C. Rossow non publiée dans la littérature, en
abordant également la formulation de la con-
dition de stabilité au sens de von Neumann.
On montre que cette correction évite l’écueil
du découplage vitesse-pression. Ensuite, nous
présentons une méthode numérique, visant à
construire des phases implicites exactes néces-
saires à l’intégration temporelle, en utilisant la
différentiation algorithmique et un solveur di-
rect. Ces techniques nous permettent de con-
tourner la contrainte très stricte de stabilité sur
le pas de temps, et d’obtenir des solutions dis-
crètes en quelques centaines d’itérations, et ce
même pour des écoulements à très faible nom-
bre de Mach. La généralisation de ces travaux
au schéma HLLC se fait ensuite en poursuiv-
ant l’analyse de la structure d’onde faite par M.
Pelanti.

Ces travaux révèlent une profonde similarité
entre les dissipations numériques de ces méth-
odes. En particulier, nous dérivons un formal-
isme commun entre ces deux schémas, afin de
simplifier les analyses, et la transposition d’une
correction d’un solveur de Riemann approché
à l’autre, au sens d’une relation très claire en-
tre les deux méthodes. Cette analyse nous per-
met en particulier de dériver le schéma HLLC-
Rossow, mais également d’expliciter l’expression
de la matrice de viscosité du schéma HLLC, qui
exhibe une ressemblance intéressante avec celle
du schéma Roe.
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Abstract:
In this thesis, we focus on the simulation of

compressible flows using implicit Godunov-type
methods, such as the Roe method or the HLLC
scheme. The objective is to develop low Mach
number extensions that preserve the accuracy
of discrete solutions in the low Mach number
limit. This type of flow is frequently encoun-
tered in the simulation of industrial configura-
tions, which are often characterized by the pres-
ence of more or less extensive low-speed areas.

We focus on the hyperbolic component of the
Navier-Stokes equations, which form the core
of the numerical analysis problem addressed in
this thesis, the Euler equations. We present an
in-depth and detailed analysis of research topic
that has been the subject of investigations for
decades, and which continues to present signif-
icant challenges, even for this academic model.
A review of the literature reveals a large number
of possible extensions to the Roe scheme, which
are generally easy to implement. These involve
modifying specific terms of the numerical dissi-
pation, either by amplifying or by diminishing
their contribution in the low Mach number limit
(also known as a rescaling of the numerical dissi-
pation). They also enable us to obtain a discrete
compressible solution that approaches the ana-
lytical solution derived from potential theory for
the incompressible problem, without introduc-
ing any deterioration in the results in the com-
pressible regime. The capture of shock waves
for transonic and supersonic flows remains al-
most unaltered. However, there are a number
of studies suggesting that care should be taken
in the choice of formulation for this type of cor-
rection. It is well documented in the literature
that losses in numerical stability are generally
observed, as well as the risk of velocity-pressure
decoupling problems appearing, which can sig-
nificantly deteriorate the overall accuracy of the

discrete solution for low-speed flows.
This work is based on two very different cor-

rections of the Roe scheme, taken from the scien-
tific literature, and highlighting distinct discrete
properties. The first approach, proposed by C.-
C. Rossow, amplifies pressure jumps by intro-
ducing an artificial speed of sound, whereas the
second approach, developed by F. Rieper, aims
to attenuate velocity jumps exclusively. These
two approaches illustrate two major strategies
frequently used in low-Mach extensions. We be-
gin with a discrete asymptotic analysis of the
approach proposed by C.-C. Rossow, which has
not been published in the literature, including
the formulation of the von Neumann stability
condition. It is demonstrated that this correc-
tion avoids the issue of pressure- velocity decou-
pling. Next, we present a numerical method for
constructing the exact implicit phases required
for time integration, using algorithmic differen-
tiation and a direct solver. These techniques
enable us to bypass the very strict stability con-
straint on the time step, thereby facilitating the
acquisition of discrete solutions within a few
hundred iterations, even for very low Mach num-
ber flows. The generalization of this work to
the HLLC scheme is then made by continuing
the wave structure analysis carried out by M.
Pelanti. This work demonstrates a significant
similarity between the numerical dissipations of
these methods. In particular, a common for-
malism between these two schemes is derived,
with the aim of simplifying the analyses, and
transposing of a correction from one approxi-
mate Riemann solver to the other, in the sense of
a very clear relationship between the two meth-
ods. In particular, this analysis enables us to
derive the HLLC-Rossow scheme, but also to
clarify the expression of the viscosity matrix of
the HLLC scheme, which exhibits an interesting
resemblance to that of the Roe scheme.
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Introduction générale à la thèse (traduction)

Contexte

Ce travail de doctorat a été réalisé dans le département Aérodynamique, Aéroélasticité, Acoustique
de l’ONERA. Dans ce département, les études et recherches sont menées dans les domaines de la
modélisation, des simulations numériques et expérimentales, couvrant un large éventail de technologies
et de physique des fluides. En particulier, les activités de recherche et développement portent sur le
développement de méthodes de calcul avancées pour la simulation numérique des écoulements à grand
nombre de Reynolds. De nombreux écoulements complexes en aéronautique sont caractérisés par des
régimes mixtes compressibles et incompressibles.

La simulation numérique des écoulements aérodynamiques dans les régimes compressible et incom-
pressible nécessite des méthodes numériques intrinsèquement différentes. Ceci est principalement dû
à la nature distincte des équations aux dérivées partielles (EDP) associées, le régime compressible est
régi par des systèmes d’équations hyperboliques alors que les équations pour le régime incompressible
sont elliptiques. L’étude des écoulements aérodynamiques a notamment mis en évidence l’importance
du développement de solveurs « compressibles », capables de capturer efficacement les ondes de choc
inhérentes aux écoulements compressibles à grande vitesse. C’est précisément ce à quoi ont historique-
ment répondu les méthodes de type upwind (schéma décentré en amont) [1], dont font partie les solveurs
de Riemann [2]. Au cours des dernières décennies, les solveurs de Riemann approchés [3, 4] ont fait
l’objet de nombreuses études dans la littérature, en tant qu’outils clés pour la formulation de schémas
capturant efficacement les chocs. Ces méthodes numériques ont suscité un intérêt croissant en raison
de leur simplicité, de leur précision et de leur robustesse. Aujourd’hui, elles sont couramment utilisées
pour la simulation d’un large éventail d’applications en dynamique des fluides numériques (CFD), pour
un spectre de vitesse allant du régime subsonique au régime hypersonique.

Cependant, dans le cadre des écoulements à faible vitesse, le régime compressible à faible nombre
de Mach soulève un certain nombre de défis numériques important, qui ont été déjà fréquemment
abordés dans la littérature au cours des dernières décennies. Dans la limite bas-Mach, il est déjà bien
établi que les schémas upwind standard discrétisant les équations d’Euler compressibles se confrontent
à de nombreux inconvénients et problèmes. Ces problèmes découlent de la sensibilité des schémas
compressibles au nombre de Mach local, comme indiqué ci-dessous :

(i) Le système linéaire est mal conditionné, ce qui affecte significativement la vitesse de convergence
des solveurs itératifs et, par conséquent, l’efficacité des schémas implicites.

(ii) Une rigidité numérique qui impose un pas de temps excessivement petit, rendant prohibitif le
nombre d’itérations du solveur CFD.

(iii) Les solutions discrètes souffrent de sévères pertes de précision [5, 6].

L’origine de la perte de précision (iii) a été clairement examinée par Guillard et Viozat, dans le
travail de référence [7]. Une analyse dimensionnelle des équations met en évidence l’existence de deux
régimes asymptotiques dans la limite à faible nombre de Mach M⋆. En temps court, les équations sans
dimension, indiquées ci-dessous, se comportent comme une limite asymptotique acoustique (Ac), tandis
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qu’en temps long, elles correspondent à ce que l’on appelle une limite asymptotique incompressible (Inc).
Dans l’échelle des temps longs, les équations passent d’une nature hyperbolique à une nature elliptique,
démontrant ainsi une limite singulière de ces équations. En outre, l’analyse fonctionnelle indique
qu’une solution des équations compressibles présente un comportement complexe dans la limite bas-
Mach, puisqu’elle peut être décrite comme une superposition de ces deux régimes, avec des interactions
acoustiques-incompressibles [8–10].

(Ac)



1

M⋆
∂tρ+∇ · (ρU) = 0

1

M⋆
∂t(ρU) +∇ · (ρU ⊗ U) +

1

M⋆
2∇p = 0

1

M⋆
∂t(ρE) +∇ · (ρU(E +

p

ρ
)) = 0

(Inc)


∂tρ+∇ · (ρU) = 0

∂t(ρU) +∇ · (ρU ⊗ U) +
1

M⋆
2∇p = 0

∂t(ρE) +∇ · (ρU(E +
p

ρ
)) = 0

Pour chacune des deux limites, l’analyse en nombre de Mach fournit des caractérisations du com-
portement asymptotique de la solution, ce qui permet d’identifier précisément les causes des pertes
de précision des solutions discrètes [7]. Dans la limite à faible nombre de Mach, il est démontré que
ces méthodes numériques introduisent des fluctuations de pression d’ordre incorrect, mettant ainsi en
évidence une discrétisation inappropriée des équations compressibles, ce qui entraîne un écart notable
entre les solutions continues et discrètes. Comme le souligne Turkel dans ses travaux, cette détériora-
tion peut également être attribuée au comportement asymptotique incorrect de la dissipation à valeur
matricielle du schéma numérique pour les schémas de type Roe [11–13].

Au cours des trois dernières décennies, de nombreuses études ont été menées dans la littérature afin
d’identifier des méthodes efficaces permettant d’obtenir un schéma précis dans la limite bas-Mach.
L’approche la plus ancienne et la plus emblématique, initiée dans les années 1990, consiste à introduire
des préconditionneurs locaux à faible vitesse [11, 14–16]. L’objectif de ces méthodes est d’accélérer
la convergence vers l’état stationnaire en améliorant le conditionnement du système d’équations et
d’obtenir des solutions discrètes précises. Cependant, les préconditionneurs bas-Mach modifient les
équations en un système pseudo-instationnaire, ce qui nécessite donc une reformulation complète du
solveur CFD. En particulier, toutes les conditions aux limites basées sur les variables caractéristiques
ou les invariants de Riemann doivent être soigneusement réécrites. De plus, l’extension aux problèmes
instationnaires n’est pas triviale, et la précision temporelle peut être perdue sans une attention parti-
culière. Notez que cette approche ne sera pas prise en compte dans le cadre de ce travail de thèse et
ne sera donc pas discutée dans la suite.
À l’opposée, des méthodes plus récentes et prometteuses se sont concentrées sur la définition de nou-
veaux schémas qui, de part leur construction, sont intrinsèquement bien adaptés aux écoulements à
faible nombre de Mach. Ces schémas utilisent une décomposition d’opérateurs et des techniques de
relaxation, comme le soulignent [17–19]. Cependant, de telles approches ne seront pas abordées dans
ce travail, car l’objectif principal de cette thèse concerne les méthodes numériques couramment util-
isées dans le domaine aéronautique, et qui ont déjà été largement adaptées à un niveau industriel pour
traiter des écoulements compressibles complexes.
Depuis les années 2000, la littérature fait état d’un intérêt croissant pour une approche différente
qui, bien que non conventionnelle, sera désignée ici par souci de clarté sous le nom de « termes de
stabilisation corrigés ». Ces techniques ont émergé progressivement à la suite des préconditionneurs
locaux à faible vitesse et consistent à adapter la dissipation numérique des schémas de type solveur
de Riemann approché pour le régime compressible, en fonction du nombre de Mach. Ces corrections
présentent l’avantage d’être moins intrusives dans les codes de calcul existants que les préconditionneurs
basse vitesse, et de préserver la consistance en temps avec les équations. L’approche vise à modifier
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certaines entrées spécifiques de la dissipation matricielle du schéma, en amplifiant ou en diminuant leur
contribution (rééquilibrage/rescaling) dans la limite bas-Mach. Par conséquent, ces techniques offrent
une nouvelle interprétation du schéma, permettant de maintenir la précision pour les faibles vitesses
(iii) et de retrouver le schéma original au point sonique. L’introduction initiale de ces méthodes dans
la littérature a été présentée dans les travaux de Guillard-Viozat [7] avec le schéma de Roe-Turkel.
Cette approche a largement inspiré de nombreux développements,comme en témoigne la littérature,
avec l’émergence d’un grand nombre d’extensions à faible nombre de Mach pour les schémas de type
Roe et HLL.

Cependant, des études récentes ont souligné que de telles modifications doivent être introduites avec
prudence. En effet, bien que la formulation de ces corrections améliore la précision des solutions
discrètes, elle engendre généralement d’autres problèmes numériques, tels que des pertes de stabilité
numérique [9], des problèmes de découplage vitesse-pression [20, 21], ainsi que des incohérences dans
le traitement des phénomènes acoustiques dans les écoulements à faible nombre de Mach [22, 23]. La
définition d’une extension robuste et stable aux écoulements turbulents complexes sur des maillages
non structurés reste un sujet de recherche encore actif.

Les objectifs de cette thèse

Cette thèse porte sur la simulation des équations d’Euler compressibles pour les gaz parfaits, en util-
isant des méthodes numériques compressibles implicites, modifiées par des techniques de stabilisation
corrigées.

L’objectif est de contribuer à l’analyse théorique et numérique des méthodes pour les écoulements à
faible nombre de Mach, avec une attention particulière portée à deux solveurs de Riemann approchés
couramment utilisés dans les applications en dynamique des fluides numériques : la méthode de Roe [3],
et Le schéma HLLC [4, 24].

La but de ce travail est de proposer des extensions faible nombre de Mach, robustes et stables, qui
répondent au problème de précision (iii) pour les écoulements faiblement compressibles, tout en main-
tenant la précision dans la capture des ondes de choc.

De plus, ce travail de doctorat examinera également la stabilité au sens de von Neumann de ces schémas,
afin d’aborder le second problème (ii) rencontré dans la limite bas-Mach.

Démarche scientifique

Dans le but d’atteindre ces objectifs, les travaux de doctorat se sont d’abord concentrés sur le schéma
de Roe, pour lequel il existe une littérature très abondante, traitant de divers types d’analyse discrète et
d’extensions possibles à faible nombre de Mach. À titre de première étape préliminaire, deux approches
distinctes et bien documentées de rééquilibrage de la dissipation à valeur matricielle font l’objet d’une
analyse approfondie. Tout d’abord, nous avons considéré la correction de Rieper [25], une extension
bien connue qui a été largement analysée et discutée dans de nombreux articles. Cette correction se
distingue par la formulation d’une discrétisation spatiale permettant de retrouver asymptotiquement
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une contrainte de divergence nulle pour le régime incompressible (Inc). Puis, l’approche de la vitesse du
son artificielle proposée par Rossow [26, 27], qui présente des similitudes formelles avec les précondi-
tionneurs à faible vitesse. Ces deux extensions introduisent des rééquilibrages distincts de la dissipation
à valeur matricielle dans le régime subsonique, en modifiant spécifiquement différentes entrées de la
matrice de dissipation. Cependant, à notre connaissance, les propriétés discrètes de l’approche de la
vitesse du son artificielle de Rossow n’ont pas encore été analysées dans la littérature.

Ensuite, ce travail de doctorat s’est concentré sur une mise en regard des différentes méthodologies de
rééquilibrage utilisées pour le schema HLLC, et plus généralement pour les schémas de type HLL. L’état
de l’art pour les corrections des schémas de type HLL souligne qu’une partie de la littérature traitant
des modifications de Le schéma de Roe a été fréquemment utilisée comme une source d’inspiration.
Ceci s’explique par le fait que le schéma de Roe bénéficie d’une littérature plus conséquente concernant
les extensions à faible nombre de Mach, y compris les préconditionneurs à faible vitesse, en comparaison
avec d’autres schémas proposés, tels que le schéma de Jameson, par exemple. Un nombre considérable
d’articles ont traité de l’extension des schémas de dissipation matricielle modifiés pour les schémas de
type Roe aux schémas de type HLL. Toutefois, une revue de la littérature met en évidence un manque
de formalisme comparable entre les deux types de solveurs de Riemann approchés lors de la dérivation
des corrections à faible nombre de Mach. Cela a, en général, contribuer à un grand éparpillement des
formulations des corrections, et a de légères différences dans les corrections propagées d’un type de
solveur de Riemann approchés à l’autre. Néanmoins, cela a démontré que ces deux types de méthodes
peuvent être corrigés avec des extensions qui semblent familières.
Dans ce travail, notre approche consiste à identifier progressivement un formalisme unifié permettant
d’exprimer les flux Roe et HLLC d’une manière mathématiquement analogue. L’objectif est d’essayer
d’éliminer les différences fondamentales qui apparaissent dans la formulation des schémas de Roe et de
HLLC [3, 4], pour ensuite étudier l’existence d’extensions globales à faible nombre de Mach pour ces
deux solveurs de Riemann approchés. L’approche impliquera la recherche d’un cadre plus efficace et
plus général pour l’étude de ces deux solveurs de Riemann approchés, qui permettra des comparaisons
algébriques, malgré les divergences déjà connues.

Les résultats numériques présentés dans cette thèse ont été obtenus en développant un code de recherche
bidimensionnel, utilisant une méthode des volumes finis centrée sur les cellules dans des maillages
structurés. Afin de contourner la condition de stabilité stricte pour les schémas explicites (ii), une
composante clé de la procédure numérique repose sur une intégration temporelle implicite efficace.
Dans ce travail, un schéma d’Euler implicite linéarisé est considéré :

(
V

∆t
I + ∂WnRn) (Wn+1 −Wn) = −Rn.

Un effort considérable a été investi au développement de schémas implicites pertinents, en s’appuyant
sur des outils modernes tels que Tapenade : un outil de différentiation automatique/algorithmique [28],
ainsi que des bibliothèques optimisées de décomposition LU. La matrice jacobienne exacte du bilan de
flux ∂WnRn requise pour l’intégration temporelle est obtenue grâce à l’utilisation de Tapenade ainsi
que de techniques de coloration de maillage, introduites pour construire efficacement cette matrice.
Afin de contourner la lenteur prohibitive de la convergence des solveurs itératifs, liée aux problèmes de
conditionnement (i), une factorisation LU creuse (solveur direct), fournie par les bibliothèques Intel,
est utilisée à chaque itération pour résoudre le système linéaire. De plus, pour des écoulements sta-
tionnaires, une stratégie CFL adaptative a été développée, permettant d’augmenter le nombre de CFL
et d’atteindre des valeurs importantes qui compensent la condition de stabilité stricte typiquement
rencontrée dans le régime bas-Mach. Ainsi, le schéma d’Euler implicite linéarisés tend asymptotique-
ment à se comporter comme une méthode quasi-Newton, nécessitant alors d’être résolue à l’aide d’une
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méthode efficace. La sélection de ces techniques est d’une importance fondamentale, car leur combinai-
son permet une construction rapide et efficace de la phase implicite exacte, aboutissant à des schémas
notablement stables. En particulier, dans ce travail, la condition de stabilité de von Neumann sera
formulée en fonction du rayon spectral de la dissipation à valeur matricielle, conformément à l’analyse
de stabilité de Birken-Meister effectuée dans [29].

Résultats

Les principales contributions de ce travail de doctorat sont les suivantes :

1. Le développement d’un code de recherche générique qui peut être facilement utilisé pour évaluer
une variété d’extensions à faible nombre de Mach de schémas compressibles, ainsi qu’une dis-
crétisation temporelle implicite efficace incorporant une reconstruction MUSCL du deuxième ou
du troisième ordre en l’espace.

2. L’introduction et l’évaluation d’un nouveau critère de stabilité numérique.

3. Le développement d’une approche plus efficace pour le calcul des écoulements compressibles
stationnaires à très faible nombre de Mach, donnant lieu à une accélération significative du taux
de convergence vers la solution stationnaire.

4. L’analyse discrète de l’approche de la vitesse du son artificielle de Rossow.

5. La proposition d’un formalisme unifié, obtenu à partir d’une analyse basée sur les structures
d’ondes de la méthode de Roe et du schéma HLLC, conduisant à la notion d’extensions globales
à faible nombre de Mach pour les deux solveurs de Riemann approchés. Ce dernier point est en
particulier discuté et illustré par la dérivation de l’approche de la vitesse du son artificielle de
Rossow appliquée au schéma HLLC (c’est-à-dire le schéma HLLC-Rossow).

Structure du document

Le premier chapitre introduit le sujet de la thèse en décrivant les cadres théoriques et numériques
sur lesquels ce travail est basé. Dans les sections suivantes, les différentes notations utilisées dans
le manuscrit sont introduites. Le premier chapitre traite de l’approche numérique et des méthodes
numériques utilisées pour le calcul des écoulements compressibles à faible nombre de Mach. Enfin,
quelques aperçus sont donnés sur la construction de schémas implicites exacts grâce à l’utilisation de
la Différenciation Automatique par Transformation de Source (AD-ST) mise en œuvre dans Tapenade
et les méthodes de coloration de maillage.

Le deuxième chapitre est consacré au schéma de Roe. Une fois la construction de ce solveur de
Riemann approché rappelée, l’attention est progressivement attirée sur deux formalismes équivalents
permettant d’exprimer le flux numérique. Ces formalismes sont d’une part soit la forme d’onde simple
caractérisant les solveurs de Riemann approchés, soit d’autre part la forme de viscosité artificielle,
couramment rencontrée dans la littérature, et qui fait intervenir la dissipation à valeur matricielle du
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schéma de Roe. Ensuite, la correction de Rieper et l’approche de la vitesse du son artificielle de Rossow
sont introduits et certains cadres d’analyse proposés par Turkel et Guillard-Viozat sont discutés.

Le troisième chapitre correspond à un article soumis au Journal of Computational Physics, relatif
à l’analyse discrète de l’approche de la vitesse du son artificielle de Rossow. Quelques cas tests simples
sont considérés pour la comparaison des propriétés discrètes de l’approche de la vitesse du son artificielle
avec la correction de Rieper et le schéma de Roe-Turkel. En particulier, l’article vise à examiner
différents types d’analyse asymptotique des extensions à faible nombre de Mach qui ont déjà été
décrits dans la littérature au cours des dernières décennies. L’objectif était d’examiner et d’évaluer des
questions spécifiques qui ont été précédemment identifiées dans la littérature, dans le but de présenter
des preuves numériques à l’appui de leur véracité ou non. Dans cet article, nous discutons également de
la convergence des solutions discrètes vers l’état stable, de la condition de stabilité de von Neumann du
schéma de Roe modifié, et nous passons en revue les développements récents concernant l’acoustique
dans les écoulements à faible nombre de Mach.

Le chapitre 4 porte sur les schémas du type HLL. Après avoir rappelé la construction du schéma
HLLC, nous examinons les différentes formes qui ont été proposées dans la littérature, en incorporant
à ce schéma des extensions à faible nombre de Mach. Cette présentation se conclut par le travail récent
de M. Pelanti, se focalisant sur la structure d’ondes du schéma HLLC, lequel a été ensuite approfondi
dans ce travail de doctorat pour la dérivation du schéma HLLC-Rossow.

Le dernier chapitre est consacré à la poursuite de l’analyse des structures d’ondes de ces deux solveurs
de Riemann. En effet, les résultats de Pelanti indiquent qu’un nombre limité de similitudes entre les
deux structures d’ondes est suffisant pour étendre certaines corrections formulées pour le schéma de
Roe au schéma HLLC. Cependant, le mécanisme exact par lequel cela se produit n’est pas encore
clair. L’objectif de ce chapitre est de présenter une série d’hypothèses qui tentent d’expliquer pourquoi
les schémas de Roe et HLLC peuvent être corrigés avec une approche identique (la vitesse du son
artificielle, la correction de Rieper, ...etc...). Afin d’atteindre cet objectif, une activité de recherche a
été consacrée au développement d’un formalisme unifié qui peut faciliter une analyse discrète complète
des extensions à faible nombre de Mach de ces schémas compressibles. Une forme de dissipation à
valeur matricielle du schéma HLLC est introduite. Une attention particulière est accordée à l’étude de
la relation entre les deux dissipations matricielles correspondantes aux schémas de type Roe ou HLLC,
grâce à l’application d’une certaine condition de consistance.

Liste des communications

ECCOMAS 2024, Lisbonne, communication orale, V. Courtin, J.C. Boniface, Numerical investiga-
tions of the artificial speed of sound approach for compressible low-Mach number flows.

JCP Soumission papier août 2024, V. Courtin, J.C. Boniface, Analysis of the Rossow’s Artificial Speed
of Sound Approach for the Computation of Compressible Flows in the Incompressible Limit.
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Conclusion et perspectives des travaux (traduction)

Remarques finales

Le travail de doctorat s’est principalement concentré sur la formulation de corrections à faible nombre
de Mach pour les schémas de volumes finis Roe et HLLC, dans le but d’améliorer ces deux méthodes
numériques pour la simulation d’écoulements compressibles, pour une gamme de régimes allant de
très faiblement compressible au régime transsonique. L’objectif était de démontrer que la formulation
de ces méthodes numériques peut être modifiée et généralisée sans compromettre leur précision dans
le régime compressible, tout en préservant la qualité des solutions discrètes compressibles pour les
écoulements presque incompressibles. Les objectifs de cette thèse étaient doubles : premièrement,
contribuer à l’analyse numérique de ces méthodes en apportant de nouvelles perspectives dans la
formulation de corrections bas-Mach numériquement stables ; deuxièmement, proposer une correction
robuste et efficace pour ces schémas.

Dans ce contexte, nous avons développé une méthodologie basée sur un examen approfondi des
différentes approches proposées dans la littérature afin de rééquilibrer les termes de la dissipation
numérique, en mettant un accent particulier sur le schéma de Roe. L’examen des approches exis-
tantes dans la littérature, complété par leur analyse à l’aide de diverses techniques, fournit une vue
d’ensemble cruciale de ce sujet de recherche difficile, comme principalement exposé dans la première
partie de cette thèse. Malgré des décennies de recherche active, ce sujet demeure partiellement ouvert,
avec certains de ses aspects nécessitant à ce jour encore des investigations plus approfondies. L’une des
principales difficultés sous-jacentes réside dans la présence simultanée de deux échelles de temps, l’une
acoustique et l’une incompressible, qui caractérisent les solutions compressibles dans la limite à faible
nombre de Mach. Les défis inhérents reposent sur la formulation d’une dissipation modifiée à valeur
matricielle, permettant à la solution discrète d’approcher avec précision la solution dans les limites des
deux échelles de temps, tout en évitant l’introduction de problèmes secondaires tels que les problèmes
de découplage vitesse-pression.

En se concentrant sur les modifications du vecteur de dissipation du schéma de Roe dans le cas général
(c’est-à-dire indépendamment du maillage ou des types d’éléments), le chapitre 2 a révélé qu’il existe
deux approches distinctes pour résoudre le problème de précision dans la limite des faibles nombres
de Mach. Ces deux approches sont mises en évidence dans cette thèse avec la correction de Rieper et
l’approche de la vitesse du son artificielle de Rossow, qui, soit centre asymptotiquement le gradient de
pression du premier ordre dans les équations, soit au contraire, évite de centrer asymptotiquement les
gradients de pression. Les deux approches présentent des avantages et des inconvénients distincts dans
le cas général
Comme démontré dans la dernière section du deuxième chapitre, le développement d’une troisième
approche, fondée sur le centrage asymptotique des gradients de pression du premier ordre, s’avère in-
suffisamment robuste et par conséquent inefficace, en raison de l’introduction de problèmes secondaires
plus significatifs que ceux des deux autres approches. Il a été montré que cette correction produit
des niveaux d’entropie parasites excessivement importants aux points d’arrêt, entraînant ainsi en une
grave détérioration de la précision globale de la solution discrète. De plus, l’analyse asymptotique de
la troisième approche met en évidence des caractéristiques communes avec la correction de Rossow,
indiquant que ce type de corrections est également sujet à des incohérences similaires dans la limite
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de l’échelle de temps acoustique. On pourrait considérer ces recherches sur une troisième approche
comme la preuve qu’il est difficilement possible de faire mieux que les deux approches que l’on trouve
déjà dans la littérature.

Dans le chapitre 3, nous avons effectué l’analyse asymptotique pour le schéma de Roe modifié selon
l’approche de la vitesse du son artificielle de Rossow et avons réalisé une analyse détaillée de cette
correction. Il a été prouvé qu’à l’échelle de temps incompressible, les solutions discrètes sont carac-
térisées par des fluctuations de pression quadratiques en espace, et qu’elles ne vérifient pas non plus, de
manière asymptotique, une contrainte discrète de divergence nulle sur le terme dominant de la vitesse.
Nous avons également démontré que la correction de Rossow n’est pas sensible à des problèmes de
découplage vitesse-pression. Le schéma reste précis même sur un maillage très étiré, contrairement à
la correction de Rieper.
De plus, nous montrons que l’analyse de stabilité de von Neumann de ce schéma aboutit à une con-
dition de stabilité plus stricte dans la limite bas-Mach que celle initialement prédit par Rossow, cette
correction se comporte de manière analogue au schéma de Roe-Turkel. Ainsi, le pas de temps est
contraint d’être excessivement petit dans la limite bas-Mach, ce qui la rend pénalisante pour certaines
applications de la CFD.
Afin de contourner la rigidité de la contrainte de stabilité, une approche numérique robuste et stable est
présentée, reposant sur une intégration temporelle implicite avec un schéma d’Euler implicite linéarisé.
Les principaux éléments clés de cette approche sont la différenciation algorithmique, l’utilisation de
bibliothèques de décomposition LU rapide, une nouvelle condition de stabilité numérique ainsi que la
formulation d’une méthode de pseudo-continuité vers une méthode de quasi-Newton. Cela conduit au
développement de schémas implicites très stables qui permettent l’utilisation de grands nombres CFL
et qui, de manière remarquable, ne nécessitent que quelques centaines d’itérations pour obtenir une
convergence quadratique vers les solutions stationnaires, et ce même pour des écoulements à très faible
nombre de Mach allant jusqu’à 10−6.
Ce travail aborde également les interactions acoustiques incompressibles caractérisant les solutions dis-
crètes compressibles dans la limite incompressible. Nous montrons que les solutions discrètes présentent
des perturbations acoustiques permanentes dans la limite à faible vitesse, même pour le problème sta-
tionnaire, caractérisé par des impulsions acoustiques générées à des temps très courts et dissipées à
des temps plus longs. Nous avons constaté que l’intensité de ces perturbations acoustiques est liée à
la modification des sauts de la composante normale de la vitesse à l’interface de la cellule.

La deuxième partie de cette thèse a été consacrée au schéma HLLC. L’examen approfondi des approches
existantes met en évidence de nombreuses similitudes entre les corrections appliquées aux schéma de
HLLC et de Roe. Afin de généraliser l’analyse réalisée dans la première partie concernant le schéma
de Roe au schéma HLLC, nous proposons une poursuite de l’analyse menée par Pelanti en nous
concentrant sur les similitudes entre les deux structures d’ondes des deux solveurs de Riemann. Cette
recherche a abouti à la formulation d’un cadre commun visant à analyser et à simplifier la dérivation
des corrections appliquées aux deux vecteurs de dissipation. En effet, nous avons établi une nouvelle
expression pour le vecteur de dissipation associé au schéma HLLC, qui peut être facilement interprétée
comme une généralisation de la forme de Liu-Vinokur pour le schéma de Roe, également désignée dans
la littérature sous le nom de décomposition de Weiss-Smith, au schéma HLLC.
En guise d’application, deux approches ont été proposées pour dériver des corrections « identiques »
à faible nombre de Mach pour ces deux schémas. Ces approches se distinguent par leur capacité à
identifier les similitudes entre les deux schémas, lesquelles servent de fondement clé pour la transposition
de la correction du vecteur de dissipation d’une méthode à l’autre.
En particulier, cela a permis de généraliser l’approche de la vitesse du son artificielle de Rossow au
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schéma HLLC, appelé schéma HLLC-Rossow. Il est démontré par des preuves numériques que ce
schéma HLLC-Rossow restitue exactement les mêmes propriétés discrètes que celles du schéma de
Roe-Rossow. Des solutions discrètes précises sont obtenues dans la limite bas-Mach, et le schéma
ne pressente pas les problèmes de découplage vitesse-pression fréquemment observés avec d’autres
corrections. Même en considérant un maillage fortement étiré, nous n’avons pas réussi à déclencher ce
problème numérique, ce qui témoigne du comportement robuste de ce schéma modifié.

Perspectives

A la lumière des résultats présentés ci-dessus, plusieurs limitations et perspectives d’approfondissement
ont été identifiées et sont maintenant discutées.
Tout d’abord, l’approche numérique développée dans ce travail constitue une composante cruciale de
cette thèse, car elle a permis des investigations approfondies en simplifiant l’acquisition de résultats
grâce à l’utilisation de phase implicite exacte. Néanmoins, cette approche est limitée à une certaine
densité de maillage puisque les solveurs directs deviennent prohibitifs en termes de mémoire lorsque
le nombre de cellules augmente. Une première perspective serait de reproduire cette approche en
considérant des solveurs itératifs tels qu’un solveur GMRES. En procédant ainsi, il serait possible
d’évaluer les difficultés liées à ces problèmes mal conditionnés dans la limite faible nombre de Mach, en
particulier en ce qui concerne la nécessité d’une résolution précise de ces systèmes linéaires très raides.
Deuxièmement, ce travail s’est principalement concentré sur la formulation des corrections du vecteur
de dissipation concernant l’échelle de temps incompressible. Cependant, cela ne correspond qu’à un
aspect du problème de précision rencontré dans les écoulements à faible nombre de Mach. La prise en
compte de la limite acoustique s’avère indispensable dans la formulation des corrections destinées au
régime à faible nombre de Mach. À ce jour, à notre connaissance, la formulation d’une correction capa-
ble de résoudre les problèmes de précision dans les deux limites asymptotiques demeure une question
importante dans la littérature, nécessitant des recherches encore plus approfondies. Cela s’explique
par le fait que, d’une part, la première approche, bien qu’efficace, présente des problèmes majeurs de
découplage vitesse-pression, et que d’autre part, la seconde approche, tout en évitant ce problème de
découplage, implique des incohérences dans la limite acoustique. Nous pourrions donc suggérer que ces
deux défis majeurs ne peuvent pas être facilement contournés, soit l’existence de solutions en damier,
ou soit les incohérences dans la limite acoustique, doivent être traités et résolus pour obtenir un schéma
compressible qui reste précis dans le cas général, tel que les écoulements instationnaires à faible nombre
de Mach.
Troisièmement, le formalisme commun introduit pour les schémas HLLC et Roe est ouvert à d’autres
investigations pour un examen approfondi. L’intérêt réside dans la dérivation de vecteurs de dissipation
numérique modifiés et dans la recherche d’une analyse asymptotique commune entre les deux solveurs de
Riemann approchés. Dans le chapitre 5, des preuves numériques montrent que la correction appliquée
aux schémas de Roe ou HLLC présente exactement le même comportement en ce qui concerne la
condition de stabilité, la précision de la solution discrète mais aussi le problème de découplage vitesse-
pression. Bien que cela ne soit pas illustré dans cette thèse, on peut souligner ici, pour des recherches
ultérieures, que les incohérences dans la limite acoustique ont également été observées numériquement
pour le schéma HLLC-Rossow. Il convient également de noter que des tendances similaires ont été
observées par Pelanti, qui a étendu la correction du schéma de Roe-Turkel au schéma HLLC, en
signalant que les différences entre les deux solutions discrètes sont peu visibles. La réponse à tous ces
comportements peut être trouvée dans l’analyse asymptotique, dont quelques éléments sont partagés
ci-dessous comme pistes intéressantes pour des recherches ultérieures. Contrairement à l’approche
standard appliquée au schéma de Roe, l’analyse asymptotique pour le HLLC est longue et nécessite de
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faire une série de choix dans l’analyse dimensionnelle, comme discuté précédemment dans la section
4.2.4 avec par exemple la définition de S∗. En outre, il faut effectuer plusieurs développement de Taylor
pour simplifier les expressions. Cependant, une idée clé peut être facilement déduite de la décomposition
de la matrice MHLLC en une matrice commune et une matrice de déviation (Mc, : Md). Ceci
montre que, dans le vecteur de dissipation associé au schéma HLLC, il existe une partie commune
et facilement associable aux termes présents dans le vecteur de dissipation du schéma de Roe, mais
également d’autres termes supplémentaires qui eux ne présentent aucune correspondance. Les détails
manquants relatifs au rôle de ces termes supplémentaires constitueraient une information précieuse
pour un formalisme unifié, et mériteraient de faire l’objet de recherches plus approfondies.
Quatrièmement, il serait bénéfique d’examiner également les liens étroits potentiels avec d’autres
travaux existants dans le but d’étendre l’analyse. Par exemple, l’expression de type AUSM du schéma
HLLC proposée par Kitamura-Shima dans [30], ou le schéma JST, qui sont tous deux des schémas
couramment utilisés pour les applications industrielles.

En conclusion, la formulation d’une correction faible nombre de Mach pour les schémas Roe ou HLLC
reste un sujet actif et ouvert à de nouvelles recherches. Néanmoins, elle devrait être étudiée simul-
tanément afin d’éviter l’éparpillement des formulations, avec une attention spécifique aux problèmes
secondaires introduits par les corrections.
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General introduction

Context

This Ph-D work was carried out in the Aerodynamics, Aeroelasticity, Acoustics department of ON-
ERA. In this department, study and research are conducted in the fields of modeling, numerical and
experimental simulations, covering a wide range of technologies and physics of fluids. In particular,
research and development activities address the development of advanced computational methods and
the numerical simulation of high-Reynolds number flows. Many complex flows in aeronautics are
characterized by mixed compressible and incompressible regimes.

The numerical simulation of aerodynamic flows in the compressible and incompressible regimes requires
intrinsically different numerical methods. This is mainly due to distinct nature of the associated partial
differential equations (PDEs), the compressible regime is governed by hyperbolic systems of equations
whereas equations for the incompressible regime are elliptic. The study of aerodynamic flows has
in particular demonstrated the significance of the development of "compressible" solvers, aiming at
capturing efficiently shock waves that are inherent to compressible high speed flows. This is precisely
what has historically been addressed by upwind methods [1], including Riemann solvers [2]. Over the
past few decades, Approximate Riemann Solvers [3,4] have been extensively studied in the literature as
valuable tools for designing efficient shock-capturing schemes. These numerical methods have gained
an increasing interest due to their simplicity, accuracy, and robustness. Nowadays, they are routinely
employed for the simulation of a wide range of applications in computational fluid dynamics (CFD),
from the subsonic to the hypersonic regime.

However, when looking at low-speed flows, the compressible regime at very low Mach number presents
significant numerical challenges that have been discussed for several decades in the literature. In the
low Mach number limit, it is already well-established that standard upwind schemes discretizing the
compressible Euler equations are facing numerous drawbacks and issues. These issues stem from the
sensitivity of compressible schemes to the local Mach number, as listed below:

(i) The linear system is ill-conditioned, which has a significant impact on the convergence speed of
iterative solvers and, as a result, on the efficiency of implicit schemes.

(ii) A numerical stiffness that constrains the time step to be exceedingly small, making prohibitive
the number of iterations of the CFD solver.

(iii) The discrete solutions suffer from severe losses of accuracy [5, 6].

The origin of the loss of accuracy (iii) has been clearly addressed by Guillard and Viozat, in the work
of reference [7]. A dimensional analysis of the equations highlights the existence of two asymptotic
regimes for a vanishing Mach number M⋆. In short times, the dimensionless equations indicated below
behave as an acoustic asymptotic limit (Ac), while in long times, they corresponds to the so-called
incompressible asymptotic limit (Inc). In the long time scale, the equations change from a hyperbolic
to an elliptic nature, demonstrating therefore a singular limit of these equations. Furthermore, the
functional analysis indicates that a solution of the compressible equations exhibits a complex behavior
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in the low Mach number limit, since it can be described as a superposition of these two regimes, with
acoustic-incompressible interactions [8–10].

(Ac)



1

M⋆
∂tρ+∇ · (ρU) = 0

1

M⋆
∂t(ρU) +∇ · (ρU ⊗ U) +

1

M⋆
2∇p = 0

1

M⋆
∂t(ρE) +∇ · (ρU(E +

p

ρ
)) = 0

(Inc)


∂tρ+∇ · (ρU) = 0

∂t(ρU) +∇ · (ρU ⊗ U) +
1

M⋆
2∇p = 0

∂t(ρE) +∇ · (ρU(E +
p

ρ
)) = 0

For each of the two limits, the Mach number analysis provides characterizations of the asymptotic
behavior of the solution, making it possible to clearly identify the causes of accuracy losses in discrete
solutions [7]. In the low Mach number range, it is demonstrated that these numerical methods introduce
pressure fluctuations of the incorrect order, which highlights an inappropriate discretization of the
compressible equations, since this leads to an significant discrepancy between the continuous and
discrete solutions. As pointed-out by Turkel, this deterioration can also be attributed to the incorrect
asymptotic behavior of the matrix-valued dissipation of the numerical scheme for Roe-type schemes
[11–13].

Over the past three decades, numerous studies have been conducted in the literature with the objective
of identifying effective methods for obtaining an accurate scheme within the low Mach number limit.
The oldest and most emblematic approach, developed in the 1990s, consists in introducing local low-
speed preconditioners [11, 14–16]. The objective of these methods is to accelerate the convergence
to the steady state by enhancing the conditioning of the system of equations, and to get accurate
discrete solutions. However, low Mach number preconditioners modify the equations into a pseudo-
unsteady system, thus requiring a complete reformulation of the CFD solver. In particular, all boundary
conditions based on the characteristic variables or Riemann invariants must be rewritten with care. In
addition, the extension to unsteady problems is not trivial, and the time accuracy can be lost without
special care. Note that this approach will not be considered in this Ph-D work, and therefore will not
be further discussed.
In contrast, promizing methods have focused on defining new schemes that, by construction, are
well suited to low Mach number flows. These schemes make use of an operator decomposition and
relaxation techniques, as highlighted in [17–19]. However, such approaches will not be used in this
work, as the main concern of this thesis is related to numerical methods that are commonly employed
for aeronautical applications and have already been readily scaled up to an industrial level for complex
compressible flows.
Since the 2000s, the literature has documented an increased interest for a different approach that,
although unconventional, will be referred to here as "corrected stabilization terms" for the sake of
convenience. These techniques have gradually emerged in the continuation of local low-speed pre-
conditioners and consist in adapting the numerical dissipation of approximate Riemann solver-type
schemes for the compressible regime, to the Mach number regime. These corrections offer the advan-
tage of being less intrusive into existing computational codes than low-speed preconditioners, and do
not require to modify the governing equations. The approach aims at modifying some specific entries
in the matrix-valued dissipation of the scheme, by either amplifying or diminishing their contribution
(rescaling) in the low Mach number limit. Consequently, these techniques offer a novel interpretation
of the scheme that maintains accuracy at low speeds (iii), and returns to the original scheme at the
sonic point. The initial introduction of these methods into the literature was presented in the work of
Guillard-Viozat [7] for a so-called Roe-Turkel scheme. This approach has significantly inspired many
developments reported in the literature, with the emergence of a large number of low-Mach number
extensions for Roe and HLL-type schemes.
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Nevertheless, recent studies have indicated that such modifications should be introduced carefully.
Although the formulation of these corrections improves the accuracy of the discrete solutions, it also
introduces in general other numerical issues such as numerical stability losses [9], spurious pressure-
checkerboard mode problems [20,21], and even inconsistencies in the treatment of acoustic phenomena
in low Mach number flows [22,23]. The definition of a robust and stable extension to complex turbulent
flows using an unstructured mesh remains a topic of ongoing research.

Objectives of this thesis

This thesis is dedicated to the simulation of the compressible Euler equations for perfect gases with
implicit compressible numerical methods, modified by techniques of corrected stabilization terms.

The objective is to contribute to the theoretical and numerical analysis of numerical methods for low
Mach number flows, with a focus on two widely used approximate Riemann solvers in CFD applications:
the Roe method [3], and the HLLC scheme [4, 24].

The aim of this work is to propose robust and stable low Mach number extensions that address the
accuracy issue (iii) for weakly compressible flows, while maintaining accuracy in capturing shock waves.

Furthermore, this Ph-D work will also discuss the von Neumann stability of these schemes, to tackle
the second issue (ii), encountered in the low Mach number limit.

Scientific approach

To achieve these aforementioned objectives, the Ph-D work has first focused on the Roe scheme, for
which a very large literature is available, addressing several type discrete analysis, and low Mach-
number extensions. As a preliminary step, two distinct well-documented rescaling approaches of the
matrix-valued dissipation are subjected to detailed examination. First, we have considered the Rieper’s
fix [25], a well-known correction that has been extensively analyzed and discussed in numerous papers.
This correction is especially characterized by a discretization corresponding to the incompressible
asymptotic regime (Inc), in which the free divergence constraint is enforced. Second, the artificial speed
of the sound approach according to Rossow introduced in [26,27], which exhibits formal similarities with
low-speed preconditioners. Both of these extensions introduce a distinct rescaling of the matrix-valued
dissipation in the subsonic regime, specifically modifying different entries of the matrix dissipation.
Nevertheless, to the best of our knowledge, the discrete properties of the artificial speed of the sound
approach of Rossow have not yet been discussed in the literature.

Next, this Ph-D work has focused on a comprehensive examination of different rescaling methodologies
used for the HLLC scheme, and more generally for HLL-type schemes. An overview of the state of
the art concerning the corrections of HLL-type schemes shows that part of the literature dealing with
modifications of the Roe scheme has been frequently used as a source of inspiration. This is due to the
fact that the Roe scheme has a larger literature investigating low Mach number extensions, including
local low-speed preconditioners, than other proposed schemes as the Jameson scheme for instance. A
considerable number of papers have addressed the extension of modified matrix-dissipation schemes
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for Roe-type schemes to HLL-type schemes. However, a review of the literature reveals a lack of
comparable formalism in deriving low Mach number corrections between the two types of approximate
Riemann solvers. This has, in general, resulted in a large scattering of proposed corrections, and slight
differences in the corrections transposed from one type of approximate Riemann solver to the other.
Nevertheless, this has also demonstrated that these two types of approximate Riemann solvers can be
corrected with extensions that may appear familiar.
In this work, our approach is to progressively identify a unified formalism that can be used to express
the Roe and HLLC fluxes in a way that is mathematically analogous. The objective is to attempt to
eliminate the fundamental differences that arise in the formulation of the Roe and the HLLC scheme
[3,4], to then investigate the existence of global low-Mach number extensions for the two approximate
Riemann solvers. The approach will entail the pursuit of a more efficient and comprehensive framework
for the study of these two approximate Riemann solvers, which will enable algebraic comparisons,
despite already known discrepancies.

The numerical results presented in this thesis were obtained by developing a two-dimensional research
code, using a cell-centered finite-volume method in structured meshes. In order to circumvent the
stringent stability condition for the explicit schemes (ii), a crucial component of the numerical procedure
relies on an efficient implicit time-integration. In this work, a linearized backward-Euler time stepping
scheme is considered:

(
V

∆t
I + ∂WnRn) (Wn+1 −Wn) = −Rn.

A significant effort has been dedicated to the development of efficient implicit schemes, using modern
tools such as Tapenade: an Automatic/Algorithmic Differentiation tool [28] and fast LU decomposition
libraries. The exact Jacobian matrix of the flux balance ∂WnRn required for the time integration
is obtained through the use of Tapenade, and some mesh coloring methods, introduced to effectively
build the exact Jacobian matrix. In order to circumvent the prohibitive slow convergence of iterative
solvers due to the ill-conditioned problems (i), a sparse LU-factorization (direct solver) provided by
the Intel libraries is employed at each iteration to solve the linear system. Additionally, an adaptive
CFL strategy is formulated allowing to increase the CFL number, and to achieve large values that
overcome the stringent stability condition typically encountered in the low Mach number regime. So,
the linearized backward-Euler scheme behaves as a very stiff quasi-Newton method, requiring to be
solved with a robust method. The selection of these techniques is of significant importance, as their
combination facilitates a fast and efficient construction of the exact implicit stage, resulting in notably
stable schemes. In particular, in this work, the von Neumann stability condition will be based on the
spectral radius of the matrix-valued dissipation according to the stability analysis of Birken-Meister
conducted in [29].

Results

The main achievements of this Ph-D work are the following:

1. The development of a generic research code that can be readily used to evaluate a variety of
low Mach number extensions of compressible schemes, along with an efficient implicit time-
discretization incorporating second or third order MUSCL reconstruction in space.

2. The introduction and the evaluation of a new numerical stability criteria.
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3. The development of a more efficient approach for the computation of steady-state compressible
flows at very low Mach numbers, giving rise to a significant acceleration in the convergence rate
towards the steady state.

4. The discrete analysis of the artificial speed of the sound approach according to Rossow.

5. The proposition of a unified formalism, achieved from an analysis based on the wave structures
of the Roe’s method and the HLLC scheme, leading to the definition of global low Mach-number
extensions of the two approximate Riemann solvers. This latter point is in particular discussed
and illustrated by deriving the artificial speed of the sound approach of Rossow applied to the
HLLC scheme (i.e. HLLC-Rossow scheme).

Chapter contents

The first chapter introduces the topic of the thesis by outlining the theoretical and numerical frame-
works on which this work is based. Throughout the following sections, the various notations used in
the manuscript are introduced. The first chapter deals with the numerical approach and the numerical
methods used for the computation of low Mach-number compressible flows. Finally, some insights are
given into the construction of exact implicit schemes through the use of Automatic Differentiation by
Source Transformation (AD-ST) implemented in Tapenade and mesh coloring methods.

The second chapter is dedicated to the Roe scheme. Once the construction of this approximate
Riemann solver has been reminded, the attention is progressively drawn to two equivalent formalisms
that can be used to express the numerical flux. These formalisms are either the simple wave form
characterizing approximate Riemann solvers, or the artificial viscosity form, commonly encountered in
the literature and which involves the matrix-valued dissipation of the Roe scheme. Then, the Rieper’s
fix and the artificial speed of the sound approach of Rossow are introduced and some framework analysis
proposed by Turkel and Guillard-Viozat are discussed.

The third chapter corresponds to a paper submitted to the Journal of Computational Physics,
related to the discrete analysis of the Rossow’s artificial speed of the sound approach. Some simple
test cases are considered for the comparison of the discrete properties of the artificial speed of the
sound approach with the Rieper’s fix and the Roe-Turkel scheme. In particular, the paper aimed at
reviewing different types of asymptotic analysis of low-Mach number extensions that have been already
described in the literature. The objective was to examine and evaluate specific issues that have been
previously identified in the literature, with the aim of either presenting numerical evidence to support
their veracity or not. In this paper, we also discuss the convergence of discrete solutions towards the
steady state, the von Neumann stability condition of the modified Roe scheme, and we provide a review
of recent developments regarding acoustics in low Mach number flows.

The chapter 4 deals with the HLL-type scheme. After recalling the construction of the HLLC scheme,
we look at the different forms that have been proposed in the literature, incorporating low Mach number
extensions into this scheme. This presentation ends by addressing a recent work by M. Pelanti, focusing
on the wave structure of the HLLC scheme, which was further developed in this Ph-D work for the
derivation of the HLLC-Rossow scheme.

The final chapter is devoted to the pursuit of the analysis of the wave structures of these two Riemann
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solvers. Indeed, Pelanti’s findings indicate that a limited number of similarities between the two wave
structures is sufficient to extend some corrections formulated for the Roe scheme to the HLLC scheme.
However, the exact mechanism by which this occurs remains unclear. The objective of this chapter is
to present a series of assumptions that attempt to explain why the Roe and HLLC schemes can be
corrected with the identical approach (artificial speed of sound, low-Mach number fix, ...). In order to
achieve this objective, a research activity was dedicated to the development of a unified formalism that
can make easier a comprehensive discrete analysis of low-Mach number extensions of these compressible
schemes. A matrix-valued dissipation form of the HLLC scheme is introduced. A particular attention
is paid on finding out the relationship between the corresponding two matrix-valued dissipations for
the Roe and HLLC types of Riemann solver, within the use of a certain consistency condition.

List of communications

ECCOMAS 2024, Lisbon, oral communication, V. Courtin, J.C. Boniface, Numerical investigations
of the artificial speed of sound approach for compressible low-Mach number flows.

JCP Paper submitted in august 2024, V. Courtin, J.C. Boniface, Analysis of the Rossow’s Artificial
Speed of Sound Approach for the Computation of Compressible Flows in the Incompressible Limit.
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This chapter introduces the general framework of first-order non-linear conservation laws, outlining
the theoretical and numerical foundations on which this Ph-D work is based. The theoretical framework
regarding non-linear hyperbolic systems of conservation laws is first reminded, and the compressible
Euler equations are introduced. Next, the attention is drawn on the simulation of low-speed flows,
where the theoretical background and the numerical difficulties are introduced (sections 1.3 and 1.4).
Then, the discrete framework is addressed, in which a finite-volume method is introduced for the space
discretization of the Euler equations. The final section presents some insight into the construction
of implicit schemes using an exact Jacobian through the use of automatic differentiation and mesh
coloring methods.

1.1 . Non-linear conservation laws and weak entropy solution

The following section is dedicated to a short overview of non-linear hyperbolic conservation laws.
Particular attention is paid to illustrate some fundamental ideas and the underlying motivations.
The following section briefly reminds the mathematical framework by means of well-known examples,
definitions, and theorems given in reference books [31–34].

1.1.1 . Hyperbolic conservation laws
Let x be an arbitrary space variable in Rd and t be the time variable in R+. In the following, we are
interested to find the solution of an initial value problem (i.e. Cauchy problem) described by partial
derivative equations (PDE):
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∣∣∣∣∣∣∣
w : R+ × Rd → Rp

f(w) : Rp → Rp×d


∂tw +∇x · f(w) = 0

w(0,x) = w0(x)
, (1.1)

In the case p = 1 = d, (1.1) reduces to a more classical non-linear scalar advection equation, related
to an initial condition w0, according to a flux function f .

Solutions to this type of partial differential equation (PDE) are distinguished by their wave-like prop-
agation behavior, characterized by a finite speed of propagation [35]. System (1.1) is hyperbolic if the
flux Jacobian matrix ∂wf has only real eigenvalues and is diagonalizable.

Considering the multidimensional case with the Cauchy problem (1.1) (p ̸= 1 ̸= d), the initial condition
w0 is now assumed to belong to the space of locally bounded measurable functions L∞

loc(Rd)p. Addi-
tionally, we temporarily assume for the moment that the initial value problem (1.1) admits a classical
solution which is w ∈ C1(R+×Rd)p. The Cauchy problem can therefore be equivalently written under
the form of a variational problem. By multiplying the partial derivative in (1.1) by a test function
φ ∈ C1

c(R+ × Rd)p and integrating the product in domain R+ × Rd, the Green’s theorem leads to:∫ ∞

0

∫
Rd

w · ∂tφ+

d∑
j=1

fj(w) · ∂xjφ dxdt+
∫
Rd

w0(x) ·φ(0,x)dx = 0 ∀φ ∈ C1
c(R+ × Rd)p. (1.2)

As long as the solution w is smooth, then the two problems, either (1.2) or (1.1), are equivalent. The
variational problem (1.2) has the advantage of introducing a more fundamental formulation, in which
the definition of a solution w exists in a larger domain and allows discontinuities. The expression entails
a more general framework in which the solution w retains its mathematical significance especially if it
is defined in L∞

loc(R+ × Rd)p. The solution can be thus found in a larger functional space, but at the
cost of a more general definition. In this context, the more general definition is a weak solution in the
sense of distributions, including both classical and weak solutions.

Definition 1.1.1 (Weak solution in the sense of distributions) Assuming that the initial con-
dition w0 ∈ L∞

loc(Rd)p, a function w is called a weak solution of the Cauchy problem (1.1) if w(t,x) ∈
Rp almost everywhere and satisfies (1.2) for any function φ ∈ C∞

c (R+ × Rd)p.

A particular interest is retained for weak solutions in the sense of distributions that remain piecewise
smooth while exhibiting propagating discontinuities. The underlying reason can be easily understood
with the preceding scalar example of the Burger’s equation. To clarify the question, the initial condition
is modified to illustrate the essential aspects of a potential solution in the presence of a discontinuity.
By transposing the initial value problem to the critical time at which the discontinuity emerges, the
next initial condition is introduced

w0(x) =

{
1 if x < 1

0 if x > 1
.

The objective is now to investigate potential solutions to the problem. A relevant insight can be
deduced by considering the linear advection equation with f(w) = aw. In such a case, the time
evolution appears easily interpreted, as the solution is only a simple translation of the initial condition
with:

w(t, x) =

{
1 if (x− 1)/t < a

0 if (x− 1)/t > a
.
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With regard to the Burger’s equation, it seems reasonable to suggest that the observed behavior, which
corresponds to a propagating discontinuity, can be deduced in the context of a nonlinear case. However,
in contrast to the linear case, the quasi-linear form does not explicitly provide the speed of the shock.
As indicated in [33], the speed of the shock can be determined by integrating the conservation law in
an infinitesimal rectangle. In the case of the Burger’s equation, this implies that admissible shocks are
propagating at a speed 1/2:

w(t, x) =

{
1 if (x− 1)/t < 1/2

0 if (x− 1)/t > 1/2
.

The following theorem provides a characterization of admissible weak solutions in the sense of distri-
butions.

Theorem 1.1.1 (The Rankine-Hugoniot condition) Assuming that the initial condition w0 ∈
L∞

loc(Rd)p, and w : R+ × Rd → Rp is a C1 solution except on a finite number of smooth orientable
surfaces in the (x,t)-space.
Then, w is a weak solution of (1.1) in the sense of distributions on R+ × R if and only if the two
following conditions are satisfied:
(i) w is a classical solution of (1.1) in the domains where w is C1.
(ii) w satisfies the jump conditions

nt(w
+ −w−) +

d∑
j=1

[
fj(w

+)− fj(w
−)
]
nxj = 0, (1.3)

along the surfaces of discontinuity, where n = (nt, nx1 , ..., nxd
) is the associated normal vector and

w±(t,x) = lim
ϵ→0+

w((t,x)± ϵn)

Note that in the case of a classical solution, the jump condition (ii) is obviously automatically satisfied.
This theorem introduces a more advanced mathematical framework in which solutions can still be
characterized even if they are prone to develop discontinuities. However, the uniqueness of the weak
solution is not guaranteed in the absence of additional criteria. This can be easily understood by
considering the initial condition

w0(x) =

{
0 if x < 0

1 if x > 0
.

Two potential solutions satisfying the theorem 1.1.1 exist, either a weak admissible solution corre-
sponding to a propagating shock wave, or a classical solution corresponding to a rarefaction wave.
Although, the continuous solution appears to be more natural, as suggested by the orientation of the
characteristic curves in the smooth part of the domain.

1.1.2 . Entropic weak solutions
The preceding example has illustrated that the uniqueness of the solution is not guaranteed by theorem
1.1.1. An additional criterion is required. As demonstrated in [31, 36, 37], a mathematical approach
for defining a criterion is to consider that the unique admissible solution to the problem should also be
related in some sense to solutions as the limit of vanishing viscosity. Therefore, the relevant solution
will be identified as the asymptotic limit of solutions to the following Cauchy problem

∂twϵ +∇x · f(wϵ) = ϵ ∆wϵ

wϵ(0,x) = w0(x)
, for ϵ → 0+. (1.4)
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Definition 1.1.2 (Entropy function and entropy-fluxes) A convex function η : Rd → R is called
an entropy for the system of conservation laws (1.1) if there exist d functions ξi : Rd → R, 1 ≤ i ≤ d,
called entropy fluxes, such that:

p∑
k=1

∂wk
η(w) ∂wjfi,k(w) = ∂wj ξi(w), 1 ≤ i ≤ d 1 ≤ j ≤ p

The interest of such definition relies on the following characterization of the asymptotic limit of the
solutions wϵ of the viscous problem (1.4).

Theorem 1.1.2 (Characterization of viscous limit) Let w ∈ L∞
loc(R+ × Rd)p be the limit, in the

sense of distributions, of smooth viscous solutions of the problem (1.4) when ϵ → 0+, in the sense that
there exists C > 0 such that for all non negative ϵ, we have ||wϵ||L∞

loc(R+×Rd)p ≤ C.
Then, the solution w is a weak solution of (1.1), and, for all pairs (η, ξ1, ..., ξd) of entropy and entropy-
fluxes (1.1.2), and for all positive functions φ ∈ C1

0(R+ × Rd)p, the solution w also satisfies:∫ ∞

0

∫
Rd

η(w) ∂tφ+
∑
i=1,d

ξi(w) ∂xiφ dxdt +

∫
Rd

η(w0(x)) φ(0,x) dx ≥ 0

Since w is a weak solution, by integrating by part the above inequality, the next equation can be
obtained:

∂tη(w) +
d∑

i=1

∂xiξi(w) ≤ 0, a.e.

Finally, weak entropy solutions are characterized by satisfying additional inequations for all entropy
functions and entropy fluxes as defined in the definition 1.1.2. We shall no go any further into the
details of the mathematical theory, as our objective, in the following sections, is to define and sufficiently
characterize the approximated low Mach-number flow solutions with numerical schemes. However, for
the sake of clarity, we will conclude this section with a final theorem summarizing the mathematical
definition of solutions of interest. The well-posedness nature of these problems, concerning the existence
and the uniqueness of weak entropy solution are subsequently not discussed in the remaining of this
section. For a more extended introduction, the reader is referred to [31].

Theorem 1.1.3 (A weak entropy solution) Assuming that the initial condition w0 ∈ L∞
loc(Rd)p,

and w : R+ ×Rd → Rp is a C1 solution except on a finite number of smooth orientable surfaces in the
(x,t)-space.
Then, w is a weak entropy solution of (1.1) in the sense of distributions on R+ ×Rd if and only if the
three following hold:
(i) w is a classical solution of (1.1) in the domains where w is C1.
(ii) w satisfies the jump conditions

nt(w
+ −w−) +

d∑
j=1

[
fj(w

+)− fj(w
−)
]
nxj = 0, (1.5)
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along the surfaces of discontinuity, where n = (nt, nx1 , ..., nxd
) is the associated normal vector and

w±(x, t) = lim
ϵ→0+

w
(
(x, t)± ϵn)

)
(iii) for all entropy and entropy-fluxes (η, ξ1, ..., ξd), the inequality of jump conditions is satisfied:

nt

(
η(w+)− η(w+)

)
+

d∑
j=1

[
ξj(w

+)− ξj(w
−]nxj ≤ 0 (1.6)

1.2 . The multidimensional compressible Euler equations for perfect gas

The following section introduces the compressible Euler equations in Eulerian coordinates. These
equations correspond to a nonlinear system of conservation laws, describing the fundamental principles
of mass, momentum, and total energy conservation for the dynamics of compressible, inviscid and
adiabatic flows, excluding viscous effects. The scope of this Ph-D work intentionally excludes the
compressible Navier-Stokes equations because viscous effects will not be considered in the asymptotic
analysis in the low Mach number limit. The discrete analysis of compressible schemes in the low
Mach number limit and the inherent accuracy and stability issues are related to the hyperbolic part
of the Navier-Stokes equations. A direct confrontation with these equations introduces unnecessary
complexity and raise questions concerning the interaction of the discretizations of the convective and
viscous fluxes, which may not be readily apparent.

Let Ω ⊂ Rd be an open and bounded set. The compressible Euler equations are formulated in the
integral form as follows∣∣∣∣∣∣

w : R+ ×Ω → Ωa ⊂ R(2+d)

f(w) : Ωa → R(2+d)×d
dt

∫
Ω
w dΩ +

∫
∂Ω

f(w) · n dS = 0, (1.7)

where Ωa is the set of admissible states that will be given below, n is the unit outward normal vector
⊂ Rd, and the boundary of the domain is denoted by ∂Ω. The conservative variables w and the flux
function f(w) are given by:

w =


ρ

ρU

ρE

 f(w) =


ρU t

ρU ⊗ U + p Id

ρU t(E +
p

ρ
)

 , (1.8)

where ρ is the density, U is the velocity vector, E is the specific energy, defined as the sum of the
internal and kinetic energies E = e+ |U |2

2 , with the specific internal energy denoted by e. The system
is closed by considering the equation of state for a perfect gas expressed as

p = (γ − 1) ρe, (1.9)

where the ratio of specific heat γ is assumed constant and γ > 1. The speed of sound for a perfect gas
is defined as:

c =

√
γp

ρ
. (1.10)
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In order to be consistent with the physics of fluids, in (1.8), the flow solution w is assumed to belong
to the convex set of admissible states defined as:

Ωa =
{
w ∈ R2+d | ρ > 0 and e > 0

}
. (1.11)

1.2.1 . Hyperbolicity
From a mathematical perspective, the compressible Euler equations (1.8) constitute a non-linear hy-
perbolic system of equations. The following section provides a brief overview of the considerations
related to the hyperbolic theory. It is of particular interest to introduce the notations that will be used
throughout the remainder of the manuscript. The notations are introduced as general as possible, with
special interest on the one-dimensional "projected" compressible Euler equations, which are introduced
below. This provides a relevant formalism, adapted to the introduction of numerical methods for the
simulation of compressible flows in curvilinear meshes. The attention will be progressively drawn to
Riemann solvers, and more precisely to approximate Riemann solvers, which are both studied with the
hyperbolic theory.

Let us introduce the quasi-linear form of the compressible Euler equations to determine the character-
istic structure of the equations. For smooth solutions, the conservative form reduces to

∂tw +∇x · f(w) = ∂tw +
d∑

j=1

∂wfj ∂xjw = 0, (1.12)

where the expression of the flux function is given in (1.13). In the two-dimensional case, the quasi-linear
form is based on the definitions of the two Jacobian matrices of the flux components

f1(w) =



ρu

ρu2 + p

ρuv

ρu(E +
p

ρ
)


and f2(w) =



ρv

ρuv

ρv2 + p

ρv(E +
p

ρ
)


. (1.13)

Expressions of the corresponding Jacobian matrix are not explicitly written in this manuscript, but
can be found in Toro’s textbook [34].
In the context of multidimensional hyperbolic problems, it is often necessary to make a compromise
with regard to the dimension, since these studies are commonly reformulated in the framework of
one-dimensional problems. The reason lies in the fact that the two Jacobian matrices associated
with the functions f1(w) and f2(w), do not have a common diagonalisation basis, and different
eigenvalues. Consequently, the diagonalization of the system equations in the multidimensional case is
not as straightforward as it would be in the scalar case.

A first approach commonly employed to circumvent this difficulty consists in studying the multidimen-
sional Euler equations, introducing the projected equations over an arbitrary vector, as indicated in
the following references [8, 31, 33].

Let us introduce n = (n1, n2)
T , an arbitrary unit vector of R2, and define ξ = x·n, the projected spatial

variable onto the direction n. The projected equations are simply formulated using the projected flux,
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defined as f(w,n) = f(w) · n, with respect to the new spatial variable ξ, as indicated next

∂tw + ∂ξf(w,n) = 0 with f(w,n) =


ρUn

ρU Un + pn

ρUn(E +
p

ρ
)

 . (1.14)

where Un = U · n. Therefore, the quasi-linear form is defined as

∂tw +A(w,n) ∂ξw = 0 with A(w,n) = n1 ∂xf1(w) + n2 ∂yf2(w).

The interest of the projected equations is to get a one-dimensional problem (1.16) in which the def-
initions and properties of a scalar hyperbolic system of equations can be recovered. Under these
considerations, it becomes possible to diagonalize the Jacobian matrix. Consequently, the multidi-
mensional system (1.12) is said hyperbolic if and only if the one-dimensional projected equations are
hyperbolic for any unit vector n. For the compressible Euler equations, the matrix A(w,n) has d+ 2

real eigenvalues given by

λ1(w,n) = Un − c λ2(w,n) = λd+1(w,n) = Un λd+2(w,n) = Un + c , (1.15)

which are indexed in an increasing order, and the corresponding eigenvectors are the vectors (rk)k=1,...,d+2,
representing the columns of the matrix R = (rk(w,n))k, form a basis of Rd+2.

In the following sections, a special emphasis is put on the associated Riemann problems, formulated
as follows 

∂tw +A(w,n) ∂ξw = 0

w(0, ξ) =

wl if ξ < 0

wr if ξ > 0

, (1.16)

since the solutions provided by these problems offer a valuable information, that can be used to
introduce robust numerical shock-capturing methods, also known as approximate Riemann solvers,
which are commonly encountered in the literature.
It can be demonstrated that these problems admit the existence of a unique solution, provided that the
two initial states wl and wr are close in a special norm [31]. The solution of (1.16) will involve up to
four constant states (wl,w

∗
l ,w

∗
r ,wr), where the two intermediate states (w∗

l ,w
∗
r) must be determined.

ξ0

t

x
t
= λd+2

wr

w∗
r

x
t
= λ2

w∗
l

x
t
= λ1

wl

Figure 1.1: An example of solution for the Riemann problem associated with the Euler flux

As observed in the Fig. 1.1, the first and last waves, illustrated with blue solid curves, represent the
truly nonlinear waves associated with the acoustic waves λ1 and λd+2, similar to those observed in the
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scalar case. These waves may consist in shock waves or in rarefaction waves depending on the initial
states (wl,wr). In contrast, the intermediate waves, depicted by a dashed blue line, represent linearly
degenerate fields, corresponding to simple waves resulting in contact discontinuities.
The exact solution can be computed using the approach described in [34]. However, due to the strong
non-linearity of the flux function, the algorithm requires the application of Newton’s methods.

1.2.2 . Compressibility and Mach number
The aim of this section is to introduce the Mach number, which is a fundamental dimensionless quan-
tity characterizing the compressibility of the fluid. This can be formulated by considering the Euler
equations 

∂tρ +∇x · (ρU) = 0

∂t(ρU) +∇x · (ρU ⊗ U) +∇x p = 0

∂t(ρE) +∇x ·
(
ρU(E +

p

ρ
)
)

= 0

. (1.17)

As can be observed from the first equation, the absence of a free divergence constraint allows to the
fluid to exhibit a variable density throughout the domain. Assuming smooth solutions, the continuity
equation in (1.17) can be equivalently written as

−1

ρ
(∂tρ+ U · ∇xρ) = −1

ρ
Dtρ = ∇x · U ,

where Dt is the material derivative operator. It can be observed that, compressible flows exhibit a rate
of change of density in response to the deformation of the fluid particle. This expression can be also
associated to pressure disturbances, since the pressure and fluid density are related for compressible
flows. Manipulating the continuity equation, the following relationship between the pressure and the
velocity divergence can be derived

− 1

ρc2
Dtp = ∇x · U .

In the following, an appropriate scaling is employed to derive a local Mach number, as a scaling factor
arising in the continuity equation. Introducing the following non-dimensional quantities

x̂ =
x

lr
t̂ =

urt

lr
ρ̂ =

ρ

ρr
Û =

U
ur

p̂ =
p

ρru2r
,

where (lr, tr) are respectively a characteristic length and a characteristic time scale, and the other
characteristic quantities are defined for instance as the maximum of the values in the fluid domain,
with ρr = maxxρ and ur = maxx |U |. Consequently, the non-dimensional form of the continuity
equation written for the pressure is formulated as follows

−M2 1

ρ̂
Dt̂ p̂ = ∇x̂ · Û , (1.18)

introducing in particular the following local Mach number M , defined as M = ur/c, as weight of the
material derivative associated to the pressure. As the local Mach number decreases, the compressibility
asymptotically vanishes as the left-hand side of the equation goes to zero. Then, a free divergence
constraint is found in the low Mach number limit, using this formal scaling.

In contrast to compressible flows equations, the incompressible Euler equations for a fluid with a
constant density are formulated as follows
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∇x · U = 0

ρ
(
∂t(U) + (U · ∇x) U

)
+∇xp = 0

ρ = cst

. (1.19)

Note that, the pressure remains independent of the fluid density and is only related to the free diver-
gence constraint. These equations are different of the compressible formulation, in terms of modeling
but also in terms of mathematical properties. This latter point will be discussed in the two following
sections.

1.3 . A review of the behavior of compressible solutions for low-speed flows

The gas dynamic equations introduced in section 1.2 for a perfect gas (1.9) enable the modeling of a
large range of physical flow features, depending on the effects of the compressibility of the flow. The
description of the compressibility of the flow is characterized by the Mach number, a fundamental
quantity defined as a dimensionless ratio of the convective speed and the speed of sound. Based on
the value of the Mach number, it is of common practice to categorize compressible flows into at least
three distinct regimes. For M < 0.8, the flow is subsonic, and numerical solutions can be considered as
smooth. For 0.8 < M < 1.2, the flow is transonic. Here, for the sake of brevity, higher Mach number
flows (i.e. M > 1.2) will be classified as supersonic.

The main concern of this work, is mainly related to weakly compressible flows in the subsonic and low
Mach number regimes. These flows have the advantage of exhibiting relatively predictable behavior,
characterized by moderate velocity and pressure gradients. Compressible effects are not sufficiently
significant to trigger shock waves for this flows. As a consequence, the fluid exhibits a continuous
evolution of physical quantities.
In the following, we shall give a particular interest to low-speed flows, which are typically characterized
by lower Mach numbers such as M < 0.3. For many decades, low-speed flows have raised profound
questions concerning the gap between two theoretical frameworks: the incompressible flows theory
and the compressible flows theory. Indeed, as the Mach number decreases, the velocity also decreases,
resulting in smaller disturbances of the divergence of the fluid particles. This is illustrated by the
normalized equation (1.18), which allows low-speed flows to be interpreted as almost incompressible
flows.
Two significant and closely related issues, in the study of low Mach number flows, originates from this
observation. First, in what sense compressible solutions are related to incompressible solutions in the
low Mach-number limit? This question has notably motivated the development of a mathematical
theory, also known as low Mach number flows theory, which attempts to describe the asymptotic
behavior of the compressible solution [8, 38–42].
The second issue is related to the discretization of the compressible equations, for the simulation of
weakly compressible flows with compressible numerical methods, such as Riemann solvers. Indeed, in
general, the simulation of low Mach number flows requires a particular attention since Riemann solvers
are not able to provide accurate results (see for instance [6, 7]). The discrete compressible solutions
may even be inconsistent, since they do not recover incompressible flow features, as it will be illustrated
in the following chapters. This thesis addresses the second issue.
The objective of the next section is threefold. The initial objective is to discuss some of the common
methods used for the discretization of compressible flows in the low Mach-number range. Next, the
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significant mathematical discrepancies between the two systems of fluid equations will be reminded.
Finally, the asymptotic behavior of the exact solution of the compressible Euler equations in the low
Mach-number limit will be presented.

A first approach to deal with low Mach number flows relies on simplifying the governing set of equations
by deriving reduced models, as indicated for instance in the first chapter of the Viozat’s thesis [43].
In general, this approach provides simpler models that are easier to analyze and simulate, but is
specifically restricted to low-speed flows. Note that, this approach is discussed here, but not retained
in this work.
A second approach, as indicated in some textbooks (see, for instance [44,45]), consists in approximating
low Mach number flows by the incompressible equations. This results in a sudden change in the
governing fluid equations and leads to neglecting the extremely small disturbances in the divergence
of fluid velocities. From a practical standpoint, the incompressible model offers significant advantages
without compromising accuracy, with respect to the aerodynamic coefficients considered [45]. It is
interesting to see that numerous authors have investigated the legitimacy of such assumption. From a
mathematical point of view, does the compressible solution converge to the incompressible one when
the Mach tends to zero?

In order to initiate the discussion, some fundamental differences in the natures of the two fluid equations
are reminded, as the two pressure fields cannot be easily reconciled in their mathematical interpretation.
As previously mentioned, the set of the compressible fluid equations (1.17) is an hyperbolic system of
conservation laws. The pressure and density terms are related to acoustics, as they may produce small
fluctuations propagating in the field at a different speed. For the normalized Euler equations, as the
Mach number decreases, the speed of sound increases. Then, the two acoustic eigenvalues λ1 and λd+2,
defined as Un ± c, go to infinity when M → 0. This indicates that, in the low Mach number limit, the
compressible equations (1.17) are no longer hyperbolic, and thus admit a singular limit.
In opposition to the compressible equations (1.17), the incompressible equations (1.19) are charac-
terized by a constant density throughout the domain, with especially a pressure field defined as the
Lagrange multiplier associated to the free-divergence constraint [46]. As it will be shown in the next
section, this incompressible pressure is solution of an elliptic equation.
In order to introduce efficient numerical methods approximating the continuous solution, it is necessary
to give some mathematical insight, illustrating the behavior of the compressible solutions in the low
Mach number limit. The remainder of this section is devoted to that purpose.

The second chapter of Madja’s book [8] relates the works of numerous authors, including Madja and
Klainerman, providing a thorough overview of the complexities involved in the theoretical analysis of
exact compressible solutions. A normalization process for the barotropic Euler equations is employed to
formally establish the mathematical relationship between compressible and incompressible solutions.
Barotropic flows have the advantage of modeling the pressure as function of the density only, as
indicated by the corresponding equation of state

p = Aργ with A > 0, a scalar coefficient.

The normalized compressible fluid equations are then formulated for the two normalized pressure and
velocity variables (p,U) as follows

1

γpλ
Dtp

λ +∇Uλ = 0

ρλ DtUλ + λ2∇pλ = 0

. where λ =
1

M
√
γA

,
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where the exponents λ denotes the dependence of the solution in λ which now acts as a parameter,
with the initial condition

pλ(0,x) = pλ0(x) Uλ(0,x) = Uλ
0 (x).

Assuming that the normalized solution (pλ,Uλ) can be expanded in an asymptotic expansion in power
of λ, Majda performed an asymptotic analysis of the compressible solution. This analysis shows that
the incompressible Euler equations have solutions which approximate solutions of the compressible
Euler equations provided that the Mach number is small. It has been demonstrated that, for well-
chosen initial conditions, belonging to a specific class of well-prepared initial conditions [8, 10]

pλ0(x) = P0 +O(
1

λ2
)(x)

Uλ
0 (x) = U∞

0 (x) +O(
1

λ
)(x)

with

∇ · U∞
0 = 0

P0 = cst
.

Then, the existence of incompressible solutions can be obtained by passing to the limit the compressible
solutions (pλ,Uλ) for a vanishing Mach number (Theorem 2.4) (i.e. λ → +∞). However, this result
describes the behavior of the leading-order term of the compressible solution in the formal asymptotic
analysis. For higher order terms, the correct asymptotic expansion of compressible solution exhibits a
more complex behavior, which contains a fast scale component (Theorem 2.5). Madja explicitly wrote
the symbolic decomposition to illustrate the following behavior of the compressible solution in the low
Mach number limit:

{Comp. Euler eq.} = {Incomp. Euler eq.} + M {Linear acoustic eq.} + O(M 2 )

This symbolic decomposition, along with the associated theoretical insights, clarifies the implications
of replacing the compressible fluid equations with their incompressible counterparts.

Another interesting discussion can be found in the review of Guillard-Nkonga [9]. It is stated that most
of the theoretical analyses and results published in the literature generally concern simplified equation
of states, such as the barotropic gas previously mentioned. However, there are some mathematical
evidence demonstrating that, in the low Mach number limit, the compressible solution cannot be
directly identified as the solution of the incompressible equations. The solution appears to be, at least,
decomposed as a sum of a fast acoustic component and a slow component solution of the incompressible
equations. The authors have presented a founded discussion of this subject, which is worth of being
reported hereafter.
An important literature has been dedicated to this topic. It appears that this decomposition is related
to the complex behavior of the compressible models in the low Mach number regime. The crucial point
to understand is that, in general, the strong limit solution of the compressible Euler (or Navier-Stokes)
model is not described by the corresponding incompressible equations. In the case of barotropic
flows, the functional analysis shows that two limits exist, representing two very different systems
from a mathematical point of view. At the incompressible time-scale, based on the flow velocity, the
incompressible system is elliptic in nature, and thus represents a singular limit since the mathematical
nature of the system changes from hyperbolic to elliptic. While at the acoustic time scale, based on
the speed of sound, the acoustic system is hyperbolic and describes the propagation of acoustic waves.
Both limits are relevant, and numerical experiments (as illustrated later in chapter 3) show that we
have at the same time incompressible and acoustic phenomena. In the physical world, the two limits
co-exist and superpose.
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1.4 . Formal derivations of the asymptotic behavior of the continuous solutions
in the low Mach number limit

A normalization process is a particular type of dimensionless scaling, using some specific relationships
between the reference quantities. The normalization process aims at making all physical terms of the
same order of magnitude (of the order of unity), characterizing the respective weight of these different
terms by the occurrence of scaling coefficients, as factors of the different normalized physical terms. In
this section, we discuss two normalizations of the compressible Euler equations, corresponding either on
a convective time scale, or on an acoustic time scale. Note that the two time scales could be combined
into a single analysis. However, in the following, for the sake of clarity, a single-time-scale asymptotic
analysis is conducted for each of these two aforementioned normalization processes, as done in [7, 47].

1.4.1 . Normalisation for the incompressible time scale
The analysis is carried out starting from the conservative form of the Euler equations. In the following,
for each physical quantity q, a reference quantity is introduced qr and the associated dimensionless
quantity will be denoted as q̂ such as the following equality holds q = q̂qr. The divergence and
gradient operator are replaced using ∇ = ∇̂/lr, where lr is the reference length and the time derivative
is reformulated upon substitution ∂t =

∂t̂
tr

, with tr being the reference time. After simplifications, the
non-dimensional Euler equations can be expressed as follows

(
lr

trur

)
∂t̂ρ̂ +∇x̂ · (ρ̂Û) = 0

(
lr

trur

)
∂t̂(ρ̂Û) +∇x̂ · (ρ̂Û ⊗ Û) +

(
pr

ρru2r

)
∇x̂ p̂ = 0

(
lr

trur

)(
Er

Hr

)
∂t̂(ρ̂Ê) +∇x̂ ·

(
ρ̂ÛĤ

)
= 0

(1.20)

where ρr, ur, pr are the reference quantities for the primitive variables and Er, Hr are respectively
reference quantities for the specific total energy and enthalpy H = E +

p

ρ
.

As mentioned before, the normalization process requires all normalized quantities to be of the same
order of magnitude, of the order of unity. The following results are known from asymptotic theory
[11,48]

ρ ≃ O(1), c ≃ O(
1

M
), when M → 0.

Assuming perfect gas, the gradient of pressure field behaves as follows

p ≃ ρc2 ≃ O(
1

M2
) and ∇p ≃ O(

1

M2
) as M → 0. (1.21)

Thus, the pressure gradient is the dominating term of the equations. This asymptotic behavior can
be reproduced in the normalization process. In this framework analysis, the reference quantities must
verify certain relationships, as described below. An asymptotic reference state is defined from a density
ρ∞, a velocity u∞, a reference sound velocity c∞ independent of u∞ and a reference length lr. The
reference quantities are then introduced with the following definitions

ρr = ρ∞, ur = u∞, cr = c∞, pr = ρrc
2
r , tr =

lr
ur

=⇒ pr = ρ∞c2∞ and tr =
l

u∞
.

(1.22)
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Then
lr

trur
= 1,

pr
ρru2r

=
c2∞
u2∞

=
1

M2
∞
.

Next, we also demand that the normalized total specific enthalpy returns to the same formulation as
for the original equations with H = E + p

ρ . So, considering H = ĤHr, we get

Ĥ =

(
Hr

Er

)
Ê +

(
pr

ρrHr

)
p̂

ρ̂
. (1.23)

Therefore, the following relationship must be satisfied for the reference quantities

Er = Hr and Hr =
pr
ρr

= c2∞. (1.24)

With the choice of reference quantities (1.22) and (1.24), we can see that

ρ̂ =
ρ

ρ∞
≃ O(1), Û =

U
u∞

≃ O(1), p̂ =
p

ρ∞c2∞
≃ O(1), Ĥ =

H

c2∞
≃ O(1) when M∞ → 0. (1.25)

By comparing the orders of magnitude of the various terms in the limit M∞ → 0, we also see that

∂t̂ρ̂︸︷︷︸
O(1)

+∇x̂ · (ρ̂Û)︸ ︷︷ ︸
O(1)

= 0,

∂t̂(ρ̂Û)︸ ︷︷ ︸
O(1)

+∇x̂ ·
(
ρ̂Û ⊗ Û

)
︸ ︷︷ ︸

O(1)

+
1

M2
∞

∇x̂ p̂︸ ︷︷ ︸
O(1)

= 0,

∂t̂(ρ̂Ê)︸ ︷︷ ︸
O(1)

+ ∇x̂ ·
(
ρ̂ÛĤ

)
︸ ︷︷ ︸

O(1)

= 0,

(1.26)

Therefore, in the momentum equation, we can clearly see that, in the asymptotic limit, the pressure
gradient becomes a dominant term over all other terms, and particularly over the convection

1

M2
∞
∇̂p̂ ≃ O(

1

M2
∞
) >> ∇̂ · (ρ̂Û ⊗ Û) ≃ O(1) when M∞ → 0.

We can also observe that the normalized equation of state for pressure is no longer expressed exactly
as for the closure of the original equations

p = (γ − 1)ρe = (γ − 1)ρ

[
E − |U |2

2

]
. (1.27)

Indeed, normalizing the equation of state with the same reference quantities, we have

p̂ = (γ − 1)

(
ρr
pr

)
ρ̂

[
ÊrE − u2r

|Û |2

2

]
.

Then
p̂ = (γ − 1)ρ̂

[
Ê −M2

∞
| ˆU |2
2

]
, (1.28)

since Er = Hr =
pr
ρr

, then
ρrEr

pr
= 1 and thus

ρru
2
r

pr
= M2

∞. Another consequence of normalization

(1.26) is that the normalized aerodynamic variables (density, velocity, pressure) depend explicitly on
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the reference Mach number M∞. So the solutions to this system of normalized equations have to be
found in the form of asymptotic expansions in powers of M∞

ρ̂(t̂, x̂) = ρ̂0(t̂, x̂) + ρ̂1(t̂, x̂)M∞ + ρ̂2(t̂, x̂)M
2
∞ +O(M3

∞)

Û(t̂, x̂) = Û0(t̂, x̂) + Û1(t̂, x̂)M∞ + Û2(t̂, x̂)M
2
∞ +O(M3

∞)

p̂(t̂, x̂) = p̂0(t̂, x̂) + p̂1(t̂, x̂)M∞ + p̂2(t̂, x̂)M
2
∞ +O(M3

∞)

(1.29)

It has been shown in [43, 47], by replacing the primitive variables into the system of normalized
equations (1.26) by these asymptotic expansions, and comparing the terms according to the different
orders of magnitude in these developments, that the pressure field is characterized by

∇x̂ p̂0 = 0 at order O(
1

M2
∞
) and ∇x̂ p̂1 = 0 at order O(

1

M∞
),

and, at order O(1), the system reduces to the following set of incompressible equations
∇x̂ · Û0 = 0

ρ̂0

[
∂t̂ Û0 +∇x̂ ·

(
Û0 ⊗ Û0

)]
+∇x̂ p̂2 = 0

ρ̂0 = cst

. (1.30)

Therefore, it can be stated that p̂0 and p̂1 are only functions of time and then, the normalized pressure
is constant in space up to a fluctuation of order M2

∞, with

p̂(t̂, x̂) = p̂0(t̂) + p̂1(t̂)M∞ + p̂2(t̂, x̂)M
2
∞ +O(M3

∞), (1.31)

where p̂0(t̂) is the ambient thermodynamic pressure and p̂2(t̂, x̂) represents the incompressible pressure
disturbances. This fundamental behavior of the pressure field must be reproduced in the incompressible
limit at the discrete level. Additionally, the incompressible pressure is the solution of an elliptic
equation, since, by taking the divergence of the second equation in (1.30), and using ∇x̂ · Û0 = 0, we
see that p̂2 is the solution of a Poisson-like equation

∆x̂ p̂2 = −ρ̂0∇x̂ ·
[
∇x̂ ·

(
Û0 ⊗ Û0

)]
.

This shows that the incompressible equations (1.30) are also elliptic in nature, representing therefore
a singular limit in contrast to the compressible system, of hyperbolic nature.

1.4.2 . Normalization for the acoustic time scale
The accoustic normalization is defined from a reference time based on the speed of sound. So in the
definitions (1.22), we set tr =

lr
c∞

. Therefore, equations (1.20) take the following normalized form

1

M∞
∂t̂ρ̂+∇x̂ · (ρ̂Û) = 0

1

M∞
∂t̂(ρ̂Û) +∇x̂ ·

(
ρ̂Û ⊗ Û

)
+

1

M2
∞
∇x̂ p̂ = 0

1

M∞
∂t̂(ρ̂Ê) + ∇x̂ ·

(
ρ̂ÛĤ

)
= 0

. (1.32)

By inserting the expansions (1.29) into this system and by comparing the terms according to the
different orders of magnitude, we find that

∇x̂ p̂0 = 0 at order O(
1

M2
∞
), (1.33)
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but, at order O(
1

M∞
), we get the following system


∂t̂ ρ̂0 = 0

∂t̂(ρ̂0Û0) +∇x̂ p̂1 = 0

∂t̂ (ρ̂0Ê0) = 0

, (1.34)

while, at order O(1) 
∂t̂ ρ̂1 +∇x̂(ρ̂0Û0) = 0

∂t̂(ρ̂Û)[1] +∇x̂ ·
(
ρ̂0Û0 ⊗ Û0

)
+∇x̂ p̂2 = 0

∂̂t̂ (ρ̂Ê)[1] +∇x̂ ·
(
ρ̂0Û0Ĥ0

)
= 0

. (1.35)

In this system, the shorthand notation of Rieper [25] has been used and reads for the momentum
equation (ρ̂Û)[1] = (ρ̂Û)0 + (ρ̂Û)1, whereas for the energy equation (ρ̂Ê)[1] = ρ̂0Ê1 + Ê0ρ̂1.
So for this acoustic time scale, the 0-state leading-order pressure p̂0, is constant in space (1.33) and
also in time (1.34) since

p̂0 = (γ − 1)ρ̂0Ê0.

Then, the pressure field is only constant up to a fluctuation in space at the first order at the acoustic
time scale

p̂(t̂, x̂) = p̂0 + p̂1(t̂, x̂)M∞ +O(M2
∞). (1.36)

From the normalized equation of state (1.28), a constant leading order p̂0 in space also entails the
product ρ̂0Ê0 to be constant in space. Next, to simplify the analysis, we assume that the leading-
order density ρ̂0 is constant in space (i.e. ∇x̂ρ̂0 = 0), as commonly done in the literature (see for
instance [7, 9, 25]). Then, the leading-order total enthalpy is also constant in space

∇x̂Ĥ0 = 0 since Ĥ0 = Ê0 +
p̂0
ρ̂0

.

Therefore, at the order O(1), the energy equation in (1.35) can be simplified and formulated for the
first-order pressure term p̂1. Using the definitions of the above leading-order enthalpy Ĥ0, we get

∂t̂p̂1 + ĉ20 ∇x̂ ·
(
ρ̂0Û0

)
= 0, (1.37)

since p̂1 = (γ − 1)(ρ̂Ê)[1] and Ĥ0 = ĉ20/(γ − 1), with ĉ0 being to the ambient surrounding speed of
sound. An interesting result can be expressed by taking the divergence of the second equation of the
system (1.34), and using (1.37). Then, we see that the normalized disturbance pressure at order O(∞),
p̂1 verifies the following linear wave equation (second-order hyperbolic)

∂2p̂1

∂t̂2
− ĉ20 ∇̂2p̂1 = 0. (1.38)

Thus, we find that the system (1.34) with equation (1.37) is hyperbolic in nature. Moreover, at the
acoustic time scale, it can be observed that the normalized pressure is characterized by an acoustic
fluctuation (1.36) of an order of magnitude greater than the incompressible pressure fluctuation (1.31).
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1.5 . The finite volume method

In this section, we briefly introduce the computational framework used to discretize the compressible
Euler equations. We have considered a two-dimensional cell-centered finite volume-method, first im-
plemented in a existing research code used throughout this Ph-D work. As discussed in the following,
finite-volume methods offer a robust formulation particularly suited to the approximation of hyper-
bolic systems of conservation laws. Finite-volume methods are discrete approximations based on the
integral form of the equations (1.7) in the fluid domain, described by local balance equations and flow
exchanges in each cell of the computational domain.

Let’s introduce a mesh discretizing the fluid domain Ω =
⋃
I

ΩI . By integrating the conservation laws

(1.1) on each cell ΩI , we get:

|ΩI | dt(wI(t)) +

∫
∂ΩI

f(w) · n dS = 0. with wI(t) =
1

|ΩI |

∫
ΩI

w(t,x) dΩ,

where ∂ΩI denotes the boundary of cell ΩI , and |ΩI | is a d-dimensional measure of ΩI . The discrete
solution is assumed to be a piecewise constant approximation of wI in each computational cell, denoted
as WI(t) in cell ΩI . The flux f(w) at interfaces is not uniquely defined and is thus approximated by
a numerical flux F , function of the two constant approximations WI and WJ and the unit normal
vector n

F
(
WI(t),WJ (t),nIJ

)
,

where the vector nIJ is the unit outward normal vector at the cell interfaces ΩI ∩ΩJ pointed towards
the neighboring cells ΩJ , and V(I) is the set of the indices J of neighboring cells to ΩI . The expression
of numerical flux balance can be simplified by introducing δIJ , the measure of the interface ΩI ∩ΩJ .
This leads to the well known formulation of the semi-discretized scheme in space as formulated with

|ΩI | dt(WI(t)) +
∑

J∈V(I)

δIJF
(
WI(t),WJ (t),nIJ

)
= 0, (1.39)

The equations are then fully-discretized in time and space, by considering for instance the forward
Euler method:

Wn+1
I = Wn

I − ∆t

|ΩI |
Rn

I with Rn
I =

∑
J∈V(I)

δIJF(Wn
I ,Wn

J ,nIJ ), (1.40)

where Rn
I is the explicit numerical flux balance for the time tn.

In this Ph-D work, we shall consider Godunov-type schemes, which are numerical methods associating
the definition of the numerical fluxes with the solution of Riemann problems (1.16). In particular, we
shall consider numerical fluxes associated with approximate Riemann solvers. These numerical fluxes
have several advantages in comparison to exact Riemann solvers, but also some drawbacks that will be
discussed later in chapters 2 and 3. In addition, they are significantly easier to implement and faster
to evaluate, whereas exact solvers typically require more theoretical analysis, often involving Newton
methods for solving non-linear equations [33,34], making such methods prohibitively time-consuming.
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1.6 . Kodef: a research code for two-dimensional compressible Euler equations

During the first year of the Ph-D program, a significant effort was devoted to the development of a
novel functionality within the existing research code, enabling the definition and the implementation
of efficient implicit stages. This development became an important foundation for this thesis, as it
has allowed for the rapid generation of numerical results for a large number of numerical schemes. In
particular, this has substantially contributed to the investigations presented in the following chapters.
The computations presented in this work were obtained using this research code, implementing a
cell-centered finite volume method, as described above, in structured mesh with quadrangle elements.
Depending on the flow configurations, MUSCL reconstruction methods [49] with slope limiters could be
applied in order to improve the overall accuracy in space. The effectiveness of this development relies
on the use of automatic/algorithmic differentiation tools based on source transformation, the so-called
Tapenade [28]. This tool proved to be a valuable alternative strategy to approximated implicit stages,
particularly in the context of investigation for low Mach number corrections. Although the literature
has reported numerous approximated implicit stages (see for instance [50–54] among others), we could
suggest that, for compressible schemes in the low Mach number limit, standard approximated implicit
stages should also required a particular attention to stability issues. This is due to the fact that,
the efficiency of the implicit stage must also be taken into account as since the number of iterations
required to converge with machine precision levels may become excessively large due to the stringent
stability condition. To circumvent this difficulty, a potential solution consist in considering implicit
schemes that remain stable even when large CFL number are used. Such schemes can be in particular
obtained by considering an exact Jacobian matrix with a relevant time-integration scheme, as discussed
below. The objective of this section is to provide details regarding the implicit schemes developped in
this work. However, there is an important need to avoid a redundant presentation with the chapter
3.5.2. Thus, in this section we adopt a more global description of the numerical approach refereeing to
sections in chapter 3 for additional information.

Linearized backward Euler scheme, and pseudo time integration methods

We have considered a linearized backward-Euler time stepping scheme. For a uniform mesh, this can
be formulated as(

I + ∂WnRn
)(
W n+1 −W n

)
= −Rn with I = diag(

|ΩI |
∆t

) and Rn = (Rn
I )I , (1.41)

where in the left-hand side, a Jacobian matrix has to be provided, W n denotes the vector of conservative
variables, and Rn is the vector of the explicit numerical flux balances at the time tn, with Rn

I defined
in (1.40).
For steady flows, it is of common practice to introduce a pseudo-time integration method in order to
accelerate the convergence of the discrete solution to the steady-state. A local time stepping method
[55] was considered, consisting in modifying the definition of the diagonal matrix I in the left-hand
side of (1.41) with

I = diag(
|ΩI |
∆tI

).

In the above expression, ∆tI is a local time step defined in each computational cell ΩI . This tech-
nique yields a pseudo-time integration method since the information contained in each cell propagates
according to different time steps, thus expressing a numerical method more closely related to a fixed-
point problem than to an evolution problem. In this Ph-D work, rather than examining features of the
long-time behavior of unsteady solutions, we usually adopted another approach consisting in examining
steady solutions obtained through a fixed-point problem. For steady inviscid flows, there is no ambi-
guity between the two discrete solutions: the long time behavior of the unsteady solution converges to
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the result as the steady method, characterized as a steady-state solution. However, it should be noted
that, for unsteady viscous flows, this is no longer the case as for instance discussed in [56, p3-4].
In addition to the local time stepping method, in order to improve the convergence rate, a pseudo
transient continuation method was formulated, and was strongly inspired from the work of Crivellini-
Bassi [57]. Its definition is given in section 3.5.2. This pseudo transient continuation method aims at
progressively increasing the CFL number as long as the normalized explicit residuals decrease. The use
of very large CFL numbers leads to a vanishing contribution of the diagonal matrix I in the left-hand
side of (1.41), resulting in a method that asymptotically resolves a Newton method, as indicated next

∂WnRn
(
W n+1 −W n

)
= −Rn,

corresponding to the case of an infinite CFL number.
The construction of the exact Jacobian matrix ∂WnRn was obtained by using Tapenade, which
produces the differentiated Fortran routine corresponding to the computation of the differentiated
explicit flux balance Rn. Both are denoted as "RHS.f90" and "RHS_d.f90" in Fig.1.2 representing a
typical illustration of how Tapenade operates in the research code.

Figure 1.2: Representation of how Tapenade operates in the research Code

At each iteration, an iterative algorithm was applied to build the exact Jacobian matrix ∂WnRn,
which consisted in multiple calls to the differentiated code while storing the information in a sparse
format matrix. The iterative algorithm is described in detail in section 3.5.1. A few algorithms can
also be found in Poulain’s thesis [58]. Once the Jacobian matrix had been built, the system is resolved
using a sparse LU factorization provided by the Intel-MKL libraries. We considered a direct solver,
instead of iterative solvers [59], to circumvent the issue with ill-conditioned problem which severely
deteriorate the convergence rate of these methods in the low Mach number limit.
The introduction of the iterative algorithm corresponds mainly to the key stage of new development
in the research code, which became somewhat challenging when further optimisations were considered.
However, these optimisations were implemented and have allowed to significantly reduce the run-time
needed to construct the Jacobian matrix, as indicated below.
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Figure 1.3: Sequential time required for the construction of the Jacobian matrix

In Fig. 1.3, the time required to construct the exact Jacobian matrix is compared with the run-time
consumed by the direct solver to solve the system on the left-hand side of (1.40) and the run-time
needed by a Symmetric Gauss-Seidel method with only four forward and backward diagonal sweeps
used to invert the same implicit system. In this figure, they are respectively denoted as ’Construction
Jacobian’, ’LU factorization’ or ’4 it Gauss-Seidel’. These observations were made for various mesh
densities, reaching up to 262,000 cells, using the same first-and second-order scheme in space. In
particular, the second-order scheme, which required to evaluate five neighboring cells in the x- and y-
directions, is represented in the Fig.1.3 with solid symbols. As it can be observed, the time require for
construction of the Jacobian matrix associated with the second-order scheme is more easily comparable
to the time needed by the iterative solver whereas the direct solver. This shows that, for this research
code, the use of AD proves to be an efficient tool for formulating an exact implicit stage, as it does
not require intensive CPU-resources in comparison to a direct solver.
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2 - The Roe scheme: introduction, review and analysis for
low Mach number flows
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The second chapter is dedicated to an in-depth examination of the Roe scheme [3], an approximate
Riemann solver based on a linearization of the initial system (2.1). The Roe scheme has been the
subject of considerable interest in the literature for decades, due to its simplicity and robustness in
handling complex flows in industrial applications.
The first objective of the chapter is to present an overview of the approach proposed by Roe for the
construction of an approximate Riemann solver. Then, fundamental considerations underlying the
Roe-type linearization are reminded, and the different choices for the derivation of an approximate
Riemann solver are discussed.
The second objective is to give more details regarding the relations between the approximate Riemann
problem, the numerical flux, and the artificial viscosity, which are crucial features in this work. In
the following sections, the numerical flux is derived with a compact formulation in order to illustrate
two simple and equivalent interpretations of the Roe flux. These formulations correspond either to
a simple wave solver or to an artificial viscosity method involving a matrix-valued dissipation. The
interpretation of the numerical flux as a corrected simple centered scheme with a viscosity matrix has
provided an interesting framework for the asymptotic analysis, particularly following pioneering works
by Turkel in the 90’s [5,60,61]. This formulation is discussed in section 2.3, where it is explained why
the Roe’s matrix-valued dissipation fails in computing low Mach number flows.
The third objective is to introduce three equivalent formulations of the dissipation vector characterized
by a matrix-valued dissipation, which will be essential in this work, particularly in chapter 3. These
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different formulations of dissipation vector have been used in the literature in different ways to derive
low Mach corrections. The last section presents two interesting corrections [25, 26] that have been
considered as potential foundations for this Ph-D work. In particular, they could serve as prospective
candidates for categorizing low-Mach number corrections into two approaches that have been implicitly
discussed in the literature on several occasions.

2.1 . The Roe-type linearization

The initial methodology proposed by Godunov [2] to formulate a relevant numerical flux is based on
the exact resolution of the Riemann problem, defined at each mesh interface. Locally at each interface,
the exact Riemann problem (2.1) can be written as follows

∂tw +A(w,n) ∂ξw = 0

w(0, ξ) =

{
wl If ξ < 0

wr If ξ > 0

, (2.1)

with the objective of formulating a numerical flux defined as the evaluation of the exact solution of
(2.1) by the flux function, resulting in the so-called Godunov scheme. This constitutes the fundamental
concept underlying the construction of Riemann solvers. In opposition to the Godunov scheme, Roe was
among the first contributors to propose numerical methods based on approximate Riemann problems,
obtained through the linearization of the initial system. Indeed, Roe in [3] proposed an approach to
construct a linearized Jacobian matrix with constant coefficients, denoted as ARoe, which is computed
locally at the interface between the left and right states wl and wr. As a result, this introduces an
approximate problem of (2.1). Nowadays, this approach is known as the Roe-type linearization and
is first discussed in this chapter. The construction of a linearized matrix ARoe requires to satisfy a
number of properties in order to introduce an appropriate linearized problem substituting (2.1). In
most cases, the derivation requires lengthy calculations. However, once constructed, the approximate
Riemann problem can be written as follows

∂tw +ARoe(wl,wr,n)∂ξw = 0

w(0, ξ) =

{
wl If ξ < 0

wr If ξ > 0

. (2.2)

The approximate Riemann problem (2.2) is significantly more easy to solve, given that the Jacobian
matrix has constant coefficients. Therefore, a solution can be derived from the spectral properties of
the matrix ARoe, through the application of linear Hyperbolic Theory. However, in order to ensure
consistency between the problems (2.1) and (2.2), Roe prescribed the following constraints on the
linearized Jacobian matrix.

Consistency: ARoe(w,w,n) = A(w,n) ∀w ∈ Ωa , n ∈ Sd−1

Conservation Condition: ARoe(wl,wr,n) (wr −wl) = f(wr,n)− f(wl,n)

Hyperbolicity: ARoe(wl,wr,n) has d+ 2 real eigenvalues and distinct eigenvectors

In order to obtain a matrix ARoe that satisfies the conservation condition, Roe introduced a parameter
vector v aiming at decomposing easily the jumps of the physical flux and conservative variables

∆f(w,n) = f(wr,n)− f(wl,n) and ∆w = wr −wl.
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Introducing the two matrices B(vl,vr) and C(vl,vr,n) in R(d+2)×(d+2), with B an invertible matrix,
the existence of ARoe approximating the Jacobian matrix A(w,n) can be deduced from the two
matrices B and C with

∆w = B(vl,vr)∆v

∆f(w,n) = C(vl,vr,n)∆v
=⇒ ∆f(w) =

ARoe(wl,wr ,n)︷ ︸︸ ︷
C(vl,vr,n)

(
B(vl,vr)

)−1
∆w, (2.3)

where matrix ARoe(wl,wr,n) introduced in (2.2) with expression (2.3) indicates the dependencies of
the Roe matrix to the two initial conservative states. Observing that, in the case of the compressible
Euler equations, the conservative variables w and the flux function f(w,n) are quadratic functions of
parameter vector v =

√
ρ(1,U , H)t, Roe proposed a constant matrix ARoe(wl,wr,n) using averaged

states, that are nowadays the so-called Roe averages, as indicated next

w̃(wl,wr) = (ρ̃, Ũ , H̃)t with ρ̃ =
√
ρlρr and for the other components .̃ =

√
ρl ·l +

√
ρr ·r√

ρl +
√
ρr

.

(2.4)
As mentioned by Roe [3], the choice of parameter vector is not unique and many others could have been
chosen. In particular, as demonstrated by Harten-Lax-van Leer in [4] (Theorem 2.1), the existence
of a convex entropy function ensures the existence of a Roe-type linearization, satisfying the three
above conditions. However, Roe suggested the parameter vector v as it has significant properties.
Once constructed, the Roe-type linearization allows the approximate Jacobian matrix ARoe to be
interpreted as a direct evaluation of the exact Jacobian matrix, as indicated by the two right-hand side
expressions

ARoe(wl,wr,n) = ARoe(w̃(wl,wr),n) = A(w̃(wl,wr),n).

Then, the hyperbolicity condition for ARoe(w̃,n) is derived from A(w,n), as the spectral properties
of the Jacobian matrix involved in the initial Riemann problem (2.1) are preserved.

In a second paper, Roe-Pike [62] demonstrated that v is the unique parameter vector that yields this
mathematical interpretation of ARoe. The authors also present a second approach for deriving an
approximate Riemann problem preserving the original wave structure of the initial problem (2.1). It
should be mentioned that, for the compressible Euler equations, the two approaches are equivalent.

Nevertheless, as mentioned in the original paper [3], the linearization process has also several severe
drawbacks that have been addressed in the literature, for instance a risk to not capture the admissible
entropy solution within the weak solutions. Additionally, the Roe method is known to not preserve
the set of physical states (1.11), and thus, can compute intermediate states with negative density (see
for instance Vinokur [63], Einfeldt et al. [64], and also Batten et al. [65] for the positivity preserving).
Entropy fixes have been proposed in the literature [66] to recover a more consistent behavior of the
numerical method [67], and are briefly discussed in section 2.4.1.

2.2 . Expressions of the numerical flux

This section examines the relationship between Godunov-type methods and the associated numerical
flux expressions. It focuses on approximate Riemann solvers, such as the Roe scheme, which defines an
approximate Riemann problem by introducing a linearized Jacobian matrix with constant coefficients,
substituting the physical Jacobian matrix. In the context of finite-volume schemes, there exist several
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possible formulations for the numerical flux FRoe. Although these formulations are all equivalent,
they nonetheless implicitly highlight different interpretations of the numerical flux.
The following subsections present two formulations of the Roe scheme: the first is the simple wave form,
which typically characterizes numerical fluxes associated with simple approximate Riemann solvers,
and the second is the artificial viscosity form, which encompasses a wider class of numerical schemes,
that are not Godunov-type methods for instance. In particular, the Roe flux can be regarded as a
stabilization of the simple centered scheme with a matrix-valued dissipation, which in addition allows
for sharp capture of discontinuities without oscillations.
To this aim, we provide details regarding the derivation of the relation between the approximate
Riemann problem and the expression of the numerical flux, but also for the equivalence between these
two formalisms. The analysis presented in these sections introduces fundamental concepts, which are
used in next chapters, to establish a unified formalism for the Roe and HLLC schemes.
The section first indicates how to build the exact solution ωRoe of the approximated Riemann problem
(2.2) using the linear hyperbolic theory. Then, the Godunov method is applied using ωRoe in order to
examine and to identify common features and differences with the Roe scheme.

2.2.1 . The simple wave form for the Roe scheme
Considering the approximate Riemann problem obtained by the Roe method, the problem involves a
Jacobian matrix with constant coefficients

∂tw +ARoe(w̃,n)∂ξw = 0

w(0, ξ) =

{
wl If ξ < 0

wr If ξ > 0

,

where the solution can be constructed using the spectral properties of ARoe(w̃,n). Introducing the
eigenvalues and the left and right eigenvectors denoted as follows

for 1 ≤ k ≤ d+ 2

{
l̃kA

Roe(w̃,n) = l̃kλ̃k

ARoe(w̃,n)r̃k = λ̃kr̃k

L̃, R̃ ∈ R(d+2)×(d+2)

R̃ L̃ = L̃ R̃ = Id+2 = diag(1, ..., 1)
, (2.5)

the eigenvalues are indexed in an increasing order with especially λ̃2 with multiplicity d, the columns
of the matrix R correspond to the right eigenvectors (r̃k)k=1,...,d+2, whereas the rows of L represent
the left eigenvectors (l̃k)k=1,...,d+2. For the sake of brevity, the dependence on the average state w̃

for the eigenvectors is omitted in (2.5). From the linear hyperbolic theory, the exact solution of this
approximate Riemann problem is a self-similar solution which can be formulated as

ωRoe(
ξ

t
;wl,wr,n) =



wl if
ξ

t
< λ̃1

w∗
l if λ̃1 <

ξ

t
< λ̃2

w∗
r if λ̃2 <

ξ

t
< λ̃d+2

wr if λ̃d+2 <
ξ

t

. (2.6)

The structure of the solution involves three simple waves separating four constant states, and which are
associated with the three characteristic speeds λ̃1, λ̃2 and λ̃d+2. As long as the hyperbolicity condition
holds, the characteristic approach can be applied and therefore the two intermediate states w∗

l and
w∗

r are derived from the spectral properties of ARoe. By decomposing the jump of the conservative
variables in the eigenvectors basis (r̃k)k=1,...,d+2

∆w = (wr −wl) = R̃ α̃ ⇔ α̃ = L̃∆w , (2.7)
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the expressions of w∗
l and w∗

r are deduced from the associated coordinates α̃ = (α̃k)k=1,...,d+2 and the
structure of the approximate Riemann problem (2.6). Indeed, by introducing in the left-hand side of
(2.7) the different jumps for the conservative variables occurring in the fan waves (2.6), and expanding
the right-hand side as follows

∆w = (w∗
l −wl) + (w∗

r −w∗
l ) + (wr −w∗

r) = R̃ α = α̃1r̃1 +
d+1∑
k=2

α̃kr̃k + α̃d+2r̃d+2,

then, the different jumps of the conservative variables can be associated with their simple waves, as
indicated next

∆w = (w∗
l −wl) + (w∗

r −w∗
l ) + (wr −w∗

r)

= α̃1r̃1 +

d+1∑
k=2

α̃kr̃k + α̃d+2r̃d+2

. (2.8)

The expression (2.8) clearly exhibits the change of rate between the conservative states across each
wave, and consequently identifies the explicit path connecting wl to wr in the fan waves (2.6). There-
fore, the expressions for w∗

l and w∗
r are deduced from (2.7). There are three equivalent definitions to

express the intermediate states (w∗
l ,w

∗
r). We shall consider in the following

w∗
l = wl + α̃1r̃1 w∗

r = wr − α̃d+2r̃d+2 . (2.9)

To explicitly highlight the differences between the exact Riemann solver and the Roe solver, the
original Godunov method is first formulated for the approximate Riemann problem (2.2). Although
the approach leads to an inappropriate numerical flux FGod−ARoe which does not correctly discretize
the original problem (2.1), its extension to the original problem (2.1) is instructive. Specifically, the
extension of FGod−ARoe to the original problem (2.1) provides a simple interpretation of the numerical
flux FRoe. The Godunov flux for the linearized problem (2.2) is given by

FGod−ARoe
(wl,wr,n) =


ARoe(w̃,n)wl if 0 < λ̃1

ARoe(w̃,n)w∗
l if λ̃1 < 0 < λ̃2

ARoe(w̃,n)w∗
r if λ̃2 < 0 < λ̃d+2

ARoe(w̃,n)wr if λ̃d+2 < 0

, (2.10)

where the exact solution ωRoe is directly used in the flux function associated with the linearized
problem. The structure of the expression (2.10) is referred to as the simple wave form, as it consists
of simple discontinuities. This designation arises because the value of the numerical flux is uniquely
determined by ωRoe with respect to the orientation of the fan waves. Although (2.10) defines a
consistent numerical flux with the initial Riemann problem (2.1), yet it fails to satisfy the standard
requirement for an upwind scheme. Indeed, assuming a supersonic flow, where all eigenvalues are
positive (i.e. 0 < λ̃1), then the flux differs from the value f(wl,n). To fit the expression of the
numerical flux (2.10) with the initial Riemann problem, the first requirement is to enforce the standard
definition of an upwind flux. Additionally, it is necessary to modify the intermediate terms in (2.10)
in order to maintain the jump conditions across each wave, which were originally satisfied. The Roe
flux thus reads

FRoe(wl,wr,n) =


f(wl,n) if 0 < λ̃1

f∗
l · n if λ̃1 < 0 < λ̃2

f∗
r · n if λ̃2 < 0 < λ̃d+2

f(wr,n) if λ̃d+2 < 0

. (2.11)
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The two intermediate fluxes (f∗
l · n,f∗

r · n) must be chosen in order to guarantee locally each jump
condition, and therefore, globally the conservation condition

∆f(w,n) = ARoe(w̃,n)∆w =
d+2∑
k=1

λ̃kα̃kr̃k

= λ̃1(w
∗
l −wl) + λ̃2(w

∗
r −w∗

l ) + λ̃d+2(wr −w∗
r)

. (2.12)

These two expressions can be derived either by expanding the left- and right-hand sides of (2.12) across
each wave, as similarly performed for the intermediate states (2.8). Otherwise, this can be done in a
more straightforward manner, by noticing that the following relationships hold from (2.9)

ARoe(w̃,n)w∗
l = ARoe(w̃,n) (wl + α̃1r̃1) = ARoe(w̃,n)wl + λ̃1α̃1r̃1

ARoe(w̃,n)w∗
r = ARoe(w̃,n) (wr − α̃d+2r̃d+2) = ARoe(w̃,n)wr − λ̃d+2α̃d+2r̃d+2

, (2.13)

and applying the same substitutions in (2.13) as those employed in (2.10). This can be concisely
expressed in the definition of the Roe flux as follows

FRoe(wl,wr,n) =


f(wl,n) if 0 < λ̃1

f(wl,n) + λ̃1 (w
∗
l −wl) if λ̃1 < 0 < λ̃2

f(wr,n)− λ̃d+2 (wr −w∗
r) if λ̃2 < 0 < λ̃d+2

f(wr,n) if λ̃d+2 < 0

. (2.14)

2.2.2 . The artificial viscosity form of the Roe scheme
It is noteworthy that the Roe flux is not frequently discussed in the literature using the simple wave
form. However, this is a more appropriate formalism for a comparative study between the Roe and
HLL-type schemes. In contrast, the formulation of the Roe flux is more frequently introduced as an
artificial viscosity method [68,69], expressing explicitly a correction stabilizing the centered discretiza-
tion, which is inherently unstable for convective equations. Although these two potential mathematical
interpretations of the Roe flux are equivalent, the artificial viscosity form provides a larger framework
enabling algebraic comparisons between different schemes [70]. In the following, the derivation of the
artificial viscosity form is carried out by starting from expressions (2.11) and (2.13), and writing it as
a first-order upwind scheme

FRoe(wl,wr,n) = f(wl) · n+
d+2∑
k=1

λ̃−
k α̃kr̃k = f(wr) · n−

d+2∑
k=1

λ̃+
k α̃kr̃k ,

where the exponents ± denote the positive ·+ and negative part ·− of a scalar quantity

a+ = max(a, 0), and a− = min(a, 0) .

By averaging the two expressions of FRoe(wl,wr,n), and using a+ − a− = |a| to simplify the result,
the following conservative formulation for the numerical flux is obtained:

FRoe(wl,wr,n) =
f(wl) · n+ f(wr) · n

2
− 1

2

d+2∑
k=1

|λ̃k| α̃kr̃k

=
f(wl) · n+ f(wr) · n

2
− 1

2
|ARoe(w̃,n)|∆w

.

This gives the commonly used expression for the Roe scheme. The expressions of the numerical
dissipation of Godunov-type methods are of particular interest, as depending on the definition of the
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numerical dissipation, valuable properties could be enforced into the scheme [68,71,72]. In particular,
Godunov-type methods highlight an appropriate amount of numerical dissipation allowing to obtain
efficient shock-capturing methods that are monotone and easily comparable to other schemes.
However, in contrast to the previous derivation of FRoe, it is also interesting to examine the viscosity
matrix associated with the Godunov flux for the linearized system, since this provides insight between
the two approaches. Therefore, the Roe flux is once again derived as an extension required to make
consistent the expression of the numerical flux FGod−ARoe with the initial problem.
Following the characteristic approach [31], the approximate solution ωRoe in (2.2) is equivalently
rewritten in a more compact form. In order to proceed, the left and right conservative states are
projected on the eigenvector basis (r̃k)k as done in (2.7), and the coordinates of the jumps of the
conservative variables are written as α̃k = α̃kr − α̃kl . By expressing the solution ωRoe and using the
left and right coordinates in the right eigenvector basis, the numerical flux can be also formulated as

FGod−ARoe
(wl,wr,n) = ARoe(w̃,n) ωRoe(0+;wl,wr,n) =

d+2∑
k=1

α̃lk λ̃
+
k r̃k +

d+2∑
k=1

α̃rk λ̃
−
k r̃k .

This expression further simplifies using the hyperbolicity of the matrix ARoe, resulting in

FGod−ARoe
(wl,wr,n) = = ARoe(w̃,n)+wl + ARoe(w̃,n)−wr , (2.15)

which highlights the upstream differencing behavior of the flux. The expression of the Godunov flux
associated with the linearized Riemann problem is reformulated as a centered term corrected by a
viscosity matrix

FGod−ARoe
(wl,wr,n) = ARoe(w̃,n)

(
wl +wr

2

)
︸ ︷︷ ︸

centered term

− 1

2
|ARoe(w̃,n)| (wr −wl)︸ ︷︷ ︸

matrix-valued dissipation

, (2.16)

where the artificial viscosity introduced by the Godunov method is clearly expressed for a problem
defined with a matrix of constant coefficients. To correlate this expression to the original Riemann
problem (2.1), the expression (2.16) must be adapted. As previously mentioned, for a supersonic flow
where all eigenvalues are positive (i.e. 0 < λ̃1), the expression (2.16) reduces to ARoe(w̃,n)wl, because
of

ARoe(w̃,n)(wl +wr) = ARoe(w̃,n)+(wl +wr) ,

−|ARoe(w̃,n)|∆w = −ARoe(w̃,n)+(wr −wl)
.

These relationships suggest to modify the centered term of (2.16), this gives

FRoe(wl,wr,n) =
f(wl,n) + f(wr,n)

2
− 1

2
|ARoe(w̃,n)|∆w , (2.17)

and by using the conservation condition, it can be observed that the above expression recovers the
correct behavior for supersonic flows. Expressions (2.16) and (2.17) show that, the Godunov flux
applied for the linearized problem and the Roe flux defined for the initial problem, are characterized
by an identical matrix-valued dissipation.

2.3 . Asymptotic behavior of the numerical dissipation

In this section, the analysis is limited to the two-dimensional case (i.e., d = 2) and subsonic flows. The
objective of this analysis is twofold: first, the modified equations associated with the first-order Roe

50



scheme are introduced; second, the asymptotic behavior of the scheme in the low-Mach number limit
is investigated. To this end, an asymptotic analysis of the matrix-valued dissipation due to Turkel
[11] is considered, as this framework analysis explains the failure of Roe-Type schemes to accurately
approximate low Mach number flows. This analysis is based on the study of the modified equations,
which have been widely considered in the literature (see, for instance, [10,43,73–75]). These equations
have been identified as a potentially valuable tool for gaining a deeper insight into the behavior of
the numerical scheme. This is related to the fact that these continuous equations, corresponding to
equations with second-order numerical viscosity terms, are approximated at the second-order in space
by the first-order scheme. These continuous equations are in general easier to manipulate than fully
discrete or semi-discretized equations.

2.3.1 . The truncation error of the Roe scheme
Considering a uniform Cartesian 2D mesh with a constant grid spacing h, the semi-discrete Roe scheme
in space can be formulated, after rearranging terms, in the following compact form

h dt(WI(t)) +
1

2

∑
J∈V(I)

(
f(wJ ,nIJ )− |ARoe(w̃IJ ,nIJ )|∆IJw

)
= 0, (2.18)

with the same notations introduced in (1.39), and ∆IJw = wJ −wI .
As indicated in Viozat’s thesis [43, Sec. 2.5], in the case of subsonic flows, the exact solution can
be assumed smooth and sufficiently differentiable, so that an analysis of the truncation error can be
performed. By replacing the exact solution in the discrete equation (2.18) and using Taylor expansions,
the truncation error in space for the Roe scheme is given by

ϵI =
h

2

(
∂x
(
|A(wI)| ∂xwI

)
+ ∂y(|B(wI)| ∂ywI

))
+O(h2), (2.19)

where A and B are the corresponding Jacobian matrices to the flux function. Then, in a uniform
Cartesian mesh, the first-order Roe scheme solves at the second order in space the following modified
equations

∂tw + ∂xf1(w) + ∂yf2(w) =
h

2

(
∂x
(
|A(wI)| ∂xwI

)
+ ∂y(|B(wI)| ∂ywI

))
, (2.20)

which, under some assumptions made for instance in [43, Sec. 2.5], could be simplified for some flows
into

∂tw + ∂xf1(w) + ∂yf2(w) =
h

2

(
|A(wI)| ∂2

x2wI + |B(wI)| ∂2
y2wI

)
. (2.21)

2.3.2 . Asymptotic behavior of matrix-valued dissipation schemes
The origin of the inaccuracy of the Roe scheme to approximate correctly low Mach number flows can be
easily understood from the analysis introduced by Turkel [11, 61], considering the modified equations
(2.21). In this section, we investigate the asymptotic behavior of the artificial viscosity introduced in
the right-hand side of the Euler equations (2.21), comparing with the asymptotic behavior of convective
and pressure terms on the left-hand side. As suggested by several authors, in order to greatly simplify
the analysis, the modified equations are first reformulated using a convenient change of variables based
on entropy [60,61,76,77], defined as follows

dw̃0 = (dΦ, du, dv, dS)T , (2.22)

where dΦ =
dp

ρc
is proportional to the pressure, and dS =

dp− c2dρ

ρc
to the entropy. Note that this

analysis can also be conducted using standard sets of variables, such as the compressible variables as
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outlined by Viozat [43], or the primitive variables as discussed by Miczek et al. in [12]. However, the
introduction of the symmetrizing variables (2.22) offers significant advantages, as it symmetrizes the
two Jacobian matrices and also substantially simplifies their expressions. We first begin by expressing
the modified equations associated with the first-order Roe scheme (2.21) in the entropic variables

∂tw̃0 + Ã0(w̃0)∂xw̃0 + B̃0(w̃0)∂yw̃0 =
h

2

(
|Ã0|∂2

x2w̃0 + |B̃0|∂2
y2w̃0

)
, (2.23)

where the Jacobian matrices in the x- and y-directions are expressed within the following similarity
transformations

Ã0(w̃0) = ∂ww̃0 A(w) ∂w̃0
w and B̃0(w̃0) = ∂ww̃0 B(w) ∂w̃0

w,

where the two matrices corresponding to the change of variables are given by

∂w w̃0 =



γ−1
2

|U |2
ρc (1− γ) u

ρc (1− γ) v
ρc

(γ−1)
ρc

−u
ρ

1
ρ 0 0

−v
ρ 0 1

ρ 0

1
ρc

(
γ−1
2 |U |2 − c2

)
(1− γ) u

ρc (1− γ) v
ρc

(γ−1)
ρc


, ∂w̃0

w =



ρ

c
0 0

−ρ

c

ρu

c
ρ 0

−ρu

c

ρv

c
0 ρ

−ρv

c

ρH

c
ρu ρv

−ρ

c

|U |2

2


. (2.24)

Next, to simplify the analysis, a general expression of the Jacobian matrix is used with

Ã0(n) = nxÃ0(w̃0) + nyB̃0(w̃0) =



Un cnx cny 0

cnx Un 0 0

cny 0 Un 0

0 0 0 Un


, (2.25)

where n is an arbitrary unit vector n = (nx, ny)
t. As it can be observed, the symmetrizing variables

have the advantage of yielding sparse and simple expressions. Then, upon substitution of n by one of
the two canonical vectors of R2 in (2.25), we recover the expressions of the Jacobian matrix in the x-
or y-direction. In order to derive the absolute value of the two artificial viscosity matrices arising in
the right-hand side of equation (2.23), we consider the following diagonalisations

|Ã0(w̃0)| = ∂ww̃0

[
Rx|Λx|Lx

]
∂w̃0

w and |B̃0(w̃0)| = ∂ww̃0

[
Ry|Λy|Ly

]
∂w̃0

w,

where the two matrices Λx and Λy are the diagonal matrices of the eigenvalues of the Jacobian matrices
Ã0 and B̃0, respectively.

Λx = diag(u− c, u, u, u+ c) and Λy = diag(v − c, v, v, v + c).

Hence, for the Jacobian matrix expressed with (2.25), we get the diagonalization |Ã(w)(n)| = R(n)|Λ(n)|L(n)

(see for instance the section 18.5 in [33]). Then, using this general formalism, the eigenvectors in en-
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tropic variables are given by

R̃0(n) =



c c 0 0

cnx −cnx −ny 0

cny −cny nx 0

0 0 0 1


, and L̃0(n) =



1

2c

nx

2c

ny

2c
0

1

2c
−nx

2c
−ny

2c
0

0 −ny nx 0

0 0 0 1


. (2.26)

where R̃0(n) and L̃0(n) are respectively the matrices of the right and left eigenvectors. So, the two
definitions of the artificial viscosity matrices in the x- or y-direction, respectively |Ã0| and |B̃0|, can
be derived from

|Ã0(n)| = R̃0(n)|Λ(n)|L̃0(n) =



c nxUn nyUn 0

nxUn c
(
n2
x + n2

y|Mn|
)

nxnyc (1− |Mn|) 0

nyUn nxnyc (1− |Mn|) c
(
n2
y + n2

x|Mn|
)

0

0 0 0 |Un|


, (2.27)

where Mn =
Un

c
is the directional Mach number. It is worth mentioning that the above expression is

restricted to subsonic flows, for which the explicit expression of the absolute value of the two acoustic
eigenvalues is known, with |Λ(n)| = diag(c − Un, |Un|, |Un|,Un + c). Looking at the physical terms of
the Euler equations, corresponding to the quasi-linear form of the left-hand side of (2.23) with matrix
Ã0(n) defined in (2.25), it can be shown that the matrix coefficients have the following asymptotic
behavior

Ã0(n) ≃



O(1) O( 1
M ) O( 1

M ) 0

O( 1
M ) O(1) O(1) 0

O( 1
M ) O(1) O(1) 0

0 0 0 O(1)


when M −→ 0. (2.28)

In contrast, regarding the right-hand side of (2.21), we see that the following asymptotic behavior is
found

|Ã0(n)| ≃



O( 1
M ) O(1) O(1) 0

O(1) O( 1
M ) O( 1

M ) 0

O(1) O( 1
M ) O( 1

M ) 0

0 0 0 O(1)


when M −→ 0. (2.29)

As pointed-out by Turkel [11], in the limit of the vanishing Mach number, it can be observed that
the modified equations (2.21) are characterized by unbalanced coefficients between the convective and
pressure terms and the entries of the matrix dissipation. This is illustrated in more details in the
following, for the case of the Roe scheme, or more generally for any scheme using the flux Jacobian
matrix as matrix-valued dissipation. It is shown that unbalanced entries of the matrix dissipation may
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cause either excessive or insufficient amount of dissipation, as illustrated for instance with(
|Ã0(n)|

)
1,1

≫
(
Ã0(n)

)
1,1

and
(
|Ã0(n)|

)
1,2

≪
(
Ã0(n)

)
1,2

.

As shown by Viozat in [43] (lemma 2.5.1), by taking into account the asymptotic behaviors of these
matrix coefficients and expanding the modified equations (2.23), it can be observed that, for a fixed
mesh, a decrease in the Mach number results in an increase in the truncation error. This can be
pointed out for instance with the equation for the longitudinal velocity component by extracting the
scalar contributions in the second component:(

∂tw̃0

)
2
+
(
Ã0(e0)∂xw̃0

)
2
+
(
Ã0(e1)∂yw̃0

)
2
=

h

2

(
|Ã0(e1)|∂2

x2w̃0

)
2
+

h

2

(
|Ã0(e2)|∂2

y2w̃0

)
2
. (2.30)

We know from the asymptotic theory [11,48] that

Φ ≃ O(M), u ≃ O(1), v ≃ O(1). (2.31)

Hence, expanding the matrix-vector products in equation (2.30), the left-hand side behaves asymptot-
ically as follows

∂tu︸︷︷︸
O(1)

+
(

c︸︷︷︸
O(1/M)

∂xΦ︸︷︷︸
O(M)

+ u︸︷︷︸
O(1)

∂xu︸︷︷︸
O(1)

)
+
(

c︸︷︷︸
O(1/M)

∂yΦ︸︷︷︸
O(M)

+ v︸︷︷︸
O(1)

∂yv︸︷︷︸
O(1)

)
≃ O(1). (2.32)

In contrast, the behavior of the right-hand side of (2.30) is formally given by

h

2

(
|Ã0(e1)|∂2

x2w̃0

)
2
+

h

2

(
|Ã0(e2)|∂2

y2w̃0

)
2
≃ h

2
O(1/M). (2.33)

Then, equations (2.32 - 2.33) illustrate an incorrect scaling of the matrix-valued dissipation in com-
parison to the physical terms, thus resulting in a large increase of the truncation error.
Following Turkel in [11], a criterion for a consistent amount of dissipation can be determined by
introducing generic second-order terms in the right-hand side of the modified equations

∂tw̃0 + Ã0(w̃0)∂xw̃0 + B̃0(w̃0)∂yw̃0 = Qx(w̃0)∂
2
x2w̃0 +Qy(w̃0)∂

2
y2w̃0, (2.34)

where Qx and Qy represent some matrix-valued dissipations in the x- and y-directions, respectively.
More generally, such generic matrix dissipation can be expressed with Q(n) = nxQx + nyQy in a
manner analogous to Ã0(n). Then, expanding all matrix-vector products in (2.34), and looking at the
individual asymptotic behaviors of all terms, it is found that in the low Mach number limit, the entries
of a consistent matrix-valued dissipation should have the following behavior

Q(n) ≃



O( 1
M2 ) O( 1

M ) O( 1
M ) 0

O( 1
M ) O(1) O(1) 0

O( 1
M ) O(1) O(1) 0

0 0 0 O(1)


when M −→ 0. (2.35)

This outcome has been identified by Turkel as a necessary condition for the convergence of a general
preconditioner. Yet, this result actually indicates the maximum allowed dissipation for a matrix-valued
dissipation scheme discretizing the Euler equations. In the case of the Roe scheme, it can be observed
that the four central entries of the viscosity matrix |Ã0(n)| with the asymptotic behavior (2.28) exceed
the allowed limit given by (2.35). In addition, it is also notable that the pressure equation (first row)
demonstrates a lack of dissipation.
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2.4 . Different forms of the dissipation vector related to the artificial viscosity

Several possible formulations can be derived for the dissipation vector corresponding to the Roe scheme

FRoe(wl,wr,n) =
f(wl,n) + f(wr,n)

2
− 1

2
|ARoe(w̃, n)|∆w︸ ︷︷ ︸

dRoe

,

where dRoe denotes the dissipation vector associated with the matrix dissipation |ARoe| and the jump
of the conservative variables ∆w. In the following, three different formulations of the dissipation
vector dRoe, which have been used in the literature to introduce low-Mach number corrections to the
Roe scheme, are reminded for the two-dimensional case (d = 2). These different formulations were
considered in this Ph-D work to illustrate distinct discrete framework analyses. The first formulation
is a classical decomposition of the dissipation vector, allowing to better describe the influence of low
Mach number corrections on the wave structure of the Riemann problem. The second formulation
gives a more compact expression, leading to a more comprehensive framework analysis of the effect
of low Mach number corrections on discrete properties of the numerical solution in the incompressible
limit. A third formulation was developed especially for theoretical investigations, enabling an algebraic
comparison between different low Mach number corrections. This formulation turned out to be also
essential to introduce similar corrections to approximate Riemann solvers such as the Roe and HLLC
schemes. This latter point is discussed in detail in the last chapter.

2.4.1 . The Harten-Hyman form
The Roe scheme is not entropy stable and may fail to capture the entropy weak solution, as mentioned
in [3,66]. To address this issue, Roe prescribed the use of an empirical mechanism to easily control the
amount of numerical dissipation in the scheme. In this work, the first decomposition is referred to as the
Harten-Hyman form [66]. This was achieved with the objective of deriving a mechanism that controls
and avoids a vanishing numerical dissipation, commonly known as an entropy fix. This decomposition
is based on the hyperbolicity of the Roe matrix, which significantly simplifies the expression of the
dissipation vector, with no need of a diagonalization to define the absolute value of the Roe matrix, as
reminded below

dRoe = |ARoe(w̃,n)|∆w =

4∑
k=1

|λ̃k|α̃kr̃k. (2.36)

This expression reduces significantly the algebra required to compute the flux balance using the Roe
flux. The definition of the different terms arising in the decomposition (2.36) reads

λ̃1 = Ũn − c λ̃2 = Ũn λ̃3 = Ũn λ̃4 = Ũn + c , (2.37)

α̃1 =
∆p− ρ̃c̃∆Un

2c̃2
α̃2 = ∆ρ− ∆p

c̃2
α̃3 = ρ̃∆Ũt α̃4 =

∆p+ ρ̃c̃∆Un

2c̃2
, (2.38)

r̃1 =


1

ũ− c̃ nx

ṽ − c̃ ny

H̃ − c̃ Ũn

 r̃2 =


1
ũ
ṽ

|Ũ |2

2

 r̃3 =


0

−ny

nx

Ũt

 r̃4 =


1

ũ+ c̃ nx

ṽ + c̃ ny

H̃ + c̃ Ũn

 . (2.39)

In these expressions, Un = U · n and Ut stand for the normal and tangential velocity components,
respectively, and the tilde symbol previously introduced denotes the Roe average. In order to fully
describe the eigenspaces of the dissipation matrix ARoe(w̃, n), we also give the corresponding left
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eigenvectors, with the following expressions

l̃1 =



Ũn

2c̃
+

γ − 1

4

|Ũ |2

c̃2

−nx

2c̃
− γ − 1

2

ũ

c̃2

−ny

2c̃
− γ − 1

2

ṽ

c̃2

γ − 1

2c̃2



t

l̃2 =



1− γ − 1

2

|Ũ |2

c̃2

(γ − 1)
ũ

c̃2

(γ − 1)
ṽ

c̃2

−γ − 1

c̃2



t

l̃3 =


−Ũt

−ny

nx

0



t

l̃4 =



−Ũn

2c̃
+

γ − 1

4

|Ũ |2

c̃2

nx

2c̃
− γ − 1

2

ũ

c̃2

ny

2c̃
− γ − 1

2

ṽ

c̃2

γ − 1

2c̃2



t

. (2.40)

As can be observed in (2.36 - 2.37), near the sonic point, one of the acoustic eigenvalues (λ̃1, λ̃4) tends
to zero, and is thus responsible of a vanishing contribution in the sum (2.36). In [66], in order to
prevent the entropic instability of the Roe scheme, a so-called entropy fix was proposed based on a
local regularization of the absolute value of λ̃1 and λ̃4 with a continuous differentiable approximation,
as indicated next with

Ψ(|λ|) =


|λ| if |λ| ≥ δh (no regularization)

λ2 + δ2h
2δh

if |λ| < δh

, (2.41)

where δh is an empirical parameter, adjustable according to the case and is commonly introduced as a
percentage of the spectral radius of |ARoe|. Modifying the acoustic eigenvalues introduces an artificial
viscosity into the scheme, and therefore contributes to define an approximation of a viscous problem.
This idea has been widely studied in the literature, and has demonstrated relevance and efficiency. It
is common practice to control and introduce more numerical dissipation in the scheme thanks to this
type of correction. Numerous formulations for the entropy fix have been proposed, see for instance
the review of Pelanti-Quartapelle-Vigevano [67]. Note that it is a common practice to also apply the
entropy fix on the intermediate eigenvalues (λ̃2, λ̃3), for preventing the occurrence of the carbuncle
phenomena in high-Mach number flows or instabilities near the stagnation point.

The decomposition (2.36) has been considered by numerous authors, including [7, 25, 78–81] among
others, with the purpose of introducing a modified dissipation vector dRoe−X , corrected by a X-
correction, improving the accuracy of the Roe scheme for low-speed flows. In general, the correction
entails modifications in terms (α̃k, λ̃k, r̃k)k. Practically, this offers the advantage of a straightforward
implementation, as it requires only minor adjustments to the original routine, keeping a strong similar-
ity with the original Roe scheme. Nevertheless, this simplicity can be misleading. Indeed, substituting
one of the terms (α̃k, λ̃k, r̃k)k results in the definition of a new viscosity matrix that differs from the
original one |ARoe|. Specifically, such modifications yields a new matrix-valued dissipation:

dRoe−X = |D(w̃,n)|∆w ,

and then, this modification raises questions about the consequences on the spectral properties of
the viscosity matrix |D|, in particular regarding the formulation of the entropy fix. This should be
generally applied with care since the question is not frequently addressed in the literature, except in
few papers [13, 82].

2.4.2 . The Liu-Vinokur form
The second decomposition has been popularized in the work of Weiss-Smith [14], in which a precon-
ditioning method was derived for the unsteady compressible Navier-Stokes equations. This explains
why this form is sometimes referred to as the Weiss-Smith form in the literature, although this is not
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correct. Indeed, as accurately pointed-out by Hope-Collins-Di-Mare in [75], this decomposition has
been first introduced by Liu-Vinokur in [83]. Li-Gu in [21] have developed an interesting and relevant
framework to study low Mach number corrections for the Roe scheme, based on the following decom-
position of the dissipation vector, involving simple expressions and providing a physical interpretation.
After some algebra, the dissipation vector can also be expanded as follows

dRoe = |Ũn|


∆ρ
∆ρu
∆ρv
∆ρE

+ δUn


ρ̃
ρ̃ũ
ρ̃ṽ

ρ̃H̃

+ δp


0
nx

ny

Ũn

 . (2.42)

As it can be observed, this expression introduces a concise decomposition of dRoe, as the formulation
reduces to a sum of three vectors instead of four regarding the Harten-Hyman form (2.36). As described
in [14, 21], the dissipation vector may be read as the sum of a basic upwind term, a velocity interface
term and a pressure interface term, respectively. The three scalar coefficients arising in decomposition
(2.42) are respectively the absolute value of the normal velocity at the cell interface, denoted as |Ũn|,
and the two last coefficients δUn and δp are simply expressed as follows

δUn = (
|λ̃4|+ |λ̃1|

2
− |λ̃2|)

∆p

ρ̃c̃2
+ (

|λ̃4| − |λ̃1|
2

)
∆Un

c̃

δp = (
|λ̃4|+ |λ̃1|

2
− |λ̃2|)ρ̃∆Un + (

|λ̃4| − |λ̃1|
2

)
∆p

c̃

, (2.43)

with the absolute values of the eigenvalues. The form (2.42 - 2.43) has several interests. First this
decomposition provides a compact expression, as it requires less algebraic operations than the Hathen-
Hyman form (2.36 - 2.39) to be evaluated. Second, Li-Gu have shown that this expression can be used to
introduce a comprehensive framework analysis for the study of low-Mach corrections of the Roe scheme.
Indeed, in [21], fifteen low-Mach corrections were proposed, and have been all reformulated within the
unified formalism (2.42 - 2.43), allowing preliminary investigations of the discrete properties of their
respective low Mach corrections. All these proposed corrections of the Roe scheme were respectively
reinterpreted as a simple modification of the scalar coefficients (|Ũn|, δUn, δp). The noteworthy feature
of such approach is to provide a very clear and suitable formalism, allowing to easily review but also
to compare different corrections in order to investigate their corresponding discrete properties in the
low Mach number limit, as illustrated in a next section.

2.4.3 . The matrix form
This third decomposition starts from the matrix-valued dissipation form, expanding all terms of the
dissipation vector dRoe into jumps of some dependent primitive variables. This arbitrary choice of
dependent variables is made considering the jumps that naturally emerged in the definition of the
coordinates α̃ = (α̃k)k. This formulation does not appears particularly interesting for the evaluation
of the Roe flux in comparison with the two previous decompositions (2.36) and (2.42), but on the
other hand, is of particular interest for a more theoretical study of the dissipation vector. A similar
formulation has been considered by Rossow [26, 27] to compare different schemes, and especially for
deriving a low-Mach correction of the Roe scheme, termed as the artificial speed of sound approach,
discussed in the next section and thoroughly analyzed in the chapter 3. For this formulation, the
dissipation vector is expressed as the following matrix-vector product

dRoe = MRoe(w̃, n)


∆ρ

∆U
∆Un

∆p

 , (2.44)
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where the matrix MRoe is defined by

MRoe =



|Ũn|

|Ũn|ũ

|Ũn|ṽ

|Ũn||Ũ |2

2

0

|Ũn|ρ̃

0

|Ũn|ρ̃ũ

0

0

|Ũn|ρ̃

|Ũn|ρ̃ṽ

ρ̃B

c̃

ρ̃ũB

c̃
+Aρ̃nx

ρ̃ṽB

c̃
+Aρ̃ny

ρ̃H̃B

c̃
+Aρ̃Ũn

A

c̃2

Bnx

c̃
+

Aũ

c̃2

Bny

c̃
+

Aṽ

c̃2

BŨn

c̃
+

AH̃

c̃2
+

|Un|
γ − 1


, (2.45)

with coefficients A and B already observed in the definition of the Liu-Vinokur form (2.42 - 2.43)

A =
|λ̃1|+ |λ̃4|

2
− |λ̃2| B =

|λ̃4| − |λ̃1|
2

. (2.46)

2.5 . Two interesting rescaling of the numerical dissipation

It is of great importance to pursue the analysis of some published low Mach extensions of the Roe
scheme, as originally undertaken in the work of Li-Gu [21], in order to provide a more comprehensive
and a finer analysis. Indeed, despite decades of active research and numerous proposals for low Mach
number corrections for the Roe scheme, with in particular new corrections still being reported in
recent years, resolving the accuracy problem remains a challenging topic especially when no mesh
considerations are introduced. The challenge lies in resolving this problem without introducing side
issues, that too frequently affect the efficacy of the numerical methods to provide accurate solution
in the general case. It has been found essential to try to summarize this topic, given the somewhat
disorganized state of the literature on the subject presenting a large scattering of the formulations,
whereas the underlying numerical mechanisms are not yet fully mastered.
This section presents two interesting corrections of the Roe scheme, considering the Liu-Vinokur form,
that have been already published in the literature. The following corrections are reviewed in a common
framework as a starting point of this thesis work: the Rieper’s fix [25] and the Rossow’s artificial speed
of sound approach [27]. The underlying objective of this presentation is to illustrate that a multitude
of corrections proposed for the Roe scheme can be essentially categorized into two distinct approaches,
which effectively resolve the accuracy problem. On the one hand, corrections that amplify the pressure
jumps (for instance the Rossow’s artificial speed of sound), and, on the other hand, corrections that
reduce the normal velocity jumps (like the Rieper’s fix).
In addition, some computations considering a baseline test case were performed as a first assessment of
these two corrections. The objective was to investigate the impact of such corrections on the capture
of shock waves in the compressible regime and the overall accuracy of the discrete solutions, in direct
comparison with solutions obtained with the original Roe scheme. It should be noted that, this has
already been discussed in the literature to some extent, since these two corrections have been used
in numerous papers, thereby demonstrating their efficiency in the compressible regime. Nevertheless,
these results are also presented here to illustrate the practical application of an efficient implicit scheme
based on the use of Automatic Differentiation [28], which has required a significant effort during the
first year of this Ph-D work. Indeed, as illustrated below, by combining this development with a
local time-stepping method and a pseudo-transient continuation method, steady-state solutions can
be obtained with quadratic convergence due to an adaptive and progressively increasing CFL. All
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these developments and the rigorous stability condition discussed in chapter 3 are of a significant
importance in this work, as it has greatly facilitated a series of numerical investigations. In particular,
the numerical assessments carried out in the compressible regime, presented in the following, turned
out to be useful to discuss of a third approach, that was investigated in this thesis work. Although
this investigated third approach is interesting, as it effectively addresses the accuracy problem, it also
proved to be unsatisfying due to an excessively modified dissipation vector. This latter point will be
discussed in the last subsection.

2.5.1 . The Roe scheme
In order to provide more compact expressions, the definitions of the normal interface velocity δUn and
the interface pressure δp introduced in (2.43) for the Roe scheme, are first reformulated as(

δUn

δp

)
=

( B
c̃

A
ρ̃c̃2

Aρ̃ B
c̃

)(
∆Un

∆p

)
,

with the two coefficients A and B defined in (2.46). Next, the discrete asymptotic properties of modified
Roe schemes can be derived using this compact form, with a particular attention paid to the asymptotic
behavior of the semi-discretized scheme in space, following the approach of Guillard-Viozat [7]. The
comparison of these modified Roe schemes with the original scheme is performed based on the analysis
of coefficients (δUn, δp). This allows avoiding a redundant and lenghty presentation of the detailed
discrete analysis already published in the literature (see [7] or [25]), which are additionally discussed
in chapter 3 devoted to the discrete analysis of the properties of the Roe-Rossow scheme.
Using the standard normalization process at the incompressible time-scale, introduced in section 1.4.1,
the normalized dissipation vector can be expressed as follows

d̂ = |Ũn|

 1 0 0
0 1 0
0 0 1

 ∆ρ
∆(ρU)
∆(ρE)

+ δǓn

 1 0 0
0 1 0
0 0 1

 ρ̃

ρ̃Ũ
ρ̃H̃

+ δp̌

 0 0 0
0 1 0
0 0 ϵ

 0
n

Ũn

 , (2.47)

where ϵ denotes the reference Mach number arising from the normalization process, and (δǓn, δp̌) are
two coefficients defined with the normalized quantities (δÛn, δp̂) not given herein. All terms arising in
the right-hand side of (2.47) are normalized quantities, and where for the sake of brevity, the symbol ·̂
previously introduced for the description of normalized quantities has been omitted. The normalization
process applied to the Roe flux expressed with the Liu-Vinokur form yields the following expressions
for the two scalar coefficients

(Roe) δǓn =
1

ϵ
(1− ϵ

|Ũn|
c̃

)
∆p

ρ̃c̃
+ ϵ

Ũn∆Un

c̃
δp̌ =

1

ϵ

Ũn∆p

c̃
+

1

ϵ
(1− ϵ

|Ũn|
c̃

)ρ̃c̃∆Un . (2.48)

These reference expressions will be next compared to the modified Roe schemes introduced in the
following sections.

Some computations were performed for the NACA0012 airfoil, at inflow Mach number M = 0.85 with
incidence α = 1°, in a structured C-type mesh with 279x60 nodes, represented in Fig.2.1a, with 151
nodes discretizing the solid wall. A usual slip condition is applied at the wall. Due to the reduced
extension downstream of the computational mesh (20 chords), a subsonic outflow condition is imposed
with a prescribed pressure. Finally, at the inlet boundary, a characteristic farfield boundary condition
is applied.
A computation was first performed for a reference solution, corresponding to the Roe scheme using
a second-order MUSCL reconstruction with the van Albada limiter, also referred to as "Roe MUSCL
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O(2)" in the figures. Note that no entropy fix needed to be activated in these computations, neither
in the next cases for the Rieper’s fix nor for the artificial speed of sound.
Figure 2.1b shows the Mach number contours of the discrete solution. Figure 2.1c illustrates the
convergence history of the l2-norms of the normalized explicit residuals with respect to the evolution
of the CFL value, as depicted by the red curve. Considering a uniform initial condition, a local
time stepping method combined with an adaptive CFL is applied in order to quickly converge to the
steady-state solution. The detailed formulation of the adaptive CFL strategy is given in chapter 3.
The computation is initially set to a CFL = 6 (higher value results in unstabilities that could not
be damped). At a prescribed iteration 15, the adaptive CFL starts with a prescribed CFL = 20. In
the following iterations, the normalized residuals decrease, resulting in a progressive increase of the
CFL number around the 400th iteration, which then begins to fluctuate. At the 600th iteration, the
CFL number suddenly increases, from 25 to 110 at the 800th iteration. This indicates the beginning
of a quadratic convergence to the zero machine precision, with very large values of the CFL number
reached.
Next figures 2.1d and 2.1e depict the entropy S and Mach number distributions at the solid wall.
It can be observed that a spurious entropy is produced at the stagnation point, in addition of the
usual increase in entropy across the shock waves. By increasing the space accuracy of the scheme, an
expected significant reduction of the spurious entropy can be observed, together with a less dissipated
numerical shock structure, in comparison with the first-order Roe scheme (denoted as "Roe O(1)" in
the figures), with a sharper shock waves as shown in Fig. 2.1e.

(a) C-type mesh for the NACA0012 (b) Vertex-centered contours of the Mach number in
the vicinity of the airfoil
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(c) Convergence history for residuals and the CFL

(d) Production of spurious entropy at the wall (e) Mach number at the wall

Figure 2.1: Roe scheme with MUSCL reconstruction O(2), NACA0012 airfoil at M = 0.85 α = 1°

2.5.2 . The Rieper’s fix
The Rieper’s fix [25] (also referred to as the Roe-Rieper scheme in the manuscript) is a well-documented
correction in the literature that emerged in the pursuit of the pioneering works of Guillard-Murrone [84],
Thornber [85] and Dellacherie [10, 20, 86]. The original formulation was developed using the Harten-
Hyman form (2.36 - 2.39), with the objective to cancel out the contribution of the directional velocity
jump ∆Un in the low Mach number limit. This is achieved with the purpose of recovering asymptotically
a discrete divergence-free constraint in the discrete analysis, by simply modifying the definitions of the
coordinates α̃1 and α̃4 as follows

α̃1 =
∆p− ρ̃c̃z∆Un

2c̃2
, α̃4 =

∆p+ ρ̃c̃z∆Un

2c̃2
,
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where z is a low Mach number fix. The Rieper’s fix can be readily reinterpreted within the Liu-Vinokur
decomposition, as demonstrated by Li-Gu [21], this reads for any flow regimes

(
δUn

δp

)
=

(
BRieper

c̃
A
ρ̃c̃2

ARieperρ̃ B
c̃

)(
∆Un

∆p

)
with


ARieper = z

|λ̃4|+ |λ̃1|
2

− |λ̃2|

BRieper = z
|λ̃4| − |λ̃1|

2

, (2.49)

where z is interpreted as a rescaling coefficient, defined as a local interface Mach number with z =

min( |Ũn|+|Ũt|
c̃ , 1). The discrete analysis conducted by Rieper [25] for the compressible Euler equations,

assuming a perfect gas, clearly shows that the absence of an asymptotically centered pressure gradient
p(1) in the momentum equations is responsible for the incorrect order of the pressure disturbance
(see for instance equations (U (0)) and (E(0)) above the section 2.3 in [25]). The main feature of this
approach consists in delaying the first occurrence of these dissipative terms in the asymptotic expansion
by introducing a rescaling coefficient z to let the pressure gradient p(1) in the momentum equations
without any dissipation at the order O(1/ϵ). Indeed, for subsonic flows, the two normalized scalar
coefficients for the Rieper’s fix are given by

(Rieper) δǓn =
1

ϵ
(1− ϵ

|Ũn|
c̃

)
∆p

ρ̃c̃
+ ϵ2 z

Ũn∆Un

c̃
, δp̌ =

1

ϵ

Ũn∆p

c̃
+ (z − |Ũn|

c̃
)ρ̃c̃∆Un, (2.50)

where the contributions of the term ∆Ûn in the coefficient δp̌ has been reduced, in comparison to the
original Roe scheme (2.48). Note that an asymptotically centered pressure gradient p(1) would also
be achieved by maintaining the scalar coefficient δǓn unchanged. Nevertheless, this type of approach,
which asymptotically centers the pressure gradient, typically leads to the occurrence of checkerboard
mode problems [20, 21, 87], contaminating discrete solutions. Indeed, non-constant solutions, such as
four-field solutions, also satisfy a zero discrete gradient operator (see equation (32) and figure 1 in [7]).
In practice, this potential risk of pressure-velocity decoupling is often encountered, with a discrete
solution converging towards a non-physical solution, as it is demonstrated in the next chapter for the
steady-state problem.

Although this low-Mach correction introduces a simple modification of the Roe flux, it is also interesting
to look at the consequences on the asymptotic behavior of the modified artificial viscosity matrix, which
provides further insights into the correction. In particular, this indicates that relatively straightforward
modifications usually yield significant discrepancies in the matrix-valued dissipation for the modified
numerical flux

FRieper(wl,wr,n) =
f(wl,n) + f(wr,n)

2
− 1

2
|ARieper(w̃,n)|∆w

Following the analysis exposed in section 2.3.2, the matrix-valued dissipation can be formulated in the
entropic variables as follows

|ÃRieper
0 | =



c nxzUn nyzUn 0

nxUn n2
x(cz − |Un|) + |Un| nxny(cz − |Un|) 0

nyUn nxny(cz − |Un|) n2
y(cz − |Un|) + |Un| 0

0 0 0 |Un|


. (2.51)

From this modified expression of the original dissipation matrix (2.27), it is worth mentioning that the
symmetry of the original Jacobian matrix is lost in the subsonic regime. Moreover, it can be observed
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that, in the incompressible limit, this correction corresponds to the following asymptotic behavior of
the matrix dissipation

|ÃRieper
0 | ≃



O( 1
M ) O(M) O(M) 0

O(1) O(1) O(1) 0

O(1) O(1) O(1) 0

0 0 0 O(1)


. (2.52)

In comparison with the original asymptotic behavior of the original matrix-valued dissipation (2.29),
the Rieper’s fix reduces the contributions of the velocities in the continuity and momentum equations
by one order of magnitude, while maintaining the asymptotic behavior of the first column. This is
consistent with the observation that the correction only modifies the normal velocity jump as indicated
in (2.50).

The same NACA0012 airfoil test case was considered at inflow Mach number M = 0.85 with incidence
α = 1°. The Rieper’s fix shows few differences with original Roe scheme in the transonic regime, as
shown in the next Figures 2.2. A similar Fig.2.2a to the previous case illustrates the convergence
history of the l2-norms of the normalized explicit residuals with respect to the evolution of the CFL
value. The computation is again initially set to CFL = 6. Then, at iteration 15, the adaptive CFL
number starts with a prescribed CFL = 25. Similarly, the CFL value undergoes fluctuations around
the 400th iteration, followed by a sudden increase after the 500th iteration. In that case, the CFL
number takes values ranging from 30 to 100,000 between the 600th and the 700th iteration, resulting
in a quadratic convergence to the zero machine precision.
Figures 2.2b and 2.2c depict the entropy and Mach number distributions at the solid wall. In com-
parison to the previous results obtained with Roe scheme using the MUSCL extrapolation in Fig.2.1d,
Fig.2.2b shows that the Rieper’s fix produces slightly lower levels for the spurious entropy S. However,
in the case of the first-order scheme, Fig.2.2b illustrates clearly that the Rieper’s fix is characterized
by much less spurious entropy levels upstream of the shock waves than the original first-order Roe
scheme (see Fig. 2.1a). Figure 2.2c also shows that the numerical shock structure of the shock waves
computed by the Rieper’s fix is very similar to the Roe scheme.

(a) Convergence history for residuals and the CFL
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(b) Production of spurious entropy at the wall (c) Mach number at the wall

Figure 2.2: Roe-Rieper scheme with MUSCL reconstruction O(2), NACA0012 airfoil at M = 0.85
α = 1°

2.5.3 . The artificial speed of sound approach of Rossow
The Rossow’s artificial speed of sound approach [26,27] (also referred to as the Roe-Rossow scheme in
the manuscript) represents another type of low Mach number correction applied to the Roe scheme.
The formulation of the artificial speed of sound actually corresponds to a modified speed of sound
arising from a preconditioning method of the Jacobian matrix investigated by Turkel. This modified
speed of sound is also related to the Roe-Turkel scheme introduced in [7]. They are numerical evidence
thoroughly validated by Rossow [27], that this correction appears to be a promising candidate for use as
a foundation in this Ph-D work. To the best of our knowledge, the discrete properties of this modified
Roe scheme have not been derived in the literature. The following chapter 3 addresses in detail the
description and the discrete analyses of the Roe-Rossow scheme. Thus, this section only provides a
brief reinterpretation of the correction, without further derivations. This correction is also seen as an
alternative approach for low-Mach number corrections, formulated from different foundations than the
low Mach number fix introduced by Rieper. In the case of the artificial speed of sound approach, the
two scalar coefficients arising in the Liu-Vinokur form are given by the following expressions

(
δUn

δp

)
=

 B
c̃

1
c̃′c̃

A

ρ̃
c̃′

c̃
Aρ̃ B

c̃

(∆Un

∆p

)
with


α =

1

2
(1− β2)

β2 = min(max(M2,M2
ref ), 1)

c̃′ = c
√
α2M2

n + β2

and c̃′ ≤ c , (2.53)

with unchanged coefficients A and B given by (2.46), and where c′ is a rescaling coefficient corre-
sponding to the artificial speed of sound, substituting the original speed of sound c in δUn, while a
ratio between the artificial and the original speed of sound is introduced in δp by this correction. As
indicated in (2.53), the articial speed of sound is defined from the directional Mach number, a local
Mach number M and a reference Mach number Mref , which is a user-defined parameter in the entire
computational domain. This parameter is generally used as a cut-off value to circumvent instabilities
occurring near stagnation points [88], and should be defined with care, as it may significantly influence
the stability and the accuracy of the discrete solution. In this work, this reference Mach number was
set to a much smaller value than the inflow Mach number, and even to the order of magnitude of the
machine precision in most cases. Indeed, the definition of this cut-off value prevents singularities from
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configurations with a dead zone, which is typically characterized by a local Mach number equals to 0
(see for instance the normal velocity jump in the definition of δUn in (2.53)). By introducing the nor-
malized form of the vector dissipation, it can be observed that the correction is especially characterized
by the amplification of the pressure jumps, as outlined below

(Rossow) δǓn =
1

ϵ2
(1− ϵ

|Ũn|
c̃

)
∆p

ρ̃c̃′
+ ϵ

Ũn∆Un

c̃
, δp̌ =

1

ϵ

Ũn∆p

c̃
+ (1− ϵ

|Ũn|
c̃

)ρ̃c̃
′
∆Un. (2.54)

In comparison with the same coefficients formulated for the Rieper’s fix (2.50), in coefficient δǓn,
only the pressure jump ∆p is amplified by one order of magnitude in ϵ, whereas the normal velocity
jump ∆Un remains identical to the original formulation (2.48). Regarding the second coefficient δp̌,
the contribution of the pressure jump is unchanged and is identical for the two corrections and the
original Roe scheme, whereas the normal velocity jump ∆Un for the two modified Roe schemes exhibits
a similarity in the asymptotic order of the first term, and a difference in the asymptotic order of the
second term.
As demonstrated in chapter 3, the discrete analysis for the Roe-Rossow scheme shows clear similarities
with the Roe-Turkel scheme [7, 21], and the discrete properties of the Roe-Turkel scheme can be also
commented here to illustrate the following numerical assessment of the Roe-Rossow scheme. With the
rescaling proposed by Rossow, it can be observed from (2.54) that a non-centered pressure gradient for
the leading-order p(0) is obtained in the momentum equations at the order O(1/ϵ2). This is related to
the fact that the amplification of the pressure jump ∆p in coefficient δǓn accelerates the first occurrence
of the leading order pressure jumps in the asymptotic analysis, as previously observed in the discrete
analysis of the Roe-Turkel scheme (see equations (52) - (53) in Guillard-Viozat [7]). Therefore, this
second approach is fundamentally opposed to the centering of the pressure gradient p(1) at order O(1/ϵ),
since in that case, no centered pressure gradients in the asymptotic analysis are obtained.

It is also interesting to look at the asymptotic behavior of modified dissipation matrix according to
the Roe-Rossow scheme, because as indicated for the Rieper’s fix, this behavior provides some insights
regarding the effects of the correction on the spectral properties of the modified matrix dissipation in
the modified numerical flux

FRossow(wl,wr,n) =
f(wl,n) + f(wr, ,n)

2
− 1

2
|ARossow(w̃,n)|∆w

Following the analysis conducted in section 2.3.2, the matrix-valued dissipation formulated for the
symmetrizing variables has the following expression

|ÃRossow
0 | =



c
c′ (c− |Un|) + |Un| nxUn nyUn 0

nxUn n2
x
c′

c (c− |Un|) + |Un| nxny
c′

c (c− |Un|) 0

nyUn nxny
c′

c (c− |Un|) n2
y
c′

c (c− |Un|) + |Un| 0

0 0 0 |Un|


. (2.55)

In contrast to the Rieper’s fix (2.55), the symmetry of the original Jacobian matrix is preserved with
the introduction of the artificial speed of sound, and the following asymptotic behavior is found in the
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incompressible limit

|ÃRossow
0 | ≃



O( 1
M2 ) O(1) O(1) 0

O(1) O(1) O(1) 0

O(1) O(1) O(1) 0

0 0 0 O(1)


. (2.56)

In comparison with the original matrix-valued dissipation of the Roe scheme (2.29), the Roe-Rossow
scheme increases by one order of magnitude the contributions of the pressure jumps in the first equation,
while the dissipation in velocity equations is reduced by one order of magnitude, similarly to the
Rieper’s fix.

The same test case as considered in Fig.2.1 and Fig.2.2 was used as a preliminary assessment of the
Rossow’s artificial speed of sound approach. As observed with the Rieper’s fix, the Roe-Rossow scheme
also shows few differences with both the original Roe scheme and the Roe-Rieper scheme, as indicated
in Fig.2.3. Figure 2.3a illustrates the convergence history of the l2-norms of the normalized explicit
residuals with respect to the evolution of the CFL number. The adaptive CFL methodology is the
same as in the two previous cases and results in a similar behavior. The computation was initially set
to a CFL = 4.5, as a higher value would also result in an unstable computation. Next, at the iteration
10, the adaptive CFL starts with a CFL = 16. Similarly, the CFL value exhibits fluctuations around
the 300th iteration, followed by a sudden increase after the 600th iteration leading to a quadratic
convergence to the steady-state solution. In that case, in the quadratic phase of the convergence
history, the CFL number increases from 50 to a value exceeding 22,000 in about 100 iterations.
Looking at the entropy distribution in Fig.2.3b, we can see similar trends as previously observed with
the original Roe scheme and the Rieper’s fix. Note that the Roe-Rossow scheme also globally reduces
significantly the spurious entropy levels upstream of the shock waves for the first-order scheme, with
respect to the original Roe scheme in the same mesh. When considering the MUSCL extrapolation
using the van Albada limiter, we can see that the Roe-Rossow scheme (black symbols) produces almost
similar spurious entropy levels than the original Roe scheme (green symbols). The comparison with
the Rieper’s fix shows that the Roe-Rossow scheme generates somewhat higher spurious entropy levels
for both the first-order and the second-order schemes.
Figure 2.3c also shows that the numerical shock structure of the shock waves is also almost identical
to the Roe scheme and the Rieper’s fix.
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(a) Convergence history for residuals and the CFL

(b) Production of spurious entropy at the wall (c) Mach number at the wall

Figure 2.3: Roe-Rossow scheme with MUSCL reconstruction O(2), NACA0012 airfoil at M = 0.85
α = 1°

2.5.4 . Investigations into a third approach
The following section describes an attempt of formulating a novel low Mach number correction of the
Roe scheme, which, upon further analysis, appears interesting to be discussed in this chapter. However,
although promising discrete properties can be obtained, the accuracy of the proposed corrections has
been found to be less satisfactory than initially anticipated. This may be attributed to the fact
that the investigated correction deviates substantially from the theoretical framework proposed in the
literature, especially from the framework analysis introduced by Li-Gu [21] based on the Liu-Vinokur
decomposition, as shown in the following. Indeed, the modified dissipation vector is formulated using
some uncommon practices, which nonetheless turned out to have promising properties according to the
asymptotic discrete analysis. This modified dissipation vector ensures the correct pressure fluctuations
in the incompressible limit, and even the absence of pressure checkerboard mode problems for the
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two initial systems arising at the leading orders in the analysis. Nevertheless, the asymptotic discrete
analysis represents only one part of the study of low-Mach number corrections, as it does not address
the relations between terms within the dissipation vector.

As previously shown, the Rieper’s fix can be associated with an approach based on asymptotically
centering the pressure gradient p(1) in the momentum equations, at the order O(1/ϵ). In contrast,
the alternative approach originally formulated with the Roe-Turkel scheme, can be considered as a
discretization avoiding a centered pressure gradient p(0) at the order O(1/ϵ2), and consequently, also
at the order O(1/ϵ), for the pressure gradient of p(1). Here, the third approach is inspired by the
analysis of Guillard-Viozat (Lemma 3.1 in [7]), which demonstrates that checkerboard modes for p(0)

do not exist for the Roe scheme. By reproducing the appropriate asymptotic subsystems at the leading
orders O(1/ϵ2) and O(1/ϵ), the accuracy problem is solved while avoiding the existence of spurious
pressure checkerboard mode problems in the discrete solutions. To achieve the appropriate subsystems,
it is necessary to amplify some of the pressure jumps in the dissipation vector, in an analogous manner
to the Roe-Rossow and Roe-Turkel schemes, but here with the objective of centering asymptotically
the pressure gradients p(0) and p(1) in the momentum equations, as formulated below. This can be
easily achieved by introducing a modified dissipation vector such that:

d = |Ũn|


∆ρ
∆ρu
∆ρv
∆ρE

+
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n ρ̃
δURoe

n ρ̃ũ
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n ρ̃ṽ
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+ δpRossow


0
nx

ny

Ũn

 , (2.57)

where the coefficients (δURossow
n , δpRossow) are given by expressions (2.53), with the original coeffi-

cient δURoe
n in the momentum equations, defined in (2.43). In comparison with the fifteen corrections

studied by Li-Gu in [21], the definition of the dissipation vector (2.57) leads to unusual practices, as
it decouples the numerical dissipation by introducing two different scalar quantities for the normal
interface velocity δUn according to the equations. Using standard notations adopted by numerous au-
thors for the asymptotic discrete analysis (see chapter 3, section 3.2), the corresponding non-dimension
semi-discretized scheme in space for the incompressible limit can be formulated as follows
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ŨnIJ

c̃IJ
nIJ

)}]
= 0

68



h dt(ρIEI) +
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where the artificial speed of sound used by Rossow c̃′IJ and its effects in the normalization process are
evidenced in blue, and the reference Mach number ϵ is indicated in red. Note that, depending on the
initial terms constituting the dissipation vector, there are several possible equivalent formulations for
the dissipation, associated with the momentum and energy equations (2.59 - 2.60). The semi-discrete
scheme in space presented here is obtained by using the expressions of the Liu-Vinokur decomposition
and reformulating the jumps of the conservative variables in the first vector. This is performed using
a property of the Roe average for the momentum equations, with the following relation used in the
energy equations

∆(ρE) =
1

γ − 1
∆p +

|U |2∆ρ

2
+ ρU ·∆U .

Assuming that the solution can be expanded in power of the Mach number ε ≪ 1, and then inserting
this expression into the equations, we get the leading-order system at order O(1/ϵ2)
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The momentum equations in (2.61) entail the existence of spurious pressure checkerboard modes in
the solution, as both four-field pressures and a constant pressure p(0) are potential solutions of these
equations. However, following the proof given by Guillard-Viozat (Lemma 3.1 in [7]), the uniqueness of
a constant pressure in space p(0) can be established through the maximum principle, thereby eliminating
the possibility of spurious four-field pressure solutions. As observed in the normalized equations (2.58 -
2.60), all terms involved at the order O(1/ϵ) are proportional to the pressure jump ∆p. Consequently,
the system at the order O(1/ϵ) reduces to a previously found result
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Then, a similar result can be also obtained for p(1), thus demonstrating that the discrete solution
exhibits the correct order of pressure fluctuations in the incompressible limit.
With regard to the asymptotic analyses of the semi-discretized scheme in space, this approach is of
interest, as it solves the accuracy problem while also providing a numerical proof that the pressure
checkerboard mode problems on p(0) and p(1) do not exist, in accordance with the asymptotic behavior
of the vector dissipation.
However, an examination of the numerical results for this modified vector dissipation (2.57) highlights
significant discrepancies when compared to the original Roe-Rossow scheme for the same NACA0012
airfoil test-case. Indeed, Fig.2.4b shows a larger increase of spurious entropy produced at the stag-
nation point. Globally, the modified Roe-Rossow scheme displays higher entropy levels at the wall,
in comparison with the Roe scheme at the second-order accuracy in space. The corresponding Mach
number distribution is compared in figure 2.4b.

(a) Convergence history for residuals and the CFL

(b) Production of spurious entropy at the wall (c) Mach number at the wall

Figure 2.4: Modified Roe-Rossow scheme with MUSCL reconstruction O(2), NACA0012 airfoil at
M = 0.85 α = 1°
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Additional tests were conducted in order to investigate the behavior of the modified scheme (2.57) for
low Mach number flows. The numerical results are not fully satisfactory, as the correction introduces
other issues. As an example, looking at the non-lifting cylinder test-case in Fig.2.5 (which is discussed
in detail in the next chapter), the discrete solution corresponds to an incorrect approximation of the
potential solution upstream of the cylinder. As it can be observed, the symmetry of the solution in
the y-direction is lost. The steady-state solution obtained after convergence is characterized by two
nonphysical vortices for the inviscid downstream the cylinder.

(a) Comparison upstream and downstream (b) Nonphysical cylinder recirculation bubble for the
Euler equations

Figure 2.5: Steady-state solution for the modified Roe-Rossow scheme with MUSCL reconstruction
O(3)

This behavior could be explained using the analysis of Turkel in section 2.3.2. Compared to the
maximum dissipation allowed for the artificial viscosity matrix in entropic variables (2.35), it is found
that the first three entries of the last row of the matrix-valued dissipation of the modified Rossow-
scheme are non-zero. Indeed, the simplifications obtained in the final row for the Roe-Rossow scheme
are no longer available, as the rescaling is not applied uniformly to all equations in (2.57). This results
globally in some unbalanced unbalanced rescaling with too much dissipation introduced, especially in
the entropy equation. Without further theoretical developments to correct the spurious production
of entropy, no further investigations are presented for this rescaling strategy. In addition, no further
interest was found, as this correction is too similar to the second approach consisting in amplifying the
pressure jumps in δUn and could suffers from similar issues.
However, this demonstrates that the accuracy problem for the Roe scheme can be mainly fixed either by
centering asymptotically the pressure gradient p(1) in the momentum equations at the order O(1/ϵ),
or by avoiding a centered pressure gradient p(0) at the order O(1/ϵ2), which yields a non-centered
pressure gradient of p(1) at the order O(1/ϵ). These two approaches illustrate two opposite potential
corrections, with both having distinct advantages and drawbacks, but also admitting several possible
formulations. This discussion is further addressed in the following chapter, providing a detailed analysis
of the Roe-Rossow scheme.
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3 - Analysis of the Rossow’s Artificial Speed of Sound Ap-
proach for the Computation of Compressible Flows in the
Incompressible Limit

This chapter corresponds to a paper submitted to the Journal of Computational Physics, in which a
thorough analysis of the artificial speed of sound approach is carried out.
The novelty of this contribution lies in the asymptotic analysis performed on the modified Roe’s
approximate Riemann solver according to the artificial speed of sound approach, for the computation
of compressible flows in the incompressible limit.
The discrete analysis is formulated in the framework of a standard cell-centered finite-volume method.
To our knowledge, the asymptotic discrete properties of this approach, published by C.-C. Rossow more
than 20 years ago, are not published in the literature. As mentioned in chapter 2, this approach modifies
some entries of the Roe matrix-valued dissipation and especially aims at amplifying the pressure jumps
in the incompressible limit.
It is especially shown, within a normalization of the semi-discrete scheme in space, that the discrete
solutions are characterized by the correct 2nd order of the pressure disturbances in space at the
incompressible time scale, also avoiding enforcing the discrete divergence free constraint of the leading-
order velocity. There are numerical evidence illustrating that the Rossow’s artificial speed of sound
approach is not prone to pressure checkerboard issues in the limit of vanishing Mach numbers.
Results and part of the analysis are compared to the Rieper’s low Mach number fix and to the Roe-
Turkel scheme. The analysis points out that the artificial speed of sound is very similar to the Roe-
Turkel scheme in terms of asymptotic properties.
The contributions of this work are the following:

1 It is demonstrated that the von Neumann stability condition given initially by Rossow has to
be completely reformulated in the low speed limit. The resulting stringent stability condition is
asymptotically identical to the Roe-Turkel scheme.

2 The analysis also addresses the incompressible-acoustic interactions characterizing the compress-
ible discrete solutions in the incompressible limit. We show that the discrete solutions have
permanent acoustic disturbances in the low speed limit, even for the steady-state problem, char-
acterized by acoustic pulses generated at very short times, and dissipated at larger times. The
intensity of these acoustic disturbances is related to the modification of the jumps of the normal
velocity component at the cell interface.

3 A robust and stable numerical approach is presented, based on modern tools such as Algorithmic
Differentiation and fast LU decomposition libraries. This leads to the development of efficient
implicit schemes, which remain very stable and overcome the stiffness of the stability constraint in
the low Mach number limit. Only a few hundreds of iterations are required to obtain a quadratic
convergence to the steady-state solutions, even for very low-Mach number flows decreased up to
10−6.

Moreover, the paper has also 3 appendices, in which are derived the eigenspaces of modified matrix
dissipation, a proof regarding the behavior of the spectral radius of the modified matrix-valued dissi-
pation, and the last appendix describes a similar formulation to the Harten-Hyman decomposition for
this modified numerical flux. This suggests a careful reformulation of the entropy fix.
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Analysis of the Rossow’s Artificial Speed of Sound Approach for the
Computation of Compressible Flows in the Incompressible Limit

Victor Courtin, Jean-Christophe Boniface∗

DAAA, ONERA, Institut Polythechnique de Paris, 92190 Meudon, France

Abstract

We look at a simple modification of the Roe approximate Riemann solver in the incompressible limit, considering the
Rossow’s artificial speed of sound approach, for compressible flow simulations with inflow Mach numbers decreased
up to 10−6. Although published by C.-C. Rossow more than twenty years ago, this approach appears surprisingly to
be much less popular than the Roe-Turkel scheme introduced in 1999 by Guillard and Viozat or than the Rieper’s low
Mach number fix proposed in 2011. In addition, no asymptotic discrete analysis of this modification of the Roe scheme
is known in the literature. A common feature of these modified Roe schemes is that they all aimed at introducing a
necessary rescaling of the original Roe’s matrix-valued dissipation for the computation of low Mach number flows.
In this paper, the analysis conducted gives a new insight into the artificial speed of sound approach, with emphasis
on properties of the corresponding rescaled dissipation matrix for the solution accuracy, the Von Neumann stability,
and the asymptotic behavior of the discrete solutions in the incompressible limit. It is especially shown that, first,
the discrete pressure field recovers the proper order of pressure disturbances in space, and second, in opposite to the
Rieper’s fix, the Rossow’s artificial speed of sound is not prone to checkerboard pressure modes. This modification
of the Roe scheme has also almost identical discrete asymptotic properties, and the same stringent Von Neumann
stability condition, than the Roe-Turkel scheme, although being potentially slightly less dissipative.

Keywords: Euler equations, Low Mach number, Compressible flow, Potential flow, Finite-volume method, Roe
scheme, Roe-Turkel scheme, Artificial speed of sound, Low Mach number fix, Incompressible time-scale, Acoustic
time-scale, Wave equation, Asymptotic analysis, Checkerboard pressure-velocity decoupling, Von Neumann
stability, Implicit scheme

1. Introduction

In the last twenty years, a number of numerical schemes based on the Roe’s approximate Riemann solver [1]
have been developed in order to compute consistent solutions of the Euler equations with the incompressible limit,
while preserving the shock-capturing capability of the original Roe scheme. This is further motivated nowadays,
where industry routinely uses CFD in the design process and there are many situations in which industrial flows are
characterized by coexisting compressible and nearly incompressible flows. Local low-speed preconditioners became
popular in years 90s with the pioneering works of Turkel [2], Choi and Merkel [3], Weiss and Smith [4], Van Leer
et al. [5], which were further analyzed and generalized by Turkel et al. [6, 7]. This approach has optimal properties
for the convergence of the steady-state problem, improving the conditioning of the flux Jacobian matrix by slowing
down the acoustic wave speeds towards the the local velocity, and the accuracy, with a consistent approximation of
low Mach number flows. However, the extension to unsteady flows is not trivial and without special care, the time
accuracy may be lost [8, 9]. Additionally, low speed preconditioners modify the equations, the flux Jacobian matrix,
the stability condition and all boundary conditions based on the characteristic variables or the Riemann invariants
must be completely reformulated [10, 11, 12]. Since then, a decreasing interest in the CFD community is observed in
the development of local preconditioners for both steady-state and time-dependent problems.
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In the years 2000, a new density-based approach for compressible flows was considered, aiming at drastically
simplifying the extension of compressible schemes to handle incompressible flows. This was initiated with the case of
the Roe-Turkel scheme studied by Guillard and Viozat in [13, 14], and followed with the All-Speed Roe-type scheme
developed by Li and Gu only modifying the eigenvalues [15, 16], the artificial speed of sound according to Rossow
[19, 20, 21, 22], further improved within an implicit time stepping scheme combined to multigrid acceleration tech-
niques [23, 24], and more recently the Rieper’s low Mach number fix [25, 26]. The artificial speed of sound and
the Roe-Turkel scheme were also compared for high-lift configurations in a recent work by Langer [27]. With this
new way of formulating the low speed preconditioning, a clear advantage was found, as the numerical scheme recov-
ers the formulation for compressible flows, with a standard extension to unsteady flows, using usual time-marching
algorithms. It is also no longer required to reformulate characteristic-like boundary conditions. All these Roe-type
schemes actually aim at providing a more consistent rescaling of the matrix dissipation with the asymptotic behavior
of the physical equations in the low speed limit, as pointed out by Turkel et al. [7]. They especially ensure the proper
scaling of the pressure field, following the asymptotic discrete analysis developed by Guillard and Viozat [13]. This
approach has likely motivated the extension to low Mach number flow of Godunov schemes [28, 29], AUSM-type
schemes [30, 31, 32] or more recently to HLL-type Approximate Riemann Solver [33, 34]. However, in modifying
the matrix-valued dissipation of the Roe scheme, there are certain features of the numerical procedure that it would
also be worth striving for.

First, the proper formulation of the Von Neuman stability condition for the explicit scheme is an essential feature
of the numerical procedure, when no preconditioner is applied to the time-derivative. In the formulation of their
preconditioned Lax-Friedrichs-Turkel scheme, Birken and Meister [35] have demonstrated that, in the low speed
limit, the explicit scheme is stable if the local time-step satisfies a stringent stability condition, given by the spectral
radius of the matrix dissipation. This is also the case of the Roe-Turkel scheme reformulated in [36] and with the
Rossow’s artificial speed of sound, as demonstrated in the paper. In the case of the low Mach number fix for instance,
it can be shown that a necessary stability condition is close to the usual Von Neumann condition for compressible
flows.

Second, some authors have argued that an accurate extension of the Roe scheme to the incompressible limit
should satisfy the discrete divergence-free constraint of the leading order velocity in the asymptotic limit. This is
especially the case of the All-Speed Roe scheme developed in [15] and the low Mach number fix [25]. Some other
approximate Riemann solvers were also designed to satisfy the discrete divergence-free constraint, see for instance
the low Mach correction applied to the all-Mach HLLC scheme developed in [37]. Note that the divergence constraint
is not enforced by the Roe-Turkel and by the artificial speed of sound, as shown in the paper. As discussed later,
and advocated by Guillard et al. [38], ”they are sound theoretical reasons to prefer a scheme that does not enforce
the discrete divergence-free constraint”. Assuming isentropic flow, the functional analysis indicates that two limits of
the continuous Euler equations exist, with on one hand the elliptic incompressible system satisfying the divergence-
free constraint for the slow incompressible time scale, and on the other hand, an hyperbolic acoustic system for the
fast acoustic time scale. Then, the solution of the Euler equations in the incompressible limit is characterized by
acoustic-incompressible interactions, in which the incompressible solution is only one component of the solution.
This asymptotic behavior with two time scales was well described for instance by Klein for the compressible Euler
equations applied to combustion science [39].

In addition, it was also shown that the All-Speed Roe scheme and the low Mach number fix have large inconsis-
tencies in a vertex-centered triangular mesh [38]. This stems from the fact that, from the incompressible theory, using
a collocated arrangement for velocity and pressure on unstaggered grids without specific stabilization, undampted
spurious pressure modes cannot be ruled out with a cell-centered finite-volume scheme.

As the asymptotic properties of the Rossow’s artificial speed of sound approach are not formally derived in the
literature, it was found necessary to perform a thorough analysis of this modification of the Roe approximate Riemann
solver. The asymptotic and stability analysis especially conducted in this paper gives a new insight into this interesting
approach. The scheme introduces simple modifications of the first-order Roe scheme for the computation of low Mach
number flows and returns the original Roe scheme at the sonic point according to the local Mach number. Therefore it
can also be used for the computation compressible flows with little effort, provided that the entropy fix is formulated
carefully at vanishing eigenvalues of the dissipation matrix (see Appendix C).
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The following set of independent variables are used throughout the analysis of the compressible Euler equations:

- W = [ρ, ρu, ρv, ρE]T (conservative variables used for shock-capturing),

- dW̃0 = [dΦ, du, dv, dS ]T (symmetrizing variables used in the analysis of the asymptotic behavior of the matrix
dissipation in the incompressible limit),

- U = [ρ, u, v, p]T (primitive variables),

where ρ is the density, U = [u, v]T are the velocity components, p is the pressure, E is the total energy per unit
volume, H = E + p

ρ
is the total enthalpy per unit mass, with the differential variables dΦ = dp

ρc proportional to the

pressure and dS = dp−c2dρ
ρc proportional to the entropy, c being the speed of sound.

In all the following, we assume that the flowfield satisfies the ideal gas law. So c2 = γ p
ρ

and H =
c2

(γ − 1)
+
|U|2

2
,

γ being the ratio of the specific heats.
We consider the Euler equations in integral form on each computational cell Ω of the structured mesh, with

boundary ∂Ω with unit outward normal n = [nx, ny]T :

d
dt

∫

Ω

W dV +
∫

∂Ω
F(W) · n dS = 0 (1)

where F is the flux vector. System (1) is discretized using a cell-centered finite-volume method. This leads to the
semi-discrete form:

V
d
dt

W + R(W, n) = 0, with R(W, n) =
∑

cell boundary

F(W) · n S (2)

where V denotes the volume of the computational cell and S is the area of the cell interface.
We will consider next modifications in the low-speed limit of the baseline first-order Roe scheme [1], with the

numerical flux F discretizing the physical flux F across the cell interfaces:

F = 1
2

[F(WR) + F(WL)] − 1
2
|Aroe| (WR −WL) (3)

where WL and WR are the left and right (usually reconstructed) solution vectors in adjacent cells to the cell interface
and Aroe is the Roe matrix.

The analysis described in the following focuses on the properties of the modified matrix-valued dissipation in the
subsonic regime. For the baseline first-order Roe scheme, the dissipation vector d = |Aroe| (WR −WL) = |Aroe|∆W
leads to large inconsistencies of the discrete solution in the incompressible limit, due to an improper asymptotic
behavior of the coefficients of the matrix dissipation |Aroe|. The artificial speed of sound approach, and many other
published corrections of the Roe scheme, modify the matrix dissipation following different ideas. Modifying the
matrix dissipation has also a large impact on the numerical stability in the incompressible limit, as shown in [35] for
the preconditioned Lax Friedrich scheme and in [36] for the Roe-Turkel scheme. The link between the asymptotic
behavior of the numerical scheme and the Von Neumann condition for stability was also described for the SUPG
scheme developed in [40], where it is shown that a necessary condition for stability requires that the asymptotic
behavior of the entries of the dissipation matrix matches that of the terms of the Euler equations.

This article is organized as follows. The next section 2, the Rossow’s artificial speed of sound approach is intro-
duced. The important section 3 is dedicated to the asymptotic analysis of the artificial speed of sound approach in the
incompressible limit. Eigenvalues and the spectral radius of the modified matrix dissipation are derived in section 4,
and the Von Neumann condition for stability is discussed. Stability considerations are of major importance when com-
puting compressible low Mach number flows. This has motivated the development of an efficient implicit Newton-like
scheme described in 5, based on Algorithmic Differentiation (AD) of the flux residual and fast algorithms for the con-
struction and inversion of the corresponding exact Jacobian matrix. This implicit scheme allows using very large CFL
numbers for the steady-state problem, in order to overcome the stringent stability condition. Numerical experiments
presented in sections 6 and 7 illustrate the main results of the above analysis. Some comments and perspectives are
given as concluding remarks in section 8.
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2. Rescaling of the Roe Scheme According to Rossow

In the following, we assume the flow subsonic across the cell interface, i.e. |Mn| ≤ 1, where Mn =
Un

c
is

the directional Mach number, Un = unx + vny being the normal velocity at the cell interface. Then the acoustic
eigenvalues of the dissipation matrix according to Roe |Aroe| are given by |λ−| = c − Un and |λ+| = c +Un, and the
dissipation vector expressed for the jumps of the primitive variables can be formulated explicitly.

In successive works [19, 20, 21, 22], Rossow introduces the interface Mach number M0 = sgn(
Un

c
) min(Mn, 1)

and formulates the dissipation vector for the jumps of the primitive variables, within expansions with terms factored
by M0 and (1 − |M0|). For subsonic flows, the interface Mach number is then simply defined as M0 = Mn and the
rescaling of the Roe scheme in the incompressible limit was achieved by introducing an artificial speed of sound as
described in [19, 22]. This approach was further developed by Rossow in [21] for a blended pressure/density based
scheme and in [22] considering a pure density-based approach. We shall consider here this later implementation. The
rescaling is obtained by replacing the speed of sound c in the non-vanishing coefficients (1 − |M0|) with an artificial
speed of sound c

′
.

Let d = [∆Fρ, ∆FρV , ∆FρE]T be the components of the dissipation vector corresponding to the mass, momentum
and energy conservation laws. We remind for sake of clarity the dissipation vector corresponding to the rescaled Roe
scheme with artificial speed of sound c

′
, introduced in [20] (Table 1) and described in the three-dimensional case in

[24]

∆Fρ = |Un|∆ρ + ρM0∆Un + 1
c′ (1 − |M0|)∆p

∆FρU = |Un|U∆ρ + ρ|Un|∆U +
[
ρUM0 + ρc

′n(1 − |M0|)
]
∆Un +

[
nM0 +

1
c′U(1 − |M0|)

]
∆p

∆FρE = |Un| |U|
2

2
∆ρ + ρ|Un|U.∆U +

[
ρHM0 + ρUnc

′
(1 − |M0|)

]
∆Un +

[
1

(γ−1) |Un| +UnM0 +
H
c′ (1 − |M0|)

]
∆p.

(4)
So, with this modification of the dissipation vector, only terms factored by 1 − |M0| dominating in the incompressible
limit are modified by the correction. The artificial speed of sound is defined from a local diagonal preconditioner:

c
′
= c

√
α2M2

n + β
2, with α =

1
2

(1 − β2) and β2 = min(max(M2,M2
re f ), 1), (5)

where M is the Mach number, and Mre f is related to a reference Mach number. This formulation actually borrows
the modified speed of sound arising from the preconditioning of the Jacobian matrix PA, with all eigenvalues slowed
down towards the local flow velocity as the Mach number goes to zero (see for instance Turkel et al. for a general
form of preconditioners [7]). Then we have:

c
′ −→ Vre f as M −→ 0, (6)

where Vre f is some reference speed. In order to recover the proper scaling of the matrix dissipation in the incompress-
ible limit, the dominance of the pressure difference terms is strongly amplified, with

1
c′

(1 − |M0|) ≃ O(1) while
1
c

(1 − |M0|) ≃ O(M), (7)

whereas the dominance of the jumps of the directional velocity ∆Un is reduced in the momentum and total energy
equations. Rossow assessed that a better scaling of the pressure field could be retrieved by simply substituting the
speed of the sound by expression (6) in the above expansions and thoroughly demonstrated this statement in [22]
(see also [23]) within grid convergence, Reynolds number and Mach number effects. In [41], this idea of artificial
speed of sound has been adapted to a preconditioning method, which turned out to be more robust than the standard
preconditioning using matrix-dissipation P−1|PA| .

However, the Rossow’s artificial speed of sound approach does not bring the same modifications to the jumps of
the normal velocity, as formulated by the Rieper’s fix. The jumps of the normal velocity are strongly related to the
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intensity of the acoustic content in the discrete solution, as demonstrated in [29] for the case of the Godunov scheme,
which may be hard to damp out in the very incompressible limit considering a steady-state approach, as illustrated
later in the paper.

In our implementation, as previously done for the formulation of the Roe-Turkel scheme in [36], the arbitrary
reference Mach number Mre f , acting as a cut-off value in the definition (5) of the artificial speed of sound, was set to
a much smaller value than a reference Mach number, and even to the order of magnitude of the zero-level machine
in most of the cases, regardless of the mesh used. Note that in the case of the Roe-Turkel scheme formulated in
[13] and the preconditioned Godunov scheme considered in [29], the use of a reference Mach number in the global
preconditioning parameter Mre f in coefficient β2 is not always explicitly mentioned.

In the remaining of the paper, the scheme characterized by the dissipation vector (4) with the artificial speed of
sound (5) according to Rossow will be simply referred to as the Roe-Rossow scheme.

Next, we shall introduce a more convenient expression of the dissipation vector, i.e. not restricted to subsonic
flows. Following a common analysis framework introduced by Li-Gu in [17], the expression of the dissipation vector
can be rearranged according to the Liu-Vinokur decomposition [50]. This form has been popularized by the pioneer
work of Weiss-Smith [4] regarding the development of local low Mach number preconditioners. According to this
decomposition, the modified dissipation vector with the artificial speed of sound can be expressed equivalently as a
sum of three vectors:

d = |Un|

∆ρ
∆(ρU)
∆(ρE)

 + δUn


ρ
ρU
ρH

 + δp


0
n
Un

 , (8)

where the first vector corresponds to the basic scalar upwind dissipation, and the second and third coefficients δUn

and δp are related to the convected velocity and the pressure at the cell interface, respectively

δUn =
A
ρcc′
∆p +

B
c
∆Un, δp =

B
c
∆p + ρ

c′

c
A∆Un, (9)

with coefficients
A =
|λ+| + |λ−|

2
− |λ0|, B =

|λ+| − |λ−|
2

, (10)

only depending on the original eigenvalues of the Roe matrix.

3. Asymptotic Analysis in the Incompressible Limit

Different types of asymptotic analysis as presented next allows a better understanding of the behavior characteriz-
ing the Roe-Rossow scheme in the incompressible limit. In order to investigate the underlying effects of the artificial
speed of sound approach and the discrete properties of the resulting scheme, we shall proceed step by step as indicated
in the following.

The analysis starts with the asymptotic behavior of the matrix-valued dissipation, with expected effects on the
solution accuracy, for the equations recast in symmetrizing variables. Then, a usual normalization process employed
in the low Mach number analysis of the Euler equations is introduced and a preliminary discrete analysis is derived
and discussed, using the comprehensive framework proposed by Li-Gu for the Roe scheme.

Finally, a fully discrete asymptotic analysis is conducted, confirming the main trends given by results obtained
with the Li-Gu analysis.

3.1. Asymptotic behavior of the matrix-valued dissipation in symmetrizing variables

Turkel [9, 12] suggested to use the symmetrizing variables dW̃0, which greatly simplifies the analysis and a much
easier formulation of the dissipation matrix is obtained. In particular, the main results of the stability analysis carried
out in section 4 and the two formulations of the entropy fix indicated in Appendix C are derived using this set of
symmetrizing variables.
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The dissipation vector can be further expanded to be recast in jumps of dW̃0 variables. Applying the pre-

multiplication with
∂W̃0

∂W
for the change of variables (see Appendix A), we get in matrix dissipation form:

d̃0 =
∂W̃0

∂W
d = D̃0 ∆W̃0, (11)

with the modified matrix-valued dissipation in dW̃0 variables:

D̃0 =



r(c − |Un|) + |Un| nxUn nyUn 0

nxUn n2
x
1
r

(c − |Un|) + |Un| nxny
1
r

(c − |Un|) 0

nyUn nxny
1
r

(c − |Un|) n2
y

1
r

(c − |Un|) + |Un| 0

0 0 0 |Un|



, (12)

where the dimensionless ratio is introduced

r =
c
c′
=

1√
α2M2

n + β
2
≥ 1. (13)

Note that this ratio is directional, i.e. depending explicitly on the cell face orientation with the directional Mach
number Mn. Setting r = 1, matrix (12) returns to the original Jacobian matrix, with no rescaling.

In addition, we can see that the approach of Rossow preserves the symmetry property of the original Jacobian
matrix for this set of variables.

In the incompressible limit, it can be stated that:

D̃0 ≃



O( 1
M2 ) O(1) O(1) 0

O(1) O(1) O(1) 0

O(1) O(1) O(1) 0

0 0 0 O(1)



as M −→ 0. (14)

This has to be compared with the maximum allowed dissipation achieved by the Roe-Turkel scheme, for a consistent
rescaling of the matrix dissipation with the asymptotic behavior of the physical portion of the equations, according to
the scaling analysis employed by Turkel et al. [7, 12]

P̃0
−1|P̃0 Ã0| ≃



O( 1
M2 ) O( 1

M ) O( 1
M ) 0

O( 1
M ) O(1) O(1) 0

O( 1
M ) O(1) O(1) 0

0 0 0 O(1)



as M −→ 0. (15)

So we see that the Roe-Rossow scheme introduces somewhat less dissipation in the incompressible limit in the equa-
tions for the pressure and the velocity components. However, in the pressure equation, the leading-order dissipation
coefficient behaves identically (≃ O( 1

M2 )) for both schemes. In practice, this lower amount of dissipation in entropic
variables provided by the Roe-Rossow scheme is not clearly reproduced by computations, when compared to solu-
tions obtained with the Roe-Turkel scheme. This asymptotic behavior can also be compared to the matrix dissipation
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characterizing the low Mach number fix proposed by Rieper in [25], for which

D̃0 ≃



O( 1
M ) O(M) O(M) 0

O(1) O(1) O(1) 0

O(1) O(1) O(1) 0

0 0 0 O(1)



as M −→ 0. (16)

We first note that the symmetry of the original Jacobian matrix is no longer preserved with the Rieper’s fix. Second,
it can be seen that the low Mach number fix yields a less dissipative scheme, especially in the scaling of the pressure
equation, with diminishing dissipation coefficients with an order O(M) compared to the Roe-Rossow scheme and up
to O(M2) compared to the Roe-Turkel scheme.

3.2. Discrete asymptotic analysis

We next introduce the normalized quantities (time, space, flow variables) used in the incompressible normalization
of the Euler equations, with successively

t̃ = t
vre f

lre f
, x̃ =

x
lre f
, ỹ =

y
lre f
, ρ̃ =

ρ

ρre f
, ũ =

u
vre f
, ṽ =

v
vre f
, c̃ =

c
cre f
, p̃ =

p
pre f
, (17)

where lre f is a reference length scale, ρre f a reference density, vre f the reference speed, cre f a reference speed of
sound and pre f = ρre f c2

re f a reference pressure. The reference velocity is independent of the reference speed of sound√
pre f /ρre f . This ensures that the normalized speed velocity remains of order O(1) in the limit of a vanishing reference

Mach number, defined in all the following with

ϵ =
vre f

cre f
. (18)

So, in the normalization process, all above quantities are of the same order of magnitude, around unity. In addition,
taking identical reference quantity for the total enthalpy and the total energy Ere f = Hre f = pre f /ρre f , the total
enthalpy is not modified by the normalization H̃ = Ẽ + p̃/ρ̃. However, the equation of state is modified as follows

p̃ = (γ − 1)[ρ̃Ẽ − ϵ2 ũ2 + ṽ2

2
]. (19)

Note that the above normalization for t̃ corresponds to an incompressible or convective time-scale. An acoustic time-
scale can also be defined by replacing the reference velocity vre f by the reference speed of sound cre f in the expression
of t̃.

As demonstrated in [13], at the incompressible time-scale, this normalization process applied to the compressible
Euler equations indicates that the pressure gradient is the dominating term with factor 1/ϵ2 and that the pressure field
is constant in space up to second-order fluctuations

p̃(x, y, t) = p̃0(t) + ϵ p̃1(t) + ϵ2 p̃2(x, y, t) = P̃0(t) + ϵ2 p̃2(x, y, t). (20)

In this expression, P̃0 corresponds to the surrounding ambient pressure, and the pressure disturbance field p̃2 can
be interpreted as the ”incompressible” pressure satisfying a Poisson-type equation. This normalization process also
shows that the leading order velocity U0 satisfies a divergence-free constraint ∇ · U0 = 0. However, there are
theoretical reasons demonstrating that this property should not be reproduced at the discrete level, as indicated next.

At the acoustic time-scale, the pressure field is constant in space up to first-order fluctuations only and p̃1(x, y, t)
is solution of a linear wave equation [38].
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3.2.1. Preliminary semi-empirical discrete analysis of the dissipation vector
Following the formalism introduced by Li-Gu in [17] for the comparison of fifteen different low-Mach modifica-

tions of the dissipation vector, the normalization process of the discrete scheme yields the following normalized form
of decomposition (8)

d̃ = |Ũn|


1 0 0
0 1 0
0 0 1




∆ρ̃

∆(ρ̃Ũ)
∆(ρ̃Ẽ)

 + δǓn


1 0 0
0 1 0
0 0 1




ρ̃

ρ̃Ũ
ρ̃H̃

 + δ p̌


0 0 0
0 1 0
0 0 ϵ




0
n
Ũn

 . (21)

In this expression, (δǓn, δp̌) are some function of the normalized coefficients (δUn, δp) in the low Mach number
range. In the case of the Roe-Rossow scheme, when compared to the Roe scheme and the Rieper’s fix, we get
successively

Rossow: δǓn = (1 − ϵ |Ũn|
c̃

)
1
ϵ2
∆p̃
ρ̃c̃′
+ ϵ
Ũn

c̃
∆Ũn, δ p̌ = Ũn

1
ϵ

∆ p̃
c̃
+ (1 − ϵ |Ũn|

c̃
)ρ̃c̃

′
∆Ũn,

Roe: δǓn = (1 − ϵ |Ũn|
c̃

)
1
ϵ

∆p̃
ρ̃c̃
+ ϵ
Ũn

c̃
∆Ũn, δp̌ = Ũn

1
ϵ

∆ p̃
c̃
+

1
ϵ

(1 − ϵ |Ũn|
c̃

)ρ̃c̃∆Ũn,

Rieper: δǓn = (1 − ϵ |Ũn|
c̃

)
1
ϵ

∆p̃
ρ̃c̃
+ ϵ2z̃

Ũn

c̃
∆Un, δp̌ = Ũn

1
ϵ

∆ p̃
c̃
+ (z̃ − |Ũn|

c̃
)ρ̃c̃∆Ũn,

(22)

where z̃ is the normalized Rieper’s fix z = ϵ z̃, with the fix simply defined as a local directional Mach number formu-

lated originally by Rieper z =
|Un| + |Ut |

c
, whereUt the tangential velocity at the cell interface.

These coefficients actually provide a deeper insight into the respective discrete asymptotic properties of these re-
spective corrections of the matrix dissipation. According to the analysis performed by Li-Gu, the asymptotic behavior
in the incompressible limit of these coefficients indicates the ability of the modified scheme to compute the correct
order of the pressure disturbances (so-called later the physical problem) and to avoid the occurrence of pressure
checkerboard modes.

In more details, regarding the pressure coefficient δ p̌ in (22), Li-Gu observed that the term ρc∆Un must reach
the order O(1) to cure the non physical problem. Indeed, this is a common feature of most of the modified Roe-
type schemes investigated in [17]. Looking at the corresponding normalized coefficient for the Roe-Rossow scheme,
compared to the Rieper’s fix, we see from expressions (22) that

(δp̌) Rossow: (1 − ϵ |Ũn|
c̃

)ρ̃c̃
′
∆Ũn ≃ ρ̃c̃′∆Ũn ≃ O(1), Rieper: (z̃ − |Ũn|

c̃
)ρ̃c̃∆Ũn ≃ O(1). (23)

as ϵ −→ 0. Then both schemes should compute discrete solutions satisfying the proper scaling (20) of the pressure
field.

In a series of published works [15, 18], Li-Gu have shown the interest of the Momentum Interpolation Method
(MIM) for their All-Speed-Roe scheme to cure checkerboard modes. Such mechanisms, already known for the
AUSM+(P) scheme [30, 31, 32], can also be employed to enforce the pressure-velocity coupling in the low Mach-
number limit. Regarding the coefficient δǓn, it has been especially stated in [17]-(section 4) that the pressure differ-
ence term within has a strong effect to damp out pressure checkerboard modes. Comparing again the Roe-Rossow
scheme with the Rieper’s fix, we see this time that both schemes yield a different behavior, since for the leading-order
term we get

(δǓn) Rossow:
1
ϵ2

(1 − ϵ |Ũn|
c̃

)
∆p̃
ρ̃c̃′
≃ O(

1
ϵ2

), Rieper: (1 − ϵ |Ũn|
c̃

)
1
ϵ

∆p̃
ρ̃c̃
≃ O(

1
ϵ

), (24)

as ϵ −→ 0. It is worth mentioning that Li-Gu have found a similar behavior O(1/ϵ2) of this coefficient for the
Roe-Turkel scheme. These results show that Roe-Rossow scheme undergoes the same asymptotic behavior as the
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Roe-Turkel scheme, and thus should also avoid the occurrence of pressure checkerboard modes. According to the
second rule, this correction should not be prone to checkerboard mode problems, in opposition with the Rieper’s fix.

Following the analysis of Li-Gu, this asymptotic behavior also indicates that the divergence-free constraint for
the leading velocity U0 should not be satisfied by the Roe-Rossow scheme. Indeed, this discrete property was first
established by Li-Gu for the Roe-Turkel scheme in [15]. It has been especially shown that, this condition is one pre-
requisite for deriving a Poisson-type equation for the second-order pressure disturbance p(2). Some of these assertions
are partially true in the case of the Roe-Rossow scheme, as demonstrated in the next section.

However, in accordance with the conclusions of Li-Gu, we also believe that the pressure checkerboard mode
problems are only partially explained in published works. To our experience, in practice, no checkerboard issues
could be observed for the Roe-Rossow scheme, even in highly stretched or high density meshes, for all inflow Mach
number tested, up to very low Mach numbers considered in this paper. In addition, no such discrete problem seems
to have been reported in the literature with the Roe-Turkel scheme, except in a previous work by Li-Gu [15], but no
longer mentioned later [17].

On the other hand, regarding the Rieper’s fix, the occurrence of pressure checkerboard modes can be easily trig-
gered, as illustrated in the section 6. According to the original paper [25], the discrete solution may encounter some
checkerboard mode problem for the first-order disturbance pressure p1 in conjunction with enforcing the discrete
divergence-free property of the leading order velocity. Although, in practice, weak checkerboard modes for the
second-order disturbance pressure p2 are also observed. Thus, with the Rieper’s fix, it is well known that in the low
Mach number limit, the discrete solution may undergo some transient undamped spurious pressure modes, strongly
contaminating the discrete solution.

3.2.2. Asymptotic analysis of the semi-discrete equations in space at the incompressible time scale
Results discussed in the previous sections for the Roe-Rossow scheme are thoroughly demonstrated in this section

within a discrete asymptotic analysis of the normalized semi-discrete scheme in space. The underlying idea is to
reproduce at the discrete level the continuous analysis carried out for the normalized compressible equations in [39,
45]. This approach was first applied by Guillard-Viozat [13] in the incompressible limit, for the Roe-Turkel scheme.
From the normalized space-discretization, significant discrete properties of the asymptotic behavior of the discrete
solutions can be recovered, especially for the pressure field, which can be compared with the continuous case. In all
the following, the tilde symbol introduced in the previous section in the normalization process is omitted.

Let introduce the space discretization of the Euler equations using a uniform mesh spacing h of some arbitrary
cell ΩI of the computational mesh

h
d
dt

WI +
∑

J∈V(I)

F n
IJ
· nIJ = 0, (25)

where the set of the neighboring cells of ΩI is denoted V(I), and nIJ is the unit outward normal vector at the cell
interfaces ∂ΩI pointed towards the neighboring cells ΩJ . Using standard notations adopted by numerous authors,
the Roe average is indicated by index ·IJ for (U,H) at the cell interface, and ∆· = (·)J − (·)I denotes the spatial
difference operator. Considering the incompressible time-scale, the normalized semi-discrete equations for the first-
order Rossow-Roe scheme write successively for the density, momentum and total energy equations

h
dρI

dt
+

1
2

∑

J∈V(I)

[
ρJUJ · nIJ

−
{
|UnIJ |∆IJρ + ϵ

ρIJUnIJ

cIJ
∆IJUn +

1
ϵ2
∆IJ p
c′IJ

(1 − ϵ |UnIJ |
cIJ

)
} ]

= 0, (26)
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h
d (ρIUI)

dt
+

1
2

∑

J∈V(I)

[
ρJUJ · nIJUJ +

1
ϵ2

p jnIJ

−
{
UIJ |UnIJ |∆IJρ + ρIJ |ŨnIJ |∆IJU

+ ∆IJUn

(
ϵ
ρIJUnIJ

cIJ
UIJ + ρIJc′IJ nIJ (1 − ϵ |UnIJ |

cIJ
)
)

+ ∆IJ p
( 1
ϵ2
UIJ

c′IJ
(1 − ϵ |UnIJ |

cIJ
) +

1
ϵ

UnIJ

cIJ
nIJ

) } ]
= 0, (27)

h
d(ρI EI)

dt
+

1
2

∑

J∈V(I)

[
(ρJ EJ + pJ)UJ · nIJ

−
{
ϵ2 |UnIJ |

|UIJ |2
2
∆IJρ + ϵ

2ρIJ |UnIJ |UIJ · ∆IJU

+ ∆IJUn

(
ϵ ρIJ HIJ

UnIJ

cIJ
+ ϵ2 ρIJUnIJ c′IJ (1 − ϵ |UnIJ |

cIJ
)
)

+ ∆IJ p
( |UnIJ |
γ − 1

+ ϵ
(UnIJ )2

cIJ
+

1
ϵ2

HIJ

c′IJ
(1 − ϵ |UnIJ |

cIJ
)
) } ]

= 0. (28)

So discrete flow variables for the density, velocity and pressure, solutions of system (26)-(28), are some explicit
functions of the vanishing Mach number ϵ, and similarly to [39, 45, 13], are assumed to be asymptotic expansions in
power of the reference Mach number of the form

ϕI(t) = ϕ
(0)
I (t) + ϵ ϕ(1)

I (t) + ϵ2 ϕ(2)
I (t) + O(ϵ3) as ϵ −→ 0, (29)

with normalized coefficients ϕ(k)
I ≃ O(1) for all k. Then, inserting these expansions and collecting terms with equal

power for the parameter ϵ in (26-28), we get for the leading order equations at order
1
ϵ2

:

∑

J∈V(I)

∆IJ p(0)

c′(0)
IJ

= 0, (30)

∑

J∈V(I)

p(0)
J nIJ −

∆IJ p(0)Ũ(0)
IJ

c′(0)
IJ

= 0, (31)

∑

J∈V(I)

∆IJ p(0) H̃(0)
IJ

c′(0)
IJ

= 0. (32)

This discrete system is in close analogy with the same leading order equations found for the Roe-Turkel scheme (see
the equations (51)-(54) in [13]). The only difference stems from the coefficient of the pressure jump in the momentum
equations (31). This similarity of results is also related to the respective asymptotic behavior of the matrix-valued
dissipation, previously observed in (14) for the Roe-Rossow scheme, and in (15) for the Roe-Turkel scheme, which
lead to a similar leading-order system in the incompressible limit.

Consequently, the discrete analysis of these two modified Roe-type scheme can be performed using the same proof
given in [13] for the Roe-Turkel scheme. Then, with some restrictions on the boundary conditions, it can be shown
that the Roe-Rossow scheme also admits a unique constant solution for the ”0-state” leading-order pressure

p(0)
I (t) = p(0)

J (t) , ∀I, J. (33)

However, collecting terms at order 1/ϵ, the Roe-Turkel and Roe-Rossow schemes yield two distinct discrete systems
of equations. As observed in [13] for the Roe-Turkel scheme, no term of this order appears explicitly in the normalized

10



semi-discrete equations. This is not the case for the Roe-Rossow scheme, as it can be seen in system (26)-(28).
Nevertheless, inserting a constant pressure p(0) into equations (30)-(32) makes vanishing these terms of order 1/ϵ.
Hence, the two modified dissipation vectors exhibit an identical behavior and the resulting order 1/ϵ system remains
almost identical to the leading order system. The only difference being that the ”0-state” pressure p(0) is replaced
by p(1) at order 1/ϵ . Therefore, assuming that p(0) and p(1) are constant in space at the boundary [13], we find
that the discrete solution of the Roe-Rossow scheme undergoes pressure fluctuations of second-order in space for the
disturbance pressure p(2), in the whole computational domain

pI(t) = p(0)(t) + p(1)(t) ϵ + p(2)
I (t) ϵ2 + O(ϵ3). (34)

This fundamental feature of the continuous solution is then recovered at the discrete level by the Roe-Rossow scheme,
indicating its ability to compute accurate discrete solutions for low Mach number flows. Then, inserting pressures p(0)

and p(1) constant in space into (26)-(28) yields the following Order 1 system

h ∂t ρ
(0)
I +

1
2

∑

J∈V(I)

[
ρ(0)

J U(0)
J · nIJ −

{
∆IJ p(2)

c′(0)
IJ

} ]
= 0, (35)

h ∂t

(
ρ(0)

I U(0)
I

)
+

1
2

∑

J∈V(I)

[
ρ(0)

J U(0)
J · nIJU(0)

J
+ p(2)

J nIJ

−
{
ρ(0)

IJ

∣∣∣U(0)
IJ
· nIJ

∣∣∣∆IJU(0) + ρ(0)
IJ c′(0)

IJ nIJ∆IJU(0)
n +

∆IJ p(2)

c′(0)
IJ

U(0)
IJ

} ]
= 0, (36)

h ∂t

(
ρ(0)

I E(0)
I

)
+

1
2

∑

J∈V(I)

[ (
ρ(0)

J E(0)
J + p(0)

J

)
U(0)

J · nIJ −
{
∆IJ p(2) H(0)

IJ

c′(0)
IJ

} ]
= 0. (37)

The proper scaling in space of the pressure disturbances has also implications for other physical quantities. It can be
seen that, considering the normalized equation of state for the ideal gas law (19), the leading “0-state” total energy
must also behave similarly as the ‘0-state” pressure, since

∀I, J p(0)
I (t) = p(0)

J (t) =⇒ ρ(0)
I (t) E(0)

I (t) = ρ(0)
J (t) E(0)

J (t). (38)

In order to simplify the analysis, the leading ”0-state” density is assumed to be constant in space as usually formulated
in the low Mach number regime (see for instance [13]), which also yields a constant leading “0-state” enthalpy and
thus, for the corresponding Roe average

∀I, J H(0)
I (t) =

1

ρ(0)
I (t)

[ρ(0)
I (t)E(0)

I (t) + p(0)
I (t)] = H(0)

J (t) =⇒ H(0)
IJ (t) = H(0)

I (t) ∀I. (39)

Similarly to the continuous analysis, in case of no global compression, the background pressure becomes constant in
time, and an incompressible Euler equation can be formally recovered. Then, as

pI(t) = p(0) + p(1) ϵ + p(2)
I (t) ϵ2 + O(ϵ3) = P̃0 + p(2)

I (t) ϵ2 + O(ϵ3), (40)

with dP̃0/dt = 0 and results (38) and (39), the time derivative in the energy equation (37) vanishes for the ”0-state”
total energy, and this discrete equation can be simplified in a more relevant form

∑

J∈V(I)

U(0)
J
· nIJ =

1
ρ(0)

∑

J∈V(I)

∆IJ p(2)

c′(0)
IJ

. (41)

In this equation, the left-hand side of equation (41) is a discrete approximation of a divergence of the leading-order
velocity field, whereas the right-hand side corresponds to a discrete Laplacian of the disturbance pressure p(2). This
result explicitly demonstrates that the Roe-Rossow scheme does not enforce a divergence-free constraint of the ve-
locity, in contrast to the continuous case. This elliptic Poisson-like equation may be interpreted as a local balance
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of incompressible pressure forces according to surrounding local flow compression or expansion. This results is also
supported by many published numerical experiments, clearly illustrating that accurate steady-state solutions can be
obtained in the low Mach number range using the Roe-Turkel or the Roe-Rossow schemes.

The accuracy of discrete compressible solutions obtained with the Roe-Rossow scheme will be also illustrated
in a next section through a direct comparison against an analytic potential solution satisfying the divergence-free
constraint. Therefore, from a numerical point of view, it might appear reasonable to question the legitimacy of such
property. Indeed, it is well established that numerical schemes enforcing a discrete divergence-free constraint are more
prone to pressure-checkerboard mode issues. According to the analysis of Guillard-Nkonga [38], this is especially
one possible reason to avoid using schemes enforcing this property of the velocity field at the discrete level. This issue
is also mentioned in some works of Li-Gu [17], where the mechanism of pressure-velocity coupling using the MIM
interpolation method is, in fact, contributing to the loss of the discrete divergence-free constraint in the asymptotic
limit. The behavior of the discrete solution can be significantly affected by spurious pressure modes, resulting in
either more challenging convergence to the steady state, or in unsteady flows with the occurrence of transient spurious
pressure modes in the solution.

3.2.3. Remarks on the asymptotic analysis of the semi-discrete equations in space at the acoustic time scale
In the preceding section, a discrete analysis based on the convective time scale has shown that the modified Roe

scheme with artificial speed of sound appears to be governed by a similar set of discrete sub-systems of equations to
the Roe-Turkel scheme. However, the compressible Euler equations are also known to admit another asymptotic limit,
describing faster phenomenons based on an acoustic time scale. In more recent works, Bruel et al. [43] and Galie
et al. [54] have investigated several modified dissipation vectors (including the Roe-Turkel scheme) to assess their
accuracy for acoustic computations in the incompressible limit. In particular, a series of numerical tests and a discrete
analysis were performed for the case of barotropic flows, highlighting significant shortcomings with the Roe-Turkel
scheme. By introducing an asymptotic discrete analysis with two time scales (see proposition 2.1 in [43]), it has been
demonstrated that, for specific boundary conditions, the accuracy of the discrete solution is lost.

To our experience, this phenomenon is also reproduced for the first-order Roe-Rossow scheme, as briefly discussed
below. The proof given in [43] is purely related to modified dissipation vectors, aiming at amplifying the contribution
of the pressure jump in the continuity equation. At the order 1/ϵ, the time derivative of leading order density ρ(0)

I is
thus linked to the first-order pressure jump of p(1). For the Roe-Rossow scheme, we find exactly the same discrete
behavior with

h ∂tρ
(0)
I +

1
2

∑

J∈V(I)

∆IJ p(1)

c′(0)
IJ

= 0.

Bruel et al. [43] have observed that the first-order pressure p(1) is necessary constrained to be constant in space in
the case of periodic or wall boundary conditions. This is also the case for all boundary conditions extrapolating the
pressure in ghost cells for instance. Consequently, the discrete solution results in an incorrect scaling of the pressure
fluctuations in the acoustic limit, which may lead to a pathological ”physical” evolution. Indeed, as illustrated in their
figure 9, an acoustic wave scaled on the reference Mach number ϵ cannot propagate even with positive velocities.

Additionally, it has been stated that, the uniformity in space of p(1) can be a contributing factor in the observed
strong damping of the density, as shown in their figures (1-2). Based on our observations from similar unsteady
numerical experiments carried out with the Roe-Rossow scheme, it can be thought that the strong damping of the
acoustic pulse may also be partially explained by the use of too large CFL numbers. An inappropriate stability
criterion in unsteady low Mach number computations could influence the damping of high frequencies present in the
acoustic waves. As it will be discussed and demonstrated with numerical evidences in the following sections, the
proper formulation of the stability condition for modified compressible density-based schemes is essential in the low
Mach number limit. This critical point largely remains an open question insufficiently discussed and documented in
the literature.

4. Stability Condition for the Explicit Scheme

The proper formulation of the stability condition for the explicit scheme is an essential feature of the numerical
procedure. The stability condition may be strongly concerned with the eigenvalues of the matrix-valued dissipation,
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as the rescaling has a major effect on the solution accuracy in the incompressible limit. As shown next, the asymp-
totic behavior of the modified acoustic eigenvalues may have large consequences on the Von Neumann condition for
stability of the explicit scheme in the low Mach-number range. This depends on the way the matrix dissipation is
modified.

In the case of the Roe-Rossow scheme, we find that matrix (12) has the following eigenvalues


µ0 = |Un| with multiplicity 2 for the 2D problem

µ± =
c
2r

[
(r2 + 1)(1 − |Mn|) + 2r|Mn| ±

√
(r2 − 1)2(1 − |Mn|)2 + 4r2M2

n

]
(r =

c
c′

)
(42)

with the following properties:

1. The modified acoustic eigenvalues are positive in the subsonic range with µ+ > 0 and
µ+µ− = c2

r2

[
r2(1 − |Mn|) + r(1 + r2)|Mn|

]
(1 − |Mn|) ≥ 0 when |Mn| ≤ 1;

2. Thus the symmetric matrix (12) is positive semi-definite in the subsonic range;
3. The spectral radius is given by max(µ0, µ−, µ+) = µ+ (see Appendix B);
4. We find that µ+ ≥ |Un| + c = ρ(A) the spectral radius of the original Jacobian matrix, ∀|Mn| ≤ 1 (see Appendix

B);
5. At the sonic line, c

′
= c => r = 1 and µ+ = ρ(A).

In the incompressible limit, Mn −→ 0 and the acoustic eigenvalues behave as:

µ± ≃ c
′

2

[
(r2 + 1) ± |r2 − 1|

]
. (43)

Since r ≥ 1:

µ+ ≃ c2

c′
= O(

1
M2 ), µ− ≃ c

′ ≃ Vre f = O(1). (44)

These above results show that Roe-Rossow scheme is closely related to the rescaling of the Roe scheme reformulated
for the Roe-Turkel scheme in [36], with identical stiffness in term of stability constraint. Result (44) is likely related
to the fact that the artificial speed of sound is defined from the same local preconditioner and that, in modifying the
pressure jumps, the fastest acoustic speed travels at almost infinite speed, with large consequences on the numerical
stability. In particular, we see that the stringent stability condition that applies to the Roe-Turkel scheme has to be
applied also to the Roe-Rossow scheme in the asymptotic limit, with acoustics waves associated to µ+ traveling at
infinite speed of the order O( 1

M2 ) while acoustic waves associated to µ− are slowed down to a reference flow velocity.
An important result for the stability in the low speed limit has been given by Birken and Meister, under an essential

condition that the fastest wave speed of the dissipation matrix is of order O( 1
M2 ) as M → 0 (see [35], Lemma 4.1 and

Theorem 4.2). The proof uses a subordinate matrix norm for the amplification matrix, given in one space-dimension
with mesh spacing δx by

G(ξ, σ) = Id + (cos(ξ) − 1)σD − i sin(ξ)σA, (45)

where Id is the identity matrix, D the dissipation matrix, A the flux Jacobian matrix, ξ the wave number (normalized

by 1/δx), σ =
∆t
δx

and i2 = −1. An essential mechanism of this proof relies in the fact that ρ(D) >> ρ(A) as M → 0,

where ρ(D) and ρ(A) are the spectral radius of D and A, respectively. As ρ(A) = O( 1
M ), this condition is satisfied

by the Roe-Rossow scheme with ρ(D) = µ+ and result (44). Therefore the necessary Von Neumann condition is the
same as for the explicit Roe-Turkel scheme reformulated in [36], with for a fixed mesh spacing

∆t ≤ h
µ+
≃ O(hM2) as M −→ 0, (46)

where h represents some characteristic cell distance and µ+ is given by (42). With the above property 5., the Von
Neumann condition (46) returns the standard stability condition at the sonic line

∆t ≤ h
|Un| + c

as M −→ 1. (47)
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The necessary stability condition (46) is well posed and allows the use of very large CFL numbers in the incompress-
ible limit, provided that an efficient implicit scheme is developed accordingly. Note that this condition is much more
restrictive than the stability condition used by Rossow, formulated by replacing the speed of sound by the Roe-Rossow
scheme in (47) with

∆t ≤ h
|Un| + c′

≃ O(h) as M −→ 0. (48)

With this above stability condition, only moderate values of the CFL can be used for the steady-state problem and a
prohibitive number of iterations may be required in the very low Mach number range.

A Newton-like implicit scheme described next was especially built for the steady-state problem, ideally so that
very large CFL numbers in the incompressible limit could be used, which is not always possible, with typically
CFL ≃ O( 1

M2 ) in order to counterbalance the constraint of very small time steps ∆t ≃ O(M2).
It is also interesting to look at the case of the Rieper’s fix, for which it can be demonstrated that the modified

fastest wave speed has a less restrictive asymptotic behavior, with:

µ+ ≃ c = O(
1
M

) and µ+ ≤ ρ(A) as M −→ 0. (49)

Then the strong stability condition given by Birken and Meister does not applied in that case, and it is expected that
the low Mach number fix will not further deteriorate the stability constraint of the original Roe scheme. Although
this correction is easy to implement, as the fix only introduces vanishing jumps ∆Un in the acoustic wave strengths
for all equations, the eigenspaces and eigenvalues of the dissipation matrix are modified and the proper reformulation
of the stability condition following the asymptotic properties (49) is actually not straightforward. One reason is that
the modified dissipation matrix by low Mach number corrections is no longer a function of the flux Jacobian matrix,
making the Fourier analysis for stability more complex.

5. An implicit Newton-like scheme for the steady-state problem

Even in the case of two-dimensional academic test cases, the computation of steady or unsteady compressible
flows can become challenging in the low Mach number limit. The accuracy issue is a crucial point, largely discussed
in the previous sections. But it is not the only one. It is well known that, in the low Mach number limit, a much
slower convergence rate is generally experienced in which large iteration numbers are required, as it has been again
mentioned recently with the JST-scheme in [53]. The information associated with the slowest wave will propagate
during a time step at a distance corresponding to µ−∆t, which can also be compared to a fraction of the characteristic
cell size h, with the following behavior in the case of low speed flows and the use of standard moderate CFL numbers

µ−∆t ≤ CFL
h
Rc
<< h, (50)

where Rc is the condition number. As stated above, in the case of the Roe-Rossow scheme (and also for the Roe-Turkel
scheme), we see that Rc ≃ O(1/M2) as M −→ 0, which is strongly related to the stability condition. Therefore, the
number of iterations required in order to reach the steady state may become prohibitively large, unless very large CFL
number of the order of Rc can be used.

As described in the following section, a robust and stable numerical approach was developed in order to overcome
the stability constraints previously mentioned. In this work, a significant effort was dedicated to the development
of an efficient implicit scheme, using modern tools such as Algorithmic Differentiation and fast LU decomposition
libraries. The construction of an exact Jacobian matrix of the flux balance was performed using acceleration methods,
such as coloring mesh techniques. Including these tools and techniques, it is shown in the following how discrete
accurate steady-state solutions can be obtained with quadratic convergence in few hundreds or a few thousands of
iterations depending on the mesh density, without the use of multigrid acceleration methods, for very low Mach
number decreased up to 10−6.

We have considered the following standard linearized backward-Euler time-stepping scheme formulated for a
cell-centered finite-volume method on structured mesh

(
V
∆t
I + ∂R

n

∂Wn

)
(Wn+1 −Wn) = −Rn. (51)
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The key ingredient for an efficient implicit stage is the construction of the Jacobian matrix of the flux balance
∂Rn

∂Wn ,
required for the time integration. An automatic procedure was designed for the generation of the exact Jacobian
matrix of the flux balance Rn by Algorithmic Differentiation, as indicated next. The implicit scheme (51) is then
solved using the LU decomposition provided by the Intel library : oneMKL PARDISO - Parallel Direct Sparse Solver
Interface [51]. The objective was first to derive a fast and stable implicit scheme, allowing to use large CFL numbers,
in order to overcome the stringent stability condition (46). Second, in the case of steady computations, this also has
the remarkable advantage of reducing significantly the number of iterations required, since quadratic convergence can
be reached when an adaptive CFL number is used. In addition, during the quadratic phase of the convergence history,
CFL numbers may reach extremely high values, as it will be also illustrated in section 6.

5.1. Construction of the exact Jacobian matrix

The construction of the exact Jacobian matrix relies on Tapenade [44], an Algorithmic Differentiation tool based on
Source Transformation. Over the last ten years, this useful tool has been successfully applied in numerous applications
[52, 47] and has demonstrated relevance and efficiency [45, 46]. In our case, it proved to be an powerful tool in
simplifying tedious calculations in the differentiation of a modified Roe scheme, accounting for second or third order
MUSCL reconstruction, the physical boundary conditions and inner matching boundaries, where the current stencil
of the first or higher order scheme is modified. Without Algorithmic Differentiation tool, such types of differentiation
are commonly approximated in practice in the formulation of the implicit stage. In the following, we briefly indicate
how, in the absence of high-performance computing constraints, a CFD code could easily operate using Tapenade.
For the use of Tapenade in an HPC framework, the reader is referred to [46].

5.1.1. Tapenade: an Algorithmic Differentiation tool
First, in general, Tapenade [44] remains independent of the CFD-code and is not used during the run time. The

reason is that, upon providing a file that contains a function written in either C or Fortran code, Tapenade generates
a differentiated code that must be compiled. Second, Tapenade admits two different modes, which correspond to a
matrix-vector product over the Jacobian matrix. For a smooth function denoted g : X ∈ Rn −→ Rm, the differentiated
code corresponds to either a tangent mode or a reverse mode

Tangent/Forward mode:
∂g
∂X

Y, ∀Y ∈ Rn, Reverse mode: Yt ∂g
∂X
, ∀Y ∈ Rm. (52)

Depending on the mode chosen and on the definition of the vector Y, either the directional derivatives (tangent mode)
or the gradients (reverse mode) of the function can be calculated. Therefore, if the entire exact Jacobian matrix is the
query, an iterative algorithm must be considered, consisting in calling the differentiated code several times and storing
results in a sparse matrix format. The iterative algorithm will progressively reconstruct the matrix either row by row
or column by column.

Note that although both modes are possible for reconstructing a Jacobian matrix, they achieve different perfor-
mances. Due to an higher complexity, the reverse mode might be more demanding in terms of consumed memory and
CPU-time. Nevertheless, in theory, the execution of both differentiated codes are few times longer than the original
code.

5.1.2. Accelerating method for the construction of the exact Jacobian matrix: mesh coloring methods

In this work, the construction of the Jacobian matrix
∂Rn

∂Wn was carried out using the tangent mode. In order
to optimize the CPU time for the construction of the Jacobian matrix, a mesh coloring method was applied. Such
technique consists in constructing a partition of the meshM that serves to maximize the information recovered with
a single matrix-vector product in (52). For a structured mesh, mesh coloring methods can be easily constructed since
they can be spanned with a canonical coloring. For instance, as sketched in the figures below, the number of subsets
in the partition (the number of colors) can be determined by taking the full square encompassing the stencil of the
scheme.
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Stencil with MUSCL reconstruction Canonical coloring

The rest of the mesh can then be just spanned by the square in the (x,y) space directions. For every cell sharing the
same color, stencils are juxtaposed, while for cells with different colors, stencil are overlaid. This represents a first
and easy manner to optimize CPU time for the construction by reducing the number of calls to the differentiated code.
The smaller the number of colors involved in the mesh coloring is, the more efficient the construction of the Jacobian
matrix will be.

5.2. Adaptive CFD formulation based on a pseudo transient continuation method for the steady-state problem
Some other techniques were introduced for steady flow computations in order to efficiently accelerate the con-

vergence rate to the steady state. A local time stepping method combined with a CFL evolution strategy was devel-
oped based on numerical experiments, to enforce a smooth transition from the backward-Euler scheme to a Newton-
Raphson method. This is achieved by the use of infinite CFL numbers in (51), resulting in

∂Rn

∂Wn (Wn+1 −Wn) = −Rn. (53)

Our adaptive CFL formulation is strongly inspired from the pseudo transient continuation technique proposed by Criv-
ellini & Bassi in [48]. Nevertheless, the efficiency of our formulation remains questionable while being an important
topic of the literature [49]. As this is not the main attention of the present paper, one might find a better CFL evolution
strategy in the literature. The following formulation has been originally designed to achieve a quadratic convergence
for low Mach number flows with uniform initial conditions. Attention has been paid to ensure that the strategy is not
overly sensitive to the input parameters. In our case, this CFL evolution strategy has been helpful for our test cases
with the following formulation

CFL = min
(
CFLadapt, CFLmax

)
, CFLadapt = max

(
(1 +

1
rβ

)CFLinit, CFLmin

)
, (54)

where CFLinit, CFLmin, CFLmax are input parameters. A desirable behavior of the CFL number should be to smoothly
increase as long as the vector of the explicit residuals drop down for all equations. Assuming the adaptive CFL is set
at the iteration i0, the coefficient r is defined with the normalized explicit residuals in the l2-norm and the l∞-norm

Rn
2
=


|| (Rn)i ||2
|| (Ri0 )i ||2


i=1,4

, Rn
∞ =


|| (Rn)i ||∞
|| (Ri0 )i ||∞


i=1,4

, where || · ||2 =


1
Nc

Nc∑

l=1

(·)2
l

Vl



1
2

, || ·||∞ = maxl

( |(·)l|
Vl

)
, (55)

which proved to be numerically efficient. In these above expressions, Nc stands for the total number of cells of volume
Vl, and i corresponds to i = 1, 4 for the flux balance (Rn)i of each equation in the two-dimensional case. In opposition
to [48], investigations were performed with a fluctuating β coefficient in (54). The underlying idea was to incorporate
a criterion that would monitor the different magnitudes of the residuals, with the purpose to either amplify or to reduce
the behavior of 1/r. The following formulation of the coefficients r and β were found within numerical experiments

r = max( ||Rn
2
||2 , ||Rn

∞||∞ ) β = min



∣∣∣∣∣∣ log10

( min
i

( Rn
2 )i

max
i

(Rn
2 )i

) ∣∣∣∣∣∣,
∣∣∣∣∣∣ log10

( min
i

( Rn
∞)i

max
i

(Rn∞)i

) ∣∣∣∣∣∣

 (56)

The optimal scenario considering expression (56), although rarely encountered, would correspond to a decreasing
coefficient r, with one of the two ratios in the expression of β approaching unity. In such case, the value of CFLadap
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given by expression (54) would be strongly amplified. This formulation turns out to be also robust in the transient
phase of the computation, in which numerical instabilities can be triggered and amplified by an excessive CFL number.
Consequently, numerical instabilities would propagate to all equations, leading to a change of ratios in (56), and
thereby, to an increase of β. In the absence of strict dispersion or concentration of the residuals occurring during the
iterations, the only possibility to reach high CFL numbers is given by the behavior of r.

Figure 1 illustrates the convergence history of the l2-norm (solid curves) and l∞-norm (dashed curves) of the
normalized residuals associated with the Roe-Rossow scheme, for the steady-state solution of the non-lifting cylinder
test-case, at inflow Mach number M = 0.01. An extreme mesh density was considered in this numerical experiment,
in order to illustrate the robustness of this adaptive CFL strategy, using a less dissipative scheme with a third-order
MUSCL reconstruction. The evolution of the adaptive CFL according to formulation (54-56) is also indicated in red
in the figure.

Due to the extreme high mesh density considered (composed of 1,048,576 cells) and that a uniform initial con-
dition was prescribed, a straightforward computation using a third-order MUSCL reconstruction was found to be
insufficiently stable to support CFL numbers greater than O(1/M2), as required by the stability condition. The initial
CFL number could have been set to a smaller value (at least between O(1/M) and O(1/M2)). However, this approach
may not be computationally efficient, as the number of required iterations may drastically increase, and also account-
ing for that the CPU time required by direct solvers for each iteration cannot be neglected. Indeed, a smaller initial
CFL number results in the fluctuating CFL requiring more iterations, before the adaptive CFL begins to fluctuate
and reach much higher values. This is related to the fact that the evolution of residuals is slowed down, whereas the
underlying idea of the formulation was to amplify or to reduce the contribution of the coefficient r defined in (56).

In that specific numerical experiment, in order to minimize the time required to obtain a converged discrete so-
lution with third-order MUSCL reconstruction, the computation has been performed by successively restarting and
converging the discrete solution, starting from the first-order scheme in space ”O(1)”, then using a second-order
MUSCL reconstruction ”MUSCL O(2)”, to finally consider a third-order reconstruction in space ”MUSCL O(3)”.
The initial CFL number was set to CFL = 105 > O(1/M2), which proved to be stable using first the first-order
scheme. At quadratic convergence, very large CFL numbers were reached, with CFL ≃ 1015 using the first-order
scheme and CFL ≃ 109 considering higher-order MUSCL reconstructions. The input values used in expression (54),
corresponding to the successive runs illustrated in Fig. 1, are summarized in table 1.

Note that this situation with 3 successive restarts, using a high density mesh, is not the usual practice for the test
cases discussed in the next section 6. In most of the cases, considering standard density meshes, computations using
this adaptive CFL formulation could be performed from scratch, starting with the desired space accuracy. In the most
difficult cases however, it may be only necessary to start the computations from a few iterations performed with the
first-order scheme or more dissipative MUSCL reconstruction.

Figure 1: Convergence of the Rossow-Roe scheme for an inviscid flow around the non-lifting cylinder at inflow Mach number 10−2, using a
1025x1025 O-type mesh and three successive space discretizations.
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itstart itend iti0 CFLinit CFLmin CFLmax

O(1) 1 1999 250 105 2.5 x 105 1015

MUSCL O(2) 2000 2999 2005 5 x 105 5 x 105 1015

MUSCL O(3) 3000 3999 3005 106 106 1015

Table 1: Input parameters for the adaptive CFL numbers used in the successive runs of Fig. (1).

6. Results for the cylinder Problem

This baseline test-case using structured meshes was considered to illustrate the above analysis, assuming inviscid
flow. A grid convergence study was carried out and effects of grid stretching on the discrete solutions in the very
low speed limit were also investigated. Results are discussed in details and are compared to the potential flow theory.
In all the following, the first-order Roe-Rossow scheme will be indicated with O(1) in the figures, while the scheme
using a second or third-order MUSCL reconstructions will be indicated respectively with MUSCL O(2) (Van Albada
limiter) and MUSCL O(3) (no limiter). No entropy fix needs to be applied in low Mach number flow computations
for the model problem considered in this section. The authors are aware that for more complex viscous flows or
three-dimensional flows, it is generally not possible to eliminate the entropy fix.

6.1. Test-case description

For this elementary test-case, different types of mesh were considered in order to illustrate the asymptotic behavior
and the solution accuracy, for a decreasing inflow Mach number M∞ in the range 10−1 to 10−6. Converged steady-
state solutions with such low Mach number flow conditions could only be obtained in a very limited number of
iterations with the stability conditions discussed in section 4, and using the implicit scheme with adaptive CFL number
described in 5. The meshes used are described in table 2, for basically 3 types of structured mesh: Cartesian, an
irregular curvilinear mesh and a standard curvilinear mesh, represented in Fig. 2. A sequence of Cartesian meshes
was considered for a grid convergence study with density 65× 65, 129× 129, 257× 257, 513× 513 and 1025× 1025.
The irregular mesh is characterized by a grid refinement in the circumferential direction, downstream of the cylinder
only. This yields a highly stretched mesh designed to trigger checkerboard pressure modes. A standard curvilinear
mesh was also used and is considered as the baseline mesh. The sequence of Cartesian meshed were defined with
a very large extension of the outer boundary with 150 diameters, in order to propagate the acoustic pressure in the
farfield, and also avoiding interactions with the farfield boundary condition.

For all meshes, a slip condition was applied at the solid wall. At the outer boundary, a characteristic farfield
boundary condition was used. Note that the solution of the potential theory was imposed as external state at the outer
boundary for the steady-state case. This analytic solution is defined for a non-lifting flow from a prescribed surround-
ing ”0-state” (ρ0,V0, p0), with constant density ρpot = ρ0, free divergence velocity Vpot = [Vr,Vθ]T in cylindrical
coordinates (r, θ), with Vr(r, θ) = (1 − R2/r2) cosθ V0 and Vθ(r, θ) = −(1 + R2/r2) sinθ V0, R being the cylinder radius.
Then, the static pressure is given by the Bernoulli equation for incompressible flows ppot = p0 + 0.5ρ0(V2

0 − |Vpot |2).
The prescribed uniform ”0-state” is also the initial data in the steady-state computations, and is defined with V0 =√
γp0/ρ0 M∞ depending on the prescribed inflow Mach number.

Mesh definition Mesh density (nodes) Number of cells Mesh extension (in diameter)
Cartesian mesh : min density 65 × 65 4096 150
Cartesian mesh : max density 1025 × 1025 1 048 576 150
Curvilinear irregular mesh 140 × 40 5421 20
Curvilinear standard mesh 121 × 40 4680 20

Table 2: Definition of structured meshes used for the cylinder problem (mesh definition = circumferential × radial).
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Figure 2: Types of structured meshes used for the cylinder problem. Left: Cartesian, Center: Curvilinear irregular, Right: Curvilinear standard.

6.2. Disturbance pressure consistency
In the incompressible limit, we shall especially consider the proper behavior of the pressure field p(x, y) = p0 +

p2(x, y)M2
∞ as M∞ −→ 0, where p0 is a reference surrounding pressure and M∞ is the prescribed inflow Mach number.

Therefore, reformulating the normalized pressure field with the following quantity

p̃(x, y) =
p(x, y) − pmin

pmax − pmin
=

p2(x, y) − p2min

p2max − p2min

= p̃2(x, y) ∈ [0, 1] as M∞ −→ 0, (57)

this expression returns the normalized disturbance pressure field p̃2(x, y), which should be independent on the inflow
Mach number. The proper behavior of the pressure field in the incompressible limit can also be displayed with the
amplitude of the pressure disturbance versus the inflow Mach number

δ p̃ =
pmax − pmin

pmax
≃

[
p2max − p2min

p0

]
M2
∞ as M∞ −→ 0, (58)

which should be a quadratic function δ p̃(M∞) of the inflow Mach number. The above quantity δp̃ only indicates the
consistency of the pressure field, i.e. with the correct amplitude of the disturbance pressure, not the overall accuracy
of the computations for the pressure field. The solution accuracy depends obviously on both the mesh definition and
the space accuracy of the scheme. The same quantities are also meaningful for the density, when characterized by
second-order fluctuations.

Another simple indicator of consistency is the pressure coefficient at the wall, which returns, according to the
asymptotic analysis

Cp(x, y) =
p2(x, y)

1
2γp0

as M∞ −→ 0. (59)

Therefore, the Cp coefficient is the non-dimensionalized disturbance pressure at the wall, which should be also inde-
pendent on the inflow Mach number in the asymptotic limit.

The behavior of the slope of δ p̃ with the inflow Mach number for the Roe-Rossow scheme is represented in the
Fig. 3 left, with logarithmic scales. It can be clearly seen that the computed disturbance pressure returns a quadratic
function of the inflow Mach number, thus illustrating that the artificial speed of sound approach reproduces the proper
pressure field in the asymptotic limit, as demonstrated in section 3.2.2. As observed by many authors for some other
modified Approximate Riemann Solver, the consistency of the pressure field is intrinsically satisfied regardless of the
mesh used or the space accuracy considered, as illustrated in the left figure.

Additional computations were performed in the standard curvilinear mesh using a second-order MUSCL recon-
struction. The consistency of the corresponding pressure field is again illustrated in Fig. 3 for contours of the normal-
ized pressure field (center) and the pressure coefficient Cp (right), independent of decreasing inflow Mach numbers
in the incompressible limit M∞ = 10−2 to 10−6. The Cp coefficient computed with the second-order scheme almost
matches exactly with the incompressible Cp coefficient in this coarse mesh, which indicates that the wall pressure for
the weakly compressible solution almost fits the incompressible pressure, solution of the Bernoulli equation. This is
not exactly achieved with the first-order scheme.
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Figure 3: Slope of the amplitude of the pressure disturbance δ p̃ with the inflow Mach number for different meshes and space discretizations (left),
normalized disturbance pressure p̃(x, y) (center) and pressure coefficient (right) for low inflow Mach numbers computed in the standard curvilinear
mesh with the Roe-Rossow MUSCL O(2) scheme.

6.3. Overall solution accuracy at the incompressible time scale

The overall solution accuracy at the incompressible time scale depends essentially on the proper representation
of the pressure disturbances in the incompressible limit. However, as for compressible flow simulations, solution
accuracy also depends on the mesh definition, the mesh density and space accuracy, even for weakly compressible
flows. For this simple steady-state test-case, the exact potential solution provides a valuable reference for the assess-
ment of the accuracy of the compressible solution, for its incompressible component. This is achieved considering the
converged CFD solution to the steady-state, using a usual local time-step, corresponding to the incompressible time
scale.

The comparison of some converged solutions of the Roe-Rossow scheme with the potential solution is illustrated
in the Fig. 4, for 2 different meshes and 2 different MUSCL reconstructions (order 2 in the standard curvilinear mesh
and order 3 in the very fine Cartesian mesh). In the left and center figures, the iso-contours of the velocity components
in the Cartesian reference frame are compared to the analytic expressions (black dashed lines). It can seen that for
the finest mesh density 1025x1025 (green solid line), the weakly compressible solution seems to match perfectly with
the potential solution for the velocity components, while using the standard curvilinear mesh, some entropy errors
can be observed for the horizontal velocity, downstream of the cylinder (red solid line). The corresponding solutions
for the Cp coefficient are plotted in the right figure. We have also plotted the solution of the first-order Roe-Rossow
scheme computed in the standard mesh, for comparison. This shows that the first-order accuracy in space is clearly
not sufficient to represent the wall pressure with this mesh density, which should closely match with the Bernoulli
equation for this test case, as is it the case with the higher order MUSCL reconstructions used.

Figure 4: Effect of the mesh density and the space discretization on the solution accuracy for the horizontal (left) and vertical (center) velocity
components, and the Cp coefficient (Comparisons with the analytic potential solution).
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Some grid-convergence indicators were also defined for solutions computed in the sequence of Cartesian meshes,
considering the scheme with third-order reconstruction. We looked at the l2 norms computed at the cell center of
the whole computational domain, for the difference between the compressible and the potential solutions, in terms of
pressure ∆Bernoulli pressure = ||p− ppot ||2 and density ∆Cst density = ||ρ− ρpot ||2. As the potential solution is obtained from
a 0-order state depending of the Mach number in our analysis, these 2 indicators are represented for the increasing
mesh density in log scale in Fig. 5, for 2 representative low Mach numbers M∞ = 10−2 (left) and M∞ = 10−4 (right).

For a given inflow Mach number, we find that the slope is of second-order with the mesh spacing for the pressure
difference indicator ∆Bernoulli pressure, while it is only slightly less than first-order for the density difference indicator
∆Cst density. Although the scheme has a real space accuracy more than first-order, it is not truly third-order, even in
a Cartesian mesh. In addition, as the dissipation matrix behaves differently according to the conservation of mass,
momentum and total energy, the scheme accuracy may be different for error indicators applied to different primitive
variables. We also see that the slopes are independent on the Mach number (identical in the two figures).

Also note that log scales used for these 2 grid-convergence indicators for M∞ = 10−4 (right) are exactly shifted
with a ratio 10−2 × 10−2 with respect to the scale displayed at M∞ = 10−2 (left), whatever the mesh density. For the
pressure difference, it is expected that the difference between the compressible and incompressible pressures lies in
the second-order disturbance pressure p2(x, y)M2

∞ in expression (20), not represented in the incompressible theory. So
∆Bernoulli pressure ≃ O(M2) for low Mach numbers, which is reproduced comparing the scales for the pressure difference
in the two figures. The same behavior is reproduced in this analysis for the density. These plots also indicate that
for the Roe-Rossow scheme applied to this steady test-case, assuming constant 0-order density, the density is also
characterized by second-order disturbances in the Mach number of the surrounding density. This asymptotic behavior
of the density, also satisfies by the Rieper’s fix, could be demonstrated using a similar proof as indicated in [56].
Identical second-order slopes with the decreasing Mach number, as indicated in Fig. 3 left for the pressure, can be
plotted for the amplitude of the density fluctuation.

Figure 5: Grid convergence error in l2 norm between the compressible and incompressible solutions for the pressure and density, at Mach number
M∞ = 10−2 (left) and M∞ = 10−4 (right).

6.4. Acoustic-incompressible interactions

The following considerations regarding acoustic-incompressible interactions in the discrete solutions are not con-
figuration dependent and are just discussed here for the cylinder test-case. The presence of an unsteady acoustic
pressure at the acoustic time-scale, can be detected, even for the steady-state problem, looking at first the behavior of
the convergence history in the incompressible limit.

The convergence history for the normalized density residual, corresponding to different inflow Mach numbers,
are compared in the next figures, for decreasing Mach numbers M∞ = 10−1 to M∞ = 10−6 in the fixed standard
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Figure 6: Convergence history for decreasing inflow Mach numbers in the standard mesh (left) and at a fixed M = 10−4 with effects on the
convergence history of mesh definition and space accuracy (right).

curvilinear mesh (Fig. 6 left) and for a fixed inflow Mach number M∞ = 10−4, with effects on the convergence history
of the mesh definition and the order of the space discretization (Fig. 6 right). Large CFL numbers could be used
for all calculations, as illustrated in Fig. 1. Most of the computations have required a restart from a more dissipative
solution, to reach a quadratic-like convergence to the desired space accuracy, in order to achieve similar residual drops
with comparable numbers of iterations, independently of the mesh definition or mesh density used.

As shown in Fig. 6 left for a fixed mesh, a significant shift with the zero-level machine can be observed, especially
noticeable when M∞ → 0. This is illustrated with the dashed lines, highlighting the different levels of the thresholds
reached according to the inflow Mach number. Such thresholds are usually not observed for compressible or nearly
incompressible flows, where residuals for the steady-state problem can be dropped to the zero-level machine. On
the other hand, it can be observed in Fig. 6 right that a similar threshold is reached with residuals dropped with
only 6 orders, for M∞ = 10−4, regardless the mesh used or the space accuracy considered. A typical convergence
history with a residual dropped with 12 orders obtained with the Rieper’s fix at the same Mach number is also plotted
for comparison in this figure, illustrating the large shift of the thresholds occurring at low Mach numbers with the
Roe-Rossow scheme.

The occurrence of a threshold for the steady-state problem likely originates from an acoustic content in the discrete
solution computed with the Roe-Rossow scheme, as it was also observed in the case of the Roe-Turkel scheme [36].
Such pressure fluctuations in the discrete solutions, not completely damped out by the numerical procedure, may result
from transient acoustic pressure waves, which can be more easily interpreted from unsteady computations, looking at
the dilatation rate, as shown in the following for the divergence of the velocity field. The cancellation problem due
to accumulated round-off errors as mentioned sometimes in the literature, cannot explained what is clearly shown in
Fig. 6, with very different thresholds found when the Rieper’s fix is compared to the Roe-Rossow scheme, at the same
inflow Mach number.

An unsteady computation was performed using a third-order MUSCL extrapolation in space and the implicit
Backward Euler scheme (51), first-order accurate in time, in the fine Cartesian mesh 513 × 513. The inflow Mach
number was again set to M∞ = 10−4. The initial and farfield conditions are identical to the steady-state problem, except
that a uniform flowfield was prescribed as external state at the farfield boundary. An arbitrary time-step ∆t = 10−4s
was used, since no physical frequency can be retrieved from these inviscid flow simulations, using steady boundary
conditions. The authors are aware that physically relevant acoustic waves can only result from the interaction of
turbulent boundary layers occurring at the trailing edge.

From this numerical experiment, unsteady pressure fluctuations can be visualized from contours of the dilatation
rate at different time steps, as illustrated in the next figures (7) to (9). Divergence of velocity is closely tied to the
principle of conservation of mass. Positive divergence indicates expansion, leading to the formation of regions of low
pressure (white patterns). Conversely, negative divergence suggests compression, resulting in regions of high pressure
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Figure 7: Contours of the dilatation rate for the unsteady solution at different time steps for M∞ = 10−4 in a fine Cartesian grid (left) and
corresponding Cp evolution at the wall (right).

Figure 8: Contours of the dilatation rate for the unsteady solution at different time steps for M∞ = 10−4 in a fine Cartesian grid (left) and
corresponding Cp evolution at the wall (right).

Figure 9: Contours of the dilatation rate for the unsteady solution at different time steps for M∞ = 10−4 in a fine Cartesian grid (left) and
corresponding Cp evolution at the wall (right).

(black patterns). The acoustic component is characterized by acoustic pulses immediately generated at very short
times, then propagating in the farfield, as illustrated in the figures.

After a transient phase, it can also be noted that the incompressible pressure is well reproduced, from plots of the
corresponding Cp evolution with time at the wall, also displayed in the figures. In the long times, the Cp distribution
become almost identical to the steady-state case, and independent of the unsteady iterations. So a permanent regime
is found near the wall. This behavior illustrates that the incompressible pressure in the discrete solution, correspond-
ing to the incompressible time-scale, is also characterized by the proper behavior with second-order disturbances

23



p2(x, y, t)M2
∞, for the unsteady problem.

As the initial condition consists in prescribing a uniform flowfield over the computational domain, an acoustic
wave is generated at the wall boundaries. Acoustic pulses are also related to amplified velocity jumps found in the
short times in the discrete solution near the wall, generating pressure waves as shown in [29]. In the case of the
Rieper’s fix for instance, the cancellation of the jumps of the normal velocity in the low Mach number range seems to
strongly reduce the intensity of the acoustic content in the solution. Expansion waves with much lower intensity were
found with the Rieper’s fix, although pulses reflected back into the computational domain were observed with the low
Mach number fix. This is also visible in the steady-state case, with much lower thresholds reached in the convergence
history, as indicated in Fig. 6 right, although the Rieper’s fix yields a less dissipative scheme than the artificial speed
of sound approach.

In addition, looking at in details the patterns for the dilatation rate in the farfield, it can be seen that the un-
steady discrete solution has permanent acoustic disturbances in the large times. As the Roe-Rossow scheme does
not introduce strong reductions of the intensity of the velocity jumps, and is rather characterized by dominant effects
of increased pressure jumps, this may explained the noticeable thresholds characterizing the convergence history,
previously illustrated in the case of the steady-state problem.

6.5. Checkerboard pressure modes

In this last section, the discrete asymptotic analysis discussed in section 3.2.1 is illustrated for the pressure checker-
board issue, comparing the Roe-Rossow scheme to the Rieper’s fix, with the third-order MUSCL reconstruction for
both schemes. Many preliminary tests conducted during this work have clearly shown the occurrence of checkerboard
pressure modes, especially in highly stretched grids, when using the Rieper’s low Mach number fix. We also illustrate
from numerical evidence, that the artificial speed of sound approach is free of any pressure checkerboard modes.

This is first shown in Fig. 10 for the case of the standard curvilinear mesh, with results illustrating the behavior
of the normalized pressure field (right) for the inflow Mach number set to M∞ = 10−4. Apparent weak pressure
checkerboard modes on p2 can be seen for the Rieper’s fix far from the wall for this mesh (red solid lines), where this
regular mesh as larger cells with higher stretching. However, the Cp distribution of both schemes are almost identical
and free of any odd-even pressure decoupling at the wall, where the mesh is almost Cartesian.

This is no longer the case in the irregular non-symmetrical mesh, characterized by a high grid stretching in the
whole mesh. The same plots are given in the next figure 11 for solutions obtained in this mesh. In that case, pressure
checkerboard modes are greatly amplified using the Rieper’s fix. In contrast, the Roe-Rossow scheme is not sensitive
to the mesh definition, and no checkerboard modes can be observed, even considering lower Mach numbers, decreased
up to M∞ = 10−6. This is also the case of the Roe-Turkel scheme, as demonstrated in [38].

Figure 10: Occurrence of pressure checkerboard issues in the standard mesh with the Roe-Rossow scheme compared to the Rieper’s fix at M∞ =
10−4. Pressure coefficient (left), normalized pressure contours (right).
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Figure 11: Occurrence of pressure checkerboard issues in the irregular mesh with the Roe-Rossow scheme compared to the Rieper’s fix at M∞ =
10−4. Pressure coefficient (left), normalized pressure contours (right).

7. Results for the NACA0012 airfoil

Some additional results are briefly presented for the case of the NACA0012 airfoils, for lifting and non-lifting
steady configurations, at different Mach numbers ranging from low speed to supersonic flow conditions. Different
meshes were considered as illustrated in Fig. 12, with definition given in table 3.

In this section, we are basically interested in some comparisons with the original Roe scheme and the Roe-Turkel
scheme, for accuracy assessment of the artificial speed of sound approach. All results presented in this section were
obtained using the MUSCL O(2) reconstruction, and an entropy fix was applied for transonic and supersonic test-cases
(see Appendix C).

Figure 12: Types of structured meshes used for the NACA0012 airfoil. Left: Cartesian-like Vasseberg-Jameson O-mesh, Right: Curvilinear
stretched C-mesh.

Mesh definition Mesh density (nodes) Number of cells Mesh extension (in chord)
”O”-mesh standard 129 × 129 16 384 150
”O”-mesh medium 257 × 257 66 049 150
”C”-mesh 279 × 60 16 402 20

Table 3: Definition of structured meshes used for the NACA0012 airfoil. Cartesian ”O”-meshes are Vasseberg-Jameson meshes used in [42].

We first look at the pressure and drag coefficients, together with entropy distributions at the upper and lower sides.
Some comparisons are illustrated in the next figures, considering different flow conditions, in the non-lifting case, for
solutions computed in the standard ”C”-mesh. In the next figures 13, results obtained with the Roe-Rossow scheme
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Figure 13: Pressure coefficient and entropy distribution in compressible and low Mach number regimes, for the Roe-Rossow scheme compared to
the original Roe scheme (left) and the Roe-Turkel scheme (right) (C-mesh).

Figure 14: Drag coefficient for the Roe-Rossow scheme compared in different meshes to the original Roe scheme and the Roe-Turkel scheme, in
compressible and low Mach number regimes.

are compared to the Roe scheme for compressible and low Mach number regimes (left) and also to the Roe-Turkel
scheme for low Mach numbers (right). Note first that in the transonic case M∞ = 0.80, the solution obtained with
the Roe-Rossow scheme is characterized by an almost identical numerical shock structure than for the original Roe
scheme, with similar spurious entropy levels generated at the stagnation point, upstream the shock wave. Same trends
can be observed for the compressible case at M∞ = 0.5. In the low Mach number range however, the Roe scheme
exhibits expected inconsistencies with the pressure, especially visible at the leading and trailing edges.

The loss of accuracy of the Roe scheme in the low Mach number range is further highlighted in the right figure,
where it can be seen, at decreasing Mach numbers M∞ = 0.1 and M∞ = 0.01 in isentropic flow conditions, that the Roe
scheme (red and orange symbols) has more than 50% higher spurious entropy levels than the modified Roe-Rossow
and the Roe-Turkel schemes (green and black symbols). It can be also noted that the two modified Roe schemes have
a similar accuracy with very close levels of spurious entropy in the low Mach number limit.

The drag coefficient is also a relevant indicator of accuracy, even for inviscid flows. In the next Fig. 14, the
evolution of the drag coefficient with the Mach number is plotted from M∞ = 10−5 in the incompressible limit to the
supersonic regime at M∞ = 2. All Roe-type schemes compared with theses plots give the same drag coefficient in the
compressible regime M∞ ≥ 0.5, for a given mesh. Two different meshes were used for these comparisons, with large
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Figure 15: Mach number contours in lifting transonic (left) and supersonic (right) regimes, for the Roe-Rossow scheme compared to the original
Roe scheme (medium ”O”-mesh).

inconsistencies and even no convergence, observed with the Roe scheme when M∞ ≤ 0.1 (red symbols), whatever
the mesh definition, Cartesian ”O”-mesh or ”C”-mesh (with similar density as reported in table 3). We also see that
for both mesh definitions, in the limit of vanishing Mach numbers, the Roe-Rossow and Roe-Turkel schemes produce
intrinsically an almost constant spurious drag in the incompressible regime. The level of this spurious drag depends
only of the mesh density or the mesh definition and the accuracy of the MUSCL reconstruction.

The two last results shown in Fig. 15 for the medium ”O”-mesh illustrate the ability of the Roe-Rossow scheme to
compute classical compressible transonic and supersonic flows, respectively at M∞ = 0.85, α = 1◦ and M∞ = 2.0, α =
5◦. Both solutions have similar robustness and accuracy, with slight differences located essentially in the vicinity of
the stagnation point, as it can be expected (Roe with red solid contours, Rossow with black dash-dotted contours).

8. Conclusions

The concept of artificial speed of sound was thoroughly validated by Rossow, addressing the analytical stiffness
for low Mach number flow, the discrete stiffness for Reynolds number effects and mesh convergence. Our contribution
in this work was to emphasize the asymptotic properties, not derived by Rossow, for this rescaling of the Roe scheme,
especially aiming at increasing the amplitude of the pressure jump in the matrix-valued dissipation. It has been
pointed out that this modified Roe-type scheme is very similar to the Roe-Turkel scheme in terms of asymptotic
properties. It has been particularly demonstrated that the modified numerical flux ensures the proper order of pressure
disturbances in space, and that the scheme does not enforce the divergence-free constraint of the leading-order velocity.
Numerous numerical experiments using different structured meshes and Mach numbers decreased up to M∞ = 10−6

have shown that the scheme is insensitive to the mesh definition and is free of any pressure checkerboard issue.
This seems to be a more general behavior, strongly related to the amplification of the pressure jumps. In addition,
the Von Neumann analysis for stability shows that a much more restrictive stability condition, than the suggested
stability condition considered by Rossow, must be applied in the low speed limit, at least for the steady-state problem,
which is asymptotically identical to the Roe-Turkel scheme. This proper Von Neumann condition has motivated the
development of an efficient implicit scheme using Algorithmic Differentiation, and allowing a fast convergence to the
steady-state, for all low inflow Mach numbers tested.

As shown by many authors, the Euler equations in the incompressible limit are characterized by incompressible-
acoustic interactions. One other possible guideline in designing the low Mach number fix is to cancel out numerical
acoustics pressure waves arising from the jump of the normal velocity. This correction also corresponds to a reduced
scheme truncation error. Unsteady computations carried out in this paper have illustrated that the artificial speed of
sound approach contains a much stronger acoustic content in the discrete solution than the Rieper’s fix for instance.
This was correlated with typical thresholds found in the convergence history for the steady-state problem, also ob-
served in the case of the Roe-Turkel scheme and also visible in some convergence histories given by Rossow. This
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may stem from the fact that the Rossow’s correction only slightly reduces the velocity jumps, and in the same time,
strongly increases the pressure jumps.

It might be tempting to combine the artificial speed of sound and the Rieper’s fix, to investigate a possible re-
duction of the acoustic thresholds observed in steady-state computations. Such scheme can be easily formulated,
since different coefficients of the matrix dissipation are affected by the low Mach number fix and the artificial speed
of sound. The authors made the experience of blending both corrections into a single numerical flux, rescaling the
pressure jumps using the artificial speed of sound, while decreasing the jumps of the normal velocity according to
Rieper. However, as the pressure gradient is strongly dominating the velocity field in the low Mach number limit,
the resulting scheme turned out to be insensitive to the cancellation of the jumps of the normal velocity and behaves
exactly as the Roe-Rossow scheme, with the same asymptotic stability condition.

Moreover, from investigations also carried out in this paper at the acoustic time scale, it was found that the
discrete solution computed with the artificial speed of sound is characterized by an incorrect scaling of the pressure
fluctuations. Ongoing works by the authors aim at gaining a better understanding of the discrete mechanisms behind
the suitable amplification of the pressure jumps, trying to relax the stiffness of the stability constraint, and to recover
at the acoustic time-scale a proper pressure fluctuation p(1) in space, not achieved by schemes amplifying the pressure
jumps.
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Appendix A.

Results indicated in this appendix are mostly used in Appendix C.
The changes of variables between the symmetrizing dW̃0 variables and the conservative variables W are given in

the two-dimensional case by
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(A.1)
In practice, the eigenspaces of the matrix valued dissipation can be derived for the conservative variables within the
change of variables

d =
∂W
∂W̃0

D̃0
∂W̃0

∂W
(WR −WL) , (A.2)

In symmetrizing variables, the modified dissipation matrix (12) can be diagonalized with:

D̃0 = R̃0Λ̃L̃0, (A.3)

where Λ̃ = diag(µ+, µ−, µ0, µ0) is the diagonal matrix of the modified eigenvalues and the left and right eigenvector
matrix given explicitly in the following.
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The dissipation matrix (12) has the following right and left eigenvector matrix in dW̃0 variables:

R̃0 =



Q+ Q− 0 0

−nxUn −nxUn −ny 0

−nyUn −nyUn nx 0

0 0 0 1



, L̃0 =



1
µ− − µ+

−nxUn

(µ− − µ+)Q+

−nyUn

(µ− − µ+)Q+
0

−1
µ− − µ+

nxUn

(µ− − µ+)Q−

nyUn

(µ− − µ+)Q−
0

0 −ny nx 0

0 0 0 1



, (A.4)

with eigenvalues µ± given by (42) and where the following coefficients have been introduced

Q+ =
1
r

(c − |Un|) + |Un| − µ+, Q− =
1
r

(c − |Un|) + |Un| − µ−, with r =
c
c′
. (A.5)

Note that with the identity
Q+Q− = −U2

n , (A.6)

it can be readily shown that the right and left eigenvector matrix are orthogonal. Thus, the rescaling of the Roe scheme
according to Rossow preserves in the subsonic range the properties of the original flux Jacobian matrix formulated in
symmetrizing variables.

Appendix B.

In this appendix, it is demonstrated that, for eigenvalues (42) of the modified dissipation matrix according to the
Rossow’s artificial speed of sound approach (12), the following inequalities hold in the subsonic range |Mn| ≤ 1 (with
c
′ ≤ c or else r ≥ 1):

1. µ+ ≥ |Un| (Then µ+ is the spectral radius of the dissipation matrix);
2. µ+ ≥ |Un| + c = ρ(A) the spectral radius of the flux Jacobian matrix;

Proof 1. Taking advantage of having both

µ± =
c
2r

[
(r2 + 1)(1 − |Mn|) + 2r|Mn| ±

√
∆
]
≥ 0, (B.1)

using identity µ+µ− = c2

r2

[
r2(1 − |Mn|) + r(1 + r2)|Mn|

]
(1 − |Mn|), we can derive the following expression:

(µ+ − |Un|) (µ− + |Un|)︸       ︷︷       ︸
≥0

=
c2

r2 [r2(1 − |Mn|) + r(1 + r2)|Mn|]︸                                ︷︷                                ︸
≥0

(1 − |Mn|)︸     ︷︷     ︸
≥0

+
c2

r
|Mn|(

√
∆ − r|Mn|). (B.2)

So the sign of µ+ − |Un| is also the sign of

(µ+−|Un|) (µ− + |Un|)︸       ︷︷       ︸
≥0

(
√
∆ + r|Mn|)︸          ︷︷          ︸
≥0

=
c2

r2

[
[r2(1 − |Mn|) + r(1 + r2)|Mn|](1 − |Mn|)

]
︸                                                ︷︷                                                ︸

≥0

(
√
∆ + r|Mn|)︸          ︷︷          ︸
≥0

+
c2

r
|Mn|(∆−r2|Mn|2).

(B.3)
With ∆ − r2M2

n = (r2 − 1)2(1 − |Mn|)2 + 3r2M2
n ≥ 0, we get µ+ − |Un| ≥ 0 ∀|Mn| ≤ 1,∀r ≥ 1.

Proof 2. Following the same idea, we also derive

[µ+ − ρ(A)] [µ− + ρ(A)]︸        ︷︷        ︸
≥0

=
c2

r
(1 − r)2|Mn|(1 − |Mn|)︸                      ︷︷                      ︸

≥0

+
c2

r
(1 + |Mn|)︸     ︷︷     ︸

>0

(
√
∆ − 2r|Mn|). (B.4)
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And the sign of µ+ − ρ(A) is also the sign of

[µ+ − ρ(A)] [µ− + ρ(A)]︸        ︷︷        ︸
≥0

(
√
∆ + 2r|Mn|)︸            ︷︷            ︸
≥0

=
c2

r
(1 − r)2 |Mn|(1 − |Mn|)(

√
∆ + 2r|Mn|)︸                               ︷︷                               ︸

≥0

+
c2

r
(1 + |Mn|)︸     ︷︷     ︸

>0

(∆ − 4r2M2
n). (B.5)

With ∆ − 4r2M2
n = (r2 − 1)2(1 − |Mn|)2 ≥ 0, all terms in the RHS of the previous expression are non-negative for

|Mn| ≤ 1 Therefore µ+ − ρ(A) ≥ 0 ∀|Mn| ≤ 1, ∀r ≥ 1.

Appendix C.

We show in this appendix that it is possible to derive a decomposition of the modified dissipation vector ac-
cording to Rossow following the Harten-Hyman decomposition of the Roe scheme (see [55]), in the modified right-
eigenvectors basis (r̃0)k given by columns of matrix R̃0 (A.4). Then, a formulation of a necessary entropy fix for
vanishing eigenvalues is suggested based on this decomposition. All derivations indicated above were thoroughly
checked numerically and tested by the authors for the test-cases considered in this paper.

A way to proceed is to consider first the following decomposition of the jump ∆W̃0 in symmetrizing variables in
the right eigenvector basis with

∆W̃0 =
∑

k

α̃k(r̃0)k (C.1)

and considering the modified dissipation vector according to Rossow reformulated in jump of the entropic variables

d =
∂W
∂W̃0

D̃0
∂W̃0

∂W
(WR −WL)

=
∂W
∂W̃0

D̃0∆W̃0

=
∂W
∂W̃0

D̃0

∑

k

α̃k(r̃0)k

=
∂W
∂W̃0

∑

k

α̃kµk(r̃0)k

(C.2)

with the modified eigenvalues (42). Then in entropic variables, the dissipation vector has the following components

∂W̃0

∂W
d =

∑

k

α̃kµk(r̃0)k (C.3)

and upon projection into the modified left eigenvector basis ( l̃0)T
k given by the rows of matrix L̃0 (A.4), we finally get

the following expressions for the unknown α̃k coefficients

( l̃0)T
k .
∂W̃0

∂W
d = α̃kµk as ( l̃0)T

i .(r̃0) j = δi, j. (C.4)

Then the idea is to compute the LHS of this previous expressions for all left eigenvectors using the entropic variables
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and find the α̃k coefficients by direct identification. After some algebra, we get first using the same notations as before

∂W̃0

∂W
d =



Un∆Un +

[
1
ρ

c
c′

(1 − Un

c
) +
|Un|
ρc

]
∆p

|Un|∆u + c′nx(1 − |Un|
c

)∆Un + nx
Un

ρc
∆p

|Un|∆v + c′ny(1 − |Un|
c

)∆Un + ny
Un

ρc
∆p

c
ρ
|Un|∆ρ − |Un|

ρc
∆p



, (C.5)

and using properties of eigenvalues (42) and coefficients Q± (A.5), we see that coefficients (α̃0)k can be successively
identified with

1) For ( l̃0)T
1 = [0, 0, 0, 1]:

( l̃0)T
1 .
∂W̃0

∂W
d =

c
ρ

[
∆ρ − ∆p

c2

]
|Un| = α̃1µ0 (C.6)

2) For ( l̃0)T
2 = [0,−ny, nx, 0]:

( l̃0)T
2 .
∂W̃0

∂W
d =

[
nx∆v − ny∆u

]
|Un| = α̃2µ0 (C.7)

3) For ( l̃0)T
+ = [

1
µ− − µ+ ,

−nxUn

(µ− − µ+)Q+
,
−nyUn

(µ− − µ+)Q+
, 0]:

( l̃0)T
+ .
∂W̃0

∂W
d =

1
(µ− − µ+)

[
∆p
ρc
− Un

Q+
∆Un

]
µ+ = α̃+µ+ (C.8)

4) For ( l̃0)T
− = [

−1
µ− − µ+ ,

nxUn

(µ− − µ+)Q+
,

nyUn

(µ− − µ+)Q+
, 0]:

( l̃0)T
− .
∂W̃0

∂W
d = − 1

(µ− − µ+)

[
∆p
ρc
− Un

Q−
∆Un

]
µ− = α̃−µ−. (C.9)

Note that coefficients α̃1 and α̃2 for the linear waves are not modified by the artificial speed of sound. So in conserva-
tive variables, we see that the dissipation vector according to Rossow can be reformulated as follows

d =
∑

k

α̃kµk
∂W
∂W̃0

(r̃0)k =
∑

k

α̃kµk r̃k (C.10)

31



with the modified right eigenvectors r̃k formulated for the conservative variables. Explicitly, this reads

d = ∆F1
0
+ ∆F2

0
+ ∆F̃− + ∆F̃+ =

(
∆ρ − ∆p

c2

)
|Un|



1
u
v
|V|2

2


(Entropy wave) = ∆F1

0

+ρ(ny∆u − nx∆v)|Un|



0
ny

−nx

uny − vnx


(Vorticity wave) = ∆F2

0

-
ρ

c
µ−

(µ− − µ+)

[
∆p
ρc
− Un

Q−
∆Un

]



Q−

uQ− − nxaUn

vQ− − nyaUn

HQ− − aU2
n



(Upstream running acoustic wave) = ∆F̃−

+
ρ

c
µ+

(µ− − µ+)

[
∆p
ρc
− Un

Q+
∆Un

]



Q+

uQ+ − nxaUn

vQ+ − nyaUn

HQ+ − aU2
n



(Downstream running acoustic wave) = ∆F̃+

(C.11)

and it can be clearly seen that the artificial speed of sound only modified the acoustic part of the dissipation vector.
Also note that:

1) If c
′
= c and so no correction of the speed of sound is applied in the supersonic flow, then we find that

µ± = c ± |Un|, Q+ = −|Un|, Q− = |Un| and it can be checked that the decomposition (C.11) return the original
Roe scheme;

2) In the case Un = 0 and then the correction applies with c
′
, c, no singularity can appear in this previous

decomposition.

3) It can also be checked that expanding (C.11) in coefficients M0 and 1 − |M0| returns exactly expression (4) of
the dissipation vector.

The idea behind this later formulation is to further modified the contribution of the acoustic waves so that this
modified dissipation vector according to Rossow can be formulated as some explicit correction of the Roe scheme.
Using the identities

Q+µ+ − Q−µ− = [r(c − |Un|) + |Un|] (µ− − µ+)

Q−µ+ − Q+µ− =

[
1
r

(c − |Un|) + |Un|
]

(µ− − µ+)

Q+Q− = −U2
n ,

(C.12)
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with r =
c
c‘ , it is possible to combine the two last acoustic contributions as follows

∆F̃− + ∆F̃+ =

ρ

c
µ−

(µ− − µ+)

[
∆p
ρc
− Un

Q−
∆Un

]



Q−

uQ− − nxcUn

vQ− − nycUn

HQ− − cU2
n



+
ρ

c
µ+

(µ− − µ+)

[
∆p
ρc
− Un

Q+
∆Un

]



Q+

uQ+ − nxcUn

vQ+ − nycUn

HQ+ − cU2
n



=

[
∆p
2c2 2

( c
c‘ (c − |Un|) + |Un|

)
+ ρc(2Un)

∆Un

2c2

]



1

u

v

H



+

[
∆p
2c2 (2Un) + ρc2

(
c‘

c
(c − |Un|) + |Un|

)
∆Un

2c2

]



0

cnx

cny

cUn



.

(C.13)
We see that if c‘ = c (no correction) then

2
( c
c‘ (c − |Un|) + |Un|

)
= 2

(
c‘

c
(c − |Un|) + |Un|

)
= 2c = |λ+| + |λ−| and 2Un = |λ+| − |λ−|, (C.14)

so that ∆F̃−+∆F̃+ recovers the original Harten-Hyman formulation of the Roe scheme for the acoustic decomposition
as pointed out before. At this point, two formulations can be considered for the modified acoustic decomposition.

- Formulation 1) We look at modified pseudo acoustic eigenvalues λ∗+ and λ∗− solutions of the 2 conditions:


2
( c
c‘ (c − |Un|) + |Un|

)
= |λ∗+| + |λ∗−|

2Un = |λ∗+| − |λ∗−|
(C.15)

and we find that the solutions for |λ∗±| are given by

|λ∗+| = c∗ +Un and |λ∗−| = c∗ −Un (C.16)

where:

c∗ =
c
c‘

[
c + (

c‘

c
− 1)|Un|

]
=

c
c‘ (c − |Un|) + |Un| ≃ O(

1
M2 ) as M → 0. (C.17)

- Formulation 2) We may also consider solutions of conditions


2
(

c‘

c
(c − |Un|) + |Un|

)
= |λ∗+| + |λ∗−|

2Un = |λ∗+| − |λ∗−|
(C.18)

and we find that the solutions for |λ∗±| are given by

|λ∗+| = c∗ +Un and |λ∗−| = c∗ −Un (C.19)

where this time

c∗ =
c‘

c

[
c + (

c
c‘ − 1)|Un|

]
= c‘(1 − |M0|) + |Un| ≃ O(1) as M → 0. (C.20)
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Then, an explicit correction of the Roe scheme clearly appear with both Formulations.
Lets first consider formulation 1. With expressions (C.16)-(C.17) for the pseudo acoustic eigenvalues λ∗+ and λ∗−,

we find that the dissipation vector can be formulated as follows

d =
(
∆ρ − ∆p

c2

)
|Un|



1
u
v
|V|2

2


+ ρ(ny∆u − nx∆v)|Un|



0
ny

−nx

uny − vnx



+

[
∆p − ρc∆Un

2c2

]
|λ∗−|



1

u − cnx

v − cny

H − cUn



+

[
∆p + ρc∆Un

2c2

]
|λ∗+|



1

u + cnx

v + cny

H + cUn



+ρc
[
(c‘ − c)(c‘ + c)

cc‘

]
(c − |Un|)∆Un

c2



0

cnx

cny

cUn


︸                                                     ︷︷                                                     ︸

Correction term f ormulation 1

(C.21)

where the last correction term disappears when c
′
= c.

With formulation 2 and expressions (C.19)-(C.20) for the pseudo acoustic eigenvalues λ∗+ and λ∗−, we get a similar
expression with a different correction term

d =
(
∆ρ − ∆p

c2

)
|Un|



1
u
v
|V|2

2


+ ρ(ny∆u − nx∆v)|Un|



0
ny

−nx

uny − vnx



+

[
∆p − ρc∆Un

2c2

]
|λ∗−|



1

u − cnx

v − cny

H − cUn



+

[
∆p + ρc∆Un

2c2

]
|λ∗+|



1

u + cnx

v + cny

H + cUn



+ρc
[
(c − c‘)(c + c‘)

cc‘

]
(c − |Un|)∆Un

c2



1

u

v

H


︸                                                  ︷︷                                                  ︸

Correction term f ormulation 2

(C.22)
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where the last correction term also disappears when c
′
= c. Obviously, in that case, decomposition (C.21) is identical

to decomposition (C.22) and both collapse into the original Harten-Hyman decomposition. This has also been checked
numerically.

Then, using one of these two expressions for the Roe scheme corrected according to Rossow, a general formulation
of the modulus of the acoustic eigenvalues can be considered for all Mach number conditions within the following
expressions

|λ∗±| =
1
2

[
(1 + ϵ)|Un ± c| + (1 − ϵ)(c∗ ±Un)

]
with ϵ = sign(1, |M0| − 1) (C.23)

together with a vanishing correction term at the sonic line where in the flowfield |M0| ≥ 1. The entropy fix is applied
to vanishing eigenvalue |λ∗±| at the sonic line.

Formulation of the entropy fix

The issue of formulating the entropy fix is only relevant for the acoustic eigenvalues modified by the artificial speed
of sound approach. Consider for instance formulation 1). A natural way to fit, at a vanishing acoustic eigenvalue, the
modified two last acoustic contributions of the dissipation vector with the correction term T

∆F̃− + ∆F̃+ + T (C.24)

with the original Roe scheme, is to apply the same entropy fix for the original |λ±| and to the modified eigenvalues
|λ∗±| = c∗ ± Un. When the threshold of the entropy fix is reached, the correction term T is not yet suppressed and
both numerical fluxes (Roe and Rossow) are still different. This suggests to consider the following formulation of the
acoustic portion of the dissipation vector (C.21) with formulation 1

∆F̃− + ∆F̃+ + T =
[
∆p − ρc∆Un

2c2

]
Φ(|λ∗−|)



1

u − cnx

v − cny

H − cUn



+

[
∆p + ρc∆Un

2c2

]
Φ(|λ∗+|)



1

u + cnx

v + cny

H + cUn



+ ρc
[
(c‘ − c)(c‘ + c)

cc‘

]
(c − |Un|)∆Un

c2



0

cnx

cny

aUn


︸                                                     ︷︷                                                     ︸

Correction term f ormulation 1

(C.25)

where we have considered the standard continuously differentiable approximation of |x| according to [55]

Ψ (µ) =

µ2 + δ2h
2δh

si µ < δh

Ψ (µ) = µ si µ ≥ δh
(C.26)

for any modified acoustic eigenvalue µ = |λ∗±|. We look at different situations of vanishing modified acoustic eigen-
values

- If |λ∗−| = c∗ −Un = 0, thenUn = c∗ > 0 and:

Ψ (|λ∗−|) =
δh
2
= Ψ (|λ−|)|λ−=0 (C.27)

and with definition (C.17), if c∗ = Un > 0 then necessarily c − |Un| = 0 or |Mn| = |Un|
c
= 1.
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- If |λ∗+| = c∗ +Un = 0, thenUn = −c∗ < 0 and:

Ψ (|λ∗+|) =
δh
2
= Ψ (|λ+|)|λ+=0 (C.28)

and with definition (C.17), ifUn = −c∗ < 0 then |Un| = c∗ and again c − |Un| = 0 or |Mn| = |Un|
c
= 1.

The same behavior of the entropy fix holds for formulation 2. And for both formulation 1 or 2, we see that the
correction term cancels out when c∗ −Un = 0 or c∗ +Un = 0.

Considering again formulation 1, if for instance c∗ −Un = 0 then |Un| = c and

∆F̃− + ∆F̃+ + T =

[
∆p − ρc∆Un

2c2

]
δh
2



1

u − cnx

v − cny

H − cUn



+

[
∆p + ρc∆Un

2c2

]
(c∗ +Un)



1

u + cnx

v + cny

H + aUn



+ 0

= (∆F̃− + ∆F̃+)Roe

(C.29)

as:
c∗ +Un = 2c∗ = 2

c
c‘ (c − |Un|) + 2|Un| = 2|Un| = 2c = |λ+|. (C.30)

Similarly, if c∗ +Un = 0 then |Un| = c and:

∆F̃− + ∆F̃+ + T =

[
∆p − ρc∆Un

2c2

]
(c∗ −Un)



1

u − cnx

v − cny

H − cUn



+

[
∆p + ρc∆Un

2c2

]
δh
2



1

u + cnx

v + cny

H + aUn



+ 0

= (∆F̃− + ∆F̃+)Roe

(C.31)

asUn = −c∗ < 0 and so |Un| = c∗, then |Un| = c and

c∗ −Un = −2Un = 2|Un| = 2c = |λ−|. (C.32)

Identical smooth transition with the Roe scheme holds with formulation 2 in case of vanishing modified acoustic
eigenvalue |λ∗+| = c∗ +Un.
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4 - The HLLC scheme, introduction and review
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The fourth chapter is dedicated to an in-depth examination of the HLL-type schemes, with a special
attention given to the framework introduced by Harten, Lax and van Leer [4], establishing the entropy
stability, not intrinsically achieved by the Roe scheme. As will be seen later, the construction of these
schemes differs fundamentally, as it does not rely on the introduction of a linearized problem. While
the primary concern of this chapter is related to the HLLC scheme, the original HLL scheme, and
the improved HLLEM scheme, are also addressed. A review of the existing literature is presented,
outlining the various approaches employed for the analysis and the necessary modifications of these
schemes in the low Mach number limit. From this literature survey, a critical overview is presented,
regarding some features such as the wave structure or a common framework analysis, that would need
further investigations. A last section is devoted to the analysis conducted by Pelanti, which, along
with the discussion in section 2.5, became a major source of inspiration for the investigation of low
Mach number corrections, described in the next chapter.

4.1 . HLL-type schemes

This chapter primarily focuses on the HLLC scheme, which serves as a foundation for this work.
However, the HLL and HLLEM schemes are also addressed in this section, as the three formulations are
relatively similar, and have been extensively discussed together in the literature. The objective of this
section is to introduce a second approach for the development of approximate Riemann solvers, which is
commonly referred to in the literature as HLL-type schemes. These schemes exhibit some fundamental
differences with the Roe-type linearization, as not being derived from a linearized problem, involving
an approximated Jacobian matrix. In contrast, the original HLL scheme is based on consistency
conditions with the integral form of the conservation laws and entropy inequality. Nevertheless, a
common feature between the two approaches is that, they entail the construction of simple wave
solvers, as previously discussed with the Roe scheme in the section 2.2.1. The original formulation of
the HLL scheme was first introduced in the work of Harten-Lax-van Leer [4], within the formulation
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of a unified formalism for upstream difference schemes for hyperbolic conservation laws. This analysis
presents a comprehensive framework for upstream difference schemes that enables comparisons between
different schemes. A particular attention is paid to the theoretical foundation of Godunov-type schemes,
addressing a sufficient condition for the entropy stability of the discrete solution. Through decades, the
original HLL scheme has given rise to a multitude of variations in the literature (see for instance the
HLL [4, 89], HLLEM [72], HLLC [24, 34], HLL-CPS [90] and HLLS [91] schemes among others) in an
effort to express more accurate solvers that are better suited to capturing the features of the solution.

4.1.1 . Definition of the HLL scheme
In the following, for the introduction of the underlying concepts, the analysis is restricted to the one
dimensional case (d = 1). Let us introduce an initial value problem for the conservative form of the
Euler equation with a discontinuous initial condition given by w0(x)

∂tw + ∂xf(w) = 0

w(0, x) = w0(x) =

{
wl if x < 0

wr if x > 0

. (4.1)

It is known from the hyperbolic theory that the exact solution is self-similar, and thus can be expressed
as follows w(t, x) = ωGodunov(x/t;wl,wr). Moreover, the exact solution is characterized by a complex
structure which involves up to four constant states

(
wl, w

∗
l , w

∗
r , wr

)
, separated by three characteristic

curves. These curves are associated with the three characteristic speeds (λl, λ∗, λr), indexed here as
before in an increasing order, connecting states either through shock or rarefaction waves and through
a contact discontinuity for the intermediate wave, as illustrated in Fig.4.1.

Figure 4.1: Wave structure of the exact solution associated with the Riemann problem (4.1)

By integrating the conservation laws over an arbitrary rectangle [0, T ]× [−h/2, h/2], with T > 0 and
h > 0, we obtain

0 =

∫ T

0

∫ h/2

−h/2

(
∂tw + ∂xf(w)

)
dx dt

=

∫ h/2

−h/2
w(T, x) dx − h

2
(wl +wr) +

∫ T

0

(
f
(
w(t,

h

2
)
)
− f

(
w(t,

−h

2
)
))

dt .

(4.2)

In addition, if T is assumed sufficiently small, then the rectangle domain contains all the signals
involved in the fan waves, as depicted in Fig.4.1. Therefore, the integral of the conservation laws (4.2)
simplifies and leads to∫ h/2

−h/2
w(T, x) dx =

∫ h/2

−h/2
ωGodunov(

x

T
;wl,wr) dx =

h

2
(wl +wr)− T

(
f(wr)− f(wl)

)
. (4.3)
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This expression describes a fundamental feature of the exact solution, specifically an integral consis-
tency condition with the conservation laws, which is the cornerstone for the derivation of HLL-type
schemes, as discussed next. Similarly, this relation could be also obtained by considering either the
left and right halves of rectangle, resulting in∫ 0

−h/2
ωGodunov(

x

T
;wl,wr) dx =

h

2
wl −

(∫ T

0
f
(
w(t, 0)

)
dt− Tf(wl)

)
∫ h/2

0
ωGodunov(

x

T
;wl,wr) dx =

h

2
wr −

(
Tf(wr)−

∫ T

0
f
(
w(t, 0)

)
dt)
), (4.4)

where in both cases, the integral on the right-hand side is dependent on the orientation of the fan
waves, as it evaluates the exact solution along the initial discontinuity. To circumvent the need of
computing the exact solution of ωGodunov in order to define a numerical flux, Harten-Lax-van Leer
in [4] proposed a method based on the construction of an approximate Riemann solution, while keeping
the essential properties of the exact solution. Indeed, the HLL scheme relies on the introduction of
an approximated Riemann solution ωHLL, characterized by a simpler formulation, composed solely of
two simple waves, associated with the wave speed estimates (Sl, Sr)

ωHLL(
x

t
;wl,wr) =


wl if

x

t
< Sl(wl,wr),

w∗ if Sl(wl,wr) <
x

t
< Sr(wl,wr),

wr if Sr(wl,wr) <
x

t
.

(4.5)

The expression involves three constant states (wl, w∗, wr), where w∗ represents an average state
being the crucial component to be determined. In addition, the simple waves are no longer related
with the exact signals (λl, λr), but are instead associated with two discrete wave speed estimates (Sl,
Sr). The structure of the approximate solution ωHLL is depicted in Fig.4.2.

Figure 4.2: Structure of the approximate solution wHLL

Assuming that two acoustic wave speed estimates (Sl, Sr) are provided, and introducing h sufficiently
large such that

h

2
> T max

(
|Sl|, |Sr|

)
,

then, the integral of the approximate solution ωHLL over [−h
2 ,

h
2 ] can be formulated as follows∫ h/2

−h/2
ωHLL(

x

T
;wl,wr) dx = (Sl T +

h

2
)wl + (Sr T − Sl T )w∗ + (

h

2
− Sr T )wr. (4.6)
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Harten, Lax and van Leer observed that, the expression of the average state w∗ could be derived by
imposing a consistency condition between the integral of the exact and approximated solutions. This
consistency condition can be formulated as follows∫ h/2

−h/2
ωGodunov(

x

T
;wl,wr) dx =

∫ h/2

−h/2
ωHLL(

x

T
;wl,wr) dx. (4.7)

Indeed, in the case of overestimated acoustic wave speed estimates (Sl, Sr) (i.e. respectively smaller
and larger than the exact signals), this result provides a sufficient condition for h ensuring that the left-
hand side of (4.7) satisfies the integral consistency condition with the conservation laws given in (4.3).
As a result, applying the integral consistency condition with the conservation laws in the expression
(4.7), yields the following definition, once the terms have been rearranged

w∗(wl, wr) =
Srwr − Slwl −

(
f(wr)− f(wl)

)
Sr − Sl

. (4.8)

Then, the formulation of the intermediate numerical flux for the HLL scheme is obtained using the
integral consistency over either the left or the right rectangle (4.4), both leading to an equivalent
expression, since the condition (4.7) holds. By imposing the equality between the two solutions over
the rectangle [0, T ]× [−h

2 , 0], this gives

h

2
wl −

(∫ T
0 f

(
w(t, 0)

)
dt− Tf(wl)

)
= T Sl(w∗ −wl) +

h

2
wl

⇔
1

T

∫ T
0 f

(
w(t, 0)

)
dt = f(wl) + Sl(w∗ −wl)

,

and therefore the intermediate numerical flux is introduced as follows

f∗ = f(wl) + Sl(w∗ −wl).

Similarly, integrating over the right rectangle [0, T ]× [0, h2 ], this gives another equivalent formulation
of the intermediate flux

f∗ = f(wr)− Sr(wr −w∗).

The expression of intermediate numerical flux can be equivalently reformulated by inserting the defini-
tion of the average state (4.8) into the two above definitions. After some simplifications, the numerical
flux associated with the HLL scheme can be for instance formulated as follows

FHLL(wl,wr) =


f(wl) if Sl > 0

Sr f(wl)− Sl f(wr) + Sl Sr (wr −wl)

Sr − Sl
if Sl < 0 < Sr

f(wr) if Sr < 0

, (4.9)

and the expression is fully determined, provided that the wave estimates (Sl, Sr) are defined. A more
compact formulation for the numerical flux was introduced by Harten-Lax-van Leer, which is given by

FHLL(wl,wr) =
S+
r f(wl)− S−

l f(wr)

S+
r − S−

l

+
S+
r S

−
l

S+
r − S−

l

∆w, (4.10)

4.1.2 . Wave speed estimates
The definition of the wave estimates is crucial in the formulation of the HLL scheme [64, 65, 89],
and more generally in the formulation of HLL-type schemes. Depending on these expressions, valu-
able properties could be enforced into the schemes, including a more accurate capture of shocks, the
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positivity-preserving property, but also the entropy stability of the methods. As pointed out by Davis
in [89], regardless the choice of the wave speed estimates (Sl, Sr), the Lax-Wendroff theorem remains
applicable. Therefore, if the numerical method converges, the discrete solution will converge to a weak
solution of the problem. Nevertheless, this does not ensure that the discrete solution will approxi-
mate the entropy solution. Harten, Lax and van Leer have provided a sufficient condition, also known
as the Harten-Lax theorem (see theorem 3.1 in [4]), demonstrating that, under some assumptions,
Godunov-type schemes tend to approximate the entropy solution. Note that, by considering overes-
timated acoustic wave speed estimates (Sl, Sr), this provides sufficient assumption for satisfying the
theorem. This is due to the fact that underestimated estimates result in a loss of the integral consis-
tency condition, as previously mentioned. In such case, the integral consistency condition between the
exact and approximate solutions (4.7) is no longer related to the expression (4.3). In opposition, for
overestimated wave speed estimates, then, the integral consistency condition (4.7) can be written as

h

2
(wl +wr)− T

(
f(wr)− f(wl)

)
=

∫ h/2

−h/2
ωHLL(

x

T
;wl,wr) dx,

and using the definition (4.6) for the right-hand side, and performing simple simplifications yields the
next relation

f(wr)− f(wl) = Sl(w∗ −wl) + Sr(wr −w∗).

Therefore, with overestimated wave speed estimates, the integral consistency condition (4.7) equiva-
lently reduces to satisfying the jump conditions. Regarding the second requirement of the Harten-Lax
theorem for the HLL scheme related to the integral consistency with the entropy inequality, details
can be found in the work of Davis [89].
The literature has mainly exposed two distinct approaches for deriving wave speed estimates (Sl, Sr).
On one hand, direct estimates aim at introducing a smallest and fastest wave speed, as discussed
in [64, 65, 72, 89]. On the other hand, pressure-velocity based wave speed estimates were proposed
in [24,34,92]. Nevertheless, the second approach is generally more sophisticated because the formulation
of the acoustic wave speeds (Sl, Sr) relies on a theoretical analysis of the behavior of the exact solution.
These formulations generally express better acoustic wave speed estimates, proved to always include
the exact signals, as for instance the estimates proposed by Bouchut [92], or Guermond-Popov [93].
For a complete presentation of the pressure-velocity based wave speed estimates, the reader is referred
to Toro’s works [24,34,94], and also to [92,93,95], which delve into this topic.
Two popular direct fan wave estimates are commonly employed in the literature, and therefore, are
introduced next. The Davis’s estimates [89] is one of the simplest formulation, as the smallest and
largest wave speed estimates are given by straightforward evaluations of the eigenvalues according to
the left and right states

(Davis’s approximations)

{
Sl = min( ul − cl, ur − cr )

Sr = max( ul + cl, ur + cr )
. (4.11)

Although this choice has demonstrated robustness and simplicity in practice, it also introduces some
issues that are discussed next. Indeed, as originally pointed out by Davis in [89], these wave speed es-
timates underestimate the exact speed of shocks, and overestimate the speed of expansion waves. Note
that, this has been typically illustrated for the case of the speed of shocks in the work of Guermond-
Popov [93] (see for instance the appendix B). Consequently, these estimates do not satisfy the assump-
tion of a sufficient condition given by the Harten-Lax theorem and therefore, this leads to a potential
loss of the entropy stability for the Godunov-type scheme. However, such simple estimates proved
to be robust in practice, as the resulting discrete solution continued to effectively approximate the
entropy solution. Nevertheless, another difficulty of the Davis’s estimates (4.11) is to produce smeared
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shock waves, affecting the overall accuracy and quality of the discrete solution. As argued by Batten
et al. [65], a better accuracy is obtained by considering the Einfeldt’s estimates, given by the following
expressions

(Einfeldt’s approximations)

{
Sl = min( ul − cl, ũ− c̃ )

Sr = max( ũ+ c̃, ur + cr )
, (4.12)

where ũ and c̃ are computed from the Roe average, which provides the advantage to exactly resolve
isolated shocks. Furthermore, Batten et al. proved that, when expressions (4.12) are used to introduce
the HLLC scheme, defined in the next subsections, then, the scheme satisfies the positivity-preserving
property for the density and internal energy. However, the expressions (4.12) are also prone to un-
derestimated speeds of shocks, and again, the possibility of a loss of entropy stability cannot be ruled
out.

4.1.3 . Definition of the HLLEM scheme
Although, the HLL-scheme is robust and stable for 1D models, such as the shallow water or the
isentropic Euler equations, this scheme is not suitable for the compressible Euler equations. The
method suffers from a significant inaccuracy, as it considers an approximation based on a two-wave
structure, thereby ignoring the contact wave included in the exact solution. As a consequence, this
approximation is responsible of an unacceptable smearing of the contact discontinuity, and therefore a
loss the overall accuracy and quality of the discrete solution. The literature has reported several papers
aiming at improving this scheme, in order to restore the contact discontinuity, see for instance [24,72,90]
among others. In the following, the approach proposed by Einfeldt [72] is discussed, as it introduces
a formulation to restore the contact wave based on a finer definition of the average state w∗, while
preserving the initial structure of the approximate solution ωHLL. In that, this work is interesting,
since it first enhances the overall accuracy of the method, and additionally, it also illustrates the
significance of a common formalism among these schemes. Indeed, Einfeldt noticed that the Roe
scheme can be also expressed [72] as follows

FRoe =
λ̃+
d+2f(wl)− λ̃−

1 f(wr)

λ̃+
d+2 − λ̃−

1

+
λ̃+
d+2λ̃

−
1

λ̃+
d+2 − λ̃−

1

(
∆w − λ̃d+2 − λ̃1

λ̃d+2 − λ̃1 + |λ̃d+2 + λ̃1|
(

d+1∑
k=2

α̃kr̃k)
)
, (4.13)

where the expression for the coordinates of the jumps of the conservative variables (α̃2, α̃3) and the
two right eigenvectors (r̃2, r̃3) are given in subsection 2.2.1 (for the case d = 2). This reformulation
of the numerical flux shows a notable disparity between the two schemes, with especially the presence
of additional terms in the Roe scheme, not present in the initial expression of the HLL flux (4.10).
Einfeldt [72] argued that the information regarding the contact discontinuity was buried in the average
state w∗, and conducted a theoretical analysis in order to identify the role of these additional terms.
As a result, an improved formulation has been developed to recover the contact discontinuity, which
relies on the modification of the approximate Riemann solution through the addition of anti-diffusion
terms in the definition of the average state. This has led to the formulation of the HLLEM numerical
flux [64,72], given by

FHLLEM (wl,wr) =
S+
r f(wl)− S−

l f(wr)

S+
r − S−

l

+
S+
r S

−
l

S+
r − S−

l

(
∆w − c̃

c̃+ |ǔ|
(
d+1∑
k=2

α̃kr̃k)
)
, (4.14)

to be compared with (4.13), where the quantity ǔ is given by ǔ = (Sr + Sl)/2 and corresponds to
a numerical approximation of the velocity of the contact discontinuity. However, Park-Kwon [96]
claimed that the a better accuracy could be achieved if the Roe average ũ was used instead of ǔ,
leading therefore to a fully-hybridization of the two schemes.
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4.1.4 . Definition of the HLLC scheme
The HLLC scheme [24] represents another extended version of the HLL-type scheme, which has been
derived with the objective of recovering the missing contact wave. In contrast with the HLLEM scheme,
the approach is based on the enhancement of the structure of the approximate Riemann solution, from
a two-wave structure to a three-wave structure, similarly to the exact solution. In the following, the
derivation of the HLLC scheme is briefly discussed, by initially recalling the original work by Toro et
al. in [24]. Then, the improved version proposed by Batten et al. in [65] is introduced. In order to be
consistent with the formulation of the Roe scheme introduced in chapter 2, the following expressions
are given in the two-dimensional case (i.e. d = 2).
Toro et al. in [24] started to investigate a Godunov-type method based on an approximate Riemann
solution ωHLLC formulated as follows

ωHLLC(
ξ

t
;wl,wr,n) =



wl if
ξ

t
< Sl(wl,wr,n)

w∗
l (wl,wr,n) if Sl(wl,wr,n) <

ξ

t
< S∗(wl,wr,n)

w∗
r(wl,wr,n) if S∗(wl,wr,n) <

ξ

t
< Sr(wl,wr,n)

wr if Sr(wl,wr,n) <
ξ

t

, (4.15)

where the two intermediate states (w∗
l ,w

∗
r) are unknown quantities that must be determined, and, the

wave speed estimates (Sl, S∗, Sr) are input parameters that complete the definition, similarly to the
HLL scheme (4.5). In the following, generic wave speed estimates (Sl, S∗, Sr) are first introduced. In
addition, in order to ensure the consistency with the Harten-Lax theorem, we assumed that the two
acoustic wave speed estimates, namely (Sl, Sr), overestimate the smallest and largest original signals,
respectively. As previously discussed in subsection 4.1.2, in such cases, there exists an equivalence
between imposing the integral consistency condition (4.7) between the exact and approximate solutions
and the jump conditions. For the HLLC scheme, this requires to find the two intermediate states such
that the following relationship holds

f(wr,n)− f(wl,n) = Sl(w
∗
l −wl) + S∗(w

∗
r −w∗

l ) + Sr(wr −w∗
r).

Note that, the derivation of the HLLC scheme can therefore be conducted in two equivalent ways:
either by first considering the integral consistency condition, as similarly outlined for the HLL scheme
and discussed in Toro et al. [24] and Batten et al. [65], or by directly applying the jump conditions
across each wave [34]. Here, the derivation of the HLLC scheme is based on the jump conditions. We
look for two intermediate states such that the following conditions are satisfied

f(w∗
l ,n)− f(wl,n) = Sl(w

∗
l −wl)

f(w∗
r ,n)− f(w∗

l ,n) = S∗(w
∗
r −w∗

l )

f(wr,n)− f(w∗
r ,n) = Sr(wr −w∗

r)

(4.16)

For the sake of brevity, in order to establish unified expressions for both the right and left intermediate
states, a generic index ·k is introduced in the following to refer to either the left or right side. Depending
on the value of k, either the first or third equation in (4.16) is analyzed. In addition, this index is also
used in the following notations{

δcl = Sl − Unl

δcr = Sr − Unr

and

{
δSl

= Sl − S∗

δSr = Sr − S∗
. (4.17)
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These notations are introduced in order to simplify the algebra and the presentation of results. More-
over, these notations turned out to be useful in the last chapter for an in-depth analysis of the wave
structure of the HLLC scheme.
In the derivation of the HLLC, we proceed step by step, as follows. By extracting the first component
from both the first and third equations in (4.16), it can be observed that, two unknown quantities U∗

nk

and ρ∗k for the intermediate states w∗
k are related through the following relation:

ρ∗kU∗
nk

− ρkUnk
= Sk(ρ

∗
k − ρk). (4.18)

A crucial feature of the original derivation made by Toro et al. [24] consists in associating the inter-
mediate wave speed estimate to the normal velocity of the left and right states, as follows

U∗
nl

= S∗ = U∗
nr
. (4.19)

Thus, expression (4.18) is no longer underdetermined as the information stems from the estimate S∗.
Consequently, after rearranging terms in (4.18) and using notations (4.17), we get the left and right
intermediate density

ρ∗k =
ρkδck
δSk

. (4.20)

Then, by considering the momentum equations of (4.16), after rearranging terms, we find that

ρ∗kU∗
k =

ρkUkδck
δSk

+
(p∗k − pk)n

δck
, (4.21)

resulting in a second underdetermined expression. Nevertheless, upon projection of (4.21) onto the
normal vector n, an expression for the intermediate pressure p∗k can be obtained. By using the as-
sumption made by Toro et al. (4.19), with the definition of the intermediate density (4.20), and after
some simplifications, we obtain

p∗k = ρk(U∗
nk

− Unk)δck + pk. (4.22)

Next, by inserting the previous definition into expression (4.21), the intermediate velocity vector can
be expressed as follows

U∗
k = Uk + n(U∗

nk
− Unk

) = n U∗
nk

+ t Utk , (4.23)

where the tangential vector is given by t = (−ny, nx)
t. As a consequence of specifying S∗ and of

enforcing condition (4.19), the above expression becomes fully determined. Regarding the energy
equations in (4.16), the following expression is obtained by inserting the definitions of the intermediate
density (4.20) and pressure (4.22), with

E∗
k = Ek + (S∗ − Unk

)(S∗ +
pk

ρkδck
). (4.24)

This completes the definitions of the intermediate states (w∗
l ,w

∗
r), which can be summarized with:

w∗
k =

ρkδck
δSk


1

n S∗ + t Utk

Ek + (S∗ − Unk
)(S∗ +

pk
ρkδck

)

 . (4.25)

As shown above, the jump conditions across each wave (4.16) are naturally underdetermined systems
for these equations. In order to restore the contact wave, Toro et al. have imposed to the approximate
Riemann solution (4.15) to behave similarly as the exact solution, by preserving the normal velocity
along the contact wave (4.19). As demonstrated above, provided that an estimate of the speed of the
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contact wave S∗ is given, assumption (4.19) allows the definition of the approximate Riemann solution
ωHLLC in (4.15). Nevertheless, regarding the behavior of the exact solution along the contact wave,
there exist other quantities that are also conserved, including the intermediate pressure, corresponding
to Riemann invariants [31,34]

U∗
nl

= U∗
nr

and p∗l = p∗r . (4.26)

However, the original derivation made by Toro et al. [24] does not satisfy the second condition for
intermediate pressures (4.22). As discussed Toro et al. in [24], numerical evidence demonstrated that
this condition could be relaxed. Furthermore, it should be noted that not every Riemann solver satisfies
these two conditions. This is especially the case for the Roe scheme.
Batten et al. [65] suggested that a more suitable approximate Riemann solution ωHLLC could be
achieved by slightly modifying the initial approach. This second approach only requires the introduc-
tion of (Sl, Sr), while retaining the assumption made by Toro et al. As a consequence of not providing
an explicit value for S∗, expressions given in (4.20 - 4.22) are therefore underdetermined, as previously
discussed, but they remain still relevant. Batten et al. noted that, by directly imposing to the approxi-
mate Riemann solution to satisfy conditions (4.26), then estimates for the intermediate normal velocity
S∗ and pressure p∗ could be derived from the expression of the intermediate pressure (4.22). As for
instance, the difference between the left and right intermediate pressures leads to, after rearranging
terms

S∗ =
ρrUnr(Sr − Unr)− ρlUnl

(Sl − Unl
)−∆p

ρr(Sr − Unr)− ρl(Sl − Unl
)

=
∆(ρUnδc)−∆p

∆(ρδc)
, (4.27)

thereby formulating an intermediate wave speed estimate, defined according to the two initial conser-
vative states (wl,wr) and the wave speed estimates (Sl, Sr). A similar approach leads to obtain an
estimate for the intermediate pressure p∗. Next, estimates S∗ = U∗

nl
= U∗

nr
and p∗ = p∗l = p∗r are used

to express the other quantities in (4.20 - 4.22).
Once the two intermediate states (w∗

l , w
∗
r) have been found, the numerical flux associated with the

HLLC scheme is formulated as follows

FHLLC(wl,wr,n) =


f(wl,n) if Sl > 0

f∗
l = f(wl,n) + Sl(w

∗
l −wl) if Sl < 0 < S∗

f∗
r = f(wr,n)− Sr(wr −w∗

r) if S∗ < 0 < Sr

f(wr,n) if Sr < 0

. (4.28)

4.2 . State of the art for low Mach number flows and HLL-type schemes

Similarly to the Roe scheme, the HLL-type schemes also suffer from an accuracy problem in computing
low Mach number flows, and requires to be modified in order to obtain consistent discrete solutions.
The literature still reports numerous recent corrections for these schemes. While our main concern is
initially focused on the HLLC scheme, in this section, the scope of the analysis is slightly expanded,
by also briefly discussing some extensions proposed in the literature for the HLL, HLLEM and HLLC
schemes. This is motivated by the observation that an increasing number of recent papers investigate
the possibility of developing a unified framework for correcting these schemes, with a particular interest
on transposing a same low Mach correction to these numerical fluxes, or even to other schemes. The
objective of this section is to present a concise review of corrections applied to these schemes. As
shown is the following, it is noticeable that the HLL-type schemes can embed similar corrections
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applied to the Roe scheme in the low Mach number limit, as illustrated in several papers [21,97–109],
and discussed below. In this section, the formulation of HLL-type schemes is discussed for generic wave
speed estimates (Sl, S∗, Sr), without any restrictions on these parameters used in the formulation of
these schemes.

4.2.1 . A legacy derived from the analyses of the Roe scheme
We first look at publications by Luo et al. [97] and Park et al. [98], introducing preconditioning methods
for the HLLC and HLLEM schemes, respectively. These works describe an approximate methodology
for transposing the effects of the Weiss-Smith preconditioning matrix [14,15,110] to HLL-type schemes,
for which, the expression of the corresponding artificial viscosity matrix is not known, in contrast to
the Roe scheme (see section 2.3). Luo et al. in [97] modified the acoustic wave speed estimates (Sl, Sr)

in the formulation of the HLLC scheme (4.25), (4.27 - 4.28) using the wave speeds arising from the
preconditioned equations. Latter, in the pursuit of investigations initiated by Park et Kwon in [96],
Park et al. used a similar approach to derive a correction described in [98], with a slight adjustment to
exploit the common formalism between the Roe and HLLEM schemes indicated in (4.13 - 4.14). This
correction similarly substitutes the quantities written in blue in the following preconditioned numerical
HLLEM flux

FHLLE+(P ) =
S+
r f(wl)− S−

l f(wr)

S+
r − S−

l

+
S+
r S

−
l

S+
r − S−

l

(
∆w − c̃

c̃+ |ũ|
(

d+1∑
k=2

α̃kr̃k)
)
,

Li-Gu also conducted a series of investigations in [21], following a comprehensive analysis aiming at
identifying the mechanisms responsible for the inaccuracy problem for the Roe scheme. The formulation
of their P-HLL and A-HLL schemes is not based on standard preconditioned methods, and therefore
maintaining time consistency with the equations. The derivation of these schemes follows a similar
approach, which is rather based on the preconditioned dissipation matrix investigated by Turkel, also
considered by Guillard-Viozat in the formulation of the so-called Roe-Turkel scheme [7]. Numerical
experiments conducted with the P-HLL and A-HLL schemes show that both schemes are capable of
resolving the accuracy problem, but nevertheless, are prone to significant pressure checkerboard mode
problems, typically not encountered with the Roe-Turkel scheme.
This preconditioned dissipation matrix was also used later in the works of Pelanti in [99, 111, 112], in
which a novel approach introducing a necessary rescaling of the dissipation is proposed for the HLLC
scheme. Through an investigation of the wave structure, Pelanti identified some interesting similarities
that have been highlighted, as potential means of mimicking the formalism of the preconditioning
dissipation matrix formulated for the Roe scheme. As a result, this has led to the formulation of
the HLLC-Turkel scheme, which has been validated for the Euler equations [99], and for a two-phase
compressible flow model [111]. As indicated by the author, this scheme also proved to be robust,
providing analogous performance in comparison with the original Roe-Turkel scheme. This later point
will be especially developed in the following sections.
More recently, the literature has also reported a number of studies based on other approaches for
the extension of HLL-type schemes in the low Mach number regime. These investigations either
share common features with the analysis of Dellacherie (the Roe-Dellacherie scheme, or the low Mach
Godunov framework) [10,86], or are in line with the popular approach proposed by Thornber et al. [85].
For instance, following the approach of Dellacherie aimed at centering asymptotically the pressure
gradient in the equations (the reader is referred to section 2.5.2 for more details), we can enumerate
the works of Yu et al. [100, 101] for the HLLEM scheme, Sun et al. in [102] with the HLLIM scheme,
and Xie et al. in [103] in the case of the Roe scheme expressed with the HLLEM formalism (4.13).
The second approach proposed by Thornber et al. in [85], introduces a rescaling of the dissipation
based on the following formulation of modified conservative variables for the left and right states, as
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depicted in blue

wl =

 ρl
ρl

1
2(Ul (1 + f(M)) + Ur (1− f(M)))

ρlEl

 . wr =

 ρr
ρr

1
2(Ul(1− f(M)) + Ur(1 + f(M)))

ρrEr

 ,

where f(M) behaves as a local Mach number, with f(M) → 1 when M ≥ 1. This reconstruction
process, which yields a same centered approximation of the velocity in the low Mach number limit for
both the right and left states, proved to significantly improve the accuracy in this regime. However, as
pointed-out by Thornber et al. [113], its effectiveness is subject of restriction regarding the limiter used
in the MUSCL reconstruction. This formulation has been, for instance, incorporated into the unified
framework for the extension of HLL-type schemes to hypersonic heating computations of Xie et al.
described in [104], with the introduction of the ASHLLC and ASHLLEM schemes. Additionally, more
recently, Gogoi-Mandal continued the investigations with the HLL-TNP scheme in [105], presenting a
series of analysis using this approach.

4.2.2 . A quest for unified formulations
We now discuss successive works of Chen et al. [106–108] among others on this topic, which have
proposed various corrections applied to different schemes, including the Rusanov, Roe, HLL, HLLC,
and even AUSM schemes. Chen et al. proposed a unified formulation, called the LD formulation (low
dissipation), based on the decomposition of the jumps of conservative variables ∆w into a density and
a rescaled velocity diffusions, as explained by the authors in [106]. For the Roe and HLL schemes, the
modified flux are expressed as follows:

FLD−Roe =
f(wl,n) + f(wr,n)

2
− 1

2
|ARoe(w̃,n)|

[ 
∆ρ
ρ̄∆U

∆p

γ − 1
+

¯|U|2
2

∆ρ

+ f(M)

 0
Ū∆ρ

ρ̄∆(
|U|2

2
)

 ]

FLD−HLL =
S+
r f(wl,n)− S−

l f(wr,n)

S+
r − S−

l

+
S+
r S−

l

S+
r − S−

l

[ 
∆ρ
ρ̄∆U

∆p

γ − 1
+

¯|U|2
2

∆ρ

+ f(M)

 0
Ū∆ρ

ρ̄∆(
|U|2

2
)

 ]
. (4.29)

Then, Chen et al. [107] proposed a novel all-speed HLLC-type scheme, so-called HLLC+, and have pro-
vided a discrete analysis and numerical experiments to support this development. The modified scheme
introduces intermediate fluxes F ∗

k in the simple wave form (4.28), by incorporating anti-dissipation
terms, as indicated next

FHLLC+ =


f(wl,n) if Sl > 0

F ∗
l if Sl < 0 < S∗

F ∗
r if S∗

r < 0 < Sr

f(wr,n) if Sr < 0

with F ∗
k = f∗

k+
ρl(Sl − Unl

)ρr(Sr − Unr)

(Sr − Unr)− (Sl − Unl
)

 0
(f(M)− 1)∆Unn
(f(M)− 1)∆UnS∗

.

This approach has been further extended in [108] within a unified formalism, called the APC framework
(anti-dissipative pressure correction), where low-Mach corrections have been proposed for the Rusanov,
Roe, HLL, HLLC and the AUSM schemes. It is nevertheless notable that the expression obtained for
the modified Roe-APC scheme shows several similarities with the Roe-Dellacherie scheme, except in
the energy equation [114]. This suggests that these corrections are guided by a relative close approach
in addressing the accuracy problem, and therefore entail the pursue of a similar analysis.

4.2.3 . New expressions for the HLLC numerical flux
Other recent approaches in deriving low Mach number corrections for the HLLC scheme have also been
documented in the literature, and are based on the introduction of a novel form for expressing the
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numerical flux FHLLC . For instance, the works of Fleischmann et al. [109,115] provide a particularly
unexpected use of this approach, focusing on shock-stable modifications of the numerical scheme for
high Mach number flows. Low Mach corrections were considered to cure numerical instabilities induced
by strong shocks, such as the carbuncle phenomena, extensively studied by Chauvat in [116]. As
pointed-out in these works, the failure of upwind schemes in computing low Mach number flows may
be a contributing factor to the emergence of shock instabilities, particularly in the context of grid-
aligned shocks, with a vanishing normal Mach number in the transverse fluxes. Indeed, as argued
by Zhiqiang et al. [117], only a small inaccuracy in the tangential fluxes is sufficient to trigger shock
instabilities in the discrete solution. Then, Fleischmann et al. proposed shock-stable modifications of
the Roe scheme in [115], and subsequently attempted to extend the correction to the HLLC scheme
in [109]. However, several difficulties were encountered with the direct transposition of the correction,
encouraging the authors to develop a novel formulation for the numerical flux FHLLC . This has
motivated the derivation of a more compact form, based on the jump conditions, aimed at facilitating
the identification of the mechanism, and thus the transposition of the correction from one solver to the
other with

FHLLC−LM =


f(wl,n) if Sl > 0

f(wl,n) + f(wr, n)

2
+

1

2
(f(Ml)Sl∆wl − |S∗|∆w∗ − f(Mr)Sr∆wr) if SlSr < 0

f(wr,n) if Sr < 0

,

(4.30)
where the quantities ∆wl = w∗

l − wl, ∆w∗ = w∗
r − w∗

l and ∆wr = wr − w∗
r are the jumps of the

conservative states. In the above expression, it can be observed that the numerical flux no longer
involves the definitions of intermediate fluxes (f∗

l , f
∗
r ), and therefore provides a more compact form,

expressed for subsonic flows (ie SlSr < 0) as a centered scheme stabilized by a numerical dissipation.
Note that a similar formulation is considered in the work of Le Touze-Rutard in [118], where an
another modified HLLC scheme is used for a 4-equation diffuse interface model, with the following
more compact formulation

FHLLC =
f(wl, n)+ f(wr, n)

2

− 1

2

[
σl + σr

2

(
f(wr, n)− f(wl, n)

)
− σr − σl

2

(
Sl∆wl + Sr∆wr − σ∗S∗∆w∗

) ]
,

(4.31)

where
σl = sign(Sl) σ∗ = sign(S∗) σr = sign(Sr) .

These expressions indicate that the HLLC scheme can be interpreted as an artificial viscosity method,
as it can be explicitly formulated with a vector dissipation dHLLC , as previously discussed in section
2.2.2, with

FHLLC(wl,wr,n) =
f(wl, n)+ f(wr, n)

2
− 1

2
dHLLC ,

and, in analogy with the Roe scheme, the viscosity matrix is hidden in

dHLLC = σ̄∆f − ∆σ

2

(
Sl∆wl + Sr∆wr − |S∗|∆w∗

)
,

where ·̄ denotes the discrete averaging operator. More details regarding this correction can be found
in [118]. It is worth noting that there is also a small number of investigations, which, driven by the
objective of either transposing a rescaling strategy or for initiating an analysis, have first reinterpreted
the numerical flux FHLLC with the intention of making expressions more easily comparable.
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4.2.4 . Reflection and positioning on key trends for correcting the HLLC scheme
Regardless of the analyses performed in all these works to support these developments, several features
can be pointed out and are now discussed.
The pursuit of improving either the Roe scheme or HLL-type schemes for low Mach number flows has
been numerous times dominated in the existing literature by a large number of published corrections
applied to the Roe scheme, and by their techniques of analysis as mentioned in the two previous
chapters. With regard to the transposition of a correction from one method to another, although this
approach turned out possible and effective in numerous studies, it may also prove to be misleading.
Indeed, we could suggest here that the disparate expressions for the numerical flux have also contributed
to the difficulty in correcting the same numerical mechanism, since it may induce a potential risk of
introducing a slight variation, and thus, may contribute to the large scattering of the formulation of
corrections. Therefore , we could inquire whether this is not a consequence of different interpretations of
the numerical flux that have contributed to the difficulty in reproducing a common analysis framework.
Yet, Godunov-type schemes admit a small number of common expressions, stemming from the linear
hyperbolic theory, which appear to be not sufficiently employed for transposing a correction from one
scheme to the other as discussed in the following.
For instance, we may wonder whether the modified LD-Roe scheme of Chen et al. has similar properties
as the following formulation of the "LD-Roe-2" scheme, which has an identical modification of the jumps
of the conservative variables ∆w (denoted below ∆̃w for brevity) as in expression (4.29). The only
difference occurs in the initial expression of the numerical flux before introducing the same rescaling
strategy

FLD−Roe−2 =
λ̃+
d+2f(wl,n)− λ̃−

1 f(wr,n)

λ̃+
d+2 − λ̃−

1

+
λ̃+
d+2λ̃

−
1

λ̃+
d+2 − λ̃−

1

[
∆̃w − c̃

c̃+ |ũ|
(
d+1∑
k=2

(
l̃k∆̃w

)
r̃k)

]
,

where l̃k are the left eigenvectors. Indeed, in the absence of rescaling of the dissipation vector (i.e.
∆̃w = ∆w), this flux returns the Roe flux (see sections 2.2.1 and 4.1.3). Nevertheless, when the
rescaling is applied, this expression raises a question regarding the relation between a correction and
the initial formulation of the numerical flux on which it is applied. Also, this raises the point whether a
more accurate representation of the correction strategy could be achieved. Here, we refrain from giving
a definitive statement for the LD-Roe case, but rather mention a potential risk: similar heuristic
approaches applied to different formulations of the numerical flux could lead to modifications that
may be slightly different to the original scheme. This latter point has especially been pointed out by
Fleischmann et al. in [109], as the modification of the eigenvalues for a Roe-type scheme, developed
in [115], turns out to be ineffective when applied to a HLLC-type scheme. As previously mentioned,
this has motivated the authors to find a more comparable formalism between these two schemes.
Nevertheless, the linear hyperbolic theory [31, 33, 34, 92] already offers a small number of common
formalism for Godunov-type schemes, which can be reminded for comparisons. Indeed, the Roe scheme
can either be expressed under the simple wave form (see section 2.2), or, the HLLC scheme could be
equivalently written as follows

FHLLC(wl, wr, n) = f(wl, n) +
∑

{k∈{l,∗,r}/Sk<0}

Sk∆wk = f(wr, n) −
∑

{k∈{l,∗,r}/Sk>0}

Sk∆wk.

By averaging both expressions, this yields the following expression for the numerical flux

FHLLC(wl, wr, n) =
f(wl, n)+ f(wr, n)

2
− 1

2

3∑
k=1

|Sk|∆wk, (4.32)
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where ∆w1 = ∆wl, ∆w2 = ∆w∗ and ∆w3 = ∆wr. In comparison, the expression of the dissipation
vector in the Roe flux could be also written as

dRoe =
4∑

k=1

|λ̃k|α̃kr̃k = |λ̃1|∆w1 + |λ̃2|∆w2 + |λ̃4|∆w3.

Note that, the jumps of the conservative states obviously differ between the definitions of the HLLC
and Roe schemes. Surprisingly, this latter form seems to not be frequently employed in the literature,
while it provides an interesting framework for the discrete analysis, including implicitly a viscosity
matrix in the dissipation vectors dRoe. Modifications of approximate Riemann solvers should be more
carefully undertaken, within a unified framework, as there is a significant risk that the previously
observed scattering of modifications of the dissipation vector dRoe, mentioned in sections 2.4 and 2.5,
may also occur in modifying HLL-type schemes.
In addition, the adaptation of the Turkel analysis to HLL-type schemes, introduced in section 2.3 for
the Roe scheme, is made difficult in the absence of an explicit expression of a viscosity matrix. Also,
the asymptotic analysis introduced by Guillard-Viozat [7] presents several challenges to be applied
to HLL-type schemes, as discussed next. Indeed, an increasing number of recent papers attempt to
use this asymptotic discrete analysis, but under assumptions, due to necessary definition of fan waves
(Sl, S∗, Sr) in evaluating the numerical flux FHLLC . For instance, in the case of the Einfeldt’s
approximations (4.12), several authors first apply the following assumptions in the low Mach number
limit

Sl ≃ −c̃ and Sr ≃ c̃ , when M −→ 0.

Moreover, additional complications also arise from the normalization process in the incompressible limit
(see Section 1.4.1). This is for instance illustrated next with the normalization of the intermediate
wave speed estimate S∗, which, according to the expression on the right-hand side, requires to define
a reference quantity sr such that the following relationships holds(

sr

)
S∗ =

(
sr

)
∆
(
ρUn(S − Un)

)
−∆p

∆
(
ρ(S − Un)

) =

(
ur

)
∆
(
ρUn(S − Un)

)
∆
(
ρ(S − Un)

) −
(

pr
ρrcr

)
∆p

∆
(
ρ(S − Un)

) ,
where all the above quantities are normalized, and the notation ·r denotes reference quantities. As it
can be seen, the definition of sr inevitably leads to the occurrence of a reference Mach number, either
in the first or second term, which must be taken into account in a rigorous analysis. Although the
results of the discrete analysis might remain relevant, these examples illustrate the difficulties that are
typically addressed through assumptions that must be considered for HLL-type schemes, while such
assumptions are unusual in the case of the Roe-type schemes.
Nevertheless, according to the discussion of section 2.5, the works of Park et al. [98] and Pelanti [99]
turned out to be a source of inspiration for investigating the existence of a unified formalism, allowing a
simultaneous analysis of corrected Roe-types and HLLC-types schemes in the low Mach number limit.
Indeed, as discussed in the next section, the work of Pelanti in [99] on the HLLC scheme demonstrates
notable similarities with the Roe scheme, from which emerges a framework for deeper investigations
regarding what is hidden in the dissipation vector dHLLC .

4.3 . The wave structure of the HLLC-scheme

In this section, we present an overview of Pelanti’s work [99], in which the analysis of the wave
structure of the HLLC flux in form (4.32) was carried out. This work is of particular interest as it
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shows significant similarities between the waves of the Roe and the HLLC schemes, and entails the
construction of a more comprehensive framework. Indeed, the wave structure is an important feature
of Riemann solvers since, it provides the expression of the numerical flux, as for instance illustrated in
section 2.2.1 for the Roe scheme. This work turned out to be the basis for further developments in the
analysis of the dissipation vector dHLLC , which will be detailed in the next chapter.

In section 2.2.1, it has been reminded that the derivation of the simple form of the Roe flux FRoe(wl,wr,n)

can be achieved using the spectral properties (λ̃k, r̃k, l̃k) of the approximate Jacobian matrix ARoe.
In the case of the HLLC flux, the fundamental idea stems from the search for an analogous approach,
while the derivation of the numerical flux F follows a different construction. Therefore, this constrains
the analysis to begin with the definitions of the intermediate states (w∗

l , w
∗
r) given in the expression

(4.25). But, the investigation is somewhat relatively similar, and consists in looking at each jump
of the conservative variables ∆wk arising in the structure of the Riemann problem, with the aim of
finding a potential path connecting conservative states (see for instance the expression (2.8) for the
Roe scheme).

∆w = (w∗
l −wl) + (w∗

r −w∗
l ) + (wr −w∗

r)

= ∆wl + ∆w∗ + ∆wr

. (4.33)

However, the definitions of the wave speed estimates (Sl, S∗, Sr) add some complexity for conducting
an asymptotic analysis, particularly in the light of the minimum and maximum functions as considered
for instance in Davis’s approximations (4.11). To initiate the analysis of the wave structure, Pelanti
proposed a clever reformulation of fan wave estimates (Sl, S∗, Sr).
Let us introduce a generic discrete fan waves, where the acoustic wave speed estimates are formulated
as follows

Sl = Unl
− ĉl and Sr = Unr + ĉr. (4.34)

Thus, only the definition of quantities ĉk are required to determine the choice of discrete fan waves.
Upon insertion of these two expressions into the intermediate wave speed given in the section 4.1.4, we
get

S∗ =
ρrUnr ĉr + ρlUnl

ĉl −∆p

ρr ĉr + ρlĉl
=

⟨ρUnĉ⟩ −∆p

⟨ρĉ⟩
, (4.35)

where for convenience, the notation previously introduced ⟨·⟩ is reminded ⟨a⟩ = 2ā = al+ar. Examples
of formulation of ĉk can be found using the Davis’s approximations (4.11), such that

ĉl = max(cl, cr −∆Un) and ĉr = max(cr, cl −∆Un), (4.36)

or considering the Einfledt’s approximations (4.12), for which the parameters must be slightly adapted
for preserving the original definition

ĉl = max(cl, c̃ − Ũn + Unl
) and ĉr = max(cr, c̃ + Ũn − Unr). (4.37)

This idea is of significant relevance, and has the effect of greatly simplifying the algebra in the following.
Note that, this reformulation is not limited to these wave speed estimates. Additional approximations
could also be readily formulated in a similar manner, including the pressure-velocity based wave speed
estimates given by Toro in [34].
Next, entries ĉk are considered as generic quantities without further consideration of their definitions. In
the decomposition (4.33) of ∆w, each local jump of the conservative variables ∆wk are next developed,
and the reinterpretation of the wave of speed estimates (4.34) leads to the following expressions

δSl
= Sl − S∗ =

∆p− ρr ĉr∆Un − ĉl⟨ρĉ⟩
⟨ρĉ⟩

δSr = Sr − S∗ =
ρlĉl∆Un + ĉr⟨ρĉ⟩+∆p

⟨ρĉ⟩ . (4.38)
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Using the previous expression for δSl
in ∆wl, and after some algebra, the left jump of the conservative

variables can be expressed as follows

ρ∗l − ρl =

{
ρ∗l
⟨ρĉ⟩

[
∆p− ρr ĉr∆Un

ĉl

]}

(ρU)∗l − (ρU)l =

{
ρ∗l
⟨ρĉ⟩

[
∆p− ρr ĉr∆Un

ĉl

]}
(U l − ĉln)

(ρE)∗l − (ρE)l =

{
ρ∗l
⟨ρĉ⟩

[
∆p− ρr ĉr∆Un

ĉl

]}
(Hl − ĉlS∗)

, (4.39)

where the right-hand side of the above expression highlights a common scalar factor in each component.
Similarly, ∆wr is expressed in the same form

ρr − ρ∗r =

{
ρ∗r
⟨ρĉ⟩

[
∆p+ ρlĉl∆Un

ĉr

]}

(ρU)r − (ρU)∗r =

{
ρ∗r
⟨ρĉ⟩

[
∆p+ ρlĉl∆Un

ĉr

]}
(Ur + ĉrn)

(ρE)r − (ρE)∗r =

{
ρ∗r
⟨ρĉ⟩

[
∆p+ ρlĉl∆Un

ĉr

]}
(Hr + ĉrS∗)

. (4.40)

In the case of the jumps for the intermediate states ∆w∗, we find after some simplifications

ρ∗r − ρ∗l = ∆ρ+
1

⟨ρĉ⟩

[
−∆p

(
ρ∗r
ĉr

+
ρ∗l
ĉl

)
+∆Un

(
ρr ĉrρ

∗
l

ĉl
− ρlĉlρ

∗
r

ĉr

)]

(ρU)∗r − (ρU)∗l = α̂

(
S∗n− ⟨Ut⟩

2
t

)
+

{
⟨ρ∗⟩
2

∆Ut

}
t , (4.41)

(ρE)∗r − (ρE)∗l = ∆E∗
n +

{
⟨ρ∗⟩
2

∆Ut

}
⟨Ut⟩
2

where the notations of Pelanti have been introduced for the two scalar quantities (α̂,∆E∗
n) defined as

follows

α̂ = ρ∗r − ρ∗l

∆E∗
n = (ρ∗rhr − ρ∗l hl) + α̂

[ (
⟨u2⟩
4

+
⟨S2

∗⟩
4

)
+

(
⟨v2⟩
4

+
⟨S2

∗⟩
4

)
− S∗

⟨Un⟩
2

]
+

⟨ρ∗⟩
2

(
∆Un

(
⟨Un⟩
2

− S∗

) )
−∆p

, (4.42)

and h = e+
p

ρ
is the specific enthalpy. The previous expressions illustrate that the waves emanating from

the jumps of the conservative variables show notable similarities with the Harten-Hyman decomposition
of the Roe flux. This can be seen from the left and right jumps (4.39) and (4.40), given that both
expressions have a clear analogy with the decomposition of the Roe flux, see section 2.4.1. In the light
of these results, Pelanti then used the wave propagation algorithm developed by Leveque in [33, 35],
and proposed the following decomposition of the HLLC scheme into simple waves Wk

W1 = ξ1r1 W2 = Ŵ2 + ξ2sr2s W3 = ξ3r3,
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where the detailed expression of this decomposition of the HLLC scheme can be deduced from the
form of expressions (4.39 - 4.41), but are not explicitly written herein. While, for the Roe scheme, this
form is well-established [33,35], and is readily written as four simple waves W̃k

W̃1 = α̃1r̃1 W̃2 = α̃2r̃2 W̃3 = α̃3r̃3 W̃4 = α̃4r̃4.

To summarize, the approach of Pelanti offers a common formalism based on the wave structure, reveal-
ing similarities between the two approximate Riemann solvers, particularly on the waves (W1,W̃1)

and (W3,W̃4), through an equivalent reformulation of the wave speed estimates. Based on these
similarities, Pelanti investigated a low Mach number correction of the HLLC scheme, by mimicking
the effects of the Turkel preconditioner on dissipation vector. The HLLC-Turkel scheme is formulated
by modifying the first and third waves (W1,W3) in a similar manner than the formulation of the
Roe-Turkel scheme [7], with modified (W̃1,W̃4). Further details can be found in the original [99],
with especially a unified discrete asymptotic analysis for the two schemes.
This approach raises several notable points that are further discussed next. First, in some sense that
must be clearly determined, both of these approximate Riemann solvers can be corrected employing
an "identical" formulation of the rescaling of the dissipation vector. Second, although, this latter point
has already been formally highlighted in the literature, the similarity raised by Pelanti could be further
investigated in order to define a common framework for the formulation and for the asymptotic analysis
of low Mach number corrections. Third, as discussed by Pelanti, this analysis also presents some addi-
tional insights on what is hidden inside dHLLC , and provides a relevant basis for further investigations
into the potential relationship between the HLLC scheme and a Riemann problem expressed as follows

∂tw +AHLLC(wl,wr,n)∂ξw = 0

w(0, ξ) =

{
wl If ξ < 0

wr If ξ > 0

.

In the above expression, the definition of the approximate Jacobian matrix AHLLC(wl,wr,n) is
currently unknown at that stage of the analysis, but it can be assumed to exist, since this scheme is a
Godunov-type method.

In the next chapter, the analysis of Pelanti is further developed with the objective of providing ad-
ditional information into the origin of these similarities. This is achieved by deriving a common
formalism between the Roe and HLLC schemes, making easier a common formulation of corrections of
the dissipation vector. Furthermore, the aim of these investigations is to determine whether these two
methods can be corrected with an identical formulation and, if so, to define precisely how this can be
achieved. If such work could be done, it would be a valuable cornerstone for a better understanding
of the underlying mechanisms used to improve the accuracy of approximate Riemann solvers.
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5 - A common formalism for analyzing and correcting the
HLLC and Roe schemes
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5.5.3 The Liu-Vinokur form of the HLLC-Rossow scheme . . . . . . . . . . . 149
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5.1 . Introduction & motivations

The primary objective of this last chapter is to examine the possibility of establishing a unified formal-
ism for the HLLC and Roe schemes. A such common formalism could provide a common framework
analysis for low Mach number corrections of the dissipation vector. To this end, we shall investigate
whether the HLLC scheme can be interpreted in a similar manner to the Roe scheme, specifically, as
a method that formulates explicitly an approximate Riemann problem at the interface, as indicated
next 

∂tw +AHLLC(wl,wr,n) ∂ξw = 0

w(0, ξ) =

{
wl If ξ < 0

wr If ξ > 0

. (5.1)
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Despite the significant discrepancies in the construction of these two methods, which are discussed in
sections 2.1 and 4.1 respectively, the jumps of the conservative states highlight similarities in the two
wave structures. However, this designation of wave structure for the HLLC scheme, introduced in [99],
is somewhat premature as the wave structure is by definition obtained through the spectral properties
of the matrix AHLLC(wl,wr,n). This quantity remains yet unknown unless if another Riemann
problem, associated with another system of conservation laws in higher dimension, is introduced and
followed with a Siliciu-type relaxation, as demonstrated by Bouchut [92].
Nevertheless, if we assume the existence of this approximate Jacobian matrix for the HLLC scheme,
then it follows that similar manipulations to those highlighted in section 2.2 can be performed for
both approximate Riemann solvers. Indeed, for the Roe scheme, the conservation and hyperbolicity
conditions yield the following relation

f(wr,n)− f(wl,n) = ARoe(w̃,n)∆w =
d+2∑
k=1

α̃kλ̃kr̃k = λ̃1∆w1 + λ̃2∆w2 + λ̃d+2∆w3,

where λ̃2 = ... = λ̃d+1 are the intermediate eigenvalues with multiplicity d, ∆w = wr −wl, and the
intermediate jumps of the conservative variables are given by ∆w1 = w∗

l −wl, ∆w2 = w∗
r −w∗

l and
∆w3 = wr −w∗

r . While, for the HLLC scheme, if an approximate Jacobian matrix could be deduced
from this decomposition, then, it would follow that

f(wr,n)− f(wl,n) = S1∆w1 + S2∆w2 + S3∆w3 = AHLLC(wl,wr,n)∆w,

in which the matrix is not interpreted as a direct evaluation of the exact Jacobian matrix through
an average state, but is instead directly formulated with the left and right conservative variables,
according to the uniqueness of this quantity given by Roe-Pike [62]. Whereas for the dissipation
vector, the identification with the Roe scheme highlights an hidden artificial viscosity matrix, within
the comparison

dRoe = |ARoe(w̃,n)|∆w =
d+2∑
k=1

α̃k|λ̃k|r̃k and dHLLC =
3∑

k=1

|Sk|∆wk = |AHLLC(wl,wr,n)|∆w,

which provides additional information regarding the HLLC scheme. Although all of the above manip-
ulations are founded upon the assumption of the existence of an approximate Riemann problem of the
form (5.1), this remains a valid assumption according to the definition of Godunov-type method. The
formulation of the dissipation vector with a matrix-valued dissipation plays, for instance, a crucial role
in the Fourier analysis for the explicit scheme in the case of low Mach number flows, as shown in chap-
ter 3. For the HLLC scheme, the Fourier analysis is hardly feasible due to the absence of knowledge
of a corresponding artificial viscosity matrix. Furthermore, it could be also interesting to examine the
relationship between the two approximate Jacobian matrices ARoe and AHLLC , with the objective
of unifying the discrete asymptotic analysis. Therefore, this motivates further in-depth research.

We shall start the following analysis based on similarities identified by Pelanti in [99], discussed in
detail in section 4.3. The present chapter pertains to a pursuit of this analysis for the two-dimensional
case (i.e. d = 2), with a special attention given:

1. To identify the origin of the similarities between the HLLC and Roe schemes, and thus, to deter-
mine whether this method can actually be interpreted as implicitly constructing an approximate
Jacobian matrix (5.1).

2. To examine the existence of global corrections for both schemes, especially corrections that are
not clearly formulated for a HLLC type of scheme. To illustrate this point, we show how to
precisely apply the Rossow’s artificial speed of sound approach to the HLLC scheme.
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It should be noted that, although this work focuses on low-Mach number flows, the validity of the
following investigation is not restricted to this regime, unless explicitly stated otherwise. Therefore,
any modifications of the dissipation vector can be similarly investigated, regardless of the flow regime.
Let us introduce the following generic expression for the numerical flux

FX(wl,wr,n) =
f(wl,n) + f(wr,n)

2
− 1

2
dX ,

where X denotes either the Roe or HLLC schemes, and only the dissipation vector dX differs between
the two schemes, as indicated next

dRoe = |ARoe(w̃,n)|∆w and dHLLC =
3∑

k=1

|Sk|∆wk.

5.2 . The HLLC scheme written as a four simple wave solver

We shall first introduce generic definitions for the acoustic wave speed estimates (Sl, Sr), formulated
as follows

Sl = Unl
− ĉl and Sr = Unr + ĉr,

where, the definitions of ĉk are related to fan wave estimates, not yet explicitly defined here. Further-
more, the estimate for the intermediate wave speed is assumed to be deduced from (Sl, Sr), and is
expressed as

S∗ =
⟨ρUnĉ⟩ −∆p

⟨ρĉ⟩
,

in which operator ⟨·⟩ is defined for any scalar quantity a as the sum of the right and left states ⟨a⟩ =
2ā = al+ar. More details regarding these expressions can be found in section 4.3. To further highlight
the similarities between the Roe and HLLC schemes, the two dissipation vectors are reformulated in
a similar manner. This is achieved by expressing the two approximate Riemann solvers as a four
simple wave solver, thereby enabling an easier and straightforward comparison between the dissipation
mechanisms of both approaches. The following expression of the HLLC scheme is obtained from results
derived in [99].
Let us first recall the expression of the dissipation vector dRoe for the Roe scheme according to the
Harten-Hyman decomposition, using the eigenspaces of the approximate Jacobian matrix ARoe

dRoe = |ARoe(w̃,n)|∆w =

4∑
k=1

|λ̃k|α̃kr̃k

α̃1 =
∆p− ρ̃c̃∆Un

2c̃2
α̃2 = ∆ρ− ∆p

c̃2
α̃3 = ρ̃∆Ũt α̃4 =

∆p+ ρ̃c̃∆Un

2c̃2

r̃1 =


1

ũ− c̃nx

ṽ − c̃ny

H̃ − c̃ Ũn

 r̃2 =


1
ũ
ṽ

| ˜U |
2

2

 r̃3 =


0

−ny

nx

Ũt

 r̃4 =


1

ũ+ c̃nx

ṽ + c̃ny

H̃ + c̃ Ũn


, (5.2)

where Un and Ut are respectively the directional and tangential velocity components, the operator ·̃

stands for the Roe average, and the speed of sound is defined as c̃ =

√
(γ − 1)(H̃ − | ˜U |2

2 ) .
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In the case of the HLLC scheme, in order to obtain a comparable decomposition for the dissipation
vector dHLLC , the following wave speed estimates are introduced explicitly S1 = Sl, S2 = S∗ =

S3, S4 = Sr. Then, it follows that these wave speed estimates are interpreted as eigenvalues of an
approximate Jacobian matrix AHLLC , which remains unknown yet. In addition, coefficients αk and
right eigenvectors rk can be explicitly derived for the HLLC scheme, with the following expressions

α1 =
ρ∗l
⟨ρĉ⟩

[
∆p− ρr ĉr∆Un

ĉl

]
α2 = 1 α3 = ρ̄∗∆Ut α4 =

ρ∗r
⟨ρĉ⟩

[
∆p+ ρlĉl∆Un

ĉr

]

r1 =


1

ul − ĉlnx

vl − ĉlny

Hl − ĉlS∗

 r2 =


∆ρ∗

∆ρ∗ (nxS∗ − nyŪt)
∆ρ∗ (nyS∗ + nxŪt)

∆E∗
n

 r3 =


0

−ny

nx

Ut

 r4 =


1

ur + ĉrnx

vr + ĉrny

Hr + ĉrS∗


, (5.3)

where the mean operator ā =
⟨a⟩
2

has been used, and ∆E∗
n is defined as

∆E∗
n = (ρ∗rhr − ρ∗l hl) +∆ρ∗

[ (
⟨u2⟩
4

+
⟨S2

∗⟩
4

)
+

(
⟨v2⟩
4

+
⟨S2

∗⟩
4

)
− S∗

⟨Un⟩
2

]
+

⟨ρ∗⟩
2

(
∆Un

(
⟨Un⟩
2

− S∗

) )
−∆p

, (5.4)

where h is the specific enthalpy h = e +
p

ρ
, and e the internal energy. More details concerning the

derivation of these quantities can be found in section 4.3.
As it can be seen by comparing the above expressions (5.2 - 5.3), significant similarities appear in
the first, third and fourth waves (i.e. Wk = αkrk). However, notable discrepancies emerge from the
second wave, as particularly evidenced by the last component of r2 with especially the definition of
∆E∗

n. Using the previous expressions (5.2 - 5.3), the two dissipation vectors are derived in a similar
form, as indicated next

dRoe =
4∑

k=1

|λ̃k|α̃kr̃k dHLLC =
4∑

k=1

|Sk|αkrk. (5.5)

This formulation for the Roe scheme is characterized by the spectral properties of the approximate
Jacobian matrix, and thus, by the wave structure of the Riemann problem. However, for the HLLC
scheme, this form represents only a formal interpretation of the dissipation vector, as the associated
approximate Riemann problem has not yet been determined. The precise origins of these similarities
remain unidentified and are not addressed in the literature, motivating therefore further investigations
described in the next section.

5.2.1 . Investigation on the origins of the similarities
The primary concern of this section is to examine the origin of the similarities highlighted in expressions
(5.2 - 5.3). These similarities have been for instance used by Pelanti as a valuable cornerstone in order
to mimick the effects of the Turkel preconditioner matrix applied to the HLLC scheme. By investigating
the origins of these similarities, a common formalism between the two dissipation vectors dX is derived,
as indicated next. A special attention is given to identify the limitations of this analysis for these two
approximate Riemann solvers.
Due to their conciseness, expressions in (5.5) are not the best candidate for this analysis. Indeed,
notable discrepancies emerge primarily from the second wave W2 = α2r2, and the reasons of such
discrepancies are not simple to investigate. To provide a better understanding, a more detailed for-
mulation is obtained by expanding the dissipation vector into a matrix form, as defined by the next
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matrix-vector product

dX(wl,wr,n) = MX(wl,wr,n)


∆ρ

∆U
∆Un

∆p

 with MX ∈ R(d+2)×(d+3), (5.6)

which entails the extraction of all terms hidden in the dissipation vector. Note that this choice of
dependent variables on the right-hand side of (5.6) is based on the initial definitions of the coordinates
α̃ = (α̃k)k, from which arising naturally all these distinct jumps. To this end, the first step is to derive
explicitly the associated matrix MHLLC of the HLLC scheme, by further expanding expression (5.5).
To simplify the expressions, the previous notations used in the definition of coefficients (δck , δSk

, δ|Sk|)

are reminded below{
δcl = Sl − Unl

δcr = Sr − Unr

{
δSl

= Sl − S∗

δSr = Sr − S∗

{
δ|Sl| = |Sl| − |S∗|

δ|Sr| = |Sr| − |S∗|
.

Definitions introduced in (5.3) are used to formulate the dissipation vector dHLLC = (dHLLC
k )k=1,4,

given in (5.5). After some algebra, we get the following components of the dissipation vector

dHLLC
1 = ∆ρ

[
|S∗|

]
+∆Un

[
ρlρr
⟨ρĉ⟩

(
δcr
δSl

δ|S|l −
δcl
δSr

δ|S|r

)]
+∆p

[
1

⟨ρĉ⟩

(
− ρl
δSl

δ|S|l +
ρr
δSr

δ|S|r

)]
, (5.7)

dHLLC
2/3 = ∆ρ

[
|S∗| U∗ ]+∆U

[
ρ̄∗|S∗|

]
+∆Un

[
ρlρr
⟨ρĉ⟩

(
δcr
δSl

{
|Sl|(Ul − ĉln)− U∗|S∗|

}

− δcl
δSr

{
|Sr|(Ur + ĉrn)− U∗|S∗|

})
− ρ̄∗|S∗|n

]
, (5.8)

+∆p

[
1

⟨ρĉ⟩

(
− ρl
δSl

{
|Sl|(Ul − ĉln)− U∗|S∗|

}

+
ρr
δSr

{
|Sr|(Ur + ĉrn)− U∗|S∗|

}) ]
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dHLLC
4 = ∆ρ

[ (
H̄ + S∗(S∗ − Ūn − ρ̄∗γ

ρlρr(γ − 1)
p̄

)
|S∗|

]
+∆u

[
ρ̄∗ū|S∗|

]
+∆v

[
ρ̄∗v̄|S∗|

]

+∆Un

[
ρlρr
⟨ρĉ⟩

(
δcr
δSl

{
|Sl| (Hl − ĉlS∗)− |S∗|

(
H + S∗(S∗ − Ūn)

)}

− δcl
δSr

{
|Sr|(Hr + ĉrS∗)− |S∗|

(
H + S∗(S∗ − Ūn)

)} )

− ρ∗S∗|S∗|

]

+∆p

[
1

⟨ρĉ⟩

(
− ρl
δSl

{
|Sl|
(
Hl − ĉlS∗

)
− |S∗|

(
H + S∗(S∗ − Ūn)

)}

+
ρr
δSr

{
|Sr|(Hr + ĉrS∗)− |S∗|

(
H + S∗(S∗ − Ūn)

)} )

+ (
ρ̄∗ρ̄γ

ρlρr(γ − 1)
− 1)|S∗|

]

. (5.9)

Then, from expressions (5.7 - 5.9), the corresponding matrix MHLLC(wl,wr,n) can be readily ex-
tracted, with

dHLLC = MHLLC


∆ρ

∆U
∆Un

∆p

 with MHLLC ∈ R(d+2)×(d+3), (5.10)

but, its definition is not explicitly given here for the sake of brevity. Instead, in order to elucidate the
origin of the similarities between dHLLC and dRoe, a specific decomposition of the matrix MHLLC

is introduced. This expression was initially intended to simplify the interpretation and to reinforce the
link between the dissipation vectors of these two approximate Riemann solvers. In the following, two
matrices Mc and Md are introduced, with the aim of decomposing the matrix MHLLC into two
parts, as indicated below

MHLLC(wl,wr,n) = Mc(wl,wr,n) +Md(wl,wr,n), (5.11)

where indexes used in notations stand for ’common’ or ’deviation’. These two matrices are given by
the following expressions
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Mc =



|S∗|

|S∗| u∗

|S∗| v∗

|S∗|
(
H

− ρ̄∗p̄

ρlρr
(1 +

1

γ − 1

)

0

ρ∗|S∗|

0

ρ∗ū|S∗|

0

0

ρ∗|S∗|

ρ∗v̄|S∗|

ρlρr
⟨ρĉ⟩

(
δcr
δSl

δ|S|l −
δcl
δSr

δ|S|r

)

ρlρr
⟨ρĉ⟩

(
δcr |Sl|
δSl

(ul − ĉlnx)

− δcl |Sr|
δSr

(ur + ĉrnx)
)

−nxρ∗|S∗|

ρlρr
⟨ρĉ⟩

(
δcr |Sl|
δSl

(vl − ĉlny)

− δcl |Sr|
δSr

(vr + ĉrny)
)

−nyρ∗|S∗|

ρlρr
⟨ρĉ⟩

(
δcr |Sl|
δSl

(Hl − ĉlS∗)

− δcl |Sr|
δSr

(Hr + ĉrS∗)
)

− ρ∗S∗|S∗|

1

⟨ρĉ⟩

(
ρr

δSr
δ|S|r −

ρl

δSl
δ|S|l

)

1

⟨ρĉ⟩

(ρr|Sr|
δSr

(ur + ĉrnx)

−ρl|Sl|
δSl

(ul − ĉlnx)

+u∗|S∗|(
ρl
δSl

− ρr
δSr

)
)

1

⟨ρĉ⟩

(ρr|Sr|
δSr

(vr + ĉrny)

−ρl|Sl|
δSl

(vl − ĉlny)

+v∗|S∗|(
ρl
δSl

− ρr
δSr

)
)

1

⟨ρĉ⟩

( ρr
δSr

(Hr|Sr| −H|S∗|+ ĉrS∗|Sr|)

− ρl
δSl

(Hl|Sl| −H|S∗| − ĉlS∗|Sl|)
)

+
( ρ∗ρ̄γ

ρlρr(γ − 1)
− 1

)
|S∗|



(5.12)

Md =



0

0

0

|S∗|S∗(S∗ − Un)

0

0

0

0

0

0

0

0

0

ρlρr
⟨ρĉ⟩

|S∗|ū∗
(
δcl
δSr

− δcr
δSl

)

ρlρr
⟨ρĉ⟩

|S∗|v̄∗
(
δcl
δSr

− δcr
δSl

)

ρlρr
⟨ρĉ⟩

|S∗|
[
H̄ + S∗(S∗ − Un)

]( δcl
δSr

− δcr
δSl

)

0

0

0

1

⟨ρĉ⟩
|S∗|

[
S∗(S∗ − Un)

]( ρl
δSl

− ρr
δSr

)



(5.13)

The purpose of the decomposition (5.11) is to illustrate a very specific feature of the dissipation vector
dHLLC .

Proposition 5.2.1 (Consistency relations for the matrices M) Let the initial condition of the
Riemann problem be continuous, then, there exists a matrix M(w,n) ∈ R(d+2)×(d+3) such that:

M(w,n) = MHLLC(w,w,n) = MRoe(w,n).

In particular, the decomposition (5.11) of the matrix MHLLC satisfies the following relations{
Mc(w,w,n) = MRoe(w,n)

Md(w,w,n) = 0 ∈ R(d+2)×(d+3)
. (5.14)
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The above expression highlights that the two matrices MHLLC and MRoe are consistent with respect
to the same matrix M(w,n).

Remark 1 Obviously if wl = wr = w, then, the intermediates states (w∗
l ,w

∗
r) characterizing the

HLLC scheme are equal to w. In addition, the following relations are also satisfied:

ĉl = c Sl = λ1(w) δcl = −c δSl
= −c

ĉr = c Sr = λ4(w) δcr = c δSr = c

S∗ = λ2(w)

,

and by using these relations into the two matrices Mc and Md, this leads to (5.14).

The current question that now arises is: how to interpret this quantity M(w,n)? This question
proved to be more challenging than anticipated, as we could only determine the answer with formal
observations. This can be heuristically explained with the Roe flux in a simple case, as this method
describes explicitly the relation between the approximate Riemann problem and the definition of its
matrix-valued dissipation. Indeed, the dissipation vector for the Roe scheme can be equivalently
expressed with several forms, as indicated next

dRoe = MRoe(w̃,n)


∆ρ

∆U
∆Un

∆p

 = |ARoe(w̃, n)|∆w =
d+2∑
k=1

|λ̃k|α̃kr̃k, (5.15)

where in order to obtain a consistent numerical flux, the dissipation vector must obviously satisfy the
necessary condition given by

dRoe(w̃(w,w),n) = 0.

However, it is also well-established for the Roe scheme that, the above condition specifically hides
another property of the Roe scheme, previously mentioned in section 2.1. This is the consistency
condition of the approximate Jacobian matrix, as reminded below

dRoe(w̃(w,w),n) = 0 and additionally ARoe(w̃(w,w),n) = A(w,n).

Assuming now very small discontinuities in the initial condition, and a smooth solution w such as
generally assumed for subsonic flows, then, the linearized Riemann problem could be introduced, in a
similar manner as Toro in [119] and [34, Sec. 9.3]. In particular we shall assume that the left and right
conservative states and the solution of the Riemann problem are close to a constant state ŵ. Under
these assumptions, the solution of the linearized Riemann problem, formulated as follows

∂tw +A(ŵ, n)∂ξw = 0

w(0, ξ) =

{
wl If ξ < 0

wr If ξ > 0

,

could be assumed as an appropriate approximation of the exact solution w, in which we especially see
that

|A(ŵ,n)| ∆w =
d+2∑
k=1

|λk(ŵ,n)|αk(ŵ,wl,wr,n)rk(ŵ, n) = M(ŵ,n)


∆ρ

∆U
∆Un

∆p

 .
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Under a few assumptions regarding the validity of the linearized Riemann problem, which appears not
important to be discussed here, this simple manipulation clearly identifies the relation between the
dissipation vector, the matrix quantity M(ŵ,n), and the approximate Riemann problem for a linear
hyperbolic system with constant coefficients. Indeed, as it can be seen in the above expression, for a
vanishing discontinuity in the initial condition, we then have

A(ŵ,n) −−−−−→
wl→wr

A(w,n) and additionally M(ŵ,n) −−−−−→
wl→wr

M(w,n).

In the context of the Roe scheme, the above conditions are also satisfied, as these could be expressed
as follows

dRoe(w̃,n) = |ARoe(w̃,n)|∆w = MRoe(w̃,n)


∆ρ

∆U
∆Un

∆p

 0
wl → wr

|A(w,n)| M(w,n)

wl → wr

.

In opposition, the situation with regard to the HLLC scheme is less clear, given the lack of available
information regarding the approximate Riemann problem and the definition of AHLLC . Thus, the
identical process is open to question. However, the missing information for the HLLC scheme can
be compensated with proposition 5.2.1, as the consistency condition for ARoe provides insights that
could be also potentially reproduced by the HLLC scheme. Indeed, assuming that AHLLC(wl, wr, n)

exists, then, the consistency of the approximate Jacobian matrix could be deduced from the analysis
of the two numerical dissipations, as for instance a particularly consequence of the relation

M(w,n) = MHLLC(w,w,n) = MRoe(w, n),

and the consistency condition given for the Roe matrix ARoe. Thus, the observed similarities between
the formulation of dHLLC and dRoe could be explained as a direct consequence of the consistency
conditions for the approximate Jacobian matrix AX with respect to the exact Jacobian matrix.

5.3 . A generalization of corrected numerical dissipation for the Roe and HLLC
schemes

This section aims at determining how the two approximate Riemann solvers can be modified by im-
plementing an "identical" formulation for a corrected dissipation vector. The objective is to propose
a step-by-step approach to first identify the numerical mechanism introduced by the correction, and
then, generalize the correction from one Riemann solver to the other using a common formalism for
both schemes. It should be noted that, the following approach represents an extension of Pelanti’s
methodology mimicking preconditioning methods, but in the case of corrections modifying terms that
are not readily comparable. Indeed, in [99], Pelanti’s original derivation for transposing the X-Turkel
correction takes into advantage the similarities in the first and third waves (in our notations in (5.2
- 5.3), these waves correspond to the first and fourth waves), which are specifically modified in the
case of the Roe-Turkel scheme. In contrast, we propose here to generalize this methodology, as this
condition is now relaxed, and is therefore formulated even in the absence of similarities between terms
of these two approximate Riemann solvers.
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Let us first introduce a generic modified vector-dissipation, which could be either related to a low-
Mach number or a high-Mach number correction. The cornerstone for identifying and transposing the
correction is given by the consistency property in Prop. 5.2.1. We shall first state a definition, for
the purpose of a well-identified correction and therefore avoiding a potential scattering of corrections.
Introducing the following definition:

Definition 5.3.1 (Schemes corrected with an identical strategy of rescaling) The Roe scheme
and the HLLC scheme are identically corrected by a correction X if only if:

MX(w,n) = MRoe−X(w,n) = MHLLC−X(w,w,n)

then corrections are characterized according to the modifications made to the initial quantity M(w,n).

5.3.1 . Transposition of a correction from the Roe scheme to HLLC scheme
First of all, considering a correction X for the Roe scheme, the numerical flux FRoe−X can be expressed
as follows

FRoe−X(wl,wr,n) =
f(wl,n) + f(wr,n)

2
− 1

2
dRoe−X(w̃,n),

in which the numerical dissipation dRoe−X can be equivalently written under the matrix form:

dRoe−X = MRoe−X


∆ρ

∆U
∆Un

∆p

 with MRoe−X ∈ R(d+2)×(d+3).

According to the definition 5.3.1, a matrix MHLLC−X must be identified and built such that
MHLLC−X(wl,wr,n) −−−→

M→1
MHLLC(wl,wr,n)

MHLLC−X(w,w,n) = MRoe−X(w,n)

. (5.16)

Actually, the existence of MHLLC−X is ensured by proposition 5.2.1, as it only requires to modify the
initial formulation of MHLLC in order to satisfy the above conditions. Nevertheless, its uniqueness
is not ensured, and can be easily explained by the decomposition (5.11) together with the consistency
relation (5.14)

MHLLC−X(wl,wr,n) = MHLLC−X
c (wl,wr,n) +MHLLC−X

d (wl,wr,n)

with Mc(w,w,n) = MRoe(w, n) and Md(w,w,n) = 0 ∈ R(d+2)×(d+3)
.

One possible approach to readily find a matrix that satisfies conditions (5.16) is to only modify the first
matrix Mc(w,w,n) while letting the second part Md(w,w,n) unchanged. Indeed, the deviation
matrix Md appears to be non-crucial to the consistency relation as being vanishing. Therefore, this
provides a sufficient condition for constructing a matrix that satisfies the consistency condition (5.14),
but this should not be the only way to proceed. Indeed, we cannot rule out the possibility of also
incorporating the correction in MHLLC−X

d , provided that it is a vanishing matrix when wl = wr.
Nevertheless, the influence of this matrix on the discrete properties of the method remains unclear,
and further investigations are needed.
In the next section, this approach is applied for generalizing the artificial speed of sound approach of
Rossow [26], as discussed in detail in chapter 3, thus deriving the HLLC-Rossow scheme.
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5.3.2 . Transposition of a correction from the HLLC scheme to Roe scheme (con-
jecture)

Conversely, in order to determine the identical rescaling formulation considered for the Roe scheme,
from a corrected numerical flux FHLLC−X , two steps are needed. First of all, it is required to recover
the matrix form (5.6), corresponding to a lengthy computation, yielding

dHLLC−X = MHLLC−X


∆ρ

∆U
∆Un

∆p

 with MHLLC−X ∈ R(d+2)×(d+3).

However, this step is a prerequisite to ensure the accurate transposition of the original rescaling for-
mulation of the dissipation vector. On the characterization of the correction is completed, the easiest
step follows and consists in deriving the associated corrected matrix MRoe−X

d from the consistency
relation (5.2.1). In this case, the resulting matrix MRoe−X

d (w̃,n) is unique.
It should be noted that, in the absence of further elaborations and proofs to support this second
strategy, it remains a conjecture and serves as a basis to formulate an appropriate approach. Further
investigations were not possible due to the time constraints during the Ph-D program, as well as the
need to select a relevant correction for the HLLC scheme, that would have required an additional
algebraic effort.

5.4 . Derivation of the HLLC-Rossow scheme

The following section aims at briefly recalling the formulation of the artificial speed of sound approach
according to Rossow. This correction has been discussed in detail in chapter 3, and also more concisely
in section 2.5.3. Then, the approach described in section 5.3.1 is considered to extend the X-Rossow
correction to the HLLC scheme, according to definition 5.3.1.

5.4.1 . Initial definition of the Roe-Rossow scheme
The modified vector dissipation associated with the Roe-Rossow scheme, denoted with the shorthand
notation in the following as dR−R, can be expressed for any flow regime using the following definition

MR−R =



|Ũn|

|Ũn|ũ

|Ũn|ṽ

|Ũn||Ũ |2

2

0

|Ũn|ρ̃

0

|Ũn|ρ̃ũ

0

0

|Ũn|ρ̃

|Ũn|ρ̃ṽ

ρ̃B

c̃

ρ̃ũB

c̃
+

c̃′

c̃
Aρ̃nx

ρ̃ṽB

c̃
+

c̃′

c̃
Aρ̃ny

ρ̃H̃B

c̃
+

c̃′

c̃
Aρ̃Ũn

A

c̃′c

Bnx

c̃
+

Aũ

c̃′c̃

Bny

c̃
+

Aṽ

c̃′c̃

BŨn

c̃
+

AH̃

c̃′c̃
+

|Ũn|
γ − 1



, (5.17)
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with coefficients A and B given by
A =

|λ̃1|+ |λ̃4|
2

− |λ̃2|

B =
|λ̃4| − |λ̃1|

2

where for subsonic flows, these coefficients reduced to


A = c̃− |Ũn|

B = |Ũn|
.

Note that in expression (5.17), matrix MR−R returns to the original definition of MRoe when c̃′ = c̃.
The definition of the artificial speed of sound c̃′ requires to introduce a cut-off value Mref for low-speed
flows, assumed to take a small value, as indicated next

β2 = min(max(M2,M2
ref ), 1) ∈ [M2

ref , 1]

α =
1

2
(1− β2) ∈ [0,

1−M2
ref

2
]

c̃′ = c̃
√

α2M2
n + β2 ∈ [c̃

(
M2

ref + (
1−M2

ref

2
)2 M2

n

)1/2

, c̃]

. (5.18)

In this Ph-D work, the user parameter Mref was always set to the zero-level machine precision. In
our experience, depending on the flow configuration, the Roe-Rossow scheme can be implemented with
or without the introduction of this cut-off value. In the following, we shall adopt a notation for the
HLLC-Rossow scheme that, depending on its definition, can either enable or disable the use of such
a cut-off value for low Mach number flows. For more details on this rescaling approach, the reader is
referred to section 2.5.3 or to chapter 3.

5.4.2 . Formulation of the artificial speed of sound and of the fan wave estimates
The first step in deriving the HLLC-Rossow scheme relies on the introduction of artificial speeds of
sound. Nevertheless, unlike the Roe-Rossow scheme, the modified dissipation vector is obtained by
introducing the same rescaling approach through entries ĉk, embedded in the definitions of wave speed
estimates (Sl, Sr), arising in some terms of the matrix. Regarding the generic definitions of the
acoustic wave speed estimates, reminded below

Sl = Unl
− ĉ′l and Sr = Unr + ĉ′r,

this implies to introduce a number of artificial speeds of sound c′k, which must match the number of
speeds of sound ck used in the definition of ĉk. Then, only a few substitutions in the initial formulation
are required to formulate the modified matrix MH−R

d , as discussed in the next section.
Considering Davis’s approximations (4.11), two artificial speeds of sound must be introduced, respec-
tively ĉ′l and ĉ′r, which are used to formulate the following quantities

ĉ′l = max
(
c′l, c

′
r −∆Un

)
and ĉ′r = max

(
c′r, c

′
l −∆Un

)
. (5.19)

The definitions of the left and right artificial speeds of sound c′l and c′r, respectively, are formulated
with slight variation of the artificial speed of sound, by possibly removing the cut-off value, as indicated
next

For k ∈ {l, r}



β2
k = min(Kk, 1)

ζk =
1

2
(1− β2

k)

c′k = ck

√
Mnk

2ζ2k + β2
k

with Kk = M2
k . (5.20)
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In the above expression, the definition of the quantity Kk determines whether the cut-off value is
included or excluded from the scheme. By setting Kk = max(M2

k ,M
2
ref ), then this cut-off value is

incorporated into the scheme. There are several reasons to always incorporate a cut-off value into the
scheme, while opting to adjust the user parameter Mref to circumvent any potential interaction with
the flow. Indeed, this cut-off especially avoids, for instance, singularities for flows where the Mach
number is equal to zero in a part of the domain (see for instance (5.17) and its last column where
singularities may occur).
Considering Einfeldt’s approximates (4.12), an additional third artificial speed of sound must be in-
troduced, corresponding to the initial formulation of c̃ in the expression (5.18), as indicated in the
following

ĉ′l = max
(
c′l, c̃

′ − (Ũn − Unl
)
)

and ĉ′r = max
(
c′r, c̃

′ − (Unr − Ũn)
)

(5.21)

5.4.3 . Definition of the vector dissipation of the HLLC-Rossow scheme
Regardless of the choice of acoustic wave speed estimates (Sl, Sr) and therefore the number of artificial
speeds of sound required, the following step for deriving the HLLC-Rossow scheme requires to determine
the matrix satisfying the consistency property (5.2.1). One possible and readily manner for formulating
an appropriate matrix MHLLC−Rossow, simply denoted as MH−R in the following, consists in only
searching for a consistent common matrix MH−R

c

dH−R(wl,wr,n) = MH−R(wl,wr,n)


∆ρ

∆U
∆Un

∆p

 with MH−R = MH−R
c + Md, (5.22)

and thus, the deviation matrix Md is unmodified and given by (5.13). As a result, this leads to the
formulation of a modified dissipation vector dH−R that directly satisfies the definition 5.3.1 through
the following consistency condition

MH−R
c (w,w,n) = MR−R(w,n). (5.23)
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Therefore, after some simple algebra, this yields the following common matrix for the HLLC-Rossow
scheme

MH−R
c =



|S∗|

|S∗| u∗

|S∗| v∗

|S∗|
(
H

− ρ̄∗p̄

ρlρr
(1 +

1

γ − 1

)

0

ρ∗|S∗|

0

ρ∗ū|S∗|

0

0

ρ∗|S∗|

ρ∗v̄|S∗|

ρlρr
⟨ρĉ⟩

(
δcr
δSl

δ|S|l −
δcl
δSr

δ|S|r

)

ρlρr
⟨ρĉ⟩

(
δcr |Sl|
δSl

(ul − ĉ′lnx)

− δcl |Sr|
δSr

(ur + ĉ′rnx)

−nxρ∗|S∗|
⟨ρĉ′⟩
ρlρr

)

ρlρr
⟨ρĉ⟩

(
δcr |Sl|
δSl

(vl − ĉ′lny)

− δcl |Sr|
δSr

(vr + ĉ′rny)

−nyρ∗|S∗|
⟨ρĉ′⟩
ρlρr

)

ρlρr
⟨ρĉ⟩

(
δcr |Sl|
δSl

(Hl − ĉ′lS∗)

− δcl |Sr|
δSr

(Hr + ĉ′rS∗)

− ρ∗S∗|S∗|
⟨ρĉ′⟩
ρlρr

)

1

⟨ρĉ′⟩

(
ρr

δSr
δ|S|r −

ρl

δSl
δ|S|l

)

1

⟨ρĉ′⟩

( ρr
δSr

(ur|Sr| − u∗|S∗|)

− ρl
δSl

(ul|Sl| − u∗|S∗|)
)

+
nx

⟨ρĉ⟩

( ρl
δSl

ĉl|Sl|+
ρr
δSr

ĉr|Sr|
)

1

⟨ρĉ′⟩

( ρr
δSr

(vr|Sr| − v∗|S∗|)

− ρl
δSl

(vl|Sl| − v∗|S∗|)
)

+
ny

⟨ρĉ⟩

( ρl
δSl

ĉl|Sl|+
ρr
δSr

ĉr|Sr|
)

1

⟨ρĉ′⟩

( ρr
δSr

(Hr|Sr| −H|S∗|)

− ρl
δSl

(Hl|Sl| −H|S∗|)
)

+
S∗

⟨ρĉ⟩

( ρl
δSl

ĉl|Sl|+
ρr
δSr

ĉr|Sr|
)

+
( ρ∗ρ̄γ

ρlρr(γ − 1)
− 1

)
|S∗|



. (5.24)

For the reader’s convenience, a Fortran routine is provided in Appendix A, which merely only requires
the adaptation of the input variables according to its own code, facilitating the challenging implemen-
tation step. It is also worth noting that, by proceeding to a few straightforward modifications of some
variables in the Fortran routine, the code returns the original HLLC scheme, expressed in the matrix
form.

5.4.4 . Validation of the HLLC-Rossow scheme
Comparison with the original HLLC scheme

For validation purpose and a first assessment of the HLLC-Rossow scheme, the same test case as de-
scribed in section 2.5.3 was considered for the NACA0012 airfoil . The original and modified HLLC
schemes are first compared in the transonic regime (M = 0.85, α = 1), using the Einfeldt’s approxima-
tions for the wave speed estimates. Computations were performed using the same structured C-type
mesh with 279x60 nodes, as depicted in Fig.5.2a, with 151 nodes discretizing the solid wall. The
boundary conditions are the same as previously described in chapter 2 for this transonic test case.
Computations were performed using a second-order MUSCL reconstruction, with van Albada limiter,
referred to as "O(2)" in figures 5.2. Figure 5.2b illustrates the convergence history of the l2-norms of
the normalized explicit residuals and the evolution of the CFL value. Considering the same uniform
initial condition, a local time stepping method combined with an adaptive CFL is applied in order to
quickly converge to the steady-state solution in a few hundreds of iterations. More details regarding
the description of the adaptive CFL can be found in chapter 3. As it can be observed in Fig.5.2b, the
computation is initially set to CFL = 5, then, at a prescribed iteration 5, the adaptive CFL starts with
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a minimum value CFL = 12. In the following iterations, the normalized residuals decrease, resulting
in a smooth increase in the CFL value around the 50th iteration, which then begins to fluctuate. At
the 500th iteration, the CFL value is characterized by a sharp increase, rising from 30 to 1, 000, 000 at
the 700th iteration, resulting in a quadratic convergence to the zero machine precision.

(a) C-type mesh for the NACA0012 (b) Convergence history for residuals and the
CFL number HLLC-Rossow scheme

(d) Production of spurious entropy at the wall (c) Mach number at the wall

Figure 5.2: The HLLC-Rossow scheme with MUSCL reconstruction O(2), NACA0012 airfoil at M =
0.85, α = 1°

Next Fig. 5.2c and 5.2d depict the entropy S and the Mach number distributions at the solid wall. For
the second-order accuracy in space, the modified HLLC-Rossow scheme produces slightly more spurious
entropy than the original HLLC scheme at stagnation points, as shown in Fig. 5.2c. Moreover, when
the Einfeldt’s approximations are employed, the HLLC scheme exhibits slightly higher levels of spurious
entropy in comparison to the Roe scheme indicated by the green triangles. It should be mentioned
that, these trends for the original and modified HLLC schemes are consistent with the observations
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made in section 2.5.3, when comparing the original and modified Roe schemes. In addition, Fig.
5.2d demonstrates that the numerical shock structure are almost identical for both schemes, as also
previously observed in the case of the modified Roe-Rossow scheme. Accordingly, the modified HLLC
scheme returns the original scheme in the vicinity of the sonic point, and shows a comparable discrete
solution as obtained when the correction is applied to the Roe scheme.

To illustrate the fact that the modified HLLC-Rossow scheme is effective in the low Mach number
regime, additional computations were performed for decreasing inflow Mach numbers M = 0.1 and
M = 0.001 in non-lifting conditions, using a third-order MUSCL reconstruction (indicated as MUSCL
O(3) in the figures). Stability considerations in the low Mach number limit are discussed in detail for
the Roe-Rossow scheme in chapter 3 and are reminded next for the cylinder test-case considering the
HLLC-Rossow scheme. The comparison illustrated in the two next figures for M = 0.1 demonstrates
that the original and modified HLLC schemes display different steady discrete solution. In particular,
as shown in Fig. 5.3a, the normalized pressure contours, defined as

p− pmin
pmax − pmin

∈ [0, 1],

indicates notable differences especially away from the solid wall. However, it should be noted that the
differences in the levels are characterized by small variations, as indicated with few boxed levels in the
legend. Additionally, near the wall, it can be observed that the normalized pressure contours for these
two schemes almost match, as illustrated in Fig. 5.3b.

(a) Normalized pressure contours (a) Normalized pressure contours (zoom)

Figure 5.3: The HLLC-Rossow scheme with MUSCL reconstruction O(2), NACA0012 airfoil at M =
0.1, α = 0°

As the Mach number decreases, the previously observed results no longer manifest, as evidenced by
the two figures that follow. Figure 5.4a for the Mach number contours illustrates that in the low Mach
number limit, the HLLC scheme has large errors, even when a third-order MUSCl reconstruction is
used. This is especially visible for the normalized pressure contours in the vincinity of the wall, which
are no longer similar to those calculated by the modified HLLC-Rossow scheme. Moreover, down-
stream the airfoil oscillations are also observed in the discrete solution, thus demonstrating significant
inconsistencies with the original HLLC scheme.
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(b) Mach number countours (a) Normalized pressure contours (zoom)

Figure 5.4: The HLLC-Rossow scheme with MUSCL reconstruction O(2), NACA0012 airfoil at M =
0.001, α = 0°

Comparison with the Roe-Rossow scheme for very low Mach number flows

In was also found interesting to investigate in details the overall accuracy of the discrete steady-state
solution in the low Mach number limit, comparing the HLLC-Rossow and Roe-Rossow schemes. The
non-lifting cylinder test-case introduced previously in chapter 3 was considered, for an inflow Mach
number M = 0.0001. For this comparison, a highly stretched mesh downstream of the cylinder was
used, with 140 nodes discretizing the solid wall and a mesh extension of 20 diameters, as depicted in
Fig. 5.5c. This is one of the most relevant test cases examined, as this irregular mesh was especially
design to trigger significant pressure checkerboard modes for low Mach number corrections, such as
the Rieper’s fix, contaminating the overall accuracy of the discrete solution. In contrast, it has been
also shown in chapter 3 that the Roe-Rossow scheme remains notably accurate in this mesh, and is
not prone to any pressure checkerboard modes. To further validate the HLLC-Rossow scheme, a third-
order MUSCL reconstruction was used (denoted as "O(3)" in the figures), as done previously for the
NACA0012 test-case. The discrete solution is then compared with the Roe-Rossow scheme, and with
the analytic potential solution given in chapter 3.
Moreover, considering the argumentation on the origins of the similarities with the wave structure of
the Roe scheme presented in section 5.2.1, as well as the derivation based on definition 5.3.1, the same
stability condition is applied to both schemes in the low Mach number limit. Therefore, as previously
discussed in the Chapter 3, the stability condition is defined in the low Mach number limit using the
spectral radius of the modified viscosity matrix, as demonstrated by Birken-Meister [29].
Figures 5.5a and 5.5b show the convergence history of the l2-norms of the normalized explicit residuals
and the evolution of the CFL value for both modified schemes. As it can be clearly observed, a similar
convergence is found for both schemes, especially with identical convergence thresholds reached. In
addition, as illustrated in Fig. 5.5d, the respective pressure coefficients Cp are in good agreement with
the incompressible solution, provided that schemes are formulated with a second or third-order MUSCL
reconstruction, due to the mesh density and the mesh extension. This highlights that, at the wall,
the pressure for these two weakly compressible solutions almost matches the incompressible pressure,
solution of the Bernoulli equation. Looking at the horizontal velocity u contours in the field depicted
in Fig. 5.5e, it can be seen that the overall accuracy of the discrete solutions is also nearly identical
between the two modified schemes. These results show that both compressible schemes provide relevant
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approximations of the potential solution, with the exception of the downstream region, where a larger
spurious entropy is produced due to the poor mesh quality. Next Figs. 5.5f and 5.5g represent the
patterns of the normalized pressure field, obtained with the compressible solutions and compared to
the potential theory. The two compressible schemes clearly exhibit similar patterns for the normalized
pressure field. However, when compared to the potential solution, significant discrepancies become
clearly visible away from cylinder wall, whereas Fig. 5.5e demonstrated that comparable distributions
are found for the normalized pressure near the solid wall. Nevertheless, it can be seen that these
pressure disturbances are proportional to the Mach number, and far from the wall, weak compressible
effects can not be ruled out, even in low Mach number flows, explaining the expected discrepancies
found with the incompressible potential solution.

(a) Convergence history for residuals and the
CFL number Roe-Rossow scheme

(b) Convergence history for residuals and the
CFL number HLLC-Rossow scheme

(c) O-type mesh for cylinder mesh triggering pressure
checkerboard modes
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(d) Pressure coefficients at the wall (e) Vertex-centered contours of
the horizontal velocity u

(f) Vertex-centered contours of
the normalized pressure

(g) Vertex-centered contours of the normalized
pressure (zoom)

Figure 5.5: Comparisons of the Rossow’s correction for the HLLC and Roe schemes

In conclusion, these results show that the HLLC-Rossow scheme has a similar behavior compared to
the Roe-Rossow scheme, particularly in terms of the overall accuracy of the steady discrete solution,
and the convergence history. Both schemes are especially characterized by the absence of spurious
pressure checkerboard mode issues in this challenging test case.

5.5 . The Liu-Vinokur form

Further investigations were considered with the objective of simplifying the expression of the dissipation
vector dHLLC−Rossow, in order to facilitate the implementation in a Fortran routine. To this end,
an extension of the Liu-Vinokur form was derived for the HLLC scheme, thereby providing a compact
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expression. Furthermore, this form also highlights the significant connection with the analysis made by
Li-Gu in [21] and the dozen of low Mach number corrections studied for the Roe scheme, all formulated
in a unified formalism of the dissipation vector.

5.5.1 . The initial Liu-Vinokur form for the Roe-Rossow scheme
We shall first begin by briefly recalling the original Liu-Vinokur form, given in [63], formulated for the
Roe-Rossow scheme. Additional details regarding this vector dissipation form can be found in section
2.4.2 and chapter 3. We make use of an important property of the Roe average, allowing to easily
decompose the discrete space difference operator ∆·, as indicated next

∀al, ar, ρl, ρr ∈ R ∆(ρa) = ã∆ρ+ ρ̃∆a with ã =

√
ρl al +

√
ρr ar√

ρl +
√
ρr

and ρ̃ =
√
ρl ρr. (5.25)

Using this property, the dissipation vector associated with the Roe-Rossow scheme can be equivalently
expressed as follows

dR−R = |Ũn|


∆ρ

ρ̃∆u+ ũ∆ρ
ρ̃∆v + ṽ∆ρ

ρ̃∆E + Ẽ∆ρ

+ δUR−R
n


ρ̃
ρ̃ũ
ρ̃ṽ

ρ̃H̃

+ δpR−R


0
nx

ny

Ũn

 , (5.26)

(
δUR−R

n

δpR−R

)
=

 B
c̃

1

c̃′c̃

A

ρ̃
c̃′

c̃
Aρ̃ B

c̃

(∆Un

∆p

)
with


A =

|λ̃4|+ |λ̃1|
2

− |λ̃2|

B =
|λ̃4| − |λ̃1|

2

,

where the definition of the artificial speed of sound c̃′ is given by expression (5.18). Note that, upon
substituting c̃′ for the original speed of sound c̃, the above expression returns the formulation of the
dissipation vector corresponding to the Roe scheme.

5.5.2 . The Liu-Vinokur form for the HLLC scheme
Starting from the fully-expanded formulation of the vector dissipation written in (5.7 - 5.9), and
performing a lengthy algebra, a novel equivalent form is derived by extending the Liu-Vinokur form to
the HLLC scheme, as formulated next

dHLLC = |S∗|


∆ρ

ρ∗∆u+ u∗∆ρ
ρ∗∆v + v∗∆ρ

ρ∗∆E + E∆ρ−
(
ρ∗ − ρ

)
∆

(
p

ρ

)
+ δUHLLC

n


ρ̃

ρ̃ u∗

ρ̃ v∗

ρ̃ H

+ δpHLLC


0
nx

ny

S∗


(5.27)

+ δHLLC
l


0

u∗ − ul
v∗ − vl
H −Hl

+ δHLLC
r


0

u∗ − ur
v∗ − vr
H −Hr

+ δHLLC
∗


0
0
0

S∗(S∗ − Un)

 .

As it can be observed, this expression clearly highlights several significant similarities between the two
dissipation vectors dHLLC and dRoe, while also indicating a notable discrepancy that arises from the
last three vectors. It should also be noted that, these expressions exhibit some substitutions occurring
between the two schemes. As for instance, the normal velocity Ũn, which is replaced by S∗ in the first
and third terms, as well as the vector Ũ being substituted by the averaged intermediate velocities Ū∗,
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among others. The five scalar coefficients expressed in the Liu-Vinokur form (5.27) are given by the
following expressions

δUHLLC
n =

ρ̃

⟨ρĉ⟩
∆Un

[
δcrδ|S|l
δSl

−
δclδ|S|r
δSr

]
+

ρ̃

⟨ρĉ⟩
∆p

[
δ|S|r
ρlδSr

−
δ|S|l
ρrδSl

]

δpHLLC = − ρlρr
⟨ρĉ⟩

∆Un

[
ĉl|Sl|δcr

δSl

+
ĉr|Sr|δcl

δSr

+
⟨ρĉ⟩ρ∗|S∗|

ρlρr

]
+

∆p

⟨ρĉ⟩

[
ρ∗r |Sr| − ρ∗l |Sl|

]

δHLLC
l = − ρlρr

⟨ρĉ⟩
∆Un

[
δcr |Sl|
δSl

]
+

∆p

⟨ρĉ⟩

[
ρl|Sl|
δSl

]

δHLLC
r =

ρlρr
⟨ρĉ⟩

∆Un

[
δcl |Sr|
δSr

]
− ∆p

⟨ρĉ⟩

[
ρr|Sr|
δSr

]

δHLLC
∗ =

ρlρr
⟨ρĉ⟩

|S∗|∆Un

[
δcl
δSr

− δcr
δSl

]
+

|S∗|
⟨ρĉ⟩

∆p

[
ρl
δSl

− ρr
δSr

]
+ |S∗|∆ρ

. (5.28)

The fourth and fifth vectors in decomposition (5.27) were derived as a direct consequence of matching
with the second vector in the decomposition (5.26) for the Roe scheme. Indeed, a straightforward
reformulation of the scalar quantities (δHLLC

l , δHLLC
r ) results in the formulation of a similar vector as

the second term. Therefore, in a manner analogous to the Roe scheme, as presented in [14, 21, 83], all
these terms involving the scalar quantities (δUHLLC

n , δHLLC
l , δHLLC

r ) are related to modifications of
the convective velocity at the interface.
The last vector in the expression (5.27) globally arises from the last row of the deviation matrix Mf

expressed with (5.13), where the term S∗(S∗ − Un) is almost present in each component.

Remark 2 Freezing the jump quantities in the dissipation vector, and taking wl = wr = w in the
other terms, the following expressions reduce to

ĉl = c Sl = λ1(w) δcl = −c δSl
= −c δ|Sl| = |λ1(w)| − |λ2(w)|

ĉr = c Sr = λ4(w) δcr = c δSr = c δ|Sr| = |λ4(w)| − |λ2(w)|

S∗ = λ2(w)

.

Then, it can be observed that, the definitions of the scalar quantities simplify to

δUHLLC
n = ∆Un

[
|λ4(w)| − |λ1(w)|

2

]
+ ∆p

[
1

ρc2

( |λ1(w)|+ |λ4(w)|
2

− |λ2(w)|
)]

δpHLLC = ∆Un

[
ρ
( |λ1(w)|+ |λ4(w)|

2
− |λ2(w)|

)]
+ ∆p

[
1

c

( |λ4(w)| − |λ1(w)|
2

)]

δHLLC
l = ∆Un

[
ρ

c

|λ1(w)|
2

]
− ∆p

[
1

c2
|λ1(w)|

2

]

δHLLC
r = −∆Un

[
ρ

c

|λ4(w)|
2

]
− ∆p

[
1

c2
|λ4(w)|

2

]

δHLLC
∗ = 0 − ∆p

[
|λ2(w)|

c2

]
+ |λ2(w)|∆ρ

,

in which, the two first coefficients recovered the identical pattern to those documented for the Roe
scheme in section 5.5.1 (i.e. when c̃′ = c̃). Similarly, using these relations in the definition of the
intermediate states w∗

k makes vanishing the three last vectors in (5.28).
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5.5.3 . The Liu-Vinokur form of the HLLC-Rossow scheme
Considering the Liu-Vinokur decomposition in (5.27), the vector dissipation associated with the HLLC-
Rossow scheme (in the sense of the definition 5.3.1) can be equivalently written as

dH−R = |S∗|


∆ρ

ρ∗∆u+ u∗∆ρ
ρ∗∆v + v∗∆ρ

ρ∗∆E + E∆ρ−
(
ρ∗ − ρ

)
∆

(
p

ρ

)
+ δUH−R

n


ρ̃

ρ̃ u∗

ρ̃ v∗

ρ̃ H

+ δpH−R


0
nx

ny

S∗


(5.29)

+ δH−R
l


0

u∗ − ul
v∗ − vl
H −Hl

+ δH−R
r


0

u∗ − ur
v∗ − vr
H −Hr

+ δHLLC
∗


0
0
0

S∗(S∗ − Un)

 .

As it can be seen, this decomposition yields a significant simplification of the original definition given
by the matrix form (5.22) with the two matrices (5.24) and (5.13). Indeed, the formulation of the
dissipation vector dH−R only requires to modify fourth out of the five scalar coefficients, as indicated
in the following

.



δUH−R
n =

ρ̃

⟨ρĉ⟩
∆Un

[
δcrδ|S|l
δSl

−
δclδ|S|r
δSr

]
+

ρ̃

⟨ρĉ′⟩
∆p

[
δ|S|r
ρlδSr

−
δ|S|l
ρrδSl

]

δpH−R = − ρlρr
⟨ρĉ⟩

∆Un

[
ĉl
′|Sl|δcr
δSl

+
ĉr

′|Sr|δcl
δSr

+
⟨ρĉ′⟩ρ∗|S∗|

ρlρr

]
+

∆p

⟨ρĉ⟩

[
ρ∗r |Sr| − ρ∗l |Sl|

]

δH−R
l = − ρlρr

⟨ρĉ⟩
∆Un

[
δcr |Sl|
δSl

]
+

∆p

⟨ρĉ′⟩

[
ρl|Sl|
δSl

]

δH−R
r =

ρlρr
⟨ρĉ⟩

∆Un

[
δcl |Sr|
δSr

]
− ∆p

⟨ρĉ′⟩

[
ρr|Sr|
δSr

]

δHLLC
∗ =

ρlρr
⟨ρĉ⟩

|S∗|∆Un

[
δcl
δSr

− δcr
δSl

]
+

|S∗|
⟨ρĉ⟩

∆p

[
ρl
δSl

− ρr
δSr

]
+ |S∗|∆ρ

,

(5.30)
where the different artificial speeds of sound ĉ′k are expressed according to the fan wave speed estimates,
as previously discussed in section 5.4.2.

Remark 3 Freezing the jump quantities in the dissipation vector, and taking wl = wr = w, it can be
observed that (UH−R

n , δpH−R) are consistent with expressions of (UR−R
n , δpR−R)

For the reader’s convenience, a Fortran routine is also provided here in Appendix B, to make easier
the implementation step in its own code. Furthermore, it should be also noted that the original HLLC
scheme can be simply retrieved by making straightforward modifications to certain variables within
the routine.
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Although the Liu-Vinokur form establishes a comprehensive formalism, particularly suitable for ex-
tending the framework analysis of Li-Gu [21], it does not provide a sufficient expression to avoid a
potential scattering of formulations of corrections. Indeed, without a special attention paid to the
matrix form in formulating a possible correction, an approximated and inexact characterization of the
correction could be achieved by only considering the Liu-Vinokur form, resulting in deviations in the
transposition of corrections. This is primary related to the fact that terms are mixed up between
the two formulations, as for instance observed with the three last terms in (5.29) that are partially
derived from the common matrix Mc. It can be seen here, by a direct comparison with the HLLC-
Rossow scheme, that the Liu-Vinokur form does not provide a sufficient expression in accordance with
definition 5.3.1.
Further research work could prove beneficial in reinterpreting the definition 5.3.1 and the property
5.2.1 for the Liu-Vinokur form, thereby avoiding the need for this preliminary identification step with
the matrix form.

5.6 . Perspectives: the approximate Riemann problem for the HLLC method

In this section, we examine whether the HLLC scheme can be actually interpreted as a method that
implicitly builds an approximate Riemann problem, similarly to the Roe scheme

∂tw +AHLLC(wl,wr,n) ∂ξw = 0

w(0, ξ) =

{
wl If ξ < 0

wr If ξ > 0

,

where AHLLC is related to a discrete approximation of the Jacobian matrix, also satisfying the jump
conditions

∆f(w,n) = AHLLC(wl,wr,n)∆w.

In the following, we shall present some additional investigations carried out during this Ph-D program,
offering some insights into the existence and definition of AHLLC and, finally, into the viscosity
matrix of the HLLC scheme. Nevertheless, the approach and results presented in this section are open
to further investigations, as the requisite algebra remains somewhat opaque and therefore enigmatic.
In light of this situation, we refrain from providing a definitive answer, but instead, demonstrate
tendencies that may guide further research.

5.6.1 . The direct inversion of the right eigenvectors R
A standard approach for deriving the expressions of these two matrices would be to follow the theory of
linear hyperbolic systems with constant coefficients, as previously discussed in section 2.2 for the Roe
scheme. This approach relies on determining the invert matrix of the right eigenvectors R, assuming
that the vectors (rk)k for the HLLC scheme form a basis. Indeed, as observed in the case of the Roe
scheme, the approximate Jacobian matrix can be readily identified through the jump conditions using
the spectral properties of the matrix, as indicated next

∆f(w,n) = ARoe(w̃,n)∆w =
[
R̃ diag (λ̃k)L̃

]
∆w =

4∑
k=1

α̃kλ̃kr̃k with ∆w = R̃α̃ and L̃R̃ = R̃L̃ = I4,

whereas, for the HLLC scheme, this chapter has previously outlined in section 5.2 expressions aimed
at decomposing the jump conditions, according to

∆f(w,n) = S1∆w1 + S2∆w2 + S4∆w3 =

4∑
k=1

αkSkrk with ∆w = Rα.
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However, this approach was found inefficient when applied to the HLLC scheme, due to significant
constraints arising from complex algebraic expressions, leading to overly tedious calculations and re-
sults that are not readily manipulable. These difficulties are typically encountered even for the one-
dimensional case, where inverting the matrix R(wl,wr,n) is not a trivial task, also when symbolic
calculus is employed such as Mathematica or Maple. The true challenge should be understood as
stemming from the parameters employed in evaluating the right eigenvectors. These vectors for the
Roe and HLLC schemes are reminded below

(Roe) r̃1 =


1

ũ− c̃nx

ṽ − c̃ny

H̃ − c̃ Ũn

 r̃2 =


1
ũ
ṽ

|Ũ |2

2

 r̃3 =


0

−ny

nx

Ũt

 r̃4 =


1

ũ+ c̃nx

ṽ + c̃ny

H̃ + c̃ Ũn


, (5.31)

(HLLC) r1 =


1

ul − ĉlnx

vl − ĉlny

Hl − ĉlS∗

 r2 =


∆ρ∗

∆ρ∗ u∗

∆ρ∗ v∗

∆E∗
n

 r3 =


0

−ny

nx

Ut

 r4 =


1

ur + ĉrnx

vr + ĉrny

Hr + ĉrS∗


and where the quantity ∆E∗

n in the last component of the vector r2 was defined as follows

∆E∗
n = (ρ∗rhr − ρ∗l hl) +∆ρ∗

[ (
⟨u2⟩
4

+
⟨S2

∗⟩
4

)
+

(
⟨v2⟩
4

+
⟨S2

∗⟩
4

)
− S∗Un

]
+ ρ∗

(
∆Un

(
Un − S∗

) )
−∆p

.

Once the expressions have been adapted for the one-dimensional case (i.e. for the case d = 1), this
provides a typical example of a 3x3 matrix that presents a significant challenge to be inverted, even
for a symbolic computation software. This is due to the fact that, the manipulations of contributions
originating from the left and right states (wl, wr) cannot be readily combined, resulting in gradients
that must be then handled with care. In contrast, similar manipulations on the matrix R̃(w̃) for the
Roe scheme do not yield gradient terms, as the eigenvectors are evaluated using a common average
state w̃. Furthermore, a second difficulty arises from a choice made in section 5.2, regarding the
definition of the second wave W2 = α2r2 = r2, which is subject to question. Indeed, as observed in
the above expressions, a better matching between the two schemes could be achieved by reformulating
the definition of the second wave as follows

α2 = ∆ρ∗ and r2 =


1
u∗

v∗

1

∆ρ∗
∆E∗

n

 , (5.32)

in which, the coordinates α2 can be also equivalently expressed as

∆ρ∗ = ∆ρ+
1

⟨ρĉ⟩

[
(
ρr ĉrρ

∗
l

ĉl
− ρlĉlρ

∗
r

ĉr
)∆Un − (

ρ∗r
ĉr

+
ρ∗l
ĉl
)∆p

]
while α̃2 = ∆ρ− ∆p

c̃2
,

highlighting therefore significant similarities, except in the last component of the vector r2 (energy
equation). Nevertheless, these definitions result in a singular expression for the dissipation vector
dHLLC , occurring for instance in the case of a continuous initial conditions (i.e. wl = wr). In the
absence of further investigation into a crucial factorization for the coefficient ∆E∗

n, provided it exists,
these expressions are not suitable for the general case, and should not be considered. Consequently,
the original definitions, as formulated in section 5.2, are retained in the following, with particularly
α2 = 1.
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5.6.2 . Using the similarities as a cornerstone for deriving the matrix L
For these reasons, instead of directly attempting to invert the matrix R for deriving the approximate
Jacobian matrix AHLLC(wl,wr,n), an alternative approach is proposed to circumvent this challeng-
ing step. In the following, the matrix L is extracted from the vector of coordinates α by preserving
the key relations outlined by the theory of linear hyperbolic systems with constant coefficients. This
is especially achieved using the similarities as a valuable cornerstone for the formulation of the left
eigenvectors lk, as indicated below. Indeed, since notable similarities have been observed in the first,
third and fourth waves (Wk)k=1,3,4 = (αkrk)k=1,3,4, we shall investigate their existence also in the
definitions of the left eigenvectors (lk, l̃k)k=1,3,4. Therefore, by specifically performing slight adjust-
ments into the original expressions of (l̃k)k=1,3,4, as those previously observed in the definitions of the
coordinates (αk)k for instance, the matrix L is deduced from the matrix-vector product

L∆w = α ⇐⇒ lk∆w = αk for k ∈ {1, 2, 3, 4}, (5.33)

The requisite algebraic investigations entail a sequence of elementary operations, which once performed,
leads to the following definitions for the three common fields

(Roe) (HLLC)

l̃1 =



Ũn

2c̃
+

γ − 1

4

|Ũ |2

c̃2

− n

2c̃
− γ − 1

2

Ũ
c̃2

γ − 1

2c̃2



t

l1 =
ρ∗l

ĉl⟨ρĉ⟩


ĉr Unl

+
γ − 1

2
Ul · Ur

−ĉrn− (γ − 1) U

γ − 1


t

l̃2 =


1− γ − 1

2

|Ũ |2

c̃2

(γ − 1)
Ũ
c̃2

−γ − 1

c̃2



t

l2 =


1− 1

⟨ρĉ⟩

[γ − 1

2

(ρ∗l
ĉl

+
ρ∗r
ĉr

)
Ul · Ur +

(ρ∗l ĉrUnl

ĉl
− ρ∗r ĉlUnr

ĉr

)]
1

⟨ρĉ⟩

[
(γ − 1)(

ρ∗l
ĉl

+
ρ∗r
ĉr

)U − n(
ρ∗r ĉl
ĉr

− ρ∗l ĉr
ĉl

)
]

− 1

⟨ρĉ⟩
(γ − 1)(

ρ∗l
ĉl

+
ρ∗r
ĉr

)



t

l̃3 =


−Ũt

t

0


t

l3 =
ρ∗

ρ


−Ut

t

0


t

l̃4 =


−Ũn

2c̃
+

γ − 1

4

|Ũ |2

c̃2

n

2c̃
− γ − 1

2

Ũ
c̃2

γ − 1

2c̃2



t

l4 =
ρ∗r

ĉr⟨ρĉ⟩


−ĉl Unr

+
γ − 1

2
Ul · Ur

ĉln− (γ − 1) U

γ − 1


t

(5.34)

In the above expression, the second left eigenvector l2 has been derived through a simple manipulation,
detailed below. By looking at the decomposition of the density jump into a sum of waves, it can be
observed that

∆ρ = α1(r1)1 + α2(r2)1 + α4(r4)1

∆ρ = α1 + α2 ∆ρ∗ + α4

e1
t∆w =

[
l1 + ∆ρ∗ l2 + l4

]
∆w

,

where e1 denotes the first vector of the canonical basis of R4. Since the first and fourth vectors are
now determined, the expression simplifies and after rearranging terms, we get

∆ρ∗ l2 = e1
t − l1 − l4, (5.35)
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It should be noted that, in (5.34), the definition of the second vector l2 corresponds to the above
expression (5.35). Consequently, all of these vectors (lk)k written in (5.34) for the HLLC scheme,
satisfy the following conditions

l1∆w = α1 l2∆w = ∆ρ∗ l3∆w = α3 l4∆w = α4,

in which, all the definitions of the coordinates α = (αk)k show globally similarities with the Roe
scheme, except the second field, since

α1 =
ρ∗l
⟨ρĉ⟩

[
∆p− ρr ĉr∆Un

ĉl

]
α2 = 1 α3 = ρ∗∆Ut α4 =

ρ∗r
⟨ρĉ⟩

[
∆p+ ρlĉl∆Un

ĉr

]
.

This discrepancy is a direct consequence of the choice made in (5.31) for preventing a singular definition
for the vector r2. Consequently, a singularity is unavoidably produced, either in the definition of the
vector r2, as illustrated in (5.32), or in the definition of the second left eigenvector l2 due to the setting
of α2 = 1, as this implies

l2 =
1

∆ρ∗

[
e1 − l1 − l4

]
.

In the following, we shall assume that the two initial states (wl, wr) are distinct (i.e. wl ̸= wr).
Then, it follows that the approximate Jacobian matrix AHLLC(wl,wr,n) is identified through the
decomposition of the jump conditions, as indicated next

∆f(w,n) =

3∑
k=1

Sk∆kw =

d+2∑
k=1

αkSkrk =

d+2∑
k=1

(
R diag (Sk)

)
k
[ (L ∆w)k ] =

[
R diag(Sk) L

]
︸ ︷︷ ︸
AHLLC

(wl,wr ,n)

∆w. (5.36)

Actually, an identical manipulation can be also performed for the vector dissipation

dHLLC =

3∑
k=1

|Sk|∆kw =

d+2∑
k=1

αk|Sk|rk =

d+2∑
k=1

(
R diag (|Sk|)

)
k
[ (L ∆w)k ] =

[
R diag(|Sk|) L

]
︸ ︷︷ ︸
DHLLC

(wl,wr ,n)

∆w. (5.37)

Nevertheless, while explicit formulas are now obtained in the case of distinct (wl,wr), this approach
also demonstrates that matrix L is not identified as the invert of R since

LR ̸= I4,

although the matrix L has been built in order to maintain the decomposition of the jumps of conser-
vative variables, and satisfies the following condition

∆w = Rα = RL∆w.

Additionally, it can be demonstrated that the left and right vectors are not orthogonal, as for instance

l1r4 =
ρ∗l
⟨ρĉ⟩

[
−(γ − 1)(Ūn − S∗)− ĉ∆Un

]
l4r1 ̸= 0 and l3rk = 0 for k = 1, 2, 4,

and moreover, these vectors are also not normalized

l1r1 =
ρ∗l
⟨ρĉ⟩

[
(γ − 1)(Ūn − S∗)−∆ĉ

]
and l3r3 =

ρ∗

ρ
.

Introducing a normalization of these vectors lk implies to also modify the coordinates αk, as indicated
next for the third vector

l3 =
ρ

ρ∗


−Ut

t

0


t

α3 = ρ ∆Ut
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However, for others vectors, such as l1, the similar process leads to derive a new singular expression
in the case of wl = wr as the two gradient terms vanish in such case

S∗(w,w,n) =
⟨ρUnĉ⟩ −∆p

⟨ρĉ⟩
= Un.

Finally, although the expressions of the approximate Jacobian matrix and the artificial viscosity matrix
have been derived (5.36 - 5.37), and clearly exhibits strong similarities with the expression of the Roe
scheme, it can be observed that these expressions do not match the usual definitions for a linear
hyperbolic system with constant coefficients.
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Conclusion and perspectives

Concluding remarks

The Ph-D work has primarily focused on the formulation of low-Mach number corrections for the
Roe and HLLC finite volume schemes, with the aim of enhancing these two numerical methods for
simulating compressible flows in various regimes from low Mach number to transonic flows. The purpose
was to demonstrate that the formulation of these numerical methods can be modified and generalized
without compromising performance in the compressible regime, while preserving the overall accuracy
of the compressible discrete solutions for nearly incompressible flows. The objective of this thesis was
twofold: first, to contribute to the numerical analysis of these methods, by providing new insights into
the formulation of numerically stable low Mach number corrections; second, to propose a robust and
efficient correction for these schemes.

In this context, we developed a methodology based on an in-depth examination of the various rescaling
approaches proposed in the literature, with a particular focus on the Roe scheme. The review of
existing approaches in the literature, along with their analysis using various techniques, provides a
critical overview of this challenging research topic, as mainly discussed in the first part of this thesis.
Despite decades of active research, this topic remains partially open to further investigation, with
some aspects still requiring additional inquiry nowadays. One of the underlying difficulties lies in
the simultaneous presence of two acoustic and incompressible time scales, characterizing compressible
solutions in the low Mach number limit. The inherent challenges rely in the formulation of a modified
matrix-valued dissipation that enables the discrete solution to accurately approximate the solution in
the two time scale limits, while circumventing the introduction of side issues such as checkerboard
mode problems.

By focusing on the modifications of the dissipation vector of the Roe scheme in the general case (i.e.
without considering the mesh or element types), chapter 2 has revealed that there are two distinct
approaches to address the accuracy problem in the low Mach number limit. These two approaches
are highlighted in this thesis with the Rieper’s fix and Rossow’s artificial speed of sound approach,
which either asymptotically centers the first order pressure gradient in the equations, or in contrast,
avoids asymptotically centering the pressure gradients. Both highlight distinct advantages and different
drawbacks in the general case.
As demonstrated in the last section of the second chapter, the development of another third approach,
which is based on asymptotically centering the leading and first order pressure gradients, turns out
insufficiently robust and therefore ineffective, as it introduces more significant side issues compared to
the two others. It has been shown that this correction yields excessively large spurious entropy levels at
stagnation points, leading to severely deteriorate the overall accuracy of the discrete solution. Moreover,
the asymptotic analysis of the third approach highlights common features with the Rossow’s correction,
indicating that this type of corrections is also subject to similar inconsistencies in the acoustic time
scale limit. One could consider these investigations on a third approach as evidence that it is hardly
possible to do better than the two approaches already found in the literature.

In chapter 3, we carried out the asymptotic analysis for the modified Roe scheme according to the
artificial speed of sound approach of Rossow and we conducted a detailed analysis of this correction.
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It is proved that the discrete solutions are characterized by the correct 2nd order of the pressure
disturbances in space at the incompressible time scale, and also do not enforce the discrete divergence
free constraint of the leading-order velocity. We also demonstrated that the Rossow correction is not
prone to spurious pressure checkerboard mode problems. The scheme remains accurate even on highly
stretched mesh, in opposition to the Rieper’s fix.
Moreover, we show that the von Neumann stability analysis of this scheme results in a more stringent
stability condition in the low Mach number limit than initially predicted by Rossow, this correction
behaves as the Roe-Turkel scheme. Thus, the time step is constrained to be exceedingly small in the
low Mach number limit, which makes it penalized for some CFD applications.
In order to circumvent the stiffness of the stability constraint, a robust and stable numerical approach
is presented, based on an implicit time marching with a linearized backward Euler scheme. The
key aspects of this approach are Algorithmic Differentiation, fast LU decomposition libraries, a novel
numerical stability condition, and the formulation of a pseudo continuation method in a quasi-Newton
method. This leads to the development of very stable implicit schemes that allow the use of large
CFL numbers, and which remarkably require only a few hundreds of iterations to obtain a quadratic
convergence to the steady-state solutions, even for very low-Mach number flows up to 10−6.
This work also addresses the incompressible-acoustic interactions characterizing the compressible dis-
crete solutions in the incompressible limit. We show that the discrete solutions have persistent acoustic
disturbances in the low speed limit, even for the steady-state problem, characterized by acoustic pulses
generated at very short times, and dissipated at larger times. We found that the intensity of these
acoustic disturbances is related to the modification of the jumps of the normal velocity component at
the cell interface.

The second part of this thesis was devoted to the HLLC scheme. The in-depth examination of the
existing approaches highlights numerous similarities between the corrections applied to the HLLC
and Roe schemes. In order to generalize the analysis conducted in the first part regarding the Roe
scheme to the HLLC scheme, we propose a pursuit of the analysis carried out by Pelanti focusing on the
similarities between the two wave structures of both Riemann solvers. This investigation has resulted in
the formulation of a common formalism aimed at analyzing and simplifying the derivation of corrections
applied to the two dissipation vectors. Indeed, we established a novel form for the dissipation vector
associated with the HLLC scheme that could be readily interpreted as a generalization of the Liu-
Vinokur form for the Roe scheme, also known in the literature as the Weiss-Smith decomposition, to
the HLLC scheme.
As an application, two approaches were proposed for deriving “identical” low Mach corrections for
these two schemes. These approaches are characterized by considering the similarities between the two
schemes as a valuable cornerstone for transposing a correction from a the dissipation vector of one
method to the other.
In particular, this has notably resulted in the generalization of the artificial speed of sound approach
of Rossow to the HLLC scheme, denoted as the HLLC-Rossow scheme. It is shown by numerical
evidence that this HLLC-Rossow scheme recovers exactly the same discrete properties as the Roe-
Rossow scheme. Accurate discrete solutions are obtained in the low-Mach number limit, and the
scheme does not undergo the pressure checkerboard mode problems that could be frequently observed
for other corrections. Even by considering a highly stretched mesh, we could not manage to trigger
this numerical issue, thereby proving a robust behavior of the proposed scheme.
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Perspectives

In light of the results presented above, several limitations and perspectives for further investigation
were identified and are now discussed.
First, the numerical approach developed in this work is crucial component in this thesis, as it has
significantly allowed investigations by simplifying the acquisition of results with the use exact implicit
stage. Nevertheless, this approach is limited to a certain mesh density since direct solvers become
prohibitively expensive in terms of memory as the number of cells increases. A first perspective would
be to reproduce this approach by considering iterative solvers such as a GMRES solver. Doing so would
be valuable to evaluate the difficulties that arise from these ill-conditioned problems, particularly in
regard to the need for an accurate resolution of the system to solve the very stiff linear system obtained
in the low Mach number limit.
Second, this work mainly focused on the formulation of corrections of the dissipation vector regarding
the incompressible time-scale. Nevertheless, it corresponds only to one side of the accuracy problem
encountered in low Mach number flows. The acoustics limit cannot be ruled out in the formulation of
low Mach number corrections. Nowadays, to the best of our knowledge, the definition of a correction
that resolve the accuracy problems in the two asymptotic limits remains an important inquiry of the
literature, which requires further investigations. This is related to the fact that, on one hand the first
approach turns out effective but suffers from severe pressure checkerboard mode problems, while on
the other hand, the second approach leads to inconsistencies in the acoustic limit, while avoiding this
pressure-velocity decoupling problem. Then, we could suggest that these two significant issues cannot
be easily circumvented, either the pressure checkerboard modes problems or the inconsistencies in the
acoustic limit has to be faced and resolved to obtain a compressible scheme remaining accurate in the
general case, such as unsteady low Mach number flows.
Third, the common formalism introduced for the HLLC and Roe schemes is open to further investiga-
tions for an in-depth examination. The interest lies in the derivation of modified numerical dissipation
vectors, and in the investigation of a common asymptotic analysis between the two approximate Rie-
mann solvers. In chapter 5, numerical evidence show that the correction applied to the Roe or HLLC
schemes exhibits exactly the same behavior regarding the stability condition, the accuracy of the dis-
crete solution but also the pressure checkerboard mode problem. Although not illustrated in this thesis,
it can be pointed out here for further investigations that the inconsistencies in the acoustic limit have
also been observed numerically for the HLLC-Rossow scheme. It should also be noted that, identical
similar tendencies are also observed by Pelanti, who extended the correction of the Roe-Turkel scheme
to the HLLC scheme, since the differences between the two discrete solutions are hardly visible. The
answer to all these behaviors can be found in the asymptotic analysis, and a few elements are provided
below as interesting leads for further investigations. In opposition to the standard approach applied
to the Roe scheme, the asymptotic analysis for the HLLC is lengthy and requires to make a series
of choices in the dimensional analysis, as previously discussed in section 4.2.4, with for instance the
definition of S∗. Moreover, this requires to performed several Taylor expansions for simplifying expres-
sions. However, a key insight could be easily deduced from the decomposition of the matrix MHLLC

into a common and a deviation matrices (Mc, Md). This highlights that in the dissipation vector
associated with the HLLC scheme, there exists a part which is common and readily related to terms
present in the dissipation vector of the Roe scheme, plus some additional terms. The missing details
describing the role of these additional terms would be a valuable information for a unified formalism,
that are worthy of further research.
Fourth, it would be beneficial to also examine potential close connections with other existing works
for the purpose of extending the analysis. For example, the AUSM-like expression of HLLC scheme
proposed by Kitamura-Shima in [30], or the JST scheme, which are both schemes commonly used for
industrial flows.
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To conclude, the formulation of a low Mach correction for the Roe or HLLC schemes remains an active
subject that remains open to further research. Nevertheless, it should be investigated simultaneously
for avoiding the scattering of the formulations, with a direct attention paid to limiting the introduction
of side issues.
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A - Fortran source code of FHLLC−Rossow under the matrix
form

1 ! =======================================================================================
2 SUBROUTINE FLUX_HLLC_ROSSOW_Einfeldt_full_dissip(W_L ,W_R ,P_L ,P_R ,T_L ,T_R ,xn1,xn2,gamma ,num_flux)
3 ! =======================================================================================
4 IMPLICIT NONE
5
6 REAL*8, DIMENSION(4),INTENT(in) :: W_L ,W_R ,P_L ,P_R !Conservative + Primitive variables
7 REAL*8, DIMENSION(3),INTENT(in) :: T_L ,T_R ![p,H_L ,c_L]
8 REAL*8, INTENT(in) :: xn1,xn2,gamma
9 REAL*8, DIMENSION(4),INTENT(inout) :: num_flux

10
11 REAL*8, DIMENSION(4) :: deltaVarW ,deltaVarP ,xlambda ! xlambda <=> |S_k|
12 REAL*8, DIMENSION(4) :: diss_vec ,Flx_L ,Flx_R
13
14 REAL*8 :: t1,t2 !tangential component
15 REAL*8 :: UnL ,UnR ,UtL ,UtR
16 REAL*8 :: DeltaUn
17
18 REAL*8 :: ro_sqrd_L ,ro_sqrd_R
19 REAL*8, DIMENSION(4) :: Q_L ,Q_R ,Avg_roe !\sqrt{rho}[1 u v H] + Roe average[4]
20
21 REAL*8 :: rho_star_L ,rho_star_R
22 REAL*8 :: u_star_l ,u_star_r ,v_star_l ,v_star_r
23 REAL*8 :: rho_star_moy ,u_star_moy ,v_star_moy
24
25 REAL*8 :: H_L ,H_R ,c_L ,c_R !Total Enthalpy + speed of sound (for a better readability)
26 REAL*8 :: rho_moy ,u_moy ,v_moy ,Un_moy ,H_moy ,p_moy
27
28
29 REAL*8 :: Norm_U2_L ,M_L ,Mn_L ,tilde_c_L !Left side
30 REAL*8 :: Norm_U2_R ,M_R ,Mn_R ,tilde_c_R !Right side
31 REAL*8 :: Norm_Avg_U2,Avg_M ,Avg_Mn ,tilde_Avg_c !For Roe average
32 REAL*8 :: Avg_c ,Avg_c2,Avg_Un
33 REAL*8 :: alpha , beta2 !Coefficients artificial speed of sound
34
35
36 REAL*8 :: lambda_m ,lambda_mid ,lambda_p ! S_k
37 REAL*8 :: hat_c_L ,hat_c_R ,left_arti_speed ,right_arti_speed
38 REAL*8 :: dS_R ,dS_L ,d_absS_R ,d_absS_L ,dc_R ,dc_L ! Notations in chapter 4-5
39
40 REAL*8 :: rhoLrhoR ,rhoc_sum ,rhoc_arti_sum !Useful variables for Liu -Vinokur
41
42
43 ! ---- For a better readability ----
44 ! ---- Total Enthalpy and speed of sound ----
45 H_L = T_L(2) ; c_L = T_L(3)
46 H_R = T_R(2) ; c_R = T_R(3)
47
48 ! ---- Euler ’s fluxes ----
49 ! ---- Left Euler flux ----
50 Flx_L(1) = W_L(2) * xn1 + W_L(3) * xn2
51 Flx_L(2) = (W_L(2) * P_L(2) + P_L(4) )*xn1 + (W_L(2) * P_L(3))*xn2
52 Flx_L(3) = (W_L(2) * P_L(3))*xn1 + (W_L(3) * P_L(3) + P_L(4))*xn2
53 Flx_L(4) = (W_L(2) * H_L )*xn1 + (W_L(3) * H_L )*xn2
54 ! ---- Right Euler flux ----
55 Flx_R(1) = w_R(2) * xn1 + w_R(3) * xn2
56 Flx_R(2) = (w_R(2) * P_R(2) + P_R(4) )*xn1 + (w_R(2) * P_R(3))*xn2
57 Flx_R(3) = (w_R(2) * P_R(3))*xn1 + (w_R(3) * P_R(3) + P_R(4))*xn2
58 Flx_R(4) = (w_R(2) * H_R )*xn1 + (w_R(3) * H_R)*xn2
59
60 ! ---- Directionnal velocity ----
61 UnL = P_L(2)*xn1 + P_L(3)*xn2
62 UnR = P_R(2)*xn1 + P_R(3)*xn2
63
64 ! ---- Tangeantial vector -----
65 t1 = -xn2 ; t2 = xn1
66 UtL = P_L(2)*t1 + P_L(3)*t2
67 UtR = P_R(2)*t1 + P_R(3)*t2
68
69 ! ---- Jump var ----
70 deltaVarW(1:4) = W_R(1:4) - W_L(1:4) !ro rou rov roe
71 deltaVarP(1:4) = P_R(1:4) - P_L(1:4) !ro u v ps
72 deltaUn = UnR - UnL
73
74 ! ---- Moyenne de Roe ----
75 ro_sqrd_L = SQRT(W_L(1)) ; ro_sqrd_R = SQRT(W_R(1))
76
77 Q_L (:) = (/ ro_sqrd_L , ro_sqrd_L*P_L(2), ro_sqrd_L*P_L(3), ro_sqrd_L*H_L /) !parameter vector
78 Q_R (:) = (/ ro_sqrd_R , ro_sqrd_R*P_R(2), ro_sqrd_R*P_R(3), ro_sqrd_R*H_R /)
79
80 Avg_roe(1)= Q_L(1)*Q_R(1) !\sqrt{rho}( 1 u v H)
81 Avg_roe(2)=( Q_L(2)+Q_R(2) )/( Q_L(1)+Q_R(1) )
82 Avg_roe(3)=( Q_L(3)+Q_R(3) )/( Q_L(1)+Q_R(1) )
83 Avg_roe(4)=( Q_L(4)+Q_R(4) )/( Q_L(1)+Q_R(1) )
84
85 ! ---- Compute Artificial speed of sound -----
86 ! ---- Left state ----
87 Norm_U2_L = P_L(2)*P_L(2) + P_L(3)*P_L(3)
88 M_L = sqrt(Norm_U2_L)/c_L
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89 Mn_L = UnL/c_L
90
91 beta2 = min(M_L*M_L ,1.0_8) ! Without reference Mach number
92 alpha = 0.5*(1.-beta2)
93 tilde_c_L = c_L*sqrt( Mn_L*Mn_L*alpha **2 + beta2 ) !artifical speed of sound
94
95 ! ---- Interface state ----
96 Norm_Avg_U2 = Avg_roe(2)* Avg_roe(2) + Avg_roe(3)* Avg_roe(3)
97 Avg_c2 = (gamma -1)*( Avg_roe(4) - 0.5*( Norm_Avg_U2))
98 Avg_c = sqrt( Avg_c2 )
99 Avg_Un = Avg_roe(2)*xn1 + Avg_roe(3)*xn2

100
101 Avg_M = sqrt(Norm_Avg_U2)/ Avg_c
102 Avg_Mn = Avg_Un/Avg_c
103
104 beta2 = min(Avg_M*Avg_M ,1.0_8) ! Without reference Mach number
105 alpha = 0.5*(1.-beta2)
106 tilde_Avg_c = Avg_c*sqrt( Avg_Mn*Avg_Mn*alpha**2 + beta2) !artifical speed of sound
107
108 ! ---- Right state ----
109 Norm_U2_R = P_R(2)*P_R(2) + P_R(3)*P_R(3)
110 M_R = sqrt(Norm_U2_R)/c_R
111 Mn_R = UnR/c_R
112
113 beta2 = min(M_R*M_R ,1.0_8) ! Without reference Mach number
114 alpha = 0.5*(1.-beta2)
115 tilde_c_R = c_R*sqrt( Mn_R*Mn_R*alpha **2 + beta2) !artifical speed of sound
116
117 ! ---- Generaziled speed of sounds ----
118 hat_c_L = max(c_L ,Avg_c - Avg_Un + UnL)
119 left_arti_speed = max(tilde_c_L ,tilde_Avg_c - Avg_Un + UnL)
120 hat_c_R = max(c_R ,Avg_c + Avg_Un - UnR)
121 right_arti_speed = max(tilde_c_R ,tilde_Avg_c + Avg_Un - UnR)
122
123 !---- Wave speed estimate -----
124 lambda_m = UnL - hat_c_L
125 ! ---- Directionnal density is presered in star region ----
126 lambda_mid = (W_L(1)*UnL*hat_c_L + W_R(1)*UnR*hat_c_R - deltaVarP(4))/( W_L(1)* hat_c_L + W_R(1)* hat_c_R)
127 lambda_p = UnR + hat_c_R
128
129 ! ---- Eigenvalues ----
130 xlambda(1) = abs(lambda_m)
131 xlambda(2) = abs(lambda_mid)
132 xlambda(3) = xlambda(2)
133 xlambda(4) = abs(lambda_p)
134
135 ! ---- delta coefficients ----
136 dS_R = lambda_p - lambda_mid
137 dS_L = lambda_m - lambda_mid
138 d_absS_R = xlambda(4) - xlambda(2)
139 d_absS_L = xlambda(1) - xlambda(2)
140 dc_R = lambda_p - UnR
141 dc_L = lambda_m - UnL
142
143 ! =============================
144 ! ---- Star Region ----
145 ! =============================
146 ! ---- Left interm State ----
147 rho_star_L= W_L(1)*dc_L/dS_L
148 u_star_l= lambda_mid*xn1 + UtL*t1
149 v_star_l= lambda_mid*xn2 + UtL*t2
150
151 ! ---- Right interm State ----
152 rho_star_R= W_R(1)*dc_R/dS_R
153 u_star_r= lambda_mid*xn1 + UtR*t1
154 v_star_r= lambda_mid*xn2 + UtR*t2
155
156 ! =============================
157 ! ---- Mean Values ----
158 ! =============================
159 rho_moy = 0.5*(P_L(1)+P_R(1))
160 rho_star_moy = 0.5*( rho_star_L+rho_star_R)
161 u_star_moy = 0.5*( u_star_l+u_star_r)
162 v_star_moy = 0.5*( v_star_l+v_star_r)
163 u_moy = 0.5*(P_L(2)+P_R(2)) ! average
164 v_moy = 0.5*(P_L(3)+P_R(3)) ! average
165 Un_moy = xn1*u_moy + xn2*v_moy
166 H_moy = 0.5*(H_L + H_R)
167 p_moy = 0.5*(P_L(4)+P_R(4))
168
169
170 ! ---- Useful variables ----
171 rhoLrhoR = (W_L(1)*W_R(1))
172 rhoc_sum = P_L(1)* hat_c_L + P_R(1)* hat_c_R
173 rhoc_arti_sum = P_L(1)* left_arti_speed + P_R(1)* right_arti_speed
174
175 ! ==================================== Return to the HLLC scheme if ====================================
176 ! tilde_c_L = c_L !Left artifical speed of sound
177 ! tilde_c_R = c_R !Right artifical speed of sound
178 ! tilde_Avg_c = Avg_c !interface artifical speed of sound
179 ! rhoc_arti_sum = rhoc_sum
180 ! left_arti_speed = hat_c_L
181 ! right_arti_speed = hat_c_R
182 ! ================================================================================================
183
184
185 ! ---- Numerical dissipation ----
186
187 diss_vec(1)= deltaVarW(1)* xlambda(2) & !End Delta rho
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188 + deltaUn *( rhoLrhoR/rhoc_sum )*( &
189 (dc_R/dS_L)* d_absS_L &
190 - (dc_L/ds_R)* d_absS_R &
191 ) & !Delta Un
192 + deltaVarP(4)*(1./ rhoc_arti_sum )*( &
193 + (W_R(1)/dS_R)* d_absS_R &
194 - (W_L(1)/dS_L)* d_absS_L &
195 ) !End Delta P
196
197 diss_vec(2)= &
198 deltaVarW(1)* xlambda(2)* u_star_moy & !End Delta Un
199 + deltaVarP(2)* xlambda(2)* rho_star_moy & !End Delta u
200 + deltaUn *( (rhoLrhoR/rhoc_sum )*( &
201 (dc_R/dS_L )*( &
202 xlambda(1)*( P_L(2) - left_arti_speed*xn1) &
203 ) &
204 - (dc_L/dS_R )*( &
205 xlambda(4)*( P_R(2) + right_arti_speed*xn1) &
206 ) &
207 - xn1*rho_star_moy*xlambda(2)* rhoc_arti_sum/rhoLrhoR &
208 + xlambda(2)* u_star_moy *(dc_L/dS_R - dc_R/dS_L ) &
209 ) &
210 ) & !End Delta Un
211 + deltaVarP(4)*( &
212 (1./ rhoc_arti_sum )*( &
213 (W_R(1)/dS_R )*(P_R(2)* xlambda(4) - u_star_moy*xlambda(2)) &
214 - (W_L(1)/dS_L )*(P_L(2)* xlambda(1) - u_star_moy*xlambda(2)) &
215 ) &
216 + (xn1/rhoc_sum )*( &
217 (W_L(1)/dS_L)* hat_c_L*xlambda(1) &
218 + (W_R(1)/dS_R)* hat_c_R*xlambda(4) &
219 ) &
220 ) !End Delta P
221
222
223 diss_vec(3)= &
224 deltaVarW(1)* xlambda(2)* v_star_moy & !End Delta rho
225 + deltaVarP(3)* xlambda(2)* rho_star_moy & !End Delta v
226 + deltaUn *( (rhoLrhoR/rhoc_sum )*( &
227 (dc_R/dS_L )*( &
228 xlambda(1)*( P_L(3) - left_arti_speed*xn2) &
229 ) &
230 - (dc_L/dS_R )*( &
231 xlambda(4)*( P_R(3) + right_arti_speed*xn2) &
232 ) &
233 - xn2*rho_star_moy*xlambda(2)* rhoc_arti_sum/rhoLrhoR &
234 + xlambda(2)* v_star_moy *(dc_L/dS_R - dc_R/dS_L ) &
235 ) &
236 ) & !End Delta Un
237 + deltaVarP(4)*( &
238 (1./ rhoc_arti_sum )*( &
239 (W_R(1)/dS_R )*(P_R(3)* xlambda(4) - v_star_moy*xlambda(2)) & ! Ce terme peut se simplifier
240 - (W_L(1)/dS_L )*(P_L(3)* xlambda(1) - v_star_moy*xlambda(2)) &
241 ) &
242 + (xn2/rhoc_sum )*( &
243 (W_L(1)/dS_L)* hat_c_L*xlambda(1) &
244 + (W_R(1)/dS_R)* hat_c_R*xlambda(4) &
245 ) &
246 ) !End Delta P
247
248 diss_vec(4)= &
249 deltaVarW(1)*( &
250 + xlambda(2)*( &
251 H_moy &
252 - rho_star_moy*p_moy*gamma/( rhoLrhoR *(gamma -1)) &
253 + lambda_mid *(lambda_mid -Un_moy) &
254 ) &
255 ) & !End Delta rho
256 + deltaVarP(2)* rho_star_moy*u_moy*xlambda(2) & !End Delta u
257 + deltaVarP(3)* rho_star_moy*v_moy*xlambda(2) & !End Delta v
258 + deltaUn *( &
259 (rhoLrhoR/rhoc_sum )*( &
260 (dc_R/dS_L )*( &
261 xlambda(1)*( H_L - left_arti_speed*lambda_mid) &
262 ) &
263 - (dc_l/dS_R )*( &
264 xlambda(4)*( H_R + right_arti_speed*lambda_mid) &
265 ) &
266 - rho_star_moy*lambda_mid*xlambda(2)* rhoc_arti_sum/rhoLrhoR &
267 +(dc_l/dS_R - dc_R/dS_L )*( &
268 xlambda(2)*( lambda_mid *( lambda_mid -Un_moy) + H_moy ) &
269 ) &
270 ) &
271 ) & !End Delta Un
272 + deltaVarP(4)*( &
273 (1./ rhoc_arti_sum )*( &
274 (W_R(1)/dS_R )*( &
275 H_R*xlambda(4) - H_moy*xlambda(2) &
276 ) &
277 - (W_L(1)/dS_L )*( &
278 H_L*xlambda(1) - H_moy*xlambda(2) &
279 ) &
280 ) &
281 + (lambda_mid/rhoc_sum )*( &
282 (W_L(1)/dS_L)* hat_c_L*xlambda(1) &
283 + (W_R(1)/dS_R)* hat_c_R*xlambda(4) &
284 ) &
285 + xlambda(2)*( &
286 -1 + (rho_star_moy*rho_moy*gamma )/( rhoLrhoR *(gamma -1)) &
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287 ) &
288 + (xlambda(2)/ rhoc_sum )*( &
289 (W_L(1)/dS_L - W_R(1)/dS_R )*( &
290 lambda_mid *(lambda_mid -Un_moy) &
291 ) &
292 ) &
293 ) !End Delta p
294
295 num_flux(1:4)=0.5*( Flx_R(1:4) + Flx_L(1:4) - diss_vec(1:4) )
296
297 ! =======================================================================================
298 END SUBROUTINE FLUX_HLLC_ROSSOW_Einfeldt_full_dissip
299 ! =======================================================================================
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B - Fortran source code of FHLLC−Rossow under the Liu-
Vinokur form

1 ! =======================================================================================
2 SUBROUTINE FLUX_HLLC_ROSSOW_LV_FORM(W_L ,W_R ,P_L ,P_R ,T_L ,T_R ,xn1,xn2,gamma ,Num ,num_flux)
3 ! =======================================================================================
4
5 IMPLICIT NONE
6 TYPE(DataNum), INTENT(inout) :: Num
7 REAL*8, DIMENSION(4),INTENT(in) :: W_L ,W_R ,P_L ,P_R !Conservative + Primitive variables
8 REAL*8, DIMENSION(3),INTENT(in) :: T_L ,T_R ![p,H_L ,c_L]
9 REAL*8, INTENT(in) :: xn1,xn2,gamma

10 REAL*8, DIMENSION(4),INTENT(inout) :: num_flux
11
12 REAL*8, DIMENSION(4) :: deltaVarW ,deltaVarP ,xlambda
13 REAL*8, DIMENSION(4) :: diss_vec ,Flx_L ,Flx_R
14
15 REAL*8 :: t1, t2 !tangential component
16 REAL*8 :: UnL ,UnR ,UtL ,UtR
17 REAL*8 :: DeltaUn ,DeltaE
18 REAL*8 :: Un_moy ,rho_moy ,rho_star_moy ,E_moy ,H_moy
19
20 REAL*8 :: ro_sqrd_L ,ro_sqrd_R
21 REAL*8, DIMENSION(4) :: Q_L ,Q_R ,Avg_roe !\sqrt{rho}[1 u v H] + Roe average[4]
22
23 REAL*8 :: H_L ,H_R ,c_l ,c_R !Total Enthalpy + speed of sound (for a better readability)
24
25 REAL*8 :: Norm_U2_L,M_L ,Mn_L ,tilde_c_L !Left side
26 REAL*8 :: Norm_U2_R,M_R ,Mn_R ,tilde_c_R !Right side
27 REAL*8 :: Norm_Avg_U2,Avg_M ,Avg_Mn ,tilde_Avg_c !For Roe average
28 REAL*8 :: Avg_c ,Avg_c2,Avg_Un
29 REAL*8 :: alpha , beta2 !Coefficients artificial speed of sound
30
31 REAL*8 :: lambda_m ,lambda_mid ,lambda_p ! S_k
32 REAL*8 :: hat_c_L ,hat_c_R ,left_arti_speed ,right_arti_speed
33 REAL*8 :: dS_R ,dS_L ,dc_R ,dc_L ,d_absS_R ,d_absS_L ! Notations in chapter 4-5
34
35 REAL*8 :: rho_star_L ,rho_star_R
36 REAL*8 :: u_star_l ,u_star_r ,v_star_l ,v_star_r
37 REAL*8 :: u_star_moy ,v_star_moy
38
39 REAL*8 :: rhoLrhoR ,rhoc_sum ,rhoc_arti_sum !Useful variables for Liu -Vinokur
40 REAL*8 :: d_p ,d_Un ,d_moy_l ,d_moy_r ,d_moy_C !5 scalars coefficients
41 REAL*8,DIMENSION(4) :: upwind ,f_vel ,f_pres ,cor_left ,cor_right ,cor_inter !6 vectors of Liu -Vinokur
42
43
44 ! ---- For a better readability ----
45 ! ---- Total Enthalpy and speed of sound ----
46 H_L = T_L(2) ; c_l = T_L(3)
47 H_R = T_R(2) ; c_r = T_R(3)
48
49 ! ---- Euler ’s fluxes ----
50 ! ---- Left Euler flux ----
51 Flx_L(1) = W_L(2) * xn1 + W_L(3) * xn2
52 Flx_L(2) = (W_L(2) * P_L(2) + P_L(4) )*xn1 + (W_L(2) * P_L(3))*xn2
53 Flx_L(3) = (W_L(2) * P_L(3))*xn1 + (W_L(3) * P_L(3) + P_L(4))*xn2
54 Flx_L(4) = (W_L(2) * H_L )*xn1 + (W_L(3) * H_L )*xn2
55 ! ---- Right Euler flux ----
56 Flx_R(1) = w_R(2) * xn1 + w_R(3) * xn2
57 Flx_R(2) = (w_R(2) * P_R(2) + P_R(4) )*xn1 + (w_R(2) * P_R(3))*xn2
58 Flx_R(3) = (w_R(2) * P_R(3))*xn1 + (w_R(3) * P_R(3) + P_R(4))*xn2
59 Flx_R(4) = (w_R(2) * H_R )*xn1 + (w_R(3) * H_R)*xn2
60
61 ! ---- Directionnal velocity ----
62 UnL = P_L(2)*xn1 + P_L(3)*xn2
63 UnR = P_R(2)*xn1 + P_R(3)*xn2
64 deltaUn = UnR - UnL
65
66 ! ---- Tangeantial velocity -----
67 t1 = -xn2; t2 = xn1
68 UtL = P_L(2)*t1 + P_L(3)*t2
69 UtR = P_R(2)*t1 + P_R(3)*t2
70
71 ! ---- Jump var ----
72 deltaVarW(1:4) = W_R(1:4) - W_L(1:4) !rho rou rov roe
73 deltaVarP(1:4) = P_R(1:4) - P_L(1:4) !rho u v ps
74 DeltaE = W_R(4)/W_R(1) - W_L(4)/W_L(1)
75
76
77
78 ! ---- Roe Average ----
79 ro_sqrd_L = SQRT(W_L(1)) ; ro_sqrd_R = SQRT(W_R(1))
80 Q_L (:) = (/ ro_sqrd_L , ro_sqrd_L*P_L(2), ro_sqrd_L*P_L(3), ro_sqrd_L*H_L /) !\sqrt{rho}( 1 u v H)
81 Q_R (:) = (/ ro_sqrd_R , ro_sqrd_R*P_R(2), ro_sqrd_R*P_R(3), ro_sqrd_R*H_R /) !\sqrt{rho}( 1 u v H)
82
83 Avg_roe(1)= Q_L(1)*Q_R(1)
84 Avg_roe(2)=( Q_L(2)+Q_R(2) )/( Q_L(1)+Q_R(1) )
85 Avg_roe(3)=( Q_L(3)+Q_R(3) )/( Q_L(1)+Q_R(1) )
86 Avg_roe(4)=( Q_L(4)+Q_R(4) )/( Q_L(1)+Q_R(1) )
87
88 ! ---- Compute Artificial speed of sound -----
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89 ! ---- Left state ----
90 Norm_U2_L = P_L(2)*P_L(2) + P_L(3)*P_L(3)
91 M_L = sqrt(Norm_U2_L)/c_l
92 Mn_L = UnL/c_l
93
94 ! beta2 = min(M_L*M_L ,1.0_8) ! Without the cut -off strategy
95 beta2 = min(max(M_L*M_L ,Num%delta_precond **2),1.0_8) ! With reference Mach number
96 alpha = 0.5*(1.-beta2)
97 tilde_c_L = c_l*sqrt( Mn_L*Mn_L*alpha **2 + beta2 ) !artifical speed of sound
98
99 ! ---- Interface state ----

100 Norm_Avg_U2 = Avg_roe(2)* Avg_roe(2) + Avg_roe(3)* Avg_roe(3)
101 Avg_c2 = (gamma -1)*( Avg_roe(4) - 0.5*( Norm_Avg_U2))
102 Avg_c = sqrt( Avg_c2 )
103 Avg_Un = Avg_roe(2)*xn1 + Avg_roe(3)*xn2
104
105 Avg_M = sqrt(Norm_Avg_U2)/ Avg_c
106 Avg_Mn = Avg_Un/Avg_c
107
108 ! beta2 = min(Avg_M*Avg_M ,1.0_8) ! Without the cut -off strategy
109 beta2 = min(max(Avg_M*Avg_M ,Num%delta_precond **2),1.0_8) ! With reference Mach number
110
111 alpha = 0.5*(1.-beta2)
112 tilde_Avg_c = Avg_c*sqrt( Avg_Mn*Avg_Mn*alpha**2 + beta2) !artifical speed of sound
113
114 ! ---- Right state ----
115 Norm_U2_R = P_R(2)*P_R(2) + P_R(3)*P_R(3)
116 M_R = sqrt(Norm_U2_R)/c_r
117 Mn_R = UnR/c_r
118
119 ! beta2 = min(M_R*M_R ,1.0_8) ! Without the cut -off strategy
120 beta2 = min(max(M_R*M_R ,Num%delta_precond **2),1.0_8) ! With reference Mach number
121 alpha = 0.5*(1.-beta2)
122 tilde_c_R = c_r*sqrt( Mn_R*Mn_R*alpha **2 + beta2) !artifical speed of sound
123
124 ! ---- Generaziled speed of sounds ----
125 hat_c_L = max(c_l ,Avg_c - Avg_Un + UnL)
126 hat_c_R = max(c_r ,Avg_c + Avg_Un - UnR)
127 left_arti_speed = max(tilde_c_L ,tilde_Avg_c - Avg_Un + UnL)
128 right_arti_speed = max(tilde_c_R ,tilde_Avg_c + Avg_Un - UnR)
129
130
131 !---- Wave speed estimates -----
132 lambda_m = UnL - hat_c_L
133 ! ---- normal directionnal speed in star region ---
134 lambda_mid = (W_L(1)*UnL*hat_c_L + W_R(1)*UnR*hat_c_R - deltaVarP(4))/( W_L(1)* hat_c_L + W_R(1)* hat_c_R)
135 lambda_p = UnR + hat_c_R
136
137 ! ---- ABS Eigenvalues ----
138 xlambda(1) = abs(lambda_m)
139 xlambda(2) = abs(lambda_mid)
140 xlambda(3) = xlambda(2)
141 xlambda(4) = abs(lambda_p)
142
143 ! ---- delta coefficients ----
144 dS_R = lambda_p - lambda_mid
145 dS_L = lambda_m - lambda_mid
146 d_absS_R = xlambda(4) - xlambda(2)
147 d_absS_L = xlambda(1) - xlambda(2)
148 dc_R = lambda_p - UnR
149 dc_L = lambda_m - UnL
150
151 ! =============================
152 ! ---- Star Region ----
153 ! =============================
154 rho_star_L= W_L(1)*dc_L/dS_L
155 rho_star_R= W_R(1)*dc_R/dS_R
156 ! ---- velocities ----
157 u_star_l= lambda_mid*xn1 + UtL*t1
158 v_star_l= lambda_mid*xn2 + UtL*t2
159
160 u_star_r= lambda_mid*xn1 + UtR*t1
161 v_star_r= lambda_mid*xn2 + UtR*t2
162
163 ! =============================
164 ! ---- Mean Values ----
165 ! =============================
166 rho_star_moy = 0.5*( rho_star_L+rho_star_R)
167 rho_moy = 0.5*(P_L(1)+P_R(1))
168 u_star_moy = 0.5*( u_star_l+u_star_r)
169 v_star_moy = 0.5*( v_star_l+v_star_r)
170 E_moy = 0.5*(W_L(4)/P_L(1) + W_R(4)/P_R(1))
171 H_moy = 0.5*(H_L+H_R)
172 Un_moy = 0.5*(UnL+UnR)
173
174 ! ---- Useful terms ----
175 rhoc_sum = P_L(1)* hat_c_L + P_R(1)* hat_c_R
176 rhoc_arti_sum = P_L(1)* left_arti_speed + P_R(1)* right_arti_speed
177 rhoLrhoR = (W_L(1)*W_R(1))
178
179 ! =============================
180 !
181 ! Liu -Vinokur Form
182 !
183 ! =============================
184
185 ! ====================================
186 ! Scalar coeff
187 ! ====================================
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188
189 d_Un = (Avg_roe(1)/ rhoc_sum )* DeltaUn *( &
190 d_absS_L*dc_R/dS_L - d_absS_R*dc_L/dS_R &
191 ) & !End Delta Un
192 +( Avg_roe(1)/ rhoc_arti_sum )* deltaVarP(4)*( &
193 d_absS_R /(W_L(1)*dS_R) - d_absS_L /(W_R(1)*dS_L) &
194 )!End Delta P
195
196 d_p = (rhoLrhoR/rhoc_sum )* DeltaUn *( &
197 - left_arti_speed*xlambda(1)*dc_R/dS_l &
198 - right_arti_speed*xlambda(4)*dc_l/dS_r &
199 - rhoc_arti_sum*rho_star_moy*xlambda(2)/ rhoLrhoR &
200 ) & !End Delta Un
201 + (deltaVarP(4)/ rhoc_sum )*( &
202 rho_star_R*xlambda(4) - rho_star_L*xlambda(1) &
203 ) !End Delta P
204
205 ! ---- Deviation Terms ----
206 d_moy_l = (rhoLrhoR/rhoc_sum )* DeltaUn *( &
207 - xlambda(1)*dc_R/dS_L &
208 ) & !End Delta Un
209 + (deltaVarP(4)/ rhoc_arti_sum )*( &
210 W_L(1)* xlambda(1)/ds_l &
211 ) !End Delta P
212
213 d_moy_r = (rhoLrhoR/rhoc_sum )* DeltaUn *( &
214 xlambda(4)*dc_L/dS_R &
215 ) & !End Delta Un
216 - (deltaVarP(4)/ rhoc_arti_sum )*( &
217 W_R(1)* xlambda(4)/ds_r &
218 ) !End Delta P
219
220 d_moy_C = (rhoLrhoR/rhoc_sum )* DeltaUn*xlambda(2)*( &
221 - dc_R/dS_L + dc_L/dS_R &
222 ) & !End Delta Un
223 - (deltaVarP(4)/ rhoc_sum )* xlambda(2)*( &
224 - W_L(1)/ds_l + W_R(1)/ds_R &
225 ) & !End Delta P
226 + deltaVarW(1)* xlambda(2) !End Delta rho
227
228 ! ====================================
229 ! Vectors
230 ! ====================================
231 upwind(1)= deltaVarW(1)
232 upwind(2)= u_star_moy*deltaVarW(1) + rho_star_moy*deltaVarP(2)
233 upwind(3)= v_star_moy*deltaVarW(1) + rho_star_moy*deltaVarP(3)
234 upwind(4)= E_moy*deltaVarW(1) + rho_star_moy*DeltaE &
235 + (rho_star_moy -rho_moy )*(P_R(4)/P_R(1) - P_L(4)/P_L(1))
236
237 f_vel(1)= Avg_roe(1)
238 f_vel(2)= Avg_roe(1)* u_star_moy
239 f_vel(3)= Avg_roe(1)* v_star_moy
240 f_vel(4)= Avg_roe(1)*H_moy
241
242 f_pres(1)= 0
243 f_pres(2)= xn1
244 f_pres(3)= xn2
245 f_pres(4)= lambda_mid
246
247 cor_left(1)= 0
248 cor_left(2)= u_star_moy - P_L(2)
249 cor_left(3)= v_star_moy - P_L(3)
250 cor_left(4)= H_moy - H_L
251
252 cor_right(1)= 0
253 cor_right(2)= u_star_moy - P_R(2)
254 cor_right(3)= v_star_moy - P_R(3)
255 cor_right(4)= H_moy - H_R
256
257 cor_inter(1)= 0
258 cor_inter(2)= 0
259 cor_inter(3)= 0
260 cor_inter(4)= lambda_mid *( lambda_mid - Un_moy)
261
262 ! ---- Numerical Dissipation ----
263 diss_vec(1:4)= xlambda(2)* upwind(1:4) + d_Un*f_vel(1:4) + d_p*f_pres(1:4) &
264 + d_moy_l*cor_left(1:4) + d_moy_r*cor_right(1:4) + d_moy_C*cor_inter(1:4)
265
266 ! ---- Numerical Flux ----
267 num_flux(1:4)=0.5*( Flx_R(1:4) + Flx_L(1:4) - diss_vec(1:4) )
268
269
270 ! =======================================================================================
271 END SUBROUTINE FLUX_HLLC_ROSSOW_LV_FORM
272 ! =======================================================================================
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