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Abstract

English

Terrestrial gamma-ray flashes (TGFs) are short and intense bursts of gamma

rays occurring during thunderstorms. Reported for the first time in 1994,

a significant effort has been carried out to understand their properties and

origins. It is agreed upon that TGFs are produced inside thunderclouds by

relativistic runaway electron avalanches (RREAs): when submitted to a suf-

ficiently high electric field, an electron can gain more energy from the field

than it loses to collisions with air molecules, thus becoming runaway. Doing

so, it ionizes the air, freeing more electrons, a small fraction of these electrons

being themselves runaway, hence forming an avalanche of runaway electrons.

The exact context in which RREAs are initiated inside thunderclouds remains

up for debate. Two TGF-production theories are considered nowadays. The

relativistic feedback mechanism rely on the backward propagation of photons

and positrons created by a first RREA, to produce new avalanches near the

starting location of the first RREA, allowing for an overall sufficient num-

ber of electrons and photons. The thermal runaway mechanism assumes that

RREAs are created during lightning propagation: the strong electric field in-

side a streamer corona at the tip of leader could accelerate a high number



of electrons injected from the leader, triggering the production of subsequent

RREAs leading to a TGF.

In this thesis, we formulate two outstanding questions that we address in

the subsequent chapters. How the dynamics of RREAs is affected by self-

consistent effects ? What is the importance of combined spatial and temporal

aspects in the initiation of relativistic feedback ?

To address these questions, we have developed a new self-consistent rela-

tivistic model, using a Monte Carlo technique to simulate collisions with air

molecules coupled with an electromagnetic particle-in-cell method, that solves

the Maxwell-Ampere and Maxwell-Faraday equations at each timestep in or-

der to represent accurately the interaction between the electromagnetic field

and electrons. To our knowledge, this model constitutes the first fully causal

relativistic description of RREAs. Using this new tool, we discovered that the

low-energy electron density saturates at a predictable value. We also show

that a fundamental limit exists in the number of high-energy electrons, with

a magnitude matching TGF observations, and derive a simple formula giving

the observed saturation density and electron number. In order to better un-

derstand the relativistic feedback mechanism, we devise a method to derive

a value of the feedback threshold electric field. We then perform simulations

of the feedback process using the complete model, which allows us to fully
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appreciate the complexity of the phenomenon. From the results, we highlight

the importance of taking into account all spatial and temporal aspects of the

feedback process to describe it accurately. It also leads us to believe that the

relativistic feedback mechanism is unlikely to act alone in the production of

the shortest or most intense TGFs.

Français

Les flashs de rayons gamma terrestres (TGFs) sont des émissions très intenses

et très brèves de rayons gamma se produisant durant les orages. Rapportés

pour la première fois en 1994, de nombreuses recherches ont été menées afin

de comprendre ses propriétés et origines. Il y a consensus quant au fait que

les TGFs sont produit dans les nuages d’orage par des avalanches d’électrons

runaway relativistes (RREAs): un électron soumis à un champ électrique

suffisamment élevé peut gagner plus d’énergie du champ qu’il n’en perd via

les collisions avec les molécules de l’air, devenant ainsi runaway. Il peut ainsi

se propager et ioniser l’air, libérant de nouveaux électrons, dont certains sont

runaway, formant ainsi une avalanche d’électrons runaway. Il y a cependant

débat quant au contexte de l’initiation des RREAs dans les nuages orageux.

Deux théories sont considérées à ce jour. Le mécanisme de feedback relativiste

repose sur la propagation vers l’arrière de photons et de positrons produits

iii



par une première RREA, qui pourraient produire de nouvelles avalanches au

voisinage de la position de départ de la première RREA, permettant ainsi

d’atteindre un nombre suffisant d’électrons et de photons. Le mécanisme de

runaway thermique suppose que les RREAs sont créées pendant la propagation

des éclairs: le champ électrique intense induit dans les couronnes de streamers

qui se forment au bout de leaders pourraient accélérer une grande quantité

d’électrons en provenance du leader, initiant ainsi la production de RREAs

secondaires menant à un TGF.

Dans cette thèse, nous formulons deux questions non résolues que nous

abordons dans les chapitres suivants. De quelle manière la dynamique

des RREAs est-elle affectée par des effets auto-consistents ? Quelle est

l’importance des aspects spatiaux et temporels combinés dans l’initiation du

feedback relativiste ?

Pour répondre à ces questions, nous avons mis au point un modèle rel-

ativiste auto-cohérent, utilisant une technique de Monte Carlo pour simuler

les collisions avec les molécules de l’air couplée à une méthode particle-in-cell

(PIC) électromagnétique, qui résout les équations de Maxwell à chaque pas

de temps afin de fournir une description détaillée des interactions entre le

champ électromagnétique et les électrons. À notre connaissance, ce modèle

constitue la première description pleinement causale des RREAs. En util-
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isant ce nouvel outil, nous avons découvert que la densité d’électrons de basse

énergie saturait à une valeur prédictible. Nous montrons également qu’une

limite fondamentale existe pour le nombre d’électrons de haute énergie, avec

une magnitude correspondant aux observations de TGFs, et déduisons une for-

mule simple donnant la densité de saturation et le nombre d’électrons. Afin

de mieux comprendre le mécanisme de feedback relativiste, nous mettons au

point une méthode afin de déterminer la valeur du champ électrique seuil pour

le feedback. Nous réalisons ensuite des simulations du processus de feedback

en utilisant le modèle complet, afin d’apprécier la complexité du phénomène.

À partir des résultats, nous démontrons l’importance de prendre en compte

tous les aspects spatio-temporels du processus de feedback relativiste afin de

le décrire correctement. Les résultats semblent également supporter l’idée que

le mécanisme de feedback relativiste n’agit pas seul dans la production des

TGFs les plus courts et les plus intenses.
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Chapter 1

Introduction

1.1 Terrestrial Gamma-ray Flashes

In 1994, Fishman et al. [1994] report the discovery of a new terrestrial phe-

nomenon related to thunderstorms. Their paper describes the discovery of

brief (< 1 ms) and intense flashes of gamma rays observed in the atmosphere

by the BATSE instrument on board the Compton Gamma-Ray Observatory

(CRGO), a NASA space observatory initially dedicated to the observation of

high-energy photons produced by cosmic events. At first, the flashes were be-

lieved to originate from an altitude of at least 30 km, lasting from 1 to 4 ms,

and have spectra consistent with bremsstrahlung emission. These phenomena

would be later named Terrestrial Gamma-ray Flashes, or TGFs.

Since then, TGFs have been the subject of many studies, allowing to better

understand their properties. Using observations from the Reuven Ramaty

High Energy Solar Spectroscopic Imager (RHESSI), comparisons between the

spectrum of these emitted photons and Monte Carlo models have been used

to determine the source altitude, which was found to be between 10 and

15 km [Dwyer and Smith, 2005; Xu et al., 2012]. Observations from the
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Astro-Rivelatore Gamma a Immagini Leggero (AGILE) satellite mission, as

well as the Gamma-ray Burst Monitor (GBM) installed on board the Fermi

satellite (NASA), have allowed to constrain the duration of the event, which

lasts ∼ 100 µs [Fishman et al., 2011; Marisaldi et al., 2015], as well as the

energy of the emitted photons, which can go up to ∼40 MeV [Marisaldi et al.,

2010; Briggs et al., 2010; Mailyan et al., 2016, 2019]. From observations by

the RHESSI, which were then confirmed by the Fermi/GBM, as well as the

CRGO/BATSE and the Atmosphere-Space Interaction Monitor (ASIM) (an

instrument funded by ESA on board the International Space Station (ISS)),

it has been estimated that between 1017 and 1019 photons are emitted at the

source [Dwyer and Smith, 2005; Gjesteland et al., 2015; Mailyan et al., 2016,

2019; Lindanger et al., 2021]).

While the majority of TGFs are emitted upwards, downwards emitting

TGFs have also been discovered, allowing observations from the ground

[Dwyer et al., 2004; Abbasi et al., 2018; Belz et al., 2020], making it eas-

ier to perform multi-point and multi-instrumental observations, potentially

leading to a better understanding of sources geometries [Berge and Celestin,

2019; Belz et al., 2020].

Airborne observations of TGFs have also been made, using instruments on

board an aircraft, like the Airborne Detector for Energetic Lightning Emis-
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sions (ADELE) [Smith et al., 2011; Bowers et al., 2018], or the more recent

Airborne Lightning Observatory for FEGS and TGFs (ALOFT) campaign in

2023 [Østgaard et al., 2023].

In addition to the observation of gamma-rays, optical and radio emissions

have also been detected in association with TGFs. Radio emissions over a

broad range of frequencies have been observed in association with TGFs: En-

ergetic In-cloud Pulses (EIPs) (peak-current > 150 kA, duration ∼50 µs [e.g.,

Lyu et al., 2016; Tilles et al., 2020]), slow LF pulses (duration of 50 to 100

µs, frequency frequency 3–300 kHz) [e.g., Pu et al., 2019]. TGFs are strongly

suspected to be accompanied with VHF emissions (30-300 MHz) [e.g., Lyu

et al., 2018]. Optical emissions have been reported in Heumesser et al. [2021]

and Skeie et al. [2022], and shown to be linked to the propagation of a light-

ning discharge occurring at the same time. Heumesser et al. [2021] reports

that all the TGFs in the study were associated with optical emissions due to

lightning propagations, and that ∼ 90 % of the TGFs occurred on the onset

of the optical emission, supporting the idea of a connection between the two.

Specific optical emissions produced as a result of the propagation of runaway

electrons in air have also been predicted by models [Dwyer et al., 2013; Xu

et al., 2015].

A number of models have been developed to complement the numerous
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observations made, trying to reproduce TGFs and better understand their

properties and initiation mechanism. Many models include a Monte Carlo

method [e.g., Lehtinen et al., 1999; Moss et al., 2006; Dwyer, 2007, 2021], that

allows to simulate accurately the collisional processes of runaway electrons as

well as photons. Fluid models are another option [e.g., Liu and Dwyer, 2013;

Berge et al., 2022; Pasko et al., 2023], and recently particle-in-cell models have

also been used to try to replicate more accurately the interactions between

the electric field and the charged particles [e.g., Chanrion and Neubert, 2008;

Luque, 2014].

Despite the accumulation of data on TGFs, from both simulations and ob-

servations, many questions remain regarding their nature, context, properties,

and origins. Their global occurrence rate has been estimated to be ∼400,000

per year for TGFs detectable by Fermi [Briggs et al., 2013], yet observations

from the recent ALOFT campaign [Østgaard et al., 2023] reported the detec-

tion of many TGFs not detectable by space-based instruments, questioning

this number. Studies have also been made in order to assess the potential

threat that TGFs could pose for irradiated aircraft passengers [e.g., Dwyer

et al., 2010; Pallu et al., 2021, 2023], but the uncertainties over the geometry

of TGFs and their frequency pose challenges for such estimations.

Another mystery regards the initiation of a TGF.
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1.2 Relativistic Runaway Electron Avalanche (RREA)

Wilson [1925] describes the behaviour of electrons that, if propagating un-

der a sufficiently high electric field, could gain more energy than they lose

due to collisions with ambient particles, and thus could continuously accel-

erate, becoming what is called “runaway electrons” [see Moss et al., 2006,

Figure 2]. Provided sufficient propagation distance, these runaway electrons

could undergo an avalanche process, and create other runaway electrons at

an exponential rate [Gurevich et al., 1992], forming what is now referred to

as Relativistic Runaway Electron Avalanche (RREA). The RREA allows the

production of an important number of relativistic electrons, that can then

emit gamma-rays via bremmstrahlung emission.

It is currently agreed upon that RREAs are the fundamental TGF produc-

tion mechanism [Dwyer and Smith, 2005; Celestin et al., 2012; Dwyer et al.,

2012]. The environment inside a thundercloud provides regions with intense

electric fields and potentials, which should allow the initiation of RREAs.

However, to produce a RREA intense enough to match TGF energies, a great

number of seed particles need to be submitted to an intense electric field

over extended regions [Dwyer, 2008]. To attain such conditions, two theo-

ries have been proposed: The leader-based mechanism (or thermal runaway

mechanism) and the relativistic feedback mechanism.
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1.2.1 Relativistic feedback mechanism

Dwyer [2008] mentions that the backwards propagation of X-rays and

positrons could lead to the initiation of subsequent avalanches: by under-

going Compton scattering, photoelectric effect, or elastic scattering in the

case of positrons, new runaway electrons could be produced near the starting

location of the first avalanche, allowing the propagation of secondary RREAs

in the same acceleration region. This would allow an exponential increase

in the number of electrons and an intensification up to energies and fluxes

matching those of TGFs. Dwyer [2007] mentions that this mechanism can

increase the production of relativistic electrons by a factor of 1013 compared

to one RREA propagating through the large scale electric field. Moreover,

simulations made in Dwyer [2008] show that a TGF could be produced by

this phenomenon on timescales extending from several tens of microseconds

to 1 ms, which matches observed TGF durations.

This model has been simulated several times [Dwyer, 2003; Skeltved et al.,

2014; Pasko et al., 2023], showing consistent results, and have been shown

to be able to reproduce the radio emissions [Dwyer and Cummer, 2013] in

association with TGFs.

6
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1.2.2 Thermal runaway mechanism

The leader based, or thermal runaway mechanism, is based on the assumption

that RREAs are produced during lightning propagation [e.g., Moss et al.,

2006; Celestin and Pasko, 2011; Celestin et al., 2015]. During negative leader

propagation, plasma filaments called streamers form at the tip of the leader.

In the streamer fronts, the electric field can become sufficiently intense to

allow free electrons to become runaway. Indeed, lightning leaders are known

to produce X-rays through this mechanism [e.g., Moore et al., 2001; Saleh

et al., 2009; Schaal et al., 2012; Xu et al., 2014, 2017]. Under the high electric

field in the vicinity of the negative leader tip, the number of available electrons

to become runaway is very high (the energy threshold is low). Provided that

the streamer corona corresponds to a sufficient potential drop over its limited

extent, these electrons could lead to a RREA intense enough to be able to

generate a TGF.

This model is consistent with observations that show a strong correlation

between lightning propagation and TGFs [e.g., Heumesser et al., 2021], and re-

cent works have been able to reproduce slow LF pulses observed in association

with TGFs [Berge et al., 2022].
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1.3 Objectives

As of now, many unknowns remain regarding TGF initiation, as we lack un-

derstanding about the nature and context of the production of these intense

radiation sources inside thunderstorms. The two theories presented offer a

possible explanation, yet we still are unable to either validate or discard ei-

ther theories. The leader-based seeding mechanism is not incompatible with

relativistic feedback but usually infers smaller acceleration regions of a few

hundreds of meters [Pasko et al., 2023].

Many numerical models have simulated accurately the RREA [e.g., see

Dwyer and Smith, 2005; Celestin and Pasko, 2010; Dwyer et al., 2012], and

many key features are now known. However, radio observations have yet to be

reproduced numerically in the context of electric discharges, and all models

until now have lacked causal self-consistency between charged particles and

electromagnetic fields. It is a key feature: as the velocity of runaway electrons

approaches the speed of light, the electrostatic approximation may become

invalid.

From these unknown features, we draw two outstanding questions that we

will address in this thesis:

• How the dynamics of RREAs is affected by self-consistent effects ?
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• What is the importance of combined spatial and temporal aspects in the

initiation of relativistic feedback ?

To address these research questions, and to advance the analysis of radio

emissions, we have developed a new numerical model, coupling Monte Carlo

and particle-in-cell methods. This model distinguishes itself from others, in

that it is fully causal. Using the local Maxwell equations to solve the dynamics

of the electromagnetic field, this new approach allows for full self-consistency

between charged particles and the electromagnetic field, and opens a new,

more accurate way to simulate RREAs and relativistic feedback processes. It

is also well-suited to study radio emissions. A description in detail of this new

model, as well as its validation, are presented in Chapter 2.

With our newly developed model, we performed our first simulations of

RREAs in simple configurations, to assess the capabilities of the model and

to highlight potential self-consistent effects. The simulations were performed

in homogeneous electric fields, either relatively weak electric fields over a great

distance, or intense electric fields over short distances. In these simulations, we

point out peculiar behaviours that had never been reported, highlighting the

importance of self-consistency. We define and discuss new constraints on the

RREA, and come to a better understanding of previously made observations.

These results and their implications are presented in Chapter 3.
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We then focus on the relativistic feedback mechanism. Several articles had

reported different thresholds for the mechanism to occur [Dwyer, 2003; Pasko

et al., 2023]. In order to either validate or invalidate those thresholds, we try

to use our model to study the phenomenon dynamically. The study of this

phenomenon highlights new physical features such as the need for a temporal

resolution. The details of these method and results are presented in Chapter

4.
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The results presented in this chapter are published in Gourbin and Celestin

[2024b, Section 2]

2.1 Monte Carlo Method

In order to keep track of the dynamics of electrons and photons in air in a

causal fashion, we use a null-collision-technique Monte Carlo model based on

that developed by Celestin and Pasko [2011]. The model is 3-dimensional in

configuration space, 3-dimensional in velocity space, fully relativistic, and is

able to simulate the dynamics of electrons and photons in air over an energy
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range going from sub-eV to hundreds of MeVs. The air is assumed to be made

of 80% nitrogen and 20% oxygen.

2.1.1 Electrons

Following Moss et al. [2006], 23 excitation collisional processes are taken into

account for N2 (rotational, vibrational, and electronic) and 11 for O2 including

also dissociative processes. The only difference with Moss et al. [2006] is

that the dissociation of the oxygen molecule into O(3P) and O(3S) with a

threshold of 14.7 eV is not taken into account in the model. It is expected

to play only a minor role. At energies greater than ∼1 keV, which is the

energy range of interest in the present study concerning the Monte Carlo

model, excitation cross sections are extrapolated logarithmically. Moreover,

as angular scattering differential cross sections are not readily available for

all excitation processes, the direction of electrons’ momenta after excitation

collisions is assumed identical to that in the case of elastic scattering (see

below). It is worth noting that excitation processes only have an overall

minor role in the dynamics of high-energy electrons and are of rather low-

probability compared to ionization and elastic collisions. They are described

here for the sake of completeness as the model can be used over an energy

domain extended to lower energies.

The dynamics of > 1 keV electrons in air is dominated by ionization and

12



2.1. Monte Carlo Method

elastic collisions. Ionization is modeled through the use of the relativistic

binary-encounter-Bethe (RBEB) model to obtain an orbital-based analytical

singly differential cross sections (DCS) (Kim et al. [2000]). It is conveniently

integrable analytically and does not need adjustable parameters as it only re-

quires orbital kinetic energies and binding energies of target electrons (Hwang

et al. [1996]; Santos et al. [2003]). The RBEB model provides a seamless

coverage over the whole energy domain for primary and secondary electrons

well-suited for the description of RREAs (e.g., see Xu et al. [2015]; Celestin

and Pasko [2010]; Celestin et al. [2015]). The direction of the secondary elec-

tron’s momentum is obtained from the conservation of energy and momentum

(e.g., see Celestin and Pasko [2010]).

We use the inverse transform sampling of the DCS to tabulate the energy

of secondary electrons as a function of a uniformly distributed random number

for all primary electron energies ([Moss et al., 2006, eq. (22)]). However, the

ionization DCS shows strong dynamics over the broad energy range of interest

and a linear sampling of secondary energies would require an enormous number

of points to obtain a sufficient resolution. To avoid it, we empirically found

that the following non-linear sampling of the DCS integral was well-suited:

IDCS(εs) =
1

σi(εp)

∫ εs

0

dσ(εp, εs)

dεs
dεs (2.1)

JDCS(εs) = − log (1− IDCS(εs)(1− ε)) (2.2)

13
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where dσ(εp,εs)

dεs
dεs is the ionization DCS, σi(εp) is the total ionization cross

section, and ε is set to a value of 10−10 to avoid the argument of the logarithm

to reach exactly one. It is now JDCS(εs) that we sample linearly over NR values

(in the present case we use NR = 10, 000, which has proven to be sufficient).

Using a random number Rεs uniformly distributed between 0 and 1, the energy

index of the secondary electron is then found by taking the integer part of:

− log (1−Rεs(1− ε))NR (2.3)

Although ionization collisions drive the electrons’ linear energy loss, elas-

tic collisions significantly impact their dynamics in phase space (e.g., Dwyer

[2010]). Below 500 eV, we use differential cross sections obtained experimen-

tally in N2 (Shyn et al. [1972]; Kambara and Kuchitsu [1972]). The differential

cross section for O2 is assumed identical (for more details on the comparison

of angular scattering between N2 and O2 at low energy, see [Moss et al., 2006,

Figure 3, and references therein]).

For high-energy electrons (>500 eV) we consider that elastic scattering

from molecules is similar to elastic scattering by atoms. Assuming that the

electric potential of the nucleus and the atomic electrons result in a screened

Coulomb potential, one can show that the angular differential cross section

14
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has the following form (Carron [2006]; Dwyer [2007]) :

dσe

dΩ
=

1

4

(
Zre
β2γ

)2
1− β2 sin2 (χ/2)(

sin2 (χ/2) +
ℏ2

4p2a2

)2 (2.4)

where β = v/c of the electron, γ = (1 − β2)−1/2, χ is the scattering angle,

dΩ is the corresponding differential solid angle, Z is the atomic number (i.e.,

Z = 7 for nitrogen and Z = 8 for oxygen), re is the electron classical radius,

p is the electron momentum, and a is the atomic screening radius. For the

sake of comparison with previous works, we use a ≃ 1.3413Z−1/3a0, where a0

is the Bohr radius, which is the same value as that used in Dwyer [2007].

In Monte Carlo simulations, the scattering angle χ after one collision is

calculated through a uniformly distributed random number Rχ between 0

and 1, by finding χ so that:

Rχ =
2π

σa
e (ε)

∫ χ

0

dσe

dΩ
sinχ dχ (2.5)

where σa
e (ε) = 2π

∫ π

0

dσe

dΩ
sinχdχ is the total elastic cross section for nitrogen

or oxygen atoms. Equation (2.5) may be solved numerically by pre-tabulating

Rχ. However, high-energy electrons being much more forward-scattered than

low-energy electrons, the corresponding sampling would have to be performed

cautiously. Instead, it is possible to obtain an accurate solution of equation

(2.5) through analytical considerations and this is the method we use.

Let A =
1

4

(
Zre

β2γ

)2

and B =
ℏ2

4p2a2
, plugging equation (2.4) in (2.5), one

15
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can integrate analytically equation (2.5). One finds:

Rχ =
4πA

σa
e

(ε)

(
−β2 lnX − 2(Bβ2 + 1)

X
+ β2 ln(2B) +

Bβ2 + 1

2B + 1

)
(2.6)

where X = 2B − cosχ + 1. To solve directly this equation for X, and then

for χ, one could use the inverse function of f(W ) = W exp(W ), where W is

named the Lambert W -function. However, the Lambert W -function is un-

common and its use is not necessary in this context as one can make the

following approximations. Over the energy range of interest, the term vary-

ing as ∼(Bβ2 + 1)/X in equation (2.6) is always dominant over the term in

∼β2 ln(X), and Bβ2 ≪ 1. Hence, one gets:

X =

 −4

σa
e (ε)Rχ

2πA
− 2β2 ln(2B)− 2β2 − 2

B

 (2.7)

The scattering angle χ can be calculated from Rχ through the following for-

mula:

χ = arccos

 4

σa
e (ε)Rχ

2πA
− 2β2 ln(2B)− 2β2 − 2

B

+ 2B + 1

 (2.8)

Note that this method, although very accurate, is an approximation and the

domain of validity for 0 < Rχ < 1 is not fully covered. The following condition

has to be added: if the argument of the arccosine on the right-hand side

of equation (2.8) is found to be lower than −1, then χ is set to exactly π.

The highest probability of occurrence of the latter condition is reached for
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electrons with energy ∼3 keV, and corresponds to only 1.33 times over 100,000

elastic collisions on average. For electrons with energies 1 and 10 MeV, the

occurrence rates are 1.55 over one million and 3.2 times over one hundred

million, respectively.

One can calculate the total elastic scattering cross section through the

integration of equation (2.4):

σa
e (ε) = 2π

∫ π

0

dσe

dΩ
sinχ dχ (2.9)

One finds:

σa
e (ε) = 2πA

(
−2β2 ln(2) +

2(Bβ2 + 1)

B(B + 1)

)
(2.10)

which is the elastic scattering cross section for nitrogen or oxygen atoms.

When calculating the probability of elastic collisions of high-energy electrons

with nitrogen or oxygen molecules the molecular cross section should be used:

σm
e (ε) ≃ 2σa

e (ε). In addition, for the calculation of the elastic scattering cross

section using equation (2.10), from which the collision probability in the Monte

Carlo code is found, we use the classical screening radius in the Thomas-

Fermi model: a ≃ 0.885Z−1/3a0. Indeed, comparisons of the total elastic

scattering cross section given by equation (2.10) with the Evaluated Electron

Data Library (EEDL) Cullen et al. [1991] at different energies for nitrogen

atoms and with [Itikawa, 2006, Table 3] at 1 keV for nitrogen molecules (using
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σm
e (ε) ≃ 2σa

e (ε)) have showed a very good agreement for this magnitude of

the screening radius in the elastic cross section.

2.1.2 Photons

To be able to process the interactions of photons in our model, we must first

generate them. For the sake of simplicity, we consider the bremsstrahlung

emission to only happen between an electron and a particle of one of the

two species composing our atmosphere. The cross sections and differential

dross dection for the generation of bremsstrahlung photons are computed and

interpolated/extrapolated from Seltzer and Berger [1986](tables for Z=7 and

8). The total cross sections are derived by integrating the extrapolated DCS

on the whole range of energies considered, for each incident electron energy.

The total bremsstrahlung cross section for the oxygen or nitrogen is computed

as following:

σa
brem(Ee) =

∫ k=Ee

k=103

dσbrem

dk
dk (2.11)

where Ee is the incident electron energy,
dσbrem

dk
is the bremsstrahlung DCS for

the oxygen atom or nitrogen atom. As it is the case for other electron interac-

tions, molecular cross-sections should be used when computing the probability

of bremsstrahlung: σm
brem(Ee) ≃ 2σa

brem(Ee). We note that the minimum inci-

dent electron energy considered for bremsstrahlung is 1 keV. This is also the

minimum photon energy considered in our model. Hence, any photons with
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an energy below 1 keV is discarded.

The photon transport is processed the same same way as in the case of

electrons, using the null-collision method. As the electrons are far more likely

to interact with the air, it is their maximum collision frequency that will

dictate the timestep used in our simulation. Three types of interactions are

processed: Compton scattering, photoelectric effect, and e+e− pair produc-

tion. The cross-sections used for these interactions were taken from Berger

et al. [2010].

For Compton scattering, the scattered photon energy and scattering angle

are described respectively using the Klein-Nishina formula and the energy-

momentum conservation condition [Lehtinen, 2000; Pilkington and Anger,

1971; Heitler, 1960]. The approximated formula used to compute the new

energy can be written this way [Lehtinen, 2000]:

E ′
γ =

Eγ

1 + sR + (2 Eγ

mc2
− s)R3

(2.12)

s =
Eγ

mc2 + 0.5625Eγ

(2.13)

where E ′
γ is the new photon energy, Eγ is the incident photon energy, and R

is an uniform random number.

The scattering angle is computed relatively to the incident photon trajec-
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tory using the formula:

χγ = arccos

(
1 +

mc2

Eγ

− mc2

E ′
γ

)
(2.14)

The azimuthal angle of scattering is uniformly distributed.

For the photoelectric effect, we assume that all of the incident photon

energy is transferred into the photoelectron. The photoelectron emission angle

is drawn from a lookup table made using equation (2.12) in Carron [2006]:

dσ

dΩ
∼ sin2 θ

(1− β cos θ)4

{
1

γ
+

1

2
(γ − 1)(γ − 2)(1− β cos θ)

}
(2.15)

The pair production refer here to the production of an electron and a positron

from a photon. In our model, we assume that the positron is immediately

annihilated into two 511 keV photons. This simplification prevents phenomena

such as positron feedback to occur, however e+e− pair production has shown

to be negligible throughout our simulations compared to Compton effect and

photoelectric effect because of the configuration studied (photoelectric effect),

the second also contributing to the feedback mechanism, as the photons are

able to propagate backwards over a non negligible distance before interacting.

2.2 Electromagnetic Particle-In-Cell (PIC) model

One of the difficulties of simulating plasmas is to correctly describe the elec-

tromagnetic interactions between charged particles. The simplistic solution
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would be to compute at each timestep all the Coulombian interactions pro-

duced by each particle on all the other particles (i.e., solving the N -body

problem), but this quickly becomes unbearable when the number of particles

becomes relatively high. The PIC method proposes another solution: par-

ticles move freely according to the relativistic equations of motions, but the

electromagnetic field they create is described and updated over a grid, and is

then recomputed onto the particle locations via an interpolation technique.

The computation gains come from the fact that the number of grid points can

be strongly limited and each particle handled in simulations actually represent

a great number of real particles (electrons in the present work). This is made

possible through a careful discretization of Vlasov equation into characteristic

curves resulting in the trajectories of these “macro-particles” or “computer-

particles” in phase space.

The use of electromagnetic particle-in-cell code to model and simulate plas-

mas is described in Birdsall and Langdon [1991] and Hockney and Eastwood

[1966] (see also the remarkably clear description given by Lehe [2014]) The

method relies on solving Maxwell’s equations, that will be used to update

the electric and magnetic fields at each time step. Our model is a cylindrical

axisymmetric implementation of the PIC method. We identify four steps in a

cycle of the PIC code:
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• Interpolation of fields onto the particles (Section 2.2.3)

• Update of the particle positions using the relativistic equation of motion

(Section 2.2.1)

• Assignment of the particles charges and currents on the grid (Section

2.2.3)

• Update of the electromagnetic fields using Maxwell’s equations (Section

2.2.2)

We detail these different steps in the following sections.

2.2.1 Equation of motion of the electrons

Describing the particle movements is straightforward, as we simply use the

equations of motion, in the following form:

dpi

dt
= qe(E + vi × B) (2.16)

dxi

dt
=

pi

γme

(2.17)

γi =
1√

1− |vi|2
c2

=

√
1 + |pi|2
(mec)2

(2.18)

where E is the electric field, B the magnetic field, qe the particle charge, vi,

pi and xi are respectively the particle i velocity, momentum, and position
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vectors, me the particle mass, and γi the Lorentz factor. The use of relativis-

tic equations is required here, as the typical electron speed in a relativistic

avalanche is around 0.9c, with c the speed of light in vacuum. To discretize

the equations, we use the relativistic Boris algorithm, as the naive approach

results in breaking energy conservation and introduces significant errors on

the cyclotron frequency. We first define ηi = qe|Bn+1|∆t/(2γime). The Boris

algorithm computes the momentum as follows:

pn+1
xyz,i = pnxyz,i −

qe∆t

2

(
En+1

xyz,i + F n+1
rad,i ·

pnxyz
Pi

)
(2.19)

p∗xyz,i = pn+1
xyz,i +

1

|Bn+1|
tan ηi ·

(
pn+1
yzx,iB

n+1
zxy,i − pn+1

zxy,iB
n+1
yzx,i

)
(2.20)

pn+1
xyz,i = pn+1

xyz,i +
1

|Bn+1|
2 tan ηi

1 + tan2 ηi

(
p∗yzx,iB

n+1
zxy,i − p∗zxy,iB

n+1
yzx,i

)
(2.21)

pn+1
xyz,i = pn+1

xyz,i −
qe∆t

2

(
En+1

xyz,i + F n+1
rad,i ·

pn+1
xyz

Pi

)
(2.22)

where xyz is either x, y, or z, i is the index of the electron, n is the time index,

Ei, Bi and Frad,i are respectively the interpolated electric and magnetic field

at the location of particle i and the continuous radiative friction applied on

this particle. In the present model, the production of individual photons does

not affect the dynamics of the particles and this is why a radiative friction

is included (especially for electrons with energies >10 MeV). It is taken from

Berger et al. [2005]. We then update the velocity and position:
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vn+1
xyz = pn+1

xyz /(γme) (2.23)

xyzn+1 = xyzn + vn+1
xyz ∆t (2.24)

2.2.2 Computation of the electromagnetic field

The electromagnetic field is computed using a finite-difference time-domain

(FDTD) scheme on a grid at each timestep using the following Maxwell-

Faraday and Maxwell-Ampere equations:

∂B
∂t

= −∇× E (2.25)

∂E
∂t

= c2(∇× B − µ0J) (2.26)

where c is the speed of light in vaccuum, µ0 the permeability of free space,

and J is the conduction current density. This current density, as well as the

particles densities and charge density are all computed on the same numerical

grid as that used for the electromagnetic field. The current density J is calcu-

lated through summation of the current assigned onto the grid from computer

particles (see Section 2.2.3) and the current densities of ions and low-energy

electrons calculated using fluid equations (see Section 2.4).
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To initialize the field, we use the Maxwell-Gauss equations:

∇ · E =
ρ

ε0
(2.27)

∇ · B = 0 (2.28)

with ε0 the permittivity of free space and ρ the charge density. In practice, the

electric field is initialized with a Poisson equation, and a homogeneous field is

added in the cases presented in this article. The magnetic field is initialized as

equal to 0 on the whole domain. Equations (2.27) and (2.28) are considered

as initial conditions if charge is conserved. If they are true at instant t = 0,

they remain true at all instants, provided that the continuity equation for the

charge is verified:

∂ρ

∂t
+∇ · J = 0 (2.29)

It is hence critical that the numerical model ensures that the charge of the

system is preserved (see Section 2.2.3), otherwise a Poisson equation corrector

has to be implemented to establish consistency between the electric field and

the charge density [Birdsall and Langdon, 1991, section 15.6].

The grid used is a Yee lattice, meaning a combination of two grids, one for

the cells themselves, or cell centers, and another for the interfaces. The grids

are staggered from one another, and thus two sets of coordinates are used.

Different properties represented on the grid are placed at different positions
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relative to the cell centers, which allows for consistency when, for example,

updating the magnetic field at a point requires to know the rotational of the

electric field at this point. The form of the grid used, as well as the different

field components, are shown in Figure 2.1.

z

r

i+1/2 i+1i
j

j+1/2

j+1
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Figure 2.1: Representation of a cylindrical Yee lattice. The solid black lines rep-
resent the cell-centered grid, while the dashed black lines represent the interface
grid. The interface grid is indexed using “half-coordinates” (+1/2). The different
components of the computed fields are represented in red at their respective position
on the lattice. The charge density ρ is scalar, and computed on cell centers. The
components of the current density Jr and Jz are positioned at the interfaces.

Because of the axisymmetry of the model, we can restrain the computation

of the different fields to the derivation of the components represented in Figure

2.1. If we assume the distance between two cell-centers is equal to ∆z (resp.

∆r), the distance between a cell center and its interfaces is ∆z
2

(resp. ∆r
2

). On
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this grid, the discretization for the electric field then goes as follows:

Er
n+1
i,j+1/2 = Er

n
i,j+1/2 − c2∆t

(
Bθ

n+1/2
i+1/2,j+1/2 −Bθ

n+1/2
i−1/2,j+1/2

∆z
+ µ0Jr

n+1/2
i,j+1/2

)
(2.30)

b1i+1/2,j = RIGj+1/2Bθi+1/2,j+1/2 −RIGj−1/2Bθi+1/2,j−1/2 (2.31)

Ez
n+1
i+1/2,j = Ez

n
i+1/2,j + c2∆t

(
b1i+1/2,j

RGj∆r
− µ0Jz

n+1/2
i+1/2,j

)
(2.32)

where Ez and Er are the z and r components of the electric field, Jz and

Jr the z and r components of current density, Bθ is the θ component of the

magnetic field, RG and RIG are arrays with the r coordinates of respectively

cell-centers and interfaces. b1 is an intermediate variable, and is not used

elsewhere.

The magnetic field is also staggered in time compared to the electric field,

which must be taken into account in the Maxwell equations. The general form

of the magnetic field equation excluding boundaries is:

Bθ
n+1/2
i,j = Bθ

n−1/2
i,j +∆t

(
Ez

n
i,j − Ez

n
i,j−1

∆r
−

Er
n
i,j − Er

n
i−1,j

∆z

)
(2.33)

It should be noted that the staggering in time must be taken into account

in the particle movement as the particle move over integer timesteps. To do

that, we average Bθ
n−1/2 and Bθ

n+1/2 to have the magnetic field at time n∆t.
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2.2.3 Assignment of charges and currents and field interpolation

The passage from the particles to the cells of the grid is the core of the

particle-in-cell method, and must be handled carefully, especially regarding

charge conservation.

For the charge assignment, a first order scheme called cloud-in-cell (CIC)

is used. The scheme is widespread in PIC-type simulations and described

in Birdsall and Langdon [1991] and Hockney and Eastwood [1966]. On a

2-D grid, the idea is to distribute the charge among the four nearest cells

by multiplying it with what is called a shape factor : each cell has its factor,

which is comprised between 0 and 1, and the sum of the four factors is equal to

1. Graphically, the particle can be represented on a 2-D grid as a uniformly

distributed “cloud”, that is separated into four “sub-charges”, as shown in

Figure 2.2.

If we name the cells (i, j), (i+1, j), (i, j+1), and (i+1, j+1) respectively

1, 2, 3, and 4, we can describe each shape factor by the following formula:

Sk =
1

∆z∆r
zlock rlock (2.34)

where k is the cell index equal to 1, 2, 3, or 4, Sk is the shape (or form) factor,

∆z and ∆r are the interval between cells respectively in the z and r direction,

as shown in Figure 2.2, and zlock and rlock are respectively the local coordinates
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Figure 2.2: Deposition of the charge of one particle onto the grid. The solid lines
represent the ‘cell grid.’ The dashed lines represent the ‘interface grid.’ The square
around the particle has the dimensions of one cell. The four areas that form the
square are used to attribute the values of the four form factors that are to be used
to assign the charge to the four marked cells.

of the particle relative to the corresponding cell. We can write them as such:

zloc1,3 = zi +∆z − zp = zi+1 − zp (2.35)

zloc2,4 = zp − zi (2.36)

rloc1,2 = rj +∆r − rp = rj+1 − rp (2.37)

rloc3,4 = rp − rj (2.38)

where (zp,rp) is the absolute position of the particle in the simulation domain,

and (zi,rj) are the coordinates of the corresponding cell.

The contribution of particles on the charge density assigned to each cell is
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the shape factor multiplied by a “local” charge density nk =
qp

Vcellk

:

ρk = nkSk (2.39)

where qp is the particle charge and Vcellk the volume of a cell. In a 2-D Carte-

sian grid, Vcellk is usually constant. However, in the case of our cylindrical

axisymmetrical grid, each cell is a torus of revolution with a square section

∆z∆r and a width depending on the position of the cell on the r-axis. If

0 ≤ rj ≤ ∆r
2

, then the shape of the cell is a cylinder. To take into account

this geometry when computing the charge density, we use a different volume

for each coordinate j on the r-axis:

Vcell(j) = π∆z(r2j+1 − r2j ) (2.40)

As said previously, the same scheme will be used to interpolate the field on

the particle. Note that when interpolating the magnetic field on the particles,

we take the average of Bn−1/2 and Bn+1/2 to obtain the value Bn at the

current timestep n∆t before making the interpolation. The fields applied to

the particle will be the sum of the fields at each of the four nearest cells

multiplied by the corresponding shape factors so as to avoid the introduction

of spurious self-forces. Indeed, the PIC methods separates the calculation

of particle motion and the evolution of fields. The fields are therefore not

necessarily physically consistent with the position and motion of particles
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and spurious behaviors such as a particle exerting a force on itself, the so-

called self-force, as well as other inconsistencies can occur. To avoid such

problems, the shape factor used for charge and current density assignment to

the grid simply needs to be the same as that used for the field interpolation

[Hockney and Eastwood, 1966]. It can be proven that in this case, self-forces

and other inconsistencies cancel out. For this reason, the search for typical

inconsistencies is a convenient way to sanity-check PIC simulation codes.

However, we can demonstrate that a current assigned though the CIC

scheme does not automatically verify the continuity equation (e.g., see Lehe

[2014]). Let us consider a 1D-grid with a cell size of ∆z on which a particle of

charge qp is moving. The timestep is ∆t. We use the cloud-in-cell assignment

scheme for both the charge and the current density. The shape factor S(z−zp)

is therefore expressed as 1− |z − zp|
∆z

for |z − zp| < ∆z and 0 otherwise, with

z the position of the point being assigned, and zp the particle position. The

situation from t = n∆t to t = (n+ 1)∆t is represented in Figure 2.3.

To validate our scheme, we need to verify that the charge is conserved over

all cells. Particularly, we can express charge conservation on the cell-center of

position k∆z as follows:

ρn+1
k − ρnk
∆t

+
Jz

n+1/2
k+1/2 − Jz

n+1/2
k−1/2

∆z
= 0 (2.41)
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z

z

z

Figure 2.3: Representation of the movement of a particle at position zp on a 1D-
grid. The green area represents the shape of the cloud of the particle. On the grid
are represented the cell-center positions (k′∆z) on which are computed the charge
density ρn

′
k′ and the interface positions ((k′ + 1/2)∆z) on which are computed the

current density Jz
n′+1/2
k′+1/2

We can express ρ and Jz:

ρnk =
qp
∆z

S(k∆z − znp )

=
qp
∆z

(
1−

k∆z − znp
∆z

)
(2.42)

Jz
n+1/2
k−1/2 =

qp
∆z

vn+1/2
z

(
1− (k − 1/2)∆z − z

n+1/2
p

∆z

)
(2.43)

Jz
n+1/2
k+1/2 = 0 (2.44)

with vn+1/2
z =

zn+1
p − znp
∆t

and zn+1/2
p =

znp + zn+1
p

2
.

We can write the two terms of the continuity equation:

ρn+1
k − ρnk
∆t

=
qp

∆z∆t

(
1−

k∆z − zn+1
p

∆z
− 1 +

k∆z − znp
∆z

)
=

qp
∆z2∆t

(
zn+1
p − znp

)
(2.45)
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Jz
n+1/2
k+1/2 − Jz

n+1/2
k−1/2

∆z
= 0− qp

∆z
vn+1/2
z

(
1−

(k − 1/2)∆z − znp
∆z

)
= − qp

∆z∆t

(
zn+1
p − znp

)(
1− k +

1

2
+

z
n+1/2
p

∆z

)

= − qp
∆z2∆t

(
zn+1
p − znp

)((3

2
− k

)
∆z + zn+1/2

p

)
(2.46)

As we can see when we compare equations (2.45) and (2.46), the sum of

the two is not equal to 0 in all cases. Therefore, using the CIC scheme for the

current assignment is not consistent with charge conservation.

A way to correct this discrepancy is to use a Poisson corrector on the elec-

tric field, cancelling the difference introduced by current assignment Birdsall

and Langdon [1991]. However, the time cost makes it an inconvenient solution,

so instead we use a specific current assignment scheme, described in Villasenor

and Buneman [1992]. Like in the CIC scheme, the particle is described as a

cloud with the shape of a cell and an uniform charge, however the shape factor

is not computed using the distance of the particle to the computing points,

but rather the amount of charge going through each interface, determined by

the volume of the cloud going through it.

Provided that the CFL condition is verified, the movement over one

timestep can only affect four interfaces at once (movement relative to the

nearest interface point), seven interfaces at once (movement from one inter-
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face point to another in either the axial or radial direction), or in the rarest

cases ten interfaces at once (movement from one interface point to another in

a diagonal direction).

We can quickly check that the CFL condition is verified: in most cases

presented in this article, the cell dimension is ∆z = ∆r = 8 m, and the

timestep used is ∆t = 3.4 × 10−13 s. The Courant number is computed as

such on our grid:

C = Uz
∆t

∆z
+ Ur

∆t

∆r
(2.47)

with Uz and Ur the z and r components of the velocity. We can maximize the

Courant number by taking c as the value of each component of the speed, thus

giving a value of C = 2.5493 × 10−5, which is way below 1, hence verifying

the CFL condition.

The different types of movements are shown in Figure 2.4. We have verified

that the last kind of movement (Figure 2.4(c)) is rare enough so that we can

neglect them without a significant loss of charge conservation. The various

runs performed have shown close to no such movement, with sometimes only

one at the very beginning, and none afterward, validating this assumption.
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Figure 2.4: Three of the different types of movements considered in the Villasenor
scheme. the dashed lines are the interfaces (forming the interface grid), the red
lines and associated arrows show the interfaces through which a current is produced.
The two squares represent the old and current position of the particle cloud. The
movements here are exaggerated for clarity. a) four-boundary movement ; b) seven-
boundary movement, on the horizontal direction ; c) ten-boundary movement. The
two interfaces that are affected without touching the clouds in this movement are
so because of the decomposition of the movement.

2.2.4 Validation of the particle-in-cell code using the simulation of
an homogeneous relativistic plasma

Additionally to validation tests of the FDTD, Monte Carlo, and fluid parts

alone, we have tested the coupling of fields and particles performed by the PIC

method. For single particles, no self force was observed [Hockney and East-

wood, 1966]. For multiple particles, we have defined a homogeneous plasma

of relativistic electrons and static ions.

In this simulation, we fill the domain (z = 500 m, r = 150 m here) with

electrons, the velocities of which are drawn from a Maxwellian distribution of

temperature T = 2.57 ·107 K. The domain boundaries are defined as periodic.

In the first run of this case, we put 40000 particles with a weight of 2 · 1014,
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giving us 8·1018 electrons. We put as many ions to neutralize the plasma. The

initial electromagnetic field is considered equal to zero. We then move some

of the electrons to form a hole in the electron population in the (z,r) domain,

hence creating a charged location that will serve as an initial perturbation.

We let the simulation run for about 10 µs, and observed that the velocity

distribution remains Maxwellian.

As noted by many authors, waves present a valuable tool to perform verifi-

cation tests of plasma models [e.g., Palmroth et al., 2018]. Therefore, the main

purpose of this test is to verify that we obtain the correct dispersion relation.

The dispersion relation of electromagnetic waves in a plasma is described as

follows:

ωEM(k) =
√
ω2
p + c2k2 (2.48)

where ωEM(k) is the angular frequency in rad/s for the electromagnetic waves,

ωp the plasma frequency, c the speed of light, and k the wave number. How-

ever, the use of the Yee scheme with a staggered grid to compute the various

components of the electromagnetic field induces changes in the behavior at

higher frequencies and wave numbers approaching the Nyquist limit. It is in

fact dictated by the relation dispersion of the Yee scheme [Kilian et al., 2017,
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4.1]: (
2

∆t

)2

sin2

(
ω∆t

2

)
= ω2

p + c2
(

2

∆z

)2

sin2

(
k∆z

2

)
(2.49)

To observe it, we apply a 2-D Fourier transform on time and one dimension

of space. We show the result of the Fourier transform of the magnetic field in

Figure 2.5.

Figure 2.5: 2-D Fourier transform of the magnetic field. The two dimensions used
are time and the z coordinate. To obtain the wave number, we averaged the field for
each z coordinate on all r. The Fourier transform has been done with 10,000 files
each separated in time by 3.34×10−9 s. The domain extends along the z-coordinate
over 500 m. The plasma frequency ωp = 2.6840 × 107 rad/s is obtained from the
electron density used in this case.

On this figure, we also show the two analytical dispersion relations de-

scribed above, superposed on the Fourier transform. We can clearly see the

effect of the dispersion relation for electromagnetic waves in Figure 2.5 with

the plasma frequency as a minimum. We notice a loss of consistency with
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the dispersion relation for electromagnetic waves as k increases, as expected

owing to the numerical dispersion induced by the FDTD computation. The

fact that the observed dispersion relation exactly fits the expected numerical

dispersion of the Yee scheme demonstrates the correct implementation of the

code [Kilian et al., 2017; Palmroth et al., 2018]. However, care should be

taken when interpreting numerical results for higher frequencies (> 50 MHz).

2.3 Remapping of particles

Keeping track of the exponential multiplication of runaway electrons requires

to limit the number of super-particles in the simulation. Various techniques

have been described in the literature to achieve this goal [Schmalzried et al.,

2022]. In the present work, we use a simple resampling technique that we

refer to as remapping.

Each super-particle amounts for a certain number of electrons, a property

called weight and noted W . When a super-particle of weight W ionizes a

molecule, the knocked-off electron is set with the the same weight as the

incident particle, and the event can be viewed as “W electrons have ionized a

molecule”.

When the number of super-particles reaches a threshold number (equal

to 10,000 in our simulations), a remapping is performed. It consists in the
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merging of pairs of particles with one another, resulting in a particle with a

weight equal to the sum of the two merged particles. Of course, such manip-

ulation entails significant loss of information, so it cannot be applied simply

by randomly merging any two particles. A sorting of particles must be made

before the merging, to minimize the loss of information. Depending on the

case, different sorting patterns can be used.

In order to save as much information as possible in the energy space, we

use a remapping based on neighbours sorted in energy: we remap groups of

particles present in the same grid cell, sorting them by energy in this area. It

allows us to preserve to a certain extent information on energy and position.

2.4 Fluid model

Keeping track of the dynamics of electrons over the whole energy range

of interest would require significant computational resources. In order to

shorten simulation runs, all electrons with energies less than 1 keV and

all ions are assimilated into a plasma fluid model. The density of low-

energy electrons and ions are calculated from particles using form factors

discussed previously. The fluid approach for low energy electrons over the

space scales considered in this work is justified by the fact that 1 keV

electrons slow down and thermalize over length scales much shorter than
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the grid resolution. For example, the continuous slowing down approxi-

mation (CSDA) range of a 10 keV electron in ground-level air is only a

few millimeters (calculated from the NIST Standard Reference Database

124, https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html), while

the numerical grid used for the fluid model is the same as that used for the

PIC code (see previously) that has a resolution on the order of 1 meter.

Secondary electrons are explicitly taken into account in the Monte Carlo

code, and their contribution is therefore directly accounted for in the fluid

electron density. If produced with energies above the ionization potential of

molecules, these secondary electrons could result in more ionization. Thus,

they are also considered to contribute to the fluid electron density as a linear

function of their energy. Indeed, it is well-known that ionizing electrons loose

an average energy of ∼34 eV per electron-ion pairs produced in air (e.g. [Knoll,

2000, Table 5.1, p. 132]), which is approximately constant as a function of

energy. Simulations performed with the Monte Carlo code presented here as

part of a preliminary work confirm this point. Each electron produced in

the Monte Carlo code with energy E lower than 1 keV is thus considered

to contribute to an amount of E/(34 eV) electrons and positive ions to the

plasma fluid densities.

As the medium is highly collisional, the dynamics of electron and ion den-
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sities is considered to evolve according to drift-diffusion equation, as usual in

discharge physics (e.g., Bourdon et al. [2007]) and also used in the context of

RREAs to simulate the effects of low-energy electrons and ions (e.g., Liu and

Dwyer [2013]; Berge et al. [2022]):

∂ne

∂t
+∇ · nev⃗e = (νi − νa)ne (2.50)

∂np

∂t
+∇ · npv⃗p = νine (2.51)

∂nn

∂t
+∇ · nnv⃗n = νane (2.52)

where ne, nn, and np are the electron, negative ion, and positive ion densi-

ties, respectively; νi is the electron-impact ionization frequency, and νa is the

electron attachment frequency considering dissociative attachment producing

a negative oxygen atom O− (two-body attachment) and a three-body attach-

ment producing a negative oxygen molecular ion O−
2 ; and ve, vn, and vp are the

electron, negative ion, and positive ion drift velocities, respectively. Because

of the magnitude of the densities and the timescales of interest in the present

work, we neglect ion-ion recombination, electron-ion recombination, and the

diffusion of ions (see [Berge et al., 2022, Section 2.1]). Given the electron

densities obtained in the present study, diffusive fluxes of electrons are much

lower than drift fluxes over the smallest length scale considered here, which

is on the order of one meter. The diffusion term for electrons is therefore also
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neglected.

As already noted in previous studies [Dwyer and Cummer, 2013; Berge

et al., 2022], the dynamics of low energy electrons and ions is critical to the

production of electromagnetic radiation in the LF range. The electron source

terms and transport parameters are obtained from Morrow and Lowke [1997]

and ion mobilities from Dhali and Williams [1987] (see [Berge et al., 2022,

Section 2.1]).

As it removes free electrons over short time scales and produce negative

ions that respond to the field over longer time scales than electrons, the elec-

tron attachment processes are of prime importance in the system studied.

We use the two-body and three-body attachment rates as described by Mor-

row and Lowke [1997, Appendix]. However, for fields lower than 104 V/m at

ground-level, the three body attachment given by Morrow and Lowke [1997]

reach unphysical values (e.g., in comparison with [Kossyi et al., 1992, Section

2.4]). To avoid this issue and for the sake of simplicity, we cap the three-body

attachment frequency at 108N2/N2
0 s−1, where N is the local air density and

N0 is the ground-level density as shown in Figure 2.6.

The electric current density obtained from the fluid equations is added to

the current density of computer particles when calculating the evolution of

the electromagnetic field (see Section 2.2.2).
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Kossyi et al., 1992

Morrow and Lowke, 1997

108 s-1

Figure 2.6: Comparison between three-body attachment rates at ground-level as
functions of energy obtained from [Morrow and Lowke, 1997, Appendix] (red line)
and [Kossyi et al., 1992, Section 2.4, equations (45)-(46)] (blue line). For the latter,
the air temperature is chosen as T = 273 K and the electron temperature Te is
calculated through the Einstein relation using Morrow and Lowke [1997] diffusion
and mobility coefficients at any given electric field. The black dashed line is the
value chosen in the model presented here for electric fields below which the value
given by Morrow and Lowke [1997] exceeds it.

2.5 Domain boundaries

The domain boundaries are, depending on the case, either conducting walls

or periodic. The periodic boundary conditions are used in the test cases,

when we only use the PIC part. The conducting boundary condition is one

of the simplest, that is implemented simply by considering the electric and
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magnetic fields equal to zero at the boundaries. It brings several issues, as the

electromagnetic waves bounce on these boundaries, leading to non-physical

effects if we let the simulation run for too long. However it remains negligible

as long as the bouncing EM wave has not reached the RREA, which allows

us to observe the electron avalanche for relatively long durations.
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Constraints on avalanche
parameters

Contents
3.1 First results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Low-energy electron density . . . . . . . . . . . . . . . . . . . 48

3.1.2 Electric field . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.3 Number of high-energy electrons . . . . . . . . . . . . . . . . 53

3.1.4 Electric Current . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.5 Radiated field observed at a distance . . . . . . . . . . . . . . 58

3.2 Saturation of the low-energy electron density . . . . . . . . 59

3.3 Constraining the number of electrons produced . . . . . . . 65

3.3.1 Parameters of the simulations . . . . . . . . . . . . . . . . . . 66

3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.3 Constraints on the number of electrons . . . . . . . . . . . . . 70

3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 77

In order to study in depth the RREA, the self-consistent effects it is sub-

mitted to, and try to decipher its production mechanism, in this chapter we

describe several simulations made with the self-consistent code. All simula-

tions are made at an altitude of 12 km, with no variations of the air density and

related parameters throughout the domain. In all simulation cases presented

in this chapter, the electrons are injected at a given location (around the (0,0)

point of the domain). The first section presents the results of two simulations
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made without the photons fully described as particles, instead replaced by an

averaging braking force (coming from the bremsstrahlung) slowing the elec-

trons. The second section discusses the saturation observed in the simulation.

The third section will focus on the number of electrons observed, showing and

discussing the results of several simulations to study the stabilization observed

in section 1.

The results presented in this chapter have been presented in Gourbin and

Celestin [2024b] and Gourbin and Celestin [2024a].

3.1 First results

In this section, we present the results of simulated avalanches inside an ho-

mogeneous electromagnetic field over the whole domain. Two main cases are

considered:

• In the first case, 1000 particles are initially injected with a weight of 108

each.

• In the second case, one particle of energy 1 MeV is injected in the start-

ing area every 1000 timesteps. Each particle initially has a weight of 105

electrons. The injection rate is therefore about ∼ 3 × 105 electrons per

nanosecond. The simulation initially begins with 10 particles, represent-

ing 106 electrons.
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Since the observations made in both cases are similar in many ways, we focus

more on the second case, as it is a bit more realistic: considering the leader

based mechanism, we expect to have an important amount of electrons being

injected over a short period of time inside the acceleration region. The first

case is still used to point out some observations made, as some aspects of the

simulations are clearer on this one. Nevertheless, since the model is the same

in both cases, the mechanisms pointed in one ought to be present in both.

The figures presenting the result of the initial injection case are in Appendix

A.

The initial positions of electrons, for both cases, being electrons injected

initially or continuously during the simulation, is randomly assigned onto

a hemisphere of radius of 42 m at z = 0 m and r = 0 m. We set their

initial energy at 1 MeV, their speed is computed from the energy and they are

assumed to all go initially in the z-direction. As the avalanche propagates, it

will be centered on the z-axis. The timestep is ∆t ≃ 3.40.10−13 s. For both

cases, the background electric field is 1.1828×105 V/m (∼5 kV/cm at ground

level), and homogeneous over the whole the domain.

For the sake of simplicity, we do not consider the production of photons

and positrons explicitly in the present work. Phenomena associated with rel-

ativistic feedback [Dwyer, 2003] are therefore not included. Under the electric
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field applied here (5 kV/cm at ground-level), relativistic feedback should have

significant effects beyond a distance of ∼ 1200 m (at 12 km) [Dwyer, 2003;

Skeltved et al., 2014]. However, for a closed system like in our configuration,

it seems that this electric field magnitude would correspond to a distance of

∼4000 m [Pasko et al., 2023], which is close to the size of our simulation do-

main. Additionally, it is likely that the effects of relativistic feedback would

not be significant over the relatively short timescales used in this study. It is

also worth noting that the effect of a continuous injection of primary electrons

are not unlike the effects of the production of new avalanches by photons and

positrons. Similarly to the relativistic feedback, the continuous injection in-

troduces another timescale to the system, additionally to that associated with

RREA processes.

Figure 3.1 shows the electron energy distribution for the second case.

The energy spectrum is consistent with the expected energy distribution in a

RREA [e.g., Dwyer et al., 2012], and remains so throughout the simulation.

Using a fitting procedure we find that the exponential cut in this case is at

∼7 MeV.

3.1.1 Low-energy electron density

The evolution of low-energy electron density (i.e., the electron density handled

in the fluid approach) is shown Figure 3.2 and Figure 3.3 .
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Figure 3.1: Energy distribution of the electrons above 1 keV, smoothed using a mean
over 3.4014× 10−7 s (i.e. 10 files), for a simulation with continuous injection of all
the electrons.

During the first part of the propagation, the avalanche increases in density

rapidly, while expanding slowly, following a typical diffusion trend (propor-

tionally to
√
z) (panels a and b of Figure A.1 and A.2, and panel a of Figure

3.2 and 3.3). At a certain point in time, the electron avalanche reaches a

critical density of approximately 1015 m−3 (panel c), and from which the elec-

tron density stops increasing, and the avalanche front starts expanding rapidly

(panel d).

Once this saturation is reached, the continuous flux of electrons seems to

come to a stop when arriving to the point where the density reaches saturation.

We will see that it is due to the screening of the electric field in the avalanche
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Figure 3.2: Cross-sectional view of the low-energy electron density at different mo-
ments of time (presented here in decimal logarithm). Simulation with a continuous
injection of particles. Decimal logarithm of the density field of electrons and high-
energy electron positions (black dots) are shown. The r-axis has been doubled for
clarity. Because of that, each particle appears twice: at its original position and at
its symmetric position about the z-axis.

trail. Because of that, electrons are agglomerating near the axis. Moreover,

the density starts increasing beyond the previously observed limit, and form

a structure that starts “propagating” backward on the trail of the avalanche.

We also notice on the right side of the avalanche (closer to the front),

where no electron manages to reach, that the density starts decreasing. This

can be more clearly seen in the initial injection case, on Figures A.1 and A.2

(Appendix A): after the high-energy electrons ionized the domain, the low-

energy electron density starts decreasing. We have verified it is mainly due to
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Figure 3.3: Electron and ion densities along the z-axis at different times for con-
tinuous injection (the densities shown in this figure are averaged in the r-direction
between r = 0 m and r = 67.2 m). The time passed since the beginning of the run
is indicated above each plot. The blue, red, and black line represent respectively
the density of electrons, negative ions and positive ions.

the 3-body attachment process.

3.1.2 Electric field

The evolution of the electric field on the z-axis (in the center of the avalanche)

is shown in Figure 3.4. This figure shows the values of the different compo-

nents of the electric field, as well as the position of the energetic electrons

(>1 keV), which gives us an approximation of the position of the avalanche

front. Once the avalanche has reached saturation, we observe that the elec-

tron density is sufficient to quickly screen the electric field out at the front
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Figure 3.4: Electric field near the axis r = 0 m (center of the avalanche) at different
times for a simulation with continuous injection. The r and z component of the
electric field are shown as a function of z, as well as the (x, z) particle coordinates.
Ez is shown on the axis, Er is shown at r = 8 m.

(panels c and d). However, the depletion of the electron population due to the

attachment cancels partially this effect, allowing the remaining electric field

to still accelerate the electrons behind the front, which explains the groups of

electrons still propagating there. We also observe the formation of a peak in

the electric field at the position where the avalanche saturation was reached

(around 1800 m), negative for Ez (panel c of Figure 3.4). The peak then

starts moving backward (panel d). As it is a peak in the negative of the z-

component of the field, it accelerate the electrons, which gain energy in this

moving structure. This peak keeps increasing as the structure propagates
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backwards, and screens the electric field in its trail.

3.1.3 Number of high-energy electrons

0 0.5 1 1.5 2 2.5 3 3.5
time (s) 10-5

1010

1015

1020

N
um

be
r 

of
 e

le
ct

ro
ns

Number of electrons with E  1MeV produced since start

Number of electrons at each instant
Number of electrons produced since start

Figure 3.5: Number of electron with an energy higher than 1 MeV as a function of
time, for the simulation with continuous injection.

The number of high-energy electrons can be seen in Figure 3.5. The num-

ber of electrons seems to slow its increase after a time. Comparisons with

the profile of electron density (Figure 3.3) show that the change of behavior

happens around the same time the avalanche saturates. It is interesting to see

this behavior while electrons still are continuously injected into the domain.

And so, we can determine the number of bremsstrahlung photons emitted by

these electrons using equation (4) from Celestin et al. [2015] :
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Nγ =

∫ +∞

0

Ne(t)⟨νγ⟩(t)dt (3.1)

where Nγ is the number of photons produced, Ne(t) the number of electrons

as a function of time, and ⟨νγ⟩(t) the photon production frequency per elec-

tron. At the end of the simulation, we obtain for this simulation 1.4295×1018

photons above 1 MeV produced, which is on the order of the expected number

of photons in a TGF [Celestin et al., 2015, Table 1].

3.1.4 Electric Current

The current produced by the avalanche can be separated into two components:

• The conduction current, which corresponds to the current produced by

the movement of electrons and other charged particles in time. It is com-

puted as part of the current assignment procedure using the Villasenor

scheme.

• The displacement current is produced by the variation of the electric

field in time, and computed using the following formula:

jD = ε0
En − En−1

∆t
(3.2)

where jD is the displacement current, En and En−1 are the electric field

at time tn and tn−1, ∆t the timestep and ε0 the vacuum permittivity.
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The current is plotted in Figure 3.6. We can see that at the front, both

current components seems to be roughly equal to one another (one being

positive and the other negative, which explains why the total current is of the

order of 10−5 A). We notice that the displacement current is modified ahead of

the avalanche. It is to be expected, as the electrons travel less than the speed

of light, while electromagnetic waves travel at c. The fluctuation induced here

is however too weak to have a visible effect on the electric field plot.
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Figure 3.6: Absolute value of the total electric current and its components (conduc-
tion and displacement) produced at different moments of time for the case with a
continuous injection.

Behind the avalanche front, attachment reduces the electron population,

so the conduction current starts decreasing. It is however more visible in the
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initial injection case, where no electron flux comes to sustain the conduction

current (panel c and d of Figure A.6).

In this simplified simulation, the total current reaches values above 105 and

even up to 106 amperes. Using a different model, Berge et al. [2022] showed

that slow LF pulses reported by Pu et al. [2019] would correspond to peak

current of ∼ 100 kA.

The rise in displacement current appearing from the left of the domain

occurs after the rebound of the initial electromagnetic wave on the radial

boundary and is believed to be a numerical effect, as it appears when the

electromagnetic wave induced by the first electrons launched inside the domain

reaches the boundaries of our domain. However, it is important to precise that

no effect has been observed whatsoever, being in the electric or magnetic field.

All the effects described above in the electric field are explained by the physics

of the problem. The displacement current is computed from the variation of

the electric field in time, and in this case is provoked by the returning wave

from the border that, while insignificant compared to the background electric

field, occurs over a very short period of time, which lead to a misleadingly

high displacement current.

This current still might have an effect on the induced magnetic field via

the Maxwell-Ampere equation. On Figure 3.8, we can see that the radiated
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Figure 3.7: Induced magnetic field near the axis (inside the avalanche) computed
from Maxwell Ampere equation, at different times of the simulation using continuous
injection.

current reaches ∼ 1 µT. However, if we look at the induced magnetic field

on Figure 3.7, we can see that it yields values going up to ∼ 100 µT. If we

compute the cyclotron frequency of such field, we obtain
qB

m
= 1.76×107 s−1.

We compare it to the collision frequency, knowing that the timestep is defined

by the highest collision frequency, we then obtain
1

∆t
= 2.94×1012 s−1. From

that, we can conclude that an electron propagating in our domain will have

had time to interact quite a number of time before feeling the effect of the

magnetic field, and by then the numerous deviations will have made this effect

irrelevant. We can then affirm that, although the displacement current seems

to be significant, on the timescales considered, it does not have any significant

effect on the avalanche.
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3.1.5 Radiated field observed at a distance

We can compute the magnetic field at a horizontal distance R = 150 km from

the point of emission, considering an antenna of height H = 300 m, using

equation (7) from Uman et al. [1975] :

Bϕ(D, t) =
µ0

2π

∫ H

0

sin θ

R2
i(z, t−R/c)dz+

µ0

2π

∫ H

0

sin θ

cR

∂i(z, t−R/c)

∂t
dz (3.3)

where i(z, t−R/c) is the conduction current. Here, θ is considered to be equal

to π/2 (hence sin θ = 1).

The two integrals of the equation are plotted in Figure 3.8, and labelled

respectively the magnetostatic field and radiation field. When calculating

the magnetic field at a distance from the electric current using Uman et al.’s

equation, Berge et al. [2022] used the total current. Upon further inspection,

only the conduction current should be included in Uman et al.’s integrals as

per use of Lorenz retarded potentials [see also Shao, 2016]. We can estimate

that the error caused by this oversight on the magnitude of the magnetic field

reported by Berge et al. [2022] is ∼20%.

Since the ambient electric field is strong, homogeneous and infinite in the

simulation, the form of the magnetic field is not expected to resemble the

magnetic field associated with a TGF. We also note that the value reached

by the magnetic field is far too high compared to measurements of slow LF
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Figure 3.8: Magnetic field computed from the current, using equation (7) from
Uman et al. [1975]. The radiation and magnetostatic parts of the magnetic field
shown here correspond to the two integrals in that equation. The computation is
made for a distance from the source of 150 km, for the case with continuous injection.

pulses [e.g., Pu et al., 2019]. It is however consistent with the current values

presented in the previous section.

3.2 Saturation of the low-energy electron density

In both configurations studied, the saturation of the electron density can be

explained by the increase of conductivity associated with a RREA. In the

beginning, the increase in the electron and ion densities is controlled by the

runaway electron avalanche and characterized by the avalanche time, while

the relaxation of the electric field is related to the conductivity in the medium
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through the Maxwell time. The latter also characterizes the time scale of the

defocusing of a charged particle beam through Coulumbian repulsive forces.

When the conductivity, driven by the low-energy electron density reaches a

magnitude such that the Maxwell time approaches and exceeds the avalanche

time, the field collapses faster than the time it takes for an avalanche to

increase the density.

These two times are defined as followed:

τRREA =
λ

Ve−
(3.4)

τM =
ε0

qeµene

(3.5)

where λ is the characteristic avalanche e-folding length, Ve− is the electron

speed, qe is the electron charge, µe is the electron mobility, and ne the electron

density. Equalling those two timescales, we can thus find the density at which

the Maxwell time reaches the avalanche time:

τM = τRREA

⇒ ε0
qeµene

= τRREA

⇒ ne =
ε0

qeµeτRREA

(3.6)

The term τRREA depends on the characteristic avalanche length λ, which

itself depends on the electric field. For example, it can be found by using the
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3.2. Saturation of the low-energy electron density

equation (2.3) in Dwyer et al. [2012]. We can also use our simulation results

by plotting the theoretical increase in density for a given λ and compare it

to the increase in the ion density in our simulation (before saturation) or to

the peak of the electron density at different moments of time, as the electron

density has a faster dynamics due to the attachment processes.

The electron density and the theoretical density are shown in Figure 3.9.

Note that we are using the initial injection case here: because all the electrons

are initially injected at once, and that no electrons comes after to produce

something behind, the rise in the density is clearer, easier to fit, and the

saturation is also more visible, as the backward propagating structure does

not appear for this case.

For this simulation, we obtain a good fit for λ ≃ 165 m. The speed is

assumed constant at Ve− = 0.89c [Coleman and Dwyer, 2006], with c the

speed of light, so τRREA = 3.779× 10−8 s. We also have µe = 0.2719 m2/(V.s)

[Morrow and Lowke, 1997] ; qe = 1.602 × 10−19 C, and ε0 = 8.854 × 10−12

F/m. It yields a saturation density nth = 3.2806× 1014 m−3.

As shown in Figure 3.9 and 3.10, the observed saturation density is in good

agreement with our computed value.

Following equation (3.6) the low-energy electron saturation density can be

calculated for various electric field. The result is shown in Figure 3.11.
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Figure 3.9: Electron density relative to position for initial injection (blue), and fitted
density profile (red). The dash-dotted line is the saturation density computed with
equation 3.6.

In the cases studied in the present chapter, the low-energy electron satura-

tion density is reached at ∼3×1014 m−3 while the runaway electron density is

about four orders of magnitude lower, reaching nr,s ∼1010 m−3 at 12 km. It is

expected that this runaway electron saturation density would follow a similar

trend as the low-energy electron saturation density shown in Figure 3.11, and

their order of magnitude (at 12 km) would hence not change significantly in

realistic fields present in streamer zones of negative leaders.

In the conditions of the simulations presented here, the saturation of the

RREA occurs when the number of runaway electrons is close to that expected
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Figure 3.10: Zoom in density of Figure 3.9, and time-centered around the moment
the saturation is reached.

in TGFs (∼1018) and the growth of this number strongly slows down after that

point (see Figure 3.5, and Figure A.5 for the initial injection case). This total

number of runaway electrons is related to the radius of the avalanche when

saturation is reached. Considering that saturation is reached at the source of

TGFs, resulting in the collapse of the electric field, and assuming the number

of runaway electrons involved in the TGF production as 1018, the size of the

avalanche should be on the order of R ∼
(

3

4π

1018

nr,s

)1/3

∼ 500 m at 12 km.

We note that the balance between the avalanche time and the Maxwell

time leading to a saturation of the electron density is reminiscent of streamer

discharges in which a stable balance between the Maxwell time and the ion-
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Figure 3.11: Saturation density as a function of the ambient electric field derived
from equation (3.9). In the axis’ legends, N stands for the local air density and N0

stands for the air density at ground-level.

ization time is present in the streamer head for similar reasons [e.g., Wang

and Kunhardt, 1990].

This saturation mechanism is different from that reported by Luque [2014]

using a 1-D electrostatic model of a RREA. In particular, here the saturation

in produced by the increase of the conductivity caused by the strong pro-

duction of low-energy electrons by the RREA, and not by the effect of the

runaway electrons on the field. In our simulations, the latter indeed carry

much less charge density than secondary electrons.

In the case of a continuous injection, the backward-propagating structure
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3.3. Constraining the number of electrons produced

after the front explosion also follows an electric pulse, saturates the electron

density in its wake, and screens the electric field behind it. The structure

resembles that obtained by Liu and Dwyer [2013] and named relativistic feed-

back streamer. It is unclear the case presented by Liu and Dwyer [2013] also

reached saturation. They indeed obtained ion densities on the same order of

magnitude as that reported here, but the runaway electron density seems to

be lower.

Those results could also be important in the context of lightning propaga-

tion, as RREAs seem to be able to produce significant densities in the vicinity

of lightning discharges. For example, Bourdon et al. [2010] have shown that

streamer discharge propagation is greatly influenced by the background elec-

tron density.

3.3 Constraining the number of electrons produced

As mentioned before, the saturation of electron density lead to another phe-

nomenon: the limitation of the number of electrons.

Several articles [Dwyer and Smith, 2005; Gjesteland et al., 2015; Mailyan

et al., 2016, 2019; Lindanger et al., 2021] place the number of electrons for

the brightest TGFs between 1017 and 1019, which is within the range of where

we stand with our simulation. Several things could have an impact on the
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number of high-energy electrons at the end of our simulations. For instance,

the electric field has an impact not only on avalanche multiplication, but also

on the dielectric relaxation time, that has been shown to cause the saturation

of the low-energy electron density.

To better understand the phenomenon limiting the number of high-energy

electrons, we decide to perform a series of self-consistent simulations, in a

domain with a higher electric field but on a shorter length, recreating to an

extent the conditions for avalanche inception in a streamer corona.

The work presented here is presented in Gourbin and Celestin [2024a].

3.3.1 Parameters of the simulations

The simulation domain in which the simulated avalanche propagates is cylin-

drical, axisymmetric for the electromagnetic field, with a height of 3 km and

a radius of 1.2 km. The bottom part of the domain is subjected to an electric

field of 16× N

N0

kV/cm, with N0 the density of air at the ground and N the

density of air at an altitude of 12 km, the altitude we chose for all the simula-

tions. We refer to this zone as the acceleration zone. The electric field is set

to zero for z > 400 m, making the zone between z = 400 m and z = 3 km a

zone with no electric field initially, where electrons can still propagate, inter-

act with the air, and influence the electromagnetic field around them. Seed

electrons are injected continuously at a constant rate near the (0,0) point of
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3.3. Constraining the number of electrons produced

our domain, in the acceleration zone, through a section of radius 42 m. These

seed electrons can be thought of as thermal runaway electrons injected by a

lightning leader [e.g., Celestin et al., 2015] or relativistic-feedback-produced

electrons [e.g., Dwyer, 2003]. The injection rate is a variable parameter be-

tween the different simulations. The different injection rates are listed in Table

3.1. The cases last long enough so that the avalanche reaches the end of the

Table 3.1: Electron injection rates used in the simulations
Injection rate (electrons/s)

2.94× 1013

2.94× 1014

2.94× 1015

2.94× 1016

2.94× 1017

2.94× 1018

2.94× 1019

2.94× 1020

2.94× 1021

acceleration zone and propagates beyond that point.

3.3.2 Results

The low-energy electrons densities can be seen Figure 3.12, where the various

runs stopped at 1.7 µs, showing different stages regarding the RREA satura-

tion state: The cases with an injection rate below 2.94 × 1017 electrons per

second do not reach saturation before the end of the acceleration zone. The

case with an injection rate of 2.94×1018 el/s is close to reaching it, and starts

to display the backward propagating structure, between 200 m and 300 m.
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Figure 3.12: Low-energy electron density profile for different injection rates at the
end of the simulations (t = 1.67 µs).

The three cases with higher injection rates all reach saturation before the first

injected electrons leave the acceleration zone, and display different dynamics.

The number of high-energy electrons and resulting number of photons as

a function of time is shown in Figure 3.13. In panel (a), we see the number

of high-energy electrons in the simulation domain (≥ 1 MeV) as a function of

time.

For the cases with an injection rate below 2.94× 1017 el/s, the number of

high-energy electrons stops increasing when the avalanche reaches the electric

field cut as the system reaches a steady state. When they arrive at this point,

the electrons at the front quickly decelerate and lose all their energy. The

maximum number of high-energy electrons thus only depends on the incoming
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Figure 3.13: Left : Number of high-energy (≥ 1 MeV) electrons as a function of time
for different injection rates. Right : Number of photons (≥ 1 keV) as a function of
time for different injection rates.

flux and electrons produced throughout the acceleration zone.

For the cases with the three highest injection rates, we see that the number

of high-energy electrons stabilizes before reaching the end of the acceleration

zone. As seen in the previous section, this stabilization is caused by the

mechanism of saturation and the associated collapse of the electric field, which

constrains the number of electrons. An interesting feature is that, for these

three cases, the number of high-energy electrons all lay between 1017 and 1018,

while the non-saturated cases all reached different magnitudes at the end of

the simulations proportionally to the injection rate.

The right panel of Figure 3.13 shows the number of photons with an en-

ergy greater than 1 keV as a function of time for the different cases. While the
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curves are slightly different from the number of electrons, they follow a similar

pattern: the non-saturated cases show a slowdown of the photon number at

different magnitudes proportionally to the injection rate, while the saturated

cases all lay between 1017 and 1018 photons for an increase in the injection

rate by two orders of magnitude. In Subsection 3.3.3, we argue that despite

the different expected timescales and processes at play in real TGFs, a sim-

ilar maximum number of high-energy electrons and photons to those in the

saturated cases would be reached.

3.3.3 Constraints on the number of electrons

In all saturated cases, the number of energetic electrons and photons stabi-

lizes around the same order of magnitude. In our simulations, this order of

magnitude is near 1017 − 1018. This dynamics can be better viewed on Figure

3.14, where the number of high-energy electrons and photons at the end of

simulations are shown as a function of the number of injected electrons. A

break of the linearity of the system can be seen for cases reaching saturation

(injection rates > 3×1017 el/s): while the number of high-energy electrons and

photons at the end still slowly increase with the number of injected electrons,

the increase is slowed down much more significantly, reaching for 5 × 1015

injected electrons, 4× 1017 high-energy electrons at the end of the simulation.

The number of high-energy electrons can be compared with the estimates
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Figure 3.14: Number of electrons and photons at the end of the simulations as a
function of the number of electrons injected in the domain throughout the duration
of the simulations.

deduced from TGF observations (e.g., [Mailyan et al., 2016, Figure 8], [Mai-

lyan et al., 2019, Figure 9]), where the number of high-energy electrons after

propagation is evaluated as mainly between 1017 and 1019, with almost none

beyond 1020. This seems to match well with the results of our saturated cases,

where the electron number stagnates between 1017 and 1018, especially con-

sidering that those articles use very bright TGFs (i.e., bright enough to allow

individual spectral analysis).

While the first simulations presented at the beginning of this chapter can

be considered as test cases, made with parameters favourable to the devel-

opment of avalanches, the physical parameters used in this section are not

unrealistic. For instance, the magnitude of the electric field and the length of
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the acceleration region are close to those expected to be present in streamer

zones of negative leaders [e.g., Raizer, 2000] in positive intracloud discharges

(+IC) forming an electric potential drop of ∼300 MV [Celestin et al., 2015].

In such configuration, the amplification factor in the number of high-energy

electrons is about 106 (e.g., see Figure 3.13), which results in the establishment

of a RREA spectrum [Celestin et al., 2015].

In the present work, the magnitudes of the injection rates have been chosen

to demonstrate both linear (< 3×1017 electrons/s) and saturation (> 3×1017

electrons/s) regimes. In the latter cases, RREAs lead to a quenching of the

electric field over the timescale of the simulation (∼ 1.6 µs) while the former

cases are expected to quench the electric field over longer timescales (see

below). In reality the typical total duration of TGFs as observed from space

is closer to ∼100 µs with rise times of a few tens of microseconds [e.g., Fishman

et al., 2011; Foley et al., 2014; Xu et al., 2019; Lindanger et al., 2020]. For

the sake of simplicity, one can consider 15 µs as a characteristic timescale for

the rise of the TGF source as derived from radio observations [e.g., Pu et al.,

2019; Berge et al., 2022].

For a total number of high-energy electrons of ∼1017 in a TGF [e.g., Dwyer

and Smith, 2005], considering an amplification factor of 106 and a rise time

of ∼15 µs, the initial injection rate can therefore be considered to be on
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the order of ∼1016 electrons/s (purple case in Figures 3.12 and 3.13). It is

therefore expected that in reality, TGF sources do not necessarily reach the

electron saturation regime.

It is critical to consider electron attachment processes in air at an alti-

tude of 12 km. Under an electric field of magnitude 16 × N

N0

kV/cm, electron

attachment is dominated by the dissociative attachment process (2-body at-

tachment of frequency νatt2b) with a characteristic timescale of
1

νatt
∼ 0.5 µs,

even though more generally νatt = νatt2b + νatt3b, where νatt3b is the 3-body

attachment frequency. Assuming an injection rate of 1016 electrons/s, it be-

comes clear that the low-energy electron density reaches a steady state at all

locations in the simulation domain as an equality is reached between the ion-

ization rate (produced by runaway electrons) and the attachment rate, this

equality being reached over a duration on the order of
1

νatt
∼ 0.5 µs. Indeed,

the dynamics of the low-energy electron density ne is governed by the following

equation at any given location:

dne

dt
=

F

λi

− neνatt (3.7)

where F is the local z-dependent flux of high-energy runaway electrons and

λi ∼ 2 mm is the total ionization mean free path for these electrons estimated

from the ionization cross-section [e.g., Kim et al., 2000; Celestin and Pasko,
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2010; Dwyer and Babich, 2011]. At the end of the acceleration region (z = 400

m), in the case with an injection rate of 2.94 × 1016 s−1, the steady state is

reached for ne =
Fz=400m

λiνatt
∼ 1013 m−3 (in good agreement with the results

presented in Figure 3.12). Even though the electron density does not vary

any longer, the flux of runaway electrons is still present after this time and so

does the associated production of positive ions through ionization and negative

ions through attachment. As a result of the flux of runaway electrons, the ion

density increases linearly in time because ion recombination processes occur

over a much longer timescale [see discussion in Berge et al., 2022, Section 2.1].

Gourbin and Celestin [2024b] showed that the electron saturation density

caused by self-consistent effects occurs when the density is high enough so that

the associated relaxation time is equaling the RREA characteristic growth

time:

nsat
e =

ε0
qeµeνRREA

≃ 1015 m−3 ; ν−1
RREA = 5.16× 10−7 s (3.8)

where qe is the electron charge, µe is the electron mobility, and νRREA is the

runaway electron production frequency. Figure 3.12 clearly shows that the

quenching of the electric field is indeed rapidly observed for ne > 1014 m−3. In

fact, the saturation density nsat
e may be thought of as an electron density upper

limit. In general, the electric field is quenched over the dielectric relaxation

time (also named Maxwell time) driven by the local conductivity, which is
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mostly the result of the electron density and mobility (i.e., for n± <
µe

µ±
ne,

where n± is the density of positive and negative ions and
µe

µ±
∼ 100) :

τ =
ε0

qeµene

(3.9)

Assuming that TGFs self-quench themselves, one can also use this

timescale as a TGF characteristic rise time to estimate the corresponding

maximum electron density, that is τ ∼ 15 µs. Equation (3.9) shows that in

that case, ne ∼ 1013 m−3, which is also consistent with the case of an injection

rate of 1016 electron/s (see Figure 3.12).

The number of high-energy electrons can be written as:

Ne = Fz=400m · S · τ (3.10)

where S is the area of the RREA at the end of the acceleration region.

As previously discussed, owing to the steady state of the electron density

F = neνattλi. Substituting F and τ (equation (3.9)) in equation (3.10), one

obtains an expression for the total number of high-energy electrons in a TGF

that does not depend on the low-energy density or the injection rate:

Ne =
ε0λiνatt
qeµe

· S (3.11)

For a broad range of electric fields, this expression yields Ne ∼ 1017. It is

valid in subcritical conditions (electron density lower than saturation density)
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and simply comes from the assumption that the TGF quenches itself over a

duration equal to the dielectric relaxation timescale caused by the production

of secondary electrons. It is presumably the reason why previous works using

self-consistent calculations have obtained a consistent number of TGF photons

despite significant differences in the configurations, parameters, and methods

employed [e.g., Dwyer, 2012; Liu and Dwyer, 2013; Gourbin and Celestin,

2024b].

The role of the conductivity increase and corresponding dielectric relax-

ation of the field in TGF dynamics was already explicitly mentioned and

demonstrated in previous works [e.g., Dwyer, 2012]. However, to our knowl-

edge, it is the first time that such an analysis leading to a compact equation

(3.11), resulting in a consistent number of high-energy electrons at the TGF

source is conducted. Dwyer [2007] derived a formula for the fluence, that

yields relatively close results, although it was in the context of relativistic

feedback (Equation (39)).

We cannot exclude that the shortest observed TGFs (τ ≲ 10 µs) reach

the electron saturation regime. In such supercritical conditions, the expected

number of high-energy electrons is also appreciably constant at ∼ 1017 (e.g.,

see Figure 3.13). In the present work, this would correspond to the cases with

initial injection rates > 2.94 · 1018 electrons/s. This naturally indicates that
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TGFs cannot be shorter than ∼ 1 µs as determined from the RREA timescale.

The existence of a maximum electron density nsat
e ∼ 1015 m−3 reachable in

a TGF and a corresponding minimum TGF timescale of ∼ 1 µs (RREA rate

for a field of 16 × N

N0

kV/cm at 12 km) are also demonstrated for the first

time by the present work.

Even with more realistic TGFs consistent with maximum electron densi-

ties of ne ∼ 1013 m−3, we can infer a strong impact of the preionization on

subsequent leaders and streamers propagation dynamics and hence the re-

lated radio observations. Because the cross-section of the RREA at the end

of the avalanche is controlled by the diffusion of runaway electrons, the above

analysis points to the compactness of TGF sources with radii ≲ 200 m.

3.4 Concluding remarks

Using self-consistent simulations, we managed to highlight several effects not

reported before in other model studies:

• Due to the balance between ionization in the avalanche and dielectric

relaxation, a saturation density exists and acts as an upper limit for the

avalanche.

• This saturation density yields interesting consequences, as it also limits

the umber of high-energy electrons present at each instant, effectively

77



Chapter 3. Constraints on avalanche parameters

limiting the brightness of the TGF, at magnitudes similar to the ones

observed in the brightest TGFs.

• These limits also imply a lower limit on TGF timescale, as under such

condition, he reaches the expected brightness in about 1 µs.

• By generalizing these limits, assuming that the TGF will always eventu-

ally self-quench, we derive a formula for the number of electrons, consis-

tently resulting in a number of the order of 1017, weakly dependent on

the electric field.

• In the case of typical TGFs, we can infer a strong impact of the preion-

ization on subsequent leader/streamer dynamics following the emission

of TGFs.
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In this chapter, we focus on one of the two main mechanisms proposed to

produce runaway seed electrons triggering RREAs: the relativistic feedback

mechanism. This mechanism relies on backward propagating particles that

can eventually create new free runaway electrons around the area where the

first avalanche started, thus starting new avalanches [Dwyer, 2003]. This

mechanism allows for the production of a great number of electrons while

starting with relatively few runaway electrons. It is especially relevant in cases

where the background electric field is not much higher than the relativistic

runaway threshold field.

Dwyer [2003] describes two types of feedback. One possible case of feedback

is driven by photons: an electron can create a photon by bremsstrahlung
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emission that would go backwards, either directly or after being redirected

through Compton scattering, independently of the electric field. It then could

create new electrons through Compton scattering, photoelectric emission, or

positron-electron (e+e−) pair production. The other case of feedback is driven

by positrons: created through e+e− pair production, it would be accelerated

in the backward direction due to its positive charge, back to the start of the

RREA region, where it would free an electron via hard elastic scattering [e.g.,

see Pasko et al., 2023].

We present in the next section a study of the feedback threshold, where

we aim to find an estimation of the critical electric field for the mechanism.

The second section focuses on the properties of the mechanism, its ability

to sustain RREAs, and on the validity of the relativistic feedback model in

different environments. As stated in Chapter 2, our model does not include

the creation and propagation of positrons, and it is instead considered that

it annihilates immediately into two 511 keV photons. While this technically

prevents positron feedback to occur, given the relatively small lengths of the

acceleration region covered in the present study, counts of the various photon

interactions in our simulations have shown that e+e− pair production, if exist-

ing at all, was negligible compared to Compton scattering and photoelectric

effect.
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We precise that the results presented in this chapter are preliminary, and

require further research.

4.1 Feedback threshold

In order to assess the feasibility of the relativistic feedback mechanism in

RREA initiation, we perform a series of simulations to determine the critical

field above which it occurs.

4.1.1 Methods

As a preliminary study, we ran simulations with our self-consistent model to

quantify what value of the electric field would allow the feedback to occur,

and sustain multiple RREAs over time. By looking at the number of elec-

trons produced since start, we can determine if the mechanism is successful

at amplifying RREAs. However, an issue regarding the simulation had to be

addressed: as the RREA occurs and the number of electrons starts increasing

exponentially, the particle remapping algorithm starts forming particle elec-

trons with very significant weights. The problem comes from the fact that

each created photon is a computer particle that has the same weight as the

electron that created it. With the same logic, an electron created by a photon

will have the same weight as the incident photon. Because of that, a single

computer photon could start a RREA that represents orders of magnitude
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more electrons than the first one. While this is not an issue in the previous

chapter, as we were focusing on a single avalanche, where all particles are

concentrated in one structure, the possibility of relativistic feedback depends

on the behaviour of individual particles, and as such, the weight of the par-

ticle becomes highly relevant. While a great number of simulations would

still provide a correct representation on average, the coarse graining caused

by remapping removes the significance of one single run.

To avoid this problem, we instead decided to compare the number of elec-

trons produced by the first avalanche (also named primary RREA in this

chapter), with the number of secondary electrons, produced by secondary

avalanches initiated by secondary electrons that were created by photon in-

teractions in a second step. The second step of the photon transport is realized

using a Monte Carlo model that is much more efficient than the null-collision

technique (see Celestin and Pasko [2012] ; Østgaard et al. [2008]). We place

the system at an altitude of 12 km, on a domain of size z × r = 400 m × 500

m. The whole domain will be submitted to various electric fields in order to

quantify the feedback threshold.

The method can be summarized as follows:

1. Propagation of the primary RREA: We launch a single electron

(particle of weight 1) from the start of our domain (near the (0,0) point),
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and let it propagate. As it does, it ionizes and creates new electrons,

forming a RREA. It also creates photons via bremsstrahlung, and we

record the position where the photons were created, as well as their ve-

locity components, their energy and their weight. In this stage, photons

are just produced with a energy, momentum, and location, but are not

allowed to propagate. The run lasts until all primary electrons have left

the domain (z > 400 m), and we count at the end the maximum number

of electrons produced Np
e .

2. Propagation of the created photons: We then enter the photons

data we recorded as input into another code, that will take care photon

transport, and process their interactions. The photons here can prop-

agate either in the region z < 400 m, or as far as they can. As they

do, they can interact through Compton scattering, photoelectric effect

or e+e− pair production. This code does not take electron propagation

into account, and instead records the relevant data of the created elec-

trons: their positions, velocity components, energy, and weight. For each

photon, the run lasts until it crossed the boundary domain, or until it

reaches an energy < 1 keV.

3. Propagation of the secondary electrons: Lastly, we propagate the

newly created electrons, which act as secondary source electrons, in the
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same configuration as in the first step, until they all leave the domain,

and we look at the maximum number of secondary electrons produced

N s
e .

A summary of the method is shown in Figure 4.1.
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Photons 
created

Propagation of photons
No screen

Propagation of photons
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Secondary
electrons

Secondary
electrons

Secondary electrons
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All electrons

Secondary electrons
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Figure 4.1: Summary of the method used for the evaluation of the feedback thresh-
old. Np

e and N s
e are respectively the number of primary and secondary electrons

produced. For each step, different configurations may be used. For each Np
e , we

thus obtain four different N s
e .

By comparing N s
e with the number obtained at the end of the first step

Np
e , we can determine if the relativistic feedback mechanism was successful or

not, i.e., if the number of electrons produced in the third step N s
e is higher

that the number produced in the first step Np
e , that means that the feedback

managed to renew and increase the number of runaway electrons. On the

contrary, if N s
e < Np

e , that means that the feedback is not enough to renew

and amplify the RREA, and so that we are below the feedback threshold.

To assess how different configurations can influence our results, a second
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photon propagation case is made for each primary avalanche, in which we add

a screen at z = 400 m in the second-step calculation that blocks the photons

reaching it. We now have at the end of step 2 two sets of secondary electrons

for each primary avalanche.

Another point to address is the fact that secondary electrons are produced

over the whole domain, and therefore not all of them are able to generate a

significant amount of bremsstrahlung photons before leaving the simulation

domain. We can in particular imagine a case where most secondary electrons

are produced towards the end of the domain, near z = 400 m. In that case,

they may very well start avalanching, all of them producing enough electrons

to go beyond the number reached in the primary RREA, but a the same time

producing relatively few photons, and of lower energy than in the first step. In

that case, we would end up with a case where N s
e > Np

e , and thus, according

to our criteria, that would validate the relativistic feedback mechanism, but

in reality RREAs would not be sustained over repeated cycles. This would

presumably be the case for a photo-electron production length lower than the

RREA length.

To address this issue, we run another case in the third step, in which

only the secondary electrons located in the first avalanche length (between

z =0 m and z =λRREA) are propagated. Since the number of electrons we
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work with here is relatively low, we do not expect a significant change in the

electric field, and so we can assume that, if a secondary RREA starts near the

starting location of the primary one, it should be able to provide roughly the

same amount of photons and electrons as the primary RREA. This gives us a

better confidence in our results, although by significantly reducing the number

of secondary source electrons used. All configurations used are displayed in

Figure ??.

4.1.2 Results and discussion

We ran simulations over a range of electric field that is expected to be around

the feedback threshold [Dwyer, 2003; Skeltved et al., 2014; Pasko et al., 2023].

The results are presented Figure 4.2. The number of secondary electrons

produced can be compared to the number of primary electrons. For an electric

field of 10 × N/N0 kV/cm, secondary avalanches fail to reach a number of

electrons equal to Np
e . At 12 × N/N0 kV/cm, the case with no screen where

all electrons are taken into account manages to amplify the amount of electrons

above the amount produced in the first step. However, the other cases are

still below by several orders of magnitude. In particular, the case with no

screen but taking into account only the secondary source electrons in the first

avalanche length is below threshold. Presumably, one reason is that most

avalanching electrons are produced near the edge of the domain, blurring the
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Figure 4.2: Results of the simulations ran following the methods summarized Figure
4.1. The black line represent the number of primary electrons Np

e , produced during
the first step. The other lines represent the number of secondary electrons N s

e ,
produced during the third step, for different configurations.

field above which a full-fledged feedback is sustained. Another reason is the

randomness of the approach.

In all other cases, for E ≥14×N/N0 kV/cm, all simulations of secondary

RREAs produces a greater number of secondary electrons than there were

primary electrons. Thus, it should be safe to assume that, in these cases,

14×N/N0 kV/cm exceeds the critical field.

Deriving a precise value of the critical field is difficult in this case, as the

random aspect of the Monte Carlo technique not only plays a determining

role on whether or not a new avalanche starts, but also on the position where

87



Chapter 4. Relativistic Feedback Mechanism

photons and photo-electrons are created and toward where they propagate.

This explains the disparities between the different configurations used, and

why no proper fit seems to be applicable to these cases.

While it prevents us to give a definitive value on the critical field, we

can evaluate around where it stands. Looking at Figure 4.1, we can derive

two values that can act as minimum and maximum threshold values. The

minimum threshold is marked by the case “all electrons, no screen”, for which

N s
e is higher than Np

e at the lowest electric field among the four cases. It

yields a critical field Emin
th = 11.6 kV/cm. On the other side, the case which

is last to reach its critical field is the case “electrons in 1st λRREA, screen at

400 m”. It makes sense, since it is the case which put the most constraints on

the number of secondary electrons, by limiting the number of photons, and

then cutting the number of photo-electrons produced. It yields a critical field

Emax
th = 13.7 kV/cm.

These two cases are relevant, as they are respectively similar to the config-

urations used in Dwyer [2003]; Skeltved et al. [2014] for Emin
th , and Pasko et al.

[2023] for Emax
th . [Dwyer, 2003, Figure 3] predicts a critical field of 9.5 kV/cm,

which was also the value found by Skeltved et al. [2014] using another model.

On the other hand, Pasko et al. [2023] deduces for this length a critical electric

field of 15.6 kV/cm. It is clear, in their case, where each study used their own
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respective model, and in our case, where we used one model with different

configurations, that the configuration of the domain in which simulations are

performed is critical to assess the feedback threshold.

4.2 Feedback properties

In order to study the importance of relativistic feedback over different

timescales, and try to better understand its properties and constraints, we

ran self-consistent simulations with our model, starting from one runaway

electron, and artificially changing the probability of collision for photons Pcoll

(e.g., see details pertaining the null-collision method in Moss et al. [2006]).

We ran three simulations: all of them have a domain of z × r =400 m ×

500 m at an altitude of 12 km, start with initially one runaway electron at

(0,0), with no injection afterwards, and has a background electric field over

the whole domain of 20×N/N0 kV/cm. The first simulation (case 1) has the

true Pcoll. The second (case 2) has a probability of collision Pcoll × 10, and

the third (case 3) has a probability of collision Pcoll × 100. The simulations

are left to run long enough to assert whether the feedback mechanism is able

to sustain the RREA, of until there is no particle left. The results of the

simulations are shown Figure 4.3, 4.4 and 4.5, respectively for case 1, 2 and

3.
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Figure 4.3: Evolution of the simulation in a case when Pcoll remains unchanged. the
red circles represent photons, while the blue dots represent energetic electrons.
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Figure 4.4: Evolution of the simulation in a case when Pcoll is multiplied by 10. the
red circles represent photons, while the blue dots represent energetic electrons.

In case 1, we see the relativistic feedback occurring as expected. Indeed,

Dwyer [2003]; Skeltved et al. [2014]; Pasko et al. [2023] and our results in
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Figure 4.5: Evolution of the simulation in a case when Pcoll is multiplied by 100.
the red circles represent photons, while the blue dots represent energetic electrons.

the previous section all situated the critical electric field for feedback to be

below that value. We see photons propagating backwards, and starting new

avalanches at different locations of the domain. In case 2, the relativistic feed-

back mechanism is significantly amplified, as we could have expected. Indeed,

by multiplying the probability of collision by 10, we increase the probability of

photo-electron production, and so runaway electron production. We note that

most photons and electrons remain located on the right half of the domain. In

case 3, something peculiar happens: while the primary RREA does develop

normally, emitted photons seem to remain trapped inside the main body of

the avalanche, rarely escaping more than a few meters away before disappear-

ing. Because of that, all the produced electrons remain confined inside the
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primary avalanche, and the RREA was not self-sustained over time.
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Figure 4.6: Number of high-energy electrons (> 1 MeV) in our domain as a function
of time, and produced since start, for three different simulations, using different
Pcoll.

The number of energetic electrons for each case is shown Figure 4.6. Since

electrons disappear and reappear continuously over time as a result of going

out of the domain and being produced by photon collisions respectively, the

number of electrons produced since start is a good indicator about the effi-

ciency of relativistic feedback: if this number stagnates, it means the feedback

has no effect. If it increases, it means it is successfully increasing the RREA

intensity.

The trend while the primary RREA is still in the domain is the same

for the three cases. It means that, while the first avalanche is still going

on, it is electron interactions that leads to RREA intensification. Once this
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avalanche gets out of the domain, the feedback process takes over. We notice

that the increase happens in steps. This is mostly due to the discrete effect

induced by remapping, as described in the previous section: a particularly

“heavy-weight” photon is emitted backwards via bremsstrahlung, and start

an avalanche with one “heavy-weight” electron, which creates particles of the

same weight, making the produced RREA lead the increase of the number

of electrons, like the primary one. Considering the time and the number

of timesteps the simulations lasted, we assume that if we were to take each

electron as an individual particle in our simulation, the overall increase from

start to finish would be similar, but smoother.

The increase due to relativistic feedback is much slower than the increase

due to the primary avalanche. For case 1 which uses the standard Pcoll, rel-

ativistic feedback increases the number of electrons produced by one order

of magnitude in 10 µs. Starting from 107 electrons, for an electric field of

20 (×N/N0) kV/cm, it would requires about 100 µs to reach 1017 energetic

electrons. Considering how intense the electric field is in these simulations,

and that we usually consider a TGF rise time of ∼ 15 µs, it questions whether

the relativistic feedback mechanism would be sufficient to explain TGF obser-

vations [e.g., Mailyan et al., 2016]. It also seems that the number of primary

electrons reached by the first avalanche will also plays an important part re-
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garding the dynamics of the system. This highlights the importance of the

length of the acceleration region: a longer acceleration region not only reduces

the feedback threshold [Dwyer, 2003; Skeltved et al., 2014; Pasko et al., 2023],

but also allows the primary RREA to reach a higher number of electrons

before fading out.

For case 3, it appears that, by increasing the probability of collision by

a hundred, we have decreased the photon mean free path length below the

characteristic longitudinal extent of the RREA, making the relativistic feed-

back mechanism non-sustainable over time (for a finite acceleration region).

This recalls the “problem case” mentioned in the previous section, where most

photo-electrons produced would be near the edge of the acceleration domain,

because this is exactly what happens here: the photon production is more

intense when the RREA is more developed, so near the end of the accelera-

tion region. Hence the majority of photons are in this region, and because of

their modified probability of collision, they can’t propagate beyond a distance

∼ λRREA. Thus, even though they may be as much, or perhaps even more,

photo-electrons produced, than primary electrons (case where N s
e ≥ Np

e in the

previous section), they effectively are unable to start new RREAs.

While this result was obtained by manually changing a parameter oth-

erwise constrained by the environment, it does not mean this situation is
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completely unrealistic. While this may not be really relevant in air, it has

an obvious theoretical importance and might be relevant to other gases. It

also shows the limits of a multi-steps method as used in Dwyer [2003] or in

the previous section. The relativistic feedback mechanism appears to be a

complex spatio-temporal problem, and its temporal aspect especially cannot

be ignored. Acknowledging this, self-consistency seems to be more relevant

than ever if we wish to properly describe it.

4.3 Discussion

To increase our confidence in our feedback threshold estimations, and perhaps

obtain a proper trend as a function of the electric field, we would need to

perform at least several simulations for each case and electric field, but also

evaluate the validity and trustworthiness of each case, especially regarding

the cases using only source electrons inside the first avalanche length. For

10 and 12 kV/cm, it had reduced the number of electrons to several tens,

and sometimes none had enough energy to restart a RREA. Considering the

simulations at 12 kV/cm, where the main difference in the results is of three

orders of magnitude, and that one of the cases does produce feedback, it

is important to consider carefully the configuration used before drawing a

conclusion.
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Regarding the results presented in Section 4.2, they open the question of

the feasibility of the relativistic feedback mechanism in various environments.

Further research is required in order to reach more conclusive results. Previous

works focused on positron feedback and deemed it significant, so it would be

wise to include it in future self-consistent simulations, to assess its effect on

RREA propagation and sustaining.

4.4 Conclusions

• We showed that it is important to account only for fully-fledged RREAs

when quantifying the relativistic feedback threshold field. This point is

instantiated by the fact that positive feedback can be non-self-sustaining

(see case 3 in Section 4.2).

• The limited region of space for photon propagation can explain differ-

ences between thresholds obtained by Dwyer [2003] and Skeltved et al.

[2014], with those obtained by Pasko et al. [2023], at least partially.

• We have also pointed out that relativistic feedback is unlikely to be the

only seeding mechanism for RREAs when typical lengths and timescales

believed to be present in TGFs are considered (at least in the linear

regime).
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General Conclusions

5.1 Summary

In the course of this Ph.D. research, we first developed a new model for simu-

lating relativistic runaway electron avalanches (RREAs). In order to address

the need for simulations able to reproduce a wide variety of phenomena (such

as RREAs, bremsstrahlung, radio emissions, etc.), we have chosen to develop

a fully self-consistent model. Indeed, the electrostatic approximation may not

be able to accurately represent the phenomena in which energetic electrons

propagates with a speed nearing the speed of light, and so we instead use an

electromagnetic model, hence guaranteeing a causal description of the system.

The model makes use of multiple numerical techniques, such as:

• A Monte Carlo method, which models the collisional dynamics of pho-

tons and electrons. It constrains the timestep by the use of the null-

collision method, and uses cross section data and analytical formulas to

simulate the dynamics of each particle.

• An electromagnetic particle-in-cell (PIC) method, that allows the simu-

lation of interactions between the electromagnetic field and charged par-
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ticles. The particle-in-cell code uses the Maxwell-Ampere and Maxwell-

Faraday equations to update the electromagnetic field at each timestep,

contrary to most previous models, which use the electrostatic approxi-

mation and solve the Poisson equation.

• A fluid part, which is in charge of modelling the physics of ions and low-

energy (< 1 keV) electrons, limiting the number of individual particles

the model has to process.

• A remapping algorithm, which merges particles (photons and energetic

electrons), limiting the number of particles the model has to compute,

by attributing a statistical weight to computer particles.

The complete model allows for a time-resolved high-resolution simulation of

the RREA process and associated phenomena. Validating the continuity equa-

tion at each instant is primordial for the PIC scheme to remain stable, so we

use a specific current assignment scheme: the Villasenor scheme, and an spe-

cific field interpolation scheme: the cloud-in-cell (CIC) scheme. We tested the

model for validation by simulating a perturbation in a warm homogeneous

plasma, and confirmed that our model was working as intended.

Using our newly developed model, we design simple configurations to sim-

ulate RREAs in various environments, and from the results we draw several
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conclusions:

• When reaching a certain density, the RREA self-quenches and the elec-

trons density stops increasing. This observed saturation is due to the

balance between the creation of new free electrons by ionization of air

molecules, and coulombian forces repelling electrons from each other.

This balance is translated into the equality between the avalanche char-

acteristic time, τRREA, and the dielectric relaxation time, or Maxwell

time, τM . This equality allows us to determine a formula for the elec-

tron saturation density: ne =
ε0

qeµeτRREA

.

• We observe that the saturation of electron density leads to the stabiliza-

tion of the number of high-energy (>1 MeV) electrons. By assuming that

any TGF will eventually self-quench because of a high-electron density,

we find that the RREA will yield a number of high-energy electrons fol-

lowing this formula: Ne =
ε0λiνatt
qeµe

· S. For an assumed compact source,

this formula gives a number of electrons Ne ∼ 1017 over a wide range

of electric fields, which is consistent with observations of high-intensity

TGFs.

• The self-quenching assumption for TGFs implies that the electron satu-

ration density is an upper limit. Because of the timescale of the relax-
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ation of the field (Maxwell time), inversely proportional to the electron

density, this implies a lower limit on TGF duration, of ∼1 µs, according

to the speed at which the saturation is reached.

• Taking the self-quenching of TGF into consideration, we can infer a

strong impact on leader and streamer dynamics in lightning propagation.

It is worth noting that the model configurations leading to those results were

emulating the conditions inside the streamer corona at the tip of a leader,

with high electric fields over a short domain, and high amount of electrons

injected.

In parallel, we intended to evaluate the feasibility of the relativistic feed-

back mechanism, and to characterize it. In order to compare our results with

previous estimations, we devised a multi-step protocol, to estimate the feed-

back critical electric field, above which the feedback is able to amplify the

RREA. Preliminary results show that differences in configurations will have a

significant impact on the result. The case where photons are free to propagate

as far as they can, and where all photo-electrons are taken into account yields

a value of the feedback threshold of 11.6 kV/cm. On the other hand, the

case where photons are blocked at z = 400 m, and where only photo-electrons

within the first λRREA remain, yields a critical field of 13.7 kV/cm. It ap-

pears that a significant fraction of photo-electrons were produced closer to
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the end of the acceleration region rather than the starting location of the first

RREA. Not only that, but blocking the photons at 400 m prevents photons

from going beyond and then turning back, which limits further the number

of photo-electrons in the second case. However, secondary RREAs in the sec-

ond case are all starting near the start of the acceleration region where the

first RREA started, ensuring that they can fully develop and then sustain

the feedback over multiple cycles. Although it requires more simulations to

arrive at a more accurate value, it shows that the method should be able to

reach a precise and accurate result. Running multiple simulations for each

case should reduce the randomness of the results, and allow to reach more

precise and accurate values.

Using our model, we perform self-consistent simulations in configurations

allowing the feedback to happen, and we make the collision probability of

photons vary, in order to demonstrate the need to take into account only

full-fledged RREAs when studying the self-sustainability and thresholds of

feedback processes. From the results, we observe that, using standard param-

eters, the relativistic feedback mechanism amplifies RREAs at a slow rate even

at very high electric fields. It implies that feedback is unlikely to act alone

in the brightest and shortest TGFs. By manually increasing the probability

of collision of photons, we reach a point where their mean free path length is
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decreased too much to allow photons to leave the avalanche, hence preventing

the formation of new RREAs. This is a case where, although the feedback is

positive according to the criteria we previously used, it is non-self-sustaining.

With this case, we thus highlight the importance of taking into account all

aspects (spatial and temporal) of the relativistic feedback when studying it.

5.2 Perspectives

The model developed in this thesis is highly flexible and allows for a wide

variety of simulations. However, improvements are required to further expand

the understanding of TGFs.

The boundary conditions used, although simple, are sufficient for the cases

considered in this study (short timescales). However, when the need arises for

longer, more accurate simulations, they will need to be replaced by open

boundary conditions, such as perfectly matched layer (PML) [Lehe et al.,

2022], to prevent instabilities due to electromagnetic waves bouncing on the

borders of the domain.

To allow for faster simulations, parallelization will need to be implemented.

While each method used in our model have been parallelized efficiently before,

the complexity is in implementing an efficient parallelization for the combina-

tion of all of them altogether.
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As mentioned in previous chapters, e+e− pair production is not completely

modelled, and positrons are not taken into account as particles in the model

yet. Following the conclusion of the previous chapter, it becomes important

to implement this aspect, in order to assess the true importance of positron

feedback in making RREAs.

When the model will have been sufficiently improved, further studies will

be available to us: by doing longer simulations, with more refined meshes,

reproducing the observed radio emissions (from the low-frequency (LF) range

to the very high-frequency (VHF) range) will be within the model’s reach. As

concluded in Chapter 4, the study of the relativistic feedback mechanism can

benefit from a more in-depth analysis, with more simulations and an assess-

ment of how domain configurations influence the result. Non-linear regimes

also need to be explored, to assess the effects it could have on RREA self-

sustaining mechanisms.

This model, while still incomplete, presents a new way of simulating

RREAs, and shows the necessity of self-consistent simulations in order to

do so.
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6.1 Introduction

Les flash de rayons gamma terrestres (ou TGF, pour Terrestrial Gamma-ray

Flash) sont des émissions intenses et très brèves de rayons gamma émises pen-

dant les orages. La première observation de ce phénomène est reportée dans

Fishman et al. [1994], et depuis de nombreuses observations ont pu être réal-

isées. Le TGF tient sa source au coeur des nuages d’orages. Des observations

ont permit de contraindre sa durée à un ordre de ∼ 100 µs [Fishman et al.,

2011]. Il se traduit par l’émission de 1017 à 1019 photons gamma [Dwyer and

Smith, 2005; Gjesteland et al., 2015; Mailyan et al., 2016, 2019; Lindanger

et al., 2021], ceux-ci pouvant atteindre une énergie de ∼40 MeV [Briggs et al.,
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2010]. L’altitude d’émission de ces photons gamma a été estimée entre 10 et

15 km [Dwyer and Smith, 2005]. La plupart des TGFs sont émis vers le haut,

d’où les nombreuses observations satellites, cependant des TGFs émis vers le

bas ont également été découverts [Dwyer et al., 2004; Abbasi et al., 2018; Belz

et al., 2020].

En parallèle des observations de rayons gamma, des émissions optiques

[e.g., Heumesser et al., 2021; Skeie et al., 2022] et radio sur une grande gamme

de fréquences ont également été observées et associées aux TGFs. Parmi eux,

les pulses énergétiques intranuages (Energetic In-cloud Pulses (EIPs), [e.g.,

Lyu et al., 2016; Tilles et al., 2020]), les pulses lents basse fréquence (slow

LF pulses, [e.g., Lyu et al., 2016; Tilles et al., 2020]), et les émissions à très

hautes fréquences (VHF emissions, [e.g., Lyu et al., 2018]).

Comprendre les TGFs est essentiel, non seulement à une meilleure com-

préhension des événements orageux et des processus physiques ayant lieux

durant ceux-ci, mais également afin d’estimer le potentiel danger que ces ray-

onnements énergétiques peuvent présenter, notamment pour les vols commer-

ciaux et leurs passagers. On a estimé leur nombre à 400 000 par an [Briggs

et al., 2013], mais ce nombre a récemment été mis en doute par la campagne

ALOFT [Østgaard et al., 2023], dont les résultats préliminaires ont reportés

l’observation de nombreux TGFs n’ayant pas pu être observés par d’autres
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instruments, ce qui met en doute ce nombre. Des études de dosimétries ont

été menées afin d’estimer le risque auquel les équipages de vols commerciaux

s’exposent [e.g., Pallu, 2022], néanmoins les incertitudes sur la fréquence des

TGFs présentent un obstacle majeur.

Il fait consensus que les TGFs sont créés à partir d’avalanches

d’électrons runaway relativistes (ou RREA, pour Relativistic Runaway Elec-

tron Avalanche). L’idée est qu’un électron suffisamment énergétique plongé

dans un champ électrique peut gagner plus d’énergie par ce champ qu’il n’en

perd par collision avec les molécules de l’air: il devient “runaway”. Cela lui

permet d’atteindre des énergies de plusieurs MeV, et ainsi ioniser le milieu,

libérant des électrons dont certains deviennent à leur tour runaway, ce qui finit

par créer la RREA. En même temps, il créé des photons gamma par rayon-

nement de freinage, aussi appelé bremsstrahlung. Néanmoins la manière dont

est créée cette avalanche fait débat. En effet, afin de produire une RREA

suffisamment intense pour correspondre aux observations de TGFs, il faudrait

une RREA avec un grand nombre d’électrons sources, soumis à un champ

très élevé sur des distances de plusieurs kilomètres. Deux théories pourraient

expliquer la production de RREAs assez intenses:

• Le mécanisme de feedback relativiste (relativistic feedback mechanism),

qui repose sur l’émission de photons et positrons en direction de la zone
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de départ de la première RREA, ce qui leur permet d’initier de nouvelles

avalanches, multipliant la quantité d’électrons runaway produits, jusqu’à

en obtenir suffisamment.

• Le mécanisme de runaway thermique (thermal runaway, ou leader

based), qui repose sur la création de RREAs lors de la propagation

d’éclairs: au bout d’une structure conductrice de gas ionisé appelée

leader, des filaments de plasmas appelés streamers apparaissent, formant

une zone où le champ électrique est très intense. Dans cette zone, une

grande quantité d’électrons peut être injectée à partir du leader, ce qui

pourrait initier une RREA suffisamment intense pour créer un TGF.

Pour le moment, nous manquons d’informations pour réussir à valider ou

invalider l’une ou l’autre des théories. Le mécanisme thermal runaway n’estpas

incompatible avec le feedback relativiste, mais il est habituellement considéré

pour des zones d’accélération plus courtes [Pasko et al., 2023].

De nombreux modèles numériques ont été réalisés afin de mieux compren-

dre la RREA, ainsi que les émissions associées. Plusieurs sont parvenus à

modéliser de manière précise la RREA [e.g., see Dwyer, 2021; Berge et al.,

2022], et beaucoup de propriétés sont maintenant connues. Néanmoins, la

plupart des émissions radio associées n’ont pas encore pu être reproduites, et

beaucoup de questions demeurent.
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Afin de mieux comprendre le mécanisme des RREAs, nous avons créé

un nouveau modèle auto-consistent, s’appuyant sur une méthode de particle-

in-cell (PIC) électromagnétique afin de simuler pleinement les interactions

entre les particules chargées et le champ électromagnétique. Le détail de la

méthode est présenté dans la section 6.2. Les premiers résultats et l’étude

des caractéristiques des RREAs sont présentés dans la section 6.3. L’étude du

mécanisme de feedback relativiste est présenté dans la section 6.4.

6.2 Méthodes

Le modèle utilisé regroupe de multiples méthodes numériques afin d’être le

plus exhaustif possible.

Une méthode Monte Carlo est utilisée pour simuler les collisions des pho-

tons et des électrons pendant la simulation. Cette partie du modèle est basée

sur le modèle Monte Carlo développé par Celestin and Pasko [2011]. Le mod-

èle comprend 3 dimensions de l’espace des configurations, 3 dimensions de

l’espace des vitesses, est relativiste, et simule la dynamique des électrons et

photons sur des énergies allant de la fraction d’eV à la centaine de MeV. Cela

étant dit, nous nous limitons à suivre la propagation d’électrons de haute én-

ergie (>1 keV), les autres étant traités dans un modèle fluide. On considère

l’air comme une mixture composée à 80% de diazote et 20% de dioxygène.
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Une grande variété de collisions est prise en compte dans le modèle:

• Les excitations rotationnelles, vibrationnelles, électroniques, ainsi que

les processus dissociatifs pour l’O2 sont calculées à partir de tables de

sections efficaces.

• L’ionisation, modélisée via le modèle de Bethe relativiste (relativistic

binary-encounter-Bethe (RBEB)).

• L’attachement à deux et trois corps, bien qu’il ne devrait pas être signi-

ficatif pour les énergies considérées (> 1 keV).

• Les collisions élastiques. On se place dans un cas à haute-énergie (>500

eV), et le collisions avec les molécules sont considérées comme similaires

avec les collisions élastiques avec atomes. On considère que σm
e (ε) ≃

2σa
e (ε).

• Le bremsstrahlung est modélisé en extrapolant les sections efficaces de

Seltzer and Berger [1986] sur l’ensemble des énergies considérées.

• L’effet Compton est décrit en utilisant la formule de Klein-Nishina et la

conservation de la quantité de mouvement [Lehtinen, 2000; Pilkington

and Anger, 1971; Heitler, 1960].

• L’effet photoélectrique est considéré comme transférant l’intégralité de
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l’énergie du photon à l’électron, et l’angle d’émission est calculé en util-

isant la formule 2.15.

• La production de paires positron-électron (e+e−) est simplifiée en consid-

érant que le positron émis est immédiatement annihilé en deux photons

de 511 keV. Pour la plupart des cas considérés dans cette étude, la pro-

duction de paires est négligeable comparée aux deux autres interactions

du photon, aussi cette approximation ne devrait pas avoir beaucoup

d’effet.

Le code particle-in-cell est décrit clairement et en détail dans Lehe [2014].

L’objectif est de calculer aussi précisément que possible les interactions

coulombiennes entre particules chargées. Le champ électromagnétique est

modélisé sur une grille, la charge et le courant dû aux particules chargées sont

assignés sur cette grille en utilisant des schémas d’assignation spécifiques.

Une fois le champ électromagnétique mis à jour, il est interpolé à la position

des particules chargées en utilisant des schémas d’interpolation similaires aux

schémas d’assignation. Pendant la durée d’un pas de temps, le code PIC va

effectuer 4 tâches:

1. Interpolation du champs électromagnétique sur les particules, en util-

isant le schéma “nuages dans cellules” (Cloud in cell (CIC)).
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2. Mouvement des particules chargées, en utilisant les équations de Newton

relativistes, ainsi que l’algorithme de Boris.

3. Assignation de la charge et du courant des particules chargées à la grille,

en utilisant pour la charge le schéma CIC, et pour le courant le schéma

de Villasenor. L’emploi d’un schéma spécifique pour le courant est néces-

saire afin de garantir la conservation de la charge.

4. Mise à jour du champ électromagnétique sur la grille, en utilisant une ver-

sion discrète des équations de Maxwell-Ampère et Maxwell-Faraday. Un

schéma “finite-difference time-domain” (FDTD) est utilisé. Les différents

composants du champ électromagnétique sont calculés à différentes posi-

tions sur une maille de Yee. Le champ magnétique est également décalé

dans le temps par rapport au champ électrique. Au moment d’interpoler,

nous prenons donc la moyenne sur deux pas de temps du champ magné-

tique pour avoir une valeur sur l’instant considéré.

On valide le modèle en simulant un plasma et en vérifiant que l’on retrouve

bien la relation de dispersion attendue pour une simulation PIC (cf Figure

2.5).

Une partie fluide prend en charge les ions ainsi que les électrons de basse-

énergie (<1 keV). Leur mouvement est régit par des équations de “drift-
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diffusion”

Afin de pouvoir suivre les électrons alors qu’ils croissent de manière ex-

ponentielle, une technique d’échantillonage appelée remappage (ou “remap-

ping”) est utilisée. Chaque particule suivie correspond à un certain nombre

d’électrons, qui est le “poids” statistique W de la particule. Lorsque le nom-

bre de particules dépasse un certain nombre, les particules sont triées, par

positions et énergies voisines, puis fusionnées entre elles avec leur plus proche

voisin. Les données de la particule résultante sont choisies au hasard parmi les

deux particules initiales, pondérées par leur poids, et le poids de la nouvelle

particule est l’addition du poids des particules initiales.

Les limites du domaine sont conductrices. Des instabilités peuvent appa-

raître dû au fait que les ondes électromagnétiques vont être réfléchies par les

bords. Cependant, les simulations étudiées dans cette thèse sont suffisamment

courtes, et le domaine de simulation est suffisamment étendu, pour que l’on

puisse ignorer les effets dû aux réflexions du champ électromagnétique. Dans

certains cas tests, des limites périodiques sont implémentées afin d’éviter la

perte d’électrons.
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6.3 Contraindre les paramètres de la RREA

Avec notre modèle, nous avons réalisé plusieurs simulations afin de mieux

cerner le processus de RREA. Les premières simulations sont effectuées sur

un domaine z × r = 4200 m ×1200 m. L’altitude choisie est de 12 km, et

l’ensemble du domaine est soumis à un champ de 5 × N/N0 kV/cm, où N0

est la densité de l’air au niveau du sol, et N la densité de l’air à l’altitude

considérée. Les électrons sont injectés soit continuellement tout le long de la

simulation, soit tous injectés initialement au début de la simulation. Nous

avons laissés tourner les simulations suffisamment longtemps pour laisser le

temps à l’avalanche de traverser tout le domaine. A l’issue de ces simulations,

nous avons observés plusieurs phénomènes intéressants:

• La densité d’électrons de basse énergie (< 1 keV) semble saturer autour

de 1015 m−3.

• Lorsque la saturation est atteinte, le champ est complètement écranté.

• Le nombre d’électrons de haute énergie (> 1 MeV) semble se stabiliser

autour de 1017 lorsque la saturation de densité est atteinte.

• Le courant produit par l’avalanche atteint 106, et le champ magnétique

associé mesuré à 150 km atteint des valeurs de l’ordre de ∼ 1 µT.

Le courant et le champ magnétique sont bien au-delà des valeurs mesurées,
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ce qui est dû au fait que les cas étudiés ici sont peu réalistes: le champ

électrique appliqué à tout le domaine est intense, homogène, et infini.

L’écrantage du champ électrique semble indiquer que la saturation de den-

sité a à voir avec les interactions électromagnétiques. Cette saturation peut

être expliquée en considérant l’équilibre entre les forces coulombiennes qui

repoussent les électrons entre eux, et le phénomène d’ionisation qui crée con-

tinuellement de nouveaux électrons libres. Ils sont respectivement caractérisés

par le temps de relaxation diélectrique, ou temps de Maxwell τM =
ε0

qeµene

,

où ε0 est la permittivité du vide, qe la charge de l’électron, µe la mobil-

ité de l’électron et ne la densité d’électrons, et le temps caractéristique de

l’avalanche τRREA =
λ

Ve−
, où λ est la longueur caractéristique de l’avalanche

et Ve− la vitesse des électrons. En considérant l’égalité entre les deux, on

peut en déduire une formule pour la densité: ne =
ε0

qeµeτRREA

. Cette formule

donne pour notre cas ne = 3.2806×1014 m−3, ce qui est de l’ordre de la valeur

observée dans la simulation.

Afin d’expliquer la stabilisation du nombre d’électrons, nous effectuons

d’autres simulations, dans un domaine z × r = 3000 m ×1200 m, où la zone

entre z = 0 et z = 400 m est soumise à un champ de 16 × N/N0 kV/cm, ce

qui en fait une zone d’accélération pour les électrons injectés. Les électrons

sont injectés continûment à un taux constant durant la simulation. Les dif-
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férentes simulations sont effectuées en faisant varier ce taux d’un cas à l’autre.

Nous confirmons que la stabilisation précédemment observée est bien due à

la saturation. De plus, en supposant que l’avalanche finit toujours par faire

s’effondrer le champ électrique, nous parvenons à déduire une formule pour le

nombre d’électrons produit par la RREA: Ne =
ε0λiνatt
qeµe

· S, où S est la sec-

tion latérale de l’avalanche à la fin de la zone d’accélération, λi la longueur de

libre parcours moyen associée à l’ionisation et νatt la fréquence d’attachement.

On obtient la valeur Ne ∼ 1017, très peu dépendante du champ électrique, et

correspondant aux valeurs observées dans les TGFs les plus intenses.

6.4 Mécanisme de feedback relativiste

Les résultats présentés dans ce chapitre sont préliminaires.

Nous cherchons dans ce chapitre à mieux comprendre le mécanisme de

feedback relativiste. Nous commençons par essayer de déduire le champ seuil

(ou critique) au-delà duquel ce mécanisme est efficace à amplifier la RREA.

Les simulations sont effectuées dans un domaine z × r = 400 m ×500 m, à

une altitude de 12 km. Les champs électriques sont homogènes sur tout le

domaine. Nous suivons le protocole suivant:

1. Une première avalanche est simulée, commençant initialement avec un

électron à 1 MeV, sans propagation des photons, mais où on enregistre
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leur coordonnées lorsqu’ils sont créés par bremsstrahlung ainsi que leur

données physiques. Les simulations durent jusqu’à ce qu’ils n’y aient plus

d’électrons dans le domaine. On enregistre à la fin combien d’électrons

ont été créés.

2. Les photons sont ensuite propagés via un autre modèle, et on enreg-

istre les données physiques des électrons créés ainsi que leur position de

création.

3. Enfin, ces nouveaux électrons sont à leur tour propagés de la même

manière qu’à la première étape, jusqu’à ce qu’il n’y ait plus d’électrons

dans le domaine, et on enregistre à la fin combien d’électrons ont été

créés.

Les simulations sont effectuées à différents champs électriques. Si le nombre

d’électrons créés à la troisième étape est supérieur au nombre d’électrons créés

à la première étape, c’est que le champ électrique est suffisant pour perme-

ttre au feedback relativiste de fonctionner. Nous effectuons les simulations

dans différentes configurations, en rajoutant un écran qui absorbe les pho-

tons qui se propagent au-delà de 400 m, ou bien en ne lançant la troisième

étape qu’avec les électrons présents dans la première longueur d’avalanche.

Nous pouvons ainsi constater comment ces configurations influent sur le résul-
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tat. Les différentes configurations donnent des résultats variés, allant d’une

valeur du champ seuil de 11.6 kV/cm pour le cas sans écran et en prenant

en compte tous les photo-électrons, à 13.7 kV/cm pour le cas avec écran

en ne prenant en compte que les photo-électrons présents dans la première

longueur d’avalanche. Ces configurations sont rappellent dans une certaine

mesure Dwyer [2003] et Skeltved et al. [2014], qui trouvent une valeur de

9.5 kV/cm, et Pasko et al. [2023], qui parvient à une valeur 15.6 kV/cm, re-

spectivement. Définir une tendance est compliqué, dû à l’aspect aléatoire du

Monte Carlo. Néanmoins, la variabilité entre les différentes configurations

montrent l’importance de celle-ci dans la détermination de ce champ seuil.

D’autres simulations devront être effectuées afin d’obtenir des valeurs plus

précises, et d’étudier plus en profondeur comment chaque configuration influe

sur le résultat.

Nous avons ensuite effectué des simulations auto-cohérentes dans le même

domaine, avec un champ de 20×N/N0 kV/cm, afin d’étudier les propriétés

du feedback. Nous notons que l’accroissement du nombre d’électrons dû au

mécanisme de feedback relativiste est bien plus faible que celui dû à l’avalanche

elle-même. Quand bien même la taille de la région d’accélération pourrait

influer sur ce résultat, il apparaît qu’il serait compliqué pour le feedback seul

de former et d’amplifier les RREAs. De plus, nous notons que, si l’on augmente
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suffisamment la probabilité de collision des photons, leur libre parcours moyen

devient trop court pour permettre au photons de retourner dans la zone de

départ de l’avalanche initiale, ce qui donc empêche le phénomène de feedback

de se produire.

Même si ce résultat a été obtenu en modifiant manuellement un paramètre

autrement contraint par l’environnement, il permet de constater une situation

problématique, dans laquelle la plupart des photo-électrons sont produit vers

la fin de la zone d’accélération, plutôt qu’au voisinage de la zone de départ

de la première RREA. Dans ce cas, la méthode utilisé pour déterminer le

champ seuil peut conclure à un feedback positif, alors que celui-ci ne serait

pas auto-entretenu. Cela démontre la pertinence du cas dans lequel seul les

photo-électrons présent dans la première longueur d’avalanche sont considérés.

Plus généralement, ce cas met en avant le fait que le mécanisme de feedback

relativiste est un phénomène complexe, dont tous les aspects spatiaux et tem-

porels doivent être pris en compte.

Là également, une étude plus approfondie est nécessaire afin d’obtenir des

résultats plus précis. Nous rappelons enfin que notre modèle ne modélise pas

les positrons. D’autres études ayant conclu à l’importance du feedback par

positrons, il serait judicieux de l’implémenter pour de futures études, afin

d’étudier son réel impact.
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6.5 Conclusions Générales

Le modèle utilisé est inédit par son auto-cohérence et par la large gamme de

phénomènes physiques qu’il est ainsi capable de simuler.

Grâce à ce modèle, nous observons certains propriétés liés à la propaga-

tion d’une RREA, telle que la saturation de densité, qui peut s’expliquer par

l’équilibre entre les forces coulombiennes et l’ionisation de l’avalanche. Nous

parvenons également à expliquer la stabilisation du nombre d’électrons des

TGFs intenses en supposant que la RREA finit toujours par effondrer le champ

électrique, et retrouvons les valeurs observées pour ce nombre d’électrons.

Afin d’étudier le mécanisme de feedback relativiste, nous mettons au point

une méthode afin de déterminer le champ critique au-delà duquel ce mécan-

isme est efficace à amplifier la RREA. La méthode permet d’arriver à de

premiers résultats, avec des champs seuil minimum et maximum de 11.6 et

13.7 kV/cm respectivement. Les variations du champ seuil d’une configura-

tion à l’autre mettent en lumière l’importance de la configuration utilisée. En

effectuant des simulations auto-consistentes, nous notons que le mécanisme

de feedback accroît lentement le nombre d’électrons comparé à la première

RREA. De plus, nous mettons en évidence la complexité de ce phénomène,

l’importance de prendre en compte tous ses aspects spatio-temporels, et les

limites qu’une approche trop simple peut présenter pour le caractériser.

120



6.5. Conclusions Générales

En travaillant sur les conditions limites du modèle et son optimisation,

nous espérons pouvoir effectuer de plus longues simulations, et parvenir à

reproduire les ondes radios observées en association avec les TGFs. Mod-

éliser les positrons en tant que particules sera nécessaire afin d’étudier plus en

profondeur le mécanisme de feedback relativiste. Une fois ces améliorations

effectuées, une étude plus approfondie des stages non-linéaire des RREAs (sat-

uration, écrantage), et les conséquences sur les mécanismes de maintien de la

RREA, pourra être effectuée.
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Appendix A

Instantaneous initial injection

We display here the results for the case with an initial, instantaneous injection,

mentioned in Chapter 3.
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Figure A.1: Cross-sectional view of the low-energy electron density
[log10(particle/m3)] at different times. The high-energy electrons appear as
black dots. The time passed since the beginning of the run is indicated at the top
of each plot. The r-axis has been mirrored for clarity, as the model is axisymmetric.
However, the high-energy electrons are shown in cartesian coordinates (x,z), to
avoid doubling the number of points. One of the approximation our model entails
is that each particle, which is a point, project its charge and current as a ring on
our grid.
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Figure A.2: Electron and ion densities along the z-axis at different times for initial
injection (the densities shown in this figure are averaged in the r-dimension between
r = 0 m and r = 67.2 m). The time passed since the beginning of the run is
indicated above each plot. The blue, red, and black lines represent respectively the
density of electrons, negative ions, and positive ions.
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Figure A.3: Electron energy distribution for the case with initial injection.
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Figure A.4: Electric field near the axis r = 0 m (center of the avalanche) at different
times for a simulation with initial injection. The r and z component of the electric
field are shown as a function of z, as well as the (x, z) particle coordinates. Ez is
shown on the axis, Er is shown at r = 8 m.
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Figure A.5: Number of electron with an energy higher than 1 MeV as a function of
time, for the simulation with initial injection.
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Figure A.6: Absolute value of the total electric current and its components (con-
duction and displacement) produced at different moments of time for the case with
an initial injection.
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Pierre GOURBIN 

 
Modélisation auto-consistente d'avalanches d'électrons runaway 

relativistes produisant des flashs gamma terrestres 
Résumé :  

Les flashs de rayons gamma terrestres (TGFs) sont des émissions très intenses et très brèves de rayons 
gamma se produisant durant les orages. Rapportés pour la première fois en 1994, de nombreuses recherches 
ont été menées afin de comprendre ses propriétés et origines. Il y a consensus quant au fait que les TGFs 
sont produits dans les nuages d’orage par des avalanches d’électrons runaway relativistes (RREAs): un 
électron soumis à un champ électrique suffisamment élevé peut gagner plus d’énergie du champ qu’il n’en 
perd via les collisions avec les molécules de l’air, devenant ainsi runaway. Il peut ainsi se propager et ioniser 
l’air, libérant de nouveaux électrons, dont certains sont runaway, formant ainsi une avalanche d’électrons 
runaway. Il y a cependant débat quant au contexte de l’initiation des RREAs dans les nuages orageux. Deux 
théories sont considérées à ce jour. Le mécanisme de feedback relativiste repose sur la propagation vers 
l’arrière de photons et de positrons produits par une première RREA, lesquels pourraient produire de nouvelles 
avalanches au voisinage de la position de départ de la première RREA, permettant ainsi d’atteindre un nombre 
suffisant d’électrons et de photons. Le mécanisme de runaway thermique suppose que les RREAs sont créées 
pendant la propagation des éclairs: le champ électrique intense induit dans les couronnes de streamers qui 
se forment au bout de traceurs d'éclairs pourraient accélérer une grande quantité d’électrons en provenance 
du leader, initiant ainsi la production de RREAs menant à un TGF.  

Dans cette thèse, nous formulons deux questions non résolues que nous abordons dans les chapitres 
suivants. De quelle manière la dynamique des RREAs est-elle affectée par des effets auto-consistents ? 
Quelle est l’importance des aspects spatiaux et temporels dans l’initiation du feedback relativiste ?  

Pour répondre à ces questions, nous avons mis au point un modèle relativiste auto-consistent, utilisant une 
technique de Monte Carlo pour simuler les collisions avec les molécules de l’air couplée à une méthode 
particle-in-cell (PIC) électromagnétique, qui résout les équations de Maxwell à chaque pas de temps afin de 
fournir une description détaillée des interactions entre le champ électromagnétique et les électrons. À notre 
connaissance, ce modèle constitue la première description pleinement causale des RREAs. En utilisant ce 
nouvel outil, nous avons découvert que la densité d’électrons de basse énergie saturait à une valeur 
prédictible. Nous montrons également qu’une limite fondamentale existe pour le nombre d’électrons et de 
photons de haute énergie, avec une magnitude correspondant aux observations de TGFs, et déduisons une 
formule simple donnant la densité de saturation et le nombre d’électrons. Afin de mieux comprendre le 
mécanisme de feedback relativiste, nous mettons au point une méthode afin de déterminer la valeur du champ 
électrique seuil pour le feedback. Nous réalisons ensuite des simulations du processus de feedback en utilisant 
le modèle complet, afin d’apprécier la complexité du phénomène. À partir des résultats, nous démontrons 
l’importance de prendre en compte tous les aspects spatio-temporels du processus de feedback relativiste 
afin de le décrire correctement. Les résultats semblent également supporter l’idée que le mécanisme de 
feedback relativiste n’agit pas seul dans la production des TGFs les plus courts et les plus intenses.  

Mots clés : flashs de rayons gamma terrestres, plasmas, particle-in-cell, modélisation, runaway, décharges 
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Pierre GOURBIN 
 

 Self-consistent modeling of relativistic runaway electron 
avalanches producing terrestrial gamma ray flashes 

 
Summary : 

Terrestrial gamma ray flashes (TGFs) are short and intense bursts of gamma rays occurring during 
thunderstorms. Reported for the first time in 1994, a significant effort has been carried out to understand their 
properties and origins. It is agreed upon that TGFs are produced inside thunderclouds by relativistic runaway 
electron avalanches (RREAs): when submitted to a sufficiently high electric field, an electron can gain more 
energy from the field than it loses to collisions with air molecules, thus becoming runaway. Doing so, it ionizes 
the air, freeing more electrons, a small fraction of these electrons being themselves runaway, hence forming 
an avalanche of runaway electrons. The exact context in which RREAs are initiated inside thunderclouds 
remains up for debate. Two TGF-production theories are considered nowadays. The relativistic feedback 
mechanism relies on the backward propagation of photons and positrons created by a first RREA, to produce 
new avalanches near the starting location of the first RREA, allowing for an overall sufficient number of 
electrons and photons. The thermal runaway mechanism assumes that RREAs are created during lightning 
propagation: the strong electric field inside a streamer corona at the tip of leader could accelerate a high 
number of electrons injected from the leader, triggering the production of subsequent RREAs leading to a TGF.  

In this thesis, we formulate two outstanding research questions that we address in the chapters. How the 
dynamics of RREAs is affected by self-consistent effects ? What is the importance of combined spatial and 
temporal aspects in the initiation of relativistic feedback ?  

To address these questions, we have developed a new self-consistent relativistic model, using a Monte Carlo 
technique to simulate collisions with air molecules coupled with an electromagnetic particle-in-cell method, that 
solves the Maxwell-Ampere and Maxwell-Faraday equations at each timestep in order to represent accurately 
the interaction between the electromagnetic field and electrons. To our knowledge, this model constitutes the 
first fully causal relativistic description of RREAs. Using this new tool, we discovered that the low-energy 
electron density saturates at a predictable value. We also show that a fundamental limit exists in the number 
of high-energy electrons and photons, with a magnitude matching TGF observations, and derive a simple 
formula giving the observed saturation density and electron number. In order to better understand the 
relativistic feedback mechanism, we devise a method to derive a value of the feedback threshold electric field. 
We then perform simulations of the feedback process using the complete model, which allows us to fully 
appreciate the complexity of the phenomenon. From the results, we highlight the importance of considering all 
spatial and temporal aspects of the feedback process to describe it accurately. The results indicate that the 
relativistic feedback mechanism is unlikely to act alone in the production of the shortest or most intense TGFs. 
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