
HAL Id: tel-04901698
https://theses.hal.science/tel-04901698v1

Submitted on 20 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed precision for High Performance Computing,
application to low energy gamma radiation

measurements
Roméo Molina

To cite this version:
Roméo Molina. Mixed precision for High Performance Computing, application to low energy gamma
radiation measurements. Nuclear Experiment [nucl-ex]. Sorbonne Université, 2024. English. �NNT :
2024SORUS340�. �tel-04901698�

https://theses.hal.science/tel-04901698v1
https://hal.archives-ouvertes.fr

Sorbonne Université
École Doctorale Informatique, Télécommunications et Electronique (ED130)

Mixed precision for High Performance
Computing, application to low energy gamma

radiation measurements
Précision mixte pour le calcul de haute performance, application

aux mesures de radiation gamma de faible énergie

Par Roméo MOLINA

Thèse de doctorat d’Informatique

Dirigée par Fabienne JÉZÉQUEL

Présentée et soutenue publiquement le 30/09/2024

Devant un jury composé de :

Marc BABOULIN Rapporteur Université Paris-Saclay - LMF
Alfredo BUTTARI Président du jury CNRS - IRIT
David CHAMONT Encadrant CNRS - IJCLab
Stef GRAILLAT Invité Sorbonne Université - LIP6
Fabienne JÉZÉQUEL Directrice Université Paris-Panthéon-Assas - LIP6
Vincent LAFAGE Encadrant CNRS - IJCLab
Matthieu MARTEL Rapporteur Université de Perpignan Via Domitia -

LAMPS
Théo MARY Invité CNRS - LIP6
Olivier STEZOWSKI Examinateur CNRS - IP2I

Quelques remerciements non exhaustifs

Merci d’abord à mes encadrants : Fabienne, Vincent et David. Vous m’avez accompa-
gné dans ce voyage intranquille de la thèse, toujours avec écoute et bienveillance, aussi
et surtout quand je n’étais plus très sûr de continuer. Merci Théo et Stef, c’est beau-
coup grâce à vous que j’ai fait cette thèse puisque tout à commencé par un stage dans
lequel vous m’avez donné avec Fabienne le goût de l’arithmétique flottante et du contrôle
d’erreurs. C’est aussi avec vous que j’ai persévéré parce que nous avons continuer à tra-
vailler ensemble jusqu’au bout.
Merci à Quentin, avec qui j’ai partagé mon bureau pendant trois ans et aussi quelques
parties d’échecs ou de pédantix, sinon ça aurait été bien plus dur. Merci à tous les col-
lègues doctorant.e.s, postdocs, ou titulaires du LIP6 et d’IJCLab que j’ai croisé chaque
jours ou seulement quelques fois.
Merci à mes camarades et ami.e.s de Jussieu et d’ailleurs, militant.e.s, syndicalistes, en
colère contre l’état du monde. C’est grâce à vous qu’il ne va pas plus mal et qu’il ira mieux
un jour.
Merci à mes parents de m’avoir amené jusque là et de me soutenir dans mes choix contra-
dictoires.
Et puis merci Manon pour tes dernières relectures, ton soutien et toutes nos échappées
au-delà du monde.

Résumé

Dans le cadre de cette thèse, nous nous intéressons aux formats de précision numérique,
au contrôle de la validité de résultats numériques et aux opportunités qu’ils offrent dans
le cadre du calcul haute performance. Plus précisément, nous nous intéressons à la
précision mixte, qui consiste à mêler plusieurs formats de précision dans un même code
pour tirer partie à la fois des gains de performances apportés par les précisions faibles
et de validité et de la stabilité des précisions élevées. Nous étudions ici deux approches
visant à introduire de la précision mixte. D’une part le tuning de précision qui consiste
à développer des outils d’aide à la décision permettant d’introduire des précisions plus
faibles que celles d’origine, dans un code existant, tout en effectuant un contrôle sur
la validité des résultats ainsi obtenus. D’autre part, le développement d’algorithmes
d’algèbre linéaire intrinsèquement mixtes en termes de précision pouvant ensuite être
utilisés comme des briques de bases pour des applications diverses.

Dans ce manuscrit, nous nous intéressons à une application en particulier : la recherche
en physique nucléaire, c’est-à-dire l’étude des particules et des interactions qui régissent
cette échelle. Cet objectif est souvent atteint par l’étude de valeurs extrêmes, en partic-
ulier sur des noyaux très instables à l’aide de détecteurs à haute résolution. AGATA est
une collaboration européenne visant à mettre au point un détecteur de rayons gamma
au Germanium de Haute Pureté. Celui-ci s’appuie sur deux nouvelles technologies : la
segmentation électrique des cristaux de Germanium et la reconstruction du parcours
complet d’un rayon dans le détecteur. Pour cela, une étape d’analyse de la forme des
traces mesurées dans chaque segments avec ceux d’une base de donnée préalablement
calculée ou obtenue par calibration du cristal permet d’identifier les points d’interaction
et leurs énergies associées. La quantité de données mesurée implique un traitement en
direct mais cette étape doit aussi être réalisée avec précision car une résolution de 5mm
est requise. Nous avons donc cherché à accélérer cette étape en réduisant le volume des
données en utilisant des formats de précisions réduite. Afin de vérifier le maintien de la
validité des résultats obtenus, nous nous sommes appuyés sur l’arithmétique stochas-
tique mais aussi sur une évaluation du nombre de points identifiés pareillement par les
différentes méthodes. Nous avons ainsi mis en évidence que l’exécution de l’algorithme
d’origine pouvait se faire sans perte de qualité en FP16 plutôt qu’en FP32. Nous avons
également effectué une réécriture de l’algorithme pour l’adapter à l’architecture GPU,
montrant des résultats positifs et incitant à choisir ce type de matériel pour effectuer

cette étape.
Nous avons également réalisé un travail sur le produit matrice-vecteur creux en

développant une version en précision mixte de cet algorithme. Celui-ci s’appuie sur
une analyse rigoureuse qui permet de répartir les éléments en buckets et de les calculer
dans une précision inversement proportionnelle à leur magnitude. Cet algorithme per-
met de garantir une précision cible mais aussi d’utiliser plusieurs formats de précision
qu’ils soient natifs ou émulés. Cet algorithme permet d’obtenir des gains très importants
en mémoire et en temps d’exécution mais se trouvait limité dans son utilisation des for-
mats de précision non standards du fait de leur absence d’implémentation hardware.
Nous avons donc décidé d’intégrer des accesseurs optimisés au sein du produit matrice-
vecteur adaptatif et développé de nouveaux formats utilisant un exposant réduit tirant
partie de la faible variation de magnitude au sein de chaque bucket.

Abstract

In this thesis, we focus on numerical precision formats, on the control of numerical accu-
racy of the results and on the opportunities they offer in the context of High Performance
Computing. More specifically, we are interested in mixed precision, which consists in
mixing several precision formats in the same code to take advantage of both the per-
formance gains of low precision and the validity and stability of high precision. Here,
we examine two approaches to introduce mixed precision. On the one hand, precision
tuning, which consists in developing decision-support tools to introduce lower precisions
than the original ones, into an existing code, while checking the validity of the results
thus obtained. On the other hand, the development of linear algebra algorithms that
are intrinsically mixed in terms of precision, which can then be used as building blocks
for various applications.

In this manuscript, we focus on one application in particular: nuclear physics re-
search, i.e. the study of particles and the interactions that govern this scale. This is
often achieved by studying extreme values, particularly on highly unstable nuclei, using
high-resolution detectors. AGATA is a European collaboration to develop a High-Purity
Germanium gamma-ray detector. It is based on the reconstruction of the complete path
of a gamma-ray in the detector. To do this, there is a Pulse-Shape Analysis (PSA) that
consists in comparing the traces measured in each segment with those of a database
previously calculated or obtained by calibrating the crystal, to identify the interaction
points and their associated energies. The quantity of data implies an on-line processing,
but this step must also be carried out accurately, as a resolution of 5mm is required. We
therefore sought to speed up this step by reducing the volume of data, using formats of
reduced precision. To check the validity of the results obtained, we used stochastic arith-
metic and evaluated the number of points identified by the different methods. In this
way, we demonstrated that the original algorithm could be run without loss of quality
when using FP16 rather than FP32. We also adapted the algorithm to GPU architec-
ture, showing positive results and encouraging the choice of this kind of hardware for
the PSA.

We also worked on the Sparse Matrix-Vector product (SpMV), developing a mixed-
precision version of this algorithm. This is based on a rigorous analysis that divides el-
ements into buckets and computes them with a precision inversely proportional to their
magnitude. This algorithm not only guarantees target accuracy, but also allows the use

of several precision formats, both native and emulated. This algorithm delivers signif-
icant gains in memory and execution time, but was limited in its use of non-standard
precision formats due to their lack of hardware implementation. We therefore decided
to integrate optimized accessors within the adaptive matrix-vector product and devel-
oped new formats using a reduced exponent taking advantage of the small variation in
magnitude within each bucket.

Contents

Résumé v

Abstract vii

Introduction 1
1 Context . 2

1.1 Nuclear physics . 2
1.2 Pulse-Shape Analysis of AGATA . 3
1.3 Floating-point arithmetic . 3
1.4 Towards a mixed precision paradigm 4

2 PhD objectives and contributions . 5
3 Publications and presentations . 6
4 Outline . 7

1 Efficient and reliable floating-point computation 9
1 Reliable floating-point computation . 9

1.1 Floating-point arithmetic . 10
1.2 IEEE-754 1985 standard . 13
1.3 Revisions and other formats . 14
1.4 Error analysis . 15
1.5 Error control . 18

2 Benefits of mixed precision algorithms . 23
2.1 Floating-point arithmetic context . 23
2.2 Rise of low precision . 24
2.3 The seek of mixing precisions . 24

3 Conclusion . 27

2 The Advanced GAmma Tracking Array (AGATA) 29
1 Nuclear physics . 29

1.1 Fundamental interactions . 29
1.2 Nuclei behavior . 30
1.3 Radioactive decay . 30

1.4 Gamma-ray spectroscopy . 33
1.5 Online and offline computing . 34

2 The AGATA experiment . 35
2.1 The geometry of the detector . 35
2.2 AGATA data processing . 36

3 The pulse-shape analysis of AGATA . 38
3.1 AGATA Data Library . 38
3.2 Gridsearch algorithm . 39
3.3 Metric selection . 41
3.4 Multiple interactions . 41
3.5 A time consuming step . 41

4 Conclusion . 42

3 Adaptive SpMV and application to Krylov solvers 43
1 Introduction . 43
2 Uniform precision matrix–vector product 44
3 Adaptive precision matrix–vector product: error analysis 46

3.1 A more practical componentwise bucket criteria 49
4 Adaptive precision SpMV: numerical experiments 50

4.1 Implementation . 50
4.2 Experimental setting . 52
4.3 Main results . 53
4.4 Effect of dropping . 56
4.5 Parallel scaling analysis . 57

5 Application to Krylov solvers . 57
5.1 Adaptive precision Krylov solvers . 57
5.2 Iterative refinement . 59
5.3 Adaptive GMRES-IR convergence analysis 60
5.4 Performance comparison for different Krylov solvers 61

6 Conclusion . 65

4 Reduced-precision and reduced-exponent formats for accelerating adap-
tive SpMV 73
1 Introduction . 73
2 Methods . 75

2.1 Adaptive precision SpMV . 75
2.2 Custom reduced-precision formats 75
2.3 Reduced-precision formats for adaptive precision SpMV 76
2.4 Reduced-exponent formats for adaptive precision SpMV 77

3 Evaluation . 80
3.1 Performance of adaptive precision SpMV with RPFP 82
3.2 Performance of adaptive precision SpMV with RPRE and RPREU . 83

4 Conclusion . 83

5 Mixed precision for AGATA Pulse-Shape Analysis 87
1 Introduction . 87
2 Profiling of AGATA computations . 88

2.1 Gridsearch configuration . 88
2.2 Performance analysis . 89
2.3 Accuracy control . 90

3 Reduced precision formats . 91
3.1 Half-precision computation . 91
3.2 Mixed precision computation . 92
3.3 Error acceptability . 93

4 Adapting the code to modern hardware . 94
4.1 The PSA test environment . 94
4.2 Experiments on CPU . 95
4.3 GPU deployment . 96
4.4 Use of native FP16 . 97

5 Conclusion and perspectives . 97

Conclusion & Perspectives 99
6 Conclusion . 99
7 Perspectives . 101

Références 103

Introduction

Computers are first and foremost formidable computation machines. It is tempting to
forget this point because this aspect is far from our everyday use of various computers.
But this is where their power lies, and that is why we compare computers according
to their computing power. Indeed, by enabling us to perform computations far more
complex than we could ever hope to do by hand, computers open up impressive prospects,
like in engineering or research.

However, despite they are everywhere in our lives, computers remain strange ob-
jects whose operation are for the most of us inaccessible. Indeed, using a computer is
completely different from knowing how it works. Computer scientists know more about
them, but there are many different specialties. A PhD thesis topic is usually situated in
a small subset of a discipline. Ours is at the intersection of two subsets: accuracy issues
in High Performance Computing (HPC) and nuclear physics experiments.

The main goal of HPC is to maximize computers’ computing power. This involves
both powerful machines using specific capabilities possibly connected to form computing
clusters, and algorithmic efforts to make the most of the available hardware. In this
context, every aspect of computing is a target for optimization, and so are the numerical
formats with which operations are performed.

The accuracy of a result can be defined quite naturally as its closeness to the exact
result. In the field of computer science we are talking about numerical accuracy to des-
ignate the quality of the results provided by the computer. While taking into account
the error bounds of a result, whether due to limited-accuracy input data or numerical
methods, has long been a major concern in physics, errors produced directly by the com-
puter tend to be neglected. Yet, the computer does not always provide an exact result
and, most of the time it does not, in particular when it operates on real numbers. Ac-
tually, as finite boxes, computers are not able to deal with real numbers and they use
approximate representations called fixed-point or, more usually, floating-point numbers.
Both of these representations exist in different precisions i.e. number of bits. But this
number of bits is always finite, making it necessary to perform a rounding at each oper-
ation. The accumulation of these roundings may lead to completely false results. Then
if it is not possible to achieve the exact results, the objective becomes obtaining a suffi-
ciently accurate result, sufficiently close to the exact one and being able to control this
closeness. This is the objective of any computer scientist wishing to produce meaningful

2 Introduction

results as remind by [Goldberg, 1991]. In the context of HPC, the challenge is no longer
only to obtain a sufficiently accurate result, but also to calibrate this accuracy to be the
least expensive as possible. Indeed, the formats with which each operation is carried out
determine not only the validity of the result, but also its cost in terms of time, energy
and memory.

Why do computations have to be carried out in such a short time, and why must
each operation be accelerated? The answer depends on the application. In this thesis,
we focus on the field of nuclear physics, i.e. the study of atomic nuclei and the parti-
cles that interact with them. Current knowledge of the energies involved at this scale
comes from the study of electromagnetic radiation emitted when the system releases
energy though the emission of a photon. To observe these reactions, research requires
two complementary tools: particle accelerators and colisioners to produce particles, and
detectors to analyze them. In the nuclear area, energy levels are in the range of 10keV
to 20MeV and are in the gamma-ray spectrum. Germanium gamma-ray detectors have
played a vital role in the discovery of new phenomena since the 1980s, and our work is
part of the development of a new High Purity Germanium detector as part of the Euro-
pean AGATA project. This new high-resolution detector must be able to process a huge
data flow that cannot reasonably be stored for later processing. It is therefore necessary
to reduce this data online, in order to retain only the useful part. But this operation also
requires accuracy, as the retained data must be suitable for further processing.

1 Context

1.1 Nuclear physics

Physics has made several major advances since the 19th century, with two major models
now providing an understanding of the interactions of bodies and particles: general
relativity and the standard model of particle physics. However, these two theories are
still not unified, so there is still a great deal of research to be done to understand more
precisely the interactions that govern the universe at both microscopic and macroscopic
levels.

Matter is made up of molecules, crystals or ions, which are themselves made up of
atoms. There are various types of atoms but they are all made up of a positively-charged
nucleus and a cloud of negatively-charged electrons. Within an atomic nucleus, there are
two types of nucleons: positively-charged protons and uncharged neutrons. A chemical
element is determined by its number of protons (Z), but can exist in different varieties,
called isotopes, which correspond to different numbers of neutrons (N). The Standard
Model aims at explaining electromagnetism, weak and strong nuclear interactions and
the classification of all known subatomic particles. It is based on the triptych particle,
force, mediator, i.e. it distinguishes families of particles by the forces to which they are
sensitive, each force being exerted by the exchange of mediators (called bosons) between
the particles subjected to it (called fermions). This model is used to build new models
that include hypothetical particles, extra dimensions or supersymmetries.

Among the different isotopes of an atom, only a fraction of them are stable; the others
are radioactive, i.e. they spontaneously change state during a nuclear reaction. During
these reactions, large quantities of energy are emitted. This is why the term "nuclear"

1 – Context 3

is familiar to the general public, because some nuclear reactions can be used to make
bombs or to produce civilian energy but this is not the topic of this thesis. We focus on
the research that aims at understanding the characteristics of the nuclear many-body
system. This objective is often approached by studying extreme values, particularly on
nuclei far from stability. New Radioactive Ion Beam facilities now make proton- and
neutron-rich nuclei accessible, opening up new perspectives for physics experiments. To
study the reactions taking place in these facilities, high-resolution detectors are needed.
Since the 1980s, high-resolution gamma-ray spectroscopy has become a key in the study
of nucleus structure. To detect increasingly rare phenomena, it is necessary to widen
the focus and confront an ever-growing mass of data. This is the aim of the AGATA
detector, that is based on gamma-ray energy tracking in electrically segmented high-
purity germanium crystals.

1.2 Pulse-Shape Analysis of AGATA

The AGATA detector [Akkoyun et al., 2012] will be composed of 180 hexagonally shaped
Germanium crystals. Each crystal is electrically segmented in six sectors centred on
the crystal corners and six longitudinal rings to a total of 36 segments. It relies on two
new technologies: position-sensitive Germanium crystals and gamma-ray tracking tech-
nology, which reconstructs the path of a gamma-ray in the Germanium crystal. This
gamma-ray tracking is only possible if the interaction points and their associated en-
ergies are known. It is the role of the Pulse-Shape Analysis (PSA) to identify the in-
teraction points from the traces measured in each of the segments. Thus, from a set of
traces sampled over 120 ms in each segment and their associated energies, PSA is able
to extract the interaction point and its associated energy.

To achieve this, the PSA relies on a signal basis obtained by calibrating or simulating
the crystal. The crystal is discretized into a 2 mm resolution base, to which are associated
the traces measured in the hit segment and in neighbour segments, as well as in the
crystal core, which collects the sum of the energies measured in the crystal. When the
detector is in operation, the PSA must compare the measured values with those of the
base. This is a crucial step, which must be carried out online, due to the quantity of
data produced, but which must also be sufficiently accurate, as a resolution of 5mm is
required to carry out the ray-tracking from the interaction points. This step is a major
challenge in the AGATA data processing chain which is supposed to be continuously
improved. Currently, its frequency is around 5 to 10 kHz, i.e. 5000 to 10000 elements
processed per second and there are various efforts dedicated to accelerate it.

This led us to look at the numerical precision while checking that the results remain
sufficiently accurate. Indeed, one way of speeding up processing would be to reduce the
size of the input data.

1.3 Floating-point arithmetic

These simultaneous needs for performance and accuracy are at the heart of the develop-
ment of floating-point arithmetic.

Floating-point arithmetic takes its name from the fact that, unlike fixed-point arith-
metic, it uses a floating-point to represent values of different magnitudes. In the early
days of computing, the use of floating-point arithmetic grew because of its practicality in

4 Introduction

approximating real numbers and performing operations on them, while allowing num-
bers of very different magnitudes to be manipulated in the same program. In fact, a
floating-point number is made up of three parts: a sign bit, a group of bits encoding
the exponent (i.e. the magnitude), and a final group storing the significant digits of the
number.

Such a definition reveals two major problems: firstly, its great flexibility, secondly,
the finite number of bits available for encoding that necessarily implies an approxima-
tion for certain numbers. Concerning flexibility: while this term might sound positive,
it implies a great deal of freedom for designers, whether in hardware or software, com-
plicating the portability of a code from one machine to another. As an answer to this
problem, among others, that the IEEE-754 standard [IEEE Computer Society, 1985]
was developed in 1985, and has since been extended several times, setting the frame-
work for floating-point arithmetic as we find it in today’s computers. As for the rounding
error accumulation, this remains a major problem as demonstrated by the various dis-
asters it has caused.

Various approaches have therefore been developed to address the issue of rounding
errors.

Firstly, it is possible to increase the storage formats. This is why the use of FP64
remains a standard for many applications and why some adopt formats beyond 64 bits
such as 80-bit, 128-bit or even higher formats. This strategy is based on the fact that,
whatever the format used, the number of bits lost during a rounding operation is the
same. So, if you start with a high or very high margin, you have a good chance of achiev-
ing a sufficiently accurate result. However, a major limitation of this technique is the
lack of hardware implementation of these formats, which requires software emulation
and are therefore catastrophic in terms of performance and out of reach for large pro-
grams.

Secondly, both static and dynamic methods have been developed to ensure accuracy
using a given precision format. Interval methods [Moore, 1966] for instance, is a dy-
namic method that replaces values by intervals that are guaranteed to contain the exact
result. However, they are confronted with a rapid explosion of intervals, which reduces
their interest since the result is hardly significant and usable. The static methods seek
to guarantee the accuracy of a program’s result without executing it. These methods
have undergone considerable development following the explosion of the Ariane 5 rocket
due to a conversion problem, but they are extremely time-consuming and difficult to
apply to industrial codes.

Another kind of methods, called probabilistic methods have the advantage of possibly
being used in a context of large-scale codes. They aim to guarantee a number of exact
significant digits within a confidence interval with reasonable time and memory over-
head. This is the case with the CESTAC method [Vignes & Porte, 1974; Vignes, 1978],
which uses several executions of the same operation with random rounding to estimate
the number of exact significant digits, thanks to a Student’s t-test [Student, 1908] at
95%.

1.4 Towards a mixed precision paradigm

Accuracy issues are not only a challenge for obtaining correct results, they are also an
opportunity for achieving performance gains. In the context of High Performance Com-

2 – PhD objectives and contributions 5

puting (HPC), the goal is not only to get a sufficiently accurate result, but also to identify
the necessary precisions, neither too low nor too high, adapted to our problem. It has
been shown that training neural networks in low precision usually does not affect the
results [Yun et al., 2023]. Thus, the field of artificial intelligence has massively turned to
the use of reduced precision formats: half format on 16 bits (FP16 and BFLOAT16) but
also more recent formats using only 8 bits that offer a potential of very significant gains
in terms of memory, computation time and power consumption. Indeed, each value in
FP16 or BFLOAT16 takes up half as much memory as in FP32, and for instance, some
computations are up to 16 times faster in half than in FP32 on A100 GPU cards.

These gains come with a counterpart in terms of the numerical quality of the results.
A computation naively performed in half will only have an accuracy of the order of 10−3

or 10−4 depending on the chosen format, compared with around 10−7 if it were performed
in FP32. If, as we have seen, these levels of accuracy are sufficient for some applications,
they are quite inadequate for others.

The attraction of performance gains has therefore motivated the development of
mixed precision solutions, i.e. using two or more precisions in the same code, with the
aim of maximizing the use of low precisions and reserving high precisions for critical por-
tions. We distinguish two main classes of mixed precision solutions. On the one hand,
we found solutions that aim at developing mixed precision linear algebra algorithms as
summarized in [Higham & Mary, 2022]. These programming building blocks that real-
ize matrix products, linear systems solving, eigenvalue decompositions, and other linear
algebra operations, are intended to be used in the codes of various applications, as it is
currently the case with the Basic Linear Algebra Subprogams (BLAS) [BLAS Technical
Forum, 2001] and their updates. Their development requires a detailed analysis of the
original algorithms in order to propose versions that use several precisions and whose
accuracy is guaranteed. On the other hand, auto-tuning solutions are being developed
to "democratize" mixed precision, i.e. to make it accessible to all, particularly for exist-
ing, large-scale codes that are difficult to handle. These solutions aim to provide tools
that automatically determine the best combination of precisions in a code. Some of these
tools use stochastic arithmetic to provide reference results.

2 PhD objectives and contributions

Numerical precision and its corollary, accuracy, represent a challenge, since their control
conditions the validity of results. However, it is also an opportunity, as it can be used
to improve computational performance. In particular, the development in recent years
of mixed precision solutions made it possible to achieve gains by using reduced preci-
sion in applications requiring high accuracy. As we have seen, this have been achieved
through two complementary approaches: development of mixed precision linear algebra
algorithms and of auto-tuning tools.

In this thesis, we explore these two approaches. In the field of mixed precision al-
gorithms for numerical linear algebra, we worked in an emerging subclass: adaptive
precision algorithms. The idea is to take into account the data at hand to determine the
precisions used. So, as we will see in Chapter 3, we have developed a Sparse Matrix-
Vector Product (SpMV) algorithm for which we are able to set an accuracy target. The
matrix elements are stored in a precision inversely proportional to their magnitude and

6 Introduction

the algorithm can use various kinds of formats both existing in hardware or custom. In
light of the performance achieved by this algorithm, we sought to go one step further by
introducing into this adaptive SpMV, optimized accessors to take advantage of our cus-
tom precision formats, and by developing new ones using a reduced exponent. This work
is detailed in Chapter 4. Finally, we have sought to take advantage of low precisions and
to use mixed precision in the AGATA’s Pulse-Shape Analysis, providing a theoretical and
a practical analysis including a GPU implementation as detailed in Chapter 5.

3 Publications and presentations

Publication in an international journal

• S. Graillat, F. Jézéquel, T. Mary, R. Molina, Adaptive precision sparse matrix-vector
product and its application to Krylov solvers, SIAM Journal on Scientific Comput-
ing, 46(1), pages C30-C56, 2024. [Graillat et al., 2024a]

International conference proceedings articles

• D. Chamont, R. Molina, V. Lafage, F. Jézéquel, Investigating mixed precision for
AGATA pulse-shape analysis, 26th International Conference on Computing in High
Energy and Nuclear Physics (CHEP 2023), Norfolk, USA, May 2023. [Molina et al.,
2023b]

• R. Molina, S. Graillat, F. Jézéquel, T. Mary, D. Mukunoki, Reduced-Precision and
Reduced-Exponent Formats for Accelerating Adaptive Precision SpMV, Interna-
tional European Conference on Parallel and Distributed Computing (Euro-Par),
Madrid, Spain, August 2024. [Graillat et al., 2024b]

International conference proceedings abstracts

• R. Molina, S. Graillat, F. Jézéquel, T. Mary, Adaptive Precision Sparse Iterative
Solvers, SIAM Conference on Computational Science and Engineering (CSE23),
Amsterdam, Netherland, February - March 2023.

• S. Graillat, F. Jézéquel, T. Mary, R. Molina, Adaptive precision sparse matrix-
product and application to Krylov solvers, International Congress on Industrial
and Applied Mathematics (ICIAM 2023), Tokyo, Japan, August 2023. [Molina et al.,
2023a]

Poster in an international conference

• R. Molina, S. Graillat, F. Jézéquel, T. Mary, Adaptive Precision Sparse Matrix-
Vector Product and its Application to Krylov Solvers, Sparse Days conference,
Saint-Girons, France, June 2022. [Molina et al., 2022]

4 – Outline 7

Presentations in workshops or seminars

• R. Molina, D. Chamont, F. Jézéquel, V. Lafage, PSA cache-misses and precision
analysis with CADNA, AGATA Week, Orsay, June 2022.

• R. Molina, S. Graillat, F. Jézéquel, T. Mary, Adaptive Precision Sparse Matrix-
Vector Product and its Application to Krylov Solvers, RAIM, Nantes, November
2022.

• R. Molina, D. Chamont, F. Jézéquel, V. Lafage, AGATA computation control: from
the crystal to the final measure, AGATA France, Orsay, November 2022.

• R. Molina, D. Chamont, F. Jézéquel, V. Lafage, AGATA computation control: from
the crystal to the final measure, Journées Informatique IN2P3, Le Croisic, Novem-
ber 2022.

• R. Molina, S. Graillat, F. Jézéquel, T. Mary, Adaptive Precision Sparse Matrix-
Vector Product and its Application to Krylov Solvers, xSDK Multiprecision Semi-
nar, Online, December 2022.

• R. Molina, S. Graillat, F. Jézéquel, T. Mary, Adaptive Precision Sparse Matrix-
Vector Product and its Application to Krylov Solvers, PREMIX Meeting, Paris, May
2023.

• R. Molina, S. Graillat, F. Jézéquel, T. Mary, Adaptive Precision Sparse Matrix-
Vector Product and its Application to Krylov Solvers, MUMPS User Days, Paris,
June 2023.

4 Outline

This manuscript is organized as follows. Chapter 1 introduces the notions of floating-
point arithmetic, digital error and its control, and leads on to the emergence of a mixed
precision paradigm based on two approaches. Chapter 2 presents the AGATA detector
and the nuclear physics foundations on which it is based, and elaborates on the step of
the Pulse-Shape Analysis, as a key step on the data processing of the AGATA detector.
Chapter 3 sets out the error analysis and the experiments carried out around the adap-
tive Sparse Matrix-Vector Product and its use in the context of Krylov solvers. Chapter 4
presents the work carried out around the use of optimized accessors for reduced preci-
sion and reduced exponent formats in the adaptive SpMV context. Finally, Chapter 5
describes the work and results obtained in exploring the use of reduced precision and
mixed precision in the AGATA’s Pulse-Shape Analysis.

CHAPTER 1

Efficient and reliable floating-point computation

Real numbers can have an infinite number of digits but computers are finite
boxes that can only store a fixed number of digits. In order to deal with this ap-
parent paradox various approaches have been developed, in particular fixed-
point arithmetic and floating-point arithmetic. Fixed-point arithmetic allows
to perform operations efficiently on numbers of the same order of magnitude.
Indeed, as the decimal point is fixed, we always have the same number of dig-
its after the decimal point, whether the number is large or small. However,
many applications require the manipulation of numbers of extremely differ-
ent magnitudes. For this reason, floating-point arithmetic, that will be at
the heart of the work carried out in this thesis, has become widely accepted.
Floating-point arithmetic is based on a variety of formats that allow numbers
to be represented with varying degrees of precision. The level of precision is
inversely proportional to energy efficiency and computing speed, and it is in
this context that mixed precision algorithms offer an opportunity to combine
the advantages of low precision with the seek of high accuracy provided by
high precision.

1 Reliable floating-point computation

Until the 1980s, the representation of floating-point numbers was not regulated and var-
ied from one architecture to another, posing major problems of code portability. In 1985,
the IEEE754 standard [IEEE Computer Society, 1985] filled this gap by imposing a com-
mon representation and proposing 4 floating-point formats. This standard was rapidly
adopted by manufacturers in the years that followed, and has since been supplemented
by revisions in 2008 [IEEE Computer Society, 2008] and 2019 [IEEE Computer Society,
2019], responding to new issues and introducing additional formats. Today, most pro-
cessors implement floating-point operations as prescribed by the IEEE754 standard, but
there are also independent formats, as we will see below.

10 Chapter 1 – Efficient and reliable floating-point computation

1.1 Floating-point arithmetic

1.1.1 First definitions

A system of floating-point numbers F is a finite subset of R mainly characterized by four
integer parameters:

• the basis β ≥ 2, that is 2 for virtually any modern computer

• t the precision, meaning the number of digits that are used to represent the value
of x ∈ F

• emin, emax the extrema exponents that define the range of elements representable
in F

An element of F has the form
x = M · βe−t+1. (1.1)

Where M is an integer called the significand and respects |M | ≤ βt − 1 and e is the
exponent of x and respects emin ≤ e ≤ emax.

Another representation of x ∈ F is the normal definition

x = (−1)s ·m · βe (1.2)

In this definition,

• s ∈ {0, 1} is the sign

• m = β1−t · |M | is the normal significand that respects 0 ≤ m < β and has 1 digit
before the radix point and at most t− 1 after.

• e is the exponent

To fix the uniqueness of the representation, one chose the representation of x for
which e is minimum while still larger than emin. Then the system is called normalized.

1.1.2 Normal and subnormal numbers

In a normalized floating-point system, there are two kinds of numbers:

• those for which e > emin and then m ≥ 1 are called normal numbers

• those for which e = emin and then 0 ≤ m < 1 are called subnormal numbers

In this system we obtain the following extrema:

• the largest finite number βemax · (β − β1−t)

• the smallest positive normal number βemin

• the smallest positive subnormal number βemin−t+1

The use of subnormals may seem unwise, as it requires specific operations to take
into account particularly small elements. Whether or not to implement them has been
a major issue during the standardization process. Today, although integrated into the
standard, they are often supported in software rather than in hardware. This leads to
heavy penalties in terms of execution time, and it is therefore often worth excluding
them to achieve performance gains. However, their existence enables to maintain inter-
esting arithmetic properties and it makes it easier to write numerically stable programs.

1 – Reliable floating-point computation 11

1.1.3 Special representations

To build a robust system, it seems necessary to define certain specific values.
Firstly, it is important to take into account the result of incorrect arithmetic opera-

tions (e.g.
√

(− 2), 0/0) to obtain a closed system that allows to detect them. This is
the role of Not a Number (NaN), which can use flags to bring information to the error
detected. These NaNs propagate within the calculations.

Furthermore, the limited exponent of floating-point numbers leads to the need to
represent values that exceed this magnitude. To do this, we can choose to introduce a
single unsigned infinity (∞) or two signed infinities (+∞ and −∞). If signed infinities
are chosen, it may be interesting to have signed zeros too.

1.1.4 Rounding modes

The result of an operation on floating-point numbers is generally not representable on
a floating-point number. It is therefore necessary to round it to a representable value.
In itself, this rounding introduces only a small error, as we will see later, but repeated
and amplified many times in the course of a calculation, it can lead to incorrect results
or results that differ according to the chosen rounding mode.

If x ∈ R, fl(x) denotes the first element of F smaller or larger than x according to
the chosen rounding mode. If x is larger than the upper bound of F, one say that fl(x)
overflows. If it is smaller than the lower bound of F, one say that fl(x) underflows. When
subnormal numbers are available we say the underflow is gradual.

The IEEE-754 standard proposes four different rounding modes:

• round toward +∞: RU(x) is the smallest element of F larger than x

• round toward −∞: RD(x) is the biggest element of F smaller than x

• round toward 0: RZ(x) is RU(x) if x < 0 and RD(x) if x > 0

• round to nearest: RN(x) is the closest element of x in F. It requires a tie-breaking
rule in case of elements exactly in the middle between two elements in F. Round
to nearest even is frequently chosen.

When the exact result of a function is given with a specified rounding mode (meaning
that the result is the same as the one computed in infinite precision and then rounded),
the function is called correctly rounded.

Obtaining correct rounding on basic arithmetic operations (+, −, ∗, /, √) is relatively
simple, but can be very complicated for common mathematical functions. So we add the
faithful rounding property to indicate that a function always returns RD(x) or RU(x).

There are interesting properties that come with the four rounding modes described
above. They are non-decreasing functions, meaning that if x ≤ y, ◦(x) ≤ ◦(y). We
also have that if x is a floating-point number, we have ◦(x) = x. Moreover symmetric
rounding modes (RZ and RN with symmetric tie-breaking rule) respect the symmetries
of correctly rounded functions and for RU and RD modes we have a symmetry property
that allows to easily switch from one mode to another:

RU(a+ b) = −RD(−a− b)
RD(a ∗ b) = −RU((−a) ∗ b)

12 Chapter 1 – Efficient and reliable floating-point computation

1 f l o a t harmonicSum_1 (int n) {
2 f l o a t s =0;
3 f o r (int i =1; i <=n ; i ++)
4 s = s + 1 . / i ;
5 return s ;
6 }

1 f l o a t harmonicSum_2 (int n) {
2 f l o a t s =0;
3 f o r (int i=n ; i >=1; i−−)
4 s = s + 1 . / i ;
5 return s ;
6 }

Figure 1.1: Harmonic sum

1.1.5 Properties

Arithmetic on real numbers carries some well-known properties:

• commutativity: a+ b = b+ a and a · b = b · a for any a and b

• associativity: a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c for all a, b and c

• distributivity: a · (b+ c) = a · b+ a· for all a, b and c

When you switch to floating-point arithmetic, things change. Elementary operations
with correct rounding in one of the four modes described above, preserve commutativity,
but neither associativity nore distributivity. In some extrema case, the loss of associa-
tivity can lead to drastically different results between (a + b) + c and a + (b + c). For
instance, in base β and precision p and round-to-nearest mode, let us have a = βp+1,
b = −βp+1 and c = 1. We have RN(a + RN(b + c)) = RN(βp+1 − βt+1) = 0 whereas
RN(RN(a + b) + c) = RN(0 + 1) = 1. With × operation, differences remain very tight
since there are no occurence of underflow or overflow. When they happen we can observe
drastically different results as in the following example:
Let be β = 2, p = 53, emin = −1022 and emax = 1023. With a = b = 2514 and c = 2−1022 we
obtain RN(RN(a · b) · c) = +∞ whereas RN(a · RN(b · c)) = 64

1.1.6 Typical errors

Absorption happens when additioning or subtracting two floating-point numbers of
very different magnitudes. This operation causes a massive loss of accuracy and in ex-
treme cases it leads to simply ignore the smallest number. For instance, let x = 1 and y =
224 be two FP32 numbers as defined in IEEE standard [IEEE Computer Society, 1985],
we have fl(x+y) = y. This phenomenon may happen when accumulating small numbers
and leads to a stagnation. The harmonic sum is a typical case that can be easily resolved.
Figure 1.1 presents two ways to compute the harmonic sum that are mathematically
but not numerically equivalent. Indeed, whereas harmonicSum_1(10000000) provides
the result 15.403683, harmonicSum_2(10000000) provides 16.686031. harmonicSum_1
adds larger numbers first and then the latest numbers are too small to be taken into
account. On the contrary harmonicSum_2 always makes additions between numbers of
the same magnitude that allow to cope with the absorption problem.

Cancellation or catastrophic cancellation arises when subtracting two very close
numbers. Figure 1.2 presents two ways to compute the difference of squares. The
first one produces the wrong result 1.8626451492309570e− 09 due to a cancellation error
whereas the second shows how to cope with it to produce the correct result 1.8626451518330422e−
09

1 – Reliable floating-point computation 13

1 int main () {
2 double x = 1+pow(2 ,−29) ;
3 double y = 1+pow(2 ,−30) ;
4 pr int f (" x^2 − y^2 = %1.16e\n" , pow(x , 2)−pow(y , 2)) ;
5 pr int f (" (x−y) (x+y)= %1.16e\n" , (x−y) * (x+y)) ;
6 return 0;
7 }

Figure 1.2: Catastrophic cancellation example

Bits
Sign Exponent Signif. Exp. bias

FP32 1 8 24 127
FP64 1 11 53 1023

Figure 1.3: Formats specified by the IEEE 754-1985 standard

1.2 IEEE-754 1985 standard

The IEEE-754 standard or IEEE Standard for Binary Floating-Point Arithmetic (AN-
SI/IEEE Std 754-1985), released in 1985, resolved a situation in which each manufac-
turer adopted a different implementation of floating-point arithmetic, resulting in a lack
of code portability from one architecture to another.

It therefore provided the opportunity to set the elements presented above, but also
to adopt specific conventions and formats to meet the following contradictory needs.

• portability: programs shall run on different machines without requiring modifica-
tions

• accuracy: programs must provide results with a quantified correctness

• speed: basic operations have to be fast

• range: a large range of values has to be representable

• easy implementation and use: to be adopted largely, it has to be accessible

Initially written for base two, it has been generalized two years later. In its radix-2
version, it appears that the first bit of the significand is always equal to 1, so there is no
need to store it. This is known as the hidden bit convention. This convention makes it
possible to represent significands that are one bit larger than what is actually stored.

The first version of the IEEE-754 standard requires the existence of two basic for-
mats, binary32 (single precision) denoted FP32 in the following and binary64 (double
precision) denoted FP64 in the following, 32-bit and 64-bit respectively, as well as two
associated extended formats. The latter have been designed to store intermediate cal-
culations on variables stored in the basic formats. In practice, the binary64 extended
format is actually implemented, but the binary32 extended format is not. If a binary32
precision calculation requires higher precision, the binary64 format is used. In this
document we will abreviate the formats standardized by IEEE-754 by FPXX where XX

14 Chapter 1 – Efficient and reliable floating-point computation

Decimal value Sign Exponent Significand
+0 0 0000 0000 0000 0000 0000 0000 0000 0000
−0 1 0000 0000 0000 0000 0000 0000 0000 0000
1 0 0111 1111 0000 0000 0000 0000 0000 0000
−1 1 0111 1111 0000 0000 0000 0000 0000 0000
10.375 0 1000 0010 0100 1100 0000 0000 0000 0000

Figure 1.4: Exemples of numbers represented in FP32 format

indicates the number of bits occupied by these formats. Thus binary32 will be called
FP32.

The standard also clarifies the implementation of exponents. Biased exponents are
chosen to allow both positive and negative exponents to be represented by a positive
integer, while making it easier to compare floats with each other. Let w be the number
of bits dedicated to store the exponent, the bias is set to b = 2w−1 − 1. Thus the stored
exponent corresponds to e− b. The extrema allow to store special values:

• exponent 0 is dedicated to +0 and −0 according to their bit sign and with 0 on all
the significant bits and denormals that have nonzeros on the significand

• exponent 2w − 1 is reserved for infinities (with zeros on the significand part) and
NaNs with nonzeros on their significant bits that can serve as flags to signal ex-
ceptions.

The IEEE-754 standard also establishes round to nearest by default with a tie-
breaking rule to even meaning that when the result is exactly between two floating-point
numbers, it is the one with a zero as least significant bit that is chosen. It also specifies
that any number greater than xmax is rounded to +∞.

Also the IEEE-754 requires for the basic arithmetic operations (+, −, ∗, /, √) to be
furnished with correct rounding.

Table 1.3 presents the formats specified by the IEEE-754-1985 standard and the sizes
of their different fields.

1.3 Revisions and other formats

Although the 1985 version of IEEE-754 filled a glaring lack of standardization, it did not
solve all the problems associated with floating-point arithmetic, and has since been sup-
plemented by two revisions and the emergence of new formats driven by manufacturers.

In 2008, a major revision of the standard took place [IEEE Computer Society, 2008],
merging the 1987 IEEE-854 standard, which introduced generalization to any base,
into IEEE-754 and standardizing practices already in use: the existence of a quadru-
ple precision format (FP128) and the FMA operation. The latter, whose full name is
full-multiply-and-add, is an operation that performs both multiplication and addition in
a single operation, saving both time and accuracy, since the result is rounded only once
instead of twice. This revision also resolved ambiguities and reduced implementation
choices. It also standardized a 16-bit floating-point format called binary16 or FP16. Ini-
tially developed for low-precision applications, particularly on graphics processing units

1 – Reliable floating-point computation 15

Bits
word size Sign Exponent Signif. Range

FP128 128 1 15 113 10±4932

FP16 16 1 5 11 10±5

BFLOAT16 16 1 8 8 10±38

FP8-E4M3 8 1 5 3 10±2

FP8-E5M2 8 1 6 2 10±1

Figure 1.5: Formats developed after the IEEE 754-1985 standard

(GPUs), this format is now attracting growing interest thanks to its major performance
gains.

In 2019, a new minor revision [IEEE Computer Society, 2019] has been added to the
IEEE-754 standard, containing mainly uncontroversial corrections, clarifications and
improvements compared to the 2008 version. In particular it provides a list of operations
and mathematical functions that must be correctly rounded.

In parallel with this standardization effort, certain technological developments have
led to the creation of new formats by manufacturers. In particular, the rise of neural
networks, for which low accuracy is suitable, has encouraged the development of low or
even very low precision. In particular, a new 16-bit format, BFLOAT16, was developed
in 2018 by Google for its Tensor Processor Units (TPUs), specialized computing units for
neural networks. This format uses an exponent size identical to that of FP32, enabling
it to cover a similar range of values, but it has a smaller significand size and there-
fore lower precision than FP16. Even more recently, two formats on 8 bits have been
developed.

1.4 Error analysis

As we have seen, there are different formats corresponding to different levels of preci-
sion, as well as different rounding modes. In any case, floating-point arithmetic faces
the problem of rounding and the error it generates, which can propagate and amplify.
Let us start by looking at how this error can be quantified.

1.4.1 Absolute and relative error

Let x̃ the approximation of the real number x. The two most important measures of the
accuracy of x are its absolute error

Eabs(x̃) = |x− x̃| (1.3)

and its relative error
Erel(x̃) =

|x− x̃|
|x| if x 6= 0 (1.4)

The relative error is especially useful because it is scale independent, not affected by the
magnitude of the variables and is adapted to scientific computation that can deal with
very different kind of magnitudes.

16 Chapter 1 – Efficient and reliable floating-point computation

If x and x̃ are vectors, one can use alternatively the normwise relative error defined
as

ENW (x̃) =
‖x− x̃‖
‖x‖ (1.5)

or the componentwise relative error

ECW (x̃) = max
i

|xi − x̃i|
|xi|

(1.6)

The latter puts the individual relative errors on equal footing. The choice of one or the
other depends on the application.

1.4.2 Ulp function and unit roundoff

The ulp function, for unit in the last place, aims to provide an evaluation of the weight of
the last bit of the mantissa or the spacing between floating-point numbers. In this docu-
ment, we will use the definition provided by Goldberg [Goldberg, 1991] and extended to
reals.

Definition 1 With the same notations as before,
If x ∈ [βe, βe+1) then, ulp(x) = βmax(e,emin)−t+1

It is important to observe that this spacing does not behave the same way for normal and
denormal numbers. Whereas denormal numbers are equally spaced by a value equal to
the smallest positive subnormal, normal numbers are not. In fact, their spacing jumps
by a factor β at each power of β. From this definition derives the definition of the unit
roundoff.

Definition 2 The unit roundoff u of a floating-point system is defined as

u =

{
1
2 ulp(1) = 1

2β
1−t with round-to-nearest mode

ulp(1) = β1−t with directed-rounding modes

This definition is useful in the analysis of numerical algorithms. Indeed, for an operation
op ∈ {+,−,×, /}, a rounding mode ◦ ∈ {RU,RD,RZ,RN} and two elements a, b ∈ F we
have

fl(a op b) = (a op b)(1 + δ1) = (a op b)/(1 + δ2), |δ1|, |δ2| < u (1.7)

This property eases rounding analysis.

1.4.3 Accuracy or precision?

In common language, accuracy and precision are used interchangeably but in our field
it is worth making a distinction between them. Accuracy corresponds to the absolute
or relative error of an approximate quantity whereas precision designates the accuracy
with which the basic arithmetic operations are performed. In floating-point arithmetic
precision is measured by the unit roundoff. Even if it might seem counterintuitive,
accuracy is not limited by precision as we will see below.

1 – Reliable floating-point computation 17

1.4.4 Forward and Backward error

Let ỹ be the approximation of y = f(x) computed in floating-point arithmetic with pre-
cision u. How do we measure the quality of ỹ? The most natural way to do so is to check
that Erel(ỹ) ≈ u. We will refer to it as the forward error. But this is not always achiev-
able and then another analysis has been introduced by Wilkinson [Wilkinson, 1985] that
consists in asking the question "for what problem did we actually solve the problem?".
More formally we want to determine the smallest ∆x such that ỹ = f(x + ∆x). The
value ∆x is referred to as the backward error of ỹ and bounding this quantity is called
backward error analysis. A method is called backward stable if the value ∆x is small
enough with definition of small that depends on the context.

This analysis carries interesting properties. It considers the rounding errors as being
equivalent to perturbations in the data. Indeed data can be flawed for many reasons
from previous storing truncation to measurement errors. If the backward error is not
larger than these uncertainties, the computed solution seems to be good enough. It also
allows to reduce the error analysis to the perturbation theory that is well understood for
a wide range of problems.

1.4.5 Conditioning

The conditioning of a problem governs the relationship between forward and backward
error, meaning the sensibility of the result on the perturbation on data.

With the same y = f(x) as before, and considering f is twice continuously differen-
tiable, we have

ỹ − y = f(x+ ∆x)− f(x) = f ′(x)∆x+
f ′′(x+ θ∆x)

2!
(∆x)2, θ ∈ (0, 1)

then
ỹ − y
y

=

(
xf ′(x)

f(x)

)
∆x

x
+O((∆x)2)

and we obtain
c(x) = |xf

′(x)

f(x)
| (1.8)

as the condition number of f .
When all quantities are well defined we have the following rule of thumb

forward error . condition number × backward error

Which means that the computed solution with reduced backward error of an ill-conditioned
problem can have a large forward error.

1.4.6 Examples of dramatic errors

Numerical errors might appear as a too exotic problem that should be left to the spe-
cialists and that users could cope with just by using double precision arithmetic. But
this statement is not true as shown in [Ogita et al., 2005] with the polynomial P =
333.75y6+x2(11x2y2−y6−121y4−2)+5.5y8+x/(2y) evaluated at x = 77617 and y = 33096.
Computed in single, double and quadruple precision, the result provides none correct
digit and not even the correct sign.

18 Chapter 1 – Efficient and reliable floating-point computation

• float: P =2.571784e+29

• double: P =1.17260394005318

• quad: P =1.17260394005317863185883490452018

• exact: P ≈-0.827396059946821368141165095479816292

The history of computing and engineering contains a few landmark episodes that
should serve as a reminder to those who think that numerical accuracy is a secondary
issue. We mention two examples1 bellow.

• The Patriot Missile Failure: Patriot is the american surface-to-air missile system.
It is used for destroying enemy missiles for which it must accurately compute their
trajectory. But on February 25, 1991 during the Gulf War, a Patriot Missile missed
an incoming Iraqi Scud missile leading to the death of 28 soldiers. It appeared
lately that this error was due to a miscalculation of the time in seconds from the
one in tenths of seconds provided by the system’s internal clock. It was made with
multiplication by 1/10 which is not exactly representable in binary basis. Amplified
by the 100 hours between the ignition of the missile and its launching, it led the
missile to miss the Scud by almost half a kilometer.

• The Ariane 5 rocket explosion: On June 4, 1996 the Ariane 5 unmanned rocket
exploded. The investigation that followed evidenced that it was due to an error in
the inertial reference system computation and more precisely the conversion of a
64-bit floating-point number to a 16-bit signed integer. But the number was larger
than 32767, the largest integer representable in a 16-bit signed integer and then
the conversion failed.

1.5 Error control

As we saw in section 1.4, the use of floating-point arithmetic exposes us to errors that
accumulate and can produce disasters. This is why various approaches have been devel-
oped to control these errors and their propagation.

1.5.1 Interval arithmetic

Interval arithmetic is not dealing with scalars but intervals. Its modern development
started in the 1960s, with the work of R.E. Moore [Moore, 1966]. The aim is to manip-
ulate closed, related subsets and operations that satisfy an inclusion property. Given
two intervals U and V and a mathematical operation � ∈ {+,−,×, /, · · · }, the resultant
interval U � V respects

∀u ∈ U,∀v ∈ V, u � v ∈ U � V (1.9)

When implemented on floating-point arithmetic it consists on bounding each num-
ber by an interval that contains it and can be represented in computer arithmetic. This
interval can alternatively be represented with its upper and lower bounds or with its
center and radius. To ensure the inclusion property, the arithmetic operations have to

1https://www-users.cse.umn.edu/ arnold/disasters/

1 – Reliable floating-point computation 19

be redefined. It offers a important reliability on the results but it faces severe limita-
tions. Indeed, the obtained interval is sometimes too large and depends on the way the
expression is written that may lead to overestimate the rounding error. This overesti-
mation is due to multiple factors

• the use of floating-point arithmetic leads to wider intervals than those that we
would obtain with real arithmetic

• correlated variables can be treated as decorrelated ones

• a wrapping effect occurs when the image of a multidimensional interval is not a
multidimensional interval. This effect can be reduced by certain techniques as
change of variables

Algorithms used in interval arithmetic therefore differ from classic ones. S. Rump
has shown [Rump, 1999] that with the center-radius representation, interval arithmetic
can be fully implemented using the Basic Linear Algebra Subprograms (BLAS) [BLAS
Technical Forum, 2001].

It has been implemented in various libraries for Pascal, C or C++ ([Hammer, 1995],
[Kulisch et al., 1992], [Hofschuster & Krämer, 2004]) and Fortran languages [Kelch,
1993] and for tools as MAPLE [Grimmer, 2003] and MATLAB [Hargreaves, 2003].

1.5.2 Static methods

Interval methods present various problems, as we have seen above, leading to overes-
timation of rounding errors, particularly when variables are correlated. In response to
this problem, so-called static analysis methods were developed [Goubault & Putot, 2006;
Védrine et al., 2021]. They allow us to take into account all the values that could be as-
sumed by the variables and provide a rigorous analysis. They are not based on one or
more executions of a program, but on an analysis of the code. However, they remain
unsuitable for very large programs.

1.5.3 Probabilistic methods

Probabilistic approaches were therefore developed with a view to their application to
large scale codes and they will be one of the main issues of this thesis.

Probabilistic methods rely on the use of a random rounding mode to estimate the
errors produced. Indeed G. Forsythe [Bauer, 1974] noted in the 1950s that rounding er-
rors do not behave as independent random variables. Various approaches have therefore
been proposed to make rounding random. On processors complying with the IEEE-754
standard, it is possible to efficiently simulate a random rounding that will adopt a round-
ing towards +∞ or towards −∞ with probability 1/2 thanks to symmetry properties.

1.5.4 The CESTAC method

The CESTAC (Contrôle et Estimation Stochastique des Arrondis de Calcul) [Vignes &
Porte, 1974; Vignes, 1978] method is based on the idea that the result of each floating-
point operation actually corresponds to two equally valid floating-point values, one corre-
sponding to the upper rounding and the other to the lower rounding. A program perform-
ing n successive operations therefore generates a combinatorial of 2n possible results R.

20 Chapter 1 – Efficient and reliable floating-point computation

The invariant part of these results corresponds to the exact significant digits of a single
execution. Obviously, calculating all the elements of R is unrealistic for a large n, the
aim of the CESTAC method is then to calculate a subset that allows us to evaluate the
number of exact decimals.

It is a probabilistic method that uses a random rounding mode. Let r be the ex-
act result of computation and R the corresponding one computed using a floating-point
arithmetic with t mantissa bits and random rounding mode. It has been shown that R
can be approximated to the first order by

Z = r +
n∑
i=1

gi(d)2−tzi (1.10)

where r is the exact result, gi(d) are constants that only rely on the data and the algo-
rithm and zi are independent random variables uniformly distributed over [−1, 1]. This
definition has two consequences:

• the expected value of Z is the exact result r

• under certain conditions, the distribution of Z is quasi-Gaussian and then Student
law can be used on this distribution

If we neglect the second-order terms, and identify R with Z, we can use a Student’s t
test [Student, 1908] to estimate the number of exact significant figures in R. To do this,
we need a sample of size N of results Ri, which enables us to obtain a confidence interval
according to a given proability for the expectation r. Thus,

∀p ∈ [0, 1], ∃τp ∈ R such that Pr(|R− r| ≤ στp√
N

) = 1− p (1.11)

where

R =
1

N

N∑
i=1

Ri (1.12)

and

σ2 =
1

N − 1

N∑
i=1

(Ri −R)2 (1.13)

τp is the confidence threshold of the Student distribution under N −1 degrees of freedom
and probability 1− p. In practice, for p = 0.05 and N = 2 or N = 3, we obtain τp = 12.706
and τp = 4.303 respectively.

CR = log10

(√
N |R|
στp

)
(1.14)

In practice, to apply the CESTAC method to a program providing a result R, consists
in repeating its executionN times, and calculating the bound CR as defined above. These
results are based on the assumptions that errors behave like centered random variables
and that the first order approximation of R is valid. Even if the rounding is not actually
centered it has been shown that a result R biased of a few σs does not change the value
of CR of more than one, so the result remains valid within one.

1 – Reliable floating-point computation 21

In terms of the validity of the first order approximation, it is more complicated. In-
deed, if addition and subtraction only produce first order terms, multiplication and divi-
sions also produce second order terms. The approximation remains valid if these second
order terms are negligible with respect to first order ones.

It has been shown that if each operand of a multiplication or the denominator of
a division is non significant, i.e. its error is of the same order of magnitude as the
value itself, the first order approximation is not valid anymore. The CESTAC method
validation therefore requires a dynamic control of multiplications and divisions during
the code execution. It implies a synchronous execution, meaning that the N executions
are done in parallel and to the computational zero concept.

In a program using the CESTAC method, an intermediate or final result is a compu-
tational zero, denoted @.0, if and only if one of the following conditions is satisfied

• ∀i, Ri = 0,

• CR ≤ 0

When a computational zero is detected the CESTAC method warns the user that the
estimation of exact significant digits does not remain valid.

1.5.5 Continuous stochastic arithmetic

The continuous stochastic arithmetic [Vignes, 1993] is a modelisation of synchronous
implementation of the CESTAC method with N executions. The N results of each arith-
metic operation are then considered as realisations of a gaussian random variable cen-
tered on the exact result. We therefore define a new kind of numbers X = (m,σ2) where
m is the expected value and σ its the standard variation. We also define a new arithmetic
on these numbers: stochastic arithmetic.

Let X1 = (m1, σ
2
1) and X2 = (m2, σ

2
2) be two stochastic numbers, the stochastic arith-

metic operations are defined as

X1 s+ X2 = (m1 +m2, σ
2
1 + σ2

2) (1.15)

X1 s− X2 = (m1 −m2, σ
2
1 + σ2

2) (1.16)

X1 s× X2 = (m1 ×m2,m
2
2σ

2
1 +m2

1σ
2
2) (1.17)

X1 s/ X2 =

(
m1/m2,

(
σ1

m2

)2

+

(
m1σ2

m2
2

)2
)

with m2 6= 0 (1.18)

For X = (m,σ2) there exists λβ only relying on β such that

Pr(X ∈ Iβ,X) = 1− β with Iβ,X = [m− λβσ,m+ λβσ]

The lower bound on the number of digits common of all elements in Iβ,X is given by

Cβ,X = log10

(|m|
λβσ

)
(1.19)

Continuous stochastic arithmetic defines the stochastic zero from the CESTAC defi-
nition of computational zero.

22 Chapter 1 – Efficient and reliable floating-point computation

Definition 3 A stochastic number X, is a stochastic zero, denoted 0 if and only if

Cβ,X ≤ 0 or X = (0, 0)

This stochastic zero definition leads to the new order relation definition as follows

Definition 4 Let X1 = (m1, σ
2
1) and X2 = (m2, σ

2
2) two stochastic numbers, we define

• stochastic equality s=
X1 s= X2 if and only X1 s− X2 = 0

• stochastic inequalities s> and s≥
X1 s> X2 if and only if m1 > m2 and X1 s 6= X2

X1 s≥ X2 if and only if m1 ≥ m2 or X1 s= X2

1.5.6 Discrete stochastic arithmetic

In discrete stochastic arithmetic (DSA), a real number x becomes a N -uplet X. Each
operation is then performed on each element with random rounding. The number of
exact significant digits ofX can be estimated thanks to equation 1.14. Previously defined
computational zero leads to the following equality and order relationship

Definition 5 Let X and Y be to N -uplets provided by the CESTAC method

• stochastic equality ds=

X ds= Y if and only if X − Y = @.0

• stochastic inequalities ds> and ds≥
X ds> Y if and only if X > Y and X ds6= Y
X ds≥ Y if and only if X >= Y or X ds= Y

These definitions offer a response to the lack of correlation in the ordering of exact
results and computed results. Indeed, let A and B be two computed results and a and b
the corresponding exacts values, we have

a > b 6=⇒ A > B and A > B 6=⇒ a > b

Using DSA allows to take into account the numerical quality of the operands and thus
to control unstable branching.

Continuous and discrete stochastic arithmetic are correlated. Indeed, when the value
N is small (2 or 3) which is the case in practice, the results provided by equations 1.19
and 1.14 are very close and represent the number of significant digits unaffected by
rounding errors. Continuous stochastic arithmetic results therefore remain valid in the
use of DSA.

The CADNA library provides an efficient implementation of the discrete stochastic
arithmetic that allows to evaluate the number of significant digits in a result with few
rewriting and to detect numerical instabilities.

2 – Benefits of mixed precision algorithms 23

1.5.7 Monte-Carlo arithmetic

Monte Carlo arithmetic [Parker & Langley, 1997; Parker et al., 2000] is another prob-
abilistic method to evaluate the accuracy of a result. As for the CESTAC method, it
consists in modeling the results obtained numerically by random variables. For exam-
ple, given x, the exact result of an operation, we set

x̃ = x+ βe−tξ (1.20)

the inexact value of x with β the base in which x is represented, e its exponent, t is
the desired precision, and ξ a random variable. ξ typically follows a uniform law on
(−1/2, 1/2) but other distributions can be useful. t determines the level of random per-
turbation applied to x and can be used to determine the minimum precision required
to obtain a specified accuracy. By performing the same operation n times on the same
operands, we can then estimate the exact value by taking the sample mean µ̂, measure
the error associated with one value by calculating the standard deviation σ̂ and evaluate
the error of the estimated value µ̂ via σ̂/

√
n.

An implementation of the Monte-Carlo arithmetic is provided by the tools MCALib [Frechtling
& Leong, 2015] and Verificarlo [Denis et al., 2016].

2 Benefits of mixed precision algorithms

2.1 Floating-point arithmetic context

Double precision, which today corresponds to the FP64 format, has long been and con-
tinues to be considered as a safe solution for scientific computing. The partially-founded
belief in the ability of double precision to deliver reliable results made it the default
choice for most applications in this field. However, the existence of a single-precision
format is not new, and dates back to the beginnings of computing with Von Neumann’s
work in 1947 [von Neumann & Goldstine, 1947] and the publication of the Fortran 66
standard2, which allows the use of both single and double formats. The appeal of single
precision is clear, since it theoretically divides the computation times by two and re-
duces data storage space and transfer costs by the same amount. In the counterpart, in
its traditional use, single precision only provides low accuracy and can therefore only be
adopted for certain applications. The IEEE-754 standard published in 1985, which for-
malized single and double precision, also encourages their development. Even though,
the hardware implementation of single precision did not provide automatic speedup and
the comparative advantage of the FP32 format over FP64 on Intel chips only dates from
the late 1990s and the development of Streaming SIMD Extension (SSE).

During this period, the acceleration in execution time was driven by Moore’s two
empirical laws, which respectively postulate a doubling of transistor complexity every
year, and a doubling of transistors per silicon chip every two years. Thus, the search for
performance gains through the use of single precision or techniques combining single
and double precision may not have seemed crucial at the time, unlike the situation in
recent years, which has seen a gradual disconnect between Moore’s laws and observed
reality. This can be explained by the physical limits reached in the miniaturization of

2https://fortranwiki.org/fortran/show/FORTRAN+66

24 Chapter 1 – Efficient and reliable floating-point computation

transistors, and by the fact that data transfer capacities have fallen behind computing
capacities. Against this backdrop, interest is growing in lower-precision transistors, also
because they reduce memory transfer costs.

2.2 Rise of low precision

This phenomenon meets another, the one of the development of graphics processing units
(GPUs). Initially developed as specialized processors for graphics rendering, they have
gradually been adopted for computation, particularly in the context of neural networks
for deep learning. These processors have a highly parallel architecture, which is not
suitable for handling heterogeneous tasks as CPUs are. GPUs, on the other hand, are
specialized for tasks that benefit from this parallelism, such as matrix operations. Un-
der the influence of low-precision applications, half (FP16, BFLOAT16) and even lower-
precision formats are developing strongly, with dedicated hardware delivering excellent
performance. On A100 GPUs, for instance, FP16 or BFLOAT16 are 16 times faster than
FP32 according to NVIDIA Ampere architecture whitepaper 3.
This performance is arousing interest in fields requiring both speed and high accuracy
results, such as gamma-ray detectors. To combine these two needs, mixed precision ap-
proaches are being developed. The idea is to mix different precisions to benefit from
their respective advantages.

2.3 The seek of mixing precisions

The high performance achieved by low precision, driven by high investment applica-
tions such as machine learning, is drawing the attention of other applications such as
scientific computing. These require higher accuracy, but would like to benefit from the
technological advances of the former. To this end, one approach gained ground in re-
cent years: mixed precision. In the literature, we can find a number of different occur-
rences: multiprecision, transprecision, adaptive precision, variable precision, dynamic
precision... The idea is always to use several precisions in the same computation to im-
prove performance while maintaining a certain level of accuracy, but the approaches can
vary.

In this thesis, we focus on two complementary approaches to the development of
mixed precision. The first is to tune existing codes from the point of view of precision.
This can be done automatically, known as autotuning, or in a guided way, as in our work.
Autotuning is a particularly portable approach as its object is to develop tools that can
be applied to any code without special understanding of what it does. On the contrary,
it also exists another approach that is based on the maximum knowledge of the code.
The key idea is to identify mixed precision oportunities and to propose specific mixed
precision basic algorithms that can later be used in larger codes.

But first, why does it make sense to make the precision vary? Because not all the
computations are equally important. Figure 1.6 presents what happens when we per-
form the summation of two FP64 numbers of different magnitudes: the smaller number
b has a lot of unimportant bits that are thrown away during the summation. If b has

3https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-
architecture-whitepaper.pdf

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

2 – Benefits of mixed precision algorithms 25

a
+ b

64 bits

Unimportant bits

Figure 1.6: Example of different magnitude elements summation

previously been obtained by a computation, it is clear that this computation can be per-
formed in a lower precision too. This means that reducing the precision of b does not
affect the result of the sum of a and b.

2.3.1 Autotuning tools

Autotuning tools aim at automatically improve the performance (in terms of speed,
memory and power consumption) by minimizing the precision of the variables used,
while controlling the accuracy of the results. In order to do so, these tools modify the
precision of the different variables and compare the result thus obtained with a ref-
erence result. But applied indiscriminately, this strategy requires a number of trials
exponential in the number of variables. To address this problem, many of these tools
use the Delta Debug algorithm, which we briefly describe below.

The Delta-Debug algorithm enables a code to be debugged automatically by consid-
ering an initial code C∅, a set of modifications ∆ = (∆1, · · · ,∆n) and the corresponding
modified code C∆ and an evaluation function eval that takes as input a code and that
returns a boolean value. eval(C∅) = 1 and eval(C∆) = 0.

The aim is to identify a minimal subset ∆E ⊆ ∆ such that eval(C∆E
) = 0.

To do so, we divide ∆ into two subsets of similar size δ1 and δ2 and observe the
behavior of the codes Cδ1 and Cδ2 obtained by their respective applications. Three types
of behaviors can be observed.

• eval(Cδ1) = 0, so it contains a subset generating an error

• eval(Cδ2) = 0, so it contains a subset generating an error

• eval(Cδ1) = 1 and eval(Cδ2) = 1, so their intersection contains an error-generating
subset.

In the first two cases, we simply search for the minimal subset generating an error via a
recursive call. In the last case, we also recursively test the subsets that are intersections
of δ1 and δ2.

In the context of precision autotuning, this algorithm is used to test different com-
binations of accuracies for different variables, with the eval function applying a con-
straint on the accuracy of the result.

The PROMISE tool described in Figure 1.7 combines the stochastic arithmetic tool
CADNA with the Delta-Debug algorithm. To do this, it first computes a reference re-
sult using CADNA, then it applies the Delta-Debug algorithm to determine a maximum
subset of variables that can be passed in low precision while maintaining the requested
accuracy.

Other autotuning tools can be found in the survey [Cherubin & Agosta, 2020]. Some
are based on a static approach such as FPTaylor [Solovyev et al., 2018] using symbolic

26 Chapter 1 – Efficient and reliable floating-point computation

PROMISE

initial code

instrumented
code

CADNA

reference

double

double float

comparison

double float

double float half

comparison mixed-precision
code

Delta Debug Delta Debug

step 1 step 2

Figure 1.7: Promise dataflow

Taylor expansions, Salsa [Damouche & Martel, 2018] based on static analysis methods
by abstract interpretation, TAFFO [Cattaneo et al., 2022] based on LLVM technology
and using programmer annotations, or POP [Ben Khalifa et al., 2020] integrating a
static forward and backward analysis. Others rely on a dynamic approach more suitable
to process industrial codes such as CRAFT HPC [Lam et al., 2013] that detects can-
cellations through binary instrumentation, Precimonious [Rubio-González et al., 2013]
that performs a search on the types of floating-point variables, HiFPTuner [Guo &
Rubio-González, 2018] that exploits community structure of floating-point variables, and
ADAPT [Menon et al., 2018] that uses algorithmic differentiation.

There are also tools dedicated to GPUs that pay attention to cast such as AMPT-
GA [Kotipalli et al., 2019] that uses static analysis to help dynamic analysis, GPUMixer [La-
guna et al., 2019] and GRAM [Ho et al., 2021] that assigns different groups of threads to
different precision levels adaptively at runtime.

2.3.2 Algorithm-based mixed precision

The strength of automatic approaches is also their weakness: they cannot take advan-
tage of the intrinsic opportunities offered by certain problems or algorithms to use dif-
ferent precisions. In contrast, an approach based on mixed precision linear algebra
algorithms has seen significant development in recent years as witnessed by the sur-
vey [Higham & Mary, 2022]. It highlights the mixed precision approaches that have
been developed to address various linear algebra problems. These range from matrix
products to linear system solutions by direct methods or iterative refinement, QR factor-
ization, least-squares problems and singular value decomposition.

In this thesis, we will focus more specifically on data-driven mixed precision algo-
rithms, grouped together in the class of adaptive precision. The idea for these algorithms
derives directly from the observation we made with the Figure 1.6 that if a and b are not
of the same magnitude, they do not need to be stored with the same precision. But we
can go further and assert that if b is itself the result of a computation, this computation
can be carried out to a lower precision. Thus, we face the following issue: to what extent
this distinction between variables and their treatment with different precisions can and
should be made? Indeed, while element-by-element bucketization may seem the most
appropriate way of providing fine-grained classification and assigning the most appro-

3 – Conclusion 27

priate precision to each value, the extra cost generated by such processing may exceed
the gain expected from the reduction in precision.

The choice of precision can be made at matrix level in calculations involving several
matrices. For example, to calculate C = A1B1 + A2B2 with |A1| ≥ |A2| and |B1| ≥ |B2|, if
|A1||B1| � |A2||B2|, the matrix product |A2||B2| can be computed in lower precision than
|A1||B1|. This is particularly true in multiword arithmetic, where a matrix is represented
by the unevaluated sum of matrices of lower precision, and the products realized by
the sum of the products of these submatrices. [Fasi et al., 2023] have shown that high
accuracy is only required for the A1B1 term to avoid error accumulation.

It can also be done in the column/row level, storing each in a different precision.
It is particularly adapted for matrices that can be decomposed as low-rank component
of rapidly decreasing norm as it has been done with mixed precision truncated SVD
approaches [Amestoy et al., 2022; Ooi et al., 2020].

In some cases it appears more interesting to adapt the precision at a block level.
For example [Abdulah et al., 2022b] and [Doucet et al., 2019] propose to use a precision
based on the distance of the block to the diagonal according to the fact that many sparse
matrices blocks distant to the diagonal tend to have a smaller norm. Another example
is the work realised to develop an adaptive precision block Jacobi preconditionner [Anzt
et al., 2019] and [Flegar et al., 2021].

Finally, some strategies are even more aggressive and propose an element level. As
they destroy the granularity of the computation, it shall be reserved for memory-bound
applications such as sparse matrix-vector product. [Ahmad et al., 2019] proposes to split
A in two matrices Ad and As respectively stored in double and single precision. This
idea is similar with the one of bucket summation [Demmel & Hida, 2004; Zhu & Hayes,
2010] however the goal is not to offer a better accuracy but to reduce the precisions used
for each bucket. [Diffenderfer et al., 2021] proposes a bucket algorithm for inner product
that uses the IEEE prescribed precisions. We developed an algorithm for sparse matrix-
vector product that can use an arbitrary number of precisions and targets a specific
accuracy. This work is described in Chapter 3 and 4.

It is important to bear in mind that these precision optimizations are always matrix-
dependent, and that while they may generate very significant gains in some cases, they
may be less or even counter-productive in others.

3 Conclusion

As we have seen, representing and manipulating floating-point numbers involves issues
of speed and accuracy, both of which being linked by the choice of precision. IEEE754
standardization, far from reducing technological possibilities, has made them possible
by imposing common rules. The recent development of low-precision formats, massively
used in neural networks in particular, has aroused interest in fields requiring higher ac-
curacy, but still wishing to take advantage of these new possibilities. This is reflected in
the interest in mixed precision, i.e. the mixing of different precision formats in the same
code. The development of mixed precision has two facets. On the one hand, there is a
sustained effort to develop algorithms specifically designed to take advantage of the use
of multiple precisions. On the other hand, with the aim of “democratizing” mixed pre-
cision, tools are being developed to automatically insert different formats into existing

28 Chapter 1 – Efficient and reliable floating-point computation

code while preserving the accuracy.
In this thesis, we get interest on both aspects. In the next chapter, we present an

overview of nuclear physics, a field in which experimental and measurement instru-
ments require both high accuracy and ever-increasing computational performance to
detect increasingly rare phenomena.

CHAPTER 2

The Advanced GAmma Tracking Array (AGATA)

What is matter made of and how does it work? Modern physics provides es-
sentially two answers depending on the scale observed: General Relativity in
the infinitely large and quantum physics in the infinitely small. Connecting
the two is a major objective. Experiments in nuclear and particle physics seek
to identify particles and behaviors predicted by theory, or to disprove it by dis-
covering contradictions. In this context, detectors play a role as important as
the accelerators and colidors that produce the particles. In this thesis, we focus
on gamma-ray detectors, and in particular on the AGATA detector, developed
as part of an European cooperation project to develop a last generation detec-
tor, capable of extracting hitherto inaccessible information. Such an objective
poses major technological challenges, including in numerical terms, since the
amount of data to be accurately processed by the detector is very large.

1 Nuclear physics

1.1 Fundamental interactions

At the subatomic scale, we observe two kinds of particles, fermions and bosons whose
behaviors are partially explained but which continue to be the focus of research. Their
interactions are governed by four fundamental interactions.

• Gravitation is always attractive and depends on the mass of the interacting bod-
ies. It was discovered at the end of the 17th century by Newton, then explained
as a manifestation of the curvature of space-time by Albert Einstein in his theory
of general relativity in 1915. It is the weakest of the fundamental interactions,
but becomes dominant as the scale increases, and is therefore responsible for the
large-scale structure of the Universe. It continues to be the focus of research aimed
at linking this interaction to microscopic effects. Gravitation can be interpreted as
an exchange of gravitons, although this particle has not yet been discovered exper-
imentally.

30 Chapter 2 – The Advanced GAmma Tracking Array (AGATA)

• Electromagnetism can be attractive or repulsive, and depends on the electric
charge of the particles. This interaction, which explains the existence of electro-
magnetic waves, was discovered by Maxwell in 1860. This interaction is associated
with photons.

• the weak nuclear interaction is responsible for the β decay of subatomic par-
ticles. It was described in 1930 by Enrico Fermi and affects all known classes of
fermions, and is caused by the exchange of bosons W+, W− and Z0, which have
very high masses (90 and 91 times that of the proton), which explains the very
short range of this interaction.

• the strong nuclear interaction was discovered in the mid-twentieth century and
is responsible for the cohesion of nucleons in the nucleus despite electromagnetism.
It relies on a more fundamental interaction, the quantum chromodynamics. This
one, discovered in the 1970s, acts on particles carrying a color charge: quarks,
antiquarks and gluons, the latter themselves being carriers of the interaction. It
acts in a short range by confining the quarks that compose the nucleons and allows
protons and neutrons to form a nucleus.

In this thesis we are interested in nuclear physics that is on the scale of nuclei,
smaller than molecules and atoms but bigger than fundamental particles quarks, our
objects are of dimension around 10−15m. We recall that atoms are made of a positively-
charged nucleus around 10−14m and a cloud of negatively-charged electrons. Nuclear
physics studies the behavior of atomic nuclei and the particles with which they interact.

1.2 Nuclei behavior

An atomic nucleus is made up of a number A of nucleons (including Z positively charged
protons and N uncharged neutrons). They can interact with other nuclei, but also with
elementary particles such as neutrons and electrons. Nuclear physics is concerned with
nuclear structure, i.e. the proton-neutron interactions that form the nucleus, and with
nuclear reactions, which describe how nuclei interact with each other and with elemen-
tary particles. In this thesis, we will be looking specifically at gamma radiation, which
comes from nuclear decay or fission reactions.

1.3 Radioactive decay

A chemical element is determined by the number of protons Z of its nucleus, but it can
exist in different forms called isotopes, corresponding to different numbers of neutrons
N for the same number Z. Among these isotopes, only some are stable, i.e. they will
not evolve without interaction with their environment. These stable isotopes correspond
to nuclei with a close number of both protons and neutrons. But there are also many
unstable isotopes. These isotopes are called unstable because they will eventually decay
in some way. There exist seven different kinds of radioactive decays [Beiser, 2003] that
are presented in Table 2.1. α particles correspond to 4

2He nuclei while β− and β+ respec-
tively correspond to electrons and positrons and γ is a gamma-ray photon. The different
kind of decays correspond to various reasons of nucleus instability. In particular, gamma
decay corresponds to an excess of energy that is released by the emission of gamma-ray

1 – Nuclear physics 31

Table 2.1: Radioactive decays

Decay Transformation Reason of nucleus instability

Alpha decay A
ZX →

(A−4)
Z−2 Y + α Too large

Beta− decay A
ZX → A

Z+1Y + β− + ν̄ Too many neutrons wrt protons
Beta+ decay A

ZX → A
Z−1Y + β+ + ν Too many protons wrt neutrons

Electron capture A
ZX + e− → A

Z−1Y + ν Too many protons wrt neutrons
Gamma decay A

ZX
∗ → A

ZX + γ Excess of energy
Spontaneous fission A

ZX → A
ZY + A

ZT + . . . Too heavy isotope
Neutron emission A

ZX →
(A−1)
Z X + n Too many neutrons wrt protons

Figure 2.1: Penetration of α, β and γ particles

32 Chapter 2 – The Advanced GAmma Tracking Array (AGATA)

Figure 2.2: Chart of nuclides by type of decay. In black, the stable nuclides appear to
form a valley, called the stability valley. 1

1 – Nuclear physics 33

photons. An excited nucleus, meaning with too much energy, is a situation that usually
arise after alpha or beta decay and then gamma decay usually happens in a short time
after one of the others. It can also follow nuclear reactions such as neutron capture, nu-
clear fission, or nuclear fusion. The distribution of stable and unstable isotopes forms a
valley of stability described in Figure 2.2. We can observe that stable nuclei correspond
to those close to N = Z but with a slight superiority in the number of neutrons. The
figure also highlights the fact that nuclides above this valley decay through β− radioac-
tivity (they transform their neutrons into protons), while those below decay through β+

(they transform their protons into neutrons) and those beyond the valley reduce their
nucleons number through α decay.

Radioactive decay of an atomic nucleus is a stochastic event that is unpredictable for
a single nucleus. Nevertheless, for a significant number of the same nuclei it is possible
to determine the time in which half of them will have decay. This measure is called half-
life and is specific to each radioisotope. The shorter the half-life, the more the element
is radioactive. Half-life can vary a lot from almost instantaneous to longer than the age
of the universe. Extremely short lifetimes, make the elements very difficult to observe.

As presented in Figure 2.1, not all particles resulting from decay have the same
penetration of matter. In particular, gamma-rays have a strong penetration of matter
and they are ionizing radiation, meaning that they have sufficient energy to detach
electrons from atoms and molecules. This property make them hazardous to life as
they might cause DNA mutations, cancers and tumors. Gamma-rays correspond to the
shortest wavelength of electromagnetic spectrum (around 1 × 10−11m) and a range of
energy from a few kiloelectronvolts (keV) to around 8 megaelectronvolts (MeV).

1.4 Gamma-ray spectroscopy

Despite their health risks, gamma-rays have industrial and medical applications, in par-
ticular to kill living organisms (for instance in the need of sterilization), to treat cancer
by targetting the cancerous cells or in imaging techniques. For instance, the PET scan
uses a radiolabeled sugar called fluorodeoxyglucose. This sugar emits positrons which
are subsequently annihilated by electrons resulting in pairs of gamma-rays. As the can-
cer has a higher metabolic rate than the surrounding tissues, this allows to identify
it.

Gamma-rays are also used in scientific applications as they provide information on
the most energetic phenomena of the universe. In astronomy they are used to under-
stand far and ancient events from the beginning of the Universe. They are also partic-
ularly useful to provide information on the isotopes from which they are issued. The
features of incident gamma-rays are measured by a detector and compared with those
known to be emitted by isotopes that allows to identify the isotope at the origin of the
gamma-ray. As existing physics models can not be applied to every nuclei, in particular
the most exotic ones with extreme proton to neutron ratios, studying these far-from-
stable nuclei is a key to understanding the nuclear system.

To this end, Radioactive Ion Beam facilities have been set up all around the world.
In particular FAIR (Darmstadt, Germany), HIE-ISOLDE (CERN, Geneva, Switzerland),
SPIRAL2 (Caen, France), SPES (Legnaro, Italy), NSCL-MSU (East Lansing, USA),

1https://commons.wikimedia.org/wiki/File:DecayModeNuDat2.png

https://commons.wikimedia.org/wiki/File:DecayModeNuDat2.png

34 Chapter 2 – The Advanced GAmma Tracking Array (AGATA)

RIKEN (Tokyo, Japan). These facilities are capable of producing a wide range of un-
stable nuclei, opening up new perspectives for nuclear physics experiments.

There exist different kinds of detectors. Scintillation detectors consist of a crystal
coupled with a silicone oil light-couple. Scintillation is the process by which a material
emits light when exposed to ionizing radiation. In practice, scintillation detectors, re-
ferred to as Nal(TI) consist in a single crystal of sodium iodide doped by a small amount
of thalium. It is coupled with a photomultiplier tube that converts the light into an
electrical signal that can be treated by a computer. These detectors present certain ad-
vantages. Indeed, they are not too expensive, pretty easy to use and durable. On the
other hand, they have a reduced resolution and they can not detect many small photo-
peaks.

Another kind of detectors exist, they are based on semiconductors. A semiconductor
is a material in which the valence band of electrons is close to the conduction band. Thus,
when hit with gamma-rays, the energy imparted by the gamma-ray allows to promote
electrons to the conduction band. This change of conductivity is detected and generates
a signal. In the 1980s and 1990s, semiconductor detectors using germanium, denoted
Ge(Li), have become the key to the study of nuclear structure. To get a better ratio of
full-energy to the total of events recorded (called Peak-to-Total), the Germanium crystals
are surrounded by a dense scintillator that records gamma-rays produced by Compton
scatter or that escape from the crystal. Doing so, the electronics is able to reject the
partial-energy pulse in the Ge detector. This translate in a significant improvement in
the Peak-to-Total ratio. This technique is called Compton suppression [Riley & Simpson,
2014].

The development of efficient 4pi spectrometers using an escape-suppression tech-
nique led to the construction of the EUROBALL [Beck, 1992; Simpson, 1997] (Europe)
and GAMMA-SPHERE[Lee, 1990] (USA) detectors, which have made a major contribu-
tion to progress in nuclear structure research. Germanium crystals can be few centime-
ters large and then absorb full gamma-rays from a few tens of keV to beyond 10 MeV.
Germanium crystals have to be very pure and work at really low temperatures around
−196 ◦C that are achieved with nitrogen cryostats. However, if the escape-suppression
technique increases the Peak-to-Total ratio, it also reduces the solid angle occupied by
the germanium detector and hence the efficiency of the gamma-ray detection system.

In order to cope with this limitation and to go further in the nuclear structure un-
derstanding, a new kind of detectors is development. They are called High Purity Ger-
manium (HPGe) detectors and they are developed both in the USA, with GRETA and in
Europe with the AGATA collaboration.

1.5 Online and offline computing

Detectors provide a large amount of data that have to be treated by computer capabil-
ities. This processing is historically divided into two steps in high-energy and nuclear
physics experiments.

The first step, called online, takes place immediately on leaving the detector, and
generally involves electronic processing to sort the data and eliminate noise. This steps
requires high computing performance to perform an efficient and correct sort because
the volume of data is important and we have to be sure not to eliminate useful data.
Today, this step is usually performed using electronic components and FPGAs.

2 – The AGATA experiment 35

The second step, called offline, consists in reconstructing the signal from the data
obtained and stored, so that the computations can be performed several times, with the
aim of refining them. However, the explosion of data volumes leads to more online com-
puting. This is because physicists are seeking to identify increasingly rare and discreet
phenomena hidden in what used to be considered as noise. The trend, therefore, is to
introduce more software processing in the online part, to cope with the influx of data.
This calls for high performance algorithmic processing, which is the goal of our work.

2 The AGATA experiment

AGATA2 (Advanced GAmma-ray Tracking Array) is a European research project [Akkoyun
et al., 2012] with the objective of building a HPGe detector with significantly higher
resolving power than existing ones. It is a mobile instrument that aims at taking ad-
vantage of the wide range of facilities available in major European laboratories. It is
a 4π array detector that will in time consist of 180 36-fold segmented HPGe detectors
with optimized geometry grouped into triplets for a total of 6480 channels. This detector
will be used for experiments with intense stable and radioactive ion beams, to study the
nucleus structure.

It relies on two major technical advances:

• position sensitive Ge crystals

• tracking array technology

By electronically segmenting germanium crystals and using a Pulse Shape Analysis
algorithm, i.e. by comparing the signals obtained with those of a calibration database,
we can precisely identify the points of interaction of a gamma-ray, together with the as-
sociated energies and timestamps. This information can then be used to reconstruct the
complete path of a gamma-ray through the detector. The position sensitive Ge crystals
are obtained through highly electrically segmented Ge detectors. This allows the iden-
tification of the individual points of interaction of the gamma-rays within the volume of
the Ge crystals and the deposited energy with high resolution.

This technique eliminates the need for Compton-suppression shields, increasing effi-
ciency while maintaining spectral quality. Furthermore, the direction of emission of each
gamma-ray can be accurately assessed, which is necessary to perform a good Doppler en-
ergy correction and thus obtain a more precise measurement of the energy of a gamma-
ray emitted by a very fast nucleus, as it is the case in most nuclear reactions.

2.1 The geometry of the detector

The geometry of the detector was the subject of advanced reflection using Monte-Carlo
simulations with a simulation code based on GEANT4 [Farnea et al., 2010], leading to
the use of 180 hexagones and 12 pentagones. The 180 hexagones are filled by Germa-
nium crystals grouped into 60 Agata Triple Clusters (ATC). The participation of the 12
pentagones to the general resolution is considered sufficiently low to avoid the cost of
development and then their size is minimized and they are used for mechanical support,

2https://www.agata.org

https://www.agata.org

36 Chapter 2 – The Advanced GAmma Tracking Array (AGATA)

Builder

PrePSA PSA PostPSA

PCI

PCI

Merger

Ancillary

Tracking

Local Level Processing Global Level Processing

…
..

Intermediary

Producer

Consumer

AD_Level_0

Traces

AD_Level_1

Hits

AD_Level_0

Ancillary Data

AD_Level_2

Correlated Hits
AD_Level_3

Correlated Hits

+

Ancillary

AD_Level_4

Tracked Gamma
+ Ancillary
+ Correlated Hits

AD ≡AGATA Data

/agatadisk (CEPH)

PrePSA PSA

PSAPrePSA

PostPSA

PostPSA

GANIL DAQ

Encapsulation MFM to ADF TCP/IP connexion

Quasi online replay

Figure 2.3: Agata data processing

insertion of complementary detectors, beam entry and exit pipes. The inner radius will
be 23.5 cm.

This geometry allows to maximise the solid angle coverage to 82% and the full energy
efficiency to 43% (28%) and 59% (43%) peak to total ratio for photon multiplicities of 1
and 30 respectively.

The use of hexagonal crystals leads quite naturally to azimuthal segmentation in
six sectors. For longitudinal segmentation, the effective volume of the segments must
be balanced, and they must be wide enough to achieve a sufficiently fine positioning
resolution of 5mm. Each Germanium detector of AGATA is then segmented into 36
segments (6 slices along the axis times 6 sectors around the axis).

2.2 AGATA data processing

Figure 2.3 describes the data processing between the signals captured by the germanium
and the reconstruction of the gamma-ray path. Each step is briefly explained below.

2.2.1 Detection

When a photon arrives into the Germanium crystal, it loses energy scattering electrons
off atoms. This happens multiple times, producing a shower of electrons that generates
an electric current and then an analog signal. When a gamma-ray interacts with germa-
nium, it produces an electrical signal in the hit segment, called the netcharge segment,
but also in its neighbors, and on the central contact (core) meaning a total of 37 signals
per crystal.

All signal channels are equipped with a cold preamplifier that operates close to the
liquid nitrogen temperature of the cryostat to reduce the noise contribution. Preampli-
fiers have to provide good energy and timing resolution but also clean transfer functions
to register unperturbed signal traces to be used to identify the interaction point in the
Pulse-Shape-Analysis (PSA) step. The high electronic integration density implies some
crosstalk contributions, typically in the order of 0.1%. Its effect is taken into account to
correct the measured signals.

2 – The AGATA experiment 37

Analog signals are then converted into digital signals using an analog-to-digital con-
verter. This conversion is performed at a frequency of 100 MHz and produces 14-bit inte-
gers [Akkoyun et al., 2012]. These data are then serialized and preprocessed by FPGAs,
which reduce them by a factor of 100, retaining only those detectors that have recorded a
relevant signal. In addition, a moving-window deconvolution algorithm determines the
energy deposited in each detector. The raw data, energy information and time stamp are
then transmitted to the computer system via optical fiber. From there, the Narval data
acquisition system enables data to be stored in ADF (AGATA Data Flow) format and to
be computationally processed.

2.2.2 Data processing

The processing of data relies on a series of actors running as individual processes on a
network of computer nodes.

The first actor is the crystal producer that reads the measurements and casts them
into FP32, which generates an increase in storage size, and passes it on to the prepro-
cessing actor. This preprocessing actor defines thresholds and corrects signal noise to
produce energy-calibrated and time-aligned data.

This is followed by the Pulse Shape Analysis (PSA) described in more details in Sec-
tion 3. In this step the measured signals are compared with a signal database to de-
termine the position of the interactions. This eliminates the need for all the data, and
allows only the energy and position information to be transmitted to the next actor.

The post-PSA actor sets thresholds on core energy and segments that can be recal-
ibrated and moved over time. It can also apply a correction for the effects of detector
wear. The next step merges data from all AGATA crystals using time stamps. A filter
can be used to set minimum event thresholds. Data from auxiliary detectors are then
merged by the next actor, again using time stamps. The last actor is the tracking fil-
ter. It tracks the various events in the detector to determine how the gamma-rays have
interacted in the complete detector.

2.2.3 Gamma-ray tracking

Tracking algorithms are used to reconstruct the trajectories of incident photons to de-
termine their energy and direction. To do this, it is necessary to separate the interaction
points identified by the PSA in the different segments and detectors to reconstruct the
correct interaction sequences.

There are two classes of tracking algorithms: forward tracking algorithms [Dele-
planque et al., 1999] and backward tracking algorithms [van der Marel & Cederwall,
1999]. All these algorithms rely on the interaction properties of photons with matter. For
forward tracking, interaction points are first grouped into spatial clusters. For backward
tracking, we use the fact that the last photoelectric interaction generally falls within a
narrow energy band. Starting from this last point, we trace back to the first, using the
physical characteristics of the interactions and choosing the most probable interaction
pattern.

At the energies of interest to us, i.e. between 10keV and 20MeV, the main physical
processes are Compton scattering, Rayleigh scattering, pair creation and photoelectric

38 Chapter 2 – The Advanced GAmma Tracking Array (AGATA)

interaction. Compton scattering is dominant between 150keV and 10MeV, so all tracking
algorithms should be highly efficient in this domain.

3 The pulse-shape analysis of AGATA

A gamma-ray will normally interact several times with germanium. The aim of the PSA
is to precisely identify the location of these interactions and their associated energies.
These different interactions may take place in the same segment, but also in different
segments, or even in an adjacent detector or outside the shell. The PSA needs to provide
interaction localization accuracy greater than 5mm to perform the tracking process with
high efficiency. Interaction points and their associated energies must be identified very
quickly. Indeed, the flow of information to be processed is far greater than what can
be stored, both in terms of storage capacity and recording speed. The PSA therefore
enables online reduction to the parameters of interest: position, energy and timestamp.
To achieve this, the measured signals are compared with a database of signals for which
the location of the interaction is known.

Several algorithms have been developed, including a gridsearch [Venturelli & Baz-
zacco, 2005; Schlarb, 2009], genetic algorithms, a wavelet decomposition and a matrix
method [Olariu, 2007; Olariu et al., 2006], optimized for different event types. The
AGATA partnership expects a continuous development of the PSA performance as re-
viewed in [Boston, A. J. et al., 2023]. Currently, the gridsearch algorithm is preferred for
its efficiency, simplicity and robustness. It is implemented in the Narval environment
and it is to this algorithm that we study in this thesis.

To correctly compare the experimental signals with those of the base, it is necessary
to perform an energy calibration, which is achieved by the front-end electronics, but
also to take into account the influence of noise, pedestal, time adjustment and cross-talk
effects.

3.1 AGATA Data Library

To identify points of interaction, the measured signals in the net-charge segment, its
neighbours and the core are compared with reference signals previously obtained that
must have a 2 mm resolution. This reference basis is named the AGATA Data Library
(ADL) and can be obtained by two different ways: simulation and crystal calibration. In
both cases, we seek to associate an interaction point in the crystal with signals measured
or simulated in the net-charge segment, its neighbors and the core. In all cases, we
obtain a grid of discretized crystal points and the associated signal values.

To obtain the signal basis experimentally, we have to use calibration tables. They are
used to target a specific point in the crystal and measure the associated signals in the
various segments.

But this calibration stage is extremely time-consuming, so simulation is preferred.
For the simulation to be good enough to enable a correct PSA, the input elements must
be precisely known: crosstalk effects, crystal impurities and the response functions and
space charge distributions of the detector. Using Poisson equations, we can then calcu-
late the signal basis.

3 – The pulse-shape analysis of AGATA 39

3.2 Gridsearch algorithm

3.2.1 Full gridsearch

The full gridsearch algorithm (FGS), Algorithm 1 is based on the minimization of a
Figure of Merit calculated for each grid point. The crystal has been discretized, and for
each point we have the signals measured in the hit segment, in neighboring segments
and in the core over a certain number of time steps. We can then calculate which point
in the hit segment has the lowest value, indicating that we have found the point closest
to the interaction. This Figure of Merit is as follows

FOMi =
∑
s,t

(Vm[s][t]− Vr[i][s][t])p (2.1)

Where Vm and Vr denote the measured and reference signals respectively, and s and t
iterate over the different segments and time steps respectively. The aim is to determine
the value of i for which FOMi is minimal, and therefore the corresponding point.

Algorithm 1 Pulse-Shape Analysis - Full gridsearch algorithm
1: Input: Measured signal Vm and reference signals Vr
2: Output: Interaction point
3: MINFOM = MAXFLOAT
4: INDFOM = MAXINT
5: for i = 1: NPTS do
6: FOMi = 0
7: for s = 1: NSEGS do
8: for t = 1: NTIME do
9: FOMi += (Vm[s][t]− Vr[i][s][t])p

10: end for
11: end for
12: if FOMi < MINFOM then
13: MINFOM = FOMi

14: INDFOM = i
15: end if
16: end for
17: RETURN INDFOM

3.2.2 Coarse-Fine gridsearch

The current variant of the algorithm, called coarse-fine gridsearch (CFGS), Algorithm 2,
is an optimized version of the FGS. Instead of measuring the Figure of Merit for all grid
points, a first search for the minimum is performed on a coarse subset of grid points with
a resolution of 6 mm. Then a new search is performed around this coarse point to find
the true minimum on a grid with a resolution of 2 mm. If the energy of the interaction
is below a threshold, only the coarse grid is searched. Indeed, for these interactions, the
resolution does not reach that of the fine grid.

40 Chapter 2 – The Advanced GAmma Tracking Array (AGATA)

Algorithm 2 Pulse-Shape Analysis - Coarse-fine gridsearch algorithm
1: Input: Measured signal Vm and reference signals Vr, coarse grid CGRID and fine

grid FGRID
2: Output: Interaction point
3: MINCOARSE = MAXFLOAT
4: INDCOARSE = MAXINT
5: for k = 1: NCOARSE do
6: i = CGRID[k]
7: FOMi = 0
8: for s = 1: NSEGS do
9: for t = 1: NTIME do

10: FOMi += (Vm[s][t]− Vr[i][s][t])p
11: end for
12: end for
13: if FOMi < MINFOM then
14: MINCOARSE = FOMi

15: INDCOARSE = i
16: end if
17: end for
18: MINFOM = MINCOARSE
19: INDFOM = INDCOARSE
20: for k = 1: NFINE do
21: i = FGRID[INDCOARSE][k]
22: FOMi = 0
23: for s = 1: NSEGS do
24: for t = 1: NTIME do
25: FOMi += (Vm[s][t]− Vr[i][s][t])p
26: end for
27: end for
28: if FOMi < MINFOM then
29: MINFOM = FOMi

30: INDFOM = i
31: end if
32: end for
33: RETURN INDFOM

3 – The pulse-shape analysis of AGATA 41

3.3 Metric selection

The choice of the metric used in the FOM is important to accurately identify the point
of interaction. This choice depends on the distribution of the differences between the
basis signals and the measured signal, and also on the weighting chosen between the
net signal and the transient signal [Lewandowski et al., 2019].

A Gaussian distribution is expected on the Vm[s][t] − Vr[i][s][t] difference, since the
basis signals generally over- or under-estimate the real signal, mainly due to noise. The
amplitude of the measured signal varies around its expectation due to the statistical na-
ture of the charge collection. If a non-Gaussian distribution is observed, we can deduce
a systematic deviation between the measured signals and those of the basis.

In practice, the choice of the metric used corresponds to a variation in the value of p,
which is a positive real number. The usual distance corresponds to a Euclidean metric
and is obtained with a value of p = 2. A very high value of p implies a high weight given
to strong deviations between the measured signal and the basis signals, even if these
deviations are few in number. This reduces the impact of noise, but also means that less
weight is given to transient signals, which are very important in identifying the point
of interaction. Lower p values do not give as much weight to these important but rare
deviations. They do, however, require good overall matching, including for transient
signals.

It is difficult to determine an optimal p-value by analyzing the distribution of am-
plitude differences. This choice depends not only on the energies observed, but also on
the multiplicity of interactions. So far, the choice of p has been determined empirically.
Various experiments have indicated that a value of p = 0.3 was optimal [Recchia, 2008]
and we have retained retained this value in our experiments.

3.4 Multiple interactions

Several interactions can occur in the detector at the same time, adding complexity to
the identification of interaction points. While this is not a problem if these interactions
occur in different crystals, the situation is different if they take place in the same crys-
tal or even in the same segment. In the latter case, the gridsearch algorithm treats the
multiple interactions as a single one by determining the barycenter. In the case of in-
teractions taking place in different segments of the same crystal, two situations need to
be distinguished. Either the transient signals overlap and the gridsearch does not al-
low correct identification or the signals do not overlap and the algorithm remains valid.
[Akkoyun et al., 2012]

3.5 A time consuming step

The PSA operation is both crucial in the AGATA processing chain, because it determines
the ability to identify precisely the gamma-ray trajectories, and very costly in terms of
execution time and memory.

The signal database contains information corresponding to each discretized point on
the crystal, i.e. 47292 in our case. For each of these points, we have the coordinates of the
interaction point, the associated T0, the energy fraction it represents, the core trigger,
the energy collected in each segment and the core, and, much more expensive, the traces

42 Chapter 2 – The Advanced GAmma Tracking Array (AGATA)

measured over 120 5 ns time steps in each segment and the core, including the first 10
empty traces (corresponding to a 50 ns pretrigger). The floats are stored in FP32 and the
integer in 4 bits, so we obtain 17932 bytes per point in the base, i.e. a total of more than
848 Mb for the whole base.

To identify the point of interaction, measurements are taken on the 36 segments and
the two cores (high gain and low gain) with an accuracy of 10ms per time step. Each
trace is stored as a 2-byte integer. At PSA level signal is reduced to 60 samples 4 bytes
floats and we only use the traces measured in the neighboring segments. However, all
the data remains necessary to process several events and/or perform time adjustment
i.e. determine the most appropriate T0.

Finally, the key operation at the heart of the nested loop of points, segments and time
steps 2.1 is not trivial and remains quite costly due to its use of mathematical functions.

PSA is therefore an intrinsically costly operation, which it is legitimate to seek to
speed up by various means, notably by seeking to reduce the volume of data processed,
in particular by reducing the precision formats used.

4 Conclusion

As we have seen, progress in physics since the 19th century have led to significant ad-
vances in our understanding of the particles that make up matter. However, there are
still shadows and contradictions in the models proposed. To resolve these contradictions
and further improve our knowledge, we need to develop experiments that require major
technological advances. The European AGATA project is part of this approach, with the
aim of building a state-of-the-art, gamma-ray detector using High Purity Germanium
(HPGe) crystals. This detector will be mobile, making it possible to take advantage of
the various European radioactive and stable ion beam facilities, and to achieve unprece-
dented precision in the interactions observed. To achieve this, the detector must be able
to identify the path of each gamma-ray in the germanium, and therefore the points of in-
teraction within it, and the energies released during these interactions. This is obtained
by a step called Pulse-Shape-Analysis, which compares the measured signals with a
database of signals for which the point of interaction is known. This step must be per-
formed live, or online according to dedicated terminology, but it must also be performed
with accuracy. During this thesis, our aim was therefore to speed up the computation by
adopting a data size perspective, while preserving the accuracy of the results.

36 segments + 2 cores (high gain and low gain) precision is 10ms per time step. 2
bytes per bin for raw traces. At PSA level signals reduced to 60 samples 4 bytes per bin
(float)

CHAPTER 3

Adaptive SpMV and application to Krylov solvers

We introduce in this chapter a mixed precision algorithm for computing sparse
matrix-vector products and use it to accelerate the solution of sparse linear
systems by iterative methods. Our approach is based on the idea of adapting
the precision of each matrix element to its magnitude: we split the elements
into buckets and use progressively lower precisions for the buckets of progres-
sively smaller elements. We carry out a rounding error analysis of this al-
gorithm that provides us with an explicit rule to decide which element goes
into which bucket and allows us to rigorously control the accuracy of the al-
gorithm. We implement the algorithm on a multicore computer and obtain
significant speedups (up to a factor 7×) with respect to uniform precision al-
gorithms, without loss of accuracy, on a range of sparse matrices from real-
life applications. We showcase the effectiveness of our algorithm by plugging
it into various Krylov solvers for sparse linear systems and observe that the
convergence of the solution is essentially unaffected by the use of adaptive pre-
cision.

1 Introduction

Motivated by the growing availability of lower precision arithmetics, mixed precision
algorithms are being developed for a wide range of numerical computations [Higham &
Mary, 2022]. One subclass of mixed precision algorithms that has recently and increas-
ingly proven successful is what we call adaptive precision algorithms. These algorithms
are based on the idea of adapting the precision to the data involved in the computa-
tion, by selecting a level of precision proportional to the importance of the data, where
the definition of “importance” is application dependent. For example, Anzt et al. [Anzt
et al., 2019], [Flegar et al., 2021] have proposed an adaptive precision block Jacobi pre-
conditioner in which the precision of each block is chosen based on its condition number.
Another example is the mixed precision low-rank compression proposed by Amestoy et

44 Chapter 3 – Adaptive SpMV and application to Krylov solvers

al. [Amestoy et al., 2022], which partitions a low-rank matrix into several low-rank com-
ponents of decreasing norm and stores each of them in a correspondingly decreasing
precision. Ahmad et al. [Ahmad et al., 2019] develop a sparse matrix–vector product
algorithm in which elements in the range [−1, 1] are switched to single precision while
the other elements are kept in double precision. Diffenderfer et al. [Diffenderfer et al.,
2021] propose a “quantized” dot product algorithm that adapts the precision of each vec-
tor element based on its exponent. For a unified presentation of these adaptive precision
algorithms, see [Higham & Mary, 2022, sect. 14].

In this chapter, we propose an adaptive precision algorithm at the element level for
matrix–vector products. Specifically, our matrix–vector product algorithm partitions the
elements into several buckets and uses a different precision for each bucket. We perform
a rounding error analysis of this algorithm that reveals how the precisions should be cho-
sen: we prove that it suffices to take the precisions to be proportional to the magnitude
of the elements, that is, elements of large magnitude should be kept in high precision,
but elements of smaller magnitude can be switched to correspondingly lower precisions.
Intuitively, this discovery can be explained by the fact that the least significant bits of
the smaller elements end up being lost when they are summed to the larger elements:
hence, we might as well avoid computing those bits to begin with.

Based on this analysis, we develop an adaptive precision sparse matrix–vector prod-
uct and evaluate experimentally its performance and accuracy on a range of real-life
large sparse matrices. We show that the storage and hence the data movement costs
of the product can be significantly reduced for many matrices, while preserving a user-
prescribed accuracy target. We develop an implementation for CPUs that uses double
and single precision arithmetic as well as dropping (discarding sufficiently small ele-
ments), and obtain speedups of up to an order of magnitude on a multicore computer.
We then apply our algorithm to the solution of sparse linear systems by plugging it into
various Krylov solvers with iterative refinement. Our experiments demonstrate that the
convergence of the solution is essentially unaffected by the use of adaptive precision.

The rest of this chapter is organized as follows. We begin by recalling the error
analysis of the standard matrix–vector product in uniform precision in section 2. Then,
we propose in section 3 an adaptive precision matrix–vector product algorithm and carry
out its error analysis. In section 4, we investigate experimentally both its accuracy and
performance. In section 5 we apply this algorithm to the solution of linear systems with
Krylov solvers. Finally, we provide our concluding remarks in section 6.

2 Uniform precision matrix–vector product

Before proposing an adaptive precision matrix–vector product, let us recall the error
analysis of the uniform precision case, where the same precision is used across all oper-
ations.

Throughout this work we use the standard model of floating-point arithmetic [Higham,
2002, sec. 2.2]

f l(a op b) = (a op b)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /}, (3.1)

where u is the unit roundoff of the precision used and f l represents the computed results
in floating-point arithmetic.

2 – Uniform precision matrix–vector product 45

Let yi =
∑

j∈Ji aijxj be the inner product between the ith row of A and x, where Ji is
the set of the column indices of the nonzero elements in row i of A. In uniform precision
u, the computed ŷi satisfies

|ŷi − yi| ≤ #Jiu
∑
j∈Ji

|aijxj |, (3.2)

where #Ji denotes the cardinality of Ji. Note that here, and throughout this chapter, we
have used the analysis of inner products of Jeannerod and Rump [Jeannerod & Rump,
2013] to obtain more refined bounds, where constants of the form γn = nu/(1 − nu) can
be replaced simply by nu. The analysis of [Jeannerod & Rump, 2013] assumes the use
of rounding to nearest, but it was later shown in [Lange & Rump, 2017, Corollary 3.3]
that these refined bounds also hold for directed roundings by replacing u with 2u. We
also note that constants n could be further reduced to

√
n to obtain probabilistic bounds

that hold with high probability [Higham & Mary, 2019, 2020; Connolly et al., 2021]. In
this work the size of the constants is not the main focus (as they are typically small for
sparse matrices), and so we use the more general worst-case error bounds.

Algorithm 3 Uniform precision matrix–vector product.

1: Input: A ∈ Rm×n, x ∈ Rn. Ji is the set of column indices of the nonzeros in row i of
A.

2: Output: y = Ax
3: for i = 1: m do
4: yi = 0
5: for j ∈ Ji do
6: yi ← yi + aijxj
7: end for
8: end for

As a consequence of the Oettli–Prager [Higham, 2002, Thm. 7.3], [Oettli & Prager,
1964] and Rigal–Gaches [Higham, 2002, Thm. 7.1], [Rigal & Gaches, 1967] theorems,
we have the following formulas for the componentwise backward error

εcw = min {ε : ŷ = (A+ ∆A)x, |∆A| ≤ ε|A|} = max
i

[|ŷi − yi|∑
j∈Ji |aijxj |

]
(3.3)

and for the normwise backward error

εnw = min {ε : ŷ = (A+ ∆A)x, ‖∆A‖ ≤ ε‖A‖} =
‖ŷ − y‖
‖A‖‖x‖ , (3.4)

respectively. Throughout this chapter, the unsubscripted norm ‖ · ‖ denotes the infinity
norm

‖A‖∞ = max
i

∑
j

|aij |.

Note that the componentwise error is always larger than the normwise one, since we
have

εnw =
‖ŷ − y‖
‖A‖‖x‖ ≤

‖ŷ − y‖
‖|A||x|‖ =

maxi |ŷ − y|i
maxi(|A||x|)i

≤ max
i

|ŷ − y|i
(|A||x|)i

= εcw. (3.5)

46 Chapter 3 – Adaptive SpMV and application to Krylov solvers

Moreover, using (3.2), we obtain the bound

εnw ≤ εcw ≤ pu, (3.6)

where p = maxi #Ji is the maximum number of nonzero elements per row of A.

3 Adaptive precision matrix–vector product: error analysis

In this section we propose an adaptive precision matrix–vector product algorithm. To
do so we perform the error analysis of a general mixed precision matrix–vector product
that partitions the nonzero elements of the matrix into buckets and computes the par-
tial inner products associated with each bucket in a different precision. Our analysis
shows how to build these buckets so as to minimize the precisions used while achieving
a prescribed backward error.

We analyze Algorithm 4, which computes a mixed precision matrix–vector product
y = Ax using q precisions u1 < u2 < · · · < uq. Each row i of A is partitioned into q

buckets Bik ⊂ [[1, n]], k = 1: q, and the inner product y(k)
i =

∑
j∈Bik

aijxj associated with
bucket Bik is computed in precision uk. All the partial inner products are then summed
in precision u1.

For Algorithm 4 to be well defined, we require that the Bik form a partition of Ji (the
nonzero elements in row i of A), that is, that they are disjoint and that their union is
equal to Ji.

Algorithm 4 Adaptive precision matrix–vector product in q precisions u1 < · · · < uq.

1: Input: A ∈ Rm×n, x ∈ Rn, a partitioning of A into buckets Bik
2: Output: y = Ax
3: for i = 1: m do
4: for k = 1: q do
5: y

(k)
i = 0

6: for j ∈ Bik do
7: y

(k)
i ← y

(k)
i + aijxj in precision uk

8: end for
9: end for

10: yi =
∑q

k=1 y
(k)
i in precision u1

11: end for

According to (3.2) the computed partial inner product ŷ(k)
i satisfies

|ŷ(k)
i − y

(k)
i | ≤ pikuk(1 + uk)

2
∑
j∈Bik

|aijxj |, (3.7)

where pik = #Bik and where the (1+uk)
2 term accounts for the need to first convert both

aij and xj to precision uk. Then, defining yi =
∑q

k=1 ŷ
(k)
i as the exact sum of the ŷ(k)

i , and
as yi =

∑q
k=1 y

(k)
i , we have

|yi − yi| ≤
q∑

k=1

[
pikuk(1 + uk)

2
∑
j∈Bik

|aijxj |
]
, (3.8)

3 – Adaptive precision matrix–vector product: error analysis 47

and the computed ŷi satisfies

|ŷi − yi| ≤ (q − 1)u1

q∑
k=1

|ŷ(k)
i | (3.9)

≤ (q − 1)u1

q∑
k=1

[(
1 + pikuk(1 + uk)

2
) ∑
j∈Bik

|aijxj |
]
, (3.10)

where the conversion of ŷ(k)
i back to precision u1 does not introduce any error since u1 ≤

uk for all k. Using the fact that the Bik form a partition of Ji, we have that
q∑

k=1

∑
j∈Bik

|aijxj | =
∑
j∈Ji

|aijxj |

and we therefore obtain

|ŷi − yi| ≤ |ŷi − yi|+ |yi − yi| (3.11)

≤ (q − 1)u1

∑
j∈Ji

|aijxj |+ (1 + (q − 1)u1)

q∑
k=1

[
pikuk(1 + uk)

2
∑
j∈Bik

|aijxj |
]
. (3.12)

Dividing both sides by
∑

j∈Ji |aijxj |, we obtain the componentwise backward error bound

εcw ≤ (q − 1)u1 + (1 + (q − 1)u1) max
i

[q∑
k=1

pikuk(1 + uk)
2αik

]
, (3.13)

which shows that the ratios

αik =

∑
j∈Bik

|aijxj |∑
j∈Ji |aijxj |

(3.14)

play a fundamental role in controlling the size of the backward error.
Now we want to determine how to build the buckets Bik such that the backward

error is at most in O(ε), where ε ≥ u1 is a user-prescribed target accuracy. The analysis
above shows that to do so, we need to control the ratios αik, which are essentially a
measure of how large the elements in bucket Bik are with respect to all the elements in
Ji. Thus, the analysis tells us that elements smaller in magnitude can be placed in lower
precision buckets. Specifically, writing ai the ith row of A so that

∑
j∈Ji |aijxj | = |ai|T |x|,

let us define the intervals

Pik =

(
ε|ai|T |x|/u2, +∞

)
for k = 1,(

ε|ai|T |x|/uk+1, ε|ai|T |x|/uk
]

for k = 2: q − 1,[
0, ε|ai|T |x|/uq

]
for k = q,

(3.15)

which form a partition of [0,+∞), and let us define the buckets Bik as the column indices
of the nonzero elements of A such that |aijxj | belongs to the corresponding interval Pik:

Bik = {j ∈ Ji : |aijxj | ∈ Pik} . (3.16)

The definition of the Pik intervals is illustrated with four precisions in Figure 3.1. This
construction yields αik ≤ pikε/uk; note that this holds for k = 1 since ε ≥ u1. Therefore,
by (3.13),

εcw ≤ (q − 1)u1 + cε = O(ε), (3.17)

48 Chapter 3 – Adaptive SpMV and application to Krylov solvers

0 εθi/u4 εθi/u3 εθi/u2 +∞

precision u4 precision u3 precision u2 precision u1

Figure 3.1: Illustration of the bucket construction with four precisions u1 < u2 < u3 < u4.
The real line [0,+∞) is partitioned into intervals Pik defined by (3.15) (componentwise
criteria, θi = |ai|T |x|) or (3.23) (normwise criteria, θi = ‖A‖).

with

c = (1 + (q − 1)u1) max
i

q∑
k=1

p2
ik(1 + uk)

2. (3.18)

We note that we have not taken into account any rounding error occuring in the compu-
tation of the intervals Pik, which we assume to be evaluated in sufficiently high precision
to be considered exact. Indeed, as a sum of positive values, the problem is well condi-
tioned.

Since, by (3.5), εnw ≤ εcw, this bucket construction also yields a normwise backward
error in O(ε). However, if we only need to bound the normwise backward error, and can
afford a potentially large componentwise error, we can improve the use of low precisions
by modifying the buckets as follows. Taking norms in (3.12) shows that

εnw ≤ (q − 1)u1 + (1 + (q − 1)u1) max
i

[q∑
k=1

pikuk(1 + uk)
2βik

]
, (3.19)

where it is now the ratios

βik =

∑
j∈Bik

|aijxj |
‖A‖‖x‖ (3.20)

that play a role in controlling the size of the normwise backward error. Importantly,
unlike the ratios αik in (3.14), the ratios βik can be bounded above independently of x:

βik ≤
∑

j∈Bik
|aij |

‖A‖ . (3.21)

As a result, we can redefine the buckets as

Bik = {j ∈ Ji : |aij | ∈ Pik} . (3.22)

with the intervals Pik as in (3.15) with |ai|T |x| replaced with ‖A‖:

Pik =

(
ε‖A‖/u2, +∞

)
for k = 1,(

ε‖A‖/uk+1, ε‖A‖/uk
]

for k = 2: q − 1,[
0, ε‖A‖/uq

]
for k = q.

(3.23)

This is sufficient to ensure that βik ≤ pikε/uk and thus that εnw = O(ε). However, in this
case we can no longer guarantee a small εcw, since the ratios αik/βik = ‖A‖‖x‖/|ai|T |x|
can be arbitrarily large for some rows i.

We summarize the main conclusions of our analysis in the next theorem.

3 – Adaptive precision matrix–vector product: error analysis 49

Theorem 1 Let A ∈ Rm×n and x ∈ Rn and let y = Ax be computed with Algorithm 4. If
the bucket partitioning is defined by (3.15)–(3.16), then we have

εnw ≤ εcw ≤ (q − 1)u1 + cε,

where the expression of c is given by (3.18). If instead it is defined by (3.22)–(3.23), then
we only have

εnw ≤ (q − 1)u1 + cε.

Remark 3.1 For sparse matrices, since the performance of SpMV is memory bound, in
principle we could only store the elements of A in lower precisions and keep the floating-
point operations in precision u1 in order to avoid error accumulation. The error analysis
above can be easily adapted to this scenario by replacing (3.7) with

|ŷ(k)
i − y

(k)
i | ≤

(
piku1(1 + uk) + uk

) ∑
j∈Bik

|aijxj |, (3.24)

which roughly reduces the p2
ik term in (3.18) to pik.

Remark 3.2 Our analysis allows for the case where some elements of A are simply
dropped. Indeed, this can be modeled as using a “precision” uq = 1, since replacing
an element by zero introduces a relative perturbation equal to 1. Thus, taking uq = 1
in (3.15) or (3.23) shows that elements of magnitude smaller than ε|ai|T |x| or ε‖A‖ can
be dropped while preserving a componentwise or normwise backward error of order ε,
respectively.

Remark 3.3 Our analysis can be trivially specialized to adaptive precision inner prod-
ucts, for which A is a row vector, and to adaptive precision summation, for which A = e =
[1, . . . , 1]. In the latter case, we obtain

εbwd ≤ (q − 1)uq + (1 + (q − 1)uq)

q∑
k=1

(pk − 1)ukαk, (3.25)

where the ratios αk =

∑
|xj |∈Pk

|xj |
‖x‖ for k ∈ {1, ..., q} determine which terms in 3.25 domi-

nate. Taking the Pk as above we have εbwd = O(ε).

Remark 3.4 Our analysis considers that the bucket construction is made in maximal
precision uq and that the loss of accuracy induced can be dropped.

3.1 A more practical componentwise bucket criteria

The approach presented above presents a practical limitation: to guarantee component-
wise backward stability, the adaptive precision representation of matrix A must depend
on the vector x we want to multiply it with, as shown by (3.15)–(3.16). Unfortunately,
taking the values of x into account is unrealistic, since it would require to change the
representation of A every time we want to compute its product with a different vec-
tor. A more practical scenario is to compute an adaptive precision representation of
A independent of x and use it to accelerate many SpMVs with different vectors. The

50 Chapter 3 – Adaptive SpMV and application to Krylov solvers

bucket construction defined by (3.22)–(3.23) satisfies this practical constraint, but can
only guarantee normwise stability.

This motivates us to propose a bucket construction

Bik = {j ∈ Ji : |aij | ∈ Pik} (3.26)

with the definition of the intervals Pik modified as follows:

Pik =

(
ε|ai|T e/u2, +∞

)
for k = 1,(

ε|ai|T e/uk+1, ε|ai|T e/uk
]

for k = 2: q − 1,[
0, ε|ai|T e/uq

]
for k = q,

(3.27)

where e = [1, . . . , 1]T , so that |ai|T e =
∑

j∈Ji |aij |. This modified definition essentially
amounts to drop x in the componentwise bucket construction (3.15)–(3.16). With this
bucket construction, we can bound the ratios αik (3.14)

αik ≤
pikε

uk

|ai|T e
|ai|T |x|

‖x‖, (3.28)

whereas with the normwise bucket construction (3.22)–(3.23), the best bound on αik we
can get is

αik ≤
pikε

uk

‖A‖
|ai|T |x|

‖x‖. (3.29)

Clearly, the right-hand side of (3.29) can be larger than that of (3.28), especially for badly
scaled matrices with rows such that ‖ai‖ � ‖A‖. Therefore, we can expect that at least
in some cases, construction (3.26)–(3.27) can lead to much smaller εcw than construc-
tion (3.22)–(3.23). It is important to note that, unfortunately, construction (3.26)–(3.27)
cannot always guarantee a small εcw, since the ratio |ai|T e/|ai|T |x| can be arbitrarily
large for an unlucky choice of vector x.

4 Adaptive precision SpMV: numerical experiments

We now evaluate the performance of our adaptive precision matrix–vector product, Al-
gorithm 4, by applying it to a range of real-life large sparse matrices.

4.1 Implementation

We have developed a Fortran code that implements Algorithm 4 and made it publicly
available1. Our code uses up to seven different precisions: the IEEE binary64 and bi-
nary32 formats (hereinafter denoted as FP64 and FP32), the bfloat16 format, and four
custom formats using 56, 48, 40, and 24 bits, which we will refer to as “FPx”, with x the
number of bits. The FP56, FP48, and FP40 formats use 11 bits for the exponent and
thus have unit roundoffs 2−45, 2−37, and 2−29, whereas the FP24 format uses 8 bits for
the exponent, which corresponds to a unit roundoff 2−16. This choice of formats aims at
spanning as uniformly as possible the range of precisions used. In principle, we could

1https://gitlab.com/romeomolina/adaptive-spmv

https://gitlab.com/romeomolina/adaptive-spmv

4 – Adaptive precision SpMV: numerical experiments 51

have used many more precision formats by adapting the precision bit by bit, but focusing
on formats that use multiples of 8 bits simplifies the implementation of the cast opera-
tions. We also do not experiment with formats using a reduced number of bits for the
exponent, such as IEEE binary16. In addition to these seven precision formats, we also
drop the matrix elements that are sufficiently small, as explained in Remark 3.2. The
list of precision formats is summarized in Table 3.1.

Table 3.1: List of precision formats used in our experiments.

Numbers of bits Range Unit roundoff
Sign Exponent Significand

bfloat16 1 8 7 10±38 2−8 ≈ 4× 10−3

FP24 1 8 15 10±38 2−16 ≈ 2× 10−5

FP32 1 8 23 10±38 2−24 ≈ 6× 10−8

FP40 1 11 28 10±308 2−29 ≈ 2× 10−9

FP48 1 11 36 10±308 2−37 ≈ 7× 10−12

FP56 1 11 44 10±308 2−45 ≈ 3× 10−14

FP64 1 11 52 10±308 2−53 ≈ 1× 10−16

For the cast from FP64 to FP32 we use the Fortran REAL function, whereas for cast-
ing to the other custom formats (including bfloat16, which our hardware does not sup-
port), we use our own cast implementation, which uses the MVBITS subroutine of the
GNU Fortran compiler. To be specific, for each coefficient we chop the desired bits by
moving the bits that are to be kept in a variable of smaller size; for example, to cast
an FP32 variable to FP24 format, we move the leading 24-bit to a 3-byte variable. Our
environment only supports floating-point operations in FP64 or FP32. As a result, after
casting the matrix elements to these custom precision formats, we must cast them back
during the computation, either to FP32 (in the case of bfloat16 and FP24) or to FP64
(in the case of FP40, FP48, and FP56). As mentioned in Remark 3.1, performing the
computations in a higher precision than the storage format only affects the constants in
the error bounds. The “cast back” operation also relies on MVBITS: we simply move all
the bits into an FP32 or FP64 variable and add as many zeros as needed. For example,
to cast an FP24 variable back to FP32, we must add one byte of zeros.

We must mention that this cast implementation is far from optimized, and leads
to a heavy performance overhead. We aim to use it only to validate the numerical be-
havior of our approach, rather than to provide acceleration with custom precision for-
mats. However, it is important to note that achieving performance gains from the use
of custom precisions is certainly possible, by relying on more efficient, lightweight cast
implementations. For example, such implementations are described by Mukunoki and
Imamura [Mukunoki & Imamura, 2016], or more recently by Grützmacher et al. [Grütz-
macher et al., 2021]. This suggests that the three- and seven-precision versions could
meet their potential with a more optimized implementation. Moreover lower precision
formats such as bfloat16 are increasingly supported in hardware. The implementation
of the adaptive precision SpMV on top of such an efficient accessor is therefore one of
the main research perspectives of this work.

Our SpMV implementation uses the CSR format for all matrices and is multithreaded

52 Chapter 3 – Adaptive SpMV and application to Krylov solvers

by parallelizing the loop on the row indices with OpenMP. We recall that the CSR format
consists of a row index array of size n+ 1, a column index array of size nnz , and a value
array of size nnz . As a result, in the uniform precision case, the total storage for the
matrix is equal to

(nnz + n+ 1)sint + nnzsFP, (3.30)

where sint is the size of the integer type and sFP is the size of the floating-point type.
For all our matrices, 4-byte integers suffice. For the adaptive precision SpMV, we use
a different CSR matrix for each precision. Since each nonzero element belongs to a
unique CSR matrix, the column index and value arrays of size nnz are splitted among
the different CSR matrices, and so do not require any extra storage. However, the row
index array of size n + 1 must be duplicated. This represents a storage increase of
approximately qnsint, where q is the number of precisions. In most cases this increase is
compensated by the storage reduction of the floating-point values, but for matrices with
low potential for low precisions and a small number of nonzeros per row (small nnz/n
ratio), this may lead to a noticeable overhead cost. In our experiments we take into
account the cost of reading the indices in addition to the one of reading the floating-point
values when measuring the storage cost of the SpMV. In particular, the index access
cost explains why the use of dropping may have a huge impact on the performance:
storing an element in any precision does not change the need to store its column index,
whereas dropping it allows for dropping its index too. We will further analyze this effect
in section 4.4.

4.2 Experimental setting

All the experiments were performed on one node of the Olympe supercomputer, which
is equipped with two 18-core Intel Skylake 6140 processors (for a total of 36 cores). We
use 18 threads thoughout the experiments, as this seems to be the optimal setting as we
will observe in section 4.5. For the time measurements, we perform one hundred prod-
ucts and report the average timings. We do not include the time for reading the matrix
from a file and putting it into CSR format. We also do not include the time for prepro-
cessing the matrix into its adaptive precision representation (that is, for computing the
bucket partitioning and creating the corresponding data structures). This preprocessing
requires at most two passes over the nonzero elements of the matrix: one to compute the
intervals Pik (which is optional for the normwise criteria if ‖A‖ is already known or can
be cheaply estimated) and another to place the nonzeros into the corresponding bucket
(CSR matrix). Therefore the cost of the preprocessing is negligible as long as we require
several SpMVs (say, at least a dozen) with the same matrix, which is typically the case
in iterative solvers.

Most of the matrices used in these experiments come from the SuiteSparse collec-
tion [Davis & Hu, 2011]. The others come from our industrial partners (see Table 3.2)
and are described below. The thmgaz matrix corresponds to a coupled thermal, hy-
drological, and mechanical problem. The series of matrices Aghora_DGO{2,3,4} arise
from the resolution of adjoint RANS equations in the context of high-fidelity simulations
of turbulent compressible flows in aerodynamics. The spatial discretization of these
equations relies on a high-order discontinuous Galerkin (DG) method with third, fourth,
and fifth order accurate schemes. The test case corresponds to a subsonic laminar flow

4 – Adaptive precision SpMV: numerical experiments 53

over a NACA0012 airfoil. Jacobian matrices have been built with the ONERA Aghora
DG solver [Renac et al., 2015] and are real, nonsymmetric, not positive definite, with a
blockwise structure and a symmetric pattern.

Clearly, by its very design, the potential of the adaptive precision algorithm com-
pletely depends on the matrix values: there must be sufficient variations in their mag-
nitudes. For example, SuiteSparse has several binary matrices (with only zeros and
ones) that present no potential at all. In our experiments, we have selected a range of
matrices that present at least some potential, listed in Table 3.2. As for the vector x,
we set it to e = [1, . . . , 1]T throughout the experiments. We emphasize that our adaptive
precision SpMV is guaranteed to deliver the requested accuracy ε, and so must “work”
for any matrix. The worst possible behavior is obtained for a matrix that presents no
potential for mixed precision, which will lead the adaptive precision algorithm to use
the highest precision for all elements, becoming equivalent to the uniform precision al-
gorithm.

4.3 Main results

We begin in Figure 3.2 by evaluating the accuracy of our adaptive precision algorithm to
confirm that we are able to control the backward error, which, according to Theorem 1,
should remain of order ε. We check this both for the normwise and componentwise back-
ward errors by plotting, in Figure 3.2a, the normwise backward error for the algorithm
with the normwise bucket criteria (3.22)–(3.23), and, in Figure 3.2b, the componentwise
backward error for the algorithm with the componentwise bucket criteria (3.15)–(3.16).
We use three different target accuracies, that is, two values of ε, 2−53 and 2−24, which
correspond to the unit roundoffs of FP64 and FP32 respectively and an additional inter-
mediate accuracy ε = 2−37, and compare its backward error to the one obtained by the
uniform precision algorithm in the corresponding precision (ε = 2−24, ε = 2−37, ε = 2−53).
Moreover, we also investigate how the backward error is affected if, instead of using all
7 precision formats, we only use 2 (FP64 and FP32) or 3 (FP64, FP32, and bfloat16).
As expected, the measured errors remain close to the target accuracy, for all targets ε,
and for any configuration of precision formats. Using more precision formats slightly
increases the error, which is explained by the analysis, since the constant c in (3.18)
increases with q.

Next, we evaluate the performance gains achieved by the adaptive precision algo-
rithm. We first measure the storage gains, that is, the number of bytes necessary to
store the matrix in adaptive precision. The storage cost is a relevant metric because it
drives the data movement costs of the SpMV, which is a memory-bound algorithm.

Figure 3.3 plots the storage cost of the adaptive precision algorithm as a percentage
of the uniform precision FP64 algorithm. As for Figure 3.2, several configurations of
the adaptive precision algorithm are tested, depending on the accuracy target (ε = 2−24,
ε = 2−37, ε = 2−53), the number of precisions used (2, 3, or 7, with dropping being
used in all cases), and on whether the buckets are built with the componentwise crite-
ria (3.15)–(3.16) or the normwise one (3.22)–(3.23). Clearly, the more precision formats
are used, the larger are the gains, since we can better adapt the choice of precisions to
each element. In some cases, the use of more than two precisions appears to be criti-
cal: for example, the storage cost for matrices 14 or 20 with an FP32 accuracy target
(Figure 3.3c) is nearly divided by two when adding bfloat16 (3 precisions instead of 2).

54 Chapter 3 – Adaptive SpMV and application to Krylov solvers

Table 3.2: List of matrices used in our experiments.

Number Matrix n nnz

0 Transport 1.6e+ 06 2.4e+ 07
1 Serena 1.4e+ 06 3.3e+ 07
2 A_DGO3.mtx 1.5e+ 05 1.8e+ 07
3 vas_stokes_4M 4.4e+ 06 1.3e+ 08
4 A_DGO4.mtx 2.6e+ 05 5.1e+ 07
5 Emilia_923 9.2e+ 05 2.1e+ 07
6 A_DGO5.mtx 3.8e+ 05 1.1e+ 08
7 Hook_1498 1.5e+ 06 3.1e+ 07
8 ML_Geer 1.5e+ 06 1.1e+ 08
9 ML_Laplace 3.8e+ 05 2.8e+ 07
10 vas_stokes_1M 1.1e+ 06 3.5e+ 07
11 stokes 1.1e+ 07 3.5e+ 08
12 Geo_1438 1.4e+ 06 3.2e+ 07
13 ss 1.7e+ 06 3.5e+ 07
14 vas_stokes_2M 2.1e+ 06 6.5e+ 07
15 Fault_639 6.4e+ 05 1.5e+ 07
16 Queen_4147 4.1e+ 06 1.7e+ 08
17 PFlow_742 7.4e+ 05 1.9e+ 07
18 Flan_1565 1.6e+ 06 5.9e+ 07
19 Cube_Coup_dt0 2.2e+ 06 6.5e+ 07
20 Long_Coup_dt6 1.5e+ 06 4.4e+ 07
21 CoupCons3D 4.2e+ 05 2.2e+ 07
22 Long_Coup_dt0 1.5e+ 06 4.4e+ 07
23 StocF-1465 1.5e+ 06 1.1e+ 07
24 nv2 1.5e+ 06 5.3e+ 07
25 power9 1.6e+ 05 2.5e+ 06
26 test1 3.9e+ 05 1.3e+ 07
27 imagesensor 1.2e+ 05 1.9e+ 06
28 mosfet2 4.7e+ 04 1.5e+ 06
29 dgreen 1.2e+ 06 3.8e+ 07
30 radiation 2.2e+ 05 7.6e+ 06
31 nv1 7.5e+ 04 2.4e+ 06

Moreover, as expected, the storage gains are always larger with the normwise criteria
(blue bars), which offers more room to the use of lower precisions than the component-
wise one (green bars). Finally, it is also worth noting that the relative storage gains also
become larger as the accuracy target is lowered, even when compared with the uniform
precision algorithm in the corresponding precision. That is, while lowering the accuracy
target from FP64 (Figure 3.3a) to FP32 (Figure 3.3c) reduces the storage cost of the uni-
form precision algorithm by a factor two, it can reduce the cost of the adaptive precision
algorithm by a much larger factor. This is for example the case for matrix 16, for which
the adaptive precision algorithm (with 7 precisions and a normwise criteria) achieves

4 – Adaptive precision SpMV: numerical experiments 55

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Matrices

10−20

10−17

10−14

10−11

10−8

10−5

B
ac

kw
ar

d
er

ro
r

Unif.

Adapt. 2 prec.

Adapt. 3 prec.

Adapt. 7 prec.

ε = 2−24

ε = 2−37

ε = 2−53

(a) Normwise backward error (3.4) (the adaptive precision algorithm uses the normwise bucket criteria (3.22)–(3.23)).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Matrices

10−15

10−13

10−11

10−9

10−7

10−5

B
ac

kw
ar

d
er

ro
r

Unif.

Adapt. 2 prec.

Adapt. 3 prec.

Adapt. 7 prec.

ε = 2−24

ε = 2−37

ε = 2−53

(b) Componentwise backward error (3.3) (the adaptive precision algorithm uses the componentwise bucket criteria
(3.15)–(3.16)).

Figure 3.2: Backward error for the adaptive precision Algorithm 4 with different tar-
get accuracies ε and different number of precisions used, compared with the uniform
precision Algorithm 3 in the corresponding precision (ε = 2−24, ε = 2−37, ε = 2−53).

a cost of about 60% of the uniform FP64 cost for an FP64 target, to be compared with
only about 5% of the uniform FP64 cost (and hence 10% of the uniform FP32 cost) for an
FP32 target.

In any case, the storage gains are overall significant in all configurations and for
several matrices, with reductions of up to a factor 36× in the best case.

Finally, we measure the execution time of the algorithms. Since SpMV is memory
bound, in principle we can hope the time gains to roughly follow the storage gains, even
though the execution time depends on several other factors such as the overhead cost
of the cast operations and the latency costs. In our experiments, we have found the
time cost of the adaptive precision SpMV to roughly match its storage cost in the case
where we only use precision formats that are natively supported in our environment,
that is, the FP64 and FP32 formats (which corresponds to the two-precision version plus
dropping). Unfortunately, as mentioned in section 4.1, our cast implementation is not
optimized and is only designed to validate the numerical behavior of the adaptive preci-

56 Chapter 3 – Adaptive SpMV and application to Krylov solvers

sion algorithm. As a result, we have found the use of other custom precision formats to
lead to slowdowns due to a heavy performance penalty associated with our cast imple-
mentation, and restrict our time performance analysis to the two-precision version plus
dropping.

Figure 3.4 reports the execution time of the adaptive precision SpMV for ε = 2−24 and
ε = 2−53 target accuracies, as a percentage of the execution time of the uniform precision
SpMV in the corresponding precision (FP64 or FP32). The time cost of the algorithm
follows a trend similar to the storage cost, with the gains being in general smaller but
still significant, with speedups of up to 7× in the best case.

Interestingly, for some matrices, the time reduction is larger than the storage one,
and this effect is not explained by measurement noise and can be consistently repro-
duced across several runs. A possible explanation is that the smaller storage cost of the
matrix reduces the number of cache misses and hence benefits from the doubled effect
of a lower volume of data movement and higher bandwidth. Alternatively, it could also
be explained by the dropping of sufficiently small elements, which not only reduces the
bandwidth costs but also the latency ones, since the dropped elements are not read at
all.

Finally, we also report the execution time in the case of an ε = 2−37 accuracy target in
Figure 3.5. The figure also plots the time for the ε = 2−24 and ε = 2−53 targets (already
presented in Figure 3.4) as a point of comparison. Figure 3.5 illustrates a valuable fea-
ture of our adaptive precision algorithm: it is able to achieve a flexible level of accuracy
that does not necessarily correspond to any natively supported precision format, while
only using such supported formats (here FP64 and FP32). This is because the accuracy
of the adaptive precision algorithm is determined by ε, rather than directly by the unit
roundoffs of the precision formats that are used.

4.4 Effect of dropping

The performance gains achieved by the adaptive precision SpMV are obtained thanks
to the use of lower precisions but also the use of dropping. As noted in Remark 3.2,
our error analysis fully accounts for the use of dropping, which effectively behaves as a
precision format with unit roundoff uq = 1. Nevertheless, the effect of dropping on the
performance of the SpMV is quite different from the effect of lower precisions. This is
because dropping increases the sparsity of the matrix and therefore allows for reducing
the storage for indices too. For example, for 4-byte indices, using the two precision
formats FP64 and FP32 but not dropping, the adaptive precision storage can be no less
than 66% of the uniform precision one, since we must still store about 8nnz bytes (4nnz
for the indices, and 4nnz for the values, in the best case where all can be switched to
FP32). In contrast, dropping the elements allows for dropping the associated indices,
and therefore much larger gains can be obtained. The goal of this section is to analyze
this effect more precisely by evaluating the impact of both dropping and low precisions
separately.

We plot in Figures 3.6a, 3.6b and 3.6c the accuracy, storage, and time, respectively,
of four SpMV variants: uniform FP64 (“Unif. fp64”), adaptive with two precisions (FP64
and FP32) but no dropping (“Adapt. dropless”), adaptive with only one precision (FP64)
and dropping (“Adapt. drop only”), and adaptive with two precisions and dropping at the
same time (“Adapt.”). All three adaptive variants use an accuracy target ε = 2−53.

5 – Application to Krylov solvers 57

Figure 3.6a shows that both approximation tools used by the adaptive method (drop-
ping and precision reduction) each slightly increase the error, but all variants remain
of the order of the requested accuracy ε. As expected, Figures 3.6b and 3.6c show that
the adaptive SpMV benefits both from the use of multiple precisions and of dropping,
separately or combined. In some cases, dropping has a massive impact and is the main
contributor to the performance gains, but in other cases, dropping has almost no effect
and it is the use of multiple precisions that is responsible for most of the gains. All in all,
this confirms the relevance of using an adaptive SpMV that combines both techniques.

4.5 Parallel scaling analysis

We conclude by analyzing the scalability of our SpMV implementation. For this analysis
we use matrix Cube_Coup_dt0, which is one of the largest in our set; we have observed
similar trends on other matrices. Figure 3.7a compares the uniform and adaptive pre-
cision methods with a number of threads increasing from 1 to 36 (the total number of
cores on the shared-memory node). The figure shows that both methods scale well up to
18 threads, and suffer a slowdown going from 18 to 19 threads. This is due to the NUMA
architecture of the node, which consists of two 18-core sockets. This is particularly visi-
ble on Figure 3.7b, which plots the parallel efficiency of the methods and shows a major
loss of efficiency between 18 and 19 threads. These observations have led us to choose a
number of threads equal to 18 for all experiments, in order to maximize the data locality
and performance of the methods.

5 Application to Krylov solvers

We now apply our adaptive precision SpMV (Algorithm 4) to the solution of linear sys-
tems Ax = b by Krylov methods. Iterative solvers are indeed a natural application
for our algorithm: since the matrix A remains fixed throughout the computation, we
can partition it into adaptive precision form only once before using it throughout the
iterations in potentially many matrix–vector products, as long as we rely on either the
normwise bucket criteria (3.22)–(3.23) or the relaxed componentwise one (3.26)–(3.27).

5.1 Adaptive precision Krylov solvers

We will focus our discussion and experiments on three choices of Krylov solvers [Saad,
2003]: GMRES, CG, and BiCGStab, respectively outlined in Algorithms 5, 6, and 7. CG
is specifically designed for symmetric positive-definite matrices. BiCGStab is designed
to handle general matrices by building two Krylov subspaces (thus requiring two SpMVs
per iteration); it incorporates a stabilization step compared with the original BiCG algo-
rithm. Finally, GMRES is the most robust Krylov method; it relies on the construction of
an orthonormal basis for the Krylov subspace, whose size grows at each iteration. This
requires computationally expensive orthogonalization operations, whose cost can be lim-
ited by restarting the method. In the case of CG and BiCGStab, the SpMV is usually
the computational bottleneck; for the GMRES algorithm, the orthogonalization of the
Krylov basis is also expensive, but nevertheless the SpMV still represents a significant
fraction of the total. Therefore by accelerating the SpMV in these Krylov methods we

58 Chapter 3 – Adaptive SpMV and application to Krylov solvers

can expect significant speedups on the whole solution, provided that the convergence is
preserved.

Algorithm 5 GMRES.
Input: a matrix A ∈ Rn×n, a right-hand side b ∈ Rn, and an initial solution x0 ∈ Rn.
Output: a solution xk ∈ Rn.

1: r = b−Ax0

2: β = ‖r‖2
3: q1 = r/β
4: for k = 1, 2, . . . do
5: y = Aqk
6: for j = 1: k do
7: hjk = qTj y
8: y = y − hjkqj
9: end for

10: hk+1,k = ‖y‖2
11: qk+1 = y/hk+1,k

12: Solve the least squares problem minck ‖Hck − βe1‖2.
13: xk = x0 +Qkck
14: end for

Algorithm 6 CG.
Input: a matrix A ∈ Rn×n, a right-hand side b ∈ Rn, and an initial solution x0 ∈ Rn.
Output: a solution xk ∈ Rn.

1: r = b−Ax0

2: z = M−1r
3: p = z
4: k = 0
5: for k = 1, 2, . . . do
6: αk = rk

T zk
pkTApk

7: xk+1 = xk + αkpk
8: rk+1 = rk − αkApk
9: zk+1 = M−1rk+1

10: βk =
rk+1

T (zk+1−zk)
rkT zk

11: pk+1 = zk+1 + βkpk
12: end for

First, from a theoretical point of view, we can state that using an adaptive precision
SpMV within a normwise backward stable GMRES solver, such as MGS-GMRES [Paige
et al., 2006], will not endanger the normwise backward stability of the solution. Intu-
itively, this is not surprising since the adaptive precision SpMV is also backward stable,
as we have shown in section 3. More formally, we can prove this by relying on the recent
analysis of Amestoy et al. [Amestoy et al., 2021]. Indeed, [Amestoy et al., 2021, Thm. 3.1]
proves, under mild assumptions, that if the products y = Aq within MGS-GMRES are

5 – Application to Krylov solvers 59

Algorithm 7 BiCGStab.
Input: a matrix A ∈ Rn×n, a right-hand side b ∈ Rn, and an initial solution x0 ∈ Rn.
Output: a solution xk ∈ Rn.

1: r = b−Ax0

2: rho0 = α = ω0 = 1
3: v0 = p0 = 0
4: for k = 1, 2, . . . do
5: ρi = r̂0

T ri−1

6: β = (ρi/ρi−1)(α/ωi−1)
7: pi = ri−1 + β(pi−1 − ωi−1vi−1)
8: vi = Api
9: α = ρi/(r̂0

T vi)
10: h = xi−1 + αpi
11: s = ri−1 − αvi
12: t = As
13: ωi = (tT s)/(tT t)
14: xi = h+ ωis
15: ri = s− ωit
16: end for

performed such that the computed ŷ satisfies

ŷ = Aq + f, ‖f‖ ≤ ε‖A‖‖q‖, (3.31)

then the computed solution x̂ to Ax = b satisfies a backward error in O(ε). We can there-
fore conclude from our Theorem 1 that setting the SpMV accuracy target to ε will also
provide a backward error in O(ε) for the solution of Ax = b. Note that this theoretical
discussion is limited to normwise stability, since GMRES is not known to be compo-
nentwise backward stable. Moreover neither CG nor BiCGStab are backward stable.
Nevertheless, we will test GMRES with both the normwise and componentwise criteria
for SpMV, because we have experimentally observed that using a componentwise stable
SpMV can in some cases improve the convergence behavior of GMRES compared with
using an only normwise stable SpMV. We will experiment with both criteria for the CG
and BICGStab algorithms too.

5.2 Iterative refinement

In section 4, we have shown that the speedups achieved by the adaptive precision SpMV
tend to be larger for lower accuracy targets. We now explain why, as a result of this
property, the adaptive precision SpMV is particularly attractive in the context of iter-
ative refinement based on Krylov solvers, such as GMRES-IR [Higham & Mary, 2022,
sect. 8], [Carson & Higham, 2017, 2018; Amestoy et al., 2021; Lindquist et al., 2020; Loe
et al., 2021]. Iterative refinement, described in Algorithm 8, takes the form of an inner–
outer scheme, in which the solution xi is iteratively refined (the outer loop) by solving a
correction system Adi = ri using a Krylov method (Algorithms 5, 6, or 7, the inner loop).
Note that for GMRES, Algorithm 8 is equivalent to restarted GMRES when the inner
GMRES on line 3 is initialized with d0 = 0.

60 Chapter 3 – Adaptive SpMV and application to Krylov solvers

Algorithm 8 Krylov-based iterative refinement.
Input: a matrix A ∈ Rn×n, a right-hand side b ∈ Rn, and an initial solution x0 ∈ Rn.
Output: a solution xi ∈ Rn.

1: for i = 1, 2, . . . do
2: ri = b−Axi−1

3: Solve Ãdi = ri by a Krylov method (Algorithms 5, 6, or 7) using SpMVs with a
lower precision matrix Ã.

4: xi = xi−1 + di
5: end for

Importantly, it is known that Algorithm 8 can converge to a high accuracy even when
the inner Krylov method is performed entirely in low precision [Higham & Mary, 2022,
sect. 8], [Amestoy et al., 2021; Carson & Higham, 2018]. In our adaptive precision con-
text, we can therefore leave the outer loop SpMV (line 2 of Algorithm 8) in high (uniform)
precision, and perform the inner loop SpMV of Algorithms 5, 6, and 7 with an approxi-
mate matrix Ã that exploits adaptive precision with a low accuracy target ε. Since the
inner loop SpMV is called many more times than the outer loop one, we can expect the
cost of the overall iterative refinement solution to be determined by the cost of the low
accuracy inner loop SpMV.

In the following, we will assess experimentally the impact of using an adaptive pre-
cision SpMV in the inner loop on the convergence and performance of the solution. We
incorporate a row scaling by solving D−1Ax = D−1b, with D a diagonal matrix whose co-
efficients are defined as dii = maxj |aij |. This scaling also serves as a very simple Jacobi
preconditioner; we leave the use of more complex preconditioners for future work.

Finally, we note that using adaptive precision for the SpMV is not the only possible
strategy to exploit mixed precision in Krylov solvers; many other approaches have been
proposed in the literature. In addition to approaches belong to the iterative refinement
class mentioned above [Carson & Higham, 2017, 2018; Amestoy et al., 2021, 2023], other
possible e the use of low precision for the Krylov basis [Aliaga et al., 2022], or adaptively
decreasing the precision as the iterations go based on inexact Krylov theory [Simoncini
& Szyld, 2003]. We emphasize that our adaptive precision SpMV algorithm is comple-
mentary to these strategies, and could be combined with them.

5.3 Adaptive GMRES-IR convergence analysis

We begin by analyzing how the use of adaptive precision SpMV affects the convergence
of GMRES-IR. The goal of this section is to compare the use of uniform and adaptive
precision SpMV and to analyze the effect of different parameters, mainly the accuracy
target ε and the choice between componentwise (“CW” hereinafter) or normwise (“NW”)
criteria. We illustrate different aspects of the behavior of adaptive precision GMRES-IR
by using three examples, matrices ML_Laplace, CoupCons3D, and Geo_1438.

Figure 3.8 plots the convergence of GMRES-IR for matrix ML_Laplace using either
uniform or adaptive precision SpMV. Our reference is the FP32 uniform precision vari-
ant, which converges to nearly FP64 accuracy after 4000 iterations. We also test a
bfloat16 uniform precision variant, whose convergence is much slower, achieving only a
residual of about 10−6 after the same number of iterations. Finally, we test the adaptive

5 – Application to Krylov solvers 61

precision SpMV variant with several values of ε and with CW criteria; for this matrix,
the use of NW criteria significantly degrades the convergence (not shown). In the leg-
end, we indicate the adaptive precision SpMV cost as a percentage of the FP32 uniform
precision one. The figure shows that ε has an effect on both the SpMV cost (and there-
fore, the cost per iteration of GMRES-IR) and the convergence speed (and therefore, the
total number of iterations). For example, with ε = 2−24, we expect the adaptive preci-
sion SpMV to be about as accurate as the FP32 uniform precision one, and indeed, the
adaptive precision GMRES-IR converges at roughly the same speed with only 77% of the
SpMV cost. For ε = 2−16, the SpMV cost is only 46% of the FP32 uniform precision one,
but GMRES-IR converges much slower. The optimal choice of ε lies in between these two
values; for this matrix, ε = 2−20 for example is a good choice.

Figure 3.9 plots the convergence of GMRES-IR for matrix CoupCons3D. Here, the
adaptive precision variants can converge both for CW and NW criteria, and the figure
illustrates the different tradeoffs that each option offers: for a fixed value of ε, NW
variants achieve a lower cost but a slower convergence than CW ones. Therefore, the
best choice of ε can be different for the NW and CW variants. In this example, ε =
2−24 leads to the best NW variant, which converges in 1040 iterations with an SpMV
cost of 36% of the FP32 uniform one, whereas ε = 2−20 leads to the best CW variant,
which converges in 320 iterations with a corresponding SpMV cost of 56%. Here, the CW
variant therefore outperforms the NW one, but the figure illustrates that both options
should be considered.

Finally, Figure 3.10 plots the convergence of GMRES-IR for matrix Geo_1438, which
we use to illustrate a surprising behavior. As the figure shows, the NW adaptive preci-
sion variant can converge much faster than all the other variants, including the FP32
uniform precision one. Thus, the NW variant is much more efficient for this matrix since
it requires both less iterations and a lower cost per iteration. This behavior can be con-
sistently reproduced and occurs for several other matrices in our set. We do not have
a completely satisfactory explanation; one possibility is that by aggressively dropping
small coefficients from the matrix, the NW variant leads to a “nicer” matrix for which
GMRES can converge quickly.

5.4 Performance comparison for different Krylov solvers

To conclude these experiments, we present execution time results in Tables 3.3 and 3.4.
We compare four different Krylov solvers: CG, BiCGstab, and GMRES with two different
restart sizes (40 or 80). Table 3.3 presents results on the matrices for which GMRES
and BiCGStab both converge; for some of these matrices, CG converges too. Table 3.4
presents results on the matrices for which only GMRES converges. For each solver, the
tables report the time and the backward error after convergence for different matrices
and different SpMV variants: uniform or adaptive precision, with either the CW or NW
criteria; we have tested three accuracy targets ε = 2−24, 2−20, and 2−16, and report the
best for each variant and matrix. We report the total time, as well as the time spent in
the SpMV calls between parentheses.

We first note that the total time of BiCGStab (which requires two SpMVs per it-
eration), and to a lesser extent that of CG (which requires only one), is dominated by
the SpMV time. In contrast, the SpMV time represents a smaller, but still significant,
fraction of the total time of GMRES; unsurprisingly, this fraction is larger for a smaller

62 Chapter 3 – Adaptive SpMV and application to Krylov solvers

restart size. It is also worth noting that for a given matrix, the best solver is not always
the same depending on the SpMV variant that is used: in particular, the use of adaptive
precision with NW criteria often prevents BiCGstab from converging, whereas the more
robust GMRES solver can converge, and can sometimes do so faster than using the more
expensive CW criteria.

Overall, this range of experiments shows that significant time reductions can be ob-
tained by using an adaptive precision SpMV. In some cases, the speedup with respect
to the uniform precision variant is huge because of the unexpected behavior observed in
Figure 3.10, in which the adaptive precision NW variant actually converges in much less
iterations than the uniform precision one (in addition to Geo_1438, this also happens,
for example, for Emilia_923). Not counting these special cases, we still obtain significant
speedups for many of the other matrices, especially those in Table 3.4.

Finally, we mention that the use of adaptive precision SpMV will lead to even larger
speedups when the SpMV cost relative to the total increases. This is the case when
the cost of the orthonormalization is reduced. Various strategies have recently been
proposed in this direction, such as using low precision [Aliaga et al., 2022] or using faster
orthonormalization algorithms, for example based on randomized methods [Balabanov
& Grigori, 2022]. techniques, such as using low precision or faster orthonormalization
algorithms. Conversely, the relative cost of the SpMV may increase when part of a
preconditioner, for example in the case of polynomial preconditioners (which require
multiple SpMVs per iteration) or SPAI preconditioners (which require SpMVs with a
matrix M that approximates A−1).

Table 3.3: Results with GMRES-IR, BiCGStab-IR and CG-IR for various matrices and
SpMV variants.

GMRES(80) GMRES(40) BiCGstab CG

CoupCons3D

Time
Uniform 2.09 (0.71) 1.35 (0.62) 1.26 (0.88) 5.31 (2.84)
Adaptive CW 2.04 (0.71) 1.32 (0.62) 1.47 (1.04) 5.12 (2.75)
Adaptive NW 4.86 (1.74) 1.86 (0.89) 4.13 (2.96) 5.12 (2.75)

Error
Uniform 3e-15 4e-13 6e-13 1e-12
Adaptive CW 4e-15 3e-13 3e-14 1e-12
Adaptive NW 3e-13 4e-13 3e-13 2e-12

Geo_1438

Time
Uniform 38.76 (11.69) 29.11 (11.82) 38.52 (24.04) —
Adaptive CW 38.24 (11.49) 28.54 (11.68) 38.12 (23.71) —
Adaptive NW 5.02 (1.38) 1.97 (0.70) — —

Error
Uniform 4e-10 5e-08 9e-07 —
Adaptive CW 4e-10 3e-08 4e-05 —
Adaptive NW 7e-14 3e-13 — —

ML_Laplace

Time
Uniform 11.97 (5.04) 9.36 (5.11) 13.66 (10.23) —
Adaptive CW 10.63 (3.69) 7.96 (3.75) 10.79 (7.39) —
Adaptive NW 10.51 (3.59) 7.90 (3.68) — —

Error
Uniform 6e-10 2e-08 7e-08 —
Adaptive CW 4e-09 3e-08 6e-03 —
Adaptive NW 9e-04 3e-02 — —

5 – Application to Krylov solvers 63

Serena

Time
Uniform 32.25 (10.72) 29.03 (12.94) 39.77 (26.23) 26.70 (13.34)
Adaptive CW 29.66 (9.80) 29.15 (12.91) 39.74 (25.97) 26.67 (13.29)
Adaptive NW 8.11 (2.56) 23.17 (10.84) — —

Error
Uniform 1e-13 5e-12 2e-12 2e-05
Adaptive CW 4e-13 7e-12 2e-12 8e-04
Adaptive NW 4e-14 9e-08 — —

ss1

Time
Uniform 0.04 (0.00) 0.03 (0.00) 0.24 (0.18) 0.10 (0.01)
Adaptive CW 0.03 (0.00) 0.03 (0.00) 0.22 (0.15) 0.16 (0.02)
Adaptive NW 0.03 (0.00) 0.03 (0.01) 0.23 (0.17) 0.17 (0.04)

Error
Uniform 6e-13 6e-13 3e-16 7e-09
Adaptive CW 6e-13 6e-13 3e-15 2e-12
Adaptive NW 2e-13 6e-13 3e-14 2e-11

Table 3.4: Results with GMRES-IR for various matrices and SpMV variants.

GMRES(80) GMRES(40) GMRES(80) GMRES(40)
Time (s) Backward error

Cube_Coup_dt0
Uniform 65.69 (23.43) 49.75 (23.59) 4e-10 5e-10
Adaptive CW 59.78 (17.64) 44.74 (18.15) 7e-09 8e-09
Adaptive NW 56.28 (14.03) 41.10 (14.15) 4e-09 4e-09

Emilia_923
Uniform 24.74 (7.53) 18.50 (7.68) 7e-07 8e-07
Adaptive CW 24.64 (7.69) 18.44 (7.79) 7e-07 8e-07
Adaptive NW 8.24 (1.90) 3.03 (0.99) 4e-13 5e-13

Fault_639
Uniform 17.38 (5.40) 12.85 (5.46) 3e-07 4e-07
Adaptive CW 17.25 (5.24) 12.55 (5.27) 5e-07 5e-07
Adaptive NW 13.99 (2.24) 9.65 (2.30) 2e-06 1e-06

Flan_1565
Uniform 52.34 (22.64) 41.74 (23.02) 5e-07 6e-07
Adaptive CW 47.91 (18.12) 37.25 (18.46) 7e-07 6e-07
Adaptive NW 48.02 (18.11) 37.07 (18.15) 6e-07 1e-06

Hook_1498
Uniform 40.38 (11.96) 29.98 (12.15) 1e-06 2e-06
Adaptive CW 39.96 (11.61) 29.84 (11.78) 2e-06 2e-06
Adaptive NW 40.40 (11.85) 29.84 (11.99) 2e-06 2e-06

Long_Coup_dt0
Uniform 44.21 (16.27) 33.62 (16.52) 5e-12 5e-12
Adaptive CW 39.27 (11.81) 29.50 (12.02) 2e-11 8e-12
Adaptive NW 29.66 (1.53) 19.39 (1.86) 8e-12 2e-11

Long_Coup_dt6
Uniform 44.06 (16.21) 34.07 (16.48) 8e-11 3e-10
Adaptive CW 40.15 (12.31) 30.45 (12.71) 2e-10 3e-09
Adaptive NW 29.82 (1.60) 22.91 (5.43) 4e-09 5e-12

ML_Geer
Uniform 48.97 (20.11) 38.72 (20.46) 2e-07 9e-07
Adaptive CW 45.24 (16.75) 35.23 (17.05) 5e-07 1e-06
Adaptive NW 44.71 (15.99) 34.46 (16.20) 9e-04 1e-03

PFlow_742
Uniform 20.93 (7.20) 15.83 (7.43) 2e-10 2e-10

64 Chapter 3 – Adaptive SpMV and application to Krylov solvers

Adaptive CW 19.38 (5.64) 14.21 (5.76) 3e-10 2e-10
Adaptive NW 15.68 (1.75) 10.27 (1.85) 5e-05 7e-05

Queen_4147
Uniform 164.19 (63.27) 126.04 (64.33) 3e-07 8e-07
Adaptive CW 159.58 (62.23) 124.42 (63.28) 7e-07 8e-07
Adaptive NW 110.97 (11.46) 72.69 (12.24) 1e-05 1e-05

StocF-1465
Uniform 31.71 (4.74) 21.88 (4.82) 8e-09 8e-09
Adaptive CW 30.39 (3.50) 20.60 (3.57) 8e-09 9e-09
Adaptive NW 28.55 (0.72) 18.06 (0.83) 2e-08 5e-09

Transport
Uniform 35.49 (4.99) 23.92 (4.97) 2e-07 1e-05
Adaptive CW 33.12 (2.98) 22.03 (3.11) 1e-06 2e-06
Adaptive NW 33.64 (2.99) 22.06 (3.08) 2e-06 4e-06

dgreen
Uniform 1.78 (0.50) 0.74 (0.26) 3e-15 5e-15
Adaptive CW 1.47 (0.19) 0.59 (0.11) 5e-16 1e-15
Adaptive NW 1.42 (0.14) 0.56 (0.06) 1e-15 1e-15

imagesensor
Uniform 0.20 (0.05) 0.07 (0.03) 7e-16 5e-16
Adaptive CW 0.13 (0.01) 0.05 (0.01) 6e-16 2e-15
Adaptive NW 0.13 (0.00) 0.05 (0.00) 6e-16 7e-16

mosfet2
Uniform 0.10 (0.04) 0.04 (0.02) 8e-14 6e-14
Adaptive CW 0.05 (0.01) 0.02 (0.01) 4e-13 1e-13
Adaptive NW 0.05 (0.01) 0.02 (0.01) 1e-13 3e-14

nv1
Uniform 0.15 (0.06) 0.06 (0.03) 1e-18 4e-18
Adaptive CW 0.10 (0.01) 0.02 (0.01) 1e-18 2e-18
Adaptive NW 0.09 (0.01) 0.02 (0.00) 1e-18 1e-17

nv2
Uniform 2.74 (1.17) 1.20 (0.60) 5e-17 7e-17
Adaptive CW 1.81 (0.25) 0.73 (0.14) 4e-17 5e-17
Adaptive NW 1.70 (0.10) 0.68 (0.06) 6e-17 2e-17

power9
Uniform 0.21 (0.04) 0.07 (0.01) 5e-19 6e-19
Adaptive CW 0.17 (0.01) 0.06 (0.01) 3e-19 9e-20
Adaptive NW 0.17 (0.01) 0.06 (0.00) 9e-20 6e-19

radiation
Uniform 0.40 (0.15) 0.16 (0.08) 2e-13 2e-13
Adaptive CW 0.27 (0.03) 0.11 (0.02) 1e-13 6e-13
Adaptive NW 0.27 (0.02) 0.10 (0.02) 1e-13 2e-13

ss
Uniform 42.98 (11.52) 31.58 (11.65) 2e-10 2e-03
Adaptive CW 40.84 (9.44) 29.42 (9.62) 2e-10 2e-03
Adaptive NW 41.35 (9.33) 29.29 (9.39) 9e-11 2e-03

stokes
Uniform 569.80 (169.68) 435.12 (172.14) 2e-05 3e-05
Adaptive CW 536.18 (133.60) 399.76 (136.11) 3e-05 4e-05
Adaptive NW 527.09 (122.99) 390.46 (126.10) 3e-05 3e-05

test1
Uniform 0.58 (0.15) 0.23 (0.07) 1e-14 1e-14
Adaptive CW 0.47 (0.05) 0.18 (0.03) 3e-14 8e-14
Adaptive NW 0.47 (0.05) 0.18 (0.03) 9e-15 7e-14

6 – Conclusion 65

vas_stokes_1M
Uniform 36.02 (16.08) 29.03 (16.36) 5e-04 6e-04
Adaptive CW 33.86 (13.96) 26.74 (14.13) 5e-04 6e-04
Adaptive NW 33.34 (13.62) 26.32 (13.83) 6e-04 5e-04

vas_stokes_2M
Uniform 70.88 (28.22) 55.27 (28.64) 1e-04 9e-05
Adaptive CW 63.33 (21.67) 48.64 (22.14) 1e-04 9e-05
Adaptive NW 61.75 (20.48) 46.93 (20.64) 9e-05 9e-05

vas_stokes_4M
Uniform 159.89 (51.20) 118.03 (51.91) 9e-05 9e-05
Adaptive CW 152.22 (44.27) 111.38 (45.08) 9e-05 9e-05
Adaptive NW 151.02 (41.94) 108.61 (42.49) 8e-05 9e-05

Aghora_DGO3
Uniform 6.64 (3.72) 5.56 (3.76) 2e-03 2e-03
Adaptive CW 6.43 (3.58) 5.34 (3.63) 3e-03 2e-03
Adaptive NW 5.81 (3.14) 4.76 (3.15) 2e-03 2e-03

Aghora_DGO4
Uniform 15.39 (10.30) 13.40 (10.46) 1e-03 7e-04
Adaptive CW 14.13 (9.30) 12.33 (9.45) 1e-03 7e-04
Adaptive NW 12.95 (8.35) 11.26 (8.46) 1e-03 6e-04

Aghora_DGO5
Uniform 30.61 (23.27) 28.12 (23.58) 3e-03 2e-03
Adaptive CW 27.46 (20.06) 24.89 (20.41) 3e-03 2e-03
Adaptive NW 18.29 (11.08) 22.09 (17.68) 1e-04 2e-03

6 Conclusion

We have presented a mixed precision algorithm to compute SpMVs and we have used it
to accelerate the solution of sparse linear systems by iterative methods. Our algorithm
is based on the idea of adapting the precision of each matrix element according to its
magnitude: the elements are split into buckets that are summed in progressively lower
precisions as their magnitudes decrease. We carried out a rounding error analysis of this
algorithm, summarized in Theorem 1, which provides us with an explicit rule to build
the buckets and to control its accuracy via a user-prescribed parameter ε.

Our experiments on a wide range of sparse matrices from real-life applications have
demonstrated the significant potential of the method. The adaptive precision algorithm
achieves storage reductions of up to a factor 36× compared with the uniform precision al-
gorithm, and these reductions translate to large time speedups on a multicore computer,
up to a factor 7×; these gains are achieved while maintaining an accuracy comparable
to that of the uniform precision algorithm. We have then investigated the use of our
adaptive precision SpMV within Krylov solvers for the solution of sparse linear systems.
We have shown that the convergence speed of the solvers is essentially unaffected by
the use of adaptive precision SpMV with conservative choices for the value of ε, such as
ε = 2−24, which yields an equivalent accuracy to using a uniform FP32 precision SpMV.
Moreover, we have shown that using larger values of ε may often be beneficial by reduc-
ing the SpMV cost at the expense of a possibly slower convergence. Since ε does not need
to correspond to the unit roundoff of a floating-point arithmetic, our adaptive precision
solver is not constrained by the available precisions on the hardware and can achieve a
flexible compromise between cost per iteration and total number of iterations.

While we have focused here on Krylov solvers with a simple diagonal preconditioner,

66 Chapter 3 – Adaptive SpMV and application to Krylov solvers

our adaptive precision framework is general and we expect it to be usable in other con-
texts. For example, we expect it to behave similarly with other iterative methods such
as flexible GMRES. In future work we wish to extend the adaptive precision framework
to cover other crucial steps of the solver, such as the construction of the Krylov basis or
the preconditioner.

6 – Conclusion 67

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20

40

60

80

100

S
to

ra
ge

co
st

w
rt

un
if

or
m

fp
64

(%
) Unif. fp64

Adapt. NW 2 prec.

Adapt. NW 3 prec.

Adapt. NW 7 prec.

Adapt. CW 2 prec.

Adapt. CW 3 prec.

Adapt. CW 7 prec.

(a) accuracy target ε = 2−53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20

40

60

80

100

S
to

ra
ge

co
st

w
rt

un
if

or
m

fp
64

(%
) Unif. fp64

Unif. fp32

Adapt. NW 2 prec.

Adapt. NW 3 prec.

Adapt. NW 7 prec.

Adapt. CW 2 prec.

Adapt. CW 3 prec.

Adapt. CW 7 prec.

(b) accuracy target ε = 2−37

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

10

20

30

40

50

60

70

S
to

ra
ge

co
st

w
rt

un
if

or
m

fp
64

(%
) Unif. fp32

Adapt. NW 2 prec.

Adapt. NW 3 prec.

Adapt. NW 7 prec.

Adapt. CW 2 prec.

Adapt. CW 3 prec.

Adapt. CW 7 prec.

(c) accuracy target ε = 2−24

Figure 3.3: Storage cost of the adaptive precision SpMV, as a percentage of the storage
cost of the uniform precision FP64 SpMV, for three different accuracy targets. For each
plot, we report the storage gains depending on which of the componentwise (“CW”) or
normwise (“NW”) criteria is considered and on how many precision formats are used.

68 Chapter 3 – Adaptive SpMV and application to Krylov solvers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20

40

60

80

100

T
im

e
w

rt
un

if
.

fp
64

(%
) Unif. fp64

Adapt. NW 2 prec.

Adapt. CW 2 prec.

(a) accuracy target ε = 2−53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20

40

60

80

100

T
im

e
w

rt
un

if
.

fp
32

(%
) Unif. fp32

Adapt. NW 2 prec.

Adapt. CW 2 prec.

(b) accuracy target ε = 2−24

Figure 3.4: Execution time of the adaptive precision SpMV for ε = 2−24 and ε = 2−53

target accuracies, as a percentage of the execution time of the uniform precision SpMV
in the corresponding precision. Both the normwise (“NW”) and componentwise (“CW”)
criteria are reported.

6 – Conclusion 69

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20

40

60

80

100

T
im

e
w

rt
un

if
.

fp
64

(%
) Unif. fp64

Unif. fp32

Adapt. NW 2 prec.

Adapt. CW 2 prec.

Figure 3.5: Execution time of the adaptive precision SpMV for an ε = 2−37 target accu-
racy, as a percentage of the execution time of the uniform precision FP64 SpMV. Both
the normwise (“NW”) or componentwise (“CW”) criteria are reported.

70 Chapter 3 – Adaptive SpMV and application to Krylov solvers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices

10−21

10−20

10−19

10−18

10−17

10−16

10−15

B
ac

kw
ar

d
er

ro
r

Unif.

Adapt. dropless

Adapt. drop only

Adapt.

(a) Backward error.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20

40

60

80

100

S
to

ra
ge

co
st

w
rt

un
if

.
fp

64
(%

) Unif. fp64

Adapt. dropless

Adapt. drop only

Adapt.

(b) Storage cost.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20

40

60

80

100

120

T
im

e
w

rt
un

if
.

fp
64

(%
) Unif. fp64

Adapt. dropless

Adapt. drop only

Adapt.

(c) Time cost.

Figure 3.6: Backward error, storage cost, and time cost of four SpMV variants: FP64
uniform precision (“Unif. fp64”), adaptive precision with two precisions but no dropping
(“Adapt. dropless”), adaptive precision with only one precision and dropping (“Adapt.
drop only”), and adaptive precision with both two precisions and dropping (“Adapt.”). All
three adaptive variants use ε = 2−53 as target accuracy.

6 – Conclusion 71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Number of threads

10−2

10−1

T
im

e

Unif. fp64

Unif. fp32

Adapt. NW ε = 2−53

Adapt. NW ε = 2−24

(a) Scaling on 1 to 36 threads

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Number of threads

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ffi

ci
en

cy

Unif. fp64

Unif. fp32

Adapt. NW ε = 2−53

Adapt. NW ε = 2−24

(b) Parallel efficiency on 1 to 36 threads

Figure 3.7: Parallel scaling experiments on Cube_Coup_dt0.

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

B
ac

kw
ar

d
E

rr
or

Unif. fp32

Unif. bfloat16 (50%)

Adapt. CW ε = 2−24 (77%)

Adapt. CW ε = 2−20 (60%)

Adapt. CW ε = 2−18 (52%)

Adapt. CW ε = 2−16 (46%)

Figure 3.8: Convergence of GMRES-IR for matrix ML_Laplace: illustration of the effect
of the ε parameter.

72 Chapter 3 – Adaptive SpMV and application to Krylov solvers

0 200 400 600 800 1000
Iteration

10−15
10−13
10−11
10−9
10−7
10−5
10−3
10−1

B
ac

kw
ar

d
E

rr
or

Unif. fp32

Unif. bf16

Adapt. NW ε = 2−16 (1%)

Adapt. CW ε = 2−16 (46%)

Adapt. NW ε = 2−20 (17%)

Adapt. CW ε = 2−20 (56%)

Adapt. NW ε = 2−24 (36%)

Adapt. CW ε = 2−24 (68%)

Figure 3.9: Convergence of GMRES-IR for matrix CoupCons3D: illustration of the dif-
ference between CW and NW criteria.

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

B
ac

kw
ar

d
E

rr
or

Unif. fp32

Unif. bfloat16 (50%)

Adapt. NW ε = 2−24 (61%)

Adapt. CW ε = 2−24 (89%)

Figure 3.10: Convergence of GMRES-IR for matrix Geo_1438: illustration of a surprising
behavior of NW variants.

CHAPTER 4

Reduced-precision and reduced-exponent formats for
accelerating adaptive SpMV

Mixed precision algorithms aim at taking advantage of the performance of
low precisions while maintaining the accuracy of high precision. In particu-
lar adaptive precision algorithms dynamically adapt at runtime the precisions
used for different variables or operations. For instance, the adaptive precision
sparse matrix-vector product presented in chapter 3, stores the matrix elements
in a precision inversely proportional to their magnitude. In theory, this algo-
rithm can therefore make use of a large number of different precisions, but the
practical results previously obtained only achieved high performance using
natively supported double and single precisions. In this chapter we combine
this algorithm with an efficient memory accessor for custom reduced precision
formats (Mukunoki et al. 2016). This allows us to experiment with a large set
of different precision formats with fine variations of the number of bits dedi-
cated to the significand. Moreover we also explore the possibility to reduce the
number of bits dedicated to the exponent using the fact that the elements that
share the same precision format are of similar magnitude. We experimentally
evaluate the performance of using four or seven different custom formats us-
ing reduced precision and possibly reduced exponent, and demonstrate their
effectiveness compared with the existing version only using double and single
precisions.

1 Introduction

The use of low precision floating-point formats in scientific computations is becoming
more and more common due to the storage and performance gains that they offer. To
maintain a rigorous control over the accuracy of the result, mixed precision algorithms
combine various precision formats to find the desired tradeoff between performance and
accuracy [Higham & Mary, 2022]. Adaptive precision algorithms [Higham & Mary, 2022,
sect. 14], a subclass of mixed precision algorithms, have recently attracted interest due

74
Chapter 4 – Reduced-precision and reduced-exponent formats for accelerating

adaptive SpMV

to their ability to dynamically detect at runtime opportunities for reducing the precision
based on the data at hand. Adaptive precision algorithms have for example been de-
veloped for low-rank approximations [Amestoy et al., 2022], block Jacobi precondition-
ers [Anzt et al., 2019; Flegar et al., 2021], block/tile low-rank factorizations [Amestoy
et al., 2022; Abdulah et al., 2022a], and sparse matrix-vector product (SpMV) [Graillat
et al., 2024a; Ahmad et al., 2019].

In this Chapter, we are particularly interested in the adaptive precision SpMV pre-
sented in Chapter 3. SpMV is a key computational kernel in many applications, such as
the solution of sparse linear systems with Krylov methods. Accelerating the SpMV while
preserving control over its accuracy is therefore an important goal with a wide range of
potential applications.

The approach of the adaptive sparse matrix-vector product is to accelerate SpMV
by storing some of the nonzero elements of the matrix in reduced precision. Indeed, a
theoretical error analysis demonstrates that the accuracy can be rigorously controlled by
switching the elements to a precision with a unit roundoff inversely proportional to their
magnitude: that is, smaller elements can be stored in lower precisions. This leads to
storage reduction which can translate to a corresponding time reduction because SpMV
is a memory-bound operation.

In addition to the error analysis, we have carried out a practical implementation
of the algorithm that achieved significant performance gains compared with SpMV in
uniform precision, at a comparable accuracy. However, these performance results are
only satisfactory when using precisions with native hardware support, that is, in our
case, the standard IEEE FP64 (double) and FP32 (single) precisions.

In this chapter, we are motivated by the fact that the adaptive precision SpMV can
in principle make use of any number of precision levels and, in fact, achieves larger stor-
age reductions when more precisions are available, since this allows for a fine tuning
of the precision of each element. We are interested in the potential of emerging tech-
nologies for reduced-precision memory accessors [Mukunoki & Imamura, 2016; Grütz-
macher et al., 2021; Mukunoki et al., 2023], which allow for efficiently accessing data
stored in reduced precision formats. We focus in particular on the work of Mukunoki
and Imamura [Mukunoki & Imamura, 2016], who propose a custom reduced precision
accessor, thus allowing for many different precision formats. We develop an adaptive
precision SpMV algorithm that relies on this memory accessor, and that can use up to
seven different precision formats with fine variations of the number of bits dedicated to
the significand. Moreover we also explore the possibility to reduce the number of bits
dedicated to the exponent using the fact that the elements that share the same preci-
sion format are of similar magnitude. We provide numerical experiments on a multicore
CPU architecture and with a range of real-life matrices. We evaluate the performance of
adaptive precision SpMV with varying numbers of precision formats, using reduced pre-
cision and possibly reduced exponent, and demonstrate the effectiveness of the custom
memory accessor compared with the existing version that only uses natively supported
double and single precisions.

2 – Methods 75

2 Methods

2.1 Adaptive precision SpMV

The adaptive precision SpMV presented in Chapter 3 decomposes the input matrix A
into several matrices Ak:

A =

q∑
k=1

Ak,

where each Ak is stored in a different precision format with unit roundoff uk, and the
sparsity patterns of the Ak are all mutually disjoint (that is, each nonzero element of A
is assigned to exactly one matrix Ak). The q precision levels satisfy u1 < u2 < · · · < uq.

The SpMV y = Ax is then computed as the sum of the partial SpMVs:

y = Ax =

q∑
k=1

Akx.

The accuracy of the computed vector ŷ can be controlled by suitably building the decom-
position. Specifically, the error analysis carried out in Chapter 3 and [Graillat et al.,
2024a] proves that, given a prescribed accuracy ε ≥ u1, the computed ŷ satisfies the
normwise backward error bound

ŷ = (A+ ∆A)x, ‖∆A‖ ≤ cε‖A‖,

where c is a modest constant, under the condition that all the nonzero elements aij of Ak
satisfy the criterion

aij ∈ Ak ⇔ |aij | ∈
(ε

uk+1
‖A‖, ε

uk
‖A‖

]
. (4.1)

This criterion shows that the precision uk used to store each nonzero element should
be chosen to be inversely proportional to the magnitude of the element. One special
case is when |aij | ≤ ε‖A‖: in this case, the element can be dropped, that is, replaced
by zero (this can be interpreted as using a “unit roundoff” uq = 1, as mentioned in 3).
Moreover, we recall that Chapter 3 also proposes an alternative criterion which bounds
the componentwise backward error, instead of the normwise one.

The error analysis also accounts for the possibility of performing the partial SpMVs
Akx in precision uk, but since the SpMV is a memory-bound operation, this does not
bring any significant performance improvement. We will therefore only use the reduced
precision formats for storage, while keeping the arithmetic operations in double preci-
sion (which corresponds to the highest precision u1).

2.2 Custom reduced-precision formats

Mukunoki and Imamura [Mukunoki & Imamura, 2016] have proposed a reduced-precision
memory accessor, called RPFP, that allows for representing custom floating-point num-
bers with a reduced significand. This is achieved by truncating the IEEE FP64 (double)
or FP32 (single) formats, as shown in Table 4.1: the RP56, RP48, and RP40 formats are
truncated versions of FP64, whereas the RP24 and RP16 formats are truncated versions
of FP32. Note that RP16 is equivalent to the bfloat16 format, although in our case we
do not have native support for bfloat16 operations on our target hardware.

76
Chapter 4 – Reduced-precision and reduced-exponent formats for accelerating

adaptive SpMV

Table 4.1: List of IEEE formats and RPFP’s reduced-precision formats

Format Numbers of bits Unit roundoff
Sign Exponent Significand

FP64 1 11 52+1 2−53 ≈ 1× 10−16

RP56 1 11 44+1 2−45 ≈ 3× 10−14

RP48 1 11 36+1 2−37 ≈ 7× 10−12

RP40 1 11 28+1 2−29 ≈ 2× 10−9

FP32 1 8 23+1 2−24 ≈ 6× 10−8

RP24 1 8 15+1 2−16 ≈ 2× 10−5

RP16 1 8 7+1 2−8 ≈ 4× 10−3

This RPFP accessor is implemented in the C/C++ language and relies internally on a
structure with multiple words composed of one, two, or four bytes: for example RP40 is
represented using a 32-bit integer and an 8-bit one. When dealing with an array of RPFP
numbers, each integer composing the RPFP format is allocated separately from the other
integers (so-called structure-of-arrays layout). The decoding of an RP40 number to an
FP64 one is illustrated in Figure 4.1. It is a relatively lightweight operation that consists
in copying the 8-bit and 32-bit integers into 64-bit integers, suitably realigning them
with a bit shift, and combining them with a binary or operation.

The RPFP accessor has been shown to accelerate various types of memory-bound op-
erations, such as dot products, dense matrix–vector products, and SpMVs. In particular,
the recent work [Mukunoki et al., 2023] focuses on the SpMV and shows that the perfor-
mance is often proportional to the storage and thus to the number of bits. Naturally, in a
uniform precision setting where the same RPFP format is used for all the elements, the
accuracy is also proportional to the number of bits. In the following, we investigate the
use of this kind of accessor in an adaptive precision setting which preserves a controlled
accuracy.

2.3 Reduced-precision formats for adaptive precision SpMV

The adaptive precision SpMV is particularly amenable to the use of custom precision
formats, for two reasons. First, the reduced precisions are only used as storage formats,
and hence do not require native support for arithmetic operations. Second, because the
precisions should be set to be inversely proportional to the magnitude of the elements,
we can in principle exploit a continuous level of precisions: the finer we can tune the
precision level, the higher the storage reduction.

The implementation presented in Chapter 3 achieves significant performance gains,
but unfortunately only when using the natively supported FP64 and FP32 precisions
available in the target architecture. Experiments with custom precision formats are
presented, but these lead to a heavy performance penalty due to an unoptimized memory
accessor implemented in Fortran.

The goal of this work is therefore to implement the adaptive precision SpMV algo-
rithm with the much more efficient RPFP accessor from [Mukunoki & Imamura, 2016],
and to evaluate to what extent custom precision formats can improve the performance.
To do so, we ported the Fortran implementation of the adaptive precision SpMV pre-

2 – Methods 77

1 union union64 {
2 uint64_t i ;
3 double f ;
4 } ;
5 __inl ine__ double
6 RpArrayToFp (rpfp64in40barray sa , s i ze_ t i) {
7 union union64 u64 ;
8 uint64_t H, L ;
9 H = (uint64_t) sa . i32 [i] ;

10 H = i64h << 32;
11 L = (uint64_t) sa . i8 [i] ;
12 L = i64 l << 24;
13 u64 . i = H | L;
14 return u64 . f ;
15 }

Exp.
11 bits

uint8_t to uint64_t copy

Sign
1 bit

Sig.
28 bits

Exp.
11 bits

Sign
1 bit

Sig.
52 bits

bitshift

uint32_t to uint64_t copy

bitshift

binary or

Accessed as FP64

Stored as RP40

Figure 4.1: Conversion from RP40 to FP64

sented in Chapter 3 to the C language and combined it with the RPFP implementation
for CPUs from [Mukunoki & Imamura, 2016].

To represent the sparse matrices A and Ak we use the compressed sparse row (CSR)
format with 32-bit row and column indices. For each matrix Ak, this leads to n + nnzk
32-bit values for the indices, and nnzk RPFP values for the nonzero elements, where n is
the number of rows of Ak and nnzk its number of nonzero elements.

The SpMV is parallelized with OpenMP using a static schedule: the rows of the
matrix are distributed among the available threads.

Figure 4.2 presents an excerpt of the adaptive precision SpMV code with seven pre-
cision levels.

2.4 Reduced-exponent formats for adaptive precision SpMV

While the RPFP accessor proposed in [Mukunoki & Imamura, 2016] only reduces the
significand, it may also be beneficial to reduce the number of bits allocated to the expo-
nent field in order to further reduce the storage.

78
Chapter 4 – Reduced-precision and reduced-exponent formats for accelerating

adaptive SpMV

1 void ap_csrmv (int n , rpMultiCSR A, double* x , double* y) {
2 #pragma omp para l l e l f or
3 f o r (int i = 0 ; i < n ; i ++) {
4 double tmp = 0 . ;
5 f o r (int k = A. ia16 [i] ; k < A. ia16 [i +1] ; k++) { / / RP16
6 f l o a t a i j _ r = RpArrayToFp (A. a16 , k) ;
7 tmp += a i j _ r * x [A. ja16 [k]] ;
8 }
9 f o r (int k = A. ia24 [i] ; k < A. ia24 [i +1] ; k++) { / / RP24

10 f l o a t a i j _ r = RpArrayToFp (A. a24 , k) ;
11 tmp += a i j _ r * x [A. ja24 [k]] ;
12 }
13 . . .
14 f o r (int k = A. ia56 [i] ; k < A. ia56 [i +1] ; k++) { / / RP56
15 double a i j = RpArrayToFp (A. a56 , k) ;
16 tmp += a i j * x [A. ja56 [k]] ;
17 }
18 f o r (int k = A. ia64 [i] ; k < A. ia64 [i +1] ; k++) { / / FP64
19 double a i j = A. a64 [k] ;
20 tmp += a i j * x [A. ja64 [k]] ;
21 }
22 y [i] = tmp ;
23 }
24 }

Figure 4.2: Adaptive precision SpMV with seven precision levels (excerpt).
RpArrayToFp converts a reduced-precision format to the IEEE FP64 format.

This idea is particularly promising for the adaptive precision SpMV because the ma-
trix elements stored in the same format are by design of similar magnitude. As shown
in equation (4.1), all elements of Ak stored in a precision with unit roundoff uk are in
the interval (ε‖A‖/uk+1, ε‖A‖/uk]. Therefore, the dynamic range of the elements of Ak is
uk+1/uk, which means that dlog2(uk+1/uk)e exponent values are sufficient to represent
elements, and so ⌈

log2

⌈
log2

uk+1

uk

⌉⌉
bits are sufficient for the exponent field. In particular, if we use all seven precision
formats from Table 4.1, we have uk+1/uk ≤ 28 and so we can reduce the number of
bits dedicated to the exponent to log2 log2 28 = 3 bits. This represents a large storage
reduction compared with the 11 or 8 bits used by the formats in 4.1.

Concretely, we represent the elements aij of Ak as

aij =
ε‖A‖
uk+1

· αij

where αij ∈ [1, 28) is represented with reduced precision and reduced exponent (RPRE).
Note that we must change the interval in equation (4.1) to be closed on the left and open
on the right, in order to exclude the right endpoint αij = 28 which would require four bits.
This leads us to define the RPRE formats listed in Table 4.2. The RPRE32, RPRE40, and
RPRE48 formats have respectively the same unit roundoff as RP40, RP48, RP56 but
three bits of exponent instead of eleven. The RPRE24, RPRE16, and RPRE8 formats are
similar to the FP32, RP24 and RP16 formats, with only three bits of exponent instead of
eight and slightly different unit roundoffs.

2 – Methods 79

Table 4.2: List of RPRE formats used for each interval of values.

Interval Format Numbers of bits Unit roundoff
(ε′ = ε‖A‖) Sign Exponent Significand

[ε′245, ‖A‖] FP64 1 11 52+1 2−53 ≈ 1× 10−16

[ε′237, ε′245) RPRE48 1 3 44+1 2−45 ≈ 3× 10−14

[ε′229, ε′237) RPRE40 1 3 36+1 2−37 ≈ 7× 10−12

[ε′221, ε′229) RPRE32 1 3 28+1 2−29 ≈ 2× 10−9

[ε′213, ε′221) RPRE24 1 3 20+1 2−21 ≈ 5× 10−7

[ε′25, ε′213) RPRE16 1 3 12+1 2−13 ≈ 1× 10−4

[ε′, ε′25) RPRE8 1 3 4+1 2−5 ≈ 3× 10−2

[0, ε′) dropping 0 0 0 20 = 1

In the same spirit, we can further reduce the storage by splitting the elements of
each Ak into A+

k and A−k according to their sign. This allows us to drop the sign bit in
the floating-point representation, which can instead be used for the significand. This
leads to unsigned RPRE formats (RPREU), listed in Table 4.3, which can be applied to a
slightly better interval of values (with a smaller unit roundoff). For example, RPREU8
can be applied to values up to ε′26, instead of ε′25 for RPRE8. The tradeoff is that we
double the number of matrices Ak, which doubles the number of row index arrays of size
n (the total size of the column index arrays remains equal to nnz the number of nonzero
elements of A). Therefore the RPREU formats can be beneficial only when the matrix is
not too sparse (sufficiently large nnz/n ratio).

Table 4.3: List of RPREU formats used for each interval of values.

Interval Format Numbers of bits Unit roundoff
(ε′ = ε‖A‖) Sign Exponent Significand

[ε′246, ‖A‖] FP64 1 11 52+1 2−53 ≈ 1× 10−16

[ε′238, ε′246) RPREU48 0 3 45+1 2−46 ≈ 1× 10−14

[ε′230, ε′238) RPREU40 0 3 37+1 2−38 ≈ 4× 10−12

[ε′222, ε′230) RPREU32 0 3 29+1 2−30 ≈ 9× 10−10

[ε′214, ε′222) RPREU24 0 3 21+1 2−22 ≈ 2× 10−7

[ε′26, ε′214) RPREU16 0 3 13+1 2−14 ≈ 6× 10−5

[ε′, ε′26) RPREU8 0 3 5+1 2−6 ≈ 2× 10−2

[0, ε′) dropping 0 0 0 20 = 1

In practice, the decoding of RPRE and RPREU formats is a little heavier than that of
RP formats. To decode an RPRE number, as shown in Figure 4.3, we need to separate the
bit of sign from the exponent, which requires extra binary and and or operations. We
also need to reset the exponent to its actual value but this operation can be realised only
once per bucket. Decoding an RPREU number does not require the sign bit separation
as there is none.

80
Chapter 4 – Reduced-precision and reduced-exponent formats for accelerating

adaptive SpMV

1 __inl ine__ double
2 RPREArrayToFp (rpre40barray sa , s i ze_ t i) {
3 union union64 u64 ;
4 uint64_t H, M, L;
5 H = (uint64_t) ((sa . i8 [i] & 0x80) | 0x40) ;
6 H = i64h << 56 ;
7 M = (uint64_t) (sa . i8 [i] & 0x7F) ;
8 M = i64m << (32+16) ;
9 L = (uint64_t) sa . i32 [i] ;

10 L = i64 l << 16;
11 u64 . i = H | M | L;
12 return u64 . f ;
13 }

Exp.
3 bits

sign copy and extra
exponent bit introduction

Sign
1 bit

Sig.
36 bits

Exp.
11 bits

Sign
1 bit

Sig.
52 bits

bitshift

exponent and higher
significand bits copy

bitshift

binary or

Accessed as FP64

Stored as RPRE40

lower significand
bits copy

bitshift

Figure 4.3: Conversion from RPRE40 to FP64

3 Evaluation

We perform the performance evaluation of our methods on one node of the Jean Zay
supercomputer, equipped with two Intel Cascade Lake 6248 processors with 20 cores
running at 2.5 GHz each, for a total of 40 cores. The experimental code was compiled
using GCC 8.5.0 with -O3 -march=native -fopenmp -lgomp (1 thread/core). It was
executed with numactl -interleave=all.

We collected eight matrices from the SuiteSparse Matrix Collection [Davis & Hu,
2011], listed in Table 4.4 (each matrix has size of n × n with nnz nonzero elements).
The matrices are ordered by nnz in descending order. We do not exploit the potential
symmetry of the matrices: symmetric matrices are expanded to unsymmetric ones before
the execution. The vector x is set to e = [1, . . . , 1]T .

We have chosen to store the input and output vectors x and y in FP64 for all our
experiments. We observed that this does not negatively affect the performance compared

3 – Evaluation 81

Table 4.4: Test matrices (Sorted by nnz).

Matrix n nnz

0 vas_stokes_4M 4,382,246 131,577,616
1 Cube_Coup_dt0 2,164,760 127,206,144
2 Flan_1565 1,564,794 117,406,044
3 Long_Coup_dt6 1,470,152 87,088,992
4 bone010 986,703 71,666,325
5 vas_stokes_2M 2,146,677 65,129,037
6 Hook_1498 1,498,023 60,917,445
7 RM07R 381,689 37,464,962

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

 0 1 2 3 4 5 6 7
Matrix

FP64
AP2, p=53
AP4, p=53
AP7, p=53

AP7RE, p=53
AP7REU, p=53

RP56
AP2, p=45
AP4, p=45
AP7, p=45

AP7RE, p=45

AP7REU, p=45
RP48

AP2, p=37
AP4, p=37
AP7, p=37

AP7RE, p=37
AP7REU, p=37

RP40
AP2, p=29
AP4, p=29
AP7, p=29

AP7RE, p=29
AP7REU, p=29

FP32
AP2, p=24
AP4, p=24
AP7, p=24

AP7RE, p=24
AP7REU, p=24

RP24
AP2, p=16
AP4, p=16

AP7, p=16
AP7RE, p=16

AP7REU, p=16
RP16

AP2, p=8
AP4, p=8
AP7, p=8

AP7RE, p=8
AP7REU, p=8

Figure 4.4: Normwise backward error computed from the FP128 uniform precision
SpMV

with storing them in FP32 and can even improve it in some cases due to the appearance
of denormalized numbers. To further minimize the risk of incurring underflow, overflow,
and subnormality, we also scale the matrix by its norm so that all elements are bounded
by 1.

For each result, we report the shortest execution time out of 15 executions (the SpMV
is executed five times in a single program, and the program is executed three times.).

To evaluate the potential offered by the introduction of RPFP formats in the adaptive
precision SpMV, we compare the following configurations:

• FPxx: Uniform precision SpMV with FPxx (xx=32 or 64).

82
Chapter 4 – Reduced-precision and reduced-exponent formats for accelerating

adaptive SpMV

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7
Matrix

(a) Storage

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7
Matrix

(b) Time

FP64
AP2, p=53
AP4, p=53
AP7, p=53

RP56
AP2, p=45
AP4, p=45
AP7, p=45

RP48
AP2, p=37
AP4, p=37
AP7, p=37

RP40
AP2, p=29
AP4, p=29
AP7, p=29

FP32
AP2, p=24
AP4, p=24
AP7, p=24

RP24
AP2, p=16
AP4, p=16
AP7, p=16

RP16
AP2, p=8
AP4, p=8
AP7, p=8

Figure 4.5: Storage and time gains achieved by adaptive precision variants over uniform
precision ones (normalized by the FP64 cost)

• RPxx: Uniform precision SpMV with RPxx (xx=16, 24, 40, 48, or 56).

• AP2: Adaptive precision SpMV with two precision levels: the natively supported
IEEE FP64 and FP32, as well as dropping.

• AP4: Adaptive precision SpMV with four precision levels: FP64, RP48, FP32, and
RP16, as well as dropping.

• AP7: Adaptive precision SpMV with all seven precision levels: FP64, RP56, RP48,
RP40, FP32, RP24, and RP16, as well as dropping.

In addition, to evaluate the potential offered by the reduced-exponent formats, we
also compare the above variants with the following configurations.

• AP7RE: Adaptive precision SpMV with seven precision levels: FP64, RPRE48,
RPRE40, RPRE32, FP32, RPRE16, and RPRE8, as well as dropping.

• AP7REU: Adaptive precision SpMV with seven precision levels: FP64, RPREU48,
RPREU40, RPREU32, FP32, RPREU16, and RPREU8, as well as dropping.

Moreover, we test the adaptive precision variants with various accuracy targets ε =
2−p, and compare them with the uniform precision variant of corresponding accuracy
(for example, for p = 29 we compare with the RP40 variant).

We begin by checking the correctness of our code. Figure 4.4 presents the backward
errors achieved by each configuration. The figure confirms that all adaptive precision
variants achieve the prescribed accuracy of order ε.

3.1 Performance of adaptive precision SpMV with RPFP

Figure 4.5 presents the storage and time costs of each variant, normalized by the FP64
cost. The time cost closely follows the storage cost as expected. The first observation

4 – Conclusion 83

is that the adaptive precision variants are usually faster than the uniform precision
variant at comparable accuracy, with very large speedups in some cases (up to 96%) that
are explained by huge storage reductions (up to 99%) thanks to the use of dropping. The
AP2 variant, which only uses natively supported precisions, performs well but we can
see that the AP4 and AP7 variants can in many cases further improve the performance
by exploiting custom precision formats. For example, the maximum storage gain of AP4
over AP2 is 24% and the maximum speedup is 21%. As for the difference between AP4
and AP7, it is less significant, and AP4 can be more efficient in some cases because
of the increased weight of the indices storage. Still, using seven rather than just four
precisions can bring an improvement up to 11% in the storage and a maximum speedup
of 9%.

3.2 Performance of adaptive precision SpMV with RPRE and RPREU

In order to provide performance evaluations of the RPRE and RPREU variants, we have
chosen not to use the RPRE24 format but to use FP32 instead, which we have observed
to be more efficient since the latter is a natively supported format. We have also ex-
perimented using both FP32 and RPRE24 and obtained similar, although slightly less
efficient results than when only using FP32 (which can be explained by the short length
of the intervals associated with these two formats).

Figure 4.6 compares the storage and time costs of the AP7RE and AP7REU variants
with those of the previously analyzed AP7 and uniform precision variants. The figure
shows that the use of reduced-exponent formats can improve the performance in some
cases and on the contrary degrade it in other cases. Nevertheless, these variants can
achieve up to 16% storage reduction and a maximum speedup of 13%. The heavier
decoding of these reduced-exponent formats presumably explains why their use does
not always improve the performance.

Finally, we plot in Figure 4.7 the distribution of the precision formats used for each
nonzero element of the matrix. The figure illustrates that having a greater number
of reduced-precision formats (AP7 instead of AP4 or AP2) allows for a finer tuning of
the precisions assigned to each element. Moreover, the figure also shows that using
reduced-exponent formats (AP7RE or AP7REU) allows for reusing the exponent (and
possibly sign) bits for the significand, which increases the proportion of elements stored
in reduced precisions.

4 Conclusion

We have demonstrated the potential of using custom floating-point formats for acceler-
ating the adaptive precision sparse matrix–vector product algorithm presented in Chap-
ter 3. We have shown that using up to seven different reduced-precision formats from
[Mukunoki & Imamura, 2016] can lead to speedups of up to 96%. Moreover, we have
developed new reduced-exponent formats that can improve performance even more with
further speedups of up to 13%. Since the adaptive precision algorithm allows for rig-
orously controlling the loss of accuracy, all these performance gains are achieved at an
accuracy comparable with that of obtained with uniform precision algorithms.

A promising perspective for further improvements is to use different sparse matrix

84
Chapter 4 – Reduced-precision and reduced-exponent formats for accelerating

adaptive SpMV

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7
Matrix

(a) Storage

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7
Matrix

(b) Time

FP64
AP7, p=53

AP7RE, p=53
AP7REU, p=53

RP56

AP7, p=45
AP7RE, p=45

AP7REU, p=45
RP48

AP7, p=37

AP7RE, p=37
AP7REU, p=37

RP40
AP7, p=29

AP7RE, p=29

AP7REU, p=29
FP32

AP7, p=24
AP7RE, p=24

AP7REU, p=24

RP24
AP7, p=16

AP7RE, p=16
AP7REU, p=16

RP16

AP7, p=8
AP7RE, p=8

AP7REU, p=8

Figure 4.6: Storage and time gains achieved by AP7RE and AP7REU variants over the
uniform precision and AP7 ones (normalized by the FP64 cost)

formats with a reduced relative weight of the indices, which would significantly increase
the potential of adaptive precision. This is in particular the case of diagonal or block
sparse formats.

4 – Conclusion 85

(a) RP

 0 1 2 3 4 5 6 7

AP2, p=53

 0 1 2 3 4 5 6 7

AP2, p=45

 0 1 2 3 4 5 6 7

AP2, p=37

 0 1 2 3 4 5 6 7

AP2, p=29

 0 1 2 3 4 5 6 7

AP2, p=24

 0 1 2 3 4 5 6 7

AP2, p=16

 0 1 2 3 4 5 6 7

AP2, p=8

 0 1 2 3 4 5 6 7

AP4, p=53

 0 1 2 3 4 5 6 7

AP4, p=45

 0 1 2 3 4 5 6 7

AP4, p=37

 0 1 2 3 4 5 6 7

AP4, p=29

 0 1 2 3 4 5 6 7

AP4, p=24

 0 1 2 3 4 5 6 7

AP4, p=16

 0 1 2 3 4 5 6 7

AP4, p=8

 0 1 2 3 4 5 6 7

AP7, p=53

 0 1 2 3 4 5 6 7

AP7, p=45

 0 1 2 3 4 5 6 7

AP7, p=37

 0 1 2 3 4 5 6 7

AP7, p=29

 0 1 2 3 4 5 6 7

AP7, p=24

 0 1 2 3 4 5 6 7

AP7, p=16

 0 1 2 3 4 5 6 7

AP7, p=8

(b) RPRE and RPREU

 0 1 2 3 4 5 6 7

AP7RE, p=53

 0 1 2 3 4 5 6 7

AP7RE, p=45

 0 1 2 3 4 5 6 7

AP7RE, p=37

 0 1 2 3 4 5 6 7

AP7RE, p=29

 0 1 2 3 4 5 6 7

AP7RE, p=24

 0 1 2 3 4 5 6 7

AP7RE, p=16

 0 1 2 3 4 5 6 7

AP7RE, p=8

 0 1 2 3 4 5 6 7

AP7REU, p=53

 0 1 2 3 4 5 6 7

AP7REU, p=45

 0 1 2 3 4 5 6 7

AP7REU, p=37

 0 1 2 3 4 5 6 7

AP7REU, p=29

 0 1 2 3 4 5 6 7

AP7REU, p=24

 0 1 2 3 4 5 6 7

AP7REU, p=16

 0 1 2 3 4 5 6 7

AP7REU, p=8

64 bits 56 bits 48 bits 40 bits 32 bits 24 bits 16 bits 8 bits drop

Figure 4.7: Distribution of the precision formats used for each nonzero element. Each
bar on the x-axis corresponds to a different matrix and the y-axis indicates the percent-
age of nonzero elements stored in each format.

CHAPTER 5

Mixed precision for AGATA Pulse-Shape Analysis

The AGATA project aims to build a High Purity Germanium (HPGe) gamma-
ray spectrometer consisting of 180 crystals divided into 36 segments. Each
gamma-ray interaction with the germanium crystal produces a net-charge
signal within the hit segment and transient signals in neighbour segments.
During the Pulse-Shape-Analysis (PSA), these signals are compared with a
database of signals to locate the interaction point. This step has to be both
accurate because the resolution of the detection relies on it and fast because
the input data flow is beyond the capabilities of recording it. In the execu-
tion chain leading to the PSA, we can observe successive data conversions: the
original 14-bit integers given by the electronics are finally converted to 32-bit
FP32. This observation makes us wonder about the actual numerical accu-
racy of the results, and we investigated the use of shorter floats, with the hope
of speeding up the computation, and reducing the number of cache accesses.
In this chapter, we present the numerical validation of the PSA code, realized
with the CADNA library. We also present how we have refactored the code
to mix different numerical formats, using high precision only when necessary.
Finally we explain how we benefited from GPUs speedup and native FP16
through a CUDA rewriting of the code.

1 Introduction

AGATA1 (Advanced GAmma-ray Tracking Array) is a European research project with
the objective of building a 4π detector with significantly higher resolution than existing
ones. The detector is still under development, but is already in use in its partial con-
figuration. It is used for experiments with intense stable and radioactive ion beams, to
study the nucleus structure. In the present work we deal with two connected problems:
the uncertainty of the results in numerical computation due to the floating-point arith-
metic that we will refer to as accuracy and the need to accelerate the processing of data

1https://www.agata.org

https://www.agata.org

88 Chapter 5 – Mixed precision for AGATA Pulse-Shape Analysis

coming from the detector that is too important to be reasonably stored. We will explore
how these aspects are interconnected through the precision formats used, upon which
both the performance and the accuracy of the computations depend.

Today’s computers are usually using floating-point operations to simulate computa-
tions on real numbers. There exist several floating-point formats with varying numbers
of bits. Until now, FP64 (called double precision) and FP32 (called single precision) have
been the most common formats but lower precision formats, FP16 and BFLOAT16 (both
called half precision) are more and more availble in hardware in the last years, in par-
ticular on GPUs.

Applications that require results in high accuracy and that deal with data of var-
ious magnitudes usually use the FP64 and FP32 formats, whose performances have
been optimized in hardware and embedded in development practices. Those formats
enable results with respectively 15 and 7 significant decimal digits, and allow to deal
with a large range of values. In the counterpart, they are expensive in terms of exe-
cution time, energy and memory. Under the influence of low-accuracy applications as
machine-learning, half precision (FP16, BFLOAT16) and even lower precision formats
are undergoing a rapid development, with dedicated hardware delivering excellent per-
formance. On NVIDIA A100 GPUs, for instance, FP16 or BFLOAT16 are 16 times faster
than FP32. This performance is attracting interest in fields requiring both speed and
high accuracy results, such as particle and nuclear physics. To combine these two needs,
mixed precision approaches are being developed leveraging the strategic use of various
precision formats within the same code to benefit from their respective advantages.

However, because floating-point arithmetic relies on approximations that accumulate
as computations proceed, uncontrolled computations can yield completely erroneous re-
sults. We therefore need to control the accuracy of our computations, especially when we
intend to mix several precisions. In the present work we are using a tool named CADNA
which allows us to monitor the evolution of the number of exact significant digits in our
code and detect numerical instabilities.

In this chapter we will present our results on the stability of the code of the AGATA
Pulse-Shape Analysis by comparing the results obtained with various precision formats,
including stochastic types from CADNA. We will also present the results obtained using
different variants of the PSA algorithm in both CPU and GPU. All experiments were
carried out using the code and data available on the PSA Performance Tests repository 2.

2 Profiling of AGATA computations

2.1 Gridsearch configuration

PSA is a crucial step in the processing of AGATA data and is therefore the subject of sus-
tained development, with different algorithms being developed and different versions of
these algorithms being used. In our work, we focused on the gridsearch algorithm, which
compares the measured signal with the signals in the database. As we saw in Chap-
ter2, there are several versions of gridsearch: a full gridsearch (FGS) version 1, which
searches the entire grid of the interaction segment, and a coarse-fine gridsearch (CFGS)

2https://gitlab.in2p3.fr/IPNL_GAMMA/narval_emulator/-/wikis/PSA-Performance-
Tests

https://gitlab.in2p3.fr/IPNL_GAMMA/narval_emulator/-/wikis/PSA-Performance-Tests
https://gitlab.in2p3.fr/IPNL_GAMMA/narval_emulator/-/wikis/PSA-Performance-Tests

2 – Profiling of AGATA computations 89

version 2, which performs a first minimum search on a coarse grid and then a second
search on a fine grid in the neighbourhood of the coarse minimum previously found. This
latest version is currently in production. In addition, the gridsearch implementation, in
both full and coarse-fine versions, includes a look-up table (LUT) to avoid calculating the
power p of the Figure of Merit. Meaning that in Algorithm 1 and Algorithm 2 we replace

1: FOMi += (Vm[s][t]− Vr[i][s][t])p
by

1: float D = Vm[s][t]− Vr[i][s][t]
2: int I = int(D)
3: FOMi += metric[I]

where metric is an array pre-calculated according to the chosen metric, i.e. the
value of p. This LUT has a size of 2 MB which is negligible compared to the storage of
the signal base (∼ 800MB). Note that the cast operation from float to int is extremely
brutal in terms of loss of precision. Furthermore, this loss of accuracy is invisible to
CADNA, which considers the metric[idiff] value to be exact, whereas it is the result
of a computation that is not, and an addressing that neither is. In our experiments,
we therefore carried out a run with and a run without the LUT whenever possible.
As we will see later, the use of the LUT has a positive effect on performance, but a
negative effect on accuracy. In the remainder of this chapter, we will systematically
specify whether the algorithm is performed with or without the LUT in the results we
present.

2.2 Performance analysis

The code that processes the data of AGATA suffers from various problems which put
a strain on its performance. Furthermore, it is not adapted to take advantage of mod-
ern architectures capabilities. We first performed a static analysis that revealed the
massive use of loops and sometimes arbitrary use of FP32 and FP64 formats. Using
perf3, a Linux-based performance analysis tool, we have explored its weaknesses and
determined the functions that shall be targeted to improve its performance. This anal-
ysis, performed on the CFGS in FP32 (CFGS-FP32) using the LUT, clearly showed that
the Chi2InnerLoop function concentrates 69 % of the CPU cycles, 80 % of the cache-
references and more annoying, 73 % of the cache-misses. All of these factors make
this function, and the PSA that includes it, a prime target for accelerating the code
of AGATA. The number of memory accesses, due to the fact that we are processing a
very large database, led us to seek ways to reduce this amount of data.

In addition, we observed successive data conversions in the execution chain lead-
ing to the PSA. Data coming from the detector is originally sampled in 14 bits by the
electronics, which correspond to a dozen bits of truthful information. These 14 bits are
later extended into 16-bit integers to fit in computer format, and finally cast into 32-bit
floats to perform floating-point operations. This made us wonder if lower floating-point
precision can be used, while maintaining the accuracy.

Our work therefore has two concomitant objectives: reducing the cache references
made by the PSA by reducing the volume of data to be accessed and take advantage of

3https://perf.wiki.kernel.org

https://perf.wiki.kernel.org

90 Chapter 5 – Mixed precision for AGATA Pulse-Shape Analysis

the arithmetics of modern architectures, while controlling the numerical quality of our
results.

2.3 Accuracy control

As presented in Chapter 1, standardized representation of a normalized floating-point
number is y = s ·m · βe with s the sign, β the base, e the exponent such that emin ≤ e ≤
emax and m the mantissa which satisfies 1 ≤ m < β. Let us denote by t the precision,
i.e. the number of bits in the mantissa plus an implicit bit set to 1. In the present work,
we are only dealing with floating-point numbers in base β = 2. Thus we can define u the
machine epsilon as u = 2−t in round-to-nearest mode. Depending on the format used,
more or fewer bits are used to store the significand and the exponent, as described in
Table 1.3.

In this context, each operation implies a rounding that can accumulate and lead to
a completely false result as we have seen in Chapter 1. Stochastic arithmetic [Vignes,
1993] is a probabilistic method that allows to control the accuracy of numerical results.
It relies on performing each arithmetic operation several times with a random round-
ing mode: each result being randomly rounded up or down with the same probability.
The number of exact significant digits can therefore be estimated using a Student’s t-
test [Student, 1908] with a confidence level of 95 %.

CADNA4 [Chesneaux, 1990; Jézéquel & Chesneaux, 2008; Eberhart et al., 2015] is
a library that implements stochastic arithmetic by performing synchronously each com-
putation three times to estimate the number of exact significant digits of a floating-
point number resulting from numerical computation. This library provides new numer-
ical types, called stochastic types on which numerical validation is automatically per-
formed.CADNA is available in, C, C++ and Fortran and is a relatively lightweight tool
with a memory overhead of 4 and an execution time overhead of around 10. As it also
provides the overloading of all arithmetic operations and mathematical functions, its
use generally requires minimal code rewriting. Furthermore, the fact that operations
are performed synchronously enables the detection of numerical instabilities, usually
due to operands with no exact significant digits.

In our work, the use of CADNA is particularly relevant. Indeed, CADNA supports
MPI, OpenMP, CUDA and vectorized codes, but also half precision [Jézéquel et al., 2021],
whether native or simulated that is particularly attracting in an High Performance Com-
puting (HPC) context. As previously mentioned, we had to eliminate the use of the LUT
for those evaluations.

The FGS algorithm consists in comparing signals from a database with a measured
signal to determine which is the most similar and thus find the point of interaction. We
compare traces sampled over 40 time steps on an average of 1314 points per segment,
which exposes us to a significant risk of accumulating catastrophic cancellations. Using
CADNA, we were able to test the accuracy of the PSA in its FGS version in FP32, as well
as different variants and combinations of precisions. To do so, we have instrumented the
PSA code so that it is easy to use different precision settings and also stochastic types.

We have analyzed the version of the code implementing the FGS and we observed
that the code was slightly sensitive to perturbations. Indeed, using whether stochastic

4http://www.lip6.fr/cadna

http://www.lip6.fr/cadna

3 – Reduced precision formats 91

FP32, stochastic FP64, or classic FP64, instead of the original classic FP32 in the FGS,
results in 0.02 % difference in the points found. This first analysis validates the original
results and allows us to consider further reduction of the precision formats. In the fol-
lowing, we consider the full gridsearch version running in FP32, denoted FGS-FP32 and
the results derived from it as a reference result.

3 Reduced precision formats

Having confirmed the numerical quality of the results obtained by the PSA, we sought to
use reduced-precision formats within it. Throughout this section, we present the results
obtained through different configurations but always without using the LUT.

The FP16 format, has been introduced in the 2008 revision of the IEEE754 stan-
dard [IEEE Computer Society, 2008]. It enables one to perform floating-point opera-
tions on 16 bits only. These 16 bits are distributed as follows: 1 sign bit, 5 exponent
bits, and 10 + 1 significand bits. The low number of exponent bits implies a reduced
range of representable data: ±65504. Similarly, while the number of significand bits re-
mains reasonable and enables numbers to be represented with an accuracy of the order
of 10−5, this is still well below that achieved by the FP32, of the order of 10−7. These two
constraints make FP16 unsuitable for certain contexts.

This format is becoming increasingly widely available, in particular on recent GPUs.
It is driven by the dynamism and massive investment in neural network computation
which allows for low accuracy. Therefore, it is poised to continue evolving, making it a
central element in performance gains for years to come. Indeed, it does not only reduce
storage and energy consumption, it also delivers significant speed-up. For instance, a
computation performed in FP16 instead of FP32 can be accelerated by up to ×16 using
A100 GPUs.

We therefore sought to take advantage of this format despite the need for high accu-
racy in the context of nuclear physics, and in this case the execution of PSA. In the case
of the PSA, this need for high accuracy translates into the need to identify the points of
interaction of gamma-rays with Germanium crystal with a resolution of 5 mm, in order to
be able to carry out the gamma-ray tracking step afterwards. Table 5.1 summarizes the
results in terms of point similarity between the different versions, using the FGS-FP32
as a reference, of the experiments detailed below.

Table 5.1: Signals identified identically to FGS-FP32 result without LUT (%)

FP32 FP16 MIXED

FGS 100 100 –
CFGS 91.78 85.96 91.45

3.1 Half-precision computation

To experiment the possibility of using a reduced precision format, we used a library5

that emulates FP16 half precision. As the FP16 are emulated, this experiment does not
5https://half.sourceforge.net

https://half.sourceforge.net

92 Chapter 5 – Mixed precision for AGATA Pulse-Shape Analysis

intend into providing execution time results but only to compare the final accuracy of
the results.

Thanks to our initial instrumentation and the library mentioned above, we have
been able to run the FGS algorithm in emulated FP16 (FGS-FP16). This yields to 100%
similarity with the results obtained by the reference. We also tested the use of FP16
on the coarse-fine gridsearch version (CFGS-FP16), which showed similar results to the
FGS-FP32 for 85.96 % of the experimental signals. Table 5.1 summarizes the rates of
similar points obtained by the different configurations with respect to the FGS-FP32
results.

The results obtained using the FGS-FP16 are highly satisfying, as it indicates that,
in the context of the fullgrid search algorithm, FP16 can be used in place of FP32 with-
out any loss of quality. This result is promising and prompted us to develop a GPU
implementation of PSA to take advantage of the performance gains of native FP16, as
we will see in 4.4.

The results obtained by the CFGS-FP16 show how difficult it is for the CFGS algo-
rithm to maintain high accuracy when carried out in reduced precision. However they
require a more detailed analysis, since we need to assess the distance between the points
found and those identified by FGS-FP32, as well as the energy levels at which these er-
rors occur. We develop this analysis in 3.3.

3.2 Mixed precision computation

Mixed precision computation is an emerging paradigm that aims at mixing several pre-
cisions in a same code with the goal of getting the performance benefits from low pre-
cisions while preserving the accuracy and stability of high precision. It is based on the
idea that not all computations are equally important, considering for instance that in an
addition between two numbers of different magnitudes, most of the significant digits of
the smaller one may be eliminated. The main challenge for this programing mode is to
decide in which precision each operation shall be performed. This work takes place in
the area of precision tuning that aims at using a tool, here CADNA, that evaluates the
number of correct digits in a result for different precision configurations.

We therefore looked for a way of using low precision while remaining close to the orig-
inal results. We turned to the algorithm used in production, which performs a coarse-fine
gridsearch. Such an algorithm naturally lends itself to a mixed precision approach, in
which the coarse search is performed with low precision and the fine search with higher
precision. Running the CFGS in FP32 (CFGS-FP32) identifies 91.78% similarly to FGS-
FP32 while the mixed precision version (CFGS-MIXED) obtains 91.45 %. These similar
results indicate that the two methods can be adopted alternatively with equal confi-
dence. Of course, we could also perform both steps in low precision (CFGS-FP16), but
under the same conditions, this results in only 85.96 % of the signals identified identi-
cally to FGS-FP32 as already mentioned in section 3.1. In the current implementation
of the CFGS, the coarse step represents around 20 % of the computation time. This is
a limit to the time savings that can be expected without change of the grid size to in-
crease the weight of the coarse part. However, any modification of the grid may lead to
a reduction in accuracy and should therefore be carried out carefully. These preliminary
results confirm the interest of mixed precision for applications to improve the perfor-
mance while maintaining the accuracy and reinforcing our commitment to continue in

3 – Reduced precision formats 93

this direction.

3.3 Error acceptability

In this work, we encountered various methods for analyzing computation errors. Ini-
tially, we focused on numerical accuracy, assesed in terms of the number of exact signif-
icant digits, an analysis enabled by CADNA and stochastic arithmetic. Then, we looked
at the number of interaction points found differently using the possible combinations of
methods and precision settings. Since our criterion for evaluating the accuracy of results
is the number of points identified similarly and the energies involved between a method
and our reference, using an autotuning tool like PROMISE, which takes as its metric
only the number of exact significant digits, is not suitable.

In this section we try to measure how different the points found are and in which
energy class they lie. To this end, we produced Figures 5.1 and 5.2. In Figure 5.1 we can
observe that most of the points found differently from the full gridsearch FP32 method
are less than 3 mm far from the original points and that the number of points found dif-
ferently from the full gridsearch FP32 points decreases with distance. Moreover, as we
can observe on Figure 5.2, most of the unfaithful points rely, as any point, in the smaller
energy class that requires less accuracy. Also, we can observe that the distribution of
unfaithful points is the same for the classic coarse-fine gridsearch performed in FP32
and the mixed precision one using half precision for the coarse search. All in all, these
data confirm that the mixed precision solution can be trusted as well as the uniform
precision FP32 coarse-fine gridsearch.

Figure 5.1: Distances between points found by the full gridsearch FP32 algorithm and
alternative methods

94 Chapter 5 – Mixed precision for AGATA Pulse-Shape Analysis

Figure 5.2: Energy classes in which the points found by various methods belong to

4 Adapting the code to modern hardware

4.1 The PSA test environment

To go further and obtain execution time evaluations, we decided to work on adapting
the gridsearch to modern hardware. To be able to easily experiment the impact of the
PSA and its parameters, we extracted it from the complete AGATA execution chain and
turned it into a stand-alone application6. We then adopted modern C++ conventions
before building several variants of this application, using the FGS 1 and CFGS 2 algo-
rithms, with different precisions (FP32 or FP16), using or not the LUT, and running on
CPU or GPU.

As a reminder, the gridsearch is based on the minimization of the following Figure of
Merit.

FOMi+ =
∑
s,t

(Vm[s][t]− Vr[i][s][t])p (5.1)

Where i is the grid point, s designates the segment number and t the time sample. Vm
is the measured signal and Vr the basis of reference signals. p is a positive real number
that corresponds to the chosen metric.

This FOM allows us to take into account signals measured in different segments:
hit segment and core signals, as well as signals in segments adjacent to the interaction
segment. To make the PSA test environment as simple as possible, we chose to consider
only the signals from two channels: the hit segment and the core. This corresponds to
the situation observed when transient signal values are not available. We also set the
value of p to 0.3, as currently implemented. Our experimental code makes it easy to add
neighbors or modify the value of p. We performed our experiments on a sample of 5342

6https://gitlab.com/romeomolina/psa-test-env.git

https://gitlab.com/romeomolina/psa-test-env.git

4 – Adapting the code to modern hardware 95

events with energies ranging from 15keV to 5MeV.
We decided to express the performances of the different versions in terms of the cost

of processing a single event. The time scale is therefore very small, and we chose to
measure it in ticks. The CPU code was compiled by the G++ 9.4.0 compiler using -O3
-std=c++17 and the GPU code by the NVCC 12.4.0 compiler using -O3 -std=c++17.
We carried out the CPU experiments on an Intel® Core™ i9-11950H Processor with 8
cores at 2.6GHz with 24MB cache memory and the GPU experiments on a NVIDIA RTX
A2000 with 3328 CUDA cores and 4GB memory. Comparing CPU and GPU performance
provides limited information, as the results obviously depend on the hardware chosen.
However it allows us to offer an first assessment of GPU performance and validate their
use in the PSA framework. Our reference result is that achieved by the FGS without the
LUT on CPU giving an average execution time per event of 624 ticks. For the other ex-
periments, we measure their execution time and the number of points found identically
to this reference. We also measure the number of points found at a distance below 5 mm,
since this corresponds to the AGATA specification.

Results on both GPU and CPU with the different configurations are summarized in
Tables 5.2 and 5.3 and discussed below.

Table 5.2: Execution time for the different configurations on CPU and GPU (ticks)

CPU-FP32 GPU-FP32 GPU-FP16

FGS-NOLUT 624 55 52
FGS-LUT 97 51 –

CFGS-NOLUT 102 – –
CFGS-LUT 17 – –

Table 5.3: Points identified within 5mm of those found by FGS-FP32 without the LUT
executed in CPU (%)

CPU-FP32 GPU-FP32 GPU-FP16

FGS-NOLUT 100 100 94
FGS-LUT 90 90 –

CFGS-NOLUT 72 – –
CFGS-LUT 68 – –

4.2 Experiments on CPU

The FGS algorithm using the LUT takes only 97 ticks on average, but identifies only 76%
of the points identically. If we accept points at a distance of less than 5 mm, as this is
the resolution required for the ray-tracking, we obtain 90% of points found similarly. If
we consider the distance between the points identified with the LUT and those without
it, we observe that the number of points found decreases in inverse proportion to this
distance. Thus, less than 2% of points are found more than 20 mm apart.

The CFGS executed on CPU delivers significant performance gains. For example, the
CFGS using no LUT achieves an average runtime of 102 ticks for 68% of points found

96 Chapter 5 – Mixed precision for AGATA Pulse-Shape Analysis

identically to the reference and 72% within 5mm. However, this strategy results in 8%
of points identified more than 20 mm from the reference result.

It is possible to combine the CFGS with the use of the LUT to reduce the average
execution time to 17 ticks, but this leads to a further deterioration in the quality of the
results, with only 54% of points found identically to the reference, 68% within 5 mm and
still 8% more than 20 mm away.

4.3 GPU deployment

In recent years, Graphics Processing Units (GPUs) have become an essential aspect of
HPC. These massively parallel computing units, initially developed for graphics dis-
play management, have now made their mark in fast-developing sectors such as neural
networks. Their performance, which saves energy and time compared with CPU-based
operations, is encouraging developers to turn to this solution.

However, this developing technology is less standardized than the CPU environment,
and highly dependent on the manufacturer chosen. In our case, we decided to use CUDA,
the language developed by NVIDIA to program its GPUs that are the dominant GPU
technology today. This language is based on C++ and is therefore suited to our context.
Furthermore, CADNA is able to deal with CUDA programs.

As the massively parallel GPU architecture is completely different from that of a
CPU, a great deal of rewriting was required, both on the data structures and on the
computation, in order to take advantage of the GPU performance. In particular, the
interest of the coarse-fine gridsearch disappears with the use of GPU. This is because in
this case, unlike in CPU execution, FOMs are calculated simultaneously for all points
on the grid, before being reduced to determine the smallest. Thus, using the coarse-
fine algorithm would imply an intermediate reduction step followed by an additional
broadcast to all the cores in use, which would be particularly costly in the massively
parallel context. The computational strategy therefore consists in calculating all the
FOMs for each grid point in parallel, then performing a single reduction to identify the
minimum.

This involves GPU memory transfers that can be crucial to the final execution time.
First of all, the entire reference signal base must be copied into GPU memory. This base
is stable over time, and we do not want to transfer it block by block for each event. We
therefore need sufficient memory to store it entirely, i.e. 848 MB that is available on our
NVIDIA RTX A2000 with 4 GB of memory.

Executing the algorithm as modified to run on the GPU (FGS-GPU) without the LUT,
we obtained exactly the same results as our CPU reference, i.e. 100% of points identified
identically to the FGS witout the LUT, when reducing the execution time to 55 ticks.
While this execution time is still longer than that obtained with the coarse-fine version
and the LUT, it should be set against the accuracy of the results obtained, compared
with only 54% of points identified identically in the previous case.

In addition, it should be pointed out that there are still optimization possibilities. As
it stands, FOM is calculated per base point (700-2000 according to the segment) on each
available GPU core. However, A6000 GPU cards for instance have 10752 CUDA cores,
making it possible to simultaneously process from 5 to 15 events and effectively using all
the cores. This could theoretically reduce as much the execution time. The use of GPUs
to carry out the PSA therefore appears to be an important opportunity to improve its

5 – Conclusion and perspectives 97

performance while maintaining the quality of the results obtained.

4.4 Use of native FP16

GPUs are used in a context in which not all computations require high accuracy. Indeed,
it has been shown that low-precision computations do not usually break the validity of
neural network learning [Yun et al., 2023]. The development of GPUs has therefore
been accompanied by significant progress in the support of reduced precisions, including
both integer and floating-point formats. In particular, there are currently two relatively
widespread floating-point formats on GPUs: the FP16 format, derived from the 2008
revision of the IEEE 754 standard, and the BFLOAT16 format developed by Google for
its TensorCore. As we saw above, using FP16 keeps the results close to those obtained
with FP32.

On current NVIDIA GPUs, FP16 precision can be used with two types available in
CUDA: half and half2. These two types work in a complementary way. The half type
enables FP16 values to be stored contiguously, while the half2 type enables this data
to be accessed for pairwise processing, as in the case of vectorized execution.

The use of half precision on GPU (FGS-FP16) without the LUT enables us to obtain
87% of points similar to our reference and 94% within 5 mm of the reference, for only
1% of points identified more than 20mm from the reference. It therefore appears that
this solution delivers more accurate results than the FGS versions in FP32 using the
LUT. We obtained an average execution time of 52 ticks, which is better than the GPU
result obtained with FP32, but we could have expect a greater speedup. This difference
in performance can probably be explained by the costs of pre- and post-processing re-
quired for half computation. Indeed, the potential of the half execution, that essentially
corresponds to a vectorized execution is affected by the need of obtaining a single value.
Similarly, the use of the LUT in this context is not appropriate, as it would break any
possibility of vector execution.

5 Conclusion and perspectives

In the course of this work, we conducted investigations into the quality of the results
produced by the PSA in its various existing and new configurations. We instrumented
the PSA code to modify the precision formats used. This enabled us to use the CADNA
tool, which, with the help of stochastic arithmetic, enabled us to evaluate the number
of exact significant digits obtained which numerically validated the results provided by
the PSA.

On the one hand, we performed an experimental evaluation using emulated FP16,
which demonstrated that a mixed precision version of the coarse-fine gridsearch (CFGS)
– using FP16 in the coarse step and FP32 in the fine step – was the most suitable strat-
egy. This strategy enabled us to obtain very similar results to those provided by the
CFGS in uniform precision FP32. We were also able to verify that points found differ-
ently from the full gridsearch (FGS) FP32 algorithm were at a small distance and very
similar to those found by the coarse-fine FP32 gridsearch. Finally, we examined the en-
ergy ranges in which the different points were found and observed the same similarities
and a distribution primarily in the low energies that require less accuracy.

98 Chapter 5 – Mixed precision for AGATA Pulse-Shape Analysis

On the other hand, we conducted a GPU evaluation of the PSA optimization poten-
tial. To do this, we extracted the PSA code and compared results and execution times.
First, we evaluated the existing versions on CPU using FP32: the four possible con-
figurations between full and coarse-fine gridsearch and between using or not using the
look-up table (LUT), taking the FGS without the LUT as a reference. We then devel-
oped a CUDA code to perform the PSA on GPU in both FP32 and FP16 precisions. As
things stand, the fastest version remains the CPU coarse-fine version using the LUT at
17 ticks. However it only identifies points similarly to the reference in 54% of cases, com-
pared with 100% for the FP32 GPU (55 ticks) and 87% for the FP16 GPU (52 ticks), both
not using the LUT. Furthermore, there are still performance-enhancing opportunities to
take greater advantage of GPUs by increasing their utilization by a factor of up to 15×.

In this work, we faced a difficulty, since the accuracy result we were seeking was not
a floating-point number, but a series of discrete points that we wanted to be as close as
possible to the actual points of interaction. This observation leads us to propose, as a
future direction, the development of numerical validation and autotuning tools based on
accuracy criteria chosen by the user. In our case, this would be a criterion considering
the number of points found similar to the reference, with a weighting corresponding to
the energies involved. Another interesting line of research about the PSA enhancement
would consist in refining the hierarchy of coarse and fine grids in the coarse-fine grid-
search algorithm, either by adding intermediate grid sizes using various precisions, or by
varying the respective weights of coarse and fine grids. Indeed, our strategy shows the
expected benefit on the coarse part, but this remains limited due to the relative weight
of the coarse search, which currently represents only 20 % of the total computation. Such
a change could, however, negatively affect the accuracy, and therefore requires special
attention. Additionally, since the use of the LUT seems to be particularly beneficial, it
would be interesting to try and improve its accuracy.

Conclusion & Perspectives

The work presented in this manuscript includes both singular and general aspects.
General first, because the aim is to propose mixed precision solutions, i.e. using sev-

eral numerical formats in the same code, while controlling the accuracy of the results.
This is a general objective, as the number of precision formats supported by hardware is
increasing, while the validity of the results still needs to be guaranted. General, then,
in the multiplicity of approaches we have used: development of an adaptive precision
numerical linear algebra algorithm based on error analysis, but also tuning of an exist-
ing code based on results validated by a probabilistic approach; experiments on CPUs,
but also explorations of massively parallel GPU architectures; development of custom
formats, but also exploitation of the performance of the FP16 format on GPUs.

Singular then, because it has focused on a specific algorithm, the Sparse Matrix-
Vector Product, and on the code of a specific experiment, AGATA, and especially the
Pulse-Shape Analysis.

We will first briefly review the main results we have obtained, before proposing some
research perspectives for the continuation of our work.

6 Conclusion

First of all, as presented in Chapter 3, we have developed a Sparse Matrix-Vector Prod-
uct (SpMV) algorithm in adaptive precision. Adaptive precision is a subclass of mixed
precision algorithms that aims to adapt the precision to the data at hand. In our case,
it involves processing the matrix and sorting the elements into different buckets accord-
ing to their magnitude. Based on a rigorous error analysis, we were able to determine
buckets construction criteria that guarantee a normwise or componentwise error on the
results, while minimizing the precision formats used. The resulting algorithm is capable
of targeting any accuracy, including non-standard ones, but also to utilize a wide variety
of precisions, whether available in hardware or not. The relevance of this algorithm has
been validated experimentally, showing not only that it does indeed target the desired
accuracies, but also that it delivers significant memory gains (up to a factor of 36×). In
addition, we integrated the adaptive SpMV into various Krylov solvers and found that it
did not affect their convergence. On the contrary, the intermediate accuracies that can

100 Conclusion & Perspectives

be targeted open up new opportunities for iterative refinement versions of these solvers.
Finally, we have seen that memory gains translate into significant speedups (up to a
factor of 7×) using native FP32 and FP64 precisions, although they are hampered by the
lack of hardware implementation of custom formats.

This observation led us to integrate accessors optimized for custom formats into the
adaptive SpMV, and we turned to the accessors proposed in [Mukunoki & Imamura,
2016]. This work, recalled in Chapter 4, enabled us to validate the use of these optimized
accessors in the context of adaptive SpMV with a maximum storage gain of 24% and a
maximum speedup of 21% when using custom formats with optimized accessors instead
of using only FP32 and FP64. It also gave us the opportunity to develop new custom
formats using a reduced exponent. Indeed, we realized that the magnitude ordering
imposed by the adaptive SpMV implies a lower order of magnitude variation within
each bucket. More precisely, if the order of magnitude varies by less than 28 within
each bucket, only three exponent bits are required, rather than 11 as in FP64 or 8 in
FP32. To reduce the magnitude variation in a bucket to this level, it is necessary to
use at least 7 buckets. We also used the fact that we could also increase the significand
of these formats by one bit, by separating positive and negative elements to propose
another variant. Further experimentation then enabled us to demonstrate maximum
gains in storage of 16% and execution time gains of 13% compared with executions using
7 precisions without exponent reduction.

At the same time, we also sought to specifically improve the performance of the Pulse-
Shape Analysis (PSA), a key element in the data processing of the AGATA Germanium
gamma-ray detector as described in Chapter 5. This step consists in identifying an in-
teraction point within a crystal exploiting the traces measured in different segments of
the crystal. Our work focused on the gridsearch algorithm currently used to perform
the PSA. This involves minimizing a Figure of Merit (FOM) calculated from the mea-
sured signal and a base of signals previously obtained by calibration or simulation. The
minimum FOM then corresponds to the point of interaction of the gamma-ray with the
Germanium crystal. This operation requires high accuracy, as the interaction points
must be identified with a resolution of 5mm to enable the next step, gamma-ray track-
ing, which consists of reconstructing the full path of a gamma-ray in the Germanium
crystal. It also has to be carried out online, as the amount of data produced during the
experiment is too large to be stored.

We therefore organized our work in three steps. First, an evaluation of the exist-
ing code highlighted the numerical quality of the results obtained by the full gridsearch
algorithm in FP32, but also validated the significant weight of the PSA in the AGATA
execution chain, and in particular the importance of cache accesses. Secondly, we car-
ried out an evaluation based on the different algorithmic configurations and precision
formats used. Thus, we compared the results obtained by the coarse-fine version, which
first performs a coarse search for the minimum before refining in the neighborhood of
the point found, with those of the full version previously validated using stochastic arith-
metic. These experiments also enabled us to evaluate the results obtained by the differ-
ent variants in FP16 through emulation of this format, and led us to propose a mixed
precision solution. This solution is based on the coarse-fine version, and consists of run-
ning the coarse search in FP16 and the fine search in FP32. The results are almost
identical to a coarse-fine run fully executed in FP32, as opposed to a coarse-fine run in
FP16. Finally, in the light of these positive results, we decided to carry out experiments

7 – Perspectives 101

on GPUs, both to take advantage of the massively parallel architecture and to use native
FP16 which is not available on our CPUs. This allowed us to confirm the relevance of
this architecture for this application. Indeed, for results identical to those obtained with
our CPU reference, the computation time is reduced by a factor of 11×.

Our work has therefore confirmed the benefits of using low precision on both CPU
and GPU, and with both native and custom formats. It has also enabled us to validate
the mixed precision approach, which enables these low precisions to be used even in con-
texts where high accuracy is required. Finally, it has demonstrated the complementarity
of mixed precision strategies by tuning existing code and by developing algorithms spe-
cially designed to maximize the efficiency of mixed precision while controlling accuracy.
Having reached the end of this manuscript, we certainly do not claim to have covered all
the problems and opportunities of the future of floating-point arithmetic, but to be part
of the development of a new paradigm, for which we offer a few perspectives below.

7 Perspectives

With regard to the sparse matrix-vector product in adaptive precision, the work carried
out and the results obtained demonstrated the benefits of adapting the precision to the
data at hand, and encourage us to continue along this path. They also show the benefits
of using mixed precision not only for computation but also for storage. This means to
use different custom precision formats for storage and thus speeding up data loading,
which is then conventionally carried out in hardware-available formats, generally FP32
and FP64. The results obtained encourage following this mixed precision approach in
memory-bound applications. The results also highlight the relative importance of index
loading in the adaptive sparse matrix-vector product, which increases with the number
of precisions available and can have a negative impact on results. To address this, we
need to develop matrix formats that reduce the weight of indices. A first approach would
be to adapt the adaptive SpMV for experimentation on diagonal or block-diagonal ma-
trices whose representation requires almost no index storage. Finally, the work we have
carried out shows that the use of mixed precision for the matrix-vector product does not
affect the convergence of the Krylov solvers in which it is used. We believe it is important
to continue along this path, aiming to develop solvers that use mixed precision solutions
in their various steps. This could involve storing the Krylov basis in adaptive precision
or using mixed precision preconditioners. In addition, the ability of the adaptive SpMV
to target intermediate accuracy could be exploited within the framework of a relaxed
GMRES, i.e., a GMRES that allows an increasing error on the matrix-vector product.

Regarding the Pulse-Shape Analysis, a major result of our work is that, under certain
conditions, using FP16 instead of FP32 does not affect the results. The challenge lies in
these certain conditions, but we must build on this initial postulate: it is possible to re-
duce the precision without affecting the accuracy of the results. It is also worth noting
that the gridsearch code adapts well to GPU architecture, which offers very significant
performance gains for identical accuracy, even with the use of native FP16. To continue
this work, we need to reorganize the computations to process several events simulta-
neously, which would increase the occupancy of the GPU cores, suggesting a possible
acceleration up to a factor ×15. Furthermore, the use of GPUs needs to be considered
throughout the entire execution chain, to minimize costly memory exchanges between

102 Conclusion & Perspectives

CPU and GPU. A complementary approach would consist in improving the accuracy pro-
vided by the look-uptable, which currently provides a fast but not very accurate solution.
Finally, the work carried out on Pulse-Shape Analysis could serve as a basis for studying
the entire AGATA processing chain from the point of view of accuracy and the precision
formats used. Indeed, the multiple conversions, from the 14-bit signal sampling to the
execution of the PSA in FP32, which turns out to be just as accurate as that performed
in FP16, make it possible to consider intermediate steps with reduced precision.

From a more general perspective, we would also like to emphasize the following
point. The development of low-precision and mixed precision solutions is based on three
arguments: increased computational speed, reduced energy consumption and memory
gain. While the gain in computing speed can be measured directly and is generally ef-
fective on CPUs since the introduction of SIMD and on GPUs, the reduction in energy
consumption is far more questionable. Indeed, the assertion that the use of low precision
reduces energy consumption is highly imprecise and conceals a more complex reality. It
is easy to measure this reduction on a specific operation but the overall impact is far less
certain. Indeed, one might naturally assume that halving energy consumption per oper-
ation leads to doubling the number of operations, or even to increase by a greater factor.
Current knowledge of the environmental footprint of computing and High Performance
Computing is poorly understood [Roussilhe et al., 2023], particularly with regard to its
indirect effects, and deserves to be seriously explored.

Bibliography

ABDULAH S., CAO Q., PEI Y., BOSILCA G., DONGARRA J., GENTON M. G., KEYES D. E.,
LTAIEF H. & SUN Y. (2022a). Accelerating geostatistical modeling and prediction with mixed-
precision computations: A high-productivity approach with PaRSEC. IEEE Trans. Parallel
Distrib. Syst., 33(4), 964–976.

ABDULAH S., LI Y., CAO J., LTAIEF H., KEYES D. E., GENTON M. G. & SUN Y. (2022b).
Large-scale environmental data science with exageostatr.

AHMAD K., SUNDAR H. & HALL M. (2019). Data-driven mixed precision sparse matrix vector
multiplication for GPUs. ACM Trans. Archit. Code Optim., 16(4).

AKKOYUN S., ALGORA A., ALIKHANI B., AMEIL F., DE ANGELIS G., ARNOLD L., ASTIER
A., ATAÇ A., AUBERT Y., AUFRANC C., AUSTIN A., AYDIN S., AZAIEZ F., BADOER S., BAL-
ABANSKI D., BARRIENTOS D., BAULIEU G., BAUMANN R., BAZZACCO D., BECK F., BECK
T., BEDNARCZYK P., BELLATO M., BENTLEY M., BENZONI G., BERTHIER R., BERTI L.,
BEUNARD R., LO BIANCO G., BIRKENBACH B., BIZZETI P., BIZZETI-SONA A., LE BLANC
F., BLASCO J., BLASI N., BLOOR D., BOIANO C., BORSATO M., BORTOLATO D., BOSTON
A., BOSTON H., BOURGAULT P., BOUTACHKOV P., BOUTY A., BRACCO A., BRAMBILLA S.,
BRAWN I., BRONDI A., BROUSSARD S., BRUYNEEL B., BUCURESCU D., BURROWS I., BÜRGER
A., CABARET S., CAHAN B., CALORE E., CAMERA F., CAPSONI A., CARRIÓ F., CASATI G.,
CASTOLDI M., CEDERWALL B., CERCUS J.-L., CHAMBERT V., EL CHAMBIT M., CHAPMAN
R., CHARLES L., CHAVAS J., CLÉMENT E., COCCONI P., COELLI S., COLEMAN-SMITH P.,
COLOMBO A., COLOSIMO S., COMMEAUX C., CONVENTI D., COOPER R., CORSI A., CORTESI
A., COSTA L., CRESPI F., CRESSWELL J., CULLEN D., CURIEN D., CZERMAK A., DELBOURG
D., DEPALO R., DESCOMBES T., DÉSESQUELLES P., DETISTOV P., DIARRA C., DIDIERJEAN
F., DIMMOCK M., DOAN Q., DOMINGO-PARDO C., DONCEL M., DORANGEVILLE F., DOSME
N., DROUEN Y., DUCHÊNE G., DULNY B., EBERTH J., EDELBRUCK P., EGEA J., ENGERT
T., ERDURAN M., ERTÜRK S., FANIN C., FANTINEL S., FARNEA E., FAUL T., FILLIGER M.,
FILMER F., FINCK C., DE FRANCE G., GADEA A., GAST W., GERACI A., GERL J., GERN-
HÄUSER R., GIANNATIEMPO A., GIAZ A., GIBELIN L., GIVECHEV A., GOEL N., GONZÁLEZ
V., GOTTARDO A., GRAVE X., GRE¸BOSZ J., GRIFFITHS R., GRINT A., GROS P., GUEVARA L.,
GULMINI M., GÖRGEN A., HA H., HABERMANN T., HARKNESS L., HARROCH H., HAUSCHILD
K., HE C., HERNÁNDEZ-PRIETO A., HERVIEU B., HESS H., HÜYÜK T., INCE E., ISOCRATE
R., JAWORSKI G., JOHNSON A., JOLIE J., JONES P., JONSON B., JOSHI P., JUDSON D.,
JUNGCLAUS A., KACI M., KARKOUR N., KAROLAK M., KAŞKAŞ A., KEBBIRI M., KEMPLEY
R., KHAPLANOV A., KLUPP S., KOGIMTZIS M., KOJOUHAROV I., KORICHI A., KORTEN W.,
KRÖLL T., KRÜCKEN R., KURZ N., KY B., LABICHE M., LAFAY X., LAVERGNE L., LAZARUS
I., LEBOUTELIER S., LEFEBVRE F., LEGAY E., LEGEARD L., LELLI F., LENZI S., LEONI S.,

104 Bibliography

LERMITAGE A., LERSCH D., LESKE J., LETTS S., LHENORET S., LIEDER R., LINGET D.,
LJUNGVALL J., LOPEZ-MARTENS A., LOTODÉ A., LUNARDI S., MAJ A., VAN DER MAREL
J., MARIETTE Y., MARGINEAN N., MARGINEAN R., MARON G., MATHER A., ME¸CZYŃSKI
W., MENDÉZ V., MEDINA P., MELON B., MENEGAZZO R., MENGONI D., MERCHAN E., MI-
HAILESCU L., MICHELAGNOLI C., MIERZEJEWSKI J., MILECHINA L., MILLION B., MITEV K.,
MOLINI P., MONTANARI D., MOON S., MORBIDUCCI F., MORO R., MORRALL P., MÖLLER O.,
NANNINI A., NAPOLI D., NELSON L., NESPOLO M., NGO V., NICOLETTO M., NICOLINI R.,
LE NOA Y., NOLAN P., NORMAN M., NYBERG J., OBERTELLI A., OLARIU A., ORLANDI R.,
OXLEY D., ÖZBEN C., OZILLE M., OZIOL C., PACHOUD E., PALACZ M., PALIN J., PANCIN
J., PARISEL C., PARISET P., PASCOVICI G., PEGHIN R., PELLEGRI L., PEREGO A., PERRIER
S., PETCU M., PETKOV P., PETRACHE C., PIERRE E., PIETRALLA N., PIETRI S., PIGNANELLI
M., PIQUERAS I., PODOLYAK Z., LE POUHALEC P., POUTHAS J., PUGNÉRE D., PUCKNELL V.,
PULLIA A., QUINTANA B., RAINE R., RAINOVSKI G., RAMINA L., RAMPAZZO G., LA RANA
G., REBESCHINI M., RECCHIA F., REDON N., REESE M., REITER P., REGAN P., RIBOLDI
S., RICHER M., RIGATO M., RIGBY S., RIPAMONTI G., ROBINSON A., ROBIN J., ROCCAZ J.,
ROPERT J.-A., ROSSÉ B., ROSSI ALVAREZ C., ROSSO D., RUBIO B., RUDOLPH D., SAILLANT
F., ŞAHIN E., SALOMON F., SALSAC M.-D., SALT J., SALVATO G., SAMPSON J., SANCHIS E.,
SANTOS C., SCHAFFNER H., SCHLARB M., SCRAGGS D., SEDDON D., ŞENYIĞIT M., SIGWARD
M.-H., SIMPSON G., SIMPSON J., SLEE M., SMITH J., SONA P., SOWICKI B., SPOLAORE P.,
STAHL C., STANIOS T., STEFANOVA E., STÉZOWSKI O., STRACHAN J., SULIMAN G., SÖDER-
STRÖM P.-A., TAIN J., TANGUY S., TASHENOV S., THEISEN C., THORNHILL J., TOMASI F.,
TONIOLO N., TOUZERY R., TRAVERS B., TRIOSSI A., TRIPON M., TUN-LANOË K., TURCATO
M., UNSWORTH C., UR C., VALIENTE-DOBON J., VANDONE V., VARDACI E., VENTURELLI R.,
VERONESE F., VEYSSIERE C., VISCIONE E., WADSWORTH R., WALKER P., WARR N., WEBER
C., WEISSHAAR D., WELLS D., WIELAND O., WIENS A., WITTWER G., WOLLERSHEIM H.,
ZOCCA F., ZAMFIR N., ZIE¸BLIŃSKI M. & ZUCCHIATTI A. (2012). AGATA—Advanced GAmma
Tracking Array. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 668, 26–58.

ALIAGA J. I., ANZT H., GRÜTZMACHER T., QUINTANA-ORTÍ E. S. & TOMÁS A. E. (2022).
Compressed basis GMRES on high-performance graphics processing units. Int. J. High Perform.
Comput. Appl., p. 10943420221115140.

AMESTOY P., BOITEAU O., BUTTARI A., GEREST M., JÉZÉQUEL F., L’EXCELLENT J.-Y. &
MARY T. (2022). Mixed precision low-rank approximations and their application to block low-
rank LU factorization. IMA Journal of Numerical Analysis, 43(4), 2198–2227.

AMESTOY P., BUTTARI A., HIGHAM N. J., L’EXCELLENT J.-Y., MARY T. & VIEUBLÉ B. (2021).
Five-Precision GMRES-based Iterative Refinement. MIMS EPrint 2021.5, Manchester Institute
for Mathematical Sciences, The University of Manchester, UK. Revised April 2022.

AMESTOY P., BUTTARI A., HIGHAM N. J., L’EXCELLENT J.-Y., MARY T. & VIEUBLÉ B. (2023).
Combining sparse approximate factorizations with mixed-precision iterative refinement. ACM
Trans. Math. Softw., 49(1).

ANZT H., DONGARRA J., FLEGAR G., HIGHAM N. J. & QUINTANA-ORTÍ E. S. (2019). Adaptive
precision in block-Jacobi preconditioning for iterative sparse linear system solvers. Concurrency
Computat. Pract. Exper., 31(6), e4460.

BALABANOV O. & GRIGORI L. (2022). Randomized Gram–Schmidt Process with Application to
GMRES. SIAM J. Sci. Comput., 44(3), A1450–A1474.

BAUER F. L. (1974). Computational graphs and rounding error. SIAM Journal on Numerical
Analysis, 11(1), 87–96.

BECK F. (1992). EUROBALL: Large gamma ray spectrometers through european collabora-
tions. Progress in Particle and Nuclear Physics, 28, 443–461.

Bibliography 105

BEISER A. (2003). Concepts of Modern Physics. McGraw-Hill, 6 edition.

BEN KHALIFA D., MARTEL M. & ADJÉ A. (2020). POP: A tuning assistant for mixed-precision
floating-point computations. In O. HASAN & F. MALLET, editors, Formal Techniques for Safety-
Critical Systems, p. 77–94: Springer International Publishing.

BLAS TECHNICAL FORUM (2001). Basic Linear Algebra Subprograms Technical Forum Stan-
dard. The International Journal of High Performance Computing Applications.

BOSTON, A. J., CRESPI, F. C. L., DUCHÊNE, G., DÉSESQUELLES, P., GERL, J., HOLLOWAY, F.,
JUDSON, D. S., KORICHI, A., HARKNESS-BRENNAN, L., LJUNGVALL, J., QUINTANA-ARNÉS,
B., REITER, P. & STEZOWSKI, O. (2023). AGATA characterisation and pulse shape analysis.
Eur. Phys. J. A, 59(9), 213.

CARSON E. & HIGHAM N. J. (2017). A new analysis of iterative refinement and its applica-
tion to accurate solution of ill-conditioned sparse linear systems. SIAM J. Sci. Comput., 39(6),
A2834–A2856.

CARSON E. & HIGHAM N. J. (2018). Accelerating the solution of linear systems by iterative
refinement in three precisions. SIAM J. Sci. Comput., 40(2), A817–A847.

CATTANEO D., CHIARI M., AGOSTA G. & CHERUBIN S. (2022). TAFFO: The compiler-based
precision tuner. SoftwareX, 20, 101238.

CHERUBIN S. & AGOSTA G. (2020). Tools for reduced precision computation: A survey. ACM
Comput. Surv., 53(2).

CHESNEAUX J.-M. (1990). Study of the computing accuracy by using probabilistic approach.
In C. ULLRICH, editor, Contribution to Computer Arithmetic and Self-Validating Numerical
Methods, p. 19–30, IMACS, New Brunswick, New Jersey, USA.

CONNOLLY M. P., HIGHAM N. J. & MARY T. (2021). Stochastic rounding and its probabilistic
backward error analysis. SIAM J. Sci. Comput., 43(1), A566–A585.

DAMOUCHE N. & MARTEL M. (2018). Salsa: An automatic tool to improve the numerical
accuracy of programs. In AFM@NFM.

DAVIS T. A. & HU Y. (2011). The University of Florida Sparse Matrix Collection. ACM Trans.
Math. Softw., 38(1).

DELEPLANQUE M., LEE I., VETTER K., SCHMID G., STEPHENS F., CLARK R., DIAMOND R.,
FALLON P. & MACCHIAVELLI A. (1999). GRETA: utilizing new concepts in γ-ray detection.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 430(2), 292–310.

DEMMEL J. & HIDA Y. (2004). Accurate and efficient floating point summation. SIAM Journal
on Scientific Computing, 25(4), 1214–1248.

DENIS C., DE OLIVEIRA CASTRO P. & PETIT E. (2016). Verificarlo: checking floating point
accuracy through Monte Carlo Arithmetic. In IEEE, editor, 2016 IEEE 23nd Symposium on
Computer Arithmetic (ARITH), Santa Clara, United States.

DIFFENDERFER J., OSEI-KUFFUOR D. & MENON H. (2021). QDOT: Quantized dot product
kernel for approximate high-performance computing.

DOUCET G., LEE W. & FRANGOU S. (2019). Evaluation of the spatial variability in the major
resting-state networks across human brain functional atlases. Human Brain Mapping, 40.

EBERHART P., BRAJARD J., FORTIN P. & JEZEQUEL F. (2015). High performance numerical
validation using stochastic arithmetic. Reliable Computing, 21.

106 Bibliography

FARNEA E., RECCHIA F., BAZZACCO D., KRÖLL T., PODOLYÁK Z., QUINTANA B. & GADEA A.
(2010). Conceptual design and Monte Carlo simulations of the AGATA array. Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 621(1), 331–343.

FASI M., HIGHAM N. J., LOPEZ F., MARY T. & MIKAITIS M. (2023). Matrix multiplication in
multiword arithmetic: Error analysis and application to GPU tensor cores. SIAM Journal on
Scientific Computing, 45(1), C1–C19.

FLEGAR G., ANZT H., COJEAN T. & QUINTANA-ORTÍ E. S. (2021). Adaptive precision block-
jacobi for high performance preconditioning in the ginkgo linear algebra software. ACM Trans.
Math. Softw., 47(2).

FRECHTLING M. & LEONG P. H. W. (2015). MCALIB: Measuring sensitivity to rounding error
with Monte Carlo programming. ACM Trans. Program. Lang. Syst., 37(2).

GOLDBERG D. (1991). What every computer scientist should know about floating-point arith-
metic. ACM Comput. Surv., 23(1), 5–48.

GOUBAULT E. & PUTOT S. (2006). Static analysis of numerical algorithms. International Static
Analysis Symposium, p. 18–34.

GRAILLAT S., JÉZÉQUEL F., MARY T. & MOLINA R. (2024a). Adaptive precision sparse matrix-
vector product and its application to Krylov solvers. SIAM Journal on Scientific Computing,
46(1), C30–C56.

GRAILLAT S., JÉZÉQUEL F., MARY T., MOLINA R. & MUKUNOKI D. (2024b). Reduced-
Precision and Reduced-Exponent Formats for Accelerating Adaptive Precision Sparse Matrix-
Vector Product. working paper or preprint.

GRIMMER M. (2003). Interval arithmetic in maple with intpakx. PAMM, 2, 442 – 443.

GRÜTZMACHER T., ANZT H. & QUINTANA-ORTÍ E. S. (2021). Using Ginkgo’s memory acces-
sor for improving the accuracy of memory-bound low precision blas. Software: Practice and
Experience.

GUO H. & RUBIO-GONZÁLEZ C. (2018). Exploiting community structure for floating-point pre-
cision tuning. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2018, p. 333–343, New York, NY, USA: Association for Computing
Machinery.

HAMMER R. (1995). C++ Toolbox for Verified Scientific Computing - Theory, Algorithms and
Programs: Basic Numerical Problems. Berlin, Heidelberg: Springer-Verlag.

HARGREAVES G. (2003). Interval analysis in matlab. Manchester Institute for Mathematical
Sciences School of Mathematics.

HIGHAM N. J. (2002). Accuracy and Stability of Numerical Algorithms. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, second edition.

HIGHAM N. J. & MARY T. (2019). A new preconditioner that exploits low-rank approximations
to factorization error. SIAM J. Sci. Comput., 41(1), A59–A82.

HIGHAM N. J. & MARY T. (2020). Sharper probabilistic backward error analysis for basic linear
algebra kernels with random data. SIAM J. Sci. Comput., 42(5), A3427–A3446.

HIGHAM N. J. & MARY T. (2022). Mixed precision algorithms in numerical linear algebra. Acta
Numerica, 31, 347–414.

HO M., SILVA H. & WONG W.-F. (2021). GRAM: A framework for dynamically mixing pre-
cisions in GPU applications. ACM Transactions on Architecture and Code Optimization, 18,
1–24.

Bibliography 107

HOFSCHUSTER W. & KRÄMER W. (2004). C-xsc 2.0 – a c++ library for extended scientific
computing. In R. ALT, A. FROMMER, R. B. KEARFOTT & W. LUTHER, editors, Numerical
Software with Result Verification, p. 15–35, Berlin, Heidelberg: Springer Berlin Heidelberg.

IEEE COMPUTER SOCIETY (1985). IEEE Standard for Binary Floating-Point Arithmetic. AN-
SI/IEEE Std 754-1985, p. 1–20.

IEEE COMPUTER SOCIETY (2008). IEEE Standard for Floating-Point Arithmetic. IEEE Std
754-2008, p. 1–70.

IEEE COMPUTER SOCIETY (2019). Ieee standard for floating-point arithmetic. IEEE Std 754-
2019 (Revision of IEEE 754-2008), p. 1–84.

JEANNEROD C.-P. & RUMP S. M. (2013). Improved error bounds for inner products in floating-
point arithmetic. SIAM J.Matrix Anal. Appl., 34(16).

JÉZÉQUEL F. & CHESNEAUX J.-M. (2008). CADNA: a library for estimating round-off error
propagation. Computer Physics Communications, 178(12), 933–955.

JÉZÉQUEL F., SADAT HOSEININASAB S. & HILAIRE T. (2021). Numerical validation of half
precision simulations. In 1st Workshop on Code Quality and Security (CQS 2021) in conjunction
with WorldCIST’21 (9th World Conference on Information Systems and Technologies), Terceira
Island, Azores, Portugal.

KELCH R. (1993). Numerical quadrature by extrapolation with automatic result verification.
In E. ADAMS & U. KULISCH, editors, Scientific Computing with Automatic Result Verification,
volume 189 of Mathematics in Science and Engineering, p. 143–185. Elsevier.

KOTIPALLI P. V., SINGH R., WOOD P., LAGUNA I. & BAGCHI S. (2019). AMPT-GA: automatic
mixed precision floating point tuning for GPU applications. In Proceedings of the ACM Interna-
tional Conference on Supercomputing, ICS ’19, p. 160–170, New York, NY, USA: Association for
Computing Machinery.

KULISCH U., KLATTE R., RATZ D., NEAGA M. & ULLRICH C. (1992). PASCAL-XSC. Springer
Berlin, Heidelberg, number1 edition.

LAGUNA I., WOOD P. C., SINGH R. & BAGCHI S. (2019). GPUMixer: Performance-driven
floating-point tuning for GPU scientific applications. In M. WEILAND, G. JUCKELAND, C.
TRINITIS & P. SADAYAPPAN, editors, High Performance Computing, p. 227–246: Springer In-
ternational Publishing.

LAM M. O., HOLLINGSWORTH J. K. & STEWART G. (2013). Dynamic floating-point cancellation
detection. Parallel Computing, 39(3), 146–155. High-performance Infrastructure for Scalable
Tools.

LANGE M. & RUMP S. M. (2017). Error estimates for the summation of real numbers with
application to floating-point summation. BIT Numerical Mathematics, 57(3), 927–941.

LEE I.-Y. (1990). The gammasphere. Nuclear Physics A, 520, c641–c655. Nuclear Structure in
the Nineties.

LEWANDOWSKI L., REITER P., BIRKENBACH B., BRUYNEEL B., CLEMENT E. & ET AL (2019).
Pulse-shape analysis and position resolution in highly segmented HPGe AGATA detectors.
Eur.Phys.J.A, 55, 81–93.

LINDQUIST N., LUSZCZEK P. & DONGARRA J. (2020). Improving the performance of the GM-
RES method using mixed-precision techniques. In J. NICHOLS, B. VERASTEGUI, A. B. MAC-
CABE, O. HERNANDEZ, S. PARETE-KOON & T. AHEARN, editors, Communications in Computer
and Information Science, p. 51–66. Springer, Cham, Switzerland.

108 Bibliography

LOE J. A., GLUSA C. A., YAMAZAKI I., BOMAN E. G. & RAJAMANICKAM S. (2021). Experimen-
tal evaluation of multiprecision strategies for GMRES on GPUs. In 2021 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), p. 469–478.

MENON H., LAM M. O., OSEI-KUFFUOR D., SCHORDAN M., LLOYD S., MOHROR K. & HIT-
TINGER J. (2018). Adapt: Algorithmic differentiation applied to floating-point precision tuning.
In SC18: International Conference for High Performance Computing, Networking, Storage and
Analysis, p. 614–626.

MOLINA R., GRAILLAT S., JÉZÉQUEL F. & MARY T. (2022). Adaptive Precision Sparse Matrix-
Vector Product and its Application to Krylov Solvers. Sparse Days Meeting 2022. Poster.

MOLINA R., GRAILLAT S., JÉZÉQUEL F. & MARY T. (2023a). Adaptive Precision Sparse
Matrix–Vector Product and its Application to Krylov Solvers. In International Congress on
Industrial and Applied Mathematics (ICIAM 2023), Tokyo (Japan), Japan.

MOLINA R., LAFAGE V., CHAMONT D. & JÉZÉQUEL F. (2023b). Investigating mixed-precision
for AGATA pulse-shape analysis. In 26th International Conference on Computing in High En-
ergy and Nuclear Physics (CHEP 2023), volume 295, p. 03020, Norfolk, VA, United States.

MOORE R. E. (1966). Interval analysis. Prentice-Hall.

MUKUNOKI D. & IMAMURA T. (2016). Reduced-Precision Floating-Point Formats on GPUs for
High Performance and Energy Efficient Computation. In 2016 IEEE International Conference
on Cluster Computing (CLUSTER), p. 144–145.

MUKUNOKI D., KAWAI M. & IMAMURA T. (2023). Sparse Matrix-Vector Multiplication with
Reduced-Precision Memory Accessor. In 2023 IEEE 16th International Symposium on Embed-
ded Multicore/Many-core Systems-on-Chip (MCSoC), p. 608–615.

OETTLI W. & PRAGER W. (1964). Compatibility of approximate solution of linear equations
with given error bounds for coefficients and right-hand sides. j-NUM-MATH, 6, 405–409.

OGITA T., RUMP S. & OISHI S. (2005). Accurate sum and dot product. SIAM J. Scientific
Computing, 26, 1955–1988.

OLARIU A. (2007). Pulse shape analysis for the gamma-ray tracking detector AGATA. Phd
thesis, Université de Paris-Sud, Paris, France. 2007PA112349.

OLARIU A., DESESQUELLES P., DIARRA C., MEDINA P., PARISEL C. & COLLABORATION C.
(2006). Pulse shape analysis for the location of the gamma-interactions in agata. IEEE Trans-
actions on Nuclear Science, 53(3), 1028–1031.

OOI R., IWASHITA T., FUKAYA T., IDA A. & YOKOTA R. (2020). Effect of mixed precision com-
puting on h-matrix vector multiplication in bem analysis. In Proceedings of the International
Conference on High Performance Computing in Asia-Pacific Region, HPCAsia2020: ACM.

PAIGE C. C., ROZLOŽNÍK M. & STRAKOŠ Z. (2006). Modified Gram-Schmidt (MGS), least
squares, and backward stability of MGS-GMRES. SIAM J. Matrix Anal. Appl., 28(1), 264–284.

PARKER D., PIERCE B. & EGGERT P. (2000). Monte Carlo arithmetic: how to gamble with
floating point and win. Computing in Science & Engineering, 2(4), 58–68.

PARKER D. S. & LANGLEY D. (1997). Monte Carlo Arithmetic: exploiting randomness in
floating-point arithmetic.

RECCHIA F. (2008). In-beam test and imaging capabilities of the AGATA prototype detector.
PhD thesis, Universita degli Studi di Padova.

RENAC F., DE LA LLAVE PLATA M., MARTIN E., CHAPELIER J.-B. & COUAILLIER V. (2015).
Aghora: A High-Order DG Solver for Turbulent Flow Simulations, In IDIHOM: Industrial-
ization of High-Order Methods - A Top-Down Approach, p. 315–335. Springer International
Publishing: Cham.

Bibliography 109

RIGAL J. & GACHES J. (1967). On the compatibility of a given solution with the data of a linear
system. Journal of the ACM, 14, 526–543.

RILEY M. & SIMPSON J. (2014). Nuclear γ-Spectroscopy and the γ-Spheres, In Encyclopedia of
Applied Physics, p. 247–270. John Wiley & Sons, Ltd.

ROUSSILHE G., LIGOZAT A.-L. & QUINTON S. (2023). A long road ahead: a review of the state
of knowledge of the environmental effects of digitization. Current Opinion in Environmental
Sustainability, 62, 101296.

RUBIO-GONZÁLEZ C., NGUYEN C., NGUYEN H. D., DEMMEL J., KAHAN W., SEN K., BAILEY
D. H., IANCU C. & HOUGH D. (2013). Precimonious: Tuning assistant for floating-point preci-
sion. In SC ’13: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, p. 1–12.

RUMP S. M. (1999). Fast and parallel interval arithmetic. BIT, 39(3), 534–554.

SAAD Y. (2003). Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, second edition.

SCHLARB M. C. (2009). Simulation and Real-Time Analysis of Pulse Shapes from segmented
HPGe-Detectors. Phd thesis, Universität München, Munich, Germany.

SIMONCINI V. & SZYLD D. B. (2003). Theory of inexact Krylov subspace methods and applica-
tions to scientific computing. j-SISC, 25(2), 454–477.

SIMPSON J. (1997). The EUROBALL spectrometer. The European Physical Journal, 358, 139–
143.

SOLOVYEV A., BARANOWSKI M. S., BRIGGS I., JACOBSEN C., RAKAMARIĆ Z. & GOPALAKR-
ISHNAN G. (2018). Rigorous estimation of floating-point round-off errors with symbolic taylor
expansions. ACM Trans. Program. Lang. Syst., 41(1).

STUDENT (1908). The probable error of a mean. Biometrika, 6(1), 1–25.

VAN DER MAREL J. & CEDERWALL B. (1999). Backtracking as a way to reconstruct compton
scattered γ-rays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 437(2), 538–551.

VÉDRINE F., JACQUEMIN M., KOSMATOV N. & SIGNOLES J. (2021). Runtime abstract inter-
pretation for numerical accuracy and robustness. In International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI).

VENTURELLI R. & BAZZACCO D. (2005). LNL Annual Report 2004. Internal report, INFN-LNL,
Legnaro, Italy.

VIGNES J. (1978). New methods for evaluating the validity of the results of mathematical
computations. Mathematics and Computers in Simulation, 20(4), 227–249.

VIGNES J. (1993). A stochastic arithmetic for reliable scientific computation. Mathematics and
Computers in Simulation, 35(3), 233–261.

VIGNES J. & PORTE M. L. (1974). Error analysis in computing. In J. L. ROSENFELD, editor,
Information Processing, Proceedings of the 6th IFIP Congress 1974, Stockholm, Sweden, August
5-10, 1974, p. 610–614: North-Holland.

VON NEUMANN J. & GOLDSTINE H. H. (1947). Numerical inverting of matrices of high order.
Bull. Amer. Math. Soc., 53.

WILKINSON J. H. (1985). The state of the art in error analysis. NAG Newsletter, p. 2/85:5–28.
Invited lecture for the NAG 1984 Annual General Meeting.

110 Bibliography

YUN J., KANG B., RAMEAU F. & FU Z. (2023). Comparative study: Standalone ieee 16-bit
floating-point for image classification.

ZHU Y.-K. & HAYES W. B. (2010). Algorithm 908: Online exact summation of floating-point
streams. ACM Trans. Math. Softw., 37(3).

List of Figures

1.1 Harmonic sum . 12
1.2 Catastrophic cancellation example . 13
1.3 Formats specified by the IEEE 754-1985 standard 13
1.4 Exemples of numbers represented in FP32 format 14
1.5 Formats developed after the IEEE 754-1985 standard 15
1.6 Example of different magnitude elements summation 25
1.7 Promise dataflow . 26

2.1 Penetration of α, β and γ particles . 31
2.3 Agata data processing . 36

3.1 Illustration of the bucket construction with four precisions u1 < u2 < u3 <
u4. The real line [0,+∞) is partitioned into intervals Pik defined by (3.15)
(componentwise criteria, θi = |ai|T |x|) or (3.23) (normwise criteria, θi = ‖A‖). 48

3.2 Backward error for the adaptive precision Algorithm 4 with different tar-
get accuracies ε and different number of precisions used, compared with
the uniform precision Algorithm 3 in the corresponding precision (ε = 2−24,
ε = 2−37, ε = 2−53). 55

3.3 Storage cost of the adaptive precision SpMV, as a percentage of the stor-
age cost of the uniform precision FP64 SpMV, for three different accuracy
targets. For each plot, we report the storage gains depending on which of
the componentwise (“CW”) or normwise (“NW”) criteria is considered and
on how many precision formats are used. 67

3.4 Execution time of the adaptive precision SpMV for ε = 2−24 and ε = 2−53

target accuracies, as a percentage of the execution time of the uniform
precision SpMV in the corresponding precision. Both the normwise (“NW”)
and componentwise (“CW”) criteria are reported. 68

3.5 Execution time of the adaptive precision SpMV for an ε = 2−37 target accu-
racy, as a percentage of the execution time of the uniform precision FP64
SpMV. Both the normwise (“NW”) or componentwise (“CW”) criteria are
reported. 69

112 List of Figures

3.6 Backward error, storage cost, and time cost of four SpMV variants: FP64
uniform precision (“Unif. fp64”), adaptive precision with two precisions but
no dropping (“Adapt. dropless”), adaptive precision with only one precision
and dropping (“Adapt. drop only”), and adaptive precision with both two
precisions and dropping (“Adapt.”). All three adaptive variants use ε =
2−53 as target accuracy. 70

3.7 Parallel scaling experiments on Cube_Coup_dt0. 71
3.8 Convergence of GMRES-IR for matrix ML_Laplace: illustration of the ef-

fect of the ε parameter. 71
3.9 Convergence of GMRES-IR for matrix CoupCons3D: illustration of the dif-

ference between CW and NW criteria. 72
3.10 Convergence of GMRES-IR for matrix Geo_1438: illustration of a surpris-

ing behavior of NW variants. 72

4.1 Conversion from RP40 to FP64 . 77
4.2 Adaptive precision SpMV with seven precision levels (excerpt). RpArrayToFp

converts a reduced-precision format to the IEEE FP64 format. 78
4.3 Conversion from RPRE40 to FP64 . 80
4.4 Normwise backward error computed from the FP128 uniform precision

SpMV . 81
4.5 Storage and time gains achieved by adaptive precision variants over uni-

form precision ones (normalized by the FP64 cost) 82
4.6 Storage and time gains achieved by AP7RE and AP7REU variants over

the uniform precision and AP7 ones (normalized by the FP64 cost) 84
4.7 Distribution of the precision formats used for each nonzero element. Each

bar on the x-axis corresponds to a different matrix and the y-axis indicates
the percentage of nonzero elements stored in each format. 85

5.1 Distances between points found by the full gridsearch FP32 algorithm and
alternative methods . 93

5.2 Energy classes in which the points found by various methods belong to . . 94

List of Tables

2.1 Radioactive decays . 31

3.1 List of precision formats used in our experiments. 51
3.2 List of matrices used in our experiments. 54
3.3 Results with GMRES-IR, BiCGStab-IR and CG-IR for various matrices

and SpMV variants. 62
3.4 Results with GMRES-IR for various matrices and SpMV variants. 63

4.1 List of IEEE formats and RPFP’s reduced-precision formats 76
4.2 List of RPRE formats used for each interval of values. 79
4.3 List of RPREU formats used for each interval of values. 79
4.4 Test matrices (Sorted by nnz). 81

5.1 Signals identified identically to FGS-FP32 result without LUT (%) 91
5.2 Execution time for the different configurations on CPU and GPU (ticks) . 95
5.3 Points identified within 5mm of those found by FGS-FP32 without the

LUT executed in CPU (%) . 95

	Résumé
	Abstract
	Introduction
	Context
	Nuclear physics
	Pulse-Shape Analysis of AGATA
	Floating-point arithmetic
	Towards a mixed precision paradigm

	PhD objectives and contributions
	Publications and presentations
	Outline

	Efficient and reliable floating-point computation
	Reliable floating-point computation
	Floating-point arithmetic
	IEEE-754 1985 standard
	Revisions and other formats
	Error analysis
	Error control

	Benefits of mixed precision algorithms
	Floating-point arithmetic context
	Rise of low precision
	The seek of mixing precisions

	Conclusion

	The Advanced GAmma Tracking Array (AGATA)
	Nuclear physics
	Fundamental interactions
	Nuclei behavior
	Radioactive decay
	Gamma-ray spectroscopy
	Online and offline computing

	The AGATA experiment
	The geometry of the detector
	AGATA data processing

	The pulse-shape analysis of AGATA
	AGATA Data Library
	Gridsearch algorithm
	Metric selection
	Multiple interactions
	A time consuming step

	Conclusion

	Adaptive SpMV and application to Krylov solvers
	Introduction
	Uniform precision matrix–vector product
	Adaptive precision matrix–vector product: error analysis
	A more practical componentwise bucket criteria

	Adaptive precision SpMV: numerical experiments
	Implementation
	Experimental setting
	Main results
	Effect of dropping
	Parallel scaling analysis

	Application to Krylov solvers
	Adaptive precision Krylov solvers
	Iterative refinement
	Adaptive GMRES-IR convergence analysis
	Performance comparison for different Krylov solvers

	Conclusion

	Reduced-precision and reduced-exponent formats for accelerating adaptive SpMV
	Introduction
	Methods
	Adaptive precision SpMV
	Custom reduced-precision formats
	Reduced-precision formats for adaptive precision SpMV
	Reduced-exponent formats for adaptive precision SpMV

	Evaluation
	Performance of adaptive precision SpMV with RPFP
	Performance of adaptive precision SpMV with RPRE and RPREU

	Conclusion

	Mixed precision for AGATA Pulse-Shape Analysis
	Introduction
	Profiling of AGATA computations
	Gridsearch configuration
	Performance analysis
	Accuracy control

	Reduced precision formats
	Half-precision computation
	Mixed precision computation
	Error acceptability

	Adapting the code to modern hardware
	The PSA test environment
	Experiments on CPU
	GPU deployment
	Use of native FP16

	Conclusion and perspectives
	Conclusion & Perspectives
	Conclusion
	Perspectives

	Références

