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Abstract

This thesis investigates the mechanism of synthesising super-heavy elements (SHE) via
fusion evaporation reactions. These are nuclei with atomic numbers / ≥ 104 and do not
exist in nature due to their vanishing macroscopic fission barriers. They are stabilised
by quantum shell correction. The search for new SHE pushes the boundaries of nuclear
physics, furthering our understanding of their formation, stability, and structure. However,
synthesising SHE is challenging due to decreasing production cross sections as the atomic
charge increases, necessitating theoretical simulations to guide experiments and identify
optimal reaction conditions.

This work focuses on improving the predictive power of the Kewpie2 model, designed for
fusion evaporation simulation. Fusion evaporation is modelled as a three-stage process:
capture, formation, and survival. While Kewpie2 independently simulates the capture
cross section and survival probability, it has relied on external calculations for formation
probability. This thesis implements the formation step in the Kewpie2 code for the first
time using both the overdamped and full Langevin formalisms.

The injection point distance (describing projectile-target nuclei starting configuration) is
optimised for cold and hot fusion reaction datasets in both cases. An improved injection
point distance parametrisation, consistent with the Langevin formalism, reproduces meas-
ured evaporation residue cross sections for hot fusion reactions, typically with accuracy
better than an order of magnitude. For cold fusion reactions, multiple neutron emission
channels are explained by introducing an additional structural term, achieving good agree-
ment with experimental data. In this case, the 1n channel data are described as having
a factor deviation from the experimental data, while the 2n and 3n channels are within
an order of magnitude. The thesis also investigates survival probability modelling using
the latest data for SHE. Both the formation and survival steps are extensively tested and
compared with the Fusion-by-Diffusion (FbD) model for sets of 27 cold and 24 hot fusion
reactions.

Analysis of the reduced friction coefficients within the overdamped Langevin approach
suggests that the dynamic is not fully damped. Therefore, a full one-dimensional Langevin
formalism is investigated and implemented in Kewpie2. The formalism is applied to hot
fusion reaction data. The fitting coefficients of the model are optimised using a so-called
systematic fitting technique, and the results confirm that the dynamic is not fully damped.
In this approach, the model predictions are within an order of magnitude deviations from
the experimental data. Predictions for the synthesis of elements with atomic numbers
/CN = 119 and 120 align with results from other codes. Additionally, a method for
studying ratios of formation probabilities is proposed and discussed for the synthesis of
258No and 259Db.

In conclusion, this work significantly enhances Kewpie2, making it a self-contained tool
for studying SHE synthesis and guiding future experimental efforts.
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Résumé

Cette thèse étudie le mécanisme de synthèse des éléments super-lourds (SHE) par des
réactions de fusion-évaporation. Il s’agit de noyaux de numéro atomique / ≥ 104 qui
n’existent pas dans la nature en raison de leurs barrières de fission macroscopiques qui
disparaissent. Ils sont stabilisés par une correction quantique du modèle en couches. La
recherche de nouveaux SHE repousse les limites de la physique nucléaire et nous permet de
mieux comprendre leur formation, leur stabilité et leur structure. Cependant, la synthèse
des SHE est un défi en raison de la diminution des sections efficaces de production à
mesure que la charge atomique augmente, ce qui nécessite des simulations théoriques
pour guider les expériences et identifier les conditions de réaction optimales.

Ce travail se concentre sur l’amélioration du pouvoir prédictif du modèle Kewpie2, conçu
pour la simulation de la réaction de fusion-évaporation. Cette réaction est modélisée
comme un processus en trois étapes : capture, formation et survie. Alors que Kewpie2
simule de manière indépendante la section efficace de capture et la probabilité de survie,
il nécessitait des calculs externes pour la probabilité de formation. Cette thèse inclut, pour
la première fois, l’étape de formation dans le code Kewpie2 en utilisant les formalismes
de Langevin sur-amorti et complet.

La distance du point d’injection (décrivant la configuration initiale de la phase de formation
pour le système projectile-cible) est optimisée pour les réactions de fusion froide et chaudes
séparément. Une paramétrisation améliorée de la distance du point d’injection, compatible
avec le formalisme de Langevin, reproduit les sections efficaces de résidus d’évaporation
mesurées pour les réactions de fusion chaude, généralement avec un ratio inférieur à un
ordre de grandeur. Pour les réactions de fusion froide, les canaux d’émission de plusieurs
neutrons sont expliqués par l’introduction d’un terme structurel supplémentaire, ce qui
permet d’obtenir un bon accord avec les données expérimentales. Dans ce cas, les données
du canal 1n sont décrites comme ayant une déviation d’un facteur par rapport aux données
expérimentales, alors que pour les canaux 2n et 3n, les ratios sont à l’intérieur d’un ordre
de grandeur. La thèse étudie également la modélisation de la probabilité de survie en
utilisant les données les plus récentes pour SHE. Les étapes de formation et de survie sont
testées de manière approfondie et comparées au modèle de fusion par diffusion (FbD) pour
27 réactions de fusion froide et 24 réactions de fusion chaude.

L’analyse des coefficients de frottement réduits dans le cadre de l’approche de Langevin
suggère que la dynamique n’est pas sur-amortie. Par conséquent, un formalisme de
Langevin unidimensionnel complet est implémenté dans Kewpie2 et appliqué aux données
de réaction de fusion chaude. Les paramètres du modèle sont optimisés à l’aide d’une
technique d’ajustement systématique. Dans cette approche, les prédictions du modèle
se situent dans un ordre de grandeur d’écart par rapport aux données expérimentales.
Les prédictions pour la synthèse d’éléments de numéros atomiques /CN = 119 et 120
s’accordent avec les résultats d’autres codes. En outre, une méthode d’étude des rapports
de probabilités de formation est proposée et discutée pour la synthèse des isotopes 258No
et 259Db.

En conclusion, ce travail améliore considérablement Kewpie2, ce qui en fait un outil
autonome pour l’étude de la synthèse SHE et l’orientation des futurs efforts expérimentaux.
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Chapter 1

Introduction

The atomic nucleus has been a subject of interest since the Rutherford’s gold foil-alpha
scattering experiment in 1911 [1]. In this experiment, Rutherford discovered that the atom
has a dense, positively charged central part, which he named the nucleus, where most of
its mass is concentrated. This finding came after an earlier discovery of radioactivity by
Becquerel and the Curies in 1896 and 1898, respectively [2, 3]. The present picture of the
atomic nucleus as containing positively charged protons and neutral neutrons, collectively
referred to as nucleons, was solidified after the discovery of neutrons by Chadwick in
1932 [4].

The above foundational discoveries serve as the premise for contemporary research in
nuclear physics, encompassing a wide range of topics, both at low and high energies.
Today, many nuclear phenomena can be explained, including structural details of the
atomic nucleus.One such observation is the stability of atomic nucleiwith specific numbers
of protons and neutrons (known as magic numbers), which Goeppert-Mayer and Jensen
later explained to be a result of quantum mechanical effects stemming from the complete
filling of nuclear shells by the nucleons [5, 6]. The phenomenon is now well described
by the nuclear shell model (microscopic model) of the atomic nucleus, in analogy to the
electronic configuration in atomic shells [7].

A subtle yet significant advancement in the nuclear sciences was the classification of nuclei
based on the proton and neutron numbers into the Segrè chart, also known as the nuclide
chart. The chart not only categorises all known nuclei but also helps to identify various
regions of distinct nuclear properties. It also serves as a tool for nuclear physicists to view
the properties of the nuclei in a systematic order [8, 9].

The successes in understanding the atomic nucleus are not limited to research laboratories.
Many discoveries have been applied in other areas of science, including engineering
applications that meet societal needs. Some of these include advancements in nuclear
medicine, diagnosis and treatment, and innovations in nuclear power generation, to name
a few [10, 11].

Despite significant advances in our understanding of the atomic nucleus, several theor-
etical predictions and experimental observations suggest areas for further research. A
particularly intriguing question is why there is a finite number of elements found on Earth,
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1 Introduction

with uranium being the heaviest naturally occurring element in abundant quantity. While
some uranium isotopes have long half-lives, they are still unstable against radioactive
decay. This underscores the critical role of nuclear stability in determining which nuclei
exist naturally.

For instance, nuclei with excess protons or neutrons are prone to beta decay. This instability
stems from the fact that having too many protons or neutrons reduces their respective
separation energies, which eventually vanish at the proton or neutron drip lines. Beyond
these drip lines, nuclei become unbound. These factors impose limits on the existence
of proton-rich or neutron-rich nuclei. Additionally, the probability of spontaneous fission
increases with nuclear charge, contributing to the finite number of stable nuclides that
could occur naturally.

A window of opportunity for the synthesis of artificial nuclei opened when an experiment
originally designed to investigate nuclear fission in May 1940 led to a discovery of a previ-
ously unknown element with atomic charge greater than uranium, later named neptunium
[12]. This breakthrough began the successful path of synthesis experiments of nuclei with
proton numbers ranging from 93 to 100, commonly referred to as transuranium elements.
Historically, neptunium was synthesized by bombarding a uranium-238 (238U) target with
neutron flux:

238U +1 n→ 239U→ 239Np + 4− + Ē4 . (1.1)
In this reaction, the uranium target captures the impinging neutron and forms a compound
nucleus, uranium-239 (239U), which undergoes beta decay to neptunium

(239Np
)
accom-

panied by an electron (4−) and an electron antineutrino (Ē4). Trace amounts of neptunium
and plutonium, that can be found in nature [9, 13] originate from the beta decay process
as described above [14, 15]. The multi-step process of consecutive neutron captures, fol-
lowed by the beta decays, was used to synthesize heavier elements up to fermium (/=100),
at which this method reaches its limit due to the change of a decay mode from beta decay
to fission [16]. Heavier elements with atomic numbers from 101 to 106 were synthesized
using alpha particles or light projectiles such as carbon, nitrogen or argon ions.

As the atomic number of a nucleus increases, it becomes unstable and prone to fission [17].
Nuclear fission has been extensively studied experimentally and theoretically. The first
success in describing fissionwas achievedwithin the liquid dropmodel (LDM) framework,
also known as the macroscopic model of the atomic nucleus. Here, the nucleus is treated
as a droplet of incompressible charged fluid [18, 19]. The macroscopic models have
played a pivotal role in explaining the relationship between an increasing proton number
and the decreasing stability of the nucleus against fission. The nuclear fission barrier is
approximated to vanish around proton numbers between 100 and 104 within the Liquid
drop model. The instability is attributed to the intensified Coulomb repulsion among the
densely packed protons within the nucleus’s limited volume [20].

The liquid dropmodel offers insights into some nuclear properties and fissionmechanisms;
however, its limitations must be acknowledged. The liquid drop model overlooks the
impact of the nuclear shell effects, which is now understood to critically influence nuclear
stability. In contrast, the nuclear shell model integrates the structural details and explains
the magic numbers but does not properly describe macroscopic nuclear properties such as
masses and binding energies. A combination of both models, known as a macroscopic-
microscopicmethod, solved these issues and predicted the existence of elements beyond the
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1 Introduction Beyond Transactinide Series

actinide series, which ends at lawrencium (/ = 103). Transactinide elements are generally
called super-heavy elements (SHE). Macroscopic-microscopic calculations predict the
next closed shells at / = 114 or 120 and # = 182. The region around these magic
numbers in the nuclide chart is called the island of enhanced stability. Reaching this
region is one of the biggest challenges in nuclear physics [9, 21].

Over the years, new elements have been successfully synthesized, culminating in the
production of element 118, oganesson [22]. These achievements expand the horizons of
low-energy nuclear physics, challenge nuclear models, and allow us to explore the proper-
ties of previously unknown elements. These advancements raise fundamental questions,
such as, "What is the heaviest possible element that could exist?" Unfortunately, synthesiz-
ing heavier elements becomes increasingly difficult due to theirminuscule production cross
sections. New experiments require accurate theoretical guidance, particularly regarding
optimal bombarding energies and projectile-target combinations for higher chances of
success. Since the wrong projectile-target combination or probing the experiment at the
wrong energies may yield no result. Addressing these challenges is central to this thesis.

1.1 Beyond Transactinide Series

Nuclei that do not exist in Nature or are not available in sufficient quantities can be obtained
using various experimentalmethods, including successive neutron captures and subsequent
V− decays, fragmentation reactions, fission of heavy elements, multinucleon transfer
reactions or fusion [23, 24]. These techniques have their capabilities and limitations in
exploring various regions in the nuclide chart. For example, nuclear fragmentation is well
adapted for obtaining exotic neutron- or proton-rich nuclei. The medium heavy neutron-
rich nuclei can be identified in fission fragments of heavy elements. The multinucleon
transfer reactions may be used to study nuclei involved in astrophysical r-process [25].
They are also presently considered as a potential technique to synthesise SHE [23, 26–29].
So far, complete fusion reactions followed by evaporation of light particles have proved to
be the most successful in synthesizing SHE [24, 30].

Using fusion evaporation reactions to synthesize SHE requires accelerating progressively
heavier projectiles and usage of targets made of heavy elements. This was made possible
by the advances in constructing powerful heavy-ion accelerators and improvements in
separation and identification techniques of reaction products [31]. These developments
gave birth to the super-heavy nuclei era, during which 15 transactinide elements have been
synthesised. The fusion evaporation reactions leading to SHEs are categorised into cold
and hot fusion reactions, depending on the projectile-target combination and the excitation
energies reached by the compound nucleus [9, 32].

Cold fusion reactions use targets such as lead or bismuth with projectiles ranging from
48Ca to 70Zn. Due to the Q-value and the Coulomb barrier of these reactions, compound
nuclei are formed at low excitation energies around 10 to 20 MeV. This is followed by the
emission of one or two neutrons in the cooling-down process. Cold fusion reactions have
been employed to synthesise SHE with atomic numbers ranging from 107 to 113 [9].

On the contrary, reactions with a neutron-rich Ca-48 projectile on actinide targets lead to

3



1 Introduction Fusion Evaporation Reaction

the so-called hot fusion reactions [32]. Here, the compound nucleus is formed at relatively
high excitation energies, ranging from 30 to 55MeV. This allows for the emission of usually
three to five neutrons before the remaining excitation energy goes below the thresholds for
the next neutron emission and fission [33, 34]. For hot fusion reactions, the fusion cross
section is larger than for cold fusion reactions, but the survival probability is lower. This
is because, at each step, the neutron emission competes with fission, which is a dominant
decay mode. Hot fusion reactions have been employed to synthesise SHE with atomic
numbers 110, and 112-118. Despite their achievements in synthesizing new elements,
cold and hot fusion reactions have challenges and limitations.

1.2 Fusion Evaporation Reaction

1.2.1 Experimental Successes and Challenges

The progress in synthesising super heavy elements can be summarised in Fig.1.1. Starting
from the left in panel (a) are the elements synthesised using the cold fusion reactions.
On the abscissa is the proton number of the compound nucleus (CN). The respective
production cross sections are presented on the ordinate for the reactions using projectiles
ranging from 48Ca to 70Zn and the 208Pb target (closed symbols) or 209Bi target (open
symbols), respectively.

The general trend, as shown in panel (a) of Fig. 1.1, is that the production cross section
decreases with the increasing proton number of the compound nucleus formed, i.e., the
production cross section in 1n channel decreases by a factor 107 from the proton number
102 to 113. As the projectile-target combinations become more symmetric, the Coulomb
repulsive forces increase, making fusion less probable. The heaviest nucleus accessible
through cold fusion is nihonium, having a proton number equal to 113. The reported
production cross section is 22+20

−13 fb. Only 3 events were observed in 553 days of beam
time [9, 35]. With the decreasing trend in the production cross section, this method cannot
synthesize heavier elements.

To overcome these limitations, highly neutron-rich 48Ca was used as the projectile in
reactions with actinide targets (from 232Th to 249Cf) in hot fusion reactions [22]. In 48Ca-
induced reactions, the Coulomb barriers are lower by about 40% [33] in comparison with
cold fusion reactions leading to the same atomic numbers. This technique allows nuclei
with atomic numbers from /CN = 112 to 118 to be synthesised, as shown in panel (b) of
Fig. 1.1.

As illustrated in panel (b) of Fig. 1.1, synthesising nuclei with proton numbers greater
than 118 requires heavier projectile or actinide targets than currently used. However,
materials heavier than californium are highly radioactive and are not suitable for targets
in synthesis experiments, which presents a hurdle that must be overcome. In addition, the
production cross section peaks at a proton number equal to 114 and starts to decrease.
The decreasing production cross section is a limiting factor that can only be overcome
by investigating alternate projectile-target combinations that can be used in future SHE
synthesis experiments.
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1 Introduction Experimental Successes and Challenges

Figure 1.1: The figures summarise measured fusion evaporation reaction cross sections
for super heavy element synthesis, plotted against the proton number of the resulting
compound nucleus (CN). Panels (a) and (b) show cross sections for cold and hot fusion,
respectively. Different symbols represent various projectiles used in cold fusion 1n reac-
tions (panel (a)). Closed and open symbols indicate 208Pb and 209Bi targets, respectively.
Panel (b) shows only data for the 3n and 4n evaporation channels. Lines are provided to
guide the eye. The figure is reproduced from Ref. [31].

The following are examples of experimental attempts to synthesize new elements with
/CN = 119, 120, and 122 using projectiles heavier than 48Ca [36]: 64Ni +238 U [37],
58Fe +244 Pu [38], 50Ti +249 Bk [39], 50Ti +249 Cf [39], and 70Zn +238 U [40]. The lack
of results in these experiments underscores the need to choose an appropriate projectile,
even if the targets are readily available. A recent experimental investigation has utilised
50Ti on 244Pu in an attempt to synthesise the nucleus with / = 116 with a beam other than
48Ca [36]. The production cross section in this experiment is 0.44+58

−28 pb and is based on
two observed events. The element 110 was also achieved using this method to react to
48Ca with 232Th in a Super Heavy Element Factory in JINR, Russia. The reported cross
section is 0.7+1.1−0.5 pb [41–43].

Separate from the progress made and challenges associated with the production cross
sections of SHE, other areas such as spectroscopic studies have advanced, thanks partly
to developments in nuclear instrumentation and experimental techniques [44]. These
advancements are in the structural details, such as the spectrum states and the role of  -
isomeric states in their stability [45]. The knowledge and data garnered from these studies
are instrumental in refining our existing nuclear models, like the mean field models. These
models are crucial in the region of the nuclear chart where shell effects play a key role in
explaining the stability of the atomic nuclei [46]. Despite the challenges, breakthroughs
are expected as more scientific resources are committed to this frontier, such as the Super
Separator Spectrometer (S3) at GANIL. The S3 has been designed to experiment with
extremely low cross sections [47]. There are other research facilities dedicated to the
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effort to synthesise super-heavy elements, which include RIKEN (Japan), IMP (China),
SHE factory in Dubna (Russia), and LBNL (USA). The search for SHE is not limited
to experimental investigations alone. There are ongoing theoretical efforts to refine the
modelling of the production cross sections and study the structural properties of these
nuclei.

1.2.2 Theoretical Successes and Challenges

On the theoretical fronts, there are efforts aimed at modelling the reactionmechanisms[48–
54] while some are oriented towards investigating super heavy nuclides structural proper-
ties. To begin with, modelling the complete reaction mechanism is a challenge, partly due
to a lack of clarity on the heavy ion fusion mechanism. The fusion processes in the SHE
regime is known to be several orders of magnitude hindered [55] (see also Fig. 1.1). That
is, the fusion cross section (fusion) is defined as:

fusion = capture × formation, (1.2)

Here, capture refers to the cross section for overcoming the entrance channel barrier. At
the same time, formation is the probability that the fusing system will reach the state
of thermal equilibrium and form a compound nucleus. The product of the capture cross
section and the formation probability gives a fusion cross section [24, 48, 52]. The fusion
dynamic in heavy ion reactions differs from light nuclei where, at energies just above
the Coulomb barrier, the total capture cross section is equal to that of fusion [56]. In
the context of very heavy nuclei, the scenario is more complex due to the emergence of
competitive processes such as quasi-fission, which significantly affect the fusion process
[56, 57]. Quasi-fission is the process where the colliding nuclei at capture re-separate into
projectile- and target-like fragments without reaching compound nucleus configurations.

The compound nucleus formation probability remains a quantitative ambiguous step in
modelling the SHE production cross sections and is difficult to measure experimentally.
Furthermore, there is no theoretical consensus on its modelling. This is demonstrated in
Fig. 1.2, in which calculations obtained from different modelling approaches differ from
2 to 3 orders of magnitudes. Although the underlying assumptions in modelling may
vary, the objective is to estimate the probability of the projectile and target evolving into
a compound nucleus from the capture stage.

Many approaches have been developed to describe the fusion probability as shown in
Fig. 1.2. An example is the di-nuclear system model (DNS) [58–60] in which a complete
fusion is envisioned in a mechanism involving gradual transfer of nucleons between the
fusing nuclei at contact (capture phase). On the other hand, there are models [48, 52, 61–
65] that describe the fusion dynamics using few collective variables within Langevin
formalism. This approach is a direct continuation of the thermal fission studies for which
this Langevin approach was introduced [66]. An example of the Langevin based model
is the Fusion-by-Diffusion (FbD) model, which assumes that after the contact of two
nuclei, the thermal fluctuations in the shape degrees of freedom may bring the system
to the compound nucleus configuration [48, 67, 68]. The challenge in the modelling lies
in the lack of full understanding of the intricate dynamics of di-nuclei evolution into a
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compound nucleus. This is made worse by the scarcity of experimental data to train the
models. All these factors contribute to the discrepancies in the theoretical predictions as
seen in Fig. 1.2.

Figure 1.2: Formation probability of the compound nucleus vs atomic charge of the
compound nucleus for elements formed in cold fusion reaction. Each line represents the
calculations by the different models. The figure is reproduced from [55].

In Fig. 1.2, each solid or dash line shows the compound nucleus formation probability
obtained from a different model. Despite the quantitative discrepancies in the calcula-
tions, qualitative convergence shows a decreasing tendency with increasing proton number
/CN. The quantitative ambiguities pose a challenge to proper theoretical guides to the
experiment. An incorrect theoretical input, such as the optimal energy or projectile-target
combination, will lower the chances of a successful experiment. Understanding the com-
pound nucleus formation is important for correctly guiding the experiment, explaining the
dynamics of the heavy ion fusion mechanism, and providing reliable predictions for new
reactions.

Beyond the challenges in modelling the formation step, theoretical inputs such as nuclear
ground statemasses, fission barriers, and deformations are crucial for the overall simulation
process of the production cross section. The ground state masses and deformations are
relevant in evaluating the capture and the formation phases, but their impact becomes
even more pronounced in determining the survival probability. The survival probability
(survival) is the probability that the formed compound nucleus will outlast fission and
de-excite by emitting light particles such as neutrons, protons, alpha particles, or gamma
rays. The production of charged particles is less likely. The SHE production cross section
(EvR) is expressed as:

EvR = capture × formation × survival. (1.3)

Some major factors contributing to the uncertainties in the predicted cross sections are
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uncertainties in the formation and survival steps. In light of this, the calculation of
nuclear ground states and saddle point properties, such as fission barriers, remain an area
of active research.

Over the years, significant strides have been made towards achieving good agreement
between theoretical nuclear properties and experimental data through the development of
macroscopic-microscopic models [69, 70] and microscopic models such as the Skyrme-
Hartree-Fock-Bogoliubov mass formulas [71, 72]. Despite these advancements, discrep-
ancies persist in the data derived from different formalisms, significantly impacting the
calculated production cross sections for super-heavy elements. Consequently, a super
heavy element production cross sections calculated using nuclear properties based on dif-
ferent formalisms will likely differ. Studies by B. Cauchois have demonstrated that a 1 to 2
MeV change in the fission barrier could introduce a variation of approximately two orders
of magnitude in the survival probability [73]. To address these challenges and ensure
consistency in this investigation, the nuclear properties calculated by P. Jachimowicz were
adopted in this thesis [69]. This nuclear mass and fission barrier table is particularly
optimised for the super-heavy elements.

This thesis aims to enhance the modelling of the production cross section of SHE within
the simulation package Kewpie2 [53]. Kewpie is a specialized numerical cascade code
designed to simulate the dynamical decay of excited atomic nuclei. It is particularly
effective in studying rare events associated with synthesising super-heavy nuclei formed
via fusion evaporation reactions [53]. Kewpie [74] has a long history of being iteratively
improved, and the recent version is called Kewpie2 [53, 75]. The code is written in
C++ and takes advantage of object-oriented programming. The code incorporates several
nuclear models to simulate light-particle emission, fission processes, and the statistical
behaviour of excited nuclei, as demonstrated in the thesis in Ref. [76]. Despite the
numerous advantages, such as different sub-model options and short computational time,
Kewpie2 relies on external calculation for formation probability to augment its simulation
for super-heavy elements.

The steps taken to enhance the predictive power of Kewpie2 are updating some of the
parameters and comparing the results from the code on the capture cross section and
the survival probability to the experimental data and calculations from a well-established
code. These investigations allowed us to proceed with the further development of the code
by tackling the most ambiguous step in modelling the reaction dynamics, the compound
nucleus formation probability. Here, we investigated the compound nucleus formation
at the overdamped limit of the Langevin formalism. This formalism is consistent with
the widely used Fusion-by-Diffusion approach (FbD). Based on the result from the over-
damped limit, the formalism is extended to the undamped one-dimensional Langevin
formalism to further improve the description of the dynamics. Ultimately, the objective
is to make Kewpie2 a standalone numerical code for investigating all three stages leading
to the production cross section of super-heavy elements. The thesis concludes by invest-
igating how to possibly constrain the formation probability by assessing and quantifying
uncertainties in the modelling process. This thesis follows Ref. [73, 76] in assessing
uncertainties in the capture cross section and the survival probability.

The content of the thesis is organised as follows: Chapter (2) present an approach to
modelling the production cross section for synthesising elements formed in fusion evap-
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oration reactions. The Sections 2.1 and 2.2 outlined the theoretical frameworks of the
capture cross section and the survival probability modelling. The formalisms behind these
stages are known and already implemented in Kewpie2. This is followed by presenting
the formalism of the compound nucleus formation probability. As mentioned, this is the
ambiguous step in modelling the production cross section and is investigated in detail.
Chapter 3 revisits the formalism of the compound nucleus formation probability within
the overdamped limit but from a different perspective, which allows us to obtain an im-
proved parameterization of the free parameter of the FbD model called the injection point
distance.

The fitting parameters of the injection point distance are adjusted to the experiment, and
the outcomes show that the fusion dynamics within the Langevin formalism may not
be overdamped. Therefore, the overdamped approximation is considered too restrictive.
Chapter 4 presents the undamped one-dimensional Langevin formalism of the compound
nucleus formation probability to investigate this further. This is investigated within the
Kewpie2, and the free coefficients are adjusted to the experimental data techniques using
a loss function different from the typical j2. Finally, Chapter 5 presents a summary of
the predictive power of each parameterization. This is reinforced by bench-marking the
calculations on new data in the cold fusion regimes 207Pb(64Ni,1n)210Ds. To conclude,
we made predictions for planned and ongoing experiments to synthesise elements with
atomic numbers / = 119 and 120.
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Chapter 2

Approach to Fusion Evaporation
Reaction Modelling

This chapter focuses on the theoretical framework for modelling the evaporation residue
(EvR) cross sections for super-heavy elements synthesis in fusion evaporation reactions.
As mentioned, the EvR cross section is theoretically conceptualized as a three-step se-
quential process, described by capture cross section (fcap), formation probability (%CN),
and survival probability (%surv) [53, 62, 64, 68, 77].

Figure 2.1: Schematic diagram showing the reaction mechanism for synthesising super-
heavy elements. The process begins when the projectile (%) is captured (fcap) by the
target ()), bringing both into a di-nuclei configuration. In this configuration, it is possible
to proceed either by forming a compound nucleus (CN), with probability denoted as %CN
or undergoing quasi-fission (QF) with probability %QF. Here, 51 and 52 are the quasi-
fission fragments. The probability that the newly formed compound nucleus will survive
fission by emitting light particle(s) and reach evaporation residue state (EvR) is called
survival probability (%surv). Here, 5 ′1 and 5

′

2 represent the fission fragments originating
from fusion-fission (FF). See text for more details.
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2 Approach to Fusion Evaporation Reaction Modelling

The capture process is the first stagewhere the projectile (%) and target ()) nuclei overcome
the entrance channel potential barrier, namely the Coulomb-plus-nuclear interaction and
the centrifugal barrier. The height of the Coulomb potential barrier and its position are
denoted by � and 'B, respectively, on the schematic of Fig. 2.2. At capture, the projectile
and target nuclei form a di-nuclei in the proximity of the strong nuclear attractive force.
However, they can re-separate without forming a compound nucleus in a process known
as quasi-fission. During quasi-fission, the colliding nuclei exchange nucleons before
separating into projectile-like and target-like fragments labelled 51 and 52 at the exit
channel (shown in Fig. 2.1) [33, 49, 78].

Quasi-fission, which is inherently associated with heavy-ion collisions [79], has been
attributed to the presence of a conditional saddle inside the point of hard contact on the
dynamical trajectory of the colliding nuclei [80–82]. The presence of the conditional
saddle, which is referred to as the fusion saddle in this study, gives rise to a secondary
inner barrier. The inner barrier as depicted �sad in the schematic representation in Fig. 2.2,
is an extra barrier that the colliding nuclei must overcome to fuse successfully.

The dynamics around the conditional saddle imply that the colliding nuclei require addi-
tional energy to fuse, leading to a two-step fusion in heavy ion collision. Given the strong
competition between fusion and quasi-fission, the transition of di-nuclei into a compound
nucleus is distinguished by complementary probabilities namely formation (%CN) and
quasi-fission probability (%QF) i.e., %CN + %QF = 1 [57].

Figure 2.2: Schematic illustration of angular-momentum independent two-step fusion in
the formation of super-heavy nuclei showing how potential energy + (A) changes with the
distance A between centres of colliding nuclei (not in scale). � and 'B are the Coulomb
barrier height and its position, respectively. The �sad is an inner energy barrier beyond
the Coulomb barrier that colliding nuclei at capture must overcome to form a compound
nucleus eventually. Here,& and �∗ stand for the&-value of the reaction and the excitation
energy of the compound nucleus. �cm denotes the energy available in the centre-of-mass
system.

%CN usually increases with increasing energy in the centre of mass frame, �cm, but this
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may leave the formed compound nucleus at a higher excited state [77], which can quickly
fission. Furthermore, the fission barriers of super-heavy elements are rather low [69],
contributing to the high fission rate at the survival stage. In the event of instability against
fission, the excited compound nucleus proceeds via fission into fragments labelled as
5
′

1 and 5
′

2 in the exit channel, as shown in Fig. 2.1. The probability that the compound
nucleus outlives fission and forms a residue nucleus by emitting light particles (neutron,
proton, alphas, and gammas) is called the survival probability. The type and number of
light particles emitted at this stage depend on the excitation energy �∗ of the compound
nucleus, which is related to the �cm, and the & − value of the reaction for ℓ = 0 [49, 53]:

�∗ = �cm +&, (2.1)

where, & = �(�CN, /CN) − �(�1, /1) − �(�2, /2). Here, �(�1, /1) and �(�2, /2)
correspond to the binding energies of the projectile % and target ) nuclei with mass and
charge numbers �1, /1, and �2, /2, respectively. �(�CN, /CN) is the binding energy of
the compound nucleus with �CN = �1 + �2 and /CN = /1 + /2.

The EvR cross section fTheo
EvR (�cm) for the synthesis of a super-heavy nucleus in its ground

state can be decomposed into partial waves ℓ and presented as the product of the three
sequential steps: capture cross section, the formation, and the survival probability,

fTheo
EvR (�cm) =

c

:2

∞∑
;=0
(2ℓ + 1) )ℓ (�cm, ℓ)︸      ︷︷      ︸

capture

× %CN (�cm, ℓ)︸          ︷︷          ︸
formation

× %surv(�cm, ℓ)︸          ︷︷          ︸
survive

. (2.2)

Here : =
√

2`�cm
ℏ2 is the wave number and ` = "1×"2

"1+"2
is the reduced mass of the colliding

nuclei: "1 and "2 are the masses of the projectile and targets respectively. )ℓ (�cm, ℓ)
is the transmission coefficients through the entrance channel barrier. Eq. (2.2) describes
two independent processes, namely the formation of a statistically equilibrated compound
nucleus (%CN(�cm, ℓ)) and subsequent decay in the exit (%surv(�cm, ℓ)), as envisioned by
Bohr [83]. There is some consistency among the models in how to describe the capture
cross section and the survival probability, however, for the middle step there are many
different approaches [24, 53, 68, 84, 85]. This chapter will discuss the modelling adopted
for each stage in the theoretical simulation in the present study.

This thesis aims to enhance themodelling of super-heavy element production cross sections
within the Kewpie2 statistical code [53] by incorporating the compound nucleus formation
probability into themodel. To achieve this, themethod of calculating formation probability
used in the Fusion-by-Diffusion (FbD) model [68] will be adopted in the Kewpie2 model.
Kewpie2 and FbD models are well-established numerical codes for simulating fusion-
evaporation reactions. However, they differ in compound nucleus formation probability
stage evaluation. While FbD codes can simulate all three independent stages of the
modelling, Kewpie2 relies on the external calculations of the formation probability to
augment its calculation.

The description of the theoretical framework will start with the capture cross section (in
Section 2.1), followed by the survival probability (in Section 2.2). The capture and the
survival probability modelling are available in both Kewpie2 and FbD codes and can be
readily applied to reactions with or without hindrance. A reaction is said to be hindered
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when the fusion process is decreased due to quasi-fission. Even though the underlying
framework may be the same in both codes, the input parameters and fine details may differ,
resulting in discrepancies between the outcomes of the considered models [53, 68]. It is,
therefore, important to compare the fine details and investigate their impact on the final
results. This is especially needed in the regions of the nuclear chart where experimental
data are scarce or absent. This study will lay the foundation for further developing the
Kewpie2 code by incorporating the formation probability.

2.1 The Capture cross section

The capture cross section measures the probability of the projectile and the target nuclei
overcoming the entrance channel barrier +eff and coming into contact (forming the di-
nuclear configuration) as illustrated in Fig. 2.2,

+eff = � +
ℏ2ℓ(ℓ + 1)

2`'2
B

. (2.3)

As described before, � stands for the Coulomb potential barrier at a distance 'B between
centres of colliding nuclei, whereas the second term is the centrifugal term evaluated for
a given angular momentum value, ℓ. The capture radius 'B is given as:

'B = A0(�
1
3
1 + �

1
3
2 ), (2.4)

where A0 is the nuclear radius constant. For a colliding nuclei with a given energy in the
centre of mass frame (�cm), the capture cross section corresponds to the summation of all
partial waves [77]:

fcap(�cm) =
c

:2

∞∑
ℓ=0
(2ℓ + 1))ℓ (�cm, ℓ). (2.5)

Here, )ℓ (�cm, ℓ) is the transmission coefficient of going through the Coulomb barrier for
an angular momentum ℓ. In the present study, the limit of the ℓ summation at a given
energy is approximated as the value at which the )ℓ (�cm, ℓ) is numerically equal to 0. In
this case, the maximum value of ℓ is called the critical angular momentum and is denoted
as ℓc.

Assuming that )ℓ (�cm, ℓ) = 1 for �cm > +eff and )ℓ (�cm, ℓ) = 0 for �cm > +eff, the
summation in Eq. (2.5) over ℓ is then given as:

fcap(�cm) =
{
c

:2
∑ℓc
ℓ=0(2ℓ + 1) = c

:2 (ℓc + 1)2, if �cm > �,

0, otherwise.
(2.6)

Here, ℓ2 is defined by the relation �cm = � +
ℏ2ℓ2 (ℓ2 + 1)

2`'2
�

. Summation over partial waves

then leads to the classical capture cross section, given by:

fclass =

{
c'2

�

(
1 − �

�cm

)
, if �cm ≥ �,

0, if �cm < �.
(2.7)
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While this represents the classical capture cross section of two colliding nuclei, it’s im-
portant to consider sub-barrier capture. To achieve this, we need to derive the barrier
transmission coefficients, )ℓ (�cm, ℓ). In this study, we will obtain the transmission coeffi-
cients by approximating empirical entrance channel barrier distributions using a Gaussian
barrier distribution approach [86], similar to the one used in FbD approach [68].

2.1.1 Entrance Channel Barrier Distribution (EBD)

The deformation and vibrations of the colliding nuclei affect the Coulomb barrier. To
account for these effects, the single barrier model is replaced by a barrier distribution.
Changing the barrier also compensates for theCoulomb barrier tunnelling. In the empirical
Gaussian barrier distribution (EBD) approach, the Coulomb barrier is approximated by a
Gaussian, where the probability %(�) of encountering the barrier (�) by colliding nuclei
is modelled as:

%(�) = 1√
2cf2

�

exp

(
− (� − �0)2

2f2
�

)
. (2.8)

Here, f� and �0 are the standard deviation and mean value of the barrier distribution,
respectively [86].

In the semi-classical formalism, the empirical entrance channel barrier is approximated
by a

The transmission coefficient is then given as,

)ℓ (�cm, ℓ) =
∫ ∞

0
\

(
�cm − � −

ℏ2ℓ(ℓ + 1)
2`'2

B

)
%(�) 3�, (2.9)

where, \
(
�cm − � − ℏ2ℓ(ℓ+1)

2`'2
B

)
is the Heaviside step function. Then, for a given ℓ−value:

)ℓ (�cm, ℓ) =
∫ �cm− ℏ

2ℓ (ℓ+1)
2`'2

�

0

1√
2cf2

�

exp

(
− (� − �0)2

2f2
�

)
3�,

=
1
√

2c

∫ �cm− ℏ
2ℓ (ℓ+1)
2`'2

�

−�0
√

2f�

−�0√
2f�

exp
(
−D2

)
3D.

(2.10)

Since �0 � f�, Eq. (2.10) becomes,

)ℓ (�cm, ℓ) =
∫ X(�cm,ℓ)

−∞
exp

(
−D2

)
3D,

=
1
2
(1 + erf (X(�cm, ℓ))) ,

(2.11)

where,

X(�cm, ℓ) =
�cm − ℏ2ℓ(ℓ+1)

2`'2
�

− �0
√

2f�
. (2.12)
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Here, we made use of the following properties of the error function (erf(G)):

erf(G) = 2
√
c

∫ G

0
exp(−C2) 3C, (2.13)

and (2.14)∫ 0

−∞
exp

(
−C2

)
3C =

√
2c
2
. (2.15)

The total capture cross section summed over all angular momenta can be directly ob-
tained by folding the classical capture cross section given by Eq. (2.7) with the Gaussian
distribution [54, 68, 86]:

fEBD
cap =

∫ �cm

0
fclass%(�) 3�,

=
c'2

�
f�√

2c�cm

[
X
√
c(1 + erf(X)) + 4−-2

]
.

(2.16)

Here, X is given as:

X(�cm) =
(�cm − �0)√

2f�
. (2.17)

This section presents the capture model framework adopted in this work, which is the
same as in the FbD model. The capture model parameters such as the capture radius
('B), mean value of the barrier distribution (�0) and the standard deviation of the bar-
rier distribution (fB) parametrisations are presented below. The original Kewpie2 code
has also Wentzel–Kramers–Brillouin (WKB) approximation of the coupled-channels ap-
proach [53] as an alternative to the EBD capture cross section method. However, it is not
considered in this study.

2.1.1.1 The Mean Entrance Channel Barrier (�0)

Themean value of the entrance channel potential barrier in the EBDmodel is parametrised
by a cubic function:

�0 ≈ 0 × I + 1 × I2 + 2 × I3︸            ︷︷            ︸
corrections

. (2.18)

This parameterisation is rooted in the fundamental point-charge Coulomb interaction
between colliding nuclei:

� =
1

4cn0

42/1 × /2
'B

=
42

4cn0A0
I, (2.19)

where the constant n0 is the vacuum electric permittivity, /1 and /2 are the atomic charges
of the colliding nuclei, and I is the Coulomb parameter:

I =
/1 × /2

�
1
3
1 + �

1
3
2

. (2.20)
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In Eq. (2.18), the constant 0 is treated as an adjustable parameter of the model. The
higher-order terms 1I2 and 2I3 are corrections due to short-range nuclear forces and are
necessary to reproduce experimental data accurately. The parameters 0, 1 and, 2 were
determined by fitting the formula given by Eq. (2.18) to a large set of the experimental
data [48]. The semi-empirical formula for the mean value of the entrance channel barrier
is given by:

�0 = 0.853315I + 0.0011695I2 − 0.000001544I3. (2.21)

2.1.1.2 The Coulomb Barrier Width (f�)

The standard deviation (fB) of the entrance channel barrier distribution within the EBD
model is the parameter that accounts for variations in the barrier height due to projectile
and target deformations. It also incorporates the effects of the quantum tunnelling.

To begin, we examine the impact of projectile and target nuclei deformation on the radii
'1 and '2 and their overall effect on the point-Coulomb interaction (Eq. (2.19)) which
can be expressed as:

� = const × /1 × /2
'1 + '2

, (2.22)

then
3� = −� 3'1

'1 + '2
− � 3'2

'1 + '2
. (2.23)

The changes in the radii of the colliding nuclei, i.e., 3'1 and 3'2 due to the nuclear
deformations, lead to variations in the Coulomb barrier height. These variations can be
estimated by quantifying the colliding nuclei size deviations, 3'1 and 3'2 around the
spherical shapes of radii '01 and '02:

3'8=1,2(\, q) = '8 (\, q) − '08 . (2.24)

Here '8 (\, q) is evaluated by expanding the spherical nuclei radii into a series of the
spherical harmonics ._a with the nuclear shape parameters V_` included [87]:

'(\, q) = '0{1 +
∞∑
_=1

+_∑̀
=−_

V_`._` (\, q)}, (2.25)

where the indices 8 = 1 and 2 corresponding to the projectile and target nuclei, respectively.
By considering only axially symmetric quadrupole deformations, in which the parameters
_ and ` are restricted to 2 and 0, respectively [69, 87], Eq. (2.25) reduces to the form,

'(\, q) = '0{1 + V20.20(\, q)}. (2.26)

Only prolate deformation is considered.

Now that we have established the formalism of estimating the deviations in sizes, one
can quantify the deviation around the point-Coulomb barrier by calculating the root mean
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squared deviation (RMSD) as follows:

'"(�8 =

[∫
3'8 (\, q)23Ω

] 1
2

,

= '08V208

[∫
.208 (\, q)23Ω

] 1
2

,

=

√
'2

08V
2
208

4c
.

(2.27)

The total '"(� is then given by:

'"(� =

√
'"(�2

1 + '"(�
2
2 (2.28)

'"(� can be substituted into Eq. (2.23) to replace (3'1 + 3'2) term. By replacing with
a mean value �0 we might estimate the deviation in the barrier height due to the projectile
and target nuclear deformations as,

fB =
1

('1 + '2)
× �0 ×

√
'2

01V
2
201

4c
+
'2

02V
2
202

4c
. (2.29)

The deformation effect is accounted for through the quadrupole shape parameters V208,
where 8 denotes projectile or target nuclei. Eq. (2.29) gives an overview of the default
parameterization of the empirical Gaussian barrier capture model [34, 86]:

f� = ��0

√
f2

1 + f
2
2 + f

2
0 , (2.30)

where f8 =
'2

08V
2
208

4c . The optimised values of � and f0 are 0.0421 fm−1 and 0.531 fm,
respectively. Here f0 is the parameter accounting for the quantum tunnelling [86].

As shown in Ref. [86], the parameters A0, (0, 1 and 2) and (� and f0) of Eqs. (2.4),
(2.18) and (2.30) are adjusted to experimental deduced 'B, �0 and fB from a set of
42 well-measured experimental fusion excitation functions. The optimised paramet-
ers from this analysis are adopted in this study. A similar regression analysis using
Eqs. (2.4), (2.21) and (2.29) can be found in Ref. [73], which are summarized in the next
Section 2.1.2 to demonstrate uncertainty in the capture model predictions.

The quality of the fitted parameters of Eqs. (2.21) and (2.30) is illustrated in Fig. 2.3. The
panel (a) of Fig. 2.3 illustrates the predictive power of mean Coulomb barrier parameter-
ization in Eq. (2.21), which is depicted in the solid line against the experimental values
shown by points. Here, �0 parameterization reproduces the experimental deduced data
well. On the contrary, panel (b), which shows the plot of the theoretical standard deviation
of the Coulomb barrier distribution (Eq. (2.29)) against the phenomenologically deduced
values, is not quite well reproduced. The plot highlights uncertainties in using theoretical
modelled fB.

18



2 Approach to Fusion Evaporation Reaction Modelling Accessing the Uncertainty in Empirical Barrier Capture Model

Figure 2.3: (a) The black points correspond to the mean Coulomb barriers (�0) deduced
from accurately measured fusion excitation functions as a function of the Coulomb para-
meter I. The open symbols are theoretical “Proximity” barriers. The solid line represents
the theoretical evaluation from Eq. (2.21). (b) The calculated barrier widths (Eq. (2.29))
are plotted against phenomenologically deduced values. The figure is reproduced from
Ref. [48].

2.1.2 Accessing the Uncertainty in Empirical Barrier Capture Model

The capture model presented above relies on several unknown parameters: (A0, 0, 1, 2, �,
andf0), which are obtained through regression analysis on 42 experimentally measured
fusion excitation functions, as demonstrated in Ref. [73]. It is important to recognize that
these optimized values come with inherent uncertainties. These uncertainties must be
propagated onto the total capture cross section to ensure accurate results. For clarity, all
final formulas needed to calculate the capture cross section will be presented again, this
time with numerical values of free parameters and their uncertainties.

The A0 constant in the capture radius:

'B = A0

(
�

1/3
1 + �1/3

2

)
, (2.31)

is equal to (1.147 ± 0.027) fm. The parameters 0 , 1 and 2 in the formula for the mean
Coulomb barrier:

�0 = 0I + 1I2 + 2I3, (2.32)

were estimated as: 0 = (9.184 ± 0.137) × 10−1 MeV, 1 = (−9.630 ± 25.670) × 10−5 MeV
and 2 = (3.898 ± 1.136) × 10−6 MeV. The covariance between these parameters is given
in Table 2.1:
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0 1 2

0 1.868 × 10−4 −3.433 × 10−6 1.452 × 10−8

1 −3.433 × 10−6 6.591 × 10−8 −2.877 × 10−10

2 1.452 × 10−8 −2.877 × 10−10 1.292 × 10−12

Table 2.1: The covariance matrix (in MeV2) of the parameters 0, 1 and 2 obtained in the
formula 2.32 (Table 8.1 of Ref. [73])

The parameters � and f0 in the barrier width formula

f� = ��0

√
f2

1 + f
2
2 + f

2
0 , (2.33)

are (0.0432 ± 0.0048) fm−1 and (0.531 ± 0.079) fm, respectively. The covariance
D(�, f0) = −3.719 × 10−4 [73].

With these fitted parameters and their uncertainties, we can readily evaluate the model
parameters ('B, �0, andfB), and eventually the capture cross section:

fcap =
c'2

�
f�√

2c�cm

[
X
√
c(1 + erf(X)) + 4−X2

]
, (2.34)

where X is given by,

X(�cm) =
(�cm − �0)√

2f�
. (2.35)

The uncertainty in the capture cross section is given as follows:

D2(fcap) =
[
mfcap
m'B

mfcap
m�0

mfcap
mf�

] 
D2(') 0 0

0 D2(�0) D(�0, f�)
0 D(�0, f�) D2(f�)



mfcap
m'
mfcap
m�0
mfcap
mf�


)

. (2.36)

The terms D2('B), D2(�0) and D2(fB) are the uncertainties due to the capture radius,
mean Coulomb barrier and the width of the Coulomb barrier distribution, respectively.
D(�0, fB) is the covariance between the mean Coulomb barrier and its width [73].

2.1.3 Sample of the Calculations

Fig. 2.4 presents capture cross section calculations compared with experimental data for
16O+238U, 16O+208Pb, and 48Ca+208Pb reactions. For 16O+ 208Pb and 16O+ 238U reactions
the projectile and target charge products, /1 × /2, are 736 and 656, respectively, which in
both cases is below the threshold above which a significant quasi-fission component might
be expected [53]. It is usually assumed that for /1 × /2 < 1600, the formation probability
%�# ≈ 1 and capture cross section is equal to the fusion cross section, fcap = ffus.
However, it should be noted that the 1600 threshold is not sharp. For 48Ca + 208Pb is
/1 × /2 = 1640, and the formation probability can still be approximated by one.
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Figure 2.4: Comparison of the capture cross section calculations with experimental data
for 16O+238U, 16O+208Pb, and 48Ca+208Pb systems. Solid lines represent the theoretical
calculations, and the dashed lines show uncertainty bounds (Eq. (2.36)). Arrows mark the
positions of the mean entrance channel barriers �0 (Eq. (2.21)). The open and solid sym-
bols for 16O+238U represent experimental data taken from Ref. [88] and [89], respectively.
The experimental data for 16O+208Pb, and 48Ca+208Pb are taken from Refs. [90] and [91],
respectively. Presented reactions represent the limit where the formation probability is
equal to one. Therefore, the capture cross section is approximately equal to the fusion
cross section.

The solid black lines in panels (a), (b) and (c) of Fig. 2.4 represent the calculations of
Eq. (2.34). The blue and brown dashed lines correspond to the uncertainties evaluated
using Eq. (2.36). In panel (a), the experimental data points are taken from Ref. [90],
whereas those of panel (b) are retrieved from Refs. [88] (open circles) and [89] (solid
dots), and that of panel (c) are taken from Ref. [91]. The arrow on each panel indicates the
position of themean entrance channel barrier �0 (Eq. (2.21)). In these sample calculations,
theoretical calculations reproduce the experiment well. For more calculations, please refer
to Refs. [73, 86].

Figure 2.5: The relative uncertainties Drel(fcap) =
D(fcap)
fcap

of the calculated capture cross
sections for the reactions 16O+238U, 16O+208Pb, and 48Ca+208Pb. The arrows show the
mean entrance channel barrier position for each reaction.

Besides reproducing the experimental cross sections, one can also investigate the uncer-
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tainty in the model evaluation as a function of energy. Fig. 2.5 illustrates the relative
uncertainty in the model predictions as a function of energy in the centre of the mass
frame. The figure shows that the uncertainty of the model calculations several MeV below
the barrier is almost 100% of the predictions. This highlights that the model predictions
below the barrier are not very reliable. However, the uncertainty in the capture cross sec-
tion predictions quickly decreases with increasing energy. This trend, as shown in Fig. 2.6
highlights the sensitivity of the model predictions to the uncertainty in the adjustable
parameter capture radius 'B, mean barrier �0 and its width fB.

Figure 2.6: A comparison of the experimental fusion excitation function for 40Ca+96Zr
with a theoretical fit using Eq. (2.34). The experimental data are taken from Ref. [92].
The sensitivity of the model to variations in the mean Coulomb barrier and its width is
illustrated. The figure is reproduced from Ref. [86]. Here, the F and 'f stand for the
Coulomb barrier width (fB) and the capture radius ('B), respectively.

Fig. 2.6 displays the sensitivity test of the capture formula (Eq. (2.34)) predictions for
small variations in the model parameters �0 and fB. As shown in the figure, changes in
the mean barrier height and the width have opposing effects on the fusion cross section.
Increasing the mean barrier by 1% tends to suppress the fusion excitation function, while
a 10% increase in the width will enhance it [86]. However, the impact of these changes
diminishes with increasing energy above �0, leading to a convergence with the experiment.

Fig. 2.7 shows examples of capture cross sections in the regime of the super-heavy ele-
ments evaluated using Eq. (2.34). The panels (a), (b), and (c) correspond to the reactions
50Ti+208Pb, 51V+208Pb and 48Ca+243Am, respectively. The arrows, as previously, repres-
ent the corresponding �0 values. Different symbols in panel (a) correspond to different
experimental measurements of the capture-fission cross section for the 50Ti+208Pb sys-
tem [93], [94], [55], and [95]. Similarly to the previous figure, the upper and lower
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limits of the capture cross section calculations are depicted by the blue and brown dashed
lines, respectively. As observed previously, the uncertainties in the theoretical predictions
decrease with increasing energy.

The larger uncertainties for the reactions presented in Fig. 2.7 in comparison to Fig. 2.4 are
caused by the extrapolations of formulas for �0 (Eq. (2.21)) and fB (Eq. (2.30)) beyond the
region in which they were fitted. The free parameters in �0 and fB were optimised based
on a set of 42 carefully selected fusion excitation functions of heavy ions; see Refs. [73, 86].
This data did not include reactions leading to super-heavy elements because there are no
available high-quality experimental data on capture and fusion cross sections for such
reactions. Therefore, extrapolation into the super-heavy regime, where experimental
fusion excitation data is lacking, introduces significant uncertainty, as illustrated in Fig. 2.7.
However, (2.34) proved good predictive power in evaluating the fusion excitation functions
in heavy ion reactions, especially for hot fusion reactions at energies above the Coulomb
barrier. It is also simple to use and provides an alternative approach to the more elegant
evaluations such as the couple channel calculations [86].

Figure 2.7: Examples of capture cross sections for super-heavy element synthesis reac-
tions evaluated using Eq. (2.34) for (a) 50Ti+208Pb, (b) 51V+208Pb, and (c) 48Ca+243Am
reactions, respectively. Arrows show the corresponding entrance channel barriers �0.
The different symbols in the panel (a), triangle (black) [93], star (blue) [94], open triangle
(green)[55] and dots (brown) [95] correspond to different experimental measurements of
fusion-fission cross section.

In conclusion, this section has presented the capture cross section formula and its effective-
ness in reproducing experimental data for heavy-ion reactions, especially in the limit where
the formation probability approaches unity. The capture model’s sensitivity to the mean
value of the entrance channel barrier and its width, which contribute to the uncertainty
in the predictions, especially at sub-barrier energies and in the super-heavy regime, was
discussed. Despite these limitations, the model’s simplicity and demonstrated predictive
power in the heavy-ion domain make it a model of choice in FbD calculations and the
present study. The following section discusses the compound nucleus survival probability,
which can be readily applied in heavy and super-heavy nuclei synthesis reactions.
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2.2 TheDeexcitationProcess and the Survival Probability
(%surv)

The survival probability describes the final stage of the reaction dynamics leading to the
synthesis of the super-heavy elements. At this phase, the compound nucleus (CN) formed
with the excited energy �∗ decays by emitting light particle(s), namely protons, neutrons,
alpha particles and gamma rays, to cool down. In the super-heavy elements synthesis,
this stage competes strongly with the fission process, which is usually the dominant decay
mode.

Figure 2.8: The diagram depicts possible processes during deexcitation of an excited
compound nucleus, including the sequential emission of light particles. The sequence
begins with the compound nucleus �0(�∗�0

, �0) emitting light particle 1(nb, �b) (neutron,
proton, or alpha) what leads to a residue �1(�∗�1

, �1), which then serves as a seed nucleus
for further emission. The process continues until the excitation energy of a residue is
below both the particle emission threshold and fission threshold, and the final evaporation
residue (EvR) is formed. At each step, the particle emission competes with fission.

Let us start with an example typical for the cold fusion 1n reactions in which the compound
nucleus �0(�∗�0

, �0) outlives fission and emits a light particle 1(nb, �b) (neutron in this
case) in a process:

�0(�∗�0
, �0) → �1(�∗�1

, �1) + 1(nb, �1), (2.37)

which leads to the formation of a residue nucleus �1(�∗�1
, �1). The �∗�0

and �∗
�1

are the
excitation energies of the compound and the residue nuclei, respectively, while �0 and �1
are the corresponding spins. The spin of the emitted particle is denoted by �b, and nb
is the kinetic energy taken by a particle. In the case of the cold fusion synthesis �∗

�0
is

usually of the order of 15 MeV and the remaining energy �∗
�1

is not sufficient for the next
chance fission or emission of another particle. In a scenario where the compound nucleus,
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resulting from a successful complete fusion reaction, has higher excitation energy, as in
hot fusion reactions, multiple particles may be emitted, leading to a cascade of particles
as illustrated in Fig. 2.8. Here, the residue nucleus formed after the first particle emission
serves as the seed for subsequent particle emission or potential fission events.

The emission process continues until the excitation energy of the residue nucleus falls
below the thresholds for further particle emission and fission. After that, only gamma rays
are emitted, carrying away excess excitation energy and angular momentum. However,
gamma emission generally has little impact on the final results, except in cases of zero
neutron emission [62]. Additionally, charged particles have low emission probabilities due
to high Coulomb barriers that they have to overcome [49]. Although the original version
of the Kewpie2 model includes the possibility of gamma and charged particle emission,
these processes are not considered in the current study because our primary focus is on
the formation dynamics of super-heavy nuclides.

If only neutron and fission competition is considered, the probability of emitting exactly
G neutrons from a compound nucleus �0 initially excited to the energy �∗

�0
is given

by [53, 96]:

%Gn
surv(�∗�0

) =
G∏
8=1

Γn,8−1(�∗�8−1
)

Γn,8−1(�∗�8−1
) + Γf,8−1(�∗�8−1

) , (2.38)

where Γn,8−1(�∗�8−1
) and Γf,8−1(�∗�8−1

) are the neutron emission and fission decay widths
evaluated at 8-th step of the cascade (8 = 1, 2, ...). Here, for simplicity, spin dependencies
of presented quantities were omitted (they are included in the next section). After each
successful neutron emission, the excitation energy is reduced by neutron binding energy
�n and its kinetic energy nn. The excitation energy of a nucleus �8 after the emission of 8
neutrons is then:

�∗�8 = �
∗
�8−1
− �n,8−1 − nn,8−1. (2.39)

To stop the cascade after G successful neutron emissions the excitation energy �∗G of
nucleus �G has to fall below the threshold for next chance neutron emission, (�∗G < �=,G)
and below fission threshold (�∗G < �f,G , where �f,G is the height of the fission barrier in
nucleus �G).

Because emitted neutrons do not carry out a single value of the kinetic energy, the cascade
is usually treated as a statistical process. The simplest method to solve Eq. (2.38) is usually
based on a Monte Carlo simulation. Unfortunately, such methods are time-consuming,
especially for super-heavy element synthesis reactions where cross sections are in the order
of pb. The probability of emitting multiple neutrons in a cascade is extremely small. In
some versions of the Fusion-by-Diffusion model, it was assumed that the neutron kinetic
energy taken at each step is equal to the average kinetic energy resulting from Maxwell-
type distribution equal to 2) , where ) is the nuclear temperature [97]. Kewpie2, however,
has adopted another approach to solving Eq. (2.38) that is well-suited to handling such
low probabilities. Numerical details and the algorithms are described in Refs. [53, 75].
This part of the Kewpie2 code was not changed in this thesis.

In this study, we calculate the fission decay widths as used in Eq. (2.38) based on the
standard Bohr-Wheeler (BW) transition state theory [18, 34, 53]. TheHauer-Feshbach [98]
and Weisskopf-Ewing [99, 100] formalisms are implemented in Kewpie2 for the neutron
emission width. However, we adopt the latter for its computational efficiency. Further
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details on the neutron emission and fission decay widths are outlined in Subsections 2.2.1
and 2.2.2 below.

2.2.1 Neutron Emission Width (Γn)

For an excited nucleus, a neutron (n) can be emitted if the excitation energy exceeds its
binding energy (�n). According to the statistical model [99], the probability per unit time
that a neutron with kinetic energy n= is emitted is expressed as:

%n(nn)�∗0→�1+n 3nn = f
inv
n (nn)

6<n

c2ℏ3

d�1 (�∗�1
, �1)

d
gs
�0
(�∗

�0
, �0)

nn 3nn. (2.40)

In this context, d�1 (�∗�1
) and dgs

�0
(�∗

�0
) represent the densities of nuclear levels between

energy intervals � and � + 3� , measured from the ground states of the residue and
compound nuclei, respectively. The variables 6 and <n denote the spin degeneracy and
the mass of the emitted neutron, respectively. The finv

n (nn) indicates the neutron capture
cross section in the reverse reaction, i.e., �1(�∗�1

, �1) + n(nn, �n) → �0(�∗�0
, �0). Here,

nn is the kinetic energy of the impinging neutron, and �n is its total angular momentum.
The neutron emission width can be obtained by integrating Eq. (2.40) which leads to the
Weisskopf–Ewing formula [99, 100]:

Γn(�∗�0
, �0) =

(2Bb + 1)<n

c2ℏ2d
gs
�0
(�∗

�0
, �0)

∫ �∗
�1

0
finv
n (nn)d�1 (�∗�1

− nn, �1)nn 3nn. (2.41)

The term 6 = (2Bb + 1) refers to the spin degeneracy factor of the emitted neutron. In
these expressions, �∗

�1
stands for the maximum energy available for the neutron to take:

�∗�1
= �∗ − � rot

�1
− �n, (2.42)

and that of the compound nucleus �∗
�0

is given as,

�∗�0
= �∗ − � rot

�0
. (2.43)

Here, � rot
�1

and � rot
�0

represent the rotational energies of the residue and compound nuclei,
respectively, are evaluated consistently with the Subsection 2.3.1.7.

In the original Kewpie2 [53], Weisskopf–Ewing and Hauser-Feshbach’s treatment of
particle (e.g. neutron) emission can be found. The Hauser-Feshbach model accounts
for angular momentum treatment of the parent, daughter and emitted, making it more
accurate but computationally demanding. In contrast, the Weisskopf–Ewing model sim-
plifies angular momentum treatments, focusing on overall emission probabilities. This
makes it computationally efficient, but less accurate [53, 101]. This study adopts the
Weisskopf–Ewing approach due to its computational advantages and established use in
the FbD model. These choices facilitate the seamless incorporation of FbD’s compound
nucleus formation probability into Kewpie2, allowing for cross-validation of calculations.
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2.2.1.1 The Neutron Inverse Capture Cross Section (f8=En )

The neutron inverse capture cross section in Eq. (2.41) is evaluated using the empirical
relation [102]:

finv
n (nn) = U

(
1 + V

nn

)
c'

2
, (2.44)

where U = 0.76 + 2.2�−
1
3

1 and V = 2.12�
− 2

3
1 −0.050

0.76+2.2�
− 1

3
1

. Here, c'2 represents the geometric

neutron capture cross section, which is corrected by the energy of the emitted neutron nn
to account for the decrease in the neutron capture cross section with increasing energy. On
the contrary, in the current version of the FbD model, there is no account for the energy
dependence, and the cross section is taken as:

finv
n = cA2

0�1
2
3 , (2.45)

where A0 = 1.45 fm. The impact of the energy-dependent neutron capture cross section
on the survival probability is later discussed in Subsection 2.3.1.1 and demonstrated in
Fig. 2.11.

2.2.2 Fission Decay Width (Γ 5 )

The fission decay width in both Kewpie2 and FbD codes is evaluated following transition
state theory by Bohr and Wheeler [18]. According to this theory, the excited compound
nucleus is viewed as an equilibrated system in various configurations, some considered
transient, as depicted in Fig. 2.9.

Figure 2.9: The schematic illustration of the transition-state model by Bohr and Wheeler.
The one-dimensional potential energy landscape + (U) is depicted along the fission path-
way as a function of the elongation U. The figure highlights the changes in the state
densities in two configurations: at the ground state, dgs

�0

(
�
gs∗
�0
, �0

)
, and at the fission

saddle, dsad
�0
(�sad∗

�0
− n 5 , �0). Here, �f represents the height of the fission barrier and n 5 is

the kinetic energy associated with the transition state.
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As the figure illustrates, these transient states can evolve over a potential energy barrier
that constrains fission. The fission decay width is thus defined as the ratio of the number
of transition states at the saddle in the energy interval from 0 to �sad∗

�0
to the number of

possible states of the equilibrated compound nucleus at an excitation energy �∗
�0
:

Γf(�∗�0
, �0) =

1
2cdgs

�0
(�∗

�0
, �0)

∫ �sad∗
�0

0
dsad�0
(�sad∗

�0
− n 5 , �0) 3n 5 . (2.46)

Here, n 5 represents the kinetic energy of the fissioning system, and dsad
�0

is the density
of transition levels per energy at the saddle configuration. The integration upper limit is
evaluated as:

�sad∗
�0

= �∗ − �f − �Erot(sad)
�0

. (2.47)

The density dgs
�0

is the same as in the formula for neutron decay width, and the definition
of the �Erot(sad)

�0
is presented in Subsection 2.3.1.7. Even though Eq. (2.46) offers a good

description of the thermal fission, further investigations have noted that corrections, such
as those proposed by Kramers and Strutinsky [66, 103], are necessary to enhance its
modelling of fission dynamics. These corrections are discussed in subsection 2.3.1.4
below.

2.2.3 The Nuclear Level Density Function(d)

The neutron and fission decay widths can be evaluated when nuclear level densities are
known at given configurations. The nuclear level density refers to the number of possible
nuclear states per unit of energy [77]. This concept is crucial in the statistical treatment
of nuclear decay processes, as seen in equations for neutron emission and Bohr-Wheeler
fission decay rates (Eqs. (2.41) and (2.46)), respectively.

For an atomic nucleus with # neutrons and / protons, and mass number � = # + / , the
two fermion particle level density can be expressed as:

d(�∗) =
√
c

12 ×
exp(V0�

∗+ 0
V0
)

[V0�∗3]
1
2
×

[
62

0
46=6?

] 1
2
×

1−exp
(
− 0
V0

)
[
1− 1

2�
∗V0 exp

(
− 0
V0

)] 1
2

(2.48)

where 6= and 6? represent the single-particle level densities for neutrons and protons
at the Fermi energy, respectively [53, 104]. The combined single-particle level density
60 = 6= + 6?. The V0 parameter is related to the excitation energy �∗ implicitly as,(

0

V0

)
= (0�∗)

[
1 − exp

(
0

V0

)]
, (2.49)

where 0 is the level density parameter. This relation allows (2.48) to be defined for two
energy regimes. At the limit when �∗ → 0, the level density

d(�∗) = 1
12
√

2c40exp(0�∗), (2.50)
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whereas, at high �∗ energies, one has [53, 104]:

d(�∗) =
√
c

12

exp
(
2
√
0�∗

)
0

1
4�∗

5
4

(2.51)

which is the same as well-known formula in an equidistant energy level model [105]. Here,
the excitation energy (�∗) should be corrected by the pairing energies of the compound or
the decay product, respectively.

The improvement in Eq. (2.48) (in solid red line) over the standard equidistant formalism
(in black line) as depicted in Fig. 2.10 is related to eliminating the divergence at low
excitation energies when �∗ → 0. The divergence stems from the term 1

�
∗ 5

4
in the

prefactor of Eq. (2.51). This is resolved in Eq. (2.48) by employing an implicit relation
between �∗ and V0, as defined in Eq. (2.49).

Figure 2.10: Comparison of level density models: the simple Fermi-gas model de-
scribed by Eq. (2.51) is depicted with a black line, and the improved parametrisation from
Eq. (2.48) is shown with a solid red line. The figure is reproduced from Ref. [53].

In contrast to the approach taken byKewpie2, the FbDmodel [34, 48], adopts the following
parametrisation:

d(�∗) = C × exp
(
2
√
0�∗

)
, (2.52)

where the prefactor C is set to unity. This approach also effectively eliminates the
singularity at �∗ → 0. The entropy term 2

√
0�∗ in the exponential argument is evaluated

similarly in both models. This effectively highlights the differences in how both codes
handle the level density formalisms.

In both models, the excitation energy, �∗ is corrected by the pairing energy of the nucleus
according to the back-shift formula to account for a gap in level densities between ground
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state and the first excited state. In this work, the following pairing energies are adopted:

�pair =


21√
�

MeV for even-even nuclei,
10.5√
�

MeV for even-odd nuclei,
0 MeV for odd-odd nuclei,

(2.53)

where � is the mass number of the considered nucleus [34]. In this sense �∗ − �pair = �
∗
0,

where �∗0 is the actual excitation energy with respect to the ground state (or saddle point).

2.2.3.1 Level Density Parameter (0)

An important parameter in the level density function is the level density parameter 0. The
level density parameter determines how the nuclear level density changes with excitation
energy, influencing the number of available nuclear states at a given energy. There are
several propositions for the nuclear level density parameter in the literature, and several
options can be found in the original Kewpie2 model. The parameterisation proposed in
Ref. [106] is adopted in the present study because it also accounts for the deformation of
the nucleus. The level density parameter is given as:

0 = 0E� + 0B�
2
3�B + 02�

1
3�: , (2.54)

where 0E = 0.0696 MeV−1, 0B = 0.1801 MeV−1, and 02 = 0.1644 MeV−1. Here �B and
�: are the surface and curvature corrections, respectively. These are defined in terms of
the effective deformation variable U as,

�B = 1 + (0.6416U − 0.1421U2)2, (2.55)
�: = 1 + (0.6542U − 0.0483U2)2, (2.56)

where U is given as [48]:
U =

'max − R0
R0

. (2.57)

In this context, 'max is the length of a semi-major axis of an axially symmetric deformed
nucleus (Eq. (2.26)),

'max = '0

(
1 +

√
5

4c
V2 +

√
9

4c
V4 +

√
13
4c
V6

)
, (2.58)

where '0 represents the radius of a spherical nucleus, given as '0 = A0�
1
3 . By substituting

the definition of 'max and '0, Eq. (2.57) reduces to

U =

√
5

4c
V2 +

√
9

4c
V4 +

√
13
4c
V6. (2.59)

The parameters V2, V4, and V6 characterize the ground-state or saddle-point deformations
and are taken from Ref. [69].
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2.2.3.2 Nuclear Shell Damping Effect in Level Density

The nuclear shell correction energy (Δ�sh), which plays a crucial role in stabilizing the
nucleus, particularly in super-heavy nuclei, is incorporated into the level density function
following Ignatyuk’s prescription [53, 68, 107]. The level density parameter 0 given by
Eq. (2.54) is modified by a damping function:

0gs = 0

[
1 +

(
1 − 4−

�∗
�d

)
Δ�sh
�∗

]
. (2.60)

In this context, 0gs represents the ground state level density parameter, whereas �d denotes
the shell damping parameter.

Damping energy �d = 18.5 MeV has been proposed as the standard value for nuclei
with masses greater than 200, but it has also been pointed out that this value is not
unique [62, 84]. This is because it is more often scaled to reproduce the experimental
data, which highlights the sensitivity of the modelling to this parameter. In this work, the
relation obtained for super-heavy nuclei proposed in [108] was adopted:

�d =
�

1
3

0.423
MeV. (2.61)

In the original Kewpie2 model, �d takes values between 13 - 25 MeV. Note that this study
does not consider the shell correction energy at the fission saddle point, which is also the
case in FbD model calculations.

2.3 Comparison of the Fine Details of Kewpie2 and FbD

This section compares the fine details of the survival probability in Kewpie2 and FbD
models. The input parameters necessary for the survival probability calculations, nuclear
ground state, and saddle-point properties, such as fission barriers, rest masses, and de-
formation parameters (shape variables), were taken from Ref. [69]. These are theoretical
nuclear properties specifically for heavy and super-heavy nuclei. Implementation of these
nuclear tables is a change regarding the original default version of the Kewpie2 model, in
which Möller-Nix mass tables from Ref. [109] were used.

2.3.1 Comparison of Level Density Formalism in Kewpie2 and FbD

For consistency, we will refer to the level densities from Eq. (2.48) and (2.52) as the
Kewpie2 and FbD formalisms, respectively. That being said, we begin by comparing
the two different level density formalisms by evaluating the ratios of the level densities in
one-neutron emission configuration (�1+n) to that of the compound nucleus (�0) denoted
as

(
d
gs
�1
d
gs
�0

)
. Similarly, this is repeated for the first-chance fission decay by evaluating the

ratios of the level density at the fission saddle to that of the compound nucleus
(
dsad
�0
d
gs
�0

)
. The
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ratios
(
d
gs
�1
d
gs
�0

)
and

(
dsad
�0
d
gs
�0

)
are illustrated in the panel (a) and (b) of Fig. 2.11, respectively,

for the 208Pb(58Fe, 1n)265Hs reaction as a test case. These calculations aim to evaluate the
quantitative differences between the two-level density formulas as a function of energy.

Fig. 2.11 illustrates the ratios of the level densities calculated using the Kewpie2 (red solid
line) and FbD (blue dashed-dotted lines) approaches, shown as a function of the excitation
energy �∗. Ratios are evaluated for each configuration without accounting for angular
momentum using the definitions of the excitation energies in Eqs. (2.43), (2.42) and (2.47),
respectively. Note that the kinetic energy (nn) of the neutron and that associated with the
fission coordinates (nf) are not summed over.

As shown in panels (a) and (b) of Fig. 2.11, the Kewpie2 formalism predicts higher(
d
gs
�1
d
gs
�0

)
and

(
dsad
�0
d
gs
�0

)
ratios compared to the FbD formalism. These observations imply that

the choice of level density formalism can impact the calculated neutron evaporation and
fission decay widths (shown in Fig. 2.12), which are essential for understanding the de-
excitation process of excited nuclei. The question is how these subtle differences will affect
the neutron emission and fission decay widths and, eventually, the survival probability.

Note that Ignatyuk shell damping corrections to the level density (Eq. (2.60)) are applied
only to the ground state level densities, where the shell damping �d is taken as 18.5 MeV
for the sake of comparing the results with the FbD calculations. In the subsequent analysis
in Section 2.5, the semi-empirical approximation given by Eq. (2.61) will be adopted.

Figure 2.11: Comparison of a default level density formalisms in Kewpie2 (red solid
line) and FbD (blue dashed-dotted line) models. Panels (a) and (b) show the ratios of

level densities for the one-neutron emission configuration
(
d
gs
�1
d
gs
�0

)
and fission saddle point

configuration
(
dsad
�0
d
gs
�0

)
, respectively, to the level density of the compound nucleus. Ground

state and saddle point properties are taken from Ref. [69].
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2.3.1.1 Impact of Level Density Formalism on Neutron Emission and Fission Decay
Width

As demonstrated in Fig. 2.11, the choice of level density formalism can potentially influ-
ence the neutron emission and fission decay widths evaluated from a statistical model. To
further quantify these differences, we will now evaluate these widths using Eq. (2.41) and
Eq. (2.46). This investigation is done within the Kewpie2 framework, where the default
level density will be replaced with the one used in the FbD approach. This allows us to
directly compare the influence of each formalism on the calculated neutron emission Γn
and fission Γf widths.

Fig. 2.12 illustrates how changing the level density formalism will affect the Γn and Γf
shown in the panels (a) and (b), respectively, for excited 266Hs∗. The Kewpie2 approach
(in solid red lines) gives higher neutron emission and fission widths than the FbD approach
(in dotted dashed blue line). The question is, how are the observed differences in level
densities propagated along the cascades, considering the relevance of the neutron emission
width (Γn) and the fission decay width (Γf) in estimating the overall survival probability.
To answer this, the ratio of the neutron emission width to the total decay width

(
Γn
Γtot

)
is

shown in Fig. 2.13, where Γtot = Γf + Γn. This ratio indicates the probability of neutron
emission (Γn) as a function of the excitation energy, evaluated using both level density
formalisms.

Figure 2.12: Neutron emission and fission decay widths calculated using different level
density formalisms for excited 266Hs∗. Panel (a) shows the neutron emission width, where
the red line and blue dashed-dotted lines represent Kewpie2 and FbD level densities,
respectively. Panel (b) depicts the fission decay width using the same colour and line
conventions.

Fig. 2.13 illustrates the Γn
Γtot

as a function of the excitation energy. Similar to Fig. 2.12,
the red solid and blue dashed-dotted lines represent calculations using the Kewpie2 and
FbD level densities, respectively. Although both models predict a similar qualitative
trend, quantitative differences are observed, particularly at lower excitation energies, with
the Kewpie2 approach predicting a higher probability of neutron emission than the FbD
model. As we will see later, the observed differences are expected to propagate along the
cascade.
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Besides, comparing the curves in terms of their magnitude, they depict competition
between neutron emission and fission as possible decay channels of the compound nucleus.
The tendency of the curve is driven by the balance between neutron emission and fission
decay widths as a function of excitation energy. Around 10-20 MeV the probability of
emitting neutron is of the order of 10−3 , but as the energy increases, neutron emission
becomes more favourable, leading to the increase in Γ=

Γtot
. The differences between the

curves are given by a factor denoted 5 . The difference indicates the sensitivity of the ratio
to the underlying assumptions in the respective level density formalisms. The differences
between the impacts of the level density formalisms become evident when considering
the survival probability along the neutron emission cascades, as illustrated by Fig. 2.14.
Fig. 2.14 shows the results obtained using Kewpie2 (solid red lines), which consistently
predicts higher survival probabilities compared to the level density formalism used in FbD
(dashed-dotted blue lines).

Figure 2.13: The Γn
Γtot

calculated using the level density formalisms given by Eq. (2.48) and
Eq. (2.52) shown in red solid line and dashed-dotted lines respectively. Here, Γtot = Γf+Γn
and 5 corresponds to the differences between the two calculations (see text for details).
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Figure 2.14: Calculated neutron emission cascade (1n-6n) for the 208Pb(58Fe, Gn)266−GnHs
reaction. The solid red lines represent calculations obtained using the Kewpie2 level
density formalism, while the blue dashed-dotted lines correspond to the FbD formalism.
Nuclear ground states and saddle points properties are taken from Ref. [69]. Here,
rotational energies are not accounted (� = 0).
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2.3.1.2 The Impact of Neutron Capture Formalism

This section compares two approaches to calculating the neutron inverse capture cross
section, as given by Eq. (2.44) and Eq. (2.45), and their respective effects on the survival
probability as shown in Fig. 2.15. The former approach is the default in Kewpie2 mod-
elling, while the latter is used in FbD calculations. The two approaches are geometric
neutron capture cross sections, except that the Kewpie2 approach varies with energy. The
energy-dependent is necessary to account for the decrease in the neutron capture cross
section with the increasing energy.

In Fig. 2.15, the solid red lines denote the calculations using the Kewpie2 approach to
evaluating the neutron capture cross section. The FbD formalism calculations are shown
in the blue dashed-dotted lines. To only investigate the impact due to the change in the
neutron inverse capture cross section, the level density function is evaluated using only
the Kewpie2 formalism (Eq. (2.48)). The results, as illustrated in Fig. 2.15, show that the
impact due to the energy dependency on the neutron capture cross section is small at the
lower energies, where there is no noticeable difference for the 1n to 4n neutron emission
channels. The difference can only be seen at the high energies. This finding highlights the
influence of the chosen neutron inverse capture cross section on the calculated survival
probability, particularly at higher excitation energies. However, its impact is insignificant
compared to the impact of using different level density formalisms, as shown in the
previous chapter.

Figure 2.15: Comparison of the impact of neutron inverse capture cross section formalism
on compound nucleus survival probabilities using the 208Pb(58Fe, xn)266−xnHs reaction.
The calculations with the Kewpie2 and FbD approaches are indicated by the red solid and
the dashed-dotted blue lines, respectively.
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2.3.1.3 Comparison of Sample Calculation: Kewpie2 Compared to FbD

The next step involves comparing the results of each code obtained for the reaction
295Am(48Ca, Gn)291−GnMc. In this case, results were obtained using original FbD code [68]
(T. Cap, personal communication) and are compared with the Kewpie2 calculations. The
comparison is shown in Fig. 2.16with the FbD calculations in blue dashed-dotted lines [68]
and Kewpie2 with the default configurations in solid red lines. The results show that
Kewpie2 consistently predicts higher survival probabilities compared to FbD calculations
throughout the neutron emission cascade.

The discrepancies highlight the fine details in the modelling, stemming from the choice
of level density function formalisms and neutron inverse capture formalisms. These are
illustrated in Fig. 2.14 in the previous section, where it was demonstrated that switching
between level density formalisms results in about an order of magnitude difference in
the survival probability at higher energies. A noticeable enhancement in the survival
probability at higher energy is observed when the energy-dependent geometric neutron
capture (Eq. (2.44)) is replaced with an energy-independent version (Eq. (2.45)), as shown
in Fig. 2.15. Therefore, differences between the current versions of Kewpie2 and FbD
modelling of the survival probability are primarily due to these subtle differences.

Figure 2.16: Comparison of numerical calculations for the reaction
295Am(48Ca, Gn)291−GnMc, using the Kewpie2 and FbD [68] codes. The red solid
lines represent Kewpie2, and the blue dotted lines show FbD calculations. The difference
between the fine details in the two models lies in the choice of the level density and
neutron capture cross section formalisms.

In conclusion, this study highlights the impact of the nuclear level density function and
the neutron inverse capture cross section formalisms on the survival probability. Notably,
switching between the level density formalism from Eq. (2.48) to that given by Eq. (2.52)
results in approximately an order of magnitude change in the survival probability at higher
energies. However, the choice of neutron capture formalism exhibits a relatively minor
impact.
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2.3.1.4 The Kramers and Strutinsky Correction Factor

After comparing the fine details of Kewpie2 and FbD modelling of compound nucleus
survival probability, this section investigates how incorporating dynamical factors into
the statistical description affects the overall survival probability. This is done within the
Kewpie2 framework since the FbD calculation does not account for these factors.

To begin with, the Kramers corrections adapt the purely statistical formalism presented in
Eq. (2.46) to match the dynamical limit by introducing the corrective term:

 f =

√
1 +

(
V

2lsad

)2
− V

2lsad
, (2.62)

known as the Kramers factor [53, 66, 103, 110]. In this expression, V represents the
reduced friction coefficient, while lsad is the angular frequency of the fission saddle
potential barrier. The Kramers factor highlights the influence of nuclear matter viscosity
on the fission rate, indicating that higher viscosity results in a lower fission rate and vice
versa. Typically, the values for V range from (1 − 9) × 1021 s−1, and ℏlsad is set to 1MeV
[53].

Additionally, Strutinsky pointed out the necessity to consider the variation in the number
of stationary collective states between the ground state and the fission saddle. This is
quantified by the factor:

(f =
ℏlgs

)gs
, (2.63)

where lgs represents the characteristic width of the ground state potential well and is set
such that ℏlgs = 1 MeV. The nuclear temperature )gs is defined as:

)gs =

√
�∗

0
, (2.64)

with 0 being the nuclear level density parameter. Combining these factors, the refined
statistical model that matches it to the dynamical limits is expressed as:

Γ
′

5 =  f · (f · Γf , (2.65)

where Γf represents the value obtained with Eq. (2.46). The impact of these corrective
terms on the calculations of the survival probability is demonstrated in Fig. 2.18 below.

2.3.1.5 Collective Enhancement of the Intrinsic Level Density

Furthermore, to account for the collectivity of the intrinsic nuclear states, the level density
function (Eq. (2.48)) is corrected by the so-called collective enhancement factor:

^coll(�∗) = ^rot(�∗)q(V2) + ^vib(�∗) [1 − q(V2)] , (2.66)

where,

q(V2) =
[
1 + exp

(
V0

2 − |V2 |
ΔV2

)]−1

. (2.67)
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Here, V0
2 and ΔV2 are the parameters of the model that are determined to be 0.15 and

0.04, respectively [53, 62, 111]. The terms ^rot(�∗C0
) and ^vib(�∗C0

) in the equation are
responsible for collectivity due to rotational and vibrational collective states, respectively.

The collectivity factor for each of these states is related to the spin-cut-off parameter f⊥:

^coll(�∗) =
{
(f2
⊥ − 1) 5 (�∗) + 1 if f2

⊥ > 1,
1 if f2

⊥ ≤ 1,
(2.68)

and the f⊥ in this framework is defined for the two collective states as,

f2
⊥ =

{
I⊥)
ℏ2 if |V2 | > 0.15, rotational,
(\2I⊥)

ℏ2 if |V2 | ≤ 0.15, vibrational.
(2.69)

constrained by the degree of quadrupole deformation parameter V2. The free parameter,
represented by (, has an optimal value of 25 [53, 111]. Here, \ = 0.22+0.003Δ#+0.005Δ/
and Δ# and Δ/ are the valence nucleons.

The cut-off factor, 5 (�∗), is defined as

5 (�∗) = 1

1 + exp
[
�∗−�cr
3cr

] , (2.70)

where �cr and 3cr are set to 40 MeV and 10 MeV, respectively.

The rigid body moments of inertia I⊥ are used in Eq. (2.69) and are defined as [34],

I⊥ ≈
1
5
"'2 [

(1 + U)2 + (1 + U)−1] + 2"12
5 , (2.71)

where U is the nuclear effective deformation parameter as outlined in Eq. (2.57). Here, "
is the mass of the compound nucleus and 1 5 stands for nuclear surface diffuseness, 1 5 ≈ 1
fm.

This parameterisation of the moment of inertia is adopted to ensure consistency in eval-
uating the rotational energy at the nuclear ground state, fission saddle, and conditional
saddle when describing the hindrance factor, as seen in the next Section 2.4.2.2.

Finally, to account for nuclear collectivity, the refined level density is given by:

d
′ (�∗) = ^coll(�∗) × d(�∗). (2.72)

where d ′ (�∗) is the enhanced level density and d(�∗) is the intrinsic level density calcu-
lated using the formulas in Subsection 2.2.3.
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2.3.1.6 Impact of KS and CE Corrections on the Survival Probability

Fig. 2.17 illustrates how the fission decay width changes with the reduced friction coeffi-
cient, V. The V is a free parameter (in Eq. (2.62)) that must be tuned within the present
version of the Kewpie2 model. The results in Fig. 2.17 show a decrease in fission decay
width with increasing V, and this difference is more pronounced at higher energies due
to the temperature variation with excitation energy dependence in the Strutinsky term
(see Eq. (2.63)). Panel (a) of Fig. 2.18 shows how this influences the overall survival
probability.

Figure 2.17: Calculated fission width for 288Mc as a function of excitation energy for
different values of the friction parameter V. This plot highlights the impact of frictional
forceswithin the nucleus on the fissionwidth, illustrating the critical role of V inmodulating
nuclear fission dynamics. The fission barrier, �f = 6.21 MeV [69].

Fig. 2.18 shows the impact of the KS and CE corrective terms on the compound nucleus
survival probability. Panel (a) specifically compares the influence of the KS factor, which
considers the nuclear viscosity, depicted by the short blue dashed line. The solid lines
are the reference calculations that do not consider any corrective factors (shown in the
solid red line). Here, V is set to the Kewpie2 default value, 5 × 1021 s−1 [53]. The
survival probability is enlarged compared to the solid lines due to decreasing fission decay
width comparable to the neutron emission width. This subsequently enhances the nucleus
survival probability along the cascade. In contrast, enabling the collective enhancement
of the intrinsic level density (CE) (described in Section 2.3.1.5 decreases nucleus survival
probability, as shown in panel (b) of Fig. 2.18.

The CE factor, which accounts for nuclear deformation at the ground state and saddle
point, also depends on excitation energy via the empirical relation in Eq. (2.70). These
factors influence the behaviour of survival probability along the cascade, where fission
dominates the neutron emission. The combined effects shown in panel (c) almost produce
a balanced outcome. However, the impacts of CE dominate at lower energies (i.e., 1n, 2n,
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3n neutron channels), whereas KS has a more pronounced effect at higher energies (i.e.,
5n and 6n channels). It is important to note that this behaviour may vary depending on
the values V. This is illustrated by panel (d), which shows a lower survival probability
when the reduced friction parameter of the model is decreased by 40%. This is reflected
in panel (e), which illustrates a lower trend along the cascade compared to the calculations
without any corrective factors.

Figure 2.18: Impact of Kramers-Strutinsky correction factors on the fission decay width
and collective enhancement of intrinsic level densities on the survival probability along
the cascade for the reaction 295Am

(48Ca, Gn
)291−GnMc at � = 0 using Kewpie2. Solid

lines represent calculations without correction or enhancement factors. Panel (a): Blue
dotted lines show Kramers and Strutinsky’s effects on the fission width. Panel (b): Effect
of collective enhancement on survival probability. Panel (c): Combined impact of both
correcting factors.
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2.3.1.7 The Impact of Angular Momentum on The Survival Probability

Previously, survival probabilities were evaluated only for total angular momentum � = 0,
corresponding to zero orbital angularmomentum (ℓ) and intrinsic spin (B). This analysis is
now extended to include cases with non-zero ℓ in the simulations. The rotational energy is
one of the most important factors that influences the survivability of an excited compound
nucleus. The atomic nucleus, with non-vanishing rotational energy, implies deviation
from the sphericity. Furthermore, the fission barrier of the nucleus has an inverse relation
with the angular momentum, such that the survival probability vanishes beyond a certain
critical value [77].

In the Kewpie2 model, the rotational energies:

�rot =
ℏ2ℓ(ℓ + 1)

2I , (2.73)

are accounted for in the fission saddle, residue and compound nuclei ground states ac-
cording to Eqs. (2.47), (2.42) and (2.43). Here, I stands for the moment of inertia given
by Eq. (2.71). This is evaluated for each configuration state: parent nucleus ground state
(�0), the ground state of the daughter nucleus (�1), and the saddle point of the parent
nucleus (�sad0 ).

Fig. 2.19 shows the 2D spectrum for the 3n channel, with excitation energy on the x-axis
and angular momentum on the y-axis. The colour gradient, ranging from blue (low) to
red (high), represents the varying intensity of the survival probability. The highest %surv
values (red) are concentrated at low angular momentum and excitation energies around
25-30 MeV. As either excitation energy or angular momentum increases, the survival
probability decreases, transitioning from yellow and green to blue (lowest values). The
survival probability decreases rapidly with increasing angular momentum and excitation
energy. This highlights the significant role of angular momentum in determining the
survival of the compound nucleus.

Figure 2.19: Calculated two-dimensional spectrum of the survival probability (%surv) for
the 3n neutron emission channel in the reaction 295Am(48Ca, xn)291−G=Mc as a function
of excitation energy (�∗) and angular momentum (ℓ).
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2.3.2 Sample Calculations without Fusion Hindrance

The analysis of the survival probability concludes by evaluating the evaporation residue
excitation functions for selected reactions leading to the synthesis of heavy and super-
heavy elements. In this section, we only consider reactions with large asymmetry, where
the product of projectile and target charges are below the threshold for the reaction to be
hindered: /pro × /pro ≤ 1600. The objective here is to apply the updated Kewpie2 in
reproducing the production cross sections of the reactions without hindrance, as illustrated
in Figs. 2.20 and 2.21.

Figure 2.20: The excitation functions for 4n, 5n and 6n channels in 238U(16O, Gn)254−G=Fm
reaction. The calculations are made using Kramers-Strutinsky factors and collective
enhancement of the intrinsic level density. Here, �d is taken as 18.5 MeV in combination
with V = 5×1021 s−1 (in dashed line) and V = 8×1021 s−1 (in solid lines). The experimental
data are taken from Ref. [112], and the theoretical curves are evaluated using ground state
and saddle properties from Ref. [69].

Fig. 2.20 illustrates a fusion cross section in the solid black line (label ffus) as already
presented in the panel (a) of Fig. 2.4. Our interest is in the evaporation residue cross
section, which is shown for the 4n, 5n and 6n channels. The experimental data are taken
from Ref. [112]. The experimental data are well reproduced when Kramers-Strutinsky
factors and the collective enhancement of the level densities are considered. The shell
damping energy �d = 18.5 MeV, while V is set for the default value 5×1021 s−1 (in dashed
line) and later adjusted to 8 × 1021 s−1 (in solid black) to reproduce the experiment data.

Similarly, Fig. 2.21 illustrates calculations for the reactions with light projectiles and heavy
actinide targets leading to the formation of nuclei in the region of super-heavy elements.
Panel (a) shows the EvR excitation function for the 4n channel in 248Cm(15N, 4n)259Lr
reaction. The red points are the experimental data from Refs. [84, 113]. The dashed line
is the theoretical curve without KS-CE corrections and �d set to 25 MeV in an attempt to
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fit the experiment. The solid line denotes calculations with KS-CE corrections with the
parameters V and �d taken as 8 × 1021 s−1 and 18.5 MeV, respectively.

Panel (b) and (c) illustrate similar reactions, 249Bk(15N, 4n)260Rf and 249Cf(18O, 4n)263 Sg,
for which formation probability is also close to one. Similarly, the dashed lines represent
the theoretical curves without KS-CE and �d = 25 MeV. The solid lines correspond to the
theoretical calculations with V and �d set to 9 × 1021 s−1 and 23 MeV (in panel (b)) and
9 × 1021 s−1 and 21 MeV (in panel (c)), respectively. The experimental data is initially
fitted by adjusting the reduced friction coefficient (V). If any discrepancy remains after
adjusting V to the maximum, the shell damping energy (�d) is increased gradually from
its initial value of 18.5 MeV to 25 MeV to improve the agreement with the experimental
data. The experimental data on 249Bk(15N, 4n)260Rf and 249Cf(18O, 4n)263Sg are taken
from Refs. [84, 114] and [84, 115], respectively.

Figure 2.21: Evaporation residue cross sections (a) 249Cf(18O, 4n)263Sg, (b)
248Cm(15N, 4n)259Lr, and (c) 249Cf(15N, 4n)260Db. Theoretical calculations without
Kramers-Strutinsky corrections and collective enhancement (KS-CE) are evaluated with
�d = 25 MeV and are represented by dashed lines. The solid lines represent calculations
with KS-CE corrections. The parameters for KS-CE corrections are V = 8 × 1021 s−1

and �d = 18.5MeV in panel (a), V = 9 × 1021 s−1 with �d = 23MeV in panel (b), and
V = 9 × 1021 s−1 with �d = 21MeV in panel (c). Red points denote experimental data
from Refs. [84, 113] (in panel (a)), Refs. [84, 114] (panel (b)) and Refs. [84, 115] (panel
(c)).

This section concludes by presenting test calculations performed with Kewpie2 for reac-
tions without hindrance, as illustrated in Figs. 2.20 and 2.21. In some studies, the shell
damping energy, �d, is adjusted to fit the theoretical curve to the experimental data [84].
In case of the need for predictions, a global fit of �d can be made. The quality of the
theoretical calculations also depends on the accuracy of the theoretical fission barrier
heights and mass tables used in the simulation. The statistical limit of the fission decay
widths is extended by incorporating KS-CE corrections. However, this introduces an ad-
ditional free parameter V, which also influences the survival probability, as demonstrated
in Fig. 2.18. As shown in Fig. 2.17, increasing V decreases fission decay width, favouring
neutron emission and enhancing the production cross sections. The �d and V parameters
serve as free parameters that can be adjusted to fit the experiment. For further examples of
heavy nuclei simulations where the formation probability is assumed to be 1, please refer
to Ref. [53].

Now that we have concluded the presentation of the capture and survival part of the
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modelling, wewill proceed to investigate the formalismof the compound nucleus formation
probability. This is a crucial step for accurately predicting the production cross sections
of super-heavy elements.

2.4 Compound Nucleus Formation probability (%CN)

This section describes the formalism of the hindrance associated with the shape evolution
of the di-nuclei formed at capture into a compound nucleus (CN) over the conditional
saddle (fusion saddle). As mentioned earlier, several approaches exist for calculating the
formation probability; however, this study focuses on diffusion over a potential barrier
as a mechanism enabling two colliding nuclei to form a compound nucleus within the
Langevin formalism [61, 67, 68]. This approach is distinct from the problem of leaking
thermally equilibrated particles in a potential well, as discussed in Kramers’ work on the
fission decay rate [66] within the Langevin formalism. Here, we investigate the probability
of a nucleus facing uphill potential at the fusion saddle to diffuse to the other side as a
mechanism of compound nucleus formation within the Langevin formalism [52, 116].

Figure 2.22: The schematic illustration of di-nuclei at contact. Here, the indexed 1 and
2 variables correspond to the projectile and target nuclei, respectively. The figure is
reproduced from [49].

The evolution of the di-nuclei into a compound nucleus within the Langevin formalism
may be described by several collective variables (&8), as depicted in Fig. 2.22, and their
conjugate momenta, (%8). For example, as shown in Fig. 2.22, the collective variables are
charge and neutron asymmetries [/ and [# , respectively. The relative distance between
the centres of the colliding nuclei is denoted as '. V1,2 stand for the colliding nuclei
deformation parameters from spherical shape, and the surface separation between them
is denoted by B. The variables i1,2 represent the orientation of the projectile and target
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nuclei’s principal axes relative to the line connecting their centres. o describes the
orientation of the projectile and target to each other. These degrees of freedom are
chosen to allow the description of the dynamics, including deep inelastic scattering and
quasi-fission (in Eq. (2.74) in low-energy heavy ion collisions [49, 117].

The coupled Langevin-type equations (Eq.(2.74)) to describe the dynamics are given as
[61, 116]:

3%8

3C
= − m*

m&8
−

∑
9 ,:

1
2
m

m&8
(<−1)8 9% 9%: −

∑
9 ,:

W8 9 (<−1) 9 :%: +
∑
9

68 9Γ 9 (C),

3&8

3C
=

∑
9

(<−1)8 9% 9 .
(2.74)

The strength of the random force 68 9 is connected to the friction coefficient W8 9 via the
Einstein relation: ∑

:

68:6 9 : = )W8 9 , (2.75)

which ensures that the system adheres to the fluctuation-dissipation theorem [61, 116].
* is the potential that governs the dynamics while W8 9 (<−1) 9 :%: is the frictional force
or torque responsible for the dissipation in the dynamics, with W8 9 being the friction
coefficient matrix. 68 9Γ 9 (C) is the Gaussian random force or torque, which is statistically
characterized by its moments:

〈Γ 9 (C)〉 = 0 and 〈Γ 9 (C)Γ 9 (C
′)〉 = 2X8 9 (C − C

′). (2.76)

This implies that the force or torque has a zero-average value, ensuring no net force or
torque over time. The Kronecker delta X8 9 indicates that different components of the
force are uncorrelated, and the Dirac delta X(C − C′) ensures that the force values are
uncorrelated at different times. Although this is a comprehensive attempt to explain
the reaction dynamics, the approach is computationally resource-intensive. Alternative
approaches using a single effective collective variable solved analytically for a quadratic
potential have also been considered [48, 52, 64] and provide key insights into describing
the dynamic.

In this work, we will use the one-dimensional Langevin-type equation [52, 61]:

32B

3C2
+ V3B

3C
− l2B = A (C), (2.77)

with the surface separation B serving as the effective collective variable and solved for a
parabolic barrier: + (B) = − `l

2B2

2 as illustrated by Fig. 2.23. ` and l are the reduced mass
of the colliding nuclei and angular frequency of the parabolic barrier, respectively. V is
the reduced friction, and A (C) is the Gaussian random force characterised by its first and
second moments:

〈A (C)〉 = 0 and 〈A (C)A (C ′)〉 = 2VT
`
X(C − C ′), (2.78)

respectively. Here T is the temperature of the di-nuclei. However, in a large dissipative
environment, the friction term dominates and the impact of the inertia term ( 32B

3C2
) is
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neglected. This is called the strong friction limit or the Smoluchowsky equation [116].
This assumption forms the basis of the Fusion-by-Diffusion modelling of the formation
probability [48, 64, 68].

Figure 2.23: Illustration of the shape evolution along the one-dimensional parabolic
potential energy landscape around the fusion saddle. Here, B represents the collective
variable (surface separation) and its initial condition, denoted as B0. The system evolves
towards the top of the inner barrier height (into a spherical shape), causing the value of B
to decrease from its initial condition B0. �(B0) = `l2 (B0−Bsad)2

2 is the inner barrier height
with respect to the fusion saddle Bsad and the B0. Conversely, the system is evolving such
that B increases relative to the initial condition B0 may signify re-separation (quasi-fission).
The angular frequency of the potential barrier is l =

√
m2+ (B)
`mB2 |B=Bsad , and ` stands for the

reduced mass of the composite nuclei.

2.4.1 Formation probability in 1D Overdamped Langevin Systems

In the context of highly dissipative nuclear dynamics, where the friction coefficient is
much larger than the inertia term, i.e.,

��� 32B
3C2

��� � ��V 3B
3C

��, the Langevin equation describing the
system’s evolution into a spherical shape is written as,

V
3B

3C
− l2 (B − Bsad) = A (C). (2.79)

The first and second moments of the random force (A) are given as:

〈A (C)〉 = 0 and 〈A (C)A (C ′)〉 = 2VT
`

X(C − C ′). (2.80)

At the overdamped limit, the remaining kinetic energy at the capture event is converted
into internal degrees of freedom. Fluctuations in the shape degrees of freedom of the
nucleus due to temperature are solely responsible for the transition from di-nuclei into a
spherical shape [34, 48].

Eq. (2.79) provides analytical insight into the fusion hindrance dynamics around the fusion
saddle. The solution can be obtained by applying the Laplace transform to both sides of
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the equation:

L
{
V
3B

3C
− l2 (B − Bsad)

}
= L{A (C)},

((f) = VB0 − l2Bsad

Vf − l2 + L{A (C)}
Vf − l2 ,

(2.81)

where B(0) = B0, andf denotes the Laplace domain variable. The Laplace technique trans-
forms the original differential equation into an equivalent algebraic expression Eq. (2.81),
which makes it easier to solve. The solution in the time domain is then obtained by taking
the inverse Laplace transform:

B(C) = L−1{((f)},

= (B0 − Bsad)4−
l2
V
C + Bsad +

1
V

∫ C

0
A (g)4−

l2
V
(C−g)

3g.
(2.82)

If one assumes a symmetric barrier around the fusion saddle, and Bsad < B0, the probability
at a given time for a nucleus with an initial surface B0 to diffuse over the fusion saddle with
Bsad into a spherical shape is approximated as:

%CN(C, B0) =
∫ Bsad

−∞

1
√

2cfB
exp

(
− (B − 〈B(C)〉)

2

2f2
B

)
3B,

=

∫ Bsad−〈B (C) 〉√
2fB

−∞

1
√
c

exp
(
−F2

)
3F.

(2.83)

Here, the substitution F = B−〈B(C)〉√
2fB

has been made to transform the integral into a standard

Gaussian form. The Gaussian integral, with the limit from −∞ to Bsad−〈B(C)〉√
2fB

, simplifies to
a complementary error function:

%CN(C, B0) =
1
2
erfc

(
− (Bsad − 〈B(C)〉)√

2fB

)
. (2.84)

What remains is to evaluate the average trajectory 〈B(C)〉 and the standard deviation fB (C)
along the trajectory. The average trajectory is determined as,

〈B(C)〉 = (B0 − Bsad)4
l2
V
C
, (2.85)

since the mean value of the random force is 0. The standard deviation of the fluctuations
around the mean trajectory, denoted by fB (C), is obtained as follows:

f2
B (C) = 〈(B(C) − 〈B(C)〉)2〉,

=

∫ C

0

∫ C

0
〈A (g)A (g′)〉4

l2 (2C−g−g′)
V 3g3g′,

=
T
`l2

(
4

2l2C
V − 1

)
.

(2.86)

The double integral takes into account the autocorrelation of the random force A (C), which
is a function of two time variables g and g′.
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In the scenario over an extended period, the probability of di-nuclei diffusing into a
compound nucleus becomes:

%CN(C →∞, B0) =


1
2erfc

(√
B(B0)
T

)
if B0 ≥ Bsad,

1
2erfc

(
−
√
B(B0)
T

)
if B0 ≤ Bsad.

(2.87)

The compound nucleus formation probability is evaluated within the Fusion-by-Diffusion
(FbD) model, using Eq. (2.87) [48, 118]. The inner barrierB(B0) and the initial conditions
B0 are determined based on a realistic approximation of the potential energy surface,
achieved through nuclear shape parameterization on a liquid-drop type potential energy
surface [48, 118], which are presented in the Section 2.4.2 below.

2.4.2 The Potential Deformation Energy Surface

The parameterisation of the deformation potential energy landscape, initially presented in
Ref. [48] and later refined in Ref. [34], is restated here for completeness. The deformation
energy surface is a liquid drop type potential energy surface of two colliding nuclei with
radii '1, and '2 joined smoothly by a portion of a spheroid or hyperboloid (as illustrated
in Fig. 2.24). The deformation energy surface, expressed in the unit of surface energy
(�surf) is denoted as b:

b =
�def
�surf

. (2.88)

The b is evaluated following the quadratic expressions:

b =

{
0 + 1

(
B
'

)
+ 2

(
B
'

)2
B ≥ 0,

?
(
B
'

)
− f0)2 − @

( (
B
'

)
− f0

)3
B < 0,

(2.89)

depending on whether the colliding nuclei are separated (B ≥ 0) or overlapping (B < 0)
at the point of capture. ' is the radius of the compound nucleus. The deformation energy
(�def) at any given surface separation (s) is evaluated as

�def = b × �surf. (2.90)

The surface energy �surf is taken as [48]:

�surf = 17.9439

(
1 − 1.7826

(
#CN − /CN

�CN

)2
)
�

2
3
CN, (2.91)

where, �CN, #CN and /CN are the mass, neutron and proton numbers of the combined
system. The surface separation (B) is the distance between the surfaces of the colliding
nuclei at capture. This is illustrated by Fig. 2.24, where B is related to the total length (!)
of the di-nuclei system and the radii '1 and '2 of the individual colliding nuclei:

B = ! − 2('1 + '2). (2.92)
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The parameter f0 in Eq. (2.89) represents the ratio of spherical limit surface separation
distance to the radius of the compound nucleus:

f0 = 2 − 4
(2 + 6D) 1

3
, (2.93)

where, D = Δ2. Δ is the mass asymmetry parameter of the colliding nuclei:

Δ =
|�1 − �2 |
�1 + �2

. (2.94)

�1 and �2 are the masses of the colliding nuclei. The coefficients 0, 1, 2, ? and @

of Eq. (2.89) are defined by Eqs. (2.95) to (2.97), which are optimised in the interval
0.85 < G < 1.05 and −0.25 < Δ < 0.25, of nuclear fissility (G) and mass asymmetry (Δ),
respectively. The coefficients are given as follows:

0 = U1 + U2(1 − G) + U3(1 − G)2, (2.95)
1 = V1 + V2(1 − G) + V3(1 − G)2, (2.96)
2 = W1 + W2(1 − G) + W3(1 − G)2, (2.97)

? =
1

f0
+ 30
f2

0
, (2.98)

@ =
−1
f2

0
− 20
f3

0
. (2.99)

The nuclear fissility parameter (G), which is a measure of the ratio of the nuclear electro-
static energy to twice the liquid drop surface potential energy, is taken as [48]:

G =
/2
CN

50.883�CN
(
1 − 1.7826

(
#CN−/CN
�CN

)2
) . (2.100)

The parameters U8=1−3, V8=1−3, and W8=1−3 as used in Eqs. (2.95) to (2.97) are given as:

U1 = −0.00564 − 0.01936 exp(−D/0.02240), (2.101)
U2 = 0.05122 + 0.11931 exp(−D/0.03800), (2.102)

U3 = −0.07424 + 0.95959D, (2.103)
V1 = −0.06080 + 1.37825� − 10.7077D2, (2.104)
V2 = 0.27691 − 2.93119D + 12.60944D2, (2.105)

V3 = −0.02398 − 1.14854D, (2.106)
W1 = −0.02722 + 0.2231D, (2.107)
W2 = 0.02050 + 0.32122D, (2.108)
W3 = 0.03843 + 1.03731D . (2.109)
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Figure 2.24: Shape parameterisation of di-nuclear system with the radii '1 and '2 re-
spectively at capture. B is the surface separation between the colliding nuclei and ! is
the total length, whereas, ;1 and ;2 are the degree of opening of the neck. The figure is
reproduced from [68, 119].

2.4.2.1 Example of Deformation Potential Energy Surface

Fig. 2.25 illustrates examples of the deformation potential energy surfaces (�def) in 1D for
reactions leading to the synthesis of super-heavy elements using cold fusion reactions. The
�def is calculated using Eq. (2.89) for the projectile-target combinations of 50Ti, 58Fe, and
70Zn on 208Pb leading to the synthesis of nuclei with atomic numbers equal to /CN=104,
/CN=108, and /CN=112, without the inclusion of the rotational energies (ℓ = 0). This is
evaluated for a fixed asymmetry parameter (Δ) given by Eq. (2.94).

�def in Eq. (2.89) as illustrated by Fig. 2.25 is calculated using arbitrary values of surface
separation (s) within the interval −10 fm ≤ B ≤ 6 fm. This range of B is chosen just for the
purpose of visualizing the �def landscape. The red dots indicate each reaction’s asymmetric
fusion saddle point, while the corresponding Bsad values denote surface separation at the
fusion saddle (negative value means a compact mononuclear configuration). In this
context, a fusion saddle refers to the maximum deformation energy along the asymmetric
valley that the merging nuclei must overcome to attain a compound nucleus configuration.

Beyond the fusion saddle is the spherical limit (labelled ’sphere’ in the figure), where the
spherical configuration is reached, and �def values converge for all projectile and target
nuclei combinations. The vertical red dashed line at B = 0 fm indicates the points of
hard contact between the colliding nuclei. The further the saddle point is from the point
of hard contact, the more hindered the fusion process becomes, which correlates with
progressively increasing compound nucleus charges (/CN). As the atomic number /CN
of the projectile-target combination increases: /CN = 104, 108, and 112, the Coulomb
repulsion between the positively charged protons also increases, and so is the fissility
parameter, G =0.88, 0.92 and 0.95, respectively. It has been well established that a
compound nucleus formation probability decreases with a fissility parameter greater than
0.7 [48].
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Figure 2.25: The deformation 1D potential energy surfaces for 50Ti + 208Pb, 58Fe + 208Pb
and 70Fe + 208Pb which corresponds to /CN = 104, 108 and 112, respectively. The red
dots show the positions of the fusion saddles, whereas the dashed vertical line represent
the point of hard contact, B = 0 fm.

Similarly, Fig. 2.26 illustrates �def for ℓ = 0 calculated for hot fusion reactions. In this
case, Δ is not frozen. It takes values as calculated for the asymmetric path and 0 in case of
full symmetrical path. This is because di-nucler shape attains a more compact shape at the
fusion saddle in hot fusion reactions than in cold fusion. Consequently, a symmetric saddle
configuration dominates over the asymmetric one as the system elongation decreases.
Therefore, the deformation energy of the symmetric saddle is evaluated as follows:

�
sym
def = �def

(
B
sym
sad

)
, (2.110)

where �def is given by Eq. (2.90) with Δ = 0. Bsymsad is the spherical limit of the surface
separation parameter, given as

B
sym.
sad = f0 + 2Usad. (2.111)

Here, Usad is the effective deformation of the compound nucleus given by Eq. (2.59).
These are evaluated using the shape variables V2, V4 and V6 of the fission saddle. f0 is as
defined by Eq. (2.93) above.

The Fig. 2.26 illustrates an example of �def for hot a fusion reaction, 48Ca + 243Am, as
an example. The solid line depicts the asymmetric deformation energy path, whereas the
corresponding symmetric path is denoted by the black dotted line. The asymmetric saddle
is denoted by the red dot beyond the spherical limit. Consequently, the �def of the fusion
saddle is determined using the prescription in Eqs. (2.111) and (2.110) denoted by the
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green dot on the symmetric deformation energy path. The point of hard contact B = 0 fm
is shown by a black point. Now that we have expressed the formalism for obtaining the
�def and its saddle values, we will proceed with the discussion of inner barrier evaluation.

Figure 2.26: Deformation potential energy surface for 291Mc along the symmetric fission
path (black dotted line) and the asymmetric fission path (blue solid line). The green point
denotes the fusion saddle. The red dot depicts the maximum of the asymmetric path. The
black point is the point of hard contact.

2.4.2.2 The Inner Barrier (B)

The height of the inner barrier B opposing fusion is evaluated as the difference between
the deformation potential energy at the fusion saddle, �sad

def , and that of the injection point,
�
inj
def. The injection point corresponds to the initial configuration of the colliding nuclei.

The inner barrier is given as

B = (�sad
def + �

sad
rot ) − (�

inj
def + �

inj
rot) = �sad

def − �
inj
def +

ℏ2ℓ (ℓ + 1)
2

(
1
Isad
− 1
Iinj

)
, (2.112)

where �sad
rot and �

inj
rot are the rotational energies at the fusion saddle and the injection points,

respectively. The Isad and Iinj are the moments of inertial at the saddle and the injection
point, respectively. The inner barrier is formed entirely due to the differences in the
macroscopic and rotational energies. To calculate the rotational energy at the injection
point (� inj

def), we adopt the rigid body moments of inertia [34]:

Iinj = `A2
inj +

2
5
"1'

2
1 +

2
5
"2'

2
2 . (2.113)

Here, Ainj = Binj + '1 + '2, and '1 and '2 are the individual radii of the projectile and
the target nuclei. "1 and "2 correspond to the masses of the projectile and the target
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nuclei, respectively. Binj represents the surface separation between the colliding nuclei at
the injection point. Within the model, the rotational energy of the fusion saddle (�sad

rot )
for the cold fusion reaction is determined using Eq. (2.113). Conversely, for hot fusion
reactions, the moment of inertia at the fusion saddle is calculated assuming an ellipsoidal
mono-nuclear configuration, as defined in Eq. (2.71) [34], using deformation parameters
from [69]. This completes the formalism necessary to compute the inner barrier within
the Fusion-by-Diffusion model.

2.4.2.3 Evaluation of the Temperature

The temperature T in Eq. (2.87) is the geometric mean of the temperatures at the injection
point (Tinj) and the saddle point (Tsad):

T =
√
Tsad × Tinj, (2.114)

where the temperatures at the injection and the saddle points are calculated as follows:

Tsad =

√
�∗ − �sad

def − �
sad
rot

0
, (2.115)

and

Tinj =

√
�∗ − � inj

def − �
inj
rot

0
, (2.116)

respectively. Here, �sad
rot and � inj

rot are the rotational energies at the saddle and injection
points, respectively. The level density parameter is approximated as 0 = �

8.5 MeV−1, where
� is the mass number of the compound nucleus. �∗ corresponds to the excitation energy
of the compound nucleus.

2.4.2.4 Test Case

This section details the formation probability calculations as described in the previous
sections. The first step is to evaluate the deformation potential energy surface (�def),
from which the inner barrier and the temperature are determined. For the test case, these
parameters are plotted as a function of separation distance. The curve labelled /CN =
108 in Fig. 2.25 illustrates the driving potential energy surface (�def) for the 58Fe + 208Pb
reaction without the rotational energies. From the deformation potential energy surface of
Fig. 2.25, the corresponding inner barrier B is evaluated with respect to the fusion saddle
(Bsad) as shown in the panel (a) of Fig. 2.27. As expected, the larger the initial surface
separation, the higher the inner barrier. This increase in inner barrier height with initial
surface separation translates into a decreasing formation probability, as shown in panel
(b) of Fig. 2.27. A special case is the injection exactly at the fusion barrier position, then
B=0, and the probability equals to 0.5 and it does not depend on temperature.

The black, blue, and red lines in panel (b) of Fig. 2.27 represent calculations for geometric
average temperatures of 0.8 MeV, 1.3 MeV, and 1.8 MeV, respectively. The impact of
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temperature on formation probability depends on where the system is initially injected
on the �def relative to the fusion saddle. For injections to the right of the fusion saddle
the system has to climb uphill over the fusion saddle, and then higher temperatures
increase the formation probability. However, for systems that are already "injected" or
positioned behind the barrier, lower temperatures are more favourable. This is because
higher temperatures increase thermal fluctuations, making it more likely for the system to
escape over the barrier which decreases the probability of fusion.

According to Eqs. (2.112) and (2.114), the inner barrier and the temperature are readily
evaluated provided the injection point distance is known. Hence, for a given system, we
need to evaluate the injection point distance to predict the compound nucleus formation
probability. Therefore, it remains an adjustable parameter in the model and has to be
evaluated using the existing experimental data. Attempts [81, 82, 82] have been made to
explain the physics behind it, and subsequently, phenomenological models are made to
predict it. See Section 2.5 for further details.

Figure 2.27: Inner barrier height for the 58Fe + 208Pb reaction as a function of initial
surface separation calculated without rotational energies. (b) Formation probability for
the same reaction as a function of initial surface separation is shown for three different
temperatures.

2.4.2.5 Phenomenologically Deduced Injection Point Distances (sdinj)

Modelling and subsequent optimisation of fitting parameters inherently require comparison
with experimental data. In this particular case, the model’s injection point distance
parameter Binj is determined by fitting the theoretical production cross sections (Eq. (2.2))
to the experimental excitation functions. This approach is necessary because the formation
probability is not directlymeasured quantity, making the production cross section a suitable
choice.

As previously mentioned, the theoretical production cross section is the product of capture
cross section, formation, and survival probabilities. If the ground state and fission saddle
properties are well-defined, then the capture cross section and survival probability could be
determined, leaving the formation probability as the sole remaining unknown. Therefore,
by tuning the Binj to reproduce the experimental data, one can obtain an insight into the
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formation step. This highlights the relevance of the Binj parameter as the key parameter that
can also compensate for any deficiencies in the overall modelling of the residue production
cross section.

Figure 2.28: Production cross section of 265Hs. Blue dots represent experimental
data [120], and the solid black line depicts the theoretical fit (with Binj = 2.36 fm) without
Kramers-Strutinsky and the collective enhancement of the level density (Eq. (2.2)). The
red dashed line shows the calculated cross section incorporating Kramers-Strutinsky cor-
rections and collective enhancement of the intrinsic level density evaluated with Binj = 2.36
fm. The reduced friction of the Kramers correction is taken 3 × 1021 s−1 and the shell
damping energy �d taken consistent with Eq. (2.61).

Fig. 2.28 illustrates the comparison between the theoretical model given in Eq. (2.2)
(black solid line) and experimental data (blue dotted lines) for the excitation function.
This is evaluated without Kramers-Strutinsky corrections and collective enhancement of
the level density. The goal is to adjust the theoretical simulation (black solid line) via the
Binj to reproduce the maximum of the experimental excitation function (blue points). In
this case, the optimum Binj value is 2.36 fm, representing the relative distance between
colliding nuclei after capture. Henceforth, we will refer to this phenomenologically
deduced injection point distance as Bdinj. In this analysis, the uncertainties associated with
the maximum production cross section are not considered. While the overall shape of the
cross section is reproduced, the theoretical optimum production energy is shifted to 1.2
MeV higher than the experiment.

If one matches the statistical survival probability to the dynamical limit by incorporating
the Kramers-Strutinsky factor and the collective enhancement of the intrinsic level density
(as shown by the red dashes in Fig. 2.28), the production cross section increases by a factor
of 1.85. To recover the original fit, the Bdinj parameter must be increased by approximately
8.5%. The viscosity parameter V is taken as 3 × 1021 s−1. Since the fission decay width
decreases with increasing V (see Fig. 2.17), one would expect the theoretical cross section
to increasewith V implying that Binj increaseswith V. However, as Binj serves as an umbrella
parameter that accounts for any deficiencies in the model, we will henceforth omit the
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impact of the Kramers-Strutinsky factor and collective enhancement of the intrinsic level
density in the fit procedure.

Similarly, for hot fusion reactions, where multiple neutrons are emitted, the theoretical
simulations are adjusted by tuning the Binj parameter to reproduce the maximum of each
channel’s excitation functions. Fig. 2.29 exemplifies how Bdinj is adjusted to match the
experimental production cross sections of the 2n, 3n, and 4n channels reaction in 48Ca+243

Am (shown as blue dots), respectively. The obtained Bdinj values are 3.7 fm, 1.2 fm, and
0.05 fm, respectively. In the 2n channel, there is only one experimental point, and the 3.7
fm serves as a lower limit. It is also important to note that the typical energy accuracy
of experimental data is ±2 MeV or more due to the usage of thick targets. The energy
uncertainties are not shown in the figure.

The decreasing tendency of the injection point distance with energy can be studied by
deducing the Bdinj for each Gn peak. The decreasing Bdinj tendency indicates increasing
formation probability with increasing beam energy. This effectively leads to an increase in
the fusion cross section, compensating for the typical decreasing tendencies in the survival
probability along the cascade, as shown in Fig. 2.16.

Figure 2.29: Production cross sections for 289Mc, 288Mc, and 287Mc in the 48Ca +243 Am
reaction. Experimental data are shown as blue dots, while the solid lines represent theor-
etical calculations. The panels (2n), (3n), and (4n) correspond to each channel’s excitation
function. The Bdinj values used for each fit are indicated on the graph. The experimental
data are taken from Ref. [33]. The figure does not show the energy uncertainties in the
experimental data (±2 MeV).

In conclusion, one should expect some variations in the deduced Bdinj values due to the input
parameters used in the theoretical simulation, such as the nuclear ground states and the fis-
sion saddle point properties. Since most of these parameters are unknown experimentally,
uncertainties in the simulated theoretical excitation functions are inevitable. For instance,
a 1 MeV change in the fission barrier induces a change of one to two orders of magnitude
in the production cross section [73]. Therefore, if the change in the fission barrier leads
to an increased cross section, the Bdinj value will be increased in the fit procedure, and vice
versa. Additionally, averaging the theoretical calculations over the target thickness can
affect the production cross section. This is due to the projectile’s energy loss within the
target, which tends to decrease the cross section.
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2.5 Parameterisation of Injection Point Distance (sinj)

It is apparent from the previous sections that one needs to parameterise the injection point
distance to make predictions related to the synthesis of super-heavy elements in the FbD
model. Wewill begin this section by presenting the default method used in the FbDmodel,
which is referred to as the linear approach (BLinj).

2.5.1 Linear Approach (sLinj)

In the linear approach, the injection distance (BLinj) is modelled as a linear function of the
excess energy in the centre of the mass frame above the Coulomb barrier (�cm − �0). �0
is the mean entrance channel barrier for the colliding nuclei, as given in Eq. (2.21). The
injection point distance function is given as:

BLinj = U × (�cm − �0) + V0, (2.117)

where U and V0 are the coefficients which are determined by fitting to a set of phenomeno-
logically deduced injection point distances (Bdinj) obtained using methods described in the
previous chapter.

The panel (a) of Fig. 2.30 illustrates the Bdinj values obtained for a set of 1n cold fusion
reactions. The different colours of the points denote the laboratories where the excita-
tion functions were measured: red for LBNL, black for GSI, and blue for RIKEN. The
regression line of the fit on the cold fusion is given as:

Bcold
inj = 0.878 fm − 0.294 × (�cm − �0) fm/MeV. (2.118)

A similar trendwas observed for hot fusion reactions using 48Ca on actinide targets ranging
from 242Pu to 249Cf [68] as shown in Fig. 2.30. Here, the line of best of fit is given by:

Bhot
inj = 3.291 fm − 0.196 × (�cm − �0) fm/MeV. (2.119)

Given the subtle differences between the FbD and Kewpie2 survival probabilities, the
parameterised injection distances cannot simply be applied in Kewpie2. Therefore, our
initial attempt is to obtain parameterisations for the same reaction data sets using Kewpie2
formalism.
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Figure 2.30: Systematics of injection point distance Binj. The points show the deduced
values of Binj, while the solid lines represent the linear fits to these data points. The shaded
region highlights ±1 fm corridor of the Binj, which is determined from careful examination
of the experimental data [68]. Panel (a) shows the data for 1n excitation functionsmeasured
for the cold fusion reactions using projectile-target combinations as shown on the graph.
Panel (b) shows calcium-48 induced hot fusion reactions with multiple neutron emission
channels. The figure from Ref. [68] contains references for the specified reactions listed
therein.

2.5.2 Optimising Injection DistanceModel Coefficients with Kewpie2

To optimise the coefficients of the injection distancemodel parameterisation in Eq. (2.117),
we would adopt the same set of reactions used in the references provided in Fig. 2.30 for
both cold and hot fusion reactions. The reactions used in the fit are listed inTables 2.2 and 2.3,
respectively. Here, we only focus on the one neutron emission channel for the cold fusion
reactions. As we would see later, the model does not quite describe the multiple neutron
emissions channels. Similarly, the set of Calcium-48 induced reactions is consistent with
what is presented in panel (b) of Fig. 2.30. Since this is the first time the compound nucleus
formation probability is evaluated within the Kewpie2, adopting a similar approach to the
FbD [68] allows us to establish the accuracy of the fits.

To fit the coefficients U and V0 of the injection distance function BLinj, the variable Bdinj
and �cm − �0 are taken as observation and the explanatory variables, respectively. These
variables are evaluated using the Kewpie2 code for each reaction channel individually as
described in the Subsection 2.4.2.5 with the following assumptions:
• The capture cross section is given by Eq. (2.5) and �0 is given by Eq. (2.21).
• The survival probability is evaluated as described in Subsections 2.3 without the
Kramers-Strutinsky and collective enhancement (KS-CE) factors andwith�d =

�
1
3

0.423 [108]
for the shell damping of the level density function. As already mentioned, the Bdinj depends
on the value chosen for the reduced friction coefficient (V) in the Kramers corrective factor,
which is arbitrarily chosen. Therefore, the KS-CE corrective factors are not considered in
the fit.
• The formation probability is given by Eq. (2.87) where Bdinj is treated as an adjustable
parameter.
• The �cm energy taken is the energy at which the calculated excitation function has its
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maximum. These settings of the Kewpie2 align closely with the FbD approach,

Table 2.2 presents data from cold fusion experiments conducted at GSI, LBNL, and
RIKEN laboratories. It includes essential information on fusion reactions, such as the
atomic numbers and masses of the projectile and target nuclei, the deduced injection
distance, and the excess energy in the centre of the mass frame. The columns labelled /2
and �2 represent the atomic number and mass number of the target nucleus, respectively,
and that of the projectiles are denoted (/1 and �1). The resulting compound nucleus from
the fusion of the projectile and the targets are given denoted /CN and mass number �CN
by their charge and target, respectively.

The �cm−�0 column provides the excess energy in the centre of themass frame, calculated
as the difference between the collision energy and the Coulomb barrier �0. The Bdinj column
presents the deduced injection distance, which refers to the effective surface separation
between the projectile and target nuclei at the injection point. The table also shows the
multiple neutron emission channels during the reaction.

Similarly, Table 2.3 presents hot fusion reaction data from experiments carried out at
Dubna, TASCA, and LBNL laboratories, which were used in the fitting process. The Ch
column indicates the neutron emission channels, where reactions such as 2n, 3n, 4n, or 5n
signify the emission of multiple neutrons.
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Table 2.2: Table of the cold fusion reaction data sets from GSI, LBNL, and RIKEN. sdinj
fm and �cm − �0 MeV represent the deduced injection point distance and excess energy
in the centre of mass frame, respectively. Column Refs. shows the references to the
experimental data.

Z1 A1 Z2 A2 ZCN ACN Refs. �cm − �0 (MeV) Bdinj (fm)
GSI

1n channel
22 50 82 208 104 258 [120] -6.195 4.07
22 50 82 208 104 258 [120] 1.805 2.71
22 50 83 209 105 259 [121] -6.731 4.05
22 50 83 209 105 259 [121] 1.269 3.93
24 54 82 208 106 262 [120] -5.789 3.07
24 54 83 209 107 263 [122] -6.024 3.23
24 54 82 208 106 262 [120] 2.211 2.56
24 54 83 209 107 263 [122] 2.976 2.64
26 58 82 208 108 266 [120] -4.987 2.36
26 58 83 209 109 267 [120] -4.917 2.08
28 62 82 208 110 270 [120] -4.342 1.44
28 64 82 207 110 271 [123] -1.956 0.93
28 64 82 208 110 272 [120] -0.971 1.35
28 64 83 209 111 273 [124] -1.198 0.89

2n channel
22 50 83 209 105 259 [121] 1.269 3.93
22 50 82 208 104 258 [120] 1.805 2.71
24 54 83 209 107 263 [122] 2.976 2.64
24 54 82 208 106 262 [120] 2.211 2.56
26 58 82 208 108 266 [120] 4.013 1.78

3n channel
22 50 83 209 105 259 [121] 6.269 3.51
22 50 82 208 104 258 [120] 7.805 1.50
24 54 82 208 106 262 [120] 10.211 2.10

LBNL
1n channel

22 50 82 208 104 258 [125] -6.195 3.40
22 48 82 208 104 256 [125] -11.34 4.35
24 52 82 208 106 260 [126] -9.068 3.46
24 54 83 209 107 263 [122] -6.024 2.87
25 55 82 208 107 263 [127] -8.204 2.41
24 52 83 209 107 261 [128] -8.796 3.28
26 56 82 208 108 266 [129] -7.776 2.52
27 59 82 208 109 267 [130] -7.536 1.67
28 64 82 208 110 272 [131] -0.971 1.53
29 65 82 208 111 273 [132] -3.460 0.89
23 51 82 208 105 259 [133] -8.174 3.76
22 50 83 209 105 259 [133] -6.731 3.95

2n channel
22 50 83 209 105 259 [133] 1.269 4.47
22 50 82 208 104 258 [125] 1.805 2.51
22 48 82 208 104 256 [125] -2.340 4.03
24 52 82 208 106 260 [128] -1.068 3.43
24 54 83 209 107 263 [122] 2.976 2.27
25 55 82 208 107 263 [127] 0.796 2.27
23 51 82 208 105 259 [133] -1.174 3.72

RIKEN
1n channel

28 64 82 208 110 272 [134] -0.971 1.32
28 64 83 209 111 273 [135] -1.198 0.91
30 70 82 208 112 278 [136] 1.004 0.57
30 70 83 209 113 279 [35, 137] 1.167 0.11
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Table 2.3: Table of the hot fusion reaction data set with 48Ca projectile fromDubna, Tasca,
and LBNL. sdinj fm and �cm − �0 MeV represent the deduced injection point distance and
excess energy in the centre of mass frame, respectively. Column Ch shows the reaction
channel. Column Refs. list the references to experimental data.

Z2 A2 ZCN ACN Ch Refs. �cm − �0 (MeV) Bdinj (fm)
DUBNA

94 242 114 290 3n [138] 1.996 1.9
94 242 114 290 4n [138] 9.996 -1.75
94 242 114 290 2n [138] -6.004 3.85
94 244 114 292 3n [139] -0.491 3.9
94 244 114 292 4n [139] 7.509 1.3
94 244 114 292 5n [139] 16.509 -1.05
95 243 115 291 2n [140] -4.078 3.7
95 243 115 291 3n [140] 2.922 1.7
95 243 115 291 4n [140] 10.922 0.05
96 245 116 293 2n [141] -3.511 3.6
96 245 116 293 3n [141] 4.489 2.0
96 245 116 293 4n [141] 12.489 0.75
96 248 116 296 3n [142] -0.507 3.3
96 248 116 296 4n [142] 8.493 0.95
97 249 117 297 3n [143] 0.096 3.05
97 249 117 297 4n [143] 9.096 0.9
98 249 118 297 3n [144] 6.832 1.8

TASCA
94 244 114 292 3n [145] 1.996 1.9
94 244 114 292 4n [145] 9.996 -1.75
96 248 116 296 3n [146] 7.509 1.3
96 248 116 296 4n [146] 16.509 -1.05
97 249 117 297 3n [147] -0.491 3.9

LBNL
94 242 114 290 3n [148] 1.996 1.9
94 242 114 290 4n [148] 9.996 -1.75
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2.5.3 Fit Results

This section presents the results of the fit of the linear approach for the injection point
distance (Eq. (2.117)) to the data obtained for cold and hot fusion reactions listed in the
Tables 2.2. As indicated by Eq. (2.117), the goal is to determine the coefficients U and
V0 using the deduced injection point distance Bdinj as the response variable and the excess
energy above the Coulomb barrier (�cm − �0) as the explanatory variable to optimise V0
and U.

2.5.3.1 Results for Cold Fusion Data Set

Applying the linear regression techniques to the cold fusion reactions data set (Table 2.2)
gives optimized parameters valuesU = (−0.318±0.041) fm/MeVand V0 = (0.767±0.242)
fm:

BLinj = −0.318 × (�cm − �0) + 0.767. (2.120)

The current fit result is similar to what is obtained in the literature and stated in Eq. (2.118)
and is presented in panel (a) of Fig. 2.31.

Importantly, the R-squared and the root mean squared error (RMSE) of the fit are 0.71 and
0.66 fm, respectively. The R-squared value indicates that the model can explain 71% of
the variance in the data, suggesting a reasonably good fit. However, the remaining 29% of
the variance is unexplained, implying the model doesn’t capture all factors influencing the
injection point distance. The RMSE quantifies the average deviation between predicted
and observed values, measuring the model’s accuracy. A lower RMSE indicates better
model performance.

Figure 2.31: The deduced injection point distances, Bdinj, shown as a function of (�cm −
�0). (a) Cold fusion reaction data where the markers colours depict the laboratories:
black for LBNL, blue for GSI, and red for RIKEN at which the corresponding excitation
functions were obtained. The solid line depicts the optimised linear parameterization
given by Eq. (2.120). (b) Hot fusion reaction data, where, the red, blue and green markers
correspond to experimental data from Dubna, Tasca and LBNL, respectively. The solid
line depicts the calculations using (2.121).
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2.5.3.2 Results for Hot Fusion Data Set

For the hot fusion reactions data set (shown in Table 2.3), the optimized parameters U and
V0 are (−0.258 ± 0.025) fm/MeV and (2.883 ± 0.184) fm, respectively. The line of best
fit is stated as

BLinj = −0.258 × (�cm − �0) + 2.883, (2.121)

which is similar to what is obtained in Eq. (2.119) and is presented in panel (b) of Fig. 2.31.
The R-squared of the fit is 0.83, an improvement over the cold fusion fit. The RMSE is
0.70 fm, a slight increase compared to the cold fusion data.

In conclusion, the linear model approach BLinj for estimating injection point distance ob-
tained within Kewpie2 is consistent with previous studies, particularly in reproducing the
results of Ref. [68].

2.5.4 Evaluation of the Compound Nucleus Formation Probability

Now that we have established the compound nucleus formation probability consistent with
the FbD approach, we can evaluate the formation probability. In this case, we will use a
definition of the average formation probability given as [68]:

〈%CN(�cm)〉 =
1

(ℓmax + 1)2
ℓmax∑
ℓ=0
(2ℓ + 1) × %fus(�cm, ℓ). (2.122)

where ℓmax is the maximum angular momentum contributing to the capture process (in the
sharp cut-off approximation) obtained by inverting the formula

fcap =
c

:2 (ℓmax + 1)2 , (2.123)

where the fcap is the capture cross section given by Eq. (2.16), and the : is the wave
number as defined previously.

The panels (a) and (b) of Fig. 2.32 illustrate the average formation probabilities (brown
lines) for the reactions 58Fe +208 Pb and 48Ca +243 Am, respectively. These are evaluated
using the injection point distance parametrisations given by Eqs. (2.120) and (2.121) for
cold and hot fusions, respectively. The calculations are compared with independent calcu-
lations from Ref. [68] using the parameterisations given by Eqs. (2.118) and (2.119). The
comparisons are made to check the accuracy of implementing the formation probability
in the Kewpie2 code and the FbD limits and the quality of the Binj fit.

The calculations in panel (a) compare well with the FbD calculations for the cold fusion
reaction; however, there is a deviation for the hot fusion reaction, as shown in panel (b).
As described in Section 2.3, the discrepancies between the models are expected due to the
differences in the choice of neutron inverse capture cross sections, level density functions,
and level density parameters. The impact of these parameters is less noticeable at the
one-neutron emission but becomes pronounced along the cascade.
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Figure 2.32: Average compound nucleus formation probabilities as a function of (�cm) for
(a) the cold fusion reaction of 58Fe+208 Pb and (b) the hot fusion reaction of 48Ca+243 Am.
The blue dashed lines show independent calculations from the FbD code [68]. The brown
solid line represents the calculations from the present fit of the Binj within the Kewpie2
code.

Furthermore, in these calculations, the injection point distances are restricted to the positive
values, i.e., Binj ≥ 0. This gives rise to the plateau, or the saturation of the formation
probability with increasing energy. The restriction of Binj to non-negative values may not
be universally valid, as some phenomenologically deduced Binj values (given in Table 2.3)
for hot fusion reactions are negative. However, extrapolation into energies beyond the
energies considered in the fits (shown in the Tables 2.2 and 2.3) has to be taken with
caution. This case will be later discussed in Chapter 4.

Finally, the panels (a) and (b) of Fig. 2.33 illustrate the capture, fusion, and evaporation
residue cross sections of the reactions 58Fe +208 Pb and 48Ca +243 Am, respectively. The
solid black lines labelled fcap correspond to the capture cross sections. This overlaps with
the blue dashed lines obtained with the FbD model because the same coefficients of the
capture cross sections are adopted in both codes. The curves labelled ffus correspond
to the fusion cross sections evaluated as the product of the capture cross section and
the average formation probability given by Eqs. (2.16) and (2.122), respectively. The
solid brown lines show the EvR cross section calculations with the current version of the
Kewpie2 code.
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Figure 2.33: Comparison of theoretical and experimental cross sections for the reactions
58Fe + 208Pb and 48Ca + 243Am. The panels (a) and (b) illustrate the capture (fcap), fusion
(ffus), and residue production cross sections. The solid black lines represent the capture
cross sections fcap, which coincide with the blue dashed lines from the independent FBD
calculations. The solid brown lines and blue dashed lines labelled ffus depict fusion
cross section calculations using the current version of the Kewpie2 code and independent
FBD calculations, respectively. The black dots in panel (a) are the excitation function of
208Pb(58Fe,1n)265Hs [120] while the blue, red, and black dots correspond to 2n, 3n, and 4n
channels for 243Am(48Ca,Gn)291−GMc [33]. The solid lines correspond to the theoretical
excitation functions. The theoretical ground state and saddle properties are taken from
Ref. [69]. The arrows correspond to the mean Coulomb barrier.

Finally, the theoretical residue production cross sections are evaluated only within the
Kewpie2 model, and the results are compared with the experimental data. The experi-
mental data on the 208Pb(58Fe,1n)265Hs and 243Am(48Ca,Gn)291−GMc (G = 2, 3, 4) are taken
from Refs. [120] and [33], respectively. In both cases, the experimental cross sections are
reproduced except for the optimum bombarding energies, which are 1.2MeV shifted in the
208Pb(58Fe,1n)265Hs case. These discrepancies are attributed to the theoretical input data,
such as the ground state and saddle properties, masses, and fission barriers used in the
calculations. Since these nuclear properties are not precisely known in these regions, these
shifts in the optimum energies can be expected. Moreover, the experimental uncertainty
in the energy determination of the data is usually of the order of ±2 MeV due to the usage
of thick targets.
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2.5.5 Some Challenges with the Binj Parameterisation

The cold fusion systematic in Fig. 3.3 does not account for two and three neutron emission
channels. This is because the inclusion of these channels leads to a very low correlation
between the phenomenologically deduced injection point distances (Bdinj) and the excess
energy (�cm − �0) as illustrated in Fig. 2.34.

The figure shows the deduced values Bdinj for 1n (dot), 2n (star) and 3n (triangle) neutron
emission channels in reactions with lead and bismuth targets. As shown in the figure, the
combined data exhibit poor correlations between the Bdinj and (�cm − �0) and therefore,
the linear parameterisation cannot be applied. These challenges will be later addressed in
Chapter 3.

Figure 2.34: Deduced injection point distance as a function of the excess energy above the
Coulomb barrier for one (black dots), two (blue stars) and three (brown triangle) neutron
emission channels. The data is obtained from the reactions presented in Table 4.2.
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2.6 Conclusion

The main focus of this thesis is to enhance the modelling capabilities of the Kewpie2
numerical code and to describe the production cross sections of super-heavy elements
formed through fusion evaporation reactions. The reaction mechanism is modelled in
three sequential steps: captured cross section, formation probability, and survival probab-
ility. The capture and survival probability models readily apply to super-heavy elements,
providing the nuclear ground state and saddle point properties.

The capture cross section, discussed in Section 2.1, represents the initial stage where the
colliding nuclei surpass the Coulomb barrier. In this study, we utilized the Empirical
Barrier Distribution (EBD) consistent with the Fusion-by-Diffusion (FbD) approach. The
EBD model is a semi-empirical model that is simple to evaluate yet has a good predictive
power (see Fig. 2.4). The discussion on the capture cross section is followed by presenting
the formalism of the survival probability in Section 2.2. Here, we utilized the standard
statistical model of the atomic nucleus. The fine details were compared with the FbD
simulations. The results reveal that switching between level density formalisms can
significantly alter the survival probability, especially at high energies. Selection of the
damping parameters is also important. Additionally, an energy-dependent geometric
neutron capture cross section (default in Kewpie2) is shown to slightly enhances the
survival probability at high energies compared to the energy-independent version (default
in FbD). These are the two main subtle differences between the current Kewpie2 and FbD
modelling of the survival probability.

Additionally, we also investigated the impact of Kramers-Strutinsky (KS) refinement of
the Bohr-Wheeler fission decay rate and the collective enhancement (CE) of the intrinsic
level density on survival probability within Kewpie2. It was observed that KS enhances
the survival probability by decreasing the fission decay width (see Fig. 2.18), while CE
reduces it. The model is tested on heavy nuclei synthesis reactions for which the formation
probability is close to one (reactions without hindrance). The model accurately describes
the maximum amplitudes of the residue cross sections by adjusting the shell damping
parameter. Incorporating KS-CE introduces the reduced friction (V) as another free
parameter of the model.

Finally, we present the framework for the compound nucleus formation probability at the
overdamped limit of the Langevin-type equation. The formation step is implemented in a
manner consistent with the Fusion-by-Diffusion model by adopting the same parameter-
ization of the inner barrier around the fusion saddle and by fitting the free parameter of
the model: the injection point distance. The results from current calculations are com-
pared with sample calculations from the FbD model and experimental data. The results
agree with the FbD and the experiments, highlighting the seamless formation probability
implementation.
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Chapter 3

Revisiting the Dynamics of the
Formation Probability

In the previous chapter, we implemented in the Kewpie2 model the compound nucleus
formation probability within the overdamped limit of the Langevin formalism, consistent
with the Fusion-by-Diffusion (FbD) evaluation in Ref. [68]. We have also adopted the
FbD model’s linear parameterisation of the injection point distance (Binj), which is the
adjustable parameter in the model, and optimised it for the Kewpie2 code. Here, the Binj
is parameterised as a linear function of �cm − �0, the excess energy in the centre of the
mass frame above the mean entrance channel barrier. The Bdinj distances were deduced by
analysing excitation functions. The general trend is that Binj has an inverse relation with
increasing energy in the centre of mass frame (see Fig. 2.30), and the heavier projectiles
and targets combinations require shorter injection point distances, to form a compound
nucleus.

The linear fit provided a good description of the data, yielding '2 scores of approximately
0.71 and 0.83 for the cold and hot fusion data, respectively. Although these are statistic-
ally satisfactory descriptions, we must consider whether improvements are possible, given
that the injection distance is a critical parameter in the FbD modelling, especially for
accurately reproducing and predicting production cross sections. Beyond reproducing the
production cross sections, is there more to the dynamics that could be learned? To address
these questions, we will revisit the dynamics of compound nucleus formation within the
Langevin formalism. This study led to a new approach to the injection distance parameter-
ization [81, 82] from a different perspective consistent with the Langevin formalism from
the default linear approach.

This chapter is organised as follows: Section 3.1 is dedicated to presenting the modelling
of the new injection distance parametrization. Here, the parameters of the new approach
are fitted on both cold and hot fusion reaction data. The predictive power of the new
injection point distance is compared with the linear approach (FbD approach). To improve
the modelling, Subsections 3.1.5 and 3.1.6 explore the mass asymmetry and Coulomb
parameter as possible explanatory features that could potentially improve the overall fit.
Subsection 3.1.7 attempted to explain cold and hot fusion data with one parameterization
of the injection point distance.
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Furthermore, we introduced angular momentum treatment in the injection point distance
(Binj) as illustrated in Section 3.2. The fitting parameters of the injection point distance
are re-optimised using a new technique described in Section 3.3. In all of these fits, the
theoretically predicted production cross sections are compared with the experiment data
to check the quality of the fit as shown in Sections 3.4 and 3.5.

3.1 New Approach to Injection Point Distance Paramet-
risation (BNinj)

As discussed earlier, the nuclear shape transition from capture (di-nuclear shape) to a
spherical compound nucleus involves several dynamical variables. These variables can be
classified as slow (() or fast (�) collective variables, depending on their rate of evolution
in the dynamics. The fast and slow variables are coupled via the friction tensor, hence the
rapid evolution of the fast collective variables is expected to alter the initial conditions of
the slower ones. Due to this phenomenon, one can investigate the impact on the initial
condition of the slow variables when the fast variables are eliminated. This allows us to
gain insight into the impact on the dynamics of the selection of a single effective variable
as used in the overdamped limit (Eq. (2.4.1)).

To begin, the multidimensional Langevin equation describing the dynamics of the collect-
ive variables is given as [81, 82]:
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where, � and ( are the set of =f and =s dimensional fast and slow collective variables,
respectively. The collective variables are coupled via the coupling matrices � 5 B and �B 5 .
� 5 and �B represent their corresponding drift matrices. The auto-correlation functions
of the random forces are defined consistent with the dissipation-fluctuation theorem:[
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For simplicity, we consider a symmetric reaction where the transition to a spherical
compound nucleus is described by two collective variables: the neck (n) and the surface
separation (s) [81, 82]. The neck (n), neck velocity ¤n , and the initial surface velocity ( ¤B)
are considered fast variables due to their rapid evolution and convergence in the dynamics.
The surface separation (B) is considered a slow variable since it ultimately determines
the final fate of the system. With these assumptions, the dynamics of the system can be
described by a set of coupled Langevin equations along a parabolic potential:

¥n + Vnn ¤n + Vn B ¤B + l2
n n = An (C), (3.3)

¥B + VBB ¤B + VBn ¤n − l2
B B = AB (C). (3.4)

The variables are considered coupled via the friction tensors VBn and Vn B. The ln and
lB are the angular frequency that defines the parabolic well and barrier of the neck and
surface separation, respectively.
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The aim is to solve the coupled Langevin Eqs. (3.3) and (3.4) which enters into Eq. (3.1)
as:

3

3C


¤n
n

¤B
B

 =

−Vnn −l2

n −Vn B 0
1 0 0 0
−VBn 0 −VBB +l2

B

0 0 1 0



¤n
n

¤B
B

 +

An (C)

0
AB (C)

0

 , (3.5)

at the overdamped limit. Considering all the above assumptions, the Eqs. (3.3) and (3.4)
converges into one-dimensional Smoluchowsky equation:

¤B −
l2
B

Vss
B =

1
Vss
AB (C), (3.6)

but with a shift of the initial condition B0 of B due to coupling between it and the fast
collective variables. The new initial condition in B after eliminating the fast ones is given
as:

S0 = B0 +
VBn

Vss
n0 +

¤B0
Vss
. (3.7)

In this context, the term VBn
Vss
n0 represents the impact of eliminating the neck. This positive

term indicates that eliminating the neck tends to increase the B0 or induce slip of the initial
condition in the opposite direction relative to the fusion saddle. The term ¤B0

Vss
is the slip

in initial surface separation B0 due to eliminating the initial velocity. This negative term
favours a reduction in B0 when all remaining kinetic energy is not thermalised [81, 82].
Therefore, Eq. (3.7) highlights the bridge between the undamped Langevin equation in
Eq. (3.4) and the strong friction limit in Eq. (3.6).

The initial velocity ¤B0 is determined by evaluating the remaining kinetic energy  rem(�, 1)
at capture [81, 82]:

 rem(�, 1) = �cm − � −
12

'2
�

�cm, (3.8)

where � and 1 are the Coulomb barrier height and the impact parameter. From Eq. (3.8),
the remaining kinetic sum over all impact parameters and Coulomb barriers within the
framework of the empirical Gaussian barrier distribution is obtained as [81, 82],

〈 〉rem =
√

2
c
f�

√
c

4
(
2X2 + 1

)
(1 + erf(X)) + -

2 exp(−X
2)

X (1 + erf(X)) + 1√
c
exp(−X2)

, (3.9)

where X(�cm) = �cm−�0√
2fB

. As defined previously in Eq. (2.17), all parameters remain the
same. The remaining kinetic energy, 〈 〉rem as a function of energy parameter, X(�cm) is
shown in Fig. 3.1. The figure shows that the average remaining kinetic increases rapidly
for energies above the Coulomb barrier, contrary to the behaviour below the barrier.
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Figure 3.1: The average remaining kinetic in a unit of fB as function of X(�cm). The
figure is reproduced from the Ref. [81, 82].

Now that we have established the formalism of calculating the remaining kinetic energy,
the shifted initial condition in Eq. (3.7) can be restated as,

BNinj = B0 −
2

Vss

√
2〈 〉rem
`22 , (3.10)

where the term VBn
Vss
n0 from eliminating the neck is absorbed into B0. Here, ` represents the

reduced mass of the colliding nuclei, 2 is the speed of light, and 〈 〉rem is the remaining
kinetic energy. Given thatwe have absorbed the slip VBn

Vss
n0 into B0, the parameters remaining

to evaluate BNinj are B0 and Vss.

Figure 3.2: The sinj point distance as a function of excess energy over the Coulomb barrier
in the centre of the mass frame. Here, the parameters B0, Vss and ` are arbitrarily set to 6
fm, 2× 1021 s−1 and 40 u, respectively. The brown and red dashed lines correspond to f�
equals 4 MeV and 3 MeV, respectively, whereas the solid line denotes f� = 2 MeV. The
figure is reproduced from the Ref. [81, 82].
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For arbitrary values of B0 = 6 fm and Vss = 2 × 1021 s−1 one can visualise the tendency
of Eq. (3.10) as a function of excess energy in the centre of the mass frame, as shown in
Fig. 3.2. Fig. 3.2 exhibits two characteristics at the energies below and above the mean
Coulomb barrier �0. Below the barrier, Binj takes different values for the barrier widths
and converges at higher energies. This implies that Binj is sensitive to the barrier widths
and the straight line fit adopted in the Ref. [68], which is repeated in the Section 2.5 is
insufficient to evaluate the injection point distance for cold systems. This is because Binj
will take different values for different systems at the same energy due to different barrier
widths. However, the linear fit and the current model are expected to converge at higher
energies, as evident in Fig. 3.2. This will be investigated when the parameters of both
linear and new models are adjusted to the experiment.

Having discussed the new formalism of the injection point distance modelling (BNinj), we
now turn to adjust the coefficients to match experimental data. The strategy is the same as
in Chapter 2, where deduced injection point distances were used in the linear fit procedure.

3.1.1 Optimising Injection Distance Model Coefficients

Similar to what was done in Section 2.5, we will adopt the same set of reactions as used
in the linear fit. For completeness, the reactions are restated as shown in the Tables 3.1
and 3.2 for cold and hot fusion, respectively with their respective deduced injection point
distances (Bdinj) and �cm − �0 values. The energy excess �cm − �0 is used to evaluate the
average remaining kinetic energy (〈 〉rem) and the surface separation velocity ( ¤B0):

¤B0 = −2

√
2〈 〉rem
`22 . (3.11)

All variables are defined in Eq. (3.10). The variables Bdinj and �cm − �0 are the same as in
the linear fit (Eq. (2.117)).

In order to apply the regression technique to fitting B0 and Vss, Eq. (3.10) can be rewritten
as,

BNinj = V0 + V1G1. (3.12)

In this context, V1 is equal to 1
Vss
, the intercept V0 corresponds to the B0. G1 stands for the

surface separation velocity defined by Eq. (3.11). The uncertainties in BNinj predictions are
derived by propagating the uncertainties of optimised B0 and Vss onto it:

D2(BNinj) = D
2(B0) +

(
2

V2
ss

√
2〈 〉rem
`22

)2

D2(Vss),

+ 2
2

V2
ss

√
2〈 〉rem
`22 D(B0, Vss).

(3.13)

The first and the second terms are the uncertainty contribution due to B0 and the Vss,
respectively. The last term is the contribution from the correlation between the parameters
B0 and the Vss. Furthermore, we will explore mass asymmetry and the Coulomb parameter
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as explanatory features in the fitting parameters of themodel. These features are considered
to potentially improve the BNinj. These extra features are shown for the respective reactions
in the Tables 3.1 and 3.2.
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Table 3.1: Table of the cold fusion reaction data set from GSI, LBNL, and RIKEN. Δ
denotes the projectile-target mass asymmetry. sdinj fm, and �cm − �0 MeV represent the
deduced injection distance and excess energy in the centre of mass frame, respectively,
obtained by adjusting Eq. (2.2) to the experimental data. I is the coulomb parameter, ¤B0
fm/s is the surface shift velocity. The references to the experimental data are indicated in
Table 2.2.

/p �p /t �t /CN �CN Δ �cm − �0 (MeV) I ¤B0 (fm/s) Bdinj (fm)
GSI

1n channel
22 50 82 208 104 258 0.612 -6.195 187.740 -2.847e+21 4.07
22 50 82 208 104 258 0.612 1.805 187.740 -3.855e+21 2.71
22 50 83 209 105 259 0.614 -6.731 189.842 -2.821e+21 4.05
22 50 83 209 105 259 0.614 1.269 189.842 -3.792e+21 3.93
24 54 82 208 106 262 0.588 -5.789 202.787 -3.134e+21 3.07
24 54 83 209 107 263 0.589 -6.024 205.060 -3.138e+21 3.23
24 54 82 208 106 262 0.588 2.211 202.787 -4.072e+21 2.56
24 54 83 209 107 263 0.589 2.976 205.060 -4.201e+21 2.64
26 58 82 208 108 266 0.564 -4.987 217.643 -3.327e+21 2.36
26 58 83 209 109 267 0.566 -4.917 220.084 -3.359e+21 2.08
28 62 82 208 110 270 0.541 -4.342 232.321 -3.298e+21 1.44
28 64 82 207 110 271 0.528 -1.956 231.557 -3.481e+21 0.93
28 64 82 208 110 272 0.529 -0.971 231.335 -3.582e+21 1.35
28 64 83 209 111 273 0.531 -1.198 233.933 -3.579e+21 0.89

2n channel
22 50 83 209 105 259 0.614 1.269 189.842 -3.792e+21 3.93
22 50 82 208 104 258 0.612 1.805 187.740 -3.855e+21 2.71
24 54 83 209 107 263 0.589 2.976 205.060 -4.201e+21 2.64
24 54 82 208 106 262 0.588 2.211 202.787 -4.072e+21 2.56
26 58 82 208 108 266 0.564 4.013 217.643 -4.370e+21 1.78

3n channel
22 50 83 209 105 259 0.614 6.269 189.842 -4.636e+21 3.51
22 50 82 208 104 258 0.612 7.805 187.740 -4.908e+21 1.50
24 54 82 208 106 262 0.588 10.211 202.787 -5.337e+21 2.10

LBNL
1n channel

22 50 82 208 104 258 0.612 -6.195 187.740 -2.847e+21 3.40
22 48 82 208 104 256 0.625 -11.34 188.718 -2.483e+21 4.35
24 52 82 208 106 260 0.600 -9.068 203.779 -2.741e+21 3.46
24 54 83 209 107 263 0.589 -6.024 205.060 -3.138e+21 2.87
25 55 82 208 107 263 0.582 -8.204 210.733 -3.026e+21 2.41
24 52 83 209 107 261 0.602 -8.796 206.062 -2.787e+21 3.28
26 56 82 208 108 266 0.576 -7.776 218.648 -2.924e+21 2.52
27 59 82 208 109 267 0.558 -7.536 225.504 -3.071e+21 1.67
28 64 82 208 110 272 0.529 -0.971 231.335 -3.582e+21 1.53
29 65 82 208 111 273 0.524 -3.460 239.098 -3.472e+21 0.89
23 51 82 208 105 259 0.606 -8.174 195.777 -2.742e+21 3.76
22 50 83 209 105 259 0.614 -6.731 189.842 -2.821e+21 3.95

2n channel
22 50 83 209 105 259 0.614 1.269 189.842 -3.792e+21 4.47
22 50 82 208 104 258 0.612 1.805 187.740 -3.855e+21 2.51
22 48 82 208 104 256 0.625 -2.340 188.718 -3.336e+21 4.03
24 52 82 208 106 260 0.600 -1.068 203.779 -3.551e+21 3.43
24 54 83 209 107 263 0.589 2.976 205.060 -4.201e+21 2.27
25 55 82 208 107 263 0.582 0.796 210.733 -3.957e+21 2.27
23 51 82 208 105 259 0.606 -1.174 195.777 -3.480e+21 3.72

RIKEN
1n channel

28 64 82 208 110 272 0.529 -0.971 231.335 -3.582e+21 1.32
28 64 83 209 111 273 0.531 -1.198 233.933 -3.579e+21 0.91
30 70 82 208 112 278 0.496 1.004 244.867 -3.763e+21 0.57
30 70 83 209 113 279 0.498 1.167 247.619 -3.802e+21 0.11
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Table 3.2: Table of the 48Ca induced hot fusion reaction data set from Dubna, Tasca,
and LBNL. Column Ch shows the reaction channel. Δ denotes the projectile-target mass
asymmetry. sdinj fm and �cm − �0 MeV represent the deduced injection distance and
excess energy in the centre of mass frame, respectively, obtained by fitting Eq. (2.2) to the
experimental data. I is the coulomb paramter, ¤B0 fm/s is the surface shift velocity. The
references to the experimental data are indicted in the Table 2.3.

/t �t /CN �CN Ch Δ �cm − �0 (MeV) I ¤B0 (fm/s) Binj (fm)
DUBNA

94 242 114 290 3n 0.669 1.996 190.555 -4.414e+21 1.9
94 242 114 290 4n 0.669 9.996 190.555 -5.621e+21 -1.75
94 244 114 292 3n 0.671 -0.491 190.225 -4.090e+21 3.9
94 244 114 292 4n 0.671 7.509 190.225 -5.220e+21 1.3
94 244 114 292 5n 0.671 16.509 190.225 -6.672e+21 -1.05
95 243 115 291 2n 0.670 -4.078 192.415 -3.716e+21 3.7
95 243 115 291 3n 0.670 2.922 192.415 -4.561e+21 1.7
95 243 115 291 4n 0.670 10.922 192.415 -5.782e+21 0.05
96 245 116 293 2n 0.672 -3.511 194.105 -3.840e+21 3.6
96 245 116 293 3n 0.672 4.489 194.105 -4.832e+21 2.0
96 245 116 293 4n 0.672 12.489 194.105 -6.062e+21 0.75
96 248 116 296 3n 0.676 -0.507 193.607 -4.174e+21 3.3
96 248 116 296 4n 0.676 8.493 193.607 -5.427e+21 0.95
97 249 117 297 3n 0.677 0.096 195.457 -4.269e+21 3.05
97 249 117 297 4n 0.677 9.096 195.457 -5.534e+21 0.9
98 249 118 297 3n 0.677 6.832 197.472 -5.253e+21 1.8
94 242 114 290 2n 0.669 -6.004 190.555 -3.502e+21 3.85

TASCA
94 244 114 292 3n 0.669 1.996 190.555 -3.971e+21 1.9
94 244 114 292 4n 0.669 9.996 190.555 -5.220e+21 -1.75
97 249 117 297 3n 0.671 -0.491 190.225 -4.269e+21 3.9
96 248 116 296 3n 0.671 7.509 190.225 -4.174e+21 1.3
96 248 116 296 4n 0.671 16.509 190.225 -5.427e+21 -1.05

LBNL
94 242 114 290 3n 0.669 1.996 190.555 -4.414e+21 1.9
94 242 114 290 4n 0.669 9.996 190.555 -5.621e+21 -1.75
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3.1.2 Fit Results

Here, we present the results of fitting the new injection distance formula (Eq. 3.10) to the
cold and hot fusion reaction data. As mentioned, the goal is to determine the coefficients
B0 and Vss using the deduced injection point distances Bdinj.

3.1.2.1 Results for Cold Fusion Reaction Data

The optimised parameters of B0 and Vss from the regression model of Eq. (3.12) for the
cold fusion reaction data are B0 = (12.478 ± 0.785) fm and Vss = (0.314 ± 0.024) × 1021

s−1. The covariance between the fitted parameters D(B0, Vss) = −1.87 × 1019 fm/s.

The relative uncertainty in the obtained B0 and Vss are 0.06 and 0.80, respectively, which
implies B0 is better determined compared to Vss on the data set. The new injection distance
formula with the optimised parameters B0 and Vss is stated as,

BNinj = 12.478 − 2

0.314 × 1021

√
2〈 〉rem
`22 , (3.14)

and the corresponding linear model as defined in the previous Chapter 2 is restated here
for comparison:

BLinj = −0.318 × (�cm − �0) + 0.767. (3.15)

Figure 3.3: The deduced injection point Bdinj vs (�cm − �0). The black, blue, and red
markers depict the laboratories: black for LBNL, blue for GSI, and red for RIKEN, at
which the corresponding excitation functions were obtained. The brown points with the
uncertainty bars are the BNinj values obtained with Eq. 3.14. The solid line depicts the linear
approach in Eq. (3.15).

77



3 Revisiting the Dynamics of the Formation Probability Fit Results

The injection distance model predictions
(
sNinj ± D(s

N
inj)

)
on the various reactions are sum-

marised in the Table B.1 whereas, Fig. 3.3 illustrates how the predicted values compare
with the Bdinj values. Here, the red dots correspond to the values obtained using Eq. (3.14).
Each different symbol represents a specific reaction, with the corresponding reaction indic-
ated on the plot. The fluctuations as seen in the predicted Binj stemmed from the variations
in the Coulomb barrier width fB (given by Eq.( 3.9)) with the projectile-target combin-
ations. The solid black line depicts the predictions from the linear model (Eq. (3.15))
while the brown dotted line represents the predictions from the new approach, BNinj. The
uncertainty bars associated with the predictions are determined using Eq. (3.13).

3.1.2.2 Results for Hot Fusion Reaction Data

Similarly, the optimised parameters B0 and Vss for the hot fusion reaction data presented
in the Table 3.2 are (10.572 ± 0.929) fm and (0.550 ± 0.057) × 1021 s−1, respectively.
The covariance between the B0 and the Vss is obtained as −5.244× 1019 fm/s. The relative
uncertainties in the optimised parameters B0 and Vss are 0.09 and 0.1, respectively. In
contrast to the cold fusion data, Vss is better optimised and the relative uncertainty in B0 is
similar to the one obtained for the cold fusion reaction data set.

The BNinj with the optimised parameters is stated as,

BNinj = 10.572 − 2

0.550 × 1021

√
2〈 〉rem
`22 , (3.16)

and the linear fit is,
BLinj = −0.258 × (�cm − �0) + 2.883. (3.17)

Similarly, Table B.2 summarizes the results for the hot fusion reaction data presented in
Table 3.2. As with the cold fusion reaction data, the deduced injection point distances are
plotted against the excess energy in the centre of mass frame, (�cm − �0) as illustrated in
Fig. 3.4. Here, the hot fusion reaction data exhibits less variance in the deduced injection
point distances than the cold fusion reaction data set, except for two reactions that deviate
significantly from the fit.

This reduced variance likely stems from the use of a single projectile (48Ca) in the hot
fusion reactions, in contrast to the wider range of projectiles used in the cold fusion
experiments (see Fig. 3.3). Furthermore, the variations in Binj should get smaller with
increasing energy, as illustrated in Fig. 3.2.
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Figure 3.4: The deduced injection point distances Bdinj for hot fusion reactions plotted as a
function of (�cm−�0). The red, blue and green markers correspond to excitation function
data from Dubna, Tasca and LBNL, respectively. The brown points with the uncertainty
bars are the BNinj predictions given by Eq. (3.16). The solid line depicts the linear approach
in Eq. (3.17).

3.1.2.3 Comparison of the Linear and New Injection Distance Model

Having presented the two approaches for the injection point distance parameterization,
we now evaluate their performance in describing the data. The models’ performance is
assessed using the '2 and root mean squared error (RMSE) metrics. For the cold fusion
data, the new approach (BNinj) provides a better fit, with a '2 = 0.86, compared to 0.71
for the linear approach (BL

8= 9
). This indicates that the new approach explains 86% of the

variance in the data, while the linear approach only explains 71%.

Cold Fusion Hot Fusion
Metrics Score BLinj BNinj BLinj BNinj

'2 0.71 0.86 0.83 0.82
RMSE fm 0.66 0.46 0.70 0.71

Table 3.3: Metrics scores for BLinj and B
N
inj for Cold Fusion and Hot Fusion.

Both models perform similarly for the hot fusion reaction data, with '2 values of 0.82
and 0.83 for the new approach and the linear model, respectively. Both approaches to the
injection distance have similar descriptions of the hot fusion reaction data because the data
exhibit linear tendencies. This may stem from the fact that the same projectile induces the
reactions and the effect of the entrance channel characteristics, such as the mean Coulomb
barrier, barrier width, and mass asymmetry similar for all reactions.
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Figure 3.5: Deviations, n (Binj), of the predicted injection point distances from the deduced
values vs Coulomb parameter I for cold fusion 1n reactions listed in Table 3.2. The
predicted values are evaluated using Eq. (3.16) (in black) and Eq. (3.15) (in open blue).

Figure 3.6: Deviations, n (Binj), of the predicted injection point distances from the deduced
values as the function of the former for hot fusion reactions listed in Table 2.3. The
predicted values are evaluated using Eq. (3.16) (in black) and Eq. (3.15) (in open blue).

The data description is further illustrated by studying the residue values, n (Binj), as a
function of the Coulomb parameter (see Eq. 2.20) in Fig. 3.5. Because of the significant
changes in the projectile’s charge in the cold fusion reactions, the Coulomb parameter
seems to be an appropriate choice since it identifies the reaction in an unambiguous way.
The residue values are obtained by taking the difference between Bd

inj deduced from the
experimental data and those calculated. Here, the open symbols correspond to the n (Binj)
residues obtained for the linear parameterization (Eq. (3.15)). This is compared with
residues obtained with the optimised new approach to the injection distance (black points)
given by Eq. (3.14).

The figure shows that the predictions from both methods deviate from the deduced values
by about ±1 fm. The figure shows that the blue symbols deviate more, with some going
beyond the ±1 fm margin, while the black points are confined within the ±1 fm range.
These deviations translate into predicting power of the production cross sections. The
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cross sections for the reactions for which the residues are beyond the ±1 fm range will be
reproduced worse than those for which residues are close to zero.

Figure 3.6 shows the injection point distance deviations as a function of the phenomeno-
logical deduced values for hot fusion systems. The Coulomb parameters are not used in
this case because they are very similar for the reactions with the same projectile. Here, the
linear and new approaches to the injection point distance give similar results. The results
are within the ±1 fm range except for two reactions. This observation is re-emphasised by
the same '2 values of both fits to the data.

3.1.3 Evaluation of the Compound Nucleus Formation Probability

Now that we have optimised the free parameters of the model, we can evaluate the
compound nucleus formation probability using the new parameterisation of the injection
point distance. We will adopt the exact definition of the averaged over ℓ formation
probability [34] given in Eq. (2.122). However, open questions remain regarding the
limit of Binj value at higher bombarding energies, as inferred in Chapter 2, where Binj was
restricted to positive values only. Here we will address that issue.

The panels (a) and (b) of Fig. 3.7 illustrate examples of the average compound nucleus
formation probabilities given by Eq. (2.122) for cold (58Fe+208Pb) and hot (48Ca+243Am)
fusion reactions. The blue dashed line in each panel represents calculations from the FbD
model [68], which are used for comparison. The black dashed-dotted lines show calcu-
lations using the new approach to the injection point distance with the maximum angular
momentum from Eq. (2.123), similar to the FbD calculation. The results are comparable,
with minor differences arising from the choice of injection distance parameterization.

Figure 3.7: Average compound nucleus formation probabilities as a function of (�cm) for
(a) the cold fusion reaction of 58Fe+208 Pb and (b) the hot fusion reaction of 48Ca+243 Am.
The blue dashed lines show calculations from the FbD code [68]. The black dashed-dotted
line is evaluated with the new approach.

In the calculations presented in Fig. 3.7, the injection point distances are restricted to the
positive values (Binj ≥ 0 fm) only, which gives rise to the plateau, or the saturation of
the formation probability with increasing energy. The restriction of Binj to non-negative

81



3 Revisiting the Dynamics of the Formation Probability Evaluation of the Compound Nucleus Formation Probability

values may not be universally valid, as some deduced Binj values (given in Table 2.3) for
hot fusion reactions are negative. Moreover, the extrapolation into energies beyond the
energies considered in the fits (shown in the Tables 2.2 and 2.3) has to be taken with
caution. In this study, we adopted the limit of Binj comparable to the smallest deduced
injection point distance: Binj ≥ −2 fm.

The impact of extending the limit of the Binj to -2 fm in the evaluation of the average
formation probability is shown in Fig. 3.8. Panels (a) and (b) of Fig. 3.8 correspond to the
cold and hot fusion reaction test cases, respectively. The brown and green lines are the
reference calculations for Binj ≥ 0 fm and Binj ≥ −2 fm, respectively. As shown in both
figures, decreasing the Binj 0 fm to -2 fm elevates the saturation levels by about a factor
of five in the case of 58Fe +208 Pb reaction and by two orders of magnitude in the case of
48Ca +243 Am reaction.

The energy deformation parametrization used in this study to obtain the heights of the
fusion barriers is based on the assumption that both projectile and target nuclei are
spherical [149] (see Subsection 2.4.2). However, this is not true in hot fusion reactions
where target nuclei exhibit strong quadrupole deformations. Thus, negative values of the
injection parameter might, in some sense, account for more compact side-to-side collisions
possible in reactions between calcium-48 and actinide targets.

Figure 3.8: Average compound nucleus formation probabilities as a function of the centre
of mass energy (�cm) for (a) cold fusion reaction of 58Fe +208 Pb and (b) hot fusion
reaction of 48Ca +243 Am. The calculations are done using the injection point distance
parameterizations of Eqs. (3.14) and (3.16) in panel (a) and (b), respectively. Brown lines
show the case of the injection point distance restriction to 0 fm, and green lines show the
case of -2 fm restriction. See text for more details.
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3.1.4 Evaluation of the EvR cross sections

Besides investigating the quality of the injection distance fit in terms of how well it
reproduced the values obtained from the experimental data, we can also investigate its
predictive power of reproducing the evaporation residue cross sections. This is illustrated
in Fig. 3.9 using the ratio of the calculated cross section value in the excitation function
peak to the experimental value

(
fth
fexp

)
as a function of the Coulomb parameter given

by Eq. (2.20). The blue open symbols correspond to the linear parameterization in
Eq. (3.17), and the black points are the new parameterization given by Eq. (3.14). The
new parameterization has a little edge over the linear approach. In this case, all ratios are
within an order of magnitude difference. On the contrary, the linear approach has three
points overestimated, and one point underestimated. This is evident from injection point
distance residual plots in Fig. 3.5, as this quantity is directly related to calculated values
of the EvR cross sections.

Figure 3.9: Comparison of the linear injection point functions (open blue points) given
by Eq. (3.14) and the new approach (solid black points) in Eq. (3.15) in reproducing
experimental EvR cross sections for cold fusion reactions.

(
fth
fexp

)
is the ratio of theoretical

predictions to experimental observations for the reactions used in the fit procedure. I is
the Coulomb parameter.

Fig. 3.10 illustrate similar plots for the hot fusion reaction data, where panels (a) and
(b) correspond to the linear and new approaches to parameterizing the injection points
distances, respectively. The figure illustrates the

(
fth
fexp

)
as the function of the target

materials used in the reactions with 48Ca projectile. The data for the 2n, 3n, 4n and 5n
neutron emission channels are depicted by the symbols of the cross, star, open square and
solid squares. Here, the colours of the points: black, blue, and brown correspond to the
laboratories in Dubna, GSI (TASCA), and LBNL, where these reactions were measured.
The panels show that both parameterizations describe the data similarly, with most of the
reactions within an order of magnitude deviation from the experimental production cross
sections.
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Figure 3.10: Comparison of the linear (panel (a), Eq. (3.15)) and new approach (panel (b),
Eq. 3.16) parametrizations in reproducing experimental EvR cross sections for hot fusion
reactions of 48Ca with indicated targets.

(
fth
fexp

)
is the ratio of the theoretical predictions to

the experimental values evaluated in a maximum of a given channel. The 2n, 3n, 4n and 5n
reaction channels are depicted by the cross, star, open square and solid squares symbols,
respectively. Here, the colours: black, blue, and brown correspond to the laboratories in
Dubna, GSI (TASCA), and LBNL, where these cross sections were measured.

Up to this point, we have optimised the new approach’s fitting coefficients. The quality of
the fit parameters was compared to the deduced injection point distances and the experi-
mental production cross sections. In the next section, we will consider other explanatory
features that can improve the predictive power of the new approach to the injection point
distance.

3.1.5 Addition of the Mass Asymmetry Feature to BNinj

Here, we introduced mass asymmetry (Eq. (2.94)) as an explanatory feature considering
the injection distance model in Eq. (3.10) is modelled for a symmetric reaction:

BNinj = B0 −
2

Vss

√
2〈 〉rem
`22 + e

(
|�1 − �2 |
�1 + �2

)
, (3.18)

where e is a free parameter associated with mass asymmetry. This is done in attempt to
improve explanation of the variations observed in the deduced injection point distance. In
order to apply the linear regression technique, the above Eq. (3.18) can be written as

BNinj = V0 + V1G1 + V2G2, (3.19)

where the coefficient V0, V1, V2 are parameters to be obtained in the fit, and G2 represents
the mass asymmetry. As in Eq. (3.12), all other parameters remain the same.

The fitted value of B0 (equivalent to the V0 in the model) is (−14.19 ± 3.11) fm. The Vss
which is the nuclear viscosity term is determined as −3.35× 1021 s−1 with the uncertainty
of 1.28 × 1025 s−1. The coefficient e is obtained as (73.58 ± 8.51) fm. Here, B0 and
the nuclear viscosity terms are physically unrealistic, which suggests that the asymmetry
variable should be taken into account in a different way.
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3.1.6 Addition of the Coulomb Parameter Feature to BNinj

In the cold synthesis, the projectiles changes from Ti to Zn what leads to a significant
changes in the entrance channel asymmetry in comparison with the hot fusion reactions.
As a result, the variations in the Coulomb interactions also changes significantly from one
reaction to the other, increasing the role of the entrance channel effects. The question
is whether introducing a Coulomb parameter related term can improve the fit and also
explain the cold fusion data for multiple neutron emission channels, i.e., 1n, 2n and 3n.
With this in mind, we can redefine Eq. (3.10) to include a Coulomb parameter term
directly proportional to I (Eq. (2.20) and readjust the coefficients to investigate any sign
of improvement. The refined equation is given as,

BMinj = B0 +ΩI −
2

Vss

√
2〈 〉rem
`22 . (3.20)

In this context, all the parameters remained the same as in the previous fits. We have only
added the Coulomb term dependent on parameter I = /1×/2

�
1
3
1 +�

1
3
2

, whereΩ is a free parameter

that must be adjusted to the experimental data.

In a similar fashion, the model parameters B0, Ω and Vss are obtained from the set of
reactions listed in the Table 3.1 as follows: B0 = (15.98± 0.82) fm, Ω = (−0.054± 0.004)
fm and Vss = (1.623 ± 0.219) × 1021 s−1. The optimised model is stated as

BMinj = 15.98 − 0.054I − 2

1.623 × 1021

√
2〈 〉rem
`22 . (3.21)

The injection point distances obtained with the optimised model are compared to the
deduced values in Fig. 3.11. Here, the deduced injection point distances are shown by the
solid blue points, and the model predictions are shown by the black points. Note that this
is shown for all channels (1n, 2n and 3n) measured in cold fusion reactions. The solid
points and times symbols denote the deduced and model injection distances for the 1n
channel, respectively. The data for 2n channel are depicted with solid squares and plus
symbols, corresponding to the deduced and the model values. The data for the 3n channel
are shown by the solid blue triangles and opened black triangles for the deduced and model
values, respectively.

The comparison of the model BMinj values with the ones obtained from the experimental data
shows that this method has strong predictive power for the 1n and 2n emission channels.
The 3n channels are reasonably reproduced. This indicates that the cold fusion injection
point distances strongly correlate with the Coulomb parameter. To further investigate the
nuances of the predictions, we might look at the injection point distances residual plots
shown in Fig. 3.12.
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Figure 3.11: Comparison of the calculated and obtained from the experimental data
injection point distances vs (�cm − �0) for the cold fusion data from the Table 3.1. The
solid blue symbols correspond to the deduced injection point distances, while the black
points correspond to the model values. The solid blue dots, squares and triangles symbols
correspond to the values for 1n, 2n and 3n emission channels (from experimental data).
The times, plus, and open triangle symbols denote the values for respective channels
obtained with Eq. (3.21).

Fig. 3.12 illustrates the residual plots of the calculated injection point distances with
Eq. (3.21). Here, the black points correspond to the 1n emission channels used in the
previous fits, and the open circles and triangles correspond to the 2n and 3n channels.
The figure reinforces the good predictive power of the modified injection distance para-
meterization as seen in Figs. 3.11 and 3.12. Here, Eq. (3.20)) gives a description of the
1n channel data which agrees within a factor with the data deduced from the experimental
cross sections. This is an improvement over what is seen in Fig 3.3 using the original
parameterization given by Eq. (3.16).

In addition, the fit also describes the multiple neutron emission channels observed in
the cold fusion reactions within ±1 fm deviation range from the deduced injection point
values. This provides a reasonable solution to the limitations of the model highlighted in
the Subsection 2.5.5, where the default parameterization could not explain the multiple
neutron emission channels in the cold fusion reactions.

To investigate this observation further, we compare the calculated production cross sections
with the experimental cross sections in Fig. 3.13. Figure 3.13 shows as previously the
ratios of the

(
fth
fexp

)
as a function of the Coulomb parameter. Here, the 1n neutron emission

channels arewell reproducedwith a factor deviation as expected fromFig. 3.20. The 2n and
3n channels are also described using the modified parameterization of the injection point
distance. Differences with experimental data are within one order of magnitude. Building
on the success of describing the 1n, 2n and 3n channels within one parameterization, we
will attempt to describe the combined, cold and hot, reaction data using one systematic.
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Figure 3.12: Deviations, n (Binj), of the predicted injection point distances from the deduced
values as the function of the Coulomb parameter. The black points correspond to the 1n
emission channel. The blue open circles and the brown triangles represent the 2n and 3n
neutron emission channels, respectively. This is shown for the cold fusion reactions data
used in the fit (given in Table 3.1). The predicted values are obtained using the modified
injection point distance formula given by Eq. (3.21).

Figure 3.13: Comparison of the calculated cross sections (fth) with the corresponding
experimental (fexp) production cross sections in the maxima of the excitation functions.
The ratio

(
fth
fexp

)
is evaluated for the reactions given in Table 3.1. I is the Coulomb

parameter. The black points, blue, and brown open triangles represent 1n, 2n and 3n
channels, respectively. The predictions are made using the injection point distance given
by Eq. (3.21).
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3.1.7 Global Injection Fit for Cold and Hot Reactions

The objective here is to optimise the parameters of the modified injection point distance
formula (B0, Ω and Vss) to describe both cold and hot reaction data. This would allow us
to replace the separate cold and hot fusion reaction formulas with one parameterization.

The procedure here is the same as previously, but the fit is made to both cold and hot
reaction data sets from Tables 3.1 and 3.2, combined. The fitting function is given by
Eq. (3.20). The obtained parameters are: B0 = (17.548±1.281) fm,Ω = (−0.051±0.005)
fm, and Vss = (0.813 ± 0.066) × 1021 s−1, and the new modified injection point distance
parameterization is given as

BMinj = 17.54 − 0.051I − 2

0.813 × 1021

√
2〈 〉rem
`22 . (3.22)

Let us focus briefly on how the combined cold and hot fusion reaction data set affects
the fit coefficients compared to the fit to cold fusion reactions only in the previous Sub-
section 3.1.7. First, the B0 has increased by approximately 10% while the Ω parameter
decreased by 6%. The Vss decreased by 50%. The decrease in Vss offsets the impact due
to the increase in the B0 value. The small change in the Ω parameter indicates that the
hot fusion systematic does not strongly depend on the Coulomb impact parameter I. This
case is where the same projectile induces all the hot fusion reactions. The quality of the
fitted parameters in predicting the deduced injection point distances is shown in Fig. 3.14

Panel (a) of Fig. 3.14 illustrates a comparison of the injection point distance calculations
using Eq. (3.22) with the experimental deduced values. The figure shows that the BMinj for
the 1n channel depicted with the black times symbol are more enhanced in comparison
with experimental deduced values shown by the black points. On the contrary, the BMinj for
2n and 3n channels, which are illustrated by the plus and the open triangle, respectively, are
underestimated. Panel (b) illustrates a similar plot for the hot fusion data using Eq. (3.22).
Here, the BMinj are shown in the black points, and the brown circles correspond to the
experimental deduced values. In contrast with the cold fusion data, BMinj compared well
with the experimental deduced values.

These observations are further revealed by the residual plots in Fig. 3.22. Here, the black
points are the residual for the 1n neutron emission channel, which, as illustrated by the
figure, are below n (Binj) in comparison to what is seen Fig. 3.12. The BMinj for the 2n and
3n channels, as illustrated by the open circles and the brown triangles, are mostly above
the line n (Binj). The green triangles correspond to the BMinj residuals on the hot fusion
experimental deduced injection values, which are within ±1fm margin.
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Figure 3.14: Comparison of the calculated and obtained from the experimental data
injection point distances vs (�cm−�0). Panel (a) shows cold fusion data from the Table 3.1.
Here, the experimental deduced values are shown in blue, where points, squared and solid
triangles correspond to the 1n, 2n and 3n channels, respectively. The corresponding model
calculations are shown by the black markers: times, plus, and the open triangles. Panel (b)
depicts the data corresponding to the hot fusion reactions. Here, the open brown symbols
denote the experimentally obtained values, while the black points are calculated. This is
shown for the data in Table 3.2. The calculated values are obtained using Eq. (3.22).

Figure 3.15: Deviations, n (Binj), of the predicted injection point distances from the deduced
values as the function of the Coulomb parameter. The black points correspond to the 1n
emission channel. The blue open circles and the brown triangles represent the 2n and 3n
neutron emission channels, respectively. This is shown for the cold fusion reactions data
used in the fit (given in Table 3.1). The green triangles correspond to the hot fusion data
in Table 3.2. The predicted values are obtained using the modified injection point distance
formula given by Eq. (3.22).

The quality of the new procedure is demonstrated for the cold fusion experimental residue
cross section in Fig. 3.16 using

(
fth
fexp

)
. The figure shows that the model’s predictive

power for the cold fusion data is reduced compared to the parametrization in the previous
subsection. These are evident from the injection distance and residual plots in Fig. 3.14
and 3.15, respectively. On the contrary, Fig. 3.15 shows that predictions for the hot fusion
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reactions are similar to the original version of the injection point distance formula (see
Eq. (3.16)). The results show great promise in combining cold and hot fusion descriptions
using one systematic fit.

Figure 3.16: Comparison of the calculated cross sections (fth) with the corresponding
experimental (fexp) production cross sections in the maxima of the excitation functions.
The ratio

(
fth
fexp

)
is evaluated for the reactions given in Table 3.1. I is the Coulomb

parameter. The black points, blue, and brown open triangles represent 1n, 2n and 3n
channels, respectively. The predictions are made using the injection point distance given
by Eq. (3.22).

Figure 3.17: Comparison of theoretical and experimental evaporation residue cross sec-
tions for hot fusion data given in Table 3.2.

(
fth
fexp

)
is the ratio of the theoretical predictions

to the experimental values evaluated in a maximum of a given channel. The 2n, 3n, 4n and
5n reaction channels are depicted by the cross, star, open square and solid squares symbols,
respectively. Here, the colours: black, blue, and brown correspond to the laboratories
in Dubna, GSI (TASCA), and LBNL, where these cross sections were measured. The
theoretical calculations use the injection point distance function in Eq. (3.22).
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Until now, we have shown fits for different parameterizations of the injection point dis-
tances. The goal is to determine and apply the best fit to evaluate the complete excitation
functions for studied reactions. In that regard, the optimised parameters for the injection
distance given by Eqs. (3.21) and (3.22) are used to evaluate the excitation functions for
cold and hot fusion reactions, respectively. There are no particular preferences for choos-
ing Eq. (3.22) for the hot fusion since all the optimised injection distance functions give
similar descriptions of the data.

As presented in Fig. 3.18, the excitation functions for the cold fusion reactions are well
reproduced. The optimal bombarding energies are also well-reproduced for most of the
calculated excitation functions. The exception here is 58Fe+208Pb reaction, for which the
predicted maximum is shifted by about 1.2 MeV to higher energies. This could be further
investigated.

Similarly, Fig. 3.19 shows the excitation functions calculated for the hot fusion reactions.
Unfortunately, the model calculations have not reproduced the optimal bombarding ener-
gies for all presented reactions. The differences are usually greater than a typical energy
resolution of the experimental data, which is ±2 MeV. The bumps on the curves visible
at the highest energies are due to the limitation of the Binj to −2 fm. At this limit, the
formation probability tends to plateau with increasing energy, as shown in the curves in
Fig. 3.8.
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Figure 3.18: The excitation functions for the cold fusion reactions using the optimised
injection point distance parametrization given by Eq. (3.21). Here, the black solid points
are the GSI data, the open circles are LBNL data, and the solid squares are RIKEN data.
The black, green, and brown curves correspond to the 1n, 2n and 3n channels. The position
of the arrows is the respective mean Coulomb barrier of the reaction. The references to
the data are indicated in Table 2.2.
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Figure 3.19: The calculated excitation functions for the hot fusion reactions using the
optimised injection point distance parametrization given by Eq. (3.21). Here, the solid
symbols correspond to the data taken from DUBNA, and the open symbols denote that
of the GSI (TASCA). The 2n, 3n, 4n and 5n channels are represented by the blue, black,
green, and brown symbols, respectively. The references to the experimental data are
indicated in Table 2.3. The brown arrows indicate the positions of the mean Coulomb
barriers.
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3.2 AngularmomentumDependent Binj Parameterisation

In the previous section, we optimized the parameters (B0 and Vss) for the injection point
distance parameterization for hot and cold fusion reactions. However, we observed an
energy-dependent shift in both parameterizations (Eqs. (3.10) and (2.117)), suggesting
that the injection point distance Binj should also be a function of angular momentum.
In this section, we will detail the implementation and assess the impact of the angular
momentum-dependent injection point distance parametrization on the evaporation residue
cross section.

3.2.1 Partial Remaining Kinetic Energy

In the previous section, the remaining kinetic energy ( rem(�, ℓ)) of the capture events
was averaged over all impact parameters and the Coulomb barrier distribution, as given
by Eq. (3.9). However, to evaluate the remaining kinetic energy for each partial wave, it
will be averaged only over the Coulomb barrier distribution, with the angular momentum
held fixed:

 rem(�cm, ℓ) =

∫ +∞

0
\ (�cm − � − �rot) (�cm − � − �rot) %(�) 3�∫ +∞

0
\ (�cm − � − �rot) %(�) 3�

, (3.23)

where, \ (�cm − � − �rot) is the Heaviside step function. As we have seen previously in
Section (2.1.1), the denominator evaluates to the Coulomb barrier transmission coefficient:

); (�cm, ℓ) =
∫ +∞

0
\ (�cm − � − �rot) %(�) 3�,

=
1
2
(1 + erf (X(�cm, ℓ))) .

(3.24)

The final expression for the partial remaining kinetic energy (Eq. (3.23)) is given as:

 rem(�cm, ℓ) =

∫ �max (ℓ)
0 (�cm − � − �rot) exp

(
− (�−�0)2

2f2
�

)
3�

√
2cf�)ℓ (�cm, ℓ)

,

=
√

2f�X (�cm, ℓ) +
f�exp

(
−X (�cm, ℓ)2

)
√

2c)ℓ (X(�cm, ℓ))
.

(3.25)

Here, X(�cm, ℓ) =
�cm−�0− ℏ

2ℓ (ℓ+1)
2`'�√

2f�
. f� and �0 are the width and the mean of the Coulomb

barrier distribution given by Eq. (2.30) and (2.21), respectively. ` and 'B are the reduced
mass of the colliding nuclei and the position of the effective Coulomb barrier.

Fig. 3.20 shows remaining kinetic energy denoted as  rem for different values of ℓ as a
function of �cm − �0. The figure demonstrates an inverse relationship between remaining
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kinetic energy and angular momentum despite a general increase with the centre of mass
energy. Higher angular momentum increases the effective entrance barrier, effectively
reducing the remaining kinetic energy. The solid red line in the figure represents the average
remaining kinetic energy given by Eq. (3.9). In contrast, the dashed lines correspond to the
remaining kinetic energies ( rem(�cm, ℓ)) of a specific angular momenta. The figure shows
more remaining kinetic energies for smaller angular momenta than averaged momentum
calculations for the same energy. The trend reverses for the larger values of the angular
momentum. The effect of these dynamics on the partial wave injection point distances
BNinj (�cm, ℓ) is shown in Fig. 3.21.

Figure 3.20: The remaining kinetic energy ( rem) for different values of ℓ (dashed lines)
of as a function of �cm − �0. The solid red and black dashes denote average (Eq. 3.9) and
partial (the (Eq. 3.25)) remaining kinetic energies. This is shown for 58Fe+208Pb as an
example. Here, f�= 5.6 MeV and �0 = 225 MeV.

With the inclusion of the angular momentum in the remaining kinetic energy, the new
parametrization of the injection point distance (B#inj) is given as,

BNinj (�cm, ℓ) = B0 −
2

Vss

√
2 rem (�cm, ℓ)

`22 . (3.26)

Here, all the parameters are as defined previously. A key question is how incorporating
rotational energies into evaluating the remaining kinetic energy, instead of the sum aver-
aged in Eq. (3.10), influences this shift and, eventually, the formation probability. In order
to investigate the tendency of BNinj (�cm, ℓ) as a function of the ℓ, the parameters B0 and VBB
are set for an arbitrary values: B0 = 6 fm and Vss = 2×1021 s−1 as shown in Fig. 3.21. The
solid red curve represents Binj evaluated using the average remaining kinetic energy given
in Eq. (3.9), while each of the dashed lines corresponds to the ℓ−dependent approach
(Eq. (3.26) shown for various values of ℓ.

As previously gleaned from Fig. 3.20, increasing ℓ results in less remaining kinetic energy.
Therefore, one expects a minimal shift in the initial condition B0, which results in a less
steep slope of Binj(�cm, ℓ) with increasing centre of mass energy for high values of ℓ.
Given the impact of the ℓ on the injection point distances, the optimized parameters (B0
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and Vss) from Subsection 3.1.2 of Chapter 4 cannot be simply substituted into Eq. (3.26).
This is evident in the Figs. 3.27 and 3.28 as test cases. Hence, we need to re-optimise
these parameters, accounting for all partial waves in the formation phase.

Figure 3.21: The injection point distance, Binj (Eq. (3.26)) shown for various values of
angular momentum (dashed lines) as a function of �cm − �0. The solid red line represents
calculation using the average remaining kinetic energy given by Eq. (3.10). This is shown
for 58Fe+208Pb, where f�= 5.6 MeV and �0=225 MeV. Here, B0 = 6 fm and Vss = 2×1021

s−1.

Having defined injection point distances in terms of angular momentum, the critical
question becomes, what is the impact on formation probability and the simulated residue
cross section? To answer this, wewill investigate each dynamics stage: capture, formation,
and survival probability as a function of angular momentum. This study will provide
insights into how angular momentum influences the dynamics at each simulation stage
and the overall reaction process.

3.2.2 Partial Evaporation Residue Cross Section

This section shows a demonstration of the ℓ-dependent formalism. The Figs. 3.22 and 3.23
illustrate selected quantities evaluated for 58Fe + 208Pb and 48Ca + 243Am reactions. Each
stage of the reaction (capture, formation, and survival) is discussed as a function of angular
momentum. One neutron channel in the reaction 58Fe + 208Pb at the centre of mass energy
of 220 MeV and four neutron channel in 48Ca + 243Am reaction at 205 MeV will be
discussed in details.

The panel (a) of Fig. 3.22 represents the partial capture cross section for 58Fe + 208Pb
system evaluated based on Eq. (2.5). The inset (the panel (b)) is the formation probability
of 266Hs as a function of angular momentum. The formation probability was evaluated
using Eq. 3.26. For a demonstration purposes the parameters B0 and VBB were taken as
B0 = 12.478 fm and Vss = 0.314 × 1021 s−1 for 58Fe + 208Pb reaction and B0 = 10.572 fm
and Vss = 0.550×1021 s−1 for the 48Ca + 243Am reaction. These parameters were obtained
using Eq. (3.16).
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Figure 3.22: Angular momentum dependencies of various quantities for 58Fe+208Pb reac-
tion at �cm = 220 MeV. (a) Partial capture cross section, (b) formation probability and (c)
partial fusion cross section. Panel (d) shows the survival probability for the 1n channel.
The mean Coulomb barrier (�0) is 225 MeV, and the&-value of the reaction is -205 MeV.

The product of the capture cross section (panel (a)) and the formation probability (panel
(b)) gives the partial fusion cross section shown in panel (c). The probability that the
compound nucleus will survive fission and emit a neutron is denoted by the inset panel
(d). Fig. 3.23 describes the same quantities for the 48Ca + 243Am reaction. In this case,
the survival probability is evaluated for the four neutron emission channel.

For the respective reactions, the capture cross section increases with ℓ and peaks at approx-
imately 21 and 46, then decreases with increasing ℓ due to decreasing Coulomb barrier
transmission coefficients. As shown in panels (b) of both figures, the formation probability
is the highest at ℓ = 0. The formation probability decreases with increasing ℓ, which is
caused by increasing the fusion barrier. The projectile-target touching configuration is
less compact than the fusion saddle configuration. The moment of inertia of the saddle
configuration is lower, and the energy of this point rises quicker with angular momentum
than the energy of the injection point. This raises the effective height of the barrier with
increasing ℓ (see Eq. (2.112)).

The panel (d) of Fig. 3.22 illustrates the partial survival probability of one-neutron emission
channel in 58Fe + 208Pb reaction. Panel (d) in Fig. 3.23 shows 4n channel for 48Ca+243Am.
In both cases, the survival probability decreases with increasing angular momentum. The
height of the fission barrier is inversely related to the angular momentum, and for higher
partial waves, the survival probability is getting lower [77].
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Figure 3.23: Angular momentum dependencies of various quantities for 48Ca+243Am
reaction at �cm = 205 MeV. (a) Partial capture cross section, (b) formation probability
and (c) partial fusion cross section. Panel (d) shows the survival probability for the 4n
channel. The mean Coulomb barrier (�0) and the &-value are 196 MeV and - 170 MeV,
respectively.

The figures 3.22 and 3.23 demonstrate the role of angular momentum in the calculations.
As mentioned before, the reduction in the fusion cross section is due to the increasing
fusion hindrance with increasing ℓ. This is quantified by the formation probability, which
is the highest at ℓ = 0 at the order 10−3 and 10−2 for 266Hs and 291Mc, respectively, and
then decreases. Furthermore, the survival probability is of the order of 10−4 (for 58Fe +
208Pb) and 10−8 (for 48Ca + 243Am) which indicates that fission is the dominate decay
mode in the deexcitation process. The fission barriers in this mass region are rather low,
as previously mentioned. Finally, the partial EvR cross sections for both reactions are
presented in Fig. 3.24.

Figure 3.24: Panels (a) and (b) show partial evaporation residue cross sections (fEvR) as
a function of angular momentum (ℓ) for 58Fe + 208Pb at �cm = 220 MeV (1n channel) and
48Ca + 243Am at �cm = 205 MeV (4n channel), respectively.

This can be further investigated by analysing the 2D spectrumdistribution of the energy and
angularmomentum. These are shown in the Figs. 3.25 and 3.23 for the one and four neutron
emission channels in the reaction 58Fe + 208Pb and 48Ca + 243Am, respectively. The colour
scheme in the figures represents the magnitude of the cross section, with warmer colours
(red, yellow) signifying higher values and cooler colours (blue, green) indicating lower
values. As we move away from the peak, the cross section values decrease, indicating
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a lower probability of emission at other energy and angular momentum combinations.
This decrease may be attributed to decreasing survival probability at high energies and
angular momenta. The figure allows one to identify the specific energy and angular
momentum ranges where significant changes in the cross section occur, illustrating the
steep dependence of the reaction dynamics on these parameters. In both cases, the highest
contribution to the EvR cross section is for ℓ ≈ 8, which clearly shows that super-heavy
nuclides are mostly formed in rather central collisions.

Figure 3.25: 2D contour plot showing the evaporation residue cross section for the reaction
58Fe + 208Pb in 1n channel, as a function of the centre of mass energy (�cm) and angular
momentum (ℓ).

Figure 3.26: 2D contour plot showing the evaporation residue cross section for the reaction
48Ca + 243Am in 4n channel, as a function of the centre of mass energy (�cm) and angular
momentum (ℓ).

Before concluding this section, we will attempt to highlight the need to re-optimise the
parameters of the angular momentum-dependent injection model (Eq. (3.26)). To begin,
the formation probabilities and the residue cross sections are evaluated for the reactions
58Fe+208Pb and 48Ca+243Am as shown in Figs. 3.27 and 3.28, which exemplify test cases
of cold and hot fusion reactions, respectively.
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Panel (a) of each figure compares the average formation probability (Eq. (2.122)) obtained
using the ℓ−dependent injection point distance (dashed red lines) to that obtained with
ℓ−independent (solid black lines). Although the average formation probability is not
directly used to calculate the production cross section (shown in panel (b) of Figs. 3.27
and 3.28), it serves as a valuable indicator of the impact of the ℓ treatment in evaluating
Binj. Here, dash curves show smoothing at the limit Binj = −2 fm due to the inclusion of
the angular momentum.

As shown in Figs. 3.20 and 3.21, for angular momenta less than 40, there is more remaining
kinetic energy, resulting in a shorter injection point distance compared to the situations
with higher angular momentum. Shorter Binj corresponds to a lower fusion barrier and,
consequently, to a higher formation probability, as detailed in Subsection 2.4.2.4 of the
previous chapter. This leads to the higher production cross section when using the
partial remaining kinetic energy formalism compared to the angular momentum-averaged
remaining kinetic energy formalism.

Figure 3.27: The impact of angular momentum dependent Binj on the formation probability
and production cross section for the 58Fe + 208Pb reaction. (a) The average formation prob-
ability (〈%CN(�cm)〉) as a function of �cm. (b) The production cross section (fEvR) in 1n,
2n, 3n, and 4n channels. The solid black lines represent calculations using ℓ−independent
Binj (Eq. (3.10)) whereas, the dashed lines are ℓ−dependent Binj (Eq. (3.26)). The curves
are evaluated using the parameters B0 = 12.478 fm and Vss = 0.314 × 1021 s−1 of the
injection point distance.

Panel (b) of Figs. 3.27 and 3.28 further illustrate this effect by showing the production cross
sections evaluated using both ℓ−independent Binj (red dashed lines) and the ℓ−dependent
Binj (black solid lines). At lower energies, where the total angular momentum contributing
to the reaction is not large, the production cross section calculated with the ℓ−dependent
Binj is larger. However, this trend reverses as the energy increases and the total angular
momentum contributing to the production cross section increases as well, as explained by
Fig. 3.21.
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Figure 3.28: The impact of angular momentum dependent Binj on the formation prob-
ability and production cross section for the 48Ca + 243Am reaction. (a) The average
formation probability (〈%CN(�cm)〉) as a function of �cm. (b) The production cross sec-
tion (fEvR) in 2n, 3n, 4n and 5n channels. The solid black lines represent calculations
using ℓ−independent Binj (Eq. (3.10)) whereas, the dashed lines are that of ℓ−dependent
approach (Eq. (3.26)). The curves are evaluated using the parameters B0 = 10.572 fm and
Vss = 0.550 × 1021 s−1 of the injection point parameterization.

In conclusion, this section evaluates the impact of angular momentum on the three reaction
stages. The next step is to re-optimize the parameters B0 and Vss of the injection distance
model (Eq. 3.26) to ensure a proper treatment of angular momentum.

3.3 Systematic Approach to fitting B0 and Vss

In the previous approach, as outlined in the Subsections 2.5.2 and 3.1.1, the parameters
of the injection distance parameterization (B0 and Vss) were adjusted to the set of de-
duced injection point distances values (Bdinj) from the experiment. Because of the angular
momentum treatment, that approach cannot be applied to optimising Eq. (3.26) since it
implies adjusting each wave’s parameters. This is technically challenging. Therefore, a
systematic fitting technique has been employed, as described below.

The systematic fit or the global optimization process aims at identifying a set of parameters
(B0 and Vss) that provide the best overall fit across the given data set. This would be done
using a readily available Bayesian optimisation algorithm [150]. Bayesian optimization is a
technique that efficiently optimizes objective functions that are computationally expensive
to evaluate. It is particularly well-suited for problems with continuous parameter spaces
of moderate dimensionality (typically fewer than 20 dimensions) and can handle noisy
function evaluations. At its core, Bayesian optimization constructs a probabilistic surrogate
model, often using Gaussian process regression, to approximate the unknown objective
function. This surrogate model predicts the objective’s value at unobserved points and
quantifies the uncertainty in its predictions. By leveraging this uncertainty information,
Bayesian optimization employs an acquisition function to strategically select the next point
to sample, balancing exploration (probing uncertain regions) and exploitation (sampling
where the surrogate predicts high values) [151].
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3.3.1 A Systematic Approach with Bayesian Optimisation

In this study, we employ Bayesian optimization, leveraging the GP-Minimize Skopt library
in Python, to solve optimization problems by identifying the parameter values that min-
imize our loss functions. The Bayesian optimization approach to solving the optimization
problem revolves around finding optimal values of the input parameters that minimise
(maximise) objective functions [150–152]:

?∗ = arg min
?∈P

5 (?) (3.27)

Here 5 (?) is the objective function to be minimised or maximised. P correspond to
the parameter search space, while ?∗ are the optimal parameters in P that minimises
(maximises) 5 (?). The objective function is treated as a black box, meaning we do not
have direct access to its mathematical form, and it is computationally expensive to evaluate.

The goal of the Bayesian optimisation is to iteratively (given by the Algorithm (1)) build a
model of the 5 (?) and use it to guide the search towards promising regions of the search
space where optimal parameters could be found. This uses a probabilistic model, typically
a Gaussian Process (GP). The GP provides a flexible and powerful way to model complex
functions and guide the search towards promising regions of the parameter space with
fewer function evaluations compared to a grid search or random search.

An integral part of the Bayesian optimization is using an acquisition function. The
acquisition function is a strategy used to select the next point in the parameter space
to evaluate based on the current output from the objective function. An example of an
acquisition function aimed at optimizing (minimizing or maximizing) a given objective
function is the lower confidence bound (LCB):

!��(?) = `GP(?) ∓ ^fGP(?), (3.28)

where `GP(?) is the mean prediction of the objective function at a point x as determined by
the Gaussian Process (GP) after a certain number of evaluations. The fGP(?) represents
the model’s uncertainty about the objective function’s value at a point ?. The LCB
acquisition function subtracts a scaled version of this uncertainty from themean prediction,
encouraging the exploration of regions where the model is less certain about the true
objective function value. The scaling factor ^ regulates the optimisation process’s balance
between exploration and exploitation. The use of the LCB acquisition function allows
one to ensure control over the trade-off between exploration and exploitation, leading to
efficient optimisation.

The principle of Bayesian optimization is employed using the algorithm outlined below
(Algorithm 1). The concept is based on an iterative process which systematically searches
for the best possible parameters within the search space P. Here, =0 is the number of
the initial data points selected from the parameter space, which is used to construct the
Gaussian process model. D is the dataset of evaluated parameters ?= and the correspond-
ing objective values 5 (?). This is used to continually update the GP process to guide
the optimisation process towards the optimum region of the search space. These steps
are, subsequently, generalised to our optimisation problems in obtaining B0 and Vss using
Kewpie2 code.
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Algorithm 1 Overview of Pseudo Algorithm for Bayesian Minimisation
Require: Objective function 5 (?), parameter space P, initial design size =0, maximum

iterations N , acquisition function D(?)
Ensure: Optimal parameters ?∗ ≈ arg min?∈X 5 (?)
Place a Gaussian Process (GP) prior on 5 (?)
Select =0 initial points {?1, ..., ?=0} from P
Evaluate the objective function at initial points: H8 = 5 (?8) for 8 = 1, ..., =0
Initialize data set D = {(?1, H1), ..., (?=0 , H=0)}
for = = =0 + 1 to # do

Update the GP model with data set D
Optimize the acquisition function D(?) over P to find ?= = arg max?∈% D(?)
Evaluate H= = 5 (?=) and append (?=, H=) to D
if convergence criterion or other stopping condition is met then

break
end if

end for
Determine the point with the best observed value: ?∗ = arg min(?,H)∈D H
return ?∗ (and optionally ?∗GP)

3.3.2 Application of systematic fitting to Kewpie2 Simulations

The aim is to have optimised parameters B0 and Vss that are robust enough to reproduce
each excitation function of the reactions in the Tables 2.2 and 2.3. Consistent with
the algorithm (1), we will have to define a parameter search space for both B0 and Vss:
1 ≤ B0 ≤ 13 fm and (0.001 ≤ Vss ≤ 3) × 1021 s−1. For each iteration in the parameter
space, Kewpie2 simulates the production cross sections for all reactions in the data set.
The theoretical predictions are then compared with the respective experimental production
cross sections (maximum residue cross section) using a loss function. The loss functions
are evaluated as the objective function during the optimisation process.

3.3.2.1 The Loss Functions

The fitting process is initially tested on the chi-squared (j2) and the modified chi-squared
(j2

mod) as given by the Eqs. (3.29) and (3.30). However, due to their poor data description,
we have adopted a hybrid loss function, which will be refered to in this study as the
symmetrized loss function (j2

sym). The results on the symmetrized loss function are
reported.

To begin, the j2 used in the optimisation is given as,

j2 =
1

# − 2
×

#∑
8

(
$8 − �8
D($8)

)2
, (3.29)

where$8 and D($8) are the experimental observation and the corresponding uncertainties.
�8 stands for the model predictions, while # is the total number of observations or data
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points, which normalizes the sum. The modified chi-squared is stated as,

j2
mod =

1
# − 2

×
#∑
8

(
$8 − �8
$8

)2
, (3.30)

where all the parameters are defined by Eq. (3.29). The j2 loss function is valued for
incorporating the uncertainty associated with each experimental measurement. This is
advantageous when the uncertainty of individual measurements varies significantly, as
in the case of production cross sections associated with the synthesis of super-heavy
elements. The j2 gives greater weight to observations with more minor uncertainties and
penalizes larger ones. This effectively mitigates the impact of less reliable observations
with significant uncertainties, resulting in a reliablemodel. On the other hand, themodified
chi-square, j2

mod, does not account for measurement uncertainties. The normalisation by
the magnitude of the observations ($8) is expected to ensure each data point contributes to
the total loss functions and that the fit is not biased. However, as indicated by Fig. 3.29 it
leads to overfitting large experimental residue cross sections and under-estimating smaller
ones.

The poor description of the data of the loss functions is partly because the experimental
data span several orders of magnitudes (107). Hence, deviations from the small value
experimental cross sections are poorly explained. To solve this, we used a symmetrised
loss function:

j2
sym =

1
# − 2

×
#∑
8

($8 − �8)2

$8 × �8
, (3.31)

which can penalise both small and large deviations from experimental observations sym-
metrically, as demonstrated in Fig. 3.29. Figure 3.29 illustrates the tendency of the
aforementioned loss functions as the function of a ratio of observed to expected val-
ues (O/E). This is particularly relevant to understanding how the choice of loss function
influences the optimization process.

The black, brown, and blue curves represent the j2, j2
mod, and j

2
sym loss functions, respect-

ively. The j2 and j2
mod loss functions exhibit a steep rise for small O/E ratios, indicating a

significant penalty for underestimating small observables. This characteristic encourages
the optimization algorithm to prioritize accurately fitting such values with heavy penal-
ties, further leading to their underestimation. The symmetric j2

sym loss function aims to
mitigate the issue of underestimation by penalizing overestimation and underestimation
symmetrically. This is shown in the figure, where both underestimation and overestimation
of the data are penalised equally.
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Figure 3.29: Comparison of different loss function values, j2 (in black), j2
mod (in brown),

j2
sym (in blue) as a function of the ratio of observed to expected value (O/E). In j2

evaluation it was assumed that D($8)/$8 = 0.25 for demonstration purposes.

3.4 Testing the new fitting method with a ℓ-independent
injection point

The objective of this section is to optimise the parameters (B0 and Vss) in the partial
remaining kinetic energy injection point distance formula, which is referred to as the
ℓ−dependent injection model. However, before proceeding with fitting the ℓ−dependent
injection point distance, we would apply the systematic fitting technique to obtaining
the coefficients of the parameters (B0 and Vss) of the injection distance with average
remaining kinetic energy: ℓ−independent injection point distance, which are obtained
in Section 3.1.2. This exercise allows one to investigate the impact of different fitting
techniques on optimising the parameters of the injection distance model. Furthermore,
comparing the results allows one to benchmark the systematic fitting technique since it is
the first time it will be applied to this problem.

The Bayesian optimization loop described in Algorithm 1 is applied to optimising the B0
and Vss on the experimental data within the respective search spaces mentioned above. For
example, the search for the best parameters that minimise the loss function as a function of
iteration is shown in Fig. 3.30. The figure shows that the Bayesian optimization algorithm
iteratively refines its estimates of the optimal values for parameters B0 and Vss within the
search space.

The main plot demonstrates a rapid initial decrease in the best objective value (lowest
loss functions), followed by fluctuations as the algorithm explores the parameter space.
The insets (a) and (b) show the exploration of the B0 and Vss search spaces at each
iteration, respectively. The distinct patterns in the parameter sampling (insets a and b)
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reveal different sensitivities to optimization. The parameter B0 exhibits larger fluctuations,
suggesting it is more sensitive to changes compared to Vss, which shows less variation.
This is likely because the preferred values of Vss in the optimization lie within a smaller
region of the search space. This implies that adjusting B0 has a greater impact on the loss
function than adjusting Vss. Additionally, the pairing of B0 and Vss significantly influences
the loss function, as opposite changes in these parameters appear to lead to a decrease,
indicating a potential trade-off or correlated behaviour.

Figure 3.30: Bayesian Optimization for minimising the loss functions. The blue line
represents the best MSE value achieved at each iteration, demonstrating the algorithm’s
iterative improvement in finding optimal parameter configurations.

3.4.1 Results

Here, only the results using j2
sym are reported. The other loss functions (j2 and j2

mod)
are considered, but the observations are that they largely overfit large experimental value
cross sections, and the fits are skewed. The optimised parameters from 1n channel of the
cold fusion data (Table 3.1) are B0 = 12.68 fm and Vss = 0.321 × 1021 s−1:

BNinj = 12.681 − 2

0.321 × 1021

√
2〈 〉rem
`22 , (3.32)

The fitted parameters are similar to those obtained using the linear ordinary regression,
B0 = 12.478 fm and Vss = 0.314 × 1021 s−21. The B0 and Vss increased by about 2%
and 0.7%, respectively, in comparison with the results of the ordinary linear regression in
Subsection 3.1.2.

Similarly, the optimised parameters of the fits on the hot fusion data (Table 3.2) are
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B0 = 10.095 fm and Vss = 0.615 × 1021 s−1:

BNinj = 10.095 − 2

0.615 × 1021

√
2〈 〉rem
`22 . (3.33)

These parameters are comparable with the results obtained with the ordinary linear re-
gression in Subsection 3.1.2. A decrease by about 4% in B0 and an increase by about 12%
in Vss parameters is observed.

In conclusion, the results from the current fits show that the systematic fitting technique
is promising and can be applied to more complicated injection parameterization, such as
the one given by Eq. (3.26).

3.5 Fits and Results on ℓ−dependent Injection Distance

In Section 3.4, we showed that we could obtain the parameters of the ℓ-independent
injection point distance (BNinj) with the systematic fitting technique. Building on what
was done in the previous section, we will now attempt to optimise the parameters of the
ℓ−dependent injection point distance formula. As mentioned, this is an improved version
of the injection point distance model given in Eq. (3.10) because of the angular momentum
treatment.

3.5.1 Cold Fusion

The optimised parameters for only 1n emission channel are B0 = 4.706 fm and Vss =
1.218 × 1021 s−1:

BNinj(ℓ) = 4.708 − 2

1.218 × 1021

√
2 rem (�cm, ℓ)

`22 . (3.34)

With the inclusion of the angular momentum, the B0 value is decreased by 62% and Vss
increased by 73% in comparison with the results from the ℓ−independent formula in the
previous Subsection 3.4.1.

The accuracy of this method is presented in Fig. 3.31 where ratios
(
fth
fexp

)
are presented

as a function of the Coulomb parameter I. The data in the figure is expected to cluster
near

(
fth
fexp

)
= 1 as we have seen in the previous section. However, the figure demonstrates

a tendency with I, which shows that calculations with these parameter values do not
converge with the experimental data.

As discussed in Subsection 3.1.6, including the Coulomb parameter dependent term ΩI

significantly improves the fit quality. This term was not included here.
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Figure 3.31: Comparison of the calculated cross sections (fth) with the corresponding
experimental (fexp) production cross sections in the maxima of the excitation functions.
The ratio

(
fth
fexp

)
is evaluated for 1n channels of the reactions given in Table 3.1. I is the

Coulomb parameter. The theoretical predictions are made using the optimised injection
model in Eq. (3.34).

In conclusion, the optimised parameters in this case are incorrect and should not be used
in further analysis.

3.5.2 Hot Fusion

This section reports the results of fitting the ℓ−dependent injection point distance to the
hot fusion reaction data set. The parameters obtained from the fit are B0 = 7.833 fm and
Vss = 1.104 × 1021 s−1:

BNinj(ℓ) = 7.833 − 2

1.104 × 1021

√
2 rem (�cm, ℓ)

`22 . (3.35)

By evaluating the remaining kinetic energies in terms of the angular momentum, the
optimised parameter B0 decreased by 22% and Vss increased by 79% in comparison with
what was obtained with the ℓ−independent fit in Subsection 3.4.1.

Fig. 3.32 shows the quality of the ℓ−dependent injection distance formula for the hot
fusion reaction data. Here, the fit results show a good reproduction of the experimental
data, where the quantity

(
fth
fexp

)
clusters around 1, with the majority of the calculations

being within an order of magnitude accuracy from the experimental values. In contrast
to the result in Fig. 3.19, the optimised angular momentum-dependent injection point
distance tends to be pessimistic. The complete excitation functions are illustrated in
Fig. 3.33, where the theoretical calculations underestimate or reproduce the maximum of
the experimental data used in the fit.

Finally, the values of the friction coefficient Vss obtained from the fit on the cold and hot
fusion data using the ordinary linear regression are Vss = (0.314 ± 0.024) × 1021 s−1 and
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Vss = (0.550 ± 0.06) × 1021 s−1. That obtained with the systematic fitting technique of
the ℓ−dependent formula on the hot fusion data is 1.104 × 1021 s−1. The above values of
the Vss parameters are small in comparison to a typical value of the angular frequency of
the parabolic potential (1.5 × 1021 s−1) i.e., Vss < 2l [61]. This therefore suggests the
dynamics may not be fully damped, as assumed in the derivation of the new injection point
formula.

Figure 3.32: Comparison of theoretical and experimental evaporation residue cross sec-
tions for hot fusion data given in Table 3.2.

(
fth
fexp

)
is the ratio of the theoretical predictions

to the experimental values evaluated in a maximum of a given channel. The 2n, 3n, 4n and
5n reaction channels are depicted by the cross, star, open square and solid squares symbols,
respectively. Here, the colours: black, blue, and brown correspond to the laboratories in
Dubna, GSI (TASCA), and LBNL, where these cross sections were measured. The theor-
etical calculations are evaluated using the optimised injection distance parameterization
in Eq. (3.35).
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Figure 3.33: The excitation functions for the hot fusion reactions. Here, the solid symbols
correspond to the data taken from DUBNA, and the open symbols denote that of the GSI
(TASCA). The 2n, 3n, 4n and 5n channels are represented by the blue, black, forest-green,
and brown symbols, respectively. The theoretical curves are evaluated using the optimised
injection point distance parameters given in Eq. (3.35). The sources of the experimental
data are indicated in Table 2.3. The position of the brown arrows indicates the mean
Coulomb barrier of the reactions.

110



3 Revisiting the Dynamics of the Formation Probability Conclusion

3.6 Conclusion

This chapter presents the new parameterization of the injection distance according to the
Ref. [81, 82]. The new parameterization is obtained consistent with multidimensional
Langevin formalism, where coupling between fast and slow collective variables induces
slip in the initial condition of the former. This induced slip in the initial condition is
analogous to the phenomenological injection distance (Binj) within the Fusion-by-Diffusion
(FbD) model [34, 68]. The new Binj model is considered an improvement over the default
linear approach used in the FbD model.

The new model offers the advantage of accounting for entrance channel characteristics,
such as the Coulomb barrier distribution and the remaining kinetic energy after capture.
The parameters of the new injection point distance models are adjusted to the cold and hot
fusion experimental data. Firstly, 1n neutron emission channels are considered in the fitting
process to cold fusion data. TheCoulomb parameter I is added as an additional explanatory
feature to improve themodel’s prediction. The optimised parameters of themodifiedmodel
could explain the 1n channels within a factor. The 2n and 3n channels are explained within
an order of magnitude. The modified new injection distance parameterisation is optimised
on both, cold and hot fusion data sets, to have one global systematic fit for both reaction
types. In this case, the experimental data are within one order of magnitude accuracy from
the experimental data.

We further refined the new parameterization of the injection point distance without the
Coulomb parameter by incorporating the treatment of angular momentum. Subsequently,
the refined injection point distance parameters are optimised using a new fitting technique
designed for this purpose. The angular momentum dependent injection point distance
is considered only for the hot fusion parameterization. Here, the optimised parameters
describe the experimental data to within an order of magnitude deviation.

Finally, the optimised friction coefficient (Vss) obtained from the fit, suggests that the
overdamped approximationmight be too restrictive for accuratelymodelling of the reaction
dynamics. Therefore, in the next chapter 5, we will investigate the dynamics within the
undamped Langevin limit given by Eq. (2.77).
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Chapter 4

Formation Dynamics with a
One-dimensional Undamped Langevin
System

The previous chapter shows that the parameterization of the injection point distance (BNinj)
of the overdamped formation probability can be obtained consistently with the Langevin
formalism. The parameters of the BNinj are subsequently adjusted to the experiment, and
the results show that the reduced friction parameter describing the dynamics is not large
enough for it to be considered damped. This brings the question ofwhether the overdamped
approximation is too strong. This chapter describes the dynamics at the undamped limit of
the full Langevin formalism given by Eq. (2.77), where remaining kinetic energy at capture
plays a role in the dynamics. The energy-dependent injection point parameterization of
the overdamped formalism is replaced with an initial value problem due to the impact of
remaining kinetic energy in the dynamics.

The chapter begins by presenting the solution to the full Langevin equation (Eq. (2.77))
in Section 4.1. Section 4.2 describes the fitting parameters of the model, which are
optimised using the systematic fitting method described in Section 4.3. The chapter
concludes by comparing the theoretical excitation functions of the reactions studied with
the experimental data.

4.1 Formation probability in 1D Langevin Systems

The undamped Langevin equation that describes the shape evolution of the di-nuclear
system after the capture step with initial surface separation B0 into a compound nucleus is
given by (see Chapter 2):

¥B + V ¤B − l2(B − Bsad) = A (C). (4.1)

The first and second moments of the random force are given as,

〈A (C)〉 = 0, and 〈A (C)A (C′)〉 = 2T V
`
X(C − C′), (4.2)

113



4 Formation Dynamics with a One-dimensional Undamped Langevin System Formation probability in 1D Langevin Systems

where Bsad is the distance variable describing the position of the saddle point. The objective
is to solve Eq. (4.1). However, for simplicity, we can shift the position of the fusion saddle
to 0 by substituting @ = B − Bsad. This substitution reduces Eq. (4.1) to:

¥@ + V ¤@ − l2@ = A (C). (4.3)

The solution to Eq. (4.3) is presented in Refs. [52, 54, 61] and is repeated here for
completeness.

The solution to Eq. (4.3) is obtained by applying the Laplace transform (L) to both sides:
L

{
¥@ + V ¤@ − l2@ = A (C)

}
, (4.4)

which yields,

@(f) =
?0
`
+ V@0 + f@0

f2 + Vf − l2 +
A (f)

f2 + Vf − l2 ,

=

?0
`
+ V@0 + f@0

(f − f1) (f − f2)
+ A (f)
(f − f1) (f − f2)

.

(4.5)

where f denotes the Laplace domain variable.

Here,f1 =
−V+
√
V2+4l2

2 and f2 =
−V−
√
V2+4l2

2 are zeros of the denominator,f2+Vf−l2.
With this decomposition, the solution in the time domain is obtained by employing the
inverse Laplace transform L−1 of Eq. (4.5):
@(C) = L−1{@(f)},

= @0

[ (
4f1C + 4f2C

)
+ V

2
√
V2 + 4l2

(
4f1C − 4f2C

) ]
+ ?0

`
√
V2 + 4l2

(
4f1C − 4f2C

)
+

∫ C

0
A (g)

(
4f1 (C−g) − 4f2 (C−g)√

V2 + 4l2

)
3g,

= 4−GlC
[
@0 cosh

(√
1 + G2lC

)
+ @0G√

1 + G2
sinh

(√
1 + G2lC

)
+ ?0

`l
√

1 + G2
sinh

(√
1 + G2lC

)]
+

∫ C

0
A (g)

(
4f1 (C−g) − 4−f2 (C−g)

f1 − f2

)
3g,

(4.6)
where G = V

2l and the initial conditions are, @(0) = @0 and ¤@(0) = ?0
`
. The probability for

a di-nuclear with an initial separation @0 to diffuse over the fusion saddle (@ = 0) into a
compound nucleus is given as:

%CN(C, @(0)) =
∫ 0

−∞

1
√

2cfq(C)
exp

(
−(@ − 〈@(C)〉)2

2f2
q (C)

)
3@,

=
1
2
erfc

(
< @(C) >
√

2fq(C)

)
.

(4.7)

The average trajectory < @(C) > is obtained from Eq. (4.6) as,

< @(C) > = 4−GlC@0

[
cosh

(√
1 + G2lC

)
+ G
√

1 + G2
sinh

(√
1 + G2lC

)]
+ ?04

−GlC

`l
√

1 + G2

[
sinh

(√
1 + G2lC

)]
,

(4.8)
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whereas, the variance f2
@ (C) is determined as follows:

f2
@ (C) = 〈(@(C) − 〈@(C)〉)2〉,

=

[∫ C

0
〈A (g ′)〉

(
4f1 (C−g

′) − 4−f2 (C−g
′)

f1 − f2

)
3g
′

]2

,

=

∫ C

0

∫ C

0
〈A (g)A (g ′)〉

(
4f1 (C−g) − 4f2 (C−g)

f1 − f2

)
×

(
4f1 (C−g

′) − 4f2 (C−g
′)

f1 − f2

)
3g3g

′
,

=
2T V

`(f1 + f2)2

[
(42f1C − 1)

f1
+ 2(1 − 4(f1+f2)C)

f1 + f2
+ (4

2f2C − 1)
f2

]
,

=
2T V

`(f1 + f2)2

[
f24

f1C + f14
f2C

f1f2
− 24(f1+f2)C

f1 + f2
− (f1 − f2)2

2f1f2(f1 + f2)

]
.

(4.9)

From here, one can make the substitution for the hyperbolic functions, and the final
expression for the variance is written as:

f2
@ (C) = T

`l2

[
4−2GlC

(
2G2

1+G2 sinh2
(√

1 + G2lC
)
+ G√

1+G2 sinh
(
2
√

1 + G2lC
)
+ 1

)
− 1

]
.

(4.10)

With the expression for the mean trajectory and the variance obtained, we can further
evaluate the formation probability (Eq. (4.7)). At the asymptotic time limit, Eq. (4.7)
converges to:

%CN (C →∞, @0, ?0) =
1
2
erfc

(√
B(@0)
T ′ −

1
(G +
√

1 + G2)

√
 

T ′

)
. (4.11)

Here,  = ?2
0

2` represents the excess kinetic energy after capture. Based on this Eq. (4.11),
we can further define effective kinetic energy:

 eff =
(
G +

√
1 + G2

)2
B(@0), (4.12)

from Eq. (4.11) at which the probability is 1
2 for compound nucleus formation. Likewise,

the effective barrier is given as,

Beff(@0) =
(
G +

√
1 + G2

)2
B(@0). (4.13)

Here, T ′ is the dynamical temperature defined as:

T ′ = 2T G
(√

1 + G2 − G
)
, (4.14)

where T is the temperature of the random force in the Langevin formalism [52, 54].

As evident in Eq. (4.11), the compound nucleus formation probability depends on the
three variables, namely the height of the inner barrier (B(@0)), temperature (T ) and the
remaining kinetic energy after the capture step ( ). These variables impact the evolution
of the di-nuclear systems from contact configuration into a spherical configuration, as

115



4 Formation Dynamics with a One-dimensional Undamped Langevin System Formation probability in 1D Langevin Systems

shown in Fig. 4.1. The panels in Fig. 4.1 are dimensionless plots highlighting the impact
of the remaining kinetic energy ( ) and the temperature (T ) on the fusion dynamics using
the full Langevin solution (Eq. (4.11 The first row presents the average particle trajectories
as a function of dimensionless time (lC) for  < Beff(@0) (in panel (a)),  = Beff(@0) (in
panel (b)), and  = 2Beff(@0) (in panel (c)). The second row shows the corresponding
formation probability for temperature conditions T =

B(@0)
5 (solid line) and T =

B(@0)
2

(short-dashes).

Figure 4.1: Figures (a), (b), and (c) illustrate the average trajectory (Eq. ((4.8))) for the
remaining kinetic energies  < Beff(@0),  = Beff(@0), and  = 2Beff(@0), respectively.
Figures (d), (e), and (f) show the corresponding fusion probabilities for these energy
regimes. Here, the dashed and the solid lines areT = Beff (@0)

2 andT = Beff (@0)
5 , respectively.

The graphs are plotted as a function of dimensionless time (lC), with different scales used
for each column. The figure is reproduced from [52].

Panel (a) of Fig. (4.1) shows the evolution of the nucleus towards the fusion saddle
point. Here, the surface separation decreases; however, as time progresses, the average
trajectory loses momentum and retreats. This tendency implies a quasi-fission process
where most of the di-nuclear systems re-separate into projectile and target-like fragments
at the exit channel without reaching compound nucleus configurations. Very few systems
can fuse thanks to the random force. The corresponding to the formation probability
for these conditions peaked at 15% and 10% higher if the temperature is increased from
T =

Beff (@0)
5 to T =

Beff (@0)
2 as shown in the panel (d), respectively. Conversely, as the

remaining kinetic energy ( ) is increased to  = Beff(@0), the average trajectory evolves
to the top of the inner barrier. This means that half of the systems fuse, and the other half
re-separate. The formation probability converges to 1/2. When the kinetic energy exceeds
the effective barrier (panels (c) and (f)), the average trajectory overpasses the saddle, and
the fusion probability is close to one.

The figures show the tendencies of the formation probability as a function of the kinetic
energy and temperature. However, we need to parametrise the potential energy surface
around the fusion saddle to evaluate the needed model parameters: inner barrier, tem-
perature, and angular frequency. In the present study, we will keep the same potential
energy surface prescription given in Ref. [48]. See Chapter 4 for further details on
the implementation and how the initial condition (@0) and coefficient of friction (V) are
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determined.

4.2 Analysis of Undamped Langevin System

In the previous Section 4.1, we obtained the solution of the undamped Langevin equation
as

%CN =
1
2
erfc

(√
B(B0)
T ′ −

1
(G +
√

1 + G2)

√
 rem(�cm, ℓ)
T ′

)
, (4.15)

where variable @0 was replaced with B0 for consistency. Here B(B0) is the initial height of
the inner barrier as defined in Eq. (2.112).  rem(�cm, ℓ) is the partial remaining kinetic
energy after the capture step given by Eq. (3.25). If we take into account the dispersion
of the initial momenta (?0), the dynamical temperature (T ′ (Eq. (4.14))) coincides with
the temperature of the Langevin force [52]. The latter is approximated by the geometrical
average given in Eq. (2.114).

As mentioned, G = V

2l , and the reduced friction parameter V will be denoted Vss consistent
with the previous section. l is the angular frequency of the parabolic barrier taken as

l =

√
2B(B0)

` (B0 − Bsad)2
. (4.16)

Here, ` is the reduced mass of the system, and Bsad denotes the surface distance variable at
the fusion saddle (see, for instance, Fig. 2.25). B0 represents the initial surface separation
of the colliding nuclei after the capture phase or the injection point. We have adopted
the same parametrization of the deformation energy surface used in the overdamped
evaluation [34, 48], as presented in Chapter 2.

In this context, we assume the same initial surface separation (B0) and reduced friction
parameter (Vss) for all reactions and try to evaluate the dynamics using Eq. (4.15). Thus,
the B0 and Vss will serve as fitting parameters of the model. Only hot fusion reaction
data will be analysed using this approach because all these reactions are induced by 48Ca,
and all target nuclei exhibit similar deformations. As shown in Subsection 3.1.6, the cold
fusion data requires an additional fit parameter dependent on the Coulomb parameter to
describe the experiment.
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4.2.1 The Model Parameter

This section briefly discusses the model parameters and the implementation of the form-
ation probability within the full Langevin formalism. To begin with, we will use the
reaction 48Ca + 243Am for a demonstration. Fig. 2.26 shows the typical ℓ−independent
macroscopic deformation energy surface (�def) for 48Ca + 243Am from which the position
of the fusion saddle is determined at Bsad = −5.845 fm. The Bsad value correspond to
�sad
def = −0.328MeV for the fusion saddle. For an arbitrary initial conditions: B0 = 6 fm,

one obtains � inj
def = −15.028MeV and the inner barrier (B(B0)) opposing fusion dynamics

from the point of contact at ℓ = 0 is 14.70 MeV. However, this must be corrected by the
centrifugal term consistent with Eq. (2.112).

For the given values of the inner barrier B(B0) using distances B0 and the Bsad, the angular
frequency of the parabolic barrier given by Eq. (4.16) is obtained as 7.107×1020 s−1. Note
that, while Bsad and its �sad

def is correctly evaluated, the B0 = 6 fm which determined the
inner barrier height is arbitrarily chosen here for demonstrative purposes only. The key
questions then become: at what precise point (B0) of the deformation energy surface does
the system begin to evolve towards a spherical configuration, and what is the damping
factor Vss? Thus, we have two unknown parameters (B0 and Vss) that have to be determined.

4.3 TheOptimisedParameters of theUndampedLangevin
System

This section reports on the results of the fitted parameters of the undamped Langevin
system. The fitting process follows the systematic fitting adopted for the ℓ−dependent
injection point distances (in Section 3.3). The theoretical curve is adjusted to themaximum
of the experimental excitation functions for all the hot fusion reactions considered in the
fit (see Tab. 3.2). The theoretical maxima are compared on the loss functions defined
in the Subsection 3.3.2.1 until convergence or the lowest value is obtained. Note that
the parameters are obtained following the same capture model and configurations of the
survival probability. The only thing that changes is the compound nucleus formation
probability formalism. Therefore, any changes in the results over what is seen in the
previous chapters will be due to the compound nucleus formation probability.

Since this is the first time the undamped Langevin formalism (Eq. (4.15)) is evaluated using
the potential surface energy map presented in Subsection 2.4.2, it is worth demonstrating
how the formation probability compares with already known calculation. To this effect,
Fig. 4.2 compares the optimised undamped and overdamped calculation with the injection
point distance given by Eq. (3.32). Here, the comparison is made using the angular
momentum-dependent injection point distance. The optimised parameters in this case are
B0 = 7.833 fm and Vss = 1.104 × 1021 s−1, see Subsection 3.5.2 for more details.

Panel (a) of the figure illustrates how the average compound nucleus formation probability
given by Eq. (2.122) for 48Ca + 243Am is compared on both formalisms. Panel (b)
illustrates the corresponding evaporation residue cross section for the 2n, 3n, 4n and 5n
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channels. The calculation shows good agreement between the overdamped and undamped
calculations. However, the differences in the optimised parameter values underscores how
each formalism describes the dynamics.

Figure 4.2: Comparison of compound nucleus formation probability at the overdamped
(in blacked dashed line) and undamped limit of the Langevin (solid brown line) formalism
using 48Ca + 243Am as test case. Here, the overdamped calculations are evaluated using
the optimised injection point distance given by Eq. (3.35). (a) The average compound
nucleus formation probability using Eq. (2.122). The optimised parameters B0 = 9.374
fm and Vss =0.117 × 1021 s−1 are used to calculate the undamped approach. (b) The
corresponding evaporation residue cross sections (Eq. (2.2)) for the 2n, 3n, 4n and 5n
channels.

4.3.1 Results

The parameters B0 and Vss obtained from the fit are 9.374 fm and 0.117 × 1021 s−1,
respectively. Note that only hot fusion data are considered for the reasonsmentioned earlier.
Fig. 4.3 shows how the fitted undamped Langevin parameters describe the experimental
data. Here, the

(
fth
fexp

)
ratio is plotted against the targets used in the experiment. The

fth and fexp are the maxima of the calculated and the experimental excitation functions,
respectively. The black, blue and brown coloured markers correspond to the data from
DUBNA, GSI (TASCA) and the LBNL, respectively. The 2n, 3n, 4n and 5n data are
depicted by the cross, star, open square and solid squares, respectively. The sources of the
experimental data used in the fit are presented in Table 3.2. Here, the figure shows the
predicted theoretical values are within an order magnitude deviation from the experimental
data.

119



4 Formation Dynamics with a One-dimensional Undamped Langevin System Results

Figure 4.3: Comparison of theoretical and experimental evaporation residue cross sections
for hot fusion data given in Table 3.2.

(
fth
fexp

)
is the ratio of the theoretical predictions to the

experimental values evaluated in a maximum of a given channel. The 2n, 3n, 4n and 5n
reaction channels are depicted by the cross, star, open square and solid squares symbols,
respectively. Here, the colours: black, blue, and brown correspond to the laboratories
in Dubna, GSI (TASCA), and LBNL, where these cross sections were measured. The
theoretical calculations are evaluated using the full Langevin formalismwith the optimised
parameters B0 = 9.374 fm and Vss = 0.117 × 1021 s−1. The respective sources of the
experimental data are given in Table 2.3.

Finally, Fig. 4.4 illustrate the complete excitation functions of the reactions used in the
fit. The evaporation residue curves regarding the position of the optimum energies are
similar to what we have seen in the previous chapter. As evident in Fig. 4.3, the theoretical
calculations reasonably reproduced the experimental data within one order of magnitude.
As seen in Fig. 3.33 in the higher neutron emission channels (4n and 5n), the kinks are
eliminated. The kink, as mentioned before in Fig. 3.33, was because of the restriction
of the injection point distance to a finite value (Binj = −2 fm) even for energies which
would otherwise correspond to smaller Binj. This gives rise to a plateau or saturation of
the formation probability at this limit, as seen in panel (a) of Fig. 3.8.
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Figure 4.4: The excitation functions for the hot fusion reactions. Here, the solid symbols
correspond to the data taken from DUBNA, and the open symbols denote that of the GSI
(TASCA). The 2n, 3n, 4n and 5n channels are represented by the blue, black, green, and
brown symbols, respectively. The theoretical curves are evaluated using the full Langevin
formalism with the optimised parameters B0 = 9.374 fm and Vss = 0.117 × 1021 s−1. The
sources of the experimental data are indicated in Table 2.3. The position of the brown
arrows indicates the mean Coulomb barrier of the reactions.
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4.4 Conclusion

In conclusion, this chapter presented the formalism of compound nucleus formation at the
undamped limit of Langevin formalism. We optimised the model parameters B0 and Vss
of the full Langevin model. As shown in the Subsection 3.1.6, the Coulomb parameter is
needed as an extra feature of the model to accurately describe the cold fusion reactions.
Therefore, the parameters are optimised for the hot fusion reaction only. The optimised
parameters of the fit reproduced the experimental data within one order of magnitude
deviation from the experimental data. The values of the friction parameter (VBB) obtained
from the fit, re-emphasis the dynamics is not damped as assumed in the overdamped
evaluation.
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Chapter 5

Wrap-up and Predictions

To this point, we have implemented and investigated the compound nucleus formation
probability at the overdamped and undamped limits of the Langevin formalism. During
the analysis, we have obtained several sets of optimised model coefficients necessary for
calculating the formation probability. In this chapter, we will summarise the predictive
powers of each of the approaches discussed so far in this thesis. The objective is to establish
the best-optimised method and parameters to implement in the recommended version of
the improved Kewpie2 model. To achieve that, we will evaluate the models using the
hybrid loss function (symmetric) given by Eq. (3.31):

j2
sym =

1
# − 9 ×

#∑
8

($8 − �8)2

$8 × �8
, (5.1)

where$8 are the experimentally measured cross sections (in the excitation functions max-
ima) and �8 are the cross section values predicted by a givenmodel. # indicates the number
of analysed reactions, and 9 corresponds to the number of parameters optimised, i.e., 2 or
3, depending on the cases. In this chapter, we will compare different approaches and give
recommendations based on the above loss function. As demonstrated in Subsection 3.3,
such a loss function can deal with situations where deviations between calculations and
observations can reach orders of magnitude. Thus, the model that has the lowest score of
j2
sym has the least average deviation from the experimental data.

The tables 5.1 and 5.2 present the model and the respective optimised parameters. The
columnModel corresponds to the model investigated. The linear injection point distance
parameterization is the default approach within the FbD model to obtain the formation
probability and it is given by Eq. (2.117):

BLinj = U × (�cm − �0) + V0. (5.2)

Here, we aremainly interested in the optimised parameters B0 and Vss of the new approaches
to the injection point distance; therefore, the parameter columns of the linear approach are
left empty, and only the j2

sym value is given for comparison. For more details on the linear
parameterization, see Subsection 2.5.1.
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The parameterization used in the new approach to the injection point distance (Eq. (3.10))
is given by:

BNinj = B0 −
2

Vss

√
2〈 〉rem
`22 , (5.3)

and has two parameters: B0 and Vss. However, in the quest to improve the quality of the
fit, the Coulomb parameter dependence term (ΩI) was added:

BMinj = B0 +ΩI −
2

Vss

√
2〈 〉rem
`22 . (5.4)

Finally, in an attempt to improve the description of the injection point distance, we
introduced angular momentum treatment of the remaining kinetic energy at capture and
subsequently optimised the parameters:

BNinj (ℓ) = B0 −
2

Vss

√
2 rem (�cm, ℓ)

`22 . (5.5)

In both Tables, 5.1 and 5.2, the columns without a value imply that the corresponding
parameter was not considered in the fit procedure. We will also consider the optim-
ised parameters of the full Langevin formalism on hot fusion data as presented in the
Subsection 4.3.

5.1 Wrap-up on Cold Fusion Analysis

Table 5.1 shows the optimised injection point distance parameters obtained in the analysis
of 1n only or all, 1n, 2n and 3n, channels of the cold fusion reaction data set (see Table 5.1).
The column CH corresponds to the channels on which the parameters are optimised. The
case of the 1n channel alone indicates the model could not describe the multiple neutron
emission channel.

Firstly, the new approach to the injection point distance (Eq. (5.3)) optimised on 1n channel
has a smaller j2

sym = 2.8 as compared with j2
sym = 3.8 of the linear parameterization

(Eq. (5.2)). The lower value obtained from the new approach indicates that it better
describes the data than the default linear parameterization in the FbD model, as explained
in the Subsection 3.1.2. These parameters are obtained using the ordinary linear regression,
see Subsection 3.1.2. The reported j2

sym when the systematic fitting technique is applied
to Eq. (5.3) as presented in Subsection 3.4.1 is 2.2.

The modified new approach (Eq. (5.4)), as used to explain the multiple neutron emission
channels (1n, 2n and 3n), has j2

sym = 0.6, which is a significant improvement over the
optimised parameters obtained for the 1n channel alone. This shows the modified new
approach to the injection point distance is better suited for describing the cold fusion
data in comparison with the original version (Eq. (5.3)). The modified parameterization
(Eq. (5.4)) used for the combined cold and hot fusion data sets gives j2

sym = 1.5 when
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only cold fusion reactions are analyzed. This is a worse result than the one obtained with
only the dedicated fit to cold fusion data. On this note, the optimised parameters on the
modified injection point distance (Eq. (5.4)) as shown in Table 5.1 on the cold fusion data
(1n, 2n and 3n) alone is the best optimised and recommended parameterization for the
cold synthesis. The corresponding parameters are highlighted in the bold characters in
Table 5.1.

Table 5.1: The table summarizes the optimized fitting parameters of different compound
nucleus formation probability formulas for cold fusion reactions. The parameters are
obtained by analyzing 1n alone or combined (1n, 2n, and 3n) neutron emission channels.
The parameters B0 (in fm), Ω (in fm) and Vss (in units of s−1), are rated on the j2

sym
metric calculated for a given data set. The lower the metric value, the better the model
performance.

Model B0 (fm) Ω (fm) Vss × 10−21 (s−1) j2
sym CH

Linear Model
(Subsection 3.1.2.1)

- - - 3.8 1n

New Approach to the
Injection Distance
(Subsection 3.1.2.1)

12.478 - 0.314 2.8 1n

Modified New Approach to
the Injection Distance
(Subsection 3.1.6)

15.982 -0.054 1.6 0.6 1n, 2n, 3n

Global Injection Fit for Cold
and Hot Synthesis
(Subsection 3.1.7)

17.548 -0.051 0.814 1.5 1n, 2n, 3n

Systematic Fit
(ℓ−independent)
Subsection 3.4.1

12.680 - 0.321 2.2 1n

Having identified the best-optimised fitting coefficients for the formation probability, we
can now compare the results for the formation probability with the calculations performed
with other models. To make this comparison, we will adopt the average formation probab-
ility given by Eq. (2.122). Fig. 5.1 shows the compound nucleus formation probabilities
reported by different authors compared with the current work shown in brown points for
/CN = 104 − 113. The current work is added to Fig. 5.1 taken from Ref. [55].

The multiple points corresponding to the same /CN are for different reactions. In all
models presented in Fig. 5.1, the fusion probability calculations are, to some degree,
adjusted to the experimental data, as in this work. The differences between the %CN
calculations may stem from variation in one of the three stages of the modelling, since, at
least one of the three stages in the modelling: capture, formation, survival, is adjusted in
order to reproduce the experiment. The question of which model is correct will require
in-depth analysis to constrain the models. This can be done by using uncertainty analysis,
e.g., applied to reactions that form the same compound nucleus at the same energies but
in different projectile-target combinations.
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Figure 5.1: The compound nucleus formation probabilities %CN as a function of /CN
obtained using different models are compared with the values obtained in this work
(represented by brown dots). The results for /CN = 104− 113 are here added to the figure
extracted from Ref. [55]. The multiple points corresponding to the same /CN are for
different reactions.

5.1.1 Model Testing on Cold Fusion Data

In the previous sections, we have summarised the formation probability calculations and
selected the best parameter values for cold fusion reactions. Now, the question is, can
we reproduce experimental data that is not considered in the fitting process? Fig. 5.2
illustrates such an example. The experimental data have yet to be published and have been
obtained from Dieter Ackermann in private communications.

Here, the dashed black line shows the calculations using the original injection point
distance formula given by Eq. (3.14), and the brown curve corresponds to the modified
version of the injection point distance approach (Eq. (3.20)). Here, the original version
of the injection point distance parametrization agrees better with data than the modified
version. However, the modified version only deviates from the experimental points by
factor three.

The original Kewpie2 model relied on external evaluations of the formation probability.
The presented calculations have good predictive power, and the Kewpie2 model can now
be considered a standalone numerical code for simulating production cross sections for
super-heavy elements.

126



5 Wrap-up and Predictions Hot Fusion Residue Excitation Functions

Figure 5.2: Demonstration of the predictive power of the current version of the Kewpie2
model. Points show the unpublished experimental data for the 207Pb(64Ni,1n)270Ds (private
communication from Dieter Ackermann). The black dashed line shows predictions of
Eq. (3.14) and the brown line those of Eq. (3.21).

5.2 Hot Fusion Residue Excitation Functions

Table 5.2 illustrates the summary of various methods used to describe the formation
probability in the hot fusion reactions. Here, we present the parameters for cold and hot
fusion reaction data sets. The table highlights which of the formalisms, overdamped or
undampedLangevin approach, andwhich parameterization best describes the experimental
data. This analysis is done similarly to the previous chapter using the j2

sym loss function.

The undamped Langevin formalism has the lowest loss function value, j2
sym = 2.2. Since

the sole purpose of this comparison is to find which model has the best description of the
experimental data, the undamped Langevin formalism presented in the Subsection 4.3 is
recommended for describing the formation probability in the hot fusion reactions.
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Table 5.2: The table summarizes the optimized fitting parameters of different compound
nucleus formation probability formulas for hot fusion reactio data. The parameters B0 (in
fm), Ω (fm) and Vss (s−1), are rated on the j2

sym metric calculated for the same data set.
The lower the metric value, the better the model performance.

Model B0 (fm) Ω (fm) Vss × 10−21 (s−1) Loss
Linear (Subsection 3.1.2.2) - - - 6.5

New Approach to the
Injection Distance
(Subsection 3.1.2.2)

10.572 - 0.550 6.6

Global Injection Fit for Cold
and Hot Synthesis
(Subsection 3.1.7)

17.548 -0.051 0.814 7.1

Systematic fitting
ℓ-independent New

Approach to the Injection
Distance (Subsection 3.4.1)

10.096 - 0.6152 3.2

Systematic fitting
ℓ-dependent New Approach
to the Injection Distance

(Subsection 3.5.2)

7.833 - 1.104 4.4

Undamped Langevin
System (Subsection 4.3)

9.373 - 0.177 2.2

5.2.1 Predictions on Hot Fusion for Planned and Possible Experi-
ments

As aforementioned, ongoing experimental efforts are dedicated to synthesising elements
with atomic numbers greater than /CN = 118. To achieve this, it is important to investigate
suitable projectile-target combinations for these experiments. In this section, we present
calculations for planned and possible hot fusion reactions with beams heavier than 48Ca
that can lead to the synthesis of new isotopes of known elements or to the synthesis of
new elements with atomic numbers 119 and 120.

In this case, the undamped Langevin formalism (full Langevin) is considered because it has
the lowest j2

sym value for hot fusion reactions with 48Ca. Table 5.3 presents cross section
prediction for possible super-heavy synthesis experiments. The table shows the most
probable Gn production channel for the listed actinide targets induced with 50Ti, 51V and
54Cr projectiles. The maximum value of the production cross section decreases from 50Ti
to 54Cr induced reactions, except for the 238Uand 237Np targets. The decreasing production
cross section is a consequence of the increasing charge symmetry in the entrance channel,
which decreases the probability of the compound nucleus formation.

As shown in Table 5.3, the reaction 50Ti + 244Pu leading to /CN = 116 is the most probable,
with a predicted production cross section of 121 fb. This reaction was recently performed
at LBNL, where a reported production cross section in the 4n channel is 440+580

−280 fb,
approximately four times higher than the calculated value [36]. In contrast, the predicted
production cross sections for / = 119 (50Ti + 249Bk) and / = 120 (50Ti + 249Cf) are
14.6 and 2.2 fb, respectively. These minuscule production cross sections highlight the
challenges of synthesising new elements.
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Table 5.3: The table shows the most probable Gn production channels for the listed
actinide targets induced with 50Ti, 51V, and 54Cr projectiles. All calculations are based on
the undamped Langevin formalism for the formation probability. The predictions from the
current version of the Kewpie2 model are compared with those from the FbD calculations
(private communication with T. Cap). The empty columns entries in the FbD calculations
means that the cross section is below 1 fb.

Targets 50Ti 51V 54Cr
This Work FbD This Work FbD This Work FbD
ch (fb) (fb) ch (fb) (fb) ch (fb) (fb)

238U 3n 4.4 3-26 3n 0.7 < 9 4n 18.8 19-171
237Np 2n <0.1 - 2n <0.1 - 3n 19.2 41-462
242Pu 4n 75.5 70-640 4n 11.2 13 - 102 4n 7.5 11-94
244Pu 4n 120.9 120-860 5n 18.7 23 - 125 4n 6.2 8-60

241Am 3n 86.5 140-1410 4n 3.0 4 - 43 3n 1.8 11-135
243Am 4n 86.2 110-1140 4n 3.0 3 - 22 3n 2.1 14-135
245Cm 4n 36.1 36-263 4n 0.7 3 - 18 4n 0.7 14-16
248Cm 4n 26.5 36-205 4n 1.6 2 - 22 4n 0.2 < 2
249Bk 4n 14.6 21-252 4n 0.2 <3 4n <0.1 -
249Cf 3n 2.2 2-11 4n 0.7 < 2 4n 0.8 -
251Cf 4n 1.4 4-45 4n 0.1 1.4 - 9.2 4n <0.1 -
254Es 4n <0.1 - 4n <0.1 - 4n <0.1 -

Table 5.3 also compares the Kewpie2 calculations with the FbD calculations (private
communication with T. Cap). The FbD data presents lower and upper limits of the
calculations resulting from the uncertainty in determining the fusion probability using
linear approximation (see Eq. (3.17) and Fig. 2.31). The Kewpie2 model calculations
are more pessimistic. Usually, the predicted values are below a lower limit of the FbD
calculations.

In conclusion, we highlighted the active experimental and theoretical investigations at-
tempting to synthesise the elements /CN = 119 and 120. The plausible projectile and
target combinations for consideration are 51V + 248Cm [153], 54Cr + 243Am [154], 54Cr
+ 248Cm [155], and 50Ti + 249Cf [36]. The maximum predicted production cross sec-
tions are 1.59 fb, 2.09 fb, 0.18 fb and 2.18 fb, according to Kepwie2 calculations. The
corresponding FbD predictions are listed in Table 5.3. The complete 2n, 3n, 4n and 5n
excitation functions are shown in Fig. 5.3. For completeness, the calculation for reactions
listed in Table 5.3 are shown in Figs. 5.4, 5.5 and 5.6 for the projectiles 50Ti, 51V and 54Cr,
respectively. Only predictions with cross sections > 0.1 fb are shown.
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Figure 5.3: Excitation functions for the projectile-target combinations leading to the
synthesis of elements with /CN = 119, and 120 using hot fusion reactions. The curves
are 51V +248 Cm →299 119, 54Cr +243 Am →297 119, 54Cr +248 Cm →302 120, and
50Ti +249 Cf →299 120. The curves for the 2n, 3n, 4n and 5n excitation functions are
shown. The position of the black arrows corresponds to the value of the mean Coulomb
barrier. The colours black, green, brown and blue denote the 2n, 3n, 4n and 5n channels,
respectively. Only reactions with cross sections > 0.1 fb are shown. The theoretical
calculations use the undamped Langevin formalism for the formation probability, and the
nuclear ground and saddle states properties are taken from the Ref. [69].
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Figure 5.4: The 2n-5n excitation functions for 50Ti induced reactions on the targets
indicated in each panel. The position of the black arrows corresponds to the value
of the mean Coulomb barrier. The theoretical calculations use the undamped Langevin
formalism for the formation probability, and the nuclear ground and saddle states properties
are taken from the Ref. [69]. The colours black, green, brown and blue denote the 2n, 3n,
4n and 5n channels, respectively. Only reactions with cross sections > 0.1 fb are shown.
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Figure 5.5: The 2n-5n excitation functions for 51V induced reactions on the targets
indicated in each panel of the panels. The position of the black arrows corresponds
to the value of the mean Coulomb barrier. The theoretical calculations use the undamped
Langevin formalism for the formation probability, and the nuclear ground and saddle states
properties are taken from the Ref. [69].The colours black, forest-green, brown and blue
denotes the 2n, 3n, 4n and 5n channels, respectively. Only reactions with cross sections >
0.1 fb are shown.
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Figure 5.6: The 2n-5n excitation functions for 54Cr induced reactions on the targets
indicated in each panel of the panels. The position of the black arrows corresponds to
the value of the mean Coulomb barrier. The theoretical calculations use the undamped
Langevin formalism for the formation probability, and the nuclear ground and saddle states
properties are taken from the Ref. [69]. The colours black, forest-green, brown and blue
denotes the 2n, 3n, 4n and 5n channels, respectively. Only reactions with cross sections >
0.1 fb are shown.
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5.3 Conclusion

This chapter summarises the results of investigating the compound nucleus formation prob-
ability within the Langevin formalism in the Kewpie2 code. The fitting coefficients of the
injection point distance, an important parameter of the formation probability at the over-
damped limit of Langevin formalism, are constructed based on the loss function metrics.
Subsequently, the adoption of the best-optimised parameters is recommended. The current
version of the Kewpie2 is bench-marked on excitation function 207Pb(64Ni,1n)210Ds. The
theoretically calculated results are within factor three from the experimental data.

Finally, the optimised parameters of the hot fusion injection point distance are compared
using the loss function metrics. Here, the model also includes full Langevin formalisms
of the compound nucleus formation probability. It turns out that the full Langevin better
describes the data than the overdamped approximation with the injection point distance.
The model is subsequently used to make predictions for a set of actinide target reactions
induced by 50Ti, 51V and 54Cr projectiles. Even though the calculations are pessimistic,
they are comparable to the lower limits of the FbD model calculations.
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Chapter 6

Constraining the Formation Probability
of Superheavy Nuclei

In the previous chapters we have implemented the compound nucleus formation probab-
ility in the overdamped and undamped Langevin formalism within the Kewpie2 model.
However, an accurate evaluation of the formation probability hinges on the capture and the
survival probability because themodel parameters are obtained by adjusting the theoretical
excitation functions to themaxima of the experimental excitation functions. Therefore, any
uncertainty from the capture or survival part will lead to discrepancies between different
approaches.

This is evident in Fig. 5.1, where the formation probability differs among models by up to
two orders of magnitude. Therefore, to reproduce experimental results, the survival prob-
ability is often adjusted to compensate for discrepancies between theoretical predictions
and experimental observations. This brings the question: "What are the true values or the
bounds of the compound nucleus formation probability?" This chapter aims to identify and
isolate uncertainty in the capture and the experimental residue production cross section
parts and investigate methods to quantitatively constrain the formation probability step.
The success of this study will allow us to improve the reliability of the model predictions.

As we have seen so far, the process of modelling evaporation residue cross section involves
three steps: (1) capture, (2) formation, and (3) survival probability. The formalises for the
capture cross sections and the survival probability are generally well understood; however,
the uncertainty contribution from these steps is far from negligible [53, 73, 156]. For
example, the fission barrier is known to impact the survival probability significantly,
potentially causing variations of up to two orders of magnitude per 1-2 MeV change in its
values [73]. Thus, simply changing the fission barrier could lead to an entirely different
set of parameters for the formation probability.

Furthermore, various sub-models, including the level density functions, level density
parameter, shell damping parameters of the level density prescriptions, and neutron in-
verse capture cross sections, can also lead to variation in the formation probability fitted
parameter values (B0 and Vss). Moreover, matching the statistical survival probability
modelling to the dynamical limit by incorporating Kramers-Strutinsky and the collective
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6 Constraining the Formation Probability of Superheavy Nuclei

enhancement will yield different B0 and Vss parameter values. Lastly, the semi-classical
empirical Gaussian barrier distribution (EBD) capture model, as seen in the previous
Subsection 2.1.3, may unreliably predict the capture cross section below the Coulomb
barrier.

To tackle this question, we will resort to the Bohr hypothesis of compound nucleus forma-
tion. Bohr’s compound nucleus model proposes a two-step process for nuclear reactions:
forming an intermediate compound nucleus followed by its decay. The formation phase
consists of two colliding nuclei merging into a compound nucleus in statistical equilibrium.
In this state, the CN retains information about the total energy, angular momentum, and
other conserved quantities. However, it losesmemory of the details of the entrance channel.
Therefore, the decay of the compound nucleus through the exit channel is independent of
the formation phase [83, 157]. This concept can be applied to different entrance channels,
forming a compound nucleus at the same excitation energies, as depicted in Fig. 6.1.

Figure 6.1: A schematic diagram of two different projectile and target combinations
(%1 + )1) and (%2 + )2) leading to the same compound nucleus (CN) formation. The
formation (intermediate step) refers to the process of attaining a statistical equilibrium,
and the last stage is the exit channel, where the compound nucleus losses energy excess
in the de-excitation process avoiding fission by emission of light particles. Fission events
are here not considered.

Building on the Bohr independent hypothesis, one can investigate the production cross
sections of pairs of reactions leading to the formation of the same compound nucleus:

f1
EvR

f0
EvR

=
f1
cap

f0
cap
× %CN

1

%0
CN
×
%1
surv

%0
surv

. (6.1)

Here fEvR stands for the evaporation residue cross sections, and fcap is a theoretical
capture cross section. This is evaluated using the Gaussian empirical barrier distribution
model. The %CN and %surv are the average formation and survival probability, respectively.
Note, that the formula (6.1) uses an approximate version of Eq. (2.2).

At sufficiently high excitation energies where the number of partial waves contributing to
the process in both reactions is equivalent, %0

surv ≈ %1
surv. Then one can reduce Eq. (6.1)
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to:
%1
CN

%0
CN

=
f0
cap

f1
cap
×
f1
EvR

f0
EvR

. (6.2)

Here, we are left with the ratio of the compound nucleus formation probability of the
respective entrance channel which is equal to the product of the ratios of the capture and
EvR cross sections. The capture cross section ratio can be calculated using Eq. (2.34)
while the EvR cross sections ratio can be estimated using the experimental data if available.
This allows us to estimate the formation probability ratio independently of the survival
step.

Now that we have eliminated the survival probability, we can investigate the Eq. (6.2) by
propagating the uncertainties in the remaining terms onto %1

CN
%0
CN
. The uncertainty in the

capture cross sections is determined following the work in Ref. [73] and the results stated
in the Subsection 2.1.2 and details presented in the Appendix A. The EvR cross sections
are taken from the experimental data. With this approach, we hope to gain insight into
constraining the compound nucleus formation probability, the most uncertain step in the
theoretical description of the reactions dynamics. This is referred to as the inverse problem
with uncertainty analysis, as shown in Ref. [76].

6.1 Uncertainty in the Formation Probability

An uncertainty analysis involves systematically identifying potential sources of uncer-
tainty, quantifying their magnitudes, and propagating them through the model to under-
stand their impact on the outcome of the model. This process helps us estimate the range
of possible outcomes, assess the model’s sensitivity to different inputs, and ultimately
build confidence in the predictions of the model. However, while uncertainty analysis
significantly reduces doubt, it cannot eliminate it due to the inherent limitations of models
and incomplete knowledge [76].

We are interested in evaluating the uncertainty in
(
%1
CN
%0
CN

)
, given by Eq. (6.2). Since we

have eliminated the impact of the survival probability based on the assumptions we have
previously made (%0

surv ≈ %1
surv), the remaining sources of the uncertainties are due to

the capture model and the experimental EvR cross sections. Evaluating this may help
us to understand the impact of uncertainty contributions from the capture model and
experimental production cross section on the formation probability.
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6.1.1 Propagation of Uncertainty

Following the propagation of uncertainty outlined in the B.13, the variation in the
(
%1
CN
%0
CN

)
due to the capture model and the experimental uncertainties can be written as:

D2

(
%1
CN

%0
CN

)
=

(
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CN

%0
CN

)2

×
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(6.3)
Here, f0,1

EvR and D
(
f

0,1
EvR

)
are the experimental residue production cross sections and the

respective uncertainties, whereas, the f0,1
cap and D

(
f

0,1
cap

)
are the calculated capture cross

sections and their uncertainties. The indices correspond to the different entrance channels

that form the same compound nucleus. The D2
(
%1
CN
%0
CN

)
is the variance in the ratio

(
%1
CN
%0
CN

)2

due to the uncertainty of the capture cross section and the experimental EvR cross section.
The experimental data (including the uncertainties) are known and will be retrieved from
the literature.

The uncertainty analysis of the capture cross section (Eq. (2.34)) according to Ref. [73]
as stated in the Section 2.1.2 is recalled here. All the parameters entering Eq. (6.3) are
readily available, except for the covariance between the two capture cross sections. This
can be obtained following Eq. (B.13) as follows:

D

(
f0
cap, f

1
cap

)
=

#∑
8=1

#∑
9=1

mf0
cap

mF8

mf1
cap

mF 9

D(F8, F 9 ), (6.4)

where F8 = [A0, 0, 1, 2, f0, �]. The matrix form expressing Eq. (6.4) for easy evaluation
is given as:

D

(
f0
cap, f

1
cap

)
=

[
mCap0

mF8

] 

D2(A0) 0 0 0 0 0
0 D2(0) D(0, 1) D(0, 2) 0 0
0 D(1, 0) D2(1) D(1, 2) 0 0
0 D(2, 0) D(2, 1) D2(2) 0 0
0 0 0 0 D2(f0) D(f0, �)
0 0 0 0 D(f0, �) D2(�)


·
[
mCap1

mF 9

]T
(6.5)

In conclusion, we have outlined the formalisms for propagating the uncertainty due to
the capture and residue cross sections of the different entrance channels onto the quantity(
%1
CN
%0
CN

)
.
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6 Constraining the Formation Probability of Superheavy Nuclei Application to 258No

6.1.2 Application to 258No

The technique described above is applied to the formation of Nobelium-258 [158] via the
following entrance channels:

258No =

{
0 : 22Ne +236 U
1 : 26Mg +232 Th

, (6.6)

where 0 and 1 correspond to indices identifying reactions. For these reactions, the
Coulomb hindrance factors, /P × /T, are 920 and 1080, respectively. This implies they
should not be strongly hindered and the formation probability should be close to 1 in both

cases; therefore,
(
%1
CN
%0
CN

)
should be approximately 1. Nevertheless, studying these reactions

will give insight into the role of the uncertainty from the capture model and the residue
cross section in decreasing the uncertainty in the formation probability.

To begin, Table 6.1 illustrates the experimental measurements with each column corres-
ponding to the reaction (Reaction), the excitation energy (�∗ in MeV), the EvR cross sec-
tion (fExp

EvR in pb), the uncertainty (u(EvR) in pb) and the neutron emission channels (CH).
The calculated values of capture cross sections are also shown. As shown in Table 6.1,
the excitation energies are high enough to justify the approximation %0

surv ≈ %1
surv. That

is the partial waves contributing to the formation of 258No are exhausted in both reaction
channels. This allows us to apply Eq. (6.2) and Eq. (6.1.1). Note that the values of 57MeV
and 60 MeV for the 6n channel are averaged to 58.5 MeV in the theoretical calculations of
the capture cross section.

Table 6.1: Two reactions leading to the formation of the same CN∗, 258No. The columns
describe �∗ (in MeV), capture cross sections fth

cap (in mb), evaporation residue cross
sections fExp

EvR (in pb), experimental uncertainties u(EvR) (in pb), and the observed channel
(CH). The experimental data are taken from Ref. [158].

Reaction �∗ (MeV) fth
cap (mb) f

Exp
EvR ± D(EvR) (pb) CH

22Ne +236 U
45 155.2 ± 6.02 7 ± 4 4n
50 300.9 ± 6.26 3 ± 7 5n
57 487.3 ± 6.16 2 ± 5 6n

26Mg +232 Th
45 100.6 ± 5.6 6 ± 2 4n
50 225.9 ± 6.6 9 ± 5 5n
60 467.9 ± 6.5 8 ± 3 6n

We begin by investigating the uncertainty propagation of the capture cross section model
onto Eq. (6.3). The panels (a) and (b) of Fig. 6.2 illustrate the capture cross section (solid
blue lines) for 22Ne + 236U and 26Mg + 232Th, respectively, with the upper and lower limits
of the cross sections shown as blue dashed lines (fth

cap ± D(fth
cap)).
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Figure 6.2: Capture cross sections as a function of the excitation energy �∗: (a) for the
reaction 22Ne +236 U and (b) 26Mg +232 Th, leading to the formation of 258No∗. The upper
and lower dashed lines are the uncertainty intervals evaluated as fth

cap ± D(fth
cap). The

arrows in each panel represent the excitation energies at the Coulomb barrier energies
(�cm = �0) for each reaction.

Panel (a) of Fig. 6.3 illustrates the relative uncertainty in the capture cross section, for
22Ne + 236U reaction in blue and for 26Mg + 232Th reaction in brown, as a function of
the compound nucleus’s excitation energy. This excitation energy is related to the energy
in the centre of the mass frame via the &-value of the reaction, as shown in Eq. (2.1):
�cm = �∗ − &. The relative uncertainty in both reactions, as depicted in panel (a) of
Fig. 6.3, decreases with the increasing energy. As seen previously, the empirical Gaussian
barrier distribution model has the lowest uncertainty at high energies.

Figure 6.3: Analysis of the capture cross section uncertainties for the reactions 22Ne +
236U and 26Mg + 232Th leading to the formation of 258No. (a) the relative uncertainty
of the capture cross sections for the 22Ne + 236U (in red line) and 26Mg + 232Th (in blue
line) reactions as a function of the excitation energy �∗. Panel (b) shows the covariance
between the capture cross sections evaluated for the two reactions due to the usage of the
same capture formula (Eq. 2.34) as a function of energy.

The correlation between the two capture cross sections is shown as a function of energy in
panel (b) of Fig. 6.3. Here, the two capture cross sections behave independently at lower
energies but exhibit a strong correlation as energy increases between 40 and 50 MeV. The
covariance reaches a plateau of around 40MeV, suggesting that this correlation is strongest
at energies between 40 and 50MeV. Further increases in energy do not significantly change
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the covariance.

Having assessed the uncertainty contribution from the capture cross section, we now

turn our attention to how it affects the overall uncertainty of
(
%1
CN
%0
CN

)
ratio. To answer

this, we show the uncertainty contributions from
(
f0
cap

f1
cap

)
and

(
f1
EvR
f0
EvR

)
terms in Eq. (6.2)

independently, and then evaluate the total impact on
(
%1
CN
%0
CN

)
. The Fig. 6.4 illustrates

the relative uncertainties in these quantities, along with the resulting uncertainty in the
formation probability ratios.

Figure 6.4: (a) Relative uncertainty in the ratio of capture cross sections, Drel
(
f0
cap

f1
cap

)
, as a

function of the excitation energy. (b) Relative uncertainty in the ratio of evaporation residue

cross sections, Drel
(
f1
EvR
f0
EvR

)
, as a function of the excitation energy. (c) Relative uncertainty

in the ratio of compound nucleus formation probabilities, Drel
(
%1
CN
%0
CN

)
, as calculated from

the uncertainties in panels (a) and (b).

Fig. 6.4 shows the relative uncertainties of these quantities: Drel
(
f0
cap

f1
cap

)
(in panel (a)),

Drel

(
f1
EvR
f0
EvR

)
(in panel (b)), and Drel

(
%1
CN
%0
CN

)
(in panel (c)). Panel (a) demonstrates that the

relative uncertainty in the capture cross sections ratios
(
f0
cap

f1
cap

)
decreases with increasing

energies, reinforcing the observation in panel (a) of Fig. 6.3. The relative uncertainty
decreases from about 2.4% at 45 MeV to 1.2% at 50 MeV and 0.4% at 60 MeV. This
highlights the increasing accuracy of the capture cross section model at higher energies,
as we have previously seen.

We find similar trends in the experimental residue production cross section, which also
exhibits a decreasing relative uncertainty with increasing energy. However, the relative
uncertainties in this case are larger, with values of 66.2% at 45 MeV, 62.1% at 50 MeV,
and 50.2% at 60 MeV. These high values highlight the challenges of low statistics often
associated with the synthesis of super-heavy elements.

Finally, panel (c) shows the composed relative uncertainty in Drel
(
%1
CN
%0
CN

)
due to the capture
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and the experimental residue cross sections. Here, the uncertainties do not change from
what is seen from the evaporation residue (EvR), because the contributions from the capture
cross section is small relative towhat is seen onEvR.Therefore, we need a reactionwith low
experimental uncertainties relative to the absolute values for a meaningful comparison.

Nevertheless, this analysis suggests that relative uncertainty in
(
%1
CN
%0
CN

)
will decrease by

optimising the experiment at these energies for higher experimental production cross
section and smaller uncertainties compared to the experimental data.

Table 6.2 shows evaluated values of %
1
CN
%0
CN

as a function of the excitation energy. Interestingly,
the evaluated values at the two highest energies show that the ratio is close to 0.5, which
is lower than 1. This suggest that the more charge symmetric reaction, 26Mg +232 Th,
may have a lower formation probability than the 22Ne +236 U reaction. However, both
confidence intervals with a coverage factor of 2 include the value 1, meaning we cannot
exclude the general assumption that both reactions are not hindered.

Table 6.2: Ratio of compound nucleus formation probability,
(
%1
CN
%0
CN

)
± D

(
%1
CN
%0
CN

)
of the two

different channels leading to 258No at three different excitation energies (�∗). The ratio is
calculated for the 26Mg +232 Th reaction with respect to the 22Ne +236 U reaction. Note
that the values of 57 MeV and 60 MeV for the 6n channel in Tab. 6.1 are averaged to 58.5
MeV to make comparisons.

�∗ MeV
(
%1
CN
%0
CN

)
45.0 1.32 ± 0.88
50.0 0.48 ± 0.30
58.5 0.56 ± 0.28

6.1.3 Formation of 259Db

Here, we consider two reactions that lead to the formation of 259Db [121, 159]:

259Db =

{
0 : 50Ti +209 Bi
1 : 51V +208 Pb

, (6.7)

where 0 and 1 correspond to indices identifying reactions. Table 6.3 shows the measured
EvR cross sections at given excitation energies. Only data for selected values of the
excitation energies that can be directly compared are shown. Note that reported values of
�∗ are usually within ±2 MeV, which allows for comparison of data which are reported
not exactly at the same energies.

In the analysis, we will consider only data for the 2n channel because of the significantly
smaller uncertainties than those for the 1n channel. For the asymmetric uncertainties, we
will use the average value:

D(fEvR) =
|upper limit|+|lower limit|

2
. (6.8)
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Table 6.3: Two reactions leading to the formation of the same CN∗, 259Db∗. The columns
describe �∗ (in MeV), capture cross sections fcap (in mb), evaporation residue cross
sections fExp

EvR (in pb) for 1n and 2n channels, respectively, together with the experimental
uncertainties u(EvR) (in pb). Last column shows the laboratory where the reaction was
measured. The experimental data are taken from Ref. [159] (LBNL) and Ref. [121] (GSI).

Reaction �∗ (MeV) fcap (mb) f
Exp
EvR (pb) (1n) f

Exp
EvR (pb) (2n) LAB

50Ti +209 Bi

20.3 4.8 ± 2.9 2600+1190
−850 890+463

−330 LBNL

21.8 9.1 ± 4.75 390+130
−130 2400+300

−300 GSI

24.6 24.2 ± 9.8 - 2000+270
−270 GSI

51V +208 Pb

19.5 0.58 ± 0.54 1000+460
−330 250+170

−110 LBNL

22.0 2.24 ± 1.73 570+550
−310 1660+450

−370 LBNL

24.9 8.07 ± 4.95 - 1400+600
−430 LBNL

Figure 6.5: Capture cross sections as a function of the excitation energy �∗: (a) for the
reaction 50Ti +209 Bi and (b) 51V +208 Pb, leading to the formation of 259Db. The dashed
lines show the uncertainty intervals evaluated as fth

cap ± D(fth
cap). The arrows in each panel

represent the excitation energies at the Coulomb barrier energies (�cm = �0) for each
reaction.

Panels (a) and (b) illustrate the capture cross section (solid blue lines) as a function of
the excitation energy for the 50Ti +209 Bi and 51V +208 Pb reactions, respectively. The
upper and lower dashed lines correspond to the upper and lower limits of the theoretical
calculations: fth

cap ± D(f).

Panel (a) of Fig. 6.5 shows the relative uncertainty in the capture cross section. The
solid brown and blue lines correspond to the relative uncertainty for the 50Ti +209 Bi
and 51V +208 Pb reactions, respectively. Panel (b) shows the correlation between the two
capture cross sections as a function of �∗. The capture cross section is least correlated at
the low energies. However, the trend reverses at the energies above the Coulomb barrier,
which also have relatively small uncertainties in the capture cross section. The correlations
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between the capture cross sections tend to decrease at much higher energies.

Figure 6.6: Analysis of capture cross section uncertainties for the reactions 51V +208 Pb
and 50Ti +209 Bi leading to the formation of 259Db. (a) the relative uncertainty in the
capture cross sections of the reactions, 51V +208 Pb (in red line) and 50Ti +209 Bi (in blue
line) as a function excitation energy �∗. (b) shows the covariance between the capture
cross sections evaluated by the two reactions from the same capture model (Eq. 2.34) with
increasing energy.

Figure 6.7: (a) Relative uncertainty of the ratio of capture cross sections, Drel
(
f0
cap

f1
cap

)
, as a

function of the excitation energy. (b)Relative uncertainty of the ratio of evaporation residue

cross sections, Drel
(
f1
EvR
f0
EvR

)
, as a function of the excitation energy. (c) Relative uncertainty

in the ratio of compound nucleus formation probabilities, Drel
(
%1
CN
%0
CN

)
, as calculated from

the uncertainties in panels (a) and (b).

Finally, Fig. 6.7 illustrate the uncertainty from the capture cross sections
(
f0
cap

f1
cap

)
, the

experimental residue cross sections
(
f1
EvR
f0
EvR

)
, and their total contribution to the

(
%1
CN
%0
CN

)
ratio

uncertainty at the respective energies provided in the Table 6.3. These are shown in
the panel (a), (b) and (c) of the Fig. 6.7, respectively. The relative uncertainty in the

ratios of the two capture cross sections
(
f0
cap

f1
cap

)
is illustrated in the panel (a). As expected,
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the relative uncertainty decreases with increasing energy, consistent with the previous
observations. The relative uncertainty of the ratio of the experimental residue cross
sections also decreases with increasing energy, as shown in panel (b). Panel (c) shows
the relative uncertainty in the formation probabilities ratio due to the capture and the
experimental residue cross sections uncertainties. Similar to the previous observation, the
ratios of the formation probability decrease with increasing energy.

Table 6.4: Ratio of compound nucleus formation probability,
(
%1
CN
%0
CN

)
± D

(
%1
CN
%0
CN

)
of the

two different channels leading to 259Db at three different excitation energies (�∗). The
ratio is calculated for the 51V +208 Pb reaction with respect to the 50Ti +209 Bi reaction
considering data for 2n channels from Tab. 6.3. The excitation energies given are the

average values. The column
(
%1
CN
%0
CN

)
th
correspond to the theoretically evaluated ratios of the

formation probability. This is calculated using Eq. (2.122).

�∗ MeV
(
%1
CN
%0
CN

)
exp

(
%1
CN
%0
CN

)
th

19.9 2.37 ± 1.00 1.29
21.9 2.86 ± 0.81 1.27
24.75 2.15 ± 0.56 1.28

Table 6.4 shows the formation probability ratio (%CN for 51V+208Pb to %CN for 50Ti+209Bi)
for three values of the excitation energy. Those ratios are obtained for 2n channels in
Tab 6.3. In this case, the formation probability for a slightly more charge symmetric
reaction is at least factor two greater. For all three energies, the obtained values are
consistent with each other. The ratio obtained for the 1n channel at around 20 MeV, equal
to 3.2, is also supported by the ratio obtained. However, the ratio at around 22 MeV for
the 1n channel is higher and closer to 6.

The column
(
%1
CN
%0
CN

)
th
is the ratio of the theoretically evaluated formation probability for

the reactions (%CN for 51V +208 Pb to %CN for 50Ti +209 Bi). This is shown as a test of

comparison to the model-dependent experimental ratios
(
%1
CN
%0
CN

)
exp

. The theoretical values

are in the experimental confidence interval with a coverage factor of two. Therefore, the
uncertainties in the experimental ratios should be reduced to constrain the models.
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6.2 Conclusion

This preliminary study shows that uncertainty analysis could give insight into constraining
the compound nucleus formation probability. We need experimental data at sufficiently
high energies to reduce uncertainty in the empiricalGaussian barrier capturemodel. At this
energy, the partial waves contribution from both entrance channels to the formation of the
compound nucleus will be similar and hence justifying the approximation, %0

surv ≈ %1
surv.

Furthermore, reactions with larger residue production cross sections should be selected.
This potentially requires investigating a series of projectile and target combinations using
the predictive power Kewpie2 model for a new experiment.
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Chapter 7

Conclusion and Perspective

This thesis aimed to improve the predictive power of the Kewpie2 code for simulating
the production cross section of super-heavy elements formed via fusion-evaporation reac-
tions. The Kewpie2 code is a numerical tool designed to investigate the low-probability
events associated with super-heavy nuclei formation in fusion-evaporation reactions [53].
However, while Kewpie2 can independently simulate the capture cross section and sur-
vival probability, it was relying on external sources for the compound nucleus formation
probability.

7.1 Contribution

To address the limitations of the Kewpie2 model, Chapter 2 focused on updating the
compound nucleus survival probability simulation within Kewpie2 and optimizing it to
function as a standalone code. This involved thoroughly comparing calculations with an
established Fusion-by-Diffusion (FbD) code. To ensure accuracy, the theoretical nuclear
ground state and saddle properties used in the simulations were updated to the data from
Ref. [69] consistent with the FbD approach.

The thesis also investigates survival probability modelling using the latest data for super-
heavy elements. The results of this refinement demonstrate agreement between the
Kewpie2 and FbD calculations for the survival probability. Noticeable differences are
due to the different formalisms employed for the level density functions, highlighting the
importance of these factors in accurately simulating super-heavy element production. The
comparison of the survival probability then set the stage for investigating the compound
nucleus formation probability.

Building upon the refined survival probability, we investigate the probability of compound
nucleus formation using the one-dimensional overdamped limit of the Langevin formalism
in Chapter 2. This is simple compared with multidimensional approaches [117], yet a
practical tool used to study the dynamics of compound nucleus formation within the
FbD model. This approach has been investigated in this study because of its success in
predicting the production cross section within the FbD model [68].
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7 Conclusion and Perspective Contribution

The FbD formation probability is a phenomenological model that requires accurately
parameterizing and fitting its adjustable parameter called the injection point distance. The
injection point distance is an umbrella parameter that accounts for accuracy in reproducing
and predicting the production cross sections within themodel. The injection point distance
is parameterised as a linear function of the difference between the centre ofmass energy and
themeanCoulomb barrier at the capture phase in the FbDmodel. The linear injection point
distance is adopted and optimised within the Kewpie2 code. The results agreed with what
was obtained in the literature. This was a step inmaking the Kewpie2 a self-contained code
simulating the super-heavy production cross section. However, the statistical description
of the deduced injection point distances used in the fit using '2 metrics are 0.71 and 0.83
on cold and hot fusion data, respectively. Here, only 1n emission channels are considered
for the cold fusion data. This is because the model inherently could not explain multiple
neutron emission channels (2n and 3n) in cold fusion reactions. Considering the sensitivity
of the injection point distance modelling in predicting the production cross section, the '2

values pointed out that there is a room to improve the parameterization.

To solve this, we revisited the formalism of the formation probability within Langevin
formalism but from a different perspective as shown in Chapter 3. Here, the dynamics are
investigated instead of starting from an effective one-dimensional collective variable used
in the overdamped approximation, considering fast and slow variables contributing to the
dynamics. Knowing that the slow variables determine the final fate of the dynamics after
the convergence of the fast ones. The question then was, what is the impact of eliminating
the fast collective variables from the dynamics on the slow ones? Answering this question
led to a new approach to parameterising the injection point distance, consistent with the
Langevin formalism. This is first reported in the Ref. [81, 82].

The new injection point approach was investigated, and the coefficients were adjusted to
the experimental data. It was found that it is better in predicting cross sections for the cold
fusion data than the linear approach. For the hot fusion reactions, the linear and the new
approaches give the same data description. Here, the '2 values are 0.86 and 0.82 on the
cold and hot fusion data, respectively.

The mass asymmetry and the Coulomb parameters are independently investigated as the
model’s explanatory features to further improve the predictive power of the new injection
point distance. The mass asymmetry feature did not improve the quality of the fit, but the
Coulomb parameter significantly increased the model’s predictive power. It was found
that with the inclusion of the Coulomb parameter dependent term, it is possible to describe
the production cross sections of the cold fusion 1n reactions considered in the fit within
one order of magnitude deviation from the experimental data. The 2n and 3n channels
are equally well described. This is a significant improvement over the linear (FbD) and
the new parameterization of the injection point distance. The Coulomb parameter is not
considered for the hot fusion reactions since they are only 48Ca induced and the Coulomb
parameters are similar for all the projectile-target combinations considered. An attempt
is made to combine a single parameterization for cold and hot fusion data by fitting the
injection point distance model parameters to these data. The result shows that with the
Coulomb parameter included in the fit, we could explain the experimental data within
an order of magnitude deviation from the experiment. Description of both cold and hot
reactions by one parametrization was never achieved within the FbD model.
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7 Conclusion and Perspective Future prospects

Due to the energy-dependent injection distance parameterisation, we introduced angular
momentum dependence to accurately describe the dynamics. The inclusion of angular
momentum requires re-optimisation of the fitting parameters. The previous fitting tech-
nique could not work, and this subsequently led to treating the Kewpie2 as a black box in
a systematic fitting technique with a Python Bayesian optimisation library. This is tested
by using the typical chi-squared j2 and modified chi-squared (j2

mod) loss functions. The
results of a typical j2 loss function are biased towards large experimental cross sections,
while the smaller ones are heavily penalised (underestimated). To solve this problem, a
modified loss function has been adopted. The modified loss function is symmetric and
can penalise small and large experimental cross sections equally.

The systematic fitting method is tested with the modified loss function on the angular-
momentum independent injection point distance. The test with the previously obtained
values yielded similar results for both cold and hot fusion data. The technique is applied
to the more complicated injection point distance parametrization with angular momentum
dependence. Here, achieving convergence on the cold fusion data was difficult and
required further investigation. The hot fusion data, however, converged, and the parameters
produced results within an order of magnitude deviation from the experiment.

The optimised parameter (reduced friction coefficient) of the new parameterized injection
is equal to 1.104 × 1021 s−1. This raises the question of whether the dynamic is damped,
as assumed in the overdamped derivation of the formation formalism. To investigate
this further, we adopted a one-dimensional undamped Langevin formalism in Chapter 4.
Here, we utilised the same potential energy map from the Fusion-by-Diffusion model. The
undamped full Langevin formalism parameters are investigated and adjusted to the hot
fusion data set only to ensure that the projectile-target asymmetry is similar in all reactions.
The fit uses the systematic fitting technique adopted for the angular momentum-dependent
injection point distance parametrization. Here, the hot fusion data is well reproduced
within an order of magnitude with respect to the experimental data. Finally, Chapter 5
summarises the results from the analysis, and the best-optimised formation probability
models are proposed for Kewpie2 in cold and hot fusion. The updated version of the
Kewpie2 is used in predicting the production cross sections of elements with /CN = 119
and 120.

This thesis has, therefore, fulfilled its objective by improving the predictive power of
Kewpie2 for simulating the production cross section of super-heavy nuclides formed via
fusion evaporation reactions. The discrepancies between the optimised Kewpie2 and the
measured experimental cross section are within an order of magnitude deviation for cold
and hot fusion.

7.2 Future prospects

Implementing the formation probability into Kewpie2 code is an important development
that extends the model’s applicability. The model could be optimised to predict the pro-
duction cross section involving charge particle emission. The next phase will be thorough
analysis on how to constrain the compound nucleus formation probability. Following the
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7 Conclusion and Perspective Future prospects

preliminary results from the uncertainty analysis in Section 6, investigating the systematics
of hindered and non-hindered (%CN = 1) reactions leading to the same compound nuclei
can provide insight into how the formation probability can be constrained.

Furthermore, the macroscopic potential map of the formation phase could be updated
consistently with the fission barrier potential map where shell corrections are incorpor-
ated [69]. This will ensure an accurate description of the dynamics, as super-heavy
elements are largely stabilized by microscopic energies. On this subject, some investiga-
tions with a purely diffusive model have been performed [160].
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Appendix A

Capture cross section uncertainty

The uncertainty in the capture cross section following B.1.1.1 is simply written as [161,
162]:

D2(fcap) =
(
mfcap

m'B

)2
D2('B) +

(
mfcap

m�0

)2
D2(�0) +

(
mfcap

mf�

)2
D2(f�) + 2

(
mfcap

m�0

) (
mfcap

mf�

)
D(�0, f�),

(A.1)
where,

mfcap

m'B
=

√
2c'Bf�
�cm

[
-
√
c(1 + erf(-)) + 4−-2

]
, (A.2)

mfcap

m�0
= −

c'2
B

2�cm
(1 + erf(-)), (A.3)

and
mfcap

mf�
=

c'2
B√

2c�cm
4−-

2
. (A.4)

The first term corresponds to the uncertainty due to the normalisation factor (D('B)),
followed by the uncertainty due to the mean Coulomb barrier (D(�0)), D(fB) and the last
term is the covariance between the �0 and fB, D(�0, f�).

Now we need to evaluate uncertainties in the respective submodels. The uncertainty in
the evaluation of the capture normalisation factor is given as:

D2('B) =
(
m'B
mA0

)2
D2(A0), (A.5)

with, m'B
mA0

= �
1
3
1 + �

1
3
2 , and �1 and �2 are the atomic masses of the colliding nuclei. Fol-

lowing this is the uncertainty in the mean Coulomb barrier due to adjusting the parameters
0, 1, and 2 to the experiment:

D2(�0) =
(
m�0
m0

)2
D2(0) +

(
m�0
m1

)2
D2(1) +

(
m�0
m2

)2
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(
m�0
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) (
m�0
m1

)
D(0, 1)

+ 2
(
m�0
m0

) (
m�0
m2

)
D(0, 2) + 2

(
m�0
m1

) (
m�0
m2

)
D(1, 2),

(A.6)
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A Capture cross section uncertainty

where m�0
m0

= I, m�0
m1

= I2 and m�0
m2
= I3.

Finally, the uncertainty in the Coulomb barrier width distribution stemmed from the
uncertainty in the mean Coulomb barrier (�0), the � and the f0:

D2(f�) =
(
mf�

m�0

)2
D2(�0) +

(
mf�

m�

)2
D2(�) +

(
mf�
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) (
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2
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2
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2
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2
2+f

2
0

.
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Appendix B

Fitting procedure

B.1 Ordinary Linear Regression

The parameters of the injection point distance are adjusted to the experiment using linear
regression techniques. This section presents a brief overview of its formalism. The regres-
sion analysis allows us to establish and investigate relationships between dependent (H)
and independent (G1) variables [163]:

H = V0 + V1G1 + n . (B.1)

The intercept (V0) and slope (V1) are generally called the regression coefficients. The error
(n) is the part of the observation that the regression could not explain. Equation (B.1) can
be extended to multiple independent variables in what is called multiple regression:

H = V0 + V1G1 + V2G2 + · · · + V=G= + n . (B.2)

This is succinctly written as
y = X# + & , (B.3)

whereX is the regressor matrix. #, & , and y are the vectors corresponding to the regression
coefficients, errors, and the responses, respectively:

y =


H1
H2
...

H=


, X =


1 G11 G12 · · · G1:
1 G21 G22 · · · G2:
...

...
...

. . .
...

1 G=1 G=2 · · · G=:


# =


V0
V1
...

V:


, & =


n1
n2
...

n=
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B Fitting procedure Predictions and Uncertainties

The estimated values #̂ of the regression coefficients, which are parameters of interest, are
obtained by minimizing the sum of squared error:

((� = (y − X#)) (y − X#). (B.4)

From here, the least squares estimators # are readily obtained as:

#̂ = (X>X)−1X>y. (B.5)

The covariance matrix of the least squares estimators #̂ is given as:

Cov( #̂) = f2(X>X)−1 (B.6)

where f2 denotes the variance of the error terms. The elements on the diagonal of
this matrix represent the variances of the individual regression coefficients, and the off-
diagonal elements indicate the covariances between different coefficient estimates. This
matrix is used to assess the precision and the interdependencies of the estimates. Finally,
using he estimators Eq. (B.5), the model predictions are given as:

Ĥ = x> #̂. (B.7)

B.1.1 Predictions and Uncertainties

Here, the accuracy of the fitted Equation (B.7) is assessed using the mean squared error
of the prediction (MSE) and '2.

• Mean Squared Error The MSE measures the accuracy of the model by evaluating the
average of the squared differences between the observed values H8 and the predicted values
Ĥ:

"(� =
1

= − ?

=∑
8=1
(H8 − Ĥ8)2, (B.8)

Here, ? is the number of explanatory variables. Taking the square root of the MSE,
gives the Root Mean Squared Error (RMSE), which provides an estimate of the average
magnitude of the errors in the model’s predictions, expressed in the same units as the
dependent variable.

• R-squared The R-squared ('2) is a statistical measure that indicates the proportion of
the variance in the observations that is predictable from the explanatory variable(s) in a
regression model. The '2 which takes values from 0 to 1 and can be computed as follows,

'2 =
Explained variation

Total variation
=

∑=
8=1( Ĥ8 − H̄)2∑=
8=1(H8 − H̄)2

. (B.9)

Here, Ĥ8 are the model predictions, whereas H8 are the observations and its mean is denoted
by H̄.
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B Fitting procedure Predictions and Uncertainties

B.1.1.1 Propagation of Uncertainty

The goal is to quantify the uncertainty in the model predicted values of the response
variable ( Ĥ) that arises from the uncertainty in the estimated model coefficients. This
is crucial for establishing the reliability and accuracy of the model’s predictions. As an
example, consider the simple linear regression model:

H = V0 + V1G1, (B.10)

where V0 and V1 are the intercept and slope, respectively. Due to the randomness inherent
in any sample of data, the least squares estimates of these parameters (denoted as V̂0 and
V̂1) are uncertain. This uncertainty in the estimated coefficients can propagate, leading to
uncertainty in the predicted values of H.

The uncertainty in the predicted values H, is obtained by propagating the uncertainties of
the least squares estimators, V0 and V1) onto the model’s predictions. This is obtained by
examining the total differential of the model (B.10):

3H = 3V0 + G13V1. (B.11)

The differential tells us how infinitesimal changes in the coefficients affect the predicted
value of H. Finally, by examining the first-order Taylor series expansion of the model
Ĥ(G1, V0, V1) around the estimated values of the coefficients V̄0 and V̄1, one obtained,

D2(H) =
(
mH

mV0

)2
D2(V0) +

(
mH

mV1

)2
D2(V1) + 2

(
mH

mV0

) (
mH

mV1

)
D2(V0, V1). (B.12)

Here, the first and seconds terms are the contribution to the total uncertainty due to V0
and V1, respectively. The last term is the contribution stemming from possible correlation
between the parameters. This concept can be generalized to the multiple linear regression
(Eq. (B.2) as

D2(H) =
#∑
8=0

(
mH

mV8

)2
D(V8) + 2

#−1∑
8=0

#∑
9=8+1

(
mH

mV8

) (
mH

mV 9

)
D(V8, V 9 ), (B.13)

where the first term stands for the uncertainty due to each of the least squares estimators
and the second are the possible correlations between them. Eq. (B.13) is subsequently
applied to evaluating the uncertainty in the BNinj.
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B Fitting procedure Table of Results

B.1.2 Table of Results

B.1.2.1 Cold Fusion

Table B.1: Predictions and the corresponding uncertainties (column sNinj ± D(s
N
inj)fm),

obtained from linear regression using the data in Table 2.2.

No. Reactions sdinj fm sNinj ± D(s
N
inj)fm

1 70Zn +208 Pb 0.52 0.50±0.16
2 50Ti +209 Bi 4.05 3.50±0.13
3 50Ti +208 Pb 4.07 3.42±0.13
4 54Cr +209 Bi 3.23 2.49±0.09
5 54Cr +208 Pb 3.07 2.50±0.09
6 58Fe +208 Pb 2.36 1.89±0.09
7 58Fe +209 Bi 2.08 1.79±0.10
8 62Ni +208 Pb 1.44 1.98±0.09
9 64Ni +207 Pb 0.93 1.40±0.11
10 64Ni +208 Pb 1.35 1.08±0.13
11 64Ni +209 Pb 0.89 1.09±0.13
12 50Ti +208 Pb 3.40 3.42±0.13
13 48Ti +208 Pb 4.35 4.58±0.20
14 52Cr +208 Pb 3.46 3.75±0.15
15 54Cr +209 Bi 2.87 2.49±0.09
16 55Mn +208 Pb 2.41 2.85±0.10
17 52Cr +209 Bi 3.28 3.61±0.14
18 56Fe +208 Pb 2.52 3.17±0.11
19 59Co +208 Pb 1.67 2.70±0.10
20 64Ni +208 Pb 1.53 1.08±0.13
21 65Cu +208 Pb 0.89 1.43±0.11
22 51V +208 Pb 3.76 3.75±0.15
23 50Ti +209 Bi 3.95 3.50±0.13
24 64Ni +208 Pb 1.32 1.08±0.13
25 64Ni +209 Pb 0.91 1.09±0.13
26 70Zn +208 Pb 0.57 0.50±0.16
27 70Zn +209 Pb 0.11 0.38±0.17
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B.1.2.2 Hot Fusion

Table B.2: Predictions and the corresponding uncertainties (column sNinj ± D(s
N
inj)fm),

obtained from linear regression using the data in Table 2.3.

No. 48Ca+Reaction sdinj fm sNinj ± D(s
N
inj) fm

1 242Pu,3n 1.90 2.52±0.17
2 242Pu,4n -1.75 0.34±0.21
3 244Pu,3n 3.90 3.10±0.21
4 244Pu,4n 1.30 1.07±0.17
5 244Pu,5n -1.05 -1.54±0.37
6 243Am,2n 3.70 3.77±0.26
7 243Am,3n 1.70 2.25±0.16
8 243Am,4n 0.05 0.06±0.23
9 245Cm,2n 3.60 3.55±0.24
10 245Cm,3n 2.00 1.76±0.15
11 245Cm,4n 0.75 -0.45±0.27
12 248Cm,3n 3.30 2.95±0.20
13 248Cm,4n 0.95 0.69±0.19
14 249Bk,4n 3.05 2.78±0.19
15 249Bk,4n 0.90 0.50±0.20
16 249Cf,3n 1.80 1.01±0.17
17 242Pu,2n 3.85 4.16±0.29
18 244Pu,3n 3.25 3.31±0.22
19 244Pu,4n 0.90 1.07±0.17
20 249Bk,3n 3.10 2.78±0.19
21 248Cm,3n 3.40 2.95±0.20
22 248Cm,4n 0.95 0.69±0.19
23 242Pu,3n 2.00 2.52±0.17
24 242Pu,4n -1.35 0.34±0.21
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