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Titre :Développement d’un schémaaux caractéristiques surfaciques pour la résolution de l’équa-tion du transport de neutronsMots clés : transport de neutrons, méthode des caractéristiques, accélération synthetique DPn,schéma d’ordre supérieur, géométries 3D extrudées
Résumé : Le travail de la thèse se compose dedeux parties. La première partie se focalise surle développement d’un schéma (transport + ac-célération) aux caractéristiques linéaire surfa-cique pour la résolution de l’équation du trans-port sur des géométries 3D extrudées. À pré-sent, seule l’approximation constante peut êtreutilisée. La différence entre les deux méthodesréside dans le fait que pour l’une la vitessede convergence au maillage est linéaire (ap-proximation constante) alors qu’elle est qua-dratique pour l’autre méthode (approximationsurfacique linéaire). Pratiquement, la dernièreméthode permet de réaliser des calculs avecune même précision qu’avec l’approximationconstante tout en réduisant le nombre demailles, et donc le temps de calcul. Le schémadoit aussi permettre de développer le flux surune base polynomiale dans la direction axiale,et les sections efficaces ; ce qui importe si l’onveut faire des calculs en évolution. Notez quecontrairement à la plupart des approximationslinéaires, la source, dans ce schéma, est défi-nie sur les surfaces verticales des régions decalcul. La valeur de la source sur les surfaceshorizontales est obtenue à partir d’une inter-polation linaire au vol entre les valeurs définiessur les surfaces verticales. L’avantage de cetteapproche est de pouvoir se débarrasser de l’in-tégration par le traçage des grandeurs définiessur les surfaces horizontales.Un bilan sur les moments volumiques duflux angulaire est utilisé pour tester la conver-gence des itérations internes. A cette fin, unopérateur géométrique est définie de manièreà construire une source volumique à partir dela source surfacique. La conservation par ré-gion est forcée par correction.

Concernant l’accélération du transport, lechoix a été fait d’implémenter une accélérationsynthétique de type DPn. La méthode reposesur le développement sur la base des harmo-niques sphériques du flux angulaire définie surles surfaces d’une région de calcul mais peutêtre vu comme un préconditionnement d’unschéma itératif de type Richardson. Plusieursarguments motivent ce choix . Le rayon spec-tral de l’opérateur associé à l’accélération estinférieur à d’autres accélérations comme la dif-fusion synthetic acceleration (DSA) ou des ac-célérations non-lineaires de type Coarse meshfinite difference (CMFD), y compris pour desmi-lieux à fort chemins optiques. Par ailleurs, laconstruction du système d’équation repose surlamêmediscrétisation spatiale que le transportet limite la nécessité d’une normalisation decertaines grandeurs d’intérêts qui pourraientapparaître avec d’autres méthodes. Enfin, l’uti-lisation de la forme intégrale du transport rendla méthode attractive pour son utilisation surdes configurations géométriques complexes etdes maillages non-structurées.La seconde partie porte sur la correc-tion d’instabilités numériques qui apparaissentlorsque l’on augmente l’ordre de développe-ment spatial du flux. Enmilieu homogène infini,le terme de fuite issue de l’équation intégro-différentielle doit être nul. Ce n’est pas le caspour des régions de calcul où la quantité decordes avec un chemin optique suffisammentfaible dépasse une certaine limite. Ce phéno-mène pénalise la convergence des méthodesdu TDT-MOC et la rend impossible s’il est tropimportant.Ces travaux sont vérifiés sur différentesconfigurations géométriques.



Title: Development of a surface characteristics scheme for solving the neutron transport equa-tionKeywords: neutron transport, characteristics method, DPn synthetic acceleration, higher orderscheme, 3D extruded geometries

Abstract: The thesis work consists of two parts.The first part focuses on developing a linearsurface characteristics scheme (transport + ac-celeration) for solving the transport equationon extruded 3D geometries. Currently, only theconstant approximation can be used. The dif-ference between the two methods lies in thefact that the convergence speed for the meshis linear (constant approximation) for one, whe-reas it is quadratic for the other method (linearsurface approximation). Practically, the lattermethod allows calculationswith the same accu-racy as the constant approximation while redu-cing the number of meshes, and thus the com-putation time. The scheme should also allowthe flux to be developed on a polynomial ba-sis in the axial direction, as well as cross sec-tions, which is important for depletion calcula-tions. Note that unlike most linear approxima-tions, the source in this scheme is defined onthe vertical surfaces of the calculation regions.The value of the source on the horizontal sur-faces is obtained froman on-the-fly linear inter-polation between the values definedon the ver-tical surfaces. The advantage of this approachis to eliminate the need for tracking-based inte-gration of quantities defined on the horizontalsurfaces.A balance on the volume moments of theangular flux is used to test the convergenceof the inner iterations. To this end, a geome-tric operator is defined to construct a volumesource from the surface source. Conservationper region is enforced by correction.Regarding transport acceleration, the

choice wasmade to implement a DPn-type syn-thetic acceleration. Themethod is based on thespherical harmonics expansion of the angularflux defined on the surfaces of a calculation re-gion but can be seen as a preconditioning of aRichardson-type iterative scheme. Several ar-guments motivate this choice. The spectral ra-dius of the operator associated with the accele-ration is lower than other accelerations such asdiffusion synthetic acceleration (DSA) or nonli-near accelerations like Coarse Mesh Finite Dif-ference (CMFD), including for media with highoptical paths. Furthermore, the construction ofthe equation system relies on the same spa-tial discretization as the transport and limitsthe need for normalization of certain quanti-ties of interest that might appear with othermethods. Finally, the use of the integral formof transport makes the method attractive foruse in complex geometric configurations andunstructured meshes.
The second part deals with correcting nu-merical instabilities that appear when increa-sing the spatial development order of the flux.In an infinite homogeneous medium, the lea-kage term from the integro-differential equa-tion should be zero. This is not the case for cal-culation regions where the number of chordswith sufficiently low optical paths exceeds acertain limit. This phenomenon penalizes theconvergence of TDT-MOC methods and makesit impossible if it is too significant.
These works are verified and tested on dif-ferent geometric configurations.
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1 - Introduction
The general objective of this thesis work is to improve numerical simulations for solving

neutron transport in extruded and unstructured 3D geometries.

1.1 . From fission to nuclear power plants
The nuclear industry aswe know it today is based on discoveriesmade less than a century

ago. The beginning of neutron reactor physics can be traced back to the 1930s. Leo Szilard
envisioned the nuclear chain reaction in 1933 and patented the idea of the first nuclear reac-
tor based on thermal neutrons in 1936. At the end of 1938, Otto Hahn and Fritz Strassmann
discovered nuclear fission from an experimental perspective, while Lise Meitner and Otto
Frisch provided its theoretical interpretation in 1939. [9, 10]. A few months before the start
of World War II, the two physicists demonstrated that lighter chemical elements could be
obtained from uranium bombarded with neutrons. A year later, in 1939, the French scien-
tist Joliot-Curie understood that multiple neutrons are emitted as a result of this reaction.
These two discoveries are fundamental as they paved the way for the birth of this industry:
the fission reaction emits several neutrons that can in turn be absorbed by fissile nuclei –
such as uranium-235 – leading to subsequent fissions. Knowing this, it became conceivable
to construct a reactor capable of sustaining these chain reactions. This was the bold vision
of severals physicists and engineers of the time. By the 1940s, the design of the first nuclear
reactor had commenced [11].

It is interesting to note that fissile nuclei are a dense source of energy. For example, the
fission of a uranium-235 nucleus releases around 200MeV of energy [12]. While 200MeVmay
not seem significant to many, to put this into a more tangible context, with so much energy
released by reaction, the energy needs of one person for a year are satisfied with just 6g
of natural uranium. This result is obtained by applying the formula (1.1) and the numerical
values considered for the calculation are listed below.

mg =
ρ×Qna
η × EξNa

, (1.1)
with

— ρ = 238 g.mol−1:Molar mass of natural uranium.
— Q = 10, 000 J: Daily energy consumption per individual.
— na = 365: Number of days in a year.
— η = 0.7%: Enrichment of natural uranium in uranium-235.
— E = 200MeV: Energy released by the fission of one uranium-235 nucleus.
— ξ = 1.602× 10−19: Number of joules per eV.
— Na = 6.02× 1023mol−1: Number of particles per mole (Avogadro’s number).
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— mg: Mass of natural uranium consumed in one year by an individual with a daily
energy consumption of Q.

This is very little compared to other energy sources such as coal or gas. These arguments,
although not exhaustive, partly justify the construction of nuclear reactors that has taken
place up to the present day.

Since the post-war years, several reactor technologies have been developed. In this the-
sis, we will limit our study to Pressurized Water Reactors (PWRs) [13].

If we nowwant to simulate these reactors numerically, it is necessary to understand how
they operate. We can start by noting that they consist of three thermohydraulic circuits: the
primary circuit, the secondary circuit, and the tertiary circuit. Water at 320°C, kept in a liquid
state under a pressure of 155 bar and heated by the nuclear reactions occurring in the reac-
tor core, circulates in the primary circuit. Heat is then transferred through a steam generator
to the secondary circuit. The produced steam powers a turbine, which, coupled with an al-
ternator, generates the electricity distributed to the grid. Finally, the cooling circuit supplies
cold water to the condenser, which re-liquefies the steam from the secondary circuit before
it passes through the steam generator again [13].

In the context of this thesis, we focus particularly on the simulation of neutron transport.
Therefore, it is essential to model the reactor core. Several types of PWRs are in operation
in France, but for the purpose of this example, we will focus on the design of the European
Pressurised Reactor (EPR), intended to replace first and second generation reactors. The core
geometry is as follows: the core consists of 241 fuel assemblies. Each fuel assembly can be
seen as a 17× 17 Cartesian grid of fuel cells composed of fuel, void, a zircaloy cladding, and
water. There are seven types of assemblies with different enrichments in uranium-235. The
assemblies, with a width of 21.4 cm and an active height of 420 cm, are composed of 265
fuel pins and 24 guide tubes. The pin pitch is 1.2598 cm [13, 14]. A diagram showing the three
scales (core, assembly, and fuel cell) is proposed in figure 1.1.

It is well understood thatmultiple physical phenomena interact within such a system: the
heat generated from fission causes the materials to expand, changes in the core tempera-
ture alter the water density andmodify the absorption probabilities (the Doppler effect [15]),
neutrons weaken thematerials of the reactor vessel, and so on. Research reactors have been
constructed to characterize these interactions. In France, notable examples include the Osi-ris and Cabri reactors. However, it is important to note that these experiments are costly,
time-consuming, and the advent of computers allows a significant portion of these studies
to be replaced by numerical simulations.

1.2 . Numerical methods for reactor physics
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Figure 1.1 – Scheme of a Pressurized Water Reactor core. The core (a) is composed of assem-blies (b), which in turn consist of fuel cells (c) [1].

Thus, for a given nuclear reactor, with its geometry and material composition, the focus
is on determining the distribution of the neutron population in space, energy, and direc-
tion, and its depletion over time. To this end, certain physical quantities such as the neutron
flux distribution (proportional to neutron density), neutron disappearance (absorption), and
neutron production are particularly examined. These quantities will be defined in the main
body of the manuscript. What is important to understand from the outset is that this infor-
mation is obtained from solving the neutron transport equation—also known as the neutron
formulation of the Boltzmann equation, an integro-differential problem that can be viewed
as a local balance. Thus, the entire effort revolves around solving this equation. However,
even though analytical solutions exist for simple cases, such as in an infinite homogeneous
medium, most of the time analytical resolution of the equation is not feasible.

To circumvent this issue, numerical solution methods are employed and consolidated
into a set of interconnected algorithms known as computational codes. Today, two families
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of codes exist. On one side, there are stochastic Monte Carlo codes, and on the other side,
deterministic codes.

Monte Carlo codes obtain a solution to the neutron transport equation by simulating a
large number of particles governed by probabilistic analog laws. They rely on two fundamen-
tal results: the law of large numbers and the central limit theorem [16]. TRIPOLI-4® [17],
TRIPOLI-5® [18], MCNP® [19, 20], OpenMC® [2], and Serpent-2® [21] are examples of such
codes.

Deterministic codes, unlike probabilistic codes, do not rely on stochastic processes but
rather on linear algebra. The neutron transport equation is formulated as a generalized ei-
genvalue problem and solved using direct or iterative numerical methods developed for this
type of problem.More specifically, the first step involves transforming the continuous energy
problem into a multi-group problem consisting of several equations defined over an energy
interval. The problem data are then energy-condensed before solving the transport equa-
tion. The first step is handled by self-shielding algorithms, and the second by flux solvers.
Finally, it is important to note that, unlike Monte Carlo codes, the self-shielding step intro-
duces errors in deterministic calculations.

Several approaches exist for performing core calculations. The most direct approach in-
volves conducting an (accelerated) transport calculation applied to the entire reactor, known
aswhole core calculations. Examples capable of this includeOpenMOC® [22, 23], DeCART® [24,
25], and nTRACER® [26, 27], MOCkingbird® [28]. However, industrial practices often prefer
a two-step calculations approach where multiple lattice calculations are repeated for va-
rious state parameters (such as burn-up, temperature, boron concentration, void fraction)
to generate multi-parameter libraries used in diffusion core calculations. APOLLO3® [29, 30],
DRAGON® [31], and CASMO5® [32, 33] are examples of codes that utilize this approach.

1.3 . APOLLO3® platform
APOLLO3® is a deterministic transport code developed at CEA in collaboration with EDF

and Framatome since 2007 [34]. A portion of the code integrates algorithms inherited from
CEA codes of previous generation. From the perspective of the two-step scheme used by in-
dustry, the code is structured into two main parts:

— A lattice physics part consisting of self-shielding methods, flux solvers and homo-
genization and condensation [35] part for macroscopic reaction rates and diffusion
parameter calculations. The self-shielding methods currently available in APOLLO3®
for thermal reactors include the equivalence-based method [36] and subgroup me-
thods [37, 38]. The lattice flux solvers currently available in APOLLO3® are NYMO [39,
40, 41, 42], IDT [43, 44, 45, 46, 47], and TDT [48, 49, 50, 51, 6, 7].

— A core part consisting of various solvers:Minos [52], Minaret [53, 54], and NYMO.
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The method developed during the thesis has been implemented within the TDT solver.

1.4 . TDT solver
The TDT solver utilizes the Method of Characteristics (MOC) or the collision probability

method (Pij) to solve the neutron transport equation from its integral form. The treatment
of the angular variable relies on the Sn method, which discretizes the unit sphere into a fi-
nite number of directions. An assumption about the spatial variation of the neutron source
is necessary to evaluate the integral numerically. Several approximations are available in
TDT. In two dimensions, constant (SC) [48] and linear surface (LS) approximations are avai-
lable [55, 49]. In three dimensions, a polynomial approximation in the axial direction is avai-
lable for both the source and cross sections [56, 57] ; radially, the source is assumed constant.

A synthetic accelerationmethod known as DPn, based on spherical harmonic expansions
of the angular flux on surfaces within a calculation region, is also available in the solver for
the same approximations used in transport [58, 50, 59].

Efforts have also been made to reduce memory usage associated with tracking. Two
techniques include chords classification and hit surface sequence optimization [5]. Shared-
memory parallelismusingOpenMPhas been implemented to reduce computation times [60].
Finally, the solver canhandle both structured andunstructured 3Dmeshes using theALAMOS®
API [61].

The thesis work focuses on three main points:
— Extending the linear surface scheme for handling 3D extruded geometries, with the

capability to develop the source using a polynomial basis in the axial direction.
— Extending coherent surface acceleration alongside transport.
— Reformulating the transmission equation for chords with low optical path lengths to

preserve numerical stability of the power iteration method.
These developments aim to perform calculationswith a certain precision on reaction rate

distributions for a given machine memory and operation frequency, while reducing compu-
tational mesh density without increasing computation times. This capability would make it
easier to process larger geometries, such as MOX assembly surrounded by UOX assemblies.
Such calculations could produce homogenized and condensed diffusion coefficients and
cross sections that more accurately represent core heterogeneities. Therefore, the present
utilisation context of TDT is that of two-step core calculation or to produce benchmark results
in small dimensional cases.
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1.5 . Structure of Thesis
The thesis structure is detailed below.
Chapter 2: In this chapter, the reactor physics concepts necessary for understanding

the manuscript are introduced. The chapter details some properties of neutrons and their
interactions withmatter in a PressurizedWater Reactor (PWR), before introducing important
quantities of interest and the Boltzmann equation applied to neutrons.

Chapter 3: Chapter 3 introduces the multi-group transport equation and summarizes
various deterministic methods for solving the transport equation. The chapter focuses parti-
cularly on theMethod of Characteristics used in the thesis. A bibliography of different known
codes using this method is also provided at the end of the chapter.

Chapter 4: Chapter 4 details the specific features of the TDT solver. It briefly reviews how
3D tracking is performed in the solver. Subsequently, the different approximations available
for the neutron flux and source are specified. Some important results and properties of the
existing schemes are also recalled.

Chapter 5: Chapter 5 specifies important approximations of the linear surface trans-
port scheme: linear variation of the source between two surfaces of a region in the radial
direction, and polynomial variation of the source in the axial direction. Based on these as-
sumptions, the numerical expressions of the transmission and conservation equations are
specified.

Chapter 6: Chapter 6 begins with a comparison of acceleration methods used to reduce
the convergence time of transport schemes. This justifies the implementation of the DPnacceleration. Finally, the equations specific to this acceleration and adapted to the assump-
tions of the transport scheme are detailed.

Chapter 7: Chapter 7 validates the transport scheme on a 3x3 PWR mini-assembly. It
shows that the scheme converges to the mesh more rapidly than the scheme where the
source is assumed constant per region. Additionally, it demonstrates that numerical diver-
gence may appear when the polynomial development in the axial direction exceeds 1.

Chapter 8: Chapter 8 details the theoretical solution that stabilizes numerical divergence
when the order of spatial development in the axial direction increases. The issue is treated
in the case of a radially uniform angular flux.
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2 - Modellingneutron transport for reactor physics pro-
blems
In order to model the neutron population in a reactor, it is essential to understand its

properties and modes of interaction with the fuel and structural materials present in the
core. It is only through this study and the defined assumptions that we can construct a theo-
retical model of the system we seek to comprehend.

This is the focus of this chapter. We begin by justifying some approximations, then we
introduce the phase space before defining the concept of cross sections, which are used to
model neutron-matter reactions in a nuclear reactor. Finally, the Boltzmann equation applied
to neutron transport is introduced. The deterministic methods for solving the equations are
detailed in Chapter 3.
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2.1 . Generalities
2.1.1 . Preliminary approximations

The neutron is a subatomic particle, electrically neutral, that composes the atomic nu-
cleus alongside the proton. Itsmass is 1.674×10−27 kg, and itsmean lifetime is 878.4 seconds.
Various nuclear reactions emit neutrons: nuclear fusion, β− decay, neutron emission, spon-
taneous fission, and induced fission [62].

Induced fission of uranium-235 is themost important reaction for PWRs ; it is the primary
source of neutrons, with an average of 2.47 neutrons emitted per reaction, and energy. The
neutrons are emitted with an energy that follows a specific probability density. Experimental
measurements have allowed for an analytical expression of these probabilities. The Watt
spectrum shown in figure (2.1) is an example [63, 64]. For uranium, the analytical expression
of the spectrum is:

χ(E) = 0.484sinh(√2E) e−E MeV−1 (2.1)

Thus, it can be shown that the average energy of a neutron resulting from the fission of

Figure 2.1 – Thermal fission spectrum for uranium-235, approximated by the Watt for-mula (2.1).
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uranium-235 is 1.98meV. Investigating the properties of the particle in a reactor allows for a
better understanding of its behavior. For example, in a thermal reactor, it is known that the
majority of neutrons ranges from energies between meV and hundreds of eV, knowing that
the equilibrium thermal energy is 0.025eV. These two bounds correspond to the energies of
fission neutrons and thermal neutrons, respectively. This is depicted in figure (2.2), where
the neutron flux spectrum, proportional to the neutron density, is plotted for a PWR cell. It
is observed that neutrons are most prevalent at fission energies and thermal energies. The
spectrum is calculated from an OpenMC [2] data set.

Figure 2.2 – Neutron spectrum for a PWR cell calculated with OpenMC [2]. The flux is norma-lized per source particle simulated.
Moreover, it is interesting to compare the volumetric density of neutrons and atoms in a

thermal reactor. If we consider a reactor with a flux of 1016 cm−2· s−1, then it can be shown
that the volumetric density of neutrons is on the order of 1011 cm−3. This is small compared
to nuclear densities, which are on the order of 1022 nuclei cm−3 in solids. The numerical
values are taken from Bell and Glasstone [65]. Thus, neutron-neutron interactions can beneglected.

2.1.2 . Phase space
A priori, a neutron is defined by its position, its velocity (i.e., its direction and energy), and

the time t at which the state of the reactor is observed. To characterize the distribution of the
neutron population within a reactor, one uses a Cartesian coordinate systemR. The particle
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position in space is expressed as follows:

r = xex + yey + zez, (2.2)
with ex, ey , and ez being the canonical vectors ofR3, and x, y, z representing the coordinates
of the point r. The directionΩ belongs to the unit sphere S2, defined as the set of unit vectorsin space.

S2 =
{
(x, y, z) ∈ R3, x2 + y2 + z2 = 1

}
. (2.3)

Each solid angle in S2 is parameterized by an azimuthal angle φ ∈ [0, 2π] and a polar
angle θ ∈ [0, π]. For simplicity, we may write Ω = (φ, θ) when convenient. We denote by
S2+ (respectively, S2−) the set of directions for which θ ∈ [0, π/2[ (respectively, θ ∈ [π/2, π]).
A graphical representation of the Cartesian coordinate system is provided in figure (2.3).
Finally, it may be useful to define the differential element d2Ω for integral calculations. It is
expressed as follows:

d2Ω = sin(θ)dθdφ (2.4)

Figure 2.3 – Parametrization of the solid angleΩ in the Cartesian coordinate systemR .
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2.2 . Overview of nuclear reactions
Theneutron-matter interaction occurs throughnuclear reactions. The reactions thatmost

significantly impact on the neutron population in a thermal reactor are listed in figure (2.4).

Figure 2.4 – Main nuclear reactions considered in a nuclear power plant [3].

Elastic scattering (n,n): Elastic scattering can be viewed as a collision between two billiard
balls. The incident neutron with direction Ω′ and energy E′ is scattered into the direction Ω

with energy E.
Non-elastic scattering (n,xn): In such reactions, it is not just one, but x neutrons that are
emitted from the reaction.
Fission (n,f): A fission reaction is defined as a process in which the absorbing nucleus di-
sintegrates into two fission fragments, with the emission of photons and neutrons. Some of
these fission fragments, known as precursors, will in turn emit a small fraction of neutrons
referred as delayed. For instance, in the case of uranium-235 fission, only 660 pcm of neu-
trons are emitted in a delayed manner. Neutrons emitted directly from the fission reaction
are called prompt neutrons. On the other hand, neutrons emitted by the precursors are re-
ferred to as delayed neutrons.
Radiative capture (n,γ): Radiative capture reactions are those in which the absorbing nu-
cleus de-excites by emitting a photon.

Physically, these reactions are modeled by probability densities known as microscopic
cross sections, denoted by σ. Their unit is the barn, with the relation 1barn = 10−24 cm2.
Typically, cross sections are indexed according to the type of reaction considered. Thus, σs,

27



σa, and σf denote the cross sections for scattering, absorption, and fission, respectively.
The profiles of the fission, elastic scattering, and capture cross sections at 293K are plot-

ted in figures (2.5) and (2.6) for uranium-235 and uranium-238, respectively. The data are
sourced from the JEFF3.3 library and were obtained in CSV format from the JANIS website.
Upon examining these images, several observations can be made. Firstly, it is evident that
our attention is drawn to the regions where the cross sections vary significantly over a nar-
row energy range. These large amplitude variations characterize the resonances in the cross
sections. For a more detailed understanding of the origin of these resonances, additional
explanations can be found in Chapter 2 of Alain Hébert’s book [66]. This behavior must be
accounted for in deterministic calculation schemes, where the energy range is discretized
into several groups (see section 3.1).

Figure 2.5 – Microscopic fission, elastic scattering and capture for uranium-235 at 293K.
Furthermore, note that, for thermal energies, the ratio σf/σc is much greater than 1 for

uranium-235. This is not the case for uranium-238 ; around 0.1, eV, σf/σc ≃ 10−06. However,
the ratio becomes greater than unity around the MeV range. This difference between fissile
isotopes, that are in average "multiplicative", and other that remain "absorbent", makes the
enrichment of the fissile species necessary as it is done customarily in the industry.

Finally, the energy range is typically divided into three regions, from the lowest to the
highest energies: the resolved low-energy region, the unresolved region up to intermediate
energies, and finally the continuous region. Definitions of the different regions are provided

28



Figure 2.6 – Microscopic fission, elastic scattering and capture for uranium-238 at 293K.

below:
— ResolvedResonance Region (RRR):At relatively low energies, individual peaks (reso-

nances) can be observed in the energy-dependent cross sections ; this energy region
is referred to as the "resolved-resonance region."

— Unresolved Resonance Region (URR): At higher energies, the natural widths of the
resonances are comparable to their spacing, making it impossible to distinguish one
peak from another ; this is known as the "unresolved-resonance region."

— Continuous Region: The continuous region extends from the end of the unresolved
region to higher energies. In this domain, cross sections vary smoothly with energy.

A few definitions now:
Definition: Total Microscopic Cross Section. Let i be an isotope andΠ a set of neutron-

induced reactions. The total microscopic cross section is defined as the sum of the cross
sections for the reactions ρ ∈ Π:

σi,t =
∑
ρ∈Π

σi,ρ. (2.5)

In practice,microscopic cross sections are not directly used in the calculation of the trans-
port equation. Instead, macroscopic cross sections are preferred, which are defined as the
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product of the microscopic cross sections and the density of the isotope i considered in a
given volume, Ni, in cm−3.

Definition: Partial Macroscopic Cross Section. Let i be an isotope with density Ni in agiven geometry and let ρ be a reaction. The partial macroscopic cross section for isotope i
and reaction ρ is defined as the product:

Σi,ρ = Niσi,ρ. (2.6)

It may also be useful to define macroscopic cross sections for an isotopic mixture. The
unit of this cross section is cm−1.

Definition: Macroscopic Cross Section for a Mixture. Let I be a mixture of isotopes
and ρ a reaction. The macroscopic cross section of the mixture for reaction ρ is defined as:

Σρ =
∑
i

Niσi,ρ. (2.7)

In a manner similar to microscopic cross sections, a total macroscopic cross section Σtcan be defined for a given isotope by summing the partial cross sections. Additionally, the
probability P(l)dl that a neutron will travel a distance l before its first collision in a homoge-
neous medium can be defined as

P(l)dl = Σte
−Σtldl. (2.8)

Calculating the expectation of this probability density involves determining themean free
path Λ, which represents the average distance a neutron travels before undergoing its first
collision.

Λ =

∫ +∞

0
dlP(l)l =

1

Σt
. (2.9)

In pressurized water reactors, the mean free path of a neutron in water is on the order
of centimeters in the thermal range [67].

2.2.1 . Temperature dependence of microscopic cross sections
As the temperature of the fuel increases, resonances broaden, thereby increasing the

probabilities of neutron-matter interactions. This is the case for the resonant absorption of
uranium-238 at 6.67 eV, as shown in figure (2.7). This phenomenon is known as the Doppler
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effect [15].
If the core temperature increases, capture reactions become, on average, mere signifi-

cant than fissions and therefore the thermal power decreases. This leads to a temperature
reduction. This is referred to as the Doppler feedback. It is an intrinsic safety feature of PWRs.

Figure 2.7 – Doppler broadening of the uranium-238 6.67 eV absorption resonance. [4]

2.2.2 . Time dependence of macroscopic cross sections
The set of nuclear reactions and radioactive decays alters the isotopic inventory of the

reactor. To model these changes in concentrations, computational codes use so-called de-
pletion solvers. Such a solver finds a solution to the Bateman equation [68], which describes
these changes in concentrations. Using the notation from the article [69], the Bateman equa-
tion is expressed as follows:

dni
dt

(t) = −(λi + τi,i)ni(t) +
∑
ji

(bj,iλj + τ rj,i)nj(t) +
∑
k

(γk,i + τ fk )nk(t), (2.10)
ni(0) = n0i . (2.11)

with
— n0i : Initial concentration of nuclide i at time t = 0

— λi : Radioactive decay constant of nuclide i— bj,i : Decay branching ratio from nuclide j to nuclide i
— γk,i : Fission product yield from fissile nuclide k to nuclide i
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— τi,i : Disappearance reaction rate of nuclide i due to neutron-induced reactions— τ rj,i : Neutron reaction rate from nuclide j to nuclide i
— τ fk : Fission reaction rate of nuclide k
Numerically, the equation is solved as a linear system by grouping the concentrations of

each nuclide i into a vectorn. This results in a first-order homogeneous differential equation:

dn

dt
(t) = Φa(t)n(t), (2.12)

n(0) = n0, (2.13)

where Φa is the matrix that implicitly encompasses all the pathways for the creation and
destruction of isotopes. Historically, equation (2.12) has been solved using a fourth-order
Runge-Kutta scheme [70], but other solution methods exist, such as matrix exponential me-
thods or the Chebyshev Rational ApproximationMethod (CRAM) [71]. In the APOLLO3® code,
depletion calculations are performed by sending the flux and cross sections to the depletion
solver MENDEL® [72], which solves equation (2.12).

Moreover, macroscopic cross sections vary over time because multi-group microscopic
cross sections vary due to the flux variations. Thus, one needs to perform cross section self-
shielding (see 3.1.4) as the burn-up increases.

2.2.3 . Space dependence of macroscopic cross sections
Asmentioned earlier, themacroscopic cross sections evolve over time due to radioactive

decay on one hand, and collisions on the other. The collision terms are functions of the non-
uniform flux. Thus, the depletion of isotopic concentrations does not occur uniformly, even
for assemblies of the same composition placed symmetrically within the reactor.

2.3 . Neutron transport equation
2.3.1 . Quantities of interest

The cross sections introduced in the previous section determine the behavior of the neu-
tron population in a reactor. However, they do not provide direct information about the de-
pletion of this population. In this section, we introduce the quantities defined to characterize
both the local and global depletion of this population.

An important measure is the effective multiplication factor, denoted keff, which is an in-tegral measure that indicates whether the neutron population in a multiplying system is in-
creasing or decreasing over time. To provide a physical definition of keff, it can be described
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as the ratio of the number of neutrons produced in the (i+1)th generation of fissions to the
number of neutrons produced in the ith generation [73]:

keff =
Neutrons produced in the fission generation i+ 1

Neutrons produced in the fission generation i . (2.14)

The quantity can also be defined as the ratio between the neutrons produced and the
neutrons that disappear from the considered system. This yields the expression:

keff =
Production

Absorption+ Leakage . (2.15)

One can distinguish three cases:
— keff < 1: The reactor is subcritical. The initial neutron population decreases over time.
— keff = 1: The reactor is critical. The initial neutron population remains constant over

time.
— keff > 1: The reactor is supercritical. The initial neutron population increases over

time.

Another important quantity is the neutron distribution in phase space, n, known as the
density, which depends on the particle position r, directionΩ, energy E, and time t. In prac-
tice, it is often preferable to use the angular flux. This quantity is defined as follows.

Definition: Angular Flux. The angular flux is defined as the distribution obtained by
multiplying the density of the neutrons by their velocity.

ψ(r,Ω,E, t) = VE n(r,Ω,E, t), (2.16)

where VE is the velocity of the neutron packet with energy E. Its unit is neutrons · cm−2 ·
s−1 · sr−1 · eV−1. As mentioned in [66], the flux itself does not have a direct physical mea-
ning. However, it is the unknown in the transport equation, as the number of collisions in a
small volume per unit time depends on both the density of neutrons in the volume and the
amount of neutrons arriving in the volume.

It is also useful to define the angular moments that arise when decomposing the flux
using the basis of real spherical harmonics. These functions are defined in Appendix (10.4.2),
see 10.42.
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Definition:AngularMoments of the Flux. The angularmoments of the flux are defined
as the projections of the angular flux onto the basis of spherical harmonics.

ϕlk(r,E, t) =
1

4π

∫
S2
dΩAl

k(Ω)ψ(r,Ω,E, t). (2.17)

The first moment, ϕ00(r,E, t), is commonly referred to as the scalar flux. This quantity
appears in the definition of the fission source in equation (2.31). Thus, if we consider an ex-
pansion of the angular flux up to order K, we obtain:

ψ(r,Ω,E, t) =
K∑

k=0

k∑
l=−k

ϕlk(r,E, t)A
l
k(Ω). (2.18)

Definition: Angular Current. The angular current is defined as the quantity:
J(r,Ω,E, t) = Ωψ(r,Ω,E, t). (2.19)

It is possible to integrate the previous quantity to obtain the outgoing current, which can
be viewed as the neutron density leaving the position r through the angleΩ, per unit time.

J+(r,E, t) =

∫
Ω·n>0

dΩ(Ω · n)ψ(r,Ω,E, t). (2.20)

Definition: Volumetric reaction rate. The volumetric reaction rate for reaction ρ and
isotope i is defined as the product:

Ti,ρ(r,Ω,E, t) = Σi,ρ(r,E)ψ(r,Ω,E, t). (2.21)

Its unit is the number of reactions · cm−3 · s−1 of type ρ involving isotope i. To obtain the
total number of reactions within a specific volume, one simply integrates equation (2.21) over
the volume V under consideration.

Definition: Reaction Rate. The reaction rate for reaction ρ and isotope i is defined as
the product:

Ti,ρ(Ω,E, t) =

∫
Vi

drΣi,ρ(r,E)ψ(r,Ω,E, t), (2.22)
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which is the number of reactions · s−1 of type ρ involving isotope i.
2.3.2 . Eigenvalue problem

The transport equation applied to neutrons is a local conservation equation. It can be
derived by performing a particle balance over an infinitesimal volume of phase space over a
time interval∆t. The general idea is to state that the temporal change in neutron population
is the algebraic sum of neutron production and neutron loss. The temporal change can be
expressed as:

η1 = (n(r,Ω,E, t+∆t)− n(r,Ω,E, t)) drdΩdE. (2.23)

We denote by η2 the quantity of neutrons that leave the volume dr during the time in-
terval∆t.

η2 = ∇ ·Ωψ(r,Ω,E, t)drdΩdE∆t. (2.24)

We denote by η3 the quantity of neutrons that disappear due to collisions during the time
interval∆t.

η3 = Σt(r,E)ψ(r,Ω,E, t)drdΩdE∆t. (2.25)

We denote by η4 the quantity of neutrons that appear in the system during the time
interval∆t, due to the neutron source Q.

η4 = Q(r,Ω,E, t)drdΩdE∆t. (2.26)

Once all the production and loss terms have been defined, we write that the change η1corresponds to the neutron production minus the loss. That is,

η1 = −η2 − η3 + η4. (2.27)

Thus, by dividing both sides by drdΩdE∆t and recalling that the angular flux is defined
in terms of neutron density and velocity, we can directly write:
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1

VE

∂

∂t
ψ(r,Ω,E, t) +Ω ·∇ψ(r,Ω,E, t) + Σt(r,E)ψ(r,Ω,E, t) = Q(r,Ω,E, t). (2.28)

Throughout the remainder of the thesis, we will assume a steady-state regime where the
angular flux no longer depends on time. Thus:

Ω ·∇ψ(r,Ω,E) + Σt(r,E)ψ(r,Ω,E) = Q(r,Ω,E). (2.29)

We now need to define the neutron sourceQ. We consider a framework where neutrons
appearing in the phase space volume arise either from scattering or fission, with an external
source assumed to be zero. Let H and F denote the operators for scattering and fission,
respectively:

Hψ(r,Ω,E) =
∫
S2
dΩ′

∫ +∞

0
dE′Σs(r,Ω

′ → Ω,E′ → E)ψ(r,Ω′,E′). (2.30)

where notationsΩ′ → Ω and E′ → E designates neutrons that scatters on a nuclide with
an entering direction and energy, Ω′ and E′, and an exiting direction and energy, Ω and E.
Fission reactions can be assumed as isotropic, and the number of emitted neutrons is assu-
med to be independent of the incident neutron energy. Let χi represent the fission spectrumof the fissile nuclide i, which describes the energy distribution of the emitted neutrons, and
let ni denote the number of fissile nuclides. The fission source term can be expressed as:

Fψ(r,Ω,E) =
ni∑
i=1

χi(E)

∫ +∞

0
dE′νΣf,i(r,E

′)ϕ00(r,E
′). (2.31)

The equation is generally written using operators, with the terms related to leakage and
collisions grouped under the operator L such that:

Lψ(r,Ω,E) = Ω ·∇ψ(r,Ω,E) + Σt(r,E)ψ(r,Ω,E). (2.32)

The operator B is defined as the difference between the loss and the scattering terms

Bψ(r,Ω,E) = Lψ(r,Ω,E)−Hψ(r,Ω,E). (2.33)
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The steady-state transport equation (2.29) can thus bewritten as a generalized eigenvalue
problem

Bψ(r,Ω,E) = 1

keffFψ(r,Ω,E). (2.34)

where keff is the value scaling the fission so that the neutron population is stable over
time. Iterative methods exist for solving this class of problems. In reactor physics, the power
iterationmethod is traditionally used [66]. It will be detailedwhenwe discuss themulti-group
problem (3.1).

2.3.3 . Scattering anisotropy
To account for the anisotropy of scattering, some additional developments are made.

First, the medium is considered isotropic. Thus, the scattering cross section depends on the
cosine µ of the angle betweenΩ andΩ′. Moreover, the dependence can be expanded using
Legendre polynomials (10.4.1).

Σs(r, µ,E
′ → E) =

1

4π

K∑
k=0

Σs,k(r,E
′ → E)Pk(µ). (2.35)

where the anisotropic moments Σs,k are defined as

Σs,k(r,E
′ → E) = 2π(2k + 1)

∫ 1

−1
dµΣs(r, µ,E

′ → E)Pk(µ), (2.36)

and where the Legendre polynomials satisfy the property

Pk(µ) =

k∑
l=−k

Al
k(Ω)Al

k(Ω
′). (2.37)

Thus, by substituting equations (2.35) and (2.37) into (2.30), the final expression is obtained:

Hψ(r,Ω,E) =
K∑

k=0

k∑
l=−k

Al
k(Ω)

∫ +∞

0
dE′Σs,k(r,E

′ → E)ϕlk(r,E
′). (2.38)
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2.3.4 . Integral form of the transport equation
The integro-differential equation, representing the local particle balance, can be viewed

as a conservation equation along trajectories called characteristics. The starting point to ob-
tain the integral formulation is to rewrite the streaming term. Initially, recall that:

d

ds
=

dx

ds

∂

∂x
+

dy

ds

∂

∂y
+

dz

ds

∂

∂z
+

dt

ds

∂

∂t
.

Next, consider a point r in space with coordinates (x, y, z) and a point r′ with coordinates
(x′, y′, z′), defined as r′ = r + sΩ. By projecting r′ onto the basis vectors, it directly follows
that:

dx′

ds
= Ωx, (2.39)

and similarly for the other components. It follows that:
d

ds
= Ω ·∇.

The equation can therefore be written in its characteristics form as:

d

ds
ψ(r + sΩ,Ω,E) + Σt(r + sΩ,E)ψ(r + sΩ,Ω,E) = Q(r + sΩ,Ω,E), (2.40)

which integrates for an infinite domain as

ψ(r,Ω,E) =

∫ ∞

0
dtQ(r − tΩ,Ω,E)e−τ(t,E), (2.41)

and for finite domain

ψ(r,Ω,E) = ψ(r − lΩ,Ω,E)e−τ(l,E) +

∫ l

0
dtQ(r − tΩ,Ω,E)e−τ(t,E), (2.42)

with the optical path τ , considering that the integration from 0 to t is performed over the
segment from r − tΩ to r, is defined as
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τ(t,E) =

∫ t

0
dt′Σt(t

′,E). (2.43)
2.3.5 . Boundary conditions

The resolution of the transport equation requires imposing an incoming flux at the boun-
dary of the domain. This is referred to as a boundary condition. We are considering a domain
D with boundary ∂D and normal vector n. The boundary Γ = ∂D × S2 is divided into an in-coming boundary and an outgoing boundary, denoted respectively by Γ− and Γ+, definedas follows:

Γ− = {(r,Ω) ∈ ∂D × S2, Ω · n(r) < 0} , (2.44)
Γ+ = {(r,Ω) ∈ ∂D × S2, Ω · n(r) > 0} . (2.45)

Then, it is useful to define a boundary for each computational region i. Following the
same logic as in the first paragraph, we denote Γi = ∂i× S2 and Γi,− and Γi,+ as

Γi,− = {(r,Ω) ∈ ∂i× S2, Ω · n(r) < 0} , (2.46)
Γi,+ = {(r,Ω) ∈ ∂i× S2, Ω · n(r) > 0} . (2.47)

The boundary condition is imposed on Γ−. These conditions can be classified into two
categories: homogeneous conditions on one side, and heterogeneous conditions on the
other.
Homogeneous boundary conditions:

The homogeneous boundary condition is also called the vacuum boundary condition. It
is written as follows:

ψ(r,Ω, E) = 0. (2.48)

Heterogeneous boundary conditions:
The albedo boundary condition is the one where the entering flux is isotropic and multi-

plied by the beta quantity. It is written as follows:

ψ(r,Ω, E) = βψ(r,Ω′, E). (2.49)
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The specular reflection boundary condition corresponds to the case where β = 1. In
practice, the exiting directionΩ′ is defined solely based on the entering directionΩ and the
normal vector n using the following relation:

Ω · n(r) = −Ω′ · n(r),
(Ω×Ω′) · n(r) = 0.

with × the cross product in R3. Note that the vacuum and specular reflection conditions
can be seen as special cases of the more general albedo condition.

In order to defineperiodic boundary conditions,wedefine an infinite lattice of d-dimensional
cells with d ∈ {1, 2, 3} with side length ∆ed, constructed from the infinite repetition of the
elementary cell of geometric motion ∆ed, such as the one shown in figure 2.8. Then, we
consider a point r of cell i and a point r + ∆r of cell i′, with ∆r =

∑
d kd∆ed and where kdare non-zero integers. Thus, the periodic boundary condition can then be written as

ψ(r +∆r,Ω, E) = ψ(r,Ω, E), (2.50)

for every values of kd.
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Figure 2.8 – Representation of a cartesian infinite two-dimensional lattice. Each color repre-sents a different material composition. The angular flux on each red point is the same. Here
∆r = ∆e1 +∆e2.
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3 - Deterministic resolution of the transport equation
Deterministic methods for solving the transport equation rely on a discretization of the

phase space. Traditionally, the continuous equation is first discretized in energy, resulting in
a system of equations that are coupled with each other ; this is referred to as a multi-group
problem. In this chapter, we will present the general framework defining these equations
and then, at the end of chapter, the method of characteristics.
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3.1 . Multi-group problem

3.1.1 . Energy discretization
Deterministic methods rely on a discretization of the energy interval [Emin,Emax] into nggroups such that

Emin = Eng < · · · < E1 < E0 = Emax,

ordered by decreasing energy. Thus, group g contains the energy neutrons situated between
Eg and Eg−1. Several energy meshes exist, with different numbers of groups and ways of de-
fining the energy intervals.

At the CEA, most applications for thermal reactors rely on the SHEM-281 mesh [74], which
originates from the XMAS-172g mesh [75]. The SHEM-281 mesh introduces a finer discretiza-
tion below 22.5 eV to avoid need of self-shielding and to improve the representation of mu-
tual self-shielding effets. Subsequently, the SHEM-281meshwas refined between 22.5 eV and
11.5 keV to enable use of subgroup methods and to improve the accuracy of self-shielding
processing. 80 groups were added for this purpose, resulting in the SHEM-361 mesh [76].
Users of CASMO-5 and OpenMOC sometimes use a 70-group library [77], although since
2021, a 586-group library is available [78].

To generate continuous energy cross sections before condensation, the data must be re-
constructed from processing codes like NJOY21 [79] or FUDGE [80]. At the CEA, the developed
code is called GALILEE [81, 82] and is used by TRIPOLI-4® and APOLLO3®. This approach en-
sures consistent comparisons between Monte Carlo codes and deterministic codes, as they
rely on the same nuclear data processing.

3.1.2 . The multi-group transport equation
The continuous energy transport equation is decomposed into a coupled system of ngequations. To achieve this, equation (2.29) is integrated over each energy interval, denoted

as:
∫
g
dE · =

∫ Eg−1

Eg

dE · (3.1)

For all energy groups g, we write:
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Ω ·∇
∫
g
dEψ(r,Ω,E) +

∫
g
dEΣt(r,E)ψ(r,Ω,E) =

∫
g
dEQ(r,Ω,E). (3.2)

Then, we define

ψg(r,Ω) =

∫
g
dEψ(r,Ω,E), (3.3)

Σg
t (r,Ω)ψg(r,Ω) =

∫
g
dEΣt(r,E)ψ(r,Ω,E), (3.4)

Qg(r,Ω) =

∫
g
dEQ(r,Ω,E). (3.5)

It is important to note that the energy condensation of the macroscopic total cross sec-
tion (3.4) introduces an angular dependence, as it is calculated from the angular flux. Histo-
rically, lattice calculations have been performed without this dependence. Specifically, it is
assumed that energy and direction are independent in the expression of the angular flux.
Thus, the angular flux, only for (3.4), is expressed as the product of the scalar flux and a
weighting function u that depends on angle and space. Practically, we write:

ψ(r,Ω,E) ≃ ϕ(r,E)u(r,Ω). (3.6)

Then, if we substitute the hypothesis (3.6) into (3.4) and use (3.3) to express ψg(r,Ω), we
obtain an expression where u cancels out. As a result, we derive a macroscopic cross section
that is independent of the directionΩ:

Σg
t (r) =

∫
g
dEΣt(r,E)ϕ(r,E)∫

g
dEϕ(r,E)

. (3.7)

Several studies exist to quantify the error associated with (3.6) [83]. Following the same
principle, the scattering and fission cross sections are defined as
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Σg′→g
s,k (r) =

∫
g
dE

∫
g′
dE′νΣs,k(r,E → E′)ϕ(r,E′)∫

g′
dE′ϕ(r,E′)

, (3.8)

νΣg
f,i(r) =

∫
g
dEνΣf,i(r,E)ϕ(r,E)∫

g
dEϕ(r,E)

. (3.9)

Finally, the multi-group problem is written as:

Ω ·∇ψg(r,Ω) + Σg
t (r)ψ

g(r,Ω) = Qg(r,Ω), (3.10)
with

Qg(r,Ω) = Hg′→gψg′(r,Ω) +
1

keffF
g′→gψg′(r,Ω), (3.11)

Hg′→gψg′(r,Ω) =
K∑

k=0

k∑
l=−k

Al
k(Ω)

ng∑
g′=1

Σg′→g
s,k (r)ϕg

′,l
k (r), (3.12)

Fg′→gψg′(r,Ω) =

nj∑
j=1

χg
j (r)

ng∑
g′=1

νg
′

j Σg′

f,jϕ
g′,l
k (r). (3.13)

In a similar manner to the continuous problem, the multi-group problem can be formu-
lated as a generalized eigenvalue problem. We define

Lgψg(r,Ω) = Ω ·∇ψg(r,Ω) + Σg
t (r)ψ

g(r,Ω),

Bgψg(r,Ω) = Lgψg(r,Ω)−Hg′→gψg′(r,Ω),

so that

Bgψg(r,Ω) =
1

keffF
g′→gψg′(r,Ω). (3.14)

In the same manner as for the continuous energy problem (2.29), the integral forms can
be adapted to the multi-group problem. By applying (3.1) to the equations (2.41) and (2.42), it
follows, for infinite domain
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ψg(r,Ω) =

∫ ∞

0
dtQg(r − tΩ,Ω)e−τg(t), (3.15)

and for finite domain

ψg(r,Ω) = ψg(r − lΩ,Ω)e−τg(l) +

∫ l

0
dtQg(r − tΩ,Ω)e−τg(t), (3.16)

with the optical path τ , implicitly considering that the integration from 0 to t is performed
over the segment from r − tΩ to r, defined as

τ g(t) =

∫ t

0
dt′Σg

t (t
′). (3.17)

3.1.3 . The multi-group diffusion equation
In the case where the flux and Σt vary weakly spatially, and where absorption is small

compared to the assumed isotropic scattering, a multi-group transport approximation can
be established. The starting point is to expand the angular flux in terms of the spherical
harmonics up to order 1:

ψg(r,Ω) ≃ 1

4π

[
ϕg(r) + 3Ω · Jg(r)

]
. (3.18)

This is referred to as the P1 approximation. We then substitute (3.18) into themulti-group
transport equation (3.10)

Ω ·∇
[
ϕg(r) + 3Ω · Jg(r)

]
+Σg

t (r)
[
ϕg(r) + 3Ω · Jg(r)

]
= 4πQg(r,Ω), (3.19)

Then we integrate the equation over the unit sphere S2, knowing that:
∫
S2
dΩΩ = O3, (3.20)∫

S2
dΩΩ2 =

4π

3
I3, (3.21)

where O3 et I3 are the 3× 3 zero and identity matrices, respectively. After simplification,
we obtain
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∇ · Jg(r) + Σg
t (r)ϕ

g(r) = Qg(r). (3.22)

Finally, to eliminate the unknowns related to the currents, we use Fick’s law, which des-
cribes the tendency of neutrons to move towards regions with lower neutron density. We
write:

Jg(r) = −D(r)∇ϕg(r), (3.23)

whereD(r) is the diffusion coefficient in cm. By substituting the relation (3.23) into (3.22), we
obtain the multi-group diffusion equation. It writes

−∇ · D(r)∇ϕg(r) + Σg
t (r)ϕ

g(r) = Qg(r). (3.24)

Different strategies exist for calculating the diffusion coefficient [84]. The APOLLO3® code
adopts the homogeneousB1 approach as the default option. In this approach,D is calculated
from a critical flux (keff = 1) derived from a leakage model to ensure the criticality of the cal-
culation in an infinite lattice. It is possible to compare the quality of energy condensation by
comparing it with continuous-energy Monte Carlo codes dedicated to this purpose [85, 86].
Moreover, it is interesting to note that the multi-group diffusion equation can be conside-
red an asymptotic equation of the multi-group transport equation [87]. It is used for core
calculations or for acceleration techniques, the most well-known of which is CMFD [88]. Nu-
merically, the equation is solved using finite difference or finite element methods.

3.1.4 . Self-shielding
Evaluating themulti-group cross sections (3.7), (3.8), and (3.9) is necessary if one wants to

solve the deterministic transport equation.More specifically, because the volumetric concen-
trations are known, we seek to estimate the multi-group microscopic cross sections by reac-
tion ρ for an isotope i :

σgi,ρ(r) =

∫
g
dEσi,ρ(E)ϕ(r,E)∫

g
dEϕ(r,E)

. (3.25)

Since the flux depends on space, the self-shielded cross sections also depend on space.
Therefore, these sections must be calculated for each geometry and material composition.
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When the nuclei are considered non-resonant, it is sufficient to weight the flux by aweighting
flux ϕE„ which reproduces the energy spectrum of the flux for the different regions.

The same approach can be applied to resonant nuclei outside the resonant region. Ho-
wever, within the resonant region, it is necessary to evaluate the actual flux to accurately
assess the cross sections. This is the purpose of self-shielding calculations. They determine
the accuracy of the solutions to the multi-group transport problem.

Self-shieldingmethods can be grouped into fourmain categories: equivalence-basedme-
thods [36] relying on homogeneous-heterogeneous equivalence, sub-group methods [89,
37], ultra-fine group methods [90], and resonance spectrum expansion (RSE) [91, 92]. The
first two families of algorithm are implemented within APOLLO3® and use the collision pro-
bability method (3.4.1) as flux solver.

3.2 . Power iteration method
The solution of the multi-group problem relies on the power iteration algorithm to de-

termine the dominant eigenvalue and eigenvector, namely keff and the angular flux. In this
section, some algebraic concepts are reviewed before applying them to the solution of the
multi-group problem.

3.2.1 . Brief review of iterative methods
Gauss-Seidel method: Let A ∈ Mn(R) be a symmetric positive definite matrix or a

matrix with a strictly dominant diagonal, b ∈ Rn, and x be the vector with coordinates
(x1, x2, . . . , xn) that is a solution to the problem

Ax = b. (3.26)
Then the sequence (xk)k∈n with coordinates (xi)k+1 defined by

(xi)k =
1

aii

bi − i−1∑
j=1

aij(xj)k −
n∑

j=i+1

aij(xj)k−1

 , (3.27)

converges to x, where aij and bi are the coefficients of A and b, respectively.
Eigenvalue problem: Let A ∈ Mn(R). We seek λ ∈ R and x ∈ Rn, non-zero, such that

Ax = λx. (3.28)
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Eigenvalues and eigenvectors are the scalars and vectors that are solutions, respectively.
Power iteration method: Let A ∈ Mn(R) be a diagonalizable matrix with eigenvalues

(λk)k∈n such that |λ1| > |λ2| > · · · > |λn| and ei an eigenvector associated with λi. Then, bychoosing a vector x0 that is not orthogonal to e1, it can be shown that the sequence (xk)k∈N,where xk = Axk−1/ ∥Axk−1∥, and (Λk)k∈N, where Λk = (Axk · xk) / (xk · xk)), converges tothe eigenvector (up to a scalar) e1/ ∥e1∥ and the eigenvalue λ1:

lim
k→+∞

xk =
e1
∥e1∥

, (3.29)
lim

k→+∞
Λk = λ1. (3.30)

We call Λk the Rayleigh quotient.

3.2.2 . Application to multi-group neutron transport
Thepower iterationmethod is used to determine the angular flux, the eigenvector, and its

associated eigenvalue, the effective multiplication factor keff for the generalized eigenvalueproblem (2.34), which can be written as follows:

Aψ(r,Ω,E) = keffψ(r,Ω,E), (3.31)

with A = B−1F , or as

Bψ(r,Ω,E) = b, (3.32)

with
b =

1

keffFψ
g(r,Ω).

In order to solve (2.34), an algorithm consisting of three nested loops is implemented.
The algorithm begins with the initialization of the angular flux and keff, which allows the cal-culation of the fission source (3.13) ) for all energy groups. Then, as long as the fission source
has not converged, the multi-group flux is updated. Finally, if the multi-group flux has not
converged, the within-group calculations are updated. Once the fluxes in each group have
converged, the fission source and keff are updated until convergence. The iterations on thefission source are called external iterations, those on the multi-group flux are called thermal
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iterations, and those on the within-group flux are called internal iterations. The three itera-
tion loops are indexedby the integers o, th, and i, respectively. They canbedefined as follows:

External iterations: The aim is to converge the fission source and keff. The followingoperations are performed:

Bψo(r,Ω,E) =
1

ko−1eff
Fψo−1(r,Ω,E), (3.33)

and

koeff = ko−1eff
Fψo(r,Ω,E)

Fψo−1(r,Ω,E)
. (3.34)

Thermal iterations: The aim is to converge the multi-group flux when up-scattering
is present and so the Gauss-Seidel (3.2.1) procedure does not converge immediately. Until
convergence, we perform

Qth,th−1,o−1
ext (r,Ω,E) = Hψth,th−1,o−1(r,Ω,E) + Fψo−1(r,Ω,E). (3.35)

Internal iterations: The goal is to converge the within-group flux by
Lψi(r,Ω,E) = Hψi−1(r,Ω,E) +Qth−1,o−1

ext (r,Ω,E). (3.36)

The first energy groups are the fastest to converge as up-scattering is negligible for neu-
trons in the fast domain. Fast neutrons slow down to the thermal domain unless they are
absorbed in the resonant domain (or escape through leakage).

3.3 . Angular discretization
3.3.1 . Sn methods

The discrete ordinates method is based on a discretization of the unit sphere. A finite
number nd of directions Ωn with associated weights wn are determined using a quadrature
formula (such as Gauss-Legendre, Gauss-Chebyshev, or Bickley) so that

1

4π

∫
S2
dΩf(Ω) ≃

na∑
n=1

wnf(Ωn), (3.37)
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with
∑
n

wn = 1. (3.38)

The transport equation is evaluated for each discrete direction. Thus, nd equations needto be solved for each energy group

Ωn ·∇ψg(r,Ωn) + Σg
t (r)ψ

g(r,Ωn) = Qg(r,Ωn). (3.39)
3.3.2 . Pn methods

The Spherical Harmonics Method relies on expanding the angular flux using a basis of
spherical harmonics (10.4.2) up to a certain orderK. The approximation is then inserted into
equation (3.10) and projected onto the orthogonal spherical harmonics basis. The unknowns
are no longer the angular fluxes but rather the (K + 1)2 moments of the flux.

3.4 . Spatial discretization

The computational geometry is considered as a domainDwith boundary ∂D, composed
of nr homogeneous computational regions Dr with boundary ∂Dr. Then, a mesh is applied
to this geometry. Each region is divided into ni computational cells of volume Vi.

3.4.1 . Collision probabilities
The Collision Probability Method (or the Pij method) is based on themulti-group integral

form of the transport equation. The formalism applies to both finite and infinite domains. In
this section, only the developments for infinite domains are considered. To explain the prin-
ciple of the method, the integral form of the multi-group transport equation for an infinite
domain is recalled:

ψg(r,Ω) =

∫ ∞

0
dtQg(r − tΩ,Ω)e−τg(t),

The next step involves integrating the previous equation over the unit sphere.

ϕg,00 (r) =
1

4π

∫
S2
dΩ

∫ ∞

0
dtQg(r − tΩ,Ω)e−τg(t). (3.40)
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Since integrating along a line inR3 and then over all directions is equivalent to integrating
over R3, we perform the change of variables r′ = r− tΩ, with dr′ = t2dtdΩ. (3.40) becomes

ϕg,00 (r) =
1

4π

∫
R3

dr′Qg(r′,Ω)
e−τg(t)

∥r − r′∥2
, (3.41)

where ∥·∥ denotes the 2-norm. Now, in order to apply the method numerically, we consider
an infinite lattice of ni cells of volume Vi. Similar to the approach in [66], we denote by V∞

ithe volume of all identical cells throughout the infinite lattice. The source is assumed to be
isotropic, and we therefore write ϕg = ϕg,00 . Finally, to determine the flux in a region j ∈
[[1, ni]], we multiply (3.41) by Σg

t and integrate over the spatial domain
∫
Vj

drΣg
t (r)ϕ

g(r) =
1

4π

∫
Vj

drΣg
t (r)

∑
i

∫
V∞

i

dr′Qg(r′,Ω)
e−τg(t)

∥r − r′∥2
. (3.42)

The source and the total cross sections are now assumed to be uniform in each region.
Thus, (3.42) simplifies as follows

VjΣ
g
t,jϕ

g
j =

∑
i

ViP
g
ijQ

g
i , (3.43)

with

ϕgj =
1

Vj

∫
Vj

drϕg(r), (3.44)
Σg
j =

1

Vjϕ
g
j

∫
Vj

drΣg
t (r)ϕ

g(r), (3.45)
Pg
ij =

1

4πVi

∫
Vj

dr′
∫
V∞

i

drΣg
t (r)

e−τ

∥r − r′∥2
. (3.46)

It is generally preferable to divide the collision probabilities (3.46) by the total cross sec-
tion Σg

t (r) and define a reduced collision probability. This approach ensures improved nu-
merical stability when handling regions with low optical path lengths.

pgij =
1

4πVi

∫
dr′
∫

dr
e−τ

∥r − r′∥2
. (3.47)

Moreover, the equation can be further simplified by using symmetry and conservation
relations. Interested readers can refer to [66]. For a given 2D geometry of ni regions, the size
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of the system to be solved is n2i for each energy group. Consequently, the method is typically
abandoned for handling 2D core calculations or 3D geometries.

3.4.2 . The method of characteristics
The MOC relies on the integral form of the multi-group transport equation (3.16) and the

discrete ordinates method (3.3.1). The equation tells us that for a given trajectory, a straight
line crossing the geometry, in the direction Ω, entering the domain at point r, and knowing
the source in each region traversed by the trajectory, it is possible to evaluate the angular
flux at any point along this trajectory. The classical approximation consists of assuming a
constant source within each region. Thus, if we consider a chord, the intersection between a
trajectory and a region, that traverses a region i between the points rin and rout, we obtain:

ψ(rout,Ω) = ψ(rin,Ω)e−Σtl +
1− e−Σtl

Σt
Q(Ωn). (3.48)

To evaluate the average angular flux per region, equation (3.10) is integrated over space
for each computational cell

∫
i
drΩ ·∇ψg(r,Ω) +

∫
i
drΣg

t (r)ψ
g(r,Ω) =

∫
i
drQg(r,Ω). (3.49)

For simplicity, it is assumed here that the cross sections and the source are constant wi-
thin each computational region. The leakage term is handled using Green’s theorem, noting
thatΩ ·∇ = ∇ ·Ω. Thus,

∫
i
dr∇ · (Ωψg(r,Ω)) =

∫
∂i
drs ·Ωψg(r,Ω), (3.50)

with the term on the right side being nothing more than the integration of the multi-group
angular flux over the region boundary ∂i. We separate the integral into two parts by defining
an outgoing current Jg+ and an incoming current Jg−

Jg±(Ω) =

∫
∂i±

dr |n(r) ·Ω|ψg(r,Ω). (3.51)

The conservation equation (3.49) is expressed as follows:

ψg
i (Ω) =

1

ΣtVi

[
Jg+(Ω)− Jg−(Ω)

]
+

1

Σt
Qg

i (Ω). (3.52)
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The remaining task is to numerically evaluate the current terms (3.51). For this purpose,
the domainD is covered with a set of trajectories for the directions determined by the qua-
drature formula. Then each trajectory is swept and for all crossed regions, the transmission
equation (3.48) is evaluated. APOLLO3® features the unique capability to recover angular
flux over boundary surfaces between internal regions. If the trajectory crosses region i, then
the boundary angular fluxes evaluated are cumulated in the currents according to the ap-
proximation

J±(Ω) ≃
∑
t||Ω
t∩i

w⊥,tψ±,t, (3.53)

with ψ−,t and ψ+,t representing the incoming and outgoing angular fluxes in region i along
trajectory t with an integration weight of w⊥,t. The algorithm to track 3D geometries is detai-
led in the next chapter (see 4.1.1).

TheMethod of Characteristics, like the Collision Probability Method, relies on the integral
form of the transport equation. However, the source can be anisotropic and is preferably
used for handling complex 2D or 3D geometries (those with typically more than 300 regions).

3.5 . Free iterations acceleration

3.5.1 . Coarse mesh finite difference accelerations
Another class of accelerationmethods exists, knownas nonlinear acceleration. TheCMFD

(Coarse-Mesh Finite Difference) acceleration belongs to this category [93, 94]. This method
is based on the multi-group diffusion equation and employs the finite difference method for
spatial resolution. It is also possible to define a spectral radius by linearizing the associated
problem’s equation around a given point. The spectral radius is generally higher than that of
DP1 acceleration, particularly in regions with high optical paths. This is disadvantageous be-cause it hinders the goal of increasing mesh size.The method also requires stabilization [95].
Finally, it relies on homogenizing the geometry on a Cartesian grid. While this is not an issue
for PWRs (Pressurized Water Reactors), challenges can arise when applying this approach to
reactors with complex geometries.

3.5.2 . Synthetic accelerations
In the case of diffusive media, i.e., Σs/Σt ≈ 1, the power iteration method converges

slowly [96]. To overcome this difficulty, a synthetic problem is introduced, which is easier
to solve than the transport equation and allows for a reduction in the number of iterations
(external, thermal, or internal) needed to reach convergence.
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The synthetic approach allows for the acceleration of both external and internal itera-
tions. The acceleration of external iterations is achieved through the introduction of a syn-
thetic generalized eigenvalue problem, which updates the multi-group transport flux [97].
For the acceleration of internal iterations, it updates the within-groupmoments of the trans-
port. To elaborate on the principle of internal accelerations [96], we start from the definition
of internal iterations, where the transport solution is denoted as ψi−1/2. Thus, iteration i
corresponds to the accelerated transport calculation. We note:

Lψi−1/2(r,Ω,E) = Hψi−1(r,Ω,E) +Qext(r,Ω,E), (3.54)

knowing that for the solution flux ψ∞, we can write:

Lψ∞(r,Ω,E) = Hψ∞(r,Ω,E) +Qext(r,Ω,E). (3.55)

Now, if we subtract (3.54) from (3.55), we obtain the relation:

L∆ψ(r,Ω,E) = H∆ψ(r,Ω,E) +Qsyn(r,Ω,E). (3.56)

with

∆ψ(r,Ω,E) = ψ∞(r,Ω,E)− ψi−1/2(r,Ω,E), (3.57)
Qsyn(r,Ω,E) = H

(
ψi−1/2(r,Ω,E)− ψi−1(r,Ω,E)

)
, (3.58)

such that

ψ∞(r,Ω,E) = ψi−1/2(r,Ω,E) + (L −H)−1Qsyn(r,Ω,E). (3.59)

Solving the problem (3.59) is as complex as solving the transport problem itself, as it
involves inverting the same operators. To circumvent this difficulty, approximations are in-
troduced to replace (L −H)−1 with a simplified operator O, so that:

ψi(r,Ω,E) = ψi−1/2(r,Ω,E) +OQsyn(r,Ω,E). (3.60)
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Different sets of approximations lead to different operators O and various synthetic ac-
celerations. DSA (Diffusion Synthetic Acceleration) [98], ACA (Algebraic Collapsing Accelera-
tion) [99, 100] and DPn (Double Pn Acceleration) [59] are examples of such accelerations.

3.5.3 . Accelerations properties
Synthetic accelerations can be regarded as a preconditioning of the Richardson problem.

Consequently, the effectiveness of the acceleration can be assessed by examining the spec-
tral radius ρ of the synthetic operator. The closer ρ is to 0 (and further from 1), the fewer
iterations are required to achieve convergence [96]. Traditionally, this analysis is performed
by applying the Fourier transform to the synthetic problem. In general, such analyses are
typically restricted to one-dimensional slab geometries with isotropic scattering.

The Fourier analysis of transport reveals that ρ = c, where c = Σs/Σt represents thescattering ratio. Consequently, the method becomes less effective and prone to issues of
false convergence [96].

The Fourier analysis of DSA acceleration shows that ρ = 0.22c [96]. Therefore, even in
diffusive media where c ≃ 1, this approach effectively reduces the number of iterations. Ho-
wever, DSA relies on the diffusion approximation. As stated in the reference [101], "DSA loses
effectiveness for transport problems that have strongly anisotropic scattering".

The Fourier analysis of DP1 acceleration demonstrates that ρ ⩽ 0.07, regardless of the
optical mesh size. However, this analysis is limited to isotropic scattering [55, 59].

The Fourier analysis of CMFD acceleration is not straightforward because the method
is nonlinear. To perform such analyses, it is necessary to linearize the equations. The fin-
dings indicate that without stabilization techniques, the acceleration diverges in highly dif-
fusive regimes (c ⩽ 0.99 in the study [102]). It is also noteworthy that this acceleration be-
haves similarly to DSA acceleration when the low-order diffusion operator is discretized on
a coarser grid [102]. Stabilization techniques have led to the development of other methods
that remain stable for large optical thicknesses and diffusivemedia. Examples include partial
current-based CMFD (pCMFD) [103] and linear prolongation CMFD (lpCMFD) [104]. A Fourier
analysis of these two approaches is detailed in the literature. The conclusion is that as the
optical mesh size approaches zero, the spectral radius decreases. For small optical paths,
the spectral radius tends toward 0.2 or even 0.1 in certain cases with the lpCMFD approach.
However, for large optical paths, the spectral radius tends to 1 [105].
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3.6 . Worldwide inventory of MOC-based solvers to treat 3D geometries

In this section, a review of MOC solvers capable of solving the transport equation in 3D
geometry is provided. The solvers can be categorized into two families: 2D/1D codes on one
side, and 3D codes on the other. The codes are compared based on the levels of approxi-
mation available for the source, the approximation of the diffusion operator, the level of
parallelization, the accelerationmethods, and the numerical stability of the schemes. Finally,
we will discuss solvers that rely on random ray tracking.

3.6.1 . 2D/1D MOC solvers
DeCART is a code developed by the Korea Atomic Energy Research Institute (KAERI). The

source is assumed to be constant and the scattering isotropic [106, 107]. Specifically, the Me-
thod of Characteristics (MOC) is used to solve the transport problem in 2D planes, and it
feeds an axial 1D model with axial transverse leakage. The axial model uses the Nodal Ex-
pansion Method (NEM), which relies on the diffusion approximation. CMFD acceleration is
implemented [94].

nTRACER is developed by the Department of Nuclear Engineering at Seoul National Uni-
versity. The source is assumed constant by region. The scattering can be assumed to be
anisotropic [108]. The Method of Characteristics (MOC) is used on 2D radial planes, and an
SP3 nodal model is embedded in the 3D CMFD formulation [27, 109]. Parallelization using
MPI and GPU are available [110].

MPACT has been supported by the University of Michigan, Oak Ridge National Labora-
tory, and the Consortium for Advanced Simulation of Light Water Reactors. The source can
be assumed to be constant or linear by region [111]. As with DeCART, the Method of Charac-
teristics (MOC) is only used at the 2D level and is coupled with 1D models based on P1 or P3
nodal method [112, 113]. Three transport-correction methods for its transport-corrected P0
cross-sections are available [114]. CMFD acceleration is implemented.

3.6.2 . Full 3D MOC solvers
OpenMOC is a code developed at MIT for high fidelity whole core calculations [22, 23].

The source can be assumed to be constant or linear by region. The scattering is assumed to
be isotropic, but transport correction for cross sections is available, and it is accompanied
by a stabilization technique to address convergence issues [115]. CMFD acceleration is imple-
mented [88]. Parallelizations using OpenMP, MPI, and GPU are available.

MOCkingbird is a code developed by the Idaho National Laboratory [28]. It is based
on the MOOSE platform, an open-source, parallel finite element framework that makes the
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transport solver suitable for coupledmulti-physics simulations [116]. For this purpose, the sol-
verworkswith unstructuredmeshes. The source is constantwithin each regionwith transport-
corrected P0 scattering cross sections. A DSA-type acceleration is planned to be implemen-
ted. The code relies on OpenMP and MPI parallelization.

TDT is a code developed at CEA for two-step calculations, specifically for lattice calcula-
tions. The source can be expanded in a polynomial basis in the axial direction, and the cross
sections can also be treated similarly for depletion calculations. The scattering can be assu-
med to be anisotropic. The DP0 and DP1 acceleration techniques are implemented. OpenMP
parallelization is implemented. Chapter 4 provides a summary of all available approxima-
tions.

3.6.3 . Random ray tracking
ARRC is a random ray neutron transport code developed in collaboration between MIT

and Argonne National Laboratory. The code is designed for high-fidelity 3D reactor simula-
tions. Regarding the physical approximations: the source is assumed to be constant within
each computational region. The scattering is anisotropic. Currently, no acceleration tech-
niques are implemented, but there are plans to develop a CMFD (Coarse Mesh Finite Diffe-
rence) type acceleration. Parallelization using SIMD vectorization, OpenMP, and MPI is avai-
lable [117, 118].

Unlike deterministic solvers, the ray tracking is not stored before the sweep but is per-
formed on-the-fly using a uniform random distribution in space and angle. As a result, the
sweep requires more floating-point operations, but there is no need for read/write opera-
tions associated with storing the ray tracking.

ARRC demonstrates excellent performance in terms of computation time [117]. On the 2D
C5G7 benchmark, for a keff value within 20 pcm from the reference solution, OpenMOC (with
CMFD) takes 0.69 core-hours, while ARRC requires 0.74 core-hours without acceleration [118].
These results are very promising. However, the Random Ray Method (RRM) has been imple-
mented in the multi-group Monte Carlo (MGMC) solvers OpenMC [2] and SCONE [119], and
compared on the same benchmark, the 2D C5G7, showing that the random ray approach
has shorter computation times than the MGMC approach [120]. Thus, it would be interesting
to compare how loop structures and vectorization strategies have been implemented.
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4 - TDT-MOC solver within APOLLO3® code
Chapter 4 summarizes the key features of the TDT flux solver for neutron transport in

extruded 3D geometries. It begins by outlining the strategy employed to construct 3D trajec-
tories and reduce their memory footprint. The second and third sections detail the available
approximations for the source and cross sections. Literature results are also reviewed.
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4.1 . Treatment of 3D geometries
4.1.1 . Trajectories construction

First, let’s recall that a trajectory refers to straight lines that pass through the geometry,
and a chord is the set of intersection points between a trajectory and the computational
region under consideration. The TDT solver handles extruded 3D geometries, with either
structured or unstructured meshes, which can be described as the Cartesian product of a
2D geometry R2D and a 1D axial geometry Rz . The geometry is covered by trajectories as
follows: for each azimuthal angleφ belonging to an optimal quadrature formula, the bounda-
ries of the geometry are projected in the direction perpendicular to φ. The resulting segment
is subdivided into sub-intervals of user-defined length ∆r, known as transverse integration
step. Finally, for each segment of length ∆r, a trajectory with direction (φ, θ = 0), (where
θ is the polar angle) passing through the midpoint of the segment is traced. Figure 4.1 (b)
illustrates this step. Thus, each "2D" trajectory traverses a set of 2D regions denoted byRs.

4.1.2 . 3D trajectories construction
The 3D trajectories are then traced from the 2D trajectories as follows: the Cartesian

productRsz = Rs ×Rz is performed. This defines an sz-plane to which the trajectories will
belong. To achieve this, the boundary of the Rsz plane is projected in the direction perpen-dicular to one of the angles θ from the quadrature formula. The resulting segment is subdi-
vided into sub-intervals of user-defined length ∆s, known as transverse integration paths.
Finally, for each segment of length∆s, a trajectory with direction (φ, θ) passing through the
midpoint of the segment is traced. Figure 4.1 (c) illustrates this step, where one of the sz-
planes is represented.

If the algorithm is repeated for each angle φ and θ, then the 3D geometry is fully covered
by trajectories. However, 3D tracking is memory-demanding ; for instance, reference such as
[23] provides an example of this: "Explicit storage of 3D segments in OpenMOC for a single
assembly of the C5G7 benchmark with coarse MOC parameters required 79 GB of memory."
To reduce the memory footprint of the tracking, two techniques have been implemented:
the classification of chords and the hit surface sequence.

In 3D, the lengths of the chords are not normalized. Typically, the lengths are normalized
so that the numerical volume equals the analytical volume, which ensures that the analytical
particle balance is respected in the case of isotropic scattering [121].

4.1.3 . Cyclic trajectories
The solution of the transport equation in infinite media relies on cyclic trajectories, i.e.

trajectories for which the exiting point rout is equal to the entering point rin. Such trajectories
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Figure 4.1 – TDT tracking strategy for 3D extruded geometries [5].
are obtained for rectangular or hexagonal geometries. Their tracking is based on the deter-
mination of cyclic directionsΩc = (φc, θc), where φc and θc are the cyclic azimuthal and polar
angles, respectively. The analysis carried out in the reference [122, 51] allows these angles to
be determined from the geometric data of the problem: lengths, widths, heights...

These trajectories are used to evaluate the incoming flux into the domain in the case
of closed boundary conditions. Indeed, if we consider a cyclic trajectory of length l, which
traverses the geometry between rin and rout, with rout = rin, then ψ(rout,Ω) = ψ(rin,Ω).
Consequently, if we express the exiting angular flux using the transmission equation (3.16),
we obtain:

ψ(rin,Ω) =

∫ l

0
dtQ(rout − tΩ) e−τ(t)

1− e−τ(l)
. (4.1)

4.1.4 . Classification of chords
The chords can be categorized into four families: VV, HV, VH, and HH. These are illus-

trated in figure 4.2. The VV family consists of chords that enter and exit a region through
vertical surfaces. The HV family includes chords that enter a region through a horizontal
surface and exit through a vertical surface. The definitions of the VH- and HH-chords follow
the same logic.

This classification is useful because it reduces the memory footprint of the tracking pro-
cess. Indeed, all VV chords in the directionsΩ,−Ω, gπ|z(Ω), and−gπ|z(Ω) that traverse any of
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(a) VV-chord (b) HH-chord

(c) VH-chord (d) HV-chord
Figure 4.2 – Classification of chords crossing a region belonging to a sz-plane.

the regions belonging to a sz-planeRsz are of the same length l. The notation gπ|z designatesthe π rotation around the z-axis. Therefore, TDT only stores the 2D chord length associated
with the angle θ. All data calculable from the length l, such as escape factors, are computed
before sweeping each 3D trajectory, using the 2D length l2 and the angle θ:

l =
l2

sin(θ)
. (4.2)

A similar procedure is applied to HH-chords: all chords in the directionsΩ, −Ω, gπ|z(Ω),
and−gπ|z(Ω) that traverse any of the regions belonging to rz ×R2D have the same length l.

l =
∆z

cos(θ)
, (4.3)

with∆z representing the height of the 2D regions and θ the polar angle associated with the
directionΩ. The HV- and VH-chords, known as mixed chords, are not classified.

Note that the distribution of chords type depends on the ratio of height to width of the
calculation regions. Figure 4.3 provides an example, showing the distribution of the chord
population for different values of the ratio between the axial node height and the average 2D
chord length, based on geometry 4.4. For the reasons mentioned earlier, it is most advanta-
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geous to achieve a high rate of classifications of typeVV orHH. This is one of the arguments
for developing the angular flux on a spatial basis in the axial direction. If precision can be
maintained while reducing the number of axial meshes, the percentage of VV-chords for a
given calculation region increases, thereby decreasing the memory footprint of the tracking.

Figure 4.3 – Distribution of the chord population for different values of the ratio betweenthe axial node height δh, and the average 2D chord length for a given 3D region [5]. V-chords(H-chords) designs VV-chords (HH-chords) and M-chords, HV- or VH-chords.

4.1.5 . Hit Surface Sequence
A complementary technique for reducing the memory footprint of trajectories tracking

relies on data compression. A standard MOC trajectories tracking without optimizations re-
quires storing in memory all the regions traversed by a 3D trajectoryRt, defined as:

Rt =
{
ri, i ∈ [[1, nti]]

}
,

where nti represents the number of regions traversed by trajectory t. However, the sequence
of traversed regions can be reconstructed during the sweep, eliminating the need to store
nti for each trajectory. To achieve this, let’s start with the following observation: If a trajectory
t intersects a vertical surface, either it transitions to a different 2D region, or it encounters a
vertical boundary of the domain. Conversely, if the trajectory intersects a horizontal surface,
it either transitions to a different axial region or reaches a horizontal boundary of the domain.

Thus, if the first region traversed by trajectory t and the set of intersected surfaces are
known, the regions in the set Rt can be reconstructed during the sweep. Additionally, it is
unnecessary to store the type of surface crossed one after another ; instead, it suffices to
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Figure 4.4 – Two-dimensional section of the basic domain with mesh details. The geometryis composed by one complete assembly with Uox composition, and two identical diagonalassemblies with Mox fuel. Each color represents a material composition [5].
record the number of consecutive surfaces of the same type, along with a − or + sign to
indicate whether the trajectory crosses a vertical or horizontal surface.

To give you an example, consider a trajectory that traverses 100 regions (nti = 100) but
only through vertical surfaces. In this case, it is sufficient to store in memory Rhss

t , defined
as

Rhss
t = {r1,−100} ,

where r1 denotes the first 3D region traversed by the trajectory t, and the minus sign −
indicates that the surfaces crossed are vertical. In this way, the memory required to store
the 3D part of the tracking is reduced. It is possible to determine the compression ratio of
3D tracking by calculating the ratio

ηtrk =

∑
t

Card(Rt)∑
t

Card(Rhss
t )

.

4.2 . Polynomial expansion of the angular flux
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In this section, the numerical expressions of the transmission and conservation equa-
tions related to the development of the angular flux (and consequently the source) are re-
viewed. For further details, see [6].

4.2.1 . Approximations
The axial polynomial method [56] relies on the hypothesis that the angular flux varies

sufficiently smoothly to be described by a polynomial function and that cross sections are
constant per region. The choice has been made to define a basis P for each spatial region i.
For a point r in i of coordinate (x, y, z) one may evaluate the basis as

P(z) =

{
Pp(z) =

(
z − z̄

∆z/2

)p

, p ∈ [[0, np]]

}
, (4.4)

where ∆z is the height of the region crossed by the trajectory t, z̄ is the value of the axial
coordinate at the region center, and np is themaximumdegree of the basis. This basis is only
a function of the axial coordinate and geometrical parameters. As a consequence, the value
of Pp varies between −1 and 1. This reduces the number of operations when a trajectory
crosses horizontal surfaces and changes region [56]. In such case, the sign of Pp changes(from−1 to 1 or from 1 to−1) depending on whether the surface is the upper or the bottom
one and if p is odd. Thus, one has to change the sign of the basis only for odd powers to
evaluate the basis when switching regions. A graphical representation of the base for np = 4

is given in figure 4.5. Then, for any spatial region, the angular flux ψg
i (r,Ω) is expanded on

the polynomial basis and thus depends only on the axial coordinate. Mathematically, the
hypothesis can be written as:

ψg
i (r,Ω) =

np∑
p=0

Pp(z)ψ
g,p
i (Ω). (4.5)

Accordingly, the scattering and fission source, equation (3.12) and equation (3.13), are
rewritten

Hg′→gψg′

i (r,Ω) =

nm∑
n=1

An(Ω)

np∑
p=0

Pp(z)

ng∑
g′=1

Σg′→g
s,n ϕg

′,n,p
i , (4.6)

Fg′→gψg′

i (r,Ω) =

nj∑
j=1

χg
j

np∑
p=0

Pp(z)

ng∑
g′=1

νg
′

j Σg′

f,jϕ
g′,0,p
i , (4.7)

with ϕg,n,pi being the angular moments of each polynomial component:
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Figure 4.5 – Graphical representation of the polynomials of the base P (4.4) up to np = 4.

ϕg,n,pi =
1

4π

∫
S2
dΩAn(Ω)ψg,p

i (Ω), (4.8)

where An(Ω) designates the harmonic of order n ∈ [[1, nm]], with nm = (K + 1)2, where K is
the scattering order, and such that

nm∑
n=1

An(Ω) =
K∑

k=0

k∑
l=−k

Al
k(Ω). (4.9)

This notation is retained in the rest of the manuscript. The source is reformulated in
an expression to suit the structure of the power iteration algorithm. Practically, the self-
scattering term Σg→g

s,n (r)ϕg,n,pi of (4.6) is isolated from other energy groups and up- or down-
scattering terms are gathered with the fission source contribution. From the point of view of
self-scattering, fission and scattering from other energy groups may be seen as an external
source. The emission density is now written as

Qg
i (r,Ω) =

nm∑
n=1

An(Ω)

np∑
p=0

Pp(z)Q
g,n,p
i , (4.10)
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where the componentQg,n,p
i is made of the self-scattering and external source contribution,

Qg,n,pself and Qg,n,pext , respectively, such that

Qg,n,p
i = Qg,n,pself +Qg,n,pext , (4.11)

where,

Qg,n,pself = Σg→g
s,n ϕg,n,pi , (4.12)

Qg,n,pext =
∑
g′ ̸=g

Σg′→g
s,n ϕg

′,n,p
i +

δn,0
keff

nj∑
j=1

χg
j

ng∑
g′=1

νg
′

j Σg′

f,jϕ
g′,0,p
i . (4.13)

We also define Qg,p
i (Ω) as

Qg,p
i (Ω) =

nm∑
n=1

An(Ω)Qg,n,p
i . (4.14)

4.2.2 . Transmission equation
An iterative algorithm on the self-scattering source makes it possible to solve (3.10) until

its convergence. At each iteration, the MOC scheme sweeps the geometry with trajectories
to compute the angular flux along them. If one considers the trajectory crossing the region i
between points rin and rout, such that l = ||rout − rin||, the evaluation is made thanks to the
transmission equation

ψ(rout,Ω) = ψ(rin,Ω)e−τ(l) +

∫ l

0
dtQ(rin + tΩ) e−[τ(l)−τ(t)], (4.15)

where τ is the optical path length defined as

τ(t) =

∫ t

0
dt′Σt(t

′) = Σtt. (4.16)

To integrate the source term in Equation (4.15), a previouswork [56] developed the source
thanks to Newton’s binomial coefficients to isolate the integration along the local coordinate
t. The transmission is simplified as
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ψ(rout,Ω) = ψ(rin,Ω)e−τ(l) +P(rin) ·T, (4.17)

with T being the vector of components Tk defined as

Tk =

np∑
p=k

(
p

k

)(
2µ

∆zr

)p−kQp

Σt
(Ω) Ep−k(τ),

and where,

Ep(τ) =
1

Σp
t

∫ τ

0
dτ ′ τ ′,p e−[τ−τ ′]. (4.18)

The integral part is retrieved from tabulated values to compute Ep(τ). More information
is detailed in [56].

4.2.3 . Conservation equation
The update of the source relies on the update of ψg,p

i (Ω) used to compute the angular
moments of the flux defined in (5.8). To do so, one can obtain a balance equation per region
i by projecting the multi-group transport equation (3.10) by means of the operator

1

Vi(Ω)

∫
drP(z) . (4.19)

The projection leads to an angular balance equation. Details concerning its derivation
are found in [56]. The conservation writes

Σt
′ψi(Ω) = −∆Ji(Ω) + PP(Ω) ·Q(Ω) + µC ′ψi(Ω). (4.20)

′ψi is the unknown defined as
′ψi(Ω) =

1

Vi(Ω)

∫
i
drP(z)ψ(r,Ω). (4.21)

Vi is the volume of the region i, µ is the cosine of the polar angle θ of the directionΩ and
C is a triangular matrix that makes the resolution of Equation (4.20) hierarchic:
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C =
2

∆z


0
1 0
0 2 0... . . . . . . . . .
0 0 . . . np 0

 .

Q(Ω) is the vector of the angular source componentsQp(Ω). PP(Ω) is a (np+1)×(np+1)

matrix computed thanks to a preliminary tracking-based integration and stored before the
trajectory sweep. The matrix is defined as

PP(Ω) =
1

Vi(Ω)

∫
i
drP(z)⊗P(z), (4.22)

where the component PP(n,m)(Ω) is computed as

PP(n,m)(Ω) =
1

Vi(Ω)

∑
t||Ω
t∩i

w⊥,t ⟨Pn,Pm⟩ , (4.23)

where w⊥,t is the spatial integration weight of the trajectory t, and

⟨Pn,Pm⟩ =
∫ l

0
dt

[
zin + µt− z̄

∆z/2

]n+m

. (4.24)

By introducing the function z̃ defined as

z̃(t) =
zin + µt− z̄

∆z/2
, (4.25)

we can write the scalar product as

⟨Pn,Pm⟩ = ∆z/2

µ

∫ z̃(l)

z̃(0)
dz̃ z̃n+m,

and after integration:

⟨Pn,Pm⟩ = ∆z/2

µ(p+ 1)

[
z̃(l)n+m+1 − z̃(0)n+m+1

]
. (4.26)
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Note that in (4.23), the volume is angle-dependent. The strategy gives better results re-
garding conservation (compared to angle-independent volume) since the volume and the
integral are computed from the same tracking discretization. Then, one can remark that an
analytical expression of PP(Ω) is retrievable. The matrix will be noted PP an and does not
depend on angle. Its elements PP an

(n,m) are defined as:

PP an
(n,m) =

1

Vi

∫
drPn(z)⊗ Pm(z),

=
1

∆z

∫ z̄+∆z/2

z̄−∆z/2
dz

[
z − z̄

∆z/2

]p
,

=

{
1

n+m+1 if n+meven,
0 otherwise.

(4.27)

For simplicity, indexn andmwill be omitted. The volumenormalization is angle-dependent
in Equation (4.23). The reason behind the integration is that this way the first element of the
matrix is one, no matter how accurate the tracking is, and due to this, the solver behaves
better. The last term is the current∆Ji(Ω), whose expression is

∆Ji(Ω) =
1

Vi(Ω)

∫
∂i
drΩ · nP(z)ψ(r,Ω), (4.28)

with n the normal to the surface at point r. To determine its numerical equivalent the boun-
dary ∂i is split in two borders ∂i+ and ∂i− such that,Ω ·n > 0 on ∂i+ andΩ ·n < 0 on ∂i−.
The final expression is

∆Ji(Ω) ∼ 1

Vi(Ω)

∑
t||Ω
t∩i

w⊥,t [P(zout)ψ(rout,Ω)−P(zin)ψ(rin,Ω)] , (4.29)

with rout being the exiting point of coordinate (xout, yout, zout) for trajectory t in region i. rinthe entering point is defined similarly.
4.2.4 . Results

Here, we recall some results related to the equations in the section 4.2, obtained during
previous work [6]. These results are mentioned to justify the quality of the approximations
made on the flux and their re-use in the developments of this thesis.

Verification calculations were performed on a portion of the ASTRID reactor, a sodium-
cooled fast neutron reactor. Such a reactor offers several advantages: it better exploits from
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uranium-238, the recycling of plutonium, and the transmutation ofminor actinides. The reac-
tor geometry is depicted in figure 4.6. Here, we focus solely on the reflected sub-assembly,
which consists of a fissile layer and a fertile layer.

Table 4.1 summarizes the comparison between a calculation where, for a given accuracy,
the flux was constant in the axial direction and a calculation where the flux was parabolic in
the axial direction, i.e., of degree 2. The results were as follows: developing the flux axially
allowed for a reduction in the number of axial meshes by a factor of 15 while maintaining the
same accuracy (around -40 pcm) on the effective multiplication factor keff compared to the
reference Monte Carlo calculation krefeff = 1.16103. Additionally, the calculation showed gains
in both memory usage and computation time. Specifically, the memory usage was reduced
by a factor of 3.4, reaching 5.3 GB for the DP1 accelerated calculation. The computation time
was reduced by a factor of 2.11, with a total duration of 788 seconds.

Results performed on the half-column fuel sub-assembly and the full-column fuel sub-
assembly, see figure 4.6, are provided in the thesismanuscript [6]. For instance, the depletion
of the keff discrepancy compared to Monte Carlo code TRIPOLI-4® for polynomial degrees
ranging from 0 to 3 is detailed. Results concerning a non-linear fitting technique that have
been introduced in order to reduce the memory cost of DPn matrices storage are also des-
cribed.
Table 4.1 – Comparison of keff, time and memory requirement for a k-eigenvalue cal-culation with and without DP1 acceleration. The keff is compared relatively to the oneobtained with the Monte Carlo code TRIPOLI-4® to assess physical accuracy.

Free iterations Acceleration ∆keff (pcm)Degree Axial meshes Memory (GB) Time (s) Memory (GB) Time (s) 1.161030 30 2.2 18 891 17.9 1 719 -442 2 1.7 15 637 5.3 788 -41

73



Figure 4.6 – Representation of ASTRID axial layout and of the three computational sub-assemblies [6].
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4.3 . Polynomial expansion of the cross sections
In this section, the numerical expressions for the transmission and conservation equa-

tions relevant to the development of the angular flux and cross sections (and thus the source)
are reminded. Indeed, if the user intends to perform a depletion calculation with a polyno-
mial flux in the axial direction, then the cross sections will no longer be homogeneous for
a computational cell. However, it is possible to assume that the cross sections vary in the
same manner as the flux in the axial direction, thereby accounting for the influence of the
spatial dependence of the flux on the depletion of the macroscopic spatial cross sections.
For further details, see [7].

4.3.1 . Approximations
In the spatial regions where macroscopic cross sections are spatially expanded on the

polynomial basis, a new approach to evaluate the transmission equation was implemen-
ted [57]. The choice of the basis is the same as the one used to develop the angular flux. For
a nuclear reaction ρ, at position r and within region i, we write:

Σρ(r) =

np∑
p=0

Pp(z)Σρ,p. (4.30)

This hypothesis has consequences on the expression of the optical thickness τ and the
emission density Q(Ω). Concerning the optical thickness, if we consider a point rout at adistance t from an origin rin = (xin, yin, zin), and we plug (4.30) in the definition of τ , we
obtain:

τ(t) =

∫ t

0
dt′Σt(rt′),

=

np∑
p= 0

Λp,0t+

np−1∑
p= 0

Λp,1t
2 + . . .+ Λ0,npt

np+1,

(4.31)

where:

Λp,q = Pp(rin)Σt,p+q

(
2µ

∆z

)q 1

q + 1

(
p+ q

p

)
. (4.32)

The expression for the source also changes. The scattering and fission terms can be writ-
ten as
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Hg′→gψg′(r,Ω) =

nm∑
n=1

An(Ω)

2np∑
k=0

∑
p+q=k

Pk(z)

ng∑
g′=1

Σg′→g
s,n,q ϕ

g′,n,p
i , (4.33)

Fg′→gψg′(r,Ω) =

nj∑
j=1

χg
j

2np∑
k=0

∑
p+q=k

Pk(z)

ng∑
g′=1

νg
′

j Σg′

f,j,qϕ
g′,0,p
i . (4.34)

The emission density is now written as

Qg
i (r,Ω) =

nm∑
n=1

An(Ω)

2np∑
k=0

Pk(z)Q
g,n,k
i , (4.35)

where the componentQg,n,k
i is made of the self-scattering and external source contribution,

Qg,n,kself and Qg,n,kext , respectively, such that

Qg,n,k
i = Qg,n,kself +Qg,n,kext , (4.36)

where

Qg,n,kself =
∑

p+q=k

Σg→g
s,n,qϕ

g,n,p
i , (4.37)

Qg,n,kext =
∑

p+q=k

∑
g′ ̸=g

Σg′→g
s,n,q ϕ

g′,n,p
i +

δn,0
keff

nj∑
j=1

χg
j

ng∑
g′=1

νg
′

j Σg′

f,j,qϕ
g′,0,p
i

 . (4.38)

4.3.2 . Transmission equation
From (4.30) and (4.35), a specific transmission equation was introduced, which reads, for

a chord of length l comprised between an entering point rin and an exiting point rout,

ψ(rout,Ω) = ψ(rin,Ω)e−τ(l) +P(rin) ·T, (4.39)

with T the vector of components Tk defined as
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Tk =

2np∑
p=k

(
p

k

)(
2µ

∆zr

)p−k

Qp(Ω) Ep−k,

and where,

Ep =

∫ l

0
dt tp e−[τ(l)−τ(t)]. (4.40)

Here, it is not possible to modify the (4.40) to obtain a function of the optical path τ
that could be tabulated as it is done for the case where cross sections are spatially constant
(see (4.18)). Consequently, integrals Ep were computed thanks to a Gauss-Legendre quadra-
ture when cross sections are expanded polynomially [57]. The new strategy modifies the
transmission equation but also relies on a Gauss-Legendre quadrature. We write:

ψ(rout,Ω) = ψ(rin,Ω)e−τ(l) +Q(Ω) ·
∫ l

0
dtP(zin + µt) e−[τ(l)−τ(t)]︸ ︷︷ ︸

Ẽ

, (4.41)

with Ẽ the vector of components Ẽp:

Ẽp =

∫ l

0
dt

[
zin + µt− z̃

∆z/2

]p
e−[τ(l)−τ(t)] . (4.42)

All the Ẽp are now computed through a Gauss-Legendre quadrature, instead of the inte-
gral Ep defined in Equation (4.40). The integration limits are set between -1 and 1 thanks to
the change of variable t(x) = l

2(1 + x). It leads to the approximation

Ẽp ≈
l

2

m∑
j=1

wj

[
P1(rin) +

2µ

∆zr
t(xj)

]p
eτ(t(xj))−τ(l), (4.43)

with xj the roots of the mth-degree Legendre polynomial, wj the weights associated to the
chosen quadrature order and t(xj) = l

2(1 + xj) and P1 the polynomial component of order
one of the basis introduced in Equation (4.4). A first sweep is performed before the trans-
port one to determine the integer m. For each chord and energy group, Ẽp estimations are
performed with m increasing until falling below a certain tolerance. After that, m is stored
in memory. Ifm exceeds a certain limitmmax, the integration interval is divided into smaller
intervals. However, it has been shown that m = 5 is enough for 90% of chords [7]. In terms
of memory, the new strategy employed constitutes an advantage compared to the former
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strategy as it only saves the scalar Q(Ω) · Ẽ in memory instead of the vectors P(rin) and
T [123].

4.3.3 . Conservation equation
The update of the source relies on the update of ψp(Ω) used to compute the angular

moments of the flux defined in (5.8). To do so, one can obtain a balance equation per region
i by projecting the multi-group transport equation (3.10) by means of the operator (4.19)

np∑
k=0

Σt,k

np∑
q=0

Pp+k,qψ
q
i (Ω)− p

2

∆z

np∑
q=0

Pp−1,jψ
q
i (Ω)

−∆Ji,p(Ω) +
(
PP2np(Ω) ·Q(Ω)

)
p
, (4.44)

where,

∆Ji,p(Ω) =
1

Vi(Ω)

∫
∂i
drΩ · nPp(z)ψ(r,Ω), (4.45)

and,

PP2np(Ω) =
1

Vi(Ω)

∫
i
drP(z)⊗P2np(z), (4.46)

with,

P2np(z) =

{
Pp(z) =

(
z − z̄

∆z/2

)p

, p ∈ [[0, 2np]]

}
. (4.47)

The equation (4.44) is a balance equation on the np + 1 angular coefficients of the flux.
The resolution of the system for every spatial component and every direction belonging to
the angular quadrature allows to update the emission density through (4.33) and (4.34).

4.3.4 . Information transfer between flux and depletion solvers
It is important to recall that the cross sections are expanded on a polynomial basis wi-

thin the depletion calculations so that the isotopic inventory can track the spatial variations
in the flux. To achieve this, we discuss how the cross sections values are communicated to
the self-shielding and depletion solvers. The data exchange is not straightforward since the
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cross sections are treated as polynomial in the axial direction for the flux solver, while they
are uniform for the self-shielding and depletion calculations.

To facilitate data exchange, we consider a "polynomial"mesh consisting of a single region
ipol and a step mesh composed of nsc regions. At the end of a depletion step, we have a setof depleted and self-shielded cross sections for each region within the step mesh. Then, for
each reaction ρ, the cross sections for the polynomial mesh are determined by conserving
the moments Σ′

ρ,p

′Σρ,p =
1

Vipol

∫
ipol

drPp(z)Σρ(r). (4.48)

The integration is then decomposed over each region i ∈ [[1, nsc]]

′Σρ,p =
1

∆zipol

nsc∑
i=1

Σρ,i

∫ zmax

zmin

dzPp(z), (4.49)

with ∆zipol representing the height of region ipol, and zmin and zmax denoting the axial coor-dinates of each region in the step mesh. However, to reduce the size of the library required
to store the cross sections for the nsc regions, a mesh with ngs axial cells associated with a
Gauss-Legendre quadrature is used instead. Such a mesh is referred to as Gaussian mesh.
Therefore, to evaluate (4.48), an ngs-point quadrature is employed:

′Σρ,p =
1

2

ngs∑
i=1

wi(xi)
pΣi,ρ, (4.50)

with xi and wi being the roots of the Legendre polynomial of order ngs and the correspon-ding Gaussian weights proportional to the height of each region ∆zipol , where i ∈ [[1, ngs]],respectively. The only requirement for the selection of ngs is that it must be able to inte-
grate a polynomial of degree 2np. Therefore, ngs must satisfy the condition 2ngs − 1 ≥ 2np.According to the results provided in [57], the use of a Gaussian mesh for depletion and self-
shielding solvers in a 17x17 PWR assembly enabled a reduction in memory footprint by 55%
compared to a 87 axial layers step mesh.

4.3.5 . Results
Here, we recall some results related to the equations in the section 4.3, obtained during

previous work [7]. These results are mentioned to justify the quality of the approximations
made on both the flux and cross-sections, and their re-use in the developments of this thesis.
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Depletion calculations with spatially dependent cross sections were verified by compa-
rison with uniform cross-section and source per region, on a 17x17 PWR assembly, with the
radial and axialmeshes displayed in figure 4.7 and in figure 4.8, respectively. It is worth noting
that the calculation was performed on the lower half of the assembly and on 1/8 of the radial
section. For details on the isotopic compositions of the various materials at the beginning
of the cycle, as well as the calculation parameters (angular quadrature, spatial integration,
convergence criteria for the power iteration method, etc.), the reader is referred to [7]. The
fuel was depleted up to a burn-up of 60 GWd/t. The effective multiplication factor keff wascompared with a depletion calculation where the flux and cross sections are uniform in each
calculation region ; i.e., axially, this calculation uses the mesh from figure 4.8 (c). The trans-
port was accelerated using synthetic acceleration DP1. The two calculations are referenced
as FPX and FSC, FPX designating the case with polynomial cross sections, or as FPX_fit
and FSC_fit if a fitting technique is applied to reduce the memory cost of the acceleration.

Two results are highlighted here: a comparison of the depletion of the effective multipli-
cation factor keff between the FPX and FSC calculations, and the spatial profile of the total
macroscopic cross sectionΣt for selected energy groups, including group 167, which containsthe lowest-energy resonance of uranium-238.

Regarding keff, the relative error between the FPX and FSC calculations (with FSC taken
as the reference) does not exceed 120 pcm, as shown in figure 4.9. Additionally, asmentioned
in [7], at the beginning of the cycle, the FPX calculation is at -39 pcm compared to theMonte
Carlo solution obtainedwith TRIPOLI-4®, while theFSC calculation is at -126 pcm.More speci-
fically, the largest errors (between 100 and 120 pcm) occur between 0 and 20GWd/t. Beyond
20 GWd/t, the relative error decreases, reaching 60 pcm at 60 GWd/t. Furthermore, the fit-
ting technique used to reduce the memory cost of the DPn acceleration does not alter the
depletion of the relative error between the two calculations. Finally, theFPX calculation took
105 hours, compared to 259 hours for the calculation with uniform flux and cross sections.
These results were obtained on a machine with two EPYC 7352 CPUs @ 2.3 GHz using 48
OpenMP threads.

Regarding the cross sections spatial profile, figure 4.10 shows that the spatial variation is
mainly located near the reflector for each chosen energy group.
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Figure 4.7 – Two-dimensional radial section of the 17x17 PWR assembly [7].
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Figure 4.8 – Half axial meshes of the 17x17 PWR assembly composed of a bottom reflector,grids, and fuel: (a) is the polynomial mesh which corresponds to the material mesh, (b) isthe gaussian mesh, and (c) is the step one used for comparison with uniform flux and crosssections approximations [7].

Figure 4.9 – Evolution of keff up to a burn-up of 60 GWd/t and the relative error between theFPX and FSC calculations, with and without the fitting technique that reduces the memorycost of storing matrices required for DP1 acceleration [7].
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Figure 4.10 – Spatial profile of the total macroscopic cross sections at 0 and 60 GWd/t forvarious energy groups, including group 167 corresponding to the lowest-energy resonanceof uranium-238. The values have been plotted for the two-dimensional region exhibiting themaximum axial gradient of the system [7]. 83
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5 - Surface characteristics scheme
The chapter starts presenting new developments implemented in the TDT solver during

the PhD for the treatment of extruded 3D geometries, incorporating polynomial variations of
flux in the axial direction. After introducing the method of handling surfaces using TDT, the
surface linear approximation is discussed. Finally, the associated transmission and conser-
vation equations are derived.
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5.1 . Surface representation

5.1.1 . Geometry discretization
Before discussing the choice of interpolation, it is important to note that the quantities

of interest introduced in Chapter 2 are developed on the surfaces of the geometry. Thus,
as depicted in figure 5.1, each computational region i, with boundary ∂i, is divided into nssurfaces αk such that

∂i =

ns⋃
k=1

αk. (5.1)

In three dimensions, TDT recognizes the extruded surfaces along z that can be derived
from segments, arcs and circles, for given finite heights, and the interface surfaces parallel to
the xy plane that separate the 3D regions. These last are not simply rectangle or rectangle-
circle, but an arbitrary 2D form that can be obtained by a sequence of segments, arcs or
(isolated) circles, as shown with the BWR assembly discretization in figure 5.2. From now on,
vertical surfaces will refer to the surfaces where the coordinate along the z-axis varies. The
set of vertical surfaces in a region is denoted ∂iv. Horizontal surfaces will be those where thez-coordinate remains constant at every point on the surface.

Figure 5.1 – Representation of the decomposition of the boundary ∂i of a given spatial region
i in ns surfaces.
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Figure 5.2 – Two-dimensional section of the BWR lattice defined as a part of the Burn-upCredit Criticality Safety Benchmark coordinated by NEA/OECD [8].

5.1.2 . Tracking-based integration of surfaces
We consider a surface α and call Sanaα the analytical value of its area, defined as

Sanaα =

∫
α
dr. (5.2)

The numerical areas are calculated from a tracking-based integration. Their accuracy de-
pends on the number of directions and chords per direction. They are defined as

Snumα =
∑

Ωn∈Sn

wn

∑
t||Ωn
t∩α

w⊥,t(Ωn), (5.3)

with w⊥,t(Ωn), the integration weight associated with each trajectory, calculated as

w⊥,t(Ωn) =
∆r∆s

|n ·Ωn|
, (5.4)

where n is the normal to the surface αk intersected by the trajectory t at a certain point.
The comparison between analytical and numerical values is important because it provides
information about the quality of surface integration. Poor surface integration can hinder the
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convergence of internal iterations.
In two dimensions, an adaptive tracking method is implemented, allowing for the addi-

tion of trajectories locally [124]. This technique has not been implemented for the treatment
of 3D geometries. Thus, the accuracy of the tracking, i.e., the values imposed on∆r and∆s,
is conditioned by the precision required to integrate the smallest surface in the geometry.

5.1.3 . Definition of surface quantities
For any surface α on ∂i, the angular flux ψg

α(r,Ω) is expanded on the polynomial ba-
sis (4.4). Mathematically, the hypothesis can be written as:

ψg
α(r,Ω) =

np∑
p=0

Pp(z)ψ
g,p
α (Ω). (5.5)

Accordingly, the scattering and fission source are rewritten as:

Hg′→gψg′
α (r,Ω) =

nm∑
n=1

An(Ω)

np∑
p=0

Pp(z)

ng∑
g′=1

Σg′→g
s,n ϕg

′,n,p
α , (5.6)

Fg′→gψg′
α (r,Ω) =

nj∑
j=1

χg
j

np∑
p=0

Pp(z)

ng∑
g′=1

νg
′

j Σg′

f,jϕ
g′,0,p
α , (5.7)

with ϕg,n,pα being the surface angular moments of each polynomial component:

ϕg,n,pα =
1

4π

∫
S2
dΩAn(Ω)ψg,p

α (Ω). (5.8)

The surface source is now written as

Qg
α(r,Ω) =

nm∑
n=1

An(Ω)

np∑
p=0

Pp(z)Q
g,n,p
α , (5.9)

where the componentQg,n,p
α is made of the self-scattering and external source contribution,

Qg,n,pself and Qg,n,pext , respectively, such that

Qg,n,p
α = Qg,n,pself +Qg,n,pext , (5.10)
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where,

Qg,n,pself = Σg→g
s,n ϕg,n,pα , (5.11)

Qg,n,pext =
∑
g′ ̸=g

Σg′→g
s,n ϕg

′,n,p
α +

δn,0
keff

nj∑
j=1

χg
j

ng∑
g′=1

νg
′

j Σg′

f,jϕ
g′,0,p
α . (5.12)

We also define Qg,p
α (Ω) as

Qg,p
α (Ω) =

nm∑
n=1

An(Ω)Qg,n,p
α . (5.13)

The surfacemoments are only evaluated for the vertical surfacesα ∈ ∂iv. Their analyticalexpression is
′Φn,p

α =
1

4πSα

∫
S2
dΩAn(Ω)

∫
α
drPp(r)ψ(r,Ω). (5.14)

Numerically, the moments are evaluated as
′Φn,p

α =
1

4πSα

∑
Ωn∈Sn

wnAn(Ωn)
∑
t||Ω
t∩α

w⊥,t(Ωn)Pp(zt)ψα,t(Ω). (5.15)

From a computational point of view, the moments are organized into a vector in the
following manner:

′Φα =
{

′Φ1,0
α , ′Φ2,0

α , . . . , ′Φn,p
α , . . . , ′Φ

nm−1,np
α , ′Φ

nm,np
α

}
. (5.16)

5.2 . Choice of the linear interpolation
This section details the choice of linear approximation implemented in the TDT solver. To

this end, two strategies are compared. The first strategy is based on the linear interpolation
of the source between surface values that vary polynomially in the axial direction (see (5.9)).
The second strategy is based on the development of the source at a point on a trajectory,
followed by the linear interpolation of each of its components. The transmission equations
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associated with these two approaches are derived.
To introduce the subsequent discussion,we consider a point rtwith coordinates (xt, yt, zt)on a chord of length l and direction Ω that traverses region i entering through surface β at

point rin and exiting through surface α at point rout. Let t denote the distance between point
rin and rt, t = [|rt − rin|], such that rt = rin + tΩ. A graphical representation of the chord
where the notation are included is shown in figure in 5.3. Themacroscopic cross sections are
constant per region. For simplicity, the transmission equation for a finite domain is rewritten
as

ψ(rout,Ω) = ψ(rin,Ω)e−τ(l) +

∫ l

0
dtQ(rin + tΩ) e−[τ(l)−τ(t)]. (5.17)

Figure 5.3 – Representation of a chord of length l crossing region i between surfaces αk and
αns through rin and rout, respectively.

5.2.1 . Source interpolation between surfaces
We assume that the source at point rt varies linearly between the values of the surfacesource, and that the vertical surface source varies according to the basis P (4.4). Practically,

we recall that each 3D trajectory belongs to a sz-plane. Keeping this in mind, a graphical
representation of the interpolation strategy is shown in figure in 5.4: the source is simply
interpolated between the entering and exiting source, on β and α, respectively. Thus, we
write
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Q(rt,Ω) = Qβ(zin,Ω)

(
1− t

l

)
+Qα(zout,Ω)

t

l
. (5.18)

To obtain the associated transmission equation, it is sufficient to substitute (5.18) into (5.17)

ψ(rout,Ω) = ψ(rin,Ω)e−τ(l) +
Qβ(zin,Ω)

Σt
E0(τ)

+
Qα(zout,Ω)−Qβ(zin,Ω)

Σt

1

l
E1(τ), (5.19)

with,

Qβ(zin,Ω) =

np∑
p=0

Pp(zin)Q
p
β(Ω), (5.20)

Qα(zout,Ω) =

np∑
p=0

Pp(zout)Q
p
α(Ω), (5.21)

and with,

E0(τ) = 1− e−τ , (5.22)
E1(τ) = l − 1

Σt
(1− e−τ ). (5.23)

Some comments now. Note that surface sources are normalized, including horizontal
sources defined on horizontal surfaces. Unfortunately, it is generally challenging to integrate
horizontal surfaces from tracking. Indeed, for an industrial scale mesh with given tracking
parameters, the fraction of chords that intersect the horizontal surfaces of a region i is at
least an order of magnitude smaller than that of chords that intersect the vertical surfaces
of region i. Figure 4.3 provides an initial impression of this phenomenon. This effect be-
comes even more significant as it is now possible to expand the flux on a polynomial basis
in the axial direction, which increases the ratio ∆h/∆ ⟨s⟩. This specific characteristic of tra-
cking in 3D geometries will be discussed in greater detail in Chapter 6. Of course, it would
be possible to use analytical values for horizontal surfaces and numerical values for vertical
surfaces, but this would likely introduce errors in particle conservation during the balance
assessment [49]. The same observation applies if values for any type of surface were used,
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since the quantities calculated are derived from tracking-based integration. Thus, approxi-
mation (5.18) has not been implemented.

Figure 5.4 – First source interpolation strategy. For a given direction Ω, the source in rt isinterpolated from the source on β and α.

5.2.2 . Interpolation of source components
We assume that the source at point rt can be expanded in the basis P (4.4) for the axial

direction, and that each spatial component varies linearly between the surface spatial com-
ponents. Thus, we write

Q(rt,Ω) =

np∑
p=0

Pp(zt)Q
p(Ω), (5.24)

Qp(Ω) = Qp
β(Ω)

(
1− t

l

)
+Qp

α(Ω)
t

l
. (5.25)
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Note that for a VV-type chord, this amounts to performing radial interpolation of the
surface components. According to section (4.1.1), the chord is known to belong to a region
of the sz-plane. Let t2 and l2 denote the projections of t and l onto the s-axis, respectively.
Thus,

Qp(Ω) = Qp
β(Ω)

(
1− t2

l2

)
+Qp

α(Ω)
t2
l2
. (5.26)

Then, if we substitute (5.26) into (5.17), we obtain a transmission equation similar to (4.17),
which is detailed in 4.2.2. That is, just as in the case where the source is volumetric, the
escape factors are considered up to the np order. However, for HH-type chords, the sourceis assumed to be spatially constant on a horizontal surface as there is no variation in the
axial coordinate. Consequently, the interpolation (5.24) simplifies to

Q(rt,Ω) = Q0
β(Ω)

(
1− t

l

)
+Q0

α(Ω)
t

l
. (5.27)

The transmission equation then reads

ψ(rout,Ω) = ψ(rin,Ω)e−τ(l) +
Q0

β(zin,Ω)

Σt
E0(τ)

+
Q0

α(zout,Ω)−Q0
β(zin,Ω)

Σt

1

l
E1(τ), (5.28)

with E0(τ) and E1(τ) defined by (5.22) and (5.23), respectively. This places us in the same si-
tuation as with the first approximation of the source, with the same disadvantages. However,
it should be noted that expression (5.28) only applies to HH-type chords, which are particu-
larly present in computational regions where the height is small relative to the 2D length of
the region, as shown in figure (4.3). Therefore, it is possible that (5.28) provides a reasonably
good approximation of ψ(rout,Ω). Nonetheless, the difficulty in integrating horizontal sur-
faces compared to vertical ones remains. A solution to address this issue is presented in the
following section.

5.2.3 . On-the-fly horizontal source computation
As explained in the two preceding sections, two radial interpolations can be defined. In

this thesis, the choice wasmade to implement equation (5.25) to obtain an evaluable expres-
sion of the transmission equation. The reasoning used is to note that, with this approxima-
tion, the source is assumed to be polynomial in the axial direction at each point along the
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chord, unlike the first approximation, which assumes the source to be polynomial only on
the vertical surfaces. Thus, it can be expected that the error on the outgoing angular flux will
be lower with this approximation compared to the first approximation introduced. Quantita-
tively, this results in a transmission equation with more floating-point operations. (See (5.40)
and (5.19)). However, it would be reasonable to implement the first approximation in order
to perform a numerical comparison (physical accuracy, computation time) of the two ap-
proaches.

Then, to bypass the issue of integrating horizontal surfaces, horizontal sources are com-
puted on-the-fly based on the source defined on vertical surfaces. Below, we explain how
the interpolation is performed after introducing some useful definitions.

Consider a chord of length l in a region of the sz-plane with polar angle θ. This chord is of
typeVV,HV,VH,or HH. It is noted that this chord is part of a set of chords of size nc locatedbetween an incoming vertical surface γ and an outgoing vertical surface γ⋆. If the chord is of
typeVV, then the set of chords size is one, (nc = 1). If the chord is of typeVH and is followed
by a chord of type HV, then the set of chords size is two, (nc = 2).

Furthermore, aVH chord is always followed by anHV chord or a sequence ofHH chords
followed by an HV chord. The same reasoning applies to HV chords, but in the opposite
direction. Finally, HH chords are part of a sequence of HH chords bounded by a VH chord
and an HV chord. Each length thus belongs to a set of nc lengths with a total length Ltot,defined as

Ltot =

nc∑
k=1

lk. (5.29)

The cumulative length Lk is also defined as:

Lk =

k∑
i=1

li. (5.30)

With these definitions in place, we can now construct the sources on the horizontal sur-
faces. If the chord is the kth of the set, we define:

Qp
β(Ω) = Qp

γ(Ω)

(
1− Lk−1

Ltot

)
+Qp

γ⋆(Ω)
Lk−1

Ltot
, (5.31)

Qp
α(Ω) = Qp

γ(Ω)

(
1− Lk

Ltot

)
+Qp

γ⋆(Ω)
Lk

Ltot
. (5.32)
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Figure 5.5 – On-the-fly horizontal source interpolation strategy. The source in rt is interpola-ted from the source on β and α constructed from source on γ and γ⋆.

Note that if the incoming surface is vertical, then Lk−1 = 0 and Qp
β = Qp

γ . Similarly, if the
outgoing surface is vertical, Lk = Ltot and Qp

α = Qp
γ⋆ . Additionally, along the tracking sweep,if the chord considered is of typeHH one can use (5.31) and (5.32), analogous to the on-the-fly

construction of vertical surfaces. In practice, we do not store in memory Lk and Ltot for eachchord during the tracking phase. Instead, the projection onto the s-axis is applied by using
the fact that L2,tot = cos(θ)Ltot and L2,k = cos(θ)Lk, such that

Qp
β(Ω) = Qp

γ(Ω)

(
1−

L2,k−1

L2,tot

)
+Qp

γ⋆(Ω)
L2,k−1

L2,tot
, (5.33)

Qp
α(Ω) = Qp

γ(Ω)

(
1−

L2,k

L2,tot

)
+Qp

γ⋆(Ω)
L2,k

L2,tot
, (5.34)

with L2,k and L2,tot that are computed on-the-fly during each 3D trajectory reconstruction
that precedes the sweep. During the reconstruction (5.33) and (5.34) are also evaluated to
storeQp

β(Ω) andQp
α(Ω) before the sweep for each type of chords except for theVV chords.
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The last point is that trajectories do not always begin by crossing a vertical surface. Thus, one
cannot assume that L1 = l1. It is necessary to account for the contribution of the 2D chord
segment fromwhich the local 3Done starts from, as shown in figure 5.6. For such trajectories,
we introduce the length lini, represented in figure 5.6, and such that L1 = lini+ l1. The valueof lini is obtained by the tracking algorithm.

Figure 5.6 – 3D trajectory entering a sz-plane by crossing a horizontal surface.
On the contrary, if trajectories begin by entering the sz-plane by crossing a vertical sur-

face, then lini = 0, as shown in figure 5.7.

Figure 5.7 – 3D trajectory entering a sz-plane by crossing a vertical surface.
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5.3 . Transmission equation

The approximation of the surface linear scheme is established ; it is now possible to nu-
merically evaluate the transmission equation. Similarly to the previous section, let us consi-
der a chord t of length l that traverses region i entering through surface β at point rin andexiting through surface α at point rout. Let t denote the distance between point rin and rt,where t = [|rt − rin|], so that rt = rin + tΩ. Next, we substitute (5.25) into (5.17). This yields:

ψ(rout,Ω) = ψ(rin,Ω)e−τ(l)

+

∫ l

0
dtP(z) ·

[
Qβ(Ω)(1− t

l
) +Qα(Ω)

t

l

]
e−(τ(l)−τ(t)), (5.35)

Then, we develop P (4.4) to take out the integral constant. This gives:

∫ l

0
dt(1− t

l
)P(z) ·Qβ(Ω)e−(τ(l)−τ(t))

=

np∑
p=0

p∑
k=0

(
p

k

)[
z0 − z̃

∆z/2

]k ( 2µ

∆z

)p−k

Qp
β(Ω)E−

p−k(l),

=

np∑
k=0

np∑
p=k

(
p

k

)[
z0 − z̃

∆z/2

]k ( 2µ

∆z

)p−k

Qp
β(Ω)E−

p−k(l),

(5.36)

where
E−
p−k(l) =

∫ l

0
dt(1− t

l
)tp−ke−(τ(l)−τ(t)). (5.37)

In E−
p−k, the symbol "−" means that we multiply the power of t and the integral by the

factor (1− t
l ). We can similarly define E+

p−k with a multiplication by t
l . Then, we can write

∫ l

0
dt′(1− t

l
)P(z) ·Qβ(Ω)e−(τ(t)−τ(t′)) =

np∑
k=0

Pk(zin)T
−
k (Ω),

= P(zin) ·T−(Ω),

with:
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T−(Ω) =


np∑
p=k

(
p

k

)(
2µ

∆z

)p−k

Qp
β(Ω)E−

p−k(l), k ∈ [|0, np|]

 , (5.38)

T+(Ω) =


np∑
p=k

(
p

k

)(
2µ

∆z

)p−k

Qp
α(Ω)E+

p−k(l), k ∈ [|0, np|]

 . (5.39)

Finally, we get the transmission equation expression. It writes

ψ(rout,Ω) = ψ(rin,Ω)e−τ(l) +P(zin) ·
[
T−(Ω) +T+(Ω)

]
. (5.40)

One may note the difference between expression (5.19) and expression (5.40) obtained
in the case where the source is expanded on the polynomial basis for each point along the
chord. In the first case, the leakage factor is accounted for up to the first order, whereas it is
accounted for up to the nthp order in the second expression. One might therefore conjecture
that (5.19) represents the spatial variation of the source less accurately compared to (5.40)
since it is only considered on the surfaces of the region.

5.3.1 . Numerical evaluation of spectral factors
In this section, we detail the algorithm behind the computation of the spectral factors

E−
k and E+

k . Two cases will be considered according to the type of cross sections ; spatially
uniform or following a polynomial variation along the axial direction. If the cross sections are
polynomial, the evaluation of E−

k and E+
k will follow a different algorithm than the one used

in the step constant hypothesis. To begin let’s start with the definitions:

E+
k (l) =

1

l

∫ l

0
dttk+1e−(τ(l)−τ(t)), (5.41)

E−
k (l) =

∫ l

0
dt(1− t

l
)tke−(τ(l)−τ(t)). (5.42)

Now, it is useful to note that E−
k can be expressed in terms of l and E+

k . Indeed, by ex-panding the factor 1− t
l , we obtain
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E−
k (l) =

∫ l

0
dt

(
1− t

l

)
tke−(τ(l)−τ(t)),

=

∫ l

0
dttke−(τ(l)−τ(t)) − 1

l

∫ l

0
dttk+1e−(τ(l)−τ(t)),

= lE+
k−1(l)− E+

k (l).

Consequently, only the calculation of the functions E+
k is detailed in the remainder of the

section.
5.3.2 . Constant cross sections case

If one considers the cross section Σt spatially constant wihtin a region i, the optical path(3.17) writes:

τ(t) = Σtt. (5.43)

Then for every value of k, E+
k factors become:

E+
k (l) =

1

l

∫ l

0
dttk+1e−Σt(l−t),

=
1

Σtl

1

Σk+1
t

∫ τ(l)

0
dτ ′τ ′,k+1e−(τ ′−τ(l)),

=
1

Σtl
Ek+1(τ),

with

Ek(τ) =
1

Σk
t

∫ τ

0
dτ ′τ ′ke−(τ−τ ′). (5.44)

So that,

E−
k = lE+

k−1(l)− E+
k (l),

=
1

Σt

[
Ek(τ)−

1

l
Ek+1(τ)

]
.
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For instance, in the particular case of k = 0, it is possible to obtain an analytical expres-
sion of E+

0 thanks to an integration by part.
E+
0 (τ) =

1

Σt

[
1− (1− e−τ )/τ)

]
. (5.45)

Demonstration:
E+
0 (t) =

1

l

∫ l

0
dtte−Σt(l−t),

=
1

Σtl

[
te−Σt(l−t)

]l
0
− 1

Σtl
dte−Σ(l−t),

=
1

Σt
− 1

Σ2
t l

[
e−Σt(l−t)

]l
0
,

=
1

Σt

[
1− (1− e−τ )/τ)

]
.

Finally, we introduce ET
k for the next discussion:

ET
k (τ) =

1

lk
Ek(τ), (5.46)

ET
k (τ) =

1

τk

∫ τ

0
dτ ′τ ′ke−(τ−τ ′). (5.47)

Numerically, E−
k (τ) and E+

k (τ) are computed from the tabulated ET
k (τ) (5.47) to avoid

numerical instability issues for small values of τ . Specifically, for τ ≫ τc, a recurrence relationis used to calculate all orders starting from order 0, whose analytical expression is ET
0 (τ) =

1 − e−τ . In the case where τ ≪ τc, ET
k is computed up to the highest order using a series

expansion, before calculating the lower orders using a recurrence formula [56].
5.3.3 . Polynomial cross sections case

As for the scalar product defined in Equation (4.26), the optical path may be computed
thanks to the same change of variable in order to save floating point operations. The expres-
sion writes

τ(t) =
∆z/2

µ

np∑
p=0

1

p+ 1

[
z̃(t)p+1 − z̃(0)p+1

]
Σt,p. (5.48)

When the cross sections are spatially dependent, tabulations can no longer be used to
evaluate the spectral factors. Instead, a Gauss-Legendre quadrature is employed, which, as
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demonstrated in [125], helps save memory and computational time. To this end, let us start
from the transmission equation (5.35) and rewrite it in the form:

ψ(rout,Ω) = ψ(rin,Ω)e−τ(l) +

∫ l

0
dtP(z) ·Qβ(Ω)e−(τ(l)−τ(t))

+
1

l

∫ l

0
dtP(z)t · [Qα(Ω)−Qβ(Ω)] e−(τ(l)−τ(t)), (5.49)

with the components of the source that can be factored out of the integral:

ψ(rout,Ω) = ψ(rin,Ω)e−τ(l) +Qβ(Ω) ·
∫ l

0
dtP(z)e−(τ(l)−τ(t))︸ ︷︷ ︸

E0

+
1

l
[Qα(Ω)−Qβ(Ω)] ·

∫ l

0
dtP(z)te−(τ(l)−τ(t))︸ ︷︷ ︸

E1

. (5.50)

Thus, the transmission, under these assumptions, is implemented in the following form:

ψ(rout,Ω) = ψ(rin,Ω)e−τ(l) +Qβ(Ω) ·E0 +
1

l
[Qα(Ω)−Qβ(Ω)] ·E1. (5.51)

The vectors E0 and E1 need to be calculated, with dimensions ranging from 0 to np. Inthis section, we will detail only the calculation of E1 and provide the formula for E0 directly.As a starting point, consider the kth component E1,k:

E1,k =

∫ l

0
dttPk(zt)e

−(τ(l)−τ(t)). (5.52)

First, we perform the change of variable x = 2
l t− 1 to transform the integration interval

to [−1, 1]. The previous integral can then be rewritten as:

E1,k =

(
l

2

)2 ∫ 1

−1
dx (x+ 1)

(
P1(zin) + µ

l/2(1 + x)

∆z/2

)k

e−(τ(l)−τ(t(x))). (5.53)

In this case Ek integrals cannot be expressed in terms of elementary functions as in the
constant case. Instead, they are computed thanks to a Gauss-Legendre quadrature rule.
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E1,k ≃
(
l

2

)2 m∑
j=1

wj (1 + xj)

(
P1(zin) + µ

l/2(1 + xj)

∆z/2

)k

eτ [t(xj)]−τ(l), (5.54)

xj being the roots of themth-degree Legendre polynomial, wj the weights associated to thechosen quadrature order and t(xj) = l
2(xj + 1). In the same manner:

E0,k ≃ l

2

m∑
j=1

wj

(
P1(zin) + µ

l/2(1 + xj)

∆z/2

)k

eτ [t(xj)]−τ(l). (5.55)

5.4 . Conservation equation

In this section, the conservation equation is derived only for uniform cross sections. To
ensure convergence of the internal iterations, the (surface)moments of the flux are updated.
At each sweep, the surfacemoments are updated based on the current term and the sources
of fission, down-scattering, and up-scattering. To ensure particle conservation, a particle ba-
lance is performed at the end of each iteration, where the volumetric source is replaced by
a geometric source calculated from the surface moments, and where these moments are
corrected to ensure equality between surface and geometric moments.

Particle conservation relies on the angular balance equation (4.20) derived in the previous
chapter, where the angular flux is assumed to vary polynomially in the axial direction (4.4).
This angular flux is projected onto the spherical harmonics basis to obtain an equation for
the moments. The resulting equation is:

Σt
′Φi = −∆Ji +

′Qi + D ′Φi, (5.56)

with

∆Ji =
1

4π

∫
S2
dΩA(Ω)⊗∆Ji(Ω), (5.57)

′Qi =
1

4πVi

∫
i
Z(r,Ω)⊗Z(r,Ω) ·Qi, (5.58)

D ′Φi =
1

4π

∫
S2
dΩµA(Ω)⊗ C ′ψi(Ω). (5.59)
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Then, knowing that

µAl
k(Ω) = αl

k+1A
l
k+1(Ω) + βlk−1A

l
k−1(Ω), (5.60)

with, αl
k+1 and βlk−1 defined in [56], one may remark that the matrix D couples each poly-

nomial component p with the polynomial component p − 1. This coupling necessitates the
calculation of additional angular moments to ensure that the interactions between different
polynomial components are accurately accounted for. To do so, (5.56) is obtained by pro-
jecting the angular balance equation onto the spherical harmonics vector, using a higher
anisotropy order to account for the additional moments that must be computed. To stress
this difference the subscriptD is added to the vectors of (5.56). It gives

Σt
′Φi,D = −∆Ji,D + ′Qi,D + D ′Φi,D, (5.61)

with

∆Ji,D =
1

4π

∫
S2
dΩAD(Ω)⊗∆Ji(Ω), (5.62)

′Qi,D =
1

4πVi

∫
i
ZD(r,Ω)⊗Z(r,Ω) ·Qi, (5.63)

D ′Φi,D =
1

4π

∫
S2
dΩµAD(Ω)⊗ C ′ψi(Ω). (5.64)

Once (5.61) is evaluated, only the moments belonging to the scattering dimensions are
kept to iterate. Nonetheless, (5.56) involves a volumetric source term, which is not defined
within the linear surface scheme. Therefore, a geometric operator is introduced to construct
this volumetric source term, ensuring particle conservation within each computational re-
gion.

5.4.1 . Definition of a geometrical operator
The principle of the geometric operator involves constructing a volumetric source from

vertical sources that ensures conservationwithin the calculation region. The idea is to project
the angularmoments of the flux onto the spatial basis before using the linear approximation
along a chord. Numerically, the spatial integration depends on the direction because the
MOC relies on the discrete ordinates method. Therefore, angular integration is performed
on top of the spatial integration. For any angular and spatial moments of order (n, p), the
geometrical moment ′Φn,p

G is defined as
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′Φn,p
G =

1

4πVi

∫
S2
dΩ

∫
i
drPp(r)Φ

n(r), (5.65)

which can be numerically written as

′Φn,p
G =

1

4πVi

∑
Ωn∈Sn

wn

∑
t||Ωn
t∩i

w⊥,t

∫ l

0
dtPp(t)Φ

n(t), (5.66)

with Φn being the angular moment of order n. Now, according to the approximations on the
spatial variations of the flux, it writes along a chord :

Φn(t) =

np∑
p=0

Pp(zt) ·
[
Φn,p
β (1− t

l
) + Φn,p

α

t

l

]
, (5.67)

where α is the exiting surface associated to the considered chord and β to the entering one.
Injecting (5.67) in (5.66) one gets the following expression that can be written as:

′Φn,p
G =

1

4πVi

∑
Ωn∈Sn

wn

∑
t||Ω
t∩i

w⊥,t

∫ l

0
dt

np∑
p′=0

Pp+p′(zt)

[
Φn,p′

β (1− t

l
) + Φn,p′

α

t

l

]
. (5.68)

Note that the geometric factor needs to be applied only to the vertical surfaces of the re-
gion, whereas the previous equation involves the surfaces encountered by trajectories pas-
sing through the region, which can be either vertical or horizontal. To eliminate the latter,
the system of equations (5.31), (5.32) is substituted into (5.68). This yields:

Φn,p′

β (1− t

l
) + Φn,p′

α

t

l
= Φn,p′

γ

(
1− Lk−1

Ltot

)
(1− t

l
) + Φn,p′

γ⋆

Lk−1

Ltot
(1− t

l
)

+ Φn,p′
γ

(
1− Lk

Ltot

)
t

l
+Φn,p′

γ⋆

Lk

Ltot

t

l
,

= Φn,p′
γ

[(
1− Lk−1

Ltot

)
(1− t

l
) +

(
1− Lk

Ltot

)
t

l

]
,

+Φn,p′

γ⋆

[
Lk−1

Ltot
(1− t

l
) +

Lk

Ltot

t

l

]
.
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Recalling that Lk − Lk−1 = l, one obtains:

Φn,p′

β (1− t

l
) + Φn,p′

α

t

l
= Φn,p′

γ

(
1− Lk−1 + t

Ltot

)
+Φn,p′

γ⋆

Lk−1 + t

Ltot
. (5.69)

To remove the dependence on the coordinate t in the expression (5.69), we add to this
expression the contribution from the trajectory in the direction −Ωn. The expression for
the linear interpolation as a function of the moments defined on the vertical surfaces of the
geometry is given by:

Φn,p′
α (1− t

l
) + Φn,p′

β

t

l
= Φn,p′

γ

(
1− Lk − t

Ltot

)
+Φn,p′

γ⋆

Lk − t

Ltot
. (5.70)

Then, by adding (5.70) to (5.69) in the geometric factor (5.68), we obtain:

′Φn,p
G =

1

4πVi

∑
Ωn∈S+

n

dΩ
∑
t||Ω
t∩i

w⊥,t

np∑
p′=0

∫ l

0
dt

Pp+p′(zt) ·
[(

2− Lk−1 + Lk

Ltot

)
Φn,p′
γ +

Lk−1 + Lk

Ltot
Φn,p′

γ⋆

]
. (5.71)

We now define

At,p =

∫ l

0
dtPp(zt), (5.72)

Aγ
t,p =

(
2− Lk−1 + Lk

Ltot

)
At,p, (5.73)

Aγ⋆

t,p =
Lk−1 + Lk

Ltot
At,p, (5.74)

where At,p is computed thanks to the change of variable (4.25). It analytical expression is

At,p =
∆z/2

µ(p+ 1)

[
z̃(l)p+1 − z̃(0)p+1

]
. (5.75)

Finally, the sumover all trajectories traversing region i in the directionΩn is decomposed
over the vertical surfaces γ:
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′Φn,p
G =

1

4πVi

∑
Ωn∈S+

n

wn

∑
t||Ω
t∩i

w⊥,t

np∑
p′=0

(
Aγ

t,p+p′Φ
n,p′
γ +Aγ⋆

t,p+p′Φ
n,p′

γ⋆

)
,

=
1

4πVi

∑
Ωn∈S+

n

wn

∑
γ∈∂iv

∑
t||Ω
t∩γ

w⊥,t

np∑
p′=0

(
Aγ

t,p+p′Φ
n,p′
γ +Aγ⋆

t,p+p′Φ
n,p′

γ⋆

)
.

Such that,

′Φn,p
G =

∑
γ∈∂iv

np∑
p′=0

1

4πVi

∑
Ωn∈S+

n

wn

∑
t||Ω
t∩γ

w⊥,t

(
Aγ

t,p+p′Φ
n,p′
γ +Aγ⋆

t,p+p′Φ
n,p′

γ⋆

) (5.76)

This way, we implicitly define the geometrical factorMp,p′

G,γ for any vertical surface γ as:

′Φn,p
G =

∑
γ∈∂iv

np∑
q=0

Mp,q
G,γΦ

n,q
γ . (5.77)

From relation (5.76), it is understood that each trajectory, swept in the directionΩn and
−Ωn, contributes two terms to the geometric operator Mp,q

G,γ : Aγ
t,p+p′ for the surface inter-sected by the trajectory when entering region i through surface β, and Aγ⋆

t,p+p′ for the sur-face intersected when exiting the region through surface α. Now, note that if the trajectory
crosses the region through two vertical surfaces, then β = γ, α = γ⋆, andAγ

t,p+p′ = Aγ⋆

t,p+p′ =

At, p+ p′ ; that is, the two contributions of the trajectory to the operator are identical. In
contrast, for other types of chords, Aγ

t,p+p′ ̸= Aγ⋆

t,p+p′ . For example, for an HV-type chord:

0 < Aγ
t,p+p′ =

(
1− Lk−1

Ltot

)
At,p+p′ < 1,

1 < Aγ⋆

t,p+p′ =

(
Lk−1

Ltot
+ 1

)
At,p+p′ < 2.

Thus, Aγ⋆

t,p+p′ > Aγ
t,p+p′ . Consequently, the contribution of the flux on the vertical surface

γ⋆ will have a greater impact on the geometric moments than the flux on γ for this HV-type
trajectory.
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5.4.2 . Moments of the flux correction
It remains to correct the surface moments of the flux (5.15) to ensure equality between

the geometric and conservative moments, so that conservation of the balance is guaranteed
for each calculation region, and convergence of the internal iterations is assured. In order to
do so, a corrective factor per region δn,qi is introduced such that:

′Φn,p
i =

∑
γ∈∂iv

np∑
q=0

Mp,q
G,γ(Φ

n,q
γ + δn,qi ). (5.78)

Then, we define

Sn,p = ′Φn,p
i −

∑
γ∈∂iv

np∑
q=0

Mp,q
G,γΦ

n,q
γ , (5.79)

Mp,q
G =

∑
γ∈∂iv

Mp,q
G,γ , (5.80)

such that the final system obtained is:
np∑
q=0

Mp,q
G δn,q = Sn,p. (5.81)

The linear system (5.81) has a unique solution if and only if the matrix MG is invertible.
Since M0,0

G = 1, this is always true at least when the flux is constant axially. If the matrix is
non-invertible, the degree of the polynomial basis, in the region, is reduced until it can be
inverted. Furthermore, it is noteworthy that the matrix is symmetric ; this avoids the need to
store all the elements of the matrix. Finally, we define the scaled surface moments as,

′Φs,n,p
γ⋆ = ′Φn,p

γ⋆ + Sn,p, (5.82)

such that the geometrical factor applied to the scaled coefficients of the scaled moments
gives the volume moments ′Φn,p

i .
5.4.3 . Volume conservation

In the last two sections, a geometric operatorwas constructed to ensure the conservation
of flux moments within each region. We now seek to understand if it is possible to construct
a geometric source whose moments are equal to those of the volumetric source defined as:
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′Qn,p
i =

1

4πVi

∫
S2
dΩAn(Ω)

∫
i
drPp(r)Q(r,Ω). (5.83)

We define

′Qn,p
G =

∑
γ∈∂iv

np∑
q=0

Mp,q
G,γQ

n,q
γ , (5.84)

which can be viewed as a geometric average of the surface components. We now seek to de-
termine whether there is equality between (5.83) and (5.84). To address this question, (5.83)
is expanded according to spatial and directional approximations, with polynomial expansion
in the axial direction and spherical harmonics for the angular variable, respectively. Thus, we
can write:

′Qn,p
i =

1

4πVi

∑
n′,q

∫
S2
dΩAn(Ω)An′(Ω)

∫
i
drPp+q(r)Q

n′,q
i . (5.85)

Now, knowing that Qn′,q
i = Σn

sϕ
n′,q
i +Qn′,q

ext and also knowing that
1

4π

∫
S2
dΩAn(Ω)An′(Ω) =

1

2k(n) + 1
δn,n

′
, (5.86)

where k(n) is the harmonic order associated to n according to the mono-index formula-
tion (4.9). Then, we write

′Qn,p
i =

1

2k(n) + 1

∑
q

1

Vi

∫
i
drPp+q(r) [Σsϕ

n,q
i +Qn,q

ext] ,

=
1

2k(n) + 1

1

Vi

∫
i
dr
∑
q

Pp+q(r) [Σsϕ
n,q
i +Qn,q

ext] .

And thus,
′Qn,p

i =
1

2k(n) + 1

[
Σs

′ϕn,pi + ′Qn,p
ext

]
. (5.87)

On the other hand, if we define the geometric source from (5.84) and recall that Qn,q
γ =

Σn
sϕ

n,q
γ +Qn,q

γ,ext, we obtain
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′Qn,p
G =

∑
γ∈∂iv

np∑
q=0

Mp,q
G,γ

[
Σn
sϕ

n,q
γ +Qn,q

γ,ext

]
,

= Σn
s

∑
γ∈∂iv

np∑
q=0

Mp,q
G,γϕ

n,q
γ +

∑
γ∈∂iv

np∑
q=0

Mp,q
G,γQ

n,q
γ,ext,

which, by definition of the geometric moments, can be written as:
′Qn,p

G = Σn
s
′ϕn,pG + ′Qn,p

G,ext. (5.88)

Knowing that by construction ′ϕn,pG = ′ϕn,pi , it follows that
′Qn,p

i =
1

2k(n) + 1

[
Σn
s
′ϕn,pG + ′Qn,p

G,ext

]
. (5.89)

We define S as the diagonal matrix of size (nm × np)× (nm × np), where the component
Sii, with i = n+ p× nm, is defined as follows:

Sii =
1

2k(n) + 1
. (5.90)

This leads to rewrite (5.61) as:

Σt
′Φi,D = −∆Ji,D + S ′QG + D ′Φi,D. (5.91)

Thus, the scheme is complete. At each iteration, the sweep evaluates the current term (5.57)
and the surface moments of the flux (5.15). Then, the conservation equation (5.91) is used to
correct the surface moments of the flux through (5.81). This process is repeated until the
volumetric moments converge.

5.5 . Shared memory parallelism
The trajectory sweep is parallelized in shared memory using OpenMP. The strategy fol-

lows the one implemented in the initial work on applying the TDT solver to 3Dgeometries [51].
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The difference lies in integrating the computation of angular surface fluxes into the paralle-
lization.

The general idea is to associate a direction Ω with each thread so that it can sweep all
trajectories in theΩ direction to add their contribution to the angular current term for each
region (4.28). However, this idea is not practically applicable when the geometry boundaries
have closed boundary conditions, such as reflective boundary conditions. With such condi-
tions, the trajectory direction changes during the sweep. Thus, two distinct threads could
sweep two different trajectories passing through a region with the same direction. As a re-
sult, both threads would add their contributions to the same angular current term, which
could lead to race condition errors.

To circumvent this issue, the smallest set of angles is determined, allowing the others
to be recovered during the sweep by applying the boundary conditions. These angles are
referred to as basic angles. Finally, the degree of parallelism is increased by allowing two
distinct threads to sweep trajectories sharing the same basic angle but providing each thread
with a private copy of the angular current and performing reduction operations during the
sweep.
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6 - SurfaceDPn synthetic acceleration of free iterations
Chapter 6 begins by justifying the choice of the DPn-type synthetic acceleration. Followingthis, the equations specific to the acceleration method, consistent with the linear surface

transport scheme, are detailed.
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6.1 . DPn approximation and derivation of the transport equation

Before deriving the equations specific to acceleration, it is important to recall that, similar
to the Method of Characteristics (MOC), the DPn acceleration relies on the integral form of
the transport equation and that the linear system is constructed based on a tracking-based
integration of the problem matrices. Such an approach allows the use of the same spatial
mesh for both transport and acceleration, including unstructured meshes, which are par-
ticularly used for handling complex geometries such as the RJH reactor or TRISO particle
reactors. Moreover, the synthetic approach adopted enables adding the DPn solution to the
transport solution, that is, the synthetic multi-group flux in the case of outer iterations, and
the within-group moments in the case of inner iterations. (see 3.5.2).

The DPn acceleration relies on expanding the angular variable using spherical harmonics
at the angular flux boundaries Γi,− and Γi,+, as shown in figure 6.1. The spatial variable is
treated similarly to the transport method. Macroscopic cross sections are assumed to be
constant within each region. We recall that α and β denotes vertical or horizontal surfaces,
and that the symbols γ and γ⋆ are used to refer to vertical surfaces. Let us begin by expanding
the angular flux on the vertical surface γ

ψγ(r,Ω) =

{
Z(r,Ω) ·ψγ,− |n(r) ·Ω| < 0
Z(r,Ω) ·ψγ,+ |n(r) ·Ω| > 0.

(6.1)

with the vectorZ of dimension (nm×np), whose components of order (n, p) are given by
the product An(Ω)Pp(r). The surface moments of the flux can then be expressed in terms
of the DPn coefficients. Starting from the definition of the moments (5.14), we then write

′Φγ =
1

4πSγ

∫
S2+

dΩ

∫
γ
drZ(r,Ω)ψ(r,Ω)

+
1

4πSγ

∫
S2−

dΩ

∫
γ
drZ(r,Ω)ψ(r,Ω),

=
1

4πSγ

∫
S2+

dΩ

∫
γ
drZ(r,Ω)⊗ Z(r,Ω) ·ψγ,+

+
1

4πSγ

∫
S2−

dΩ

∫
γ
drZ(r,Ω)⊗ Z(r,Ω) ·ψγ,−.

Then, we set
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Figure 6.1 – Representation of a chord crossing region i between surfaces β and α through
rin and rout, respectively. On each surface αk the angular flux is developed according to adouble Pn expansion, on 2π− and 2π+.

Aγ,+ =
1

4πSγ

∫
S2+

dΩ

∫
γ
drZ(r,Ω)⊗ Z(r,Ω), (6.2)

Aγ,− =
1

4πSγ

∫
S2−

dΩ

∫
γ
drZ(r,Ω)⊗ Z(r,Ω). (6.3)

We can thus write
′Φγ = Aγ,+ψγ,+ + Aγ,+ψγ,−. (6.4)

whereAγ,+ andAγ,− are two squarematrices of dimension (nm×np)×(nm×np). Similarly
to the transport method, a conservation equation must be established. To this end, we start
again from (5.91), then isolate the flux moments on the left side:

(Σt − D) ′Φi,D = −∆Ji,D + S ′QG. (6.5)

Then, we set

XD = (Σt − D)−1. (6.6)
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Eq (6.5) becomes
′Φi,D = −XD∆Ji,D + XDS ′QG. (6.7)

We now expand the current term on the surfaces of the region:

∆Ji =
1

4πVi

∫
S2
dΩ

∫
∂i
dr(Ω · n)ZD(r,Ω)ψ(r,Ω),

=
1

Vi

∑
α∈∂i

∫
α
dr

[∫
S2+

dΩ

4π
|Ω · n|ZD(r,Ω)ψ(r,Ω)−

∫
S2−

dΩ

4π
|Ω · n|ZD(r,Ω)ψ(r,Ω)

]
,

=
1

Vi

∑
α∈∂i

[Jα,+ − Jα,−] .

In summary, we write
′Φi = − 1

Vi
XD

∑
α∈∂i

(Jα,+ − Jα,−) + XDS ′QG, (6.8)

with, for the vertical surfaces

Jγ,+ =

∫
γ
dr

∫
S2+

dΩ

4π
|Ω · n|ZD(r,Ω)⊗ Z(r,Ω) ·ψγ,+, (6.9)

= Bv
γ,+ψγ,+, (6.10)

and, for the horizontal surfaces, where the flux is spatially constant

Jα,+ =

∫
α
dr

∫
S2+

dΩ

4π
|Ω · n|AD(r,Ω)⊗A(r,Ω) ·ψα,+, (6.11)

= Bh
α,+ψα,+. (6.12)

We recall here that the index D denotes the coupling of the polynomial components,
which requires the computation of additional angularmoments (see 5.4). ThusBv

α,+ andBh
α,+are rectangular and non-invertible. In the following the indexD will be omitted for simplicity.
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From the relations Eq (6.4), Eq (6.9), and Eq (6.11), it is possible to determine a relationship
between the currents and the vertical moments. We begin by setting

Fγ,+ = Aγ,+B−1
γ,+, (6.13)

with B−1
γ,+ of dimension (nm ×np)× (nm ×np) as we only consider the principal sub-block of

Bγ,+ to make its inversion. Aγ,+ is of dimension (nm × np)× (nm × np), the matrix Fγ,+ has
a dimension of (nm × np)× (nm × np). By combining (6.4) and (6.9), we obtain

′Φγ = Fγ,+Jγ,+ + Fγ,−Jγ,−. (6.14)

6.2 . DPn transmission equation

In this section, we derive an expression for the outgoing current as a function of the inco-
ming current and the source, starting from the transport equation. To this end, we first write
the transport equation for a chord of length l that traverses the region, entering through
surface β at point rin and exiting through surface α at point rout:

ψα(rout,Ω) = ψβ(rin,Ω)e−τ(l) +P(rin) ·
[
T−(Ω)+T+(Ω)

]
, (6.15)

with

P(rin) ·T− =

∫ l

0
dt(1− t

l
)Q(rin + tΩ)e−(τ(t)−τ(t′)),

=

np∑
k=0

[
zin − z̃

∆z/2

]k np∑
p=k

(
p

k

)(
2µ

∆z

)p−k

Qp
β(Ω)E−

p−k,

=

np∑
p=0

(
p∑

k=0

(
p

k

)[
zin − z̃

∆z/2

]k ( 2µ

∆z

)p−k

E−
p−k

)
Qp

β(Ω),

=

nm∑
n=1

np∑
p=0

An(Ω)

(
p∑

k=0

(
p

k

)[
zin − z̃

∆z/2

]k ( 2µ

∆z

)p−k

E−
p−k

)
Qp

β
n,

= W−(rin,Ω) ·Qβ.

In a similar manner,
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P(rin) ·T+ = W+(rin,Ω) ·Qα.

Eq (6.15) can thus be written as

ψα(rout,Ω) = ψβ(rin,Ω)e−τ(l) +W−(rin,Ω) ·Qβ +W+(rin,Ω) ·Qα. (6.16)

Equation (6.16) is valid for a single chord but can be integrated over all chords entering
through β and exiting throughα. This is followed by summing over all surfaceswhere a chord
exits the region through surface α at point rout:

Jα,+(r) =
∑
β∈∂i

∫
β→α

dΩ

4π
|Ω · n|ZD(rout,Ω)e−τ(l)ψβ(rin,Ω)

+
∑
β∈∂i

∫
β→α

dΩ

4π
|Ω · n|ZD(rout,Ω)⊗W−(rin,Ω) ·Qβ

+

∫
S2+

dΩ

4π
|Ω · n|ZD(rout,Ω)⊗W+(rin,Ω) ·Qα.

(6.17)

We now use (6.1) to expand the angular surface flux

Jα,+(r) =
∑
β∈∂i

∫
β→α

dΩ

4π
|Ω · n|ZD(rout,Ω)⊗Z(rin,Ω)e−τ(l) ·ψβ,−

+
∑
β∈∂i

∫
β→α

dΩ

4π
|Ω · n|ZD(rout,Ω)⊗W−(rin,Ω) ·Qβ

+

∫
S2+

dΩ

4π
|Ω · n|ZD(rout,Ω)⊗W+(rin,Ω) ·Qα.

(6.18)

Then, noting that
∫
S2+

dΩ =
∑
β∈∂i

∫
β→α

dΩ,

and that integrating over the surface α in equation (6.18) gives the outgoing current Jα,+on the left side, we obtain:
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Jα,+ =

∫
α
dr
∑
β∈∂i

∫
β→α

dΩ

4π
|Ω · n|ZD(rout,Ω)⊗Z(rin,Ω)e−τ(l) ·ψβ,−

+

∫
α
dr
∑
β∈∂i

∫
β→α

dΩ

4π
|Ω · n|ZD(rout,Ω)⊗W−(rin,Ω) ·Qβ

+

∫
α
dr

∫
S2+

dΩ

4π
|Ω · n|ZD(rout,Ω)⊗W+(rin,Ω) ·Qα.

However, sincewe do not have horizontal sources, we proceed as in transport: horizontal
sources are constructed through linear interpolation of the vertical sources. By substituting
the relations (5.31) and (5.32) into (6.16), we obtain

ψα(rout,Ω) = ψβ(rin,Ω)e−τ(l) +Wγ(rin,Ω) ·Qβ +Wγ(rin,Ω) ·Qγ⋆ , (6.19)

with

Wγ(rin,Ω) = W−(rin,Ω)

(
1− Lk−1

Ltot

)
+W+(rin,Ω)

(
1− Lk

Ltot

)
, (6.20)

Wγ⋆(rin,Ω) = W−(rin,Ω)
Lk−1

Ltot
+W+(rin,Ω)

Lk

Ltot
. (6.21)

It should be understood that what equation (6.19) implicitly highlights is that, even if α
or β are horizontal surfaces, the source term is driven by sources defined on the vertical
surfaces. The DPn transmission equation can thus be rewritten as

Jα,+ =

∫
α
dr
∑
β∈∂i

∫
β→α

dΩ

4π
|Ω · n|ZD(rout,Ω)⊗Z(rin,Ω)e−τ(l) ·ψβ,−

+

∫
α
dr
∑
β∈∂i

∫
β→α

dΩ

4π
|Ω · n|ZD(rout,Ω)⊗Wγ(rin,Ω) ·Qγ

+

∫
α
dr

∫
S2+

dΩ

4π
|Ω · n|ZD(rout,Ω)⊗Wγ⋆(rin,Ω) ·Qγ⋆ .

Let us specify that each outgoing surface α is associated with the vertical surface γ⋆, and
each incoming surface β can be associated with the surface γ. We now simplify the previous
equation by introducing some notations:
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T̃αβ =

∫
α
dr

∫
β→α

dΩ

4π
|Ω · n|ZD(rout,Ω)⊗Z(rin,Ω)e−τ(l), (6.22)

E−
αγ =

∑
β∈(∂i,γ)

∫
α
dr

∫
β→α

dΩ

4π
|Ω · n|ZD(rout,Ω)⊗Wγ(rin,Ω), (6.23)

E+
αγ⋆ =

∫
α
dr

∫
S2+

dΩ

4π
|Ω · n|ZD(rout,Ω)⊗Wγ⋆(rin,Ω). (6.24)

where (∂i, γ) denotes the set of chords entering through β, and thus the surface β is
associated through interpolation with the incoming vertical surface γ:

∑
β∈∂i

=
∑
γ∈∂iv

∑
β∈(∂i,γ)

(6.25)

We can thus summarize by writing:

Jα,+ =
∑
β∈∂i

T̃αβψβ,− +
∑
γ∈∂iv

E−
αγQγ + E+

αγ⋆Qγ⋆ . (6.26)

Then, to express this last equation in terms of the incoming vertical surfaces γ, it is suf-
ficient to write:

E+
αγ⋆Qγ⋆ = δγ⋆γE+

αγQγ , (6.27)

then

Eαγ = E−
αγ + δγ⋆γE+

αγ . (6.28)

Finally, we obtain

Jα,+ =
∑
β∈∂i

T̃αβψβ,− +
∑
γ∈∂iv

EαγQγ . (6.29)

However, rather than expressing the transmission using the DPn coefficients, it has been
shown that a formulation based on currents converges more quickly [126]. The reason is as
follows: unlike current, flux is an intensive quantity. Thus, the size of the geometry’s surfaces
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- whether small or large - does not influence the value of the flux. Given that a Krylovmethod
is used to solve this system and that the convergence rate is conditioned by the norm of the
residual, it is preferable not to use the flux formulation, which converges more slowly. We
define:

Tαβ = T̃αβBβ,−. (6.30)

Thus

Jα,+ =
∑
β∈∂i

TαβJβ,− +
∑
γ∈∂iv

EαγQγ . (6.31)

The system (6.31) can also bewritten for a region i. To this end,wedefineJbd,+ = (Jα1,+,Jα2,+, . . . ,Jαns ,+),where ns is the number of surfaces in region i, andQbd = (Qα1,Qα2, . . . ,Qαns−2, 0, 0) thatrepresents the surface source defined on the vertical surfaces. Thus, we obtain

Jbd,+ = TJbd,− + EQbd, (6.32)

with

T =


Tα1α1

Tα2α2 Tα2α2... . . . . . .
Tαnsα1 Tαnsα2 . . . Tαnsαns

 , (6.33)

E =



Eα1α1

Eα2α2 Eα2α2... . . . . . .
Eαns−2α1 Eαns−2α2 . . . Eαns−2αns−2 0 0
Eαns−1α1 Eαns−1α2 . . . Eαns−1αns−2 0 0
Eαnsα1 Eαnsα2 . . . Eαnsαns−2 0 0


. (6.34)

It is noteworthy that E and T can be decomposed into four blocks corresponding to each
pair (incoming surface, outgoing surface).
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6.3 . Equation relating moments, currents, and external source

In this section, we aim to establish an equation that allows us to calculate the flux mo-
ments (6.4) from the currents and the external source. We begin by using the transmission
equation (6.31) to express Jα,+ in terms of Jα,− and the surface sourceQγ :

∑
α∈∂i

Jα,+ =
∑
α∈∂i

∑
β∈∂i

TαβJβ,− +
∑
γ∈∂iv

EαγQγ

 ,

=
∑
β∈∂i

∑
α∈∂i

TαβJβ,− +
∑
γ∈∂iv

∑
α∈∂i

EαγQγ ,

=
∑
β∈∂i

TβJβ,− +
∑
γ∈∂iv

EγQγ .

Finally, we write
∑
α∈∂i

Jα,+ =
∑
α∈∂i

TβJα,− +
∑
γ∈∂iv

EγQγ . (6.35)

The next step is to use the definition of the scaledmoments (bi5.82) to find an expression
that depends on the currents and the external source.

′Φs
γ⋆ = ′Φγ⋆ − ′ΦG + ′Φi. (6.36)

We then substitute the synthetic balance equation (6.8) into equation (6.36).

′Φs
γ⋆ = ′Φγ⋆ − ′ΦG +

1

Vi
XD

∑
α∈∂i

[Jα,− − Jα,+] + XDS
∑
γ∈∂iv

MG,γQγ ,

= ′Φγ⋆ − ′ΦG +
1

Vi
XD

∑
α∈∂i

[Id− Tα]Jα,− + XD

∑
γ∈∂iv

(
SMG,γ −

1

Vi
Eγ

)
Qγ .

Then, we set
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Nγ = SMG,γ −
1

Vi
Eγ ,

Nc = XD

∑
γ∈∂iv

NγΣs,

NP = XD

∑
γ∈∂iv

NγΣsPP−1
γ ,

and,

′Φa = XD

∑
γ∈∂iv

NγΣsΦ
s
γ ,

′Φu = − ′ΦG +
1

V i
XD

∑
α∈∂i

[Id− Tα]Jα,− + XD

∑
γ∈∂iv

NγQ
ext
γ .

We can thus simply write:

Φs
γ⋆ = PP−1

γ⋆
′Φγ⋆ + PP−1

γ⋆
′Φu + PP−1

γ⋆
′Φa. (6.37)

We multiply equation (6.37) by Nc

XD

∑
γ∈∂iv

NγΣsΦ
s
γ = XD

∑
γ∈∂iv

NγΣsPP−1
γ

′Φγ + NP ′Φu + NP ′Φa. (6.38)

This allows us to define ′Φa as

′Φa = [Id − NP]−1

XD

∑
γ∈∂iv

NγΣsPP−1
γ

′Φγ + NP ′Φu

 . (6.39)

We inject the expressions of ′Φu and ′Φa in (6.37). It gives:
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′Φs
γ⋆ = ′Φγ⋆ + ′Φu + [Id − NP]−1

XD

∑
γ∈∂iv

NγΣsPP−1
γ

′Φγ + NP ′Φu

 ,
= ′Φγ⋆ + ′Φu + [Id − NP]−1XD

∑
γ∈∂iv

NγΣsPP−1
γ

′Φγ + [Id − NP]−1NP ′Φu,

= ′Φγ⋆ + [Id − NP]−1XD

∑
γ∈∂iv

NγΣsPP−1
γ

′Φγ + [Id − NP]−1 ′Φu.

Next, we need to express ′Φγ and ′Φu in terms of the incoming and outgoing currents,
and then combine the terms.

′Φs
γ⋆ = Fγ⋆,+Jγ⋆,+ + Fγ⋆,−Jγ⋆,−,

+ [Id − NP]−1

− ′ΦG +
1

Vi
XD

∑
α∈∂i

[Id− Tα]Jα,− + XD

∑
γ∈∂iv

NγQ
ext
γ

 ,
+ [Id − NP]−1

XD

∑
γ∈∂iv

NγΣsPP−1
γ

′Φγ

 .

Then, after expanding,

′Φs
γ⋆ =

∑
γ∈∂iv

δγ⋆γFγ,+Jγ,+ + δγ⋆γFγ,−Jγ,−

−
∑
γ∈∂iv

[Id − NP]−1MG,γPP−1
γ [Fγ,+Jγ,+ + Fγ,−Jγ,−]

+
∑
γ∈∂iv

[Id − NP]−1XDNγQ
ext
γ

+
∑
γ∈∂iv

[Id − NP]−1XDNγΣsPP−1
γ [Fγ,+Jγ,+ + Fγ,−Jγ,−]

+
∑
β∈∂i

[Id − NP]−1 1

Vi
XD [Id− Tβ]Jβ,−.

The terms are then grouped into packages
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′Φs
γ⋆ =

∑
γ∈∂iv

[
δγ⋆γFγ,+ + [Id − NP]−1 (XDNγΣs −MG,γ)PP−1

γ Fγ,+

]
Jγ,+

+
∑
γ∈∂iv

[
δγ⋆γFγ,− + [Id − NP]−1 (XDNγΣs −MG,γ)PP−1

γ Fγ,−

]
Jγ,−

+
∑
β∈∂i

[Id − NP]−1 1

Vi
XD [Id− Tβ]Jβ,−

+
∑
γ∈∂iv

[Id − NP]−1XDNγQ
ext
γ .

Finally, we use the surface matrix PP−1
γ⋆ to recover the spatial coefficients of the flux

Φs
γ⋆ = PP−1

γ⋆
′Φs

γ⋆ .

It leads to

Φs
γ⋆ =

∑
γ∈∂iv

PP−1
γ⋆

[
δγ⋆γFγ,+ + [Id − NP]−1 (XDNγΣs −MG,γ)PP−1

γ Fγ,+

]
︸ ︷︷ ︸

H+
γ⋆γ

Jγ,+

+
∑
γ∈∂iv

PP−1
γ⋆

[
δγ⋆γFγ,− + [Id − NP]−1 (XDNγΣs −MG,γ)PP−1

γ Fγ,−

]
︸ ︷︷ ︸

H−
γ⋆γ

Jγ,−

+
∑
β∈∂i

PP−1
γ⋆ [Id − NP]−1 1

Vi
XD [Id− Tβ]︸ ︷︷ ︸

Iβα

Jβ,−

+
∑
γ∈∂iv

PP−1
γ⋆ [Id − NP]−1XDNγ︸ ︷︷ ︸

Dγ⋆γ

Qext
γ .

Thus, the balance equation is written as

Φs
γ⋆ =

∑
γ∈∂iv

H+
γ⋆γJγ,+ +

∑
γ∈∂iv

H−
γ⋆γJγ,− +

∑
β∈∂i

Iγ⋆βJβ,− +
∑
γ∈∂iv

Dγ⋆γQ
ext
γ . (6.40)

In the same manner as for the transmission, the system (6.40) can be written regionally
as follows:
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Φs
bd = H+Jbd,+ + H̃−Jbd,− + DQext

bd , (6.41)
with

H̃− = H− + I.

6.4 . Multi-collisional equation
We now aim to establish an equation that expresses the outgoing currents as a function

of the incoming currents and the external source, and an equation that allows updating the
corrected surface moments (6.36) from the incoming currents and the external source. To
this end, we start from the transmission equation (6.32) and then express the source in terms
of the self-scattering component and the external source (fission, up-scattering, and down-
scattering). This yields:

Jbd,+ = TJbd,− + EΣsΦ
s
bd + EQext

bd . (6.42)

Then, by substituting (6.41) into (6.42), we obtain:

Jbd,+ = TJbd,− + EΣsH+Jbd,+ + EΣsH̃−Jbd,− + EΣsDQext
bd + EQext

bd . (6.43)

We isolate the outgoing current on the left side

Jbd,+ =
[
Id− EΣsH+

]−1
[
T+ EΣsH̃−

]
Jbd,−

+
[
Id− EΣsH+

]−1 E [ΣsD+ Id]Qext
bd ,

then, we set

T̂ =
[
Id− EΣsH+

]−1
[
T+ EΣsH̃−

]
, (6.44)

Ê =
[
Id− EΣsH+

]−1 E [ΣsD+ Id] , (6.45)

so that we can write:
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Jbd,+ = T̂Jbd,− + ÊQext
bd . (6.46)

The final form of the matrix to be used along iteration can then be expressed in function
of exiting currents only by the use of the geometric relationship connecting the incoming
and outgoing currents, (Jbd,− = GJbd,+), so that

(
Id −GT̂

)
Jbd,+ = ÊQext

bd . (6.47)

The linear system (6.47) is solvedusing the non-stationary iterativemethodBiCGSTAB [127]
with ILU(0) preconditioning [128] as it has shownbetter performances compared to theGMRES
solver [128, 129]. The final step involves substituting (6.46) into (6.41) in order to update the
corrected moments based on the currents and the external source:

Φs
bd =

[
H+T̂+ H̃−

]
Jbd,− +

[
H+Ê+ D

]
Qext

bd . (6.48)

6.5 . Shared memory parallelism
Parallelization with OpenMP is used to construct the matrices of the problem. The stra-

tegy is based on the work of a previous thesis on the TDT solver [6]. It consists of two phases :
an information retrieval phase and a construction phase.

In the first phase, the threads sweep the trajectories in parallel to retrieve the information
necessary for constructing the matrices. For this purpose, a data structure is associated with
each 2D region, allowing certain quantities, such as the chord lengths crossing the region, to
be stored. In the second phase, each 2D region is assigned to a thread, along with a batch
of energy groups. Thus, each thread can independently construct the acceleration matrices
associated with this 2D region and these energy groups.
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7 - Verifications of the linear surface scheme
Chapter 7 is dedicated to verifying the implementation of the transport scheme and acce-

lerationmethods, which are theoretically detailed in Chapters 5 and 6. The chapter is divided
into two sections. The first section focuses on performance tests for a PWR cell and a com-
parison between 2D and 3D calculations. The second section uses a 3x3 PWR assembly to
conduct a mesh convergence study between the step and linear surface schemes. In both
sections, transport calculations are tested with and without synthetic acceleration.
Contents

7.1 PWR pin cell test case . . . . . . . . . . . . . . . . . . . . . . . 128
7.1.1 Geometric, material and computational data . . . . . . . . . . . 128
7.1.2 Numerical verifications . . . . . . . . . . . . . . . . . . . . . . 130

7.2 3x3 PWR lattice test case . . . . . . . . . . . . . . . . . . . . . 134
7.2.1 Geometric, material and computational data . . . . . . . . . . . 134
7.2.2 Numerical verifications . . . . . . . . . . . . . . . . . . . . . . 136

127



7.1 . PWR pin cell test case

7.1.1 . Geometric, material and computational data
The cell is composed of four fuel rings, a cladding ringmade of Zircaloy, andwater. Finally,

the cell is divided into four sectors as shown in figure 7.3. The geometric data are summari-
zed in Table 7.1, and the isotopic composition of these threematerials is detailed in Table 7.2.

The calculations are performed according to the 281-energy group structure. All calcula-
tions were performed with a quadrature formula of 48 azimuthal angles between [0, π] and
four polar angles distributed according to the Gauss-Legendre formula. Trajectories share a
transversal integration step of 0.003 cm and aa axial one of 0.05 cm. The tolerance for conver-
gence for fission integral and keff are 1 × 10−05. All pin cell calculations were performed on
Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz.

Figure 7.1 – Radial section of the PWR pin cell case.
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Table 7.1 – PWR pin cell geometric data.
Lattice cell Side 1.4122 cmFuel pin First R 0.328451 cmSecond R 0.415461 cmThird R 0.452977 cmOuter R 0.4645 cmFuel clad Outer R 0.5360 cmHeight 0.44 cm

Table 7.2 – Material isotopic composition used for two-/three-dimensional compari-sons on a APOLLO3® PWR pin cell case.
Material Isotope Concentration (1024 at.cm−3)

Fuel A

U-235 5.4791E-05U-238 2.1944E-020-16 4.5504E-02Pu-238 7.8686E-06Pu-239 4.5449E-04Pu-240 1.7325E-04Pu-241 6.4711E-05Pu-242 2.9913E-05Am-241 8.2290E-06

Fuel B

U-235 5.8051E-05U-238 2.1824E-020-16 4.6497E-02Pu-238 1.5292E-05Pu-239 8.2896E-04Pu-240 3.1918E-04Pu-241 1.1703E-04Pu-242 5.6135E-05Am-241 1.4763E-05Cladding Zr 4.2909E-06Water H2O 2.5320E-02

129



7.1.2 . Numerical verifications
Initially, some properties of the MOC are studied. We begin by examining the evolution

of the classification rate (number of classified chords over the total number of chords) as a
function of the geometry height. In this study, we consider a case with two axial planes of
equal height, which we vary between 0.1 cm and 200 cm. It is also noted that the side length
of the cell is 1.4122 cm. The result is shown in Figure 7.2. It is observed that the classification
rate does not fall below 58.6%, but as the ratio (height / cell side) approaches 1 (for example,
at a height of 1 cm), the classification rate exceeds 80%. This result is very satisfactory given
that, for a PWR assembly, the distance between two axial materials is at least on the order
of 10 cm, but can reach the order of a meter in the fuel region. The consequence is that we
achieve a high classification rate in the case where np = 2, and where the material mesh is
used axially, as in the thesis [6, 7].

Next, we compare the accuracy and computation time of the linear surface scheme in
two and three dimensions with the same axial material composition. To this end, the angu-

Figure 7.2 – Classification rate for different axial heights for the pin cell case.
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lar flux is assumed to be constant in the axial direction (np = 0). The comparison is made for
scattering anisotropy ranging from P0 to P3. Finally, given that the 2D method has already
been validated on different geometric configurations, the keff values obtained will be takenas the ’theoretical’ reference values. It is noted here that the calculations were run using 50

OpenMP threads.
The results are summarized in Table 7.3. The difference between the 2D and 3D keff is

always less than 11 pcm. Thus, it is considered that the 3D scheme is sufficiently accurate for
handling larger geometries. Finally, the 2D calculations take between 6 and 7 seconds, while
the 3D calculations take around 2 minutes and 20 seconds.
Table 7.3 – keff and computing time comparison between two- and three-dimensional (withtwo axial planes) linear surface schemes on a APOLLO3® PWR pin cell case.

keff ∆keff (pcm) Time (s)Anisotropy 2D 3D (np = 0) 2D 3D
P0 1.20554 1.20548 6 6 134
P1 1.20233 1.20222 11 6 136
P2 1.20335 1.20341 -7 6 136
P3 1.20305 1.20310 5 7 146

Next, we compare the accuracy and computation time of the linear scheme between a
transport calculation (free), DP0, and DP1. For this, the cell dataset is modified by introducing
an axial heterogeneity, replacing Fuel A with Fuel B in the upper axial plane. The isotopic
compositions are summarized in Table 7.2 . We assume a uniform flux in the axial direction
and isotropic scattering.

The results are summarized in Table 7.4 and are the following: the difference between
the free and accelerated calculations is at most 6 pcm, in absolute value. Considering the
difference in keff obtained in assembly calculations between deterministic and Monte Carlo
methods, which is at least several tens of pcm, this difference can be considered negligible.
Regarding the acceleration of the calculations, the computation times are reduced by a factor
of 13 for DP0 acceleration and around 10 DP1 accelerations. When comparing these reduc-
tions in computation time, we observe that they are less significant than those presented
in Table 7.4 of reference [7], which are 44 and 45 for 5x5 and 7x7 PWR assemblies, respec-
tively. This difference can be explained as follows: for the cell case, few external iterations,
specifically those on the fission source, are required to reach convergence. The transport
calculation associated with Table 7.4 was performed with 5 external iterations, compared to
192 and 188 for the 5x5 and 7x7 cases in [7].

In the case where the spatial basis degree equals 2 (np = 2), the power iteration method
diverges for certain cases. To understand this behavior, the cell is entirely filled with Fuel B
material, so that we are in a homogeneous configuration. Two parameters are then varied :
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Table 7.4 – keff and computing time comparison between transport, DP0 and DP1 calcula-tions on the APOLLO3® three-dimensional PWR pin cell case. The angular flux is supposedconstant axially. The anisotropy is ranging from P0 to P3. In DP0 acceleration, only the P0calculation is performed, as the flux is assumed to be isotropic.
Scattering keff ∆keff (pcm) Time Speed-up

Free
P0 1.02014 - 6m23s -
P1 1.01577 - 6m34s -
P2 1.01731 - 6m51s -
P3 1.01698 - 7m22s -DP0 P0 1.02007 7 30s 12.8

DP1

P0 1.02006 8 39s 9.8
P1 1.01570 7 40s 9.9
P2 1.01724 7 40s 10.3
P3 1.01691 7 43s 10.3

the height of the calculation regions∆z and the axial integration step∆s. To investigate this
behavior, several quantities are studied : the relative error ξ21 between the volumetric mo-
ments and the second-order geometric moments, the relative error ξ22 between the second-order collision terms and the sum of the current term and the higher-order term, and the
minimum mean free path across all regions ⟨τ⟩min = min ⟨τ⟩.

Focusing on ξ12 ensures that the geometric source, calculated from the surface source
and the geometric operator, is accurately evaluated. Focusing on ξ22 ensures that the currentterm is correctly integrated numerically. In an infinite homogeneous medium, the current
term is negligible (compared to the collision term). Therefore, the closer ξ22 is to 1, the more
accurately the current term is integrated. Then, four different heights are chosen : 1 cm,
10 cm, 100 cm, and the limit height ∆zlim, to the nearest tenth of a centimeter, which cor-
responds to the critical height at which the calculation diverges (i.e., above this height, the
power iterationmethod converges). The study is conducted for three axial integration steps :
0.5 cm, 0.1 cm, and 0.05 cm. The results are summarized in table 7.5.

The key observations are as follows : first, for a given axial integration step ∆s, as the
height increases, the mean optical path also increases, leading to a reduction in errors. The-
refore, beyond a certain height limit, where the errors are sufficiently small, transport cal-
culations with np = 2 converge. Furthermore, for a given height ∆z, as the axial integration
step decreases, the mean optical path decreases, and the errors reduce accordingly. As a re-
sult, the finer the axial integration step, the lower the height limit beyond which the internal
iterations converge.
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Table 7.5 – Study of the transport convergence with a quadratic axial flux (np = 2) for thePWRpin cell case, considering various heights∆z and axial integration steps∆s. In each case,the minimum mean free path across all calculation regions is displayed. For this region, therelative errors ξ21 and ξ22 are presented. ξ21 is the relative error between the second-ordervolumetric moments and the second-order geometric moments. ξ21 is the relative error bet-ween the second-order collision terms and the sum of the current term and the higher-orderterm
∆s = 0.5 cm

∆z = 1 cm ∆zlim = 6.56 cm ∆z = 10 cm ∆z = 100 cm
⟨τ⟩min 1.8 ×10−08 4.7 ×10−08 5.0 ×10−08 1.8 ×10−07

ξ21 4.0 ×10−03 4.6 ×10−04 7.7 ×10−05 4.8 ×10−06

ξ22 1.00003 0.999998 0.999998 1.00000004
∆s = 0.1 cm

∆z = 1 cm ∆zlim = 5.24 cm ∆z = 10 cm ∆z = 100 cm
⟨τ⟩min 1.6 ×10−08 3.3 ×10−08 3.5 ×10−08 4.2 ×10−08

ξ21 3.1 ×10−04 2.9 ×10−05 1.1 ×10−05 1.1 ×10−06

ξ22 0.99992 0.999995 0.9999982 0.9999999931
∆s = 0.05 cm

∆z = 1 cm ∆zlim = 4.50 cm ∆z = 10 cm ∆z = 100 cm
⟨τ⟩min 1.3 ×10−08 1.8 ×10−08 2.2 ×10−08 2.0 ×10−08

ξ21 1.6 ×10−04 2.8 ×10−05 4.8 ×10−06 3.8 ×10−06

ξ22 0.99989 1.000019 0.99999356 0.99999988
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7.2 . 3x3 PWR lattice test case

7.2.1 . Geometric, material and computational data
To evaluate the quality of the new LS scheme, we benchmarked it with a 3x3 PWR mini-

assembly usually used for validation and verification activities of the APOLLO3® code. The
case have been produced to compare 2D MOC schemes [124], and we have extended it to
treat 3D geometries. The interest of the work is to study the spatial convergence of the LS
method relative to the SC approximation, where the constant source approximation is used
as we know that for 2D calculations, the LS scheme achieved better results for industrial
meshes [55, 49]. To this end, we will compare the effective multiplication factors keff, pro-duction and absorption reaction rates for different meshes. However, we do not ensure the
physical representativeness of our results by comparison with a reference Monte Carlo cal-
culation. This study will be the subject of future work.

The assembly consists of eight UOX cells and an Ag-In-Cd (AIC) control rod. Two confi-
guration cases are considered for the study. One where the control rod isn’t inserted for
2D/3D comparisons, named homogeneous as no axial heterogeneities are presents. And
one where the control rod is halfway inserted into borated water, named heterogeneous.
Two radial planes of height 1 cm are arbitrarily chosen for the two cases. The radial part of
the geometry is depicted on figure 7.3. The calculations are performed on a 1/8 geometry to
take advantage of the 45° symmetry. Reflective boundary conditions are imposed. Table 7.6
shows the geometric dimensions of the fuel cell and the control rod. The materials’ different
isotopic concentrations and temperatures are reported in [124].

Self-shielding has been performed with the standard 281-group structure [130] based on
the JEFF-3.1.1 cross section library [131]. This fine-group energy mesh assumes a sufficiently
refined energy mesh in the lower epithermal domain such that the self-shielding formalism
need not to be applied in the range below 24.6 eV. Themutual shielding of the resonant mix-
tures has been activated for 235U, 238U isotopes in the fuel rod and 107Ag, 109Ag, 110Cd, 113Cd
and 115In in the AIC rod.
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Table 7.6 – 3x3 PWR test case geometric data.
Lattice cell Side 1.26 cmFuel pin Outer R 0.40830 cmFuel clad Outer R 0.47750 cmFuel He gap Width 0.00820 cmHeight 1 cmAIC rod Outer R 0.43166 cmRod clad Outer R 0.48400 cmRod He gap Width 0.00534 cmGuide tube Inner R 0.55850 cm- Outer R 0.62250 cmHeight 1 cm

Figure 7.3 – Radial section of the 3x3 PWR assembly test case.
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7.2.2 . Numerical verifications
Calculations were performed for six progressively refined grids: MIN, MAV, RAF, HYP,

SHYP, and MEG (considered as the reference) as depicted in Fig 7.4. Each plane is compo-
sed of 45, 59, 140, 453, 674 and 1454 regions, respectively. Note that the meshes are non-
conformal, i.e., the borated water below the control bar shares an identical mesh. A single
self-shielded geometry is used for the flux calculations. The relative error on the keff compa-
red to the reference mesh MEG is studied for each mesh. All calculations were performed
with a quadrature formula of 48 azimuthal angles between [0, π] and four polar angles dis-
tributed according to the Gauss-Legendre formula. The flux is expanded on the polynomial
basis with degree 0. P0 (without transport correction) and P3 anisotropic scattering are consi-dered and trajectories share a transversal integration step of 0.005 cm and a vertical one of
0.05 cm.

First, calculations were performed in the homogeneous P0 configuration, both without
acceleration (free) and with DP1 acceleration. For each mesh, the values of keff and the com-
putation times are provided in Tables 7.7 and 7.8, respectively. In terms of accuracy, the
difference between the transport and accelerated calculations is at most 4 pcm. Thus, it can
be concluded that the acceleration preserves the keff of the transport calculations. Regar-
ding computation times, the acceleration reduces the duration by a factor ranging from 5.3
to 7.6. This results in the total computation time for all six cases decreasing from 30h23m42s
to 4h52m54s. Practically, with accelerated calculations, multiple studies can be performed
within the same day, unlike with non-accelerated calculations. The SC DP1 accelerated com-
putational times are also reported. These calculations lasted 2h49m22s which is 1.7 times
faster than LS calculations. Then, concerning the number of external iterations, both trans-
port and DP calculations took 6 external iterations to converge. To see a bigger difference,
one should perform calculations on a bigger 3D case, such as the 5X5 or the 7X7 PWR cases
in [7], where the reduction in external iterations is detailed in table 7.4.

Table 7.7 – Comparison of the DP1 accelerated and free transport keff for the differentmeshes of the convergence study in the homogeneous configuration with P0 anisotropy andconstant axial flux (np = 0).
Mesh Free keff DP1 keff ∆keff (pm)MIN 0.80759 0.80763 4MAV 0.80925 0.80928 4RAF 0.81047 0.81051 4HYP 0.81080 0.81082 2SHYP 0.81086 0.81087 1MEG 0.81088 0.81090 2

Secondly, the mesh convergence of the SC and LS methods is compared. As shown in
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Table 7.8 – Comparison of the LS DP1 accelerated and free transport computational timefor the different meshes of the convergence study in the homogeneous configuration withP0 anisotropy and constant axial flux (np = 0). The SC DP1 accelerated computational timesare also reported.
Mesh LS Free Time (s) LS DP1 Time (s) SC DP1 Time (s) LS Speed-upMIN 2h50m36s 25m42s 12m39s 6.6MAV 2h59m00s 24m27s 15m09s 7.3RAF 3h20m01s 26m16s 16m39s 7.6HYP 5h11m15s 45m46s 29m31s 6.8SHYP 6h27m28s 1h01m46s 36m37s 6.3MEG 9h35m21s 1h48m57s 58m47s 5.3Total 30h23m42s 4h52m54s 2h49m22s 6.2

figure 7.5, 7.6, 7.11 and, 7.12, the LS scheme converges faster than the SC one for homoge-
neous configurations with P0 and P3 anisotropy. However, several remarks must be made.
First, in each study, the keff values for the two schemes are not equal for the MEG mesh, the
most refined one, although the keff differences between the SHYP and MEGmeshes are only
a few pcm. For example, 2 and 10 pcm for the LS and SC schemes, respectively, in the homo-
geneous P0 calculation, and 4 and 12 pcm, respectively, in the heterogeneous P0 calculation.The origin of this discrepancy has not yet been understood. Secondly, starting from the RAF
mesh, the differences are on the order of tens of pcm. For example, in the heterogeneous P3case, the difference between keff for the LS and SC schemes is only 6 pcm for the RAF mesh,
but it increases to 40 pcm and 20 pcm for the subsequent meshes. In contrast, for the least
refinedmesh (MIN), the SC scheme shows significant errors, compared to the LS one. For the
heterogeneous calculation, the LS and SC keff errors compared to the reference value are,
295 pcm and 924 pcm for the P0 calculation, respectively, and 317 pcm and 540 pcm for the
P3 calculation, respectively.

It is possible that, starting from theMAVmesh, the geometry is already too refined for the
LS scheme to capture sufficiently significant flux gradients, such that the mesh convergence
of the LS scheme becomes even more critical than that of the SC scheme. In other words,
the gradients may be so minor that both methods behave similarly.

To assess whether this assertion holds true, a convergence study should be conducted
on a larger geometrical configuration, such as the 17x17 assembly presented in Figure 4.7
and 4.8.

Finally, for all four convergence studies (homogeneous, heterogeneous) and (P0, P3), theevolution of the relative error in the absorption and production rates is plotted from fi-
gure 7.5 to figure 7.12. The fuel pins are numbered from 1 to 6 as follows : the pin cells in
the lower plane are numbered 1 to 3 according to the numbering shown in Figure 7.4a. Then,
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the pin cells in the upper plane are numbered 4 to 6 following the same numbering order.
The LS values are marked with crosses, and the SC values are represented by triangles. The
energy condensation is done in two groups.

Key observations are as follows : for each pin cell andmesh, the LS errors are consistently
smaller than the SC errors. However, similar to the behavior of keff, it remains necessary to
investigate why the error differences do not tend toward zero. Additionally, it is noticeable
that the errors for pin cells with the same isotopic composition overlap, especially in the ho-
mogeneous caseswhere the flux distribution is axially uniform. Finally, starting from theMAV
mesh, the errors for each energy group, mesh, anisotropies and material configurations are
all below 1 %.

138



(a) MIN mesh. (b) MAV mesh.

(c) RAF mesh. (d) HYP mesh.

(e) SHYP mesh. (f) MEG mesh.
Figure 7.4 – Flux calculations meshes used for the study of mesh convergence of the three-dimensional linear surface scheme.
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Figure 7.5 – Comparison of the keff convergence between the SC and LS schemes for thehomogeneous configuration with P0 anisotropy and constant axial flux (np = 0). The keff ofthe MEG mesh for the LS scheme is taken as the reference value.

Figure 7.6 – Comparison of the keff convergence between the SC and LS schemes for thehomogeneous configuration with P3 anisotropy and constant axial flux (np = 0). The keff ofthe MEG mesh for the LS scheme is taken as the reference value.

140



Figure 7.7 – Comparison of the absorption reaction rates relative error convergence betweenthe SC and LS schemes for the homogeneous configuration with P0 anisotropy and constantaxial flux (np = 0). For each pin cell, the reaction rates of the MEG mesh for the LS scheme istaken as the reference value.

Figure 7.8 – Comparison of the production reaction rates relative error convergence betweenthe SC and LS schemes for the homogeneous configuration with P0 anisotropy and constantaxial flux (np = 0). For each pin cell, the reaction rates of the MEG mesh for the LS scheme istaken as the reference value.
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Figure 7.9 – Comparison of the absorption reaction rates relative error convergence betweenthe SC and LS schemes for the homogeneous configuration with P3 anisotropy and constantaxial flux (np = 0). For each pin cell, the reaction rates of the MEG mesh for the LS scheme istaken as the reference value.

Figure 7.10 – Comparison of the production reaction rates relative error convergence bet-ween the SC and LS schemes for the homogeneous configuration with P3 anisotropy andconstant axial flux (np = 0). For each pin cell, the reaction rates of the MEG mesh for the LSscheme is taken as the reference value.
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Figure 7.11 – Comparison of the keff convergence between the SC and LS schemes for theheterogeneous configuration with P0 anisotropy and constant axial flux (np = 0). The keff ofthe MEG mesh for the LS scheme is taken as the reference value.

Figure 7.12 – Comparison of the keff convergence between the SC and LS schemes for theheterogeneous configuration with P3 anisotropy and constant axial flux (np = 0). The keff ofthe MEG mesh for the LS scheme is taken as the reference value.
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Figure 7.13 – Comparison of the absorption reaction rates relative error convergence bet-ween the SC and LS schemes for the heterogeneous configuration with P0 anisotropy andconstant axial flux (np = 0). For each pin cell, the reaction rates of the MEG mesh for the LSscheme is taken as the reference value.

Figure 7.14 – Comparison of the production reaction rates relative error convergence bet-ween the SC and LS schemes for the heterogeneous configuration with P0 anisotropy andconstant axial flux (np = 0). For each pin cell, the reaction rates of the MEG mesh for the LSscheme is taken as the reference value.
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Figure 7.15 – Comparison of the absorption reaction rates relative error convergence bet-ween the SC and LS schemes for the heterogeneous configuration with P3 anisotropy andconstant axial flux (np = 0). For each pin cell, the reaction rates of the MEG mesh for the LSscheme is taken as the reference value.

Figure 7.16 – Comparison of the production reaction rates relative error convergence bet-ween the SC and LS schemes for the heterogeneous configuration with P3 anisotropy andconstant axial flux (np = 0). For each pin cell, the reaction rates of the MEG mesh for the LSscheme is taken as the reference value.
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8 - Stabilisation of higher-order MOC methods for the
TDT solver
Chapter 8 details the theoretical developments aimed at eliminating divergence issues

due to the manner the current term and higher-order terms of the balance equation was
computed. The equations are elaborated for cases where the source is radially constant,
axially polynomial, with uniform cross sections per region or spatially dependent cross sec-
tions. Similarly, the theoretical results obtained can be adapted to stabilize the linear surface
scheme.
Contents
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8.1 . High-order schemes and balance conservation
In the section 7.1.2 divergence behaviors of the transport scheme have been observed.

This issue is highlighted in the section 7.1.2, and especially in table 7.5. It is noted that calcu-
lations where the flux is expanded on a polynomial basis in the axial direction with np = 2

diverge when the cell height exceeds a certain limit zlim. To address this problem, a trun-
cation method was developed. This method involves reducing the polynomial degree np ifconservation in an infinite homogeneous medium is not maintained.

However, even though the origin of these numerical instabilities was clear, no solution
had been proposed. This chapter offers a solution in the case where the flux is radially
constant, where the same phenomenon have been observed.

To understand the problem, we start by revisiting the balance equation for the spatial
moments of the angular flux in the case where the cross sections are uniform (4.20). It is
then observed that the streaming term in an infinite homogeneous medium is zero. Indeed,
in such medium, the angular flux is uniform, i.e:

∇ψ(r,Ω) = O3.

That, by projection on the spatial basis (4.19) and by use of∇ relations, leads to

∆Ji(Ω) = µC′ψi(Ω). (8.1)

In other words, for each spatial order p

∆Ji,p(Ω) =
µp

∆z/2
′ψi,p(Ω). (8.2)

However, it has been observed in our case that (8.2) is not numerically satisfied for re-
gions where the average optical path length in region i, ⟨τ⟩i defined by (8.3), subceeds a
certain threshold τlim (see table 7.5),

⟨τ⟩i =
1

ni,t

∑
Ωn∈Sn

wn

∑
t||Ωn
t∩i

w⊥,t(Ωn)τ(Ωn), (8.3)

with ni,t representing the number of trajectories that traverse region i. Thus, it is assumed
that improving the numerical equality (8.2) will reduce the divergence phenomena of the
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transport scheme. To address the numerical issue, wewill revisit the trajectory-based conser-
vation equation [56] in order to cumulate the current and the higher-order terms through an
analytical expression. The "local" conservation equation for a trajectory of arbitrary direction
Ω entering and exiting a region i, through rin and rout, respectively writes

Σt ⟨P, ψ⟩ = P(zin)ψ(rin,Ω)−P(zout)ψ(rout,Ω) + ⟨P, Q⟩+
〈
∂P

∂t
, ψ

〉
. (8.4)

Then, let’s introduce a corrected current term for spatial order p, denoted as∆J∗p,t, defi-ned as follows:

∆J∗p,t = Pp(zin)ψ(rin,Ω)− Pp(zout)ψ(rout,Ω) +

〈
∂Pp

∂t
, ψ

〉
. (8.5)

8.2 . Case with a polynomial basis of degree 1 for the angular flux

8.2.1 . With constant cross sections by spatial region
This section is structured as follows: first, we express the sum and difference between

the incoming and outgoing fluxes in terms of the incoming flux and the source term. Next, we
derive an expression for∆J∗1,t. Finally, the current term is integrated over space and energy
to calculate the moments of the flux. The transmission equation (4.15) allows us to obtain

ψ(rin,Ω)− ψ(rout,Ω) =
(
1− e−τ(l)

)
ψ(rin,Ω)−P ·T(Ω), (8.6)

ψ(rin,Ω) + ψ(rout,Ω) =
(
1 + e−τ(l)

)
ψ(rin,Ω) +P ·T(Ω). (8.7)

We now aim to determine an expression for∆J∗1,t (8.5). First, we note that P1(zout) = z̃(l)

and P1(zin) = z̃(0), which we express as

zin = zm − l

2
µ, (8.8)

zout = zm +
l

2
µ, (8.9)
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with zm being the axial coordinate of the midpoint of the chord of length l and µ the cosine
of the angle between the chord and the z-axis. Using the previous expressions (8.8) and (8.9),
and setting γ = (∆z/2)−1, the term∆J1,t can be written as

∆J1,t = P1(zin)ψ(rin,Ω)− P1(zout)ψ(rout,Ω),

= γ(zin − z̄)ψ(rin,Ω)− γ(zout − z̄)ψ(rout,Ω).,

= γ(zm − z̄) [ψ(rin,Ω)− ψ(rout,Ω)] ,

− γ
l

2
µ [ψ(rin,Ω) + ψ(rout,Ω)] .

On the other hand, still at first order, we expand the higher-order term as
〈
∂P1

∂t
, ψ

〉
= γµ

∫ l

0
dtψ(rt,Ω),

= γµlψ0.

Finally, using the two previous results, the sum of the current and higher-order terms
can be rewritten as

∆J∗1,t = γ(zm − z̄) [ψ(rin,Ω)− ψ(rout,Ω)] + γlµ

(
ψ0 −

ψ(rin,Ω) + ψ(rout,Ω)

2

)
. (8.10)

The task now is to group the terms of∆J∗1,t in such a way as to obtain an expression thatrequires the fewest floating-point operations possible and addresses the issue that arises for
very small optical paths. Using (8.6), (8.6), and (10.15), ∆J∗1,t can be expressed as a function
of the optical path τ , the incoming and outgoing fluxes, a source term S(Ω), and geometric
parameters:

∆J∗1,t = γ(zm − z̄)∆ψt(Ω)− γlµG(τ)ψ(rin,Ω) + S(Ω). (8.11)

with∆ψt(Ω) = ψ(rin,Ω)− ψ(rout,Ω) and G(τ) expressed as

G(τ) =

[
1 + e−τ

2
− 1− e−τ

τ

]
, (8.12)
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and the source term S(Ω) as

S(Ω) = −γlµ
[
1

τ
+

1

2

]
P ·T(Ω) +

γlµ

τ
(PPt(Ω) ·Q(Ω))0 . (8.13)

We now need to rewrite the source term in order to classify the quantity according to the
type of chord. To do this, let us start from the equation for the current term (8.11). Recall that
P ·T(Ω) can be expressed as

P ·T(Ω) =

np∑
k=0

[
z0 − z̃

∆z/2

]k np∑
p=k

(
p

k

)(
2µ

∆z

)p−k

Ep−k(τ)
Qp(Ω)

Σt︸ ︷︷ ︸
Tk

. (8.14)

Then, by applying equation (10.30) for j = 0, it can be shown that (PPt(Ω) ·Q(Ω))0 canbe expressed, provided that the order of summation is changed, as

(PPt(Ω) ·Q(Ω))0 =

np∑
p=0

p∑
k=0

(
p

k

)[
z0 − z̃

∆z/2

]k ( 2µ

∆z

)p−k lp−k+1

p− k + 1
·Qp(Ω),

which can be rewritten in the form

(PPt(Ω) ·Q(Ω))0 =

np∑
k=0

[
z0 − z̃

∆z/2

]k np∑
p=k

(
p

k

)(
2µ

∆z

)p−k lp−k+1

p− k + 1
Qp(Ω),

= τ

np∑
k=0

[
z0 − z̃

∆z/2

]k np∑
p=k

(
p

k

)(
2µ

∆z

)p−k lp−k

p− k + 1

Qp(Ω)

Σt︸ ︷︷ ︸
Vk

,

= τ P ·V.

Thus, by defining T̃(Ω) = γlµ
[
V −

(
1
τ + 1

2

)
T(Ω)

], the current term∆J∗1 can be rewrittenas

∆J∗1,t = γ(zm − z̄)∆ψt(Ω)− γlµG(τ)ψ(rin,Ω) +P · T̃(Ω). (8.15)

(8.15) represents the general expression for the contribution of a chord to the modified
current term. However, the main idea is to find an expression in the case where the optical
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path is small. Therefore, we study the behavior ofG(τ) andP ·T̃(Ω) as τ → 0. We begin with
G(τ), starting from equation (8.12). It is noteworthy that 1−e−τ

τ and 1+e−τ

2 approach 1 as τ ap-
proaches 0. If the contributions of these terms are accumulated separately, we observe that
the two sums over the set of associated chords are no longer equal, although the asymptotic
expansion shows that the difference tends to 0 like τ2.

This discrepancy is due to the number of significant digits (single precision, double pre-
cision) of the chosen variables relative to the order of magnitude of τ2 for small chords. This
phenomenon is known as catastrophic cancellation. Expressing the difference as an asymp-
totic development helps to resolve the issue.

lim
τ→0

1− e−τ = τ − 1

2
τ2 +

1

6
τ3 − 1

24
τ4 + o(τ4), (8.16)

and

lim
τ→0

1 + e−τ

2
= 1− 1

2
τ +

1

4
τ2 − 1

12
τ3 + o(τ3), (8.17)

such that

lim
τ→0

G(τ) =
1

12
τ2 − 1

24
τ3 + o(τ3). (8.18)

We still have to deal with the term P · T̃(Ω). The kth component of the vector T̃ writes:

T̃k =

np∑
p=k

(
p

k

)(
2µ

∆z

)p−k [ lp−k

p− k + 1
−
(
1

τ
+

1

2

)
Ep−k(τ)

]
︸ ︷︷ ︸

Ẽp−k(τ)

Qp(Ω)

Σt
. (8.19)

As detailed in the section, the calculation of Ep−k(τ) is performed based on ET
k (τ). We

can thus use the known results to find an expression for Ẽp−k(τ) in the case of small optical
paths. We begin by writing

∀k ∈ N, Ẽk(τ) = lk
[

1

k + 1
−
(
1

τ
+

1

2

)
ET
k (τ)

]
,

= lk
[

1

k + 1
−
(
2 + τ

2τ

)
ET
k (τ)

]
.
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We then use the recurrence relation

ET
k (τ) =

τ

k + 1

[
1− ET

k+1(τ)
]
, (8.20)

which is obtained by integration by parts and then substituted into the previous relation to
write

∀k ∈ N, Ẽk(τ) = lk
[

1

k + 1
−
(
2 + τ

2τ

)
τ

k + 1

[
1− ET

k+1(τ)
]]
,

=
lk

k + 1

[
1−

(
2 + τ

2

)[
1− ET

k+1(τ)
]]
,

→
0

lk

k + 1
ET
k+1(τ),

so that for small chords we can write

T̃k(Ω) =
τ→0

np∑
p=k

(
p

k

)(
2µ

∆z

)p−k lp−k

p− k + 1
ET
p−k+1(τ)

Qp(Ω)

Σt
. (8.21)

We now need to integrate (8.15) over all chords in the direction Ω, and then over all di-
rections belonging to the set of directions. We write:

Σt
′Φi,1 = ∆J∗

i,1 +
′Qi,1. (8.22)

We then obtain an equation similar to (5.56), but where the source term ′Qi,1 is thesecond component of the vector defined by (5.58) and the current term are combined into
∆J∗

i,1, defined as

∆J∗
i,1 =

1

4π

∫
S2
dΩA(Ω)∆J∗

i,1(Ω), (8.23)

with

∆J∗
i,1(Ω) =

1

Vi(Ω)

∑
t||Ω
t∩i

w⊥,t∆J∗1,t. (8.24)
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8.2.2 . With polynomial cross sections by spatial region
In order to address the case where the cross sections depend on space, we start again

from the conservation equation for the spatial moments of the angular flux. At first order,
we recall that

Σt,0
′ψi,0(Ω) + Σ1

′ψi,1(Ω) =
(
PP2np(Ω) ·Q(Ω)

)
0
−∆Ji,0(Ω), (8.25)

Σt,0
′ψi,1(Ω) + Σt,1

′ψi,2(Ω) =
(
PP2np(Ω) ·Q(Ω)

)
1
−∆Ji,1(Ω) + γµ′ψi,0(Ω). (8.26)

As in section (4.3.3), we observe that the system of equations (8.25) and (8.26) consists
of two equations and three unknowns. As it stands, it is impossible to solve. The method
employed in the dedicated chapter involved using a system of equations with the spatial co-
efficients of the angular flux as the unknowns.

In (8.26), the same problem of numerical cancellation arises as in the case where the
cross sections are constant within each region. Furthermore, it was shown in Appendix (10.2)
that it is also possible to derive a conservation equation along a chord when the cross sec-
tions depend on space. Therefore, we can follow the samemethod as in the previous section,
which involved combining the contributions of each chord into a single term that includes
both the current and higher-order terms.

However, a simple analytical expression for ψ0(Ω) has not been found for an arbitrary
optical path, but only for small optical path. Note that practically, this would mean that a
conditional test should be implemented to distinguish chords with a sufficiently small optical
path from others. This strategy cannot be employed, as such a test would slow down the
sweep process, which is the most time-consuming phase in MOC transport. For small optical
path, we can use the relation (10.3.2) to write the transmission equation as:

ψ(rout,Ω) =
τ→0

ψ(rin,Ω)e−τ0 +

∫ l

0
dtQ(rin + tΩ) e−[τ0−τ(t)]. (8.27)

We can therefore write

ψ0(Ω) =
τ→0

1

τ0

[
ψ(rin,Ω)− ψ(rout,Ω) +

(
PP2np

t (Ω) ·Q(Ω)
)
0

]
, (8.28)

with,
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PP2np

t (Ω) =

∫ l

0
dtP(zt)⊗P(zt). (8.29)

Thus, knowing (8.10), (8.28), and (10.14), we can write, in the case where the macroscopic
cross sections are expanded to first order:

∆J∗1,t =
τ→0

γ(zm − z̄)∆ψt(Ω)− γlµGXS(τ)ψ(rin,Ω) + SXS(Ω), (8.30)

with,

GXS(τ) =
[
1 + e−τ

2
− 1− e−τ

τ0

]
, (8.31)

SXS(Ω) = −γlµ
[
1

τ0
+

1

2

]
P ·T+

γlµ

τ0

(
PP2np

t (Ω) ·Q(Ω)
)
0
. (8.32)

Unlike the case where the cross section is spatially independent, we cannot directly ta-
bulate the function GXS here. To address this issue, we write:

GXS(τ) = G(τ) + (1− e−τ )

[
τ0 − τ

τ0τ

]
. (8.33)

G is tabulable, as we saw in the previous section. Similarly, the function g : τ 7−→ 1 −
e−τ also tabulable. Therefore,GXS can be computed on-the-fly. Il reste à s’occuper du terme
SXS(Ω). To this end, we observe that:

(
PP2np

t (Ω) ·Q(Ω)
)
0

=
τ→0

τ0P ·V. (8.34)

withV the vector of 2np + 1 of component defined as

Vk =

2np∑
p=k

(
p

k

)(
2µ

∆z

)p−k lp−k+1

p− k + 1

Qp(Ω)

Σt,0
, (8.35)

such that,

SXS(Ω) = −γlµ
[
1

τ0
+

1

2

]
P ·T+ γµP ·V. (8.36)
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In the same manner as in [125], P · T is calculated using a Gauss-Legendre quadrature.
We haveP ·T = Q(Ω) ·E0 with the component (5.55). We follow the same logic to calculate
P ·V, which is written as:

P ·V = Q(Ω) · F0, (8.37)

with F0 a vector of 2np + 1 components defined as

F0,k ≃ l

2

m∑
j=1

wj

[
P1(zin) + µ

l/2(1 + xj)

∆z/2

]k
. (8.38)
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8.3 . Case with a polynomial basis of degree 2 for the angular flux

8.3.1 . With constant cross sections by spatial region
No solution has yet been found in the case where the spatial basis is of degree 2 and

where the cross-sections are constant within regions. However, the problem is introduced.
The idea is to start from (4.20) while using the result on the expression of the stabilized
current at order 1 (8.24). The system of equations is given by:

Σt
′ψi,0(Ω) = (PP(Ω) ·Qi(Ω))0 −∆Ji,0(Ω), (8.39)

Σt
′ψi,1(Ω) = (PP(Ω) ·Qi(Ω))1 +∆J∗

i,1(Ω), (8.40)
Σt

′ψi,2(Ω) = (PP(Ω) ·Qi(Ω))2 −∆Ji,2(Ω) + 2γµ′ψi,1(Ω). (8.41)

To stabilize (8.41), the logic is the same as for np = 1. We aim to group the contributions
for each chord from the current and higher-order terms, and then to determine a general
analytical expression as well as an asymptotic expression for the new term in the case of
small chords. To this end, we start from the conservation equation along a chord (8.5) applied
for p = 2 to express the current and higher-order terms as:

∆J∗2,t = P2(zin)ψ(rin,Ω)− P2(zout)ψ(rout,Ω) +

〈
∂P2

∂t
, ψ

〉
, (8.42)

with
〈
∂P2

∂t
, ψ

〉
= 2µγ ⟨P1, ψ⟩ , (8.43)

that we can know compute properly knowing that the conservation equation per chords at
order 1 have been stabilized. At present, the expression of (8.42) in a form that allows for the
elimination of divergence behaviors, particularly in regions where ⟨τ⟩i < τlim, has not yetbeen determined.

8.3.2 . With polynomial cross sections by spatial region
In the case where the cross-sections depend on space, the system of equations for the

spatial moments of the angular flux is written as follows:
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Σt,0
′ψi,0(Ω) + Σ1

′ψi,1(Ω) + Σt,2
′ψi,2(Ω) =

(
PP2np(Ω) ·Qi(Ω)

)
0
−∆Ji,0(Ω), (8.44)

Σt,0
′ψi,1(Ω) + Σt,1

′ψi,2(Ω) + Σt,2
′ψ3(Ω) =

(
PP2np(Ω) ·Qi(Ω)

)
1
−∆Ji,1(Ω) + γµ′ψi,0(Ω), (8.45)

Σt,0
′ψi,2(Ω) + Σt,1

′ψ3(Ω) + Σt,2
′ψ4(Ω) =

(
PP2np(Ω) ·Qi(Ω)

)
2
−∆Ji,2(Ω) + γµ′ψi,1(Ω). (8.46)

It is recalled that an analytical expression for the current term and higher order is obtai-
ned only in the case of a small optical path, and it is practically unimplementable because
it would slow down the sweep. Furthermore, the system consists of 3 equations and 5 unk-
nowns ; as such, the system is non-invertible. The trick is to work with the flux coefficients.
Finally, to date, no solution has been developed to stabilize (8.46).
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9 - Conclusion
The work in this thesis focused on extending the surface linear scheme for solving the

transport equation in 3D geometries. Based on the initial assumptions of the scheme, the
transmission and conservation equations were derived and subsequently adapted.

However, unlike in 2D geometries, trajectories can cross horizontal surfaces, which, for
a given set of tracking parameters, will always be less accurately integrated than vertical
surfaces. To address this integration issue, the decision was made to compute the sources
defined on horizontal surfaces through a linear interpolation between the sources defined
on vertical surfaces.

Regarding the conservation equation, its particularity lies in the fact that the source term
is constructed from a geometric operator that allows for the construction of a volumetric
source based on the source defined on the vertical surfaces of the geometry. During the
thesis, the geometric operator was adapted to account for the polynomial dependence of
the angular flux in the axial direction.

Finally, synthetic accelerations DP0 and DP1 were implemented to speed up the conver-
gence of transport calculations. The DPn methods are based on the expansion of the angu-
lar flux in spherical harmonics over the surfaces of the computational regions. However, the
same assumptions about flux variation as those used in transport are applied. Lastly, as with
the MOC, the method relies on the integral form of the transport equation to evaluate the
flux along the trajectories.

Once all these implementations were completed, various verification calculations were
carried out. In the case where the flux is uniform axially, we demonstrated that the keff valuesfor the 3D geometry match those obtained for the 2D geometries. Then, still for a uniform
flux, we verified that the DP0 and DP1 accelerations correctly reproduce the transport resultswith a reduction in computation time. In the pin cell case, the acceleration reduces the com-
putation time by a factor between 10 and 13 regardless of the anisotropy.

After these preliminary results, a convergence study was carried out on a 3X3 PWR as-
sembly, with two axial planes, and a control rod made of AIC at the center of the assembly.
The study was conducted for a case where the control rod is fully inserted (called the homo-
geneous case) and a case where the control rod is half-inserted (called the heterogeneous
case) for the anisotropies P0 and P3. For all four cases, we focused on the evolution of the
keff, absorption rate, and production rate.

The results clearly show that the LS scheme converges spatially faster than the SC scheme.
However, starting from theRAFmesh, it seems that the improvement in precisiondiminishes.
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One hypothesis for this behavior is that the flux gradients within each calculation region be-
come sominimal that the gain in pcm between LS and SC calculations becomes negligible. To
determine if this hypothesis holds for configurations with more steep gradients, it is plan-
ned to conduct the study on a larger 3D 17x17 assembly. However, in order to reduce the
computation time for this study and minimize the number of axial mesh layers, it would be
beneficial to finalize the implementation of synthetic acceleration for the case where the an-
gular flux follows a parabolic profile in the axial direction.

Once these final implementations and studies are completed, several potential avenues
for further work emerge.

Firstly, the equations implemented so far only allow calculations at Beginning Of Cycle. In
order to account for the influence of spatial flux variation on the evolution of isotopic concen-
trations, it would be necessary to implement the transmission and conservation equations
in the case where the cross-sections vary spatially.

Moreover, it is important to note that the LS scheme calculates moments on surfaces,
whereas the linear schemes implemented in the solvers of codes such as CASMO5®, OpenMOC®,
or DRAGON® are volumetric schemes, which calculate flux moments along the -x and -y di-
rections. The advantage of such a surface-based scheme is that the number of degrees of
freedomper calculation region is greater than that of volumetric schemes. This suggests that
flux gradients are better accounted for. However, for given tracking parameters, the surfaces
of a calculation region will always be less well integrated than the volumes. Consequently,
the surface moments in the LS scheme will be less accurately integrated than the volume-
tric moments, which could negatively affect the precision of keff, absorption and productionrates. An adaptive tracking approach, already implemented in the 2D part of the TDT solver,
can be developed for 3D geometries to address this issue [124]. The principle is to add local
trajectories to the tracking to reduce surface integration errors.

Regarding the acceleration of the transport scheme, several avenues for research and
development can be pursued. First, synthetic acceleration is currently limited to DP1, but theadvantages or disadvantages of a DP2 acceleration have not yet been studied. To this end,
it would be interesting to compare both approximations on realistic cases with a number
of external transport iterations on the order of hundreds. However, several hundred GB of
memory would be required to store the DP2 matrices, as a DP1 calculation on a half 17x17
assembly (with one height symmetry) with a parabolic flux axially required around 120 GB of
memory to store the matrices of the synthetic acceleration (see Table 7.6 of [7]).

Furthermore, the memory cost of the matrices can be reduced using non-linear fitting
or multi-output gaussian processes. Non-linear fitting has already been implemented in TDT
and is based on the Gauss-Newton method [6, 7]. Indeed, for the same assembly calcula-
tion as mentioned earlier, this technique allowed reducing the memory required to store
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the acceleration matrices from 120 GB to 52 GB. The latter strategy has been used to reduce
the storage of few-groups homogenized cross-sections libraries in the context of two-step
reactor simulations [132]. Compared to the standardmethod (multi-linear interpolation), this
probabilistic approach reduces the number of tabulated points by a factor of 20 for core cal-
culations at a given precision. When applied to the evaluation of DPn matrices, this approach
could potentially decrease the number of energy groups for which acceleration matrices are
evaluated prior to regression, and thus the memory requirements.

Next, it would be interesting to extend the implementation of macro-domains to 3D geo-
metries [97]. The idea is to apply synthetic acceleration over a set of "transport" calculation
regions. This strategy increases the average optical path per calculation region, which de-
creases the spectral radius of the synthetic operator, thereby accelerating convergence [59].

Finally, since most MOC solvers rely on CMFD acceleration, it would be interesting to
compare this method with synthetic acceleration using the same MOC solver for transport.
This study could be conducted on a realistic case, such as the EPR [14] or the BEAVRS reac-
tor [133], to compare the stability, computational time gains, and memory costs of the two
acceleration methods.
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10 - APPENDIX
10.1 . Special case of horizontal trajectories

As the flux andmacroscopic cross sections only depend on the axial coordinate, the emis-
sion density and cross sections are constant along horizontal chords. If we consider a point
r in region i crossed by a horizontal trajectory entering through rin and withΩh as direction,we can write :

Σρ(r) = Σρ(rin), (10.1)

and

Q(r,Ω) = Q(rin,Ω). (10.2)

Equation (10.1) and Equation (10.2) make it possible to integrate the optical path length
and the source term of the transmission equation (see Equation (4.15)) directly, yielding

ψ(rout,Ωh) = ψ(rin,Ωh) e
−Σt(zin) l + (1− e−Σt(zin) l)

Q(zin,Ωh)

Σt(zin)
. (10.3)

The transmission equation is the same as in the case where the cross sections and emis-
sion density are assumed constant per region. Then, one can compare the evaluation of the
exiting flux ψ(rout,Ωh) with Equation (4.41), and Equation (10.3) to show that the horizontal
transmission requires fewer floating point operations compared to other directions. First,
one must remark that only the computation of the source term differs. The evaluation of the
source term with Equation (4.41) requires at least the computation of Q0(Ω)Ẽ0 for p = 0,
where Ẽ0 according to the Equation (4.43). Since the order of quadrature is equal to five in
most cases, its evaluation requires at least five multiplications and five additions. Then, a
multiplication by the sourceQ0(Ω) is required. Moreover, if np ≥ 1, the cost to compute the
source term increases. Using the Equation (10.3), only three multiplications are required as
1− e−Σt(zin) l is retrieved from tabulated values, regardless of the value of np. Thus, it alwaysmakes the sweep for the horizontal direction equal or cheaper in terms of floating-point ope-
rations than other directions. Additionally, the computational strategy of the angular current
term has been modified. We recall that the p -th spatial component is defined as :
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∆Ji,p(Ω) =
1

Vi

∫
∂i+

dr |Ω · n| [Pp(rout)ψ(rout,Ω)− Pp(rin)ψ(rin,Ω)] , (10.4)

where rin and rout designate the entering and exiting points crossed by the consideredtrajectory, respectively. Along a horizontal chord, each point shares the same axial coordi-
nate. Then :

Pp(rin) = Pp(rout).

The current term can therefore be written as :

∆Ji,p(Ω) =
1

Vi

∫
∂i+

dr |Ω · n|Pp(rout) [ψ(rout,Ω)− ψ(rin,Ω)] . (10.5)

We decompose the integral on the boundary ∂i+ (where Ω · n ≥ 0) into the vertical and
radial surfaces :

∫
∂i+

dr =

∫
∂z
dz

∫
∂i+,2D

dr2D.

Then, we use the definition of z̃ given by Equation (4.25) to make a change of variable
such that

∫
∂i+

dr =
∆zr
2

∫ 1

−1
dz̃

∫
∂i+,2D

dr2D.

We call P2D(z,Ωh) the plane that crosses the region i containing the direction and of
height z. If we consider a chord of length l comprised between rin and rout,

∆Ji,p(Ωh) =
∆zr
2Vi

∫ 1

−1
dz̃

∑
t∈P2D(z,Ωh)

t∩ r

∆⊥(Ωh) z̃
p [ψ(rout,Ωh)− ψ(rout,Ωh)] , (10.6)

where ∆⊥ is the 2D integration weight equal to the distance between the projections of
3D characteristics on the radial place. Then, we use Equation (10.3) to express the difference
ψ(rout,Ωh)− ψ(rin,Ωh). We get :

164



∆Ji,p(Ωh) =
∆zr ∆⊥
2Vi

∑
t∈P2D(z,Ωh)

t∩ r

∫ 1

−1
dz̃ z̃ p

[
(1− e−Σ(z)l)

[
Q(Ωh)

Σ(z)
− ψ(rin,Ωh)

]]
. (10.7)

The last integration is made thanks to a Gauss-Legendre quadrature. Denoting bym the
quadrature order, the integrand needs to be evaluated at every quadrature abscissa z̃j ofweight wj such that :

∆Ji,p(Ωh) ≈
∆zr ∆⊥
2Vi

∑
t∈P2D(z,Ωh)

t∩ r

m∑
j=1

wj z
p
j

[
(1− e−Σ(zj)l)

[
Q(zj ,Ωh)

Σ(zj)
− ψ(rin,Ωh)

]]
. (10.8)

The tracking-based integration is only made on each radial plane P2D(z,Ωh).

10.2 . Trajectory-based balance equation in the case of spatially dependentcross sections
If one consider a chord of length l entering the region in rin, each point that belongs to

will be written as rt = rin+ tΩwith t between 0 and l. Its coordinate will be noted (xt, yt, zt).In particular r0 = rin. If one wants to know the angular flux ψ(rt,Ω), he can use the trans-
mission equation

ψ(rt,Ω) = ψ(rin,Ω)e−τ(l) +

∫ t

0
dt′Q(rin + t′Ω) e−[τ(t)−τ(t′)] (10.9)

that we multiply by the total macroscopic cross section Σt(rt). We multiply the result by
P and integrate over a chord of length l. This gives :

⟨P,Σtψ⟩ = ψ(rin,Ω)

∫ l

0
dtP(zt)Σt(rt)e

−τ(t)

+

∫ l

0
dtP(zt)Σt(rt)

∫ t

0
dt′Q(rt′ ,Ω)e−(τ(t)−τ(t′)).

(10.10)

The first term is integrated by part :
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ψ(rin,Ω)

∫ l

0
dtP(zt)Σt(rt)e

−τ(t) = ψ(rin,Ω)
[
P(z0)−P(zl)e

−τ(l)
]
+

ψ(rin,Ω)

∫ l

0
dtP′(t)e−τ(t).

(10.11)

The second term is integrated by inverting the integration order. The integration of t′
between 0 and t, for t in 0 to l equals the integration of t between t′ and l, for t′ in 0 and l.
〈
P,

∫ t

0
dt′Σt(rt)Q(r′t,Ω)e−(τ(t)−τ(t′))

〉
=

∫ l

0
dt

∫ t

0
dt′P(zt)Σt(rt)Q(rt′ ,Ω)e−(τ(t)−τ(t′)),

=

∫ l

0
dt′
∫ l

t′
dtP(zt)Σt(rt)Q(rt′ ,Ω)e−(τ(t)−τ(t′)),

=

∫ l

0
dt′Q(rt′ ,Ω)eτ(t

′)

∫ l

t′
dtP(zt)Σt(rt)e

−τ(t),

=

∫ l

0
dtQ(rt,Ω)eτ(t)

∫ l

t
dt′P(zt′)Σt(rt′)e

−τ(t′).

The integral between t and l is integrated by part.
∫ l

t
dt′P(zt′)Σt(rt′)e

−τ(t′) =
[
P(zt)e

−τ(t) −P(zout)e
−τ(l)

]
+

∫ l

t
dt′P′(zt)e

−τ(t′). (10.12)

Then, wemultiply (10.12) by the integral of the source term andwe inverse the integration
order of the last term :

∫ l

0
dtQ(rt,Ω)eτ(t)

∫ l

t
dt′P(zt′)e

−τ(t′) =

∫ l

0
dtP(zt)Q(rt,Ω)

−P(l)

∫ l

0
dtQ(rt,Ω)e−(τ(l)−τ(t))

+

∫ l

0
dt

∫ t

0
dt′P′(t)Q(r′t,Ω)e−(τ(t)−τ(t′)).

(10.13)

Finally, one obtains :

⟨P,Σtψ⟩ = P(zin)ψ(rin,Ω)−P(zout)ψ(rout,Ω) + ⟨P, Q⟩+
〈
P′, ψ

〉
. (10.14)
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10.3 . Useful relations

10.3.1 . Average of the angular flux over a trajectory
Let rt be a point along a chord of length l and directionΩ that traverses region i between

the entry point rin and the exit point rout. For t ∈ [0, l], rt is defined as rt = rin + tΩ. In the
case where the cross sections are constant within regions, it can be shown that:

ψ0(Ω) =
1

τ
[ψ(rin,Ω)− ψ(rout,Ω) + (PPt(Ω) ·Q(Ω))0] , (10.15)

with,
PPt(Ω) =

∫ l

0
dtP(zt)⊗P(zt). (10.16)

Demonstration: The idea is to start from the definition of the average flux along a chord
and then express the flux at a point using the transport equation. Thus, we can write:

lψ0(Ω) =

∫ l

0
dtψ(rt,Ω),

= ψ(rin,Ω)

∫ l

0
dte−τ(t) +

∫ l

0
dt

∫ t

0
dt′Q(rin + t′Ω)e−(τ(t)−τ(t′)).

The first term integrates naturally. For the second term, we use the fact that integrating
t′ from 0 to t, where t ranges from 0 to l, is equivalent to integrating t from t′ to l, with t′
ranging from 0 to l. Therefore:

∫ l

0
dt

∫ t

0
dt′Q(rin + t′Ω)e−(τ(t)−τ(t′)) =

∫ l

0
dt′
∫ l

t′
dtQ(rin + t′Ω)e−(τ(t)−τ(t′)),

=
1

Σt
(PPt(Ω) ·Q(Ω))0

− 1

Σt

∫ l

0
dtQ(rin + tΩ)e−(τ(l)−τ(t)).

Thus,

ψ0(Ω) =
1

τ
[ψ(rin,Ω)− ψ(rout,Ω) + (PPt(Ω) ·Q(Ω))0] .
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10.3.2 . Asymptotic expansion of optical path in 0

When the cross sections are polynomially expanded within each region

∀t ∈ R, τ(t) =
0
τ0(t) + o(τ0(t)), with τ0(t) = Σt,0t (10.17)

Demonstration: Let np ∈ N be the polynomial degree of the cross sections. We can then
write

∀r ∈ R3, Σt(r) = Σt,0 +Σt,1z̃r +Σt,2z̃
2
r + . . .+Σt,np z̃

np
r . (10.18)

There are two situations in which τ approaches 0. Either the swept chord is small (z̃rapproaches 0), or the medium being considered is empty. In the first case, we can write

Σt(r) =
0
Σt,0 + o(Σt,0),

Then, by integrating over a chord of length l,

τ(t) =
0
τ0 + o(τ0).

In the case of a void region, Σt = 0, it directly follows that

lim
Σt→0

(τ − τ0) = 0,

Which, by definition, means that

τ(t) =
0
τ0 + o(τ0).

Subsequently, and unless necessary, we will no longer specify whether we are dealing
with an empty medium or a chord of sufficiently small length.
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10.3.3 . Asymptotic expansion of the escape factors for small optical path anduniform cross sections
In the case where the cross sections are constant within regions, it can be shown that

Ej(τ) defined as 4.18, writes:

∀j ∈ N, Ej(τ) =
0

∞∑
i=1

(−1)i+1 j!

(j + i)!
τ ilj . (10.19)

Demonstration: Soit j ∈ N,

To start, we recall the definition of Ej(τ):

Ej(τ) =
1

Σj
t

∫ τ

0
dτ ′ τ ′,jeτ

′−τ (10.20)

We first focus on ET
j (τ) =

1
lj
Ej(τ), which is defined as:

ET
j (τ) =

1

τ j

∫ τ

0
dτ ′ τ ′,jeτ

′−τ . (10.21)

Besides, a integration by part of (10.21) leads to the relation

ET
j (τ) = 1− j

τ
ET
j−1(τ). (10.22)

We use this relationship to show by recurrence that

∀j ∈ N, ET
j (τ) =

0

∞∑
i=1

(−1)i+1 j!

(j + i)!
τ i. (10.23)

Indeed
169



ET
j+1(τ) = 1− j + 1

τ
ET
j (τ),

= 1− j + 1

τ

∞∑
i=1

(−1)i+1 j!

(j + i)!
τ i,

= 1 +
∞∑
i=1

(−1)i+2 (j + 1)!

(j + i)!
τ i−1,

=
∞∑
i=2

(−1)i+2 (j + 1)!

(j + i)!
τ i−1,

=
∞∑
i=1

(−1)i+1 (j + 1)!

(j + i+ 1)!
τ i

.
It naturally follows that

∀j ∈ N, Ej(τ) =
0

∞∑
i=1

(−1)i+1 j!

(j + i)!
τ ilj ,

and that if we want an equivalent, we can take

∀j ∈ N, Ej(τ) ≃
0

1

1 + j
τ lj (10.24)

10.3.4 . Asymptotic expansion of the escape factors for small optical path andspatially dependent cross sections
In the case where the effective sections are developed on the base, we can show that:

∀j ∈ N, Ej(t) =
0

1

Σt,0

[
1

j + 1
τ0 + o(τ0)

]
lj (10.25)

Demonstration:We use result 10.3.2 to show that
eτ(t) =

0
1 + τ0 + o(τ0),

then,
tjeτ(t) =

0
tj +Σt,0t

j+1 + o(tj+1),
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and finally,
Ej(t) = e−τ(l)

∫ l

0
dt tjeτ(t) =

0

1

Σt,0

[
1

j + 1
τ0 + o(τ0)

]
lj .

10.3.5 . Equality between transmission equation source term and trajectorysource term for small optical path
In the case where the cross sections are constant per region, we can show that:

∀j ∈ N, lim
τ→0

Pj ·T = (PPt(Ω) ·Q(Ω))j . (10.26)

Demonstration:We begin by determining an expression for (PPt(Ω) ·Q(Ω))j . It can bedemonstrated using the binomial theorem and then integrating that the element in row p

and column p′ can be expressed as

PPpp′ =

∫ l

0
dt

[
z0 − z̃ + µt

∆z/2

]p+p′

, (10.27)

=

p+p′∑
k=0

(
p+ p′

k

)[
z0 − z̃

∆z/2

]p+p′−k ( 2µ

∆z

)k lk+1

k + 1
, (10.28)

=

p+p′∑
k=0

(
p+ p′

k

)[
z0 − z̃

∆z/2

]k ( 2µ

∆z

)p+p′−k lp+p′−k+1

p+ p′ − k + 1
. (10.29)

What we are interested in is the (j + 1)th term of the vector (PPt(Ω) ·Q(Ω))j . This cor-responds to the dot product between the source and the (j+1)th row of the matrix PPt(Ω).
By applying the binomial formula and interchanging the order of summation, we obtain:

(PPt(Ω) ·Q(Ω))j =

np∑
p=0

p+j∑
k=0

(
p+ j

k

)[
z0 − z̃

∆z/2

]p+j−k ( 2µ

∆z

)k

Qp(Ω)
lk+1

k + 1
, (10.30)

Now, let Pj ·T denote the integral

Pj ·T =

∫ l

0
dtPjQ(rin + tΩ)e−(τ(l)−τ(t)). (10.31)
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By expanding the source according to its polynomial approximation and then carrying
out the calculations, we obtain the following expressions:

Pj ·T =

∫ l

0
dt

np∑
p=0

[
z0 − z̃ + µt

∆z/2

]p+j

Qp(Ω)e−(τ(l)−τ(t)),

=

np∑
p=0

p+j∑
k=0

(
p+ j

k

)[
z0 − z̃

∆z/2

]p+j−k ( 2µ

∆z

)k Qp(Ω)

Σt
Ek(τ),

Knowing from the the result 10.3.3 that
lim
τ→0

1

Σt
Ek(τ) ≃

lk+1
t

k + 1
,

we have shown that
∀j ∈ N, lim

τ→0
Pj ·T = (PPt(Ω) ·Q(Ω))j .
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10.4 . Mathematical functions
10.4.1 . Legendre polynomials

The sequence of Legendre polynomials (Pk)k∈N encompasses all solutions on [−1, 1] of
the Legendre differential equation (homogeneous and second-order) :

d

dµ

[
(1− µ2)

d

dµ
Pk(µ)

]
+ k(k + 1)Pk(µ) = 0. (10.32)

The polynomial functions are also defined as follows :

P0(µ) = 1, (10.33)
Pk(µ) =

1

2kk!

dk

dµk
(µ2 − 1). (10.34)

Their algebraic expressions can also be derived from the recurrence formula :

(k + 1)Pk+1(µ) = (2k + 1)µPk(µ) + kPk−1(µ). (10.35)

A graphical representation of the Legendre polynomials up to order 4 is provided in the
figure 10.1. Now, let’s discuss some properties.

Parity property

Pk(−µ) = (−1)kPk(µ). (10.36)
Orthogonality property

∫ 1

−1
dµPk(µ)P ′

k(µ) =
2

2k + 1
δk,k′ . (10.37)

173



Figure 10.1 – Graphical representation of the Legendre polynomials up to the order 4.
10.4.2 . Real spherical harmonics

The real spherical harmonics are defined based on the associated Legendre polynomials.
The associated Legendre polynomials (P l

k)
l∈[[0,k]]
k∈N are themselves defined from the Legendre

polynomials as follows :

P0
k(µ) = Pk(µ), (10.38)

P l
k(µ) = (−1)l(1− µ)l/2

dl

dµl
Pk(µ). (10.39)

Parity property

P l
k(−µ) = (−1)k+lP l

k(µ). (10.40)
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Orthogonality property
∫ 1

−1
dµP l

k(µ)P l
k′(µ) =

2(k + l)!

(2k + 1)(k − l)!
δk,k′ . (10.41)

We can now define the real spherical harmonics as :

Al
k(Ω) =

√
2
√

(2k+1)
(4π)

(k−l)!
(k+l)!P

l
k(cos(θ))cos(lφ), if l>0,√

(2k+1)
(4π) P

0
k (cos(θ)), if l=0,

√
2
√

(2k+1)
(4π)

(k−l)!
(k+l)!P

|l|
k (cos(θ))sin(|l|φ), if l<0.

(10.42)
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11 - Résumé en français
Le travail de cette thèse se divise en deux volets distincts. Le premier est consacré à la

conception d’un schéma combinant transport et accélération, basé sur une approximation
linéaire surfacique, destiné à résoudre l’équation du transport sur des géométries 3D extru-
dées. Actuellement, seule une approximation constante est disponible. La principale distinc-
tion entre ces deux approches réside dans la vitesse de convergence par rapport aumaillage :
elle est linéaire pour l’approximation constante et devient quadratique avec l’approximation
surfacique linéaire. Concrètement, cette dernière permet d’obtenir une précision équiva-
lente tout en réduisant le nombre de mailles nécessaires, ce qui diminue significativement
le temps de calcul. De plus, le schéma proposé doit permettre le développement du flux
selon une base polynomiale dans la direction axiale ainsi que celui des sections efficaces,
nécessaire pour les calculs en évolution. Contrairement aux méthodes linéaires classiques,
la source de neutron est ici définie sur les surfaces verticales des régions de calcul, tandis
que sa valeur sur les surfaces horizontales est déterminée par interpolation linéaire à partir
des valeurs verticales. Cette approche présente l’avantage d’éliminer la nécessité de l’inté-
gration par traçage sur les surfaces horizontales.

Ensuite, demanière à évaluer la convergence des itérations internes, un bilan sur lesmo-
ments volumiques du flux angulaire est réalisé. Un opérateur géométrique est alors conçu
afin de générer une source volumique à partir de la source surfacique, avec une conserva-
tion imposée par une correction.

Concernant l’accélération du transport, l’option retenue est l’implémentation d’une ac-
célération synthétique de type DPn. Cette méthode repose sur le développement du flux
angulaire en harmoniques sphériques sur les surfaces des régions de calcul, et peut être in-
terprétée comme un préconditionnement d’un schéma itératif de type Richardson. Ce choix
estmotivé par plusieurs facteurs : d’une part, le rayon spectral de l’opérateur associé est plus
faible que celui d’autres techniques d’accélération comme la Diffusion Synthetic Acceleration
(DSA) ou les méthodes non linéaires du type Coarse Mesh Finite Difference (CMFD), même
dans des milieux à fortes longueurs de parcours optiques. D’autre part, la construction du
système d’équations repose sur la même discrétisation spatiale que celle utilisée pour le
transport, réduisant ainsi les besoins de normalisation de certaines grandeurs, problème
fréquent avec d’autres méthodes. Enfin, l’usage de la forme intégrale de l’équation de trans-
port rend cette approche intéressante pour des géométries complexes et des maillages non
structurés.

La seconde partie du travail s’attache à corriger les instabilités numériques qui surgissent
avec l’augmentation de l’ordre de développement spatial du flux. Dans un milieu homogène
infini, le terme de fuite issu de l’équation intégro-différentielle devrait être nul. Or, dans cer-
taines régions de calcul où le nombre de trajectoires à faible chemin optique dépasse un
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seuil critique, ce terme devient non négligeable, compromettant la convergence des mé-
thodes TDT-MOC, voire la rendant impossible si ce phénomène est trop prononcé. De ma-
nière à contourner le problème, une solution théorique est proposée où le terme de courant
est cumulé directement avec le terme d’ordre supérieur, corde par corde. En suivant cette
approche, il est possible d’évaluer correctement ces termes pour les cordes avec un faible
chemin optique en s’appuyant sur des développements limités. Actuellement, ce travail est
réalisé juqu’aux équations bilans concernant les seconds moments spatiaux du flux, i.e. les
moments linéaires en espace.

Une fois toutes les implémentations achevées, plusieurs calculs de vérifications ont été
réalisés. Dans le cas où le flux est uniforme selon l’axe axial, nous avons démontré que les
valeurs de keff pour la géométrie 3D correspondent à celles obtenues pour les géométries
2D - la différence de keff est inférieur à 11 pcm. Ensuite, toujours pour un flux uniforme, nous
avons vérifié que les accélérations DP0 et DP1 reproduisent correctement les résultats du
transport tout en réduisant le temps de calcul. Dans le cas de la cellule combustible, l’accé-
lération permet de diminuer le temps de calcul par un facteur compris entre 10 et 13, quel
que soit l’ordre d’anisotropie.

Après ces résultats préliminaires, une étude de convergence a été menée sur un assem-
blage PWR 3×3, comportant deux plans axiaux et une barre de commande en AIC placée au
centre de l’assemblage. L’étude a été réalisée pour deux configurations : une où la barre de
commande est entièrement insérée (appelée cas homogène axial) et une où elle est insérée
à moitié (appelée cas hétérogène axial), pour les anisotropies P0 et P3. Pour ces quatre cas,
l’analyse a porté sur l’évolution de keff, du taux d’absorption et du taux de production.

Les résultats montrent clairement que le schéma linéaire surfacique (LS) converge spa-
tialement plus rapidement que le schéma step constant (SC). Toutefois, à partir du maillage
RAF, l’amélioration de la précision semble s’atténuer. Une hypothèse avancée pour expliquer
ce comportement est que les gradients de flux à l’intérieur de chaque région de calcul de-
viennent si faibles que le gain en pcm entre les calculs LS et SC devient négligeable. Pour
vérifier si cette hypothèse se confirme dans des configurations présentant des gradients
plus marqués, il est prévu de poursuivre l’étude sur un assemblage 3D plus grand de type
17×17. De cette manière, on pourrait vérifier la performance, en temps et en précision, de ce
schéma sur des configurations géométriques industrielles.
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