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Abstract vii

Theoretical and numerical analysis of perturbed isoperimetric problems

Abstract

In this thesis, we focus on perturbed isoperimetric problems. These problems involve the min-
imisation of an energy composed of a perimeter term that promotes mass aggregation, countered by a
perturbation term favouring disaggregation.

We begin by presenting the concepts used as well as past and current research conducted on the
isoperimetric problem and its variants.

In Chapter 1, we study a problem where the perimeter interacts with a non-local term called
an exterior transport term, defined using optimal transport theory. We demonstrate the existence of
solutions to this problem and, in regimes where the perimeter dominates, we prove that the minimisers
are balls.

Chapter 2 is dedicated to the exterior transport term. In a general framework, we show that the
variational problem defining it has solutions and a dual formulation. Using stronger assumptions, we
finally show that this term is maximised only by balls.

In Chapter 3, we present a numerical study in dimension 2 of the problem from Chapter 1. We
approximate the minimisers of the energy considered via a gradient descent algorithm. The numerical
results lead us to conjecture the existence of a critical mass above which the minimisers are no longer
balls, but elongated shapes with two axes of symmetry.

Chapter 4 focuses on a perturbed isoperimetric problem where the perimeter and perturbation
terms are not explicit. We exhibit a general set of assumptions under which a relaxed version of the
problem admits minimisers. Under stronger hypotheses, we then investigate whether these minimisers
have density estimates.

Keywords: Calculus of Variations, perturbed isoperimetric problem, Wasserstein distance, generalized
minimisers, Sinkhorn algorithm

Etude théorique et numérique de problèmes isopérimetriques perturbés

Résumé

Nous étudions dans cette thèse des problèmes isopérimétriques perturbés. Ces problèmes consistent
en la minimisation d’une énergie formée d’un terme de périmètre qui favorise l’agrégation de masse,
auquel s’oppose un terme perturbatif favorisant la désagrégation.

Nous commençons par présenter les concepts utilisés ainsi que la recherche passée et actuelle
effectuée sur le problème isopérimétrique et ses variantes.

Nous étudions dans le chapitre 1 un problème où le périmètre interagit avec un terme non-local dit
de transport extérieur, défini à l’aide de la théorie du transport optimal. Nous montrons l’existence de
solutions à ce problème et, dans les régimes où le périmètre domine, nous prouvons que les minimiseurs
sont les boules.

Le chapitre 2 est consacré au terme de transport extérieur. Dans un cadre général, nous montrons
que le problème le définissant admet des solutions et une formulation duale. A l’aide d’hypothèses plus
fortes, nous montrons que ce terme est uniquement maximisé par les boules.

Dans le chapitre 3, nous présentons les travaux numériques effectués en dimension 2 sur le problème
du premier chapitre. Nous approchons les minimiseurs de l’énergie considérée via une descente de
gradient. Les résultats numériques nous amènent à conjecturer l’existence d’une masse critique à partir
de laquelle les minimiseurs ne sont plus des boules, mais des formes allongées à deux axes de symétrie.

Le chapitre 4 porte sur un problème isopérimétrique perturbé où les termes de périmètre et de
perturbation ne sont pas explicites. Pour des hypothèses assez générales, nous montrons que ce problème
admet des minimiseurs en un sens faible. Nous montrons ensuite sous des hypothèses plus fortes que ces
minimiseurs, appelés minimiseurs généralisés, possèdent des estimées de densité.

Mots clés : Calcul des Variations, problème isopérimétrique perturbé, distance de Wassertein, minimi-
seurs généralisés, algorithme de Sinkhorn
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In this manuscript, we investigate several questions related to a geometric variational problem

involving a competition between the perimeter and a functional defined using optimal transport

theory. This thesis therefore lies at the interface between geometric measure theory, calculus of

variations, elliptic PDEs and optimal transportation.

Subject and objectives

Let us start with a brief overview of the work conducted in this manuscript. The central point

of our research is to investigate the following nonlocal isoperimetric problem: given λ,α > 0,

p ≥ 1 and d ≥ 2 we consider

inf
|E|=ωd

{
E(E) = Per(E) +λ(Wp

p (E))α
}
, (0.0.1)

where ωd denotes the volume of the unit ball of Rd , Per is the Caccioppoli (or distributional)

perimeter andWp is a functional that we call the exterior transport functional. It is defined as

follows: given E ⊂R
d with finite Lebesgue measure (or volume) |E| we set

Wp(E) = inf
F

{
Wp(E,F) : |F ∩E| = 0

}
, (0.0.2)

where Wp is the p-Wasserstein distance and E,F are respectively identified with the measures

χEdx,χFdx. By convention we set Wp(µ,ν) = +∞ if µ,ν are nonnegative measures with different

1



2 General introduction

Figure 1: A set (in blue) and its minimiser for the exterior transport (in red).

total masses. See Figure 1 for an illustration of Problem (0.0.2).

It is worth mentioning that Problem (0.0.1) belongs to the family of perturbed isoperimetric

problems, which may be generically defined as:

inf
{
E(E) = Per(E) +V (E) : |E| =m

}
,

where m > 0 and V is called the perturbative term. Typically, V represents a repulsive energy

that decreases when a set is divided into smaller parts which are sent far away from each other.

Additionally, V is often nonlocal; that is, altering a set E within a small open ball Br(x) results

in an energy variation that depends not only on E ∩Br(x) but also on E \Br(x). The archetypal

form of V is that of an interaction term of the form

V (E) =
∫
E×E

K(x − y)dxdy,

for some kernel K : Rd →R+.

Throughout the manuscript, we investigate four questions related to Problem (0.0.1), each

one corresponding to a chapter. From now on, all considered subsets of Rd are assumed to be

Lebesgue measurable. We also identify any two sets E,E′ ⊂R
d such that |E∆E′ | = 0, where ∆ is

the symmetrical difference operator.

In Chapter 1, we establish that Problem (0.0.1) admits minimisers for any m > 0. We also

obtain that any minimiser admits a finite number of connected components which are uniformly

bounded and have a regular boundary. Eventually, when α and λ are such that the perimeter is

the dominant term, we prove that the minimisers are balls.

In Chapter 2, we drop the perimeter term and focus on a generalization of the exterior

transport term Wp. Let c : Rd ×Rd → R+ be a continuous cost function and letM+(Rd ×Rd)

denote the set of nonnegative Radon measures over Rd ×Rd . Given E,F ⊂R
d of finite volume,
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we introduce

Tc(E,F) = inf
{∫

R
d×Rd

c(x,y)dπ(x,y) : π ∈M+(Rd ×Rd), πx = χEdx, πy = χFdx
}
,

where πx and πy respectively denote the first and second marginal of π ∈M+(Rd ×Rd). We then

define the associated exterior transport cost by

Υ (E) = inf
F

{
Tc(E,F) : |F ∩E| = 0

}
. (0.0.3)

Eventually, we consider the maximization problem

sup
{
Υ (E) : |E| =m

}
. (0.0.4)

For very general cost functions c, we show that this problem admits maximisers for any m > 0.

In the case where c(x,y) = k(|y − x|) for some continuous, increasing and coercive function

k : R+→R+ we show that balls are its unique maximisers. We thus confirm that the perimeter

and the non-local functionalWp are competing terms in Problem (0.0.1).

In Chapter 3 we come back to the minimisation problem of the first chapter, which is by

scaling equivalent to

inf
|E|=m

{
Per(E) + (Wp

p (E))α
}
, (0.0.5)

for some m > 0. We conduct a mostly numerical study of this problem in the case where

d = 2,p = 2 and α = 1. More precisely, we first restrict ourselves to the case of radially symmetric

sets and study the behaviour of minimisers of (0.0.5) as m varies from 0 to∞. Next, we consider

the general case where we do not make any symmetry assumption. For the purposes of the

numerical investigation, we replace the perimeter term with its Modica-Mortola approximation

and the exterior transport cost with its entropic regularization. The resulting energy is then

discretised over a Cartesian grid, and we employ an alternating minimisation method for the

optimisation process. In particular, we compute the exterior transport term using the Sinkhorn

algorithm.

In Chapter 4, we address more general functionals of the form

E(E) = P (E) +V (E), (0.0.6)

where P is an aggregative term generalizing the perimeter (e.g. the anisotropic or fractional

perimeter) and V is a competing repulsive term. In a lot of cases, the disaggregation induced

by V prevents this classical isoperimetric problem from having solutions. However, the corre-

sponding generalised problem

inf
(Ei )i

∑
i

E(Ei) =
∑
i

[
P (Ei) +V (Ei)

]
: Ei ⊂R

d ∀i ≥ 1,
∑
i

|Ei | =m

 (0.0.7)

may still admit minimisers, known as generalised minimisers. Our goal is to give general
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conditions on P and V guaranteeing that the infima in the classical and generalised problems

coincide, and that the generalised problem admits minimisers. In the case where stronger

assumptions on Per and V hold, we also show that generalised minimisers have (measure-

theoretic) density estimates. We finally illustrate our results by giving some examples of

perturbed isoperimetric problems with energy terms satisfying our assumptions.

Historical and mathematical context

Historically, the isoperimetric problem holds a central place in the field of calculus of variations.

In R
2, one of its possible formulation is to determine the shape of the largest possible area that

can be enclosed by a closed curve of a given length. One of the earliest references to such a

problem can be found in the legend of Queen Dido of Carthage. According to myth, after fleeing

Tyre from her murderous brother, Dido arrived in North Africa, seeking land to establish a

new city. The local ruler agreed to grant her as much land as she could encircle with a single

oxhide. Demonstrating remarkable ingenuity, Dido cut the oxhide into thin strips and laid them

out end-to-end, forming a large loop encircling an entire hill. By doing so, she maximised the

enclosed area and founded the city of Carthage.

The isoperimetric problem was more rigorously analysed by ancient Greek mathematicians,

who defined the perimeter as the length of the boundary of regular shapes of the plane, such as

circles or polygons. Zenodorus, in the 2nd century BCE, is credited with some of the earliest

known work on the problem, demonstrating that among all shapes with the same perimeter, the

circle encloses the maximum area. This result laid the groundwork for future studies in calculus

of variations and geometric analysis. However, it is not much later that significant progress was

made on the isoperimetric problem. In 1838, Steiner used a symmetrisation process to show

that in R
2, if a solution exists, then it is a disk [75].

It is important to note that advances in understanding the isoperimetric problem are closely

tied to progress in defining a sufficiently general notion of perimeter. In fact, defining which

subsets of the ambient space are admissible in the isoperimetric problem is fundamental. Italian

mathematician Renato Caccioppoli first introduced the notion of set of finite perimeter using

the notion of finite variation in the sense of Tonelli in the 1920s [16]. His definition allowed

for the extension of the classical definition of perimeter to more irregular sets, including those

with fractal-like boundaries. In the 1950s, Caccioppoli improved on his previous results and

introduced the concept of measure-theoretic boundary [14, 15]. Building on Caccioppoli’s

work, Ennio De Giorgi further developed the theory by introducing the notion of distributional

perimeter [34, 33]:

Per(E) = sup
φ

{∫
R
d
χEdivφdx : φ ∈ C1

c (Rd ,Rd), ∥φ∥L∞(Rd ) ≤ 1
}
. (0.0.8)

A major reason why rigorous results on a problem known for several millennia were delayed

until the 19th century is the issue of existence. Historically, mathematicians often overlooked

whether a variational problem actually admitted a solution, leading to numerous false proofs in
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well-known problems.

Establishing the existence of solutions remained a major challenge, even in low dimensions.

In the early 1900s, while working on the Dirichlet problem, D. Hilbert exhibited a general

principle for constructing proofs of the existence of minimisers for a given functional [52].

Given a space X and F : X→R∪ {+∞}, this principle can be stated as follows:

1. Check that inf{F (x), x ∈ X} = I > −∞, so that there exists a minimising sequence (xn)n≥1

such that limnF (xn) = I ;

2. Establish a compactness result on X so that (up to extracting a subsequence) there exists

x ∈ X such that limn xn = x;

3. Establish that F is lower semi-continuous on X, so that F (x) ≤ liminfnF (xn), which

eventually implies that F (x) = I .

As an illustration let us apply this method, now called the Direct Method in the Calculus of

Variations, to the relative isoperimetric problem. Given an open bounded set of finite perimeter

A such that |A| > ωd , we follow [60, Proposition 12.30]: consider

inf {Per(E,A) : E ∈ X} , where X = {E ⊂ A, |E| =ωd} (0.0.9)

and Per(E,A) is the perimeter of E ⊂R
d relatively to A, that is

Per(E,A) = sup
φ

{∫
χEdivφdx : φ ∈ C1

c (A,Rd), ∥φ∥L∞(Rd) ≤ 1
}
.

Let us define for t ∈R the set Et = A∩ {x = (x1,x2, . . . , xd) : x1 < t}. By continuity of the Lebesgue

measure, there exists t ∈ R such that |Et | = m, so that X is not empty and the first point of

the Direct Method is verified. We now consider a minimising sequence (En)n for (0.0.9). By

compactness of uniformly bounded sets of finite perimeter, up to extraction there exists E ⊂ A
of finite perimeter such that En→ E as n→∞ (in the L1 sense, that is |En∆E| → 0 as n→∞).

We additionally have |E| =ωd , which proves the second point of the Direct Method. The final

requirement of the method follows from the lower semi-continuity of the relative perimeter

with respect to the L1 convergence, which is a direct consequence of its definition. In conclusion,

we have proved that (0.0.9) admits a minimiser.

In many other shape optimisation problems, however, obtaining compactness in the space of

candidate minimisers often proves more challenging. For instance, removing the constraint that

A is bounded in the relative isoperimetric problem undermines the Direct Method as we applied

it. Indeed, even though it is classical that supnPer(En,A) <∞ implies that (up to extraction) the

sequence (En)n is L1
loc-converging to a set E ⊂ A, the local nature of this convergence provides

no information about the volume of E. Moreover, when the perimeter term competes with a

repulsive energy that acts over a longer or even infinite range, constraining the problem to a

compact domain of Rd usually becomes unrealistic (see Figure 2).

Nevertheless, these perturbed isoperimetric problems, where the energy functional is the

sum of a perimeter term and a typically non-local repulsive term, occupy an important place in
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Figure 2: Two charged droplets repelling each other because of electrostatic forces.

mathematical physics. One of the first to formulate this type of variational problem was the

physicist George Gamow in the 1930s to model the interaction between nucleons (i.e. protons

and neutrons) inside the atomic nucleus [47]. For more details on the historical context of

this well-known model see [26] and the references therein. For β ∈ (0,d) and m > 0, it can be

formulated as follows:

inf
|E|=m

{
Per(E) +Gβ(E) = Per(E) +

∫
E×E

dxdy

|x − y|d−β

}
. (0.0.10)

Here, the perimeter is used to model a short-range attractive force such as surface tension

competing against a high-range and repulsive functional encapsulated by Gβ . Let us mention

that if we set d = 3 and β = 2, we recover the original physical case, where Per is called the

surface term (which is analogous to the surface-tension term in liquids) and Gβ accounts for

the Coulombic repulsion between protons. From a mathematical standpoint this model raises

several questions: do minimiser exist for all values of m ∈ (0,∞)? When minimisers exist, are

they balls, as in the non-perturbed isoperimetric problem? If they exist but are not balls, do they

still retain some regularity properties? Let us stress that the non-local nature of the perturbation

term introduces an additional level of complexity compared to the classical problem.

In the beginning of the 2010s, H. Knüpfer and C. B. Muratov answered to several of those

questions in [56] and [54]. Their findings largely contributed to the resurgence of interest in

isoperimetric problems among the mathematics community in recent years, and were reinforced

in [7]. Eventually, the following result was obtained in [41]:

Theorem 0.0.1. For every d ≥ 2 and β ∈ (0,d), there exists m0 > 0 such that if 0 < m < m0, the ball of
volume m is the unique minimiser (up to translation) of (0.0.10).

Obtaining similar conclusions in the context of more general perturbed isoperimetric prob-

lems is currently an active field of research in isoperimetry theory. Given two generic perimeter

and perturbative functionals P and V , one may study Problem (0.0.6) and attempt to find

hypotheses on P and V under which existence and uniqueness of solutions can be established.

Even in cases where the problem lacks solutions, applying the concentration-compactness

principle may still yield valuable results such as the existence of solutions for a weaker, more

general version of (0.0.6). This principle was developed by Pierre-Louis Lions in the 1980s

to address minimisation problems posed in a space Ω that had solutions if Ω was compact

but not necessarily when Ω was not compact [58]. In the context of shape optimisation, its

heuristic can be summarised as follows (see also [43, 66, 67, 55] for additional discussions on

the concentration-compactness principle in isoperimetric problems). Given a sequence of sets

(En)n such that |En| =m > 0 for any n ≥ 1, up to extraction one of the three situations occurs:
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• (compactness) up to a translation, the sequence of measures (χEndx)n is tight;

• (vanishing) for any R > 0, limn supy∈Rd |En ∩BR(y)| = 0;

• (dichotomy) there exists ρ1
n,ρ

2
n ∈ L1(Rd ,R+) concentrating almost all of the mass of En and

such that dist(suppρ1
n,suppρ2

n)→∞ as n→∞ (see [58] for the more precise definition).

The interest of such a classification is that in isoperimetric problems the vanishing case can

often be excluded using the isoperimetric inequality. As a consequence, lack of existence in

isoperimetric problems which are invariant by translation can only come from a splitting of

the mass, where a minimising sequence separates into two or more non-vanishing components

moving away from each other. In this regard, it is of interest to study (0.0.7): indeed, let us

assume that we are in the case where the infima in the generalised and the classical problems

coincide. We may then view a minimiser (Ei)i of (0.0.6) as the limit as n→∞ of the fleeing

components (Ein)i,n components of a minimising sequence (En) for (0.0.7). We further investigate

this topic in the first half of the fourth chapter of the manuscript.

As previously mentioned, ancient Greek mathematicians had already understood that

studying (0.0.6) in the class of regular sets was significantly easier and allowed to say much

more about eventual minimisers. The converse approach, i.e. establishing regularity properties

of minimisers of variational problems, is also central in Calculus of Variations. In particular,

establishing that a minimiser E of (0.0.6) (or a component of a minimiser (Ei)i of (0.0.7)) admits

density estimates, i.e. that there exist c0, r0 > 0 such that for any r ≤ r0

∀x ∈ E, |E ∩Br(x)| ≥ c0r
d and ∀x ∈ Ec, |Ec ∩Br(x)| ≥ c0r

d

is now a frequently used concept in shape optimisation problems. It is common to resort to it to

obtain the boundedness of minimisers [24], their connectedness [42] or the regularity of their

boundary [49, 35, 65]. We discuss the regularity theory of minimisers of (0.0.6) and (0.0.7) in

more details in the latter half of Chapter 4.

Let us now turn to the more specific case of E = Per +W , where the perturbation term is

defined using the Wasserstein distance. This model was originally introduced by M. A. Peletier

and M. Röger in [70] in order to study the formation of cell membranes. Let us emphasise that

after a rescaling, their variational problem can be expressed in terms of sets of finite perimeter

as follows: given ε > 0, consider

inf
Uε ,Vε

{
Fε(Uε,Vε) = Per(Uε) + ε−4W1(Uε,Vε) : |Uε ∩Vε| = 0, |Uε| = |Vε| = εm

}
, (0.0.11)

where we recall that W1 denotes the 1-Wasserstein distance. Most of the difficulty about solving

this problem comes from the lack of an explicit formulation for the optimal transportation plan

between two sets of Rd . However, in the case d = 2 the geometric properties of the 1-Wasserstein

distance can be exploited to ease the analysis. Within this framework, the authors of [70] were

able to obtain a surprising compactness result on (0.0.11): if a sequence (Uε,Vε) is such that the
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renormalised energy

Gε(Uε,Vε) =
Fε(Uε,Vε)− 2m

ε2

is bounded as ε→ 0, then the sequence (ε−1Uε) has a support of “thickness" 2ε and converges

in a measure-theoretic sense to a collection of closed curves of R2.

After the work of Peletier and Röger, Buttazzo, Carlier and Laborde introduced in [13] the

following generalization of (0.0.11): given α,λ > 0, d ≥ 2, p ≥ 1 and a domain Ω ⊂ R
d , they

considered

inf
E,F

{
Per(E) +λ(W p

p (E,F))α : E,F ⊂Ω, |E ∩F| = 0, |E| = |F| =ωd
}
. (0.0.12)

which is equivalent to Problem (0.0.1). Existence of solutions to (0.0.12) was shown in [13]

for Ω being either R
2 or a compact subset of R

d . In the case Ω = R
d , it was shown in [77]

that minimisers existed under the additional assumptions that α = 1, 1/p + 2/d > 1 and for λ

small enough. We were able to obtain existence of solutions to (0.0.12) without these additional

hypotheses in [19], which corresponds to Chapter 1 of this manuscript.

Let us fix α = 1 and compare (0.0.12) to (0.0.10) where the perturbation term is given

by the Riesz kernel and denoted by Gβ . By using the Riesz rearrangement inequality one

obtains that among sets of same volume, balls are maximisers of Gβ (see e.g. [57, Section 11.15]).

Consequently, one may see (0.0.10) as a competition between two opposite forces, so that

its eventual minimisers may exhibit various geometries as λ varies in [0,∞). In this context,

it is thus natural to wonder whether balls also are maximisers of Wp. The corresponding

problem, defined for general costs in (0.0.4), is further investigated in the second chapter of

the manuscript. The analysis proves to be more involved than that of the Riesz kernel, as one

cannot directly apply a Riesz rearrangement to a maximiser of (0.0.4).

Context and state of the art regarding the numerical methods used in Chapter 3.

In [13], the authors also introduce a numerical method to compute Wp(E) and the set F

minimising (0.0.2). Let us provide some context on the tools they used. Their approach should

be linked to the growing interest in computational mathematics for efficient solvers of various

optimal transport problems (such as the unbalanced optimal transport problem described in

[25]). Indeed, even the simple problem of computing Wp(µ,ν) given Ω ⊂ R
d compact and

µ,ν ∈ P (Ω) can become extremely time-consuming as the number of points used to sample µ

and ν increases. M. Cuturi showed in 2013 in [31] that considering an entropic relaxation of the

Wasserstein distance could yield significant computational gains when approximating solutions

of the optimal transport problem. Given γ > 0, its continuous formulation can be defined as

inf
{∫

Ω2
|x − y|pdπ+γ

∫
Ω2
π(logπ − 1)dxdy : π ∈M+(Ω2), π≪ dxdy, πx = µ, πy = ν

}
(0.0.13)

As a convex problem, (0.0.13) admits a dual formulation whose maximisers can be approximated

by an alternate maximization process known as the Sinkhorn algorithm [31, 71, 32]. Similarly,

to compute a numerical approximation ofWp(E), we apply a variant of the Sinkhorn algorithm

adapted to the dual problem associated with (0.0.2).
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To fully address (0.0.12), we also replace the perimeter by a functional that is more suitable

to our numerical experiments. One of the standards methods to do so is the Modica-Mortola

approximation of the perimeter functional below, which was shown to Γ -converge to the

perimeter (up to a multiplication by 1/6) by Modica and Mortola in [62]. Given ε > 0, the

set E is replaced by a function u ∈ H1(Ω) and Per(E) is replaced by a term similar to the

Ginzburg-Landau energy:

Fε(u) =
ε
2

∫
Ω

|∇u|2 +
1
2ε

∫
Ω

u2(1−u)2. (0.0.14)

In this framework, the characteristic function of E is approximated with a smooth function u

that transitions between 0 and 1 over a region of size ε≪ 1. The Modica-Mortola approximation

thus belongs to the family of phase-field methods, which are popular tools in the study of

interface dynamics [11], fracture problems [4] or multiphase flows [53]. Let us momentarily

drop the exterior transport term in (0.0.12) and consider

inf
u

{
Fε(u), u : Ω→ [0,1],

∫
Ω

u =ωd

}
.

Computing the first variation of this last equation then yields an Allen-Cahn equation with a

forcing term µ ∈R:

∂tu = ε∆u − 1
ε
u(1−u)(1− 2u) +µ, (0.0.15)

One may see µ ∈R as a Lagrangian multiplier associated with the conversation of the mass of u.

In the case were µ = 0, this equation was first derived by Allen and Cahn in the 1970s to describe

the motion of boundaries in crystalline solids [2]. Together with its higher order counterpart

the Cahn-Hilliard equation [18], it is now widespread in numerical analysis to model interface

formation. A simple way to obtain approximate solutions of (0.0.15) is to proceed to a Lie

splitting, where one alternatively solves

∂tu = ε∆u, and ∂tu = −1
ε
u(1−u)(1− 2u) +µ.

We give more details on the implementation of this scheme when considered energy is the sum

of Fε and the entropic relaxation Υγ of the functional Υ in the third chapter of this thesis.

Main contributions

Let us now describe more precisely the results obtained and the methods employed in each

chapter of the manuscript.

Chapter 1

This chapter corresponds to the article [19] published in ESAIM : Control, Optimisation and
Calculus of Variations in collaboration with M. Goldman. For d ≥ 2, p ≥ 1, λ > 0 and α > 0, the



10 General introduction

variational problem we consider is (0.0.1). Our first main result concerns the existence and

regularity of solutions to this problem

Theorem 0.0.2. For every d ≥ 2, p ≥ 1, α > 0 and λ > 0, problem (0.0.1) has minimisers. Moreover,
there exists C = C(d,p,α) > 0 such that if E = ∪Ii=1E

i is such a minimiser with Ei the connected
components of E, then

I∑
i=1

diam(Ei) ≤ C(1 +λ)
(d−1)(1+p)

1+αp and inf
i

diam(Ei) ≥ 1
C

(1 +λ)−
1+p

1+αp .

As a consequence I ≤ C(1 +λ)
d(1+p)
1+αp (in particular E has finitely many connected components).

This result was first obtained in the case d = 2 in [13] and then extended to the case d ≥ 3

in [77] but under the assumption that λ is small together with some restrictions on α. As

explained in the previous section, the idea of the proof, by now well-established in the context

of geometrical analysis, is to follow a concentration-compactness type argument. We first

show that thanks to the isoperimetric inequality, lack of compactness for minimising sequences

can only come from splitting of the mass. This leads to the existence of so-called generalised

minimisers. We then show that these generalised minimisers are actually Λ−minimisers of the

perimeter (see [60, Section 21] for a definition) and therefore have uniform density bounds. As

a direct consequence we obtain that they are made of a finite number of uniformly bounded

connected components (Ei)Ii=1. Additionally, for any 1 ≤ 1 ≤ I , the boundary ∂Ei of Ei can be

identified (up to a set of null Hd−1 measure) with its reduced boundary ∂∗Ei , and ∂∗Ei is a C1,γ

set for any 0 < γ < 1/2 (see e.g. [60, Chapter 15 ] for a definition of the reduced boundary). At

this point the proof of the existence is concluded as in [13] using the fact that the non-local

energyWp
p is additive for sets which are sufficiently far apart.

The second main result we obtained was that if λ is small enough, then (0.0.1) is uniquely

minimised by balls.

Theorem 0.0.3. For every d ≥ 2, p ≥ 1 and α > 0, there exists λ0 > 0 such that for every λ ≤ λ0, balls
are the only minimisers of (0.0.1).

Let us first point out that if we consider the volume as the relevant parameter and replace

(0.0.1) by (0.0.5) then by scaling we obtain that balls are the unique minimisers for small m if

α
(
1 + p

d

)
+ 1
d > 1 while balls are the unique minimisers for large m if α

(
1 + p

d

)
+ 1
d < 1. Again, this

result is neither surprising by its statement nor by the strategy to prove it. Indeed, following

the pioneering work of Cicalese and Leonardi which gave in [28] an alternative proof of the

quantitative isoperimetric inequality, it has been understood that such stability results may be

obtained by combining the regularity theory for Λ−minimisers of the perimeter together with a

(usually delicate) Taylor expansion of the energy around the ball. This second part of the proof

is often referred to as a Fuglede type argument, see [45]. The main difficulty here is that our non-

local energy depends in a very implicit way on the competitor. Moreover the underlying PDE is

the Monge-Ampère equation, which is non-linear, making it very difficult to use standard tools
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from shape optimisation such as shape derivatives. We go around this difficulty by plugging

the Kantorovich potentials corresponding to the ball into the dual formulation of the optimal

transport problem.

More precisely, the starting point of the proof of Theorem 0.0.3 is to establish that for λ

small enough, any minimiser Eλ of (0.0.1) is a nearly spherical set. Using the quantitative

isoperimetric inequality (see e.g. [46]) and comparing the energies of Eλ and of B1, up to

translation we have

|Eλ∆B1|2 ≤ C (Per(E)−Per(B1)) ≤ Cλ
([
Wp
p (B1)

]α
−
[
Wp
p (Eλ)

]α)
≤ Cλ

[
Wp
p (B1)

]α
. (0.0.16)

Therefore, Eλ→ B1 in L1 to B1 as λ→ 0. Using the properties of Λ-minimisers of the perimeter,

we show in Chapter 1 that Eλ is actually smooth and that the convergence holds in C1,γ for any

γ < 1/2. Then, using the classical result from [3] for nearly-spherical sets yields∫
∂B1

f 2 ≤ C(Per(Eλ)−Per(B1)),

where f : ∂B1→R is the function parametrizing the graph of Eλ:

∂Eλ = {(1 + f (x))x : x ∈ ∂B1}.

The heart of the proof of Theorem 0.0.3 is then to establish the following Taylor expansion of

the energy of Eλ around the ball:

[
Wp
p (B1)

]α
−
[
Wp
p (E)

]α
≤ C

∫
∂B1

f 2,

for some constant C = C(d) > 0. Using this equation together with (0.0.16), we have∫
∂B1

f 2 ≤ C(Per(Eλ)−Per(B1)) ≤ Cλ
([
Wp
p (B1)

]α
−
[
Wp
p (Eλ)

]α)
≤ Cλ

∫
∂B1

f 2.

From this chain of inequalities we can conclude that for λ > 0 small enough f = 0, so that Eλ
must be B1.

Chapter 2

The second chapter of the manuscript corresponds to the submitted article [20], written in

collaboration with M. Goldman and B. Merlet. We study the optimisation problems associated

with functionals which favour dispersion and are based on some Wasserstein energies. These

functionals correspond to the non-local term of the energy studied in [19, 13, 70, 77, 64]. More

precisely, we drop the perimeter term in the energy functional of Chapter 1 (which was defined

as E = Per +λWp) and focus on the perturbation termWp and its corresponding maximization
problem defined by (0.0.4). In this problem, Wp is replaced by a more general functional Υ

which allows us to consider other cost functions than c(x,y) = |x − y|p. The main goal of the
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chapter is to investigate the existence of maximisers for this problem and to characterise these

latter.

If we apply the direct method of the Calculus of Variations, we obtain that, up to extraction,

any maximising sequence En converges weakly to some function u∞ ∈ L1(Rd , [0,1]). However,

there is no guarantee at this point that u∞ is a characteristic function or has mass m. Our

strategy is to replace the functional Υ by a functional Υfun defined on L1(Rd , [0,1]). We then

characterise the maximisers of the relaxed problem and are able to show that the supremum

in (0.0.4) is actually reached. This relaxation approach is not new: it was successfully applied to

several variational problems in the last few years (see for instance [27, 8, 69, 12]).

Next, we relax problem (0.0.4) as follows. Given f ∈ L1(Rd , [0,1]), the set of admissible

exterior transport plans is defined as

Πf =
{
γ ∈M+(Rd ×Rd) : γx = f , γy ≤ 1− f

}
.

We then define the primal problem

Υfun(f ) = inf
{∫

cdγ : γ ∈Πf

}
.

Under mild assumptions on c, we prove that there holds Υfun(χE) = Υ (E). Given m > 0, our

maximisation problem is now

Efun(m) = sup
{
Υfun(f ) : f ∈ L1(Rd , [0,1]),

∫
f =m

}
.

In what follows, Efun(m) is called the exterior energy.

The first important result of this chapter is that maximisers of E(m) exist whenever c is of

the form c(x,y) = k(y − x) for some k : Rd →R+ which satisfies

(H1) k ∈ C(Rd ,R+), k(0) = 0 and k(x)→∞ as |x| →∞,

(H2) ∀x , 0,

limsup
r→0

1
rd

∣∣∣Br(x)∩ {y ∈Rd , k(y) < k(x)}
∣∣∣ > 0,

(H3) ∀σ ∈ Sd−1, r 7→ k(rσ ) is increasing on R+.

Observe that all the costs of the form k(z) = |z|p with 0 < p <∞ satisfy the above hypotheses.

Theorem 0.0.4. Assume that c(x,y) = k(y − x) for x,y ∈ Rd with k satisfying (H1), (H2) & (H3).
Then, for any m > 0 the supremum in Efun(m) is a maximum. Moreover, there exists R∗ = R∗(m) such
that (up to translation) any maximiser is supported in the ball BR∗ .

Once the existence of maximisers for Efun(m) is established, we use a concept known as

the bathtub principle to show that maximisers are characteristic functions of sets. This finally

allows us to show that (0.0.4) admits solutions.
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Corollary 0.0.5. Assume that c satisfies the hypotheses of Theorem 0.0.4. Then, (0.0.4) admits a

maximiser and Efun(m) = E(m) for any m > 0.

As a second main result, we establish that if k is furthermore radially symmetric then Efun(m)

and E(m) are uniquely maximised by balls of volume m.

Theorem 0.0.6. Assume that c(x,y) = k(|y − x|) for some k ∈ C(R+,R+) (strictly) increasing and
such that k(0) = 0 and k(x)→∞ as x→∞. Then, for any m > 0, the maximisers of Efun(m) (and
consequently those of E(m)) are the balls of volume m.

We point out that cost functions satisfying the hypotheses of Theorem 0.0.6 also satisfy

hypotheses (H1), (H2) & (H3).

The proofs of Theorems 0.0.4 and 0.0.6 all strongly rely on the properties of the dual problem

Υ ∗fun(f ) := sup
{∫

f ϕdx+
∫

(1− f )ψdy : (ϕ,ψ) ∈ Φ
}
,

where

Φ :=
{
(ϕ,ψ) ∈ Cb(Rd)×Cb(Rd), ψ ≤ 0, ϕ(x) +ψ(y) ≤ c(x,y) ∀ (x,y) ∈Rd ×Rd

}
.

We establish Theorem 0.0.4 using the direct method of Calculus of Variations. The main

difficulty is to establish compactness of maximising sequences. If we refer to the concentration-

compactness principle [58], we have to prove that given a maximising sequence fn, no mass

escapes at infinity. To do so we establish two crucial results. The first one is that m 7→ E(m)/m is

increasing. This implies that m 7→ Efun(m) is strictly superadditive, i.e. that for m >m′ > 0,

Efun(m) + Efun(m−m′) < Efun(m). (0.0.17)

Notice that this is the counterpart of the strict subadditivity inequality (also called binding

inequality) which is known to provide compactness in minimisation problems, see e.g. [58,

43, 44]. Using the dual formulation Υ ∗fun of Υfun, we obtain the second crucial result for

Theorem 0.0.4: a monotonicity principle on the sum of marginals of maximisers γ of Υfun(f ).

Combining this and (0.0.17), we prove that if f is almost maximising then most of its mass must

remain in a bounded region. This gives tightness of maximising sequences for Efun(m).

To prove Corollary 0.0.5, we consider a maximiser f of Efun provided by Theorem 0.0.4 and

a pair of potentials (ϕ,ψ) optimal for the dual problem Υ ∗fun(f ). Using the definition of Υ ∗fun we

see that f is a maximiser of

sup
{∫

f̃ (ϕ −ψ) : 0 ≤ f̃ ≤ 1,
∫
f̃ =m

}
.

By the bathtub principle, f = χ{ϕ−ψ>t} +θ for some t ∈R and some θ ∈ L1(Rd , [0,1]) supported

in {ϕ −ψ = t}. Then for any measurable subset G ⊂ {ϕ −ψ = t} with |G| =
∫
θ , the characteristic

function of E := {ϕ −ψ > t} ∪G is also a maximiser for Υfun(f ). Exploiting uniqueness and a
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saturation result on the marginals of the optimal exterior transport plan for E, we obtain that

there exists F ⊂R
d such that any minimiser γ of Υfun(χE) satisfies γy = χF . This finally implies

that E maximises (0.0.4).

Regarding Theorem 0.0.6 we may assume that m = ωd . We begin the proof by showing that

the double supremum problem

sup
∫ f =ωd

 sup
(ψc ,ψ)∈Φ

{∫
f (ψc −ψ) +

∫
ψ

} , (0.0.18)

coincides with Efun(m) and admits a solution (f ,ψc,ψ), where ψc is the c-transform of ψ, i.e. for

x ∈Rd

ψc(x) = inf
y∈Rd

{
k(|y − x|)−ψ(y)

}
. (0.0.19)

To show that balls are maximisers of Efun(m), we then establish that each term in (0.0.18) is

improved by replacing f by χB1
and ψ by its symmetric increasing rearrangement ψ∗ (i.e. ψ∗

is the unique radially symmetric function whose sublevel sets are the same as the ones of ψ).

This is quite an involved computation, which requires an extensive use of the Hardy-Littlewood

and Brunn-Minkowski inequalities. The uniqueness part of the proof of Theorem 0.0.6 is

then established by using the characterisation of the objects for which equality holds in the

Hardy-Littlewood and the Brunn-Minkowski inequalities.

Chapter 3

The goal of this chapter is to numerically investigate (0.0.1) in the case α = 1 and p = d = 2.

Recall that in Chapter 1 we establish two main results regarding this problem: Theorem 0.0.2

on the existence and density estimates for its minimisers and Theorem 0.0.3 on the fact its

minimisers are balls if λ is small enough (or if m is small enough if one considers the equivalent

problem (0.0.5)).

More precisely, in Chapter 3 we provide answers or conjectures related to the following

questions:

• how does the geometry of minimisers of (0.0.1) evolves as m varies in [0,∞)? In particular,

is radial symmetry preserved ?

• Among radially symmetric minimisers, can we observe a transition from a ball to an

annulus as m increases?

• Is the transition sharp, or does an intermediate regime exist between the cases m≪ 1 and

m≫ 1?

To address these questions, we perform two types of numerical explorations. The first one

concerns Problem (0.0.2) restricted to radially symmetric and connect sets:

inf
E

{
Per(E) +λW2

2 (E) : E radially symmetric and connected, |E| = π
}
. (0.0.20)
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Figure 3: Energies of annuli of inner radius rm (blue) and of the unit disk (orange).

The method we use for the computation of the energy of radially and connected sets is described

later in this section.

The other exploration is conducted in the general case with non symmetry assumption. To

implement a suitable algorithm in the non-radially symmetric case, it is convenient to replace

the perimeter and Wasserstein functionals in (0.0.1) by smoother, approximate functionals.

We then use a gradient descent algorithm to generate a sequence of shapes minimising the

approximate energy.

Regarding Problem (0.0.20), let us denote by Ar the annulus of inner radius r and mass π,

and by Ar,r ′ a generic annulus of inner radius r and outer radius r ′. We numerically observe the

following, which we state as a conjecture:

Conjecture 0.0.7. There exist 0 < λ1 < λ2 (where λ1 ≈ 4.95 and λ2 ≈ 5.55) such that:

• for 0 ≤ λ ≤ λ1, the unit disk B1 is the unique local and global minimiser of (0.0.20),

• for λ > λ1, (0.0.20) has two local minimisers : B1 and an annulus Arλ where rλ > 0,

• for λ1 < λ < λ2, the unit disk B1 is the only global minimiser of (0.0.20),

• for λ = λ2, (0.0.20) has two global minimisers: B1 and a annulus Arλ where rλ > 0,

• for λ > λ2, the unique global minimiser of (0.0.20) is an annulus Arλ where rλ > 0.

These guesses follow from the graphs presented in Figure 3 where the function rm 7→ Eλ(rm) =

Per(Arm) +λW2
2 (Arm) is represented. Each of the graphs corresponds to a different value of λ. To

ease the comparison, we also give the graph of the constant function equals to the energy of the

unit disk.

Let us now explain briefly how we compute the energy of a annulus Arm for some rm > 0. Its

outer radius rM is fixed by the mass constraint, so that computing its perimeter presents can be
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Figure 4: The annulus Arm,rM and its corresponding minimiser Asm,rm ∪ArM ,sM .

done explicitly. As for its exterior transport, we show in Chapter 3 that the optimal exterior

set F corresponding toW2
2 (Arm) is the reunion of one interior ring Asm,rm and one exterior ring

adjacent to Ar (see Figure 4). Additionally, the optimal exterior map between Arm and F is the

c-cyclically monotone one. Therefore, the only parameter needed to determineW2
2 (Arm) is the

splitting radius rc for which sending Arm,rc to Asm,rm and Arc ,rM to ArM ,sM is optimal in terms of

energy.

We solve this problem by developing the expression of the transport cost τ(rc) of sending

Arm,rc to Asm,rm and Arc ,rM to ArM ,sM using the c-cyclically monotone, optimal transport map. We

observe numerically that rc 7→ τ(rc) is a convex and C1 function on [rm, rM ]. We are thus able to

solve the equation τ ′(rc) = 0 using a variant of the secant method. This eventually allows us to

computeW2
2 (Arm).

Next, let us comment the results provided by the numerical simulations of the non-radially

symmetric case. Recall that we obtain them by implementing a gradient descent on the energy

E and solving the corresponding evolution equation by Lie splitting.

In a first experiment, whose result is depicted in Figure 5 below, we confirm the local

minimality of unit disks for any λ ≥ 0. We refer the reader to Chapter 3 for more experiments.

Let us now comment the experiment which gave us the most surprising results. We observe

that when starting with initial data that exhibits highly non-radial symmetry, the final data

does not converge to a radially symmetric shape. Instead, the initial shapes tend to evolve into

thin, elongated forms with two axes of symmetry (see Figure 6 below). This leads us to consider

the conjecture that thin and elongated shapes are the preferred minimisers as λ→∞, and not

annuli. Refer to the last section of this introduction for a discussion on potential developments
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Figure 5: Starting with a perturbed ball (λ = 1).

on this matter.

Chapter 4

The last chapter of the manuscript focuses on general perturbed isoperimetric problems. Recall

that an archetype of those kind of variational problems is Gamow’s liquid drop model for

the atomic nucleus [47], which correspond to (0.0.10). As explained before, the goal of this

variational problem is to model an attractive, short-range force inducing surface tension (the

“perimeter" term) that competes with a repulsive term V acting at a greater distance (the

“perturbation" term, which is often nonlocal). This competition plays a pivotal role in the wide

range of geometries the perturbed isoperimetric problem can describe (see for instance [55,

Figure 1]) and both the physics and mathematics communities have explored numerous variants

of this problem.

In this chapter we study the version of this problem defined in (0.0.6), where the energy is

the sum of a nonnegative, perimeter-like term P and a perturbation term V . For instance, P may

be the s-perimeter or anisotropic perimeter, while V can be the repulsive term given in (0.0.10)

or the exterior transport costWp. We also study the generalised problem (0.0.7) and discuss its

similarities and differences with Problem (0.0.6).

Let us additionally mention that beyond the issue of existence of solutions, the question

of their regularity is a significant aspect of the study of isoperimetric problems. A first step

towards establishing regularity properties of minimisers is often to prove that they have density

estimates. Recall that a set E admits interior (resp. exterior) density estimates when there exists
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Figure 6: Starting with an ellipse and with a pacman (λ = 10).

c0, r0 > 0 such that for any 0 < r ≤ r0 and x ∈ E (resp. Ec),

|E ∩Br(x)| ≥ c0 r
d (resp. |Ec ∩Br(x)| ≥ c0 r

d ).

Our goal is to exhibit in the case V , 0 general assumptions under which:

− (0.0.6) and (0.0.7) coincide,

− (0.0.7) admits solutions,

− solutions of (0.0.7) have density estimates.

Let us denote by (ei)
d
i=1 the canonical basis of Rd . Our first result is that (0.0.6) and (0.0.7)

coincide under the following set of assumptions (S1).

• Energy of small balls: E(Br )→ 0 as r→ 0 and E(∅) = 0.

• Convergence at infinity: For any set E with |E| <∞, E(E ∩BR)→E(E) as R→∞.

• Vanishing range of action: If E,F are bounded, then E(E∪ (F +Le1))→E(E) +E(F) as L→∞.

Proposition 0.0.8. Assume that E satisfies (S1). Then the infima in (0.0.6) and (0.0.7) coincide.

We then show that (0.0.7) admits minimisers. To prove this result we rely on the functionals

E 7→ P (E,U ) and E 7→ V (E,U ), which are defined relatively to a Lebesgue measurable set U . By
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convention, we write P (E,Rd) = P (E) and V (E,Rd) = V (E). For the sake of conciseness we do

not list the complete set of assumptions (S2) here (see the introduction of Chapter 2), but we

will highlight some of the key points after the statement of the theorem.

Theorem 0.0.9. Assume that the relative functionals of P and V satisfy (S2) and that (0.0.6) and
(0.0.7) coincide. Then, (0.0.7) admits a solution.

In the framework of the concentration-compactness principle, the lower semi-continuity

of P (·,U ) and V (·,U ) for the L1
loc-convergence is required. Additionally, one needs hypotheses

guaranteeing that a minimising sequence (En)n for (0.0.6) has uniformly bounded perimeter

(e.g. V ≥ 0 is sufficient, but more general energies are included), and that sequence of uniformly

bounded perimeter are compact for the L1
loc topology. Lastly, an important technical tool is the

relative isoperimetric inequality, i.e. the existence of r0 > 0 and f1 : R+→ R+ increasing with

f1(0) = 0, m 7→ f1(m)/m nonincreasing and limm→0 f1(m)/m =∞ such that for r ≤ r0, x ∈Rd and

E ⊂R
d :

min
(
f1(|E ∩Br(x)|), f1(|Br(x) \E|)

)
≤ P (E,Br(x)).

This last inequality is fundamental because it allows to exhibit a candidate minimiser (Ei)i
using the following method (which we describe formally). Given a minimising sequence (En)n
for (0.0.7), we keep track of all the components (Ein)i,n which may “flee at infinity” and then

define a limit set Ei = limEin for the L1
loc topology. Repeating the process over i ≥ 1 yields the

candidate (Ei)i , and using the relative isoperimetric we prove that
∑
i |Ei | =m. Let us stress the

fact that this whole process is a slight generalization of the method employed in Chapter 1 to

show that (0.0.7) admits a solution in the case where P = Per and V =Wp
p .

In the second part of the chapter, we show that ρ-minimisers of the perimeter (see [60,

Section 21] for the related concept of (Λ, r0)-minimisers of the perimeter) have interior and

exterior density estimates under the set of hypotheses (S3) (we refer to Chapter 4 for the precise

list of the hypotheses).

Definition 0.0.10. Let ρ : R+→R+ be nondecreasing. We say that E ⊂R
d is a ρ-minimiser of

the perimeter (or simply a ρ-minimiser) if there exists r2 > 0 such that for any r ≤ r2, x ∈Rd and

E′ ⊂R
d with E∆E′ ⊂ Br(x) we have

P (E) ≤ P (E′) + ρ(r). (0.0.21)

The function ρ is called the error function for E.

Theorem 0.0.11. Let E ⊂ R
d be a ρ-minimiser of the perimeter for some error function ρ. If (S3)

holds, then there exists C0, r4 > 0 such that for r ≤ r4,

|E ∩Br(x)| ≥ C0r
d for every x ∈ E(1) (0.0.22)

and
|Br(x) \E| ≥ C0r

d for every x ∈ E(0), (0.0.23)

where for t ∈ [0,1], E(t) denotes the points of density t of E.
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The method employed to establish this kind of theorems is now well understood. Since the

publication of De Giorgi’s seminal papers on the classical isoperimetric problem in the 1950s,

various strategies have been developed to address isoperimetric problems where the considered

perimeter is anisotropic or nonlocal, or with different perturbation terms. However, most of

these proofs revolve around the same idea: once the problem of relaxing the mass constraint is

dealt with, one tests the minimality of E against E \Br (resp. E ∪Br ) for r small enough, so that

one obtains

E(E) ≤ E(E \Br ) (resp. E(E) ≤ E(E ∪Br )). (0.0.24)

Then, if P and V are regular enough one may prove that P (E) and P (E \Br ) (resp. P (E∪Br )) and

V (E) and V (E \Br ) (resp. V (E ∪Br )) coincide up to a small error term. One may thus apply the

relative isoperimetric inequality to E (resp. Ec), inject it in (0.0.24) and integrate the resulting

inequality to obtain interior (resp. exterior) density estimates (see [60, Remark 15.16]).

At the end of the second part of this chapter, we establish the connection between generalised

minimisers and ρ-minimisers. We prove that generalised minimisers of (0.0.7) are ρ-minimisers

of the perimeter for some ρ in two different situations: a case where P and V admit volume-fixing

variations and a case where P and V have a scaling property.

Proposition 0.0.12. Assume that the relative functionals of P and V satisfy (S4) and either both
admit a scaling or both admit volume-fixing variations. Then every component of a generalised
minimiser of (0.0.7) is a ρ-minimiser of the perimeter for an error function ρ.

The purpose of the volume-fixing variations (or scaling) property is to allow us to compare

the energy Ei with the energy of a set E′ such that Ei∆E′ is localised in a small ball of R
d .

Eventually, we obtain that Ei is a ρ-minimiser of the perimeter.

Perspectives

To conclude this introductory chapter, we present several interesting questions that emerged

during the course of this thesis, but remain unanswered or partially answered.

Recall that in Chapter 1 we studied Problem (0.0.1) and proved in Theorem 0.0.3 that there

exists λ0 > 0 such that for λ ≤ λ0, the unique minimisers of (0.0.1) are balls. One interpretation

of this result is that when λ is small the perimeter is the dominant term and the problem can be

seen as a small perturbation of the isoperimetric problem. One may thus wonder: what happens

when λ is large? In this case, the exterior transport cost becomes the dominant term.

In the regime λ≫ 1, the quantitative isoperimetric inequality cannot be used anymore to

show that minimisers are close to balls in C1,γ norm for any γ < 1/2. Thus, Flugede’s results

on quasi-spherical sets are no longer applicable. Let us set α = 1, so that the regime λ≫ 1 in

(0.0.1) is equivalent to the regime m≫ 1 in (0.0.5). Note that considering

inf{(Wp
p (E))α : |E| =m} (0.0.25)

to gain insight on the behaviour of solutions of (0.0.1) in the regime of large masses yields an

ill-posed problem. Indeed, let us consider in the case p = d = 2 a set EN made N balls of radius
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Figure 7: A set EN made of N balls (in blue) and its corresponding minimiser (in red).

rN (see Figure 7), so that Nπr2
N =m. Sending each ball to the annulus of same mass surrounding

it moves mass by at most rN , so thatW2
2 (EN ) ≤ r2

Nm =m3/Nπ. Letting N →∞ we obtain that

the infimum in (0.0.25) is 0, so that this problem cannot be used as a reference in the asymptotic

development λ = +∞.

We now take the perimeter back into consideration and compute some asymptotic estimates

for potential minimisers of E in the regime m≫ 1. First notice that regarding the set EN made

of N ball of radius rN , we have Per(EN ) = N2πr. Additionally, thanks to the computations of

Chapter 3 we know the exact value of α2 =W2
2 (B1). By scaling, if the balls defining EN are

sufficiently far apart, we have

W2
2 (EN ) =NW2

2 (Br ) =Nr4W2
2 (B1) =Nr4α2.

Using the mass constraint Nπr2
N =m to eliminate rN , we obtain regarding the total energy:

E(En) = 2
√
Nπm+

α2m
2

Nπ2 .

optimising this value in N yields that N = α2/3π−5/3m (assuming that N ∈ R+ for the sake of

this estimate). Thus the total energy is of the form

E(En) =

2α1/3
2

π1/3
+

1

π1/3α1/3
2

m ∼ 2.05m. (0.0.26)

Following the heuristics of [70, Section 2], we can exhibit another type of minimisers favoured
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in the regime m≫ 1. First notice that formally,Wp prefers elongated and thin shapes with most

of its mass close to its boundary.

Let us explore the case of a rectangle E of length L > 0 and of width ℓ =m/L. As a candidate

for the minimisation problem defined byW2(E), we consider the set F made of two rectangles

F1 and F2 of length L and width ℓ/2, placed on each side of E. A possible transport between E

and F is to split E in two lengthwise and send each sub-rectangle of E to F1 and F2, so that each

point of E travels a distance of ℓ/2 (see Figure 8). ThusW2
2 (E) ∼mℓ2/4. Additionally, we have

Per(E) = 2L+ 2ℓ = 2L+ 2m/L, so that eliminating ℓ yields

E(E) ∼ 2L+
2m
L

+
m3

4L2 .

Let us substitute L = 2−2/3m in this expression to obtain an expansion of E of order 1 in m . This

yields

E(E) ∼ 25/3 +m
(
21/3 + 2−2/3

)
∼ 3.17 + 1.89m. (0.0.27)

For large values of m, the rectangle E is a long thin stripe and the constant term 25/3 can be

viewed as a boundary effect of the extremities of the stripe.

We may try to eliminate this contribution by folding the rectangle E back on itself: more

precisely, we consider now an annulus A of inner radius R > 0 and width ℓ. Assuming that ℓ≪ R,

we have |A| ∼ 2πRℓ = m and Per(A) ∼ 4πR. As R→∞, the annulus A will locally resemble a

rectangle, so that we can use a similar transport method on it to ease the computations. We cut

the annulus along its mean radius, and have each point travel a distance approximately equals

to ℓ/2 to leave A and join the inner (our outer) annulus adjacent to A. Therefore,

E(A) ∼ 4πR+
ℓ2m

4
= 4πR+

m3

16π2R2 (0.0.28)

optimising this energy in R yields that R =m/(2 · 41/3π). We then recover the expansion of the

rectangle, minus the constant term 25/3:

E(A) ∼
(
21/3 + 2−2/3

)
m ∼ 1.89m.

Let us however point out that this expansion corresponds to the energy of an annulus of infinite

radius. In practice, we expect that the curvature of an annulus of inner radius R > 0 contributes

to its exterior transport energy as a higher order penalizing term. Additionally, notice that

while we underestimate the energy of the annulus in (0.0.28), we overestimate the energy of

the rectangle in (0.0.27). This is a consequence of our choice of exterior transport map: the

optimal exterior transport map would actually send some mass across the two shorter sides

of the rectangle, and not only across its longer sides. We also believe that smoothing the two

shorter sides of the rectangle and turning them into two half disk could further lower, see the

final data of Figure 6 for a possible representation of these sausage-like minimisers.

These considerations lead us to formulate the following conjecture:

Conjecture 0.0.13. There exists m0 > 0 such that the minimisers of Problem (0.0.5) stated with
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E
F2F1

ℓ

L

Figure 8: A possible exterior transport map for the rectangle E.

α = 1 and p = d = 2 are balls for m ≤m0 and stadium-like shapes (thin, elongated and with two

axes of symmetry) for m >m0.

Let us additionally mention that in the general case, the preferred geometry of the minimisers

should also depend on the values of p ≥ 1 and d ≥ 2.

As a closing remark on this topic, let us stress the fact that the analysis conducted in [70] to

obtain a Γ -convergence result relied on the geometrical properties of the 1-Wasserstein distance.

More precisely, as in this case the transport cost is the Euclidean distance, it is possible to show

that the optimal transport takes place along segments called transport rays (see e.g. [73, Section

3]) which cannot cross each other. This phenomenon allows for explicit computations in the

case p = 1 but does not occur when p > 1, which heavily complicates the investigation.

Let us now point out some conjectures linked to the numerical computations conducted in

Chapter 3. When we replaced problem in (0.0.1) by

inf
|E|=m

{
Per(E) +W2

2 (E) : E radially symmetric and connected
}
,

we excluded non-connected radial structures, i.e. the reunion of several disjoint annuli, from

our study. Usually, to obtain information on the connectedness of minimisers, a first step is to

establish that m 7→ e(m)/m is decreasing, where e(m) is the value attained by the infimum in

(0.0.1): this would indicate a preference in the problem for concentration of mass. Unfortunately,

our simulations suggest that this is not the case and that e(m)/m is increasing on a non-empty

interval. Therefore, proving that radially symmetric minimisers are connected is still an open

problem. It is also worth recalling that as of now, we do not believe that minimisers of (0.0.1)

are radially symmetric for large values of m.

Furthermore, it should be noted that the computations of Chapter 3 on the radially symmet-

ric case rely on several conjectures on the external transport functional for the annuli. Recall

that given an annulus Arm of mass m and inner radius rm and outer radius rM the exterior

transport is determined by the critical radius rc separating the parts of Arm that are sent inwards
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and outwards. Notice that the largest possible interior ring for the exterior transport of Arm is

the ball Brm , which yields the constraint rc ≤
√

2rm. Thus if we define r̂M = min(rM ,
√

2rm), we

have

W2
2 (Arm) = inf {τ(rc) : rc ∈ [rm, r̂M ]} ,

where τ(rc) is the cost of sending Arm to F = Asm,rm ∪ArM ,sM , and the radii sm and sM are fixed

by conservation of the mass. We have yet to theoretically confirm our numerical observation

that τ is strictly convex on [rm, r̂M] and that τ ′(rm) < 0. The simulations also suggested that

rm 7→ W2
2 (Arm) was smooth on R+ \ r1

m, where r1
m is the supremum of the inner radii rm such that

the exterior transport of Arm completely fills Brm : this conjecture could also be investigated.

Lastly, it is worth mentioning that the generalised problem considered in Chapter 4 and

defined in (0.0.6), where P and V not given by explicit formulas but are assumed to satisfy a list

of properties, can be even further generalised. Indeed, we believe that many results obtained in

Chapter 4 could be extended to the case of clusters of Rd . Let J ∈N∪ {∞} be fixed. We say that

E =
(
Ej

)J
j=1

is a J-cluster in R
d if each Ej is a Borel set of Rd and |Ej1 ∩Ej2 | = 0 if j1 , j2. We then

set m(E) = (|Ej |)
J
j=1 and

P (E) =
1
2

J∑
j=1

P (Ej ) +
1
2
P

 J⋃
j=1

Ej

 , (0.0.29)

where P denotes a non-explicit perimeter functional. We assume that this perimeter term

competes against a non-explicit perturbative functional of the form

V (E) = V
(
E1, E2, . . . , EJ

)
,

so that the total energy of a cluster is given by

E(E) = P (E) +V (E).

Additionally, we say that (Ei)i≥1 is a generalised cluster in R
d if for any i ≥ 1, Ei is a J-cluster in

R
d . We then define

m
(
(Ei)i≥1

)
=

∑
i≥1

|Ei1|, . . . ,
∑
i≥1

|EiJ |

 , P (
(Ei)i≥1

)
=

∑
i≥1

P (Ei) and V
(
(Ei)i≥1

)
=

∑
i≥1

V (Ei).

The energy of a generalised cluster is

Ẽ
(
(Ei)i≥1

)
= P

(
(Ei)i≥1

)
+V

(
(Ei)i≥1

)
.

Let m = (m1, . . . , mJ ) with mj > 0 for any 1 ≤ j ≤ J be fixed. We consider the two following

problems

inf
E

{
E(E) : E J − cluster, m(E) = m

}
(0.0.30)
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and

inf
(Ei )i

{
Ẽ
(
(Ei)i≥1

)
: (Ei)i≥1 generalised J − cluster, m

(
(Ei)i≥1

)
= m

}
. (0.0.31)

Refer to [74] for a study of a three-phase cluster where the energy functional is derived from

Nakazawa and Ohta’s density functional theory for block copolymers. See also [30] for an

investigation of isoperimetric clusters for the fractional perimeter and for V = 0, where existence

of minimisers is shown as well as partial regularity results.

In the very simple case of no interaction between phases in the perturbative term, where

V (E) =
J∑
j=1

V (Ej ),

Propositions 0.0.8 and 0.0.9 extend to finite clusters without much modification of the proofs.

We believe that they may be extended to the case of infinite clusters as well. In the case V = 0,

these two propositions were obtained for J =∞ in [66].

When V cannot be decomposed as a sum of independent terms, our guess is that additional

hypotheses are needed to establish Propositions 0.0.8 and 0.0.9. Additionally, establishing

a version of Theorem 0.0.11 on density estimates for clusters or generalised clusters may be

quite involved. One of the issues is the relaxation of the mass constraint in (0.0.30) or (0.0.31),

even in the case where P and V admits a scaling: indeed, rescaling a given phase may cause

it to overlap on the other phases. The classical strategy is thus to establish what is called a

volume-fixing lemma: this approach was famously applied by Almgren in [3] to the case V = 0

to obtain existence and regularity of J-minimising clusters solving (0.0.30) (see also [60, Section

29]). Again, difficulties arise when a given phase Ej for 1 ≤ j ≤ J is totally surrounded by other

phases: if one considers a local perturbation near the boundary of Ej to achieve an arbitrary

(but suitably small) change in the volume of Ej , the effect of this perturbation on the energy of

the surrounding phases has to be accounted for. In particular, we expect further complications

when V is not comparable to the perimeter term, i.e. when it is not of the form

V (E) =
∑
i,j

Vi,j(Ei ,Ej ).





Chapter1
Existence and stability results for an
isoperimetric problem with a non-local
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Abstract. The aim of this chapter is to prove the existence of minimisers for a variational

problem involving the minimisation under volume constraint of the sum of the perimeter and a

non-local energy of Wasserstein type. This extends previous partial results to the full range of

parameters. We also show that in the regime where the perimeter is dominant, the energy is

uniquely minimised by balls.
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1.1 Introduction

In this chapter we consider a variational problem first proposed in [70] as a model describing

the formation of bi-layers cellular membranes. Our first main result is the proof of the existence

of minimisers in every space dimension and for every value of the parameters in the model.

27
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This extends previous results obtained in [13, 77] to which we refer for further motivation of the

problem. Our second main result is a proof of the minimality of the ball in the regime where

the perimeter is dominant. To be more concrete, denoting by Wp the Wasserstein distance for

p ≥ 1 (see [76]) and identifying a set E ⊂R
d with the restriction of the Lebesgue measure to E,

we introduce the non-local energy

Wp(E) = inf
|F∩E|=0

Wp(E,F). (1.1.1)

As already noticed in [13], this may be viewed as a projection problem for the Wasserstein

distance (see [36]). We then consider for λ,α > 0 the variational problem

inf
|E|=ωd

P (E) +λ
[
Wp
p (E)

]α
, (1.1.2)

where ωd is the volume of the unit ball and P (E) denotes the Caccioppoli perimeter of E, see

[60]. Let us point out that probably the two most interesting cases are α = 1 and α = 1
p . Our first

main result is the following (we use the letter C to denote a generic constant whose value can

change from line to line):

Theorem 1.1.1. For every d ≥ 2, p ≥ 1, α > 0 and λ > 0, problem (1.1.2) has minimisers. Moreover,
there exists C = C(d,p,α) > 0 such that if E = ∪Ii=1E

i is such a minimiser with Ei the connected
components of E, then

I∑
i=1

diam(Ei) ≤ C(1 +λ)
(d−1)(1+p)

1+αp and inf
i

diam(Ei) ≥ 1
C

(1 +λ)−
1+p

1+αp .

As a consequence I ≤ C(1 +λ)
d(1+p)
1+αp (in particular E has finitely many connected components).

Notice that we can actually say much more about the regularity of the minimisers, see

Remark 1.3.6. This result was first obtained in the case d = 2 in [13] and then extended to the

case d ≥ 3 in [77] but under the assumption that λ is small together with some restrictions

on α. The idea of the proof, which is by now well-established in the context of geometrical

variational problems (see e.g. [49, 55, 43, 67]), is to follow a concentration-compactness type

argument. We first show that thanks to the isoperimetric inequality, lack of compactness for

minimising sequences can only come from splitting of the mass. This leads to the existence of

so-called generalised minimisers (see Proposition 1.3.1). Then, we show following [13], that

these generalised minimisers are actually Λ−minimisers of the perimeter (see [60]) and therefore

have uniform density bounds. As a direct consequence, we obtain that they are made of a finite

number of uniformly bounded connected components. At this point the proof of the existence

is concluded as in [13] using the fact that the non-local energyWp
p is additive for sets which are

sufficiently far apart.

Our second main result is that if λ is small enough then (1.1.2) is uniquely minimised by

balls.
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Theorem 1.1.2. For every d ≥ 2, p ≥ 1 and α > 0, there exists λ0 > 0 such that for every λ ≤ λ0, balls
are the only minimisers of (1.1.2).

Remark 1.1.3. Let us point out that if we considered the volume as the relevant parameter and

replaced (1.1.2) by

min
|E|=m

P (E) +
[
Wp
p (E)

]α
,

then by scaling (see [77]) we would obtain that balls are the unique minimisers for small m if

α
(
1 + p

d

)
+ 1
d > 1 (which is essentially the case for which [77] obtained the existence of minimisers)

while balls are the unique minimisers for large m if α
(
1 + p

d

)
+ 1
d < 1.

Again, this result is neither surprising by its statement nor by the strategy to prove it. Indeed,

following the pioneering work of Cicalese and Leonardi which gave in [28] an alternative proof

of the quantitative isoperimetric inequality, it has been understood that such stability results

may be obtained by combining the regularity theory for Λ−minimisers of the perimeter together

with a (usually delicate) Taylor expansion of the energy around the ball. This second part of the

proof is often referred to as a Fuglede type argument, see [45]. Let us cite [54, 1, 41, 21, 63] as

a few examples where this strategy has been carried out. The main difficulty here is that our

non-local energy depends in a very implicit way on the competitor. Moreover, as opposed to

[1, 63, 50], the underlying PDE is non-linear (namely the Monge-Ampère equation) making it

very difficult to use standard tools from shape optimisation such as shape derivatives. We go

around this difficulty by plugging in the dual formulation of optimal transport the Kantorovich

potentials corresponding to the ball. This yields the estimate

Proposition 1.1.4. There exists C = C(d,p,α) > 0 such that for every set E such that |E| = |B1| and

∂E = {(1 + f (x))x : x ∈ ∂B1}

for some f : ∂B1 7→R with ∥f ∥∞ ≤ 21/d − 1,

[
Wp
p (B1)

]α
−
[
Wp
p (E)

]α
≤ C

∫
∂B1

f 2.

Related results in the literature. In the footsteps of [54] there has been an intense research

activity around isoperimetric problems with non-local interactions. Probably the simplest and

most studied one is the Gamow liquid-drop model where the non-local part of the energy is

given by a Riesz type interaction energy. For this model, it has been shown that generalised

minimisers exist and are balls for small volume (see [54, 41, 21, 67] and the review paper [26]).

However, as opposed to our setting, it has been proven for the liquid-drop model that under

some restrictions on the parameters, classical minimisers do not exist for large volumes (see [54,

44]). This is due to the long-range nature of the interactions induced by the Riesz kernel (in

comparison with Proposition 1.2.2). Indeed, for compactly supported kernels it is shown in [72]

that minimisers exist for all volumes (see also [68]).
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1.2 The non-local energy

In this section we gather a few useful results about the energyWp defined in (1.1.1). Most of

these results were obtained in the case of bounded sets in [13, 77] but often with quite different

proofs. We start with the well-posedness of (1.1.1) (see [77, Lemma 4.3] for comparison).

Proposition 1.2.1. There exists C = C(d,p) > 0 such that for every set E ⊂R
d ,

Wp(E) ≤ C|E|
1
p+ 1

d . (1.2.1)

Moreover, if |E| <∞, the minimisation problem (1.1.1) is attained by a unique minimiser F and if π
is an optimal transport plan1for Wp(E,F), we have the estimate

|x − y| ≤ C|E|
1
d for π − a.e. (x,y). (1.2.2)

Proof. We may assume without loss of generality that |E| < ∞ otherwise there is nothing to

prove. By scaling we can further assume that |E| = 1. In order to prove (1.2.1), we will construct

a partition (Ei)i≥1 of E such that each Ei can be transported with a well-controlled cost. To this

aim, consider a partition of Rd into cubes (Qi)i≥1 of sidelength ℓ = 21/d . Since |E| = 1, if we

define Ei = E ∩Qi we have |Ei | ≤ |Qi |/2 for every i. Therefore we can find a set Fi ⊂Qi such that

|E ∩Fi | = 0 and |Fi | = |Ei |. If Ti is the optimal transport map (in fact any transport map would

work) from Ei to Fi we have

sup
Ei

|Ti − x| ≤ C.

Finally, consider F = ∪iFi and T the map whose restriction to each Qi is Ti . The map T is a

transport map from E to F and

Wp(E) ≤Wp(E,F) ≤
(∑
i≥1

∫
Ei

|Ti − x|p
) 1
p

≤ C.

This proves (1.2.1).

Existence and uniqueness of a minimiser F for (1.1.1) follows from [36, Proposition 5.2]

(which is stated for p = 2, but generalises easily to any p ≥ 1) with f = χEc and Ω = R
d . Moreover,

as a consequence of [36, Proposition 5.2] we have

W̃p(E) = inf
µ

{
Wp(E,µ) : µ absolutely continuous, and 0 ≤ µ ≤ χEc

}
=Wp(E). (1.2.3)

and χF is also the unique minimiser of W̃p(E). Let π be an optimal transport plan for Wp(E,F)

and let us show (1.2.2). For this we adapt the proof of [77, Lemma 4.3] to the case of plans

instead of maps. Letting

Γ = {(x,y) ∈ sptπ : |x − y| ≥ C}
1for p > 1 we know from [76, Theorem 2.44] that π is unique and is induced by a map but for p = 1, since we do

not assume finite moments for E it does not follow from [76, Theorem 2.50].
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let us show that for C large enough, π(Γ ) = 0. Assume that it is not the case and let R be such

that |BR| = 3. Then, there exists x ∈ Rd such that m = π(Γ ∩ (BR(x) ×Rd)) > 0. Without loss of

generality we may assume that x = 0. Let πbad = χΓ∩(BR×Rd )π. Since |BR| − |E| − |F| ≥ 1 ≥ m > 0,

there exists µ̃ ≤ χBR(1−χE −χF) with µ̃(Rd) = πbad(Rd ×Rd). Finally let θ be the first marginal

of πbad and set

π̃ = π −πbad +
1
m
θ ⊗ µ̃.

It is readily checked that the first marginal of π̃ is χE and that its second marginal µ satisfies

µ ≤ χEc . We thus have on the one hand by definition of Γ

W
p
p (E,F) ≥

∫
(Γ∩(BR×Rd ))c

|x − y|pdπ+mCp.

On the other hand, by minimality of F for W̃p(E),

W
p
p (E,F) ≤W p

p (E,µ) ≤
∫

(Γ∩(BR×Rd ))c
|x − y|pdπ+m2pRp.

This implies C < 2R and concludes the proof that π(Γ ) = 0 if C is large enough.

We now turn to the super-additivity and lower semi-continuity of Wp (compare to [77,

Lemmma 4.4]).

Proposition 1.2.2. We have:

(i) If E and E′ are disjoint sets then

Wp
p (E ∪E′) ≥Wp

p (E) +Wp
p (E′). (1.2.4)

As a consequence, if E ⊂ E′ thenWp(E) ≤Wp(E′);

(ii) There exists C > 0 such that if

d(E,E′) ≥ Cmax(|E|
1
d , |E′ |

1
d ),

then
Wp
p (E ∪E′) =Wp

p (E) +Wp
p (E′);

(iii) If En converges in L1
loc to E then

Wp(E) ≤ liminf
n
Wp(En). (1.2.5)

Proof. To prove (i), let F be theWp-minimiser for E ∪E′, and π be an optimal transport plan

from E ∪E′ to F. Let µE be the second marginal of χE×Rdπ and µE′ be the second marginal of

χE′×Rdπ. By definition µE is W̃p-admissible (recall (1.2.3)) for E. Moreover, χE×Rdπ is an optimal
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transport plan between E and µE . The corresponding statement also holds for E′ instead of E.

Therefore, appealing once more to (1.2.3),

Wp
p (E) +Wp

p (E′) ≤W p
p (E,µE) +W p

p (E′ ,µE′ ) =
∫

(E∪E′)×Rd
|x − y|p dπ =Wp

p (E ∪E′).

Property (ii) is a direct consequence of (1.2.2). Indeed, if F and F′ are theWp-minimisers

for E and E′, by (1.2.2), |(E ∪F)∩ (E′ ∪F′)| = 0 so that F ∪F′ is admissible for E ∪E′ which gives

Wp
p (E ∪E′) ≤Wp

p (E) +Wp
p (E′).

We finally prove (iii), and consider a sequence (En)n≥1 that is L1
loc converging to E. For every

R > 0 set ER,n = En ∩BR so that ER,n converges in L1 to ER = E ∩BR. Using the continuity of Wp

with respect to weak convergence, (1.2.2) and (1.2.3) it is not hard to check that Wp is lower

semi-continuous with respect to L1 convergence (in Lemma 1.2.4 below we will actually prove a

much stronger result). Since by (1.2.4),Wp(ER,n) ≤Wp(En) we have

Wp(ER) ≤ liminf
n→∞

Wp(ER,n) ≤ liminf
n→∞

Wp(En).

Since ER converges in L1 to E as R→∞, using once more the lower semi-continuity ofWp for

this convergence we conclude the proof.

Remark 1.2.3. Let us point out that for every set E with |E| <∞, since E∩BR converges in L1 to E

as R→∞, we have by lower semi-continuity andWp(E∩BR) ≤Wp(E) that limR→∞Wp(E∩BR) =

Wp(E).

We then prove that Wp
p is Lipschitz continuous with respect to L1 convergence. This is a

crucial ingredient in order to obtain the Λ−minimality property of generalised minimisers. See

[13, Lemma 4.5] or [77, Theorem 5.4] for comparison.

Lemma 1.2.4. There exists a constant C = C(d,p) > 0 such that for any Lebesgue sets E,E′

|Wp
p (E)−Wp

p (E′)| ≤ C(|E|
p
d + |E′ |

p
d )|E∆E′ |. (1.2.6)

Moreover, there exists C = C(d,p,α) > 0 such that for every family of sets (Ei)i≥1 and ((E′)i)i≥1,∣∣∣∣∣∣∣
∑
i

Wp
p (Ei)


α

−

∑
i

Wp
p ((E′)i)


α∣∣∣∣∣∣∣ ≤ CMW

∣∣∣∣∣∣∣∑i Wp
p (Ei)−

∑
i

Wp
p ((E′)i)

∣∣∣∣∣∣∣ . (1.2.7)

where

MW = max


∑
i

Wp
p (Ei)

α−1

,

∑
i

Wp
p ((E′)i)

α−1 .
Proof. We start with the proof of (1.2.6). Thanks to Remark 1.2.3 we may assume that E and E′

are bounded sets. By symmetry of the roles of E and E′, it is sufficient to show that

Wp
p (E′)−Wp

p (E) ≤ C|E′ |
p
d |E′ \E|. (1.2.8)
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By scaling we may assume that |E′ | = 1. Let F with |E ∩ F| = 0 be such thatWp(E) = W
p
p (E,F).

Let TE be an optimal transport map from E to F (which exists by [76, Theorem 2.44 & Theorem

2.50] since E and F are bounded), and denote TF = T −1
E which is an optimal transport map from

F to E. We define F̃ = F \E′, set F− = TE(E′)∩ F̃ and decompose E′ as

E′ = (E′ ∩ TF(F̃))∪ (E′ \ TF(F̃))

so that TE(E′ ∩ TF(F̃)) = F−. Our goal is now to construct a set F+ ⊂ (E′ ∪ F−)c and a map T +

from E′ \ TF(F̃) to F+ with controlled transport cost. We proceed as in the proof of (1.2.1) and

consider a partition of Rd into cubes (Qi)i≥1 of sidelength ℓ = 31/d . We thus have for every i ≥ 1,

|Qi | − |E′ ∩Qi | − |F− ∩Qi | ≥ |E′ \ TF(F̃)|.

Therefore, for any i ≥ 1, there exists Fi ⊂Qi ∩ (E′ ∪F−)c such that |Fi | = |(E′ \ TF(F̃))∩Qi | and an

optimal transport map Ti from (E′ \ TF(F̃))∩Qi to Fi . We set F+ = ∪i≥1Fi and define T + from

E′ \ TF(F̃) to F+ by setting its restriction on any Qi to be Ti . By construction,

sup
E′\TF(F̃)

|T + − x| ≤ C.

We can now set T = TE on E′ ∩ TF(F̃) and T = T + on E′ \ TF(F̃) and obtain

Wp
p (E′)−Wp

p (E) ≤
∫
E′∩TF(F̃)

|TE − x|p +
∫
E′\TF(F̃)

|T + − x|p −Wp
p (E)

≤
∫
E′\TF(F̃)

|T + − x|p

≤ C|E′ \ TF(F̃)|.

We finally observe that
|E′ \ TF(F̃)| ≤ |E′ \E|+ |E\TF(F̃)|

= |E′ \E|+ |E| − |F\E′ |

≤ |E′ \E|+ |E′ ∩F|

≤ 2|E′ \E|.

This proves (1.2.8).

We now turn to (1.2.7). For this we simply use the fact that there exists C = C(α) > 0 such

that for every a > 0 and b > 0

|aα − bα | ≤ Cmax(aα−1,bα−1)|a− b|.

From (1.2.7), we see that in order to obtain a good Lipschitz bound for E 7→
[
Wp
p (E)

]α
when

α < 1 (recall that we are particularly interested in the case α = 1
p ≤ 1), we will need a control

from below on the transport term. This is obtained through the following interpolation result
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between the perimeter andWp. This result may be seen as a particular case of the more general

estimate obtained in [23]. However since in this setting the proof is very elementary we decided

to keep it.

Proposition 1.2.5. There exists a constant C = C(d) > 0 such that for every family of sets (Ei)i≥1 we
have ∑

i

Wp
p (Ei)


1
p
∑
i

P (Ei)

 ≥ C
∑
i

|Ei |

1+ 1
p

(1.2.9)

Proof. Since by Hölder inequality,W1(E) ≤Wp(E)|E|1−
1
p , using Hölder inequality once more for

the sum we see that it is enough to prove (1.2.9) for p = 1. Let E be a set of finite perimeter and

volume. We will first show that there exists C = C(d) > 0 such that

W1(E) ≥ Cr(|E| −CrP (E)). (1.2.10)

Take η a standard mollifier, rescale it by setting ηr(x) = r−dη(x/r) and consider φr = ηr ∗ χE .

Using Young’s inequality, we have

|∇φr |∞ ≤ |χE |∞|∇ηr |1 ≤ Cr−1.

Therefore, by Kantorovich duality for W1, we obtain using F ⊂ Ec,

W1(E) =W1(E,F) = sup
|∇ψ|≤1

∫
ψ(χE −χF) ≥ C

∫
rφr(χE −χF) ≥ Cr

∫
φr(χE −χEc ).

Since
∫
φr = |E|, ∫

φrχE = |E| −
∫
φr(1−χE) = |E| −

∫
φrχEc ,

so that

W1(E) ≥ Cr
(
|E| − 2

∫
φrχEc

)
.

We now re-express the term
∫
φrχEc in order to bound it by the perimeter of E :∫

φrχEc =
"

ηr(y − x)χE(x)χEc(y)dxdy

=
1
2

"
ηr(x − y)|χE(x)−χE(y)|dxdy

=
1
2

"
ηr(z)|χE(x)−χE(x+ z)|dxdz

≤ CP (E)
∫
|z|ηr(z)dz

≤ CrP (E).

This proves (1.2.10).

Let now (Ei)i≥1 be a family of sets and let us show (1.2.9). We may assume that
∑
i P (Ei)+|Ei | <



1.3. Existence of minimisers 35

∞ since otherwise there is nothing to prove. Summing (1.2.10) over i ≥ 1 yields

∑
i≥1

W1(Ei) ≥ Cr
(∑
i≥1

|Ei | −Cr
∑
i≥1

P (Ei)
)
.

We conclude the proof by taking

r = ε
∑
i≥1 |Ei |∑
i≥1 P (Ei)

,

with ε chosen small enough so that εC ≤ 1/2.

1.3 Existence of minimisers

In this section we prove Theorem 1.1.1. As already explained in the introduction, we will first

prove the existence of generalised minimisers and then prove that they are Λ−minimisers of the

perimeter to obtain a bound on their diameter which readily implies the existence of minimisers

in a classical sense.

1.3.1 Existence of generalised minimisers

We start with some notation. For a set E we define the energy (we keep the dependence in p and

α implicit)

Eλ(E) = P (E) +λ
[
Wp
p (E)

]α
.

We call a family Ẽ = (Ei)i≥1 a generalised set and define the generalised energy as

Ẽλ(Ẽ) =
∑
i

P (Ei) +λ

∑
i

Wp
p (Ei)


α

. (1.3.1)

We say that Ẽ is a generalised minimiser if
∑
i |Ei | =ωd and

Ẽλ(Ẽ) = inf

Ẽλ(Ẽ′) :
∑
i

|(E′)i | =ωd

 .
Proposition 1.3.1. For every d ≥ 2, p ≥ 1, α > 0 and λ > 0, there exists generalised minimisers and

inf {Eλ(E) : |E| =ωd} = inf

Ẽλ(Ẽ) :
∑
i

|Ei | =ωd

 . (1.3.2)

Proof. We start by pointing out that using Proposition 1.2.2 and a simple rescaling argument

(see for instance [77]), it is not hard to modify a generalised minimising sequence into a classical

minimising sequence so that (1.3.2) holds.

By (1.3.2), in order to prove the existence of a generalised minimiser we can consider a
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classical minimising sequence (En)n≥1 such that

lim
n→∞

Eλ(En) = inf

Ẽλ(Ẽ) :
∑
i

|Ei | =ωd

 .
We now follow relatively closely the proof of [49, Theorem 4.9]. We first notice that using the

unit ball B1 as competitor, we may assume that Eλ(En) ≤ Eλ(B1) ≤ C(1 +λ). For every n ≥ 1, let

Qn,i be a partition of Rd into disjoint cubes of side-length 2 and such that

mn,i = |En ∩Qn,i |

is a decreasing sequence in i. By the relative isoperimetric inequality we have∑
i

m
d−1
d
n,i ≤ C

∑
i

P (En,Qn,i) = CP (En) ≤ C(1 +λ).

Since
∑
imn,i =ωd , we have for every I ≥ 1, and every i ≥ I , mn,i ≤mn,I ≤ωd/I and thus∑

i≥I
mn,i =

∑
i≥I

m
d−1
d
n,i m

1
d
n,i ≤ CI

− 1
d

∑
i≥I

m
d−1
d
n,i ≤ C(1 +λ)I−

1
d .

This proves uniform tightness of mn,i and thus up to extraction we may assume that for every

i, mn,i → mi with
∑
imi = ωd . Let now zn,i ∈ Qn,i . Up to a further extraction we may assume

that for every i, j, |zn,i − zn,j | → cij ∈ [0,∞] and En − zn,i → Ei in L1
loc(R

d). We now introduce an

equivalence class by saying that i ∼ j if cij < ∞ and denote by [i] the equivalence class of i.

Notice that if i ∼ j, Ei and Ej coincide up to a translation. For every equivalence class [i] let

m[i] =
∑
j∈[i]mj so that ∑

[i]

m[i] =
∑
i

mi =ωd .

By the L1
loc convergence of En − zn,i to Ei and the definition of the equivalence relation, we have

for every j ∈ [i], |Ej | =m[i]. Up to a relabeling we may now assume that there is a unique element

Ei in each equivalence class. We have thus constructed a generalised set Ẽ = (Ei)i≥1 such that∑
i |Ei | =ωd . We are left with the proof of

Ẽλ(Ẽ) ≤ liminf
n→∞

Eλ(En) = inf

Ẽλ(Ẽ) :
∑
i

|Ei | =ωd

 . (1.3.3)

To this aim let I ∈ N. And let zn,1, · · · , zn,I be as before such that En − zn,i converges to Ei and

|zn,i − zn,j | → ∞ as n→∞ if i , j. For every R > 0, if n is large enough, mini,j |zn,i − zn,j | ≥ 4R.

Therefore, the co-area formula yields

|En| ≥
I∑
i=1

|En ∩
(
B(zn,i ,2R) \B(zn,i ,R)

)
| =

∫ 2R

R

I∑
i=1

Hd−1(En ∩∂B(zn,i , t))dt.
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By the mean value theorem, we can thus find Rn ∈ (R,2R) such that

I∑
i=1

Hd−1(∂BRn(zn,i)∩En) ≤ C
R
.

We now define Ei,Rn = (BRn(zn,i)∩En)− zn,i so that on the one hand,

I∑
i=1

P (Ei,Rn) ≤ P (En) +
C
R

(1.3.4)

and on the other hand by (1.2.4),

I∑
i=1

Wp
p (Ei,Rn) ≤Wp

p

(
∪Ii=1BRn(zn,i)∩En

)
≤Wp

p (En).

From the bound (1.3.4), we conclude that up to extraction, Ei,Rn converges in L1 to a set Ei,R

as n→∞. Moreover, from the L1
loc convergence of En − zn,i to Ei it is not hard to see that also

Ei,R converges to Ei in L1 as R→∞. We thus conclude that by lower semi-continuity of the

perimeter and (1.2.5) that

I∑
i=1

P (Ei,R) +λ

 I∑
i=1

Wp
p (Ei,R)


α

≤ liminf
n→∞

(
P (En) +λ

[
Wp
p (En)

]α)
+
C
R
.

Letting then R→∞ and finally I →∞ we conclude the proof of (1.3.3).

Before proceeding further let us study the scaling of the energy.

Proposition 1.3.2. For every fixed d ≥ 2, p ≥ 1 and α > 0, there exists C = C(d,p,α) > 0 such that
for every λ > 0,

1
C

(1 +λ)
1

1+αp ≤ inf
|E|=ωd

Eλ(E) ≤ C (1 +λ)
1

1+αp . (1.3.5)

Moreover, if Ẽ = (Ei)i≥1 is a generalised minimiser, then

1
C

(1 +λ)
1

1+αp ≤
∑
i

P (Ei) ≤ C (1 +λ)
1

1+αp (1.3.6)

and
1
C

(1 +λ)−
p

1+αp ≤
∑
i

Wp
p (Ei) ≤ C (1 +λ)−

p
1+αp . (1.3.7)

Proof. Let us first consider the case λ ≤ 1. Using the ball B1 as competitor and the isoperimetric

inequality we have for every generalised minimiser Ẽ,

P (B1) +λ

∑
i

Wp
p (Ei)


α

≤
∑
i

P (Ei) +λ

∑
i

Wp
p (Ei)


α

≤ P (B1) +λ
[
Wp
p (B1)

]α
.
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From this combined with the isoperimetric inequality we obtain (1.3.5) and (1.3.6) together

with
∑
iW

p
p (Ei) ≤ Wp

p (B1). To obtain the first inequality in (1.3.7) we combine (1.2.9) with∑
i P (Ei) ≤ C.

Let now λ ≥ 1. We consider the competitor made of N balls Ei of radius r so that the

constraint
∑
i |Ei | =ωd translates into Nrd = 1. The energy of such a competitor is such that

Ẽλ(Ẽ) ≤ C
(
r−1 +λrpα

)
.

minimising in r by choosing r = λ−
1

1+αp (which is admissible since the corresponding N is large)

gives the upper bounds in (1.3.5), (1.3.6) and (1.3.7). Using (1.2.9) we see that the upper bound

in (1.3.6) gives the lower bound in (1.3.7) and vice-versa. These lower bounds then also imply

the lower bound in (1.3.5).

1.3.2 Quasi-minimality properties of generalised minimisers

As in many similar variational problems, in order to prove a quasi-minimality property, it will

be convenient to relax the volume constraint. To this aim, for Λ > 0 and Ẽ a generalised set we

introduce the penalised energy

Ẽλ,Λ(Ẽ) =
∑
i

P (Ei) +λ

∑
i

Wp
p (Ei)


α

+Λ

∣∣∣∣∣∣∣∑i |Ei | −ωd
∣∣∣∣∣∣∣ .

We start by proving that if Λ is large enough, then every generalised minimiser is also an

unconstrained minimiser of Ẽλ,Λ.

Proposition 1.3.3. There exists C = C(d,p,α) > 0 such that for every λ > 0, if Λ ≥ C (1 +λ)
1

1+αp then
every generalised minimiser of (1.3.1) is also a minimiser of Ẽλ,Λ.

Proof. Let C0 to be fixed below and assume that Λ ≥ C0 (1 +λ)
1

1+αp . By (1.3.5), if there exists Ẽ

such that

Ẽλ,Λ(Ẽ) < inf

Ẽλ(Ẽ′) :
∑
i

|(E′)i | =ωd


we must have

Λ

∣∣∣∣∣∣∣∑i |Ei | −ωd
∣∣∣∣∣∣∣ ≤ C (1 +λ)

1
1+αp . (1.3.8)

and
∑
i |Ei | ,ωd . Let

t =ω
1
d

d

∑
i

|Ei |

−
1
d

so that tẼ = (tEi)i≥1 satisfies
∑
i |tEi | = ωd . From (1.3.8), we see that t = 1 + ε with |ε| ≤

CΛ−1 (1 +λ)
1

1+αp . By hypothesis we have

Ẽλ,Λ(Ẽ) < Ẽλ(tẼ) = (1 + ε)d−1
∑
i

P (Ei) +λ(1 + ε)(d+p)α

∑
i

Wp
p (Ei)


α

.
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By Taylor expansion we have for Λ ≥ C (1 +λ)
1

1+αp ,

Λε < Cε

∑
i

P (Ei) +λ

∑
i

Wp
p (Ei)


α ≤ Cε (1 +λ)

1
1+αp .

This gives the bound Λ ≤ C (1 +λ)
1

1+αp which yields the conclusion provided C0 > C.

Combining Lemma 1.2.4 together with Proposition 1.3.3 we may now prove that generalised

minimisers are Λ−minimisers of the perimeter. We point out that a related quasi-minimality

property was derived in [13, Theorem 4.6].

Proposition 1.3.4. There exists C = C(d,p,α) > 0 such that if Λ ≥ C (1 +λ)
1+p

1+αp , every generalised
minimiser Ẽ = (Ei)i≥1 of Ẽλ is a Λ−minimiser of the perimeter in the sense that for every i ≥ 1 and
every set E ⊂R

d ,
P (Ei) ≤ P (E) +Λ|Ei∆E|. (1.3.9)

Proof. Let Λ0 = C (1 +λ)
1

1+αp be such that Proposition 1.3.3 applies and let Ẽ = (Ei)i≥1 be a

generalised minimiser of Ẽλ. Without loss of generality, let us prove (1.3.9) for E1. Using as

competitor E × (Ei)i≥2 for Ẽλ,Λ0
we find after simplification that

P (E1) ≤ P (E) +λ


Wp

p (E) +
∑
i≥2

Wp
p (Ei)


α

−

∑
i

Wp
p (Ei)


α+Λ0|E1∆E|. (1.3.10)

Notice that we can now assume that

Wp
p (E) ≥Wp

p (E1) (1.3.11)

since otherwise we can already conclude that (1.3.9) holds. Moreover, (1.3.6) implies in particu-

lar that P (E1) ≤ C(1 +λ)
1

1+αp so that we can assume that

|E1∆E| ≤ CΛ−1(1 +λ)
1

1+αp ≤ C(1 +λ)−
p

1+αp ,

which in particular yields |E1| ≤ C. From (1.2.6), this implies that we can work under the

assumption

Wp
p (E) ≤Wp

p (E1) +C(1 +λ)−
p

1+αp
(1.3.7)
≤ C(1 +λ)−

p
1+αp . (1.3.12)

Combining (1.3.10), (1.2.7) and (1.2.6) we find
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P (E1) ≤ P (E) +λmax


∑
i

Wp
p (Ei)

α−1

,

Wp
p (E) +

∑
i≥2

Wp
p (Ei)

α−1 |E1∆E|

+Λ0|E1∆E|
(1.3.11)&(1.3.12)&(1.3.7)

≤ P (E) +C
(
λ(1 +λ)−

p(α−1)
1+αp + (1 +λ)

1
1+αp

)
|E1∆E|

≤ P (E) +C(1 +λ)
1+p

1+αp |E1∆E|.

This proves (1.3.9).

As a direct corollary we obtain uniform density estimates for generalised minimisers (see

[60, Theorem 21.11]).

Proposition 1.3.5. There exists C = C(d,p,α) > 0 such that if r < C (1 +λ)−
1+p

1+αp , every generalised
minimiser Ẽ = (Ei)i≥1 of Ẽλ satisfies for every i and every x ∈ ∂Ei (here ∂Ei denotes the measure-
theoretic boundary of Ei)

|Ei ∩B(x,r)| ≥ ωd
4d
rd . (1.3.13)

As a consequence, up to relabeling, we have Ẽ = (Ei)Ii=1 where for every i, Ei are compact connected
sets such that Hd−1(∂Ei) = P (Ei). Moreover, there is a constant C = C(d,p,α) > 0 such that

I∑
i=1

diam(Ei) ≤ C(1 +λ)
(d−1)(1+p)

1+αp and min
i

diam(Ei) ≥ 1
C

(1 +λ)−
1+p

1+αp . (1.3.14)

As a consequence I ≤ C(1 +λ)
d(1+p)
1+αp .

Remark 1.3.6. Let us notice that the regularity theory for Λ−minimisers of the perimeter gives

us actually much more. Denote by ∂∗E the reduced boundary of E (see [60]) and Σ(E) = ∂E\∂∗E.

Then if E is a Λ−minimiser of the perimeter, ∂∗E is C1,γ for every γ < 1/2 and Σ(E) is empty if

d ≤ 7, an at most finite union of points if d = 8 and satisfies Hs(Σ(E)) = 0 for every s > d − 8 if

d ≥ 9. For classical or generalised minimisers of our energy we expect higher regularity to hold

but this goes beyond the scope of this chapter.

Proof of Proposition 1.3.5. By Proposition 1.3.4, there exists Λ = C (1 +λ)
1+p

1+αp such that every

generalised minimiser Ẽ = (Ei)i≥1 is a Λ−minimiser of the perimeter. By [60, Theorem 21.11],

(1.3.13) holds as long as Λr < 1. This proves the first part of the claim. We can further make the

identification

Ei = {x ∈Rd : liminf
r→0

|Ei ∩B(x,r)| > 0}

so that thanks to (1.3.13), Ei are closed sets with Hd−1(∂Ei) = P (Ei). By (1.2.4) we may further

assume that each Ei is connected. Fix now r such that Λr = 1/2. By Vitali’s covering Lemma,

for every i let x1, · · · ,xNi ∈ E
i be such that Ei ⊂ ∪Nij=1B(xj , r) and B(xj , r/5) are pairwise disjoint.
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Using (1.3.13) we have Ni ≤ Cr−d |Ei |. Since diam(Ei) ≤ CrNi we have∑
i

diam(Ei) ≤ Cr−(d−1) ≤ C(1 +λ)
(d−1)(1+p)

1+αp .

This proves the first part of (1.3.14). The second part follows from diam(Ei) ≥ C|Ei |1/d ≥ Cr
which is a direct consequence of (1.3.13).

1.3.3 Proof of Theorem 1.1.1

We may now conclude the proof of Theorem 1.1.1 and show the existence of (classical) minimis-

ers for (1.1.2).

Proof of Theorem 1.1.1. For every fixed d ≥ 2, p ≥ 1, α > 0 and λ > 0, Proposition 1.3.1 gives the

existence of a generalised minimiser Ẽ = (Ei)i≥1. We thus have by (1.3.2),

∑
i

P (Ei) +λ

∑
i

Wp
p (Ei)


α

= inf
|E|=ωd

Eλ(E).

Thanks to Proposition 1.3.5, if R = C(1 + λ)
(d−1)(1+p)

1+αp with C > 0 large enough, then Ẽ = (Ei)Ii=1

with I ≤ R
d
d−1 and for every i ≤ I , Ei is a connected compact set with

∑I
i=1 diam(Ei) ≤ 1

2R. Let

(e1, · · · , ed) be the canonical basis of Rd and define the set

E = ∪Ii=1(Ei +Rie1).

By Proposition 1.2.2, if C is large enough,Wp
p (E) =

∑
iW

p
p (Ei). Since Ei are pairwise disjoint we

also have P (E) =
∑
i P (Ei) (and |E| =

∑
i |Ei | =ωd) so that

Eλ(E) =
∑
i

P (Ei) +λ

∑
i

Wp
p (Ei)


α

(1.3.2)
= inf

|E|=ωd
Eλ(E).

Therefore E is a minimiser of (1.1.2) and the proof is complete.

1.4 Minimality of the ball when the perimeter is dominant

We now turn to Theorem 1.1.2 and prove that for small λ the unique minimisers of (1.1.2) are

balls. We first show that for λ small enough, up to a translation, every minimiser of (1.1.2) is a

small C1,γ perturbation of the ball B1.

Proposition 1.4.1. For every d ≥ 2, p ≥ 1, α > 0, γ ∈ (0,1/2) and ε > 0, there exists λ0 =

λ0(d,p,α,γ,ε) such that for every λ ≤ λ0, up to translation, every minimiser E of (1.1.2) is nearly
spherical in the sense that its barycentre is in 0 and there exists f : ∂B1 7→ R with ∥f ∥C1,γ ≤ ε such
that

∂E = {(1 + f (x))x : x ∈ ∂B1}.
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Proof. The proof is quite classical and mostly rests on the (uniform in λ) Λ−minimising property

of E. Let Eλ be a sequence of minimisers of (1.1.2). For fixed γ ∈ (0,1/2) we aim at proving that

up to translation Eλ converges in C1,γ to B1. We start by noting that using B1 as a competitor

together with the quantitative isoperimetric inequality we have up to translation,

|Eλ∆B1|2 ≤ C (P (E)− P (B1)) ≤ Cλ
([
Wp
p (B1)

]α
−
[
Wp
p (Eλ)

]α)
≤ Cλ

[
Wp
p (B1)

]α
. (1.4.1)

Therefore Eλ converges in L1 to B1. It is now a classical fact that if a sequence of Λ−minimisers

converges in L1 to a smooth set then the whole sequence is actually smooth (with the notation

of Remark 1.3.6, Σ(Eλ) = ∅) and the convergence holds in C1,γ (see e.g. [28, Lemma 3.6]). As a

consequence the barycentre of Eλ also converges to 0 and the proof is concluded.

We now recall that for nearly spherical sets, it was shown in [45] that there exists C = C(d) > 0

such that ∫
∂B1

f 2 ≤ C (P (E)− P (B1)) . (1.4.2)

Moreover, Proposition 1.1.4 states that for such sets we also have

[
Wp
p (B1)

]α
−
[
Wp
p (E)

]α
≤ C

∫
∂B1

f 2. (1.4.3)

Postponing the proof of (1.4.3) to the next section we may conclude the proof of Theorem 1.1.2.

Proof of Theorem 1.1.2. By Proposition 1.4.1, if λ is small enough then every minimiser E of

(1.1.2) is nearly spherical. Arguing as in (1.4.1) we have∫
∂B1

f 2
(1.4.2)
≤ C (P (E)− P (B1)) ≤ Cλ

([
Wp
p (B1)

]α
−
[
Wp
p (E)

]α) (1.4.3)
≤ Cλ

∫
∂B1

f 2,

which implies that if λ is small enough, f = 0 and thus E = B1.

1.4.1 Proof of Proposition 1.1.4

We start with a few simple facts aboutWp(B1). We let A = B21/d\B1 be the annulus of volume

ωd around B1. With a slight abuse of notation, we will write φ(x) = φ(|x|) if φ is a radially

symmetrical function.

Lemma 1.4.2. We have the following properties:

(i) The minimiser F of (1.1.1) for B1 is A;

(ii) The map

T (x) =
(
1 + |x|d

) 1
d x
|x|

(1.4.4)

is an optimal transport map (the unique one if p > 1) between B1 and F;

(iii) the corresponding Kantorovich potentials (φ,ψ) are radially symmetric and r 7→ ψ(r) is increas-
ing. Finally, (φ,ψ) are locally Lipschitz continuous.
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Proof. We start with (i). By Proposition 1.2.1, let F be the unique minimiser of (1.1.1) for B1, so

thatWp(B1) =Wp(B1,F). If R is any rotation of Rd , since Wp(R(B1),R(F)) =Wp(B1,F), we see that

R(F) is also a minimiser of (1.1.1) for B1. By uniqueness we have F = R(F) and thus F is radially

symmetric. Let us now prove that F = A. We denote by T an optimal transport map from B1 to

F. For y ∈ F let x ∈ B1 be such that T (x) = y. Applying [36, Lemma 5.1.] with f = χBc1 yields that

χF = χBc1 on B(x, |y − x|). By the radial symmetry of F, we obtain that B|y| \B1 is included in F.

Since this is true for every y ∈ F we conclude that F = A.

Regarding (ii), we note that T defined in (1.4.4) is the unique radially symmetric map (in

the sense that T (x) = f (|x|) x|x| ) which solves det∇T = 1 and f (0) = 1. Let us argue that T is

c−cyclically monotone for the cost c(x,y) = |x − y|p and thus an optimal transport map between

any bounded radially symmetric set E and T (E) (see [76, Definition 2.33 & Remark 2.39]).

This follows from the fact that f (r) = (1 + rd)1/d is monotone on R
+ and thus also c−cyclically

monotone on R
+ (as these two notions coincide for convex costs in dimension one) so that for

every x1, · · · ,xI , using the convention x0 = xI

I∑
i=1

|T (xi)− xi |p =
I∑
i=1

|f (|xi |)− |xi ||p

≤
I∑
i=1

|f (|xi−1|)− |xi ||p

≤
I∑
i=1

|f (|xi−1|)
xi−1

|xi−1|
− xi |p

=
I∑
i=1

|T (xi−1)− xi |p.

Notice that the inverse map T −1 : Bc1 7→R
d is given by

T −1(y) =
(
|y|d − 1

) 1
d y

|y|
.

As for (iii), we argue a bit differently for p > 1 and p = 1. Let us start with the easier case

p = 1. Denoting φ(x) = −|x| we have that φ is 1−Lipschitz, radially symmetric and decreasing

(and thus ψ = −φ is radially symmetric and increasing) and satisfies for x ∈Rd

φ(x)−φ(T (x)) = |T (x)| − |x| = |T (x)− x| (1.4.5)

so that (φ,−φ) is indeed a couple of Kantorovich potentials. As a side note, it is easily seen from

(1.4.5) that on the one hand, up to a constant φ is the unique Kantorovich potential and on

the other hand that every optimal transport map must be radially symmetric (there is however

no uniqueness of the optimal transport map). Note also that the validity of (1.4.5) gives an

alternative proof of the optimality of T when p = 1.

For p > 1, we first argue that φ is radially symmetric and decreasing. For this we use that by
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[73, Theorem 1.17], if we let h(z) = |z|p, then the unique Kantorovich potential φ is given by

∇φ(x) = ∇h(x − T (x)) = −p
(
(1 + |x|d)

1
d − |x|

)p−1 x
|x|

= φ′(|x|) x
|x|

with φ′ ≤ 0. Now since φ and ψ are c−conjugate, we have

ψ(y) = inf
x

[|x − y|p −φ(x)] (1.4.6)

from which we deduce that also ψ is radially symmetric. Arguing exactly as for φ but with

T replaced by T −1 we see that ψ is increasing on Bc1. In order to conclude that ψ is in fact

increasing on R
d we will prove that for y ∈ B1,

ψ(y) = |y|p −φ(0) (1.4.7)

or in other words that (1.4.6) is attained at x = 0. We first point out that (1.4.7) holds for |y| = 1

since T −1(y) = 0 and thus by definition of Kantorovich potentials

φ(0) +φ(y) = |y|p.

We also observe that since φ is decreasing, for every y ∈Rd the optimal x in (1.4.6) must satisfy

|x| ≤ |y| (and x = |x|y/ |y|). Fix now y ∈ B1 and let x be such that

ψ(y) = |y − x|p −φ(x).

Let ȳ = y/ |y| ∈ ∂B1. Using x as a competitor in (1.4.6) for ȳ we have

ψ(ȳ) = 1−φ(0) ≤ (1− |x|)p −φ(x).

Using now 0 as competitor in (1.4.6) for y we also have

(|y| − |x|)p −φ(x) ≤ |y|p −φ(0)

so that

1− (1− |x|)p ≤ φ(0)−φ(x) ≤ |y|p − (|y| − |x|)p.

However the function t→ tp − (t − |x|)p is increasing in [|x|,∞) so that we reach a contradiction

unless x = 0.

To conclude, the local Lipschitz continuity of (φ,ψ) is standard, see [76, Proposition 2.43].

In order to prove (1.4.3) we will need the following simple result.

Lemma 1.4.3. Let ψ be a radially symmetric and increasing function and let E ⊂ B21/d with |E| =ωd .
Then

inf
F

{∫
F
ψ : |F ∩E| = 0 and |F| =ωd

}
=

∫
B21/d \E

ψ. (1.4.7)
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Proof. We first show that for any r > 0,

min
|E|=|Br |

∫
E
ψ =

∫
Br

ψ. (1.4.8)

For E with |E| = |Br |, we write ∫
E
ψ −

∫
Br

ψ =
∫
E\Br

ψ −
∫
Br\E

ψ.

Since ψ is radially increasing we have

inf
E\Br

ψ ≥ ψ(r) ≥ sup
Br\E

ψ.

Using |E\Br | = |Br\E|, we find ∫
E
ψ −

∫
Br

ψ ≥ 0

and thus (1.4.8) holds.

Now if E ⊂ B21/d with |E| = ωd , for every set F with |F ∩ E| = 0 and |F| = |E| = ωd , we have

|E ∪F| = |B21/d | and thus∫
F
ψ =

∫
F∪E

ψ −
∫
E
ψ

(1.4.8)
≥

∫
B21/d

ψ −
∫
E
ψ =

∫
B21/d \E

ψ,

which is the desired conclusion.

We may now prove Proposition 1.1.4.

Proof of Proposition 1.1.4. We may assume thatWp(B1) ≥Wp(E) since otherwise there is nothing

to prove. Using (1.2.7) we see that it is enough to prove the estimate for α = 1, that is

Wp
p (B1)−Wp

p (E) ≤ C
∫
∂B1

f 2. (1.4.9)

Let (φ,ψ) be the Kantorovich potentials associated with Wp(B1,A) and recall that by Lemma

1.4.2, ψ is radially symmetric and increasing. By hypothesis, E ⊂ B21/d . For every admissible

competitor F forWp(E) we have by duality

W
p
p (E,F) ≥

∫
E
φ+

∫
F
ψ.

Taking the infimum over F we get

Wp
p (E) ≥

∫
E
φ+ inf

F

{∫
F
ψ : |F ∩E| = 0 and |F| =ωd

}
(1.4.3)
≥

∫
E
φ+

∫
B21/d \E

ψ.
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Therefore,

Wp
p (B1)−Wp

p (E) ≤
∫
B1

φ+
∫
A
ψ −

∫
E
φ−

∫
B21/d \E

ψ

=
∫
B1

(φ−ψ)−
∫
E

(φ−ψ)

=
∫
B1\E

(φ−ψ)−
∫
E\B1

(φ−ψ).

We may now argue as in [54, Proposition 6.2]. We let c = φ(1)−ψ(1) and use that φ and ψ are

Lipschitz continuous in a neighbourhood of ∂B1 to infer∫
B1\E

(φ−ψ)−
∫
E\B1

(φ−ψ) =
∫
B1\E

[(φ−ψ)− c]−
∫
E\B1

[(φ−ψ)− c]

≤ C
∫
B1∆E

|1− |x||

≤ C
∫
∂B1

∫ f (x)

0
tdtdHd−1(x)

≤ C
∫
∂B1

f 2.

This concludes the proof of (1.4.9).



Chapter2
An exterior optimal transport problem

Abstract. This chapter deals with a variant of the optimal transportation problem. Given

f ∈ L1(Rd , [0,1]) and a cost function c ∈ C(Rd ×Rd) of the form c(x,y) = k(y − x), we minimise

∫ cdγ among transport plans γ whose first marginal is f and whose second marginal is not

prescribed but constrained to be smaller than 1 − f . Denoting by Υ (f ) the infimum of this

problem, we then consider the maximisation problem sup{Υ (f ) : ∫ f =m} where m > 0 is given.

We prove that maximisers exist under general assumptions on k, and that for k radial, increasing

and coercive these maximisers are the characteristic functions of the balls of volume m.
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2.1 Introduction

In this chapter, we study the optimisation problems associated with functionals which favour

dispersion and are based on some Wasserstein energies. These functionals correspond to the

non-local term of the energy studied in [19, 13, 70, 77, 64]. Our main result is that for a

very large class of radial costs, balls are the unique volume-constrained maximisers of these

functionals. This confirms that they enter in strong competition with their perimeter for which

balls are volume-constrained minimisers.

We denote byM+(Rd) the set of positive Radon measures on R
d . Given a cost function c

and µ,ν ∈M+(Rd), we let Tc(µ,ν) be the c-transport cost between µ and ν (see Section 2.2 for

the exact definition of Tc). Given a measurable set E ⊂R
d with finite volume, we consider the

optimisation problem

Υset(E) := inf
{
Tc(E,F) : F ⊂R

d Lebesgue measurable, |F| = |E|, |F ∩E| = 0
}

(2.1.1)

where we identify E with the restriction of the Lebesgue measure on E. Given m > 0, we

introduce the maximisation problem

Eset(m) := sup
|E|=m

Υset(E). (2.1.2)

The main goal of the chapter is to investigate the existence of maximisers for this problem and

to characterise these latter.

If we apply the direct method of the Calculus of Variations, we obtain that, up to extraction,

any maximising sequence En converges weakly to some function u∞ ∈ L1(Rd , [0,1]). However,

there is no guarantee at this point that u∞ is a characteristic function or has mass m. Our

strategy is to extend the functional Υset as a functional Υ defined on L1(Rd , [0,1]). Applying the

bathtub principle (see Proposition 2.4.11) to a maximiser of the relaxed problem, we show that

the supremum in (2.1.2) is actually reached (see Corollary 2.1.2). This relaxation approach is

not new: it was successfully applied to several variational problems in the last few years (see for

instance [27, 8, 69, 12]).

Given f ∈ L1(Rd , [0,1]), the set of admissible exterior transport plans is defined as

Πf :=
{
γ ∈M+(Rd ×Rd) : γx = f , γy ≤ 1− f

}
.

Here, the measures f dx and (1− f )dy are identified with their respective densities and γx and

γy denote respectively the first and second marginals of γ . We then define the primal problem

Υ (f ) := inf
{∫

cdγ : γ ∈Πf

}
.

We have Υ (χE) = Υset(E) under mild assumptions on c (see Theorem 2.4.4). Given m > 0, our

maximisation problem is now to compute the exterior transport energy E(m), which is defined
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as

E(m) := sup
{
Υ (f ) : f ∈ L1(Rd , [0,1]),

∫
f dx =m

}
. (2.1.3)

By abuse of notation and when no confusion is possible, we refer to the variational problems by

the values they attain (e.g. we write Υset(E) for (2.1.1)).

2.1.1 Main results

The first important result of this chapter is that maximisers of E(m) exist whenever c is of the

form c(x,y) = k(y − x) for some k : Rd →R+ and satisfies

(H1) k ∈ C(Rd ,R+), k(0) = 0 and k(x)→∞ as |x| →∞,

(H2) ∀x , 0,

limsup
r→0

1
rd

∣∣∣Br(x)∩ {y ∈Rd , k(y) < k(x)}
∣∣∣ > 0,

(H3) ∀σ ∈ Sd−1, r 7→ k(rσ ) is increasing on R+.

Notice that k is not assumed to be strictly convex, so that our results hold in cases where the

existence of an optimal transport map is not guaranteed. Also observe that all the costs of the

form k(z) = |z|p with 0 < p <∞ satisfy the above hypotheses. However, radial symmetry is not

required and the costs k(z) = |z|p h(z/ |z|) with h positive and Lipschitz continuous on S
d−1 are

also admissible.

Theorem 2.1.1. Assume that c(x,y) = k(y − x) for x,y ∈Rd with k satisfying (H1), (H2) and (H3).
Then, for any m > 0 the supremum in E(m) is attained. Moreover, there exists R∗ = R∗(m) such that
(up to translation) any maximiser is supported in the ball BR∗ .

Once the existence of maximisers for E(m) is established, the bathtub principle (see Proposi-

tion 2.4.11) and a saturation result (see Theorem 2.4.4) imply that (2.1.2) admits solutions.

Corollary 2.1.2. Assume that c satisfies the hypotheses of Theorem 2.1.1. Then, (2.1.2) admits a

maximiser and Eset(m) = E(m) for any m > 0.

As a second main result, we establish that if k is furthermore radially symmetric then E(m)

and Eset(m) are uniquely maximised by balls of volume m.

Theorem 2.1.3. Assume that c(x,y) = k(|y − x|) for some k ∈ C(R+,R+) increasing and such that
k(0) = 0 and k(x)→∞ as x→∞. Then, for any m > 0, the maximisers of E(m) (and consequently
those of Eset(m)) are the balls of volumem. Moreover the minimiser of Υset(B1) is the annulus B21/d\B1.

We point out that cost functions satisfying the hypotheses of Theorem 2.1.3 also satisfy

hypotheses (H1), (H2) and (H3). Let us briefly sketch the proofs of these three results. They all

strongly rely on the properties of the dual problem

Υ ∗(f ) := sup
{∫

(f ϕ + (1− f )ψ) dx : (ϕ,ψ) ∈ Φ
}
,
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where

Φ :=
{
(ϕ,ψ) ∈ Cb(Rd)×Cb(Rd), ψ ≤ 0, ϕ(x) +ψ(y) ≤ c(x,y) ∀ (x,y) ∈Rd ×Rd

}
.

We establish Theorem 2.1.1 using the direct method of Calculus of Variations. The main

difficulty is to establish compactness of maximising sequences. If we refer to the concentration-

compactness principle [58], we have to prove that given a maximising sequence fn, no mass

escapes at infinity. To do so we establish two crucial results. The first one is that m 7→ E(m)/m is

increasing (see Proposition 2.4.7). This implies that m 7→ E(m) is strictly superadditive, i.e. that

for m >m′ > 0,

E(m′) + E(m−m′) < E(m). (2.1.4)

Notice that this is the counterpart of the strict subbadditivity inequality (also called binding

inequality) which is known to provide compactness in minimisation problems, see e.g. [58, 43,

44]. Using the dual formulation Υ ∗ of Υ , we obtain the second crucial result for Theorem 2.1.3:

a monotonicity principle on the sum of marginals of minimisers γ of Υ (f ) (see Corollary 2.4.6).

This is the most delicate part of the proof. Combining this and (2.1.4), we prove that if f is almost

maximising then most of its mass must remain in a bounded region (see Proposition 2.4.9). This

gives tightness of maximising sequences for E(m).

To prove Corollary 2.1.2, we consider a maximiser f of E(m) provided by Theorem 2.1.1 and

a pair of potentials (ϕ,ψ) optimal for the dual problem Υ ∗(f ). Using the definition of Υ ∗ we see

that f is a maximiser of

sup
{∫

f̃ (ϕ −ψ) : 0 ≤ f̃ ≤ 1,
∫
f̃ =m

}
.

By the bathtub principle, f = χ{ϕ−ψ>t} +θ for some t ∈R and some θ ∈ L1(Rd , [0,1]) supported

in {ϕ −ψ = t}. Then for any measurable subset G ⊂ {ϕ −ψ = t} with |G| =
∫
θ , the characteristic

function of E := {ϕ−ψ > t}∪G is also a maximiser for E(m). By Theorem 2.4.4 and Corollary 2.4.5

applied to E, there exists F ⊂ R
d such that any minimiser γ of Υ (χE) satisfies γy = χF . This

finally implies that E maximises (2.1.2).

Regarding Theorem 2.1.3, as explained in Section 2.5, we may assume without loss of

generality thatm =ωd , the volume of the unit ball. Combining Theorem 2.1.1 and Lemma 2.4.10

yields that

sup
∫ f =ωd

 sup
(ψc ,ψ)∈Φ

{∫
f (ψc −ψ) +

∫
ψ

} , (2.1.5)

coincides with E(m) and admits a solution (f ,ψc,ψ), where ψc is the c-transform of ψ (see

Definition 2.2.2). To show that balls are maximisers of E(m), we establish that each term in (2.1.5)

is improved by replacing f by χB1
and ψ by its symmetric increasing rearrangement ψ∗ (see

Definition 2.5.1). As ∫ ψ = ∫ ψ∗ , the third term in (2.1.5) does not change under rearrangement.

Regarding the second term, combining the Hardy-Littlewood inequality (see [57, Theorem 3.4])
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and the bathtub principle yields (recall that ψ ≤ 0)

−
∫
f ψ ≤ −

∫
f ∗ψ∗ ≤ −

∫
χB1

ψ∗ ,

where f ∗ is the symmetric decreasing rearrangement of f (see Definition 2.5.1). The study of

the first term ∫ f ψc is more involved. Indeed it requires to understand the interactions between

the operations of c−transform and symmetrization. To the best of our knowledge, this type of

questions have not been addressed so far. Using the Brunn-Minkowski inequality, we obtain the

following crucial comparison:

(ψc)∗ ≤ (ψ∗)
c.

Combining this inequality with the Hardy-Littlewood inequality yields∫
f ψc ≤

∫
f ∗(ψc)∗ ≤

∫
f ∗(ψ∗)

c . (2.1.6)

Additionally, as (ψ∗)c is non-increasing, χB1
is a maximiser of

sup
{∫

f̃ (ψ∗)
c : 0 ≤ f̃ ≤ 1,

∫
f̃ =ωd

}
, (2.1.7)

so that ∫ f ∗(ψ∗)c ≤ ∫ (ψ∗)cχB1
. Lastly, by (2.1.6), ∫ f ψc ≤ ∫ χB1

(ψ∗)c . This eventually proves that

unit balls maximise E(ωd).

As for uniqueness, the key property to establish is that (ψ∗)c is decreasing on B1 (see

Lemma 2.5.3). Indeed, by [57, Theorem 3.4], this implies that χB1
is the unique maximiser

of (2.1.7). Combining this with the fact that the inequalities in (2.1.6) are now equalities, we

obtain that f ∗ = χB1
, so that f = χE for some E ⊂ R

d . Using the equality case of the Brunn-

Minkowski inequality, we then show that (up to a translation) f = χB1
, concluding the proof.

2.1.2 Motivation

In [13], the following variational problem was introduced:

inf
|E|=ωd

{
P (E) +αΥp(E)

}
, (2.1.8)

where α > 0 and where Υp is the functional Υ defined in (2.1.1) with the cost c(x,y) = |x − y|p.

Such a variational problem may be used to model the formation of bi-layer biological membranes

(see [70, 59]). Existence of minimisers were obtained in the series of work [13, 77, 64, 19].

Notice that (2.1.8) is an isoperimetric problem with a non-local term Υp. One of the best-

known examples of this type of problem is Gamow’s liquid drop model for the atomic nucleus.

Since the beginning of the 2010s (see [26] for an historical perspective), this model has received

a lot of attention from the mathematical community, and several versions of it have been studied,

see for instance [54, 50, 55, 51]. In this framework, the perimeter term represents the local

attractive forces while the repulsive non-local term is given by the Riesz potential
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Vβ(E) :=
∫
E

∫
E

dxdy

|x − y|d−β
,

where β ∈ (0,d). A consequence of Riesz’s rearrangement inequality is that balls are the volume

constrained maximisers of Vβ . This illustrates the competition between the perimeter and the

Riesz potential. It is thus natural to investigate whether similar properties hold for (2.1.8). In

our case, the proof is much more involved since the rearrangement argument does not seem

to work well for the primal problem. We consider instead the dual problem Υ ∗ and study the

(fortunately favourable) interplay between rearrangement and c−transforms.

As a closing remark, we point out that the functional Υ is a particular case of the optimal

partial transport problem studied in [40, 35].

2.1.3 Organization of the chapter

The chapter is structured as follows. In Section 2.2, we introduce the notation and review

standard facts related to optimal transport in complete separable metric spaces. In Section 2.3,

we obtain preliminary results on the functional Υ defined in compact spaces. In Section 2.4, we

establish Theorem 2.1.1. Eventually, in Section 2.5, we prove Theorem 2.1.3.

2.2 Notation and preliminary results

2.2.1 Notation

Let (X,dX) be a Polish space endowed with a positive Radon measure λ.

Given a function f : X→R, we decompose it as:

f = f+ + f− with f+ := max(0, f ) := 0∨ f and f− := min(0, f ) := 0∧ f .

Let us stress that f− is non-positive, contrary to the classical decomposition of a function into its

positive and negative parts.

We endowM+(X) with the topology of weak-∗ convergence, that is the topology induced by

duality with Cb(X). The convergence of a sequence µn ∈M+(X) to µ ∈M+ is written: µn
∗
⇀µ as

n→∞.

Given a measure µ ∈M+(X) and a set A ⊂ X, the restriction of µ to A is the measure µ A

defined as µ A(B) := µ(B∩A) for every Borel set B of X. The support of µ, denoted by suppµ,

is the closed set defined by

suppµ :=
{
x ∈ X : µ(A) > 0 for all open set A containing x

}
.

Given f ∈ L1(X,λ) the support of f is defined as the support of the measure f dλ and denoted

by suppf . We identify the measure f dλ with its density f and write fn
∗
⇀ f as n→∞ to signify

that
∫
fnξ converges to

∫
f ξ for every ξ ∈ Cb(X).
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Given a function f ∈ L1
loc(Rd ,R), we denote by Leb(f ) the set of its Lebesgue points.

Given x ∈Rd and r > 0, Br(x) denotes the open ball of radius r centred at x, and Br denotes

the open ball of radius r centred at 0. The closed ball of radius r centred at x is denoted by Br(x).

The volume of the unit ball in R
d is denoted by ωd .

Given two sets A,B of Rd , we define their sum A+B := {a+ b, a ∈ A, b ∈ B}. The gap between

A and B is d(A,B) := inf{|a− b|, a ∈ A, b ∈ B}.

2.2.2 Optimal transport theory

In this subsection, we recall some results regarding standard optimal transport theory. Most of

the material presented here comes from [73, Chapter 1].

Let (X,dX) be a complete separable metric space (i.e. a Polish space) and let c : X ×X→ R

be measurable. Given µ,ν ∈ M+(X) such that µ(X) = ν(X), the Kantorovitch problem with

marginals µ and ν and cost c is

Tc(µ,ν) := inf
{∫

cdγ : γ ∈Π(µ,ν)
}
, (2.2.1)

where Π(µ,ν) is the set of transport plans between µ and ν, i.e.

Π(µ,ν) :=
{
γ ∈M+(X ×X) : γx = µ, γy = ν

}
.

Problem (2.2.1) admits a dual formulation given by

T ∗c (µ,ν) := sup
{∫

ϕdµ+
∫
ψdν : ϕ,ψ ∈ Cb(X), ϕ ⊕ψ ≤ c

}
, (2.2.2)

where the function ϕ ⊕ψ is defined on X ×X by (ϕ ⊕ψ)(x,y) := ϕ(x) +ψ(y).

Theorem 2.2.1 (Theorem 1.7 of [73]). Let c : X ×X→ R be lower semi-continuous and bounded
from below and let µ,ν ∈M+(X) with µ(X) = ν(X). Then (2.2.1) admits a solution and

Tc(µ,ν) = T ∗c (µ,ν).

Using the notion of c-transform of a function, the maxima of (2.2.2) can be further charac-

terised.

Definition 2.2.2. Given a function ξ : X→R∪ {+∞}, we define its c-transform (or c-conjugate)

ξc : X→R∪ {−∞} by

ξc(y) := inf
x∈X
{c(x,y)− ξ(x)} .

Denoting c̄(y,x) := c(x,y), the c̄-transform of ζ : X→R∪ {+∞} is given by

ζ c̄(x) := inf
y∈X
{c̄(y,x)− ζ(y)} .
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A function ψ : X→ R∪ {−∞} is said to be c̄-concave if there exists ξ : X→ R∪ {+∞} such that

ψ = ξc (the definition of c-concavity is analogous).

Definition 2.2.3. Let (X,dX) be a metric space and ω ∈ C(R+,R+) be increasing and such that

ω(0) = 0. A function ϕ : X→R is ω-continuous if for all x,x′ ∈ X,

|ϕ(x)−ϕ(x′)| ≤ ω(dX(x,x′)).

Similarly, we say that c : X ×X→R is ω-continuous if for all x,x′ , y,y′ ∈ X,

|c(x,y)− c(x′ , y′)| ≤ ω(dX(x,x′) + dX(y,y′)).

Proposition 2.2.4. Let ϕ,ψ : X → R be fixed and assume that ϕc and ψc̄ take real values. The
following statements hold:

(i) If c is ω-continuous, then ϕc is also ω-continuous,

(ii) ϕcc̄ ≥ ϕ, and ϕcc̄ = ϕ if and only if ϕ is c-concave,

(iii) ϕc is the largest function ψ compatible with the constraint ϕ ⊕ψ ≤ c and ψc̄ is the largest
function ϕ compatible with the constraint ϕ ⊕ψ ≤ c.

Remark that if X is compact and ϕ, ψ and c are bounded then ϕc and ψc̄ take real values.

Moreover, if c is continuous, say ω-continuous, the proposition states that ϕc and ψc̄ are ω-

continuous. This yields the following existence result for (2.2.2).

Theorem 2.2.5 (Proposition 1.11 of [73]). Let X be a compact metric space and c : X ×X → R

be continuous. Then there exists a solution (ϕ,ψ) to (2.2.2), where ϕ is c-concave and ψ = ϕc. In
particular,

T ∗c (µ,ν) = max
{∫

ϕdµ+
∫
ϕc dν : ϕ c-concave

}
.

A pair of functions maximising (2.2.2) is called a pair of Kantorovitch potentials.

2.3 Study of the exterior transport functional in compact metric

spaces

Let (X,dX) be a compact metric space and let c : X ×X→R be a continuous cost function. We

endow (X,dX) with a measure λ ∈ M+(X) such that λ(X) > 0 and denote by L1(X) the set of

R-valued functions integrable with respect to λ. Given f ∈ L1(X), we define the set of admissible

transport plans

Πf :=
{
γ ∈M+(X ×X) : γx = f , γy ≤ 1− f

}
and the primal problem

Υ (f ) := inf
{∫

cdγ : γ ∈Πf

}
. (2.3.1)
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Notice that Πf is empty whenever f does not satisfy 0 ≤ f ≤ 1 or when ∫ f dλ > λ(X)/2. In the

other cases, there exists g ∈ L1(X) such that g ≥ 0, f + g ≤ 1 and ∫ g dλ = ∫ f dλ. Thus,

γ :=
1

∫ f dλ
(f dλ)⊗ (g dλ) ∈Πf ,

and Πf is not empty. We now fix 0 < m ≤ λ(X)/2 and define

L1
m :=

{
f ∈ L1(X, [0,1]) :

∫
f ≤m

}
.

Given f ∈ L1
m and ϕ,ψ ∈ C(X), we set

Kf (ϕ,ψ) :=
∫

(f ϕ + (1− f )ψ) dλ (2.3.2)

and define the dual problem

Υ ∗(f ) := sup
{
Kf (ϕ,ψ) : (ϕ,ψ) ∈ Φ

}
, (2.3.3)

where

Φ := {(ϕ,ψ) ∈ C(X)×C(X), ψ ≤ 0, ϕ ⊕ψ ≤ c} .

For the remainder of the section we fix f ∈ L1
m. As in the classical theory of optimal transport, a

simple application of the direct method of Calculus of Variations shows that (2.3.1) admits a

minimiser.

Proposition 2.3.1. Assume that X is a compact metric space and that c ∈ C(X ×X,R). Then, the
infimum in (2.3.1) is a minimum.

Remark 2.3.2. If we let f ∈ L1
m, by Proposition 2.3.1, there exists γ ∈M+(X×X) optimal for Υ (f ).

Notice that γ solves the classical optimal transport problem from f towards g := γy defined

by (2.2.1). Moreover, we have the identity Υ (f ) = Tc(f ,g).

Let us now show that Υ ∗(f ) = Υ (f ) and that (2.3.3) admits a maximising pair (ϕ,ψ). We

first establish that we can reduce the set of competitors for (2.3.3). To simplify the notation we

denote by ϕc− the function (ϕc)− := ϕc ∧ 0.

Lemma 2.3.3. Assume that X is a compact metric space and that c ∈ C(X ×X,R). Then, there holds

Υ ∗(f ) = sup {Kf (ψc̄,ψ) : ψ = ϕc− for some ϕ ∈ Φ ′}, (2.3.4)

where
Φ ′ :=

{
ϕ ∈ C(X), ϕ = (ϕc−)c̄, maxϕc ≥ 0

}
. (2.3.5)

Proof. Step 1. We can replace ψ by ϕc− and assume that maxϕc ≥ 0.
Let (ϕ,ψ) ∈ Φ . By Proposition 2.2.4 (iii), ψ ≤ ϕc, so that ψ ≤ ϕc ∧ 0 = ϕc−. As 1 − f ≥ 0,

Kf (ϕ,ϕc−) ≥ Kf (ϕ,ψ). Therefore, we can restrict the maximisation to the pairs (ϕ,ϕc−) in the
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supremum (2.3.3). Now, if maxϕc = −t < 0 we set ϕ̃ := ϕ − t so that ϕ̃c = ϕc + t. Consequently,

max ϕ̃c = 0 and in particular, ϕ̃c− = ϕ̃c so that (ϕ̃, ϕ̃c) ∈ Φ . We then compute

Kf (ϕ̃, ϕ̃c) ≥
∫
f (ϕ̃ − ϕ̃c)dλ+

∫
ϕ̃c dλ

=
∫
f (ϕ −ϕc)dλ+

∫
ϕc dλ+ t(λ(X)− 2m)

= Kf (ϕ,ϕc−) + t(λ(X)− 2m).

As 2m ≤ λ(X) we obtain Kf (ϕ̃, ϕ̃c−) ≥ Kf (ϕ,ϕc−). Hence

Υ ∗(f ) = sup
{
Kf (ϕ,ϕc−) : ϕ ∈ C(X),maxϕc ≥ 0

}
.

Step 2. There holds ϕ = (ϕc−)c̄.
Let us introduce the mapping P : C(X) → C(X) defined by P (ϕ) := (ϕc−)

c̄. For ϕ ∈ C(X),

ϕc ≥ ϕc−, so that P (ϕ) = (ϕc−)c̄ ≥ ϕcc̄. By Proposition 2.2.4 (i), ϕc̄c ≥ ϕ, hence

P (ϕ) ≥ ϕ. (2.3.6)

By Proposition 2.2.4 (ii) again there holds P (ϕ)c = (ϕc−)c̄c ≥ ϕc−. Taking the negative part yields

P (ϕ)c− ≥ ϕc−. (2.3.7)

We deduce from (2.3.6) and (2.3.7) that

Kf (P (ϕ), P (ϕ)c−) ≥ Kf (ϕ,ϕc−).

Now, we observe that if maxϕc ≥ 0 we also have maxϕc− = 0 and, by (2.3.7), maxP (ϕ)c− = 0

which implies that maxP (ϕ)c ≥ 0. Hence,

Υ ∗(f ) = sup
{
Kf (ϕ̃, ϕ̃c−) : ϕ̃ ∈ C(X),max ϕ̃c ≥ 0, ϕ̃ = P (ϕ) for some ϕ ∈ C(X)

}
. (2.3.8)

To conclude, we show that P (P (ϕ)) = P (ϕ) for any ϕ ∈ C(X). By (2.3.6), P (P (ϕ)) ≥ P (ϕ). Taking

the c̄-transform in (2.3.7) yields P (P (ϕ)) ≤ P (ϕ) and we have indeed P (P (ϕ)) = P (ϕ). Hence we

have ϕ̃ ∈ Φ ′ in (2.3.8) and we get

Υ ∗(f ) = sup
{
Kf (ϕ̃, ϕ̃c−) : ϕ̃ ∈ Φ ′

}
. (2.3.9)

Finally, by definition ϕ̃ = (ϕ̃c−)c̄ for ϕ̃ ∈ Φ ′ and (2.3.4) follows from (2.3.9) by letting ψ := ϕ̃c−.

We can now establish that the supremum in (2.3.4) is reached.

Proposition 2.3.4. Assume that X is a compact metric space and that c ∈ C(X ×X,R). Then, the set
Φ ′ is compact in (C(X),∥ · ∥∞) and the suprema in (2.3.4) and (2.3.3) are attained.

Proof. Let us show that Φ ′ is compact. Letϕn be a sequence in Φ ′. The function c isω-continuous
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for some modulus of continuity ω ∈ C(R+,R+), so that by Proposition 2.2.4 (ii) for every n ≥ 0,

ϕcn := (ϕn)c and ϕcn− := ((ϕn)c)− are ω-continuous. By definition of Φ ′, ϕn = (ϕcn−)c̄, so that ϕn is

also ω-continuous for every n ≥ 0. Let us show that the sequences ϕn and ϕcn− are uniformly

bounded in (C(X),∥ · ∥∞). We observe that for every n ≥ 0, maxϕcn ≥ 0. Denoting by xn a point of

X such that ϕcn−(xn) = 0, by ω-continuity we have for x ∈ X and n ≥ 0,

−ω(diam(X)) ≤ −ω(dX(x,xn)) ≤ ϕcn−(x)−ϕcn−(xn) = ϕcn−(x) ≤ 0.

Thus the sequence ϕcn− is uniformly bounded in (C(X),∥ · ∥∞). By definition of the c-transform

min
X×X

c −max
X
ϕcn− ≤ (ϕcn−)c̄ ≤max

X×X
c −min

X
ϕcn−.

Hence the sequence ϕn is also uniformly bounded. By Arzelá-Ascoli’s theorem, there exists

a pair (ϕ,ψ) ∈ C(X)×C(X) such that, up to extraction of a subsequences, (ϕn,ϕcn−) converges

uniformly to (ϕ,ψ).

Let us show that ϕ ∈ Φ ′. By Proposition 2.2.4 (iii) and by uniform convergence ϕcn→ ϕc as

n→∞ so that

ϕcn−→ ϕc− uniformly as n→∞, (2.3.10)

which yields ψ = ϕc−. From (2.3.10) and the uniform continuity of c, we deduce that

(ϕcn−)c̄ = ϕn→ (ϕc−)c̄ uniformly as n→∞.

Since ϕn → ϕ as n→∞, we obtain ϕ = (ϕc−)
c̄. Lastly, by uniform convergence, the fact that

maxϕcn ≥ 0 for all n ≥ 0 implies that maxϕc ≥ 0, so that ϕ ∈ Φ ′. This shows that Φ ′ is a compact

subset of (C(X),∥ · ∥∞).

Let now ψn be a maximising sequence for (2.3.4). For all n ≥ 0, there exists ϕn ∈ Φ ′ such that

ψn = ϕcn−. By compactness of Φ ′, ϕn→ ϕ as n→∞ for some ϕ ∈ Φ ′. Setting ψ = ϕc−, we have

ψn→ ψ and ψc̄n→ ψc̄ as n→∞. The functional Kf being continuous with respect to uniform

convergence, we obtain

Kf (ψc̄,ψ) = limKf (ψc̄n,ψn) = Υ ∗(f ).

This proves that ψ is a maximiser for (2.3.4) and by Lemma 2.3.3, ψ also maximises (2.3.3).

We are now ready to prove that there is no duality gap between (2.3.1) and (2.3.3). The proof

is an adaptation of [73, Section 1.6.3].

Proposition 2.3.5. Assume that X is a compact metric space and that c ∈ C(X ×X,R). Then,

Υ ∗(f ) = Υ (f ).

Proof. Step 1. Definition of H and first properties.
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For p ∈ C(X ×X), we define

H(p) := −sup
{∫

(f ϕ + (1− f )ψ) dλ : (ϕ,ψ) ∈ Φp
}

where

Φp := {(ϕ,ψ) ∈ C(X)×C(X), ψ ≤ 0, ϕ ⊕ψ ≤ c − p} .

We first observe that c − p is continuous and bounded from below. Thus, by applying Proposi-

tion 2.3.4 with c − p in place of c, we see that the above supremum is a maximum.

Let us now show that H is convex. Let p0,p1 ∈ C(X × X) and θ ∈ [0,1] and let us set

p := (1−θ)p0 +θp1. We denote by (ϕ0,ψ0) and (ϕ1,ψ1) two maximising pairs associated with

p0 and p1 and set ϕ := (1−θ)ϕ0 +θϕ1, ψ := (1−θ)ψ0 +θψ1. We see that (ϕ,ψ) is an admissible

pair (ψ ≤ 0 and ϕ ⊕ψ ≤ c − p), so that

H(p) ≤ −
∫

(f ϕ + (1− f )ψ) dλ = (1−θ)H(p0) +θH(p1).

This proves that H is convex.

Next, we establish that H is lower semi-continuous in (C(X ×X),∥ · ∥∞). Let pn and p be

elements of C(X ×X) such that pn→ p uniformly as n→∞. The sequence c − pn is uniformly

equi-continuous. Therefore, proceeding as in the proof of Proposition 2.3.4, there exists a

sequence of uniformly bounded and equi-continuous admissible pairs (ϕn,ψn) such that

H(pn) = −
∫

(f ϕn + (1− f )ψn) dλ for every n ≥ 0.

We first extract a subsequence pn′ such that limn′H(pn′ ) = liminfnH(pn). By Arzelà-Ascoli’s

theorem, there exists (ϕ,ψ) ∈ C(X)×C(X) such that ϕn′ → ϕ and ψn′ → ψ uniformly as n′→∞.

By pointwise convergence, ψ ≤ 0 and ϕ ⊕ψ ≤ c − p. Passing to the limit yields

H(p) ≤ −
∫

(f ϕ + (1− f )ψ) dλ = − lim
n′

∫
(f ϕn′ + (1− f )ψn′ ) dλ = liminf

n
H(pn).

Thus H is lower semi-continuous.

Step 2. Absence of duality gap.
Since H is convex and lower semi-continuous on the Banach space (C(X ×X),∥ · ∥∞), we have

H(0) = H ∗∗(0). Here, for a Banach space X and a function F : X → R∪ {+∞}, F∗ denotes the

Legendre transform of F defined on the topological dual X ∗ of X by

F∗(x∗) := sup {x∗(x)−F(x) : x ∈ X} .

In particular,

Υ ∗(f ) = −H(0) = −H ∗∗(0) = inf{H ∗(γ) : γ ∈M(X ×X)}. (2.3.11)
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We now compute H ∗. Let γ ∈M(X ×X). By definition,

H ∗(γ) = sup
p∈C(X×X)


∫
pdγ + sup

(ϕ,ψ)∈Φp

{∫
(f ϕ + (1− f )ψ) dλ

} .
Let us first assume that there exists q ∈ C(X ×X,R+) such that t := −

∫
qdγ > 0. We set ϕ = minc,

ψ = 0 and pn := −nq for n ≥ 1. We obtain

H ∗(γ) ≥ nt −mminc →∞ as n→∞.

Thus, when computing H ∗(γ), we may assume that γ ≥ 0. We rewrite H ∗(γ) as

H ∗(γ) =
∫
cdγ + sup

p∈C(X×X)
sup

(ϕ,ψ)∈Φp

{∫
(p − c+ϕ ⊕ψ)dγ

+
∫
ϕd(f λ−γx) +

∫
ψd((1− f )λ−γy))

}
.

(2.3.12)

Let us set

G(γ) := sup
{∫

ϕd(f λ−γx) +
∫
ψd((1− f )λ−γy) : (ϕ,ψ) ∈ C(X)×C(X), ψ ≤ 0

}
.

On the one hand, given (ϕ,ψ) ∈ Φp and γ ≥ 0,∫
(p − c+ϕ ⊕ψ)dγ ≤ 0.

Therefore, H ∗(γ) ≤ ∫ cdγ +G(γ). On the other hand, given (ϕ,ψ) admissible for G(γ), setting

p = c −ϕ ⊕ψ yields the converse inequality thanks to (2.3.12). Hence

H ∗(γ) =
∫
cdγ +G(γ). (2.3.13)

Given γ ∈M+(X ×X), we have G(γ) = 0 if γ ∈Πf and G(γ) = +∞ otherwise. Combining this

with (2.3.13), we obtain that for γ ∈M(X ×X),

H ∗(γ) =


∫
cdγ if γ ∈Πf ,

+∞ in the other cases.

Taking the infimum with respect to γ ∈M(X ×X) and recalling (2.3.11), we get

Υ ∗(f ) = inf {H ∗(γ) : γ ∈M(X ×X)} = inf
{∫

cdγ : γ ∈Πf

}
= Υ (f ),

which concludes the proof.

Remark 2.3.6. There is still no duality gap between (2.3.1) and (2.3.3) if we only assume c to be



60 CHAPTER 2. An exterior optimal transport problem

lower semi-continuous. This result can be obtained by approximating c pointwise from below

by a non-decreasing sequence of continuous functions.

In the remainder of the section, we focus on the properties of the potentials (ψc̄,ψ) max-

imising (2.3.4). We first show that the sign of ψc̄c enforces constraints on the local values of the

marginals of any plan γ optimal for Υ (f ).

Proposition 2.3.7. Assume that X is a compact metric space and that c ∈ C(X ×X,R). Let (ψc̄,ψ) be
a maximiser of (2.3.4) and let γ be a minimiser of (2.3.1). We set g := γy . Then, γ is a minimiser
of (2.2.1) with (µ,ν) = (f ,g) and (ψc̄,ψc̄c) is a pair of Kantorovitch potentials realising the maximum
in (2.2.2). Moreover, up to λ-negligible sets,

f + g ≡ 1 on {ψc̄c < 0} and g ≡ 0 on {ψc̄c > 0}. (2.3.14)

Proof. By Remark 2.3.2, γ realises the minimum in (2.2.1) and Υ (f ) = Tc(f ,g). As there is no

duality gap in (2.3.1) nor in (2.2.1), Υ ∗(f ) = T ∗c (f ,g). Additionally, (ψc̄,ψc̄c) is admissible for

T ∗c (f ,g) and ψ = (ψc̄c)−. Thus

Kf (ψc̄,ψ) =
∫
f ψc̄ dλ+

∫
(1− f )(ψc̄c)−dλ = T ∗c (f ,g) ≥

∫
f ψc̄ dλ+

∫
gψc̄c dλ. (2.3.15)

Hence ∫
(1− f − g)(ψc̄c)−dλ ≥

∫
g(ψc̄c)+dλ.

Since (1− f − g)(ψc̄c)− ≤ 0 and g(ψc̄c)+ ≥ 0, the integrands must vanish λ-almost everywhere: we

deduce (2.3.14). Additionally, the inequality in (2.3.15) is an equality. Consequently, (ψc̄,ψc̄c) is

a pair of Kantorovitch potentials for (2.2.2).

To end this section, we establish a comparison principle on the potentials maximising (2.3.4).

We say that a set Ψ ⊂ C(X) admits a minimal (respectively maximal) element for the relation ≤
if there exists ψ0 ∈ Ψ such that for any ψ ∈ Ψ , ψ0 ≤ ψ (respectively ψ0 ≥ ψ).

Proposition 2.3.8. Assume that X is a compact metric space and that c ∈ C(X ×X,R). Let f ∈ L1
m

and let us define

Ψf :=
{
ψ, ψ = ϕc− for some ϕ ∈ Φ ′ and Kf (ψc̄,ψ) = Υ ∗(f )

}
,

where Kf is defined in (2.3.2) and Φ ′ in Lemma 2.3.3.
Then:

(i) Ψf admits a maximal element for the relation ≤, denoted by ψf in the sequel,

(ii) For f1, f2 ∈ L1
m, there holds f1 ≤ f2 =⇒ ψf1 ≥ ψf2 .

Proof. Step 1. Sufficient condition and preliminary claim.
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Notice that Ψf is not empty by Proposition 2.3.4. To obtain (i), we prove that the set (which

is not empty since Ψf is not empty)

Φf :=
{
ϕ ∈ Φ ′ , Kf (ϕ,ϕc−) = Υ ∗(f )

}
admits a minimal element ϕf and then ψf := (ϕcf )− is the desired maximal element of Ψf . Let

us make a preliminary observation.

Claim. Let f1, f2 ∈ L1
m with f1 ≤ f2 and set ϕi ∈ Φfi for i ∈ {1,2}. Then ϕ∧ := ϕ1 ∧ϕ2 ∈ Φf1 .

Let us first prove that ϕ∧ ∈ Φ ′. In the sequel we write ϕci := (ϕi)c and ϕci − := ((ϕi)c)− for

i ∈ {1,2,∧}. We observe that ϕ∧ ∈ C(X). By definition of the c-transform, we obtain

ϕc∧ = (ϕ1 ∧ϕ2)c ≥ ϕc1 ∨ϕ
c
2 (2.3.16)

and

(ϕ1 ∨ϕ2)c = ϕc1 ∧ϕ
c
2. (2.3.17)

Since for i ∈ {1,2}, maxϕci ≥ 0 we have by (2.3.16) that maxϕc∧ ≥ 0.

We now prove that (ϕc∧−)
c̄ = ϕ∧. We observe that ϕc∧− ≤ ϕ

c
∧ which implies (ϕc∧−)

c̄ ≥ ϕcc̄∧ .

By Proposition 2.2.4 (ii), ϕcc̄∧ ≥ ϕ∧ so that (ϕc∧−)
c̄ ≥ ϕ∧. Conversely, taking the negative part

of (2.3.16), we have ϕc∧− ≥ (ϕc1 ∨ϕ
c
2)− = ϕc1− ∨ϕ

c
2−. Taking the c̄-transform and using (2.3.17)

(with c̄ instead of c) yields

(ϕc∧−)c̄ ≤ (ϕc1− ∨ϕ
c
2−)c̄ = (ϕc1−)c̄ ∧ (ϕc2−)c̄ = ϕ1 ∧ϕ2 = ϕ∧.

Hence (ϕc∧−)c̄ = ϕ∧ and ϕ∧ ∈ Φ ′.
We now show that the pair (ϕ∧,ϕ

c
∧−) maximises Υ ∗(f1). We set

∆K := Kf1(ϕ∧,ϕ
c
∧−)−Kf1(ϕ1,ϕ

c
1−) =

∫
f1(ϕ∧ −ϕ1) +

∫
(1− f1)(ϕc∧− −ϕ

c
1−) .

By optimality of ϕ1, ∆K ≤ 0. Let us prove the converse inequality. Substituting f1 = f2 + f1 − f2
in the definition of ∆K , we obtain

∆K =
∫
f2(ϕ∧ −ϕ1) +

∫
(1− f2)(ϕc∧− −ϕ

c
1−) +

∫
(f2 − f1)(ϕ1 −ϕ∧ +ϕc∧− −ϕ

c
1−) .

We have f2 − f1 ≥ 0 and ϕ1 −ϕ∧ ≥ 0. Additionally, ϕc∧ ≥ ϕc1, so that ϕc∧− ≥ ϕ
c
1−. Thus the last

integral in ∆K is non-negative. Adding and subtracting f2ϕ2 in the first integral yields

∆K ≥
∫
f2ϕ2 +

∫
f2(ϕ∧ −ϕ1 −ϕ2) +

∫
(1− f2)(ϕc∧− −ϕ

c
1−) . (2.3.18)

Let us set ϕ∨ := ϕ1∨ϕ2. By optimality of ϕ2, we have Kf2(ϕ2,ϕ
c
2−) ≥ Kf2(ϕ∨,ϕ

c
∨−), which rewrites

as ∫
f2ϕ2 ≥

∫
f2ϕ∨ +

∫
(1− f2)(ϕc∨− −ϕ

c
2−) .
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Injecting this inequality in the first term of the right-hand side of (2.3.18) yields

∆K ≥
∫
f2(ϕ∧ +ϕ∨ −ϕ1 −ϕ2) +

∫
(1− f2)(ϕc∨− +ϕc∧− −ϕ

c
1− −ϕ

c
2−) . (2.3.19)

The integrand in the first integral of (2.3.19) vanishes. Regarding the second term, using (2.3.17)

and (2.3.16) we obtain

ϕc∨− +ϕc∧− ≥ ϕ
c
1− ∧ϕ

c
2− +ϕc1− ∨ϕ

c
2− = ϕc1− +ϕc2−.

Hence the integrand in the second integral is non-negative. We conclude that ∆K ≥ 0 and finally

that ∆K = 0 so that the claim is proved.

Step 2. Construction of the minimal element of Φf .
By Lemma 2.3.4, Φ ′ is compact. As ϕ 7→ Kf (ϕ,ϕc−) is continuous for the norm of uniform

convergence, Φf is compact as well. Let (ϕj )j≥0 be a dense subset of Φf . For x ∈ X and j ≥ 0, we

define ϕ̃j and ϕf by

ϕ̃j(x) := min(ϕ0(x), . . . ,ϕj(x)) and ϕf (x) := inf{ϕ(x), ϕ ∈ Φf }.

Using our preliminary claim with f1 = f2 = f recursively, we obtain that for any j ≥ 0, ϕ̃j ∈ Φf .

As Φf is compact and ϕ̃j → ϕf pointwise, we obtain that ϕ̃j → ϕf uniformly and ϕf ∈ Φf , so

that ϕf is the desired minimal element of Φf .

Step 3. Conclusion.
Taking ψf := ϕcf −

proves (i). Let f1 ≤ f2 as given in the statement of (ii). By the previous step,

there exist ϕ1,ϕ2 respective minimal elements for Φf1 and Φf2 such that ψ1 := ϕc1− and ψ2 := ϕc2−
are respective maximal elements for Ψf1 and Ψf2 . By the preliminary claim, ϕ1∧ϕ2 ∈ Φf1 and by

minimality of ϕ1 we have ϕ1 ≤ ϕ1 ∧ϕ2, so that ϕ2 ≥ ϕ1. Hence ψ2 ≤ ψ1.

2.4 The case of translation invariant costs in Euclidean spaces

We now assume that X = R
d , that λ is the Lebesgue measure and that c(x,y) = k(y − x), with

k : Rd →R+. We recall the following hypotheses on k.

(H1) k ∈ C(Rd ,R+), k(0) = 0 and k(x)→∞ as |x| →∞,

(H2) ∀x , 0,

limsup
r→0

1
rd

∣∣∣Br(x)∩ {y ∈Rd , k(y) < k(x)}
∣∣∣ > 0,

(H3) ∀σ ∈ Sd−1, r 7→ k(rσ ) is increasing on R+.

Notice that under hypotheses (H1) and (H2), there holds k(x) > 0 for x , 0.

The primal problem is now defined as

Υ (f ) := inf
{∫

cdγ : γ ∈Πf

}
, (2.4.1)



2.4. The case of translation invariant costs in Euclidean spaces 63

where

Πf :=
{
γ ∈M+(Rd ×Rd) : γx = f , γy ≤ 1− f

}
.

The goal of this section is to prove that for every m > 0 the energy

E(m) := sup
{
Υ (f ) : f ∈ L1(Rd , [0,1]),

∫
f =m

}
(2.4.2)

admits a maximiser.

2.4.1 First properties of the exterior transport functional and saturation theorem

In this subsection, we collect some properties of the functional Υ defined in R
d and establish

a saturation property (Theorem 2.4.4), namely that if γ is a minimiser for Υ (f ) then γy(x) ∈
{f (x),1− f (x)} for almost every x ∈Rd .

We start by proving that minimisers of (2.4.1) exist. The proof of this result is similar to the

proof of [19, Proposition 2.1], but with weaker assumptions on the cost c and in the context of

functions taking values in [0,1] rather than in {0,1}.

Proposition 2.4.1. Assume that k satisfies (H1). Then, for any m > 0 and f ∈ L1
m, the infimum

in (2.4.1) is attained. Additionally, given any minimiser γ of (2.4.1) we have Υ (f ) = Tc(f ,g), where
g := γy .

Lastly, there exists R = R(m) non-decreasing in m such that for any f ∈ L1
m,

Υ (f ) = min
{∫

cdγ : γ ∈Πf , ∀ (x,y) ∈ suppγ, |x − y| ≤ R
}

(2.4.3)

and for any minimiser γ of (2.4.1), there holds |x − y| ≤ R on suppγ .

Proof. The strategy of the proof is to first establish (2.4.3) with an infimum in place of the

minimum. Then we use this property to derive compactness for (2.4.1).

Step 1. Restricting the set of competitors for (2.4.1).
We let γ ∈Πf and set g := γy . We want to build a competitor γ̃ for Υ (f ) such that for some

R > 0, |x − y| ≤ R for every (x,y) ∈ supp γ̃ . For R > 0, we define

ΓR :=
{
(x,y) ∈Rd ×Rd , |x − y| ≥ R

}
.

We consider a standard partition of Rd into cubes (Qi)i≥0 with side-length ρ1(m) := (3m)1/d . We

define

I := {i ≥ 0, mi := γ(ΓR ∩ (Qi ×Rd)) > 0},

and for i ∈ I , we set

γbad,i := χΓR∩(Qi×Rd )γ.

As |Qi | − ∫ f − ∫ g ≥m ≥mi , there exists a positive measure µi ≪ χQiλ such that

µi ≤ χQi (1− f − g) and µi(R
d) = γbad,i(R

d ×Rd).
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Denoting by θi the first marginal of γbad,i we set

γ̃i := χQi×Rdγ −γbad,i +
1
mi
θi ⊗µi ≥ 0.

For i ∈ Ic, we simply define γ̃i := χ(Qi×Rd )γ . As a consequence, γ̃ :=
∑
i≥0 γ̃i is a transport plan

whose first marginal is f and second marginal g̃ verifies g̃ ≤ g ≤ 1 − f . By construction, for

R >
√
dρ1(m), we have γ̃(ΓR) = 0.

Let us now compare the transportation cost of γ and γ̃ . We compute:∫
cdγ̃ −

∫
cdγ =

∑
i∈I

∫
Qi×Rd

cd

(
θi ⊗µi
mi

−γbad,i

)

≤

∑
i∈I
mi


 max
z∈Qρ1(m)

k(z)− inf
|z|≥R

k(z)

 .
Let us set Qρ1(m) := [0;ρ1(m)]d and then M := max{k(z), z ∈ Qρ1(m)}. By (H1), there exists R >√
dρ1(m) such that if |z| > R, then k(z) >M. With this choice of R we have ∫ cdγ̃ ≤ ∫ cdγ . Lastly,

whenever γ(ΓR) > 0, ∫
cdγ̃ <

∫
cdγ. (2.4.4)

Step 2 : Lower semi-continuity of the transportation cost.
This step is classical. To prove that γ 7→ ∫ cdγ is lower semi-continuous with respect to weak

convergence, we proceed by approximation. Let us assume that γn
∗
⇀γ as n→∞. For j ≥ 0, we

define cj := c∧ j. The sequence cj is non-decreasing and converges pointwise to c. For every

j ≥ 0, cj ∈ Cb(Rd ×Rd), so that∫
cj dγ = lim

n

∫
cj dγn ≤ liminf

n

∫
cdγn.

By the monotone convergence theorem,∫
cdγ = lim

j

∫
cj dγ ≤ liminf

n

∫
cdγn,

which concludes the second step of the proof.

Step 3. Υ (f ) admits a minimiser.
Let γn be a minimising sequence for (2.4.1). Let us show that the sequence γn is tight. By the

first step, we can assume that there exists R = R(m) such that for any n ≥ 0 there holds |x− y| ≤ R
on suppγn. Now, because ∫ f ≤m <∞, there exists R′ = R′(m) > 0 such that ∫Rd\BR′ f ≤ ε. Hence,

γn
(
R
d ×Rd \ (BR′ ×BR+R′ )

)
= γn

(
BR′ × (Rd \BR+R′ )

)
+γn

(
(Rd \BR′ )×Rd

)
≤ 0 + εm

which proves that the sequence γn is tight. Together with the second step, this shows that (2.4.1)

admits a minimiser. Moreover, by (2.4.4) for any minimiser γ of (2.4.1) there holds |x − y| ≤ R
on suppγ . Lastly, setting g := γy the identity Υ (f ) = Tc(f ,g) is immediate.
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We now establish some basic properties of the functional Υ . The results here are similar

to [19, Proposition 2.2 & Lemma 2.4].

Proposition 2.4.2. Assume that k satisfies (H1). Given m > 0 and f1, f2 ∈ L1
m we have:

(i) If f1 + f2 ≤ 1, then
Υ (f1 + f2) ≥ Υ (f1) +Υ (f2).

As a consequence, if f1 ≤ f2, then Υ (f1) ≤ Υ (f2).

(ii) There exists R = R(m) such that if d(suppf1,suppf2) ≥ R, then

Υ (f1 + f2) = Υ (f1) +Υ (f2).

(iii) There exists C = C(m) > 0 such that

|Υ (f1)−Υ (f2)| ≤ C∥f1 − f2∥L1 .

(iv) Let f , fn ∈ L1(Rd , [0,1]) be such that the sequence fn is tight and fn
∗
⇀ f . Then Υ (fn)→ Υ (f ).

Proof. Step 1. Proof of (i)&(ii).
To prove (i), we consider a transport plan γ optimal for Υ (f1 + f2) whose existence is

guaranteed by Proposition 2.4.1. We would like to extract from γ two plans γ1 and γ2 admissible

for Υ (f1) and Υ (f2) respectively. Using the convention 0/0 = 0, we define γ1 and γ2 through

dγ1(x,y) :=
f1(x)

(f1 + f2)(x)
dγ(x,y) and dγ2(x,y) :=

f2(x)
(f1 + f2)(x)

dγ(x,y).

By construction, γ1
x = f1 and γ2

x = f2. We also have γ1 ≤ γ , so that

γ1
y ≤ γy ≤ 1− (f1 + f2) ≤ 1− f1.

Likewise, γ2
y ≤ 1 − f2. Therefore, γ1 and γ2 are admissible for Υ (f1) and Υ (f2) respectively.

Moreover

Υ (f1) +Υ (f2) ≤
∫
cdγ1 +

∫
cdγ2 =

∫
cdγ = Υ (f1 + f2),

which is the desired conclusion.

To prove (ii), we consider transport plans γ1 and γ2 which are optimal for Υ (f1) and Υ (f2)

respectively. We define g1 := γ1
y and g2 := γ2

y . If we set γ := γ1 + γ2, we have γx = f1 + f2 and

γy = g1 + g2. Moreover, by Proposition 2.4.1, if d(suppf1,suppf2) ≥ R for R = R(m) large enough,

then the supports of g1 and g2 are also disjoint. Consequently, g1 + g2 ≤ 1− (f1 + f2), so that γ is

admissible for Υ (f1 + f2) and we have the desired converse inequality

Υ (f1 + f2) ≤
∫
cd(γ1 +γ2) ≤ Υ (f1) +Υ (f2).

Step 2. Proof of (iii).
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Exchanging the roles of f1 and f2, it is enough to prove the estimate

Υ (f2)−Υ (f1) ≤ C∥f2 − f1∥L1 . (2.4.5)

Let γ1 be a minimiser of Υ (f1) and let us set g1 := γ1
x . In the next substeps, we build from γ1 an

exterior transport plan γ2 for f2 with controlled cost.

Step 2.a. Transporting most of f1 ∧ f2.
Using the convention 0/0 = 0, we define a plan γ ′ by

dγ ′(x,y) :=
(f1 ∧ f2)(x)
f1(x)

dγ1(x,y).

We set g ′ := γ ′y . Notice that γ ′ ≤ γ1, which implies g ′ ≤ g1. Additionally, γ ′x = f1 ∧ f2, so that

γ1(Rd ×Rd)−γ ′(Rd ×Rd) =
∫

(f1 − f1 ∧ f2) =
∫

(f1 − f2)+ . (2.4.6)

Heuristically, γ ′ corresponds to sending through γ1 as much mass from f2 as possible. However,

we have to remove some of this mass because the constraint g ′ ≤ 1 − f2 might not hold true

everywhere. Let

u := (f2 + g ′ − 1)+

and define γ ′′ as

dγ ′′(x,y) :=
g ′(y)−u(y)

g ′(y)
dγ ′(x,y).

We set f ′′ := γ ′′x and g ′′ := γ ′′y . By construction, g ′′ = g ′ −u so g ′′ ≤ 1−f2 as desired. Since γ ′′ ≤ γ ′,
we also have f ′′ ≤ f1 ∧ f2 ≤ f2. Now since g ′ ≤ g1 ≤ 1− f1 we have u ≤ (f2 − f1)+ from which we

infer

γ ′(Rd ×Rd)−γ ′′(Rd ×Rd) =
∫

(g ′ − g ′′) =
∫
u ≤

∫
(f2 − f1)+ .

Summing this and (2.4.6) yields

γ1(Rd ×Rd)−γ ′′(Rd ×Rd) ≤ ∥f2 − f1∥L1 . (2.4.7)

Eventually since γ ′′ ≤ γ ′ ≤ γ1 and c ≥ 0 we have∫
cdγ ′′ −

∫
cdγ1 ≤ 0. (2.4.8)

Step 2.b. Final construction.
We are now ready to build an admissible transport plan γ2 for Υ (f2). Noticing that f2−f ′′ ≥ 0

we write f2 = f ′′ + (f2 − f ′′). By (2.4.7) we have∫
(f2 − f ′′) =

∫
(f2 − f1) +

∫
(f1 − f ′′) ≤ 2∥f2 − f1∥L1 . (2.4.9)
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Arguing as in the proof of Proposition 2.4.1, we can find a function 0 ≤ g ′′′ ≤ 1 − f2 − g ′′

with
∫
g ′′′ ≤

∫
(f2 − f ′′) and a transport plan γ ′′′ between f2 − f ′′ and g ′′′ such that for some

C = C(m) > 0, ∫
cdγ ′′′ ≤ C

∫
(f2 − f ′′)

(2.4.9)
≤ C∥f2 − f1∥L1 . (2.4.10)

Finally we define γ2 := γ ′′ +γ ′′′ which is admissible for Υ (f2) by construction. Summing (2.4.8)

and (2.4.10), we get

Υ (f2) ≤
∫
cdγ2 ≤

∫
cdγ1 +C∥f2 − f1∥L1 = Υ (f1) +C∥f2 − f1∥L1 .

This proves (2.4.5) and thus point (iii).

Step 3. Proof of (iv).
Let fn and f be as in the statement of the proposition. By weak convergence, we have

fn, f ∈ L1
m for some m > 0. Using the Lipschitz continuity of Υ with respect to L1 convergence,

we may assume without loss of generality that fn (and thus also f ) are supported in BR0
for some

R0 > 0. Applying Proposition 2.4.1 we get that minimisers of Υ (fn) and Υ (f ) are supported in

BR ×BR for some R > R0 > 0. We may thus restrict these problems to the compact set BR. Using

Proposition 2.3.5 we have Υ (fn) = Υ ∗(fn) and it is thus enough to prove the continuity of Υ ∗

with respect to the weak-∗ topology.

By Proposition 2.3.4, for every n ≥ 0 there exists a pair of potentials (ϕn,ψn) maximising

Υ ∗(fn). Since for every n, ϕn belongs to Φ ′ (where Φ ′ is defined by (2.3.5)) and since this set is

compact by Proposition 2.3.4 we have that a subsequence ϕn′ of ϕn converges in C(BR) to some

ϕ ∈ Φ ′. Arguing as in the proof of Proposition 2.3.4 we see that ψn′ also converges to ψ with

(ϕ,ψ) admissible for Υ ∗(f ). By weak-strong convergence we then have

limsupΥ ∗(fn′ ) = limsup
∫
fn′ϕn′ + (1− fn′ )ψn′ =

∫
f ϕ + (1− f )ψ ≤ Υ ∗(f ).

Similarly, if (ϕ,ψ) are optimal potentials for Υ ∗(f ), they are admissible for Υ ∗(fn) and thus

liminfΥ ∗(fn) ≥ liminf
∫
fnϕ + (1− fn)ψ =

∫
f ϕ + (1− f )ψ = Υ ∗(f ).

We then have limΥ ∗(fn′ ) = Υ ∗(f ) and by uniqueness of the limit we see that the extraction was

not necessary. This establishes (iv) and ends the proof of the proposition.

The next lemma and theorem state very important saturation properties satisfied by the

optimal exterior transport plan. These results extend [36, Lemma 5.1 & Proposition 5.2] to more

general costs c.

Lemma 2.4.3. Assume that k satisfies (H1) and (H2). For f ∈ L1
m let γ be optimal for Υ (f ). Then for

every (x0, y0) ∈ suppγ there holds f +γy ≡ 1 almost everywhere on the saturation set

S(x0, y0) := {y ∈Rd , k(y − x0) < k(y0 − x0)}.
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Proof. In the proof we set g := γy and h := f + g. Let (x0, y0) ∈ suppγ and assume without loss

of generality that x0 = 0. We suppose by contradiction that there exists ε > 0 such that the set

Sε := {h < 1} ∩ {y ∈Rd , k(y) < k(y0)− ε}

has positive Lebesgue measure. Notice that by (H1), k(x)→∞ as |x| →∞ so that Sε is bounded.

Therefore,

mε :=
∫
Sε

(1− h) ∈ (0,∞).

We now exhibit an exterior transport plan γ̃ whose transportation cost is strictly smaller than

the one of γ . Given r > 0, we define the measure γ0 := γ (Br ×Br(y0)). As (0, y0) ∈ suppγ , for

every r > 0,

0 < γ0(Rd ×Rd) ≤
∫
Br

f ≤ |Br |. (2.4.11)

Thus, by the last inequality in (2.4.11) there exists rε > 0 such that for every r ∈ (0, rε],

γ0(Rd ×Rd) = αmε

for some 0 < α ≤ 1. Let us fix r ∈ (0, rε]. We define a competitor γ̃ for Υ (f ) by setting γ̃ :=

γ −γ0 + η, where

η := γ0
x ⊗

1− h
mε

χSε .

By construction, γ̃x = γx = f . We also have

f + γ̃y ≤ f + g +α(1− h)χSε ≤ h+α(1− h) = 1− (1− h)(1−α) ≤ 1,

so that γ̃ is admissible for Υ (f ). We compute∫
cdγ̃ −

∫
cdγ =

∫
cdη −

∫
cdγ0 ≤ αmε

max
Br×Sε

c(x,y)− min
Br×Br (y0)

c(x,y)

 .
By continuity of c there exists rε > 0 such that for 0 < r ≤ rε,

max
Br×Sε

c(x,y) ≤ k(y0)− ε/2 and min
Br×Br (y0)

c(x,y) ≥ k(y0)− ε/4.

Thus for 0 < r ≤ rε, ∫
cdγ̃ −

∫
cdγ ≤ −αεmε/4 < 0,

which contradicts the fact that γ is a minimiser for Υ (f ).

Theorem 2.4.4. Assume that k satisfies (H1) and (H2). For f ∈ L1
m, let γ ∈ Πf be a minimiser

of (2.4.1) and set g := γy . Then, defining

E := {x : ∃y , x such that (x,y) ∈ suppγ or (y,x) ∈ suppγ},
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the set E is Lebesgue measurable and we have the identity g = (1− f )χE + f χEc .

Proof. Step 1. A preliminary claim.
We first prove the following. Let µ,ν ∈ M+(Rd) be such that µ(Rd) = ν(Rd), and let γ ∈

Π(µ,ν). Assume that µ and ν are two nonnegatives Radon measure on R
d . If we define the set

A(γ) := {x : ∃y , x such that (x,y) ∈ suppγ},

then µ ≤ ν on A(γ)c.

To prove the claim, let us first show that A(γ) is Lebesgue measurable. We define

D(γ) := suppγ \ {(x,x) : x ∈Rd},

which is a Borel set of Rd ×Rd . If we denote by px : X ×X→ X the canonical projection on the

first variable, we have

px(D(γ)) = {x ∈Rd : ∃y , x, (x,y) ∈ suppγ} =A(γ).

Thus A(γ) is the continuous image of a Borel set. By [39, Proposition 2.2.13], A(γ) is Lebesgue

measurable, as well as µ-measurable and ν-measurable.

We now show that µ ≤ ν onA(γ)c. Let φ ∈ Cc(Rd ,R+). By definition ofA(γ), if (x,y) ∈ suppγ

and x ∈ A(γ)c then x = y. Therefore∫
A(γ)c

φdµ =
∫
φ(x)χA(γ)c (x)dγ(x,y) =

∫
φ(y)χA(γ)c (y)χA(γ)c(x)dγ(x,y)

≤
∫
φ(y)χA(γ)c (y)dγ(x,y) =

∫
A(γ)c

φdν,

As µ (resp. ν) is a Radon measure, Cc(Rd) is dense in L1(µ) (resp. L1(ν)). We thus conclude that

µ ≤ ν, which proves the claim.

Step 2. Construction of E.
We now consider an optimal exterior transport plan γ for Υ (f ) and set g := γy , h := f + g. By

Proposition 2.4.1, γ is an optimal transport plan from f to g. Let γ be the image of γ through

the map (x,y) 7→ (y,x) and define

E :=A(γ)∪A(γ).

We have Ec =A(γ)c ∩A(γ)c and by the first step there holds f ≤ g and g ≤ f almost everywhere

on Ec. Hence,

gχEc = f χEc .

To conclude the proof, we have to show that g ≡ 1− f on E or equivalently that up to Lebesgue

negligible sets A(γ) and A(γ) are included in {g = 1− f }.
On the one hand, if x0 ∈ A(γ) is a Lebesgue point of both f and g, there exists y0 , x0 such
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that (x0, y0) ∈ suppγ . By Lemma 2.4.3, denoting

S(x0, y0) := {y ∈Rd , k(y − x0) < k(y0 − x0)},

we have g = 1− f almost everywhere on S(x0, y0). Notice that S(x0, y0) is an open set and that

x0 ∈ S(x0, y0) (since for x , 0, k(x) > 0 = k(0)). Hence g(x0) = 1− f (x0) and A(γ) ⊂ {g = 1− f } up

to a set of Lebesgue measure zero.

On the other hand, if y0 ∈ A(γ) there exists x0 , y0 such that (x0, y0) ∈ suppγ . Let us assume

by contradiction that g(y0) < 1− f (y0). Without loss of generality, we can assume that y0 is a

point of Lebesgue density one of {g < 1− f }. Then

lim
r→0

1
rd

∣∣∣∣ {g = 1− f } ∩B(y0, r)
∣∣∣∣ = 0.

Thus by Lemma 2.4.3,

lim
r→0

1
rd

∣∣∣S(x0, y0)∩B(y0, r)
∣∣∣ = 0,

which contradicts (H2) as y0 , x0. Hence g(y0) = 1− f (y0) and A(γ) ⊂ {g = 1− f }. This concludes

the proof of the theorem.

An important corollary is the uniqueness of the second marginal of minimisers of (2.4.1).

Corollary 2.4.5. Assume that k satisfies (H1) and (H2). Let f ∈ L1(Rd). Then all minimisers γ of

Υ (f ) have the same second marginal γy .

Proof. We let γ,γ ′ be two minimisers of (2.4.1) and define γ̃ := (γ + γ ′)/2 which also min-

imises (2.4.1). We denote g := γy , g ′ := γ ′y and g̃ := γ̃y and introduce the set

F := {x ∈Rd : g(x), g ′(x), g̃(x) ∈ {f (x),1− f (x)}}.

Assuming by contradiction that g(x) , g ′(x) for some x ∈ F , we have 1/2 = g̃(x) ∈ {f (x),1− f (x)}
so that f (x) = 1/2 and g(x) = g ′(x) = 1/2, which is absurd. Hence g = g ′ on F and since F is of

full measure by Theorem 2.4.4, the proof is complete.

2.4.2 Preliminary results for the existence of a maximiser of the exterior transport
energy

We now gather results which, combined with Theorem 2.4.4, allow us to prove existence of a

maximiser for both (2.1.2) and (2.1.3).

We first establish a corollary of Theorem 2.4.4 regarding the monotonicity of the sum of the

marginals of solutions to (2.4.1).

Corollary 2.4.6. Assume that k satisfies (H1) and (H2). Let m > 0, let f1, f2 ∈ L1
m be such that

f1 ≤ f2 and let γ1,γ2 be respective minimisers of Υ (f1) and Υ (f2). Then setting g1 := γ1
y and

g2 := γ2
y , we have f1 + g1 ≤ f2 + g2.
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Proof. Let f1, f2 ∈ L1
m be such that f1 ≤ f2. In the first three steps of the proof, we additionally

assume that they are compactly supported. This condition is relaxed in the fourth and final

step.

By Proposition 2.4.1, we can assume that the ambient space is a compact ball BR. Let γ1,γ2

be minimisers for Υ (f1) and Υ (f2) respectively. For i ∈ {1,2} we define gi := γ iy , hi := fi + gi and

set

F := {h1 > h2}.

We shall prove that |F| = 0. By Theorem 2.4.4, there exists E1,E2 ⊂ BR such that

h1 = χE1
+ 2f1χEc1 and h2 = χE2

+ 2f2χEc2 .

Since h2 ≥ 0, h1 ≤ 1 and h2 ≥ f2 ≥ f1 we have

h1 > 0, h2 = 2f2 < 1 and f1 < 1 on F. (2.4.12)

Step 1. |Ec1 ∩F| = 0.
By definition of E1 we have h1 = 2f1 on Ec1 and by (2.4.12) we have h2 = 2f2 on F and since

f1 ≤ f2 we get h1 ≤ h2 on Ec1 ∩ F. This contradicts the definition of F, hence Ec1 ∩ F = ∅ and in

particular |Ec1 ∩F| = 0. Notice that as a consequence h1 = 1 on F.

Step 2. Intermediate claim.
Let ψ1 be the maximal potential for Υ ∗(f1) given by Proposition 2.3.8. We define

G := {ψc̄c1 = 0} ∩E1 ∩F

and claim that |G| = 0. Let us assume by contradiction that |G| > 0. First notice that on F,

f1 + g1 = h1 > h2 = 2f2,

so that

g1 > 2f2 − f1 ≥ f2 ≥ f1.

Thus

G ⊂ E1 ∩F ⊂ {g1 > f1}. (2.4.13)

Now recall that by Theorem 2.4.4,

E1 = {x : ∃y , x such that (x,y) ∈ suppγ1 or (y,x) ∈ suppγ1}.

Together with (2.4.13) we obtain that for almost every y0 ∈ G there exists x0 , y0 with (x0, y0) ∈
suppγ1. Without loss of generality, we assume that y0 is a point of positive density of G and we

set

S(x0, y0) :=
{
y ∈Rd : k(y − x0) < k(y0 − x0)

}
.

By (H2), we have |G ∩ S(x0, y0)| > 0. Let now ỹ ∈ G ∩ S(x0, y0). By Proposition 2.3.7, (ψc̄1,ψ
c̄c
1 )
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forms a pair of Kantorovitch potentials for the optimal transport from f1 to g1. Thus

ψc̄1(x0) +ψc̄c1 (y0) = k(y0 − x0) and ψc̄1(x0) +ψc̄c1 (ỹ) ≤ k(ỹ − x0).

However, y0, ỹ ∈ G, so that ψc̄c1 (y0) = ψc̄c1 (ỹ) = 0, hence

ψc̄1(x0) = k(y0 − x0) and ψc̄1(x0) ≤ k(ỹ − x0).

Eventually, as ỹ ∈ S(x0, y0), we conclude that

ψc̄1(x0) ≤ k(ỹ − x0) < k(y0 − x0) = ψc̄1(x0),

obtaining a contradiction. Thus |G| = 0, which is the claim.

Step 3. |E1 ∩F| = 0.
By Proposition 2.3.7,

{ψc̄c1 > 0} ⊂ {g1 = 0} so that {g1 > 0} ⊂ {ψc̄c1 ≤ 0}.

We observe that g1 = 1 − f1 on E1 ∩ F. By (2.4.12), E1 ∩ F ⊂ {g1 > 0} and by the previous step,

E1 ∩F ⊂ {ψc̄c1 , 0}, hence ψc̄c1 < 0 almost everywhere on E1 ∩F.

Let ψ2 be the maximal potential for Υ ∗(f2) given by Proposition 2.3.8. As f1 ≤ f2, we have

ψ1 ≥ ψ2 so that ψc̄c1 ≥ ψ
c̄c
2 . Thus

ψc̄c2 < 0 on E1 ∩F.

By Proposition 2.3.7 we deduce that

h2 = g2 + f2 = 1 on E1 ∩F.

But since h2 < 1 on F we get that |E1 ∩F| = 0 and with the first step we conclude that |F| = 0.

Step 4. Extension to the non-compact case.

Let f1, f2 ∈ L1
m be such that f1 ≤ f2. For i ∈ {1,2}, we set fi,R = fiχBR , consider γ iR an optimal

exterior transport plan for Υ (fi,R) and set gi,R := (γ iR)y . Applying the previous steps to f1,R and

f2,R, we obtain

f1,R + g1,R ≤ f2,R + g2,R. (2.4.14)

For i ∈ {1,2}, fi,R L1-converges to fi as R → ∞. By Proposition 2.4.2 (iii), Υ (fi,R) → Υ (fi) as

R→∞. Additionally, γ iR admits a subsequence converging weakly-∗ to some γ̃ i admissible for

Υ (fi). By lower semi-continuity of γ 7→ ∫ cdγ with respect to weak-∗ convergence, we get∫
cdγ̃ i ≤ liminf

R

∫
cdγ iR = liminf

R
Υ (fi,R) = Υ (fi).

Hence γ̃ i is optimal for Υ (fi), so that by Corollary 2.4.5, γ̃ iy = gi . Finally, as γ iR
∗
⇀ γ̃ i as R→∞,

gi,R converges in duality with Cb(Rd) to gi as R→∞. Multiplying (2.4.14) by φ ∈ Cc(Rd ,R+),
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integrating and passing to the limit we obtain that for any φ ∈ Cc(Rd ,R+),∫
(f1 + g1)φ ≤

∫
(f2 + g2)φ.

Hence f1 + g1 ≤ f2 + g2 which completes the proof.

We now prove that E is strictly superadditive.

Proposition 2.4.7. Assume that k satisfies (H1) and (H3). Let m ∈ (0,∞) and define e(m) := E(m)/m.
Then, e is increasing on (0,∞). As a consequence, given 0 < m′ < m,

E(m′) + E(m−m′) < E(m).

Proof. Let M >m > 0. We have to establish that E(m) < (m/M)E(M).

Step 1. E(m) ≤ (m/M)E(M).
For R > 0 we set

ΓR := {(x,y) ∈Rd ×Rd : |x − y| > R}.

Let 0 ≤ ε < E(m)/2 and f ∈ L1
m of mass exactly m and such that Υ (f ) ≥ E(m) − ε. We denote

λ := (M/m)1/d > 1 and we set

fλ(x) := f (x/λ) for x ∈Rd ,

so that
∫
fλ =M. Let γλ be an optimal transport plan for Υ (fλ). We define a Radon measure γ

by ∫
ξ(x,y)dγ(x,y) :=

m
M

∫
ξ(x/λ,y/λ)dγλ(x,y) for ξ ∈ Cc(Rd ×Rd).

Observe that γ is admissible for Υ (f ). By Proposition 2.4.1, there exists Rλ = Rλ(M) such that

γλ(ΓRλ) = 0. Setting R := Rλ/λ, we then have

γ(ΓR) =
m
M
γλ(ΓRλ) = 0. (2.4.15)

Let us define

κ(r) := min {k(z)− k(z/λ) : r ≤ |z| ≤ Rλ} .

As λ > 1 we have by (H3) that κ(r) > 0 for 0 < r < Rλ. Additionally, k(z/λ) ≤ k(z) for any z ∈Rd .

Consequently, for any 0 < r < Rλ,

Υ (f ) ≤
∫
k(y − x)dγ(x,y)

=
m
M

∫
k
(y − x
λ

)
dγλ(x,y)

=
m
M

∫ [
k
(y − x
λ

)
− k(y − x)

]
dγλ(x,y) +

m
M

∫
k(y − x)dγλ(x,y)

≤ m
M

∫
Γr

[
k
(y − x
λ

)
− k(y − x)

]
dγλ(x,y) +

m
M
E(M).



74 CHAPTER 2. An exterior optimal transport problem

In the integral over Γr , the term in brackets is smaller than −κ(r). Hence, for every 0 < r < Rλ

E(m)− ε ≤ Υ (f ) ≤ m
M
E(M)− m

M
κ(r)γλ(Γr ). (2.4.16)

At this point we can send ε to 0 and deduce that E(m) ≤ (m/M)E(M). However we need to

establish a strict inequality. For this we prove in the next step that there exist r∗,δ > 0 not

depending on ε or f such that γλ(Γr∗) ≥ δ.

Step 2. Conclusion.
For r ≥ 0, we set

k(r) := max{k(z) : |z| ≤ r}.

This function is increasing, continuous and there holds k(0) = 0. Notice that using a ball of mass

m as a candidate for the energy E(m), we see that E(m) > 0 for any m > 0. Let us fix 0 < r∗ < R

such that

mk(r∗) ≤ E(m)/4. (2.4.17)

By (2.4.15) we have |x − y| ≤ R for (x,y) ∈ suppγ and by definition |x − y| ≤ r∗ for (x,y) < Γr∗ . We

deduce

E(m)
2

< Υ (f ) ≤
∫
Γr∗

cdγ +
∫
Γ cr∗

cdγ ≤ γ(Γr∗)k(R) + (m−γ(Γr∗))k(r∗)

(2.4.17)
≤ γ(Γr∗)k(R) + (m−γ(Γr∗))

E(m)
4m

.

This implies

γ(Γr∗)
(
k(R)− E(m)

4m

)
>
E(m)

4
.

Thus 4mk(R) > E(m) and

m
M
γλ(Γλr∗) = γ(Γr∗) ≥

mE(m)

4mk(R)−E(m)
=:m∗ > 0.

Plugging this in (2.4.16) with r = λr∗ < Rλ we obtain

E(m)− ε ≤ m
M
E(M)−m∗κ(λr∗).

Since ε ∈ [0,E(m)/2] is arbitrary and m∗κ(r∗) > 0, this proves the proposition.

We close this subsection with a lemma establishing that if a function f nearly maximises

E(m) for some m > 0 then there exists a cube which is at least half filled by f .

Lemma 2.4.8. Let m > 0. There exists a non-decreasing function r0 :m 7→ r0(m) such that for m > 0

and f ∈ L1
m with Υ (f ) ≥ E(m)/2, there exists a cube Q0 of side-length r0(m) such that:∫

Q0

f ≥ |Q0|
2
.
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Proof. Let r0 > 0 to be fixed later and assume by contradiction that there exists a partition Q of

R
d in cubes with side-length r0 such that for every Q ∈ Q,∫

Q
f <
|Q|
2
.

The strategy to get a contradiction from this hypothesis is to build an exterior transport plan for

f with too small transport cost. Let Q ∈ Q. Since ∫Q(1− f ) ≥ ∫Q f there exists a function gQ ≥ 0

supported in Q such that ∫ gQ = ∫Q f and f χQ + gQ ≤ 1. We then set

γQ := f χQ ⊗
gQ∫
Q
f

and γ :=
∑
Q∈Q

γQ.

Notice that γ is a valid competitor for Υ (f ). Next for R > 0, we define

k(R) := max{k(x), |x| ≤ R}.

We compute:

0 <
E(m)

2
≤ Υ (f ) ≤

∑
Q∈Q

∫
Q×Q

k(y − x)dγQ

≤ k
(√
dr0

)∑
Q∈Q

∫
Q
f = k

(√
dr0

)∫
f ≤ k

(√
dr0

)
m. (2.4.18)

Remarking that k : R+→R+ is continuous at 0, increasing and with k(0) = 0, we set

r0 := max
{
r > 0 : k

(√
dr

)
≤ E(m)

4m

}
> 0

and obtain a contradiction with (2.4.18). This concludes the proof.

2.4.3 Existence of a maximiser for the exterior transport energy

In the following subsection, we assume that (H1), (H2) and (H3) hold and prove the existence of

maximisers for (2.1.3).

We only have to prove that maximising sequences for E(m) are tight. However our result is

more precise. We obtain that if f nearly maximises E(m) then almost all its mass concentrates in

a closed ball with radius R∗ = R∗(m). In the limit, maximisers are supported in such balls.

Proposition 2.4.9. Let m > 0. There exist R∗ = R∗(m) > 0, ε0 = ε0(m) > 0 non-decreasing in m with
the following property. Let 0 < ε ≤ ε0 and let f ∈ L1

m such that ∫ f =m and Υ (f ) ≥ E(m)− ε, then up
to a translation there holds ∫

R
d\BR∗

f ≤ 2m
E(m)

ε.

Proof. Outline of the proof. (Step 1) We start by using Lemma 2.4.8 to get a collection Q0 of

cubes Q of side-length r0 = r0(m) such that
∫
Q
f + g ≥ |Q|/2. We denote Ω0 := ∪Q0. We also
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consider the set Ω obtained by thickening Ω0 by adding the cubes closer than some distance

R = R(m). The real R is chosen so that no mass of f χΩ0
is sent outside Ω by any optimal exterior

transport plan of f .

(Step 2) We build an exterior transport plan for f whose cost is very close to Υ (f χΩ).

(Step 3) Next, we show that Ω concentrates almost all the mass of f . Using the strict

superadditivity of m 7→ E(m) and the previous step, we deduce that mΩ := ∫ f χΩ is close to m.

(Step 4) Eventually, we show that the distance between cubes in Q0 is uniformly bounded.

As the cardinal of Q0 is also bounded, we conclude that the diameter of Ω is bounded by a

distance only depending on m.

Step 1. Construction of a collection of cubes on which ∫Q(f + g) ≥ |Q|/2.
Let m > 0 and f as in the statement of the proposition and assume that Υ (f ) ≥ E(m)/2 so that

ε := E(m)−Υ (f ) ≤ E(m)/2. (2.4.19)

Let γ be a minimiser for Υ (f ) and let us set g := γy . Let r0 and Q0 be given by Lemma 2.4.8. We

denote by Q̂ the regular partition of Rd into cubes of side-length r0 such that Q0 ∈ Q̂. For j ≥ 0

to be fixed later, we set rj := 2−jr0. Considering the partition Q of Rd into cubes of side-length rj
obtained by refining Q̂, we define Q0 as the subset formed by the elements Q ∈ Q such that∫

Q
(f + g) ≥ |Q|

4
.

We remark that Q0 is not empty since∫
Q

(f + g) ≥
∫
Q
f ≥ |Q|

2

for at least one of the 2j sub-cubes of Q0 in the partition Q.

Let us define Ω0 := ∪Q0. By Proposition 2.4.1, there exists R = R(m) such that |x − y| ≤ R on

suppγ . We denote by QR the collection of cubes Q ∈ Q such that d(Q,Ω0) ≤ R, and by Ω their

union. By construction, there holds γ(Ω0 ×Ωc) = 0. We now define

fΩ := f χΩ, and mΩ :=
∫
fΩ ,

and we let γΩ be an optimal exterior transport plan for fΩ, that is γ ∈ΠfΩ with
∫
cdγΩ = Υ (fΩ).

We then set gΩ := (γΩ)y .

By Proposition 2.4.1 again, we have (since mΩ ≤m) that

γΩ(Ω0 ×Ωc) = 0. (2.4.20)

Step 2. Building a transport plan for f whose cost is close to Υ (fΩ).
In this step we modify γΩ to build an exterior transport plan γ for f with a cost close to
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Υ (fΩ). More precisely, we require that for some constant C = C(rj ) > 0 with C(rj )→ 0 as rj → 0,∫
cdγ −

∫
cdγΩ ≤ C(m−mΩ).

The proof is a refinement of the proof of the Lipschitz continuity of Υ , see Proposition 2.4.2 (iii).

In the following we define successively the plans γ0, γ1, γ2, γ3 which satisfy in particular

suppγ0 ⊂Ω×Ω, suppγ1 ⊂Ω×Ωc, suppγ2 ⊂Ω \Ω0×Ω \Ω0, suppγ3 ⊂Ωc ×Ωc.

First we set γ0 := γΩ Ω×Ω and denote f 0 := γ0
x , g0 := γ0

y . We build the three remaining plans

in the following substeps. These constructions will satisfy

(γ1 +γ2)x = fΩ −γ0
x = f χΩ − f 0 and γ3

x = f − fΩ = f χΩc .

We will set eventually γ̂ := γ0 +γ1 +γ2 +γ3 which will be an admissible transport plan for f .

The difficulty is to preserve the constraint f + γ̂y ≤ 1 while controlling the cost.

Step 2.a. Construction of γ1.
Let us denote γ1

Ω
:= γΩ Ω×Ωc, f 1

Ω
:= (γ1

Ω
)x and g1

Ω
:= (γ1

Ω
)y = χΩcgΩ. We can not rule out

the possibility that f + gΩ > 1 in some part of Ωc so that we cannot set γ1 = γ1
Ω

. However, we

will transport as much as possible mass through γ1
Ω

. Let us define

u := (f + gΩ − 1)+,

which corresponds to the excess mass transported through γ1
Ω

. Using the convention 0/0 = 0,

we define γ1 by

dγ1(x,y) :=
gΩ(y)−u(y)

gΩ(y)
dγ1

Ω(x,y).

At this point, we have ∫
cd(γ0 +γ1) ≤

∫
cdγΩ = Υ (fΩ). (2.4.21)

Moreover setting f 1 := γ1
x and g1 := γ1

y , there holds suppg1 ⊂Ωc. Notice that since fΩ ≤ f , by

Corollary 2.4.6 we have fΩ + gΩ ≤ f + g, so that gΩ ≤ f + g in Ωc which implies g1 ≤ f + g. Thus∫
Q

(f + g1) ≤
∫
Q

(2f + g) <
|Q|
2
, for every Q ∈ Q\QR, (2.4.22)

where we used the definition of Q0 and the fact that [Q\QR]∩Q0 = ∅.
Let us compute for later use the mass from Ω that still requires to be transported. By

construction∫
Ω

(f − f 0 − f 1) =
∫
d(γ1

Ω −γ
1) =

∫
u(y)
gΩ(y)

dγ1
Ω(x,y) =

∫
Ωc

(f + gΩ − 1)+ ≤
∫
Ωc
f . (2.4.23)

Step 2.b. Construction of γ2.
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We now define

γ2
Ω := γ1

Ω −γ
1 = γΩ −γ0 −γ1.

Notice that by (2.4.20), γ1
Ω

(Ω0 ×Ωc) = 0, so that

suppγ2
Ω ⊂Ω \Ω0 ×Ωc.

In particular, f 2 := fΩ − f 0 − f 1 is supported in Ω \Ω0. Let Q ∈ QR \ Q0. Since g0 ≤ gΩ and

f = fΩ on Q, using Corollary 2.4.6 again we see that∫
Q

(f + g0) ≤
∫
Q

(fΩ + gΩ) ≤
∫
Q

(f + g) ≤ |Q|
4
.

Therefore for suchQ there exists a function g2
Q :Q→R+ such that f +g0+g2

Q ≤ 1 and
∫
g2
Q =

∫
Q
f 2 .

Defining

γ2
Q :=

1∫
Q
f 2

[
χQf

2
]
⊗ g2

Q for Q ∈ QR \Q0 and then γ2 :=
∑

Q∈QR\Q0

γ2
Q,

we have γ2
x = f 2 and g2 := γ2

y =
∑
Q g

2
Q. Hence f + g0 + g2 ≤ 1 and∫
cdγ2 ≤

(∫
f 2

)
k
(√
drj

)
,

where as in the proof of Proposition 2.4.7 we denote k(r) := max{k(x) : |x| ≤ r}.
By construction f 2 = fΩ − f 0 − f 1, so by (2.4.23) there holds

∫
f 2 ≤m−mΩ which leads to

the cost estimate ∫
cdγ2 ≤ (m−mΩ)k

(√
drj

)
. (2.4.24)

Step 2.c. Construction of γ3.
We still have to transport the mass corresponding to χΩcf . For every Q ∈ Q \QR we have∫

Q
f ≤

∫
Q

(f + g) ≤ |Q|/4, therefore, in view of (2.4.22), there exists a function g3
Q :Q→R+ such

that
∫
g3
Q =

∫
Q
f and f + g1 + g3

Q ≤ 1. As in the previous step, we define

γ3
Q :=

1∫
Q
f

[
χQf

]
⊗ g3

Q and γ3 :=
∑

Q∈Q\QR

γ3
Q.

By construction, (γ3)x = χΩcf and denoting g3 := (γ3)y , we have suppg3 ⊂ Ωc as well as

f + g1 + g3 ≤ 1. Moreover∫
cdγ3 ≤

(∫
Ωc
f

)
k
(√
drj

)
= (m−mΩ)k

(√
drj

)
. (2.4.25)

Step 2.d. Conclusion : definition and properties of γ̂ .
Eventually, we set γ̂ := γ0 +γ1 +γ2 +γ3 and ĝ := γ̂y . There holds γ̂x = f 0 + f 1 + f 2 + f 3 = f

and f + ĝ ≤ 1 so that γ̂ is an admissible exterior transport plan for f . Besides, collecting the
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estimates (2.4.21),(2.4.24)&(2.4.25) we get

Υ (f ) ≤
∫
cdγ̂ ≤ Υ (fΩ) + 2(m−mΩ)k

(√
drj

)
. (2.4.26)

Step 3. We show that m−mΩ ≤ C(m)ε (recall the definition (2.4.19) of ε).
As Υ (fΩ) ≤ E(mΩ) and E(m)− ε = Υ (f ), (2.4.26) yields

E(m)− ε ≤ E(mΩ) + 2k
(√
drj

)
(m−mΩ).

Additionally by Proposition 2.4.7, E(mΩ) ≤ mΩ

m E(m). Hence(
E(m)
m
− 2k

(√
drj

))
(m−mΩ) ≤ ε.

By continuity of k, k(
√
drj )→ 0 as rj → 0. Recalling that rj = 2−jr0, we fix j ≥ 0 as the first integer

such that k(
√
drj ) ≤ E(m)/4m (notice that j does not depend on ε). Therefore

m−mΩ ≤
2mε
E(m)

. (2.4.27)

This yields ∫
R
d\Ω

f =
∫
f −

∫
fΩ =m−mΩ ≤

2mε
E(m)

. (2.4.28)

For future use, let us also notice that injecting (2.4.27) into (2.4.26) we obtain

E(m)− ε ≤ Υ (f ) ≤ Υ (fΩ) + ε. (2.4.29)

Step 4 : Bounding the diameter of Ω.
We finally prove that Ω is uniformly bounded which would conclude the proof. For Q−,

Q+ ∈ Q0, we write Q− ∼Q+ if there exists a finite chain

Q− =Q0,Q1, . . . ,Qn =Q+ (2.4.30)

such that Qi ∈ Q0 and d(Qi−1,Qi) ≤ 4R+
√
drj for 1 ≤ i ≤ n. This defines an equivalence relation.

Let us show that there exists only one equivalence class. We assume by contradiction that there

exist at least two equivalence classes, and we let C1 be one of these classes and C2 be the union

of the remaining classes. For i ∈ {1,2}, we then define Ωi to be the union of the cubes Q such

that d(Q,Ci) ≤ R. By construction, d(Ω1,Ω2) > 2R. Recalling that Ω is the union of the cubes Q

such that d(Q,Ω0) ≤ R, we have Ω1 ∪Ω2 = Ω.

For i ∈ {1,2}, we set f i
Ω

:= fΩχΩi and mi
Ω

=
∫
f i
Ω

. We have m1
Ω

+m2
Ω

=mΩ ≤m and m1
Ω
,m2

Ω
≥

2−jd |Q0|/4 = 2−jd−2|Q0|. Additionally, by Proposition 2.4.2 (ii),

Υ (fΩ) = Υ (f 1
Ω) +Υ (f 2

Ω) ≤ E(m1
Ω) + E(m2

Ω).
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Injecting this inequality into (2.4.29) yields

E(m)− ε ≤ Υ (f ) ≤ Υ (fΩ) + ε ≤ E(m1
Ω) + E(m2

Ω) + ε.

Recalling that e(m) = E(m)/m, this rewrites as

me(m) ≤m1
Ωe(m

1
Ω) +m2

Ωe(m
2
Ω) + 2ε. (2.4.31)

As m1
Ω

+m2
Ω
≤m and for i ∈ {1,2}, mi

Ω
≥ 2−jd−2|Q0|, we have mi

Ω
≤m− 2−jd−2|Q0|. Recall that by

Proposition 2.4.7, e is increasing, so that e(mi
Ω

) ≤ e(m− 2−jdm0). Hence

m1
Ωe(m

1
Ω) +m2

Ωe(m
2
Ω) ≤me

(
m− 2−jdm0

)
.

With (2.4.31), we obtain

me(m) ≤me
(
m− 2−jdm0

)
+ 2ε,

which is absurd for ε small enough because e is increasing. It follows that for ε > 0 small enough

the relation ∼ has a single class. Recall that for all Q ∈ Q0, ∫Q(f + g) ≥ 2−jd−2|Q0|. Thus the

maximal length of a chain in (2.4.30) without any repetition is bounded by N := ⌊2jd+3m/ |Q0|⌋.
Therefore, the diameter of Ω is bounded by (4R+ 2

√
drj )(N + 1) with rj and N only depending

on m, the dimension d and the cost c. Together with (2.4.28) this proves the proposition.

We can now apply the direct method of Calculus of Variations to establish the existence of a

maximiser for (2.1.3).

Proof of Theorem 2.1.1. Let fn be a maximising sequence for (2.1.3) and let R∗ = R∗(m) be given

by Proposition 2.4.9 so that up to translation,∫
R
d\BR∗

fn → 0 as n→∞.

Therefore, fn is a tight sequence ofM+(Rd) and up to extraction of a subsequence it converges

weakly-∗ to f where f is admissible for (2.1.3). By Proposition 2.4.2 (iv),

Υ (f ) = limΥ (fn) = E(m),

so that f is a maximiser for E(m).

Let now f be any maximiser of E(m). Applying Proposition 2.4.9 to f we have that up to a

translation suppf ⊂ BR∗ . This concludes the proof.

Let us show that when f is compactly supported there exist Kantorovitch potentials for the

problem (2.4.1) (this is the situation of interest as we have just established that the maximisers

of E(m) are compactly supported in R
d).

Lemma 2.4.10. Let m > 0 and assume that f ∈ L1
m is compactly supported. Let R = R(m) be given by

Proposition 2.4.1 such that all maximisers γ of Υ (f ) are supported in X := suppf +BR. Then, there
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exists a pair (ϕ,ψ) ∈ Cc(Rd)×Cc(Rd) optimal for Υ ∗(f ). Additionally, ϕ = ψc, ψ = ϕc− and both ϕ
and ψ are compactly supported in X.

Proof. Let us introduce c̃ := c|X×X which is a continuous cost function on the compact set X.

By Proposition 2.3.4, there exists ψ̃ ∈ C(X) with ψ̃ = (ψ̃c̃c̃)− such that Υ ∗(f ) = Kf (ψ̃c̃, ψ̃). By

Proposition 2.3.7,

{ψ̃c̃c̃ < 0} ⊂ {f + g = 1} ⊂ X.

Combining this with ψ̃ = (ψ̃c̃c̃)− and f + g = 0 on ∂X , we get ψ̃ = 0 on ∂X. We extend the

potentials on R
d by setting

ψ :=

ψ̃ in X,

0 in Xc,
and for x ∈Rd , ϕ(x) := ψc(x) = inf{c(x,y)−ψ(y) : y ∈Rd}.

We now show that the pair (ϕ,ψ) satisfies the conclusion of the lemma.

Observe that ψ is continuous and supported in X and that ψ ≤ 0. Hence ϕ ≥ 0. Moreover,

for x ∈Rd \ suppψ,

ϕ(x) ≤ c(x,x)−ψ(x) = 0,

so that ϕ is also supported in X.

Next, for x ∈ X,

ϕ(x) = min
(

min
y∈Rd\X

c(x,y), min
y∈X
{c(x,y)− ψ̃(y)}

)
.

Let x ∈ X. For y ∈ Rd \X, there exists ỹ in the intersection of the segment [x,y] with ∂X. By

continuity, ψ̃(ỹ) = 0 = ψ̃(y) and moreover by (H3), c(x, ỹ) ≤ c(x,y) so that c(x, ỹ)− ψ̃(ỹ) ≤ c(x,y).

We deduce that for x ∈ X the above formula simplifies as

ϕ(x) = min
y∈X
{c(x,y)− ψ̃(y)} = ψ̃c̃(x).

This proves that ϕ is continuous and that Kf (ϕ,ψ) = Kf (ψ̃c̃, ψ̃) = Υ ∗(f ). Moreover, using the

same argument as above, we have ϕc(y) = 0 for y < X. For y ∈ X,

ϕc(y) = min
(

min
x∈Rd\X

c(x,y), min
x∈X
{c(x,y)− ψ̃c̃(x)}

)
= min

x∈X
{c(x,y)− ψ̃c̃(x)} = ψ̃c̃c̃(y).

We deduce ϕc− = 0 = ψ in Xc, and ϕc− = (ψc̃c̃)− = ψ̃ in X. Thus ϕc− = ψ everywhere. This ends the

proof of the lemma.

Let us now recall a variant of the bathtub principle, see [57, Theorem 1.14].

Proposition 2.4.11. Let ξ : Rd →R+ be measurable and such that for all t ≥ 0, |{ξ > t}| <∞. Given
m > 0, let

t := inf{s ≥ 0, |{ξ > s}| ≤m}.
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Then, the maximisers of

sup
f̃

{∫
f̃ ξ : f̃ ∈ L1(Rd), 0 ≤ f̃ ≤ 1,

∫
f̃ =m

}

are the functions f := χ{ξ>t} +θ, where θ ∈ L1(Rd , [0,1]) is supported in {ξ = t} and satisfies∫
θ =m− |{ξ > t}|.

We are now ready to establish Corollary 2.1.2.

Proof of Corollary 2.1.2.
By Theorem 2.1.1, the optimisation problem (2.1.3) admits a compactly supported solution

f . Let (ϕ,ψ) ∈ Cc(Rd)×Cc(Rd) be an optimal pair for Υ ∗(f ) provided by Lemma 2.4.10, so that

Υ ∗(f ) =
∫
f (ϕ −ψ) +

∫
ψ .

We see that f is a maximiser of:

sup
{∫

f̃ (ϕ −ψ) : f̃ ∈ L1(Rd), 0 ≤ f̃ ≤ 1,
∫
f̃ =m

}
.

Let us set ξ := ϕ −ψ ≥ 0. By Proposition 2.4.11 there exists t ≥ 0 and θ ∈ L1(Rd , [0,1]) supported

in {ξ = t} such that f = χ{ξ>t} +θ. Notice in particular that since θ ∈ [0,1], we have

|{ξ = t}| ≥
∫
θ =m− |{ξ > t}|.

and there exist measurable subsets G ⊂ {ξ = t} with |G| =m− |{ξ > t}|. For any such set, setting

f̄ := χ{ξ>t} +χG,

we have Υ ∗(f̄ ) = Υ ∗(f ) and f̄ is also a maximiser of (2.1.3). Since f̄ is a characteristic function,

by Theorem 2.4.4 and Corollary 2.4.5, there exists F ⊂ R
d such that any minimiser γ of Υ (f̄ )

satisfies γy = χF . Setting E := {ξ > t} ∪G, we deduce that

Υset(E) = Υ ∗(f̄ ) = Υ (f̄ ) = Υ (f )

so that E(m) = Eset(m), which concludes the proof.

2.5 Maximisers of the exterior transport energy are characteristic

functions of balls

In this section we prove Theorem 2.1.3. We assume that c(x,y) = k(|y − x|) with k ∈ C(R+,R+)

increasing and coercive and with k(0) = 0. In particular, we have now c = c̄, so that the operations
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of c-transform and c̄-transform coincide. Also notice that by Theorem 2.4.4, if f = χE for some

Lebesgue measurable set E then Υset(E) = Υ (χE). By abuse of notation, we write Υ (E) for Υ (χE).

Since the class of costs that we consider is invariant by scaling we assume without loss of

generality that m =ωd .

We now recall the definition of symmetric rearrangement of functions with constant sign

(see [57, Chapter 3] for more details on symmetric rearrangements).

Definition 2.5.1.

(i) Given a measurable set A ⊂R
d , we define the symmetric rearrangement of A as the open

ball A∗ centred at the origin and of volume |A|.

(ii) Let ϕ : Rd →R+ be measurable and such that for every t ≥ 0, |{ϕ > t}| <∞. Its symmetric

decreasing rearrangement is defined by

ϕ∗(x) :=
∫
R+

χ{ϕ>t}∗(x)dt.

(iii) Let ψ : Rd →R− be measurable and such that for every t ≤ 0, |{ψ < t}| <∞. Its symmetric

increasing rearrangement is defined by

ψ∗(x) := −(−ψ)∗(x) = −
∫
R−

χ{ψ<t}∗(x)dt.

The following lemma recalls some basic properties of the symmetric increasing rearrange-

ment ψ∗ of a non-positive function ψ. All these properties but the continuity of ψ∗ follow

immediately from the definition. The fact that continuity is preserved by symmetric rearrange-

ment is well-known but we have no reference for this at hand. We provide a short proof for the

reader’s convenience.

Lemma 2.5.2. Let ψ : Rd → R− be as in Definition 2.5.1. Then, ψ∗ is non-positive, radial, non-
decreasing, and for any t ≤ 0, {ψ∗ < t} = {ψ < t}∗. Besides, if ψ is supported in a compact set of
diameter bounded by 2R > 0 then ψ∗ is supported in BR. If moreover ψ is continuous then ψ∗ is also
continuous.

Proof of the last point. Let ψ ∈ Cc(Rd ,R−). First, as the strict sublevels sets {ψ∗ < t} are the open

balls {ψ < t}∗, ψ∗ is upper semi-continuous (note that this is true even when ψ is not continuous).

Let us now establish that ψ∗ is lower semi-continuous, i.e. that for any t ≤ 0, {ψ∗ ≤ t} is closed.

We first notice that {ψ∗ ≤ 0} = R
d is closed. Given t < 0, let tn < 0 be a decreasing sequence

converging to t. Observe that if for some n ≥ 0, {ψ < tn} = ∅, then {ψ∗ ≤ t} = ∅ is closed. Next, we

assume that for every n ≥ 0,

{ψ < tn} , ∅. (2.5.1)

We denote by Rn the radius of the ball {ψ∗ < tn}. Notice that the sequence Rn is non-increasing

and bounded by 0, so that Rn converges to some R ≥ 0.
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Let us show that the sequence Rn is decreasing. By contradiction, we assume that Rn = Rn+1

for some n ≥ 0. Then {ψ < tn}∗ = {ψ < tn+1}∗ and |{tn+1 ≤ ψ < tn}| = 0. Using (2.5.1) and the fact

that ψ is compactly supported, there exists x such that ψ(x) < tn+1 and y such that ψ(y) > tn.

Thus by continuity of ψ there exists z such that ψ(z) = (tn+1 + tn)/2. By continuity of ψ again,

there exists η > 0 such that Bη(z) ⊂ {tn+1 < ψ < tn}, contradicting the fact that |{tn+1 ≤ ψ < tn}| = 0.

As a conclusion, the sequence Rn is decreasing and

{ψ∗ ≤ t} =
⋂
n≥0

{ψ∗ < tn} =
⋂
n≥0

BRn = BR.

Hence ψ∗ is lower semi-continuous and therefore continuous.

To prove Theorem 2.1.3, we need a last lemma characterising optimal potentials of Υ ∗(χB1
).

Along the way we will prove that the set F minimising Υset(E) (recall (2.1.1)) is the annulus

A = B21/d\B1.

Lemma 2.5.3. Let (ψc,ψ) be a pair of optimal potentials for Υ ∗(χB1
) such that ψ is radially symmetric

and non-decreasing. Then ψc is radially symmetric and non-increasing. Besides, ψc is radially
decreasing on B1. Finally, if γ is a minimiser of Υ (χB1

) then γy = χA.

Proof. Combining the facts that k is continuous, that k(r)→∞ as r→∞ and that ψ is bounded

by Lemma 2.4.10, we see that for any x ∈Rd ,

ψc(x) = min{k(|y − x|)−ψ(y) : y ∈Rd}.

As ψ is radially symmetric non-decreasing and k is increasing, we easily see that

ψc(x) = min{k(|y − x|)−ψ(y) : y, ∃λ ≥ 1, y = λx}, (2.5.2)

which in turn implies that ψc is radially symmetric.

From now on, for radial functions ζ : Rd → R, we make the abuse of notation ζ(r) = ζ(rσ )

for r ≥ 0 where σ is some fixed element of Sd−1. With this convention (2.5.2) reads

ψc(r) = min
s≥r

k(s − r)−ψ(s). (2.5.3)

Let us prove that ψc is non-increasing. Let 0 ≤ r1 ≤ r2. By (2.5.3), there exists r ≥ r1 such that

ψc(r1) = k(r − r1)−ψ(r). (2.5.4)

If r ≤ r2, we use ψc(r2) ≤ k(0) −ψ(r2) = −ψ(r2) and deduce from (2.5.4) and the fact that ψ is

non-decreasing that

ψc(r2)−ψc(r1) ≤ ψ(r)−ψ(r2)− k(r − r1) ≤ 0.

If r > r2, we use ψc(r2) ≤ k(r − r2)−ψ(r) to get

ψc(r2)−ψc(r1) ≤ k(r − r2)− k(r − r1) ≤ 0,
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because r1 ≤ r2 < r and k is increasing. In both cases ψc(r2) − ψc(r1) ≤ 0. Hence ψc is non-

increasing on R
d .

We now prove that ψc is decreasing on B1. Let 0 < r1 < r2 < 1. Given γ a minimiser for

Υ (B1), there exists y ∈Rd \B1 such that (r1σ,y) ∈ suppγ . By Proposition 2.3.7, γ is an optimal

transport plan between f := χB1
and g := γy and (ψc,ψcc) is a pair of Kantorovitch potentials for

the transport between f and g. Therefore,

ψc(r1) +ψcc(|y|) = k(|y − r1σ |). (2.5.5)

Let us prove by contradiction that y ∈ [1,+∞)σ . Assume it is not and let y′ := |y|σ . Recalling

that |y| ≥ 1 > r1, we have |y′ − r1σ | = |y| − r1 < |y − r1σ | and since k is increasing we deduce

k(|y′ − r1σ |) < k(|y − r1σ |).

Then, by definition of ψcc and taking into account that it is radially symmetric we get

ψc(r1) +ψcc(|y|) ≤ k(|y′ − r1σ |) < k(|y − r1σ |)

which contradicts (2.5.5). Therefore, y = rσ for some r ≥ 1. By definition of the c-transform,

ψc(r2) +ψcc(r) ≤ k(r − r2). (2.5.6)

Subtracting (2.5.5) to (2.5.6), we obtain

ψc(r2)−ψc(r1) ≤ k(r − r2)− k(r − r1) < 0,

where we used r1 < r2 < 1 ≤ r. This shows that ψc is decreasing on B1.

Finally we notice that as a consequence of the above discussion, the plan γ is radial. Com-

bining this with Lemma 2.4.3 proves that g = χA.

We are now ready to prove Theorem 2.1.3.

Proof of Theorem 2.1.3.

Part I : Unit balls are maximisers of E(ωd).

By Theorem 2.1.1, there exists a compactly supported maximiser f for (2.1.3) with m =ωd .

By Lemma 2.4.10, there exists an optimal pair (ψc,ψ) ∈ Cc(Rd)×Cc(Rd) for problem Υ ∗(f ) such

that ψ = (ψcc)−.

Step 1. We build a radially symmetric maximiser for (2.1.3).
Let ψ∗ be the symmetric increasing rearrangement of ψ. By Lemma 2.5.2, as ψ ∈ Cc(Rd), we

also have ψ∗ ∈ Cc(Rd). We denote by ψ c
∗ the function (ψ∗)c. By definition, ψ c

∗ ⊕ψ∗ ≤ c. Proceeding

as in the proof of Lemma 2.4.10, we obtain ψ c
∗ ∈ Cc(Rd). Thus (ψ c

∗ ,ψ∗) is admissible for Υ ∗(B1).
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Notice that (f ,ψ) solves the double supremum problem (recall the definition (2.3.2) of Kf )

sup
f

sup
ψ∈Cc(Rd )

{
Kf (ψc,ψ) : 0 ≤ f ≤ 1,

∫
f =ωd , ψ ≤ 0

}
.

Hence

E(ωd) = Kf (ψc,ψ) =
∫
f (ψc −ψ) +

∫
ψ ≥ Υ ∗(B1) ≥ KχB1

(ψ c
∗ ,ψ∗) =

∫
B1

(ψ c
∗ −ψ∗) +

∫
ψ∗ .

In the remainder of this step, we establish the converse inequality

Kf (ψc,ψ) ≤ KχB1
(ψ c
∗ ,ψ∗), (2.5.7)

so that B1 is a maximiser of E(ωd) and the first part of Theorem 2.1.3 is proved. Notice that (2.5.7)

also implies that (ψ c
∗ ,ψ∗) is a pair of optimal potentials for Υ ∗(B1). To establish (2.5.7), we first

notice that by construction ∫ ψ = ∫ ψ∗ so that we only need to prove∫
f (ψc −ψ) ≤

∫
B1

(ψ c
∗ −ψ∗) . (2.5.8)

In Step 2 below we establish the inequality

(ψc)∗ ≤ (ψ∗)
c = ψ c

∗ , (2.5.9)

where (ψc)∗ denotes the symmetric decreasing rearrangement of ψc. Admitting that (2.5.9) holds

we deduce (2.5.8) as follows. Since f is non-negative and compactly supported we have by the

Hardy-Littlewood inequality (see [57, Theorem 3.4])

−
∫
f ψ ≤ −

∫
f ∗ψ∗ and

∫
f ψc ≤

∫
f ∗(ψc)∗

(2.5.9)
≤

∫
f ∗ψ c

∗ . (2.5.10)

Using that −ψ∗ and ψ c
∗ are radially symmetric and non-increasing, we may appeal to Proposi-

tion 2.4.11 and conclude that separately,

−
∫
f ψ ≤ −

∫
χB1

ψ∗ and
∫
f ψc ≤

∫
χB1

ψ c
∗ . (2.5.11)

Summing these inequalities gives (2.5.8) and thus (2.5.7). This proves that χB1
is a maximiser

for E(ωd) and then that B1 is a maximiser for Eset(ωd).

Step 2. Proof of (2.5.9).
As ψ c

∗ and (ψc)∗ are both continuous radially symmetric functions, to prove (2.5.9) it is

sufficient to establish that for any t > 0, {(ψc)∗ > t} ⊂ {ψ c
∗ > t}, i.e. that

|{(ψc)∗ > t}| = |{ψc > t}| ≤ |{ψ c
∗ > t}|. (2.5.12)

Recall that as ψ ∈ Cc(Rd) and k ∈ C(R+,R+) with k(x)→∞ as x→∞, for any x ∈Rd the function
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k(|y − x|)−ψ(y) admits a minimum on R
d . Thus for any x ∈Rd the infimum defining ψc(x) (see

Definition 2.2.2) is reached. Recalling that k is also radially symmetric and increasing, we obtain

{ψc > t} = {x ∈Rd : min{k(|y − x|)−ψ(y) : y ∈Rd} > t}

= {x ∈Rd : −ψ > t − k(r) on Br(x) ∀r ≥ 0}

=
⋂
r≥0

{x ∈Rd : −ψ > t − k(r) on Br(x)}

=
⋂
r≥0

{−ψ > t − k(r)}r ,

where for Ω ⊂R
d and r ≥ 0, Ωr is defined as Ωr := {x ∈Ω : d(x,Rd \Ω) > r}. In particular,

|{ψc > t}| ≤ inf
r≥0
|{−ψ > t − k(r)}r |. (2.5.13)

We observe that {−ψ > t − k(r)} is an open set for any t > 0 and r ≥ 0. We also notice that (2.5.13)

holds for all ψ ∈ Cc(Rd). In particular, it holds for ψ∗. Moreover, as ψ∗ is radially non-decreasing

by construction, the sets {−ψ∗ > t − k(r)}r are open balls centred at the origin and we have in fact

|{ψ c
∗ > t}| = inf

r≥0
|{−ψ∗ > t − k(r)}r |.

Let us now prove the following claim.

Claim. Let s > 0 and V > 0.

(i) If V > ωds
d then, among open sets Ω ⊂R

d of volume V , |Ωs| is maximal if and only if Ω is

a ball.

(ii) If V ≤ωdsd then |Ωs| = 0 for any set of volume V .

Let V > 0 and s > 0 and let Ω ⊂ R
d be an open set. We assume without loss of generality that

|Ω| = V and |Ωs| > 0. Notice that we always have Ωs +Bs ⊂Ω (but the converse inclusion may

fail). By the Brunn-Minkowski inequality (see for instance [48]) applied to Ωs and Bs, there

holds

V 1/d = |Ω|1/d ≥ |Ωs +Bs|1/d ≥ |Ωs|1/d + |Bs|1/d . (2.5.14)

If Ωs is a ball, then Ω is a ball of volume V , Ω = Ωs +Bs and we have equality in (2.5.14). Con-

versely if we have equality in (2.5.14), by the equality case of the Brunn-Minkowski inequality

and the fact that s > 0, Ωs is a ball and |Ω| = |Ωs +Bs|, so that Ω is a ball. This proves the first

part of the claim.

Regarding the second part, we assume that |Ω| ≤ ωdsd and (by contradiction) that |Ωs| > 0.

The above reasoning applies and we have Ω = Ωs +Bs so that |Ωs| > 0 implies |Ω| > |Bs| =ωdsd

and we get a contradiction. This proves the claim.

By definition, {−ψ > t − k(r)} and {−ψ∗ > t − k(r)} have the same volume. As a consequence of

the claim, for any t > 0 and r > 0,

|{−ψ > t − k(r)}r | ≤ |{−ψ∗ > t − k(r)}r |. (2.5.15)
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Notice that the previous inequality is an equality if r = 0, as Ω0 = Ω for any open set Ω. Taking

the infimum on r ≥ 0 yields

|{ψc > t}| ≤ inf
r≥0
|{−ψ > t − k(r)}r | ≤ inf

r≥0
|{−ψ∗ > t − k(r)}r | = |{ψ c

∗ > t}|. (2.5.16)

This proves (2.5.12) which in turn implies (2.5.9).

Part II : Unit balls are the unique maximisers of E(ωd).

Step 1. Proof of f = χ{ψc>ψ c
∗ (1)} (exploiting the equality case in the bathtub principle).

We now show that any maximiser f is of the form χ{ψc>ψ c
∗ (1)}. By Lemma 2.5.3, ψ c

∗ is radially

decreasing on B1 and non-increasing on R
d . Thus χB1

is the only function maximising

sup
f̃

{∫
f̃ ψ c
∗ : 0 ≤ f̃ ≤ 1,

∫
f̃ =ωd

}
.

As Υ ∗(χB1
) = E(ωd), the inequalities in (2.5.10) and (2.5.11) are in fact equalities (and (2.5.9) is

also an equality in B1). Namely, there hold

(ψc)∗ = ψ c
∗ in B1, −

∫
f ψ = −

∫
f ∗ψ∗ and

∫
f ψc =

∫
f ∗ψ c

∗ .

This leads to ∫
f ψc =

∫
f ∗(ψc)∗ =

∫
f ∗ψ c

∗ =
∫
B1

ψ c
∗ ,

and f is a maximiser of

sup
f̃

{∫
f̃ ψc : 0 ≤ f̃ ≤ 1,

∫
f̃ =ωd

}
.

Let us now prove that |{ψc > ψ c
∗ (1)}| =ωd (which with Proposition 2.4.11 yields f = χ{ψc>ψ c

∗ (1)}).

Since (ψc)∗ = ψ c
∗ in B1, and ψ c

∗ is decreasing in B1 by Lemma 2.5.3, there holds for t ≥ ψc∗ (1),

|{ψc > t}| = |{(ψc)∗ > t}| = |{ψ c
∗ > t}|. (2.5.17)

Using this for t = ψ c
∗ (1) we get |{ψc > ψ c

∗ (1)}| =ωd and we conclude with Proposition 2.4.11 that

f = χ{ψc>ψ c
∗ (1)}.

Step 2. We prove that {ψc > t} is a ball for t > ψc∗ (1) (exploiting the equality case in the Brunn-
Minkowski inequality).

Step 2.a.
We fix t > ψc∗ (1). Combining (2.5.17) and (2.5.16), we get that

|{ψc > t}| = inf
r≥0
|{−ψ > t − k(r)}r | = inf

r≥0
|{−ψ∗ > t − k(r)}r | = |{ψ c

∗ > t}|. (2.5.18)

The following claim is established in Step 2.b below.
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Claim. There exists r∗ = r∗(t) > 0 such that

|{ψ c
∗ > t}| = inf

r≥0
|{−ψ∗ > t − k(r)}r | = |{−ψ∗ > t − k(r∗)}r∗ |.

Provisionally assuming the claim let us prove that {ψc > t} is a ball.

We assume without loss of generality that |{ψ c
∗ > t}| > 0 (otherwise |{ψc > t}| ≤ |{ψ c

∗ > t}| = 0

by (2.5.15) and the open set {ψc > t} is empty). Next, the claim, (2.5.18) and (2.5.15) yield

that r∗(t) also minimises infr≥0 |{−ψ > t − k(r)}r |. Thus by (2.5.18), {−ψ∗ > t − k(r∗(t))}r∗(t) is a ball

of positive volume. As r∗(t) > 0, by the equality case of the claim of Part I, Step 2, the set

{−ψ > t − k(r∗(t))}r∗(t) is also a ball. As {ψc > t} ⊂ {−ψ > t − k(r∗(t))}r∗(t), by (2.5.18) the inclusion is

actually an equality. Hence {ψc > t} is a ball.

Step 2.b. Proof of the claim.
We first show that there exist 0 < rt < Rt <∞ such that

inf
r≥0
|{−ψ∗ > t − k(r)}r | = inf

rt≤r≤Rt
|{−ψ∗ > t − k(r)}r |. (2.5.19)

We start with the upper bound on r. By (H1) and (H3), there exists Rt such that k(Rt) = t + 1.

Hence, if r > Rt, {−ψ∗ > t − k(r)} = R
d . We can thus only consider the radii r ≤ Rt.

We now prove the lower bound on r. Recall that t > ψ c
∗ (1) and that ψ c

∗ is decreasing in B1.

Therefore there exists R∗(t) < 1 such that

{ψ c
∗ > t} = BR∗(t).

We set rt := 1−R∗(t)
2 and claim that (2.5.19) holds for this value. To ease notation, let us set for

r > 0

Sr := {−ψ∗ > t − k(r)}r = {x ∈Rd : −ψ∗ > t − k(r) on Br(x)}.

We also define R := 1+R∗(t)
2 . In order to prove (2.5.19) it is enough to show that

{ψ c
∗ > t} = ∩r≥rtSr . (2.5.20)

Recalling that the sets Sr are centred balls and that BR∗(t) ⊂ BR, we have

{ψ c
∗ > t} = ∩r≥0(Sr ∩BR).

We now claim that

∩r≥rt (Sr ∩BR) ⊂ ∩r<rt (Sr ∩BR),

which is equivalent to

∪r<rt (S
c
r ∩BR) ⊂ ∪r≥rt (S

c
r ∩BR). (2.5.21)

To prove this let x ∈ Scr ∩BR for some r < rt. By definition of Scr ,

min
y∈Br (x)

k(r)−ψ∗(y) ≤ t.
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In particular since k is increasing, there exists y ∈ Br(x) such that

k(|x − y|)−ψ∗(y) ≤ t.

As x ∈ BR ⊂ B1, and (ψ c
∗ ,ψ

cc
∗ ) are Kantorovitch potentials for the external transport minimising

Υ (B1) (see Proposition 2.3.7) there exists z ∈ Bc1 such that ψcc∗ (z) = ψ∗(z) (by (2.3.14)) and

ψ c
∗ (x) = k(|x − z|)−ψ∗(z) = min

y
k(|x − y|)−ψ∗(y) ≤ t.

Since z ∈ Bc1 and x ∈ BR we have

r ′ = |z − x| ≥ 1−R =
1−R∗(t)

2
= rt

and thus

min
z∈Br′ (x)

k(r ′)−ψ∗(z) ≤ t

so that x ∈ Sr ′ . This shows (2.5.21) which implies

{ψ c
∗ > t} = ∩r≥rt (Sr ∩BR).

Eventually, we must have Sr ⊂ BR for some r ≥ rt (otherwise {ψ c
∗ > t} = BR which is absurd). This

concludes the proof of (2.5.20) and thus of (2.5.19).

Next, setting

L(r) := |{−ψ∗ > t − k(r)}r |,

we still have to establish that the infimum of L over [rt ,Rt] is reached. For this we establish that

L is lower semi-continuous (together with (2.5.19) this will conclude the proof of the existence

of r∗(t) > 0 minimising L over R+). We start by noticing that, r 7→ |{−ψ∗ > r}| is lower semi-

continuous on R+. Let us denote by ρt(r) the radius of the ball {−ψ∗ > t−k(r)}. As k is continuous,

the function r 7→ ρt(r) is also lower semi-continuous. Finally, as L(r) = ωd[(ρt(r) − r)+]d , L is

lower semi-continuous as well. This ends the proof of the claim.

Step 3. Conclusion.
Let now tn be a decreasing sequence converging to ψ c

∗ (1). We have

{ψc > ψ c
∗ (1)} =

⋃
n≥0

{ψc > tn} and {ψ c
∗ > ψ

c
∗ (1)} =

⋃
n≥0

{ψ c
∗ > tn} = B1. (2.5.22)

By (2.5.18), for every n ≥ 0, {ψc > tn} = Brn(zn), where rn is the radius of {ψ c
∗ > tn} and zn ∈ Rd .

Since tn is decreasing the sequence Brn(zn) is non-decreasing. Moreover, by (2.5.22) rn→ 1 as

n→∞. Hence there exists z ∈ Rd such that χBrn → χB1
(z) monotonically in L1(Rd) as n→∞.

Eventually (2.5.22) implies that {ψc > ψ c
∗ (1)} = B1(z). Consequently, f = χ{ψc>ψ c

∗ (1)} = χB1(z). This

concludes the proof of the fact that balls are the unique maximisers to (2.1.3).
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3.1 Introduction

In this article, we present some numerical considerations on the non-local isoperimetric problem

studied in [19]. Let us denote by Wp the Wasserstein distance for p ≥ 1 and identify a set E ⊂R
d

of finite Lebesgue measure with the restriction χEdx of the Lebesgue measure to E. The non-local

energy we consider is the exterior transport functional

Wp(E) = inf
|F∩E|=0

Wp(E,F),

where by convention Wp(µ,ν) = +∞ if µ,ν are nonnegative measures with different total masses.

Given λ > 0, we then introduce the variational problem

inf
{
P (E) +λWp

p (E) : |E| =ωd
}

(3.1.1)

where ωd is the volume of the unit ball and P (E) denotes the perimeter of E. Let us recall the

main results of [19] regarding (3.1.1). The first one states that solutions do exist and have a

bounded number of connected components, all of which being bounded as well.

Theorem 3.1.1. For every d ≥ 2, p ≥ 1 and λ > 0, problem (3.1.1) has minimisers and every minimiser
is Hd−1-equivalent to a representative set whose boundary is C1,α-regular for any α ∈ (0,1/2).
Moreover, there exists C = C(d,p) > 0 such that if E = ∪Ii=1E

i is such a minimiser with Ei the
connected components of E, then

I∑
i=1

diam(Ei) ≤ C(1 +λ)d−1 and inf
i

diam(Ei) ≥ C(1 +λ)−1.

As a consequence I ≤ C(1 +λ)d .

The second theorem of [19] establishes that in the regime where the perimeter is the domi-

nant term, balls are the only minimisers of (3.1.1).
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Theorem 3.1.2. For every d ≥ 2, p ≥ 1, there exists λ0 > 0 such that for every λ ≤ λ0, balls are the
only minimisers of (3.1.1).

Notice that by scaling (3.1.1) is equivalent to

inf
{
P (E) +Wp

p (E) : |E| =m
}

with m = λ
d
p+1 .

In particular, the regime λ≪ 1 where the perimeter is dominant corresponds to m≪ 1, and the

case λ≫ 1 corresponds to m≫ 1. When λ≫ 1 the exterior transport functional, which strongly

penalises balls, becomes the dominant term. Indeed, we proved in [20, Theorem 1.3] (which

corresponds to Theorem 2.1.3 in the second chapter of this manuscript) that the ball was the

maximiser of Υ among sets of fixed mass. We thus expect that other geometries emerge in the

case λ≫ 1. To be more specific, we expect that the exterior transport functional favours sets

which are thin and with as much mass close to its boundary as possible, so that structures such

as strips and annuli may be favoured as λ increases.

In the rest of the article, we fix d = p = 2. We are interested in answering the following

questions:

– How does the geometry of minimisers of (3.1.1) evolve as m varies in [0,∞)?

– If we restrict the study to Problem (3.1.2) defined just below, can we numerically observe

the minimiser evolving from a ball to other shapes as m increases?

– Is the transition sharp, or does an intermediate regime exist between the cases m≪ 1 and

m≫ 1?

We perform two types of numerical explorations to address these questions: one in the radially

symmetric case, where we compute the energies of the ball and annuli, and another one in the

general case for comparison. The radially symmetric version of (3.1.1) we study is defined as

follows:

inf
E

{
P (E) +λW2

2 (E) : E radially symmetric and connected, |E| = π
}
. (3.1.2)

In this radial case, the simulations are quite accurate and they lead us to formulate the following

conjecture:

Conjecture 3.1.3. There exist 0 < λ1 < λ2 (where λ1 ≈ 4.95 and λ2 ≈ 5.55) such that:

• for 0 ≤ λ ≤ λ1, the unit disk B1 is the unique local and global minimiser of (3.1.2),

• for λ > λ1, (3.1.2) has two local minimisers : B1 and an annulus Arλ where rλ > 0,

• for λ1 < λ < λ2, the unit disk B1 is the only global minimiser of (3.1.2),

• for λ = λ2, (3.1.2) has two global minimisers: B1 and a annulus Ar ′λ where r ′λ > 0,

• for λ > λ2, the unique global minimiser of (3.1.2) is an annulus Ar ′′λ where r ′′λ > 0.
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Let us next describe our study of the model without any a priori symmetry, which corre-

sponds to the minimisation problem:

inf
{
P (E) +λW2

2 (E) : |E| = π
}
. (3.1.3)

To carry out the numerical simulations, we replace the perimeter and Wasserstein functionals

in (3.1.3) by more suitable, smoothed functionals. We use a phase-field method, where the

characteristic function χE of a set E ⊂ R
2 is replaced with a function u : R2→ [0,1] such that∫

u = π.

In this context, we approximate the perimeter term by the classical Modica-Mortola func-

tional (see [62]), defined for ε > 0 and u ∈H1(R2) as follows:

Fε(u) = 3ε
∫
R

2
|∇u|2 +

3
ε

∫
R

2
u2(1−u)2. (3.1.4)

We refer the reader to [9, Section 7] for more details on the Γ -convergence of this functional

to the perimeter as ε→ 0. We would also like to point out the versatility of such phase-field

methods, which are used in the study of interface dynamics [11], fracture problems [4] or

multiphase flows [53].

The exterior transport term is defined for a function u : R2→ [0,1] by

Υ (u) = inf
{
W 2

2 (u,v) : v Lebesgue, 0 ≤ v ≤ 1−u
}
, (3.1.5)

where we identify u and the measure udx when no confusion can arise. For numerical purposes,

we consider its entropic relaxation Υγ . It is given for γ > 0 by

Υγ (u) = inf
Π

{∫
R

2×R2
|x − y|2dΠ(x,y) +γH(π) :Π ∈M(R2 ×R2),

Πx = udx, 0 ≤Πy ≤ (1−u)dy
}
, (3.1.6)

where Πx and Πy are the first and second marginals of Π ∈M(R2×R2), and where the (negative)

entropy H is defined by

H(Π) =


∫
R

2×R2 Π(log(Π)− 1)dxdy if Π≪ dx⊗ dy and Π ≥ 0,

+∞ otherwise.

This relaxation is classical in computational optimal transport and is used to compute accurate

approximate solutions to various optimal transportation problems (see e.g. [31] and [32, Section

4] for more details). It is also worth pointing out that the algorithm we implement to compute

Υγ is based on the numerical method described in [13], which was itself based on [71].

Eventually, the problem that we are interested in solving is what we call the Modica-Mortola-
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entropic approximation of (3.1.3): given λ,ε,γ > 0, we consider

inf
u

{
E(u) = 3ε

∫
Ω

|∇u|2 +
3
ε

∫
Ω

u2(1−u)2 +λΥγ (u) : u : Ω→ [0,1],
∫
R

2
udx = π

}
. (3.1.7)

Formally, λ represents the “physical" parameter that models the contribution of the exterior

transport term to the total energy, while ε and γ are two small approximation parameters.

The ambient space Ω we consider is the torus R
2/LZ2 defined for L > 0. We discretise Ω

using a regular grid and implement a finite difference scheme to compute each energy term. For

the optimization, we use an alternate minimisation algorithm and treat the optimal transport

term using a variant of the Sinkhorn algorithm.

The chapter is organised as follows. In Section 3.2, we present the theoretical results and

conjectures associated to the study of the radially symmetric problem (3.1.2). In Section 3.3

we consider the approximated version (3.1.7) of Problem (3.1.3). We present the numerical

simulations we conducted to study (3.1.7) and compare them to the previous conjectures.

In Section 3.4, we give the proofs and computations on which is based our investigation of

Problem (3.1.2). In Section 3.5, we detail the transition of the original problem (3.1.3) to its

approximation (3.1.7). We also derive the evolution equation we use for the implementation of

the gradient descent algorithm. In Section 3.6, we detail the space discretisation of (3.1.7) and

the implementation of the gradient descent in this setting. Eventually, in Section 3.7 we detail

the derivation of the Sinkhorn algorithm we use to solve the exterior optimal transport problem

(3.1.6)

3.2 Results in the two-dimensional radially symmetric case

We now present some theoretical considerations on Problem (3.1.2). First notice that due to

the non-local nature of optimal transport, obtaining a closed form expression forW2
2 (E) given

a generic shape E ⊂ R
2 is in general impossible. However, restricting the study to radially

symmetric, connected sets allows for more explicit computations.

Given 0 ≤ rm, we denote by Arm,rM the centered open annulus of mass π with inner radius

rm and outer radius rM =
√

1 + r2
m. As the mass is fixed, when no confusion can arise we simply

write Arm,rM = Arm . Notice that with our notation, the case rm = 0 corresponds to the unit disk

Arm = B1.

Given 0 ≤ rm, for the perimeter we always have

P (Arm) = 2π
(
rm +

√
1 + r2

m

)
(see its graph in Figure 3.1). The main difficulty is to compute

W2
2 (Arm) = inf

{
W 2

2 (Arm ,F) : F ⊂R
2, |F ∩Arm | = 0

}
. (3.2.1)

Given rc ∈ [rm, rM], we denote by τ(rc) the cost of sending Arm to the reunion of the inner
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0.5 1 1.5 2

10

20

0 (B1)
0 rm

P (Arm)

Figure 3.1: Perimeter P (Arm) of the annulus of inner radius rm.

and outer annuli Asm,rm and ArM ,sM as follows: Arm,rc is sent to Asm,rm and Arc ,rM to ArM ,sM , using

the c-cyclically monotonous and unique optimal transport map Trc (which is defined in (3.4.1)).

See Figure 3.2 below for an illustration. Also notice that as Arm,rc can at most be of mass

Brm , we necessarily have rc ≤
√

2rm. Eventually, τrc is well defined for rm ≤ rc ≤ r̂M , where

r̂M = min(
√

2rm, rM ).

The following proposition allows us to reduce the studyW2
2 (Arm) to a single variable opti-

mization problem involving τ(rc). Its proof is postponed to Section 3.4.1.

Proposition 3.2.1. Problem (3.2.1) is uniquely minimised by the reunion F of two annuli adjacent to
Arm , that is

F = Asm,rm ∪ArM ,sM ,

where 0 ≤ sm ≤ rm and rM ≤ sM . Additionally, determining F is equivalent to finding the unique
optimal splitting radius rc ∈ [rm, r̂M ] which minimises the cost of sending Arm,rc to Asm,rm and Arc ,rM to
ArM ,sM using the map Trc . Therefore:

W 2
2 (Arm) = inf

{
τ(rc) : rc ∈ [rm, r̂M ]

}
= τ(rc), (3.2.2)

The previous proposition gives existence and uniqueness of F and of the optimal transport

map Trc , but rc is still to be determined explicitely. For this matter, we exhibit an equation

satisfied by rc which is used to compute a numerical approximation of rc through a secant

method. By conservation of the mass, we can then deduce sm and sM .

The computation of τ and τ ′ is carried out in Section 3.4.2, where we in particular establish

that τ is C1 on [rm, r̂M ]. We numerically observe that

Assumption 3.2.2. The function τ is strictly convex on [rm, r̂M ] and τ ′(rm) < 0.

This observation leads us to use the following method to compute rc: we first check if

τ ′(r̂M) ≤ 0. In this case the minimum is reached at r̂M . Otherwise, we solve τ ′(rc) = 0 for
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0 sm rm rc rM sM

Asm,rm

Arm,rM

ArM ,sM

Figure 3.2: The annulus Arm,rM and its corresponding minimiser Asm,rm ∪ArM ,sM .
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Figure 3.3: Exterior transport energy W 2
2 (Arm) of the annulus inner radius rm.
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Figure 3.4: Energies of annuli of inner radius rm (blue) and of the unit disk (orange).

rc ∈ (rm, r̂M ) using a variant of the secant method (see Section 3.4.3 for the detailed explanation).

We thus are able to compute W 2
2 (Arm) using (3.2.2), and we give its graph is given in Figure 3.3.

Eventually, we can compute the energy

E(Arm) = 2π
(
rm +

√
1 + r2

m

)
+λW 2

2 (Arm)

for different values of λ ≥ 0. Our computations are summarised in Figure 3.4. We plotted the

function rm 7→ E(Arm) for increasing values of λ ≥ 0. Recall that the case rm = 0 corresponds

to the unit disk B1. We added the constant function equals to E(B1) on each graph to ease the

comparison of the annulus and the disk. Let us point out the fact that these numerical results

are correct up to computer accuracy, and that they lead us to make Conjecture 3.1.3 on the

behaviour of the minimisers of (3.1.2).

3.3 Numerical experiments in the non radially symmetric case

We now present the results of the numerical experiments conducted in order to study the non

radially symmetric problem (3.1.3). While the detailed implementation of the algorithm is

written down in Section 3.5, let us now briefly summarise it.

3.3.1 Breakdown of the algorithm

Given L > 0, we work on the torus Ω = R
2/LZ2 that we discretise in a regular grid of N ×N

squares of side-length h = L/N . To solve

inf
{
E(u) = Fε(u) +λΥγ (u), u : Ω→ [0,1],

∫
Ω

u = π
}
,
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Parameter Description
L Ω = R

2/LZ2 ⊂R
2 is the ambient space.

N Ω is discretised in N ×N squares.
h h = L/N is the size of the griud.
ε Modica-Mortola parameter, ε = 2h.
γ Entropic parameter.
λ The energy is Fε +λΥγ .
δt Time step.
tol Relative tolerance.

Table 3.1: Parameters of the fully discretised problem.

we implement a gradient descent algorithm of time step δt. In the next lines, we consider the

continuous problem rather than the discretised one to lighten notation. Let us denote by W the

double well function u 7→ u2(1−u)2/2. Formally computing the first variation of Fε(u) +λΥγ (u),

we obtain the following evolution equation for the L2-gradient flow of E:

∂tu = 3ε∆u − 3
ε
W ′(u) + ξu +µ. (3.3.1)

The function ξu corresponds to the first variation of Υγ , whose detailed computation in the

discretised setting is given in Section 3.7. The real µ is a Lagrange multiplier associated with

the preservation of mass. Notice that Equation (3.3.1) can be seen as an Allen-Cahn equation

with a forcing term ξu +µ. To solve it, we proceed to a Lie splitting and alternatively solve on a

time interval of length δt:

∂tu = 3ε∆u and ∂tu = −3
ε
W ′(u) +λξu +µ. (3.3.2)

We stop the process when the relative variation of the energy from one iteration to another is

inferior to some fixed tolerance threshold. We summarise the notation in Table 3.1.

3.3.2 Presentation of the numerical simulations

Comparison of the splitting algorithm with the radial computations

In this experiment, our goal is to confirm that the limit shapes generated by the splitting

algorithm possess energy levels similar to those of the shapes computed in the radially symmetric

case. To obtain the set of curves of Figure 3.5, we set L = 4 and use the splitting algorithm for λ

taking sampled values in [3.5,7.5] and N successively equal to 128, 192 and 256. We initialize

the splitting algorithm with a figure U0 that is already close to be the theoretical optimal figure

(i.e. the ball or an optimal annulus) computed in the radially symmetric case. Let us point out

that this experiment relies on the fact that radially symmetric shapes are stable for our splitting

algorithm, so that we are guaranteed to have limit shapes that are also radially symmetric.

Our goal here is not to compare radial shapes with the thin and elongated sets observed in

subsequent experiments.

Also notice that as N increases, ε decreases so that we fix decreasing values of γ to have
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Figure 3.5: Comparison of the 2D model and the radial case.

γ ≪ ε. We fix δt = ε/8 and tol = 10−8 in each experiment.

We observe on Figure 3.5 that the alternate splitting algorithm yields energy values that tends

to the ones obtained in the radially symmetric case. Notice that the derivative of the minimal

energy with respect to λ has a jump at the critical value λ = λ2 ≃ 5.554. This corresponds to the

transition from the optimality of the ball to the one of the annulus in the radially symmetric

case.

Stability of the ball and of the annulus

In this experiment, we set L = 4, N = 256, γ = 10−2, tol = 10−8 and δt = ε/10 (recall that

ε = 2h = 2L/N ). In the first simulation, which corresponds to Figure 3.6, we set λ = 1 and we do

observe that a non radially symmetric shape close to the ball evolves to the ball. In the second

one, which corresponds to Figure 3.7, we set λ = 10 and we start with an annulus. In the limit,

we obtain a final annulus close to the optimal one predicted by the radial computations.

Some experiments in the critical regime.

In this experiment, we set L = 4, N = 256, γ = 10−2, tol = 10−8, δt = ε/10 and λ = λ2 ≃ 5.554. The

results we obtained are depicted in Figure 3.8. They tend to confirm the existence of a critical

value λ2 of λ for which both the disk and some annulus Arm are global minimisers (compare

Figure 3.8 and Figure 3.9).
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Figure 3.6: Starting with a perturbed ball (λ = 1).

Figure 3.7: Starting with a thick annulus (λ = 10).
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Figure 3.8: Behaviour in the critical regime λ = λ2 ≃ 5.554.

Figure 3.9: Energy of Arm when rm varies in the case λ = λ2 ≃ 5.554.
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Figure 3.10: Starting with an ellipse (λ = 10).

Starting away from radially symmetric sets.

When we start with initial data that is highly non radially symmetric, the algorithm struggles to

converge to a precisely defined set. Most of the mass uniformly diffuses into the background,

while a small set in the centre evolves into a disk. To counter this phenomenon, we use a slightly

different version of our algorithm, where the mass constraint is more carefully enforced. See

Section 3.6.3 for more details.

In the experiments conducted with this new method, we set L = 8, N = 256, γ = 10−2,

δt = ε/10, tol = 10−8 and λ = 10. The results we obtained are depicted in Figure 3.10. We

observe that the limit shape is not at all radially symmetric set. Instead, it is elongated, thin

and seems to have two axes of symmetry. This leads us to consider the conjecture that thin and

elongated shapes are the preferred minimisers as λ→∞, and not annuli.
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3.4 Computation and proofs in the two dimensional radially sym-

metric case

3.4.1 The exterior transport cost functional for a single annulus

Proof of Proposition 3.2.1. By [19, Proposition 2.1] Problem (3.2.1) admits a unique minimiser

F, and the unique optimal transport plan Π between Arm and F is induced by a map T . By

proceeding as in the proof of [19, Lemma 4.2 (i)] we obtain that F is radially symmetric, and

eventually that F is the reunion of the two annuli adjacent to Arm (one of the annuli being

possibly empty). Regarding the transport map T , it is sufficient to follow the proof of [19,

Lemma 4.2 (ii)]. We introduce

Trc (x) = frc(|x|)
x
|x|
, where frc (x) =


f−(x) =

√
s2 − (rc − rm)2 if s ≤ rc,

f+(x) =
√
s2 + (1 + r2

m − r2
c ) if s ≥ rc.

(3.4.1)

Notice that Trc is the unique radially symmetric map (in the sense that T (x) = f (|x|) x|x| ) which

solves det∇T = 1 and sends Arm to F. More precisely, Trc sends Arm,rc to Asm,rm and Arc ,rM to ArM ,sM .

As the map

g : R+→R+, r 7→
√

1 + r2

is monotone on R+, we have that the set S = {(x,T (x)) : x ∈ Arm} is c-cyclically monotone for the

cost c(x,y) = |x−y|2 (see [5, Definition 1.7] for a definition of c-cyclical monotonicity). Therefore,

if we define the transport plan Πrc = (Id,T )#χArmdx, we have that supp(Πrc ) = S is c-cyclically

monotone. Thus by [5, Theorem 1.13], πrc is optimal between Arm and F = T (Arm). Consequently

by uniqueness of the optimal transport plan, we have that Π = Πrc and T = Trc .

3.4.2 The splitting radius for the exterior transport of a single annulus

Recall that 0 ≤ rm is fixed, that r̂M = min(rM ,
√

2rm) and that given rc ∈ [rm, r̂M ], we write τ(rc) to

denote the transport cost of Arm to Asm,rm ∪ArM ,sM by sending Arm,rc to Asm,rm and Arc ,rM to ArM ,sM
(see Figure 3.2). Also recall that as a consequence of Proposition 3.2.1,

W 2
2 (Arm) = min {τ(rc) : rc ∈ [rm, r̂M ]} = τ(rc),

i.e. that the exterior transport problem for Arm is solved by finding the optimal splitting radius

rc.

Let us now explain how we obtain an equation on rc. We split τ(rc) into τ−(rc) and τ+(rc),

which denote the cost of sending Arm,rc (resp. Arc ,rM ) to Asm,rm (resp. ArM ,sM ).By (3.4.1), we have

τ(rc) =
∫
Arm

|Trc(x)− x|2dx =
∫
Arm,rc

|Trc(x)− x|2dx+
∫
Arc ,rM

|Trc(x)− x|2dx

=
∫ rc

rm

2πs
(
(s2 − r2

c + r2
m)1/2 − s

)2
ds+

∫ rM

rc

2πs
(
(s2 + 1 + r2

m − r2
c )1/2 − s

)2
ds.
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After integration and denoting by δ2 = r2
c − r2

m, we have

τ−(rc) =
2πδ2

4
ln

 rm + rc

rm +
√

2r2
m − r2

c

+
2πδ8

16

 1
(rm + r)4 −

1

(rm +
√

2r2
m − r2

c )4

 ,
τ+(rc) =

2π(1 + δ2)2

4
ln


√

1 + r2
m +

√
2 + 2r2

m − r2
c√

1 + r2
m + rc


+

2π(1 + δ2)4

16

 1

(
√

1 + r2
m +

√
2 + 2r2

m − r2
c )4
− 1

(
√

1 + r2
m + rc)4

 .
By Proposition 3.2.1, solving (3.2.1) amounts to finding the unique rc which minimises τ(rc).

First, notice that τ− is of class C∞ on [rm,
√

2rm) and of class C1 on [rm,
√

2rm]. The function τ+ is

of class C∞ on [rm, r̂M ]. Hence τ is of class C1 on [rm, r̂M ] and on this interval we compute

τ−
′(rc) = 2πrmrc

(
2rm − rc −

√
2r2
m − r2

c

)
+ 2πrcδ

2 ln

 rm + rc

rm +
√

2r2
m − r2

c

 ,
τ+
′(rc) = τ+,1

′(rc) + τ+,2
′(rc) + τ+,3

′(rc) + τ+,4
′(rc),

where

τ+,1
′(rc) =

π(1 + δ2)
2

√
1 + r2

m

 rc√
2 + 2r2

m − r2
c

− 1

 ,
τ+,2

′(rc) = −2π(1 + δ2)rm ln


√

1 + r2
m +

√
2 + 2r2

m − r2
c√

1 + r2
m + rc

 ,
τ+,3

′(rc) =
π(1 + δ2)3

2

r2
m + 1 + r2

c + 2rc
√

1 + r2
m

(
√

1 + r2
m + rc)5

 ,
τ+,4

′(rc) = −π(1 + δ2)3

2

 3r2
m + 3− r2

c√
2r2
m + 2− r2

c

+ 2
√

1 + r2
m

 rc

(
√

1 + r2
m +

√
2r2
m + 2− r2

c )5
.

Recall that by Assumption 3.2.2, τ is strictly convex on [rm, r̂M ] and τ ′(rm) < 0. We then search

for the minimum of τ as follows: we first check if τ ′(r̂M ) ≤ 0. In this case the minimum is reached

at r̂M . Otherwise, we solve τ ′(rc) = 0 for rc ∈ (rm, r̂M ). For this, we implement the modified secant

method described below.

3.4.3 A modified secant method to compute the splitting radius

Recall that τ+ is smooth on [rm, r̂M ] and that τ− is of class C1 on [rm, r̂M ] but not twice differen-

tiable at
√

2rm. In particular, we have the following asymptotics for τ ′:

τ ′(rc) = a− b
√

2r2
m − r2

c +O(2r2
m − r2

c ) for 0 <
√

2rm − rc≪ 1, (3.4.2)
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for some a ∈R, b > 0 depending on rm. We observe that if rc is close to
√

2rm, the derivative of τ ′

is very large, so that the performance of the classical secant method deteriorates. Namely, we

approximate τ ′ by some functions f (rc) = a−b
√

2r2
m − r2

c instead of affine functions f (rc) = a+brc.

Given a ∈ R and b > 0, we define on [rm, r̂M] the function η(a,b, r) = a − b
√

2r2
m − r2. In the

case where τ(r̂M ) > 0, we initialise the method by setting

r[0] =
rm + rM

2
+
rM − rm

10
, r[1] =

rm + rM
2

− rM − rm
10

.

Then for n ≥ 1, we define an ∈R and bn > 0 to be such that

η(an,bn, r[n− 1]) = τ ′(r[n− 1]) and η(an,bn, r[n]) = τ ′(r[n]). (3.4.3)

Notice that by strict convexity of τ , we have τ ′(r[n− 1]) , τ ′(r[n]). We then define r[n+ 1] to be

the solution of η(an,bn, r) = 0. Solving the system (3.4.3), we finally obtain that

r[n+ 1] =

2r2
m −

(
τ ′(r[n])

√
2r2
m − r[n− 1]2 − τ ′(r[n− 1])

√
2r2
m − r[n]2

)2

(τ ′(r[n])− τ ′(r[n− 1]))2


1/2

. (3.4.4)

We stop the iterations and consider that the method has provided an acceptable approximation

for rc when |τ ′(r[n+ 1])| ≤ α|τ ′(r[1])| with α = 10−12. This secant method thus grants us a way of

computing an approximate value ofW2
2 (Arm) given rm ≥ 0.

3.4.4 Asymptotic expansions of the exterior transport cost

Thanks to the numerical simulations, we also notice that there exists r1
m such that for rm ≤ r1

m,

the entire disk inside Arm is filled by Asm,rm = Brm . In this case, rc =
√

2rm, and an expansion at

order 5 with respect to rm≪ 1 yields

W 2
2 (Arm)
2π

=
ln(1 +

√
2) + 4− 3

√
2

4
− ln(1 +

√
2)

2
r2
m +

4
√

2
3
r3
m+

ln(1 +
√

2)− 2
√

2
2

r4
m

+
2
√

2
15

r5
m +O(r6

m).

In the case rm→∞, following [70, Appendix B] we expect that rc admits an a priori expansion

of the form
rc
rm

= 1 +
1

4r2
m

+
θ

16r4
m

+O
(

1

r6
m

)
,

for some θ ∈ R which we compute by optimizing the quantity τ(rc) for fixed rm≫ 1 (we omit

the details of this particular optimization). We finally obtain that as rm→∞ we have

rc(rm) = rm +
1

4rm
− 3

32r3
m

+O
(

1

r5
m

)
and

W 2
2 (Arm)
2π

=
1

32r2
m
− 1

64r4
m

+
67

6144r6
m

+O
(

1

r8
m

)
.
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3.5 From the theoretical non-radial problem to the numerical imple-

mentation

Let us explain how we build approximate solutions of (3.1.7). Recall that the ambient space Ω

is the torus R2/LZ2, where L > 0 is such that |Ω| ≥ 2π. Given λ > 0 we thus aim at solving

inf
{
P (E) +λΥ (E) : E ⊂Ω, |E| =ω2

}
.

To obtain algorithms that are efficient in terms of computational cost, we substitute each term of

the previous problem by an approximate counterpart which is easier to discretise and evaluate.

3.5.1 Approximate problem and duality

For the perimeter term we use the Modica-Mortola approximation and define W : R→R by

W (s) =
1
2
s2(1− s)2 and set CW =

∫ 1

0

√
2W (s)ds =

1
6
.

Given ε > 0 and u ∈H1(Ω) we then set

Fε(u) =
ε
2

∫
Ω

|∇u|2dx+
1
ε

∫
Ω

W (u)dx.

We denote by BV (R2) the set of functions with finite total variation and recall that Fε Γ -converges

in L1(Ω) (see e.g. [9, Section 7.2] for more details on the Γ -convergence of Fε) as ε→ 0 to the

functional F0, where

F0(u) =

CW
∫
Ω
|∇u| if u ∈ BV(R2, {0,1}),

∞ otherwise.

As for Υ , we follow the usual approach in computational optimal transport and replace it by its

entropic approximation (see e.g [22]). The (negative) entropy H is defined for Π ∈M(Ω×Ω) by

H(Π) =


∫
Ω×ΩΠ(log(Π)− 1)dxdy if Π≪ dxdy and Π ≥ 0,

+∞ otherwise.

and by convention we set 0log0 = 0. The entropy of a measure µ ∈M(Ω) is defined similarly.

For x,y ∈ R2, let us set c(x,y) = |x − y|p. Given γ > 0 and u : R2 → [0,1] with
∫
u = π, we

define

Υγ (u) = inf
Π∈M(Ω×Ω)

{∫
Ω×Ω

cdπ+γH(Π) : Πx = udx, 0 ≤Πy ≤ (1−u)dy
}
. (3.5.1)

A simple application of the Direct Method in the Calculus of Variations allows us to prove

the following existence result for (3.5.1) (which in fact holds for any p ≥ 1 and d ≥ 2)
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Proposition 3.5.1. Let u : Ω→ [0,1] be such that
∫
u = π. Assume that there exists at least one

exterior transport plan Π such that H(Π) <∞. Then, the infimum in (3.5.1) is attained by a unique
minimiser π0 ∈M+(Ω×Ω).

As a linear optimization problem under convex constraints, which are given by a continuous

linear equality and a continuous linear inequality, (3.5.1) admits a dual problem. By the

Fenchel-Rockafellar theorem, we have:

Proposition 3.5.2. Recall that Ω ⊂R
2 is compact. Given u : Ω→ [0,1] such that

∫
u = π, we have

the following dual formulation for Υγ (u):

Υγ (u) = sup
ϕ,ψ∈Φ

{∫
Ω

uϕdx+
∫
Ω

(1−u)ψdy −γ
∫
Ω×Ω

e
−c+ϕ+ψ

γ u(x)dx(1−u(y))dy
}
,

Φ =
{
(ϕ,ψ) ∈ C(Ω)×C(Ω), ψ ≤ 0

}
.

(3.5.2)

Eventually, we are interested in solving the Modica-Mortola-entropic approximation of

(3.1.2): given ε,λ,γ > 0,

inf
u

{
E(u) = 6Fε(u) +λΥγ (u) : 0 ≤ u ≤ 1,

∫
udx = π

}
. (3.5.3)

3.5.2 Subdifferential of the approximated energy

We compute approximate solutions to (3.5.3) by implementing a gradient descent algorithm.

Again, to lighten notation we describe the optimization of the continuous functional E(u)

instead of its discretised version. In this regard, we have to exhibit functions belonging the

subdifferential of E, which is defined as follows:

∂E(u) =
{
q : Ω→R, liminf

δ→0

E(u + δ(v −u))−E(u)
δ

≥ q for any v : Ω→ [0,1],
∫
v = π

}
.

Let us start with the subdifferential of Fε. It turns out that we have a stronger result because its

first variation is well-known in the literature. Given a functional G : L1(Ω)→R, we define its

first variation in our setting by

δuG(v) = lim
δ→0

G((1− δ)u + δv)−G(u)
δ

= lim
δ→0

G(u + δ(v −u))−G(u)
δ

, .

where u,v : Ω → [0,1] such that
∫
u =

∫
v = π. For the Modica-Mortola functional, given

u ∈H2(Ω) we have:

δuFε(v) = −ε
∫
Ω

∆u(v −u)dx+
1
ε

∫
Ω

W ′(u)(v −u)dx, (3.5.4)

with W ′(u) = u(1−u)(1− 2u).

We now turn to the subdifferential of Υγ (u). We assume that there exists a couple of

potentials (ϕu ,ψu) maximizing (3.5.2). Using them as candidates for Υγ (u +δ(v −u)) and setting
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w = v −u yield

Υγ (u + δw) ≥
∫
Ω

[
u + δw

]
ϕudx+

∫
Ω

[
1− (u + δw)

]
ψudy

−γ
∫
Ω×Ω

exp
(
γ−1

(
− c(x,y) +ϕu(x) +ψu(y))

)[
u(x) + δw(x)

][
1−

(
u(y) + δw(y)

)]
dxdy.

By rearranging the terms and relabelling the integration variables, we recognise that

Υγ (u + δw) ≥ Υγ (u) + δ
∫
Ω

(ϕu −ψu)wdx

−γ δ
∫
Ω×Ω

exp
(
γ−1(−c(x,y) +ϕu(x) +ψu(y))

)
[w(x)(1−u(y))−w(y)u(x))]dxdy +O(δ2).

We finally obtain that

liminf
δ→0

Υ (u + δw)−Υγ (u)

δ
≥

∫
Ω

(ϕu −ψu)wdx −γ
∫
Ω

Gwdx (3.5.5)

where the function G is defined for x ∈R2 by

G(x) =
∫
Ω

exp
(−c(x,y)

γ

)[
exp

(ϕu(x) +ψu(y)
γ

)
(1−u(y))− exp

(ϕu(y) +ψu(x)
γ

)
u(y)

]
dy.

Combining (3.5.4) and (3.5.5), we finally have that the function

−6ε∆u +
6
ε
W ′(u) +λ(ϕu −ψu)−λγG (3.5.6)

belongs to the subdifferential of E. In the numerical implementation of our algorithms, we

always have that γ ≪ λ,ε, so that we will omit the last term in (3.5.6). Consequently, using

(3.5.6) to implement a gradient descent algorithm for E yields the following evolution equation:

∂tu = 6ε∆u − 6
ε
u(1−u)(1− 2u)−λ(ϕu −ψu) +µ, (3.5.7)

where µ ∈R is the Lagrange multiplier associated with the preservation of the mass of u. Setting

ξu = ϕu −ψu , we notice that (3.5.7) corresponds to an Allen-Cahn equation with an additional

term −λξu +µ. Following the notation of [11, Chapter 2], given t > 0 we denote by

S(t) the flow of (3.5.7),

et∆ the flow of the diffusion equation ∂tu = ε∆u,

Y (t) the flow of the reaction equation ∂tu = −1
εu(1−u)(1− 2u)−λξu +µ,

and we approximate S(t) by using the Lie splitting L(t) = Y (t)et∆.
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3.6 Space discretisation and implementation of the Lie splitting

Let us now describe how we discretise the domain Ω = R
2/LZ2 and solve each term of the

reaction-diffusion equation described just above. In this section, we assume that the term ξu
related to the exterior transport is known. Its computation is based on the Sinkhorn algorithm

which is detailed in the next and last section.

3.6.1 Solving the diffusion equation by Fourier transform

We first have to solve the classical heat equation on Ω

∂tu = 6ε∆u.

In a discretised context, we implement a finite difference scheme and use the discrete Fourier

transform, which we now comment. Consider the regular partition of Ω into N2 cubes and

identify each cube by a double index (i1, i2) with 0 ≤ i1, i2 ≤N − 1. We specify u to be a function

u constant on each square of Ω and by abuse of notation identify u with the N ×N square matrix

of the values it takes. In this context, we compute the discrete partial derivatives of u over the x

and y axis in the forward fashion, i.e.

D1u(i1, i2) = h−1(u(i1 + 1, i2)−u(i1, i2)) and D2u(i1, i2) = h−1(u(i1, i2 + 1)−u(i1, i2)),

where the boundary conditions are periodic: N − 1 + 1 = 0 and N − 1 + 1 = 0. The equation

verified by u is then

∂tu(i1, i2, t) = ε
[
D2

1u(i1, i2, t) +D2
2u(i1, i2, t)

]
. (3.6.1)

where D2 corresponds to the forward derivative iterated with the backward one. We can then

write u as the linear sum of its Fourier coefficients as follows

u(i1, i2, t) =
N−1∑
k1=0

N−1∑
k2=0

F (u)(k1, k2, t)e
−2πi

(
i1k1
N + i2k2

N

)
,

Injecting this expression into (3.6.1), expanding the derivatives and factorizing twice by the

half-angle yields

∂tF (u)(k1, k2, t) = −4ε
(

sin2(πk1h
−1) + sin2(πk2h

−1)
h2

)
F (u)(k1, k2, t)

Solving this equation in t > 0 we obtain

F (u)(t) = eεC1tF (u)(0) where C1(k1, k2) = −4
(

sin2(πk1h
−1) + sin2(πk2h

−1)
h2

)
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Inverting the Fourier transform, we finally obtain the following expression for the discretised

flow etD of et∆:

etD(u0)(t) = F −1
(
eεC1tF (u0)

)
,

which we will discretise in time accordingly during the implementation of the algorithm.

3.6.2 Solving the reaction equation by the explicit Euler method

We now have to solve the following non-linear differential equation

∂tu = −6
ε
u(1−u)(1− 2u)−λξu +µ. (3.6.2)

The discretisation and computation of ξu is done using a modified Sinkhorn algorithm described

in the following section. Now assuming that ξu is given, a simple way of approximately solving

(3.6.2) is by the use of an explicit Euler scheme. Given an initial condition u0, we define u at

time t > 0 as

u(t) = u0 − t
(1
ε
u0(1−u0)(1− 2u0) + ξu0

+µ
)
, (3.6.3)

In the discrete setting, the implementation simply consists in applying (3.6.3) on each cube of

the discretisation of Ω.

3.6.3 Slight modification of the algorithm for non radially symmetric cases

In the first version of the splitting algorithm, our handling of the mass constraint simply amounts

to having a step where the missing mass is uniformly distributed over the grid. However, in

some situations this process can lead to situations of over-diffusion, where most of the mass of

the initial data trivially fades into the background. To circumvent this difficulty, we introduce

a second algorithm with an alternative handling of the mass constraint. This corresponds to

implementing the second model of the conservative Allen-Cahn equation in [11, Section 3.5]

(see also [10] on this exact topic).

For the sake of the explanation we assume that γ = 0. We consider the function Φ : [0,1]→
[0,1] such that

Φ(s) = 6
∫ s

0

√
2W (t)dt = 6

∫ s

0
(t − t2)dt = (3− 2s)s2,

and a slightly modified version of Problem (3.5.3):

inf
u

{
E(u) = 3ε

∫
Ω

|∇u|2dx+
1
ε

∫
Ω

6W (u)dx+λΥ (Φ(u)) : 0 ≤ u ≤ 1,
∫
Ω

Φ(u) =m
}
. (3.6.4)

Let us denote by uε a solution of (3.6.4). Notice that Φ(u) = u if u = χE for some set E ⊂ Ω.

Additionally, if uε is an approximation of a characteristic function χE as a consequence of

Modica and Mortola’s Γ -convergence result, so is Φ(u). Consequently, the energies E(u) and E(u)

should coincide as ε→ 0 and uε→ χE for some set E ⊂Ω.

Replacing u by Φ(u) in the exterior transport term and in the mass constraint yields the
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following Allen-Cahn equation when computing the first variation of E:

∂tu
6

= ε∆u − 1
ε
W ′(u)−λ

√
2W (u)ξu +

√
2W (u)µ, (3.6.5)

where
√

2W (u)µ = u(1−u)µ is the Lagrange multiplier associated with the mass constraint. The

main purpose of this new phase-field equation is the non-uniformity of the Lagrange multiplier,

which allows for a more precise handling of potential mass loss. We also observe that Φ(u) = u

if u = χE for some set E ⊂Ω. Consequently, the alternative and classic algorithm coincide as

ε→ 0 and the solutions of the Allen-Cahn equation converge to characteristic functions of sets.

3.7 A Sinkhorn-like algorithm for the entropic exterior transport

In this section, we provide a detailed exposition of the computation of the discretised version of

Υ . In particular, we explain how the exterior transport term ξu appearing in the reaction step of

the Allen-Cahn equation (3.5.7) is computed. Given Ω = [0,L]2 as in the previous section, recall

that Υ was defined on the set of Borel functions u : Ω→ [0,1] such that ∫ u = π as

Υ (u) = inf
Π∈M+(Ω×Ω)

{∫
Ω×Ω
|x − y|2dΠ : Πx = udx, Πy ≤ (1−u)dy

}
, (3.7.1)

with Πx and Πy being the first and second marginals of Π. Given N ≥ 1, we denote by

Q = {Qi}N
2

i=1

the collection of N2 regularly distributed squares partitioning Ω, and set h = L/N . In this

context, u is a piecewise constant function of the form

u =
N 2∑
i=1

ui1Qi with ui ∈ [0,1] and
N 2∑
i=1

uih
2 = π.

3.7.1 Entropic regularization of the discrete exterior transport problem

We now set n =m =N2 and in the rest of the article, we write R
n
+ and R

m
+ to denote respectively

the initial and target vector spaces of our exterior optimal transport problem. Let us define

Mn,m
+ as the convex set of matrices of size n×m with nonnegative coefficients. Given 1 ≤ i ≤ n

and 1 ≤ j ≤m, we denote

C = (Ci,j )i,j = (h2|i − j |2)i,j

the cost matrix associated with the 2-Wasserstein distance. We now define u to be the vector

(u1,u2, . . . , un) ∈Rn+ of the values taken by u. Therefore (3.7.1) rewrites in its discretised form:

inf
{
⟨C,P ⟩ : P ∈Mn,m

+ , P1m = u, tP1n ≤ 1m −u
}
.
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Here, ⟨·, ·⟩ is the canonical inner product of matrices and 1n = (1, . . . , 1) ∈ R
n. To solve this

problem numerically, we consider its usual entropic regularization (see [32, Chapter 4]) and

consider instead for ε > 0

inf
{
⟨C,P ⟩+ εH(P ) : P ∈Mn,m

+ , P1m = u, tP1n ≤ 1m −u
}
, (3.7.2)

where the discrete entropy H is defined as

H(P ) =
∑
i,j

Pi,j(log(Pi,j )− 1).

To quantify the difference between P ∈Mn,m
+ and a reference kernel K ∈Mn,m

+ (see [32, Remark

4.2]), we introduce the discrete Kullback–Leibler divergence:

KL(P |K) =
∑
i,j

Pi,j log
(
Pi,j
Ki,j

)
− Pi,j +Ki,j .

We now set for 1 ≤ i ≤ n and 1 ≤ j ≤m

K = (K i,j )i,j = ui e
−
Ci,j
ε (1−uj ).

Notice that by definition, KL(P |K) = +∞ if Ki,j = 0 and Pi,j > 0 for some couple (i, j). Thus when

explicitly minimising (3.7.2) we can simply set Pi,j = 0 if Ki,j = 0 (i.e. if ui = 0 or uj = 1). In

what follows, we assume that ui > 0 and 1 − uj > 0 for any 1 ≤ i ≤ n and 1 ≤ j ≤ m. By direct

computation, given P ∈Mn,m
+ we notice that

εKL(P |K)− ε
∑
i,j

K i,j = ⟨C,P ⟩+ εH(P ),

where the modified cost C ∈Mn,m
+ is defined as

Ci,j = Ci,j − ε log(ui(1−uj )).

Solving (3.7.2) with C thus amounts to minimising KL(P |K) with the same constraints on P .

3.7.2 Dual formulation of the discrete exterior transport problem

As a constrained convex minimisation problem, (3.7.2) admits a dual formulation. We denote

by R
m
− the vectors of R

m with nonpositive coefficients. Let us introduce the dual variables

f ,g ∈Rn ×Rm− used to encode the constraints. As a consequence of the convexity and the lower

semi-continuity of the functional and the constraint, there is no duality gap (see [20, Proposition

3.5] for a proof in a Polish space and with γ = 0), so that the primal and dual problems coincide.
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We then compute

inf
{
⟨C,P ⟩+ εH(P ) : P ∈Mn,m

+ , P1m = u, tP1n ≤ 1m −u
}

= inf
P ∈Mn,m

+

sup
f ,g ∈Rn×Rm

−

(
⟨C,P ⟩+ εH(P )− ⟨P1m −u,f ⟩ − ⟨tP1n −1m +u,g⟩

)
= sup

f ,g ∈Rn×Rm
−

infP ∈Mn,m
+

(
⟨C,P ⟩+ εH(P )− ⟨P1m, f ⟩ − ⟨tP1n, g⟩

)
+ ⟨u,f ⟩+ ⟨1m −u,g⟩.

Let us mention that the variables f ,g in the discretised setting respectively correspond to the

approximate Kantorovitch potentials ϕ and ψ of the continuous setting. By convexity of the

functions involved,

inf
P ∈Mn,m

+

(
⟨C,P ⟩+ εH(P )− ⟨P1m, f ⟩ − ⟨tP1n, g⟩

)
admits a minimiser characterised by

∇P
(
⟨C,P ⟩+ εH(P )− ⟨P1m, f ⟩ − ⟨tP1n, g⟩

)
= 0.

Solving this equation we obtain the following expression for P :

Pi,j = e−
Cij−(fi+gj )

ε .

Injecting it in the last line of (3.7.2) we obtain a second duality formula:

inf
{
⟨C,P ⟩+ εH(P ) : P ∈Mn,m

+ , P1m = u, tP1n ≤ 1m −u
}

= sup
f ,g ∈Rn×Rm

−

⟨f ,u⟩+ ⟨g,1m −u⟩ − ε∑
i,j

e−
Cij−(fi+gj )

ε

 .
(3.7.3)

The Sinkhorn algorithm consists in iteratively building approximate solutions of the dual

problem in (3.7.3). To do so, we first solve (3.7.3) for f considering g is fixed, and then compute

g fixing f to be the previously computed value. Precisely, for g fixed we consider

sup
f ∈Rn

⟨f ,u⟩+ ⟨g,1m −u⟩ − ε∑
i,j

e−
Cij−(fi+gj )

ε

 .
Computing the criticality condition and using the definition of C yield that for 1 ≤ i ≤ n

ui − e
fi
ε ui

∑
j

e
gj−Cij
ε (1−uj ) = 0,
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that is (as we assumed ui > 0)

fi = −ε log

∑
j

e
gj−Cij
ε (1−uj )

 .
Next, assuming that f is given we solve

sup
g∈Rm

−

⟨f ,u⟩+ ⟨g,1m −u⟩ − ε∑
i,j

e−
Cij−(fi+gj )

ε

 .
and obtain that for 1 ≤ j ≤m the maximiser exists and is given by

gj = min

0,−ε log

∑
i

uie
fi−Cij
ε


 .

We can now initialise the Sinkhorn algorithm by setting f (0) = g(0) = 0 and then compute for

k ≥ 0:

f
(k+1)
i = −ε log

∑
j

e
g

(k)
j −Ci,j

ε (1−uj )

 ,
g

(k+1)
j = min

0,−ε log

∑
i

uie
f

(k+1)
i −Ci,j

ε


 .

This formulation of the algorithm is often referred to as Sinkhorn in the log domain (see [32,

Remark 4.23]). Usually one instead works with the variables pi = exp(fi/ε) and qj = exp(gj /ε).

Defining K = (Ki,j )i,j = exp(−Ci,j /ε)i,j , the alternate minimisation then rewrites

p(k+1) =
1n

K((1m −u)⊙ q(k))
,

q(k+1) = min
(
1m,

1m

tK(u ⊙ p(k+1))

)
.

The division is to be understood as element-wise and ⊙ denotes the element-wise multiplication.

The usual multiplication of a vector X of Rn by a matrix M of Rn ×Rn is simply written MX.

Remark 3.7.1. Recall that the problem is set in a squared domain Ω = [0,L]2 partitioned into

N2 squares of R2 and that h = L/N . In this context, it is possible to significantly speed-up the

computation done in the Sinkhorn algorithm by avoiding computing matrices of size n2 =N4 at

each iteration. Let i, j ∈ {1,2, . . . ,N2} denote the center of the i-th (resp j-th) cube of the partition.

We introduce an x-axis and a y-axis in Ω by writing

i = (i1, i2) and j = (j1, j2) with i1, j1, i2, j2 ∈ {0, . . . ,N − 1}

so that

C(i, j) = (|(i1 − j1)h|2 + |(i2 − j2)h|2).
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Defining the matrices of MN,N
+

K1 = (K1
i1,j1

) = e−
1
ε ((i1−j1)h)2

and K2 = (K2
i2,j2

) = e−
1
ε ((i2−j2)h)2

,

and seeing u, p and q as N ×N matrices, the products Kp and KT q respectively amount to

K1pK2 and K1qK2 (since K1 and K2 are symmetric). We denote by 1N×N the square matrix of

size N ×N filled with ones. In the end, the algorithm rewrites

p(k+1) =
1N×N

K1((1N×N −u)⊙ q(k)))K2
,

q(k+1) = min
(
1N×N ,

1N×N

K1(u ⊙ p(k+1))K2

)
.
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A concentration-compactness principle
for perturbed isoperimetric problems
with general assumptions

Abstract. Derived from the concentration-compactness principle, the concept of generalised

minimiser can be used to define generalised solutions of variational problems which may have

components “infinitely" distant from each other. In this chapter and under mild assumptions we

establish existence and density estimates of generalised minimisers of perturbed isoperimetric

problems. Our hypotheses encapsulate a wide class of functionals including the classical,

anisotropic and fractional perimeter. The perturbation term may for instance take the form of a

potential, a translation invariant kernel or a nonlocal term involving the Wasserstein distance.
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4.1 Introduction

One of the first perturbed isoperimetric problems was formulated by George Gamow in the

1930s for investigating the stability of the atomic nucleus [47]. Given d ≥ 2, m > 0 and α ∈ (0,d)

a possible formulation of this variational problem is

inf
|E|=m

{
Per(E) +

∫
E×E

dxdy

|x − y|d−α

}
,

where Per is the Caccioppoli perimeter and |E| is the Lebesgue measure of E. The goal of

this variational problem is to model an attractive, short-range force inducing surface tension

(the “perimeter" term) that competes with a repulsive term V acting at a greater distance (the

“perturbation" term, which is often nonlocal). This competition plays a pivotal role in the wide

range of geometries the perturbed isoperimetric problem can describe (see for instance [55,

Figure 1]) and both the physics and mathematics communities have explored numerous variants

of this problem. In this chapter we study a generalised version of this problem:

e(m) = inf
|E|=m

{
E(E) = P (E) +V (E)

}
, (4.1.1)

where P is a non-explicit, nonnegative perimeter term and V a perturbation term.

Mathematically speaking, a primary concern in tackling this optimisation problem is es-

tablishing the existence of solutions. The most challenging task often is to exhibit convergent

minimising sequences. From a concentration-compactness principle standpoint [58], lack of

compactness in isoperimetric problems can occur when a minimising sequence admits compo-

nents fleeing infinitely far apart. However, in such scenarios it may still be possible to show that

some relaxed versions of the problem admit minimisers. It is within this framework that we

introduce the generalised minimisation problem:

egen(m) = inf

Egen((Ei)i≥1) =
∑
i≥1

E(Ei) :
∑
i≥1

|Ei | =m

. (4.1.2)

In the context of metric measure spaces and with V = 0, research towards finding minimal

assumptions guaranteeing existence of solutions to (4.1.2) was carried out in [66], where exis-

tence of generalised isoperimetric clusters was also shown. See also [6] for a characterization of

minimising sequences for the isoperimetric problem on noncompact RCD(K,N ) spaces.

In addition to the matter of their existence, the question of the regularity of minimisers

constitutes a significant aspect of the study of isoperimetric problems. It is indeed well-known

in shape optimisation theory that studying variational problems in the class of sets whose

boundary has some regularity allows for much easier computations and characterization of the

solutions. A first step towards establishing regularity properties of minimisers is often to prove
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that, when they exist, they have density estimates. We say that a set E admits interior (resp.

exterior) density estimates when there exists c, r ′ > 0 such that for any 0 < r ≤ r ′ and x ∈ E (resp.

Ec),

|E ∩Br(x)| ≥ c rd (resp. |Ec ∩Br(x)| ≥ c rd ).

It can also be useful to show density estimates for sets that are close (for a given topology)

to minimisers of a given isoperimetric problem. Indeed, it is then often possible to modify a

bit those sets to obtain actual minimisers of the considered problem. See for instance results

obtained in [37] in the context of Riemannian manifolds regarding the regularity of volume-

constrained local minimisers of anisotropic surface energies.

Our present goal is to exhibit in the case V , 0 general assumptions under which:

− (4.1.1) and (4.1.2) coincide,

− (4.1.2) admits solutions,

− solutions of (4.1.2) have density estimates.

4.1.1 Main results

Let us denote by (ei)
d
i=1 the canonical basis of Rd and specify that all the sets considered in

the chapter are assumed to be at least (Lebesgue) measurable. We start by proving in Section

4.2 that (4.1.1) and (4.1.2) coincide under the following set of assumptions (S1).

(H1) Energy of small balls: E(Br )→ 0 as r→ 0 and E(∅) = 0.

(H2) Convergence at infinity: For any set E with |E| <∞, E(E ∩BR)→E(E) as R→∞.

(H3) Vanishing range of action: If E,F are bounded sets, then E(E ∪ (F + Le1))→ E(E) + E(F) as

L→∞.

Proposition 4.1.1. Assume that E satisfies (S1). Then (4.1.1) = (4.1.2).

Let us comment a bit on (S1). We use (H1) to compensate for any potential mass deficit when

we modify a set E to construct a generalised minimiser (Ei)i . However, there are alternative

methods to ensure that the mass constraint is satisfied when solving (4.1.1) or (4.1.2) (see e.g.

Remark 4.2.1). (H3) states that bounded sets do not interact when infinitely far apart from each

other, so that they may be seen as components of a generalised minimiser.

We then show that (4.1.2) admits minimisers. To prove this result we introduce the function-

als E 7→ P (E,U ) and E 7→ V (E,U ), which are defined relatively to a Lebesgue measurable set U .

By convention, we write P (E,Rd) = P (E) and V (E,Rd) = V (E). The set of assumptions (S2) we

require to establish that (4.1.2) has solutions is as follows (we use the letter F to denote P or V

in hypotheses applying to both terms):

(H4) Relative isoperimetric inequality: There exists r0 > 0 and f1 : R+ → R+ increasing with

f1(0) = 0, m 7→ f1(m)/m nonincreasing and limm→0 f1(m)/m =∞ such that for r ≤ r0, x ∈Rd

and E ⊂R
d :

min
(
f1(|E ∩Br(x)|), f1(|Br(x) \E|)

)
≤ P (E,Br(x)).
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(H5) Periodicity: There exists 0 < r1 ≤ 2r0/
√
d such that F (E + r1,U + r1ek) = F (E,U ) for any

1 ≤ k ≤ d and E,U ⊂R
d .

(H6) Perimeter set operations: Given E ⊂R
d , if U ⊂U ′ are open, then P (E,U ) ≤ P (E,U ′), and if

(Ui)
I
i=1 are open disjoint sets, then

∑I
i=1 P (E,Ui) ≤ P (E,∪Ii=1Ui).

(H7) Bounded perimeter: If (En)n is such that supnE(En) <∞ and supn |En| <∞, then supn P (En) <

∞.

(H8) Compactness: If (En)n satisfies supn P (En,U ) <∞, then up to extraction there exists E ⊂R
d

such that En ∩U → E in L1
loc as n→∞.

(H9) Lower semicontinuity: Given E ⊂R
d and a bounded open set U , if En→ E in L1

loc as n→∞
with supn |En| <∞, then F (E,U ) ≤ liminfnF (En,U ).

(H10) Beppo-Levi: If (Un)n≥0 is a nondecreasing sequence of open sets exhausting R
d , then for

any E ⊂R
d , we have F (E,Un)→F (E) as n→∞.

(H11) Weak superadditivity: For any m > 0 there exists η1,η2 : R+ → R+ with η1 continuous,

η1(0) = 0 and η2(r)→ 0 as r→∞ such that the following holds: for any E ⊂R
d with |E| ≤m

and any finite family of balls (Bi)Ii=1 of radius R > 0 such that mini,j dist(Bi ,Bj ) ≥ 5R,

I∑
i=1

V (E,Bi) ≤ V (E) + η1

(∣∣∣E \∪Ii=1Bi
∣∣∣)+ η2(R).

Theorem 4.1.2. Assume that the relative functionals of P and V satisfy (S2) and that (4.1.1) and
(4.1.2) coincide. Then, (4.1.2) admits a solution.

These assumptions deserve some comments. In terms of the concentration-compactness

principle, the relative isoperimetric inequality (H4) allows us to exclude the “vanishing" case.

(H5) is a weakened form of the invariance by translation. (H7) is trivial when the perturbation

term is nonnegative. Let us point out that in [66] the authors establish existence of isoperimetric

clusters in homogeneous metric spaces and with V = 0. In particular, their results imply

existence of isoperimetric sets in R
d . A comparison between (S2) and their set of hypotheses

reveals that they are essentially identical. Indeed when V = 0, hypotheses (H7) and (H11) are

superfluous and (S2) is analogous to the hypotheses of [66, Section 2 & Theorem 3.3]. Points (i)

and (ii) of [66, Theorem 3.3] are obtained in our case through the partition of Rd into cubes.

In the first part of Section 4.3, we show that ρ-minimisers of the perimeter (see [60, Section

21] for the related concept of (Λ, r0)-minimisers of the perimeter) have interior and exterior

density estimates under the set of hypotheses (S3).

Definition 4.1.3. Let ρ : R+→R+ be nondecreasing. We say that E ⊂R
d is a ρ-minimiser of the

perimeter (or simply a ρ-minimiser) if there exists r2 > 0 such that for any r ≤ r2, x ∈ Rd and

E′ ⊂R
d with E∆E′ ⊂ Br(x) we have

P (E) ≤ P (E′) + ρ(r). (4.1.3)
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The function ρ is called the error function for E.

The set of assumptions (S3) is made of (H4) (relative isoperimetric inequality) and (H6) (set

operations) as well as three new hypotheses:

(H12) Local comparisons: For E ⊂R
d , x ∈Rd and a.e. r > 0,

P (E) = P (E,Br(x)) + P (E,Br(x)c).

Additionally, for some C > 0:

P (E \Br(x)) ≤ P (E,Br(x)c) +CP (Br(x),E),

P (E ∪Br(x)) ≤ P (Br(x),Ec) + P (E)−CP (Ec,Br(x)).

(H13) Integral inequality: There exists f2 : R+ ×R+→R+ and r2 such that for any E ⊂R
d , x ∈Rd

and 0 < r ≤ r2
1
r

∫ r

0
P (Bs(x),E)ds ≤ f2(r, |E ∩Br(x)|).

(H14) Density scale factor: Let f1 and f2 be given by (H4) and (H13) respectively and define

f3(r,m) = 2d
(
f2(r,m) + ρ(r)

f1(m)

)
for r,m > 0.

Then, there exist r3, ε1 > 0 such that

f3(r,m) ≤ 1 for every r ≤ r3 and every
ε1

2d
rd < m ≤ ε1r

d .

Theorem 4.1.4. Let E ⊂R
d be a ρ-minimiser of the perimeter for some error function ρ. If (S3) holds,

then there exists C0, r4 > 0 such that for r ≤ r4,

|E ∩Br(x)| ≥ C0r
d for every x ∈ E(1) (4.1.4)

and
|Br(x) \E| ≥ C0r

d for every x ∈ E(0), (4.1.5)

where for t ∈ [0,1], E(t) denotes the points of density t of E.

Let us provide some context on (S3) and Theorem 4.1.4. Density estimates for ρ-minimisers of

the perimeter are often an important tool in the study of isoperimetric problems. Indeed, it can

be used to show that said ρ-minimisers have bounded connected components. Additionally, it is

usually a crucial first step in the study of the spherical excess of minimisers (see [60, Section

22 & 26]), a central concept of the regularity theory for minimisers of isoperimetric problems.

For illustrations of this concept, one can refer to [50] for the anisotropic perimeter and to [17]

for the fractional perimeter. Additionally, when the density estimates are independent of the

considered ρ-minimiser, it may be possible to exhibit minimisers for the classical problem
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(4.1.1) provided additional assumptions on the perturbation term V (such as finite or rapidly

decreasing range of action). See [72] for an illustration of this approach with P the classical

perimeter and V a nonlocal kernel. Refer also to [24] for an example where P is the fractional

perimeter and V is the integral of a periodic function and is not necessarily positive, or to [19]

for the case of P = Per and V is defined using the Wasserstein distance.

The methodology employed to establish this kind of theorems is now well understood.

Since the publication of De Giorgi’s seminal papers on the classical isoperimetric problem

in the 1950s, various strategies been developed to address isoperimetric problems where the

considered perimeter is anisotropic or nonlocal, or with different perturbation terms. However,

most of these proofs revolve around the same idea: apply the relative isoperimetric inequality

to E (resp. Ec) and integrate this inequality to obtain interior (resp. exterior) density estimates

(see [60, Remark 15.16]). Consequently, we have aimed at formulating streamlined hypotheses

to encompass this shared framework, and also to simplify the process of establishing density

estimates in future research on isoperimetric problems. In our framework, we need (H12) to

deduce local results from the ρ-minimality of a set E, which is a priori a global property. (H13)

is used together with the relative isoperimetric inequality to allow us to compare perimeters

and Lebesgue measures. Finally, (H14) ensures that the error function ρ of a ρ-minimiser E is a

perturbation of higher order of P (E).

Remark 4.1.5. The conditions on ρ specified in (H14) are mild enough that ρ-minimisers of

the anisotropic perimeter Pφ (resp. of the fractional perimeter Ps) have density estimates in the

following two cases:

− ρ(r) = Crd−1+α (resp. ρ(r) = Crd−s+α) with α ∈ (0,1) and any C > 0,

− ρ(r) = Crd−1 (resp. ρ(r) = Crd−s) and C small enough.

Theorem 4.1.4 is thus in accordance with [50, Proposition 3.1] and [29, Theorem 5.7].

In the second part of Section 4.3, we establish the connection between generalised minimisers

and ρ-minimisers. We prove that generalised minimisers of (4.1.2) are ρ-minimisers of the

perimeter for some ρ in two different situations: a case where P admits volume-fixing variations

and a case where both P and V have a scaling property.

Definition 4.1.6. Let E ⊂ R
d be such that P (E) + V (E) < ∞. We say that E admits volume

fixing variations if there exist g1, g2 : R+→R+ nondecreasing and r5, ε2 > 0 with the following

properties : if E′ ⊂R
d is such that E∆E′ ⊂ Br5(x) for some x ∈Rd , then

1. for any ε such that |ε| < ε2, there exist F ⊂R
d and x0 ∈Rd such that Br5(x) and Br5(x0) are

disjoint and

F∆E ⊂ Br5(x0), |F| − |E| = ε, E(F) ≤ E(E) + g1(|ε|).

2. If F,F′ ⊂ R
d are such that E∆E′ = F∆F′ ⊂ Br(x) for r ≤ r5 and E∆F = E′∆F′ ⊂ Br5(x0) with

Br5(x) and Br5(x0) disjoint, then

P (F′)− P (F) ≤ P (E′)− P (E) + g2(r). (4.1.6)
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We now introduce the following set of hypotheses, denoted (S4):

(H15) Scaling: If E minimises (4.1.1), then there exists α,β ∈R and t0 > 0 such that

P (tE) ≤ tαP (E) and V (tE) ≤ tβV (E) for any t such that |t − 1| ≤ t0. (4.1.7)

Additionally there exists δ ∈ [0,1], γ ≥ 0 and C1 > 0 (if δ = 0 we require 0 < C1 < 1) such

that for any E ⊂R
d ,

V (E) ≥ −C1|E|δP (E)1−δ. (4.1.8)

(H16) Volume-fixing variations: If E solves (4.1.1), then E admits volume-fixing variations.

(H17) Local perturbation control: There exists v : R+→R+ nondecreasing and r6 > 0 such that for

r ≤ r6, if E,E′ ⊂R
d satisfy E∆E′ ⊂ Br(x) for some x ∈Rd , then∣∣∣V (E)−V (E′)

∣∣∣ ≤ v(r).

Proposition 4.1.7. Assume that the relative functionals of P and V satisfy (S4) with either (H15) or
(H16). Then every component of a generalised minimiser of (4.1.2) is a ρ-minimiser of the perimeter
for an error function ρ. The error function ρ is defined by selecting the function equivalent to r 7→ Crc

with the smallest possible c > 0 among

• r 7→ Crd and v if (H15) holds (C depending on the constants appearing in (H15)),

• g1, g2 and v if (H16) holds.

Allow us to comment on (S4). We rely on the classical idea that if for some i ≥ 1, Ei ⊂ R
d is

the component of a generalised minimiser of (4.1.2), then it is a minimiser of (4.1.1) with the

constraint m = |Ei |. We then need to use either (H15) or (H16) to relax the mass constraint

in order to be able to compare Ei with a set E′ such that Ei∆E′ ⊂ Br(x) for some x ∈ Rd and r

small enough. The scaling hypothesis (H15) is a well-known method (see e.g [65, Proposition

4.6] or [19, Proposition 3.3]), but when V is not necessarily positive, we lose the fact that the

boundedness of E implies boundedness of P and V so that additional hypotheses are needed to

control the growth of V . The first point of Definition 4.1.6 appearing in (H16) is inspired by

the classical “volume-fixing variations" lemma (or “Almgren’s lemma” (see [60, Lemma 17.21]).

Let us also point out that the second point of Definition 4.1.6 is to account for perimeters with

nonlocal properties, as one may take g2 = 0 if P is the classical or anisotropic perimeter (see the

definitions below). Eventually using (H17) to deal with local perturbations of V , we obtain that

E verifies (4.1.3) for some error function ρ.

4.1.2 Application to three perturbed isoperimetric problems

Let us present some examples from the literature of perimeter and perturbation terms satisfying

the sets of hypotheses (S1) to (S4), or only (S1) and (S2) in the case of the considered Dirichlet

energy. In Section 4.4 we provide a proof of this statement for three different perturbed
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isoperimetric problems. Additionally, we briefly comment on the other examples mentioned

below.

Regarding the perimeter, we consider its anisotropic and anisotropic nonlocal versions. For

E,U ⊂R
d we set

Pφ(E,U ) =
∫

(∂∗E)∩U
φ(νE(x))dHd−1(x),

PK (E,U ) =
∫

(E∩U )×Ec
K(x − y)dxdy.

The value Pφ(E) is well-defined if E is of finite Caccioppoli perimeter, and then ∂∗E denotes

the reduced boundary of E. The anisotropy φ is a nonnegative, one-homogeneous, convex and

coercive functional. In particular, there exists 0 < C′φ ≤ Cφ such that for x ∈Rd ,

C′φ|x| ≤ φ(x) ≤ Cφ|x|.

If φ = | · | we recover the classical perimeter, which we denote by Per in this chapter. Regarding

the nonlocal perimeter, we require that there exist C′K ,CK > 0 and s ∈ (0,1) such that for x ∈Rd ,

C′K |x|
−(d+s) ≤ K(x) ≤ CK |x|−(d+s) .

We additionally require that K ∈W 1,1
loc (Rd \ {0}) and that for x ∈Rd ,

|∇K(x)| ≤ |x|−(d+s+1) .

Let us point out that if U ,Rd , the definition of the relative nonlocal perimeter differs from the

one found in the literature (see e.g. [24, Section 2]). When K = | · |−d−s, we recover the fractional

perimeter and simply write PK = Ps.

The perturbation terms encompassed by our hypotheses can be split into several categories.

The first and perhaps most studied in the literature is the Riesz-type kernel: given E,U ⊂R
d ,

we consider

VG(E,U ) =
∫

(E∩U )×(E∩U )
G(x − y)dxdy

where G : Rd →R+ is continuous on S
d−1 and such that there exists β ∈ (0,d) such that for any

t ≥ 0 and x ∈Rd

G(tx) ≤ t−βG(x).

We refer to [56, 55, 7] for seminal examples where P = Per and G(x) = |x|−β and to [41] for an

example where P = Ps and G is explicit as well. See also [42] for a study of the anisotropic case

and [65] for a recent development in the case P = Per and with general kernels.

Remark 4.1.8. Proceeding as in [65], one can obtain that generalised minimisers to P + VG
exist and have density estimates for P = Per, Pφ or Ps and with G, nonnegative, symmetric with



4.1. Introduction 125

respect to the origin, vanishing at infinity and such that

G(tx) ≤ tG(x) for x ∈Rd and t ≥ 1.

This case is not encompassed in our setting, because with these assumptions, neither the scaling

hypothesis (H15) nor the volume-fixing hypothesis (H16) hold. However, the mass constraint

can still be dealt with using the fact that for the considered perimeters

P (E ∩BR) ≤ P (E) for any E ⊂R
d and R > 0.

This classical result is a consequence of the monotonicity of the perimeter regarding intersection

with convex sets, which holds for the classical, anisotropic and fractional perimeter, but not for

the generalised nonlocal perimeter PK .

A second family of perturbation terms appears in the prescribed curvature problem. We

consider

VT (E,U ) = −
∫
E∩U

T (x)dx,

and assume that T is L-periodic and Lipschitz continuous. Refer for instance to [49] for the case

P = Per and to [24] for the case P = Ps.

Remark 4.1.9. If one only wants to establish that (S1) and (S2) are verified for P +VT , weaker

hypotheses on T can be considered. We use the Lipschitz continuity assumption to establish

that the volume-fixing hypothesis (H16) holds (see Section 4.2).

Perturbation terms involving optimal transport are studied in [19]. Given p ∈ [1,∞) and

denoting by Wp(E,F) the p-Wasserstein distance between E,F ⊂R
d , one can set for U ⊂R

d

VW (E,U ) = inf
|F∩E∩U |=0

Wp(E ∩U,F)p.

Eventually, we can consider a Dirichlet energy as in [35] and show that it satisfies (S1) and

(S2). Given E ⊂R
d , we define the Sobolev-like space

Ĥ1
0 (E) =

{
u ∈H1(Rd) : u = 0 a.e. on Ec

}
which is a Hilbert space as it is closed in H1(Rd). For p ∈ (d,∞) and h ∈ Lp(Rd), the Dirichlet (or

torsion) energy of E is then

VDir(E) = min
u

{
1
2

∫
R
d
|∇u|2dx −

∫
R
d
uhdx : u ∈ Ĥ1

0 (E)
}
.

and given U ⊂R
d , we set VDir(E,U ) = VDir(E ∩U ).

Remark 4.1.10. It is actually possible to show that minimisers of Pφ +VDir or of PK +VDir admit

interior and exterior density estimates. However, because we focus on the set Ĥ1
0 (E) instead

of the Sobolev space H1
0 (E) (we have to introduce Ĥ1

0 (E) because if E is not open, there may
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exist a set E′ such that |E∆E′ | = 0 but H1
0 (E′) ,H1

0 (E)), we were not able to prove (S3) and (S4)

exactly as they stand. One can proceed as in [35, Theorem 1.1] and first prove that E admits

exterior density estimates, so that it can be correctly be identified with then open set E(1), and

then establish interior density estimates for E(1).

4.1.3 Notation and organisation of the chapter

All the constants of the chapter depend on d, the functions (fi)i , (gj )j ,h,η,ρ,v and the parameters

r,ε used in the hypotheses, where i = 1,2,3 and j = 1,2. We denote them with the same letter C

when differentiating the constants from one another is not relevant. We write C = C(E,m) to

specify an additional dependency on a set E or a parameter m. In some statements we write

A≪ B to indicate that there exists a constant ε > 0 such that if A ≤ εB then the conclusion of the

statement holds.

In Section 4.2, we prove that the infima of (4.1.1) and (4.1.2) coincide, and that (4.1.2)

admits solutions. In Section 4.3, we first establish that ρ-minimisers of (4.1.2) have interior and

exterior density estimates. We then discuss two cases where generalised minimisers of (4.1.2)

are ρ-minimisers of the perimeter as well. In Section 4, we study three examples of perturbed

isoperimetric problems.

4.2 Existence of generalised minimisers

We start off by establishing Proposition 4.1.1, i.e. that (4.1.1) and (4.1.2) coincide.

Proof of Proposition 4.1.1. Given a set E with |E| = m, we define the generalised set (Ei)i =

(E, ∅, . . . , ∅) and have Egen((Ei)i) = E(E). Hence egen(m) ≤ e(m).

Conversely if we let ε > 0, there exists (Ei)i admissible for (4.1.2) such that

Egen((Ei)i) ≤ egen(m) + ε.

Let us show that there exists a set E admissible for (4.1.1) such that

E(E) ≤ egen(m) + 5ε.

By (H1) small balls have vanishing energy: there exists δ = δ(ε) such that if Br is a centred ball

of radius r > 0, then

|Br | ≤ 2δ =⇒ E(Br ) ≤ ε. (4.2.1)

As (Ei)i is of finite energy and mass, there exists an integer I = I(ε,δ) large enough that

I∑
i=1

E(Ei) ≤
∑
i≥1

E(Ei) + ε ≤ egen(m) + 2ε and
∑
i≥I+1

|Ei | ≤ δ.

Combining this with the convergence at infinity (H2) of E, there exists R = R(ε,δ, I) large enough
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that
I∑
i=1

E(Ei ∩BR) ≤
I∑
i=1

E(Ei) + ε ≤ egen(m) + 3ε and
I∑
i=1

|Ei ∩BcR| ≤ δ. (4.2.2)

Let Br be the centred ball with volume

|Br | =
I∑
i=1

|Ei ∩BcR|+
∑
i≥I+1

|Ei | ≤ 2δ.

Given L > 0, we define the set

EL =
[ I⋃
i=1

(
(Ei ∩BR) + iLe1

)]⋃[
Br + (I + 1)Le1

]
.

By construction, for L large enough |EL| =m. Using recursively (H3) on the vanishing range of

action of E then yields for that for L large enough

E(EL) ≤
I∑
i=1

E(Ei ∩BR) + E(Br ) + ε ≤ egen(m) + 5ε

where we used (4.2.1) and (4.2.2) in the last inequality. Thus

e(m) ≤ egen + 5ε,

and as ε > 0 is arbitrary the proof is complete.

Remark 4.2.1. The vanishing energy of small balls (H1) does not hold for perturbation terms

V which are α-homogeneous with α < 0. However, this hypothesis can be replaced by the

assumption that P and V are homogeneous for some reals α,β and that V ≥ 0. Proceeding as in

the proof of [19, Proposition 3.3], one can then show that there exists Λ = Λ(m) ≥ 0 such that

e(m) = inf
E

{
E(E) +Λ

∣∣∣∣|E| −m∣∣∣∣},
and

egen(m) = inf
(Ei )i

Egen((E)ii) +Λ

∣∣∣∣∑
i

|Ei | −m
∣∣∣∣
 .

We can subsequently reproduce the proof of Proposition 4.1.1 without introducing a small ball

to compensate mass deficit.

Under the set of hypotheses (S2), we can prove Theorem 4.1.2, i.e. that generalised minimis-

ers of (4.1.2) exist. Recall that given U ⊂R
d , the localised versions of P and V are denoted by

P (·,U ) and V (·,U ).

Proof of Theorem 4.1.2.
We follow the direct method in the Calculus of Variations. First, we use a classical minimising
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sequence to build a generalised set, and then establish lower semi-continuity results to prove

that this generalised set is a generalised minimiser.

Step 1. Construction of a generalised set.
Let (En)n be a minimising sequence for (4.1.1). As assumed in the statement of Theorem

4.1.2, (En)n is also a minimising sequence for (4.1.2). Let r0, r1 > 0 be as in assumptions (H4) and

(H5) on the relative isoperimetric inequality and the periodicity of P and V . Notice that Br0
contains the centred cube of side-length r1. We consider a partition (Qin)i,n of Rd into cubes of

side-length r1 and we set

min = |En ∩Qin| and M i
n = |En ∩Bin|,

where Bin is the ball of radius r0 with the same centred as Qin. Rearranging the sequence we

assume that for every n ≥ 0, i 7→M i
n is nonincreasing.

Step 1.1 Let us now show that the series
∑
iM

i
n is uniformly summable with respect to n ≥ 0.

Notice that there exists C = C(r1/r0) such that for every n ≥ 0∑
i≥1

χBin ≤ C, so that
∑
i≥1

M i
n ≤ Cm.

Thus as M i
n is nonincreasing in i, for every I ≥ 1 and i ≥ I we have

M i
n ≤MI

n ≤ Cm/I. (4.2.3)

Let ε > 0. Recall that the function f1 involved in (H4) is such that there exists δ = δ(ε) such that

m ≤ εf1(m) for any m ≤ δ. By (4.2.3) there exists I = I(δ) such that for any i ≥ I we have M i
n ≤ δ.

Up to reducing δ we assume without loss of generality that |M i
n| ≤ |Br0 |/2. Then, by (H4) we have∑

i≥I
M i
n ≤ ε

∑
i≥I

f1(M i
n) ≤ ε

∑
i≥I

P (En,B
i
n). (4.2.4)

Given n ≥ 0, we split the covering (Bin)i of Rd into N families B1
n , . . . ,BNn such that |Bin ∩B

j
n| = 0

if Bin,B
j
n ∈ Bkn for some 1 ≤ k ≤ N and i , j. Notice that N = N (r1/r0) is uniformly bounded in

n ∈N. By (H6) we may write

∑
i≥I

P (En,B
i
n) =

N∑
k=1

∑
Bin∈Bkn , i≥I

P (En,B
i
n)

≤
N∑
k=1

P
(
En,

⋃
Bin∈Bkn

Bin

)
≤

N∑
k=1

P (En) ≤NP (En). (4.2.5)

By (H7) supnE(En) <∞ implies that supn P (En) <∞. Thus plugging (4.2.5) into (4.2.4) yields∑
i≥I

M i
n ≤ εNP (En) ≤ εC′
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for some constant C′ > 0. This proves that the series
∑
iM

n
i is uniformly summable with respect

to n ≥ 0. As for any i ≥ 1 and n ≥ 0, we have min ≤M i
n, the series

∑
im

i
n is uniformly summable

in n ≥ 0 as well.

Step 1.2. By the previous substep, there exists a sequence (mi)i≥1, such that up to extraction

min→mi as n→∞ for every i ≥ 1. Besides, mi ≥ 0 for every i and by uniform summability,∑
i

mi =m.

We now build a generalised set of total mass m. Let xin be the centred of Qin. Up to further

extraction, we assume that for every i, j ≥ 1, |xin − x
j
n| → di,j ∈ [0,∞] as n→∞. Recall that r1 is

chosen so that (H5) holds, so that supn P (En − xin) = supn P (En) <∞. Thus by the compactness

assumption (H8), for every i ≥1, there exists Ei such that En − xin→ Ei in L1
loc.

We now define an equivalence class in the set {1,2, . . . } by setting

i ∼ j if di,j <∞.

Notice that if i ∼ j, then Ei and Ej coincide up to a translation. We denote by C the set of all

equivalence classes. For every equivalence class c ∈ C let mc =
∑
i∈cmi so that∑

c∈C
mc =

∑
i≥1

mi =m. (4.2.6)

Step 1.3. Let us fix c ∈ C and let us establish that |Ei | = mc for every i ∈ c. Given ℓ ≥ 1, by

definition, there exists Rℓ such that for all n ≥ 0⋃
1≤j≤ℓ, j∈c

Q
j
n ⊂ BRℓ (x

i
n).

Thus ∑
1≤j≤ℓ, j∈c

m
j
n =

∑
1≤j≤ℓ, j∈c

|En ∩Q
j
n| =

∣∣∣∣∣En⋂( ⋃
1≤j≤ℓ, j∈c

Q
j
n

)∣∣∣∣∣
≤ |En ∩BRℓ (x

i
n)| = |(En − xin)∩BRℓ |.

As En − xin→ Ei in L1
loc, taking n→∞ yields∑

1≤j≤ℓ, j∈c
mj ≤ |Ei ∩BRℓ | ≤ |E

i |.

Letting ℓ→∞ we finally obtain

mc ≤ |Ei |. (4.2.7)

Let us prove the converse inequality. For this, thanks to (4.2.6) and (4.2.7) it is sufficient to
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establish the inequality ∑
c∈C
|Eic | ≤m, (4.2.8)

where for each c we select one ic ∈ c, for instance ic = min{j : j ∈ c}. Let us fix N ≥ 1 and define

CN = {c ∈ C : ic ≤N }, which is a finite subset of C. Given R > 0, by definition of the equivalence

relation for n large enough |BR(xicn )∩BR(xic′n )| = 0 for c,c′ ∈ CN with c , c′. Hence

m = |En| ≥

∣∣∣∣∣∣∣∣En
⋂ ⋃

c∈CN

BR(xicn )

∣∣∣∣∣∣∣∣ =
∑
c∈CN

|En ∩BR(xicn )| =
∑
c∈CN

|(En − x
ic
n )∩BR|.

Passing to the limit in n→∞ yields

m ≥
∑
c∈CN

|Eic ∩BR|.

Eventually, letting R→∞ and then N →∞ proves (4.2.8).

Consequently for c ∈ C and i ∈ c we have |Ei | = mc. Relabelling, we write {Eic : c ∈ C} =

{Ẽ1, Ẽ2, Ẽ3, . . . } so that (Ẽi)i is admissible for (4.1.2). Given i ≥ 1, we also denote x̃in = xjn where

j ≥ 1 is such that Ej = Ẽi .

Step 2 : Lower semi-continuity of the energy.
We are left with the proof of

Egen((Ẽi)i) ≤ liminf
n→∞

E(En).

Keeping the notation of the previous step, we let I ≥ 1 and consider the family x̃1
n, · · · , x̃In. Note

that if we let R > 0, for n large enough mini,j |x̃in − x̃
j
n| ≥ 5R.

We start with the perimeter term. Using the periodicity assumption (H5) and then the set

operations property (H6), we have

I∑
i=1

P (En − x̃in,BR) =
I∑
i=1

P (En,BR(x̃in)) ≤ P
(
En,

I⋃
i=1

BR(x̃in)
)
≤ P (En).

Recall that En − x̃in → Ẽi in L1
loc as n → ∞. Using the lower semicontinuity and Beppo-Levi

assumptions (H9)&(H10) in that order, letting n→∞ and then R→∞ we obtain

I∑
i=1

P (Ẽi) ≤ P (En).

Thus sending I →∞ yields ∑
i≥1

P (Ẽi) ≤ liminf
n

P (En). (4.2.9)

Let us turn to the perturbation term. Using the functions η1,η2 of the weak superadditivity
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assumption (H11), we write

I∑
i=1

V (En − x̃in,BR) =
I∑
i=1

V (En,BR(x̃in))

≤ V (En) + η1


∣∣∣∣∣∣∣En \

I⋃
i=1

BR(x̃in)

∣∣∣∣∣∣∣
+ η2

(
min
i,j
|x̃in − x̃

j
n| − 2R

)
.

Notice that ∣∣∣∣∣∣∣En \
I⋃
i=1

BR(x̃in)

∣∣∣∣∣∣∣ = |En| −
I∑
i=1

|(En − x̃in)∩BR|.

Recall that η2(r) → 0 as r → ∞ and that η1 is continuous. Letting n → ∞ in the previous

inequality and using (H9) yields

I∑
i=1

V (Ẽi ,BR) ≤ liminf
n

I∑
i=1

V (En − x̃in,BR) ≤ liminf
n

V (En) + η1

m− I∑
i=1

|Ẽi ∩BR|

 .
Notice that by (4.2.6), letting R→∞ and then I →∞ we have

m−
I∑
i=1

|Ẽi ∩BR| → 0.

Therefore, using that η1(t)→ 0 as t → 0 and letting R→∞ and then I →∞ we obtain from

(H10) that
∞∑
i=1

V (Ẽi) ≤ liminf
n

V (En).

Combining this inequality with (4.2.9) yields

Egen((Ẽi)i) =
∞∑
i=1

[
P (Ẽi) +V (Ẽi)

]
≤ liminf

n

[
V (En) + P (En)

]
= egen(m).

This proves that (Ẽi)i is a generalised minimiser of (4.1.2).

4.3 Characterization of approximate minimisers of perturbed isoperi-

metric problems

4.3.1 Establishing Density estimates

In this subsection, we establish Theorem 4.1.4, i.e. that ρ-minimisers admit density estimates

under the set of hypotheses (S3).

Proof of Theorem 4.1.4. Take E as in the statement of Theorem 4.1.4, ε1 > 0 provided by (H14)

and for x ∈Rd , r > 0, set m(r) = |E ∩Br(x)|. We will show that there exists r0 > 0 (depending on
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the functions and parameters r,ε appearing in the hypotheses) such that:

if for some r ≤ r0,
m(r)
rd
≤ ε1, then

m(r/2)
(r/2)d

≤ ε1, (4.3.1)

and

if for some r ≤ r0,
m(r)
rd
≥ ε1, then

m(r/2)
(r/2)d

≥ ε1. (4.3.2)

Combining (4.3.1) and (4.3.2) and the definitions of E(1) and E(0) then yields (4.1.4) and (4.1.5).

We start by proving (4.3.1): assume that m(r) ≤ ε1r
d for some r > 0 to be fixed later. Transla-

tion invariance does not necessarily hold, but up to a change of coordinates we may assume that

x = 0. Notice that t 7→ P (Bt ,E) can not be strictly greater than its mean value over [r/2, r] for any

t ∈ [r/2, r]. Hence there exists t ∈ [r/2, r] such that

r
2
P (Bt ,E) ≤

∫ r

r/2
P (Bs,E)ds ≤

∫ r

0
P (Bs,E)ds ≤ rf2(r,m(r)), (4.3.3)

where the last inequality comes from (H13). Up to multiplying f2 by a constant, we omit the

factor 1/2 in what follows. Now, applying Definition 4.1.3 with F = E \Bt yields

P (E) ≤ P (E \Bt) + ρ(t).

By applying (H12) to P (E \Bt) and plugging it into the previous inequality we have

P (E,Bt) ≤ CP (Bt ,E) + ρ(t).

Then, using the monotonicity (H6) of U 7→ P (E,U ) and the one of ρ,

P (E,Br/2) ≤ CP (Bt ,E) + ρ(r).

Together with (4.3.3), we obtain (again replacing Cf2 by f2)

P (E,Br/2) ≤ f 2(r,m(r)), (4.3.4)

where

f 2(r) = f2(r,m(r)) + ρ(r).

Recall that m(r/2) ≤m(r) ≤ ε1r
d . Without loss of generality, we may assume that ε1 ≤ωd/2d+1,

which implies m(r/2) ≤ |Br/2|/2, so that in particular m(r/2) ≤ |Br/2 \E|. Combining the relative

isoperimetric inequality (H4) and (4.3.4) yields

f1(m(r/2)) ≤ P (E,Br/2) ≤ f 2(r,m(r))

so that

m(r/2) ≤ f 2(r,m(r))
m(r/2)

f1(m(r/2))
≤
f 2(r,m(r))
f1(m(r))

m(r),
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where we used the fact that m 7→ f1(m)/m is nonincreasing in the last inequality. By hypothesis,

m(r) ≤ ε1r
d , and recalling that f3 = 2d(f2 + ρ)/f1 = 2df 2/f1 we obtain

m(r/2)
(r/2)d

≤ f3(r,m(r))
m(r)
rd
≤ f3(r,m(r))ε1. (4.3.5)

By contradiction, assume that m(r/2) > ε1(r/2)d . Then m(r) ≥m(r/2) > ε1(r/2)d . Thus by (H14),

we have f3(r,m(r)) ≤ 1 and by (4.3.5),m(r/2) ≤ ε1(r/2)d , which is absurd. Hencem(r/2) ≤ ε1(r/2)d ,

proving (4.3.1).

To establish (4.3.2), we define mc(r) = |Ec ∩Br | and assume that mc(r) ≤ ε1r
d for some r > 0.

Again, applying the mean value theorem to r 7→ P (Br ,Ec) yields the existence of t ∈ [r/2, r] such

that

P (Bt ,E
c) ≤ f2(r,mc(r)).

Next, comparing the ρ-minimiser E with F = E ∪Bt yields

P (E) ≤ P (E ∪Bt) + ρ(t).

Using (H12) to bound the local variations of the perimeter, we obtain

CP (Ec,Bt) ≤ P (Bt ,E
c) + ρ(t).

The proof of (4.3.2) is then exactly as the one of (4.3.1) with E replaced by Ec.

4.3.2 Generalised minimisers as approximate minimisers of the perimeter

In this subsection, we prove Proposition 4.1.7, which describes two cases where generalised

minimisers of (4.1.2) are also ρ-minimisers of the perimeter for some function ρ.

Proof of Proposition 4.1.7.
We first observe that given i ≥ 1, if Ei is a component of a generalised minimiser of mass

|Ei | =mi , then it is a minimiser of (4.1.1) with the mass constraint m =mi . We now show that

Ei is a ρ-minimiser of the perimeter and split the proof on whether hypothesis (H15) or (H16)

holds. To ease the notation, we write E = Ei and m =mi .

Case 1 : Scaling.
We first assume that P and V admit the scaling property given by (H15). Let us establish that

for some Λ≫ 1, E is a minimiser of

inf
E′

{
EΛ(E′) = E(E′) +Λ

∣∣∣m− |E′ |∣∣∣} . (4.3.6)

By contradiction, let us assume that there exists Λn→∞ and (En)n∈N such that

EΛn
(En) < E(E). (4.3.7)

We first notice that we must have |En| ,m.
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Step 1: Boundedness of P and V . Let us show that

sup
n
P (En) <∞ and sup

n
|V (En)| <∞. (4.3.8)

By (4.1.8) from (H15), for every n ∈N we have

V (En) ≥ −C1|En|δP (En)1−δ. (4.3.9)

If δ = 0, then C1 < 1 and by (4.3.7)

P (En)(1−C1) ≤ P (En) +V (En) = E(En) ≤ EΛn
(En) < E(E) ≤ E(Bℓ(m)),

where Bℓ(m) is the centred ball of volume m. Hence (4.3.8) holds.

If δ ∈ (0,1], applying Young’s inequality to (4.3.9) yields that for every n ∈N

V (En) ≥ −C1(δ|En|+ (1− δ)P (En)), (4.3.10)

so that

(1−C1(1− δ))P (En) ≤ E(En) + δC1|En|.

Thus for Λn ≥ δC1, by the triangle inequality

(1−C1(1− δ))P (En) ≤ E(En) +Λn|m− |En||+ δC1m ≤ EΛn
(En) + δC1m.

Therefore by (4.3.7) supn P (En) <∞. By (4.3.9), up to relabelling C1 we have

V (En) ≥ −C1|En|δ. (4.3.11)

Therefore to prove (4.3.8) it is sufficient to establish that supn |En| <∞. By (4.3.10) and replacing

C1 by max(1,C1)

|En|(Λn − δC1) ≤ V (En) +C1(1− δ)P (En) +Λn|En| ≤ C1EΛn
(En) +C1Λnm,

so that dividing by Λn yields

|En|(1− δC1Λ
−1
n ) ≤ C1Λ

−1
n EΛn

(En) +C1m.

Hence supn |En| <∞ and (4.3.8) holds.

Step 2: Showing that E minimises EΛ. We are now ready to prove (4.3.6). We set tdn =m|En|−1

so that |tnEn| =m and write tn = 1 + εn where εn ∈ (−1,+∞). Combining (4.3.7) and (4.3.8) one

has

Λn||En| −m| ≤ E(E)− P (En)−V (En) ≤ E(Bℓm)−V (En),
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so that

sup
n

Λn||En| −m| ≤ sup
n

[E(Bℓm)−V (En)] = E(Bℓ(m))− inf
n
V (En) <∞

As Λn→∞ as n→∞, the previous inequality implies that |En| →m and εn→ 0 as n→∞. Now

using the scaling part of (H15), by definition of E we have

EΛn
(En) < E(E) ≤ E(tnEn) ≤ tαn P (En) + tβnV (En) = (1 + εn)αP (En) + (1 + εn)βV (En).

Therefore, a Taylor expansion yields that for some C3 = C3(α,β,δ,γ,m) > 0

Λn

∣∣∣m− |En|∣∣∣ ≤ |εn|E(En) ≤ |εn|C3E(Bℓ(m)) = |εn|C3. (4.3.12)

Finally, notice that by definition of εn,∣∣∣m− |En|∣∣∣ =m|1− t−dn | =m|1− (1 + εn)−d | =mεn +O(ε2
n).

Injecting this last equation into (4.3.12), we obtain

Λnm|εn| ≤ |εn|C3

so that Λn ≤ C3, contradicting the fact that Λn→ n as n→∞. We thus have that E minimises

(4.3.6) for Λ≫ 1.

Step 3 : Conclusion. We finally consider E′ with E′∆E ⊂ Br(x) for some x ∈Rd and r > 0. Let

us consider Λ≫ 1 such that E minimises (4.3.6). We have

P (E) ≤ P (E′) +
[
V (E′)−V (E)

]
+Λ

∣∣∣|E′ | −m∣∣∣ ≤ P (E′) +
[
V (E′)−V (E)

]
+Λωdr

d .

Using the local control (H17) on V , for r ≪ 1 we have

P (E) ≤ P (E′) + v(r) +Λωdr
d .

Therefore E is a quasi-minimiser of the perimeter. Its error function ρ is v or r 7→ Λωdr
d ,

whichever is equivalent to r 7→ Crc with the smallest possible c > 0.

Case 2 : Local variation.
We now assume that (H16) holds. Given x ∈ Rd and 0 < r ≤ r5/2, we consider E′ such that

E′∆E ⊂ Br(x). We notice that
∣∣∣|E′ | − |E|∣∣∣ ≤ ωdrd5 so that for r5 small enough we may write

|E′ | = |E| + ε with |ε| ≤ ε2. By Definition 4.1.6 (1), there exist x0 ∈ R
d and F ⊂ R

d such that

|F| = |E′ | − 2ε = |E| − ε′ and E∆F ⊂ Br5(x0) with |Br5(x)∩Br5(x0)| = 0 and

E(F) ≤ E(E) + g1(ωdr
d). (4.3.13)

We then define

F′ =
(
F ∩Br(x0)

)
∪

(
E \ (Br(x)∪Br(x0))

)
∪

(
E′ ∩Br(x)

)
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and observe that |F′ | = |E|, F∆F′ = E∆E′ ⊂ Br(x) and E∆F = E′∆F′ ⊂ Br(x0). By Definition 4.1.6

(2),

P (F′)− P (F) ≤ P (E′)− P (E) + g2(r),

so that by minimality of E and the locality assumption of V (H17):

E(E)−E(F) ≤ E(F′)−E(F) ≤ P (E′)− P (E) + g2(r) + v3(r).

Injecting this inequality into (4.3.13) yields

P (E) ≤ P (E′) + g1(ωdr
d) + g2(r) + v3(r),

so that E is a quasi-minimiser of the perimeter. Its error function ρ is g1, g2 or v, whichever is

equivalent to r 7→ Crc with the smallest possible c > 0.

4.4 Application to three perturbed isoperimetric problems

In this section, we consider three perturbed isoperimetric problems and investigate whether

they satisfy the sets of hypotheses (S1) to (S4). We let the reader check that the hypotheses not

mentioned in the proofs are indeed verified.

4.4.1 An anisotropic liquid drop model

Let φ and G be as in Section 4.1.2. We consider for E ⊂R
d and U open,

Pφ(E,U ) =
∫

(∂∗E)∩U
φ(νE(x))dHd−1(x) and VG(E,U ) =

∫
(E∩U )×(E∩U )

G(x − y)dxdy.

Proposition 4.4.1. The perimeter term Pφ and perturbation term VG satisfy (S1) to (S4).

Proof. Regarding (S2), the isoperimetric inequality (H4) and compactness property (H8) for

Pφ are implied by the fact that C′φPer ≤ Pφ ≤ CφPer. We can thus take f1(m) = C1m
(d−1)/d .

As for the weak superadditivity (H11) of VG, let us denote VG(E) = LG(E,E) where LG(E,F) =∫
E×FG(x − y)dxdy and given some xi ∈Rd we set Bi = BR(xi). We compute

LG(E ∩∪iBi ,E ∩∪iBi) =
I∑
i=1

LG(E ∩Bi ,E ∩Bi) +
∑
i,j

LG(E ∩Bi ,E ∩Bj ). (4.4.1)

Thus

VG(E) ≥ VG(E,∪iBi) =
I∑
i=1

VG(E,Bi) +
∑
i,j

LG(E ∩Bi ,E ∩Bj )

and we conclude that (H11) holds with η1 = η2 = 0.
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We now prove (S4) and finish with (S3). The scaling hypothesis (H15) is verified by Pφ and

VG by hypothesis on φ and G. Regarding (H17), first notice that by hypothesis on G

G(x) ≤ C

|x|β
for any x ∈Rd , where C = sup

{
G(x) : x ∈ Sd−1

}
. (4.4.2)

Now given E,E′ ⊂R
d such that E∆E′ ⊂ Br(x) for some x ∈Rd and r > 0, we compute

VG(E)−VG(E′) = LG(E,E)−LG(E′ ,E′)

= LG(E \E′ ,E) +LG(E ∩E′ ,E)−LG(E′ \E,E′)−LG(E′ ∩E,E′)

≤ LG(E \E′ ,E) +LG(E ∩E′ ,E \E′).

Thus by symmetry of the roles of E and E′, and defining E∆ = E∆E′ and E∪ = E ∪E′,

∣∣∣VG(E)−VG(E′)
∣∣∣ ≤ LG(E ∩E′ ,E∆E′) +LG(E∆E′ ,E ∪E′) ≤ C

∫
E∆×E∪

dxdy

|x − y|β
,

where the last inequality is a consequence of (4.4.2). By (4.4.2), there also exists R = R(G) > 0

such that G ≤ 1 outside of BR. As β ∈ (0,d), (4.4.2) implies that G is integrable on BR. We define

for R > 0the set SR = {(x,y) ∈Rd ×Rd , |x − y| < R} and we have∫
E∆×E∪

dxdy

|x − y|β
≤

∫
(E∆×E∪)∩SR

G(x − y)dydx+
∫

(E∆×E∪)∩ScR
G(x − y)dydx

≤
∫
E∆E′

∫
BR

G(z)dz+ |E∆E′ ||E ∪E′ | = C(G,m)|E∆E′ |,

so that (H17) holds with v(r) = Crd . Thus by Proposition 4.1.7, generalised minimisers of Pφ+VG
are quasi-minimisers of the perimeter with error function ρ(r) = Crd .

As for (S3), the fact that Pφ satisfies (H12) on local comparisons is classical and a consequence

of [60, Theorem 16.3]. Thanks to the fact that Pφ ≤ CφPer, the integral inequality (H13) is verified

with f2(r,m) = C3m/r. Finally, regarding the density scale factor assumption (H14), recall that

f1(m) = C1m
d−1
d .

Therefore, up to replacing f3 by Cf3 we have

f3(r,m) =
f2(r,m) + ρ(r)

f1(m)
=
m

1
d

r
+ r

(m
rd

) 1−d
d

=
(m
rd

) 1
d

+ r
(m
rd

) 1−d
d
.

Taking for instance r3 = 2−d and ε1 = 2−d , we obtain that if r ≤ r3 and m is such that ε12−d ≤
mr−d ≤ ε1, then f3(r,m) ≤ 1. Therefore, (H14) holds.

Remark 4.4.2. Another possible nonlocal kernel is of the form

VK (E,U ) = −PK (E,U ) = −
∫
E∩U×Ec

K(x − y)dxdy,
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so that the corresponding isoperimetric problem P − PK may be seen as the difference between a

(local or nonlocal) perimeter and a nonlocal perimeter. Notice that if K ∈ L1(Rd) we may write

VK (E,U ) =
∫

(E∩U )×E
K(x − y)dxdy − |E ∩U |∥K∥L1(Rd ),

so that the analysis of this case is exactly as in the case V = VG studied above. However in the

recent works [38, 51, 61] the considered problem is

ωd−1Per(·)− (1− s)Ps(·) or (1− t)Pt(·)− (1− s)Ps(·)

with 0 < s < t < 1, so that the assumption VK ∈ L1(Rd) cannot be used. While various sets of

hypotheses on K are used in the aforementioned articles, proving that (S1) and (S2) hold is

similar to the case V = VG. To obtain density estimates however, the known approaches revolve

around showing that there exists 0 < s0 < 1 such that for E∆E′ ⊂ Br(x),∣∣∣VK (E)−VK (E′)
∣∣∣ ≤ C(K)|E∆E′ |1−s0Per(E∆E′)s0 .

The dependency on the perimeter of E∆E′ appearing in the bound on the local variations of V

then prevents one from establishing (H17). Thus (S4) does not hold even though assumption

(H15) is verified. This problem in turn prevents us from establishing (H14), so that (S3) does

not hold even though (H12) and (H13) of (S3) are verified. Usually, one has to first show density

estimates for the perimeter before establishing volume density estimates, which is outside the

framework of this chapter.

4.4.2 A prescribed nonlocal curvature problem

Let K and T be as in Section 4.1.2 and fix s ∈ (0,1). In particular, recall that T is L-periodic for

some L > 0 and Lipschitz continuous. Given E,U ⊂R
d we consider

PK (E) =
∫

(E∩U )×Ec
K(x − y)dxdy and VT (E,U ) = −

∫
E∩U

T (x)dx.

Proposition 4.4.3. The perimeter term PK and perturbation term VT satisfy (S1) to (S4).

Proof. Regarding (S2), recall that by hypothesis C′KPs ≤ PK ≤ CKPs. It is thus enough to prove

that the relative isoperimetric inequality holds for Ps. We first observe that that for any E ⊂R
d ,

r > 0 and x ∈Rd , writing by abuse of notation Br = Br(x)

2P (E,Br ) ≥ 2
∫

(E∩Br )×(Ec∩Br )

dxdy

|x − y|d+s
=

∫
Br×Br

|χE(x)−χE(y)|2

|x − y|d+s
. (4.4.3)

Then if |E∩Br | ≤ |Br |/2, we proceed exactly as in the proof of [38, Lemma 2.5]: by a Poincaré-type

inequality for fractional Sobolev spaces, we obtain that for any r0 > 0, there exists C = C(r0,d, s)

such that for any r ≤ r0,

P (E,Br ) ≥ C|E ∩Br |
d−s
d .
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Conversely, if |Ec ∩Br | ≤ |Br |/2, we can proceed as in the preceding case because the roles of E

and Ec are symmetrical in (4.4.3). Eventually, we have that the relative isoperimetric inequality

(H4) holds for

f1(m) = C1m
d−s
d .

The compactness property (H8) also holds because of the embedding theorems for fractional

Sobolev spaces. The periodicity assumption (H5) holds for VT because T is L-periodic and

the constraint L = r1 ≤ 2r0/
√
d is verified by setting r0 =

√
dL/2. Let us prove (H7) on the

boundedness of the perimeter by contraposition. We have VT (E) ≥ −∥T ∥∞|E|, so that if there

exists (En)n with supn PK (En) =∞ and supn |En| = C <∞, then

E(En) = PK (En) +VT (En) ≥ PK (En)− ∥T ∥∞|En|.

Hence supnE(En) =∞ and (H7) is proved.

Regarding (S4), as PK and VT have no scaling property, we have to establish that (H16) on

volume-fixing variations holds. Regarding Definition 4.1.6 (1), we proceed as in [24, Lemma

3.1]. Given a minimiser E of (4.1.1), we have that |E| <∞ and PK (E) <∞. We consider E′ ⊂R
d

such that E∆E′ ⊂ Br(x) for r ≤ r5 and x ∈Rd . Let us show that there exists x0 , x ∈Rd such that

|E ∩Br5(x0)| > 0, |Ec ∩Br5(x0)| > 0 and |Br5(x)∩Br5(x0)| = 0. (4.4.4)

Up to reducing r5, we may assume that ωdr
d
5 ≤ |E|/4. Thus there exists θ ∈ S

d−1 such that

xθ = x+ 2r5θ ∈ E. Additionally, |Br5(y)∩Br5(x)| = 0. Finally, there also exists r0 ≥ 2r5 such that

for x0 = x+ r0θ, we have x0 ∈ E and |Br5(x0)∩Ec| , 0. Thus (4.4.4) holds.

Hence by the relative isoperimetric inequality we have

Per(E,B(x0, r5)) = sup
{∫

E
divS(x)dx : S ∈ C1

c (B(x0, r5),Rd), ∥S∥∞ ≤ 1
}
> 0.

Hence there exists S ∈ C1
c (B(x0, r5),Rd) such that M =

∫
E

divS(x)dx > 0.

Let us now define for t ∈ (−1,1) the maps Φt(x) = x+ tS(x). By a changing of variables, we

compute

PK (Φt(E)) =
∫
E×Ec

K(Φt(x)−Φt(y)) (1 + tdivS(x) + tdivS(y) + o(t))dxdy. (4.4.5)

By hypothesis on K we may write that for any x,y ∈Rd and t ∈ (−1,1)

K(Φt(x)−Φt(y))−K(x − y) = t
∫ 1

0
∇K [x − y +ut(S(x)− S(y))] · (S(x)− S(y))du.

Combining the regularity of S with the fact that |∇K | ≤ |· |−(d+s+1) yields that for some C = C(S,K)∫
E×Ec
|K(Φt(x)−Φt(y))−K(x − y)|dxdy ≤ C|t|

∫
E×Ec

dxdy

|x − y|d+s
≤ C|t|PK (E).
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where we used the fact that C′K | · |
−(d+s) ≤ K(·) in the last inequality. Reinjecting this into (4.4.5)

we obtain

(1−C|t|)PK (E) ≤ PK (Φt(E)) ≤ (1 +C|t|)PK (E) (4.4.6)

for some C = C(S,K). We proceed similarly for the perturbative term, writing

VT (Φt(E)) = −
∫
Φt(E)

T (x)dx = −
∫
E
T (x+ S(x))(1 + tdivS(x) + o(t))dx.

Using the Lipschitz continuity of T and (4.4.6) we obtain that for some C = C(S,K):

E(Φt(E)) = E(E) +Ct + o(|t|).

Finally, notice that

|Φt(E)| =
∫
E

(1 + tdivS(x) + o(t))dx = |E|+Mt + o(t).

Thus for |ε| ≪ 1 we can find t(ε) = ε/M + o(|ε|) such that F = Φt(ε)(E) satisfies |F| = |E| + ε,
E∆F ⊂ Br5(x0) and

E(F) ≤ E(E) +C|ε|,

so that Definition 4.1.6 (1) holds for g1(|ε|) = C|ε|.
Regarding Definition 4.1.6 (2), let us consider E,E′ ,F,F′ ⊂ R

d and r5 > 0 such that E∆E′ =

F∆F′ ⊂ Br(x) for some r ≤ r5 and E∆F = E′∆F′ ⊂ Br5(x0) with Br5(x) and Br5(x0) disjoint. Recall

that we want an estimate of the form

∆PK = PK (E)− PK (E′)− (PK (F)− PK (F′)) ≤ g2(r), (4.4.7)

for some nondecreasing function g2 : R+→R+. Up to a change of coordinates we assume that

x = 0 and given A,B ⊂R
d we define

L(A,B) =
∫
A×B

K(x − y)dxdy.

We first decompose E over Br ,Br5(x0) and H = Bcr ∩Bcr0 and obtain

L(E,Ec) = L(E ∩Br ,Ec) +L(E ∩Br5(x0),Ec) +L(E ∩H,Ec ∩Br ) +L(E ∩H,Ec ∩Bcr ).

We write the same formula for L(E′ ,E′c), and thus obtain for ∆PE,F = PK (E)− PK (F) that

∆PE,F =L(E ∩Br ,Br5(x0)∩Ec)−L(E ∩Br ,Br5(x0)∩Fc)

+L(E ∩Br5(x0),Ec)−L(F ∩Br5(x0),Fc)

+L(E ∩H,Ec ∩Bcr )−L(E ∩H,Fc ∩Bcr ).
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The corresponding expression for ∆PE′ ,F′ = PK (E′)− PK (F′) is

∆PE′ ,F′ =L(E′ ∩Br ,E′c ∩Br5(x0))−L(E′ ∩Br ,F′c ∩Br5(x0))

+L(E′ ∩Br5(x0),E′c)−L(F′ ∩Br5(x0),F′c)

+L(E′ ∩H,E′c ∩Bcr )−L(E′ ∩H,F′c ∩Bcr ).

Notice that E∩H = E′ ∩H , that Ec∩Bcr = E′c∩Bcr and that Fc∩Bcr = F′c∩Bcr . Hence the last lines

of ∆PE,F and ∆PE′ ,F′ will cancel each other out in the difference ∆PK = ∆PE,F −∆PE′ ,F′ . Therefore

∆PK =L(E ∩Br ,Ec ∩Br5(x0))−L(E ∩Br ,Fc ∩Br5(x0))

+L(E′ ∩Br ,F′c ∩Br5(x0))−L(E′ ∩Br ,E′c ∩Br5(x0))

+L(E ∩Br5(x0),Ec ∩Br )−L(E ∩Br5(x0),E′c ∩Br )

+L(F ∩Br5(x0),E′c ∩Br )−L(F ∩Br5(x0),Ec ∩Br ).

Notice that the right-hand side of the previous equality is a sum of terms of the form LK (A,B),

with either A ⊂ Br , and B ⊂ Br5(x0) or vice versa. In both cases, there exists C = C(K,r5) > 0 such

that inf{|x − y| : (x,y) ∈ A×B} ≥ C. Also recalling that K(·) ≤ CK | · |−(d+s), up to relabelling CK we

have

LK (A,B) ≤ C
"

Br×Br5 (x0)

dzdy

|z − y|d+s
≤ C|Br ||Br5(x0)| = Crd (4.4.8)

Therefore ∆PK ≤ Crd , so that (4.4.7) holds with g2(r) = Crd .

Finally, (H17) on the local Lipschitz continuity of V is verified with v(r) = ∥T ∥∞ωdrd . Thus

by Proposition 4.1.7, there exists C = C(g1, g2,v) such that for r ≪ 1, generalised minimisers of

(4.1.2) are ρ-minimisers for ρ(r) = Crd .

We conclude with (S3). Regarding the integral inequality (H13), let E ⊂R
d and x ∈Rd . Up

to a translation, we assume that x = 0. Now given z ∈ Bu , we write∫
Bcu

dy

|z − y|s
≤

∫
Bcu

dy

(|y| − |z|)s
≤ C

∫ ∞
u−|z|

vd−1dv

vd+s
=

C
(u − |z|)s

.

Hence

PK (Bu ,E) =
∫

(E∩Bu)×Bcu

dzdy

|z − y|s
≤ C

∫
E∩Bu

dz
s(u − |z|)s

= C
∫ u

0

Hd−1(E ∩Bv)
(u − v)s

dv.

Hence by Fubini-Tonelli

1
r

∫ r

0
PK (Bu ,E)du =

C
r

∫ r

0

∫ r

v

Hd−1(E ∩Bv)
(u − v)s

dudv

≤ Cr
1−s

r

∫ r

0
Hd−1(E ∩Bv)dv =

C
rs
|E ∩Br |,

and one can take f2(r,m) = C3r
−sm. We finish by establishing (H14) on the density scale factor.
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Recall that

f1(m) = C1m
d−s
d

so that up to a multiplicative constant

f3(r,m) =
f2(r,m) + ρ(r)

f1(m)
=

(m
rd

) s
d

+ r
(m
rd

) s−d
d
.

We then conclude as in the proof of Proposition 4.4.1 : for some r3, ε1 > 0,

f3(r,m) ≤ 1 for every r ≤ r3 and
ε1

2d
<
m

rd
≤ ε1.

Remark 4.4.4. Notice that excepted (H14) on the density scale factor and (H15) on the scaling

of P and V , all the hypotheses in (S1) to (S4) can be checked separately in P and V . Also notice

that in Propositions 4.4.1 on Pφ +VT and 4.4.3 on PK +VG we respectively checked that Pφ and

PK satisfied (S1) to (S4). Thus if one wants to check that (S1) to (S4) are satisfied for PK +VG or

Pφ +VT , only (H14) and either (H15) or (H16) have to be checked.

For (H15) to hold with PK +VG, one has to add a scaling hypothesis on K (which is verified if

PK is the fractional perimeter Ps). If one instead wants to show that (H16) holds, hypotheses on

G must be added: as for PK , assuming that G ∈W 1,1
loc (Rd \{0}) and that G and ∇G are controled by

sufficently integrable functions allows to conclude. Establishing that (H14) holds is identical to

the case Pφ+VG. Indeed, having f1(m) = Cm(d−s)/d or f1(m) = Cm(d−1)/d does not change the proof

of (H14), because the perturbation introduced by VG is of the form Cmd and d >max(d −1,d − s).
We finish with Pφ + VT . On the one hand, to show that (H16) holds we have to add the

hypothesis that φ ∈ C1(Sd−1). Indeed, it implies that Pφ admits a first variation (see [60, Exercise

20.7]) so that the first point of (4.1.6) holds. The second point of (4.1.6) holds with g2 = 0 because

of the locality of Pφ. On the other hand, for (H15) to hold one has to add a scaling hypothesis on

T . Lastly, one can show that (H14) holds by proceeding as in the previous paragraph on PK +VG.

Remark 4.4.5. We also mentioned in the introduction that for p ≥ 1 and E,U ⊂R
d the Wasser-

stein functional

VW (E,U ) = inf
|F∩E∩U |=0

Wp(E ∩U,F)p

could be considered as a perturbative term. Let us briefly explain why Pφ +VW satisfy (S1) to

(S4). The hypotheses of (S1) and (S2) are verified for VW as a consequence of [19, Proposition

2.2]. Additionally, VW (tE) = tβVW (E) with β = p + d, so that (H15) is verified. Lastly by [19,

Lemma 2.4] for E,E′ ⊂R
d :

|VW (E)−VW (E′)| ≤ C(|E|
p
d + |E|

p
d )|E∆E′ |, (4.4.9)

so that (H17) holds with v(r) = Crd . We establish that (H14) holds as in the previous remark.

Lastly, if one wants to study PK +VW in the case where K admits no scaling, one will need to

show that VW admits volume-fixing variations. This last fact remains an open question for now,
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although we believe it may hold without additionnal assumption onW .

4.4.3 A model of a nonlocal perimeter interacting with Dirichlet eigenvalues

In this example, the perimeter is Pφ and the perturbation term is VDir, i.e. for E,U ⊂R
d

VDir(E,U ) = VDir(E ∩U ) = min
u

{
1
2

∫
R
d
|∇u|2dx −

∫
R
d
uhdx : u ∈ Ĥ1

0 (E ∩U )
}
,

where h ∈ Lp(Rd) for some p > d. Before proving that VDir satisfies (S1) and (S2), let us recall

some of its properties. Given E with |E| <∞, VDir(E) admits an unique minimiser wE , which is

bounded (see [35, Section 2]):

∥wE∥L∞ ≤ C(p)∥h∥Lp |E|2/d−1/p. (4.4.10)

It also satisfies ∫
R
d
∇wE · ∇ϕdx =

∫
R
d
hϕdx (4.4.11)

for any ϕ ∈ Ĥ1
0 (E), so that

VDir(E) = −1
2

∫
R
d
hwE dx = −1

2

∫
E
hwE dx. (4.4.12)

Proposition 4.4.6. The perimeter term Pφ and perturbation term VDir satisfy (S1) and (S2).

Proof. Regarding (S1), by combining (4.4.12) and the Hölder inequality, for r > 0 we have

|VDir(Br )| ≤
∫
Br

hwBr ≤ ∥h∥Lp(Br )∥wBr ∥Lp′ (E),

where p′ = p/(p − 1). Thus by (4.4.10)

|VDir(Br )| ≤ C∥h∥2Lp |Br |
1/p′+2/d−1/p,

so that VDir(Br)→ 0 as r → 0, proving (H1). Next, notice that if A,B ⊂ R
d have finite volume

and are such that dist(A,B) > 0, then VDir(A∪B) = VDir(A) +VDir(B). Thus (H3) holds.

We now move to (S2). Regarding (H7), given E ⊂R
d we proceed as for (H1) and we notice

that

VDir(E) ≥ −C∥h∥2Lp |E|
1/p′+2/d−1/p.

Therefore, given (En)n with supn |En| <∞, supPφ(En) =∞ implies supnE(En) =∞, proving (H7)

by contraposition. Assumption (H9) follows from [35, Remark 2.3]. We conclude by proving the

weak superaddivity assumption (H11). Given m > 0, we fix E with |E| ≤m and I ≥ 1 disjoints

ballsBR(x1), . . . ,BR(xI ) such that mini,j dist(Bi ,Bj ) ≥ 5R. We first notice that

I∑
i=1

VDir(E ∩BR(xi)) = V (E ∩B), where B =
I⋃
i=1

BR(xi). (4.4.13)
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Let us denote Bi = BR/2(xi) for 1 ≤ i ≤ I . There exists a mollifier ψ ∈ C∞c (Rd , [0,1]) satisfying

ψ = 1 on B =
I⋃
i=1

Bi , ψ = 0 on
I⋂
i=1

BcR(xi) and ∥∇ψ∥L∞ ≤
C
R
.

Noticing that ψwE ∈ Ĥ1
0 (E ∩B), we can use it as a candidate for the minimisation in VDir(E ∩B).

We obtain

VDir(E ∩B)−VDir(E) ≤ 1
2

∫
R
d
|∇(ψwE)|2dx+

1
2

∫
R
d
hwE(1− 2ψ)dx.

Notice that |∇(ψwE)|2 = ∇wE · ∇(ψ2wE) +wE |∇ψ|2. Applying (4.4.11) with ϕ = ψ2wE yields

VDir(E ∩B)−VDir(E) ≤ 1
2

∫
R
d
w2
E |∇ψ|

2dx+
1
2

∫
R
d
wEhψ

2dx+
1
2

∫
R
d
wEh(1− 2ψ)dx

=
1
2

∫
R
d
w2
E |∇ψ|

2dx+
1
2

∫
R
d
wEh(1−ψ)2dx

≤ C

R2 +
I∑
i=1

∫
(Bi )c
|wEh|dx.

By the Hölder inequality we estimate that for every 1 ≤ i ≤ I ,

∫
(Bi )c
|wEh| ≤

(∫
E∩(Bi )c

|wE |p
′
)1/p′

∥h∥Lp((Bi )c) ≤ ∥wE |
p′

L∞ |E|
1/p′∥h∥Lp((Bi )c).

Recall that for 1 ≤ i ≤ I , Bi = BR/2(xi). Thus if we denote

η2(R) =
C

R2 +C
I∑
i=1

∥h∥Lp((Bi )c),

we have that η2(R)→ 0 as R→∞. Thus (H11) holds, as

I∑
i=1

VDir(E ∩Bi) = VDir(E ∩B) ≤ VDir(E) + η2(R).
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Theoretical and numerical analysis of perturbed isoperimetric problems

Abstract

In this thesis, we focus on perturbed isoperimetric problems. These problems involve the min-
imisation of an energy composed of a perimeter term that promotes mass aggregation, countered by a
perturbation term favouring disaggregation.

We begin by presenting the concepts used as well as past and current research conducted on the
isoperimetric problem and its variants.

In Chapter 1, we study a problem where the perimeter interacts with a non-local term called
an exterior transport term, defined using optimal transport theory. We demonstrate the existence of
solutions to this problem and, in regimes where the perimeter dominates, we prove that the minimisers
are balls.

Chapter 2 is dedicated to the exterior transport term. In a general framework, we show that the
variational problem defining it has solutions and a dual formulation. Using stronger assumptions, we
finally show that this term is maximised only by balls.

In Chapter 3, we present a numerical study in dimension 2 of the problem from Chapter 1. We
approximate the minimisers of the energy considered via a gradient descent algorithm. The numerical
results lead us to conjecture the existence of a critical mass above which the minimisers are no longer
balls, but elongated shapes with two axes of symmetry.

Chapter 4 focuses on a perturbed isoperimetric problem where the perimeter and perturbation
terms are not explicit. We exhibit a general set of assumptions under which a relaxed version of the
problem admits minimisers. Under stronger hypotheses, we then investigate whether these minimisers
have density estimates.

Keywords: Calculus of Variations, perturbed isoperimetric problem, Wasserstein distance, generalized
minimisers, Sinkhorn algorithm

Etude théorique et numérique de problèmes isopérimetriques perturbés

Résumé

Nous étudions dans cette thèse des problèmes isopérimétriques perturbés. Ces problèmes consistent
en la minimisation d’une énergie formée d’un terme de périmètre qui favorise l’agrégation de masse,
auquel s’oppose un terme perturbatif favorisant la désagrégation.

Nous commençons par présenter les concepts utilisés ainsi que la recherche passée et actuelle
effectuée sur le problème isopérimétrique et ses variantes.

Nous étudions dans le chapitre 1 un problème où le périmètre interagit avec un terme non-local dit
de transport extérieur, défini à l’aide de la théorie du transport optimal. Nous montrons l’existence de
solutions à ce problème et, dans les régimes où le périmètre domine, nous prouvons que les minimiseurs
sont les boules.

Le chapitre 2 est consacré au terme de transport extérieur. Dans un cadre général, nous montrons
que le problème le définissant admet des solutions et une formulation duale. A l’aide d’hypothèses plus
fortes, nous montrons que ce terme est uniquement maximisé par les boules.

Dans le chapitre 3, nous présentons les travaux numériques effectués en dimension 2 sur le problème
du premier chapitre. Nous approchons les minimiseurs de l’énergie considérée via une descente de
gradient. Les résultats numériques nous amènent à conjecturer l’existence d’une masse critique à partir
de laquelle les minimiseurs ne sont plus des boules, mais des formes allongées à deux axes de symétrie.

Le chapitre 4 porte sur un problème isopérimétrique perturbé où les termes de périmètre et de
perturbation ne sont pas explicites. Pour des hypothèses assez générales, nous montrons que ce problème
admet des minimiseurs en un sens faible. Nous montrons ensuite sous des hypothèses plus fortes que ces
minimiseurs, appelés minimiseurs généralisés, possèdent des estimées de densité.

Mots clés : Calcul des Variations, problème isopérimétrique perturbé, distance de Wassertein, minimi-
seurs généralisés, algorithme de Sinkhorn
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