
HAL Id: tel-04902577
https://theses.hal.science/tel-04902577v1

Submitted on 21 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Updatable Public Key Encryption in the context of
Secure Messaging

Calvin Abou Haidar

To cite this version:
Calvin Abou Haidar. Updatable Public Key Encryption in the context of Secure Messaging. Computer
Science [cs]. École Normale Supérieure de LYON, 2024. English. �NNT : �. �tel-04902577�

https://theses.hal.science/tel-04902577v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

THÈSE
en vue de l’obtention du grade de Docteur, délivré par

l’ÉCOLE NORMALE SUPERIEURE DE LYON

École Doctorale N�512
École Doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 09/02/2024, par :

Calvin Abou Haidar

Chiffrement à Clé Publique dans le Cadre de la

Messagerie Sécurisée

Devant le jury composé de :

HOFHEINZ, Dennis Professeur, ETH Zurich Rapporteur
BLAZY, Olivier Professeur des Universités Rapporteur

École Polytechnique
FONTAINE, Caroline Directrice de Recherche Examinatrice

Université Paris-Saclay
ROSSI, Melissa Chercheuse, ANSSI Examinatrice
LOIDREAU, Pierre Chercheur, Université Rennes 1 Examinateur
STEHLÉ, Damien Professeur des Universités Examinateur

CryptoLab
PASSELÈGUE, Alain Chargé de Recherche Examinateur

CryptoLab
SALVY, Bruno Directeur de Recherche Directeur de Thèse

ENS de Lyon

R É S U M É E N F R A N Ç A I S

Cette thèse s’intéresse à la construction de primitives cryptographiques, dont l’application
principale est la messagerie sécurisée de groupe. Le développement récent et l’adoption
de nombreuses applications de messagerie ont vu pour conséquence un intérêt partic-
ulier de la communauté cryptographique pour les sujets qui lui sont liés. Ces systèmes
possèdent leurs besoins propres. On les utilise très souvent pour avoir des discus-
sions longues, de groupes, vidéos, etc. Ces applications fonctionnent en temps réel et
ne peuvent donc pas se permettre d’utiliser des primitives lourdes. On y retrouve le
compromis classique entre sécurité et vitesse. Une application de messagerie instanta-
née qui mettrait plusieurs minutes à recevoir un message, aussi sécurisée qu’elle soit,
serait probablement autant utilisée qu’elle est instantanée. Pourtant, l’adoption large
d’applications réellement sécurisées est un enjeu pour la protection de la vie privée.
En imposant un coût, même moyennement élevé, pour compromettre la conversation
d’un individu, on augmente substantiellement celui de la surveillance de masse.

Les conversations s’établissant sur plusieurs années, la messagerie sécurisée rentre
dans le régime de la cryptographie de long terme. On s’intéresse ici à la notion de "for-
ward secrecy" ou confidentialité persistante qui vise à garantir à un utilisateur que son
historique de conversation est protégé, quand bien même son appareil viendrait d’être
compromis. Cette notion correspond à un besoin bien réel. Il est facile d’imaginer
un scénario dans lequel une entreprise/un gouvernement enregistrerait tous les mes-
sages sortant de l’appareil d’une personne avec pour but de les déchiffrer plus tard
une fois l’appareil compromis. Dans le cas d’une application à confidentialité persis-
tante, l’attaquant se retrouverait avec les clés secrètes de l’appareil de la victime, mais
serait tout de même incapable de déchiffrer les anciens messages. Naturellement, une
telle propriété implique une évolution des clés secrètes utilisées. Si les mêmes clés sont
conservées tout au long de l’utilisation, compromettre ces clés revient à compromet-
tre tous les messages. Une manière simple d’obtenir la confidentialité persistante est
de remettre à jour régulièrement ses clés en calculant de nouvelles et en envoyant les
informations nécessaires aux correspondants.

On s’intéresse ici à une nouvelle méthode proposée par Dodis et al. en 2021 dans [39].
Il s’agit cette fois, non pas de recalculer de nouvelles clés, mais de profiter de la linéar-
ité de certains systèmes de chiffrement à clé publique pour re-randomiser les clés
publiques. En chiffrant l’aléa utilisé pour re-randomiser une clé publique sous cette
même clé, on offre la possibilité à n’importe qui de mettre à jour n’importe quelle
clé publique. D’abord étrange, cette propriété s’avère pratique dans le cadre de sys-
tèmes complexes utilisant des clés publiques partagées. Dans leur article, Dodis et
al. proposent une définition formelle de cette nouvelle primitive appelée "Updatable

v

Public Key Encryption" (UPKE), qu’on pourrait cavalièrement traduire en Chiffrement
à Clé Publique Évolutive. Leurs constructions sont avant tout théoriques, en cela qu’elles
manipulent des objets de tailles déraisonnables au vu du contexte.

Dans le Chapitre 4, on présente la première construction efficace d’UPKE. Ce travail
est le fruit de l’article [4]. On y reprend le schéma de chiffrement à clé publique de
Elgamal-Pailler introduit dans [27], pour montrer qu’il est possible de l’étendre en
un UPKE sécurisé. On montre ensuite, en utilisant le paradigme de Naor-Yung [70],
qu’il est possible, à relativement faible coût, de rendre cet UPKE sécurisé contre des
adversaires actifs et ayant accès à un oracle de déchiffrement (sécurité CCA).

Dans le Chapitre 5, on présente une seconde construction, dont l’efficacité est moin-
dre que la première, mais qui reste du même ordre de grandeur. Cette fois-ci, notre
construction se base sur une hypothèse post-quantique (LWE), ce qui en fait la pre-
mière construction efficace reposant sur de telles hypothèses. Ce travail est le fruit
de l’article [50]. On y introduit une nouvelle hypothèse appelée "Adaptive Extended
LWE", qui étend l’hypothèse "Extended LWE" en prenant en compte une intéraction
supplémentaire. On réduit ensuite LWE à notre nouvelle hypothèse. Adaptive Ex-
tended LWE nous permet de construire un UPKE en étendant le schéma de chiffre-
ment KYBER [22], récemment standardisé par le NIST. Comme autre contribution
importante, on adapte la technique classique de Fujisaka-Okamoto [46] au cadre de
l’UPKE, ce qui nous permet d’obtenir sans coût supplémentaire la sécurité contre des
adversaires passifs ayant accès à un oracle de déchiffrement.

vi

C O N T E N T S

i introduction and background 1
1 general introduction 3

1.1 Modern Public-Key Encryption . 4
1.2 Agreeing: Key exchange . 5
1.3 Secure messaging and the signal protocol 6
1.4 forward-secrecy and post-compromise security 7

2 technical introduction 9
2.1 A construction under the DCR assumption 12

2.1.1 Building an IND-CR-CPA UPKE 12
2.1.2 Upgrading to IND-CR-CCA/IND-CU-CCA 13

2.2 A construction under the LWE assumption 14
2.2.1 Building a post-quantum IND-CR-CPA UPKE 14
2.2.2 IND-CR-CPA security & a necessary new assumption 15
2.2.3 A Fujisaki-Okamoto transform for UPKE 17
2.2.4 A generic transform to achieve CU security 18

2.3 Performances . 18
2.4 Publications . 18

3 preliminaries 21
3.1 Notations . 21
3.2 Updatable Public Key Encryption . 21
3.3 IND-CR-CPA security of UPKE . 22
3.4 IND-CR-CCA security of UPKE . 23
3.5 Updatable Key Encapsulation Mechanism 24
3.6 IND-CU-CCA security for UPKE/UKEM 25
3.7 Non-Interactive Zero Knowledge Proofs 26

ii constructions 31
4 a construction under the dcr assumption 33

4.1 UPKE construction with DCR . 33
4.1.1 Hardness Assumptions . 33
4.1.2 Useful Lemmas . 34

4.2 A DCR-Based IND-CR-CPA-Secure UPKE 35
4.2.1 A DCR-Based CR+LR Secure PKE 35
4.2.2 A DCR-Based IND-CR-CPA-Secure UPKE 38

4.3 From CR-CPA to CR-CCA/CU-CCA security in the ROM 40
4.3.1 Proofs of Plaintext Equality . 40

ix

x contents

4.3.2 IND-CR-CCA secure UPKE . 43
4.3.3 Arguments of Well-formedness for Update Ciphertexts 47
4.3.4 IND-CU-CCA-secure UPKE . 51

4.4 Implementation and Performances . 56
4.4.1 Key/Ciphertext/Update Sizes . 56
4.4.2 Running Time . 56

5 a construction under lattice assumptions 59
5.1 Preliminaries . 59

5.1.1 Gaussian distributions . 60
5.2 Extended LWE . 61
5.3 IND-CR-CPA UPKE from LWE . 65
5.4 A UPKE Fujisaki-Okamoto Transform . 74
5.5 Obtaining IND-CU-CCA Security . 79
5.6 Concrete Parameters . 81

6 conclusion and perspectives 85

bibliography 87

L I S T O F F I G U R E S

Figure 1 k-IND-CR-CPA security game. 22
Figure 2 UPKE k-IND-CR-CCA security game in the ROM. 23
Figure 3 k-IND-CR-CCA security game in the ROM. Note that if � = 0,

then the value of the key K
⇤ is the output of Encaps. 25

Figure 4 k-IND-CU-CCA security game in the ROM. 26
Figure 5 The decision game for AextLWEq,n,m,�. 62
Figure 6 The decision game for HNF-AextLWEq,n,m,�. 63
Figure 7 LWE-based IND-CR-CPA UPKE construction. 66
Figure 8 Transform FO(UPKE, G, H) for a UPKE using random oracles G, H. 75
Figure 9 Construction of a IND-CU-CCA UKEM. 84

xi

L I S T O F TA B L E S

Table 1 Sizes for IND-CR-CPA UPKE schemes. Sizes are given with re-
spect to bit-security �. 19

Table 2 Sizes for IND-CR-CCA UPKE/UKEM schemes, in the ROM.
Sizes are given with respect to bit-security �. 19

Table 3 Sizes for IND-CU-CCA UPKE/UKEM schemes, in the ROM.
Sizes are given with respect to bit-security �. 19

Table 4 Comparison of key/ciphertext/update sizes for existing UPKE
schemes with 128-bit strength security 47

Table 5 Benchmarks on our implementation of our IND-CR-CPA and
IND-CR-CCA schemes . 56

Table 6 Parameter sets for the module variant of our IND-CR-CCA UKEM. 82

xii

A C R O N Y M S

PKE Public Key Encryption

UPKE Updatable Public Key Encryption

KEM Key Encapsulation Mechanism

UKEM Updatable Key Encapsulation Mechanism

NIZK Non-Interactive Zero Knowledge

LWE Learning With Errors

MLWE Module Learning With Errors

RSA Rivest Shamir Adlemann

DCR Decision Composite Residuosity

ROM Random Oracle Model

FO Fujisaki-Okamoto

NY Naor-Yung

CPA Chosen Plaintext Attack

CCA Chosen Ciphertext Attack

xiii

Part I

I N T R O D U C T I O N A N D B A C K G R O U N D

1
G E N E R A L I N T R O D U C T I O N

about cryptographers , cryptography and their world

Les dieux avaient condamné Sisyphe à rouler sans cesse
un rocher jusqu’au sommet d’une montagne d’où la pierre

retombait par son propre poids. Ils avaient pensé avec
quelque raison qu’il n’est pas de punition plus terrible

que le travail inutile et sans espoir.

— Albert Camus, Le mythe de Sisyphe

The pursuit of advancements in the field of cryptography can be likened to a
Sisyphean task, wherein researchers continually strive to overcome an ever-escalating
mountain of challenges and complexities. The relentless march of technological progress,
coupled with the ever-evolving strategies of malicious actors, ensures that cryptogra-
phers are engaged in a perpetual battle to safeguard sensitive information and com-
munications.

Much like Sisyphus’ boulder, the security breakthroughs in cryptography inevitably
suffer setbacks from ingenious attempts to breach them, fueling – hopefully – a per-
petual cycle of innovation. It is, however, less challenging to imagine cryptographers
happy, for their passion is intimately linked to this ceaseless task.

The following thesis focuses on going up, pushing the boulder a bit further, until
gravity – or cryptanalysts, as we call them – makes its work.

Before going up, it is only natural to start by assessing our current whereabouts. This
work is about building basic tools for cryptography, called primitives. Primitives are the
fundamental blocks of cryptography, which allow the constructions of sophisticated
protocols used in day-to-day digital life. Any complex system can be analyzed as a
network of interacting, simple(r) components. The essential nature of modularity is
well known by engineers, who are concerned by the ever-growing complexity of their
creations and the impact this growth has on their ability to understand them. Akin to
craftsmanship, building cryptographic primitives demands an intimate mastery of the
raw materials at play. Cryptographic assumptions serve the cryptographer much as
wood, stone or ivory do for the sculptor, determining the array of techniques at their
disposal and bestowing various properties to their works.

3

4 general introduction

1.1 modern public-key encryption

Public-key encryption – also called asymetric encryption – is based on the hypothesis
that it is possible to securely share private data using an insecure channel without
any prior exchange. More informally, a natural consequence arising from the existence
of public key encryption is the possibility for two persons that never met nor talked
before to meet in any public space and start a conversation that no other eavesdropping
party can understand. This statement is highly non trivial and has deep implications.
Indeed, the existence of encryption schemes preceded public key cryptography and,
until the 70’s, relied on pre-existing exchanges to establish a shared secret. For any
two parties to have such a secure conversation in public, they would have had to meet
before and agree on some secret information that only them would know. A good
analogy would be to consider some kind of secret language that would be devised
beforehand and then used in public to convey private information. While this is easily
conceivable, stating the possibility to devise such a language without any pre-shared
secret is a rather surprising declaration. In public key cryptography, users usually hold
a key pair consisting of a private key, which they keep to themselves, and public key,
whose purpose is to be known by other users.

The hypothetical nature of the existence of public key encryption is of importance.
The security of all existing schemes rely on assumptions made by cryptographers
that ultimately rely on empirical experiments. To illustrate this, let us consider a very
simple cryptographic assumption:

Assumption (Factoring problem - Informal) Let p,q be prime numbers and N = p · q.
Given only N, it is hard to find p or q.

While simplified, this assumption is still quite informative. It is clear that this as-
sumption does not hold for small numbers. Claiming that it is hard to recover 3 and 5
given only 15 would be rather bold. The hidden complexity resides in the "hard" part
of the assumption. What do we mean by "hard"? Any reasonable cryptographer would
now go on a painful – but interesting – rant about complexity theory and its subtelties
in the context of cryptography. Let us skip this part and say: a problem is hard if takes
a long time to solve. Disappointing, but definitely enough for our needs. In the pre-
vious problem, considering large enough primes does the work. It would take a long
time to factor a product of 1000-digit primes. We know this by estimating the time it
would take to factor this number using the best known method for factoring integers,
revealing the empirical side of cryptographic hardness. The security of cryptosystems
based on any assumption is thus tied to the most effective method to break it and to
the computation hardware available.

Cryptography being a pessimistic field by essence, theoretical breakthroughs must
also be taken into account to judge of a system’s security. Advances in the theory
of quantum computing revealed the existence of a theoretically efficient algorithm to
solve the factoring problem, by leveraging quantum mechanics properties with no

1.2 agreeing : key exchange 5

known classical counterparts. This algorithm, presented by Peter Shor in [77], is the
first algorithm provably solving the factoring problem efficiently. Even though con-
structing powerful enough quantum computers to carry out the computations appears
to be itself a daunting challenge, this breakthrough spurred the quest of finding cryp-
tographic assumptions resisting even the attacks of quantum computers.

1.2 agreeing : key exchange

While public key encryption has the unprecented property of not relying on pre-
shared secrets, it also suffers from a major drawback: it involves heavier operations
and communication costs than its symmetric counterpart. Resorting to hybrid encryp-
tions schemes solves this issue. A public key phase allows the parties to agree on
some common secret information, which is immediatly used to switch to symmetric
encryption. In their seminal work of 1976 [36], Diffie and Hellman provide a way to
implement this public key phase, by introducing a Key Exchange Protocol. A Key Ex-
change Protocol (KE) allows two parties to agree on a common symmetric encryption
key using their public keys. Their KE, dubbed "DH", after their initials, relies upon the
hardness of the Diffie–Hellman problem. While simple to understand, proving security The Diffie–Hellman

problem states that,
given an element g
of a cyclic group G

of order p and
g
a,gb for a,b

chosen integers
modulo p, it is hard
to distinguish the
value gab from
uniform.

of Key Agreement protocols has been challenging. Security proofs of a protocol first re-
quire to design a security model that captures the behaviour of real-world adversaries.
The multiple possible interactions between the different components of a protocol
make such models complex, and full security proofs notouriously hard to achieve. We
refer to [61] for a discussion around the necessary modularity in Key Agreement proto-
cols construction, in order to achieve simpler security proofs. They provide a modular
framework for constructing and analyzing security of such protocols, extending the
works of [11, 12, 16].

The DH key agreement scheme has been extended through the years. Blake-Wilson
et al. introduce in [16] the triple DH protocol (3-DH), which introduces ephemeral keys
sampled by each parties during the protocol, on top of the long term static keys used
in DH. These ephemeral keys are used in order to achieve several security properties,
some of which we discuss later on in this chapter. In 2016, Marlinspike and Perrin
[67] introduce the extended triple Diffie-Hellman key exchange protocol "X3DH", fol-
lowing the works of [16, 61]. Their protocol was meant to be used in the context of
secure messaging, as the key exchange phase for their messaging application Signal.
It is now also used by other major messaging applications such as Whatsapp or Face-
book Messenger. A recent work of Hashimoto et al. [51] (in the lines of [26]) proposed a
replacement for X3DH, based on quantum-resistant assumptions. This lead to the con-
struction of "PQXDH" [60] (Post-Quantum Extended Diffie-Hellman), very recently
adopted by Signal.

6 general introduction

1.3 secure messaging and the signal protocol

Once they have agreed on a secret, users are able to communicate securely. Their con-
versation is then handled using the secure messaging protocol of their application. As
shown in the survey of Ermoshina et al. [42], secure messaging has been implemented
in different flavours. However, the Signal protocol seems to have evolved to be the
standard protocol in the messaging market, as most of its competitors either adopted
the protocol itself or some variants.

A lot of cryptographic effort has been spent in studying, improving, or attacking the
Signal protocol (see [4, 14, 29, 30, 37] for instance). Influenced by the Off-The-Record
(OTR) [21] communication protocol, the double ratchet protocol is the cornerstone of
Signal’s messaging session. It is based on a generalization of the old concept of re-
keying – also known now as symmetric ratcheting – which aims at extending a sym-
metric secret’s lifetime by deterministically deriving a new secret that will be used in
the future. Informally, if k is a secret known by both parties communicating and f is a
deterministic function satisfying some security properties, rather than using k directly,
users can derive new keys k1,k2, . . . from k, by applying f. These subkeys can then be
used in cryptographic operations instead of the original key k. Repeating this process
allows users to avoid using the same key several times during their communication,
while also updating their shared keys synchronously, since f is deterministic. Abdalla
and Bellare show in [1], that re-keying, conformally to our intuition, improves a sys-
tem’s security if properly used. They achieve this by proving that a "secure" re-keying
process acts like stateful pseudorandom generator, which implies that generated sub-
keys look independent. Merlinspike and Perrin adapt the idea of symmetric ratcheting
(or re-keying) to the public key setting. Their idea is to alternate between symmetric
ratcheting phases and public key ratcheting phases, using DH to non-interactively es-
tablish a new secret once a public key is updated. Users A (holding public key pkA)
and B (holding public key pkB) would use DH to agree on a secret k. Then the first
user, say A, to send a message would use symmetric ratcheting with k to send mes-
sages. Once B wants to respond, it updates its public key to pk 0

B, performs a new DH
round to establish a new symmetric secret k 0 that it will use to send its messages.

This simple idea has several pleasant security consequences. First of all, if either of
the parties’ secret state is exposed, the symmetric ratcheting phase allows to protect
any previously sent messages as the symmetric key is always being updated and it
should not be possible to invert the updates. Secondly, updating the public keys al-
lows both parties to recover if they are compromised by an adversary that remains
passive (meaning that the adversary does not try to send messages to interfere with
the protocol execution). The first property is called forward secrecy and the second post-
compromise security.We are only

interested here in
those two properties

as they are related to
the contribution of

this thesis. Of
course, many other
properties can have

some importance
such as anonomity,

deniablity...

1.4 forward-secrecy and post-compromise security 7

1.4 forward-secrecy and post-compromise security

Ensuring that past communications are protected or recovering after compromise are
not new ideas. Such considerations in public key cryptography can be traced back
to the end of the 90’s, where several works such as [10, 28, 73] started to introduce
pritimives satisfying related properties. Authors of the OTR protocol emphasize in
[21] the difference between classical usecases of cryptography and its use in secure
messaging. This stems from the fact that, being used in daily communication, secure
messaging consists of multiple long-lived sessions. Careful care then needs to be taken
in which values are important for the protocols’ security, how long they live and how
much they are actually used during different sessions.

In a recent work, Blazy et al. [17] provide fine-grained security models and a metric
to analyze post-compromise security in a context related to secure messaging. This is
a considerable task, as different scenarios can be considered in which the difficulty of
achieving either properties varies. In group messaging, one might consider adversaries
that fully control the network or not, that potentially collude with group members at
some point or not... This makes for a variety of scenarios. This matters as, for instance,
it appears obvious that no post-compromise security can be achieved against an ac-
tive adversary that has fully compromised any member of a group, as it can hijack
the communication to impersonate that party. They also take into account the lifetime
of secret keys used in the protocol, of which we underlined the importance earlier. By lifetime of a

value, we refer to the
scope of its usage (is
it re-used in several
sessions? Specific to
a session?).

Another interesting property to consider in post-compromise security is the healing
speed, i.e. how many messages need to be exchanged in order to ensure recovery after
a leak. The metric given in [17] allows to compare healing speeds in several 2-party
protocols. Such comparisons are useful in order to find out protocols suited to the se-
curity needs. Critical systems might require fast post-compromise security, even with
some cost efficiency penalty, while others would tolerate a slower healing speed.

While simpler to achieve, forward-secrecy has also its complexities. Even though
Signal provides a very efficient solution by leveraging its symmetric layer, it cannot
be applied everywhere. In situations where no shared secret is established, forward-
secrecy must rely solely on the properties of the public key schemes involved. The
first construction of forward secure public key primitives were proposed by Bellare
and Miner [10] (signature) and Canetti et al. [28] (encryption). We defer the discussion
about the Canetti et al. construction to the technical introduction, but an important
aspect to underline is that their solution, while of theoretical interest, is highly ineffi-
cient. This is yet another gap between symmetric and asymetric cryptography, as no
real efficient equivalent of re-keying seems to exist in the public key world. The basic
intuition behind achieving forward secrecy is presented in [10]: any secret value has to
evolve during time in order to protect previously sent data. Note that different primi-
tives might not have the same needs in terms of forward secrecy. Holding a signature
key for long is not a security risk in terms of forward-secrecy, as compromise of that

8 general introduction

signature key has no effect on previous signatures. Leakage of a long-term encryp-
tion key actually allows to decrypt all previously encrypted messages. Signatures areSignature and

encryption here act
in an opposite ways

in some sense.
Signature key

leakage is a problem
for future

communications
(impersonation),

while encryption key
leakage a problem for

past
communications.

considered in [10], introducing a notion of forward-secrecy akin to timestamping. A
signature key is associated with a tag T , which is bound to this key in the verification
process. The next key gets assigned another tag, which is publicly computable from
the previous one. The signer can then erase the previous key, ensuring that the key
associated to tag T can no longer be compromised. Encryption has a more natural def-
inition of forward secrecy. Each public key that is used to encrypt data needs to evolve
in order to ensure protection of previously sent messages. As noted earlier, key evo-
lution is implemented in the Signal protocol by symmetric ratcheting for symmetric
keys and by sampling new public keys for public key encryption.

This thesis focuses on forward secrecy in the context of secure messaging. Our main
focus is the efficient construction of a recently introduced primitive called Updatable
Public Key Encryption (UPKE). UPKE allows to adopt a new and simple strategy
of public key evolution by leveraging homomorphic properties of some public key
encryption schemes. While not yet implemented in real-world systems, we believe
that this primitive can have an impact and that efforts in developping it to better
understand the associated security properties are meaningful.

2
T E C H N I C A L I N T R O D U C T I O N

As seen earlier, forward secrecy requires key updates. Forward secure encryption
schemes (FS-PKE) generate an initial keypair (pk0, sk0) and provide a way to derive
a chain of subsequent new keypairs (pk1, sk1), (pk2, sk2), . . . where each public key
can be publically derived from the previous one. The notion of FS-PKE is actually
very strong, as it implies non-interactive updates of the keypairs and a polynomially
bounded number of possible updates. This gives a hint about why no efficient con-
struction of FS-PKE is known to this day. The first construction of FS-PKE comes from
[28] and relies on hierarchical identity-based encryption (HIBE) [54]. A consequence
of the existence of unbounded HIBE is a public key version of re-keying. Indeed, in
an unbounded HIBE scheme, any secret key skl at level l allows to derive new keys at
level l+ 1. The level 0 key is the master secret key msk. These keys always correspond
to the same master public key mpk together with the current identity idj that is being
used, for j > 0 (here, we assume that idj+1 can be publically derived from idj). One can
instantiate an FS-PKE keypair chain by taking pk0 = (mpk, id0), pk1 = (mpk, id1), . . .
and then derive secret keys by starting with sk0 = msk and deriving skl from skl-1

for any l > 0. While functional, this approach inherits the major inefficiencies of the
HIBE constructions. For now, HIBE schemes remain mostly of theoretical interest and
relying on them does not seem very promising.

Another interesting approach is given in [35], where forward secrecy is achieved
through an efficient instantiation of puncturable encryption using a probabilistic data
structure (bloom filter). This comes at the cost of allowing key sizes to grow linearly
with the number of messages to protect, as the solution of [35] relies on a user gen-
erating a finite set of keys which get progressively punctured. It relies on the Boneh-
Franklin identity based encryption (IBE) scheme [18], in which the master secret key
is used to generate multiple identity keys. The master secret key is then removed
and the user is left with a set of identity keys, which get progressively deleted as
soon as they are used to decrypt a message. Here, the public keys pki always corre-
spond to the master public key pk, and the secret keys form a chain of strict inclusions
sk0) sk1) sk2 . . . One drawback is the size of the original key set sk0, as it must con-
tain at least as many keys as the number of messages to be protected. In [35], deletion
is handled through a probabilistic structure, which needs to work with a large number
of keys to compensate for the potential errors. This becomes an even worse concern
in the lattice setting, where even the most efficient IBE [40] would end up needing to
generate gigabytes of secret keys.

9

10 technical introduction

Recently introduced in [5, 39], Updatable Public Key Encryption (UPKE) provides
another approach which this times relaxes the non-interactivity of FS-PKE. Allowing
interactions in the update process gives hopes to achieve more efficient constructions.
In a UPKE, users are allowed to update any keypair by running an update algorithm.
This algorithm relies on some randomness sampled by the caller and generates a pub-
lic key and some private update information. This update information needs to be
sent to the owner of the keypair, which then proceeds to an update of its secret key
accordingly.

Formally, UPKE extends the syntax of PKE by adding new algorithms (UpdatePk,
UpdateSk). Given any public key pkt for some epoch t > 0 as input, the UpdatePk
algorithm outputs a new public key pkt+1 together with an update message up. The
update message contains the relevant private data that should be processed by the
owner of pkt in order to compute the secret key associated to pkt+1. In practice, the
update message contains an encryption under pkt of the random coin r used by the
updater to run UpdatePk. The security property of UPKE captures the idea that any
honest update should protect previously sent messages even if the updated secret key
leaks. This is formaly defined in the IND-CR-CPA security notion. It states that even if
the adversary is given the ability to choose the randomness for all updates (CR stands
for Chosen Randomness) but the last one, which is honestly made, leaking the final
secret key does not compromise security of the scheme. IND-CR-CPA was formalized
in [39], but a related notion is already present in [57]. To capture the ability of the ad-
versary to make updates, adversary is given access to an update oracle, which takes as
input a random coin r, and runs the update algorithm UpdatePk with input the public
key of the current epoch and uses randomness r. Note that this captures the behaviour
of honest adversaries, which actually run the UpdatePk algorithm for updates. The CCA
variant IND-CR-CCA is analogous to IND-CCA, where the adversary is given access
to a decryption oracle. IND-CR-CCA is however a strange hybrid where the adversary
has access to a decryption oracle, meaning that more care needs to be given to reg-
ular ciphertexts to achieve security, but updates are still honestly made. In practice,
the possibility of updating a key not owned by the updater can be puzzling and it
seems much easier to craft malicious updates than to have access to a decryption ora-
cle. Stronger security models are required in order to prevent ill-usages. The notion of
Chosen Update (CU), is introduced in [39] for that purpose. IND-CU-CPA for instance,
compared to IND-CR-CPA, captures the scenarios where the adversary can craft any
update. It also extends the syntax of UPKE to add a VerifyUpdate algorithm that allows
to publicly check than an update is wellformed. Such an algorithm is essential in prac-
tice, as it avoids the owner of the key that was updated to have to confirm that the
update was honest. This is particularly useful in the context of secure messaging as
the updatee may not even be online when the update is performed, which means that
a malicious update would remain undetected until they return. This type of denial-of-

technical introduction 11

service attack, even without any effect on security, could break the correctness for the
owner of the key and provide for a malicious way to kick users out of group.

While recent, this primitive has been constructed under several assumptions. The
first construction was proposed in [57] and relies on the Computational Diffie-Hellman
(CDH) assumption in the Random Oracle Model (ROM). This is still by far the most
efficient construction one can get with pre-quantum assumptions. The first instantia-
tions of UPKE in the standard model were given in [39], under the Decisional Diffie-
Hellman (DDH) and Learning With Errors (LWE) assumptions. These two construc-
tions are however quite inefficient as they rely on bit-by-bit encryptions for updates
and require statistical leftover hash lemmas. The DDH construction is based on the
BHHO [20] scheme, while the LWE one is based on the Dual-Regev [47, 75] cryptosys-
tem. Both work with secret keys of the form s 2 {0, 1}` and updates of the same form
r 2 {0, 1}`, for ` a security parameter. After a single update, the secret then becomes
s + r 2 {0, 1, 2}`. In both schemes, the public key can be seen as f(s), for f a public
function that is homorphic for the relevant group operation (we consider only + to
illustrate this). An update then consists of the updated public key f(s) + f(r) = f(s+ r)
and a bit-by-bit encryption of s. The encryption of r is the update information that
is sent to the owner of the secret key s for it to accordingly update its keypair. Both
schemes were shown to achieve circular security (CS) and leakage resilience (LR).

To prove IND-CR-CPA security of the schemes, Dodis et al. [39] introduce a new
security property that the underlying PKE scheme should retain IND-CPA security
even after the adversary is given s + r for r uniformly sampled in {0, 1}` and a bit-by-
bit encryption of s. They call it CS+LR security, as s + r can be seen as a leakage on
the original key s and it is given at the same time as an encryption of the secret key s.
CS+LR security actually corresponds to IND-CR-CPA security in which the adversary
decides to make no update. Once a scheme is proven to be CS+LR secure, one can
handle IND-CR-CPA security by making a reduction to CS+LR security. The reduction
works by showing that the updates made by the adversary can be handled on the fly
using homorphic properties of the PKE, assuming it has such properties.

While the Dual-Regev based construction of [39] provides a post-quantum UPKE,
their construction is mainly of theoretic interest. The estimates to instantiate their
scheme achieving 128 bits of security gives updates of size 360 kB and ciphertexts
of 33 kB. Real world applicability is clearly out of reach for sizes of this order of
magnitude.

Upgrading IND-CR-CPA to IND-CR-CCA/IND-CU-CCA security is done through
generic transforms in [39]. However, they rely on one-time strong True-Simulation
f-Extractable Non Interactive Zero Knowledge (f-tSE NIZK) argument [38]. While in- Dodis et al. [38]

show that building a
CCA secure
encryption scheme
together with a
NIZK for some
specific language in
NP suffices to build
a f-tSE NIZK

stantiable in the standard model, it is unknown whether or not it is possible to have
efficient constructions of those NIZKs.

This raises the following questions:

Q1. Is it possible to construct an efficient IND-CR-CPA UPKE scheme in the standard model ?

12 technical introduction

Q2. Is it possible to construct an efficient post-quantum IND-CR-CPA UPKE scheme ?
Q3. Is it possible to efficiently achieve IND-CU-CCA security ?

We answer those questions affirmatively, by providing two constructions of efficient
IND-CR-CPA secure UPKEs and several efficient transforms that allow to achieve IND-
CU-CCA security.

2.1 a construction under the dcr assumption

Chapter 4 presents our first construction of an efficient IND-CR-CPA UPKE under
the Decisional Composite Residuosity (DCR) assumption in the standard model. We
then extend the construction to obtain a practical IND-CR-CCA secure UPKE in the
Random Oracle Model. Finally, we adapt the extension to achieve IND-CU-CCA which
this time requires the additional Strong-RSA assumption for its security, still in the
Random Oracle Model.

2.1.1 Building an IND-CR-CPA UPKE

We start with the Elgamal-Paillier PKE scheme [27]. This scheme is particularly inter-
esting for two reasons. The first is that it has a message space than can be taken to
be arbitrarily large via a parameter ⇣ > 1. We consider an RSA modulus N = PQ,
for primes P,Q of the form P = 2p + 1,Q = 2q + 1, with p,q that are also primes.
Damgård et al. show in [34] that the Elgamal-Paillier cryptosystem can be set up such
that it works over ZN⇣+1 , with message space ZN⇣ . For the IND-CR-CPA construction,
we use only ⇣ = 1, but we take ⇣ = 2 for the IND-CU-CCA construction. The second
reason is that Malkin et al. showed in [66] that this scheme is circular secure, and even
Key Dependent Message (KDM) secure with a slight modification of the construction.

The scheme starts by computing a random generator g of the subgroup of ZN⇣+1 of
order �(N)/4 = pq. Note that this order is unknown to the users, as it can be used
to factor N and thus break security. In this subgroup, computing a discrete logarithm
is hard. However, there exists another subgroup of order N

⇣ generated by T = 1+N,
in which computing a discrete logarithm can easily be done using an algorithm given
in [34]. A secret key consists of a random element x - U([0, (N - 1)/4]) and theFor ⇣ = 1, finding x

such that
y = T

x mod N
2

can be achieved by
taking (y- 1)/N, as
T
x=1+xNmodN

2

corresponding public key is h = g
x mod N

⇣+1. Encrypting a message m 2 ZN⇣ is
done by sampling t - U([0, (N- 1)/4]) and outputing the ciphertext

(c0, c1) = (gt mod N
⇣+1,ht

T
m mod N

⇣+1).

To decrypt, it suffices to notice that c1 · c-x

0
= T

m mod N
⇣+1, from which m can be

recovered by computing the discrete logarithm.
To perform an update on a public key pk with this scheme, one can sample a ran-

dom element r - U([0, (N- 1)/4]), compute up = Enc(pk, r) and set the new public

2.1 a construction under the dcr assumption 13

key pk 0 = g
r · pk. Notice how the size of the plaintext space already gives a clear

advantage compared to the schemes given in [39], as the update now consists of a
single ciphertext instead of a sequence of bit-by-bit encryptions. Updating the secret
key is done by decrypting the ciphertext to recover r and set the new secret key sk 0 to
be sk+ r 2 Z.

To prove security, we follow the steps of [39] by first proving CS+LR security. We
actually consider a slightly different version of CS+LR security, where an adversary
for IND-CPA additionally receives a leakage sk + r 2 Z and an encryption Enc(pk, r)
(instead of Enc(pk, sk)). This is still equivalent to the original definition when the un-
derlying scheme is message-homorphic, but this modification makes our scheme more
efficient for reasons detailed in Section 4.2.2. In the CS+LR game, the adversary re-
ceives a public key pk, a challenge ciphertext under pk together with a leakage sk+ r

and Enc(pk, r), for r - U([0, (N- 1)/4]). We start by leveraging the algebraic structure
of the scheme to show that it is equivalent to work with pk 0 = g

-r instead of pk. This
implies that the only information given to the adversary that depends on the original
secret key sk is the leakage sk + r. Taking sk to be exponentially bigger than r allows
us to use a smudging lemma to argue that sk statistically hides r in the leakage sk+ r.
This means that the leakage can be replaced by a uniform element, which leaks no
information about r. Notice that now, as we work with pk 0 that depends only on r, we
are left to prove a standard form of circular security, which can be done à la [66].

This simple construction is already quite efficient. A ciphertext consists of only 2
group elements and an update is a single ciphertext. For 128-bit security, we consider
3072-bit primes. A ciphertext/update is then of size 1.5 kB, which is a considerable
improvement compared to the BHHO based construction. Indeed, with BHHO, a ci-
phertext is about 41 kB. Bit-by-bit encryption makes the update size even worse with
at least 52 MB.

2.1.2 Upgrading to IND-CR-CCA/IND-CU-CCA

In order to upgrade our scheme’s security we rely on the Naor-Yung paradigm [70]. It
allows us to achieve CCA security simply by adding a ciphertext per encryption and
a NIZK proof. This works by extending the public parameters of the scheme with a
supplementary generator hd of the subgroup of order pq. This additional generator
works as a public key whose associated secret key should not be known by any party.
To encrypt a message m under a public key pk, one then computes two ciphertexts c0 =
Enc(pk,m) and c1 = Enc(hd,m), together with a NIZK proof ⇡ that both ciphertexts
encrypt the same plaintext. In the security proof, the decryption oracle is handled
by using hd as a backdoor. By setting hd = g

x for some uniform x, the reduction
can decrypt any wellformed ciphertext (c0, c1,⇡) as it has the guarantee (through
soundness of the NIZK) that c0 and c1 encrypt the same message and it knows the

14 technical introduction

secret key to decrypt c1. Notice that hd is a public key that is never updated. In
practice, this should not be a problem as the secret key associated to hd is not known.

On a practical point of view, the NIZK proof is generated by compiling a ⌃-protocol
for plaintext equality with the Fiat-Shamir heuristic [44]. A proof then consists of 4
group elements and 4 integers. This amounts to a ciphertext of 8.3 kB for the CCA
variant. While too much for real-world scenarios, this is still in an acceptable range,
especially compared to the BHHO construction. We show later on how to achieve CCA
security without this size blow-up.

The same rationale can be applied to achieve CU security. Indeed, by devising a
sigma protocol for the language of wellformed updates (which we again compile to
a NIZK proof system) and performing the same Naor-Yung paradigm transformation
for the updates, we are able to reduce IND-CU-CCA security to IND-CR-CCA security.
The NIZK proof of wellformedness allows us to argue that a witness exists (here, a
witness is the randomness r used for the update), and the double encryption with
NIZK Naor-Yung transform allow to extract that witness r and give it as input to the
update oracle of the IND-CR-CCA game. At first glance, this only costs an additional
NIZK proof. However, the major drawback of this technique is that we are compelled
to work with ⇣ = 2, which induces a blow-up in the group size. Indeed, we adapt
a technique from [27] that is used to prove that a ciphertext encrypts the discrete
logarithm of a given element of the group. Doing so introduces a soudness gap, as we
are only able to prove membership of the witness (the randomness r) in a superset of
[-(N- 1)/4, (N- 1)/4]. For this superset to fit in the plaintext space, we work in ZN3 .

2.2 a construction under the lwe assumption

In Chapter 5, we present our second efficient construction of UPKE. The main motiv-
itation was to provide another efficient UPKE but this time based on a post-quantum
assumption. The efficiency of the LWE based construction of [39] heavily suffered
from their use of flooding techniques to prove security. Flooding relies on the use of
super-polynomial modulus-to-noise ratio, allowing to remove unwanted noise by ar-
guing that the statistical discrepancy introduced by the removal is negligeable. The
challenge is then twofold. We first need, as for the previous construction, to find a
lattice-based PKE scheme that has circular-security and leakage-resilience properties,
and a sufficiently large plaintext space. Second, we need to avoid the use of noise
flooding, in order to be able to work with a polynomial modulus, which is absolutely
necessary to hope to achieve reasonable sizes.

2.2.1 Building a post-quantum IND-CR-CPA UPKE

A natural idea is to start with the recently standardized KYBER [22] PKE/KEM. It
offers the advantages given by the structured lattice assumption Module Learning

2.2 a construction under the lwe assumption 15

With Errors (MLWE) [24, 62], small sizes and leeway to fix security parameters. We In [24], MLWE is
actually introduced
as Generalized
Learning With
Errors

here however consider the scheme on the ring of integers Z, which simplifies our
study.

In this integer version of KYBER, we fix two global parameters q > p > 0. A public
key is an LWE sample consisting of a uniform matrix A 2 Zn⇥n

q and a vector b =
As + e 2 Zn

q , with s, e small vectors sampled from a discrete Gaussian distribution.
An encryption of a message µ 2 Zp is computed as

ct0 = XA + E, ct1 = Xb + f + µ · bq/pc,

where f, X and E are sampled from a discrete Gaussian distribution. Decryption can
be done by rounding ct1 - ct0s, using the relation:

ct1 - ct0s = Xb + f - (XA + E)s + µ · bq/pc
= Xe + f - Es + µ · bq/pc

where the term Xe + f - Es is small.
Updating a public key (A, b = As+ e) is done by sampling r and ⌘ from a Gaussian

distribution and setting the new public key to be (A, b + Ar + ⌘). The update infor-
mation consists only of an encryption of r. Notice that for the same reason that e is
not needed for decryption, the vector ⌘ does not need to be transmitted to the key
owner. The updated secret key is thus s + r. Unlike DCR, LWE inherently carries ge-
ometrical constraints. As noted earlier, correctness of decryption depends on the size
of Xe + f - Es, which grows with the key s and the noise e. The sizes of both elements
grow with updates, which means that it necessary to control the number of updates
in order to guarantee correctness.

As a solution, we introduce a parameter k which controls the number of updates
allowed in the scheme. Note that the size of the module q depends on k. For 128-bit
security, having k = 2

5 updates allowed gives a scheme whose ciphertext size is 1.8 kB,
roughly losing a 2.3 factor compared to KYBER’s 0.8 kB ciphertexts. This difference is
due to the necessary increased size of the modulus q. An update is a bit heavier, as it
is an encryption of a vector, with 5.5 kB. Sizes are given in

the tables of
Section 2.3.

2.2.2 IND-CR-CPA security & a necessary new assumption

As opposed to the previous construction, we tackle IND-CR-CPA security directly
instead of going through CS+LR. An adversary for IND-CR-CPA first receives a public While probably

feasible, the CS+LR
approach heavily
relied on
homomorphic
properties the
scheme. The
presence of noise in
LWE schemes can
make
homomorphism
tricky to handle, as
we will see later on.

key pk0 = (A, b = As + e). It then can make several update queries using random
coins (r0,⌘0), (r1,⌘1) . . . and after asks for a challenge for a plaintext pair (µ0,µ1) of
its choice at epoch chall. This challenge is computed as an encryption of one of the
two plaintexts under the public key

pkchall = (A, b + A�
r

chall
+�⌘

chall
),

16 technical introduction

where �r

chall
=

P
chall

i=1
ri and �

⌘
chall

=
P

chall

i=1
⌘i. The adversary can then again

perform updates, until it wants a leak of the secret key at epoch last. Before the
challenger sends the secret key to the adversary, it performs a final update using
randomness (r⇤,⌘⇤) and sends

sk⇤ = s +�r

last
+ r

⇤

pk⇤ = (A, b + A(�r

l
+ r

⇤) +�⌘
last

+⌘⇤)

up
⇤ = Enc(pklast, r

⇤)

to the adversary. The latter must guess which plaintext was encrypted given this infor-
mation.

We start by observing that up⇤ can be homorphically transformed into an encryption
of -s using sk⇤ = s + �r

last
+ r

⇤, as �r

last
is known. This amounts to prove circular-

security with the additional information given by the leakage. We then notice that for
any ciphertext

(ct0, ct1) = (XA + E, Xb + f + µ · bq/pc)

there is an algebraic relation between ct0 and ct1, that can be written as

ct1 = ct0s + f + Xe - Es + bq/pc · µ.

At this step, noise flooding is used in [39] to argue that by taking the noise f largeWhile different, the
Dual-Regev scheme

used in [39] shares a
similar agebraic

structure than ours.

enough compared to Xe - Es, one can compute ct1 as

ct1 = ct0s + f + bq/pc · µ,

removing the term Xe - Es. This allows them to prove security directly from LWE,
given that replacing ct0 by a random group element turns ct1 into an LWE sample. We
deviate from their analysis from this point, since we aim to avoid noise flooding and
have to deal with the original relation between ct0 and ct1.

Our objective is to prove pseudorandomness of ct0 and ct1 even in the presence of
the cross term Xe-Es. Using only LWE appears to be insufficient, since the cross term
contains information about both the secret X and noise E matrices. This can be seen as
a particular instance of the Extended LWE problem [71], which claims that pseudoran-
domness of an LWE instance (A, As + e) still holds given the additional information
hz, ei mod q, with z a small vector chosen by the adversary before receiving the ma-
trix A. However, in our case, both key s and noise e involved may contain informationIt is important

that z is chosen
before A, as in [25],
the reduction from
LWE to Extended

LWE works by
sampling A with a

distribution
depending on z.

(coming from the updates) chosen by the adversary after seeing the matrix A. This
compells us to introduce a new assumption: Adaptive Extended LWE (AextLWE). It
states that even if an adversary can choose z after seeing A, the Extended LWE prob-
lem remains hard. There is, however, a small difference with Extended LWE, as we
take the hint to be hz, ei+ g mod q, with g a small Gaussian vector. We then prove that
LWE reduces to this new assumption using discrete Gaussian convolution, similar to
[58].

2.2 a construction under the lwe assumption 17

The reduction proceeds as follows: Given an LWE instance (A, b), first send A to the
AextLWE adversary to receive its choice of small hint vector z. In response, sample an
additional error e

0 and Gaussian term g
0 from a well-chosen distribution that depends

on the small vector z chosen by the adversary, and return b
0 = b + e

0 and a hint
h = hz, e

0i+ g
0.

One can rewrite the hint as

h =
⌦
z, e + e

0↵- hz, ei+ g
0 =

⌦
z, e + e

0↵+ g

for g = - hz, ei+ g
0. If the vector b is equal to As + e, as we have b

0 = As + (e + e
0)

and h = hz, e + e
0i+ g, it suffices to show that the joint distribution of e + e

0 and g is
a spherical Gaussian. This is achieved by applying a convolution lemma to the sum

e + e

0

-z
T

e + g
0

!

=

Id

-z
T

!

e +

e
0

g
0

!

,

which is possible if the standard deviation is larger by a factor of kzk2. The analysis
for the case where of uniform b is identical.

2.2.3 A Fujisaki-Okamoto transform for UPKE

The technique used to achieve CCA security with the DCR construction had the dis-
advantage to cause a blow-up in the size of ciphertexts mainly due to the NIZK proof
that had to be generated. We provide an alternative, by building an adaptation of the
Fujisaki-Okamoto [46] to UPKEs. We actually introduce the notion of Updatable Key
Encapsulation Mechanism (UKEM) and provide an FO transform that allows to build
a IND-CR-CCA UKEM in the ROM, from a IND-CR-CPA UPKE. Note that the built
UKEM has the same efficiency as the underlying UPKE. This FO transform can thus
be used to enhance the result presented in Chapter 4.

Encapsulating under a public key pk is done by computing a ciphertext ct of a uni-
form message m, with respect to a random coin computed using a hash function G,
modeled as a random oracle, with inputs pk and m. This derandomization step binds
a ciphertext to its content and the key that it was encrypted under. The encapsulated
key is H(ct,m), where H is another hash function, also modeled as a random oracle.
Decapsulation is done by decrypting the ciphertext ct to recover the message m. Once
decrypted, one must perform a check that the randomness used was indeed G(pk,m).
This is done by rerunning the encryption algorithm with this randomness and check-
ing equality with ct. If the check passes, the output key is H(ct,m). The update proce-
dures of the UKEM are exactly the same as those of the underlying UPKE. The main
difference with the FO transform for PKEs is that the target public key is used in
the derandomization step. This is used in the security proof, in order to prevent the
adversary from abusing the update mechanism.

18 technical introduction

2.2.4 A generic transform to achieve CU security

Finally, we generalize the idea applied to the DCR construction by proving that the
double encryption and NIZK Naor-Yung paradigm provides a generic transform to
achieve CU security. Specifically, we prove that given an IND-CR-CCA UKEM, we
can build an IND-CU-CCA UKEM. In terms of efficiency, the ciphertext size remains
unchanged. Only the updates are impacted, as we use a second encryption and a NIZK
proof that both ciphertexts decrypt to the same message.

2.3 performances

To summarize our results, we give concrete sizes achieved by our constructions and
compare them to the state of the art. For the sake of completeness, we give sizes for
IND-CR-CPA constructions in Table 1 and for IND-CR-CCA constructions in Table 2
while the latter is quasi identical to the former due to our FO transform. This is to put
the emphasis on the efficiency achieved in the standard model for IND-CR-CPA and
also show that our FO transform allows to lift all previous constructs to IND-CR-CCA
for free in the ROM. Notice that in Table 2, we give the two IND-CR-CCA variants
of the DCR construct, one using the Naor-Yung paradigm and the other with the FO
transform, even though the first is technically a UPKE while the second is a UKEM.
Finally, we present the sizes of IND-CU-CCA constructions in Table 3. While definitely
being the most efficient pre-quantum scheme in the ROM, the UPKE from [57] is not
easily turned into an IND-CU-CCA one. Their construction heavily relies on the ROM,
even for IND-CR-CPA security, which makes our NIZK based approach difficult to
apply. Even though our generic CU transform applies to our LWE based scheme, we
do not give explicit sizes as some care should be taken in building the NIZK proofs
of plaintext equality. Such efficient proofs rely on recent frameworks from [64], which
seem to be evolving quite fast and are still complex to handle practically.

2.4 publications

This thesis is based on the following publications:

- [49] Updatable Public Key Encryption from DCR: Efficient Constructions With

Stronger Security

C. Abou Haidar, B. Libert, A. Passelègue. CCS 2022.

- [50] Efficient Updatable Public-Key Encryption from Lattices

C. Abou Haidar, A. Passelègue, D. Stehlé. Asiacrypt 2023.

2.4 publications 19

� ROM k |ct| |up|

CDH-based from [57] 128 Yes 1 64B 64B

LWE-based from [39] 120 No 2
5 33KB 360KB

DDH-based from [39] 128 No 1 41KB 52MB

DCR-based construction 128 No 1 1.5KB 1.5KB

LWE-based construction 128 No 2
5 1.8KB 5.4KB

128 No 2
10 3.0KB 12KB

116 No 2
15 5.8KB 12KB

128 No 2
20 9.1KB 27KB

Table 1: Sizes for IND-CR-CPA UPKE schemes. Sizes are given with respect to bit-security �.

� k |ct| |up|

CDH-based from [57] (+ FO) 128 1 64B 64B

LWE-based from [39] 120 2
5 33KB 360KB

DCR-based construction (+ NY) 128 1 8.3KB 1.5KB
DCR-based construction (+ FO) 128 1 1.5KB 1.5KB

LWE-based construction 128 2
5 1.8KB 5.4KB

128 2
10 3.0KB 12KB

116 2
15 5.8KB 12KB

128 2
20 9.1KB 27KB

Table 2: Sizes for IND-CR-CCA UPKE/UKEM schemes, in the ROM. Sizes are given with re-
spect to bit-security �.

� k |ct| |up|

DCR-based construction (+ NY) 128 1 11KB 13KB
DCR-based construction (+ FO) 128 1 2.0 KB 13KB

Table 3: Sizes for IND-CU-CCA UPKE/UKEM schemes, in the ROM. Sizes are given with
respect to bit-security �.

3
P R E L I M I N A R I E S

This chapter recalls the definitions related to Updatable Public Key Encryption (UPKE)
together with several definitions and results needed in the following chapters.

3.1 notations

For a distribution S, we note s - S the fact that s is sampled using distribution S.
For a random variable X, we write X ⇠ S if X follows the distribution S. We let B(p)
denote the Bernouilli distribution of parameter p. We write a ⇡� b for a,b, � > 0 if
there exists " < � such that |a- b| = ".

We say an algorithm is PPT if it is probabilistic and polynomial-time. We use log to
denote the logarithm in base 2 and ln to denote the logarithm in base e.

3.2 updatable public key encryption

We recall the syntax of Updatable Public Key Encryption and adapt the underlying
IND-CR-CPA security notion defined in [39], with a minor modification: we define
correctness and security with a bound on the number of updates. This is motivated by
the fact that, in LWE-based schemes, updates might make the key slightly larger and
then after a (large but polynomial) number of updates, correctness of decryption is no
longer guaranteed.

Definition 1. (Updatable Public Key Encryption) An updatable public key encryption scheme
consists of a tuple UPKE = (KeyGen, Enc, Dec, UpdatePk, UpdateSk) of PPT algorithms with
the following syntax:

• KeyGen(1�) takes as input a security parameter 1� and outputs a pair (pk, sk).

• Enc(pk,m) takes as input a public key pk and a message m and outputs a ciphertext ct.

• Dec(sk, ct) takes as input a secret key sk and a ciphertext ct and outputs a message m 0.

• UpdatePk(pk) takes as input a public key pk and outputs an update up and a new
public key pk

0.

• UpdateSk(sk,up) takes as input a secret key sk and an update up and outputs a new
secret key sk

0.

21

22 preliminaries

(k, �)-Correctness: Let (pk0, sk0) KeyGen(1�) be a key pair and k > 0 be an integer. For
t < k, define

(upt+1,pkt+1) UpdatePk(pkt) and skt+1 UpdateSk(skt,upt+1).

The UPKE scheme is said to be (k, �)-correct, for � > 0, if for all messages m and t 6 k

P [Dec(skt, Enc(pkt,m)) 6= m] < �,

where the probability is over the coins of the underlying algorithms.

3.3 ind-cr-cpa security of upke

We give the definition from [39] which we adapt to the bounded number of updates
setting by adding a parameter k for the number of updates.

Definition 2 (k-IND-CR-CPA security). Let k > 0 be an integer and (KeyGen, Enc, Dec,
UpdatePk, UpdateSk) be a UPKE scheme. Let R be the randomness space of

UpdatePk. We give the k-IND-CR-CPA security game in Figure 1.
The advantage of A in winning the above game is

AdvIND-CR-CPA

UPKE (A) =

����Pr
⇥
� = �0⇤- 1

2

���� .

A UPKE scheme is k-IND-CR-CPA-secure if for all PPT attackers A, the advantage of win-
ning AdvIND-CR-CPA

UPKE (A) is negligible.

Parameters: �,k.

Game(A):
t = 0; . Epoch counter
� - U({0, 1});
(pk0, sk0) KeyGen(1�);
(m⇤

0
,m⇤

1
, st) A

Oup (pk0);
c
⇤ Enc(pkt,m⇤

�
);

st A
Oup (c⇤, st);

r
⇤ - U(R);
(pk⇤,up⇤) UpdatePk(pkt, r⇤);
sk

⇤ UpdateSk(skt,up⇤);
�

0 A(pk⇤, sk⇤,up⇤, c⇤, st);

A wins if � = � 0.

Oup(r):
t = t+ 1;
if t > k

return ?;
(pkt,upt) UpdatePk(pkt-1; r);
skt UpdateSk(skt-1,upt);

Figure 1: k-IND-CR-CPA security game.

3.4 ind-cr-cca security of upke 23

3.4 ind-cr-cca security of upke

Definition 3 (k-IND-CR-CCA UPKE security in the ROM). Let (KeyGen, Enc, Dec, UpdatePk,
UpdateSk) be a UPKE. Let R denote the randomness space of UpdatePk. We give the game for
k-IND-CR-CCA security for an adversary that has access to a random oracle H in Figure 3.

Parameters: �,k.

Game(A):
t = 0; . Epoch counter
� - U({0, 1});
(pk0, sk0) KeyGen(1�);
(m⇤

0
,m⇤

1
, st) A

Oup,Odec, H (pk0);
c
⇤ Enc(pkt,m⇤

�
);

pk
chall = pkt;

st A
Oup,Odec,H (c⇤, st);

r
⇤ - U(R);
(up⇤,pk⇤) UpdatePk(pkt, r⇤);
sk

⇤ UpdateSk(skt,up⇤);
�

0 A
H(pk⇤, sk⇤,up⇤, c⇤, st);

A wins if � = � 0.

Oup(r):
t = t+ 1;
if t > k

return ?;
(pkt,upt) UpdatePk(pkt-1; r);
skt UpdateSk(skt-1,upt);

Odec(c):
if pkt = pk

chall
^ c = c

⇤

return ?;
return Dec(skt, c).

Figure 2: UPKE k-IND-CR-CCA security game in the ROM.

The advantage of A in winning the above game is

AdvIND-CR-CCA

UPKE (A) =

����Pr
⇥
� = �0⇤- 1

2

���� .

A UPKE scheme is k-IND-CR-CCA-secure if for all PPT attackers A, the advantage of win-
ning AdvIND-CR-CCA

UPKE (A) is negligible.

Compared to the original definition of [39], a slight modification is made to the
decryption oracle. The condition in the safety check is pkchall = pkt ^ c = c

⇤ instead
of t = chall^ c = c

⇤. This is to handle a problem underlined in [8], where the authors
show that an attack is possible in the original definition of [39]. If the adversary is able
to make an update that does not change the key (using what they call "non-influential
randomness"), then by making such an update, the original safety check can be trivially
bypassed. Note that this can typically be achieved by considering two consecutive
updates of the public key, where the second one is taken to be "the opposite" of the
first, so as to come back to the original key. The solution of [8] is to bind ciphertexts to
epochs using the random oracle, making each ciphertexts generated at an epoch t only
decryptable at this epoch with the oracle. This makes the trivial attack impossible as

24 preliminaries

even if the adversary is able to come back to the challenge key, the challenge ciphertext
cannot be decrypted by the oracle as the epoch has changed.

We circumvent this problem using this additional check in the security model, but
the solution from [8] could also be applied here.

3.5 updatable key encapsulation mechanism

We introduce the KEM variant of UPKE, which we term Updatable KEM or UKEM.
Defining the KEM equivalent of UPKE seems particularly relevant considering that
UPKE was introduced as a group messaging primitive, hence requiring real-world
efficiency.

We adapt the definitions of IND-CR-CCA and IND-CU-CCA security notions defined
by [39] for UPKEs.

Definition 4 (Updatable KEM (UKEM)). An updatable KEM is a tuple (KeyGen, Encaps,
Decaps, UpdatePk, UpdateSk) of algorithms with the following syntax:

• KeyGen(1�) takes as input a security parameter 1� and outputs a pair (pk, sk).

• Encaps(pk) takes as input a public key pk and outputs an encapsulation c and a key K.

• Decaps(sk, c) takes as input a secret key sk and an encapsulation c and outputs a key K
0.

• UpdatePk(pk) takes as input a public key pk and outputs an update up and a new
public key pk

0.

• UpdateSk(sk,up) takes as input a secret key sk and an update up and outputs a new
secret key sk

0.

(k, �)-Correctness: Let (pk0, sk0) KeyGen(1�) be a key pair and k > 0 be an integer. For
t < k, define

(upt+1,pkt+1) UpdatePk(pkt) and skt+1 UpdateSk(skt,upt+1).

The UKEM scheme is said to be (k, �)-correct, for � > 0, if for all t 6 k

P [Decaps(skt, ct) 6= Kt | (ct,Kt) Encaps(pkt)] < � ,

where the probability is over the coins of the underlying algorithms.

The notion of k-IND-CR-CCA security corresponds to a variant of k-IND-CR-CPA
where the adversary is given access to a decapsulation oracle. We define k-IND-CR-CCA
in the Random Oracle Model (ROM), as we make use of the Fujisaki-Okamato trans-
form in Section 5.4 in order to build our IND-CR-CCA UKEM.

3.6 ind-cu-cca security for upke/ukem 25

Parameters: �,k.

Game(A):
t = 0; . Epoch counter
� - U({0, 1});
(pk0, sk0) KeyGen(1�);
st A

Oup,Odec,H (pk0);
(c⇤,K⇤) Encaps(pkt);
if � = 1

K
⇤ = U(K);

pk
chall = pkt;

st A
Oup,Odec,H (c⇤, st);

r
⇤ - U(R);
(up⇤,pk⇤) UpdatePk(pkt, r⇤);
sk

⇤ UpdateSk(skt,up⇤);
�

0 A
H(pk⇤, sk⇤,up⇤, c⇤, st);

A wins if � = � 0.

Oup(r):
t = t+ 1;
if t > k

return ?;
(pkt,upt) UpdatePk(pkt-1; r);
skt UpdateSk(skt-1,upt);

Odec(c):
if pkt = pk

chall
^ c = c

⇤

return ?;
return Decaps(skt, c).

Figure 3: k-IND-CR-CCA security game in the ROM. Note that if � = 0, then the value of the
key K

⇤ is the output of Encaps.

Definition 5 (k-IND-CR-CCA KEM security in the ROM). Let (KeyGen, Encaps, Decaps,
UpdatePk, UpdateSk) be a UKEM with key space K. Let R denote the randomness space of
UpdatePk. The game for k-IND-CR-CCA security for an adversary that has access to a random
oracle H is given in Figure 3.

The advantage of A in winning the above game is

AdvIND-CR-CCA

UKEM (A) =

����Pr
⇥
� = �0⇤- 1

2

���� .

A UKEM scheme is k-IND-CR-CCA-secure if for all PPT attackers A, the advantage of
winning AdvIND-CR-CCA

UKEM (A) is negligible.

Notice that compared to the IND-CR-CCA definition for UPKE given in [39], we add a
check in the Odec oracle that the current public key pkt is different from the challenge
public key pk

chall. This disallows trivial attacks in which an adversary might make
carefully chosen updates that would cancel out in order to get back to the challenge
public key and issue a decryption query on the challenge. Another approach to solve
this is given in [8], which generalizes the one considered in [49].

3.6 ind-cu-cca security for upke/ukem

In order to define the stronger k-IND-CU-CCA security notions for UKEM/UPKE, we
add an algorithm VerifyUpdate to the UKEM/UPKE syntax that allows a user to check

26 preliminaries

the validity of an update. Specifically, the algorithm VerifyUpdate(pk, (pk 0,up)) takes
as input the current epoch public key pk and a proposed update (pk 0,up) and returns
a Boolean value. k-IND-CU-CCA security aims to guarantee security against adversaries
who make malicious updates.

Definition 6 (k-IND-CU-CCA UKEM/UPKE security in the ROM). Let (KeyGen, Encaps,
Decaps,UpdatePk,UpdateSk,VerifyUpdate) be a UKEM (resp. (KeyGen, Enc, Dec, UpdatePk,
UpdateSk,VerifyUpdate) be a UPKE). The security game for IND-CU-CCA is identical to the
IND-CR-CCA game, except for the modified Oup(·) oracle. We present the modified Oup oracle
in Figure 4.

Oup(pk 0,up):
if VerifyUpdate(pkt, (pk 0,up)) = ?

return ?;
pkt+1 = pk

0;
skt+1 UpdateSk(skt,upt+1);
t = t+ 1.

Figure 4: k-IND-CU-CCA security game in the ROM.

A UKEM (resp. UPKE) scheme is k-IND-CU-CCA-secure if for all PPT attackers A, its
advantage of winning AdvIND-CU-CCA

UKEM (A) (resp. AdvIND-CU-CCA

UPKE (A)) is negligible.

For both UPKE and UKEM, we omit the parameter k in k-IND-CR-CPA/ IND-CR-
CCA/ IND-CU-CCA if it is clear from context.

3.7 non-interactive zero knowledge proofs

Finally, we recall standard definitions of zero-knowledge proofs [48]. Non-Interactive
Zero Knowledge Proofs are used afterwards to upgrade security from IND-CR-CPA
to IND-CU-CCA.
Interactive proof systems. An interactive proof system (IPS) for a language L is a
two-party protocol between a prover P and a verifier V, where the former wants to
convince the latter that a statement x belongs to L. An IPS is zero-knowledge when this
can be achieved without having P leak any information beyond the fact that x 2 L.
This is formalized by requiring the existence of a zero-knowledge simulator S that pro-
duces transcripts indistinguishable from real conversations between P and V. An IPS
provides soundness when even an unbounded P cannot trick V into accepting a proof
of a false statement. When the soundness condition only holds for polynomial-time
cheating provers, an IPS is called an argument. A zero-knowledge proof/argument
system is non-interactive (NIZK) when a proof/argument consists of a single message
from P to V.

3.7 non-interactive zero knowledge proofs 27

We now recall the definition of ⌃-protocols [32].

Definition 7. Let an NP language L associated with a relation R. A 3-move interactive proof
system ⇧ = (P,V) is a ⌃-protocol for L if it satisfies the following:

• 3-Move Form: P and V proceed as follows: (i) P inputs (x,w) 2 R, computes (a, st)
P(x,w) and sends a to V; (ii) V sends back a random challenge c; (iii) P sends a response
z = P(x,w,a, c, st) to V; (iv) On input of (a, c, z), V outputs 1 or 0.

• Completeness: If (x,w) 2 R and P honestly computes (a, z) for a challenge c, then
V(x, (a, c, z)) outputs 1 with probability 1- negl(�).

• Special soundness: There exists a PPT knowledge extractor E that, for any statement
x, on input of two accepting transcripts (a, c, z) and (a, c 0, z 0) with c 6= c

0, outputs a
witness w 0 such that (x,w 0) 2 R.

• Special honest-verifier zero-knowledge: There is a PPT simulator S that inputs
x 2 L and a challenge c 2 C. It outputs (a, z) S(x, c) such that (a, c, z) is indistin-
guishable from a real transcript (for (x,w) 2 R) with challenge c.

The special soundness property can be relaxed to hold in the computational sense.
In this case, we require that no PPT cheating prover be able to find two transcripts
(a, c, z), (a, c 0, z 0), with c 6= c

0, for which the extractor fails to compute a witness.
In order to prove plaintext equalities via the Naor-Yung paradigm, we require a

⌃-protocol satisfying the following property.

Definition 8 (Quasi-unique responses, [43]). Let � 2N a security parameter. A ⌃-protocol
(P,V) has quasi-unique responses if, for any PPT algorithm A, it holds that

Pr[V(x,a, c, z) = V(x,a, c, z 0) = 1^

z 6= z
0
| (x,a, c, z, z 0) A(1�)] = negl(�)(�).

Removing Interaction. In the random oracle model, the Fiat-Shamir heuristic [44]
provides an efficient way to build NIZK proofs by collapsing interactive ⌃-protocols.
The interaction between P and V is removed by replacing the latter’s challenge with
a hash value H(x,a) computed by the prover, where H is a hash function modeled
as a random oracle. The resulting NIZK protocol is denoted by (PH,VH). In the zero-
knowledge simulation, the simulator S is allowed to program the random oracle at
arbitrary points. As in [43], we model it as a stateful algorithm that operates in two
modes: a mode (hi, st) S(1, st,qi) that handles random oracle queries (typically via
lazy sampling); and a second mode (⇡, st) S(2, st, x) that simulates actual proofs.
The different calls to S(1, ·, ·) and S(2, ·, ·) share a common state st which is updated
after each operation.

28 preliminaries

Definition 9 (NIZK in the ROM). Let an NP language L associated with a relation R. Let
(S1, S2) denote oracles such that S1(qi) returns the first output of (hi, st) S(1, st,qi)
and S2(x,w) returns the first output of (⇡, st) S(2, st, x) if (x,w) 2 R. A non-interactive
protocol (PH,VH) is zero-knowledge for L in the random oracle model if there exists a PPT
simulator S such that, for any PPT distinguisher D, we have

|Pr[DH(·),PH(·,·)(1�) = 1]- Pr[DS1(·),S2(·,·)(1�) = 1]| = negl(�),

where oracles P and S2 both output ? on input of (x,w) 62 R.

It is known that, in the random oracle model, the Fiat-Shamir transform compiles
⌃-protocols into NIZK protocols.

Theorem 1. Let � be a security parameter. Consider a ⌃-protocol ⇧ = (P,V) for a language L
in NP. Let H be a function that ranges over the challenge space of ⇧. In the random oracle model,
the proof system ⇧

FS = (PH,VH) derived from ⇧ by applying the Fiat-Shamir transform is a
NIZK argument system for L if the special soundness of ⇧ holds (in the statistical or computa-
tional sense). Moreover, if the special honest-verifier zero-knowledge property of ⇧ holds in the
statistical sense (resp. computational), then ⇧FS provides statistical (resp. computational) ZK.

Simulation-soundness. The soundness property of a NIZK proof ensures that no
cheating prover P⇤ can come up with a convincing proof for a false statement. The no-
tion of simulation-soundness [76] requires that soundness be preserved even if a cheating
prover is allowed to see simulated proofs (generated by the NIZK simulator) for pos-
sibly false statements chosen by P

⇤. In the random oracle model, we use a definition
of simulation-soundness given in [43].

Definition 10 (Unbounded simulation-soundness). Let L an NP language. Consider a
proof system (PH,VH) for L where the zero-knowledge simulator is denoted by S. Denote by
(S1, S2) the oracles such that S1(qi) returns the first output of (hi, st) S(1, st,qi) and
S2(x) returns the first output of S(2, st, x) (possibly with x /2 L). A protocol (PH,VH) is
(unbounded) simulation-sound with respect to S in the random oracle model if, for any PPT
adversary A, we have

Pr[(x⇤,⇡⇤) A
S1(·),S2(·)(1�) :

(x⇤,⇡⇤) 62 T ^ x
⇤ 62 L ^ V

S1(x⇤,⇡⇤) = 1] = negl(�),

where T is the list of pairs (xi,⇡i) such that xi was queried to the simulator and ⇡i was the
latter’s response.

Fouque and Pointcheval [45] showed that, in the random oracle model, certain ⌃-
protocols are turned into simulation-sound NIZK proofs by applying the Fiat-Shamir
heuristic. Their proof applies to a restricted family of IPS. In [43], Faust et al. gave a
more general result that is used in our CCA-secure constructions.

3.7 non-interactive zero knowledge proofs 29

Theorem 2 ([43]). Consider a non-trivial ⌃-protocol (P,V) for an NP language L, which
satisfies the quasi-unique response property of Definition 8. In the random oracle model, the
proof system (PH,VH) derived from (P,V) via the Fiat-Shamir transform is a simulation-sound
NIZK.

We note that, unlike the result of Fouque and Pointcheval [74], Theorem 2 does not
rely on the forking lemma [74] and thus provides tighter concrete security bounds.

Part II

C O N S T R U C T I O N S

4
A C O N S T R U C T I O N U N D E R T H E D C R A S S U M P T I O N

This chapter presents our first construction, whose security is based on the Decision
Composite Residuosity assumption. Our main goal is to achieve efficiency for IND-
CR-CPA security in the standard model and obtain an IND-CU-CCA construction
with reasonable sizes.

4.1 upke construction with dcr

4.1.1 Hardness Assumptions

We rely on two number theoretic assumptions that imply the hardness of factoring.

Definition 11 ([72]). Let an RSA modulus N = PQ, for primes P,Q, and let an integer ⇣ > 1.
The ⇣-Decision Composite Residuosity (⇣-DCR) assumption holds if, for any PPT adversary
A, we have

Adv
dcr
⇣,A(�) =

��Pr
⇥
A

⇣
N, rN

⇣

mod N
⇣+1

⌘
= 1 | r - U(Z⇤

N
)
⇤

- Pr
⇥
A (N, z) = 1 | z - U(Z⇤

N⇣+1)
⇤�� = negl(�),

Damgård and Jurik [34] showed that all DCR assumptions are equivalent (up to a
polynomial loss) for any ⇣ 2 poly(�).

When N = PQ is a product of safe primes P = 2p+ 1 and Q = 2q+ 1 (i.e., where p

and q are also primes), the DCR assumption can equivalently be defined as follows.

Definition 12 ([52]). For a safe-prime product N = PQ, let T = 1+N. The Decision Com-
posite Residuosity (DCR) assumption asserts that, for any PPT adversary A, we have

Adv
dcr
⇣,A(�) =

��Pr
⇥
A
�
N,g,gr mod N

⇣+1
�
= 1
⇤

- Pr
⇥
A
�
N,g, T · gr mod N

⇣+1
�
= 1
⇤�� = negl(�),

where r - U(Zn) and g = µ
N

⇣ mod N
⇣+1, where µ - U(Z⇤

N
).

In our IND-CU-CCA secure UPKE construction, we also rely on the Strong RSA as-
sumption to prove the soundness of a non-interactive argument system in the random
oracle model.

33

34 a construction under the dcr assumption

Definition 13 ([9]). Let a safe-prime product N = PQ where P,Q are primes of at least l(�)
bits for some polynomial l : N ! N. The Strong RSA assumption states that, for any PPT
algorithm A, we have

Pr[y = x
e mod N ^ e > 1 |

y - U(Z⇤
N
), (x, e) A(N,y)] = negl(�)

Looking ahead, we rely (in the proof of Lemma 6) on the Strong RSA assumption
in the subgroup of 2N

⇣-th residues in Z⇤
N⇣+1 . However, an algorithm that computes

a non-trivial e-th root of g = µ
2N

⇣ 2 Z⇤
N⇣+1 , for a random µ 2 Z⇤

N
, can be used to

solve the usual Strong RSA problem in the subgroup QRN of quadratic residues in
Z⇤

N
as long as e is restricted to be co-prime to N. Given ⌫ = µ

2 mod N, for some
µ 2 Z⇤

N
, one can set g = ⌫

N
⇣ mod N

⇣+1. From an adversary that outputs w 2 Z⇤
N⇣+1

and e > 1 such that gcd(e,N) = 1 and g = w
e mod N

⇣+1, one can apply Shamir’s trick
to compute ↵,� 2 Z such that ↵e+�N⇣ = 1, which yields ⌫ = (w� · ⌫↵)e mod N

⇣+1.
Then, w 0 , w

� · ⌫↵ mod N satisfies ⌫ = w
0e mod N.

4.1.2 Useful Lemmas

In the next section, we rely on the following lemma, which was proven by Kitagawa et
al. [59] (based on earlier ideas from [23, 65]) in the context of key-dependent message
security [15].

Definition 14. (Interactive vector game from [59].) Let ⇣ > 1 be an integer and  be a
polynomial of �. We define the following IV⇣, game between a challenger and an adversary A.

• The challenger chooses a challenge bit b - U({0, 1}) and generates (N,P,Q, T ,g)
GGen(1�, ⇣). The challenger generates the values ↵i - U([0, (N- 1)/4]) and computes
gi g

↵i mod N
⇣+1 for every i 2 [], and sends N,g, and g1, . . . ,g to A.

• Adversary A can adaptively make sample queries (a1, . . . ,a) 2 Z

N⇣ to the challenger.
The challenger generates r - U([0, (N - 1)/4]) and computes ei T

b·ai · gr
i

mod
N

⇣+1 for every i 2 []. The challenger then returns (e1, . . . , e) to A.

• Adversary A outputs b0 2 {0, 1} and wins if b0 = b.

We remind the following result from [65].

Lemma 1. (DCR Interactive Vector Lemma for  = 1, 2, adapted from [65]). For  = 1, 2,
no polynomial time adversary can have non-negligible advantage in IV⇣, with a polynomial
number of queries, under the DCR assumption.

In the next section, we also rely on the following standard smudging lemma.

Lemma 2 (Smudging lemma). Let B1,B2 be positive integers, a - U([-B1,B1]),b -
U([-B2,B2]) with B2/B1 = negl(�). Then, the distribution of (a+ b,a) is statistically indis-
tinguishable from that of (a,b).

4.2 a dcr-based ind-cr-cpa-secure upke 35

4.2 a dcr-based ind-cr-cpa-secure upke

In this section, we construct a UPKE scheme that we prove to be IND-CR-CPA secure
assuming the DCR assumption. We follow a similar roadmap as in [39] and start by
constructing a circular-secure and leakage-resilient (CS+LR) PKE scheme, for a well-
chosen leakage function, under the DCR assumption.

We then extend this construction into a UPKE scheme by appending the additional
two key update algorithms, and reduce the security of the resulting scheme to the
CS+LR security of the underlying PKE scheme.

4.2.1 A DCR-Based CR+LR Secure PKE

Definition 15 (CS+LR security, adapted from [39]). Let (GGen, KGen, Enc, Dec) be a PKE
scheme with message space M and integer secret keys. For B 2 Z, we say that the scheme is
B-CS+LR secure if, for any PPT adversary A = (A1,A2), we have:

���Pr[pp GGen(1�); (pk, sk) KGen(pp);

b - U({0, 1}); r - U([-B,B]);
(m0,m1, st) A1(pp, pk) :

A2(st, pk, Enc(pk,mb), Enc(pk, r), sk+ r) = b]-
1

2

��� = negl(�),

We refer to the above quantity as the advantage of A against CS+LR security, denoted by
Adv

cs+lr
A

.

difference with the dodis et al . definition. Our notion of CS+LR security
defers slightly from the one defined by Dodis et al. in the sense that it is actually not
an extension of circular-security. Here, the adversary is given a randomized leakage of
the secret key sk+ r and an encryption of r, whereas the definition of [39] gives of an
encryption of (a function of) sk. We could modify our construction to rely on standard
CS+LR security, where an encryption of sk is revealed instead of an encryption of sk.
We opt to do the opposite as it allows reducing the size of update messages in our
UPKE construction. Indeed, in our security proof we use smudging on the sum sk+ r,
in which sk and r play a symmetric part, allowing us to chose which of the two should
be exponentially larger than the other.

We now describe our DCR-based B-CS+LR scheme.

• GGen(1�,B): Generate two �-bit safe primes P = 2p+ 1,Q = 2q+ 1, where p,q
are also primes, and set N = PQ. Let ⇣ > 1, choose µ - U(Z⇤

N
), and define

a generator g of Z⇤
N⇣+1 of the subgroup of order n = '(N)/4 = pq by setting

g = µ
2N

⇣ mod N
⇣+1. Define pp = (N,g, ⇣,B) for the public parameters. We also

set T = 1+N.

36 a construction under the dcr assumption

• KGen(pp): Sample a random x - U([-2
�
B, 2�B]). Set

pk = h = g
x mod N

⇣+1, sk = x.

• Enc(pk,m): Pick t - U(Z(N-1)/4) and return

ct =
�
g
t mod N

⇣+1, T
m · ht mod N

⇣+1
�

.

• Dec(sk, ct): Parse ct as (c0, c1) and return

m = DLog
�
c1 · (c0)-x mod N

⇣+1
�

When ⇣ > 1, the decryption algorithm can use the Damgård-Jurik technique [34] to
efficiently recover the message m 2 ZN⇣ from (1+N)m mod N

⇣+1, even when m is
arbitrarily large.

Theorem 3. Under the DCR assumption, the above PKE construction provides B-CS+LR
security for any B 2N such that the distributions {u mod pq |u - U([-B,B])} and U(Zpq)
are statistically close. In particular, it holds for B = (N- 1)/4.

Proof. We prove the result using a sequence of four games.

Game0: This is the original CS+LR game obtained by encrypting the message mb,
for some b - U({0, 1}). The adversary is given pk, Enc(pk,mb), Enc(pk, r) and the
leakage L(x; r) = x+ r 2 Z, where pk = g

x mod N
⇣+1 for x - U([-2

�
B, 2�B]) and

r - U([-B,B]).
Game1: We change the generation of A2’s input

pk, Enc(pk,mb), Enc(pk, r), x+ r. (1)

We first compute

pk 0, Enc(pk 0,mb), Enc(pk 0, r), x+ r, (2)

where r - U([-B,B]) and pk 0 = g
-r mod N

⇣+1. Then, we compute pk = pk 0 · g(x+r),
while Enc(pk,mb) = (gt, Tmb · pkt) is computed from Enc(pk 0,mb) = (gt, Tmb · pk 0t)
as

Enc(pk,mb) = (gt, Tmb · pk 0t · (gt)(x+r)
).

Enc(pk, r) can be computed from Enc(pk 0, r) in a similar way. While the distribution
of (1) is statistically close to that of Game1 (in particular, the distribution of pk 0 is
statistically uniform in the subgroup generated by g thanks to the constraint on r),
the new distribution does not contain any information about x, except in the leakage
x+ r 2 Z, since (1) can be computed from (2).

4.2 a dcr-based ind-cr-cpa-secure upke 37

Game2: In this game, we replace the leakage L(x; r) = x + r by a random element
u - U([-2

�
B, 2�B]) in (2). Since g

-r mod N
⇣+1, Enc(g-r,mb), Enc(g-r, r) do not

depend on x and since

�(U([-2
�
B, 2�B]) ⇤U([-B,B]),

U([-2
�
B, 2�B])) 6 B

2�B
= negl(�)

by Lemma 2, it follows that Game2 and Game1 are statistically indistinguishable.

Game3: In this game, we replace Enc(g-r, r) = (gt, Tr(g-r)t) by a pair (Tgt, (g-r)t) in
(2). The DCR assumption guarantees that gt ⇡c Tg

t, as t is unknown to the adversary.
Hence, assuming DCR, we have

(gt, Tr(gt)
-r

) ⇡c

�
Tg

t, Tr(Tgt)-r
�
=
�
Tg

t, (g-r)t
�

,

and distributions from Game3 and Game2 are computationally indistinguishable. In
Game3, A2’s input is thus generated from a tuple

pk 0 = g
-r, Enc(g-r,mb), (Tgt, (g-r)t), u, (3)

where r - U([-B,B]), u - U([-2
�
B, 2�B]).

Game4: We finally replace

Enc(g-r,mb) = (gk, Tmb · (g-r)k) and (Tgt, (g-r)t)

from the distribution of (3) by elements

Enc(g-r, 0) = (gk, (g-r)k) and (gt, (g-r)t).

Using the Interactive Vector game IV⇣,2 for (g1,g2) = (g,g-r mod N
⇣+1) with two

queries (0,mb) and (1, 0) (where the IV challenger replies using the randomness k, t
sampled from U(Z(N-1)/4)), it is straightforward to prove that these two distributions
are computationally indistinguishable via Lemma 1, assuming that DCR holds. Note
that this step again requires the distribution of g-r mod N

⇣+1 to be statistically close
to the distribution

{g
↵ mod N

⇣+1
| ↵ - U((N- 1)/4)},

as guaranteed by the constraint on B in the statement of Theorem 3.
We finally observe that the distribution Game4 is independent of b 2 {0, 1}. Indeed,

g, g-r mod N
⇣+1, (gk, (g-r)k), and (gt, (g-r)t) do not carry any information about

mb. This concludes the proof of Theorem 3.

38 a construction under the dcr assumption

4.2.2 A DCR-Based IND-CR-CPA-Secure UPKE

To construct our UPKE, we extend the CS+LR PKE scheme described in Section 4.2.1
with algorithms (UpdatePk, UpdateSk), defined as follows. We set B = (N - 1)/4 for
our UPKE scheme, which satisfies the requirements of Theorem 3. In the description
below, we include the current epoch number in each public key as it simplifies our
security proofs in the CCA-secure extensions later on.

• GGen(1�): Generate two �-bit safe primes P = 2p+ 1,Q = 2q+ 1, where p,q are
also primes, and set N = PQ. Choose µ - U(ZN), and obtain a generator g of
the subgroup of order n = '(N)/4 = pq by setting g = µ

2N
⇣ mod N

⇣+1. Define
pp = (N,g) as public parameters.

• KGen(pp): Sample a random x - U([-2
�
B, 2�B]) and compute h = g

x mod
N

⇣+1. Let ⌧ = 0 the current epoch. Set pk = (⌧,h), sk = (⌧, x).

• Enc(pk,m): Pick t - U(Z(N-1)/4) and return

ct = (gt mod N
⇣+1, (1+N)mh

t mod N
⇣+1).

• Dec(sk, ct): Parse ct as (c0, c1) and sk as (⌧, x). Return

m = DLog
�
c1 · c-x

0
mod N

⇣+1
�

.

• UpdatePk(pk): Parse pk as (⌧,h).

1. Sample r - U([-B,B]) and compute

h
0 = h · gr mod N

⇣+1.

2. Compute up Enc(pk, r) and set ⌧ ⌧+ 1.

Return (up, (⌧,h 0)).

• UpdateSk(sk,up): Given the secret key sk = (⌧, x), compute r Dec(sk,up) 2
ZN⇣ . Let r̄ = min(r,N⇣ - r) and let br 2 {0, 1} such that r̄ = (1- br) · r+ br ·
(N⇣ - r) mod N

⇣.

Return sk 0 = (⌧+ 1, x 0), where x
0 = x+ (-1)br · r 2 Z.

Theorem 4. Under the DCR assumption, the above UPKE construction provides IND-CR-
CPA security.

Proof. Let A be an adversary in the IND-CR-CPA security game of our UPKE. We build
an adversary B against the CS+LR security of the PKE scheme in Section 4.2.1 with
chosen leakage L(x; r) = x+ r 2 Z for r - U([-B,B]) and x - U([-2

�
B, 2�B]).

4.2 a dcr-based ind-cr-cpa-secure upke 39

• Our adversary B receives from its challenger a public key pk = h = g
x mod N

⇣+1

associated with a secret key x.

• Adversary B implicitly sets x0 = x and sets the epoch ⌧ to 0 by forwarding
pk0 = (0,h) to A.

• When A queries oracle Oupd(�i), B just bookkeeps �i.

• At some point, B receives the challenge messages m
⇤
0

,m⇤
1

from A. Adversary B

forwards m⇤
0

,m⇤
1

to its challenger, using them as challenge messages. In response,
B receives a leakage z = L(x; r) = x+ r 2 Z, and ciphertexts c = Enc(pk,m⇤

b
) and

c
0 = Enc(pk, r). In order to build a challenge ciphertext for A, adversary B needs

to compute c
⇤ = Enc(pk`,m⇤

b
), where ` is the epoch at which A sent its challenge

messages. We have pk` = (`,gx+
P

`

i=1
�i mod N

⇣+1). Parsing c = (c0, c1) and
defining � =

P
`

i=1
�i (computed over Z), B simply computes

c
⇤ =

�
c0, c�

0
· c1 mod N

⇣+1
�

and forwards c
⇤ as challenge ciphertext to A.

• Then A resumes its queries of Oupd(·) and B keeps registering them until the
last query Oupd(�` 0) is made.

• Adversary B has to send the final secret key sk⇤ = (` 0 + 1, x⇤), which is the result
of all update queries made by A and a last honestly-generated update (of which
the randomness is not known to A). Letting � 0 =

P
`
0

i=1
�i 2 Z, the reduction B

uses the leakage randomness r as the randomness of the final update, which is
hidden from A’s view. Namely, adversary B sets x

⇤ = z+ � 0 = x+ r+ � (over Z)
and defines the new public for the next epoch to be pk⇤ = (` 0+ 1,gx⇤ mod N

⇣+1).
To finalize the update message, adversary B can simply update the public key
used in the encryption of the c

0 from g
x0 to g

x0+�. This is done using the same
technique as for the challenge ciphertext. Namely, given c

0 = Enc(pk, r) = (c 0
0

, c 0
1
),

adversary B simply sets

up
⇤ =

�
c
0
0

, c 0
0

�
0
· c 0

1
mod N

⇣+1
�

and then sends (pk⇤, sk⇤,up⇤) to A.

• When A finally halts with some output b 0 2 {0, 1}, adversary B outputs the same
bit b 0.

By inspection, it is clear that B perfectly simulates A’s challenger in the IND-CR-CPA
security game and succeeds whenever A does. Theorem 4 follows.

40 a construction under the dcr assumption

4.3 from cr-cpa to cr-cca/cu-cca security in the rom

We now enhance our UPKE scheme so that it becomes IND-CR-CCA secure. To achieve
that we need to build Non Interactive Zero Knowledge (NIZK) arguments that allow
to perform the Naor-Yung transformation for our IND-CPA-secure PKE. We start by
constructing a ⌃-protocol for proving plaintext equality in Section 4.3.1, which we
transform into a simulation-sound NIZK arguments via the Fiat-Shamir transform
and use to build an IND-CR-CCA secure UPKE scheme in Section 4.3.2.

We then further upgrade the scheme to achieve IND-CU-CCA security in Section 4.3.4,
by adding NIZK arguments that updates are well-formed. The latter NIZK arguments
are obtained in a similar way by building a ⌃-protocol in Section 4.3.3 and applying
the Fiat-Shamir transform.

4.3.1 Proofs of Plaintext Equality

In order to achieve IND-CR-CCA security in the ROM, we apply the Naor-Yung trans-
formation [70] in the random oracle model. Let public parameters pp = (N,g, ⇣),
where N = PQ is a safe-prime product and g 2 Z⇤

N⇣+1 generates the subgroup of
2N

⇣-th residues in Z⇤
N⇣+1 . Let h = g

x mod N
⇣+1, hd = g

xd mod N
⇣+1 be two public

keys, for some underlying secret keys x, xd 2 Z22�(N-1)/4.
We need to prove membership of the language

LNY =
⌦�

h,hd,C0,C1,D0,D1) 2 (Z⇤
N⇣+1)

6

9tc, td 2 Zpq, m 2 ZN⇣ :

C
2

0
= g

2·tc mod N
⇣+1

^C
2

1
= (1+N)2m · h2·tc mod N

⇣+1

^D
2

0
= g

2·td mod N
⇣+1

^D
2

1
= (1+N)2m · h2·td

d
mod N

⇣+1

↵
,

The ⌃-protocol for LNY is standard and goes as follows.

• P picks t
0
c, t 0

d
 -
⇥
0, 22� · N-1

4

⇤
, m 0 - ZN⇣ and sends

C
0
0

= g
2·t 0

c mod N
⇣+1,

C
0
1

= (1+N)2m
0 · h2·t 0

c mod N
⇣+1,

D
0
1

= g
2·t 0

d mod N
⇣+1,

D
0
1

= (1+N)2m
0 · h2·t 0

d

d
mod N

⇣+1.

• V sends a random challenge c - U([0, 2� - 1]) .

• P computes t̃c = t
0
c + c · tc, t̃d = t

0
d
+ c · td (over Z) and m̃ = m

0 + c ·m mod N
⇣.

If t̃c, t̃d 2
⇥
0, 22� · N-1

4

⇤
, it sends t̃c, t̃d, m̃ to V. Otherwise, it aborts.

4.3 from cr-cpa to cr-cca/cu-cca security in the rom 41

• V first verifies that t̃c, t̃d 2
⇥
0, 22� · N-1

4

⇤
, then that

C
0
0

= C
-2c

0
· g2·t̃c mod N

⇣+1,

C
0
1

= C
-2c

1
· (1+N)2m̃ · h2·t̃c mod N

⇣+1, (4)

D
0
0

= D
-2c

0
· g2·t̃d mod N

⇣+1,

D
0
1

= D
-2c

1
· (1+N)2m̃ · h2·t̃d

d
mod N

⇣+1,

Verifier V accepts if all checks succeed, and rejects otherwise.

Lemma 3. The above ⌃-protocol provides statistical soundness.

Proof. Let us assume that a prover can come up with two valid transcripts

((C 0
0

,C 0
1

,D 0
0

,D1), c1, (t̃c,1, t̃d,1, m̃1))

((C 0
0

,C 0
1

,D 0
0

,D1), c2, (t̃c,2, t̃d,2, m̃2)).

We show that (h,hd,C0,C1,D0,D1) 2 LNY .
We define �c = c1 - c2, �m = m̃1 - m̃2 mod N

⇣, �tc = t̃c,1 - t̃c,2, �td = t̃d,1 - t̃d,2
with �tc,�td 2 [-2

2� · N-1

4
, 22� · N-1

4
]. From the verification equations (4), we have

C
2�c

0
= g

2·�tc mod N
⇣+1,

C
2�c

1
= (1+N)2�m · h2·�tc mod N

⇣+1, (5)
D

2�c

0
= g

2·�td mod N
⇣+1,

D
2�c

1
= (1+N)2�m · h2·�td

d
mod N

⇣+1,

Since �c < min(p,q), we must have gcd(�c,pq) = 1 and gcd(�c,N) = 1. Then, if we
raise all members of (5) to the power ĉ = �c-1 mod N

⇣
pq, we obtain

C
2

0
= g

2·�tc·ĉ mod N
⇣+1,

C
2

1
= (1+N)2�m·(�c

-1 mod N
⇣) · h2·�tc·ĉ mod N

⇣+1,
D

2

0
= g

2·�td·ĉ mod N
⇣+1,

D
2

1
= (1+N)2�m·(�c

-1 mod N
⇣) · h2·�td·ĉ

d
mod N

⇣+1,

since ĉ mod N
⇣ = �c-1 mod N

⇣. The above equalities show that (h,hd,C0,C1,D0,D1) 2
LNY ,1 as claimed.

Lemma 4. The ⌃-protocol ⌃NY is statistically special honest-verifier zero-knowledge.

1 By applying the same arguments as in the proof of Lemma 6, we can show that, unless the cheating prover
is able to compute a non-trivial root of g 2 Z⇤

N⇣+1 , �c divides both �tc and �td, so that witnesses tc

and td are extractable. However, we do not rely on this property as we only aim at soundness (rather
than extractability).

42 a construction under the dcr assumption

Proof. In the special honest verifier setting, the simulator is given a challenge c and
has to produce a properly distributed accepting transcript for (h,hd,C0,C1,D0,D1) 2
LNY . We can uniformly sample t̃c, t̃d - U([0, 22� · N-1

4
]), m̃ - U(ZN⇣) and then set

C
0
0

= C
-2c

0
· g2·t̃c mod N

⇣+1

C
0
1

= C
-2c

1
· (1+N)2m̃ · h2·t̃c mod N

⇣+1

D
0
0

= D
-2c

0
· g2·t̃d mod N

⇣+1

D
0
1

= D
-2c

1
· (1+N)2m̃ · h2·t̃d

d
mod N

⇣+1

We then return (C 0
0

,C 0
1

,D 0
0

,D 0
1

, c, t̃c, t̃d, m̃).
This is a valid transcript as it made to satisfy all conditions of the verification step.

Since (h,hd,C0,C1,D0,D1) 2 LNY , we know that 9tc, td 2 Zpq, m 2 ZN⇣ such that

C
2

0
= g

2·tc mod N
⇣+1

C
2

1
= (1+N)2m · h2·tc mod N

⇣+1

D
2

0
= g

2·td mod N
⇣+1

D
2

1
= (1+N)2m · h2·td

d
mod N

⇣+1

It follows that

C
0
0

= g
2(t̃c-ctc) mod N

⇣+1

C
0
1

= (1+N)2(m̃-cm) · h2(t̃c-ctc) mod N
⇣+1

D
0
0

= g
2(t̃d-ctd) mod N

⇣+1

D
0
1

= (1+N)2(m̃-cm) · h2(t̃d-ctd)
d

mod N
⇣+1

Since |c · tc|, |c · td| < 2
� · N-1

4
, Lemma 2 implies

(t 0c + c · tc, t 0
d
+ c · td) ⇡s U([0, 22� · N- 1

4
])⇥U([0, 22� · N- 1

4
])

and we also have {m̃
0+cm mod N

⇣
| m̃ - U(ZN⇣)} ⇡s U(ZN⇣). Since (C 0

0
,C 0

1
,D 0

0
,D 0

1
)

is uniquely determined by the (true) statement and the whole challenge-response
pair (c, (t̃c, t̃d, m̃)) in the verification equations, our simulated transcript is statistically
close to a real transcript.

The ⌃-protocol is used to prove plaintext equalities in order to apply the Naor-Yung
paradigm in the random oracle model. In order to obtain the simulation-soundness
property by applying Theorem 2, we need the following lemma.

Lemma 5. Under the assumption that factoring N is hard, the above ⌃-protocol has quasi-
unique responses.

4.3 from cr-cpa to cr-cca/cu-cca security in the rom 43

Proof. Towards a contradiction, let as assume that an adversary can find two valid tran-
scripts (C 0

0
,C 0

1
,D 0

0
,D 0

1
, c, t̃c,0, t̃d,0, m̃0) and (C 0

0
,C 0

1
,D 0

0
,D 0

1
, c, t̃c,1, t̃d,1, m̃1) for some

statement (h,hd,C0,C1,D0,D1), with

(t̃c,0, t̃d,0, m̃0) 6= (t̃c,1, t̃d,1, m̃1).

We first assume that t̃c,0 6= t̃c,1. By the first equation of the verification equations
(4), we have

C
0
0
= C

-2c

0
· g2·t̃c,0 mod N

⇣+1 = C
-2c

0
· g2·t̃c,1 mod N

⇣+1

so that g2·(t̃c,0-t̃c,1) = 1 mod N
⇣+1. Since t̃c,0 6= t̃c,1, this implies t̃c,0 - t̃c,1 = 0 mod n.

Given a non-trivial multiple of n = pq, Miller’s algortihm [69] allows computing a
non-trivial factor of N with high probability.

The case where t̃d,0 6= t̃d,1 is similar. We now assume that t̃d,0 = t̃d,1 and t̃c,0 = t̃c,1
but m̃0 6= m̃1. From the verification equations (4), we obtain

D
0
1

= D
-2c

1
· (1+N)2m̃0 · h2·t̃d,0

d
mod N

⇣+1

= D
-2c

1
· (1+N)2m̃1 · h2·t̃d,1

d
mod N

⇣+1

and (1+N)2m̃0-2m̃1 = 1 mod N
⇣+1, which implies that 2m̃0 = 2m̃1 mod N

⇣. How-
ever, this is impossible if the quasi-uniqueness is broken since gcd(2,N) = 1 and
m̃0, m̃1 2 ZN⇣ .

4.3.2 IND-CR-CCA secure UPKE

We now upgrade our IND-CR-CPA scheme in the following way. Since we just aim
at IND-CR-CCA (rather than IND-CU-CCA) security in this section, we can set B =
(N- 1)/4 and ⇣ > 1.

• GGen(1�,B):

1. Generate two �-bit safe primes P = 2p+ 1,Q = 2q+ 1, where p,q are also
primes, and set N = PQ. Choose an integer ⇣ > 1.

2. Choose µ,µd - U(ZN) at random. Then, compute generators of the sub-
group of order n = '(N)/4 = pq by setting g = µ

2N
⇣ mod N

⇣+1 and
hd = µ

2N
⇣

d
mod N

⇣+1.

3. Choose a hash function H : {0, 1}⇤ ! {0, 1}� that is modeled as a random
oracle in the analysis.

Define pp = (N, ⇣,g,hd,H) as public parameters.

• KGen(pp): Sample a random x - U([-2
�
B, 2�B]). Define the key pair (sk, pk) by

setting sk = (⌧, x) and pk = (⌧,h), where ⌧ = 0 is a counter and h = g
x mod

N
⇣+1.

44 a construction under the dcr assumption

• Enc(pk,m): To encrypt m 2 ZN⇣ under the public key pk = (⌧,h) 2 N⇥Z⇤
N⇣+1 ,

conduct the following steps.

1. Pick tc, td - U(Z(N-1)/4) and compute

(C0,C1) =
�
g
tc mod N

⇣+1, (1+N)m · htc mod N
⇣+1

�

(D0,D1) =
⇣
g
td mod N

⇣+1, (1+N)m · htd

d
mod N

⇣+1

⌘
.

2. Using (tc, td,m), generate a NIZK proof ⇡ that

(h,hd,C0,C1,D0,D1) 2 LNY ,

where LNY is the language defined in Section 4.3.1. This proof is of the form

⇡ = (C 0
0

,C 0
1

,D 0
0

,D 0
1

, c, t̃c, t̃d, m̃)

2 {0, 1}� ⇥
⇥
0, 22� · (N- 1)/4

⇤2 ⇥ZN⇣ ,

with c = H
�
⌧, (h,hd,C0,C1,D0,D1), (C 0

0
,C 0

1
,D 0

0
,D 0

1
)
�
, and where the tuple

(C 0
0

,C 0
1

,D 0
0

,D 0
1
) satisfies (4).

Output the ciphertext ct = (C0,C1,D0,D1,⇡).

• Dec(sk, ct): Parse ct as (C0,C1,D0,D1,⇡) and sk as (⌧, x) 2N⇥Z. Return ? if ⇡
is not a verifying NIZK argument that (h,hd,C0,C1,D0,D1) 2 LNY . Otherwise,
return

m = DLog
�
C
2

1
·C-2x

0
mod N

⇣+1
�
· 2-1 mod N

⇣.

• UpdatePk(pk): To update pk = (⌧,h) 2N⇥Z⇤
N⇣+1 ,

1. Choose r - U([-B,B]) and compute h
0 = h · gr mod N

⇣+1.

2. Choose k - U(Z(N-1)/4) and compute

up = (U,V) =
�
g
k, (1+N)r · hk mod N

⇣+1
�

and set ⌧ 0 = ⌧+ 1.

Return
�
up = (U,V), pk 0 = (⌧ 0,h 0)

�
.

• UpdateSk(sk,up): Given sk = (⌧, x) 2N⇥Z and an update message
�
up = (U,V), pk 0 = (⌧ 0,h 0)

�
,

return ? if ⌧ 0 6= ⌧+ 1. Otherwise, conduct the following steps.

1. Return ? if (U,V) 62 (Z⇤
N⇣+1)

2 or h 62 Z⇤
N⇣+1 .

4.3 from cr-cpa to cr-cca/cu-cca security in the rom 45

2. Compute
r = DLog

�
V
2 ·U-2x mod N

⇣+1
�
· 2-1 mod N

⇣.

3. Let r̄ = min(r,N⇣ - r) and let br 2 {0, 1} such that

r̄ = (1- br) · r+ br · (N⇣ - r) mod N
⇣.

Compute x
0 = x+ (-1)br · r over Z.

4. Return sk 0 = (⌧+ 1, x 0) 2N⇥Z.

Theorem 5. The above construction provides IND-CR-CCA security assuming that: (i) The
DCR assumption holds; (ii) The NIZK proof for LNY provides simulation-soundness.

Proof. The proof proceeds with a sequence of games. For each i, we call Wi the event
that the adversary A outputs 0 in Gamei.

Game0: This is the original IND-CR-CCA game where the challenger’s bit is b = 0. The
challenger initially generates public parameters pp containing (N, ⇣,g,hd). It generates
a key pair (pk0, sk0) = (gx mod N

⇣+1, x) and gives pk0 to A. It handles update queries
and decryption queries using the real secret key ski at any epoch i. At stage 2, A
outputs (m⇤

0
,m⇤

1
) and obtains c

⇤ = (C⇤
0

,C⇤
1

,D⇤
0

,D⇤
1

,⇡⇤) of the form

(C⇤
0

,C⇤
1
) =

�
g
t
⇤
c mod N

⇣+1, (1+N)m
⇤
0 · ht

⇤
c

`
mod N

⇣+1
�
,

(D⇤
0

,D⇤
1
) =

�
g
t
⇤
d mod N

⇣+1, (1+N)m
⇤
0 · ht

⇤
d

d
mod N

⇣+1
�

where h` = g
x` mod N

⇣+1 denotes the public key at epoch `. At stage 6, adversary A

obtains (sk⇤,up⇤), where

up
⇤ = (U⇤,V⇤) =

⇣
g
k
⇤

mod N
⇣+1, (1+N)r

⇤ · hk
⇤

` 0 mod N
⇣+1

⌘
,

where r
⇤ - U([-B,B]) and h` 0 2 ZN⇣+1 is the public key at stage 5. Finally, adversary

A ouputs a bit b 0 2 {0, 1} and wins if b 0 = 0. The latter event is called W0.
Game1: In this game, we modify the generation of public parameters and now set hd =
g
xd mod N

⇣+1, where xd - U(Z(N-1)/4). Since hd remains statistically uniform in
the subgroup of 2N⇣-th residues, the distribution of pp is statistically close to that of
Game0.

We have |Pr[W1]- Pr[W0]| 6 2
-�.

Game2: We change the decryption oracle. For a decryption query ct = (C0,C1,D0,D1,⇡)
at epoch i, the challenger does no longer use the current secret key ski. Instead, it uses
xd to decrypt (D0,D1) by computing

m = DLog
⇣
D

2

1
·D-2xd

0
mod N

⇣+1

⌘
· 2-1 mod N

⇣.

46 a construction under the dcr assumption

Clearly, Game2 is perfectly indistinguishable from Game1 until the event that A queries
Odec(·) on a ciphertext for which (C0,C1) and (D0,D1) decrypt to distinct messages
although ⇡ is a valid proof for LNY . However, Lemma 3 and the Fiat-Shamir heuristic
ensure that, in the random oracle model, this can only occur with negligible proba-
bility: Concretely, for a false statement and any first prover message, a valid response
exists for at most one challenge. We have |Pr[W2]- Pr[W1]| 6 QH · 2-�, where QH is
the number of H-queries.
Game3: We modify the challenge ct

⇤ = (C⇤
0

,C⇤
1

,D⇤
0

,D⇤
1

,⇡⇤). The NIZK proof ⇡⇤ that
(h`,hd,C⇤

0
,C⇤

1
,D⇤

0
,D⇤

1
) 2 LNY is now simulated by programming the random oracle H

and using the NIZK simulator of Lemma 4. By Lemma 4, |Pr[W3]-Pr[W2]| 6 QH · 2-�

as the distribution of ⇡⇤ is statistically unchanged.
Game4: We change the distribution of ct

⇤ = (C⇤
0

,C⇤
1

,D⇤
0

,D⇤
1

,⇡⇤). In this game, the
challenger computes

(C⇤
0

,C⇤
1
) =

�
g
t
⇤
c mod N

⇣+1, (1+N)m
⇤
1 · ht

⇤
c

`
mod N

⇣+1
�
,

(D⇤
0

,D⇤
1
) =

�
g
t
⇤
d mod N

⇣+1, (1+N)m
⇤
0 · ht

⇤
d

d
mod N

⇣+1
�

where tc, td - U(Z(N-1)/4) and h` = g
x` mod N

⇣+1 is the public key at epoch `.
The IND-CR-CPA security of the UPKE scheme in Section 4.2.2 implies – via a

reduction that proceeds identically to that in the proof Theorem 4 – the indistinguisha-
bility of Game4 and Game3 under the DCR assumption. We have |Pr[W4]- Pr[W3]| 6
Adv

DCR(�).
Game5: We change again the decryption oracle. For a decryption query of the form
ct = (C0,C1,D0,D1,⇡) at any epoch i, the challenger does no longer decrypt (D0,D1)
using xd. Instead, it comes back to decrypting the pair (C0,C1) using the current secret
key ski, by computing

m = DLog
⇣
C
2

1
·C-2·ski

0
mod N

⇣+1

⌘
· 2-1 mod N

⇣.

We note that Game5 is perfectly indistinguishable from Game4 until A queries Odec(·)
on a ciphertext ct where (C0,C1) and (D0,D1) decrypt to distinct messages even
though ⇡ is a verifying proof for LNY .2 Here, the simulation-soundness of the NIZK
construction presented in Section 4.3.1 – which holds in the random oracle model
assuming that factoring is hard when we apply the Fiat-Shamir heuristic – ensures
that this only occurs with negligible probability if the DCR assumption holds. We
have |Pr[W5]- Pr[W4]| 6 Adv

sim-sound(�).

2 This includes the case of a decryption query on the challenge ciphertext ct
⇤ for an epoch i > `. We

included the epoch number among the inputs of the hash function H to cover this case: If A can come
up with a valid proof ⇡ 0 for (C⇤

0
,C⇤

1
,D⇤

0
,D⇤

1
) at a later epoch i > `, we have ⇡ 0 6= ⇡

⇤ with probability
1- 2

-�.

4.3 from cr-cpa to cr-cca/cu-cca security in the rom 47

Game6: We change again the distribution of the computed challenge ciphertext ct⇤ =
(C⇤

0
,C⇤

1
,D⇤

0
,D⇤

1
,⇡⇤). In the challenge phase, the challenger now computes

(C⇤
0

,C⇤
1
) =

�
g
t
⇤
c mod N

⇣+1, (1+N)m
⇤
1 · ht

⇤
c

`
mod N

⇣+1
�
,

(D⇤
0

,D⇤
1
) =

�
g
t
⇤
d mod N

⇣+1, (1+N)m
⇤
1 · ht

⇤
d

d
mod N

⇣+1
�

where tc, td - U(Z(N-1)/4) and h` = g
x` mod N

⇣+1 is the public key at epoch
`. The IND-CPA security of the Elgamal-Paillier PKE scheme ensures that Game6 is
indistinguishable from Game5 under the DCR assumption: i.e., |Pr[W6] - Pr[W5]| 6
Adv

DCR(�).
Game7: In the generation of the challenge ct

⇤ = (C⇤
0

,C⇤
1

,D⇤
0

,D⇤
1

,⇡⇤), we change again
the generation of ⇡⇤, which is now computed as a real proof using the witnesses
tc, td - U(Z(N-1)/4). By Lemma4, we have |Pr[W7] - Pr[W6]| 6 QH · 2-� as the
distribution of ⇡⇤ is statistically close to that of Game6.
Game8: Here, we change again the generation of public parameters. Instead of set-
ting hd = g

xd mod N
⇣+1, where xd - U(Z(N-1)/4), we get back to sampling hd

uniformly in the subgroup of 2N
⇣-th residues in Z⇤

N⇣+1 . The distribution of pp is
statistically close to that of Game7 and we have |Pr[W7]- Pr[W6]| 6 2

-�.

In Game8, we are exactly in the real game of Definition 5 when the challenger’s
bit is b = 1. Moreover, by combining the above, we find that that Game0 and Game8
are indistinguishable under the DCR assumption as the latter implies the simulation-
soundness of our NIZK argument for LNY .

4.3.3 Arguments of Well-formedness for Update Ciphertexts

|sk| |pk| |ct| |up| IND-* ROM Assumption
Jost et al. 32B 64B 64B 64B CR-CPA Yes CDH
Dodis et al. 160B 41KB 41KB 52MB CR-CPA No DDH
This work 580B 760B 1.5KB 1.5KB CR-CPA No DCR (⇣ = 1)

580B 760B 8.2KB 1.5KB CR-CCA Yes DCR (⇣ = 1)
580B 1.2KB 11KB 13KB CU-CCA Yes DCR (⇣ = 2)

Table 4: Comparison of key/ciphertext/update sizes for existing UPKE schemes with 128-bit
strength security

To achieve IND-CU-CCA security, we rely on proofs that the updates are well-
formed. We obtain these proofs by using a classical Schnorr-like proof in hidden-order
groups.

48 a construction under the dcr assumption

Given g,h of order pq in Z⇤
N⇣+1 , where ⇣ > 2. Let B = (N- 1)/4. We need to prove

membership of the language

LWFU =
��

(h,h 0) 2 (Z⇤
N⇣+1)

2, up = (U,V)
�
| 9k 2 [0,B],

r 2 [-B,B] : U = g
k mod N

⇣+1

^ V = (1+N)r · hk mod N
⇣+1

^ (h/h 0)2 = g
r mod N

⇣+1

,

which is the language of well-formed updates. In the proof of soundness, however, we
can only guarantee membership of

L̄WFU =
��

(h,h 0) 2 (Z⇤
N⇣+1)

2, up = (U,V)
�
|

9k 2 [-2
2�+1

B, 22�+1
B], r 2 [-2

2�+1
B, 22�+1

B] :

U
2 = g

2k mod N
⇣+1

^ (h/h 0)2 = g
2r mod N

⇣+1

^ V
2 = (1+N)2r · h2k mod N

⇣+1

,

so that we have a soundness slack as the actual witnesses (k, r) lives in [0,B]⇥ [-B,B].
We assume that ⇣ > 2, so that the interval [0, 22�B] fits in the message space ZN⇣ of

the encryption scheme. We define the following ⌃-protocol ⌃WFU for (LWFU, L̄WFU):

• P picks r
0,k 0 -

⇥
-2

2�
B, 22�B

⇤
, and sends

U
0 = g

2k
0

mod N
⇣+1,

V
0 = (1+N)2r

0 · h2k
0

mod N
⇣+1,

H = g
2r

0
mod N

⇣+1

to the verifier.

• V sends a random challenge c - U([0, 2� - 1]) .

• P computes responses k̃ = k
0 + ck and r̃ = r

0 + cr over Z. If k̃, r̃ 2
⇥
-2

2�
B, 22�B

⇤
,

it sends k̃, r̃ to V, else it aborts.

• V first verifies that k̃, r̃ 2
⇥
-2

2�
B, 22�B

⇤
, then that

U
0 = U

-2c · g2k̃ mod N
⇣+1,

V
0 = V

-2c · (1+N)2r̃ · h2k̃ mod N
⇣+1, (6)

H = (h/h 0)-2c · g2r̃ mod N
⇣+1

It accepts if all this checks are correct, and rejects otherwise.

The special-soundness property can be proven under the Strong RSA assumption,
by adapting a technique from Camenisch and Shoup [27]. One difference is that, here,
the encrypted discrete logarithm lives in [-(N- 1)/4, (N- 1)/4] (instead of Z⇢ for a
public prime order ⇢ < 2

�
pq in [27, Section 5.2]). Our use of a larger message space

ZN⇣ with ⇣ > 2 allows the proof to go through by adapting techniques from [27] and
[46].

4.3 from cr-cpa to cr-cca/cu-cca security in the rom 49

Lemma 6. The above ⌃-protocol provides soundness for the language L̄WFU under the Strong
RSA assumption.

Proof. Let us assume that a prover can come up with two different accepting transcripts
((U 0,V 0,H), c1, (k̃1, r̃1)), ((U 0,V 0,H), c2, (k̃2, r̃2)). We show that, unless the Strong RSA
assumption is false, it must be that

((h,h 0), (U,V)) 2 L̄WFU.

We define �c = c1 - c2, �k = k̃1 - k̃2, �r = r̃1 - r̃2 with �k 2 [-2
2�+1

B, 22�+1
B],

�r 2
⇥
-2

2�+1
B, 22�+1

B
⇤
. From the verification equations (6), we have

U
2�c = g

2�k mod N
⇣+1,

V
2�c = (1+N)2�r · h2�k mod N

⇣+1, (7)
(h/h 0)2�c = g

2�r mod N
⇣+1.

Using the same arguments as [27, Theorem 4], we first show that, unless the prover
can compute a non-trivial root of g 2 Z⇤

N⇣+1
, �c divides both �r and �k. Let us first

assume that d= gcd(�c,�r) < �c. Then, there exist efficiently computable integers
↵,� 2 Z such that ↵�c+��r = d and the last equation of (7) implies

g
2d =

�
g
↵ · (h/h 0)�

�2�c mod N
⇣+1,

which in turn yields

g
2 = ·

�
g
↵ · (h/h 0)�

�2(�c/d) mod N
⇣+1, (8)

for some 2 Z⇤
N⇣+1 such that d = 1 mod N

⇣+1. This equality implies that ord()|d.
Since 2 Z⇤

N⇣+1 , we have ord()|2N⇣
pq. Then, since we also have d|�c and that

gcd(�c,N⇣
pq) = 1, we conclude that ord() = 2. Since we cannot have = -1

(as -1 is not a square in Z⇤
N⇣+1 when P = Q = 3 mod 4), we have either = 1,

or a non-trivial factor of N = PQ is revealed by computing gcd(+ 1,N) (because
(+ 1)(- 1) = 0 mod N

⇣+1). Unless the factoring assumption (and thus the Strong
RSA assumption) is broken, we thus have

g
2 =

�
g
↵ · (h/h 0)�

�2(�c/d) mod N
⇣+1. (9)

Then, we distinguish three cases. If �c/d is even, we have

g =
�
g
↵ · (h/h 0)�

��c/d mod N
⇣+1. (10)

since squaring is a permutation in the subgroup of squares when P = Q = 3 mod 4,
and µ , g

↵ · (h/h 0)� mod N
⇣+1 is then a non-trivial root of g. If �c/d is odd and

g 6= ±
�
g
↵ · (h/h 0)�

��c/d mod N
⇣+1,

50 a construction under the dcr assumption

we obtain a non-trivial factor of N = PQ. Finally, if �c/d is odd and

g = ±
�
g
↵ · (h/h 0)�

��c/d mod N
⇣+1, (11)

then g =
�
±g

↵ · (h/h 0)�
��c/d mod N

⇣+1 and we also have a root µ , ±g
↵ · (h/h 0)� mod

N
⇣+1 of g.
We can show in the same way that the Strong RSA assumption is broken if �c does

not divide �k.

We now assume that �c|�r and �c|�k. Since �c < min(p,q), we necessarily have
gcd(�c,pq) = 1 and gcd(�c,N) = 1. Then, if we define ĉ = �c

-1 mod N
⇣
pq, the

above arguments imply

U
2 = g

2�kĉ mod N
⇣+1 = g

2(�k/�c) mod N
⇣+1,

V
2 = (1+N)2�r·ĉ · h2�kĉ mod N

⇣+1

= (1+N)2(�r/�c) · h2(�k/�c) mod N
⇣+1,

(h/h 0)2 = g
2(�r·ĉ) mod N

⇣+1

= g
2(�r/�c) mod N

⇣+1,

which means that ((h,h 0), (U,V)) 2 L̄WFU since we have �r/�c 2 [-2
2�+1

B, 22�+1
B].

Lemma 7. The ⌃-protocol ⌃WFU satisfies the special honest verifier zero-knowledge property
for the language LWFU.

Proof. In the special honest verifier setting, the simulator is given the challenge c and
has to simulate an accepting transcript with the proper distribution for h

0, (U,V) 2
LWFU. We can uniformly sample k̃, r̃ - U([-2

2�
B, 22�B]) and then set

U
0 = U

-2c · g2k̃ mod N
⇣+1,

V
0 = V

-2c · (1+N)2r̃ · h2k̃ mod N
⇣+1,

H = (h/h 0)-2c · g2r̃ mod N
⇣+1.

We then return (U 0,V 0,H, c, k̃, r̃).
This is a valid transcript as it satisfies (6). Moreover, for any true statement in the

language (h 0, (U,V)) 2 LWFU, we know that 9k 2 [0,B], r 2 [-B,B] such that

U
2 = g

2k mod N
⇣+1,

V
2 = (1+N)2r · h2k mod N

⇣+1,
(h/h 0)2 = g

2r mod N
⇣+1.

We thus have:

4.3 from cr-cpa to cr-cca/cu-cca security in the rom 51

U
0 = g

2k̃-2cr mod N
⇣+1,

V
0 = (1+N)2r̃-2cr · h2k̃-2ck mod N

⇣+1,
H = g

2r̃-2cr mod N
⇣+1

Using Lemma 2, we know that the distributions of k̃, r̃ in a real interaction are statisti-
cally uniform in

⇥
-2

2�
B, 22�B

⇤
as |c · r|, |c ·k| < 2

� ·B and (2� ·B)/(22� ·B) = negl(�)(�).
Since (U 0,V 0,H) is uniquely determined by the statement and the triple (c, k̃, r̃) in
the verification equations (6), our simulated transcript is statistically indistinguishable
from a real transcript.

4.3.4 IND-CU-CCA-secure UPKE

The main differences with our IND-CR-CCA construction presented in Section 4.3.2
are that: (i) Each update message up comes with a non-interactive argument showing
that it was properly generated; (ii) secret keys are chosen in a larger interval over the
integers. In addition, ciphertexts are computing using a somewhat larger modulus as
we need ⇣ > 2 in order to ensure the soundness of our ⌃-protocol in Section 4.3.3.

• GGen(1�):

1. Choose �-bit safe primes P = 2p+ 1,Q = 2q+ 1 and set N = PQ. Choose
an integer ⇣ > 2.

2. Choose µ,µd,µ 0
d
 - U(ZN) at random. Then, compute generators of the

subgroup of order n = '(N)/4 = pq by setting g = µ
2N

⇣ mod N
⇣+1, hd =

µ
2N

⇣

d
mod N

⇣+1, and h
0
d
= µ

0
d

2N
⇣

mod N
⇣+1.

3. Choose hash functions H,H 0 : {0, 1}⇤ ! {0, 1}� that will be modeled as ran-
dom oracles in the analysis.

Define pp = (N, ⇣,g,hd,h 0
d

,H,H 0) as public parameters.

• KGen(pp): Sample a random x - U([-2
�
B, 2�B]). Define the key pair (sk, pk) by

setting sk = (⌧, x) and pk = (⌧,h) where ⌧ = 0 and h = g
x mod N

⇣+1.

• Enc(pk,m): To encrypt m 2 ZN⇣ under pk = (⌧,h) 2 N ⇥Z⇤
N⇣+1 , conduct the

following steps.

1. Pick tc, td - U(Z(N-1)/4) and compute

(C0,C1) =
�
g
tc mod N

⇣+1, (1+N)m · htc mod N
⇣+1

�

(D0,D1) =
⇣
g
td mod N

⇣+1, (1+N)m · htd

d
mod N

⇣+1

⌘
.

52 a construction under the dcr assumption

2. Using witnesses (tc, td,m), generate a NIZK proof ⇡ that

(h,hd,C0,C1,D0,D1) 2 LNY ,

where LNY is the language defined in Section 4.3.1. This proof ⇡ is of the
form

(c, t̃c, t̃d, m̃) 2 {0, 1}� ⇥
⇥
0, 22� · (N- 1)/4

⇤2 ⇥ZN⇣ ,

with c = H
�
⌧, (h,hd,C0,C1,D0,D1), (C 0

0
,C 0

1
,D 0

0
,D 0

1
)
�
, and where the tuple

(C 0
0

,C 0
1

,D 0
0

,D 0
1
) satisfies (4).

Output the ciphertext ct = (C0,C1,D0,D1,⇡).

• Dec(sk, ct): Parse ct as (C0,C1,D0,D1,⇡) and sk as (⌧, x) 2N⇥Z. Return ? if ⇡
is not a verifying NIZK argument that (h,hd,C0,C1,D0,D1) 2 LNY . Otherwise,
return

m = DLog
�
C
2

1
·C-2x

0
mod N

⇣+1
�
· 2-1 mod N

⇣.

• UpdatePk(pk): To update pk = (⌧,h) 2 Z⇤
N⇣+1 ,

1. Pick r - U({-B, . . . ,B}), set h 0 = h · gr mod N
⇣+1.

2. Compute (U0,V0,U1,V1,⇡) as

(U0,V0) =
�
g
tc mod N

⇣+1, (1+N)r · htc mod N
⇣+1

�

(U1,V1) =
⇣
g
td mod N

⇣+1, (1+N)r · h 0
d

td mod N
⇣+1

⌘
,

for random tc, td - U(Z(N-1)/4), and ⇡ a proof that (h,h 0
d

,U0,V0,U1,V1) 2
LNY computed using (tc, td, r), as described in Enc. Note however that here
the public key h

0
d

replaces hd in the Enc algorithm.

3. Using witness (tc, r), generate a NIZK argument ⇡up that (h,h 0,U0,V0) 2
LWFU, where LWFU is the language of Section 4.3.3. This argument is of
the form

⇡up = (cup, k̃, r̃) 2 {0, 1}� ⇥
⇥
- 2

2�
B, 22�B

⇤2,

with
cup = H

0�
⌧, (h,h 0,U0,V0), (U 0,V 0,H)

�
,

and where (U 0,V 0,H) satisfy (6).

Return
�
up = (U0,V0,U1,V1,⇡,⇡up), pk 0 = (⌧+ 1,h 0)

�
.

• UpdateSk(sk,up): Given sk = (⌧, x) 2N⇥Z and
�
up = (U0,V0,U1,V1,⇡,⇡up), pk 0 = (⌧ 0,h 0)

�
,

return ? if ⌧ 0 6= ⌧+ 1. Otherwise,

4.3 from cr-cpa to cr-cca/cu-cca security in the rom 53

1. Return ? if (U0,V0,U1,V1) 62 (Z⇤
N⇣+1)

4 or h 0 62 Z⇤
N⇣+1 .

2. Return ? if ⇡ = (c, t̃c, t̃d, m̃) 2 {0, 1}�⇥
⇥
0, 22� · N-1

4

⇤2⇥ZN⇣ does not parse
properly or if it is not a valid NIZK argument that (h,h 0

d
,U0,V0,U1,V1) 2

LNY .

3. Return ? if ⇡up = (cup, k̃, r̃) 2 {0, 1}� ⇥ [-2
2�
B, 22�B]2 does not parse prop-

erly or if it is not a valid NIZK argument that (h,h 0,U0,V0) 2 LWFU.

4. Compute
r = DLog

�
V
2 ·U-2x mod N

⇣+1
�
· 2-1 mod N

⇣.

5. Let r̄ = min(r,N⇣ - r) and let br 2 {0, 1} such that

r̄ = (1- br) · r+ br · (N⇣ - r) mod N
⇣.

Compute x
0 = x+ (-1)br · r over Z.

Return sk 0 = (⌧+ 1, x 0) 2N⇥Z.

• VerifyUpdate(h = pk,up, pk 0): Let up = (U0,V0,U1,V1,⇡,⇡up). Return ? if ⇡ is
not a valid NIZK proof for the statement

(h,hd, (U0,V0,U1,V1)) 2 LNY .

Then, verify that ⇡up is a valid NIZK argument that

(h, pk 0,U0,V0) 2 LWFU,

in which case return 1, else return ?.

We now prove that the scheme provides IND-CU-CCA-security in the ROM assum-
ing that the Strong RSA assumption holds and that the scheme of Section 4.3.2 pro-
vides IND-CR-CCA security.

Theorem 6. The above construction provides IND-CU-CCA security assuming that: (i) The
DCR assumption holds; (ii) The NIZK proof for LNY provides simulation-soundness; (iii) The
NIZK argument for LWFU provides computational soundness

Proof. The proof uses with a sequence of games. For each i, Wi denotes the event that
the adversary A outputs 0 in Gamei.
Game0: This is the original IND-CU-CCA game where the challenger’s bit is b = 0.
Game1: We replace the proof ⇡⇤up in the final update message

up
⇤ = (U⇤

0
,V⇤

0
,U⇤

1
,V⇤

1
,⇡⇤,⇡⇤up)

by a simulated NIZK proof obtained by programming H
0. We have |Pr[W1]-Pr[W0]| 6

2
-� as the distribution of ⇡⇤up is statistically unchanged. We note that A can only see

54 a construction under the dcr assumption

this simulated proof at the very end of the game, after having submitted all its update
queries. Therefore, A never gets to generate a proof for LWFU after having seen this
simulated proof.
Game2: In this game, we replace the proof ⇡⇤ of plaintext equality in the final update
up

⇤ = (U⇤
0

,V⇤
0

,U⇤
1

,V⇤
1

,⇡⇤,⇡⇤up) by a simulated proof, which is obtained by program-
ming the random oracle H. By Lemma 4, we have |Pr[W2]- Pr[W1]| 6 2

-�.
Game3: We now change the (U⇤

1
,V⇤

1
) components of up⇤ to be an encryption of 0 under

the public key hd. Thanks to the standard IND-CPA security of the Elgamal-Paillier
PKE scheme, these two games are indistinguishable under the DCR assumption, and
we have |Pr[W3]- Pr[W2]| 6 Adv

DCR(�).
Game4: We modify the generation of public parameters and now choose h

0
d

as h
0
d
=

g
x
0
d mod N

⇣+1, where x
0
d
 - U(Z(N-1)/4). Since the element h 0

d
remains statistically

uniform in the subgroup of 2N⇣-th residues, the distribution of pp is statistically close
to that of Game0. We have |Pr[W4]- Pr[W3]| 6 2

-�.
Game5: We introduce the following check: When the adversary makes an update query
(U0,V0,U1,V1,⇡,⇡up, pk 0 = ((i + 1),h 0)), the challenger uses the secret key ski to
decrypt (U0,V0) and check that the underlying plaintext r 2 Z (as decrypted at step
4 of UpdateSk) is such that h 0 = hi · g(-1)br ·r mod N

⇣+1, where hi 2 Z⇤
N⇣+1 is part of

pki. It halts if it is not the case. We denote by E5 the event that it halts. Game5 and
Game4 are identical until event E6 occurs and we have |Pr[W5]-Pr[W4]| 6 Pr[E5]. The
computational soundness of our ⌃-protocol for L̄WFU (together with the soundness
of Fiat-Shamir in the ROM) guarantees that Pr[E5] 6 Adv

SRSA(�). Here, note that the
fact that the simulated proof ⇡⇤up is revealed only at the very end of the game plays a
crucial role and allows relying on the standard soundness rather than on simulation-
soundness.
Game6: This game is identical to Game5 except that, at each query to Oupd(·), we use
x
0
d

instead of the actual secret ski of the current epoch i. Namely, when the adversary
makes an update query (U0,V0,U1,V1,⇡,⇡up, pk 0) that passes VerifyUpdate, the chal-
lenger does no longer use ski to decrypt (U0,V0) at step 4 of UpdateSk. Instead, it uses
x
0
d

to decrypt (U1,V1). Game6 proceeds identically to Game5 until the event E6 that an
Oupd(·)-query involves pairs (U0,V0), (U1,V1) that decrypt to distinct values although
⇡ verifies. The statistical soundness of ⇡ (which is guaranteed in the ROM when Fiat-
Shamir is applied to our ⌃-protocol in Section 4.3.1) ensures that Pr[E6] 6 2

-�. We
insist that we do not rely on simulation-soundness here since E6 occurs before A is
allowed to see up

⇤ (and thus before it gets to see a simulated proof).
Game7: This final game is identical to the previous game except that the challenger
encrypts m1 instead of m0. Lemma 8 shows that these two games are indistinguishable
under the IND-CR-CCA security of our construction from Section 4.3.2.

4.3 from cr-cpa to cr-cca/cu-cca security in the rom 55

We have now switched the challenge ciphertext to be an encryption of m⇤
1

instead
of m⇤

0
, and the claim follows by using the same sequence of hybrid games backwards

to go back to the IND-CU-CCA security game where the challenger’s bit is b = 1.

Lemma 8. Game6 and Game7 are computationally indistinguishable if the scheme of Section
4.3.2 provides IND-CR-CCA security.

Proof. Assuming that there exists a PPT adversary A that can distinguish between
Game6 and Game7, we build a PPT adversary B against the IND-CR-CCA security
of the construction in Section 4.3.2. Algorithm B receives as input public parameters
pp and pk0 from its challenger. It appends h

0
d

to the public parameters pp, where it
computes h

0
d

as h
0
d
= g

x
0
d mod N

⇣+1 by sampling x
0
d
 - U(Z(N-1)/4), and forwards

(pp 0 , pp[{h 0
d
}, pk0) to A. B has access to a random oracle H

00 while A has access to
two random oracles H,H 0. Except at the end of this reduction, B uses H

00 to answer
oracle H-queries while H

0 is honestly simulated.
During stages 2 and 4, when A makes a decryption query, B submits the same query

to its decryption oracle and relays the result to A. When A makes an update query
(U0,V0,U1,V1,⇡,⇡up, pk 0), B uses its knowledge of x

0
d

to decrypt (U1,V1). Thanks
to the two tweaks introduced in Game5 and Game6, B is guaranteed to recover the
correct randomness r used by A to generate its update Then, B submits this r to its
own update oracle in the IND-CR-CCA game.

At stage 3, when A submits a pair of challenge messages (m⇤
0

,m⇤
1
), adversary B sub-

mits the same pair to its IND-CR-CCA challenger. It then relays the latter’s challenge
ciphertext c⇤ to A.

Finally, at stage 6 of the IND-CR-CCA game, B obtains a tuple (pk⇤ = (`⇤,h⇤), sk⇤,up⇤),
where up

⇤ = (U⇤
0

,V⇤
0
). It then generates an encryption (U⇤

1
,V⇤

1
) of 0 under key h

0
d

. Let
h` 0 the public key at the last epoch ` 0 before moving to pk⇤. B generates a simulated
proof ⇡⇤ for the statement (h` 0 ,h 0

d
,U⇤

0
,V⇤

0
,U⇤

1
,V⇤

1
) 2 LNY by programming the ran-

dom oracle H. Note that H must be programmed on an input which is unpredictable
to A (as it is chosen by B’s challenger), so that a collision on H occurs with negligible
probability 6 QH · 2-�. Finally, adversary B generates a simulated proof ⇡⇤up for the
statement (h` 0 ,h⇤,U⇤

0
,V⇤

0
) by programming the random oracle H

0. It then sends A the
tuple (pk⇤, sk⇤, (U⇤

0
,V⇤

0
,U⇤

1
,V⇤

1
,⇡⇤,⇡⇤up)). When A halts and outputs b

0 2 {0, 1}, adver-
sary B outputs the same b

0.
The above reduction shows

|Pr[W7]- Pr[W6]| 6 Adv
cr-cca(�) +QH · 2-�,

where Adv
cr-cca(�) denotes the advantage in the proof of Theorem 5.

56 a construction under the dcr assumption

4.4 implementation and performances

The main advantage of our scheme resides in that its parameters make it close to
practical use, in terms of key size, ciphertext size, and running time. In this section,
we compare the key, ciphertext and updates sizes to the previous UPKE constructed
by Dodis et al. in [39] and by Jost et al. in [56]. For the sake of completeness, we also
present the running times of our implementation.

4.4.1 Key/Ciphertext/Update Sizes

Table 4 compares the different key/ciphertext/update sizes achieved by the existing
UPKE construction and their security assumptions for a 128-bit strength security. One
can remark that we avoid the quadratic blowup suffered by the Dodis et al. scheme
in the update sizes thanks to DCR. This allows us to construct the first IND-CR-CPA
secure UPKE with both reasonable key, ciphertext and update sizes in the standard
model.

Jost et al.’s scheme remains the most efficient to date. However, its IND-CR-CPA
security fully relies on the ROM and it does not extend to provide the stronger security
notions that we are able to achieve with DCR.

IND-* Encryption Decryption Update

CR-CPA (112 bits) 0.021 s 0.020 s 0.042 s

CR-CPA (128 bits) 0.062 s 0.062 s 0.127 s

CR-CCA (112 bits) 0.045 s 0.042 s 0.085 s

CR-CCA (128 bits) 0.092 s 0.091 s 0.202 s

Table 5: Benchmarks on our implementation of our IND-CR-CPA and IND-CR-CCA schemes

4.4.2 Running Time

We implemented our IND-CR-CPA and IND-CR-CCA schemes in C/C++ as a proof
of concept. Our implementation relies on the GMP3 library to handle computations
on big integers. One should note that, being only a proof of concept, the implementa-
tion is heavily optimizable. Our benchmarks were made on an Apple M1 CPU with 8
cores running at 3Ghz, under macOS 12. They are presented in Table 5. The code was
compiled with clang (clang-1205.0.22.9) with the optimization flag -O3. The running
time of each function was estimated by taking the mean running time of 1000 evalu-
ations. For the IND-CR-CPA version, encryptions, decryptions and updates sensibly

3 GMP https://gmplib.org

4.4 implementation and performances 57

have the same running time. Simply because an update consists of an encryption and
a decryption, and that decryptions require the same operations as encryptions.

The first gap appears when introducing NIZKs for Naor-Yung. As updates do not
require proofs, they are a bit faster than encryptions. IND-CR-CCA security comes at
the cost of losing a factor 20 in efficiency in our benchmarks.

5
A C O N S T R U C T I O N U N D E R L AT T I C E A S S U M P T I O N S

This chapter presents our second construction of UPKE. We construct the first efficient
post-quantum IND-CR-CPA scheme together with a FO transform for UPKE. Also, we
prove that the Naor-Yung paradigm approach used to achieve CU security is generic.

5.1 preliminaries

We start by giving out the mathematical background and some useful lemmas needed
in this chapter.

We use bold upper case letters to denote matrices (A), bold lower case letters for
vectors (a) and italic letters for scalars (a). For any vector x = (x1, . . . , xn), we use the

`2-norm kxk2 =
qP

x2
i

, the `1-norm kxk1 =
P

|xi| and the `1-norm kxk1 = max |xi|.
For any matrix A = (a1k . . . kan), we define kFk2 = max kaik2, kFk1 = max kaik1 and
kFk1 = max kaik1. We let b·c denote the floor function and b·e denote the rounding
to the closest integer with ties being rounded up, which are extended to vectors by
considering their coefficient-wise application. For x 2 Qn and q > p > 0, we write
bxep,q for bp/q · x mod qe. In this work, the modulus q will always be implicit and
omitted.

We use the convolution product to express the distribution of a sum of random
variables, which we remind below as well as some additional basic operations and
properties of probability distributions and discrete Gaussian distributions.

Definition 16 (Convolution). Let m 2N. Let S1, S2 be two probability distribution on Zm.
We define the convolution product S1 ⇤ S2 as:

S1 ⇤ S2(x) =
X

y2Zm

S1(x- y)S2(y).

If X ⇠ S1 and Y ⇠ S2 are independent random variables, then X+ Y ⇠ S1 ⇤ S2.

Definition 17 (Statistical distance). Let S1, S2 be two distributions on Zn. We define the
statistical �(S1, S2) as:

�(S1, S2) =
1

2

X

x2Zn

|S1(x)- S2(x)| .

59

60 a construction under lattice assumptions

5.1.1 Gaussian distributions

We give the definition of Gaussian distribution and several useful lemmas that are
used afterwards.

Definition 18 (Gaussian distribution). Let m 2 N. For any symmetric positive-definite
matrix ⌃ 2 Rm⇥m, define the function g⌃ : Rm ! R as

⇢⌃(x) = exp

-⇡
x
T⌃-1

x

2

!

.

We define the Gaussian distribution on Zm with center parameter c and covariance matrix
parameter ⌃ as DZm,⌃,c(x) = ⇢⌃(x - c)/⇢⌃(Z

m - c). We will also use, for � > 0, the no-
tation DZm,� to denote DZm,�2Id,0. Additionally, we will let DZm⇥n,� denote the distribution
obtained by sampling n vectors from DZm,� and viewing them as the columns of a matrix
in Zm⇥n.

Lemma 9 (Gaussian tail-bound, [33, Lemma 2.13]). Let x ⇠ DZm,�, then for all t > 1, we
have

P


kxk2 > t�

r
m

2⇡

�
6 e

-m

2
(1-t)2 .

Lemma 10 (Gaussian convolution, [19, Lemma 4.12]). Let c1, c2 2 Zn. Let X ⇠ DZn,�,c1 ,
Y ⇠ DZn,� 0,c2 and let S be the distribution followed by X+ Y. Then, if

✓
1

�2
+

1

� 02

◆-1/2

>

s
ln(2n(1+ 1

"
))

⇡
,

then we have the following inequality

�

⇣
S,D

Zn,
p
�2+� 02,c1+c2

⌘
<

2"

1- "
.

We now state a discrete Gaussian decomposition result.

Lemma 11 (Gaussian decomposition, instantiated from [68, Lemma 1]). For m > n, let
F 2 Zm⇥n be a matrix and let s1(F) be the largest singular value of F. Take �,�1 > 0. Let
e1 ⇠ DZn,�1

and e2 ⇠ DZm,⌃ for

⌃ = �2Id - �2
1

F
T

F .

Then, if � >
p
2�1s1(F) and �1 >

p
2 ln(2n(1+ 1/"))/⇡, we have:

� (S,DZm,�) <
2"

1- "
,

where S is the distribution of Fe1 + e2.

5.2 extended lwe 61

In order to apply Lemma 11, one needs to control the ratio s1(F). This is the purpose
of the following result.

Lemma 12 (Adapted from [2, Lemma 8]). There exists a constant K > 1 such that the
following holds. For m > 2n, � > K

p
n and F - DZm⇥n,�

P
⇥
s1(F) > K�

p
m
⇤
< e

-m/K ,

where s1(F) denotes the largest singular value of F

We recall the definition of �-spreadness, which allows to bound the probability that
a specific randomness r was used to produce a valid encryption. It is used in Section 5.4
for our FO transform.

Definition 19 (�-spreadness, adapted from [41, Section 2.1]). Let � > 0. We say that
a UPKE (KeyGen, Enc, Dec, UpdatePk, UpdateSk) is �-spread if for all m, c and (pk, sk)
KeyGen(1�), we have

P [Enc(pk,m) = c] 6 �.

5.2 extended lwe

We start by recalling the Learning With Errors (LWE) assumption.

Definition 20. (Learning With Errors - LWE) Let � > 0 be a security parameter. Let q =
q(�),n = n(�),m = m(�) > 0, S be a distribution on Zn

q and � be an error distribution
on Zm. The goal for an adversary A in the game LWEq,n,m,�(S) is to distinguish between
(A, b = As + e) and (A, u), for A - U(Zm⇥n

q), s - S, e - �m and u - U(Zm
q). We

define the advantage of A in the LWE game as

AdvLWE(A) := |P [A(A, As + e)! 1]- P [A(A, u)! 1]| .

To keep notations simple, we write LWEq,n,m,� with � > 0, for LWEq,n,m,DZm ,�(U(Z
n
q)).

The extended-LWE assumption claims that pseudorandomness of an LWE instance
(A, As + e) still holds when the adversary is given an additional hint h computed
as hz, ei mod q for a small z chosen by the adversary independently of A. We define
Adaptive extended-LWE, an adaptive version of this assumption. As the name suggests,
it allows the adversary to choose the hint vector z adaptively, i.e. after having seen the
matrix A, which is not allowed in the definition of the extended-LWE from [71]. In
Theorem 7, we prove that LWE reduces to this adaptive version.

Definition 21 (Adaptive extended-LWE - AextLWE). Let � > 0 be a security parameter. Let
q = q(�),n = n(�),m = m(�),B = B(�) 2 N and � be an error distribution on Zm. The
goal for an adversary A in AextLWEq,n,m,�,B is to distinguish between the case where � = 0

62 a construction under lattice assumptions

and � = 1 in the interactive game depicted in Figure 5. We define the advantage of A in the
AextLWE game as

AdvAextLWE(A) := |P [A(A, As + e, z,h)! 1]- P [A(A, u, z,h)! 1]| ,

where the elements are distributed as shown in Figure 5.
To keep notations simple, we write AextLWEq,n,m,�,B, with � > 0, for AextLWEq,n,m,DZm ,�,B.

C
AextLWE

A

A - U(Zm⇥n
q)

� - U({0, 1}) A�����!
z, st A1(A) s.t. kzk1 6 B

z �����
s - U(Zn

q), e - �m,g - �
h = hz, ei+ g mod q

b =

8
<

:
As + e if � = 0

u - U(Zm
q) if � = 1

b,h����!
�

0 A2(A, b, z,h, st)
�

0 2 {0, 1}
 ��������

Figure 5: The decision game for AextLWEq,n,m,�.

We define the Hermite Normal Form (HNF) variant of Adaptive extended-LWE,
based on the normal form reduction from [7, Lemma 2]. Lemma 13 shows that the
HNF variant reduces to the standard Adaptive extended-LWE.

Definition 22 (HNF Adaptive extended-LWE - HNF-AextLWE). Let � 2 N be a security
parameter. Let q = q(�),n = n(�),m = m(�),B = B(�) 2N and � be an error distribution
on Rm. The goal for an adversary A in HNF-AextLWEq,n,m,�,B is to distinguish between the
case where � = 0 and � = 1 in the interactive game depicted in Figure 6. We define the
advantage of A in the HNF-AextLWE game as

AdvHNF-AextLWE(A) = |P [A(A, As + e, z0, z1,h)! 1]

- P [A(A, u, z0, z1,h)! 1] |

where the elements are distributed as shown in Figure 6.
To keep the notations simple, we write HNF-AextLWEq,n,m,�,B, for � > 0, to denote

HNF-AextLWEq,n,m,DZm ,�,B.

5.2 extended lwe 63

C
HNF-AextLWE

A

A - U(Zm⇥n
q)

� - U({0, 1}) A�����!
z0, z1, st A1(A)

s.t. kz0k1 6 B, kz1k1 6 B

z0, z1 ������
s - �n, e - �m,g - �

h = hz0, si+ hz1, ei+ g mod q

b =

8
<

:
As + e if � = 0

u - U(Zm
q) if � = 1

b,h������!
�

0 A2(A, b, z,h, st)
�

0 2 {0, 1}
 ��������

Figure 6: The decision game for HNF-AextLWEq,n,m,�.

Multiple-secret variants. We consider the multiple-secret variants of all our assump-
tions Asp 2 {LWE, AextLWE, HNF-AextLWE} which consist in considering k distinct se-
crets for the same public matrix A, thus replacing the secret vector s 2 Zn

q by a secret
matrix S 2 Zn⇥k

q and the error vector e by an error matrix E 2 Zm⇥k
q . Note that for

AextLWE and HNF-AextLWE, the hint h 2 Zq also becomes a vector h 2 Zk
q. Also, the

multiple-secret variants for AextLWE and HNF-AextLWE could allow for a different z

for each secret, but we restrict ourselves to the case where the z is the same for all
secrets, as it is all we need for our proofs.

Using a hybrid argument, one can show that for every adversary A for the multiple-
secret variant of Asp with k secrets, there exists an adversary B with a similar run-
time against the single-secret problem Asp such that A’s advantage is bounded by
k ·AdvAsp(B).

Lemma 13. Let q > 25,n > 1,m > 16n+ 4 log logq, then any adversary A for the game
HNF-AextLWEq,n,m 0,�,B, where m 0 = m- 16n- 4 log logq, running in time T can be used
to build an adversary B for AextLWEq,n,m,�,B running in time ⇡ T , with advantage

AdvHNF-AextLWE(A) 6 4 ·AdvAextLWE(B) .

Proof. Assume A is an adversary against HNF-AextLWE. We construct an adversary B

against AextLWE with the claimed advantage as follows.

64 a construction under lattice assumptions

Adversary B receives a matrix A =
⇣

A
T

0
kAT

1

⌘T
2 Zm⇥n

q from the AextLWE chal-
lenger, with A0 2 Zn⇥n

q and A1 2 Zm-n⇥n
q . According to [25, Claim 2.13], with

probability at least 1 - 2e
-1 > 1/4, there exist n linearly independent rows within

the first 16n+ 4 log logq rows of A and an efficient way to find them, so that B can
reorder the matrix so that A0 is invertible. If it cannot find such n rows, adversary B

aborts. To avoid keeping track of the indices for the reordering, assume that A is such
that A0 is invertible and denote by Ad the last 15n+ 4 log logq rows of A1 so that
A1 = (ÃT

1
kAT

d
)
T with matrix Ã1 2 Zm

0⇥n
q .

It then computes A
⇤ = -Ã

1
A

-1

0
2 Zm

0⇥n
q and sends A

⇤ to adversary A. Adversary
A responds with the hint vectors z0 2 Zn

q , z1 2 Zm
0

q . Then, adversary B forwards z =

(zT
0
kzT

1
k0m-m

0-n)T 2 Zm
q to its challenger and receives a vector b =

⇣
b
T

0
kbT

1
kdT

⌘T

and a hint h = hz, ei+g mod q from the AextLWE challenger, with b0 2 Zn
q , b1 2 Zm

0
q ,

d 2 Zm-m
0

q and g - DZ ,�. It then computes b
⇤ = b1 + A

⇤
b0 and sends (b⇤,h) to A.

Finally, it receives a response bit � from A, which it forwards to its challenger.
In the case where b was a uniform vector, as A0 is an invertible matrix, matrix A

⇤ is
uniform and so is b

⇤ = b1 + A
⇤
b0.

If we are in the case where
0

BB@

b0

b1

d

1

CCA =

0

BB@

A0

Ã1

Ad

1

CCA s +

0

BB@

e0

e1

ed

1

CCA

for s - DZn,�, e0 - DZn,�, e1 - DZm 0 ,� and ed - DZm-m 0 ,�, then

b
⇤ = Ã

1
s + e1 - Ã

1
A

-1

0
A

0
s + A

⇤
e0 = A

⇤
e0 + e1.

Furthermore, the hint is exactly

hz, ei+ g =
D

z
T

0
kzT

1
k0m-m

0 , e
T

0
keT

1
keT

d

E
+ g

= hz0, e0i+ hz1, e1i+ g mod q.

Consequently, adversary A receives a valid HNF Adaptive extended-LWE instance.
Adversary B runs A only once and has to compute the reordering which is feasible

in time poly(�). It then has advantage at least AdvHNF-AextLWE(A)/4, completing the
proof of the lemma.

We now show that LWE reduces to Adaptive extended-LWE .

Theorem 7. Let q be a prime, " > 0 and n,m,B,�,� > 0. Assume that

� >

p
2 ln(2(n+ 1)(1+ 1/"))/⇡

5.3 ind-cr-cpa upke from lwe 65

and � > �

p
2(1+nB2). Then for any adversary A for AextLWEq,n,m,�,B running in time T ,

there exists an adversary B for LWEq,n,m,�,B running in time poly(m, logq) · T such that:

AdvAextLWE(A) 6 AdvLWE(B) + 2
2"

1- "
.

Proof. Let A be an adversary against AextLWEq,n,m,�. We build an adversary B against
LWEq,n,m,� as follows. Adversary B receives from its LWE challenger a tuple (A, b). It
forwards A to A and receives a small hint vector z such that kzk1 6 B.

It then samples [e 0Tkg 0]T - DZn+1,⌃, for some ⌃ defined later on. It sets b
0 = b+ e

0

and h = hz, e
0i+ g

0 and sends (b 0,h) to A. Adversary B receives a final bit from A

which it forwards to its challenger.
Assume we are in the � = 0 case of the LWE game. Then b = As + e and b

0 =
As + (e + e

0). The hint h = hz, e
0i+ g

0 can be rewritten as h = hz, (e + e
0)i- hz, ei+ g

0.
Notice that if

e + e

0

- hz, ei+ g
0

!

=

e

-z
T

e

!

+

e
0

g
0

!

⇠ DZn+1,� (12)

this corresponds to the � = 0 case of the AextLWE game.
It thus suffices to set ⌃ accordingly. Notice that as e ⇠ DZn,�, we have

e

-z
T

e

!

=

Id

-z
T

!

e ⇠ DZn+1,�2FFT

for F = [Idk- z]T . Let us then take ⌃ = �
2

Id - �2FF
T . Note that s1(F)2 = 1+ kzk2

2
6

1+nB
2. By assumption, we have � >

p
2�s1(F). By applying Lemma 11, we get

e

-z
T

e

!

+

e
0

g
0

!

⇡� DZn+1,� (13)

for � = 2"/(1- ").
In the � = 1 case of the LWE game, the vector b is uniform and so is b

0. The same
analysis holds for the distribution of the hint h, so this case matches with the � = 1

case of the AextLWE game for A.

5.3 ind-cr-cpa upke from lwe

We now describe a UPKE scheme whose security is based on this newly introduced
HNF-AextLWE assumption. As already shown, it is implied by the standard LWE as-
sumption. Our scheme, detailed in Figure 7, avoid noise flooding by taking advantage

66 a construction under lattice assumptions

of the HNF-AextLWE assumption defined in Section 5.2. We then provide the first effi-
cient UPKE scheme based on lattices. Our construction follows the lines of [63] which
underlies Kyber [22].

In contrast, the only prior lattice-based construction, proposed in [39] and based
on the Dual-Regev PKE from [47], is highly inefficient: (i) it supports only binary
plaintexts, (ii) updates are done via bit-by-bit encryption of the private coins, and
(iii) the security analysis relies on noise flooding, which requires a super-polynomial
modulus.

Public parameters: (n,q,p,�,�c)

KeyGen(1�):
A - U(Zn⇥n

q), s, e - DZn,�;
pk = (A, b = As + e), sk = s;
return (pk, sk).

Enc(pk,µ 2 Zn
p):

X, E - DZn⇥n,�c
and f - DZn,�c

;
return ct = (XA + E, Xb + f + bq/pc · µ mod q).

Dec(sk = s, ct = (ct0, ct1)):
v = ct1 - ct0s;
return bp/q · vep.

UpdatePk(pk = (A, b)):
r,⌘ - DZn,�;
return (pk 0 = (A, b + Ar +⌘), up = Enc(pk, r)).

UpdateSk(sk,up):
return sk

0 = sk+Dec(sk,up).

Figure 7: LWE-based IND-CR-CPA UPKE construction.

Theorem 8. Let ", � 2 (0, 1),k > 0. Let q,p be primes and n,m>0 and �,�c >0 such that

� >
p
2 ln(2n(1+ 1/"))/⇡ and �c > 2�

q
1+n((k+ 1)y�)2,

where y =
p
-2 log(�/(4n)).

5.3 ind-cr-cpa upke from lwe 67

Assuming the hardness of HNF-AextLWE, the scheme presented in Figure 7 is k-IND-CR-CPA
secure. More precisely, for any adversary A for the k-IND-CR-CPA game, there exists an adver-
sary B for HNF-AextLWE running in similar time as A such that:

AdvIND-CR-CPA

UPKE (A) 6 (2n+ 8) · 2"

1- "
+ (2n+ 1) ·AdvHNF-AextLWE(B) .

Furthermore, assuming q > 2p�c · (2y2
�nk+ y) and p > 2y�, the scheme is (k, �)-correct.

Proof. For the sake readability, we delay the proof of correctness for after the security
proof.

We show the IND-CR-CPA security of the scheme. Let us start by defining all the
security games.

Game G0: This is the original IND-CR-CPA game. Adversary A receives pk0 = (A, b0 =
As + e) and queries the Oup(·) oracle with randomness (r1,⌘1), . . . , (rchall,⌘chall)
until it asks for a challenge at epoch chall for a pair of plaintexts (µ0,µ1). At this
epoch, the secret key is skchall = s+�r

chall
where �r

chall
=
P

chall

i=1
ri and the public

key is

pkchall =
⇣

A, bchall = A(s +�r

chall
) + e +�⌘

chall

⌘
,

with �⌘
chall

=
P

chall

i=1
⌘i. It receives a challenge

c
⇤ = (Tchall = XchallA + Echall,

pad
chall

= Xchallbchall + fchall + bq/pc · µ�),

for � 2 {0, 1} uniform.
Then the adversary queries the Oup(·) oracle until the last epoch last. At this epoch,

the secret key is sklast = s + �r

last
, where �r

last
=

P
last

i=1
ri and the public key is

pklast = (A, blast = A(s + �r

last
) + e + �⌘

last
), where �⌘

last
=

P
last

i=1
⌘i. The chal-

lenger samples the final update r
⇤,⌘⇤ - DZn,� and sends

up
⇤ = Enc(pklast, r

⇤)

= (Tlast = XlastA + Elast,
pad

last
= Xlastblast + flast + bq/pc · r

⇤)

together with pk
⇤ = (A, blast + Ar

⇤ +⌘⇤) and sk
⇤ = s +�r

last
+ r

⇤ to the adversary.

Game G1: In this game we modify the update up
⇤. Instead of computing it as

up
⇤ = (Tlast = XlastA + Elast,

pad
last

= Xlastblast + flast + bq/pc · r
⇤),

the challenger sets

68 a construction under lattice assumptions

up
⇤ = (Tlast = XlastA + Elast,

pad
last

= Xlastblast + flast + bq/pc · (-s)).

This modification results in a computationally equivalent game. Indeed adversary
receives up

⇤ together with sk
⇤ = s + �r

last
+ r

⇤ with �r

last
known to the adversary.

This modification is just a subtraction of bq/pc · (s + r
⇤) in pad

last
.

Game G2: In this game, we again modify the update. This time the challenger com-
putes the update up

⇤ as

Tlast = XlastA + Elast - bq/pc · Id,
pad

last
= Tlast(s+�

r

last
)-Elast(s +�

r

last
) + Xlast(e +�⌘

last
)

+ flast + bq/pc ·�r

last
.

Notice that

pad
last

= Xlastblast + flast + bq/pc · (-s).

Therefore, the only difference with the previous game is that we subtract a publicly
computable element bq/pc · Id in Tlast, which implies that this game is computation-
ally equivalent to the last one.

Game G3: In this game, instead of computing Tlast as

Tlast = XlastA + Elast - bq/pc · Id

the challenger sets Tlast uniformly, i.e., Tlast - U(Zn⇥n
q).

Lemma 14 below states that games G2 and G3 are computationally indistinguishable.
The proof relies on the hardness of HNF-AextLWE. In particular, any adversary B has
advantage at most Adv(B) 6 n ·AdvHNF-AextLWE at distinguishing games G2 and G3.

Game G4: Here, instead of having the challenger sample s, e - DZn,� at the start
of the game, and r

⇤,⌘⇤ - DZn,� at the end and setting sk
⇤ = s + r

⇤ + �r

last
and

pk
⇤ = (A, A(s +�r

last
+ r

⇤) + e +�⌘
last

+⌘⇤), we do the following.
Let us define distributions S, St and Sẽ as:

S = DZn,�
p
2

, St = DZn, �p
2

, t

2

, and Sẽ = DZn, �p
2

, ẽ

2

.

Then, in game G4, the challenger samples t, ẽ - S at the beginning of the game, then
samples s - St, e - Sẽ and finally sets sk

⇤ = t + �r

last
and pk

⇤ = (A, At + ẽ +
A�

r

last
+�⌘

last
).

Let � = 2"/(1- "). Lemma 10 shows that this change only induces a statistically neg-
ligible bias. Specifically, assuming that we have the inequality � >

p
2 ln(2n(1+ 1/"))/⇡,

5.3 ind-cr-cpa upke from lwe 69

vector t is within statistical distance at most � from the distribution of s + r
⇤ in game G3,

and the marginal distribution of s in game G4 with respect to the adversary’s view is:

P [s = x] =
X

y2Zn

P [s = x|t = y]P [t = y]

=
X

y2Zn

DZn, �p
2

⇣
x -

y

2

⌘
DZn,�

p
2
(y)

=
X

y2Zn

DZn,�
p
2
(2x - y)DZn,�

p
2
(y)

⇡� DZn,2�(2x) = DZn,�(x).

The fourth equality comes from applying Lemma 10 for the convolution of two Gaus-
sian distributions with the same standard deviation. The same argument applies for ẽ

and e. Hence any adversary B has advantage at most 4� = 8"/(1- ") in distinguishing
games G3 and G4.

Game G5: In this game, we replace b0 and up
⇤ = (Tlast, pad

last
) by uniform ele-

ments. Note that Tlast is already uniform since game G3. Hence, the challenger sam-
ples b0, pad

last
 - U(Zn

q), and sets pk0 = (A, b0) at the start of the game, and returns
up

⇤ = (Tlast, pad
last

) as the last update message.
Lemma 15 below states that this game and the previous one are computationally

indistinguishable under the LWE assumption.

Game G6: This is the final game. Here, the challenger replaces the challenge c
⇤ to

make it uniform: it samples Tchall - U(Zn⇥n
q) and pad

chall
 - U(Zn

q), and then
sets c

⇤ = (Tchall, pad
chall

).
Remember that in game G5, we have

c
⇤ = (XchallA + Echall, Xchallbchall + fchall + bq/pc · µ�).

We can rewrite c
⇤ in a matrix form as:

Xchall

⇣
Akbchall

⌘
+
⇣

Echallkfchall

⌘
+ bq/pc ·

⇣
0kµ�

⌘
(14)

with A - U(Zn⇥n
q) and bchall = b0 + A�

r

chall
+�⌘

chall
. Recall that we have b0 -

U(Zn
q) since game G5. The last column of Equation (14) is

(Xchallb0 + fchall) + (Xchall(A�
r

chall
+�⌘

chall
)) + bq/pc · µ�.

and can be rewritten as

(Xchallb0 + fchall,0)

+ Tchall�
r

chall
- Echall�

r

chall
+ Xchall�

⌘
chall

+ fchall,1

+ bq/pc · µ� ,

70 a construction under lattice assumptions

where fchall = fchall,0 + fchall,1 for fchall,0, fchall,1 - DZn,�c/
p
2

. Consider we are
working with standard deviation �c/

p
2 instead of �c. The first term is a multiple-

secret LWE sample that is independent of any adversarially chosen value. The second
one can be computed from Tchall. The next three can be viewed as an HNF-AextLWE
hint on the secret Xchall and the error Echall with hint vector z0 = �

⌘
chall

and z1 =
�

r

chall
, which are small vectors. The difference in standard deviation can be handled

as in Lemma 15 by adding terms sampled from DZn,�c/
p
2

to the matrices Xchall and
Echall. Applying Lemma 10 proves this change to be statistically unnoticeable.

The above indicates that the modification between this game and game G5 can be
analyzed by using the multiple-secret variant of HNF-AextLWE

q,n,n+1,�c/
p
2,ky� with n

secrets and hint vector z = [(�⌘
chall

)Tk(�r

chall
)T]T . Consequently, any adversary A has

advantage at most n · AdvHNF-AextLWE + (2n+ 1) · 2"/(1- ") in distinguishing between
games G5 and G6.

Note that in game G6, the adversary has no information on the challenge µ�. Hence
AdvG6(A) = 0. We obtain

AdvIND-CR-CPA

UPKE (A) 6 (2n+ 8) · 2"

1- "
+ (2n+ 1) ·AdvHNF-AextLWE.

This completes the proof, up to Lemmas 14 and 15 below.

Lemma 14. For any adversary A that distinguishes between games G2 and G3, there exists an
efficient algorithm B for HNF-AextLWEq,n,n,�c,B (for B = (k+ 1)y�), calling A once, such
that

Advdist

G2,G3
(A) 6 n ·AdvHNF-AextLWE(B).

Proof. This proof constructs an algorithm B for the multiple-secret variant of the
HNF-AextLWE assumption with n secrets, using a distinguisher A for games G2 and G3.

Algorithm B receives a matrix A 2 Zn⇥n
q from the HNF-AextLWE challenger. Then

it samples s, e - DZn,� and sets pk0 = (A, b0 = As + e), forwards pk0 to A and acts
as A’s challenger until the last update phase where it has to send up

⇤ and sk
⇤ to A.

At this stage, algorithm B knows the sum of all the updates �r

last
and the sum of all

the noises used for each updates �⌘
last

as A has finished querying the Oup oracle.
The HNF-AextLWE challenger expects small vectors z0, z1 for which to send a hint h.

Let Xlast - DZn⇥n,�c
be the secret matrix and Elast - DZn⇥n,�c

be the error matrix
sampled by the challenger in the multiple-secret variant of HNF-AextLWE. Algorithm
B sets z0 = e +�⌘

last
and z1 = -(s +�r

last
).

It then receives from the challenger a matrix B 2 Zn⇥n
q and a hint

h = Xlastz0 + Elastz1 = (XlastkElast)z + flast ,

where z =
⇣

z
T

0
kzT

1

⌘T
and flast - DZn,�c

. The matrix B is either uniform or of the
form XlastA + Elast.

5.3 ind-cr-cpa upke from lwe 71

Adversary B sets

up
⇤ =

�
Tlast = B - bq/pc · Id, Tlast(s +�r

last
) + h + bq/pc�r

last

�

=
⇣

Tlast, Tlast(s +�r

last
) + Xlast(e +�⌘

last
)- Elast(s +�r

last
)

+flast + bq/pc�r

last

⌘
.

It also sets pk
⇤ = (A, b0 +A(�r

last
+ r

⇤) +�⌘
last

+⌘⇤) and sk
⇤ = s+�r

last
+ r

⇤, where
r
⇤,⌘⇤ - DZn,�.

The case where B is uniform corresponds to adversary A playing game G3 and the
case where B = XlastA + Elast corresponds to A playing game G2. Hence B has the
same advantage as A.

By a hybrid argument, there exists an adversary B
0 for the game HNF-AextLWEq,n,n,�,B

such that the advantage of B in the multiple-secret variant of HNF-AextLWE with n se-
crets can be bounded by n ·AdvHNF-AextLWE(B 0), completing the proof.

Lemma 15. For any adversary A that distinguishes between games G4 and G5, there exists
an adversary B for LWEq,n,2n,�/2 calling A once, such that:

Advdist

G4,G5
(A) 6 AdvLWE(B) +

6"

1- "
.

Proof. Let us build an adversary B for LWEq,n,2n,�/2 that uses any distinguisher A

between games G4 and G5.
Adversary B receives a uniform B 2 Z2n⇥n

q and a vector c 2 Z2n
q from the LWE

challenger. The vector c is either uniform or computed as an LWE sample with secret
s - DZn,�/2. Now adversary B samples Elast, Xlast - DZn⇥n,�c

. It then computes

B
0 = MB +

0

Elast

!

, with M =

Id 0

Xlast Id

!

2 Z2n⇥2n

q

and parses B
0 as

⇣
A

TkTT

last

⌘T
. Let t, ẽ - S = DZn,�

p
2

. After that, it samples elements
s
0 - DZn,�/2,t/2, ⌘ - DZn,�/2,ẽ/2 and f

0 - DZn,(�2
c-�2/4)Id that are used to adjust

the standard deviations of the discrete Gaussian distributions involved in the proof.

Then it sets e
0 =

⇣
⌘Tkf 0T

⌘T
and c

0 = M(c + e
0) + MBs

0 and parses c
0 as

⇣
b
T

0
kuT

1

⌘T
.

From there, adversary B runs as A’s challenger and sets pk0 = (A, b0). At epoch
last, it computes

up
⇤ = (Tlast, u1 + (Tlast - Elast + bq/pc · Id)�r

last
) + Xlast�

⌘
last

.

If A returns G4 then B guesses that c is an LWE sample and if A returns G5 it guesses
that it is uniform.

72 a construction under lattice assumptions

If c is uniform, as M is invertible, B
0 and c

0 are also uniformly distributed and
adversary A is playing game G5.

If c = Bs + (eTkfT)T , for s - DZn,�/2 and e, f - DZn,�/2, then

c
0 = M

Bs +

e +⌘

f + f
0

!!

+ MBs
0

=

A

Tlast - Elast

!

(s + s
0) +

e +⌘

Xlast(e +⌘) + f + f
0

!

=

b0

u1

!

.

Let us set s̄ = s+ s
0, ē = e+⌘, f̄ = f+ f

0. Then, using the equation above, we have the
following:

up
⇤ = (Tlast, u1 + (Tlast - Elast + bq/pc · Id)�r

last
+ Xlast�

⌘
last

)

= (Tlast, (Tlast - Elast)s̄ + Xlast(ē +�⌘
last

) + f̄

+ (Tlast - Elast + bq/pc · Id)�r

last
)

= (Tlast, (Tlast - Elast)(s̄ +�
r

last
) + Xlast(ē +�⌘

last
)

+ f̄ + bq/pc ·�r

last
).

(15)

Let � = 2"/(1- "), for " 2 (0, 1). As s - DZn,�/2 and s
0 - DZn,�/2,t/2, Lemma

10 gives that the distribution of s̄ has statistical distance at most � from DZn,�/
p
2,t/2.

Similarly, errors ⌘ and f
0 were chosen such that ē and f̄ are within statistical distance at

most � from DZn,�/
p
2,ẽ and DZn,�c

. The equation above shows that up⇤ is statistically
close (at distance at most 3�) from its value in game G4, thus A can be viewed as
playing game G4.

Overall, algorithm B has advantage at least Advdist

G4,G5
(A)- 3�, completing the proof.

We now prove correctness of the scheme, with notations of Theorem 8.

Proof. Let (pk = (A, As + e), sk = s) KeyGen(1�) be an honestly generated key pair.
In order to consider the worst case scenario where k updates to the key have been
performed, assume that s and e satisfy ksk1, kek1 6 ky�, for y a parameter that we
set afterwards.

Let µ 2 Zn
p and

Enc(pk,µ) = (XA + E, Xb + f + bq/pc · µ mod q) .

Then, we have

Dec(s, ct) = bct1 - ct0 · se
p

= bXb + f + bq/pc · µ- (XA + E)se
p

= bXe - Es + f + bq/pc · µe
p

.

5.3 ind-cr-cpa upke from lwe 73

We obtain that Dec(s, ct) = µ if kXe - Es + fk1 < q/(2p). By the triangular inequal-
ity, it suffices to have kXek1 + kEsk1 + kfk1 < q/(2p). By using that kMvk1 6
kMTk1kvk1 6 pnkMTk2kvk1 for any matrix M 2 Zn⇥n and any vector v 2 Zn,
we obtain another sufficient condition:

p
nkXTk2kek1 +

p
nkETk2ksk1 + kfk1 < q/(2p). (16)

If we assume that kXTk2, kETk2 < y
p
n�c and kfk1 < y�c, for some y > 0, then (16)

is verified if
q > 2p · (2y2

�c�nk+ y�c).

We bound the `2-norms using Lemma 9 and a union-bound, and the `1-norms with
Lemma 9 in dimension 1 and a union-bound. Using the independence of the random
variables, the assumption we made on the norms are verified with probability at least

P[kXTk2, kETk2 < y
p
n�c ^ kfk1 < y�c]

>

⇣
1-ny

n
e

n

2
(1-y

2)
⌘2✓

1- 2ne
-y

2

2

◆

>

⇣
1- 2ny

n
e

n

2
(1-y

2)
⌘✓

1- 2ne
-y

2

2

◆

> 1- 4ne
-y

2

2 .

In order to achieve (k, �)-correctness, it suffices to set y =
p
-2 log(�/(4n)).

Notice that we implicitly assumed that the norm of the updates were bounded by
y�. As the plaintext space is Zn

p , in order to fit a secret key into an encryption, it
suffices that p > 2y�.

We also prove �-spreadness of our scheme. This is needed later on to apply our FO
transform. We adapt the proof of [55, Lemma 6] for FrodoKEM to prove the following
result.

Lemma 16. Our UPKE construction is �-spread.

74 a construction under lattice assumptions

Proof. Let ct = (ct0, ct1) be an element of the ciphertext space, µ be a message and
pk = (A, b) be a public key. We have:

P [ct = Enc(pk,µ)] 6 PX,E[ct0 = XA + E]

=
X

PX,E[ct0 = X̃A + E ^ X = X̃]

=
X

PE[E = X̃A + ct0] · P
⇥
X = X̃

⇤

6
X

P [E = 0] · P
⇥
X = X̃

⇤

= P [E = 0]

= (DZ ,�(0))
n

2

where the fourth inequality stems from the fact that the distribution DZ ,�(x) is maxi-
mal at x = 0.

5.4 a upke fujisaki-okamoto transform

In this section, we describe a transform from an IND-CR-CPA UPKE into an IND-CR-
CCA UKEM following the Fujisaki-Okamoto [46] technique.

Definition 23 (FO-transform for UPKEs). Let UPKE be a UPKE, and G and H be two
functions modeled as random oracles. We define the transform FO(UPKE, G, H) in Figure 8.

Our FO transform is essentially the KEM? construction from [53]. We add pk to the
inputs of the hash function used to determinize the Enc algorithm in order to prevent
trivial attacks, given the ability of the adversary to update the key pair.

Theorem 9 (FO transform for UPKEs). Let �, � 2 (0, 1),k > 0. Let UPKE = (Enc,
Dec, UpdatePk, UpdateSk) denote a �-spread and (k, �)-correct k-IND-CR-CPA UPKE scheme.
Then the UPKE FO(UPKE, G, H) is a (k, �)-correct k-IND-CR-CCA UKEM in the ROM.

More precisely, for any adversary A for the k-IND-CR-CCA UKEM game in the ROM
making at most qG queries to oracle G, qH queries to oracle H and qD queries to oracle Odec,
there exists an adversary B for the k-IND-CR-CPA game of UPKE with a similar running time
such that:

AdvIND-CR-CCA(A) 6 qG · �+ qD · �+ 2

✓
AdvIND-CR-CPA(B) +

qG + qH

|M|

◆
.

The proof of the above theorem follows standard techniques for FO analysis (e.g., [53])

Proof. The (k, �)-correctness of FO(UPKE, G, H) in the ROM follows from the (k, �)-
correctness of the underlying UPKE scheme, since Encaps runs the Enc algorithm,
Decaps runs the Dec algorithm and the underlying KeyGen, UpdatePk algorithms are
unchanged.

5.4 a upke fujisaki-okamoto transform 75

KeyGen = UPKE.KeyGen.

Encaps(pk):
m - U(M);
c UPKE.Enc(pk,m; G(pk,m));
K = H(m, c);
return (c,K).

Decaps(sk, c):
m

0 UPKE.Dec(sk, c);
if c 6= UPKE.Enc(pk,m 0; G(pk,m 0))

return ?;
return K

0 = H(m 0, c).

UpdatePk = UPKE.UpdatePk.

UpdateSk = UPKE.UpdateSk.

Figure 8: Transform FO(UPKE, G, H) for a UPKE using random oracles G, H.

In Algorithm 1, we present the random oracles and decapsulation oracles as they are
in the original IND-CR-CCA UKEM game. The idea of the proof is the same as for usual
proofs of FO: we modify oracles to allow the challenger to simulate the decapsulation
oracle without knowledge of the secret key sk. The additional pk in the inputs of the
oracle G allows the challenger to keep track of the ciphertexts known by the adversary
for any public key pk, through epochs.

We add a subscript i to the oracle names to refer to the implementation of this oracle
in Game i. For instance, oracle G0 refers to the oracle G in Game 0. When the context
is clear, we omit the subscript. We let K denote the key space and R the space of the
randomness used by algorithm Enc.

Let us define the following sequence of games. Note that, in each game, the chal-
lenger initializes all relevant lists LH,LG, or LE to ; at the start of the game.

• Game 0: This is the original IND-CR-CCA UKEM game, using oracles as they are
described in Algorithm 1.

• Game 1: In this game, we modify both the random oracles and the decapsulation
oracle. We replace the oracles of Algorithm 1 by those in Algorithm 2. The main
difference is that oracle G on input (pk,m) keeps track of (pk,m, Enc(pk,m; r), r),
where r is the output of G(pk,m). This allows for oracles H and Odec to know,
for every epoch t, if they are queried on valid encapsulations for pkt.

76 a construction under lattice assumptions

Algorithmus 1 : Oracles G, H and Odec for Game 0.

1 G0(pk,m):

2 if 9r : (pk,m, r) 2 LG

3 return r

4 r - U(R);
5 LG = LG [{(pk,m, r)};
6 return r

7 H0(m, c):

8 if 9K : (m, c,K) 2 LH

9 return K

10 K - U(K);
11 LH = LH [{(m, c,K)};
12 return K

13 Odec,0(c):

14 if c = c
⇤
^ pkt = pkchall

15 Abort

16 return Decaps(skt, c)

Algorithmus 2 : Oracles G, H and Odec for Game 1. Here pkt denotes the public
key at the current epoch t.

1 G1(pk,m):

2 if 9r : (pk,m, r) 2 LG

3 return r

4 r - U(R);
5 c = Enc(pk,m; r);
6 LE = LE [{(pk,m, r, c)};
7 LG = LG [{(pk,m, r)};
8 return r

9 H1(m, c):

10 if 9K : (m, c,K) 2 LH

11 return K

12 K - U(K);
13 if 9pk, r : (pk,m, c, r) 2 LE

14 LD = LD [{(pk,m, c,K)};
15 LH = LH [{(m, c,K)};
16 return K

17 Odec,1(c):

18 if c = c
⇤
^ pkt = pkchall

19 abort

20 if 9m,K : (pkt,m, c,K) 2 LD

21 return K

22 if 9m, r : (pkt,m, c, r) 2 LE

23 K - U(K);
24 LH = LH [{(m, c,K)};
25 LD = LD [{(pkt,m, c,K)};
26 return K

27 return ?

5.4 a upke fujisaki-okamoto transform 77

• Game 2: In this game, the challenger additionally aborts if the adversary makes
a query G(pk,m⇤) or H(m⇤, c) with m

⇤ being the (uniformly random) message
used to compute the challenge encapsulation c

⇤, where pk and c are arbitrary.
As the adversary A cannot learn H(m⇤, c⇤), no information about it is available
to the adversary. Hence AdvG2(A) = 0, and Games 1 and 2 are indistinguishable
up to the adversary making a query using m

⇤.

Let us now prove that the above games are indistinguishable in the adversary’s view.

Indistinguishability of Games 0 and 1. Compared to G0, oracle G1 only performs
additional bookkeeping operations. Hence there is no difference between G0 and G1

for the adversary. Oracle H1 might behave differently than H0 only if a decapsulation
query is made to Odec for a c such that (pkt,m, c, r) 2 LE for some (m, r), where t

is the current epoch. Consider the case where the adversary makes a query c to the
decapsulation oracle Odec at epoch t:

1. Assume that Odec,0(c) =? and Odec,1(c) 6=?: then by the definition of Odec,1,
this implies that there exists1 (pkt,m, r, c) 2 LE such that c = Enc(pkt,m; r),
where r = G(pkt,m). As we assumed Odec,0(c) =?, the original decapsulation
function fails on c, hence r is such that we have Dec(skt, Enc(pkt,m; r)) 6= m. By
the (k, �)-correctness, this happens with probability at most �.

2. Assume that Odec,0(c) 6=? and Odec,1(c) =?: by the definition of Odec,1, this
implies that there is no (pkt,m, r, c) 2 LE, hence A did not make any query
G(pkt,m) but was able to compute a valid ciphertext of m under pkt. By �-
spreadness, this happens only with probability at most �.

3. Assume that Odec,0(c) = K and Odec,1(c) = K
0 for some K,K 0 6= ?: by the

definition of Odec,1 we know that there exists a tuple (pkt,m, r, c) 2 LE such
that c = Enc(pkt,m; r), and as Odec,0(c) 6=?, this is a valid encryption. Hence
K = H0(m, c). We consider the two following sub-cases:

a) Adversary A first made the decryption query Odec(c) without knowing
H(m, c). By definition of Odec,1(c), the challenger samples K

0 - U(K) and
adds (m, c,K 0) to LH. By definition of H1, we have H1(m, c) = K

0. Thus K
0

has the same distribution as K and H1 has the same behaviour as H0.

b) Adversary A already knows H(m, c) as it queried it before to the oracle H.
It is then set to a uniformly random value K

0 - U(K). Then, when the
adversary makes the decryption query Odec(c), the definition of H1(m, c)
guarantees that Odec,1(c) returns K

0, which has the same distribution as K

and H1 behaves identically to H0.

1 Note that the only way Odec,1(c) returns K 6= ? is that either (pkt,m, r, c) 2 LE or that oracle H1 added
(pkt,m, c,K) to LD. However, the latter only happens if (pkt,m, r, c) 2 LE. Thus Odec,1(c) does not
return ? only if (pkt,m, r, c) 2 LE.

78 a construction under lattice assumptions

We just showed that except with probability at most qG·�+qD ·�, Games 1 and 2 behave
identically. Further note that in Game 1, for any epoch t, oracle queries to Odec can be
simulated without the knowledge of the secret key skt.

Indistinguishability of Games 1 and 2. Let us call FIND the event that an adversary A

makes a query G(pk,m⇤) or H(m⇤, c) with m
⇤ being the (uniformly random) message

used to compute the challenge encapsulation c
⇤, where pk and c are arbitrary. As al-

ready detailed, adversary A has advantage at most P [FIND] in distinguishing between
Games 1 and 2. We now bound the probability P [FIND] by constructing an adversary
B for the IND-CR-CPA game such that

P [FIND] 6 2

✓
AdvIND-CR-CPA(B) +

qG + qH

|M|

◆
. (17)

Adversary B first receives pk0 from its IND-CR-CPA challenger and forwards pk0 to
A. Whenever A makes an Oup oracle query, adversary B makes the same Oup query
to its challenger. Whenever A makes a G, H or Odec query, adversary B runs them as in
Game 1, which is possible as it does not need to know the secret key, as observed above.
When A requests a challenge, B samples two random messages m0,m1 - U(M) and
sends them to its challenger.

The challenger answers with the IND-CR-CPA challenge c
⇤. Adversary B samples

K
⇤ - U(K) and sends the challenge (K⇤, c⇤) to A.
From now, adversary B continues to simulate A’s challenger. If A makes a query

G(pk,mb 0) or H(mb 0 , c) for any b
0 2 {0, 1}, adversary B stops running A and returns

b
0 to its challenger. If A makes no such request, then B samples b

0 - U({0, 1}) and
returns b

0.
Call WRG the event that A makes an oracle query to G or H containing m1-b, where

b is the challenge bit. Since A has absolutely no information about m1-b, this happens
with probability at most P [WRG] 6 (qG + qH)/|M|. Then:

AdvIND-CR-CPA(B) =

����P
⇥
b = b

0⇤- 1

2

����

=

����P [FIND^¬WRG] +
1

2
P [¬FIND]-

1

2

����

=

����P [FIND]- P [FIND^WRG] +
1

2
P [¬FIND]-

1

2

����

> 1

2
P [FIND]- P [FIND^WRG]

> 1

2
P [FIND]- P [WRG] .

The second equality holds as B finds b
0 if and only if A makes an oracle query con-

taining mb (i.e., both FIND and ¬WRG occur) or if no such query occurs, by guess-
ing randomly. For the third equality, we use that for any two events A, B, we have

5.5 obtaining ind-cu-cca security 79

P [A^B] = P [A]- P [A^¬B]. Equation (17) then follows, which completes the proof
of Theorem 9.

5.5 obtaining ind-cu-cca security

In this section, we further boost security in order to get IND-CU-CCA-security. As in
[49], we use a NIZK argument that two keys encrypt the same message in order to
make a reduction from IND-CU-CCA to IND-CR-CCA. This technique allows to extract
the randomness used by the adversary for the oracle queries to Oup(·), to forward it
to the update oracle of the IND-CR-CCA challenger.

Let us consider UPKE = (KeyGen, Enc, Dec, UpdatePk, UpdateSk) to be a k-IND-CR-CPA
UPKE, for some k > 0. Define UKEM = (KeyGen, Encaps, Decaps, UpdatePk, UpdateSk)
as the k-IND-CR-CCA UKEM obtained by applying our FO transform from Section 5.4
to UPKE, using G, H modeled as random oracles. Let F be a third function, also mod-
eled as a random oracle. We assume that UpdatePk proceeds in two parts (this is the
case for all known constructions, including the one from Section 5.3): UpdatePk(pk) =
(Enc(pk, r), NewPk(pk, r)), i.e., a first part which encrypts the randomness of the up-
date using the UKEM encryption algorithm, and a second one which returns the up-
dated public key. Let us define the language

L
UKEM

up = {(pk0,pk1,pk 0, ct0, ct1) | 9r0, r1, r,
ct0 = Enc(pk0, r; r0)^ ct1 = Enc(pk1, r; r1)
^ (pk 0, ct0) = UpdatePk(pk0; r)}.

Let ⇧ = (ProveF, VerifyF) a NIZK argument in the random oracle for L
UKEM
up . We

construct an k-IND-CU-CCA UKEM as described in Figure 9.

Theorem 10. Let UPKE, UKEM,⇧ be defined as above. Then, the construction UKEM de-
scribed in Figure 9 is an k-IND-CU-CCA UKEM. Specifically, for any adversary A against
the k-IND-CU-CCA security of UKEM, there exist adversaries B,C,D,E with running times
similar to A’s such that:

AdvIND-CU-CCA(A) 6 AdvIND-CR-CCA

UKEM (B) +AdvIND-CR-CPA

UPKE (C)

+ Advzk

⇧ (D) + Advsound

⇧ (E) .

The proof closely follows the one of IND-CU-CCA security of the construction from [49].

Proof. We proceed by a sequence of hybrid games.
Game 0: This is the original IND-CU-CCA game where the challenger’s bit is set to
b = 0.

80 a construction under lattice assumptions

Game 1: We replace the proof ⇡⇤ in the final update up
⇤ = (ct⇤

0
, ct⇤

1
,⇡⇤) by a simulated

NIZK proof. As the adversary only sees this simulated proof at the very end of the
game and cannot submit any additional update or decryption queries, the two games
are indistinguishable thanks to the computational zero-knowledge property of the
underlying proof system.
Game 2: We now change the plaintext underlying ct⇤

1
to an encryption of 0 rather than

r. This change remains undetected thanks to the IND-CPA security of the underlying
encryption scheme. As an important remark, note that IND-CPA security (which is
implied by IND-CR-CCA security) suffices here as no information about sk1 is provided
to the adversary, since neither the decapsulation oracle nor the final secret contain
information about sk1.
Game 3: In this game, when the adversary makes an update query which passes
VerifyUpdate, the challenger does the following. Let the tuple ((ct0, ct1,⇡), (pk 0

0
,pk1))

denote such a query. Then, the challenger uses both secret keys sk0 and sk1 to decrypt
ct0 and ct1 and verify that the underlying plaintexts are indeed equal and that the
new public key pk

0
0

is computed honestly. It halts if it is not the case. Unless Game 3

aborts, the two games are identical. The computational soundness of ⇧ guarantees that
any PPT adversary cannot trigger an abort, except with negligible probability. Here,
we insist that standard (computational) soundness suffices as the adversary does not
receive any proof until it can no longer make queries.
Game 4: This final game is identical to the previous game except that the challenger’s
bit is 1. We show that these two games are indistinguishable under the IND-CR-CCA
security of UKEM.

Assume there exists a PPT adversary A that can distinguish Game 3 and Game 4.
We construct a PPT adversary B against the IND-CR-CCA security of UKEM as follows.
Adversary B gets pk0 from its challenger and samples an additional keypair (pk1, sk1)
 KeyGen(1�). It also implements a random oracle F by storing a table. It forwards
(pk0,pk1) to A as the public key.

When A makes a decapsulation query, adversary B simply submits the same query
to its decapsulation oracle and returns the result to A. When A makes an update
query ((ct0, ct1,⇡), (pk 0

0
,pk1)), adversary B verifies the validity of ⇡ and if it passes

verification, uses sk1 to decrypt ct1 in order to recover the randomness r used by A

to generate its update. Adversary B can then submit r to its own update oracle to
produce the same update.

When A asks for a challenge, so does B, and the latter forwards its challenge encap-
sulation c

⇤ to the former.
Finally, when A stops making updates, so does B. Its challenger then replies by

(pk⇤, sk⇤,up⇤), where up
⇤ is simply an encryption ct⇤

0
of the last (unknown) update

under the last epoch public key pk
`

last
. It generates an encryption ct⇤

1
of 0 under pk1,

as well as a simulated proof ⇡⇤ that (pk`
last

,pk1,pk⇤, ct⇤
0

, ct⇤
1
) is a valid update. It

5.6 concrete parameters 81

finally sends the tuple ((pk⇤,pk1), sk⇤, ct⇤
0

, ct⇤
1

,⇡⇤) to A. When A halts with output b 0,
so does B.

This completes the proof of Theorem 10.

5.6 concrete parameters

In this section, we give some concrete parameters for the scheme presented in Sec-
tion 5.3, which can directly be transformed into an IND-CR-CCA UKEM by applying
the FO transform from Section 5.4. We focus on the latter. We conjecture that secu-
rity holds in the module setting and use the lattice-estimator SAGE module (commit
fd4a460) from [3] to estimate the security of the given parameter sets. For our UP-
KE/UKEM, we consider the module variant of the scheme presented in Section 5.3,
i.e., we define R = Z[X]/(Xd + 1) and Rq = R/qR and we consider the base ring to be
R instead of Z.

Note that, for p > 0 a prime, the message space of Enc for the module variant is
M = R

n
p which is of size p

dn. For optimization purposes, we drop the last n- 1 rows
of the whole ciphertext computed by Enc in our encapsulation mechanism, so that an
encapsulation is just:

c = (xTA + e
T , xb + f+ bq/pcm)

for x, e 2 R
n
q , f 2 Rq and m 2 Rp. The message space is now M = Rp, of size p

d.
This optimization is made possible by considering the UKEM, which only require a
message space with at least � bits of entropy, which is the case when setting d = 256.
The whole message space R

n
p is only used to encrypt updates, as an update changes

all components of the secret key.
Also, as done in [22], we replace Gaussian distributions by the centered binomial

distributions B⌘, which for ⌘ > 0, samples elements (ai,bi)i6⌘ - U({0, 1}2) and
returns

P
⌘

i=1
(ai - bi). Samples from B⌘ are contained in [-⌘,⌘], and we choose the

modulus q such that perfect correctness (� = 0) is guaranteed up to a bounded number
of (possibly malicious) updates. We let k denote this bound, and provide parameters
for k 2 {2

5, 210, 215, 220}. We are assuming worst-case updates and then make q scale
linearly with k. It could be tempting to make it scale with

p
k as updates are symmetric

and centered in 0 though we should not, as they are chosen by the attacker. Due to
this requirement, our UPKE/UKEM suffers from a loss compared to Kyber, which can
take q as small as 3329 and then have ciphertexts of size 0.8KB.

As we are working in the UPKE setting, we consider that the adversary gets a leak-
age s + r on the initial secret key s, which roughly halves the variance of the distribu-
tion of s in the adversary’s view (as shown in the proof of Theorem 8). We use a script
to compute the average variance left on s conditioned on the value of s + r. We obtain
that for s - Bn

2⌘
, we are left on average as if s was sampled from B

n
⌘ . This is taken

into account for the security estimates.

82 a construction under lattice assumptions

� q n d p ⌘ � k |ct| |up|

Estimate for [39] 120 ⇡ 2
85 11 256 21 10 0 2

5 33KB 360KB

This work 128 ⇡ 2
21 3 256 5 2 2

-136
2
5 1.8KB 5.4KB

128 ⇡ 2
26 4 256 5 2 0 2

10 3.0KB 12KB
116 ⇡ 2

31 2 512 5 2 0 2
15 5.8KB 12KB

128 ⇡ 2
36 3 512 5 2 0 2

20 9.1KB 27KB

Table 6: Parameter sets for the module variant of our IND-CR-CCA UKEM.

Our parameters are given in Table 6. Note that as done in Kyber, in order to have
fast multiplication using the Number Theoretic Transform in the ring, we take modu-
lus q = 1 mod 2d. This is the first practical lattice-based construction of UPKE/UKEM,
hence there are no equivalent constructions to compare our results to. We achieve sim-
ilar efficiency as the IND-CR-CPA construction of [49], which is based on the DCR
assumption achieves a ciphertext and update size of 1.5KB (for the CPA case only,
although our FO transform applies to their scheme). Note that by increasing d, the
matrices involved become smaller. Hence, a tradeoff can be made to reduce the sizes
of the updates at the cost of increasing ciphertext size. For small number of updates,
we also apply the bit-dropping technique from Kyber to improve parameters. This op-
timization drops parts of the least significant bits of the ciphertexts to reduce their size.
We use the script provided at https://github.com/pq-crystals/security-estimates
to estimate the correctness loss implied by using this technique.
IND-CU-CCA instantiation. In order to add security against chosen updates via our
transform from Section 5.5, we can further add a computationally sound NIZK argu-
ment for L

UKEM
up in the updates. In the module setting, the language L

UKEM
up can be

defined as:

L
UKEM

up = {(pk0,pk1,pk 0, ct0, ct1) |
9X0, X1, E0, E1 2 R

n⇥n, f0, f1, r 2 R
n,

ct0 = (X0A + E0, X0b + f0 + bq/pc · r) mod q

^ kX0k2, kE0k2, kf0k2 < B0

^ ct1 = (X1Ã + E1, X1b̃ + f1 + bq/pc · r) mod q

^ kX1k2, kE1k2, kf1k2 < B0

^ kb 0 - (b + Ar)k2 6 B1 ^ krk2 < B1 }.

https://github.com/pq-crystals/security-estimates

5.6 concrete parameters 83

where pk0 = (A, b), pk1 = (Ã, b̃), pk 0 = (A, b
0) and B0,B1 are bounds for correct-

ness.
Proving membership in L

UKEM
up then corresponds to proving 4 norm bounds for

matrices, 4 norm bounds for vectors and 2n
2 + 2n linear equations over Rq. This can

be achieved by applying [64], which allows to prove exact norm bounds and linear
relations using a commit-and-prove protocol. This only affects the size of the updates,
since the ciphertext remains the same as in the IND-CR-CCA setting.

84 a construction under lattice assumptions

KeyGen(1�):
(pk0, sk0) KeyGen(1�);
(pk1, sk1) KeyGen(1�);
return pk = (pk0,pk1), sk = sk0.

Encaps(pk):
parse pk as (pk0,pk1);
(c,K) Encaps(pk0);
return (c,K).

Decaps(sk, c) = Decaps(sk, c).

UpdatePk(pk):
parse pk as (pk0,pk1);
sample r - R;
pk

0
0
 NewPk(pk0, r);

ct0 Enc(pk0, r);
ct1 Enc(pk1, r);
⇡ ProveF(pk

0
,pk

1
,pk 0

0
, ct0, ct1, r);

return up = (ct0, ct1,⇡), pk 0
= (pk 0

0
,pk1).

VerifyUpdate(up,pk 0):
parse up as (ct0, ct1,⇡) and pk

0 as (pk 0
0

,pk1);
return VerifyF((pk0,pk1,pk 0

0
, ct0, ct1),⇡);

UpdateSk(up,pk 0):
if VerifyUpdate(up,pk 0

) = 0

return ?;
parse up as (ct0, ct1,⇡);
run UpdateSk(sk, ct0).

Figure 9: Construction of a IND-CU-CCA UKEM.

6
C O N C L U S I O N A N D P E R S P E C T I V E S

In this thesis we presented two efficient constructions of Updatable Public Key En-
cryption, whose security are based on well-established assumptions. Both follow the
same structure as previous constructions by relying on homomorphic properties and
leakage resilience and circular security of their underlying PKE. Even if the proofs of
IND-CR-CPA security of our schemes - and all previous schemes - depend in a non
black-box way on the underlying cryptographic assumptions, it is important to notice
that all known constructions follow the same pattern: the PKE is used to encrypt the
randomness of the UpdatePk algorithm by the updater and is sent to the owner of
the key. Of course, this is a quite intuitive solution and we proved that in two instan-
tiations, given an efficient PKE, it provides an efficient UPKE. We underline this to
point out that this similarity leads to the possible existence of a generic transform that
would allow to build a secure UPKE out of carefully chosen PKE. This would be the
most favorable scenario, confirming that updatability is just a natural consequence of
strong security properties and homomorphisms of the underlying PKE. It would of
course also allow existing systems to upgrade their PKE to UPKE if needed, without
worrying too much about security losses.

To analyze our post-quantum construction, we also introduced a new assumption:
Adaptive Extended LWE. We believe this contribution to be of independent interest.
As another instance of LWE with additional information type assumption, it provides
a weaker integer variant of Hint MLWE of [58]. However, we believe that the most
important point about our assumption resides in the introduction of this adaptiveness.
While we show that here, adaptiveness does not introduce any major challenge in the
reduction to LWE, it is in general non-trivial to reduce adaptive versions of assump-
tions to the non-adaptive ones. Our proof crucially relies on the presence of gaussian
noise in the hint, and breaks down if one is to use extended LWE with exact hints. A
previous version of the assumption did not include this additional gaussian noise g

in the hint and did not have the restriction on the size of the adversarially chosen
vector z. It turned out to be insecure, as in the HNF variant, if z0, z1 can be arbitrary,
one can take z0 = a0, z1 = [1k0 · · · 0]T and a0 the first column of the matrix A. This
makes the hint equal to the first coefficient of the LWE sample in the case were it is of
the form As + e, which allows to distinguish from such a sample and a uniform one.
This attack can be lifted to the non-HNF version using our reduction. As a side note,
we notice that the reduction of Hint MLWE of [58] also lifts to an adaptive version of
Hint MLWE, that is defined analogously to AextLWE. Adaptive variants of LWE with
hints assumptions capture scenarios where the adversary is allowed to make choices

85

86 conclusion and perspectives

after receiving parts of the public information. These variants extend the range of ap-
plicability of lattice assumptions and seem to be necessary in the context of UPKEs, if
one wants to handle cross terms without employing flooding techniques.

To achieve IND-CU-CCA security efficiently, we provided two efficient transforms
that, composed together, allow to reach our goal in the ROM. The first is an FO-
transform for UPKEs, that is well known for PKEs, which with this setup allows
to achieve CCA security. The second is a generic transform, using the Naor-Yung
paradigm, that allows to achieve CU security. While having an FO transform is satis-
factory performance wise, the CU transform requires an additional ciphertext together
with a NIZK proof. In the lattice setting, this is probably too expensive for real-world
use. Some optimization techniques can be applied (shared randomness for the two ci-
phertexts, approximate range proofs...) to make this more affordable, but it remains to
see whether or not these suffice. Ideally, one would hope for an FO-like transform that
would allow to achieve CU-CCA security directly. The main challenge is that updates
need to be publically verifiable. In the group messaging setting, a way to relax this
constraint would be to rather consider a designated verifier scenario, where updates
are only verifiable by members of the group.

For now, the main application of UPKE has been in Continuous Group Key Agree-
ment (CGKA), introduced by [31]. This protocol allows members of a group to agree
on a shared key and update it. UPKEs were used by [6] to solve forward secrecy issues
in the TreeKEM CGKA from [13]. TreeKEM has been selected by the IETF working
group Message Layer Security (MLS) to be part of a standard for group messaging,
published in July 2023 [78]. However UPKE was not implemented in the standard for
two reasons. The first was that the primitive was not well studied and lacked of ef-
ficient constructions. The second is related to a technique used to ensure that newly
added group members receive the real group structure. When adding group members,
a malicious user could send a fake group topology, allowing to trick new members. If
those users were to remove the malicious user from the group at some point, the ma-
licious user could still retain ability to decrypt group messages as newly added user
might not be aware that it still has access to some information in the group. To prevent
that from happening, it is possible to rely on merkle-tree like hashing and signatures
to prove that the group structure is wellformed and has not been tempered with. This
is still possible in the UPKE setting but requires additional signatures for each UPKE
update without the possibility to aggregate them, which makes the protocols much
less efficient. Our work provides solutions to the first problem. If CR-CCA suffices,
the construction from [57] can be used together with our FO transform. If CU-CCA is
required, our DCR construction provides a first practical candidate. It remains, how-
ever, to handle the second problem in order to allow real world use of UPKE in group
messaging.

B I B L I O G R A P H Y

[1] Michel Abdalla and Mihir Bellare. “Increasing the Lifetime of a Key: A Compara-
tive Analysis of the Security of Re-keying Techniques.” In: Advances in Cryptology
- ASIACRYPT 2000. Ed. by Tatsuaki Okamoto. Lecture Notes in Computer Sci-
ence. Springer, 2000.

[2] Shweta Agrawal, Craig Gentry, Shai Halevi, and Amit Sahai. “Sampling Discrete
Gaussians Efficiently and Obliviously.” In: ASIACRYPT. 2013.

[3] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of Learning with
Errors. ePrint 2015/046. 2015.

[4] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. “The double ratchet: security
notions, proofs, and modularization for the signal protocol.” In: (2019), pp. 129–
158.

[5] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. “Security
Analysis and Improvements for the IETF MLS Standard for Group Messaging.”
In: Lecture Notes in Computer Science (2020).

[6] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. “Modu-
lar Design of Secure Group Messaging Protocols and the Security of MLS.” In:
(2021).

[7] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. “Fast Cryp-
tographic Primitives and Circular-Secure Encryption Based on Hard Learning
Problems.” In: CRYPTO. 2009.

[8] Kyoichi Asano and Yohei Watanabe. “Updatable Public Key Encryption with
Strong CCA Security: Security Analysis and Efficient Generic Construction.” In:
IACR Cryptol. ePrint Arch. (2023). url: https://eprint.iacr.org/2023/976.

[9] N. Barić and B. Pfitzmann. “Collision-free accumulators and fail-stop signature
schemes without trees.” In: Eurocrypt. 1997.

[10] Mihir Bellare and Sara K. Miner. “A Forward-Secure Digital Signature Scheme.”
In: Lecture Notes in Computer Science (1999). Ed. by Michael J. Wiener.

[11] Mihir Bellare and Phillip Rogaway. “Entity Authentication and Key Distribu-
tion.” In: Lecture Notes in Computer Science (1993). Ed. by Douglas R. Stinson.

[12] Mihir Bellare and Phillip Rogaway. “Provably secure session key distribution:
the three party case.” In: (1995). Ed. by Frank Thomson Leighton and Allan
Borodin.

87

https://eprint.iacr.org/2023/976

88 bibliography

[13] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. “TreeKEM: asyn-
chronous decentralized key management for large dynamic groups a protocol
proposal for Messaging Layer Security.” PhD thesis. Inria Paris, 2018.

[14] Alexander Bienstock, Jaiden Fairoze, Sanjam Garg, Pratyay Mukherjee, and Srini-
vasan Raghuraman. “A More Complete Analysis of the Signal Double Ratchet
Algorithm.” In: Advances in Cryptology - CRYPTO 2022. Ed. by Yevgeniy Dodis
and Thomas Shrimpton. Lecture Notes in Computer Science. Springer, 2022.

[15] J. Black, P. Rogaway, and T. Shrimpton. “Encryption-Scheme Security in the Pres-
ence of Key-Dependent Messages.” In: SAC. 2002.

[16] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. “Key Agreement Proto-
cols and Their Security Analysis.” In: Lecture Notes in Computer Science (1997).
Ed. by Michael Darnell.

[17] Olivier Blazy, Ioana Boureanu, Pascal Lafourcade, Cristina Onete, and Léo Robert.
“How fast do you heal? A taxonomy for post-compromise security in secure-
channel establishment.” In: (2023).

[18] Dan Boneh and Matthew K. Franklin. “Identity-Based Encryption from the Weil
Pairing.” In: Lecture Notes in Computer Science (2001).

[19] Dan Boneh and David Mandell Freeman. “Linearly Homomorphic Signatures
over Binary Fields and New Tools for Lattice-Based Signatures.” In: PKC. 2011.

[20] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. “Circular-
Secure Encryption from Decision Diffie-Hellman.” In: Lecture Notes in Com-
puter Science (2008).

[21] Nikita Borisov, Ian Goldberg, and Eric A. Brewer. “Off-the-record communica-
tion, or, why not to use PGP.” In: (2004).

[22] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. “CRYSTALS
- Kyber: A CCA-Secure Module-Lattice-Based KEM.” In: (2018).

[23] Z. Brakerski and S. Goldwasser. “Circular and Leakage Resilient Public-Key En-
cryption Under Subgroup Indistinguishability (or: Quadratic Residuosity Strikes
Back).” In: Crypto. 2010.

[24] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully ho-
momorphic encryption without bootstrapping.” In: (2012).

[25] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. “Classical hardness of learning with errors.” In: (2013).

[26] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Douglas
Stebila. “Towards post-quantum security for signal’s X3DH handshake.” In: Se-
lected Areas in Cryptography: 27th International Conference. Springer. 2021, pp. 404–
430.

bibliography 89

[27] Jan Camenisch and Victor Shoup. “Practical Verifiable Encryption and Decryp-
tion of Discrete Logarithms.” In: Lecture Notes in Computer Science (2003). Ed.
by Dan Boneh.

[28] Ran Canetti, Shai Halevi, and Jonathan Katz. “A Forward-Secure Public-Key
Encryption Scheme.” In: Lecture Notes in Computer Science (2003). Ed. by Eli
Biham.

[29] Ran Canetti, Palak Jain, Marika Swanberg, and Mayank Varia. “Universally com-
posable end-to-end secure messaging.” In: Annual International Cryptology Con-
ference. Springer. 2022, pp. 3–33.

[30] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-
glas Stebila. “A formal security analysis of the signal messaging protocol.” In:
Journal of Cryptology 33 (2020), pp. 1914–1983.

[31] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Mil-
ner. “On Ends-to-Ends Encryption: Asynchronous Group Messaging with Strong
Security Guarantees.” In: (2018).

[32] R. Cramer, I. Damgård, and B. Schoenmakers. “Proofs of partial knowledge and
simplified design of witness hiding protocols.” In: Crypto. 1994.

[33] Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. “On the Closest
Vector Problem with a Distance Guarantee.” In: CCC. 2014.

[34] Ivan Damgård and Mads Jurik. “A Generalisation, a Simplification and Some
Applications of Paillier’s Probabilistic Public-Key System.” In: Lecture Notes in
Computer Science (2001).

[35] David Derler, Tibor Jager, Daniel Slamanig, and Christoph Striecks. “Bloom
Filter Encryption and Applications to Efficient Forward-Secret 0-RTT Key Ex-
change.” In: Advances in Cryptology - EUROCRYPT 2018. Lecture Notes in Com-
puter Science. Springer, 2018.

[36] Whitfield Diffie and Martin E. Hellman. “New directions in cryptography.” In:
IEEE Trans. Inf. Theory (1976).

[37] Samuel Dobson and Steven D Galbraith. “Post-Quantum Signal Key Agreement
from SIDH.” In: International Conference on Post-Quantum Cryptography. Springer.
2022, pp. 422–450.

[38] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs.
“Efficient Public-Key Cryptography in the Presence of Key Leakage.” In: Lecture
Notes in Computer Science (2010).

[39] Yevgeniy Dodis, Harish Karthikeyan, and Daniel Wichs. “Updatable Public Key
Encryption in the Standard Model.” In: Lecture Notes in Computer Science
(2021).

90 bibliography

[40] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. “Efficient Identity-Based
Encryption over NTRU Lattices.” In: Lecture Notes in Computer Science (2014).

[41] Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, and Gre-
gor Seiler. “Faster Lattice-Based KEMs via a Generic Fujisaki-Okamoto Trans-
form Using Prefix Hashing.” In: CCS. 2021.

[42] Ksenia Ermoshina, Francesca Musiani, and Harry Halpin. “End-to-End Encrypted
Messaging Protocols: An Overview.” In: Lecture Notes in Computer Science
(2016). Ed. by Franco Bagnoli, Anna Satsiou, Ioannis Stavrakakis, Paolo Nesi,
Giovanna Pacini, Yanina Welp, Thanassis Tiropanis, and Dominic DiFranzo.

[43] S. Faust, M. Kohlweiss, G.-A. Marson, and D. Venturi. “On the non-malleability
of the Fiat-Shamir transform.” In: Indocrypt. Springer. 2012, pp. 60–79.

[44] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to Identi-
fication and Signature Problems.” In: Lecture Notes in Computer Science (1986).

[45] P.-A. Fouque and D. Pointcheval. “Threshold Cryptosystems Secure against Chosen-
Ciphertext Attacks.” In: Asiacrypt. 2001.

[46] Eiichiro Fujisaki and Tatsuaki Okamoto. “Statistical Zero Knowledge Protocols
to Prove Modular Polynomial Relations.” In: Lecture Notes in Computer Science
(1997).

[47] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for hard
lattices and new cryptographic constructions.” In: (2008).

[48] S. Goldwasser, S. Micali, and C. Rackoff. “The knowledge complexity of interac-
tive proof systems.” In: SIAM Journal on Computing (1989).

[49] Calvin Abou Haidar, Benoît Libert, and Alain Passelègue. “Updatable Public
Key Encryption from DCR: Efficient Constructions With Stronger Security.” In:
(2022).

[50] Calvin Abou Haidar, Alain Passelègue, and Damien Stehlé. “Efficient Updatable
Public-Key Encryption from Lattices.” In: (2023).

[51] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest.
“An Efficient and Generic Construction for Signal’s Handshake (X3DH): Post-
Quantum, State Leakage Secure, and Deniable.” In: Lecture Notes in Computer
Science (2021). Ed. by Juan A. Garay.

[52] D. Hofheinz. “Circular Chosen-Ciphertext Security with Compact Ciphertexts.”
In: Eurocrypt. 2013.

[53] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Modular Analysis of
the Fujisaki-Okamoto Transformation.” In: TCC. 2017.

[54] Jeremy Horwitz and Ben Lynn. “Toward Hierarchical Identity-Based Encryp-
tion.” In: Lecture Notes in Computer Science (2002). Ed. by Lars R. Knudsen.

bibliography 91

[55] Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz. “Failing Grace-
fully: Decryption Failures and the Fujisaki-Okamoto Transform.” In: ASIACRYPT.
2022.

[56] D. Jost, U. Maurer, and M. Mularczyk. “Efficient ratcheting: Almost-optimal
guarantees for secure messaging.” In: Eurocrypt. 2019.

[57] Daniel Jost, Ueli Maurer, and Marta Mularczyk. “Efficient Ratcheting: Almost-
Optimal Guarantees for Secure Messaging.” In: Lecture Notes in Computer Sci-
ence (2019).

[58] Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. “Toward Prac-
tical Lattice-Based Proof of Knowledge from Hint-MLWE.” In: Lecture Notes in
Computer Science (2023).

[59] F. Kitagawa, T. Matsuda, and K. Tanaka. “Simple and efficient KDM-CCA secure
public key encryption.” In: Asiacrypt. 2019.

[60] Ehren Kret and Rolfe Schmidt. “The PQXDH Key Agreement Protocol.” In: ().
url: https://signal.org/docs/specifications/pqxdh/pqxdh.pdf.

[61] Caroline Kudla and Kenneth G. Paterson. “Modular Security Proofs for Key
Agreement Protocols.” In: Lecture Notes in Computer Science (2005). Ed. by
Bimal K. Roy.

[62] Adeline Langlois and Damien Stehlé. “Worst-case to average-case reductions for
module lattices.” In: Des. Codes Cryptogr. (2015).

[63] V. Lyubashevsky, A. Palacio, and G. Segev. “Public-Key Cryptographic Primi-
tives Provably as Secure as Subset Sum.” In: TCC. 2010.

[64] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. “Lattice-Based
Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General.”
In: Lecture Notes in Computer Science (2022).

[65] T. Malkin, I. Teranishi, and M. Yung. “Efficient circuit-size independent public
key encryption with KDM security.” In: Eurocrypt. 2011.

[66] Tal Malkin, Isamu Teranishi, and Moti Yung. “Efficient Circuit-Size Independent
Public Key Encryption with KDM Security.” In: Lecture Notes in Computer Sci-
ence (2011).

[67] Moxie Marlinspike and Trevor Perrin. “The x3dh key agreement protocol.” In:
Open Whisper Systems 283 (2016), p. 10.

[68] Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc, and Azam Solei-
manian. “Efficient Lattice-Based Inner-Product Functional Encryption.” In: PKC.
2022.

[69] G. Miller. “Riemann’s hypothesis and tests for primality.” In: Journal of computer
and system sciences 13.3 (1976), pp. 300–317.

https://signal.org/docs/specifications/pqxdh/pqxdh.pdf

92 bibliography

[70] Moni Naor and Moti Yung. “Public-key Cryptosystems Provably Secure against
Chosen Ciphertext Attacks.” In: (1990). Ed. by Harriet Ortiz.

[71] Adam O’Neill, Chris Peikert, and Brent Waters. “Bi-Deniable Public-Key Encryp-
tion.” In: Lecture Notes in Computer Science (2011).

[72] P. Paillier. “Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes.” In: Eurocrypt. 1999.

[73] DongGook Park, Colin Boyd, and Sang-Jae Moon. “Forward Secrecy and Its
Application to Future Mobile Communications Security.” In: Lecture Notes in
Computer Science (2000). Ed. by Hideki Imai and Yuliang Zheng.

[74] D. Pointcheval and J. Stern. “Security Proofs for Signature Schemes.” In: Euro-
crypt. 1996.

[75] Oded Regev. “On lattices, learning with errors, random linear codes, and cryp-
tography.” In: (2005). Ed. by Harold N. Gabow and Ronald Fagin.

[76] A. Sahai. “Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security.” In: FOCS. 1999.

[77] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer.” In: SIAM J. Comput. (1997).

[78] MLS group. RFC 9420 The Messaging Layer Security (MLS) Protocol. 2023. url:
https://www.rfc-editor.org/rfc/rfc9420.html.

https://www.rfc-editor.org/rfc/rfc9420.html

colophon

This document was typeset using the typographical look-and-feel classicthesis de-
veloped by André Miede. The style was inspired by Robert Bringhurst’s seminal book
on typography “The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a collection
of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of January 18, 2024 (classicthesis version 4.2).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Dedication
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction and Background
	1 General Introduction
	1.1 Modern Public-Key Encryption
	1.2 Agreeing: Key exchange
	1.3 Secure messaging and the signal protocol
	1.4 forward-secrecy and post-compromise security

	2 Technical introduction
	2.1 A construction under the DCR assumption
	2.1.1 Building an IND-CR-CPA UPKE
	2.1.2 Upgrading to IND-CR-CCA/IND-CU-CCA

	2.2 A construction under the LWE assumption
	2.2.1 Building a post-quantum IND-CR-CPA UPKE
	2.2.2 IND-CR-CPA security & a necessary new assumption
	2.2.3 A Fujisaki-Okamoto transform for UPKE
	2.2.4 A generic transform to achieve CU security

	2.3 Performances
	2.4 Publications

	3 Preliminaries
	3.1 Notations
	3.2 Updatable Public Key Encryption
	3.3 IND-CR-CPA security of UPKE
	3.4 IND-CR-CCA security of UPKE
	3.5 Updatable Key Encapsulation Mechanism
	3.6 IND-CU-CCA security for UPKE/UKEM
	3.7 Non-Interactive Zero Knowledge Proofs

	Constructions
	4 A construction under the DCR assumption
	4.1 UPKE construction with DCR
	4.1.1 Hardness Assumptions
	4.1.2 Useful Lemmas

	4.2 A DCR-Based IND-CR-CPA-Secure UPKE
	4.2.1 A DCR-Based CR+LR Secure PKE
	4.2.2 A DCR-Based IND-CR-CPA-Secure UPKE

	4.3 From CR-CPA to CR-CCA/CU-CCA security in the ROM
	4.3.1 Proofs of Plaintext Equality
	4.3.2 IND-CR-CCA secure UPKE
	4.3.3 Arguments of Well-formedness for Update Ciphertexts
	4.3.4 IND-CU-CCA-secure UPKE

	4.4 Implementation and Performances
	4.4.1 Key/Ciphertext/Update Sizes
	4.4.2 Running Time

	5 A construction under lattice assumptions
	5.1 Preliminaries
	5.1.1 Gaussian distributions

	5.2 Extended LWE
	5.3 IND-CR-CPA UPKE from LWE
	5.4 A UPKE Fujisaki-Okamoto Transform
	5.5 Obtaining IND-CU-CCA Security
	5.6 Concrete Parameters

	6 Conclusion and perspectives
	Bibliography
	Colophon

