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Résumé

Titre: Intégration des données longitudinales pour une analyse de survie améliorée:
méthodes et applications
Résumé: La disponibilité croissante des données longitudinales offre des opportunités sig-
nificatives pour améliorer les modèles de survie en permettant des mises à jour dynamiques
des évaluations des risques au fil du temps. Cependant, l’intégration de ces données dans les
modèles de survie reste limitée en raison de la complexité des données longitudinales, des dé-
fis computationnels posés par les ensembles de données de haute dimension, et des difficultés
d’interprétation. Cette limitation crée un écart crucial dans le domaine, restreignant la capacité
à faire des prédictions précises et en temps réel dans des situations où les facteurs de risque
évoluent au fil du temps. Cette thèse vise à combler cet écart en développant de nouveaux
cadres d’analyse de survie qui intègrent efficacement les données de survie censurées aux côtés
des données longitudinalesmultivariées. Le premier cadre propose un nouveaumodèle conjoint
dont une caractéristique clé est l’utilisation de caractéristiques génériques extraites des données
longitudinales directement dans le modèle de survie. En outre, ces caractéristiques génériques
sont indépendantes des hypothèses du modèle longitudinal, ce qui les rend adaptées aux mar-
queurs longitudinaux de haute dimension. Le second cadre s’appuie sur les récentes avancées
en apprentissage profond et en équations différentielles pour apprendre des états latents guidés
par les données, qui sont ensuite utilisés pour modéliser la fonction d’intensité des processus
de comptage. Ces méthodes proposées démontrent de solides performances prédictives dans
des expériences d’analyse de survie en temps réel et sont conçues pour être à la fois évolu-
tives pour les problèmes de haute dimension. L’application pratique de ces cadres est illustrée
par leur utilisation dans la prédiction de l’attrition chez Califrais. En intégrant efficacement
les données de commandes des clients, ces modèles fournissent des prédictions plus précises
du risque d’attrition, permettant ainsi aux entreprises de prendre des mesures proactives pour
fidéliser leurs clients. Cette recherche contribue au domaine en fournissant des outils avancés
pour l’analyse de survie et établit une base pour de futurs développements visant à intégrer
pleinement les données longitudinales dans les modèles de survie dans divers domaines ap-
pliqués.

Mots clefs: Analyse de survie; Données longitudinales; Équation différentielle contrôlée
par réseau neuronal; Modèle conjoint; Prédiction de l’attrition; Signature; Statistiques à haute
dimension.
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Title: Integrating longitudinal data for enhanced survival analysis: methods and ap-
plications

Abstract: The increasing availability of longitudinal data offers significant opportu-
nities to improve survival models by allowing dynamic updates to risk assessments
over time. However, the integration of this data into survival models remains limited
due to the complexity of longitudinal data, computational challenges posed by high-
dimensional datasets, and difficulties in interpretation. This limitation creates a critical
gap in the field, restricting the ability to make accurate and real-time predictions in sit-
uations where risk factors change over time. This thesis aims to bridge this gap by
developing new frameworks for survival analysis that effectively incorporate censored
survival data alongside multivariate longitudinal data. The first framework develops
a new joint model where a key feature is the use of generic features extracted from
the longitudinal data directly in the survival model. In addition, these generic fea-
tures are independent of assumptions in the longitudinal model making it suitable for
high-dimensional longitudinal markers. The second framework leverages recent ad-
vances in deep learning and differential equations to learn data-driven latent states,
which are then used to model the intensity function of counting processes. These
proposed methods demonstrate strong predictive performance in extensive real-time
survival analysis experiments and are designed to be both user-friendly and scalable
for high-dimensional problems. The practical application of these frameworks is il-
lustrated through their use in churn prediction at Califrais. By effectively integrating
customer order data, these models provide more accurate predictions of churn risk,
allowing businesses to take proactive measures to retain customers. This research con-
tributes to the field by providing advanced tools for survival analysis and establishes a
foundation for further developments aimed at fully integrating longitudinal data into
survival models in various applied domains.

Keywords: Churn Prediction; High-dimensional Statistics; Joint Model; Longitudi-
nal Data; Neural Controlled Differential Equation; Signature; Survival Analysis.
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Chapter 1

Introduction

Contents

1.1 Churn prediction at Califrais 1

1.2 Extension of survival analysis with longitudinal data 7

1.3 Objective of the thesis 8

1.1 Churn prediction at Califrais

This thesis, which has benefited from the CIFRE program, was conducted at the com-
pany Califrais and Université Paris Cité. We present in this introductory chapter the indus-
trial context of this thesis.

Califrais

Califrais was created in July 2014 with the aim of creating a modern distribution service
for fresh food from suppliers at the Rungis market, the largest fresh produce market in the
world, to restaurants in Paris. As the global population rapidly grows, wholesale markets
are becoming increasingly important in ensuring the world’s food supply. However, many
sectors face inefficiencies in their supply chains, such as reliance on paper catalogs, man-
ual processes, and opaque pricing, leading to significant challenges in transactions between
customers and suppliers. Customers spend considerable time sourcing, managing supply,
and negotiating with multiple suppliers, while suppliers struggle to understand customer
needs and optimize transportation. The result is significant food waste and increased CO2
emissions. The problem is even worse in the fresh food supply sector, where products are
highly perishable. These inefficiencies were particularly evident at Rungis in the 2010s.
Califrais’ solution focuses on streamlining food distribution through the mutualization of
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CHAPTER 1. Introduction 2

orders and logistics. By consolidating orders from multiple suppliers into a single, efficient
delivery process, Califrais optimizes the supply chain, reduces waste, and minimizes envi-
ronmental impact while improving the overall efficiency of fresh food distribution for both
suppliers and customers.

In 2021, Califrais became the official digital marketplace of Rungis with the launch of
the platform https:// rungismarket.com. This platform provides detailed information about
products and services, allowing customers to easily place orders according to their needs.
Figure 1.1 is taken from this website.

Figure 1.1 – A screenshot taken from Rungis website.

The entire supply chain is then managed internally to ensure that orders are delivered
accurately and quickly. To achieve this efficiency, the company has developed customized
tools to manage the flow of goods, warehouse inventory, product picking and sorting, order
preparation, and delivery route optimization. Figure 1.2 shows a typical working day at
Califrais.

Customers order 
untill midnight

Rungis suppliers
prepare products

with tech tools

The logistic team
muatualizes flows

& aggregate orders

The delivery team
loads the trucks &
leaves the market

Customers receive
the smooth and

timely orders

Figure 1.2 – Califrais operational process.

After a decade of creation and development, this start-up has successfully built a distri-

https://rungismarket.com


3 1.1. Churn prediction at Califrais

bution system with a catalog of more than 8000 products over 120 categories, expanding its
customer base beyond Paris and internationally. To effectively maintain and develop this
distribution system, the company has a system of specialized departments whose organiza-
tional structure is shown in Figure 1.3. Most of the research for this thesis was carried out
within the Research team (LabCom department), with significant support from the Data
team.

CEO

OPERATIONSCOMMERCIALFINANCE

DEV DATA RESEARCH

LABCOM H&R + G&APROCUREMENT MARKETING

Figure 1.3 – Califrais organization structure

LabCom LOPF and the Machine Learning Research Team

To address current supply chain problems, as well as the rapid increase in product flows
and customer acquisition at Califrais, the LabCom LOPF (Large-scale Optimization of Prod-
uct Flows) was established inMarch 2021 as a public-private collaboration betweenCalifrais
and the Laboratoire de Probabilités, Statistique et Modélisation (LPSM), Université Paris
Cité and Sorbonne Université. Currently, the LabCom LOPF has 13 members divided into
three teams: the Dev team, the Data team, and the Research team, as illustrated in Figure
1.3. Each team has separate but complementary roles and functions. The Dev team man-
ages and updates database systems, software, and applications. The Data team implements
algorithms to solve the different data problems that Califrais faces. The Research team pro-
poses new learning methods adapted to Califrais’ specific problems. In the development
of technological solutions, the lab has also received support thanks to strong partnerships
with well-known research centers in France, including LPSM, Inria, and CNRS. A portion
of the research for this thesis was conducted with the HeKa team at Inria Paris.

With access to a diverse, rich, and complex database from operational services, as well
as the support of experienced researchers, the Research team’s motivation is to enhance the
value of this data by developing new machine learning algorithms for optimizing logistics
flows on a very large scale. Flow prediction is a fundamental project within the labora-
tory, with several PhD students working on inventory optimization and others focusing
on route optimization. The inventory optimization project aims to determine each day
which products to order for the warehouse to maximize profit, minimize food waste, and
avoid shortages. Similarly, route optimization seeks to decide each day how many vehicles
the company needs and their route, with the goals of minimizing the number of vehicles
(and CO2 emissions), maximizing their load rate, avoiding delivery delays, and improving
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customer satisfaction. The overall goal of these projects is to coordinate small factors to
maximize vehicle loads, minimize CO2 emissions, and reduce food waste.

Customer Satisfaction Prediction

Califrais’ data has also enabled them to develop tools that model customer satisfaction
and predict customer churn before it occurs.

For most companies, acquiring a new customer costs more than retaining an existing
one. According to the study conducted by Mozer et al. (2000), marketing campaigns for re-
taining existing customers provide a better return on investment than putting efforts into
attracting new customers. In addition, the success of Califrais’ business model depends on
regular significant orders, making it crucial to prevent customers from leaving the service.
Therefore, churn prediction, which identifies customers likely to leave the service and po-
tential reasons for their dissatisfaction, enables marketing teams to take appropriate action
for each individual customer to maximize the chances of retention and ultimately increase
the value of the company.

Customer churn studies have been conducted across various service sectors, for exam-
ple, games (Periáñez et al., 2016), telecommunication (Gui, 2017), or finance (Larivière and
Van den Poel, 2004). These studies on the churn analysis attempted to identify or predict
in advance the risk that customers will churn and the reasons for their churns using vari-
ous indicators. One of the most typical customer churn analysis indicators is the customer
churn rate which refers to the ratio of customers who leave a service to the total number of
customers during a specific period. In Califrais at the moment, monthly churn rates have
been computed using a fixed one-month time window: a customer that does not place any
new order beyond that limit is considered churned. Although this method has the crucial
advantage of simplicity, it cannot help to identify customers at high risk of churn, nor can
it explain the reasons for their churn.

The company is then looking for more effective solutions by focusing on building ma-
chine learning churnmodels based on a variety of features. Amajority of them are extracted
from several kinds of historical order data collected over multiple points in time from the
same customer - also known as longitudinal data. These kinds of data can be listed as
follows:

— The dates on which the orders were placed. It can help to extract information like
the customer’s acquisition date, their level of loyalty (e.g. number of orders placed
per week, etc.), and the time between two orders.

— The content of the orders placed by a customer such as the products requested, the
quantities, and the categories.

— The level of customer satisfaction derived from customer’s comments and ratings
which may be obtained after each order they place.

— The quality of the delivery such as the number of missing items and the lateness of
each delivery.

For example, among the 3 restaurants A, B, and C shown in Figure 1.4, there are differ-
ences in the ordering pattern according to the number of products ordered and the number
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of categories in which these products were ordered. While restaurant B churns after three
months of service, restaurants A and C keep their service for a longer time.
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Figure 1.4 – Order history of 3 customers (A, B, and C), acquired in 2022, differing in the
number of products ordered, and by the number of categories in which these products were
ordered.

From classification to survival analysis for churn prediction

Most previous works transform the churn prediction into a binary classification, which
predicts whether a customer will churn within a predefined time frame, see e.g. Buckinx
and Van den Poel (2005), Coussement and Van den Poel (2008), Verbeke et al. (2012), and
Zhang et al. (2017). This approach consists of labeling each client as a churner or not, allow-
ing the problem to fall into the large domain of supervised learning, with many algorithms
available. However, the labeling process can vary depending on the specific business con-
text.

In contractual settings, churn typically refers to clients who do not renew their contracts
when they expire, leading to predictions about whether a client will churn at the renewal
date based on their historical activity, see e.g. Coussement and Van den Poel (2008) and
Zhang et al. (2017).

In non-contractual settings, where no formal contract binds the client to the company,
clients can leave at any timewithout restrictions. This is the case for Califrais. In such cases,
a specific churn criterion is constructed. For instance, if a client stops using a service for
a certain period, known as the churn window, they are considered a churn client. Figure
1.5 below shows an example of churn definition in the non-contractual case. The churn
prediction then turns to the classic binary classification, similar to the contractual case
mentioned above (see e.g. Buckinx and Van den Poel (2005) and Verbeke et al. (2012)).

Although this method simplifies the churn prediction problem, its performance highly
depends on choosing the churn criterion in the non-contractual context. In addition, in
many services, estimating the survival time, i.e. the time elapsed before the client churns,
is critical for timely interventions and efficient resource allocation. However, this method
cannot distinguish between those who churned at the beginning of the churn window and
those who churned later, nor can it predict the survival time of customers who have not
churned yet (Khodadadi et al., 2020).

To avoid the drawbacks of the classification approach, some methods have shifted to-
wards estimating the time until a client churns. When the churning times of all customers



CHAPTER 1. Introduction 6
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Figure 1.5 – Schematic of the time window method used for churn prediction in the binary
approach. The data represents 5 clients over a 10-week period, where a red dot indicates no
order was placed in a given week and a green dot signifies an order was placed. According
to the churn definition, which considers a client to have churned if no orders are placed
for 4 consecutive weeks, clients A and C are identified as having churned at weeks 6 and 5,
respectively, while clients B, D, and E are censored at week 10. To illustrate the process of
defining the churn label in the binary approach, the time window of length δt = 5, which
is in the blue area, is set from week 4 (t = 4) to week 8 (t+ δt = 8). Since clients A and C
churn within this window, they are labeled as churned, while clients B, D, and E are labeled
as non-churned.

are observed, standard regression models for continuous responses can be used to predict
this time (Buis, 2006). However, in many cases - particularly at Califrais - churn observa-
tions are incomplete due to the limited duration of historical data or because customers are
still actively engaging with the service, a situation referred to as censoring. Therefore, it is
crucial to design a model that not only estimates the churning time but also addresses the
censoring problem.

Survival analysis, a branch of statistics that studies the data representing the time until
a specific event occurs - also known as time-to-event data or survival data, has recently
emerged as a more flexible alternative for addressing the churn prediction problem in the
presence of censored data (Larivière and Van den Poel, 2004; Periáñez et al., 2016; Bertens
et al., 2017). This method was originally developed in the medical field to study patient
survival times, but its applications have since expanded to other domains. For instance,
in industry, a manufacturer may use survival analysis to estimate the lifespan of machine
components, while in finance, a bank may use it to predict how long it will take a borrower
to fully repay a loan. In survival analysis, the time until the event of interest - known as sur-
vival time - is considered a random variable whose distribution is generally described and
modeled in terms of two related functions, the survivor function and the hazard function.
The details of this framework are provided in the next chapter.

In the context of the churn prediction problem, the number of applied studies using this
method has recently increased but remains limited (see Table 2 from the survey conducted
by Ahn et al. (2020)). Most of these studies focus on games (Sifa et al., 2014; Periáñez et al.,
2016; Bertens et al., 2017), and a few studies on other sectors such as finance and telecom-
munications (Larivière and Van den Poel, 2004), where different survival analysis frame-
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works, such as Cox proportional hazards and random survival forests, have been applied.
There are several reasons for this limitation: challenges in scaling with high-dimensional
data, restrictive assumptions about the relationships between the variables and the event,
or difficulties incorporating longitudinal data.

1.2 Extension of survival analysiswith longitudinal data

Considering the limited application of survival models in churn prediction, especially
due to the lack of longitudinal data integration, the following section highlights the impor-
tance of including such data and explores the challenges associated with this integration.
Building a prediction model using only the prognostic features at baseline - also known as
baseline features - may be suboptimal because it does not fully utilize the large amount of
longitudinal data collected during the study. More recent measurements, which are tem-
porally closer to the event of interest, may have a stronger association with the risk of the
event. Therefore, incorporating these features into survival models leads to more accurate
predictions of survival probabilities. This is also important for Califrais, where much of
the historical customer order data is in the form of longitudinal data, making it critical to
quantify the effect of this data on the survival time of customers.

In other sectors, such as healthcare, it is becoming increasingly common to record the
values of longitudinal features (e.g. biomarkers such as heart rate or hemoglobin level)
up to the occurrence of an event of interest, such as rehospitalization, relapse, or disease
progression. These longitudinal features can also be crucial in predicting the time until an
event occurs. For example, in the context of sepsis prediction, consider three patients, A,
B, and C, who were admitted to the hospital for sepsis diagnosis. There are differences in
their characteristics of heart rate and respiration rate. While the values of patient A are
stable, the measurement of heart rate and respiration rate of patients B and C change a lot
near the time-to-event.
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Figure 1.6 – Historical profiles of 3 patients (A, B, and C), differing in the heart rate and the
respiration rate.

Despite its many advantages, incorporating longitudinal data into a survival model is
not straightforward. There are several reasons for this. The longitudinal data, also known as
repeated data, can have complex structures, such as repeated measures within individuals,
leading to correlated observations. In addition, the data may follow non-linear trajecto-
ries that change over time, which may not be adequately captured by traditional modeling
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techniques. Furthermore, joint modeling of longitudinal and survival data adds further
complexities, such as model convergence issues, computational burden, and interpretation
challenges. These challenges must be carefully addressed when developing a new frame-
work for survival analysis with longitudinal data.

The survival analysis framework is closely related to the counting process. Although
both approaches are used to analyze time-to-event data, the counting process focuses on
counting the occurrences of events over time rather than modeling the time until the event
occurs. The counting process involves modeling the intensity or rate at which events occur
over time, taking into account the event times and the corresponding covariate information,
either in static or longitudinal data. Survival analysis can be seen as a special case of the
counting process, where the focus is on modeling the hazard function, which represents
the instantaneous rate of occurrence of events given survival up to a certain time. Many
statistical methods and models developed in one framework can be adapted or extended
to the other, allowing for a unified approach to analyzing time-to-event data. Developing
a new framework for the counting process is also interesting for Califrais where it can be
applied to the problem of predicting the time when clients place their next order.

1.3 Objective of the thesis

This thesis aims to contribute to the development of new frameworks of survival anal-
ysis to predict the risk of an event in the presence of censored survival data and multivari-
ate longitudinal data and its extension to counting processes; and the application of these
frameworks to the churn prediction problem at Califrais.
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In this chapter, we describe the material of survival analysis and its relation to lon-
gitudinal data. First, in Section 2.1, we introduce concepts, tools, the general formalism
of survival analysis, counting processes, and several survival learning models with base-
line features. Section 2.2 reviews the previous works of survival analysis with longitudinal
data. In Section 2.3, we expand our discussion of the more advanced framework, focusing
on deep survival methods with longitudinal data. Section 2.4 introduces evaluation metrics

9
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for assessing the prediction performance in survival analysis. Finally, Section 2.5 outlines
the contributions of this thesis.

2.1 Survival analysis

2.1.1 Survival Function and Hazard rate

Let T̃ be a non-negative random variable modeling the time until the event of inter-
est occurs, which is called the survival time of an individual. We denote its cumulative
distribution function and probability density function by F and f respectively. In survival
analysis, we are typically more interested in predicting how long an individual will survive,
rather than how quickly its event of interest will occur, which is described by the survival
function. We then describe the survival function and the related hazard function in the fol-
lowing two definitions, as they are fundamental to the distribution of T̃ and are essential
for making predictions in survival analysis.

Definition 2.1.1. The survival function, denoted by S, corresponds to the probability that
the event of interest did not occur at time t ≥ 0, and is given by

S(t) = P(T̃ > t) = 1− F (t). (2.1)

Definition 2.1.2. The hazard function, denoted by λ, corresponds to the infinitesimal prob-
ability of the event of interest occurring just after time t, conditional on having survived at
least until time t, and is expressed as follows

λ(t) = lim
dt→0

P(t ≤ T̃ < t+ dt|T̃ ≥ t)

dt
= lim

dt→0

P(t ≤ T̃ < t+ dt)

S(t)dt
=
f(t)

S(t)
. (2.2)

Combining (2.1) and (2.2), we obtain

λ(t) =
dF (t)

S(t)
=
−dS(t)
S(t)

= −d logS(t),

so that, given that S(0) = 1, the survival function S can be rewritten as

S(t) = exp
(
−
∫ t

0

λ(u)du
)
.

2.1.2 Censoring and Likelihood

Censoring. As mentioned in the previous chapter, the specific difficulty in survival anal-
ysis is the possible existence of censoring, where the survival times of some individuals
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are unknown because they have not experienced the event during the study. This phe-
nomenon occurs in different ways. For example, individuals may leave the study at any
time without experiencing the event, or they may not have experienced the event by the
end of the study (right-censored). The event may also have occurred before the start of the
study (left-censored). In this thesis, we only consider right-censored individuals. In this
case, what we know about the survival time T̃ is that it exceeds the time counted until the
individuals leave the study or the end of the study. This time is called the time to censoring
and is denoted by C .

In the presence of censoring in the study, an individual can either experience the event
or be censored. The time we actually observe, called observed time and denoted by T , can
then be the survival time T̃ or the time to censoring C . We observe T̃ only when T̃ ≤ C ,
otherwise we only know that T̃ > C . The observed time T is then defined as

T = T̃ ∧ C,

where a ∧ b denotes the minimum between two real numbers a and b.

A corresponding censoring indicator which is required to distinguish whether the ob-
served time is the survival time or the time to censoring, is denoted by ∆ and defined as

∆ = 1{T̃≤C}.

For each individual, we observe a pair of observed time and censoring indicator (T,∆).
The observed dataset for n individuals, which are assumed to be independent and identi-
cally distributed (i.i.d.), is then represented as

Dn = {(T1,∆1), (T2,∆2), . . . , (Tn,∆n))}.

Likelihood. The estimate of the desired quantity (i.e. survival function, hazard function)
can be obtained by maximizing the likelihood function defined on the dataset Dn. We first
write the likelihood function Li for an individual i ∈ {1, . . . , n}. If this individual is non-
censored (∆i = 1), we know that the survival time is exactly Ti. The contribution to the
likelihood of this individual is therefore the value of the density function at Ti, that is,

Li = f(Ti).

Otherwise, if this individual is censored (∆i = 0), we know that the survival time is at least
Ti. The contribution to the likelihood of this individual is then the value of the survival
function at Ti, that is,

Li = S(Ti).

By removing the constants, the part of the likelihood L involving functions character-



CHAPTER 2. Survival analysis with longitudinal data 12

izing the distribution of T̃ of the entire sample Dn can be written

L =
n∏
i=1

Li =
n∏
i=1

f(Ti)
∆iS(Ti)

1−∆i =
n∏
i=1

(f(Ti)
S(Ti)

)∆i

S(Ti) =
n∏
i=1

λ(Ti)
∆iS(Ti),

and the log-likelihood L as

L = logL =
n∑
i=1

∆i log λ(Ti) + logS(Ti) =
n∑
i=1

∆i log λ(Ti)−
∫ Ti

0

λ(u)du. (2.3)

2.1.3 Counting Processes

Since the seminal work of Aalen in the 1970’s (Aalen, 1978), it has been recognized that
survival analysis can be cast in the general theory of counting processes. For a historical
review, we refer the reader to Aalen et al. (2010) and we briefly outline here the main ideas
of this theory. Suppose that an individual can experience several events 0 ≤ T1 < T2 <
. . . . The observation of these event times is equivalent to the observation of the counting
process

Ñ(t) =
∑
j≥1

1Tj≤t.

Note that this stochastic process has piecewise constant trajectories with jumps of size
+1 at each time Tk and generates the natural historical filtration F = (Ft)t≥0 where
Ft = σ(Ñ(s), s ≤ t) is a σ-algebra. Central to statistical inference in this theory is that
a counting process, as a submartingale, admits a Doob-Meier decomposition. This means
that there exists an unique predictable process Λ, called the compensator of Ñ , such that
the process Ñ − Λ is a martingale, that is,

E(Ñ(t)− Λ(t)|Fs) = Ñ(s)− Λ(s)

for all s ≤ t. It is this connection with martingale theory that has made the work of Aalen
and colleagues so fruitful, see Andersen et al. (2012).

The derivative of the compensatorΛ (when it exists) is called the intensity andmeasures
the infinitesimal probability of an event occurring at time t knowing the history up to that
time

λ(t) = lim
h→0

1

h
E(Ñ(t+ h)− Ñ(t)|Ft) = lim

h→0

1

h
P(Ñ(t+ h)− Ñ(t) = 1|Ft)).

Note that this intensity function is an adapted version of the one defined in (2.1) for the
counting process. As the functions Λ and λ determine the distribution of the counting
process Ñ , statistical inference focuses on estimating one of them. In addition, we can
integrate the phenomenon of right censoring at time C into this model by introducing a
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process Y , known as the at-risk process and defined as

Y (t) = 1C≥t.

When Y is null, the jumps in Ñ are not observed, the observed counting is then

N(t) = Ñ(t ∧ C) =
∫ t

0

Y (s)dÑ(s) =
∑
k≥1

Y (Tk)1Tk≤t.

It can be shown (see Andersen et al., 2012) that the intensity of N is given by λY and that
the log-likelihood associated with the observations {N(s), Y (s), 0 ≤ s ≤ τ} over a period
of study ending at time τ , is given by

ℓ(λ) =

∫ τ

0

log λ(s)dN(s)−
∫ τ

0

λ(s)Y (s)ds.

If one considers that one cannot observe events past the first, the at-risk process takes the
form

Y (t) = 1C∧T̃≥t.

This corresponds to the classic survival analysis settings presented above. In this case, the
intensity is equal to the hazard function.

2.1.4 Discrete survival time

In the literature, most methods deal with continuous survival times, as discussed in the
previous section. However, some frameworks consider survival time to be discrete. This
approach arises from the fact that time is often observed in discrete units (days, months,
years, etc.), or from continuous time grouped into contiguous intervals and treated as dis-
crete. We now present several functions to describe the distribution of a discrete survival
time. In general, the survival time is assumed to be in a set of J positive incremental dis-
crete times {τ1, . . . , τJ}. The probability mass function and the survival function for the
survival time T̃ are defined respectively as

f(τj) = P(T̃ = τj), (2.4)

and
S(τj) = P(T̃ > τj) =

∑
j′ : τj′>τj

f(τj′). (2.5)

The hazard function is still a key quantity to estimate in this approach and is defined as

λ(τj) = P(T̃ = τj | T̃ ≥ τj) =
f(τj)

S(τj−1)
=
S(τj−1)− S(τj)

S(τj−1)
. (2.6)
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A consequence of the previous equation is that the survival function can be rewritten as

S(τj) =
(
1− λ(τj)

)
S(τj−1) =

j∏
j′=1

(
1− λ(τj′)

)
.

The log-likelihood function L for discrete survival time can be written in two forms (Tutz,
Schmid, et al., 2016), which are

L =
n∑
i=1

∆i log
(
f(Ti)

)
+ (1−∆i) log

(
S(Ti)

)
(2.7)

=
n∑
i=1

∆i log
(
λ(Ti)

)
+ (1−∆i) log

(
1− λ(Ti)

)
+
∑

j:τj<Ti

log
(
1− λ(τj)

)
. (2.8)

Aside from the fact that survival data are often recorded at discrete intervals, making the
discrete survival model more suitable and representative of the data collection process, this
approach also provides several benefits, such as flexible modeling and the straightforward
interpretation of the hazard function, which can be formulated as conditional probabili-
ties (Tutz, Schmid, et al., 2016). However, the decision between using discrete or continuous
time survival models can depend on various factors, including the nature of the data, the
computational feasibility, and whether the focus is on modeling survival time intervals or
exact survival times.

2.1.5 Learning with baseline features

Having fully introduced the core concepts of survival analysis in the previous sections,
we now explore a variety of survival frameworks, ranging from classical linear statistical
methods to more advanced machine learning and recent deep learning approaches. These
frameworks accommodate different types of features, including the baseline features whose
values are fixed over time, as well as longitudinal data.

In this section, we briefly describe different methods for modeling the effect of baseline
features on the distribution of the survival time. The other frameworks that deal with the
longitudinal data are discussed in the next section. We first introduce the Cox proportional
hazard model (Cox, 1972b), which is a classic and widely used method in survival analysis.
We then present the random survival forests model (Ishwaran et al., 2008), which is an
extension of the classical random forests (Breiman, 2001) to handle time-to-event data. We
end this section by describing several deep survival frameworks, which are the most recent
methods and are extensions of modern deep learning architectures to handle the time-to-
event data.

For each individual i ∈ {1, . . . , n}, besides the observed time Ti and the censoring
indicator ∆i introduced previously, we denote by Wi ∈ Rp the p−dimensional vector of
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baseline features. The dataset is updated as

Dn = {(T1,∆1,W1), . . . , (Tn,∆n,Wn)}.

Cox proportional hazards model

A proportional hazards model assumes that the hazard rate (or intensity) of an individ-
ual at any time is proportional to a baseline hazard function, which can vary over time,
multiplied by a function of features - also known as the risk function. Mathematically, for
an individual i with baseline featuresWi, the hazard function at time t is given by

λi(t |Wi) = λ0(t) exp
(
h(Wi)

)
, (2.9)

where λ0(t) is an unknown baseline hazard function common to all individuals and h(Wi)
is the risk function (or marker function not to be confused with the loss function) denoting
the effects of individual covariatesWi.

The Cox proportional hazard (Cox-PH) model (Cox, 1972b) is the proportional hazards
model that represents the risk function hα(Wi) for an individual i by a linear function of
the baseline features Wi and their associated coefficients α, which is hα(Wi) = W⊤

i α.
Cox (1972b) proposed to estimate the coefficients α ∈ Rp by maximizing the partial log-
likelihood which is defined as

ℓ(α) =
n∑
i=1

∆i

(
W T
i α− log

∑
j:Tj≥Ti

exp(W T
j α)

)
. (2.10)

Let us denote by α̂ = argmax ℓ(α) themaximum likelihood estimator. In addition, Bres-
low (1972) suggested to estimate the cumulative baseline hazard functionΛ0(t) =

∫ t
0
λ0(u)du

by

Λ̂0(t) =
n∑
i=1

1Ti≤t∆i∑
j:Tj≥Ti exp(W

T
j α̂)

, (2.11)

which is now known as the Breslow estimator, see Andersen et al. (2012). It turns out that α̂
and Λ̂0(t) =

∫ t
0
λ̂0(u)du can be seen as the maximum likelihood estimators of the complete

likelihood given by

L(α, λ0(.)) =
n∑
i=1

∆i

(
log λ0(Ti) +W T

i α
)
−
∫ Ti

0

λ0(u) exp(W
T
j α)du. (2.12)

The corresponding estimated survival function for an individual i is

Ŝi(t) = exp
(
− Λ̂0(t) exp(W

⊤
i α̂)

)
. (2.13)

Although this method is simple and easy to interpret, it has significant limitations. Its
assumptions can be easily violated in cases where the effects of covariates are non-linear or
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change over time. In addition, if there are interactions between covariates, the assumption
that their effects are additive does not hold (Van Houwelingen, 2007).

Several alternative methods have been proposed to address the limitations of the Cox
model. Below we describe two families of methods that aim to overcome the assumption
of linearity in the risk function.

Survival Random Forest

Proposed by Ishwaran et al. (2008), random survival forest is an ensemble learning
method for survival analysis that extends the concept of random forest (Breiman, 2001)
to handle time-to-event data. The random survival forest generally follows the same prin-
ciples as the random forest. However, this framework differs from the random forest in two
main aspects: it uses the log-rank statistic (Bland and Altman, 2004) as the splitting rule,
and it estimates the survival or cumulative hazard function at the terminal node. These two
aspects are described in detail below.

Log-rank splitting rules. This splitting rule aims to maximize the survival difference
between the two resulting nodes after the split. Given a set H of individuals at a specific
tree node to be split, we suppose that a proposed featureW q ∈ {W 1, . . . ,W p} (one of the
coordinates ofW ) with a splitting value c is used to split the node into left and right child,
H l = {i : i ∈ S,W q

i ≤ c} and Hr = {i : i ∈ S,W q
i > c} respectively. Let {τ1, . . . , τJ} be

the set of distinct failure times taken fromH . At the time τj ∈ {τ1, . . . , τJ}, we denote by Y l
j

and Y r
j the number of individuals still at risk in the left and right child nodes respectively,

which are given by

Y l
j =

∑
i∈Hl

1Ti≥τj and Y r
j =

∑
i∈Hr

1Ti≥τj .

Similarly, dlj and drj are the numbers of individuals for whom the event has occurred at time
τj in the left and right child node respectively, that are,

dlj =
∑
i∈Sl

1Ti=τj and drj =
∑
i∈Sr

1Ti=τj .

Finally, denoting byYj = Y l
j+Y

r
j the total number of individuals still at risk and dj = dlj+d

r
j

the total number of individuals for whom the event has occurred, the log-rank split-statistic
value for the split is defined as

L(W q, c) =

∑J
j=1

(
dlj − dj

Y l
j

Yj

)√∑J
j=1

Y l
j

Yj

(
1− Y l

j

Yj

)(Yj−dj
Yj−1

)
dj

.

This statistic value quantifies the difference between the observed and expected number of
events across the two nodes after the split, with a larger value indicating a greater difference
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in survival curves between the two nodes. The split is then performed for the values q and
c that maximize the statistic value.

Estimation at terminal node. For each tree, the survival function S or the cumulative
hazard function Λ are estimated at each terminal node. Let h be a terminal node in the
survival tree and {τh1 , . . . , τhKh

} be the set of distinct failure times taken from individuals
in that node. For each time τhj ∈ {τh1 , . . . , τhKh

} at node h, we denote by Y h
j the number

of individuals still at risk and by dhj the number of individuals for whom the event has
occurred at that time. For a survival tree m ∈ {1, . . . ,M} in a random survival forest
model ofM trees, the estimation of the survival function and cumulative hazard function
at the terminal node h are given respectively by

Shm(t) =
∏
τhj ≤t

(1−
dhj
Y h
j

) and Λhm(t) =
∑
τhj ≤t

dhj
Y h
j

,

which are the Kaplan-Meier (Kaplan and Meier, 1958) and Nelson-Aalen (Aalen, 1978) esti-
mators. The estimations from the associated terminal nodes of all trees are then averaged
to obtain the final estimation.

The advantages of the random survival forest are its high flexibility, its non-linear and
non-parametric structure, and easy scalability to high-dimensional problems. However,
its disadvantage is similar to that of the random forest, as it tends to favor variables with
numerous split values, leading to bias in the resulting summary estimations (Nasejje et al.,
2017).

Deep survival model

Another line of work that aims to incorporate non-linearities involves deep learning.
Below we describe deep survival models, which combine deep neural network techniques
(LeCun et al., 2015; Goodfellow et al., 2016) with survival analysis to model time-to-event
data. This kind of approach offers several advantages such as the ability to automatically
learn complex patterns and interactions from high-dimensional data, and the flexibility to
handle non-linear or time-varying relationships in the survival model (Katzman et al., 2018).

The architecture of deep neural networks can be composed of various types of layers,
such as fully connected layers, convolution layers, recurrent layers, or softmax layers, de-
pending on the type of input data (i.e. tabular data, image, text, or longitudinal data), the
type of estimated output (i.e. risk function, hazard function or density function), or the
specific task (i.e. single risk, competing risk, or complex multistate models), see Kalbfleisch
and Prentice (2002) for a presentation.

Figure 2.1 shows an example of a fully connected network architecture with L hidden
layers that handle the baseline features W in the input layer and derive the function ϕ at
the output layer whose shape (single node or multiple nodes) depends on the function to
be estimated (risk function, hazard function or density function).
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Figure 2.1 – An illustration of a fully connected deep network architecture that processes
the baseline features W in the input layer, with the output layer capable of representing
risk function, hazard function, or density function.

To incorporate baseline features in the model, there is a variety of deep survival frame-
works that have been developed from classical feedforward neural network with only one
hidden layer (Faraggi and Simon, 1995) up to most recent deep network techniques (Katz-
man et al., 2018; Tong and Zhao, 2022). We refer the reader to Wiegrebe et al. (2024) for a
more detailed review.

These algorithms can be classified into two main approaches: the Cox-based approach
and the discrete-time approach (Kvamme and Borgan, 2021). The Cox-based approach,
which is considered an extension of the Cox regression model, represents the risk func-
tion through a neural network and optimizes the partial log-likelihood of the Cox-PH
model (Faraggi and Simon, 1995; Yousefi et al., 2017; Katzman et al., 2018; Tong and Zhao,
2022). On the other hand, the discrete-time approach considers the survival time to be dis-
crete and uses a neural network to model the discrete hazard function or probability mass
function (Biganzoli et al., 1998; Fotso, 2018; Lee et al., 2018; Gensheimer and Narasimhan,
2019; Kvamme and Borgan, 2021).

Cox-based approach. Faraggi and Simon (1995) extended the Cox-PH model by param-
eterizing the risk function h(W ) in (2.9) with a neural network in the form of one hidden
layer and a single node output. Figure 2.2 below shows the neural network architecture in
the framework proposed by Faraggi and Simon (1995). We let θ be the weight of the neural
network. For an individual i with the baseline features Wi, the output ϕθ(Wi) represents
the risk function h(Wi), which is given given by

h(Wi) = ϕθ(Wi).
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Figure 2.2 – The neural network architecturewith one hidden layer and a single node output
layer. This network, whose weight is denoted by θ, takes the baseline feature W as input
and outputs ϕθ(W ) which is the estimation of the risk function h(W ).

The loss function LFaraggi et al.(θ) is set to be similar to the partial log-likelihood (2.10) with
ℓ2-regularization, which is

LFaraggi et al.(θ) =
n∑
i=1

∆i

[
ϕθ(Wi)− log

∑
j:Tj≥Ti

exp
(
ϕθ(Wj)

)]
+ ||θ||22. (2.14)

Yousefi et al. (2017) extends the network of Faraggi and Simon (1995) by using a deep neural
network architecture and Bayesian optimization methods to optimize the network hyper-
parameters (i.e. the number of layers, the number of nodes in each layer, ...). The framework
DeepSurv proposed by Katzman et al. (2018) is another extension of the model of Faraggi
and Simon (1995), incorporating modern architecture and optimization methods. In this
framework, the network is in the form of a deep feedforward neural network with different
non-linear hidden layer activation functions (Rectified Linear Units, Scaled Exponential
Linear Unit). The main new feature in DeepSurv is the use of adapted stochastic gradient
descent (Bottou, 2012) for optimizing the loss function (2.14). Indeed, due to the presence
of the sum over the entire risk set ∑

j:Tj≥Ti

exp
(
ϕθ(Wj)

)
in the partial likelihood of Equation (2.14), modern stochastic gradient descent optimization
is not as effective as in other settings, such as regression or classification. To overcome this
problem, DeepSurv uses a restricted risk set that only includes individuals in the current
batch. Tong and Zhao (2022) propose NN-DeepSurv, which extends DeepSurv by employing
nuclear norm (Candes and Recht, 2012) for imputing missing features.
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Discrete-time approach. In another line of work, the authors proposed to build up on
the variety of existing architectures for classification tasks. Towards that end, they use
the discrete-time model, as presented in Section 2.1.4. Biganzoli et al. (1998) proposes
PLANN (partial logistic artificial neural network), a modification of Faraggi and Simon
(1995), whose output layer consists of J nodes - denoted by {ϕθ1 , . . . , ϕθJ} - with sigmoid
activation functions to estimate the discrete hazard function at J discrete times {τ1, . . . , τJ}.
Figure 2.3 below shows the neural network architecture of the PLANN framework.

 Input 
layer

Hidden
 layer

Output 
layer

...

...

Weights

...

Figure 2.3 – The neural network architecture with one hidden layer and an output layer
of J nodes. Each node j ∈ {1, . . . , J} is activated by the sigmoid activation function to
estimate the discrete hazard function at time τj .

For an individual iwith the baseline featureWi, the output at each node j ∈ {1, . . . , J}
is defined as

λ(τj |Wi) = P(T̃i = τj | T̃i ≥ τj,Wi) =
exp(ϕθj(Wi))

1 + exp(ϕθj(Wi))
.

Parameters θ = (θ1, . . . , θJ) are estimated by optimizing the likelihood function, defined
similarly to (2.8) with the above estimation of the discrete hazard function. Nnet-survival (Gen-
sheimer and Narasimhan, 2019) builds upon the work of Biganzoli et al. (1998), which is
structured as a deep neural network with support for the convolution layer.

Fotso (2018) proposed N-MTLR, which is an extension of MLLR (muti-task logistic re-
gression) (Yu et al., 2011). This framework uses a deep neural network whose output layer
consists of J nodes - denoted by {ϕθ1 , . . . , ϕθJ} - with a softmax activation function to pa-
rameterize the probability mass function at J discrete times {τ1, . . . , τJ}. For an individual
i with the baseline featureWi, the output at each node j ∈ {1, . . . , J} is defined as

f(τj |Wi) = P(T̃i = τj |Wi) =
exp

(
ϕθj(Wi)

)∑J
j′=1 exp

(
ϕθj′ (Wi)

) .
The estimation of the discrete survival function S, defined similarly to (2.5), is based on the
above estimation of the probability mass function. The parameters θ = (θ1, . . . , θJ) are es-
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timated by optimizing the likelihood function, defined similarly to (2.7) with the estimation
of f and S.

Finally, DeepHit (Lee et al., 2018), which is a variant of N-MTLR (Fotso, 2018), consists of
two subnetworks. The first subnetwork takes the baseline featureW as input and derives
the output ϕθ1(W ) to capture a latent representation, where θ1 denotes the weight of this
subnetwork. The second subnetwork, whose output layer is similar to N-MTLR, takes a pair
(ϕθ1(W ),W ) as input and derives the probability mass function. For an individual i with
the baseline featureWi, the output at each node j ∈ {1, . . . , J} is defined as

f(τj |Wi) = P(T̃i = τj |Wi) =
exp

(
ϕθj2

(ϕθ1(Wi),Wi)
)∑J

j′=1 exp
(
ϕ
θj

′
2
(ϕθ1(Wi),Wi)

) ,
where θ2 = (θ12, . . . , θ

J
2 ) denotes the weight of the second subnetwork. The estimation of

the discrete survival function S, defined similarly to (2.5), is based on the estimation of the
probability mass function above. The loss function of DeepHit combines two types of loss
which are the log-likelihood (similar to (2.7)) and a ranking loss for improving discrimina-
tive performance, which is as follows

LDeepHit(θ) =
n∑
i=1

[
(1−∆i) log

(
Sθ(Ti |Wi)

)
+∆i log

(
fθ(Ti |Wi)

)]
+ α

n∑
i=1

n∑
j ̸=i
j=1

1Ti<Tj∆iη
(
Fθ(Ti |Wi), Fθ(Tj |Wj)

)
,

where α are hyper-parameters chosen to trade off ranking losses, and η() is a convex loss
function. The architecture can handle competing risks when the event of interest may be
due to two or more causes, see Kalbfleisch and Prentice (2002). We refer the reader to Lee
et al. (2018) for a more detailed description.

2.2 Integrating longitudinal data

While the previous section concentrated on survival frameworks that address baseline
features, we now shift our focus to other frameworks designed to handle longitudinal data.
These include landmark methods, joint models, deep survival frameworks, and various
feature extraction techniques for processing longitudinal data.

2.2.1 Introduction

We now consider that we obverse, for each individual i ∈ {1, . . . , n}, in addition to the
baseline features, a set of d longitudinal features at ni time points t1i ≤ . . . ≤ tni

i ≤ Ti up
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to its observed time Ti. We let

Xi(t
j
i ) =

(
Xi1(t

j
i ), . . . , Xid(t

j
i )
)
∈ Rd

be the vector of d observed longitudinal features at time tji ∈ {t1i , . . . , t
ni
i } and

Xi =
(
Xi(t

1
i ), . . . , Xi(t

ni
i )
)
∈ Rd×ni

be the entire history of the observed longitudinal marker up to its observed time Ti. Note
that the terms “longitudinal data”, “longitudinal features”, and “longitudinal markers” are
used interchangeably to refer toXi. The observed longitudinal markerXi is assumed to be
the discretization, which can be prone to measurement errors, of an unobserved continuous
process xi : [0, τ ] → Rd, where τ is the time at the end of the study. In Figure 2.4 below,
we show the longitudinal continuous processes (with d = 1) and their respective observed
longitudinal markers for 4 individuals.

0.0 0.2 0.4 0.6 0.8 1.0
Time (t)

2

1

0

1

2

Lo
ng

itu
di

na
l m

ar
ke

r X
(t)

True longitudinal marker
x1(t)
x2(t)
x3(t)
x4(t)

0.0 0.2 0.4 0.6 0.8 1.0
Time (t)

2

1

0

1

2 Observed longitudinal marker
X1(t)
X2(t)
X3(t)
X4(t)

Figure 2.4 – The true longitudinal process (left) and the observed longitudinal data in •
markers (right) for 4 individuals with τ = 1. Each individual has its survival time equal to
the duration up to its true last measurement time (T1 = 0.35, T2 = 0.5, T3 = 0.8, T4 = 1.0).

We now have the dataset

Dn = {(T1,∆1,W1, X1), . . . , (Tn,∆n,Wn, Xn)}.

With this dataset, there are two main (and related) learning tasks that can be of interest:
the estimation of the distribution of the survival time and the prediction of the remaining
survival time at a given prediction time tP. This prediction provides valuable information
in many applications. For example, it identifies clients who are at higher risk of churning,
helping the business to take appropriate actions or promotions, or it helps clinicians assess
prognosis and determine personalized treatment plans.

Model estimation. Given a specified framework, we denote by θ the entire parameters
that describe the relationship between the covariates - including both baseline and longi-
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tudinal features - and the survival time distribution, which may take the form of a hazard
function or density function. The optimal value of θ is determined by optimizing a chosen
loss function, typically the likelihood or partial likelihood, using the training data. We then
find the optimal value of θ by optimizing a loss function (typically, the likelihood or partial
likelihood) on the training set.

Survival prediction. Given a trained model, we are interested in predicting the survival
probability of a new individual i in the test set that survives up to the prediction time tP. This
prediction is based on the longitudinal measurements recorded up to time tP, denoted by
Xi,[0,tP] =

(
Xi

(
t1i
)
, . . . , Xi

(
t
ni(tP)
i

))
, where tni(tP)

i is the last recording time for longitudinal
features before tP. For any time t > tP, the probability that this new subject i will survive
at least up to t, given that it has survived up to tP with a set of longitudinal measurements
Xi,[0,tP], writes

πi(t | tP) = P(T̃i ≥ t |Xi,[0,tP], T̃i > tP; θ̂), (2.15)

where θ̂ is the optimal parameter of the trained model. Figure 2.5 below shows individuals
in the training set and the prediction scenario of individuals in the testing set.
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Figure 2.5 – The train set includes 4 individuals i ∈ {1, 2, 3, 4} (right) and the test set 3
individuals i ∈ {5, 6, 7} (left). In particular, on the right, we are interested in predicting
the survival probability of individuals in the test set that are alive at time tP = 0.4. In this
case, we ignore the individual i = 5 whose survival time is less than 0.4 and predict the
survival probability of individual i ∈ {6, 7} with the set of observed longitudinal markers
up to time tP (the longitudinal markers after time tP are considered as unobserved).

Dynamic predictionwith longitudinal data. In the context of longitudinal data which
ismeasured repeatedly over time, the prediction could be dynamically updated as additional
longitudinal information becomes available. Figure 2.6 shows the dynamic prediction of the
conditional survival probability for individuals in the testing set.

To effectively predict the survival probability defined in (2.15), there are two widely
used approaches which are landmarking and joint modeling. The landmarking approach
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Figure 2.6 – The dynamic prediction of conditional survival probability π(t|tP) at two dif-
ferent prediction times tP = 0.4 (left) and tP = 0.6 (right) for individuals who survive at
corresponding prediction time, given the historical longitudinal marker up to that time.

fits a survival model only to a subset of data consisting of individuals still at risk at the
prediction time and the historical longitudinal marker up to the prediction time. In con-
trast, the joint model uses the whole dataset to build concurrently a longitudinal model
for longitudinal data and a survival model for time-to-event data while taking into account
the dependency between these two models. In the following, we present the framework of
these two approaches in detail.

2.2.2 Landmark methods

The landmarking approach (Anderson et al., 1983; Van Houwelingen, 2007; Devaux et
al., 2022) provides an estimation of πi(t | tP) by building a survival model on a set R(tP) =
{i : Ti ≥ tP}, which includes individuals from the training set who have survived up to the
time point tP, known as the landmark time. It is important to note that the chosen landmark
time coincides with the prediction time. For these individuals, the model incorporates their
longitudinal markers recorded up to landmark time, denoted by Xi,[0,tP]. A summary of
the longitudinal markers Xi,[0,tP], denoted by ϕ(Xi,[0,tP]), is derived and can take the form
of the last observed value (Proust-Lima and Taylor, 2009; Sweeting et al., 2017) or other
functionals that capture the history of longitudinal features (Devaux et al., 2022). This
summary is then used as the baseline features in the survival model (see Section 2.2.4 for
more details).

Any survival prediction model that uses ϕ(Xi,[0,tP]) as baseline features, such as Cox
proportional hazards or random survival forest, can be applied within this framework. Fig-
ure 2.7 below shows an illustration of training and prediction in this landmark setting.

For example, if a Cox-PH model is used, the hazard function defined for all t ≥ tP as

λ(t |Xi,[0,tP]) = λ0(t | tP) exp(ϕ(Xi,[0,tP])
⊤α(tP)).
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Figure 2.7 – We set the landmark time to 0.4. On the left, we select individuals whose
survival times are greater than the landmark time. In this case R(tP) = {2, 3, 4} and we
ignore the individual i = 1. The longitudinal markers observed only up to the landmark
time are used to train the survival model while data beyond the landmark time are ignored.
On the right, we predict the conditional survival probability π(t|tP) of individuals who
survive at landmark time with their longitudinal markers observed up to landmark time.
In this case, we ignore the individual i = 5 and derive the simulated survival probability
prediction of individual i ∈ {6, 7}.

The estimation of the vector α(tP) and of the function Λ0(. | tP) can be obtained by max-
imizing the log-likelihood similarly defined in (2.12). The estimated cumulative baseline
hazard function, which is also similar to (2.11), takes the form

Λ̂0(t | tP) =
∑

i∈R(tP)

1Ti≤t∆i∑
j:Tj≥Ti exp(ϕ(Xj,[0,tP])

⊤α̂(tP))
,

where α̂(tP) is an estimator of α(tP). The predicted conditional survival function for a new
individual i, which is similar to (2.13), is then given by

πi(t | tP) = exp
(
− Λ̂0(t | tP) exp

(
ϕ(Xi,[0,tP])

⊤α̂(tP)
))
.

The landmarking approach offers the benefit of being computationally simpler than
joint modeling, making it easier to scale for high-dimensional problems. However, its draw-
backs include inefficiency due to training on only a subset of the dataset, specifically by
excluding individuals whose survival time is shorter than the landmark time and ignoring
the longitudinal markers collected after that time (Lee et al., 2019; Devaux et al., 2022). In
addition, to obtain predictions at a new landmark time, the model needs to be entirely re-
trained with the new subset of at-risk individuals and the historical longitudinal marker up
to the new landmark time.
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2.2.3 Joint models

The joint modeling approach (Wulfsohn and Tsiatis, 1997; Lin et al., 2002b; Proust-Lima
et al., 2009; Proust-Lima and Taylor, 2009; Andrinopoulou and Rizopoulos, 2016) simulta-
neously analyses longitudinal and time-to-event data, taking into account the potential
dependence between them. More specifically, it consists of defining:
• a survival model for modeling the time-to-event data, often by a Cox-PH model;
• a longitudinal model for modeling the longitudinal markers. It could be a (general-
ized) linear mixed-effects model or another appropriate longitudinal model depend-
ing on the nature of the data (continuous, binary, counts, etc);
• a linking mechanism for linking both models via a common latent structure.

We now present the most common models used for modeling the longitudinal markers,
which is the linear mixed model, and then two main linking mechanisms, which are the
shared parameter joint model and the joint latent class model.

Linear mixed model

Although longitudinal data from individuals are assumed to be independent, they often
show correlations between repeated measurements within the same individual over time.
Linear mixed models (LMM) (Laird and Ware, 1982) are commonly used to analyze longi-
tudinal data by including both fixed and random effects. The fixed effect, which is common
to all individuals, describes the average longitudinal evolution in time. The marker-specific
random effect, which is unique to each individual, describes how each individual deviates
from the average evolution. Moreover, this random effect is the key factor that encodes the
correlation between the different longitudinal markers.

In LMM, for each individual i ∈ {1, . . . , n} and its univariate longitudinal feature ℓ ∈
{1, . . . , d}, the observation at time t ∈ {t1i , . . . , t

ni
i } is assumed to be

Xiℓ(t) = xiℓ(t) + v(t)⊤biℓ + ϵjiℓ, (2.16)

where the error term ϵjiℓ is assumed to be normally distributed, ϵjiℓ ∼ N (0, σℓ)with σℓ ∈ R+

being an estimated standard deviation parameter. The term vℓ(t) ∈ Rrℓ is a row vector
of time-varying features—often including functions of time, such as linear slopes, cubic
splines, or polynomial terms (see Rizopoulos, 2012)—associated with an unknown random
effect biℓ ∈ Rrℓ . In addition, xiℓ(t) = u(t)⊤βℓ represents the fixed effects component,
where uℓ(t) ∈ Rqℓ is another row vector of time-varying features similar to vℓ(t), with
corresponding unknown fixed effect parameters βℓ ∈ Rqℓ . The random effect biℓ is typically
assumed to follow a zero-mean multivariate normal distribution, biℓ ∼ N (0, Dℓℓ), where
Dℓℓ ∈ Rrℓ×rℓ is the covariance matrix.

Dependency between longitudinal features. In addition to the correlation between
repeated measurements of longitudinal data within the same individual over time, there
is also the correlation between the multiple longitudinal features in multivariate problems.
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This correlation can bemodeled through the random effect (Xu and Zeger, 2001) or the error
term (Chi and Ibrahim, 2006). For each individual i ∈ {1, . . . , n}, we let bi = (bi1, . . . , bid)
be the stacked vector of random effects for all d longitudinal features and ϵji = (ϵji1, . . . , ϵ

j
id)

be the stacked vector of error terms for all d longitudinal features. If the random effect is
used to account for the correlation between longitudinal features, the random effect and
error term are respectively

bi ∼ N (0, D) and ϵjiℓ ∼ N (0, σℓ),

where D is a variance-covariance matrix that captures both the correlation between lon-
gitudinal features and repeated measures. On the other hand, if the error term is used to
account for the correlation between longitudinal features, the random effect and error term
are respectively

biℓ ∼ N (0, Dℓℓ) and ϵji ∼ N (0,Σ),

where Σ is a variance-covariance matrix that captures the dependency between longitudi-
nal features measured at the same time. Other distributions have been studied, see Hickey
et al. (2016).

In addition, we can use a generalized linear mixed model (Hickey et al., 2016), which is
an extension of the LMM, to analyze other types of longitudinal data such as binary, counts.

Linking mechanism. The association between the longitudinal features and survival
time can be described by different linking mechanisms. Two key approaches for modeling
this relationship are the shared parameter joint model (SREM) and the joint latent class
model (JLCM). Figure 2.8 below gives a graphical representation illustrating the dependence
structure for these two linking mechanisms.

T

X

W

W G

X

T

Figure 2.8 – Graphical representation of SREM (left) and JLCM (right). The variable W
represents time-independent features, X the longitudinal markers, T the time-to-event,
and G the latent class membership.

We now provide a detailed description of these two linking mechanisms. It is important
to note that additional models are also discussed in the literature, see Hickey et al. (2016)
or Rizopoulos (2012) for a more complete review.
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Shared parameter joint model

The shared parameter joint model (SREM) (Wulfsohn and Tsiatis, 1997; Andrinopoulou
and Rizopoulos, 2016) assumes that the dependence between the longitudinal marker and
the time-to-event within individuals is captured by the random effect, which represents
individual-specific variability. The random effect is then included as a covariate in both
the longitudinal and the survival models. For an individual i, if we choose the LMM -
defined in (2.16) - for the longitudinal markers and Cox-PH model for the time-to-event,
the hazard function which depends on the d longitudinal features assuming for each of
them H functional forms, can be written as

λ(t |Wi, bi) = λ0(t) exp
(
W⊤
i α + ϕ(xi,[0,t])

⊤η +
d∑
ℓ=1

H∑
h=1

ψℓh(biℓ, t)
⊤γℓh

)
,

where Wi are the baseline features with the corresponding coefficients α, and ψℓh is the
shared association function with its associated parameter γ. The function ψ can take dif-
ferent forms such as random effect, generalized random effects, and fixed effects (Hickey
et al., 2016), providing flexibility in capturing how the random effect from the longitudi-
nal model influences survival times. In addition, the dependence between the longitudinal
features and survival time can be described by the term ϕ(xi,[0,t]) in which xi,[0,t] is the
true unobserved longitudinal markers estimated from generalized linear mixed model and
ϕ can be in different forms such as current value, current slope, area under the curve (An-
drinopoulou and Rizopoulos, 2016; Hickey et al., 2016).

This linking mechanism allows the longitudinal markers to influence the risk of the
event in the survival model while taking into account the correlation between the two
types of data. The likelihood function is the joint likelihood of the longitudinal model and
the survival model which requires an integration over the random effect distribution. The
advantage of this approach is that it allows flexibility in modeling the association between
longitudinal data and survival data through different types of function ψ. However, a sig-
nificant disadvantage is that it requires a lot of computational power due to the numerical
integration over the random effect distribution in the likelihood function (Proust-Lima et
al., 2014). This disadvantage of the SREM approach can be mitigated by another linking
mechanism which is JLCM.

Joint latent class model

The joint latent class model (JLCM) (Lin et al., 2002b; Proust-Lima et al., 2009; Proust-
Lima and Taylor, 2009) assumes that the population is heterogeneous, comprisingK ∈ N∗

latent classes. Within each homogeneous latent class g ∈ {1, . . . , K}, individuals share
similar marker trajectories and have the same risk of the event. For each k ∈ {1, . . . , K},
the latent class membership probability for an individual i is assumed to take the form of
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multinomial logistic regression (Böhning, 1992), that is,

P[gi = k |Wi] =
eW

⊤
i ξk∑K

j=1 e
W⊤

i ξj
,

where ξk ∈ Rp is a vector of coefficients for the class k associated to the baseline fea-
turesWi. The dependence between the time-to-event and the longitudinal marker is fully
captured by this latent class structure, which also means there are no shared associations
between the longitudinal model and the survival model. Given the latent class membership,
these two models are assumed to be independent. For an individual iwith given latent class
gi = k, if we choose the LMM - defined in (2.16) - for longitudinal marker ℓ ∈ {1, . . . , d}
and the Cox-PH model for the time-to-event (Proust-Lima et al., 2014), we have, in the
simplest form,

Xiℓ(t | gi = k) = u(t)⊤βℓk + v(t)⊤biℓ + ϵjiℓ,

λ(t |Wi, gi = k) = λ0(t) exp
(
W⊤
i αk + ϕ(xi,[0,t])

⊤ηk + ψ(t)⊤γk

)
,

where βℓk is the fixed effect parameter for class k in the longitudinal model for marker ℓ,
and αk, ηk and γk are vectors of coefficients for class k associated respectively with the
baseline featuresWi, the association function of the true unobserved longitudinal markers
ϕ(xi,[0,t]) and the association function of time ψ(t) in the survival model.

The advantage of JLCM is that it makes less assumptions about the dependence on
the time-to-event and longitudinal markers as well as offers a computationally attractive
alternative to SREM. However, a drawback is that it requires more parameters when the
number of latent classes is large, and it is more difficult to interpret the latent classes and
the parameters within each class than SREM (Proust-Lima et al., 2014).

Figure 2.9 shows the two fitted submodels of the SREMwith their estimated longitudinal
marker and hazard function on the training set.

Survival prediction with joint model. Once all the parameters in the joint model are
estimated, for a new individual j with its historical longitudinal markers up to prediction
time tP, the prediction of the longitudinal marker denoted by X̂j(t|tP) and the conditional
survival function πj(t|tP) at all time t ≥ tP can be both computed (Proust-Lima et al., 2014).
Figure 2.10 below shows these simulated predictions for individuals on the testing set.

Overall, the advantage of the joint modeling approach is that it makes more efficient use
of the data by incorporating all longitudinal information into a survival model (Yu et al.,
2004) compared with the landmark approach, which uses only information from individu-
als at risk at the landmark time (Devaux et al., 2022) and the model is trained only once on
the entire training dataset and can be used to update the prediction as the new informa-
tion is recorded. The disadvantage of this approach is that it relies on strong assumptions
about the relationship between longitudinal data and survival outcomes, is computation-
ally expensive, and does not scale to high-dimensional problems with a large number of
longitudinal markers (Devaux et al., 2022).
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Figure 2.9 – The two submodels of the SREM fit on the training set: longitudinal model (i.e.
LMM) on the left, survival model (i.e. Cox-PH) on the right. In particular, for individuals
on the training set, the estimated longitudinal markers over time t, denoted by X̂(t), are
derived from the fitted longitudinal model (the straight lines on the left), and the estimated
hazard function, denoted by λ̂(t), is derived from the fitted survival model (on the right).
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Figure 2.10 – The prediction of longitudinal marker X̂(t|tP) (left), conditional survival
probability π(t|tP) (right) for individuals who survive at prediction time tP, given the his-
torical longitudinal marker up to tP.

2.2.4 Featuring for longitudinal markers

The association function ϕ(xi,[0,t]), which summarizes the historical longitudinal fea-
tures up to time t to model their effect on survival risk, is common in both landmark and
joint model approaches. It can take various forms. Selecting the appropriate form is crucial,
as it can significantly influence the results (Andrinopoulou and Rizopoulos, 2016). Both ap-
proaches consider different functional forms (Andrinopoulou and Rizopoulos, 2016; Hickey
et al., 2016; Devaux et al., 2022) such as

• current value
ϕ(xi,[0,t]) = xi(t),
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• current slope

ϕ(xi,[0,t]) =
dxi(t)

dt
,

• area under the curve
ϕ(xi,[0,t]) =

∫ t

0

xi(u)du.

tsfresh. In addition, a comprehensive number of features to summarize ϕ(xi,[0,t]), includ-
ing statistical measures, time-domain characteristics, and frequency-domain transforma-
tions, can be automatically calculated using the tsfresh package (Christ et al., 2018). This
Python tool, designed for time series feature extraction, is also effective at extracting com-
plex patterns frommultiple longitudinal markers simultaneously. The utility and efficiency
of this package have been recognized and used in various research studies (Yang et al., 2021;
Santis et al., 2022), proving it to be an essential resource in time series analysis.

Splines. Other featuring methods or definitions of the association function can be used.
In the literature, the most common are the splines, which generate a smooth curve to rep-
resent observed longitudinal markers. The spline-fitting process divides the time domain
into intervals, determined by knots, which specify where the data is segmented. Within
each interval, a polynomial function is fitted to the data. To ensure smooth transitions,
splines are constrained at the knots, ensuring continuity in both value and slope across the
segments. A widely used approach is the cubic spline, where a spline withK knots can be
modeled as follows:

ϕ(xi,[0,t]) = ν0 + ν1B1(t) + ν2B2(t) + . . .+ νK+3BK+3(t),

where B1, B2, . . . , BK+3 are basis functions, ν0, ν1, ν2, . . . , νK+3 are the coefficients of the
spline and can be estimated using ordinary least squares (Gareth et al., 2013).

While splines can efficiently fit a model for each longitudinal marker (De Boor, 1978),
they can also be extended to fit multiple longitudinal markers simultaneously by using
shared parameters across markers (Wood, 2017). This capability allows splines to handle
more complex data structures where relationships between markers are important.

Signatures. The summarizing ϕ(xi,[0,t]) can be obtained by a signature transformation
(Lyons et al., 2007; Friz and Victoir, 2010; Fermanian, 2021). This method has its origins
in stochastic analysis, first introduced by Chen (1958) and later developed by Lyons et al.
(2007). Recently, they have been successfully applied in statistics and machine learning
as a powerful tool for representing irregular time series data (Kidger et al., 2019; Bleis-
tein et al., 2023; Fermanian, 2022). Mathematically, the signature associated to word I =
(ℓ1, . . . , ℓk) ∈ {1, . . . , d}k of size k over a set of longitudinal markers xi,[0,t] is defined as
the mapping

t 7→ SI(xi,[0,t]) :=

∫
0<u1<···<uk<t

dxiℓ1(u1) . . . dxiℓk(uk).
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While the technical definition of the signature involves iterated integrals, it can be
viewed more intuitively as a feature extraction technique that captures important charac-
teristics of the time series. Figure 2.11 below shows the example of signature transformation
on a set of longitudinal markers.
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Figure 2.11 – A 3-dimensional longitudinal features x(t) on top, and three signature coef-
ficients SI(x[0,t]) associated to different words on the bottom.

The truncated signature of orderN ≥ 1, denoted as SN(x[0,t]), consists of all the signa-
ture coefficients corresponding to words of size k ≤ N , arranged in lexicographical order.
This can be expressed as

SN(xi,[0,t]) =
(
SI(xi,[0,t])

)
|I|≤N

.

The order N is an important hyperparameter in the model, controlling the complex-
ity and capturing higher-order interactions in the time series. To further illustrate how
signature transformation encodes geometric properties and captures interactions between
different coordinates, Figure 2.12 shows the signature coefficients extracted from two lon-
gitudinal markers that are mostly similar over time.

Although these twomarkers remain nearly identical for most of the time, the differences
that occur at the initial stages are still captured and encoded in the extracted signature coef-
ficients, demonstrating the ability of the signature transformation to retain early variations
over time.
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Figure 2.12 – A 2-dimensional longitudinal features x(t) on top, in which both features
appear similar after time t = 0.23, and two signature coefficients SI(x[0,t]) on the bottom
associated to word (1, 1) (left) and (2, 2) (right) respectively.

2.3 Deep survival methods with longitudinal data

In addition to deep neural network frameworks that handle baseline features, described
in Section 2.1.5, a variety of frameworks have been developed to incorporate longitudinal
data (Lee et al., 2019; Gupta et al., 2019; Avati et al., 2020; Groha et al., 2020; Nagpal et al.,
2021; Moon et al., 2022). Most of these frameworks use Recurrent neural network (RNN)
architectures to handle longitudinal features, which are suitable for taking into account
temporal information and sharing parameters across time (Wiegrebe et al., 2024).

Gupta et al. (2019), Avati et al. (2020), Groha et al. (2020), and Nagpal et al. (2021) also
propose frameworks that use standard RNN architecture to learn the representations of the
longitudinal data and then feed to model the survival data in different settings (single risk,
competing risk, ...). We focus in particular on Dynamic DeepHit (Lee et al., 2019) which is a
state-of-the-art method for dynamical survival analysis.

Dynamic DeepHit (DDH) follows a similar structure toDeepHit, which uses the discrete-
time model (discussed in Section 2.1.4) and consists of two subnetworks. The first subnet-
work is an RNN that embeds the longitudinal markers X into hidden states h, which are
then forwarded through fully connected layers (FF) to derive the estimation of longitudinal
markers X̂ . For each individual i ∈ {1, . . . , n} with the historical longitudinal markers
Xi,[0,τj ] up to each discrete time τj ∈ {τ1, . . . , τJ}, the hidden state hij and the estimation
of longitudinal markers X̂i(τj) are sequentially updated as

hij = RNN(hi(j−1), Xi(τj),mij) and X̂i(τj) = FF(hij),

wheremij denotes an indicator for missingmeasurements, as longitudinal markers may not
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always be observed at every time point. The hidden states {hij}Jj=1 are forwarded through
an attention mechanism, which helps the network decide which part of the history of the
measurements is important and derive a context vector ci as a weighted sum of the previous
hidden states

ci =
J∑
j=1

aijhij,

where {aij}Jj=1 represents the importance of the measurements at time τj . The second
subnetwork takes the context vector c as input and derives the estimation of the probability
mass function at its output layer, which is similar to DeepHit, described in Section 2.1.5. A
key limitation in this framework arises when the probability mass function at times prior to
the observed time is estimated using the entire longitudinalmarker up to this observed time.
This incorporates future information into the model, potentially reducing the accuracy of
dynamic predictions by including data that would not be accessible in a real-time setting.
Consequently, this data leakage reduces the reliability of the model for real-time prediction.
To provide a clearer understanding of the framework, Figure 2.13 offers a illustration of the
architecture.
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Figure 2.13 – A simplified illustration of Dynamic DeepHit processing longitudinal dataX ,
measured at discrete time points {τ1, . . . , τJ}, to estimate the probability mass functions f
at each of these time points.

The loss function LDDH(θ) is a sum of three loss functions, which is defined as

LDDH(θ)

=
n∑
i=1

[
(1−∆i) log

(
Sθ(Ti |Xi)

)
+∆i log

( fθ(Ti |Xi)

1−
∑

τj′≤t
ni
i
fθ(τj′ |Xi)

)]
+ α

n∑
i=1

n∑
j ̸=i
j=1

η1
Ti−t

ni
i <Tj−t

nj
j
∆i

(
Fθ(Ti |Xi), Fθ(Ti − tni

i + t
nj

j |Xj)
)

+ β
n∑
i=1

J∑
j=1

L∑
ℓ=1

(
1−mijℓ)ξ(Xiℓ(τj)− X̂iℓ(τj)

)
,
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where α and β are hyper-parameters, and X̂ is the estimation of X . The first and second
losses are similar to the ones of DeepHit, which are the log-likelihood and the ranking loss
respectively. The third loss is a prediction loss, which measures the difference between
the value of the time-dependent features and a prediction of this value made by the shared
network. The loss is minimized using Adam (Kingma and Ba, 2014). We refer the reader
to Lee et al. (2019) for a more detailed description.

Moon et al. (2022) proposes SurvLatent ODE, which extends Latent ODE (Rubanova et
al., 2019) to handle survival data. This framework is based on a variational autoencoder
architecture (Kingma and Welling, 2013), which consists of a recognition model and a gen-
erative model. The recognition model handles the longitudinal features sequentially back-
ward in time and outputs the posterior over the initial latent state. The generative model
uses a sample from the posterior over the initial latent state to derive the latent states at all
measurement times and then to estimate the distribution of survival time. In this frame-
work, the encoder follows the ODE-RNN architecture (Rubanova et al., 2019), where an
ODE solution is first computed as a pre-update term, and this is passed through an RNN
to iteratively update the hidden state at each measurement time. The ODE-RNN encoder
runs backwards-in-time from τJ to τ1. For an individual i with longitudinal markerXi, the
hidden state hi(τj) at each measurement time τj ∈ {τJ , . . . , τ1} is sequentially updated as

h′i(τj) = hi(τj+1) +

∫ τJ

τj

fγ(hi(u), u)du,

hi(τj) = RNN(h′i(τj), Xi(τj)),

where hi(τJ) is an initial hidden state and the function fγ(.), parameterized by neural net-
works with weights γ, specifies the dynamics of RNN hidden states. The final hidden state
of the recognition model ODE-RNN hi(τ1) is then forwarded to a neural network, whose
weight is denoted by ϕ, to estimate the mean and variance of the posterior over the initial
latent state q(zi(τ1)|Xi), that is

q(zi(τ1)|Xi) = N (µzi(τ1), σzi(τ1)) where µzi(τ1), σzi(τ1) = gϕ(hi(τ1)).

The generative model consists of an ODE and a fully connected layers architecture net-
work, in which the latent trajectory derived from the ODE model is forwarded into the
subnetwork model to estimate the discrete hazard functions. The latent state at any point
τj ∈ {τ1, . . . , τJ} is the solution to the ODE

zi(τj) = zi(τ1) +

∫ τj

τ1

fω(zi(u), u)du,

where zi(τ1) is a sample from the approximate posterior q(zi(τ1)|Xi) ,and fω, a neural net-
work parameterized by weights ω, specifies the dynamics of the latent state. The subnet-
work then takes all latent states {z(τ1), . . . , z(τJ)} as input and derives the discrete hazard
function at all times {λ(τ1), . . . , λ(τJ)}.
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The loss function, which is the combination of the log-likelihood and the Kullback-
Leibler divergence loss, is defined as

LSLODE(θ)

=
n∑
i=1

∆i log
(
λθ(Ti |Xi)

)
+ (1−∆i) log

(
1− λθ(Ti |Xi)

)
+
∑

j:τj<Ti

log
(
1− λθ(τj |Xi)

)
+ Eq(zi(τ1) |Xi)

[
log
(
p(Xi | zi(τ1)

)
]− KL[q

(
zi(τ1) |Xi

)
|| p
(
zi(τ1)

)]
.

We refer the reader to Moon et al. (2022) for a more detailed description.

2.4 Evaluation of survival analysis

The predictive performance of a survival model is the degree to which the predicted
distribution of survival time matches with the observed times. In the literature, this pre-
dictive performance is assessed by discrimination (Harrell Jr et al., 1996; Gönen and Heller,
2005), or calibration (Schemper and Henderson, 2000; Gerds and Schumacher, 2006). Dis-
crimination describes the ability of the model to distinguish between individuals whose
event occurs earlier (shorter survival time) and those whose event occurs later (longer sur-
vival time). Calibration, on the other hand, describes the similarity between the predicted
probabilities and the observed probabilities (derived from the observed time) on the same
individual. In this section, we present different metrics of discrimination and calibration
adapted to the dynamic prediction context, where the predicted probability is updated as
new information of longitudinal marker is available. All these metrics are functions of the
predicted survival probabilities defined in (2.15).

Discrimination

In the context of dynamic prediction, we focus on a time interval within which the
occurrence of events is of interest. In this context, a useful property of the model would
be to successfully discriminate between individuals who are going to experience the event
within this time frame from individuals who will not. More formally, given longitudinal
marker up to prediction time tP, we are interested in events occurring in the time interval
[tP, t].

Time-dependant Concordance index (C-Index) is the most commonly used metric for dis-
crimination in survival analysis. This metric can be computed as the proportion of concor-
dant pairs over comparable pairs. In a dynamic prediction context (Lee et al., 2019), for a
randomly chosen pair of individuals (i, j), in which both individuals have provided mea-
surements up to the time tP, (i, j) are comparable if Ti > Tj , Tj ∈ [tP, t] and ∆j = 1.
This pair (i, j) is concordant if πj(t | tP) < πi(t | tP). The concordance index C(tP, t) is then
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defined as
n∑
j=1

n∑
i=1

1πi(t | tP)>πj(t | tP)1Ti>Tj , Tj∈[tP, t],∆j=1

n∑
j=1

n∑
i=1

1Ti>Tj , Tj∈[tP, t],∆j=1

.

Since the C-index is a proportion, it can take any value from 0 to 1. Values near 1 indicate
high performance and a value of 0.5 indicates that the discrimination performance of the
model is the same as a random guess.

Receiver Operating Curve (or ROC) is another metric to distinguish between individuals
who will have the event occur within the considered time frame from individuals who
will not. This metric is calculated through two terms, i.e., specificity and sensitivity. The
sensitivity (or true positive rate) is the proportion between individuals predicted to have
the event occur in the time interval [tP, t] and the individuals whose true survival times are
in the time interval. The specificity (or true negative rate) is the proportion of individuals
predicted to have the event occur beyond the time interval [tP, t] over the individuals whose
true survival times are after this time interval. These two terms are then in form

TPR[tP, t](c) =

∑n
i=1 1πi(t | tP)>c1Ti∈[tP, t],∆j=1∑n

i=1 1Ti∈[tP, t],∆j=1

,

and
TNR[tP, t](c) =

∑n
i=1 1πi(t | tP)<c1Ti>t∑n

i=1 1Ti>t
,

where c is a threshold for the predicted output. The ROC curve for the full spectrum of
sensitivities and specificities over c ∈ [0, 1], defined as

ROC(tP, t) = {TPR[tP, t](c), 1− TNR[tP, t](c) ; c ∈ R}.

Area under the receiver operating characteristic curve (AUC) (Heagerty et al., 2000; Heagerty
and Zheng, 2005), which measures the area beneath the ROC curve and provides a single
scalar value to represent model performance, is then defined as

AUC(tP, t) =
∫ 1

0

TPR[tP, t]

(
(1− TNR[tP, t](p))

−1
)
dp.

Calibration

Brier Score (Brier, 1950) is a common metric to evaluate the similarity between the pre-
dicted and observed probabilities (derived from the observed time) on the same individual.
In a dynamic prediction context, if an individual iwhose survival time is in the time interval
[tP, t] then the survival prediction πi(t | tP) should be close to 1, otherwise if this individual
has the event occur after t, the survival prediction should be close to 0. The Brier score
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BS(tP, t) is then defined as

BS(tP, t) =
1

n

n∑
i=1

1Ti∈[tP, t],∆i=1πi(t | tP)2 +
1

n

n∑
i=1

1Ti>t
(
1− πi(t | tP)

)2
.

Integrated Brier Score provides an overall calculation of the Brier score at all available
prediction times in the interval [t1, t2], which writes

IBS =
1

t2 − t1

∫ t2

t1

BS(u, u+ δt)du.

2.5 Contributions

The rising availability of high-frequency longitudinal data in modern datasets presents
valuable opportunities to improve survival models by enabling dynamic, real-time updates
to risk assessments. However, this also brings several challenges. To address the chal-
lenges of integrating longitudinal data into survival models, especially in high-dimensional
contexts, our contributions propose solutions that leverage advanced mathematical mod-
els, including joint modeling frameworks, feature extraction techniques, and regularization
strategies. These approaches ensure the efficient processing and incorporation of this data
into survival models, leading to improved predictive performance and more meaningful
risk assessments.

We outline below the key contributions of this thesis. In the following, we consider a
population of n individuals, with the data for each individual represented as follows:

Dn = {(T1,∆1,W1, X1), . . . , (Tn,∆n,Wn, Xn)},

where Ti denotes the observed time, ∆i denotes the event indicator,Wi denotes the static
features and Xi =

(
Xi(t

1
i ), . . . , Xi(t

ni
i )
)
∈ Rd×ni denotes the entire history of the d ob-

served longitudinal markers at ni time points t1i ≤ . . . ≤ tni
i ≤ Ti up to its observed time

Ti.

FLASH - joint models. We introduce in Chapter 3 a new joint model called FLASH
(Fast joint model for Longitudinal And Survival data in High dimension), together with
an efficient inference methodology. The model is inspired by both JLCMs and SREMs, but
is specifically designed to handle high-dimensional longitudinal markers. In this model,
the population Dn is assumed to consist of K ∈ N∗ latent classes, each representing a
different risk level. To each individual i ∈ {1, . . . , n}, we associate a categorical latent
variable gi ∈ {1, . . . , K}, which encodes its latent class membership. Then, the latent class
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membership probability is assumed to take the form, for any k ∈ {1, . . . , K},

P(gi = k) =
eWi

⊤ξk∑K
j=1 e

Wi
⊤ξj

,

where ξk ∈ Rp denotes a vector of coefficients for class k.

The class-specific longitudinalmodel is described by a standard linearmixedmodel (Laird
and Ware, 1982)

Xi(t)|gi = k ∼ N
(
U(t)βk + V (t)bi,Σ

)
,

where Σ is a variance-covariance matrix of measurement errors, U(t) ∈ Rd×q is a matrix
of time-varying features with corresponding unknown fixed effect parameters βk ∈ Rq,
and V (t) ∈ Rd×r is a matrix of time-varying features with corresponding random effect
bi ∼ N (0, D), with D ∈ Rr×r being a the variance-covariance matrix of random effects.

We denote byXi,[0,t] =
(
Xi

(
t1i
)
, . . . , Xi

(
t
ni(t)
i

))
the longitudinalmeasurements recorded

up to time t and tni(t)
i is the last recording time for longitudinal features before t. To quan-

tify the effect of this longitudinal data on the survival time, it is represented by a set of
M ∈ N+ fixed functionals Ψm : Xi,[0,t] → Ψm(Xi,[0,t]) ∈ Rd′ ,m ∈ {1, . . . ,M}, where d′ is
the dimension of the extracted features and will vary depending on the type of functional.
The class-specific survival model, which takes the form of a Coxmodel (Cox, 1972b), is then
defined as

λ(t |Xi,[0,t], gi = k) = λ0(t) exp
( M∑
m=1

Ψm

(
Xi,[0,t]

)
γk,m

)
, (2.17)

where λ0 is an unspecified baseline hazard function that does not depend on k and γk =
(γk,1, . . . , γk,M) are the joint representation parameters, which are the only class-specific
objects in this model.

A key distinction from SREMs is that the association features
(
Ψ1(Xi,[0,t]), . . . ,ΨM(Xi,[0,t])

)
are assumed to be progressively independent of the modeling assumptions in the longitu-
dinal submodel. This assumption of independence allows the model to be trained very
efficiently, even with high-dimensional longitudinal data, since the likelihood is then in
closed-form in Gaussian settings and therefore does not require Monte Carlo approxima-
tions.

Moreover, it allows the use of high-dimensional and generic feature extraction func-
tions that characterize longitudinal markers, rather than just random effects, resulting in
a model that is generic enough to be adapted to different types of longitudinal markers
and prior information on the problem. The use of the elastic net and sparse group lasso
regularization enables the automatic selection of relevant association features, resultin g in
an interpretable model that retains only the significant longitudinal markers. In addition,
our model automatically identifies significant features that are relevant from a practical
point of view, making it interpretable, which is of the greatest importance for a prognostic
algorithm in healthcare.

Finally, the model allows us to define a “real-time” prediction methodology, enabling
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risk estimation at a given point in time for each subject using time-independent and lon-
gitudinal data available up to that time point. Real-time numerical experiments on both
simulated and real data are given to compare the proposed framework with the main com-
peting state-of-the-art methods for the subject. Our proposed framework has both better
predictive performance and less computational complexity.

Modelling Point Processes with Controlled Latent States. In Chapter 4, we present
a new framework based on neural networks for learning individual-specific intensities of
counting processes from a set of static variables and longitudinal data. In this framework,
the intensity function is parameterized as

λi;θ(t) = exp(α⊤zi;θ(t) + β⊤Wi), (2.18)

where zi;θ(t) ∈ Rp is a learned embedding of the time seriesXi,[0,t] parameterized by θ and
(α, β) are learnable parameters.

The first major innovation is to leverage the framework of neural differential equa-
tions (Chen et al., 2018) to construct the embedding zθ so that it captures complex dynamics
of longitudinal data. In particular, we use the neural controlled differential equation (Kidger
et al., 2020), which is a generalization of neural ODE. Then, the embedding zi;θ(t) evolves
according to the following differential equation:

dzi;θ(t) = Gψ

(
zi;θ(t)

)
dXi(t)

with initial condition zi;θ(0) = 0. The function Gψ : Rp → Rp×d is typically modeled as a
small feed-forward neural network parameterized by ψ, and the overall learnable param-
eters are θ = (α, ψ, β). Note that, the neural controlled differential equation allows for
the latent state zi;θ(t) to depend explicitly on the longitudinal feature Xi(t) thus encoding
richer dynamics.

Second, we explore the use of signatures (introduced in Section 2.2.4) to define zθ. This
approach builds on the connection between signatures and controlled differential equations,
where a linear approximation of the solution to a CDE can be expressed as a linear function
of the signatures (Bleistein et al., 2023). Consequently, the embedding zi;θ(t) can be defined
as

zi;θ(t) = γ⊤SN(X
sig
i (t)),

where the overall learnable parameters are θ = (α, β, γ), N ≥ 1 is treated as a hyperpa-
rameter, and X sig

i (t) =
{(
t1i , Xi(t

1
i )
)
, . . . ,

(
t,Xi(t)

)}
is the extension of Xi,[0,t] by adding

the time dimension.

We demonstrate the strong performance of our models on a vast array of simulated and
real-world survival analysis datasets from finance, predictive maintenance, and food supply
chain management.

Comparison of classification and survival models for dynamic churn prediction.
Chapter 5 presents the development of churn prediction models using dynamic client data
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in non-contractual settings, specifically applied to Califrais’ data. To build efficient models
for this problem, we propose a comprehensive method by training models across three
approaches.

First, we frame churn prediction as a binary classification problem, aiming to directly
identify whether a customer is likely to churn within a certain period. This method is sim-
ple and easily understandable for non-experts, making it an effective choice for businesses
looking to quickly assess churn risk. Second, we explore various survival analysis frame-
works, including the two advanced methods introduced in Chapters 3 and 4, to not only
predict whether a customer will churn but also estimate the time until they churn. This ap-
proach also provides more meaningful insights, enabling companies to implement targeted
interventions before customers churn. Third, we extend the application of survival analy-
sis by considering a landmark setting, which simplifies the training process and is better
suited for high-dimensional datasets.

For each of these approaches, we implement a range of models and advanced feature
engineering techniques to optimize predictive performance. Finally, we conduct a com-
prehensive comparison of these methodologies, evaluating their strengths and weaknesses
in the context of real-time churn prediction. This comparative analysis across the three
approaches, which is novel in the existing literature, provides valuable insights into the
efficacy of different approaches, offering guidance for both academic research and practical
application in churn management.

Outline of the manuscript The rest of the manuscript is organized as follows.
— Chapter 3 is a joint work with Adeline Fermanian (Califrais), Antoine Barbieri (Uni-

versité Bordeaux), Sarah Zohar (INRIA), Anne-Sophie Jannot (INRIA), Simon Bussy
(Califrais), and Agathe Guilloux (INRIA). It has been accepted for publication in Bio-
metrics.

— Chapter 4 is a joint work with Linus Bleistein (INRIA), Adeline Fermanian (Califrais),
and Agathe Guilloux (INRIA). In this work, my main contribution is implementation
and running experiments. It has been published in 2024 International Conference on
Machine Learning.

— Chapter 5 is an ongoing joint work with Adeline Fermanian (Califrais), and Agathe
Guilloux (INRIA).

Résumé détaillé

La disponibilité croissante des données longitudinales dans les données modernes offre
des opportunités précieuses pour améliorer les modèles de survie, en permettant des mises
à jour dynamiques et en temps réel des évaluations de risque. Cependant, cela entraîne
également plusieurs défis. Nous nous concentrons sur ceux liés à l’intégration des don-
nées longitudinales dans les modèles de survie, en particulier dans des contextes à haute
dimensionnalité. Nos contributions proposent des solutions qui tirent parti de modèles
mathématiques avancés, y compris des cadres de modélisation conjointe, des techniques



CHAPTER 2. Survival analysis with longitudinal data 42

d’extraction de caractéristiques et des stratégies de régularisation. Ces approches garantis-
sent un traitement efficace et une incorporation de ces données dans les modèles de survie,
ce qui conduit à une amélioration des performances prédictives et à des évaluations de
risque plus significatives.

Nous exposons ci-dessous les principales contributions de cette thèse. Nous considérons
une population de n individus, avec les données de chaque individu représentées comme
suit :

Dn = {(T1,∆1,W1, X1), . . . , (Tn,∆n,Wn, Xn)},

où Ti désigne le temps observé, ∆i l’indicateur d’événement, Wi les caractéristiques sta-
tiques et Xi =

(
Xi(t

1
i ), . . . , Xi(t

ni
i )
)
∈ Rd×ni représente l’intégralité de l’historique des

d marqueurs longitudinaux observés à ni temps t1i ≤ . . . ≤ tni
i ≤ Ti jusqu’à son temps

observé Ti.

FLASH - modèles conjoints Nous introduisons dans le chapitre 3 un nouveau modèle
conjoint appelé FLASH (Fast joint model for Longitudinal And Survival data in High di-
mension), accompagné d’une méthodologie d’inférence efficace. Le modèle s’inspire des
JLCMs et des SREMs, mais est spécifiquement conçu pour traiter des marqueurs longitu-
dinaux de haute dimension. Dans ce modèle, la populationDn est supposée être constituée
de K ∈ N∗ classes latentes, chacune représentant un niveau de risque différent. À chaque
individu i ∈ {1, . . . , n}, nous associons une variable latente catégorique gi ∈ {1, . . . , K},
qui encode son appartenance à une classe latente. Ensuite, la probabilité d’appartenance à
une classe latente prend la forme suivante, pour tout k ∈ {1, . . . , K} :

P(gi = k) =
eWi

⊤ξk∑K
j=1 e

Wi
⊤ξj

,

où ξk ∈ Rp désigne un vecteur de coefficients pour la classe k.

Dans chaque classe, le modèle longitudinal spécifique est décrit par un modèle linéaire
à effets mixtes standard (Laird and Ware, 1982) :

Xi(t)|gi = k ∼ N
(
U(t)βk + V (t)bi,Σ

)
,

où Σ est une matrice de variance-covariance des erreurs de mesure, U(t) ∈ Rd×q est une
matrice de caractéristiques variant dans le temps avec des paramètres d’effets fixes inconnus
βk ∈ Rq, et V (t) ∈ Rd×r est une matrice de caractéristiques variant dans le temps avec
un effet aléatoire correspondant bi ∼ N (0, D), où D ∈ Rr×r est la matrice de variance-
covariance des effets aléatoires.

Nous notons par Xi,[0,t] =
(
Xi

(
t1i
)
, . . . , Xi

(
t
ni(t)
i

))
les mesures longitudinales enreg-

istrées jusqu’au temps t, et tni(t)
i est le dernier instant d’enregistrement des caractéris-

tiques longitudinales avant t. Pour quantifier l’effet de ces données longitudinales sur le
temps de survie, elles sont représentées par un ensemble deM ∈ N+ fonctionnelles fixes
Ψm : Xi,[0,t] → Ψm(Xi,[0,t]) ∈ Rd′ , m ∈ {1, . . . ,M}, où d′ est la dimension des caractéris-
tiques extraites et varie en fonction du type de fonctionnelle. Le modèle de survie spécifique
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à chaque classe, qui prend la forme d’un modèle de Cox (Cox, 1972b), est alors défini par :

λ(t |Xi,[0,t], gi = k) = λ0(t) exp
( M∑
m=1

Ψm

(
Xi,[0,t]

)
γk,m

)
,

où λ0 est une fonction de risque de base non spécifiée qui ne dépend pas de k et γk =
(γk,1, . . . , γk,M) sont les paramètres de représentation conjointe, qui sont les seuls objets
spécifiques à la classe dans ce modèle.

Une distinction clé par rapport aux SREMs est que les caractéristiques d’association(
Ψ1(Xi,[0,t]), . . . ,ΨM(Xi,[0,t])

)
sont supposées être indépendantes de manière progressive

des hypothèses demodélisation dans le sous-modèle longitudinal. Cette hypothèse d’indépendance
permet d’entraîner le modèle de manière très efficace, même avec des données longitu-
dinales de haute dimension, car la vraisemblance est alors explicites dans des contextes
gaussiens et ne nécessite donc pas d’approximations de Monte Carlo.

De plus, elle permet d’utiliser des fonctions d’extraction de caractéristiques génériques
et de haute dimension qui caractérisent les marqueurs longitudinaux, plutôt que de se lim-
iter aux effets aléatoires, ce qui rend le modèle suffisamment générique pour être adapté à
différents types de marqueurs longitudinaux et à l’information préalable sur le problème.
L’utilisation de la régularisation Elastic Net et du group-lasso permet la sélection automa-
tique des caractéristiques d’association pertinentes, aboutissant à un modèle interprétable
qui conserve uniquement les marqueurs longitudinaux significatifs. De plus, notre modèle
identifie automatiquement les caractéristiques significatives sur le plan pratique, ce qui le
rend interprétable, ce qui est d’une grande importance pour un algorithme pronostique en
santé.

Enfin, le modèle permet de définir une méthodologie de prédiction "en temps réel", per-
mettant une estimation des risques à un moment donné pour chaque sujet, en utilisant les
données longitudinales et indépendantes du temps disponibles jusqu’à ce point temporel.
Des expériences numériques en temps réel sur des données simulées et réelles sont présen-
tées pour comparer le cadre proposé avec les principales méthodes concurrentes de l’état
de l’art pour le sujet. Le cadre proposé présente à la fois de meilleures performances pré-
dictives et une moindre complexité computationnelle.

Modélisation des processus de comptage avec des états latents contrôlés Dans le
chapitre 4, nous présentons un nouveau cadre basé sur les réseaux neuronaux pour ap-
prendre les intensités spécifiques aux individus de processus de comptage à partir d’un
ensemble de variables statiques et de données longitudinales. Dans ce cadre, la fonction
d’intensité est paramétrée par :

λi;θ(t) = exp(α⊤zi;θ(t) + β⊤Wi),

où zi;θ(t) ∈ Rp est un encodage appris de la série temporelle Xi,[0,t] paramétré par θ, et
(α, β).

La première grande innovation est d’exploiter le cadre des équations différentielles neu-
ronales (Chen et al., 2018) pour construire l’encodage zθ afin qu’il capture les dynamiques
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complexes des données longitudinales. En particulier, nous utilisons les équations différen-
tielles contrôlées neuronales (CDE), une généralisation des équations différentielles ordi-
naires neuronales (ODE), comme le montre le travail de Kidger et al. (2020). L’encodage
zi;θ(t) évolue selon l’équation différentielle suivante :

dzi;θ(t) = Gψ

(
zi;θ(t)

)
dX

où Gψ est une fonction qui paramètre l’évolution des représentations des données longi-
tudinales sur le temps, et dXi(t) est l’incrément des observations longitudinales à chaque
point t. Cette formulation permet d’obtenir une représentation dynamique et continue de
l’historique longitudinal, capturant ainsi les complexités temporelles et inter-individuelles
des données de manière plus flexible que les approches statiques classiques.

Deuxièmement, nous explorons l’utilisation des signatures (introduites dans la section
2.2.4) pour définir zθ. Cette approche repose sur la connexion entre les signatures et les
équations différentielles contrôlées, où une approximation linéaire de la solution d’une CDE
peut être exprimée comme une fonction linéaire des signatures (Bleistein et al., 2023). Par
conséquent, l’encodage zi;θ(t) peut être défini comme suit :

zi;θ(t) = γ⊤SN(X
sig
i (t)),

où les paramètres à apprendre sont θ = (α, β, γ), N ≥ 1 est traité comme un hyper-
paramètre, et X sig

i (t) =
{(
t1i , Xi(t

1
i )
)
, . . . ,

(
t,Xi(t)

)}
est l’extension de Xi,[0,t] en ajoutant

la dimension temporelle.

Nous démontrons les excellentes performances de nos modèles sur un large éventail de
jeux de données de survie simulées et réelles, provenant de secteurs tels que la finance, la
maintenance prédictive et la gestion des chaînes d’approvisionnement alimentaires.

Comparaison desmodèles de classification et de survie pour la prédiction dynamique
du churn Le chapitre 5 présente le développement de modèles de prédiction du churn util-
isant des données historiques de clients, spécifiquement appliqués aux données de Califrais.
Pour construire des modèles efficaces pour ce problème, nous entraînons des modèles selon
trois approches.

Premièrement, nous abordons la prédiction du churn comme un problème de classifi-
cation binaire, visant à identifier directement si un client est susceptible de se désabonner
dans un certain délai. Cette méthode est simple et facilement compréhensible par des non-
experts, ce qui en fait un choix efficace pour les entreprises cherchant à évaluer rapidement
le risque de churn. Deuxièmement, nous explorons différents cadres d’analyse de survie, y
compris les deuxméthodes avancées introduites dans les chapitres 3 et 4, afin de prédire non
seulement si un client se désabonnera, mais aussi d’estimer le temps avant qu’il ne se dés-
abonne. Cette approche permet également d’obtenir des informations plus significatives,
offrant aux entreprises la possibilité de mettre en œuvre des interventions ciblées avant que
les clients ne se désabonnent. Troisièmement, nous étendons l’application de l’analyse de
survie en considérant un cadre de repère, ce qui simplifie le processus d’entraînement et
est mieux adapté aux ensembles de données de haute dimension.

Pour chacune de ces approches, nous mettons en œuvre une gamme de modèles et de
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techniques avancées d’ingénierie des caractéristiques pour optimiser les performances pré-
dictives. Enfin, nous menons une comparaison approfondie de ces méthodologies, en éval-
uant leurs forces et leurs faiblesses dans le contexte de la prédiction du churn en temps réel.
Cette analyse comparative entre les trois approches fournit des informations précieuses sur
l’efficacité de chaque approche, offrant des orientations tant pour la recherche académique
que pour l’application pratique dans la gestion du churn.

— Le chapitre 3 est un travail joint avec Adeline Fermanian (Califrais), Antoine Barbi-
eri (Université Bordeaux), Sarah Zohar (INRIA), Anne-Sophie Jannot (INRIA), Simon
Bussy (Califrais), and Agathe Guilloux (INRIA). Il est accepté pour publication dans
Biometrics.

— Le chapitre 4 est un travail joint avec Linus Bleistein (INRIA), Adeline Fermanian (Cal-
ifrais), and Agathe Guilloux (INRIA). Il a été publié dans 2024 International Conference
on Machine Learning.
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3.1 Introduction

In healthcare, it is increasingly common to record the values of longitudinal features
(e.g. biomarkers such as heart rate or hemoglobin level) up to the occurrence of an event of
interest for a subject, such as rehospitalization, relapse, or disease progression. Moreover,
in large observational databases such as claims databases, with electronic health records,
the amount of recorded data per patient is often very large and growing over time.

However, there is currently no tool that can simultaneously process high-dimensional
longitudinal signals and perform real-time predictions, i.e. give predictions at any time
after only one estimation/training step. While landmark approaches (see, e.g., Devaux et
al., 2022) can handle high-dimensional longitudinal features, they require separate training
for each prediction time. An alternative is to use “joint modeling” to handle longitudinal
and survival outcomes together.

The latter has received considerable attention in the last two decades (Tsiatis and David-
ian, 2004; Rizopoulos and Ghosh, 2011; Hickey et al., 2016). More specifically, it consists of
defining (i) a time-to-event model, (ii) a longitudinal marker model, and (iii) linking both
models via a common latent structure. Numerical studies suggest that these approaches are
among the most satisfactory for incorporating all longitudinal information into a survival
model (Yu et al., 2004), and are better than landmark approaches, which use only informa-
tion from individuals at risk at the landmark time (see, e.g., Devaux et al., 2022). They have
the additional advantage of making more efficient use of the data as information on sur-
vival is also used to model the longitudinal markers. More importantly, they require only
one training, regardless of the number of prediction times.

There are two main approaches to linking longitudinal and survival models. On the
one hand, in shared parameter joint models (SREMs), characteristics of the longitudinal
marker, typically some random effects learned in a linear mixed model, are included as co-
variates in the survival model (Wulfsohn and Tsiatis, 1997; Andrinopoulou and Rizopoulos,
2016). On the other hand, joint latent class models (JLCMs), inspired by mixture-of-experts
modelling (Masoudnia and Ebrahimpour, 2014), assume that the dependence between the
time-to-event and the longitudinal marker is fully captured by a latent class structure (Lin
et al., 2002b; Proust-Lima et al., 2014), which amounts to assuming that the population is
heterogeneous and that there are homogeneous latent classes that share the same marker
trajectories and prognosis. JLCMs offer a computationally attractive alternative to SREMs,
especially in a high-dimensional context. These two models are illustrated in Figure 3.1.

Unfortunately, joint models have predominantly focused on univariate longitudinal
markers (Andrinopoulou et al., 2020). To adapt such models to a multivariate setting, the
common approach is to fit multiple univariate joint models separately to each longitudinal
marker (Wang et al., 2012), which does not account for interactions between longitudinal
markers (Jaffa et al., 2014; Kang and Song, 2022; Lin et al., 2002a). Furthermore, issues
arising from the high-dimensional context—e.g. computational power, limits of numerical
estimation—have, to our knowledge, never been considered in the analyses, and the num-
ber of longitudinal markers considered in numerical studies remains very low, typically up
to 5 (Hickey et al., 2016; Murray and Philipson, 2022; Rustand et al., 2024).



49 3.1. Introduction

T

Y

X

X G

Y

T

Figure 3.1 – Graphical representation of SREMs (left) and JLCMs (right). The variable X
represents time-independent features, Y the longitudinal markers, T the time-to-event, and
G the latent class membership.

The aim of this article is to propose a new joint model called FLASH (Fast joint model
for Longitudinal And Survival data in High dimension), together with an efficient infer-
ence methodology. The model is inspired by both JLCMs and SREMs, but is designed to
scale to high-dimensional longitudinal markers. The general idea is to use generic features
extracted from the longitudinal markers directly in the survival model and to use regular-
ization in an Expectation-Maximization (EM) algorithm. The main difference with SREMs
is that these features, called association features, are assumed to be independent of themod-
eling assumptions in the longitudinal submodel. As a result, the model is very efficient to
train—the likelihood is closed-form in a Gaussian setting and does not require Monte Carlo
approximations, as is often the case with SREMs, making it suitable for high-dimensional
longitudinal markers. Moreover, it allows the use of high-dimensional and generic feature
extraction functions that characterize longitudinal markers, rather than just the random
effects, resulting in a model that is generic enough to be adapted to different types of lon-
gitudinal markers and prior information on the problem. The use of elastic net and sparse
group lasso regularization enables automatic selection of relevant association features, re-
sulting in an interpretable model that retains only the significant longitudinal markers

Finally, our model allows us to define a “real-time” prediction methodology where, once
the parameters of the model have been learned, we can compute a predictive marker that,
given only the time-independent and longitudinal features up to a given point in time,
outputs a risk for each subject at that point in time. It differs from traditional approaches
(Proust-Lima et al., 2014) that require knowledge of the survival labels, which are unknown
in the “real-time” prediction setting.

X G Y T

Figure 3.2 – Graphical representation of the FLASHmodel. The variableX represents time-
independent features, Y the longitudinal markers, T the time-to-event, and G the latent
class membership of an individual.

In summary, we introduce a newmethod for predicting survival riskwith high-dimensional
longitudinal features that is both interpretable and computationally efficient, thus providing
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a powerful tool for real-time clinical decision making, for example in patient monitoring.

A precise description of the model is given in Section 3.2. In Section 3.3, we present
our assumptions and inference methodology based on maximizing the likelihood with a
regularized variant of the EM algorithm. Section 3.4 introduces our evaluationmethodology
and the competing methods. In Section 3.5, we apply our method to datasets from two
simulation studies and three publicly available medical datasets (PBCseq, AIDS, Sepsis).
We show that FLASH outperforms the competitors and selects relevant features from a
medical perspective. Finally, we discuss the obtained results in Section 3.6. The code to
implement the model and reproduce the experiments is publicly available at https://github.
com/Califrais/flash.git.

3.2 Model

In this section, we describe the FLASH model, which consists of three sub-models: a
multinomial logistic regression defining the probability of belonging to a latent class, a
generalized linear mixed model for each latent class describing the evolution of the longi-
tudinal markers, and finally a Cox class-specific survival model. In all the following, we
consider a set of n independent and identically distributed (i.i.d.) subjects. For each sub-
ject i ∈ {1, . . . , n} we are given some longitudinal markers Yi, time-independent features
Xi ∈ Rp, a right-censored time-to-event Ti ∈ R+, and a censoring variable ∆i ∈ {0, 1}.

3.2.1 Latent class membership

We assume that the population consists of K ∈ N∗ latent groups. To each subject
i ∈ {1, . . . , n}, we associate a categorical latent variable gi ∈ {1, . . . , K}, which encodes
its latent class membership. Then, denoting by Xi ∈ Rp the p-dimensional vector of time-
independent features, the latent class membership probability is assumed to take the multi-
nomial logistic regression form (Böhning, 1992), for any k ∈ {1, . . . , K},

P(gi = k) =
eX

⊤
i ξk∑K

j=1 e
X⊤

i ξj
, (3.1)

where ξk ∈ Rp denotes a vector of coefficients for class k. This submodel is similar to
JLCMs or the C-mix model (Bussy et al., 2019a) and assumes that latent-class membership
depends only on time-independent features, with the vector ξk quantifying the effect of
each time-independent feature in Xi on the probability that subject i belongs to the k-th
latent class. The optimal number of latent classes K can be selected with the Bayesian
information criterion (BIC) (Hastie et al., 2009), see Section A.3.8 of the Supplementary
Materials for more details. Note that modeling the probability of latent class membership
using multinomial logistic regression is a common assumption in joint models (Lin et al.,
2002b; Proust-Lima et al., 2014). However, other models such as hidden Markov models
can also be used to represent this probability (Bartolucci and Farcomeni, 2015; Bartolucci

https://github.com/Califrais/flash.git
https://github.com/Califrais/flash.git


51 3.2. Model

and Farcomeni, 2019). We assess the sensitivity to this choice by some experiments in
Section A.3.9 of the Supplementary Materials.

3.2.2 Class-specific longitudinal model

For each subject i ∈ {1, . . . , n}, we are given L ∈ N∗ longitudinal markers. We let,
for any ℓ ∈ {1, . . . , L}, Y ℓ

i =
(
yℓi
(
tℓi1
)
, . . . , yℓi

(
tℓ
inℓ

i

))⊤
∈ Rnℓ

i be the vector of repeated
measures of a theoretical longitudinal marker yℓi at observation times (or follow-up visits)
0 ≤ tℓi1 < · · · < tℓ

inℓ
i
. Note that the observation times tℓij , j = 1, . . . , nℓi , can differ be-

tween subjects as well as between longitudinal markers, which makes the assumptions on
the sampling mechanism very weak. In particular, this setting encapsulates many scenar-
ios considered as missing data, where one individual is not measured while another one
is, or where the longitudinal maker of one individual is missing, which here both simply
correspond to removing some timestamps from the corresponding grids.

We assume a class-specific generalized linear mixed model (GLMM) for each longitudi-
nal marker, which is a classical model for longitudinal data (Fitzmaurice et al., 2012; Hickey
et al., 2016). The GLMM is chosen according to the nature of the markers: Gaussian linear
model for continuous markers, logistic regression for a binary marker, and Poisson regres-
sion for counts. For the continuous markers, given a latent class gi = k, for the ℓ-th marker
at time t ∈ {tℓi1, . . . , tℓinℓ

i
}, we then have

yℓi (t
ℓ
ij) | bℓi , gi = k ∼ N (mℓ

ik(t
ℓ
ij), ϕℓ), (3.2)

where the variance ϕℓ ∈ R+ is an estimated parameter and the meanmℓ
ik is defined by

mℓ
ik(t) = uℓ(t)⊤βℓk + vℓ(t)⊤bℓi ,

where uℓ(t) ∈ Rqℓ is a row vector of time-varying features with corresponding unknown
fixed effect parameters βℓk ∈ Rqℓ , and vℓ(t) ∈ Rrℓ is a row vector of time-varying features
with corresponding random effect bℓi ∈ Rrℓ . Flexible representations for uℓ(t) can be con-
sidered using a vector of time monomials uℓ(t) = (1, t, t2, . . . , tα)⊤, with α ∈ N+. We use
α = 1 in all our experiments but higher orders could be used. We also let vℓ(t) = (1, t)⊤.

Classically, the random effects component is assumed to follow a zero-mean multivari-
ate normal distribution, that is, bℓi ∼ N (0, Dℓℓ) with Dℓℓ ∈ Rrℓ×rℓ the variance-covariance
matrix. To account for the dependence between the different longitudinal markers, we let
Cov[bℓi , bℓ

′
i ] = Dℓℓ′ for ℓ ̸= ℓ′, where Cov[·, ·] denotes the covariance matrix of two random

vectors, and we denote byD = (Dℓℓ′)1≤ℓ,ℓ′≤L the global variance-covariance matrix which
is common to all latent classes. Note that this variance–covariance matrix D can be easily
extended to be class-specific. We assume that all dependencies between longitudinal mark-
ers are encapsulated in this matrix D, which is summarized in the following assumption.

Assumption 1. For any ℓ ∈ {1, . . . , L} and any i ∈ {1, . . . , n}, the longitudinal markers
Y ℓ
i are pairwise independent conditionally on bℓi and gi.
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This is a standard modelling assumption in joint models (see, e.g., Tsiatis and Davidian,
2004). Then, if we concatenate all longitudinal measurements and random effects of subject
i in, respectively, Yi =

(
Y 1⊤
i · · · Y L⊤

i

)⊤ ∈ Rni and bi =
(
b1i

⊤ · · · bL⊤i
)⊤ ∈ Rr with

ni =
∑L

ℓ=1 n
ℓ
i and r =

∑L
ℓ=1 rℓ, a consequence of Assumption 1 and Equation (3.2) is that

Yi | bi, gi = k ∼ N
(
Mik,Σi

)
, (3.3)

where Mik =
(
m1
ik(t

1
i1), . . . ,m

1
ik(t

1
in1

i
), . . . ,mL

ik(t
L
i1), . . . ,m

L
ik(t

L
inL

i
)
)⊤ ∈ Rni and Σi is the

diagonal matrix whose diagonal is (ϕ11n1
i

⊤, . . . , ϕL1nL
i

⊤)⊤ ∈ Rni where 1m denotes the
vector of Rm having all coordinates equal to one.

To extend the GLMM to other types of longitudinal markers (for example, binary or
count data), the key point is that the distributions of bi and of Yi | bi, gi = k should be
conjugate, so that the likelihood is tractable. It is possible to extend the model to non-
conjugate distributions via numerical integration methods but this is not immediate. A
detailed discussion of this is given in Section A.1.1 of the Supplementary Materials. For
simplicity, we restrict ourselves to the Gaussian case in this article.

3.2.3 Class-specific Cox survival model

We place ourselves in a classical survival analysis framework. Let the non-negative
random variables T ⋆i and Ci be the time to the event of interest and the censoring time,
respectively. We then define the observed time Ti = T ⋆i ∧ Ci and censoring indicator
∆i = 1{T ⋆

i ≤Ci}, where a ∧ b denotes the minimum between two real numbers a and b,
and 1{·} is the indicator function which takes the value 1 if the condition in {·} is satis-
fied, and 0 otherwise. We denote by Yℓi (t−) =

(
yℓi (t

ℓ
i1), . . . , y

ℓ
i (t

ℓ
iu)
)
0≤tℓiu<t

the subset of Y ℓ
i

formed from observations up to time t and by Yi(t−) the concatenation of the history of
all observed longitudinal markers up to t. Then we considerM ∈ N+ user-defined feature
extraction functions Ψm : Yℓi (t−) → Ψm(Yℓi (t−)) ∈ R, m ∈ {1, . . . ,M}, which char-
acterise the longitudinal markers. The set of features

(
Ψm(Yℓi (t−))

)
1≤m≤M should be rich

enough to capture all dependencies between longitudinal markers and time-to-event, and is
discussed in more detail below. To quantify the effect of the longitudinal markers on time-
to-event, we then use an extension of the Cox relative risk model (Cox, 1972a), which allows
time-varying covariates and was firstly introduced in Andersen and Gill (1982). Note that
this model does not fulfill the classical Cox model’s assumption of a constant proportional
hazard over time. The hazard function in this model takes the form

λ(t | Yi(t−), gi = k) = λ0(t) exp
( L∑
ℓ=1

M∑
m=1

Ψm

(
Yℓi (t−)

)
γℓk,m

)
= λ0(t) exp

(
ψi(t)

⊤γk
)
,

(3.4)
where λ0 is an unspecified baseline hazard function that does not depend on k, γℓk,m ∈ R
the joint association parameters, which are the only class-specific objects in this model. We
concatenate them in γk = (γ1k,1, . . . , γ

1
k,M , . . . , γ

L
k,1, . . . , γ

L
k,M)⊤ ∈ RLM and define ψi(t) =(

Ψ1

(
Y1
i (t

−)
)
, . . . ,ΨM

(
Y1
i (t

−)
)
, . . . ,Ψ1

(
YLi (t−)

)
, . . . ,ΨM

(
YLi (t−)

))⊤
∈ RLM .
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Figure 3.3 – On the top, observed longitudinal markers of 2 individuals from the
FLASH_simu dataset. On the bottom, association features applied on the observed lon-
gitudinal markers: the maximum (left), the mean (center), and the sum (right).

This model can be viewed as a generalization of SREMs (Lin et al., 2002a; Rizopoulos
and Ghosh, 2011), which have hazard functions of the form
λ0(t) exp

(∑L
ℓ=1 ϕ(b

ℓ
i , t)

⊤γℓ
)
, where the association between the longitudinal and survival

models is captured by the random effects bℓi . The key idea of our model lies in the following
assumption.

Assumption 2. For any time t ≥ 0, the hazard rate at time t conditionally on the history
of the longitudinal markers up to t− and gi is independent of bi.

Any feature extraction function Ψm of the longitudinal markers can be considered in
the hazard function. Simple examples of such functions are the maximum or the sum (or
the mean) of the longitudinal features, respectively defined by

Ψm(Yℓi (t−)) = max
j:tℓij<t

{
yℓi (t

ℓ
i1), . . . , y

ℓ
i (t

ℓ
ij)
}
, Ψm(Yℓi (t−)) =

∑
j:tℓij<t

yℓi (t
ℓ
ij).

For illustration, Figure 3.3 shows how these association features change with time. In prac-
tice, our rationale is to use a variety of feature extraction functions Ψm, such as absolute
energy over time, statistics on autocorrelation, or Fourier and wavelet basis projections,
and then perform feature selection via regularisation to learn which ones are predictive
for the underlying task. This will be described in more detail in Section 3.3.2. Note that
a crucial aspect of this model is that the extracted vector, also called extracted features or
association features, ψi(t), does not depend on the modelling assumptions in the longitu-
dinal submodel of Subsection 3.2.2 — that is, does not depend on bi other than through the
history Yi(t−).

The FLASH model is summarised in Figure 3.2 which shows that our model is a combi-
nation of SREMs and JLCMs where both random effects and latent classes account for the
dependence between longitudinal markers and time-to-event.
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3.3 Inference

Now that we have introduced all the components of our model, in this section we de-
rive the form of its likelihood, present the regularisation strategy that deals with the high
dimensionality of the data, and finally present our variant of the EM algorithm used to
minimise the penalised negative log-likelihood.

3.3.1 Likelihood

Consider a training cohort ofn i.i.d. subjectsDn =
(
(X1, Y1, T1,∆1), . . . , (Xn, Yn, Tn,∆n)

)
.

For simplicity, we slightly abuse notation and use the same notation f ⋆ for the true (joint)
density or probability mass function of the various random variables in our model. Simi-
larly, we denote by fθ the candidates for estimating the densities f ⋆ that satisfy the model
assumptions of Section 3.2, where we have concatenated in θ all P ∈ N+ unknown param-
eters:

θ =
(
ξ⊤1 , . . . , ξ

⊤
K , β

⊤
1 , . . . , β

⊤
K , ϕ

⊤, D, λ0(τ1), . . . , λ0(τJ), γ
⊤
1 , . . . γ

⊤
K

)⊤ ∈ RP ,

where βk = (β1
k
⊤
. . . βℓk

⊤
)⊤ ∈ Rq with q =

∑L
ℓ=1 qℓ for any k ∈ {1, . . . , K} , ϕ =

(ϕ1, . . . , ϕL)
⊤ and where we use the vectorization of the matrix D although this is not

written explicitly. Note that we classically (see, e.g., Klein, 1992) estimate λ0 by a function
taking mass at each failure time τj ∈ (τ1, . . . , τJ), where (τ1, . . . , τJ) denote the J ∈ N+

unique failure times (obtained from (T1, . . . , Tn) removing the duplicates and keeping only
the uncensored times Ti for which ∆i = 1). In this way, the estimation of the function λ0
amounts to the estimation of the vector

(
λ0(τ1), . . . , λ0(τJ)

)
.

First, conditioning on the latent classes, we have

f ⋆(Ti,∆i, Yi) =
K∑
k=1

f ⋆(gi = k)f ⋆(Ti,∆i|Yi, gi = k)f ⋆(Yi|gi = k).

This yields the negative log-likelihood

Ln(θ) = −n−1

n∑
i=1

log
K∑
k=1

fθ(gi = k)fθ(Ti,∆i |Yi, gi = k)fθ(Yi | gi = k). (3.5)

Assuming that both the censoringmechanism and the stochastic mechanism generating the
observation times of the longitudinal markers are non-informative (Rizopoulos and Ghosh,
2011), the joint density of (Ti,∆i) can be factorized into a part depending on the distribution
of T ⋆i and a part depending on that of Ci, so that

f ⋆(Ti,∆i|Yi, gi = k) ∝ f ⋆(Ti|Yi, gi = k)∆iS⋆(Ti|Yi, gi = k)1−∆i

= λ⋆(Ti|Yi, gi = k)∆iS⋆(Ti|Yi, gi = k), (3.6)
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where S⋆ and λ⋆ are the survival and hazard function associated with the density f ⋆ of T ⋆i .

Under the assumptions given in the previous subsections, all terms in (3.5) can be
computed in closed form. Indeed, fθ(gi = k) is given by (3.1) and the density func-
tion fθ(Yi|gi = k) can be derived from the distribution of bi and (3.3) (detailed calcula-
tions are given in Section A.1 of the Supplementary Materials). Furthermore, following
Equation (3.6), we have fθ(Ti,∆i|Yi, gi = k) ∝ λ

(
Ti | Yi(T−

i ), gi = k
)∆iSk(Ti), where

Sk(t) = exp
(
−
∫ t
0
λ
(
s | Yi(s−), gi = k

)
ds
)
is the survival function of subject i given that

it belongs to latent class k. Since the baseline hazard function λ0 takes mass only at each
failure time τj ∈ (τ1, . . . , τJ) then the integration over the survival process Sk(t) is simply
a finite sum over the process evaluated at the J failure times. Then, we rewrite the function
Sk, for any t ≥ 0, as

Sk(t) = exp
(
−

J∑
j=1

λ(τj)1{τj≤t}

)
= exp

(
−

J∑
j=1

λ0(τj) exp
(
ψi(τj)

⊤γk
)
1{τj≤t}

)
.

The fact that fθ(Ti,∆i|Yi, gi = k) is closed-form is one of the major advantages of our
model over standard SREMs. Indeed, computing this density in SREMs usually requires
integrating it with respect to the distribution of the random effects bi, leading to intractable
integrals in the log-likelihood function. These integrals are typically estimated usingMonte
Carlo techniques (Hickey et al., 2018), which are computationally intensive and require
additional assumptions on the allowed association functions ψi. These approaches usually
do not scale in a high-dimensional context.

To minimize (3.5) with respect to θ, we use the EM algorithm, which is the common
choice in the literature (Wulfsohn and Tsiatis, 1997; Lin et al., 2002a). This requires de-
riving what we call the negative “complete” log-likelihood, that is, an estimation of the
joint density f ∗(Ti,∆i, Yi, bi, gi), where the random effect bi and the latent class gi are not
observed. To this end, we need the following independence assumption.

Assumption 3. For any i ∈ {1, . . . , n} and ℓ ∈ {1, . . . , L}, the random effects bℓi are
independent of the latent class membership gi, and remain independent of it conditionally
on Ti, ∆i, and Yi.

This assumption states that subject-and-longitudinal marker specific random effects bℓi
do not depend on the latent class membership. Then, we have

f ⋆(Ti,∆i, Yi, bi, gi) = f ⋆(bi, gi)f
⋆(Yi|bi, gi)f ⋆(Ti,∆i|Yi, bi, gi)

= f ⋆(bi, gi)f
⋆(Yi|bi, gi)f ⋆(Ti,∆i|Yi, gi) (by Assumption 2)

= f ⋆(bi)f
⋆(gi)f

⋆(Yi|bi, gi)f ⋆(Ti,∆i|Yi, gi). (by Assumption 3)
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The negative complete log-likelihood is then given by

Lcomp
n (θ) = −n−1

n∑
i=1

(
log fθ(bi) +

K∑
k=1

1{gi=k}
(
logPθ(gi = k) + log fθ(Yi | bi, gi = k)

+ log fθ(Ti,∆i |Yi, gi = k)
))
, (3.7)

where fθ(bi) is the density of amultivariate gaussianN (0, D) distribution and fθ(Yi | bi, gi =
k) is typically the density of a N

(
Mik,Σi

)
distribution.

3.3.2 Penalized objective

To avoid overfitting and provide interpretation on which longitudinal markers are rel-
evant for predicting time-to-event, we propose to minimize the penalized negative log-
likelihood

Lpen
n (θ) = Ln(θ) + Ω(θ) = Ln(θ) +

K∑
k=1

ζ1,kΩ1(ξk) +
K∑
k=1

ζ2,kΩ2(γk), (3.8)

where Ω1 is an elastic net regularization (Zou and Hastie, 2005), Ω2 is a sparse group lasso
regularization (Simon et al., 2013), and (ζ1,k, ζ2,k)

⊤ ∈ (R+)2 regularization hyperparam-
eters that need to be tuned. An advantage of this regularisation strategy is its ability to
perform feature selection and to identify the most important features (longitudinal markers
and time-independent) relative to the prediction objective. On the one hand, the support
of ξk, controlled by the ℓ1 term in Ω1, provides information about the time-independent
features involved in the k-th latent class membership while the ℓ2 regularization allows to
handle correlations between time-independent features. On the other hand, for the sparse
group lasso penalty, a group ℓ corresponds to a trajectory, i.e. a longitudinal marker. Thus,
if γℓk is completely zero (thanks to the group lasso part), it means that the ℓ-th longitudinal
process is discarded by the model in terms of risk effect for the k-th latent class. Then,
the sparse part of the penalty allows a selection of association features for each trajectory:
for γℓk that are not completely zeroed, their support informs about the association features
involved in the risk of the k-th latent class event for the ℓ-th longitudinal marker.

3.3.3 Optimization

Given our regularization strategy, we employ an extended version of the EM algorithm
(McLachlan and Krishnan, 2007) which we now briefly outline. Extensive details on the
algorithm are given in Section A.1 of the Supplementary Materials.

Our final optimization problem writes

θ̂ ∈ argmin
θ∈RP

Lpen
n (θ). (3.9)
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Assume that we are at step w+1 of the EM algorithm, with current iterate denoted by θ(w),
then the algorithm consists in the following two steps:

— E-step: compute the expected negative complete log-likelihood conditional on the
current estimate of the parameters θ(w), that is, Qn(θ, θ(w)) = Eθ(w) [Lcomp

n (θ) | Dn].
— M-step: find θ(w+1) ∈ argmin

θ∈RP

Qpen
n (θ, θ(w)), whereQpen

n (θ, θ(w)) = Qn(θ, θ(w))+Ω(θ)

and Ω(θ) is the penalization defined in (3.8).
Under our assumptions, we can show that computingQn(θ, θ(w)) reduces to computing

the expectationsEθ(w) [bi|Ti,∆i, Yi] andEθ(w) [bib
⊤
i |Ti,∆i, Yi], and the probabilitiesPθ(w) [gi =

k|Ti,∆i, Yi], k ∈ {1, . . . , K}, see Section A.1.1 of the Supplementary Materials for their ex-
act expressions.

Concerning the M-step, we divide the problem into several updates for which we mini-
mize Qpen

n (θ, θ(w)) with respect to blocks of coordinates of θ separately. The order of these
updates matters. The updates for D, (βk)k∈{1,...,K}, λ0, and ϕ are easily obtained in closed-
form. The update for ξ(w)k reduces to the non-smooth convex minimization problem

ξ
(w+1)
k ∈ argmin

ξ∈Rp

F1,k(ξ) + ζ1,kΩ1(ξ), (3.10)

where F1,k is a convex function with respect to ξ. Problem (3.10) is then solved using a
quasi-Newton method, the L-BFGS-B algorithm (Zhu et al., 1997). The update for γ(w)k has a
similar expression and is solved using proximal gradient descent (Boyd and Vandenberghe,
2004). We refer to Section A.1 of the Supplementary Materials for all details and proofs.
The final algorithm is also given with a discussion of its convergence properties.

3.4 Evaluation methodology

In this section, we present our evaluation strategy to assess the real-time prediction
performance of our model and briefly introduce the models used for comparison.

3.4.1 Real-time prediction and evaluation strategy

Developments in joint models have focused primarily on modeling and estimation, and
most studies do not consider goodness-of-fit or predictive performance of latent class mem-
bership or time-to-event (Hickey et al., 2016). However, for real-time or daily predictions,
practitioners need predictive prognostic tools to evaluate and compare survival models.
Therefore, we place ourselves in a so-called “real-time” prediction setting. Once the learn-
ing phase for themodel has been completed on a training set, so that one obtains θ̂ from (3.9)
using the approach described in Section 3.3.3, we want to make real-time predictions. More
precisely, for each subject i, we seek to provide a predictive marker, typically the probabil-
ity of belonging to a latent class at any time t, using all the data available up to that time,
but without using the supervision labels (Ti,∆i), which are a priori not available at any
time t.
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Figure 3.4 – Real-time prediction setting. In a practical application, we want to be able to
make predictions at any “present” time while subjects have entered the study at different
times. Therefore, some of them have a lot of recorded information while the others have a
few.

Predictive marker

In our setting, since each latent class represents the different risk levels of a subject, we
choose the probability of latent class membership as the predictive marker. This is similar
to what is classically done in JLCMs, where π̃θ̂ik = Pθ̂[gi = k|Ti,∆i, Yi] is typically used as
the predictive rule (see, e.g., Proust-Lima et al., 2014). However, this requires knowledge of
the survival labels (Ti,∆i), which does not fit in our real-time prediction goal. Therefore,
we define a new predictive marker as follows.

For any subject i and any time si elapsed since entry into the study, given longitudinal
markers Yi(s−i ) observed up to si, for any k ∈ {1, . . . , K}, we let

R̂ik(si) = Pθ̂
[
gi = k |T ⋆i > si,Yi(s−i )

]
.

Indeed, for any subject i who is event-free when si has elapsed, all we know about that
subject is that its time to the event of interestT ⋆i exceeds si. This is equivalent to considering
this subject as a new subject for which Ti = si, ∆i = 0, and Yi = Yi(s−i ). The expression
of R̂ik(si) can thus be rewritten as R̂ik(si) = Pθ̂[gi = k |Ti = si,∆i = 0, Yi = Yi(s−i )],
see Lemma 3 of the Supplementary Materials for more details.

We illustrate this real-time prediction setting in Figure 3.4, emphasizing that si should
be thought of as the duration between the enrollment of individual i and the “present” time.

Performance evaluation

We want to compare the quality of our predictions to the true labels (Ti,∆i), to which
we have access in these comparison experiments. Given a test set in which each individual’s
trajectory is fully observed until the end of the study, we mimic the real-time prediction
setting by randomly sampling the si.

We use the classical C-index (Harrell et al., 1996) as our performance metric. More
precisely, we assume that we are in the case K = 2 and the class gi = 2 represents the
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high-risk group of subjects (the class gi = 1 then representing a low-risk group). We denote
by R̂i = R̂i2(si) the predictive marker that a subject i belongs to class gi = 2 when si has
elapsed. Then, we let C = P[R̂i > R̂j |T ⋆i < T ⋆j ], with i ̸= j two random independent
subjects (note that C does not depend on i, j under the i.i.d. sample hypothesis).

In our case, T ⋆ is subject to right censoring, so onewould typically consider themodified
C̃ defined by C̃ = P[R̂i > R̂j |Ti < Tj, Ti < tmax], where tmax corresponds to a fixed
and predetermined follow-up period (Heagerty and Zheng, 2005). It has been shown by
Uno et al. (2011) that a Kaplan-Meier estimator for the censoring distribution leads to a
nonparametric and consistent estimator of C̃.

In Section A.3.4 of the Supplementary Materials, we give the complete procedure used
to evaluate the performance of the models considered in our experiments.

3.4.2 Competing models

We compare FLASH with the very classical and widely used LCMM (Proust-Lima et al.,
2015) and JMbayes Rizopoulos (2016a), which are extensions of JLCM and SREM that
allow for multivariate longitudinal markers. We present them, along with their respective
predictivemarkers, in Section A.2 of the SupplementaryMaterials. Note that notmany joint
models allow for multivariate longitudinal markers, which limits our choice of competing
methods.

3.5 Experimental results

To evaluate our method, we first perform in Subsection 3.5.1 a simulation study that
illustrates our estimation procedure. We then turn to a comparison study on both simu-
lated and medical examples in Subsection 3.5.2, and finally show in Subsection 3.5.3 that
the biomarkers identified as significant by our model are consistent with current medical
knowledge.

In all experiments, the features extracted by the tsfresh package (Christ et al., 2018)
are used for association features Ψm in FLASH. This package extracts dozens of features
from a time series such as absolute energy, kurtosis, or autocorrelation. Before running
our extended EM algorithm with the set of features extracted by the tsfresh package,
we use a screening phase procedure where we select the top ten association features by
fitting the extracted feature of each candidate and the survival labels in individual Cox
models and comparing their C-index scores. In addition, a recent line of work is to use the
signature transform (Fermanian, 2021; Bleistein et al., 2024) to extract features from lon-
gitudinal markers. This transform encapsulates geometric information about multivariate
time series. We provide additional results with the signature transform in Section A.3.7 of
the Supplementary Materials, which show that our method is generic and performs well
regardless of the feature extraction functions used.
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Figure 3.5 – Simulated cohort of n = 500 samples for K = 2 groups (high-risk group
in red curves and low-risk group in blue curves). Top figures: trajectories of first three
longitudinal markers of two individuals randomly selected in each group. Bottom figure:
Kaplan-Meier survival curves for each group.

We tune the regularization hyperparameters (ζ1,k, ζ2,k)k∈{1,...,K} with a grid search and
a 10-fold cross-validation with the C-index metric. Note that we keep ζ1,1 = · · · = ζ1,K and
ζ2,1 = · · · = ζ2,K . Extensive details on our experiments together with additional results
on a high-dimensional dataset from NASA are given in Section A.3 of the Supplementary
Materials.

3.5.1 Simulation study

To assess our estimation procedure, we simulate data as follows. First, we simulate the
latent class membership indicator from the logistic regression model in (3.1). Based on this
indicator, we divide the population into two groups: a high-risk group and a low-risk group.
Within each group, we apply the classical survival simulation setting described by Bender
et al., 2005. Next, we generate the longitudinal markers Y from the generalized linear mixed
models in (3.3). Survival times are generated from their hazard functions given in (3.4). The
model coefficients ξ1, ξ2, and γ of models (3.1) and (3.4) are generated as sparse vectors, en-
suring that only a subset of the corresponding features are active (i.e., the coefficients are
non-zero). Extensive details of these simulations are provided in Section A.3.2 of the Sup-
plementary Materials. Figure 3.5 shows some examples of simulated longitudinal markers
and Kaplan-Meier survival curves.

To illustrate our regularization strategy, we show in Figure 3.6 the time-independent
parameter ξ and the joint association parameters (γk)k∈{1,2} and their estimation obtained
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(a)

(b)

(c)

Figure 3.6 – Simulations results. (a): the support of both the true coefficient ξ in green and
its estimated version ξ̂ in red. (b) and (c): in red the support of the estimated coefficient γ̂k
for k ∈ {1, 2}, the dashed pink lines separate the features corresponding to each longitu-
dinal marker ℓ, and active longitudinal markers are represented by a green area.

after running our learning procedure. We see in the sub-figure (a) that the support of ξ
is fully recovered thanks to the elastic-net penalty. Additionally, sub-figures (b) and (c)
demonstrate the effect of the sparse group lasso, showing that only the coefficients corre-
sponding to active longitudinal features (represented by the green area) are non-zero, while
all coefficients for inactive longitudinal features are zero.

3.5.2 Comparison study

We compare FLASH with JMbayes and LCMM on two simulated and two real-world
datasets and use the C-index metric presented in Section 3.4. The first simulated dataset is
the one from the previous subsection, and the second one is from the R package (Hickey et
al., 2018)joineRML. We give detailed description of this second simulated dataset and the
two real-world datasets (PBCseq and Aids) in Section A.3.3 of the Supplementary Materials.
A summary of the datasets is given in Table 3.1.

We can see in Figure 3.7 that FLASH outperforms its competitors in terms of both C-
index and running times on all datasets. The good performance of FLASH in terms of run-
ning times can be explained by the fact that it does not need to perform computationally
intensive Monte Carlo techniques like JMbayes, while it is easier to satisfy the conver-
gence criterion of our EM algorithm than that of LCMM.

3.5.3 Biological interpretation of FLASH results

Considering the growing emphasis on model interpretability and the fact that the new
regulations in the European Union and the United States now require that a model be inter-
pretable and understandable to be certified as a medical device (Geller, 2023; Panigutti et al.,
2023), we conclude this section with interpretations of the results of FLASH on the PBCseq
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Table 3.1 – Datasets characteristics: the number of samples n, the number of longitudinal
features L, number of time-independent features p, and the overall number of parame-
ters in FLASH model P . The names FLASH_simu and joineRML_simu correspond to the
datasets simulated from the simulation study in Section 3.5.1 and the joineRML package
respectively.

Dataset n L p P

FLASH_simu 500 5 10 224
joineRML_simu 250 2 2 204

PBCseq 304 7 3 251
Aids 467 1 4 147
Sepsis 654 4 21 255
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Figure 3.7 – C-index (top figure) and runtime (bottom figures) comparison on the four
datasets considered. The box plots of C-index and runtime are obtained with 50 indepen-
dent experiments.

and Sepsis datasets. The Sepsis dataset describes the sepsis diagnosis of patients, where,
after a pre-processing step, 4 multivariate longitudinal features and 21 time-independent
features are available for each patient. The coefficients estimated by FLASH, and in partic-
ular their sparsity, provide us information on which marker is involved in the diagnosis,
see Section A.3.5 of the Supplementary Materials for all numerical values. Note that we
did not include the Sepsis dataset in Section 3.5.2 because both LCMM and JMBayes take
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a very long time to converge, so that we could not do the Monte Carlo comparison. This
highlights the fact that they do not scale to high-dimensional settings. However, on one
experimental trial, LCMM and JMBayes only give C-index scores of 0.51 and 0.56 while
FLASH has a score of 0.74.

For the PBCseq dataset, alkaline phosphatase appears to be the most important variable,
followed by prothrombin and albumin. Alkanine phosphatase is already recognized to be an
important variable to monitor: it is already known that phosphatase alkaline at 6-month
predicts non-responders and survival (Perez et al., 2023), it is recognized that treatment
target should be normalization of alkaline phosphatase (Perez et al., 2020), and prognosis is
improved for patients taking drugs lowering alkaline phosphatase as ursodeoxycholic acid
(Kuiper et al., 2009). Concerning the Sepsis dataset, respiratory rate is the most important
variable. Systolic blood pressure appears to be the most important longitudinal feature,
followed by oxygen saturation. Of note, the two most widely used prognostic criteria in
sepsis, i.e. the qSOFA and the SIRS criteria, which contain respectively 3 and 4 variables,
both include among these variables respiratory rate (Raith et al., 2017).

3.6 Discussion

In this paper, a generalized joint model for high-dimensional multivariate longitudi-
nal data and censored durations (FLASH) has been introduced, with an efficient estimation
methodology based on an extension of the EM algorithm. This algorithm allows the use of
regularization strategies in order to perform feature selection and results in an interpretable
model scalable to high-dimensional longitudinal markers. We evaluated the performance of
the estimation procedure on an extensive Monte Carlo simulation study. It showed that our
method successfully recovered the most significant features. The proposed methodology
has then been applied on four different datasets. On these datasets, FLASH outperforms
competing methods, both in terms of C-index and runtimes, in a so-called “real-time” pre-
diction setting. In addition, we show on experiments of medical datasets that our model
automatically identifies the most important longitudinal markers and time-independent
features, allowing important interpretations on the application at hand. Potential future
work consists of extending the implementation to generalize our EM algorithm to support
count or binary longitudinal features, and to relax the assumptions on latent class mem-
bership to allow classes to change with time, using for example a Markov structure.





Chapter 4

Dynamic Survival Analysis with
Controlled Latent States

In this chapter, my main contribution is code implementation and experiments.
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4.1 Introduction

Time-to-event data is ubiquitous in numerous fields such as meteorology, economics,
healthcare, and finance. We typically want to predict when an event - which can be a
catastrophic earthquake, the burst of a housing bubble, the onset of a disease, or a financial
crash - will occur by using some prior historical information (Ogata, 1988; Bacry et al., 2015;
Bussy et al., 2019b). This general problem encompasses many settings and in particular
survival analysis, where every individual experiences at most one event (Cox, 1972b).

For an individual i, we have access to several event times T i1 < T i2 < . . . and features
Wi ∈ Rsmeasured at time 0. For instance, in neurology, onemight consider the onset times
of a series of seizures (Rasheed et al., 2020) andWi summarizes unchanging characteristics
of the individual (age, gender, ethnicity, . . . ). The physician’s goal is to determine whether
an individual has a high probability of experiencing a seizure at time t given their charac-
teristics. Such a task is most often addressed by modeling the individual specific intensity
of a counting process of the form

∑
j≥1 1T i

j≤t, using, for instance, Cox models (Cox, 1972b;
Aalen et al., 2008; Kvamme et al., 2019) or Hawkes processes in the case of self-exciting
processes (Bacry et al., 2015). Recent advances in the field have also enriched these models
using deep architectures (Mei and Eisner, 2017; Kvamme et al., 2019; Omi et al., 2019; Chen
et al., 2021; Groha et al., 2020; Shchur et al., 2021; De Brouwer et al., 2022; Tang et al., 2022).
Once learnt, the intensity of the process can be used to predict occurrence times of future
events or rank individuals based on their relative risks.

Learning with Time-dependent Data. More realistically, in addition to the static fea-
turesWi, we often have access to time-dependent features along with their sampling times

Xi =: {(Xi(t1), t1), . . . , (X
i(tK), tK)} ∈ Rd×K ,

where D = {t1, . . . , tK} ⊂ [0, τ ] is a set of measurement times and τ the end of study.
Retaking the example of seizure prediction, the time-dependent features may represent
some measurements made by a wearable device, as done for instance by Dumanis et al.
(2017). Taking both the static and time-dependent information into account is crucial when
making predictions. This setting calls for highly flexible models of the intensity which take
into account the stream of information carried by the longitudinal features.

From joint models to ODE-basedmethods. This problem has been tackled by the bio-
statistics community, in particular using joint models that concurrently fit parametric mod-
els to the trajectory of the longitudinal features and the intensity of the counting process
(Ibrahim et al., 2010; Crowther et al., 2013; Proust-Lima et al., 2014; Long and Mills, 2018).
Popular implementations include JMBayses (Rizopoulos, 2016b). While being highly in-
terpretable, they do not scale to high-dimensional and frequently measured data, despite
some recent algorithmic advances (Hickey et al., 2016; Murray and Philipson, 2022; Rustand
et al., 2024) adapted to moderate dimension (up to ≃ 5 longitudinal features).

Modern deep methods, that can encode complex andmeaningful patterns from complex



67 4.1. Introduction

data in latent states, offer a particularly attractive alternative for this problem. However,
the literature bridging the gap between deep learning and survival analysis is scarce. No-
tably, Lee et al. (2019) tackle this problem by embedding the time-dependent data through a
recurrent neural network combined with an attention mechanism. They then use this em-
bedding in a discrete-time setting to maximize the likelihood of dying in a given time-frame
conditional on having survived until this time. Moon et al. (2022) combine a probabilistic
model with a continuous-time neural network, namely the ODE-RNNS of Rubanova et al.
(2019) in a similar setup.

ModellingTime SerieswithControlled Latent States. Building on the increasingmo-
mentum of differential equation-based methods for learning (Chen et al., 2018; De Brouwer
et al., 2019; Rubanova et al., 2019; Chen et al., 2021; Moon et al., 2022; Marion et al., 2022),
we propose a novel modelling framework in which the unknown intensity of the counting
process is parameterized by a latent state driven by a controlled differential equation (CDE).
Formally, we let the unknown intensity of the counting process of individual i depend on
their covariates Wi and an unobserved process xi : [0, τ ]→ Rd that is the continuous un-
observed counterpart of the time series Xi, i.e., (Xi(t), t) = xi(t) for all t ∈ D. We model
the intensity (i.e. the instantaneous probability of experiencing an event — see Section 4.2.2)
by setting

λi⋆
(
t |Wi, (xi(s))s≤t

)
= exp

(
zi⋆(t) + β⊤

⋆ W
i
)
, (4.1)

where the dynamical latent state zi⋆(t) ∈ R is the solution to the CDE

dzi⋆(t) = G⋆

(
zi⋆(t)

)⊤
dxi(t) (4.2)

with initial condition zi⋆(0) = 0 driven by xi. Here, the vector field G⋆ : R → Rd and
β⋆ ∈ Rs are both unknown. This means that the latent dynamics are common between in-
dividuals, but are driven by individual-specific data, yielding individual-specific intensities.
Such a modelling strategy is reminiscent of state space models, which embed times series
through linear controlled latent differential equations (Gu et al., 2022; Cirone et al., 2024).
Our framework is introduced in more detail later.

Contributions. In an effort to provide scalable and efficient models for event-data anal-
ysis, we propose two novel estimators. We first leverage neural CDEs (Kidger et al., 2020),
which directly approximate the vector field G⋆ with a neural vector field Gψ. In a second
time, following Fermanian et al. (2021) and Bleistein et al. (2023), we propose to linearize
the unknown dynamic latent state zi⋆(·) in the signature space. Informally, this means that
at any time t, we have the simplified expression

zi⋆(t) ≈ α⊤
⋆,NSN(x

i
[0,t])

where α⋆,N is an unknown finite-dimensional vector and SN(xi[0,t]) is a deterministic trans-
formation of the time series xi observed up to time t called the signature transform. Notice
that in this form, the vector α⋆,N does not depend on t and can hence be learned at any
observation time. We obtain theoretical guarantees for both models ; for the second model
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in particular, we state a precise decomposition of the variance and the discretization bias of
our estimator, which crucially depends on the coarseness of the sampling grid D. Finally,
we benchmark both methods on simulated and real-world datasets from finance, health-
care and digital food retail, in a survival analysis setting. Our signature-based estimator
provides state-of-the-art results.

Summary. Section 4.2 details our theoretical framework. In Section 4.3, we state theo-
retical guarantees for our model. Lastly, we conduct a series of experiments in Section 4.4
that displays the strong performances of our models against an array of benchmarks. All
proofs are given in the appendix. The code is available at https://github.com/LinusBleistein/
signature_survival.

4.2 Modelling Point Processes with Controlled Latent
States

4.2.1 The Data

In practice, an individual can be censored (for example after dropping out from a study)
or cannot experience more than a given number of events. To take this into account, we
introduce Y i : [0, τ ] → {0, 1} the at-risk indicator function, which equals 1 when the
individual i is still at risk of experiencing an event. Together with Y i, we define

N i(t) :=
∑
j≥1

1T i
j≤tY

i(T ij )

as the stochastic process counting the number of events experienced by individual i up to
time t and while Y i(T ij ) = 1. Our dataset

Dn := {Xi,Wi, Y i(t), N i(t), 0 ≤ t ≤ τ}

consists of n i.i.d. historical observations up to time τ . Our setup can be extended to
individual-dependent grids (Di)ni=1, but we choose to focus on the former setting for the
sake of clarity. The individual specific time series are only observed as long as the individual
is at risk. We first make an assumption on the time series.

Assumption 4. For every individual i = 1, . . . , n, there exists a continuous path of bounded
variation xi : [0, τ ]→ Rd satisfying, for all 0 ≤ s < t ≤ τ ,∥∥xi∥∥1-var,[s,t] := sup

D

∑
k

∥∥xi(tk+1)− xi(tk)
∥∥ ≤ Lx|t− s|

where ∥·∥ is the Euclidean norm and the supremum is taken over all finite dissectionsD =

{s = t1 < · · · < tK = t}. The time seriesXi is a discretization of xi on the grid D.

https://github.com/LinusBleistein/signature_survival
https://github.com/LinusBleistein/signature_survival
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Remark that this assumption implies that the paths are Lx-Lipschitz. We now state a
supplementary assumption on the static features.
Assumption 5. There exists a constantBW > 0 such that for every i = 1, . . . , n, ∥Wi∥2 ≤
BW.

4.2.2 Modelling Intensities with Controlled Differential Equations

Intensity of a counting process. Wedefine the individual-specific intensityλi⋆
(
t |Wi, xi[0,t]

)
of the underlying counting process, which we will simply write λi⋆(t) in the following, as

λi⋆(t) := lim
h→0+

1

h
E
(
N i(t+ h)−N i(t) | F it

)
where F it is the past information at time t which includesWi and xi[0,t] (Aalen et al., 2008).

Controlled Dynamics. Controlled differential equations are a theoretical framework
that allows to generalize ODEs beyond the non-autonomous regime Lyons et al., 2007. Re-
call that a non-autonomous ODE is the solution to

dz(t) = F(z(t), t)dt

with a given initial value z(0) = z0 ∈ Rp. Here, the vector field F : Rp × [0,+∞[→ Rp

depends explicitly on t ≥ 0, allowing for time-varying dynamics unlike autonomous ODEs
whose dynamics remain unchanged through time. Controlled differential equations can
be seen as a generalization of non-autonomous ODEs. They allow for the vector field to
depend explicitly on the values of another Rd-valued function x : [0, 1]→ Rd through

dz(t) = F̃(z(t), x(t))dt

thus encoding even richer dynamics. Formally, a CDE writes

dz(t) = G
(
z(t)

)
dx(t)

z(0) = z0 ∈ Rp

whereG is a Rp×d-valued vector field. Existence and uniqueness of the solution is ensured
under regularity conditions onG and x by the Picard-Lindelhöf Theorem (see Theorem 2).
The following assumption is needed in order to ensure that the function

λi⋆(t) = exp
(
zi⋆(t) + β⊤

⋆ W
i
)
,

where the dynamical latent state zi⋆(t) ∈ R is the solution to the CDE

dzi⋆(t) = G⋆

(
zi⋆(t)

)⊤
dxi(t)

with initial condition zi⋆(0) = 0 driven by xi is well-defined.



CHAPTER 4. Dynamic Survival Analysis with Controlled Latent States 70

Assumption 6. The vector field G⋆ : R → Rd defining λi⋆ in Equation (4.2) is LG⋆-
Lipschitz; β⋆ is such that ∥β⋆∥2 ≤ Bβ,2, ∥β⋆∥1 ≤ Bβ,1 and ∥β⋆∥0 ≤ Bβ,0, whereBβ,2, Bβ,1, Bβ,0 >

0 are constants.

Under these assumptions, the intensity is bounded at all times.

Lemma 1 (A bound on the intensity). For every individual i = 1, . . . , n and all t ∈ [0, τ ],
the log intensity log λi⋆(t) is upper bounded by

Bβ,2BW + ∥G⋆(0)∥op Lxt exp
(
LG⋆Lxt

)
almost surely.

This is a direct consequence of Lemma 3.3 in Bleistein and Guilloux (2024). Remark that
∥G⋆(0)∥op <∞ since the vector field is Lipschitz and hence continuous.

Remark 1. By differentiation, one can see that the intensity itself satisfies a so-called con-
trolled Volterra differential equation (Lin and Yong, 2020). Indeed, differentiating the inten-
sity λi⋆ yields the CDE

dλi⋆(t) = λi⋆(t)G⋆(z
i
⋆(t))dx

i(t)

with initial condition λi⋆(0) = exp(β⊤
⋆ W

i). Note that this CDE is path dependent, i.e., its
vector field depends on the path zi⋆ : [0, τ ]→ R.

Remark 2. This model enforces continuity of the intensity: indeed, the solution of a CDE
inherits the regularity of its driving path. A possible solution to accommodate discontinu-
ous intensity functions is to add a jump term to the generative CDE, which could then be
learnt using neural jump ODEs (Jia and Benson, 2019).

4.2.3 Neural Controlled Differential Equations

Following the ideas of continuous time models, our first approach to learning the dy-
namics is to fit a parameterized intensity to this model by setting

λiθ(t) = exp(α⊤ziθ(t) + β⊤Wi),

where ziθ(t) ∈ Rp is an embedding of the time series Xi parameterized by θ ∈ Rv and
α ∈ Rp is a learnable parameter. We propose to use Neural Controlled Differential Equa-
tions (NCDEs), a powerful tool for embedding irregular time series introduced by Kidger
et al. (2020). NCDEs work by first embedding a time series Xi in the space of functions of
bounded variation, yielding xi,D : [0, τ ]→ Rd, before defining a representation of the data
through

dzθ(t) = Gψ

(
zθ(t)

)
dxi,D(t)
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with initial condition zθ(0) = 0. It is common practice to set Gψ : Rp → Rp×d to be a
small feed-forward neural network parameterized by ψ. The learnable parameters of this
model are thus θ = (α, ψ, β). In our setup, the embedding must be carefully chosen in
order not to leak information from the future observations. Hence natural cubic splines,
used in the original paper by Kidger et al. (2020), cannot be used and we resort to the
piecewise constant interpolation scheme proposed by Morrill et al. (2021) and defined as
xi,D(s) = (Xi(tk), s) for all s ∈ [tk, tk+1[. This yields a discretely updated latent state equal
to

zi,Dθ (tk) = zi,Dθ (tk−1) +Gψ(z
i,D
θ (tk−1))∆Xi(tk)

where∆Xi(tk) = Xi(tk)−Xi(tk−1). This architecture has been studied under the name of
controlled ResNet because of its resemblance with the popular ResNet (Cirone et al., 2023;
Bleistein and Guilloux, 2024).

In order to provide theoretical guarantees, we restrict ourselves to a bounded set of
NCDEs i.e. we consider a set of NCDE predictors

Θ1 = {θ ∈ Rvs.t. ∥α∥2 ≤ Bα, ∥ψ∥ ≤ Bψ, ∥β∥2 ≤ Bβ,2}

where the norm on ψ refers to the sum of ℓ2 norms of the weights and biases of the neural
vector fieldGψ. This restriction is fairly classical in statistical learning theory Bach, 2021.

4.2.4 Linearizing CDEs in the Signature Space

The SignatureTransform. While neural controlled differential equations allow for great
flexibility in representation of the time series, they are difficult to train and require sig-
nificant computational resources. The signature is a promising and theoretically well-
grounded tool from stochastic analysis, that allows for a parameter-free embedding of the
time series. Mathematically, the signature coefficient of a function

x : t ∈ [0, τ ] 7→
(
x(1)(t), . . . , x(d)(t)

)
associated to a word I = (i1, . . . , ik) ∈ {1, . . . , d}k of size k is the function

SI(x[0,t]) :=

∫
0<u1<···<uk<t

dx(i1)(u1) . . . dx
(ik)(uk)

which maps [0, τ ] to R. The integral is to be understood as the Riemann-Stieltjes integral.
While the definition of the signature is technical, it can simply be seen as a feature extrac-
tion step. We refer to Figure 4.1 for an illustration. The truncated signature of orderN ≥ 1,
which we write SN(x[0,t]), is equal to the collection of all signature coefficients associated
to words of size k ≤ N sorted by lexicographical order. Finally, the infinite signature is the
sequence defined through

S(x[0,t]) = lim
N→+∞

SN(x[0,t]).
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Learning with Signatures. Signatures are a prominent tool in stochastic analysis since
the pioneering work of Chen (1958) and Lyons et al. (2007). They have recently found
successful applications in statistics and machine learning as a feature representation for
irregular time series (Kidger et al., 2019; Morrill et al., 2020; Fermanian, 2021; Salvi et al.,
2021; Fermanian, 2022; Lyons and McLeod, 2022; Bleistein et al., 2023; Horvath et al., 2023)
and a tool for analyzing residual neural networks in the infinite depth limit (Fermanian
et al., 2021).
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Figure 4.1 – Sample path x(t) of a 3-dimensional fractional Brownian motion on top, and
three signature coefficients SI(x[0,t]) associated to different words on the bottom.

Signatures and CDEs. An appealing feature of signatures is their connection to con-
trolled differential equations. Indeed, under sufficient regularity assumptions (Friz and Vic-
toir, 2010; Fermanian et al., 2021; Bleistein et al., 2023; Cirone et al., 2023), the generative
CDE (4.1) can be linearized in the signature space. Informally, this means that there exists
a sequence α⋆ such that for all t ∈ [0, τ ] we have

zi⋆(t) = α⊤
⋆ S(x

i
[0,t]).

The mathematical definition of α⋆ is technical and we refer to Appendix B.1.4 for a formal
statement and a discussion of the regularity assumptions. Hence, under the corresponding
regularity conditions, the true intensity for individual i writes

λi⋆(t) = exp
(
α⊤
⋆ S(x

i
[0,t]) + β⊤

⋆ W
i
)
.

This motivates the use of the signature-based estimator

λi,Dθ (t) := exp
(
α⊤SN(x

i,D
[0,t]) + β⊤Wi

)
,
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where θ = (α, β) ∈ Rq×Rs,N ≥ 1 is treated as a hyperparameter and xi,D corresponds to
the piecewise constant embedding of the observed time seriesXi described previously. The
integer q = dN−1−1

d−1
is the size of the signature truncated at depth N ≥ 1. The superscript

in D emphasizes the dependence of this estimator on the observation grid D. Similarly to
the NCDE-based estimator, we restrict ourselves to the bounded set of estimators

Θ2 = {θ s.t. ∥α∥ ≤ Bα, ∥β∥ ≤ Bβ,2}.

4.2.5 Connections to Cox Models with Time-Varying Covariates

Cox models with time-varying covariates are the classical class of models (Therneau
and Grambsch, 2000; Aalen et al., 2008; Zhang et al., 2018), where the individual specific
hazard rate has the form λiθ(t) = λ0(t) exp(α

⊤
⋆ X

i(t) + β⊤
⋆ W

i), where λ0 : [0, τ ] → R+ is
called the baseline hazard.

For signature-based embeddings, recall thatwe compute the signature of a time-embedded
time seriesXi = {(Xi(t1), t1), . . . , (X

i(tk), tk)}. In fact, this amounts to

α⊤SN(x
i,D
[0,t])

=
N∑
k=0

αkt
k

︸ ︷︷ ︸
=log λ0(t)

+α⊤
I1
Xi(t) +

∑
I∈I2

αIS
I(xi,D[0,t])︸ ︷︷ ︸

=log of individual specific hazard rate

,

where αI1 is a subvector of α and I2 ⊂
∏N

k=2{1, . . . , d}k. Hence our model can be in-
terpreted as a generalized version of Cox models with time-varying covariates. A similar
interpretation holds for NCDEs. We detail this link in Appendix B.1.6.

4.3 Theoretical Guarantees

4.3.1 The Learning Problem

For both models, the parameter θ can be fitted by likelihood maximization by solving

θ̂ ∈ argmin
θ∈Θ

ℓDn (θ) + pen(θ), (4.3)

where Θ ∈ {Θ1,Θ2} depending on whether one uses signature or NCDE-based embed-
dings, pen : Θ → R+ is a penalty and ℓDn (θ) is equal to the negative log-likelihood of the
sample Dn evaluated at θ.

Unless specified other, the following statements hold for both NCDEs and signature-
based embeddings (up to different constants given explicitly in the proofs). Following Aalen
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et al. (2008), the negative log likelihood ℓDn (θ) of the sample writes

1

n

n∑
i=1

∫ τ

0

λi,Dθ (s)Y i(s)ds−
∫ τ

0

log λi,Dθ (s)dN i(s),

and we let

ℓ⋆n =
1

n

n∑
i=1

∫
λi⋆(s)Y

i(s)ds−
∫

log λi⋆(s)dN
i(s)

be the true likelihood of the data. Our goal, in this section, is to obtain a bias-variance
decomposition of the difference

ℓDn (θ̂)− ℓ⋆n
between the true likelihood and the likelihood of the learnt model.

4.3.2 A Risk Bound

Theorem 1 (Informal Risk Bound for the Signature Model). Consider the signature-based
embedding. Let θ̂ be the solution of (4.3) with pen(θ) = η1 ∥α∥1+ η2 ∥β∥1. For anyN ≥ 1,
we have with high probability and an appropriate choice of η1, η2 that

ℓDn (θ̂)− ℓ⋆n ≤ Discretization bias+ Approximation bias

+O

(√
logNdN

n

)
+O

(√
log s

n

)
.

For a formal statement, see Appendix B.2. We make a series of comments on this result.

1. This full risk bound can only be obtained for the signature-based model. It can also
be extended to other types of penalty such as Ridge or Group Lasso (see for instance
Nardi and Rinaldo (2008)) For NCDEs, we are able to give precise guarantees on the
bias following Bleistein and Guilloux (2024), but a precise control of the variance term
is out of reach.

2. The discretization bias is proportional to |D| := max
i=1,...,K

|ti− ti−1| and hence vanishes
as sampling gets finer.

3. The approximation bias crucially depends on the regularity of the unknown tensor
field G⋆, and more precisely on the speed of decay of its derivatives, which can be
seen as a measure of smoothness of the target function.

4. The regularity assumptions made on G⋆ are not necessary to bound the approxima-
tion bias of the NCDE model: in this case, this bias term depends on the approxima-
tion capacities of the neural tensor field.

5. Remarkably, we obtain classical rates in n−1/2 for the variance term. For signature
based methods, fast rates in n−1 are yet to be obtained.
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4.4 Experimental Evaluation

We now focus on the survival analysis setup. We hence let T i be the unique time-of-
event, which may eventually be censored, of individual i. ∆i is the censorship indicator,
equal to 1 if the individual experiences the event and to 0 otherwise.

4.4.1 Training Setup

We train on a datasetDn of the same structure than described in Section 4.2.1 and learn
the parameter θ̂ by solving the optimization problem (4.3). NCDEs are trained without
penalization, while we use a mixture of elastic-net penalties

pen(θ) := η1penEN(α) + η2penEN(β)

for training the signature-based model, where penEN(·) = γ ∥·∥1 + (1 − γ) ∥·∥2. The hy-
perparameters (η1, η2, N) are chosen by cross-validation of a mixed metric equal to the
difference between the C-index and the Brier score (see below) and we set γ = 0.1. We
refer to Appendix B.3.1 for a detailed description of the training procedures. We evaluate
our model’s capacity to predict events in [t, t+ δt] by leveraging values of the longitudinal
features up to t (see Figure 4.2) through a ranking metric and a calibration metric. This
evaluation procedure is standard (Lee et al., 2019).
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Figure 4.2 – On the top, observed time series up to time t in bold colors and true time series
in faded colors. When evaluating our models, we fill-forward the last observed value from
t on. On the bottom, signatures of the true path (left), of the observed path (center) and
difference in ℓ2 norm (right) — xFF (t) denotes the filled-forward time series.
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4.4.2 Metrics

We compute four metrics using the individual specific survival functions as estimated
by our model with parameters θ. At time t + δt for δt > 0 conditional on survival up to
time t, and on observation of the longitudinal features up to time t, it is defined as

riθ(t, δt) = P
(
T i > t+ δt |T i > t, (Xi(s)) s≤t

s∈D
,Wi

)
.

We describe its detailed computation in Appendix B.3.2.

Time-dependent Concordance Index. Following Lee et al. (2019), we measure the dis-
criminative power of our models by using a time-dependent concordance index C(t, δt)
that captures our models ability to correctly rank individuals on their predicted probability
of survival. The concordance index C(t, δt) is then finally computed as

n∑
j=1

n∑
i=1

1riθ(t,δt)>r
j
θ(t,δt)

1T i>T j , T j∈[t,t+δt],∆j=1

n∑
j=1

n∑
i=1

1T i>T j , T j∈[t,t+δt],∆j=1

.

This metric captures the capacity of our model to discriminate between j and another in-
dividual i through the conditional probability of survival.

Brier Score. While the concordance index is a ranking-based measure, the Brier Score
measures the accuracy in predictions by comparing the estimated survival function and
the survival indicator function (Lee et al., 2019; Kvamme et al., 2019; Kvamme and Borgan,
2023). Formally, we define the Brier score BS(t, δt) as

1

n

n∑
i=1

1T i≤t+δt,∆i=1r
i
θ(t, δt)

2 +
1

n

n∑
i=1

1T i>t+δt(1− riθ(t, δt))2.

Contrarily to the C-index, the Brier score is a measure of calibration of the predictions: it
measures the distance between the estimated survival function and the indicator function
of survival on the interval [t, t+ δt].

Averaged performance. Additionally, we evaluate the average prediction performance
of our models over a set of different prediction times. The averaged C-index and Brier score
on the interval [t1, t2] along with the window time δt are defined respectively as

1

t2 − t1

∫ t2

t1

C(s, δt)ds and 1

t2 − t1

∫ t2

t1

BS(s, δt)ds.
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Comparison with static metrics. A crucial difference with static survival analysis met-
rics is that our metric only compares the individuals who experienced the event in this time
window to all the ones who are still at risk at time t. This can lead to a C-index below 0.5
and Brier scores above 0.25 without the model being worse than random.

Additional metrics. We furthermore report AUC and weighted Brier score in Appendix
B.4.

0 2 4 6 8 10

-4

-2

0

2

4

6

w
t

w

T

0 2 4 6 8 10
Time

-2

0

2

x t

Observed Unobserved

x(1)
t

x(2)
t

x(3)
t

x(4)
t

Figure 4.3 – Time series Xi of a randomly picked individual on bottom and unobserved
SDE wi(t) on the top. The red star indicates the first hitting time of the threshold value
w⋆ = 2.5.

4.4.3 Methods

We propose three distinct methods. In addition to the signature-based model, which
we call CoxSig, we also consider CoxSig+ which adds the first value of the time series
to the static features. This is motivated by the translation invariance of signatures (see
discussion below). Our last method is the NCDE embedding of the longitudinal features.
We benchmark our three models against a set of competing methods. All methods are
detailed in Appendix B.3.1.

Time-Independent Cox Model. As a sanity check, we implement a simple Cox model
with elastic-net penalty which uses the parameterized intensity λiθ(t) = λ0(t) exp(β

⊤Wi)
using scikit-survival (Pölsterl, 2020). This baseline allows to check whether our
proposed methods can make use of the supplementary time-dependent information. If no
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Name n d Censoring Avg. Times

Hitting time 500 5 Terminal (3.2%) 177
Tumor Growth 500 2 Terminal (8.4%) 250
Maintenance 200 17 Online (50%) 167
Churn 1043 14 Terminal (38.4%) 25

Table 4.1 – Description of the 4 datasets we consider. The integer d is the dimension of
the time series including the time channel. Terminal censoring means that the individuals
are censored at the end of the overall observation period [0, τ ] if they have not experienced
any event. It is opposed to online censoring that can happen at any time in [0, τ ]. The
reported percentage indicates the censoring level i.e. the share of the population that does
not experience the event. The last column reports the average number of observations
times over individuals.

static features are available, we use the first observed value of the time series, i.e., Wi =
Xi(0).

Random Survival Forest (RSF). We use RSF (Ishwaran et al., 2008) with static features
Wi as the only input. Similarly to our implementation of the Cox model, we use the first
value of the time series as static features if no other features are available.

Dynamic DeepHit (Lee et al., 2019). DDH is a state-of-the-art method for dynamical
survival analysis, that combines an RNN with an attention mechanism and uses both time
dependent and static features.

SurvLatent ODE (Moon et al., 2022). SLODE is a recent deep learning framework for
survival analysis that leverages an ODE-RNN architecture (Rubanova et al., 2019) to handle
the time dependent features.

4.4.4 Synthetic Experiments

Hitting time of a partially observed SDE. Predicting hitting times is a crucial problem
in finance — for instance, when pricing so-called catastrophe bounds triggering a payment
to the holder in case of an event (Cheridito and Xu, 2015; Corcuera and Valdivia, 2016).
Their relation to survival analysis is well documented, see e.g. Lee and Whitmore, 2006.
Building on this problem, we consider the Ornstein-Uhlenbeck SDE

dwi(t) = −ω(wi(t)− µ)dt+
d∑
j=1

dx(i,j)(t) + σdBi(t)

where d = 5, σ = 1, µ = 0.1 andω = 0.1 are fixed parameters. xi(t) = (x(i,1)(t), . . . , x(i,d−1)(t))
is a sample path of a fractional Brownian motion with Hurst parameterH = 0.6, andBi(t)
is a Brownian noise term. In this setup, our data consists of Xi which is a downsampled
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version of xi and the Brownian part is unobserved. Our goal is to predict the first hitting
timemin{t > 0 |wt ≥ w⋆} of a threshold value w⋆ = 2.5. We train on n = 500 individuals.
Figure 4.3 shows the sample paths and SDE of a randomly selected individual. This setup is
close to a well-specified model since signatures linearize controlled differential equations.
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Figure 4.4 – Brier score δt 7→ BS(t, δt), evaluated at t = 0.23, for the partially observed
SDE experiment. Confidence intervals indicate 1 standard deviation.

Tumor Growth. We similarly aim at predicting the hitting time of a stochastic process
modelling the growth of a tumor (Simeoni et al., 2004), where xi represents a drug-intake.
In this experiment, the time series Xi is very-low dimensional (d = 2, which includes the
time channel).

4.4.5 Real-World Datasets

Predictive Maintenance. (Saxena et al., 2008) This dataset collects simulations of mea-
surements of sensors placed on aircraft gas turbine engines run until a threshold value is
reached. In this context, the time-to-event is the failure time. This dataset features a small
sample size, considerable censoring rates and a high number of time channels.

Churn prediction. We use a private dataset provided by Califrais, a food supply chain
company that delivers fresh products from Rungis to food professionals. The company has
access to a variety of features observed through time for every customer. Its goal is for
example to predict when the customer will churn. The time series in this setup are high
dimensional but sampled at a low frequency.
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Algorithms Avg. C-Index ↑ IBS ↓

O
U

CoxSig 0.857±0.010.857±0.01 0.091±0.010.091±0.01
CoxSig+ 0.857±0.01 0.095±0.01
NCDE 0.517±0.04 0.103±0.01
DDH 0.545±0.02 0.094±0.01
SLODE 0.621±0.05 0.253±0.03

Tu
m
or

CoxSig 0.696±0.02 0.138±0.01
CoxSig+ 0.797±0.03 0.137±0.01
NCDE 0.827±0.02 0.130±0.010.130±0.01
DDH 0.941±0.050.941±0.05 0.133±0.01
SLODE 0.601±0.07 0.136±0.01

N
A
SA

CoxSig 0.858±0.04 0.154±0.03
CoxSig+ 0.867±0.040.867±0.04 0.154±0.03
NCDE 0.541±0.09 0.178±0.04
DDH 0.813±0.06 0.156±0.02
SLODE 0.438±0.14 0.145±0.020.145±0.02

Ca
lif
ra
is CoxSig 0.741±0.01 0.130±0.01

CoxSig+ 0.751±0.010.751±0.01 0.129±0.010.129±0.01
NCDE 0.529±0.05 0.152±0.01
DDH 0.570±0.03 0.139±0.01
SLODE 0.542±0.03 0.193±0.03

Table 4.2 – Averaged value of our metrics for 4 considered dataset over set of 10 different
values of t chosen from the 5 to the 50th percentile of the distribution of event times. The
values of δt for each dataset is chosen to be the same as that shown in Figure 4.5.

Further details on all datasets are provided in Appendix B.4. Overall, our datasets are
diverse in terms of sample size, size and length of the time series and censoring type.

4.4.6 Results

General performance of CoxSig. Overall, the signature-based estimators outperform
competing methods. We observe that CoxSig and CoxSig+ improve over the strongest base-
lines in terms of Brier scores. Contrarily to the strong baseline DDH, this improvement is
consistent over larger prediction windows [t, t + δt] as δt increases (see Figure 4.4). They
provide even stronger improvements in terms of C-indexes (see Figure 4.5 and Appendix
B.4). This suggests that they are particularly well-tailored for ranking tasks, such as iden-
tifying the most-at-risk individual. Including the first observed value of the time series
generally improves CoxSig’s performance: this is possibly due to the fact that signatures
are invariant by translation (i.e. the signature of x : t 7→ x(t) is equal to the signature
of x : t 7→ x(t) + a), and hence including the first value of the time series provides non-
redundant information.
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Figure 4.5 – C-Index (higher is better) on top and Brier score (lower is better) on bottom
for hitting time of a partially observed SDE (left), churn prediction (center) and predictive
maintenance (right) evaluated at chosen points (t, δt). t is chosen as the first decile of the
event times i.e. 90% of the events occur after t. Hollow dots indicate outliers, and error
bars indicate 80% of the interquartile range. We report detailed results for numerous points
(t, δt) in Appendix B.4.

Performance on low-dimensional data. A notable exception is the tumor growth sim-
ulation, in which CoxSig is generally outperformed (see Figures B.10 and B.11 in the ap-
pendix). The competitive performance of signatures for moderate to high dimensional data
streams and its below average performance on low dimensional data is a well-studied fea-
ture (see Fermanian (2021) for an empirical study). A possible solution to handle low-
dimensional data is to use embeddings before computing signatures to make them more
informative (Morrill et al., 2020).

NCDEs. On the other side, NCDEs generally tie or perform worse than competing meth-
ods. Notably, when considering C-indexes, they even perform worse than random on the
predictive maintenance dataset. This stands in stark contrast to their good performances
on classification or regression tasks (Kidger et al., 2020; Morrill et al., 2021; Vanderschueren
et al., 2023).

Running times. Finally, we observe that our methods run in similar times than DDH,
while including cross-validation (see Figure B.8 in the appendix). Models that do not use
time dependent features (RSF and Cox) are 2 orders of magnitude faster to train.

4.5 Conclusion

We have designed and analyzed a model for generic counting processes driven by a
controlled latent state, which can be readily estimated using either NCDE or signature-
based estimators. CoxSig in particular offers a parsimonious alternative to deep models and
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yields excellent performance for survival analysis. Future research efforts will be targeted
at extending our model to competing risks and multimodal data.

Limitations. While our model shows competitive performance on moderate to high-
dimensional data, one central limitation is its below average performance on low dimen-
sional data. We also stress that the extension to very high dimensional time series is com-
putationally prohibitive since the signature scales exponentially with the dimension of the
time series. Finally, our experimental setup is limited to the survival analysis case: we plan
on extending it to general counting processes in future work.
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three different approaches. First, we frame the churn prediction task as a binary classi-
fication problem to directly identify whether a customer is likely to churn within a given
time frame. Second, we explore various survival analysis frameworks, which not only pre-
dict whether a customer will churn but also estimate the time until churn. Third, we extend
the application of survival analysis by incorporating the landmark setting, which simplifies
the training process and makes it easier to scale for high-dimensional datasets. For each
of these approaches, we implement a range of models and advanced feature engineering
techniques to optimize predictive performance. We conduct extensive experiments using
historical order data from the companyCalifrais, alongwith a thorough comparison of these
approaches. Our evaluation highlights the strengths and weaknesses of each approach in
the context of real-time churn prediction, offering valuable insights for both academic re-
search and practical applications.
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5.1 Introduction

5.1.1 Churn prediction

Customer retention is a critical factor in the success and sustainability of any busi-
ness, particularly in industries where recurring revenue from existing customers is a sig-
nificant component of profitability. One of themajor challenges companies face is customer
churn, which occurs when customers stop using a product or service, either by canceling
a subscription, switching to a competitor, or simply disengaging. According to the study
conducted by Mozer et al. (2000), marketing campaigns for retaining existing customers
provide a better return on investment than putting efforts into attracting new customers.
Therefore, churn prediction, which helps to identify in advance those customers whomight
become churners, together with the potential reasons for their dissatisfaction, is essential
for businesses aiming to maintain a stable customer base and optimize their marketing and
customer service efforts. Client churn studies have been conducted across various service
sectors, for example, games (Periáñez et al., 2016), telecommunication (Gui, 2017), or fi-
nance (Larivière and Van den Poel, 2004).

5.1.2 Overview of churn prediction algorithms

This churn prediction task poses a challenge in management science that can be tackled
either manually, through human analysis, or automatically, by leveraging advanced tech-
niques such as machine learning. For automated approaches, data is fundamental, and it
can come from different sources, such as demographic information or customer behavior.

Learningwith customer’s behavior data. Demographic data, which includes elements
such as age, gender, income, and location, can be valuable for segmenting customers into
different levels of churn risk. In addition, this data is straightforward to analyze and in-
terpret, making it easier to understand and apply in creating targeted retention strate-
gies (Mittal and Kamakura, 2001; Athanassopoulos, 2000). However, access to this data
is not always available—either because it was not collected, customers chose not to share
it, or due to restrictive privacy laws. In contrast, customer behavior data (e.g. the number
of orders, the number of items per order, the total amount spent by the customer, etc) is
consistently produced and easily accessible during business operations, making it a more
practical and reliable source for developing predictive models. Moreover, customer behav-
ior data, with its dynamic nature, continuously updates to reflect real-time interactions and
changes in customer engagement, making it more effective for predicting churn than static
demographic data. This consistent and real-time availability of behavioral data provides
a robust foundation for developing accurate and dynamic churn predictions, allowing the
business to respond effectively and timely to evolving customer behaviors (Buckinx and
Van den Poel, 2005; Burez and Van den Poel, 2007). However, integrating this type of data
into a machine learning model poses significant challenges due to its dynamic and complex
nature, including correlated observations and non-linear trajectories that evolve over time.
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Effectively capturing these complicated temporal patterns requires applying advanced tech-
niques designed to handle such complexity and ensure the accuracy and robustness of the
model.

From binary approach to temporal approach. Many of the previous studies have ap-
proached churn prediction as a binary classification problem, predicting whether a client
will churn within a specified time frame, see e.g. Buckinx and Van den Poel (2005), Cousse-
ment and Van den Poel (2008), Verbeke et al. (2012), and Zhang et al. (2017). This approach
consists of labeling each client as a churner or not, allowing the problem to fall into the
large domain of supervised learning, with many algorithms available. However, this label-
ing process can vary depending on the specific business context.

In contractual settings, churn typically refers to clients who do not renew their contracts
when they expire, leading to predictions about whether a client will churn at the renewal
date based on their historical activity, see e.g. Coussement and Van den Poel (2008) and
Zhang et al. (2017).

In non-contractual settings, where no formal contract binds the client to the company,
clients can leave at any time without restrictions. In such cases, a specific churn criterion
is constructed. For instance, if a client stops using a service for a certain period, known as
the churn window, they are considered as a churn client. The churn prediction then turns
to the classic binary classification as in the contractual case above, see e.g. Buckinx and
Van den Poel (2005) and Verbeke et al. (2012).

Although this method simplifies churn prediction, its performance in non-contractual
contexts heavily depends on the choice of the churn criterion. In addition, in many services,
estimating the survival time, i.e., the time elapsed before the client churns, is critical for
timely interventions and efficient resource allocation. However, this binary classification
approach fails to distinguish between clients who churn early in the churn window and
those who churn later, nor can it predict the survival time of clients who have not yet
churned (Khodadadi et al., 2020).

To overcome the limitations of the classification approach, alternative methods have
been proposed for predicting the time until a client churns. When the survival times of
all clients are observed, standard regression models for continuous outcomes can be used
to predict churn timing (Buis, 2006). However, in many instances, either due to limited
historical data or ongoing client engagement, churn events are not fully observed, resulting
in censored data. Hence, it is essential to develop models that not only estimate churn
timing but also effectively handle the issue of censoring. Consequently, churn prediction
falls within the scope of survival analysis, and it is of interest to explore its performance in
comparison to the classification approach.

5.1.3 Contributions

To develop efficient models for churn prediction based on customer behavior data, we
propose a comprehensive approach by training models across three approaches. First,
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we frame the churn prediction task as a binary classification problem, to directly identify
whether a customer is likely to churn within a given time frame. Second, we explore var-
ious survival analysis frameworks, which not only predict whether a customer will churn
but also estimate the time until churn. Third, we extend the application of survival analysis
by incorporating the landmark setting, which simplifies the training process and makes it
easier to scale for high-dimensional datasets. For each of these approaches, we implement a
range ofmodels and advanced feature engineering techniques to optimize predictive perfor-
mance. Finally, we conduct a comprehensive comparison of these approaches, evaluating
their strengths and weaknesses in the context of real-time churn prediction. Overall, the
CoxSig model demonstrates particularly strong predictive performance. This comparative
analysis across the three approaches, which has not been previously conducted in the liter-
ature, provides valuable insights into the efficacy of different approaches, offering guidance
for both academic research and practical application in churn management.

Outline. Section 5.2 presents an overview of churn prediction at Califrais, establishing
the foundation for notation and modeling setup. In Section 5.3, we describe the specific
framework that will be implemented for churn prediction. Lastly, Section 5.4 is dedicated
to a detailed evaluation of the prediction performance, assessing the effectiveness and ac-
curacy of the proposed models.

5.2 Context and mathematical setting

5.2.1 Business context

Califrais company. Founded in July 2014, Califrais aimed to modernize the distribution
of fresh food from the Rungis market to restaurants in Paris by addressing inefficiencies
in traditional supply chains. These inefficiencies, such as manual processes and opaque
pricing, resulted in wasted time, food, and CO2 emissions, particularly in the perishable
fresh food sector. Califrais’ solution mutualizes orders from multiple suppliers into one
delivery, optimizing both customer and supplier operations. By 2021, Califrais launched
the official digital marketplace for Rungis, https:// rungismarket.com, providing customers
with detailed product information and simplifying the ordering process. Over a decade, the
company has grown its product catalog to over 8,000 items across 120 categories, expanding
its reach beyond Paris and France.

Business context. At Califrais, the client orders are recorded over time. Figure 5.1 shows
the historical orders of 3 clients within an observed period of 2 years, which are grouped
by week.

In this figure, we observe that while the clients can start ordering at any time, some
clients keep ordering frequently (client A), some clients stop ordering for a long time (client
C in August 2022) and then re-order or even do not order anymore from a specific point
(client B after April 2022). At Califrais, our goal is to prevent these long periods of inactivity,

https://rungismarket.com
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Figure 5.1 –Order history of 3 clients (A, B, andC), acquired in 2022, differing in the quantity
of products ordered, and by the number of categories in which these products were ordered.

as seen with clients B and C, by identifying these clients early and re-engaging them with
our services promptly. Moreover, these different ordering behaviors play a crucial role in
shaping our definition of churn.

Historical order data. At Califrais, beyond classical static data related to the customer
such as location or business size, it has been observed that the historical order data is
strongly related to potential customer churn. This type of data, which is tracked over
time—known as longitudinal data—also shows a similar relationship with the risk of cus-
tomer churn, as discussed in studies by Wei and Chiu (2002), Buckinx and Van den Poel
(2005), and Alboukaey et al. (2020).

Figure 5.2 shows an illustration of how these features can affect the risk of churn. A
detailed description of the dataset is given in Section 5.4.1.
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Figure 5.2 – The historical information of the number of items and the number of missing
items of each order for 3 clients A, B, and C in Figure 5.1. The high number of missing items
on the first orders of client B could be the reason they churn quickly after several orders
while the low number of missing items of clients A and B makes them stay longer.

Churn definition. We define a client as having churned if they have not placed any
orders for 4 consecutive weeks. Within this definition, a phenomenon known as recurring
churn can occur, where a client repeatedly churns and then returns to the company. To
simplify churn prediction modeling, we treat clients who order again after churning as new
clients. Within the observed period, clients who do not churn are considered censored.
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Churn prediction in real-time context. Based on the above churn definition, we now
have a dataset comprising both clients who have already churned and those who are still
actively engaged, along with their historical order data. The goal is to develop a model
capable of accurately predicting, at any time, the probability that currently engaged clients
are likely to churn. In addition, this model needs to be robust and adaptable, ensuring it
can effectively predict the churn probability for new clients from the moment they join and
throughout their engagement period.

5.2.2 Mathematical context

Dataset notation. In all the following, we consider a set of n clients in our dataset Dn.
For each client i ∈ 1, . . . , n, based on historical order data fromCalifrais, we define a set of q
static features denoted byZi ∈ Rq. In addition, order-related features are grouped by week,
with the first week the client i places an order represented by si1. We denote by T i ∈ N∗

the number of weeks from si1 until the client either churns or is censored. The entire order
history for client i, which includes d longitudinal features measured from the first ordering
week si1 over T i weeks, is denoted by the set {X i(si1), . . . , X

i(si1+T
i)} ∈ Rd×T i . Moreover,

the survival indicator∆i equals 1 if this client has churned at its last observed week si1+T i
or not, in other terms

∆i = 1si1+T i<sτ ,

where sτ is the end of the period where the data are collected for the analysis. We gather
all these data and define

Dn =
{(
si1, X

i(si1)
)
, . . . ,

(
si1 + T i, X i(si1 + T i)

)
, Zi, T i,∆i

}n
i=1
.

Risk prediction. In a real-time context, let sP represent the prediction week, and con-
sider an active client i who has continued ordering up to sP. The objective at this point is
to predict the probability that this client will churn within the next δt weeks, based on their
historical data up to week sP, denoted asX i(si1), . . . , X

i(sP). We represent this probability
asRi(sP, δt).

Train-Test data. To ensure that the learning model performs effectively in a real-time
context-where it is trained on all historical data and used to predict future events-we divide
the dataset in a similar way, using a specific time point to separate it into a training set for
model training and a test set for evaluating prediction performance. Let us denote by |A|
the cardinality of a setA. The train setDntrain and the test setDntest , which are split fromDn,
and the time point at which the split is done sκ , are then respectively defined as

Dntrain =
{(
si1, X

i(si1)
)
, . . . ,

(
si1 + T itrain, X

i(si1 + T itrain)
)
, Zi, T itrain,∆

i
train | si1 ≤ sκ

}n
i=1
,

where
T itrain = |{si1, . . . ,min(si1 + T i, sκ)}| and ∆i

train = 1si1+T i≤sκ ,
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and

Dntest =
{(
si1, X

i(si1)
)
, . . . ,

(
si1 + T i, X i(si1 + T i)

)
, Zi, T i,∆i | si1 + T i > sκ

}n
i=1
.

It is important to note that the testing set includes two types of clients: those who are in
the training set but continue ordering after sκ and those who begin ordering only after sκ.

From calendar time to client time. To simplify modeling, the dataset in calendar time
should be converted to client time, meaning we focus on the elapsed time or duration since
the starting date. At week s > si1 in calendar time, the equivalent time point ti for a client
i in client time can be defined as

ti = |{si1, . . . , s}|.

We show an illustration in Figure 5.3 below.

Client 1

Client 2

Client 3

Client 4

Client 1

Client 2

Client 3

Client 4

2

Calendar time Client time

Figure 5.3 – Convert the data from calendar time (left) to client time (right). The black dot
represents the first week a client orders, the cross represents the week it churns and the
white represents the censored client at the last observed week.

The historical order {X i(si1), . . . , X
i(si1 + T i)} of client i in the calendar time can be

redefined in the client time as {X i
1, . . . , X

i
T i}. The dataset Dn is then rewritten as Dnsurv,

which is
Dnsurv =

{
X i

1, . . . , X
i
T i , Zi, T i,∆i

}n
i=1
.

Note that if ∆i = 1, then Ti corresponds to the churn time.

With a slight abuse of notation, we denote byRi(tiP, δt) the risk that the client i churns
in the next δt weeks if they have not churned yet after tiP weeks in client time, where
tiP = |{si1, . . . , sP}|.

5.3 Methods

To develop efficient models for churn prediction in the real-time context, we imple-
ment models across three approaches: the binary approach, the temporal approach, and
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the landmarking approach. For each of these approaches, we implement a range of models
and advanced feature engineering techniques to optimize predictive performance. Details
of these methods are discussed in the following sections.

5.3.1 Binary approach

We begin by seeing the problem as a supervised learning task with binary labels. The
goal is then to predict whether a client will churn at a specific time t. It requires defining
covariates and labels for training the model. Starting from the original dataset Dnsurv, we
generate a new dataset suitable for applying classification machine learning techniques.
The process for generating this new dataset is described below.

Churn label definition. For each client i ∈ {1, . . . , n}, we denote Li(t, δt) as the churn
label, which defines whether client i churns in the period [t, t+ δt]. We then have

Li(t, δt) = 1t<T i≤t+δt,∆i=1.

Figure 5.4 shows an example of how to define the churn label.

Week 1 Week 2 Week 8Week 7Week 5Week 4Week 3 Week 6 Week 10Week 9

Before window Churn determination window After window

Observation period

Client A

Client B

Client C

Client D

Client E

Figure 5.4 – Schematic of the time window method used for churn prediction in the binary
approach. The data represents 5 clients over a 10-week period, where a red dot indicates no
order was placed in a given week and a green dot signifies an order was placed. According
to the churn definition, which considers a client to have churned if no orders are placed
for 4 consecutive weeks, clients A and C are identified as having churned at weeks 6 and 5,
respectively, while clients B, D, and E are censored at week 10. To illustrate the process of
defining the churn label in the binary approach, the time window of length δt = 5, which
is in the blue area, is set from week 4 (t = 4) to week 8 (t+ δt = 8). Since clients A and C
churn within this window, they are labeled as churned, while clients B, D, and E are labeled
as non-churned.

Note that the time range for defining the churn label varies depending on whether the
client is censored. For censored clients, t is chosen from the range {1, . . . , T i−δt}, whereas
for non-censored clients, it is selected from {1, . . . , T i}.
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Feature engineering. Based on the historical longitudinal information of client i up to
t, denoted by X i

1:t = {X i
1, . . . , X

i
t}, we apply a set ofM ∈ N+ known feature engineering

functions Ψm : X i
1:t → Ψm(X

i
1:t) ∈ Rd′ , m ∈ {1, . . . ,M} to extract a relevant set of

covariates, where d′ is the dimension of extracted features and will vary depending on the
type of feature engineering functions. In this work, we take various forms of the feature
engineering function. For example, it might use the value of the longitudinal feature at
week t:

Ψm(X
i
1:t) = X i

t ,

or the value of the longitudinal feature one week before t:

Ψm(X
i
1:t) = X i

t−1,

or the duration from the client’s first order up to week t, known as the level of loyalty:

Ψm(X
i
1:t) = t.

Alternatively, we may apply a truncated signature transformation SN of order N ≥ 1, as
defined, for example, in Kidger et al. (2019, Definition 1.1) and introduced in Section 2.2.4:

Ψm(X
i
1:t) = SN(X

i
1:t).

In addition, some packages, such as tsfresh, offer to extract a comprehensive set of fea-
ture engineering functionsΨm of longitudinal features. Simple examples of such functions
are the maximum or the sum of the longitudinal features, respectively defined by

Ψm(X
i
1:t) = max

{
X i

1, . . . , X
i
t

}
, Ψm(X

i
1:t) =

t∑
u=1

X i
u.

Dataset construction. Let us define by X̃ i
t =

(
Ψ1(X

i
1:t), . . . ,ΨM(X i

1:t)
)
the set of co-

variates extracted from the order history of an active client i up to time t, using a set of
specific feature engineering functions {Ψ1, . . . ,ΨM}. The new dataset , denoted as Dnbin, is
the combination of the set of covariates X̃ i

t , and the churn label Li(t, δt) for different time
t ∈ {1, . . . , T i} and all client i ∈ {1, . . . , n}. This new dataset is then defined as

Dnbin =
{(

(X̃ i
1, Z

i), Li(1, δt)
)
, . . . ,

(
(X̃ i

T i , Zi), Li(T i, δt)
)}n

i=1
.

Learning classifier. In this work, we apply two standard classifiers, which are the logistic
regression and the random forest on the dataset Dnbin. For a given classifier, let F denote the
decision function, parameterized by a learnable parameter θ, which maps the input feature
vector (X̃ i

t , Z
i) to a label prediction. The risk prediction Ri(tiP, δt) that client i churns in

the next δt weeks if they have not churned after tiP weeks, is then defined as

Ri(tiP, δt) = Fθ
(
(X̃ i

tiP
, Zi)

)
.
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5.3.2 Temporal approach

As previously noted, the disadvantage of the binary approach is its inability to estimate
the time until a client churns, known as churn time. Survival analysis offers an alternative
approach by modeling this churn time while addressing the issue of censoring. In this
section, we present several survival models that have been employed in this work.

General framework. In this framework, the churn time of client i ∈ {1, . . . , n} is as-
sumed to be a non-negative random variable and denoted by T̃ i. The relation between the
survival function Si and the hazard rate λi is defined by

Si(t) = P(T̃ i ≥ t) = exp
(
−
∫ t

0

λi(s)ds
)
. (5.1)

The objective is to build a parameterized model {λiθ; θ ∈ Θ} that learns the distribution
of churn time through the hazard function λi, governed by the parameter θ. The best pa-
rameter in our model can be estimated by maximizing the log-likelihood function on the
dataset Dnsurv, which is defined as

L(θ | Dnsurv) =
n∑
i=1

∆i log λiθ(T
i)−

∫ T i

1

λiθ(u)du.

In this work, we model the parameterized hazard function λiθ for individual i influenced by
both static features Zi and longitudinal data X i, which is λiθ(t) = λθ(t|X i

t , Z
i).

Risk prediction. Given the estimated distribution of churn time, the risk prediction
Ri(tiP, δt) that client i churns in the next δt weeks if they have not churned after tiP weeks,
is then defined as

Ri(tiP, δt) = P(tiP < T̃ i < tiP + δt | T̃ i > tiP, X
i
1:tiP
, Zi)

=
P(tiP < T̃ i < tiP + δt |X i

1:tiP
, Zi)

P(T̃ i > tiP |X i
1:tiP
, Zi)

=
Sθ(t

i
P |X i

1:tiP
, Zi)− Sθ(tiP + δt |X i

1:tiP
, Zi)

Sθ(tiP |X i
1:tiP
, Zi)

,

where the above survival function Sθ can be derived from (5.1) by

Sθ(t
i
P + δt |X i

1:tiP
, Zi) = exp

(
−
∫ tiP+δt

1

λθ(u |X i
1:(u∧tiP)

, Zi)du
)
.
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In the following, we provide a description of the specific survival analysis frameworks
employed in this work.

CoxSig. In this framework, the hazard function is assumed to take the Cox model form
(Cox, 1972b) and depends on both time-independent features and time-dependent features.
In addition, the time-dependent features are extracted by applying the truncated signature
transform SN on longitudinal data. The hazard function is then in the form

λθ(t|X i
1:t, Z

i) = exp
(
SN(X

i,sig
1:t )⊤α + Zi⊤β

)
,

where θ = (α, β), and X i,sig
1:t =

{(
1, X i

1

)
, . . . ,

(
t,X i

t

)}
is the extension of X i

1:t by adding
the time dimension. Given the datasetDnsurv, the log-likelihood of the model can be defined
as

L(θ | Dnsurv) =
n∑
i=1

(
∆i log λθ(T

i|X i
1:T i , Zi)−

∫ T i

1

λθ(u|X i
1:u, Z

i)du
)
.

Denoting by θ̂ a maximizer of this log-likelihood, we can form the predictions from the
estimated survival function

Sθ̂(t+ δt|X i
1:t, Z

i) = exp
(
−
∫ t+δt

1

λθ̂(u|X
i
1:(u∧t), Z

i)du
)
.

We refer the reader to Chapter 4 for a more detailed description.

FLASH - joint models. Joint models is a powerful statistical tool widely used in bio-
statistics and medical research (Wulfsohn and Tsiatis, 1997; Proust-Lima et al., 2009; An-
drinopoulou and Rizopoulos, 2016) simultaneously analyze longitudinal data and survival
data, allowing to understand how the progression of a longitudinal marker influences the
risk of an event occurring. This is achieved through the integration of a longitudinal sub-
model and a survival submodel, which are linked via a common latent structure. Building
on the strengths of this framework, we propose applying an advanced joint model, which
is called FLASH, to tackle the challenge of the churn prediction. We summarize here the
main concepts of FLASH framework; for a more detailed description, we refer the reader
to Chapter 3 of this manuscript or Nguyen et al. (2023).

In the FLASH framework, the three submodels are in the form: a multinomial logistic
regression defining the probability of belonging to a latent class, a generalized linear mixed
model for each latent class describing the evolution of the longitudinal markers, and finally
a Cox class-specific survival model.

The population of n clients is assumed to be heterogeneous, consisting ofK ∈ N∗ latent
classes representing the different risk levels of a client. To each subject i ∈ {1, . . . , n},
we associate a categorical latent variable gi ∈ {1, . . . , K}, which encodes its latent class
membership. Then, the latent class membership probability is assumed to take the form,
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for any k ∈ {1, . . . , K},

P(gi = k) =
eZ

i⊤ξk∑K
j=1 e

Zi⊤ξj
,

where ξk ∈ Rp denotes a vector of coefficients for class k. Each latent class is character-
ized by a class-specific longitudinal model and a class-specific survival model, which are
described in the following.

The class-specific longitudinalmodel is described by a standard linearmixedmodel (Laird
and Ware, 1982)

X i(t)|gi = k ∼ N
(
U(t)βk + V (t)bi,Σ

)
where Σ is a variance-covariance matrix of measurement errors, U(t) ∈ Rd×q is a matrix
of time-varying features with corresponding unknown fixed effect parameters βk ∈ Rq,
and V (t) ∈ Rd×r is a matrix of time-varying features with corresponding random effect
bi ∼ N (0, D), with D ∈ Rr×r being a the variance-covariance matrix of random effects.

To quantify the effect of the longitudinal data on the churn time, this longitudinal data
is represented by a set of M ∈ N+ known functionals {Ψ1, . . . ,ΨM} similar to the one
defined in Section 5.3.1. The class-specific survival model, which is in the form of the Cox
model (Cox, 1972b), is then defined as

λ(t |X i
1:t− , g

i = k) = λ0(t) exp
(
X̃ i

1:t−γk
)
,

where λ0 is an unspecified baseline hazard function that does not depend on k and γk the
joint representation parameters, which are the only class-specific objects in this model.

From all the submodels described above, for a fixed number of latent classesK , the log-
likelihoodL(θ) on the datasetDnsurv can be decomposed using the conditional independence
assumptions, which can be defined as

L(θ | Dnsurv) =
n∑
i=1

log
( K∑
k=1

Pθ(gi = k)fθ(T
i|gi = k)λθ(T

i|X i, gi = k)∆
i

Sθ(T
i|gi = k)

)
,

where θ is the combination of all unknown parameters in the model, Sθ(T i|gi = k) is
the corresponding class-specific survival function derived from λθ(T

i|X i, gi = k) and
fθ(T

i|gi = k) is the density of the longitudinal data in class k. We refer the reader to
Chapter 3 for a more detailed description.

Dynamic DeepHit (Lee et al., 2019). DDH is a state-of-the-art method for dynamical
survival analysis, that combines an RNN with an attention mechanism and uses both time-
dependent and static features.

Random Survival Forest (RSF). Proposed by Ishwaran et al. (2008), RSF is an ensem-
ble learning method for survival analysis that extends the concept of random forests (RF)
(Breiman, 2001) to handle time-to-event data. The implementation of RSF (Ishwaran et al.,
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2008) only considers static features as the input. To incorporate longitudinal features X i

alongside the static features Zi, we use feature engineering techniques detailed in Sec-
tion 5.3.1 to effectively aggregate the longitudinal features into static features, enabling
their integration into the RSF framework.

5.3.3 Landmark training

To obtain the risk prediction for clients who have not churned after a fixed number
of weeks tP in the survival analysis framework, the model can be trained in a landmark
fashion (Anderson et al., 1983; Van Houwelingen, 2007; Devaux et al., 2022) where we use a
set of only clients whose churn time is greater than the time tP and discard the longitudinal
data after tP (see Figure 5.5 for an illustration). In this approach, we call this fixed number
of weeks tP as the landmark time. This landmarking approach is computationally simple
and scales effectively for high-dimensional problems; however, it inefficiently uses data and
requires retraining with updated information at each new prediction time. Furthermore, in
real-time prediction contexts, where clients may have varying elapsed times up to a given
prediction week, multiple models need to be trained at respective landmark times, adding
complexity and increasing the computational cost.
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Figure 5.5 – Learning in landmark settingwith longitudinal dataX(t) of 7 clients. We set the
landmark time tP to 0.4. On the left, we select clients whose churn times are greater than
the landmark time, which are the clients i ∈ {2, 3, 4} and we ignore the client i = 1. The
longitudinal markers observed only up to the landmark time are used to train the survival
model while we ignore the remaining which past the landmark time. On the right, we
predict the conditional survival probability Si(t|tP) = P(T̃ i > t | T̃ i > tP, X

i
1:tP
, Zi) of

clients i who survive at landmark time with their longitudinal markers observed up to
landmark time. In this case, we ignore the client i = 5 and derive the simulated survival
probability prediction of client i ∈ {6, 7}.
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CoxSig with landmark training. At the landmark time tP, the hazard function is in
form

λθ(t|X i
1:tP
, Zi) =

{
exp

(
SN(X

i,sig
1:t )⊤α + Zi⊤β

)
if tP > t

exp
(
SN{LOCF(X i,sig

1:tP , t)}
⊤α + Zi⊤β

)
otherwise

where θ = (α, β), and LOCF(X i,sig
1:tP , t) is the last observation carried forward (LOCF) version

of X i,sig
1:tP . It is constructed by filling forward the last observed value from tP up to t while

letting the time dimension evolve, which is

LOCF(X i,sig
1:tP , t) =

{(
1, X i

1

)
, . . . ,

(
tP, X

i
tP

)
,
(
tP + 1, X i

tP

)
, . . . ,

(
t,X i

tP

)}
.

Given the dataset Dnsurv and the landmark time tP, the log-likelihood of the model can
be defined as

L(θ | Dnsurv) =
n∑
i=1

1T i>tP

(
∆i log λθ(T

i|X i
1:tP
, Zi)−

∫ T i

1

λθ(u|X i
1:(u∧tP), Z

i)du
)
.

Denoting by θ̂L a maximizer of this log-likelihood, we can form the predictions from the
estimated survival function

Sθ̂L(tP + δt|X i
1:tP
, Zi) = exp

(
−
∫ tP+δt

1

λθ̂L(u|X
i
1:(u∧tP), Z

i)du
)
.

RSF with landmark training. To extend the training of the RSF within the landmark
setting, we follow a similar process to the RSF training outlined earlier, including the aggre-
gation of longitudinal data. However, in this scenario, the longitudinal data is restricted to
the period up to the landmark time tP, meaning only the dataX i

1:tP
is considered for model

training.

5.4 Performance evaluation

5.4.1 Dataset

Descriptive statistics. In this work, we select the historical order data of 1153 clients
in the period of 2 years from 06-12-2021 to 12-11-2023. Any client that has not churned
by 12-11-2023 is censored. In this dataset, 38.4% of the clients are censored. We extract
from the historical order data 16 longitudinal features, which are computed on a one-week
window and described below
• The dates on which the orders were placed

— The total number of orders over the week (integer)
• The content of the orders

— The number of items per order of the client, averaged over the week (integer)
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— The percentage margin over the week (float)
— The refunds in euros following client complaints, summed over all orders of the

week (float)
— The weighted average price per kilo over the week (float)
— The total sales from the client’s orders over the week (float)
— The average order value over the week (float)
— The average discount percentage applied to all products bought over the week

(float)
— The number of distinct product high-level categories over the week (float)
— The number of distinct product low-level categories over the week (float)

• The level of client satisfaction
— The average client rating on the quality of products, overall orders of the week

(float)
• The quality of the delivery

— The percentage of products for which there was a complaint (float)
— The number of missing items in the orders of the client, summed over all orders

of the week (float)
— The average client rating on the quality of delivery, and overall orders of the

week (float)
— The average client rating on the quality of client service, overall orders of the

week (float)
— The delivery delay indicator indicates whether there was a delivery delay at

least once during the week (boolean integer)

Experiment setup Using the churn definition of four consecutive weeks without order-
ing, where a churned client who reorders is treated as a new client, we have a dataset of
n = 1823 clients. After excluding features with more than 90 % missing data, d = 14 lon-
gitudinal features were selected. For weeks where clients placed no orders, all longitudinal
measurements were filled with zero values for that week. Additionally, standardization was
applied to the selected features before training. Figure 5.6 provides an example of two lon-
gitudinal features in both the calendar time and the client time, selected after preprocessing
for the three clients A, B, and C.

The time point sκ, which is used to split the preprocessed dataset into the training set
and the testing set, is selected to be 22-05-2023. The training set then has a duration equal
to one and a half years, starting from 06-12-2021, and includes a total of 1282 clients.

5.4.2 Evaluation metrics

In the real-time context, at a specified week, we would like to identify the top clients
who have a higher risk of churn. We then evaluate the prediction performance of the model
over two metrics which are the Time-Dependant Concordance Index and the Brier Score.
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Figure 5.6 – Values of 2 different longitudinal features for 3 clients A, B, and C in both the
calendar time (top) and the client time (bottom).

Time-Dependant Concordance Index. Following Lee et al. (2019), we measure the dis-
criminative power of ourmodels by using a time-dependent concordance index (or C-Index)
C(sP, δt) that captures our model’s ability to correctly rank individuals on their predicted
probability of survival. The concordance index C(sP, δt) is then finally computed as

C(sP, δt) =

n∑
j=1

n∑
i=1

1Rj(tjp,δt)>Ri(tiP,δt)
1T i>T j , T j∈[tjp , tjp+δt],∆j=1

n∑
j=1

n∑
i=1

1T i>T j , T j∈[tjp , tjp+δt],∆j=1

.

This metric captures the capacity of the model to discriminate between client j and another
client i through the probability of survival.

Brier Score. While the C-Index is a ranking-based measure, the Brier Score measures the
accuracy in predictions by comparing the estimated survival function and the survival indi-
cator function (Lee et al., 2019; Kvamme et al., 2019; Kvamme and Borgan, 2023). Formally,
we define the Brier Score BS(sP, δt) as

BS(sP, δt) =
1

n

n∑
i=1

1T i∈[tiP , tiP+δt],∆i=1r
i
θ(t, δt)

2 + 1T i>tiP+δt
(1− riθ(t, δt))2.

Contrarily to the C-index, the Brier Score is a measure of calibration of the predictions: it
measures the distance between the estimated survival function and the indicator function
of survival on the interval [tiP, tiP + δt].
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5.4.3 Results

In the following, we evaluate the prediction performance of the binary, temporal, and
landmarking approaches using C-Index and Brier Score in different comparisons. First,
we compare the results of the models within the binary approach. Next, we evaluate the
performance of the models in the temporal approach and compare their performances with
the best model from the binary approach. Finally, we examine the performance of the
models in the landmark setting. In all the figures below, results are presented in terms of
C-Index (higher is better) on the left and Brier Score (lower is better) on the right, with the
boxplots for each model reflecting their prediction performance across multiple prediction
weeks.

General performance of the binary approach. The experimental results in Figure 5.7
demonstrate the importance of using the signature transform to improve model perfor-
mance in the binary approach, especially with the random forest classifier. Among the
three feature engineering techniques evaluated - such as the combination of the last value
function and the loyalty level, the combination of the last value function, the loyalty level
and the lagged value function, or the signature transform - the application of the signature
transform delivered the significant results both in C-Index and Brier Score metrics. This
good performance highlights the ability of the signature transform to effectively capture
the underlying dynamics of the data by summarising complex temporal dependencies that
other feature engineering methods fail to achieve. However, the performance of signature-
based logistic regression is not as strong, likely due to overfitting, even with careful regu-
larisation. This suggests that logistic regression may lack the complexity required to han-
dle the high-dimensional features generated by signature transformation. To mitigate this
problem, possible solutions include applying dimensionality reduction, feature selection,
or using a more complex model such as random forest or neural networks.
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Figure 5.7 – Performance of the binary approach using two classifiers: logistic regression
(LR) and random forest (RF), along with three sets of feature engineering techniques. The
suffix last denotes the combination that uses the last value function and the level of loy-
alty, lag indicates the combination that uses the last value function, the level of loyalty, and
lagged value function, and sig refers to the technique that employs signature transforma-
tion.

General performance of temporal approach. The experimental results in Figure 5.8
prove the effectiveness of our proposed CoxSig framework, which delivers strong perfor-
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mance across both C-Index and Brier Score metrics, outperforming other methods, includ-
ing the signature-based random forest—the best model from the binary approach. The sig-
nature transform continues to demonstrate its robust ability to capture the complexities
of longitudinal data, significantly enhancing model performance not only within the Cox-
based framework but also with the RSF. Although DDH performs well in terms of the Brier
Score, its relatively weaker C-Index results indicate that it may not be the optimal choice
for this churn prediction task that requires robust discrimination capabilities. On the other
hand, our other proposedmethod, FLASH, does not perform as well in this churn prediction
task, despite its ability to provide valuable insights into the importance of features affecting
churn risk.
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Figure 5.8 – Performance of the temporal approach using four frameworks: CoxSig, FLASH,
DDH and RSF, in comparison with the signature-based random forest—the best model of
the binary approach.

Model performance in the landmark setting. The experimental results in Figure 5.9
show the performance improvement achieved by training with the landmark setting, par-
ticularly in terms of Brier Score for both frameworks evaluated - CoxSig and RSF. While
the non-landmark approach utilizes a full training set of 1282 clients, the landmark model
operates with a significantly smaller median of 171 clients. RSF, in particular, demonstrates
an improvement in both Brier Score and C-Index under the landmark setting. However,
the CoxSig framework, while benefiting from a better Brier Score, shows a slight decrease
in accuracy when evaluated by the C-Index metric. These results suggest that while the
landmark setting generally enhances model performance, its impact on different metrics
may vary depending on the framework used.
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Figure 5.9 – The performance comparison between models trained with the landmark set-
ting (with the suffix lm) and the standard setting, using two frameworks: CoxSig and RSF.



Model performance between new and old clients. The experimental results in Fig-
ure 5.10 highlight the variation in prediction performance between two distinct groups:
new clients, whose first order is placed after the split date, and old clients, whose initial
order occurs before the split date but continues to order afterward. This comparison pro-
vides valuable insights into how the model performs across different client groups based
on their historical order data. Notably, the model demonstrates superior performance with
old clients, as their extensive historical longitudinal data provides a stronger foundation for
accurate predictions. This observation suggests that regularly retraining the model to in-
corporate more recent data is essential for maintaining predictive accuracy across all client
segments.

CoxSig CoxSig_a CoxSig_b RSF RSF_a RSF_b

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C-
In

de
x

CoxSig CoxSig_a CoxSig_b RSF RSF_a RSF_b
0.0

0.1

0.2

0.3

0.4

0.5

Br
ier

 sc
or

e

Figure 5.10 – The prediction performance comparison between new clients whose first date
of order is after the split date (with the suffix a) and old clients whose first date of order is
after the split date (with the suffix b), using two frameworks: CoxSig and RSF.

5.5 Conclusion

We developed and analyzed churn prediction models using three different approaches:
binary classification, survival analysis, and an extension of the survival framework with
landmarking. Overall, the CoxSig model demonstrated strong performance. Future re-
searchwill focus on enhancing the interpretability of thesemodels. Improving transparency
around how specific longitudinal markers influence churn risk would offer the marketing
teammore actionable insights. This could involve creating new visualization tools to quan-
tify the impact of individual features, making the model not only more accurate but also
more user-friendly and practical for decision-making.



Conclusion

In this thesis, we have introduced and developed innovative frameworks for the growing
field of survival analysis with longitudinal data, focusing on enhancing predictive perfor-
mance and addressing high-dimensional challenges.

Chapter 3 presented a novel joint model that incorporates association features derived
from longitudinal data directly into the survival model, without relying on assumptions
in the longitudinal model. This approach has shown superior predictive performance and
computational efficiency in comparison to existing state-of-the-art joint models, as evi-
denced by real-time numerical experiments conducted on both simulated and real datasets.

Chapter 4 extended this work by exploring the learning of individual-specific intensities
of counting processes, driven by both static variables and longitudinal data. This frame-
work represents the intensity function as the solution of a controlled differential equation,
utilizing either neural or signature-based estimators. Through extensive experimental stud-
ies, the framework demonstrated its effectiveness and robustness in a variety of survival
datasets.

In Chapter 5, we addressed the churn prediction problem at Califrais by applying three
distinct methodologies: binary classification, survival analysis, and landmarking. We pro-
vided a comprehensive comparison of these approaches, highlighting their relative strengths
and weaknesses in the real-time churn prediction context. The analysis demonstrated
that the survival-based approaches, particularly the CoxSig model, offered superior perfor-
mance in identifying both the likelihood and timing of churn, providing a more meaningful
understanding of customer behavior.

Overall, this research contributes to the field by providing advanced tools for survival
analysis and establishes a foundation for further developments aimed at fully integrating
longitudinal data into survival models in various applied domains.

Future work offers several promising directions for extending and enhancing the con-
tributions of this thesis.

First, the FLASH framework could be further developed by extending the implementa-
tion to accommodate more diverse types of longitudinal data. In particular, generalizing the
Expectation-Maximisation algorithm to handle count or binary longitudinal features would
make the model more applicable to a wider range of real-world contexts. In addition, the
current assumption of fixed latent class membership could be relaxed to allow for dynamic
class changes over time. This could be achieved by incorporating a Markov structure, al-

103



APPENDIX . Comparison of classification and survival models for dynamic churn
prediction 104

lowing the model to capture time-varying risk profiles, which would be particularly useful
in contexts where individual risk levels fluctuate.

Second, improving the predictive ability of models such as NCDE or CoxSig remains
an important focus for future work. By incorporating these models into a joint modeling
framework, it would be possible to improve their predictive accuracy through the simulta-
neous modeling of both longitudinal and time-to-event data.

Third, extending the NCDE or CoxSig frameworks to applications involving counting
processes could offer significant benefits across various sectors. For instance, predicting
when clients will place their next order or when a patient is likely to be rehospitalized
could significantly improve decision-making in sectors like retail and healthcare.

Finally, while the CoxSig model offers powerful predictive capabilities, it could benefit
from efforts to improve its interpretability. Increasing the transparency of how specific
longitudinal markers contribute to risk prediction would provide users - particularly those
in fields such as healthcare and business - with more actionable insights. This could involve
developing new visualization tools to quantify the impact of individual features, making
the model not only more accurate but also more user-friendly and practical for decision-
making.
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Table A.1 – Summary of notation

Notation Definition

Xi Time-independent feature
Yi Longitudinal markers
Ti Survival time
∆i Censoring indication
gi Latent class membership variable
bi Random effects of the longitudinal markers
n Number of training samples
p Number of time-independent features
L Number of longitudinal markers
K Number of latent classes
D Variance-covariance matrix of the bi
Ui Fixed-effect design matrix
Vi Random-effect design matrix
ψi Association features
ξ Time-independent parameters
β Fixed-effect parameter
γ Joint association parameter
λ0 Baseline hazard function
Im Identity matrix of Rm×m

1m Vector of Rm having all coordinates equal to one
0m Vector of Rm having all coordinates equal to zero
∥·∥q The usual ℓq-quasi norm, q > 0

A.1 Details on the extended EM Algorithm

We detail in this section our learning methodology. First, recall that the penalized neg-
ative log-likelihood is defined by

Lpen
n (θ) = Ln(θ) +

K∑
k=1

ζ1,kΩ1(ξk) +
K∑
k=1

ζ2,kΩ2(γk), (A.1)

where

Ω1(ξk) = (1− η) ∥ξk∥1 +
η

2
∥ξk∥22 and Ω2(γk) = (1− η̃) ∥γk∥1 + η̃

L∑
ℓ=1

∥∥γℓk∥∥2 ,
where the parameters (η, η̃) ∈ [0, 1]2 are fixed (depending on the expected level of sparsity),
γℓk = (γℓk,1, . . . , γ

ℓ
k,M)⊤ ∈ RM is the subset of γk corresponding to the longitudinal marker

ℓ, ∥·∥1 (resp. ∥·∥2) denotes the usual ℓ1 (resp. ℓ2) norm. In all our experiments, we take
η = 0.1 and η̃ = 0.9.
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The goal is to minimize this objective function by the EM algorithm. This is done in
two steps: compute the expectation of the negative complete log-likelihood with respect to
the unobserved quantities (the random effects bi and the latent classes gi), then minimize
the obtained quantity with respect to all parameters of the model in θ. For simplicity, we
won’t compute all terms of the expectation in the E-step but only the quantities used in the
M-step. Moreover, we perform minimization with respect to θ in several steps, minimizing
with respect to the block of parameters separately to obtain tractable updates.

A.1.1 E-step

Recall that, under our assumptions, the negative complete log-likelihood writes

Lcomp
n (θ) = −n−1

n∑
i=1

(
log fθ(bi) +

K∑
k=1

1{gi=k}
(
logPθ(gi = k) + log fθ(Yi | bi, gi = k)

+ log fθ(Ti,∆i |Yi, gi = k)
))
.

Let us introduce a few matrix notations. Concatenating all longitudinal markers and all
observation times, the mean of the vector Yi | bi, gi = k (defined in (3.3) in the main paper)
can be rewrittenMik = Uiβk + Vibi, where we introduce the design matrices

Ui =

U
1
i · · · 0
... . . . ...
0 · · · UL

i

 ∈ Rni×q and Vi =

V
1
i · · · 0
... . . . ...
0 · · · V L

i

 ∈ Rni×r

and for all ℓ ∈ {1, . . . , L}, one writes

U ℓ
i =

 u
ℓ(tℓi1)

⊤

...
uℓ(tℓ

inℓ
i
)⊤

 ∈ Rnℓ
i×qℓ and V ℓ

i =

 v
ℓ(tℓi1)

⊤

...
vℓ(tℓ

inℓ
i
)⊤

 ∈ Rnℓ
i×rℓ .

Under all assumptions of Section 3.2 in the main paper, we can then write explicitly the
different terms. The random effects simply follow a Gaussian distribution, which yields

log fθ(bi) = −
1

2
(r log 2π + log det(D) + b⊤i D

−1bi).

Then, the conditional density of the longitudinal features (in the Gaussian case) writes

log fθ(Yi | bi, gi = k) = −1

2

(
ni log 2π+log det(Σi)+(Yi−Uiβk−Vibi)⊤Σ−1

i (Yi−Uiβk−Vibi)
)
.
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Finally, the survival terms in the complete likelihood write

log fθ(Ti,∆i |Yi, gi = k) = ∆i

(
log λ0(Ti) + ψi(Ti)

⊤γk
)
−

J∑
j=1

λ0(τj) exp
(
ψi(τj)

⊤γk
)
1{τj≤Ti}.

We can therefore decompose the expected negative complete log-likelihood as

Qn(θ, θ(w)) = Eθ(w) [Lcomp
n (θ) | Dn]

= −n−1

n∑
i=1

(
A1
i (D) +

K∑
k=1

Pθ(w)(gi = k|Dn)
(
A2
i,k(ξ) + A3

i (βk,Σi) + A4
i (γk, λ0)

))
+ constants,

where, for any b ∈ Rr, D ∈ Rr×r, β ∈ Rq, Σ ∈ Rni , we define

A1
i (D) =

1

2
Eθ(w)

[
log det(D) + b⊤i D

−1bi | Dn
]
,

A2
i,k(ξ) = log

( eX
⊤
i ξk∑K

j=1 e
X⊤

i ξj

)
,

A3
i (β,Σ) =

1

2
Eθ(w)

[
log det(Σ) + (Yi − Uiβ − Vibi)⊤Σ−1(Yi − Uiβ − Vibi) | Dn

]
,

A4
i (γ, λ0) = ∆i

(
log λ0(Ti) + ψi(Ti)

⊤γ
)
−

J∑
j=1

λ0(τj) exp
(
ψi(τj)

⊤γ
)
1{τj≤Ti}.

As explained before, we do not compute the expectation of the negative complete likelihood
but only of the quantities needed in the M-step. First, the following technical lemmas will
prove useful in the E-step and makes use of conjugate properties of Gaussian distributions.

Lemma 2. For any i ∈ {1, . . . , n}, k ∈ {1, . . . K},

Yi | gi = k ∼ N
(
Uiβk, ViDV

⊤
i + Σi

)
and bi |Yi, gi = k ∼ N

(
Oi,k,Wi

)
,

where
Oi,k = WiV

T
i Σi

−1(Yi − Uiβk) and Wi =
(
V ⊤
i Σi

−1Vi +D−1
)−1

.

Proof. From (3.3) in the main paper we know that Yi | bi, gi = k ∼ N
(
Mik,Σi

)
and

bi ∼ N
(
0, D), which gives

Yi|gi = k ∼ N
(
Uiβk, ViDV

⊤
i + Σi

)
.

Moreover, by Bayes’s rule, the distribution of bi|Yi, gi = k can be written

fθ(bi|Yi, gi = k) ∝ fθ(Yi|bi, gi = k)fθ(bi|gi = k)

∝ exp
(
(Yi − Uiβk − Vibi)⊤Σ−1

i (Yi − Uiβk − Vibi) + b⊤i D
−1bi

)
∝ exp

(
(bi −Oi,k)

⊤W−1
i (bi −Oi,k)

)
,
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where Oi,k = WiV
T
i Σi

−1(Yi − Uiβk) andWi =
(
V ⊤
i Σ−1

i Vi +D−1
)−1. We then have

bi|Yi, gi = k ∼ N
(
Oi,k,Wi

)
.

The following lemma gives the three expectations that appear in this E-step.

Lemma 3. For any i ∈ {1, . . . , n}, k ∈ {1, . . . , K}, θ ∈ RP , the three following integrals
are closed-form and write

Eθ[bi|Dn] =
∑K

j=1Pθ(gi = j)fθ(Ti,∆i|Yi, gi = j)fθ(Yi|gi = j)Oi,j∑K
j=1Pθ(gi = j)fθ(Ti,∆i|Yi, gi = j)fθ(Yi|gi = j)

, (A.2)

Eθ[bib
⊤
i |Dn] =

∑K
j=1Pθ(gi = j)fθ(Ti,∆i|Yi, gi = j)fθ(Yi|gi = j)(Wi +Oi,jOi,j

⊤)∑K
j=1Pθ(gi = j)fθ(Ti,∆i|Yi, gi = j)fθ(Yi|gi = j)

,

(A.3)
and

π̃θik = Pθ(gi = k|Dn) =
Pθ(gi = k)fθ(Ti,∆i|Yi, gi = k)fθ(Yi|gi = k)∑K
j=1Pθ(gi = j)fθ(Ti,∆i|Yi, gi = j)fθ(Yi|gi = j)

, (A.4)

where fθ(Yi|gi = j) is the density of the multivariate Gaussian distribution of Lemma 2.

Proof. By Assumption 2 in the main paper, the distribution of bi given the observed
data Dn, for any θ ∈ RP , writes

fθ(bi|Dn) =
fθ(bi, Ti,∆i, Yi)

fθ(Ti,∆i, Yi)

=
1

fθ(Ti,∆i, Yi)

K∑
j=1

Pθ(gi = j)fθ(bi, Ti,∆i, Yi|gi = j)

=
1

fθ(Ti,∆i, Yi)

K∑
j=1

Pθ(gi = j)fθ(Yi|gi = j)fθ(Ti,∆i|Yi, gi = j)fθ(bi|Yi, gi = j).

Similarly, we have

fθ(Ti,∆i, Yi) =
K∑
j=1

Pθ(gi = j)fθ(Yi|gi = j)fθ(Ti,∆i|Yi, gi = j).
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This gives that, for any function µ,

Eθ[µ(bi)|Dn] =
∫
Rr

µ(bi)fθ(bi|Dn)dbi

=
1

fθ(Ti,∆i, Yi)

K∑
j=1

Pθ(gi = j)fθ(Yi|gi = j)fθ(Ti,∆i|Yi, gi = j)Eθ[µ(bi)|Yi, gi = j].

Hence, for the functions µ(bi) = bi and µ(bi) = bib
⊤
i , we obtain the result by applying

Lemma 2, which gives

Eθ[bi|Yi, gi = j] = Oi,j, and Eθ[bib
⊤
i |Yi, gi = j] = Wi +Oi,jOi,j

⊤.

In the same manner, we can see that for any k ∈ {1, . . . , K},

Eθ[1{gi=k}|Ti,∆i, Yi] = Pθ(gi = k|Ti,∆i, Yi)

=
1

fθ(Ti,∆i, Yi)
Pθ(gi = k)fθ(Ti,∆i|Yi, gi = k)fθ(Yi|gi = k),

which concludes the proof.

Extensions of the longitudinal model To support other types of longitudinal features
(e.g., count, binary, etc) where the conditional longitudinal features Yi | bi, gi = k are not
Gaussian, the simple solution is to choose distributions such that the random effect bi and
Yi | bi, gi = k have conjugate distributions. There are several options, for example using
the beta-binomial distribution for binary features or negative-binomial for count features.
In this case, the expectation Eθ[µ(bi)|Yi, gi = j] and the density fθ(bi|Yi, gi = j) can be
computed in closed forms (Molenberghs et al., 2010) and the extension is trivial. If the dis-
tributions are not conjugate, some numerical integration methods can be used to compute
Eθ[µ(bi)|Yi, gi = j] and fθ(bi|Yi, gi = j) (see, e.g., Fabio et al., 2012).

A.1.2 M-step: closed-form updates

Now, we assume that we are at step w + 1 of the algorithm, meaning that we have a
current value θ(w) of the parameters and we update it to get the new parameters θ(w+1) by
solving

θ(w+1) ∈ argmin
θ∈RP

Qpen
n (θ, θ(w)). (A.5)

Note that we update for the coordinates of θ(w) in order, which is (D(w+1), (ξ
(w+1)
k )k∈{1,...,K},

(β
(w+1)
k )k∈{1,...,K}, (γ

(w+1)
k )k∈{1,...,K}, λ

(w+1)
0 , ϕ(w+1)). Then, following this order, the update

of later coordinates uses the latest update of the previous ones. The update of several
coordinates of θ(w+1) can be obtained in closed form.
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Lemma 4. At step w + 1 of the EM algorithm, the update of D is

D(w+1) = n−1

n∑
i=1

Eθ(w) [bib
⊤
i |Ti,∆i, Yi],

where Eθ(w) [bib
⊤
i |Ti,∆i, Yi] is given by (A.3).

Proof. The update for D(w) requires to solve the following minimization problem

D(w+1) ∈ argmin
D∈Rq×q

− n−1

n∑
i=1

A1
i (D). (A.6)

We have for any i ∈ {1, . . . , n},

A1
i (D) = Eθ(w)

[
log det(D) + b⊤i D

−1bi
]
= log det(D) +

∫
Rr

b⊤i D
−1bifθ(w)(bi|Ti,∆i, Yi)dbi.

The gradient of A1
i is here given by

∂A1
i (D)

∂D
= D−⊤ −

∫
Rr

D−⊤bib
⊤
i D

−⊤fθ(w)(bi|Ti,∆i, Yi)dbi

= D−⊤ −D−⊤Eθ(w) [bib
⊤
i |Ti,∆i, Yi]D

−⊤,

where D−⊤ is the transpose of matrix D−1. The proof is completed by cancelling the gra-
dient, that is

−n−1

n∑
i=1

∂A1
i (D)

∂D
= 0 ⇔ −D−⊤ + n−1

n∑
i=1

D−⊤Eθ(w) [bib
⊤
i |Ti,∆i, Yi]D

−⊤ = 0.

Lemma 5. At step w + 1 of the EM algorithm, the update of βk is

βk
(w+1) =

( n∑
i=1

π̃θ
(w)

ik U⊤
i Ui

)−1( n∑
i=1

π̃θ
(w)

ik U⊤
i (Yi − ViEθ(w) [bi|Ti,∆i, Yi])

)
, (A.7)

where Eθ(w) [bi|Ti,∆i, Yi] and π̃θ
(w)

ik are given respectively by (A.2) and (A.4) .

Proof. The update for β(w)
k requires to solve the following minimization problem

β
(w+1)
k ∈ argmin

β∈Rq

− n−1

n∑
i=1

π̃θ
(w)

ik A3
i

(
β,Σ

(w)
i

)
. (A.8)
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We have

A3
i (β,Σ

(w)
i ) =

1

2
Eθ(w)

[
log det(Σ

(w)
i ) + (Yi − Uiβ − Vibi)⊤Σ(w)

i

−1
(Yi − Uiβ − Vibi) | Dn

]
=

1

2
log det(Σ

(w)
i ) +

1

2
Eθ(w)

[
(Yi − Uiβ − Vibi)⊤Σ(w)

i

−1
(Yi − Uiβ − Vibi) | Dn

]
= Eθ(w)

[
− (Yi − Vibi)⊤Σ(w)

i

−1
Uiβ +

1

2
β⊤U⊤

i Σ
(w)
i

−1
Uiβ | Dn

]
+ constants

= −(Yi − ViEθ(w)

[
bi| Dn

]
)⊤Σ

(w)
i

−1
Uiβ +

1

2
β⊤U⊤

i Σ
(w)
i

−1
Uiβ + constants.

(where we treat as constants all quantities independent of β). Then, the gradient of A3
i

writes

∂A3
i (β,Σ

(w)
i )

∂β
= −(Yi − ViEθ(w) [bi|Dn])⊤Σ(w)

i

−1
Ui + β⊤U⊤

i Σ
(w)
i

−1
Ui.

Given the form of Ui and Vi along with the fact that Σ(w)
i is a diagonal matrix, we can

rewrite the gradient of A3
i as

∂A3
i (β,Σ

(w)
i )

∂β
= −(Yi − ViEθ(w) [bi|Dn])⊤UiΣ̃(w)−1

+ β⊤U⊤
i UiΣ̃

(w)−1

,

where Σ̃(w) is the diagonal matrix whose diagonal is (ϕ(w)
1 1q1

⊤
, . . . , ϕ

(w)
L 1qL

⊤
)
⊤
∈ Rq. The

closed-form update of β(w)
k is then obtained by canceling the gradient, that is

− n−1

n∑
i=1

π̃θ
(w)

ik

∂A3
i (β,Σ

(w)
i )

∂β
= 0

⇔
n∑
i=1

π̃θ
(w)

ik

(
(Yi − ViEθ(w) [bi|Dn])⊤UiΣ̃(w)−1 − β⊤U⊤

i UiΣ̃
(w)−1)

= 0

⇔
n∑
i=1

π̃θ
(w)

ik

(
(Yi − ViEθ(w) [bi|Dn])⊤Ui − β⊤U⊤

i Ui

)
= 0

⇔ β =
( n∑
i=1

π̃θ
(w)

ik U⊤
i Ui

)−1( n∑
i=1

π̃θ
(w)

ik U⊤
i (Yi − ViEθ(w) [bi|Dn])

)
.

Lemma 6. At step w+1 of the EM algorithm, for any j ∈ {1, . . . , J}, given the the update
of λ0(τj) is

λ
(w+1)
0 (τj) =

∑n
i=1∆i1{Ti=τj}∑n

i=1

∑K
k=1 π̃

θ(w)

ik exp
(
ψi(τj)⊤γ

(w+1)
k

)
1{Ti≥τj}

, (A.9)

where π̃θ(w)

ik is given by (A.4).
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Proof. The update for λ(w)0 (τj) requires to solve the minimization problem

λ
(w+1)
0 (τj) ∈ argmin

λ0∈R
− n−1

n∑
i=1

K∑
k=1

π̃θ
(w)

ik A4
i (γ

(w+1)
k , λ0). (A.10)

We have

− n−1

n∑
i=1

K∑
k=1

π̃θ
(w)

ik A4
i (γ

(w+1)
k , λ0)

= −n−1

n∑
i=1

K∑
k=1

π̃θ
(w)

ik

(
∆i

(
log λ0(Ti) + ψi(Ti)

⊤γ
(w+1)
k

)
−

J∑
j=1

λ0(τj) exp
(
ψi(τj)

⊤γ
(w+1)
k

)
1{τj≤Ti}

)
= −n−1

n∑
i=1

∆i log λ0(Ti)

+ n−1

n∑
i=1

K∑
k=1

π̃θ
(w)

ik

J∑
j=1

λ0(τj) exp
(
ψi(τj)

⊤γ
(w+1)
k

)
1{τj≤Ti} + constants

(where we keep only the terms with τj for any j ∈ {1, . . . , J}). By taking the gradient of
the previous expression over λ0(τj) and setting it to zero, that is

−n
−1

λ0

n∑
i=1

∆i1{Ti=τj} + n−1

n∑
i=1

K∑
k=1

π̃θ
(w)

ik exp
(
ψi(τj)

⊤γ
(w+1)
k

)
1{Ti≥τj} = 0. (A.11)

We then obtain the update for λ(w)0 (τj) as the desired result.

Note that the closed-form update of λ(w)0 (τj) is a Breslow-like estimator (Breslow, 1972)
adapted to our model. Finally, recall thatΣi is a diagonal matrix with a diagonal of the form
(ϕ11n1

i

⊤ · · ·ϕL1nL
i

⊤). Estimating Σi thus amounts to estimating ϕ1, . . . , ϕL, whose updates
are given in the following lemma.

Lemma 7. At step w + 1 of the EM algorithm, the update of ϕℓ is

ϕ
(w+1)
ℓ =

1∑n
i=1 n

ℓ
i

n∑
i=1

K∑
k=1

π̃θ
(w)

ik

((
Y ℓ
i − U ℓ

i β
ℓ(w+1)
k

)⊤(
Y ℓ
i − U ℓ

i β
ℓ(w+1)
k − 2V ℓ

i Eθ(w) [bℓi | Dn]
)

+ Tr
(
V ℓ
i

⊤
V ℓ
i Eθ(w) [bℓib

ℓ⊤
i | Dn]

))
, (A.12)

where Eθ(w) [bℓi | Dn] and Eθ(w) [bℓib
ℓ⊤
i | Dn] are obtained from (A.2) and (A.3).
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Proof. The update for ϕ(w) requires to solve the following minimization problem

ϕ(w+1) ∈ argmin
ϕ∈RL

− n−1

n∑
i=1

K∑
k=1

π̃θ
(w)

ik A3
i (β

(w+1)
k ,Diagi(ϕ)), (A.13)

where we denote by Diagi(ϕ) the diagonal matrix Σi to make clear its dependence on ϕ.
We letMik

(w+1) = Uiβk
(w+1) + Vibi,M ℓ(w+1)

ik = U ℓ
i β

ℓ(w+1)
k + V ℓ

i b
ℓ
i . Then, taking advantage

of the structure of Diagi(ϕ), we have

A3
i (β

(w+1)
k ,Diagi(ϕ)) =

1

2
log det(Diagi(ϕ)) + Eθ(w)

[
(Yi −M (w+1)

ik )⊤Diagi(ϕ)−1(Yi −M (w+1)
ik ) | Dn

]
=

1

2

L∑
ℓ=1

nℓi log ϕℓ +
L∑
ℓ=1

1

ϕℓ
Eθ(w)

[
(Y ℓ

i −M
ℓ(w+1)
ik )⊤(Y ℓ

i −M
ℓ(w+1)
ik ) | Dn

]
.

Then, the gradient of A3
i along ϕℓ is simply

∂A3
i (β

(w+1)
k ,Diagi(ϕ))
∂ϕℓ

=
nℓi
ϕℓ
− 1

ϕ2
ℓ

Eθ(w)

[(
Y ℓ
i −M

ℓ(w+1)
ik

)⊤(
Y ℓ
i −M

ℓ(w+1)
ik

)
| Dn

]
,

The closed-form update of ϕ(w)
ℓ is then obtained by setting

− n−1

n∑
i=1

K∑
k=1

π̃θ
(w)

ik

∂A3
i (β

(w+1)
k ,Diagi(ϕ))
∂ϕℓ

= 0

⇔ − n−1

n∑
i=1

K∑
k=1

π̃θ
(w)

ik

(nℓi
ϕℓ
− 1

ϕ2
ℓ

Eθ(w)

[(
Y ℓ
i −M

ℓ(w+1)
ik

)⊤(
Y ℓ
i −M

ℓ(w+1)
ik

)
| Dn

])
= 0

⇔
n∑
i=1

K∑
k=1

π̃θ
(w)

ik

(
nℓiϕ

(w+1)
ℓ − Eθ(w)

[(
Y ℓ
i −M

ℓ(w+1)
ik

)⊤(
Y ℓ
i −M

ℓ(w+1)
ik

)
| Dn

])
= 0.

The result follows from the fact that

Eθ(w)

[(
Y ℓ
i −M

ℓ(w+1)
ik

)⊤(
Y ℓ
i −M

ℓ(w+1)
ik

)
| Dn

]
= Eθ(w)

[(
Y ℓ
i − U ℓ

i β
ℓ(w+1)
k

)⊤(
Y ℓ
i − U ℓ

i β
ℓ(w+1)
k − 2V ℓ

i b
ℓ
i

)
+ b⊤i V

⊤
i Vibi | Dn

]
=
(
Y ℓ
i − U ℓ

i β
ℓ
k

(w+1))⊤(
Y ℓ
i − U ℓ

i β
ℓ
k

(w+1) − 2V ℓ
i Eθ(w) [bℓi | Dn]

)
+ Tr

(
V ℓ
i

⊤
V ℓ
i Eθ(w) [bℓib

ℓ⊤
i | Dn]

)
.
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A.1.3 M-step: Update ξ

In Qn(θ, θ(w)), the parameter ξ appears only in the term

− n−1

n∑
i=1

K∑
k=1

π̃θ
(w)

ik A2
i,k(ξ)

= −n−1

n∑
i=1

K∑
k=1

π̃θ
(w)

ik log
( eX

⊤
i ξk∑K

j=1 e
X⊤

i ξj

)
= −n−1

n∑
i=1

(
π̃θ

(w)

ik log
(
1 +

K∑
j ̸=k
j=1

eX
⊤
i (ξj−ξk)

)

+
K∑
m̸=k
m=1

π̃θ
(w)

im log
(
1 + eX

⊤
i (ξk−ξm) +

K∑
j ̸=k,j ̸=m
j=1

eX
⊤
i (ξj−ξm)

))
.

For k ∈ {1, . . . , K}, the update for ξ(w)k requires to solve the minimization problem

ξ
(w+1)
k ∈ argmin

ξ∈Rp

F1,k(ξ) + ζ1,kΩ1(ξ), (A.14)

where F1,k is defined by

F1,k(ξ) = n−1

n∑
i=1

(
π̃θ

(w)

ik log
(
1 +

K∑
j ̸=k
j=1

eX
⊤
i (ξj−ξ)

)

+
K∑
m ̸=k
m=1

π̃θ
(w)

im log
(
1 + eX

⊤
i (ξ−ξm) +

K∑
j ̸=k,j ̸=m
j=1

eX
⊤
i (ξj−ξm)

))

andΩ1 is the elastic net regularization. We choose to solve (A.14) using the L-BFGS-B algo-
rithm (Zhu et al., 1997) which belongs to the class of quasi-Newton optimization routines
and solves the given minimization problem by computing approximations of the inverse
Hessian matrix of the objective function. It can deal with differentiable convex objectives
with box constraints.

In order to use it with l1 part of the elastic net regularization, which is not differentiable,
we use the trick borrowed from Andrew and Gao (2007): for a ∈ R, write |a| = a+ + a−,
where a+ and a− are respectively the positive and negative part of a, and add the constraints
a+ ≥ 0 and a− ≥ 0. Namely, we rewrite the minimization problem (A.14) as the following
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differentiable problem with box constraints

minimize F1,k(ξ
+ − ξ−) + ζ1,k

(
(1− η)

p∑
j=1

(ξ+j + ξ−j ) +
η

2

∥∥ξ+ − ξ−∥∥2
2

)
subject to ξ+j ≥ 0 and ξ−j ≥ 0 for j ∈ {1, . . . , p}

(A.15)

where ξ± = (ξ±1 , . . . , ξ
±
p )

⊤. The L-BFGS-B solver requires the exact value of the gradient,
which is easily given by

∂F1,k(ξ)

∂ξ
= −n−1

n∑
i=1

(
π̃θ

(w)

ik − eX
⊤
i ξ

eX
⊤
i ξ +

K∑
j ̸=k
j=1

eX
⊤
i ξj

)
X⊤
i . (A.16)

In practice, we use thePython solverfmin_l_bfgs_b fromscipy.optimize (Vir-
tanen et al., 2020).

A.1.4 M-step: Update γ

In Qn(θ, θ(w)), for k ∈ {1, . . . , K}, γk appears only in the term

− n−1

n∑
i=1

π̃θ
(w)

ik A4
i (γk, λ0)

= −n−1

n∑
i=1

π̃θ
(w)

ik

(
∆i

(
log λ0(Ti) + ψi(Ti)

⊤γk
)
−

J∑
j=1

λ0(τj) exp
(
ψi(τj)

⊤γk
)
1{τj≤Ti}

)
= −n−1

n∑
i=1

π̃θ
(w)

ik

(
∆iψi(Ti)

⊤γk −
J∑
j=1

λ0(τj) exp
(
ψi(τj)

⊤γk
)
1{τj≤Ti}

)
+ constants.

Then the update for γ(w)k requires to solve the following minimization problem

γ
(w+1)
k ∈ argmin

γ∈RLM

F2,k(γ) + ζ2,kΩ2(γ), (A.17)

where F2,k is defined by

F2,k(γ) = −n−1

n∑
i=1

π̃θ
(w)

ik

(
∆iψi(Ti)

⊤γ −
J∑
j=1

λ
(w)
0 (τj) exp

(
ψi(τj)

⊤γ
)
1{τj≤Ti}

)
and Ω2 is the sparse group lasso regularization. We choose to solve problem (A.17) using
the iterative soft-thresholding algorithm (ISTA), which is a proximal gradient descent algo-
rithm (Beck and Teboulle, 2009). In our context, this method requires the gradient of F2,k

as well as the proximal operator (Moreau, 1962) of the sparse group lasso. We refer to the
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proof of Yuan et al. (2011, Theorem 1) to show that the proximal operator of the sparse
group lasso can be expressed as the composition of the group lasso and the lasso proximal
operators, which are both well known analytically (Bach et al., 2012) and tractable. The
gradient of F2,k is here given by

∂F2,k(γ)

∂γ
= −n−1

n∑
i=1

π̃θ
(w)

ik

(
∆i −

J∑
j=1

λ
(w)
0 (τj) exp

(
ψi(τj)

⊤γ
)
1{Ti≥τj}

)
ψi(Ti)

⊤. (A.18)

We use thePython librarycopt for the implementation of proximal gradient descent (Fabian
Pedregosa, 2020) and we propose in our FLASH package a first Python implementation
for the proximal operator of the sparse group lasso.

A.1.5 Convex optimization problems with respect to ξ and γ

Lemma 8. The optimization problems defined in (A.14) and (A.17) are convex.

Proof. Given first order derivative of F1,k(ξ) in (A.16), we show that the second order
derivative of F1,k(ξ) is positive definite

∂2F1,k(ξ)

∂ξ∂ξ⊤
= n−1

n∑
i=1

( eX
⊤
i ξ

eX
⊤
i ξ +

K∑
j ̸=k
j=1

eX
⊤
i ξj

)(
1− eX

⊤
i ξ

eX
⊤
i ξ +

K∑
j ̸=k
j=1

eX
⊤
i ξj

)
XiX

⊤
i ∈ S

p
++.

Given first order derivative of F2,k(γ) in (A.18), we show that the second order deriva-
tive of F2,k(γ) is positive definite

∂2F2,k(γ)

∂γ∂γ⊤
= n−1

n∑
i=1

(
π̃θ

(w)

ik

J∑
j=1

λ
(w)
0 (τj) exp

(
ψi(τj)

⊤γ
)
1{Ti≥τj}

)
ψi(Ti)ψi(Ti)

⊤ ∈ SLM++ .

As we already defined the elastic net and sparse group lasso regularization

Ω1(ξ) = (1− η) ∥ξ∥1 +
η

2
∥ξ∥22 and Ω2(γ) = (1− η̃) ∥γ∥1 + η̃

L∑
ℓ=1

∥∥γℓ∥∥
2
,

with (η, η̃) ∈ [0, 1]2. Note that every norm is convex and a non-negative weighted sum
of convex functions is convex (Boyd and Vandenberghe, 2004) then Ω1(ξ) and Ω2(γ) are
convex functions. Therefore, F1,k(ξ) + Ω1(ξ) and F2,k(γ) + Ω2(γ) are strictly convex.

A.1.6 The extended EM algorithm

Algorithm 1 below describes the main steps of our proposed EM algorithm.
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Algorithm 1 The extended EM algorithm for FLASH inference
Data: Training data Dn; tuning hyper-parameters (ζ1,k, ζ2,k)k∈{1,...,K}
Input: maximum iterationW , tolerance ε
Output: Last parameters θ̂ ∈ RP

1: Initialize parameters θ(0) ∈ RP

2: for w = 1, . . . ,W do
E-step:

3: Compute (Eθ(w) [bi|Ti,∆i, Yi])i∈{1,...,n}
4: Compute (Eθ(w) [bib

⊤
i |Ti,∆i, Yi])i∈{1,...,n}

5: Compute (π̃θ(w)

ik ) i∈{1,...,n}
k∈{1,...,K}

M-step:
6: Update D(w+1)

7: Update (ξ(w+1)
k )k∈{1,...,K} with L-BFGS-B

8: Update (β(w+1)
k )k∈{1,...,K}

9: Update (γ(w+1)
k )k∈{1,...,K} with proximal gradient descent

10: Update λ(w+1)
0 and ϕ(w+1)

11: if
(
Lpen
n (θ(w+1))− Lpen

n (θ(w))
)
/Lpen

n (θ(w)) < ε then
break

12: end if
13: end for
14: Return θ̂ = θ(w+1)

A.1.7 Monotone convergence

By denoting ζ(w)p = (θ
(w+1)
1 , . . . , θ

(w+1)
p , θ

(w)
p+1, . . . , θ

(w)
P ) and from the definition of our

proposed EM algorithm, at step w + 1, we have

Qpen
n (θ(w), θ(w)) ≥ Qpen

n (ζ
(w)
1 , θ(w)) ≥ · · · ≥ Qpen

n (ζ
(w)
P−1, θ

(w)) ≥ Qpen
n (θ(w+1), θ(w)). (A.19)

Then, we are in a generalized EM (GEM) setting (Dempster et al., 1977), where

Qpen
n (θ(w+1), θ(w)) ≤ Qpen

n (θ(w), θ(w)). (A.20)

For such algorithms, we refer to monotonicity of the likelihood property from the book
of McLachlan and Krishnan (2007, Section 3.3) to show that the objective function (A.1)
decreases at each iteration, namely

Lpen
n (θ(w+1)) ≤ Lpen

n (θ(w)).
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A.2 Mathematical details of JLCMs and SREMs

Given our notation used in the main body of the paper, we define here the sub-models
of the two main approaches of joint models: JLCMs and SREMs.

JLCMs It assumes that the population is heterogeneous and that there are homogeneous
latent classes that share the same marker trajectories and the same prognosis. The latent
class membership probability is assumed to take the form of multinomial logistic regression

P[gi = k |Xi] =
eX

⊤
i ξk∑K

j=1 e
X⊤

i ξj
.

The dependence between the time-to-event and the longitudinal marker is fully captured
by a latent class structure. There are no shared associations between the longitudinal and
survival models. Given the latent class membership, each submodel is assumed to be in-
dependent. If we choose Gaussian linear model for longitudinal markers and Cox relative
risk model for the time-to-event, we have

yℓi (t
ℓ
ij) | bℓi , gi = k ∼ N (mℓ

ik(t
ℓ
ij), ϕℓ) and λ(t | gi = k) = λ0(t) exp

(
X⊤
i γk

)
,

where γk is the p-vector of unknown parameters. We consider the implementation of JLCMs
in R package LCMM (function mpjlcmm). In this context, the predictive marker for subject
i at time si is

R̂ik(si) =
Pθ̂(gi = k)fθ̂(Ti = si,∆i = 0,Yi(s−i )|gi = k)∑K
j=1Pθ̂(gi = j)fθ̂(Ti = si,∆i = 0,Yi(s−i )|gi = j)

,

where the density fθ̂ are the one corresponding to a JLCM model.

SREMs It assumes a homogeneous population of subjects and the dependency between
the time-to-event and the longitudinal marker is influenced by some random effects learned
in a linear mixed model. If we choose Gaussian linear model for longitudinal markers, we
have

yℓi (t
ℓ
ij) | bℓi ∼ N (mℓ

i(t
ℓ
ij), ϕℓ),

where mℓ
i(t

ℓ
ij) = uℓ(tℓij)

⊤βℓ + vℓ(tℓij)
⊤bℓi and βℓ is a rℓ-vector of unknown fixed effect

parameters. The random effects are included as covariates in the survival model through
the shared association functions ϕ. If we choose Cox relative risk model for the time-to-
event, we have

λ(t | gi = k) = λ0(t) exp
(
X⊤
i γ0 +

L∑
ℓ=1

ϕ(bℓi , ti)
⊤γℓ
)
,

where γ0 and γℓ are unknown parameters.
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We consider the implementation of SREMs in R package JMbayes. In this context, the
predictive marker for subject i at time si is

R̂i(si) = exp
(
X⊤
i γ0 +

L∑
ℓ=1

ϕ(bℓi , si)
⊤γℓ
)
,

where the shared associations takes the form ϕ(bℓi , si) = uℓ(si)
⊤βℓ + vℓ(si)

⊤bℓi .

A.3 Experimental details and additional experiments

A.3.1 Initialization

Initialization

In order to help convergence, θ(0) should be well chosen. We then give some details
about the starting point θ(0) of this algorithm. For all k = 1, . . . , K , we first choose ξ(0)k = 0d
and γk(0) = 0.01 ∗ 1LA. Then, we initialize λ(0)0 like if there are no latent classes (γ(0)1 =

· · · = γ
(0)
K ) with a standard Cox proportional hazards regression with time-independent

features. Finally, the longitudinal submodel parameters β(0)
k , D(0) and ϕ(0) are initialized

– again like if there are no latent classes (β(0)
1 = · · · = β

(0)
K ) – using a multivariate linear

mixed model with an explicit EM algorithm, being itself initialized with univariate fits.

Multivariate linear mixed model

Let us derive here the explicit EM algorithm for the multivariate Gaussian linear mixed
model used to initialize the longitudinal parameters β(0)

k ,D(0) and ϕ(0) in the proposed EM
algorithm in Section A.3.1, acting as if there are no latent classes (β(0)

1 = · · · = β
(0)
K ). For

the sake of simplicity, let us denote here

θ = (β⊤, D, ϕ⊤)⊤ ∈ RP

the parameter vector to infer. The conditional distribution of Yi|bi then writes

f(Yi|bi; θ) = −(2π)−
ni
2 det(Σi)

− 1
2 exp− 1

2
(Yi−Mi)

⊤Σ−1
i (Yi−Mi),
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whereMi = Uiβ + Vibi in this context. The negative complete log-likelihood then writes

Lcomp
n (θ) = Lcomp

n (θ;Dn, b)

=
n∑
i=1

−1

2

(
ni log 2π + log det(Σi) + (Yi −Mi)

⊤Σ−1
i (Yi −Mi)

)
− 1

2

(
r log 2π + log det(D) + b⊤i D

−1bi
)
.

E-step. Supposing that we are at step w + 1 of the algorithm, with current iterate de-
noted θ(w), we need to compute the expectation of the negative complete log-likelihood
conditional on the observed data and the current estimate of the parameters, which is given
by

Qn(θ, θ(w)) = Eθ(w) [Lcomp
n (θ)|Dn].

Here, the calculation of this quantity is reduced to the calculation ofEθ(w) [bi|Yi] andEθ(w) [bib
T
i |Yi]

for i = 1, . . . , n. The marginal distributions of Yi and bi being both Gaussian, one has from
Bayes Theorem

f(bi|Yi; θ(w)) ∝ exp
(
− 1

2
(bi − µ(w)

i )⊤Ω
(w)
i

−1
(bi − µ(w)

i )
)

where

Ω
(w)
i = (Vi

⊤Σ
(w)
i

−1
Vi +D(w)−1

)−1 and µ
(w)
i = Ω

(w)
i Vi

⊤Σ
(w)
i

−1
(Yi − Uiβ(w)).

Then, one has

{
Eθ(w) [bi|Yi] = µ

(w)
i ,

Eθ(w) [bib
T
i |Yi] = Ω

(w)
i + µ

(w)
i µ

(w)
i

⊤
.

M-step. Here, we need to compute

θ(w+1) ∈ argmin
θ∈RP

Qn(θ, θ(w)).

The parameters updates are then naturally given in closed form by zeroing the gradient.
One obtains

β(w+1) =
( n∑
i=1

U⊤
i Ui

)−1( n∑
i=1

U⊤
i Yi − UiViEθ(w) [bi|Yi]

)
,

ϕ
(w+1)
ℓ =

( n∑
i=1

nℓi

)−1( n∑
i=1

(
Y ℓ
i − U ℓ

i β
(w+1)
ℓ

)⊤(
Y ℓ
i − U ℓ

i β
(w+1)
ℓ − 2V ℓ

i Eθ(w) [bℓi |Y ℓ
i ]
)

+ Tr
(
V ℓ
i

⊤
V ℓ
i Eθ(w) [bℓib

ℓ⊤
i |Y ℓ

i ]
))
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and

D(w+1) = n−1

n∑
i=1

Eθ(w) [bibi
⊤|Yi].

Implementation of multivariate linear mixed model

We implement an EM algorithm for fitting a multivariate linear mixed model used to
initialize parameters of longitudinal submodel in Algorithm 1. Let us introduce the list
Ω(w) = [Ω

(w)
1 , . . . ,Ω

(w)
n ], the matrices µ = [µ1, . . . , µn] ∈ Rr×n, U ℓ = [U ℓ

1
⊤ · · ·U ℓ

n
⊤
]
⊤
∈

Rnℓ×qℓ , U = [U⊤
1 · · ·U⊤

n ]
⊤ ∈ RN×q,

V ℓ =

V
ℓ
1 · · · 0
... . . . ...
0 · · · V ℓ

n

 , V =

V1 · · · 0
... . . . ...
0 · · · Vn

 , Ωℓ(w) =

Ω
ℓ
1
(w) · · · 0
... . . . ...
0 · · · Ωℓ

n
(w)


that belong respectively inRnℓ×nrℓ ,RN×nr andRnrℓ×nrℓ , and the vectors µ̃(w) = (µ

(w)
1

⊤
· · ·µ(w)

n

⊤
)
⊤
∈

Rnr, (µ̃ℓ)(w) =
(
(µℓ1)

(w)⊤ · · · (µℓn)(w)
⊤)⊤ ∈ Rnrℓ , yℓ = (yℓ1

⊤ · · · yℓn
⊤
)⊤ ∈ Rnℓ with nℓ =∑n

i=1 n
ℓ
i and y = (y⊤1 · · · y⊤n )⊤ ∈ RN with N =

∑n
i=1 ni. The β update then rewrites

β(w+1) = (U⊤U)−1U⊤(y − V µ̃(w)).

For the D update, one has

D(w+1) = n−1
(
sum(Ω(w)) + µ(w)µ(w)⊤).

And finally for the ϕ update, one has

ϕ
(w+1)
ℓ = n−1

ℓ

[
(yℓ − U ℓβ

(w+1)
ℓ )

⊤(
yℓ − U ℓβ

(w+1)
ℓ − 2V ℓ(µ̃ℓ)(w)

)
+ Tr

{
V ℓ⊤V ℓ

(
Ωℓ(w) + (µ̃ℓ)(w)(µ̃ℓ)(w)

⊤)}]
.

In our implementation, these parameters are initialized with univariates fits using the func-
tion mixedlm (linear mixed effects model) in the Python package statsmodels.

A.3.2 Details of the simulation setting

We assume that each of the n subjects belongs to one of two different profiles: high-risk
and low-risk. Let us denote byH ⊂ {1, . . . , n} the set of high-risk subjects. For generating
the time-independent features matrix of subject i, we take

Xi ∈ Rp ∼

{
N
(
µ,Σ1(ρ1)

)
if i /∈ H,

N
(
− µ,Σ1(ρ1)

)
if i ∈ H,
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where the mean µ corresponds to the gap between time-independent features of high-risk
subjects and low-risk subjects, and Σ1(ρ1) a p × p Toeplitz covariance matrix (Mukherjee
andMaiti, 1988) with correlation ρ1 ∈ (0, 1), that is,Σ1(ρ1)jj′ = ρ

|j−j′|
1 . In order to simulate

the class gi for each subject i, we choose a sparse coefficient vector where we decide to keep
only p̄ active features, that is

ξ = (ν, . . . , ν, 0, . . . , 0) ∈ Rp, (A.21)

with ν ∈ R being the value of the active coefficients. Then, we generate gi ∼ B
(
πξ(Xi)

)
,

where B(α) denotes the Bernoulli distribution with parameter α ∈ [0, 1] and

πξ(Xi) =
eX

⊤
i ξ

1 + eX
⊤
i ξ

Now, concerning the simulation of longitudinal markers, the idea is to sample from
multivariate normal distributions. Moreover, we want to induce sparsity in the longitudinal
data to reduce correlation between longitudinal features in each class k. We denote by Sk
the set of active longitudinal features in class k, which is randomly selected from the set
{1, . . . , L}. Then, we simulate longitudinal features of the form

Y ℓ
i (t) =

K∑
k=1

1{gi=k}

((
(1, t)⊤βℓk + (1, t)⊤bℓi

)
1{ℓ∈Sk} + εℓi(t)

)
where t ≥ 0, the error term εℓi(t) ∼ N (0, σ2

ℓ ), the global variance-covariance matrix for
the random effects components is such thatD = Σ2(ρ2), a r×r Toeplitz covariance matrix
with correlation ρ2 ∈ (0, 1), and the fixed effect parameters are generated according to

βℓk ∼ N
(
µk,

[
ρ3 0
0 ρ3

])
for k ∈ {1, 2} andwith correlation ρ3 ∈ (0, 1). The number of observations for each subject
is randomly selected from 1 to 10, and the measurement times are simulated from a uniform
distribution with mininmum zero and maximum its survival time.

Now to generate survival times, we choose a risk model with

λi(t | gi = k) = λ0(t) exp
( L∑
ℓ=1

Ψℓ
i,k(t)γ

ℓ
k

)
, (A.22)

We choose a Gompertz distribution (Gompertz, 1825) for the baseline, that is

λ0(t) = κ1κ2 exp(κ2t) (A.23)

with κ1 > 0 and κ2 ∈ R the scale and shape parameters respectively, which is a common
distribution choice in survival analysis (Klein and Moeschberger, 2005) with a rich history
in describing mortality curves. For the choice of the association features, we consider the
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two functionals in form of random effects linear predictor mℓ
k(t) (Chi and Ibrahim, 2006)

and random effects bℓ (Hatfield et al., 2011), that isΨℓ
i,k(t) =

(
βℓk,1+β

ℓ
k,2t+b

ℓ
i,1+b

ℓ
i,2t , b

ℓ⊤
i

)⊤
and γℓk = νk1{ℓ∈Sk} where νk ∈ R is the coefficients of active association features for each
group k. Then one can write

λi(t|gi = k) = λ0(t) exp(ιi,k,1 + ιi,k,2t),

being a Cox model with a linear relationship between time-varying feature and log hazard
that allows the following explicit survival times generation process. One can now generate
survival times explicitly, via the inversion method, as

T ⋆i |gi = k ∼ 1

ιi,k,2 + κ2
log
(
1− (ιi,k,2 + κ2) logUi

κ1κ2 exp ιi,k,1

)
(A.24)

where Ui ∼ U
(
[0, 1]

)
, see Austin, 2013. The distribution of the censoring variable Ci is the

geometric distribution G(αc), where αc ∈ (0, 1) is empirically tuned to maintain a desired
censoring rate rc ∈ [0, 1]. The choice of all hyper-parameters is driven by the applications
on simulated data presented in Section 3.5.1 in themain paper, and summarized in Table A.2.

Table A.2 – Hyper-parameter choices for simulation with n = 500, L = 5 and p = 10.

|H| |Sk| (ρ1, ρ2, ρ3) µ µ1 µ2 σ2
ℓ (κ1, κ2) (ν, ν1, ν2) rc p̄

200 2 (0.5, 0.01, 0.01) 1
(
−0.6
0.1

) (
0.05
0.2

)
0.25 (0.05, 0.1) (0.2, 0.1, 0.4) 0.3 5

A.3.3 Description of the datasets used in comparison study

JoineRML simulation We use the classical R package joineRML (Hickey et al., 2018)
to simulate multivariate longitudinal and time-to-event data from a joint model. The multi-
variate longitudinal features are generated for all possible measurement times using multi-
variate Gaussian linear mixedmodel. Failure times are simulated from proportional hazards
time-to-event models. We sample two time-independent features and two longitudinal fea-
tures for 250 individuals.

PBCseq dataset This dataset which is available in the R package JMbayes (Rizopou-
los, 2016a), contains the follow-up of 312 patients with primary biliary cirrhosis, a rare
autoimmune liver disease. Several longitudinal features are measured over time (for exam-
ple serum bilirubin, serum cholesterol, albumin), along with information on gender, age,
and drug used recorded once at the beginning of the study. Time-to-event is also recorded
with a censoring rate of 55%.

Aids dataset This dataset which is available in the R package JMbayes (Rizopoulos,
2016a), compares the efficacy and safety of two drugs for 467 patients diagnosed with HIV
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who were either intolerant or resistant to zidovudine therapy. Information on gender, age,
drug used, AIDS infection status, and level of intolerance to zidovudine is collected at the
start of the study. The longitudinal feature of interest here is the measurement of the num-
ber of CD4 cell (a type of white blood cell), a laboratory test used to understand the pro-
gression of HIV disease. Time-to-event is also recorded with a censoring rate of 40%.

A.3.4 Procedure to evaluate model performance

Let us describe now in Algorithm 2 the procedure we follow to evaluate model perfor-
mance on simulated data and real data described in Section 3.5 in the main paper.

Algorithm 2 Procedure followed to assess performances of a given model in our real-time
prediction paradigm.

Input: Dataset Dn; a model under study
Output: Confidence intervals on C-index metric as well as on running time.
1: We run K iter = 50 independent experiments
2: for k = 1, . . . , K iter do
3: start_time = time()
4: (Dntrain ,Dntest)← split_train_test(Dn)
5: model.fit(Dntrain)
6: for i = 1, . . . , ntest do
7: si ∼ max

ℓ∈{1,...,L}
(tℓini

)×
(
1− Beta(2, 5)

)
8: Yi ←

(
Y ℓ
i (t

ℓ
ij)
)
j∈{1,...,nℓ

i−1}
ℓ∈{1,...,L}

with tℓij ≤ si

9: Xi = (Xi, Yi)

10: R̂k
i (si)← model.predict(Xi)

11: end for
12: scorek ← c_index

(
(R̂k

i (ti), Ti,∆i)i=1,...,ntest

)
13: end_time = time()
14: running_timek = end_time− start_time
15: end for
16: Return θ̂ = θ(w+1)

Screening phase. Weuse themultivariate Coxmodel and C-indexmetric for selecting the
M most important features from a specific set of feature extraction functions F . For each
feature in F , we extract the n×L matrix from all L longitudinal markers of all n subjects.
Then we fit this extracted matrix with all the survival times T and censoring indicators ∆
in the Cox model and use the C-index metric to evaluate the performance. Finally, we select
M features have the highest C-index values.

A.3.5 Interpretation of the model on medical datasets

Tables A.3a and A.3b provide the estimated coefficients of FLASH on the PBCseq and
Sepsis datasets. Coefficients are organized as follows: first, the time-independent parame-
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ters ξ, then the coefficients corresponding to the association features of the low-risk group
γℓ1,m and finally the ones of the high-risk group γℓ2,m. The initial values of the longitudinal
markers are also considered as time-independent features in these experiments. Since each
longitudinal marker is associated to a vector of association features, what we call “coef-
ficient” is actually the Euclidean norm of the coefficients associated to these association
features, that is, the norm of (γℓk,1, . . . , γℓk,M). In addition, to obtain standard errors for
the coefficient estimates, we use a Bootstrap approach adapted to the presence of a Lasso
penalty following Chzhen et al. (2019). We first run the model with the Lasso penalty to get
the support of estimated coefficients. We then rerun the model 10 times without the Lasso
penalty on bootstrap samples with only features whose coefficients are in the support of
the first run.

Note that with this approach the errors of estimation of the coefficients that are not in
the support of the first run are then not evaluated. In other words, we do not evaluate the
stability of our variable selection approach. To do this, we could follow the procedure of
Bach (2008) who suggest running several runs of Lasso on a bootstrap sample, and then
looking at the different support of the coefficients.

A.3.6 Experiments on a high-dimensional dataset

We evaluate the performance of FLASH model with a challenging high-dimensional
dataset from NASA, which is available at https://data.nasa.gov. This dataset
describes the degradation of 200 aircraft engines, where 17 multivariate longitudinal fea-
tures are measured for each different aircraft engine until its failure. There are also three
operational settings that significantly affect engine performance. Note that we only apply
FLASH to this dataset because the other models did not converge after running for one day,
highlighting the fact that they do not scale to high-dimensional settings.
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Figure A.1 – NASA dataset results. Left: in red the support of the estimated coefficient ξ̂
ab γ̂k for k ∈ {1, 2}, the dashed pink lines separate the features corresponding to each lon-
gitudinal marker ℓ. Right: the evolution curves of the predictive marker R̂i(t) for varying
times t and each subject where we well separate the subjects in the high risk group (in red
color) and low risk (in blue color) based on their predictive marker at last measurement
time with a threshold 0.5 represent by horizontal dashed line.

We illustrate in Figure A.1 the results obtained by FLASH. In the left panel, we can
see the effect of regularization where the coefficients learned by the model are sparse and
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some longitudinal markers are entirely discarded. In particular, five longitudinal markers
are excluded for the first group k = 1 but not for the group k = 2while the last twomarkers
are never selected. In the right panel, we show the evolution in time of the predictivemarker
for each subject. We can see that, as time passes, more data is observed and the subjects
are better separated into two groups of different risks.

A.3.7 Experiments on using signatures as association functions

Signature transform The association features can be extracted by a signature transfor-
mation. We refer to Fermanian (2021) for a detailed presentation of this transformation and
simply recall here its definition. Let I = (ℓ1, . . . , ℓk) be a word of size k from the alphabet
{1, . . . , L}k. The signature associated to I is defined as the mapping

t 7→ SI(Yi(t−)) :=
∫
0<u1<···<uk<t

dyℓ1i (u1) . . . dy
ℓk
i (uk).

The signature of depth N is defined as the vector

SN(Yi(t−)) =
(
SI(Yi(t−))

)
|I|≤N

.

It is a transformation from a multivariate longitudinal marker to a sequence of coefficients,
that are independent of time parameterization and encodes geometric properties (for exam-
ple, the second order coefficients correspond to areas). It is therefore a very different trans-
formation from the ones used in the tsfresh package, in particular because it encodes
information on interactions between coordinates, whereas tsfresh focuses on univari-
ate features. The truncation depth N is an hyperparameter that can be selected typically
by cross-validation.

Results Figure A.2 shows the performance of FLASH with signatures as association fea-
tures compared with the performance of the model with the feature extracted from tsfresh
and the two competing methods on the four datasets presented in the article. The pre-
diction performance of the model with the signature transformation is comparable to the
competing methods and better for the FLASH_simu dataset, and its computation cost is
reduced since it does not require to implement a screening phase procedure to select the
top association features.

A.3.8 Procedure to select the optimal number of latent groups

The optimal number of latent groups,K , is selected based on the Bayesian information
criterion (BIC) (Hastie et al., 2009), which is defined as

BIC(K) = −2L̂pen
n (θ;K) + log(n)K,
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Figure A.2 – The performance of the Flash model with the signature transform compares
with the competing methods.

where L̂pen
n (θ;K) is the optimal value of the likelihood function (defined in (3.8) the main

paper) with K groups and n is the number of subjects. The optimal K is selected with the
“elbow method", that is, we pick the value of K corresponding to the first large drop in
the BIC values. For example, Figure A.3 shows the curve of the BIC values obtained with
different K on the PBCseq dataset. In this case, the optimalK is 4.

A.3.9 Sensitivity to latent class assumptions

To assess the sensitivity of the method, we have run an additional simulation where
we deviate from the assumption that the latent class is generated from (3.1) in the main
paper. More precisely, we have used a probit model (Aldrich and Nelson, 1984), where the
probability of belonging to a class has the form:

P(gi = k) = Φ(X⊤
i ξk),
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Figure A.3 – The BIC values on the PBCseq dataset.

whereΦ is the cumulative distribution function of the standard normal distribution. In Fig-
ure A.4 below, we compare the performance of our method on the dataset simulated in the
“well-specified” setting, described in Section 5.1 of the paper, and on a dataset simulated
in this misspecified setting. We can see that the performance is slightly better in the Lo-
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Figure A.4 – The performance of FLASH in terms of C-index, on two simulated datasets:
the LR (Logistic Regression) dataset is the one simulated with the model (3.1) in the main
paper and the Probit dataset described above.

gistic Regression case, which was to be expected, but that this difference is not significant.
Therefore, our proposed method is not too sensitive to the assumption of the model on the
probability of latent class membership.
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Table A.3 – Estimated coefficients with standard errors.

(a) PBCseq dataset

Features Coefficient

Drug 0.0
Age 0.0
Sex 0.3459 ± 0.0037

Initial value of Serbilir 0.3476 ± 0.0091
Initial value of Albumin 0.0
Initial value of SGOT 0.3664 ± 0.0069
Initial value of Platelets 0.0

Initial value of Prothrombin 0.3587 ± 0.0088
Initial value of Alkaline 0.332 ± 0.0042
Initial value of SerChol 0.2978 ± 0.0093

Serbilir 0.0341 ± 0.0161
Albumin 0.0833 ± 0.0088
SGOT 0.0
Platelets 0.0325 ± 0.0159

Prothrombin 0.0819 ± 0.0129
Alkaline 0.0807 ± 0.0092
SerChol 0.0
Serbilir 0.0
Albumin 0.0
SGOT 0.0
Platelets 0.0

Prothrombin 0.0
Alkaline 0.2788 ± 0.0355
SerChol 0.0

(b) Sepsis dataset

Features Coefficient

Age 0.152 ± 0.0414
Gender 0.0
Temp 0.0
DBP 0.0669 ± 0.1234

BaseExcess 0.2779 ± 0.0404
HCO3 0.0
pH 0.0

PaCO2 0.119 ± 0.0987
BUN 0.0

Calcium 0.0
Chloride 0.0
Creatinine 0.0
Glucose 0.0

Magnesium 0.0
Phosphate 0.0
Potassium 0.0

Hct 0.0
Hgb 0.0
PTT 0.0
WBC 0.0

Platelets 0.0
Initial value of HR 0.0

Initial value of O2Sat 0.1325 ± 0.1049
Initial value of SBP 0.6485 ± 0.0788
Initial value of Resp 0.7821 ± 0.1001

HR 0.0
02Sat 0.0
SBP 0.1111 ± 0.0211
Resp 0.1016 ± 0.0176
HR 0.0198 ± 0.0051
02Sat 0.0783 ± 0.0066
SBP 0.0849 ± 0.0064
Resp 0.0809 ± 0.0056
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B.1 Supplementary Mathematical Elements

B.1.1 Supplementary elements on survival analysis

The counting process associated with the observation of T i1 < T i2 < . . . is denoted by
Ñ i. The observed counting process is t → N i(t) =

∫ t
0
Y i(s)dÑ i(s). The integral against

the counting process N i is to be understood is to be understood as a Stieltjes integral,
i.e.,

∫ t
0
λi⋆(s)dN

i(s) =
∑

Ti≤t λ
i
⋆(Ti) — see Aalen et al. (2008, p.55-56). Its intensity writes

λi⋆(t |Wi, (xi(s))s≤t)Y
i(t), which we simply write λi⋆(t)Y i(t) to alleviate notations.

To the observations, we associate the filtration F , with all σ-fields at 0 ≤ t ≤ τ defined
as

Ft =
⋃

i=1,...,n

F it

where F it = σ
(
xi(s),Wi, N i(s), Y i(s), 0 ≤ s ≤ t

)
. We assume in addition that Y i is

F i-predictable.

Using the Doob-Meyer decomposition of counting processes - see Aalen et al. (2008, p.
52-60) - we have

N i(t) =

∫ t

0

λi⋆(s)Y
i(s)ds+M i(t) (B.1)

whereM i is local square integrable martingale with respect to F i.

B.1.2 Picard-Lindelhöf Theorem

Theorem 2. Let x : [0, τ ] → Rd be a continuous path of bounded variation, and assume
that G : Rp → Rp×d is Lipschitz continuous. Then the CDE

dz(t) = G(z(t))dx(t)

with initial condition z0 ∈ Rp has a unique solution on [0, τ ].

A full proof can be found in Fermanian et al. (2021, Theorem 4). Remark that in our
setting, NCDEs are Lipschitz since typical neural vector fields, such as feed-forward neural
networks, are Lipschitz (Virmaux and Scaman, 2018). This ensures that the solutions to
NCDEs are well-defined.

B.1.3 Continuity of the Flow of CDEs

We state a result on the continuity of the flow adapted from Bleistein and Guilloux
(2024), Theorem B.5.
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Theorem 3. Let F,G : Rp → Rp×d be two Lipschitz vector fields with Lipschitz constants
LF, LG > 0. Let x, r : [0, τ ] → Rd be either continuous or piecewise constant paths of
total variations bounded by Lx and Lr. Consider the controlled differential equations

dw(t) = F(w(t))dx(t) and dv(t) = G(v(t))dr(t)

with initial conditions w(0) = v(0) = 0 respectively. It then follows that for any t ∈ [0, τ ]

∥w(t)− v(t)∥ ≤

(
∥x− r∥∞,[0,t]

(
1 + LFLrK

)
+max

v∈Ω
∥F(v)−G(v)∥op Lr

)
exp(LFLx),

where

K =

[
LF

(
∥F(0)∥op Lx

)
exp(LFLx) + ∥F(0)∥op

]
exp(LFLx)

and

Ω =
{
u ∈ Rp | ∥u∥ ≤ (∥G(0)∥op Lr) exp(LGLr)

}
.

B.1.4 Linearization in the Signature Space

General Result

In this section, we give additional details on the linearization of CDEs in the signature
space. We first define the differential product.

Definition B.1.1. Let F,G : Rp → Rp be two C∞ vector fields and let J(·) be the Jacobian
matrix. Their differential product F ⋆ G : Rp → Rp is the smooth vector field defined for
every h ∈ Rp by

(F ⋆ G)(h) =
e∑
j=1

∂G

∂hj
(h)Fj(h) = J(G)(h)F (h).

We now consider a tensor field F : Rp → Rp×d which we write

F =

 | . . . |
F 1 . . . F d

| . . . |

 ,
where for every 1 ≤ i ≤ d, F i : Rp → Rp, and we define

Γk(F) := sup
∥h∥≤M, i1≤···≤ik≤d

∥∥F i1 ⋆ · · · ⋆ F ik(h)
∥∥
2
.
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Consider the solution z : [0, τ ]→ Rp to the CDE

dz(t) = F(z(t))dx(t) (B.2)
z(0) = 0 ∈ Rp

where x : [0, τ ] → Rd is a continuous path of finite total variation bounded by Lxτ > 0.
We recall the following result from Fermanian et al. (2021), Proposition 4.

Proposition 4 (Fermanian et al. (2021), Proposition 4.). We have

∥∥zi⋆(t)− α⊤
⋆,NSN(x[0,t])

∥∥ ≤ (dLxt)
N+1

(N + 1)!
ΓN+1(F)

As a consequence, we have the following theorem.

Theorem 5. Let F : Rp → Rp×d be a C∞ tensor field. If

(dLxt)
N+1

(N + 1)!
ΓN+1(F)→ 0

as N → +∞, then the solution z to the CDE (B.2) can be written as

z(t) =
∑
k≥1

∑
I∈{1,...,d}k

SI(x[0,t])F
i1 ⋆ · · · ⋆ F ik(0).

Application to our Model

Recall that we have defined our generative model through the CDE

dzi⋆(t) = G⋆(z
i
⋆(t))dx

i(t)

with initial condition zi⋆(0) = 0, where G⋆ : R→ Rp is a LG⋆-Lipschitz vector field. Since
in our case, the vector fieldG⋆ maps R to Rd, it can be written as

G⋆(z) =
[
G1
⋆(z) . . . Gd

⋆(z),
]
,

where for every 1 ≤ i ≤ d, Gi
⋆ : R → R. In this setup, for 1 ≤ i1, i2 ≤ d the differential

product collapses to

(Gi1
⋆ ⋆ G

i2
⋆ )(h) = (Gi2

⋆ )
′(h)×Gi1

⋆ (h) ∈ R.

For 1 ≤ i1, i2, i3 ≤ d, it writes

(Gi1
⋆ ⋆ G

i2
⋆ ⋆ G

i3
⋆ )(h) = (Gi2

⋆ ⋆ G
i3
⋆ )

′(h)×Gi1
⋆ (h)

=
(
(Gi3

⋆ )
′(h)×Gi2

⋆ (h)
)′ ×Gi1

⋆ (h)

=
(
(Gi3

⋆ )
(2)(h)×Gi2

⋆ (h) + (Gi3
⋆ )

′(h)× (Gi2
⋆ )

′(h)
)
×Gi1

⋆ (h) ∈ R.
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One can derive the similar expression for 1 ≤ i1, . . . , ik ≤ d. In line with Theorem 5, we
make the following Assumption on the vector fieldG⋆.

Assumption 7. The vector fieldG⋆ satisfies

(Lxτd)
N+1

(N + 1)!
ΓN+1(G⋆)→ 0

as N →∞.

We can write the ℓ2 and ℓ1 norms of α⋆,N as functions of the differential product ofG⋆.

Lemma 9. We have that

∥α⋆,N∥2 ≤
( N∑
k=1

dkΓk(G⋆)
2
)1/2

and

∥α⋆,N∥1 ≤
N∑
k=1

dkΓk(G⋆).

Proof. Starting with the ℓ2 norm, one has

∥α⋆,N∥2 =
( N∑
k=1

∑
1≤i1,i2,...,ik≤d

Gi1
⋆ ⋆ · · · ⋆ Gik

⋆ (0)
2
)1/2

≤
( N∑
k=1

dk max
1≤i1,i2,...,ik≤d

|Gi1
⋆ ⋆ · · · ⋆ Gik

⋆ (0)|2
)1/2

≤
( N∑
k=1

dkΓk(G⋆)
2
)1/2

.

Moving on to the ℓ1 norm, we similarly obtain

∥α⋆,N∥1 =
( N∑
k=1

∑
1≤i1,i2,...,ik≤d

|Gi1
⋆ ⋆ · · · ⋆ Gik

⋆ (0)|
)

≤
( N∑
k=1

dk max
1≤i1,i2,...,ik≤d

|Gi1
⋆ ⋆ · · · ⋆ Gik

⋆ (0)|
)

≤
N∑
k=1

dkΓk(G⋆).
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B.1.5 Signature of a Discretized Path

We recall the following result from Bleistein et al. (2023).

Theorem6. Let x : [0, τ ]→ Rd be a path satisfyingAssumption 4. LetD = {t1, . . . , tK} ⊂
[0, τ ] be a grid of sampling points, and xD the piecewise constant interpolation of the path
x sampled on the grid D. For all α ∈ Rq, where q := dN−1

d−1
, we have

|α⊤(SN(x[0,t])− SN(x
D
[0,t])

)
| ≤ c3(N) ∥α∥ |D|,

where

c3(N) = 2e
(Lxt)

N−1 − 1

Lxt− 1
Lx.

B.1.6 The Cox Connection

Signature-based embeddings. Consider a continuous path of bounded variation x :
t 7→ (x(t), t) ∈ Rd. First, remark that for every word of size one I ∈ {1, . . . , d}, the
signature writes

SI(x[0,t]) =

∫
0<u1<t

dx(I)(s) = x(I)(t).

Furthermore, for any word I = (d, . . . , d) of size k made only of the letter d, i.e., words
that only include the time channel, we have

SI(x[0,t]) =

∫
0<u1<···<uk<t

du1 . . . duk =
1

k!
tk.

This shows that for x = xi,D

α⊤SN(x
i,D
[0,t]) = α⊤

I1
(1, t, t2, . . . , tN) + α⊤

I2
Xi(t) +

∑
I∈I3

αIS
I(xi,D[0,t])

where αI1 is the subvector of α collecting all coefficients associated to the words
{d}, {d, d}, . . . , {d, . . . , d} containing only the letter d, αI2 is the subvector collecting all
coefficients associated to the d − 1 words {1}, {2}, . . . , {d − 1} of size 1, and αI3 collects
the remaining coefficients.

NCDEs. For any N ≥ 1, consider the augmented vector field

G̃ψ(z) =

[
Gψ(z) 0p×(N−1)

0(N−1)×d I(N−1)×(N−1)

]
∈ R(N−1+p)×(N−1+d), z ∈ Rp,

and an embedding of the time series Xi of the form x̃i,D(s) = (Xi(tk), s, s
2, . . . , sN) ∈
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Rd+N−1 for s ∈ [tk, tk+1[. The latent state of the NCDE model is now updated as

z̃i,Dθ (tk+1) = z̃i,Dθ (tk) + G̃ψ(z̃
i,D
θ (tk))∆X̃i(tk+1)

= z̃i,Dθ (tk) +


Gψ(z

i,D
θ )∆Xi(tk+1)
∆tk+1

...
∆tNk+1

 =


zi,Dθ (tk) +Gψ(z

i,D
θ )∆Xi(tk+1)

tk+1
...

tNk+1

 .
This proves that in the NCDE-based model, the intensity can similarly be written as

α⊤z̃i,Dθ (t) = α⊤
I1
zi,Dθ (t) + α⊤

I2
(1, t, t2, . . . , tN)

where α = (αI1 , αI2), and α1 ∈ Rp and α2 ∈ RN .

B.1.7 Self-concordance

We now state a self-concordance bound, which can be found along with its proof in
Bach (2010).

Lemma 10. Let g : R→ R be a convex, three times differentiable function such that

|g(3)(x)| ≤Mg(2)(x)

for all x ∈ R and for someM ≥ 0. Then it follows that

g(2)(0)

M2
Φ(−Mt) ≤ g(t)− g(0)− tg′(0) ≤ g(2)(0)

M2
Φ(Mt)

for all t ≥ 0, where

Φ : t 7→ exp(t)− t− 1.

B.1.8 Decomposition of the difference in likelihoods

We first define the empirical KL-divergence between the true and parameterized inten-
sity associated to the sample Dn as

KLn(λ⋆, λDθ ) :=
1

n

n∑
i=1

∫ τ

0

log
λi⋆(s)

λiθ(s)
λi⋆(s)Y

i(s)ds− 1

n

n∑
i=1

∫ τ

0

(
λi⋆(s)− λiθ(s)

)
Y i(s)ds.

This definition is classical for intensities of counting processes (Aalen et al., 2008; Lem-
ler, 2016). We now show that minimizing the empirical KL-divergence between the true and
the parameterized intensity amounts to minimizing the empirical log-likelihood, ignoring
a noise term that will be canceled by setting the penalty accordingly.
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Proposition 7. For every θ ∈ Θ, the difference in likelihoods ℓDn (θ)− ℓ⋆n decomposes as

KLn(λ⋆, λDθ )−
1

n

n∑
i=1

∫
log

λi,Dθ (s)

λi⋆(s)
dM i(s),

whereM i : [0, τ ]→ R is a local square integrable martingale.

This proposition is a consequence of theDoob-Meyer decompositionN i(t) =
∫ t
0
λi⋆(s)Y

i(s)ds+
M i(t) of the counting process (Aalen et al., 2008). We now furthermore define the total
variation divergence as

TVn(λ⋆, λDθ ) :=
1

n

n∑
i=1

∫ τ

0

|λi⋆(s)− λ
i,D
θ (s)|Y i(s)ds

and the quadratic log divergence D2
n(λ⋆, λ

D
θ ) as

1

n

n∑
i=1

∫ τ

0

(
log λi,Dθ (s)− log λi⋆(s)

)2
λi⋆(s)Y

i(s)ds.

Proposition 8. There exist two constants c1, c2 > 0 such that

c1TVn(λ⋆, λDθ )2 ≤ KLn(λ⋆, λDθ ) ≤ c2D2
n(λ⋆, λ

D
θ ).

More precisely, the constants c1, c2 are functions of Θ, Lx, τ and LG⋆ and are given explic-
itly in Appendix B.2.

This bound is obtained by combining a Pinsker-type inequality and a self-concordance
bound (Appendix B.2). It is informative in two ways. First, it shows that minimizing the
negative empirical log-likelihood and hence the KL-divergence between the true and pa-
rameterized intensity will lead to a minimization of the total variation between the two
intensities. Secondly, it shows that the KL-divergence is upper bounded by a term involv-
ing the difference of the logarithms of the intensities. We make use of this second bound
to obtain a bias-variance decomposition.
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B.2 Proofs

We refer to Bleistein et al. (2024) for the detailed proofs.

B.3 Algorithmic and Implementation Details

In this Section, we provide extra information about learning algorithms described in the
main paper and their hyperparameters optimization by grid-search.

B.3.1 Description of Competing Methods

CoxSig and CoxSig+

Implementation. We use iisignature (Reizenstein and Graham, 2020) to compute
signatures. Alternatives for computing signatures include thesignatory library (Kidger
and Lyons, 2020).

Training. We minimize the penalized negative log-likelihood (defined in 4.3 in the main
paper) using a vanilla proximal point algorithm (Boyd and Vandenberghe, 2004).

Hyperparameters. The initial learning rate of the proximal gradient algorithm is set to
e−3 and the learning rate for each iteration is chosen by back tracking linesearch method
(Boyd and Vandenberghe, 2004). The hyperparameters of penalization strength (η1, η2) and
truncation depthN are chosen by 1-fold cross-validation of a mixed metric equal to the dif-
ference between the C-index and the Brier score. We select the best hyperparameters that
minimize the average of this mixed metric on the validation set. We list the hyperparame-
ters search space of this algorithm below.

— η1: {1, e−1, e−2, e−3, e−4, e−5};

— η2: {1, e−1, e−2, e−3, e−4, e−5};

— N : {2, 3}. Larger values were considered in the beginning of experiments but were
removed from the cross-validation grid because they yielded bad performance and
numerical instabilities.

NCDE

Implementation. We implement the fill-forward discrete update of NCDEs inPytorch.
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Structure. The neural vector field is a feed-forward network composed of two fully con-
nected hidden layers whose hidden dimension is set to 128. We choose to represent the
latent state in 4 dimensions—the number of nodes in the input layer is therefore set to 4.
The dimension of the output layer is equal to the multiplication of the dimension of the
hidden layer (128) and the dimension of the sample paths of a given data set. tanh is set
to be the activation function for all the nodes in the network.

Training. The model was trained for 50 epochs using the Adam optimizer (Kingma and
Ba, 2014) with a batch size of 32 and cross-validated learning rate set to e−4.

Cox Model

Implementation and Training. We use a classical Cox model with elastic-net penalty
as a baseline, which is given either the first measured value of the individual time series or
the static features if they are available. The intensity of this model has then the form

λiθ(t) = λ0(t) exp(β
⊤Wi),

whereWi = Xi(0) if no static features are available. We use the implementation provided
in the Python packagescikit-survival and calledCoxnetSurvivalAnalysis
(Pölsterl, 2020).

Hyperparameters. The ElasticNet mixing parameter γ is set to 0.1. The hyperparameter
of penalization strength η is chosen by cross-validation as described above. We crossvali-
date over the set {1, e−1, e−2, e−3, e−4, e−5} to select the best value.

Random Survival Forest

Implementation. We use the implementation of RSF (Ishwaran et al., 2008) provided in
the Python package scikit-survival (Pölsterl, 2020).

Training. We train this model with static featuresWi as the only input. Similarly to our
implementation of the Cox model, we use the first value of the time series as static features
if no other features are available.

Hyperparameters. We cross-validate two hyperparameters on the following grids.

— max_features: {None, sqrt};

— min_samples_leaf: {1, 5, 10};
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Dynamic Deep-Hit (Lee et al., 2019)

DDH is a dynamical survival analysis algorithm that frames dynamical survival anal-
ysis as a classification problem. It divides the considered time period [0, τ ] into a set of
contiguous time intervals. The network is then trained to predict a time interval of event
for every subject, which is a multiclass classification task.

Network Architecture. Being adapted to competing events, Dynamic Deep-Hit com-
bines a shared network with a cause-specific network. The shared network is a combination
of a RNN-like network that processes the longitudinal data and an attention mechanism,
which helps the network decide which part of the history of the measurements is impor-
tant. The cause-specific network is a feed-forward network taking as an input the history of
embedded measurements and learning a cause-specific representation. See Figure B.1 for a
graphical representation of the network’s structure.

Figure B.1 – Network structure of Dynamic DeepHit. Figure is taken from Lee et al. (2019).

Loss Function. The loss function of DDH is a sum of three loss functions

ℓDynamic DeepHit = ℓlog-likelihood + ℓranking + ℓprediction.

The first loss maximizes the conditional likelihood of dying in the interval [tk, tk+1[
given that the individual has survived up to time tk. On a side note, we notice that the
claim of Lee et al. (2019) that this loss corresponds to “the negative log-likelihood of the
joint distribution of the first hitting time and corresponding event considering the right-
censoring" of the data is hence inexact. Thismight explain the results observed in Figure 4.4:
DDH’s performance, in terms of Brier score, strongly degrades as δt increases because the
model is only trained to predict one step ahead, instead of maximizing the full likelihood.

The second loss favors correct rankings among at risk individuals: an individual experi-
encing an event at time T i should have a higher risk score at time t < T i than an individual
j for which T j > T i.

The third loss is a prediction loss, which measures the difference between the value of
the time-dependent features and a prediction of this value made by the shared network.
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The loss is minimized using Adam (Kingma and Ba, 2014).

Hyperparameters. In our setting, we use the network in its original structure. The learn-
ing rate is set to e−4 and the number of epochs to 300.

SurvLatent ODE (Moon et al., 2022)

NetworkArchitecture. SurvLatent ODE is a variational autoencoder architecture (Kingma
and Welling, 2013). The encoder embeds the entire longitudinal features into an initial la-
tent state, and the decoder uses this latent state to drive the latent trajectory and to estimate
the distribution of event time. In this framework, the encoder is an ODE-RNN architec-
ture (Rubanova et al., 2019), which handles the longitudinal features sequentially backward
in time and outputs the posterior over the initial latent state. The decoder, which is adapted
to competing events, consists of an ODE model and cause-specific decoder modules. The
latent trajectory derived from the ODE model is shared across cause-specific decoder mod-
ules to estimate the cause-specific discrete hazard functions. See Figure B.2 for a graphical
representation of the network’s structure.

Figure B.2 – Network structure of SurvLatent ODE. Figure taken from Moon et al. (2022).

Loss Function. The loss function is a combination of the log-likelihood and the Kullback-
Leibler divergence between the approximate and the true posterior over the initial latent
state.

Hyperparameters. In our setting, we use the network in its original structure. The learn-
ing rate is set to e−2 and the number of epochs to 15, as in the original paper. The training
of this framework cannot use subjects whose last longitudinal measurement time is equal
to the event time, which is not the case for our proposed methods as well as other com-
peting methods. In order to avoid this problem, we then stop observing the longitudinal
measurement before the time-to-event for a period equal to 80 % of the event time of these
subjects when training the model of this framework.
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B.3.2 Computation of the Different Metrics

The following lemma details the computation of the conditional survival function.

Lemma 11. For any i ∈ {1, . . . , n},

riθ(t, δt) = exp
(
−
∫ t+δt

t

λiθ(u, x
i,D
[0,u∧t])du

)
,

where riθ(t, δt) = P
(
T i > t + δt |T i > t, xi,D[0,t]

)
is the survival function of individual i, as

estimated by the model with parameters θ, at time t+ δt for δt > 0 conditional on survival
up to time t, and on observation of the longitudinal features up to time t, and the notation
λiθ(u, x

i,D
[0,u∧t]) means that the intensity at time u is computed by using the longitudinal

features up to time u ∧ t = min(u, t).

Proof. Since Bayes rule gives

riθ(t, δt) = P
(
T i > t+ δt |T i > t, xi,D[0,t],W

i
)
=

P
(
T i > t+ δt |xi,D[0,t],Wi

)
P
(
T i > t |xi,D[0,t],Wi

) ,

we can compute this score by using the fact that

P
(
T i > t |xi,D[0,t],W

i
)
= exp(−Λi,Dθ (t)),

where we recall that Λi,Dθ (t) is the cumulative hazard function

Λi,Dθ (t) :=

∫ t

0

λi,Dθ (s)Y i(s)ds.

We refer the reader unfamiliar with survival analysis to Aalen et al. (2008, Chapter 1, p. 6)
for a proof of this expression of the survival function. This then yields

riθ(t, δt) =
exp(−

∫ t+δt
0

λiθ(u, x
i,D
[0,u∧t])du)

exp(−
∫ t
0
λiθ(u, x

i,D
[0,u∧t])du)

= exp(−
∫ t+δt

t

λiθ(u, x
i,D
[0,u∧t])du).

Beside the two metrics described in the main paper, we report our results in term of two
more metrics namely the weighted Brier Score and the area under the receiver operating
characteristic curve (AUC). The details of these metrics are given below.
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WeightedBrier Score. Theweighted version of the Brier score, whichwewriteWBS(t, δt),
is defined as

n∑
i=1

1T i≤t,∆i=1

riθ(t, δt))
2

Ĝ(T i)
+ 1T i≥t

(1− riθ(t, δt))2

Ĝ(t)
,

where Ĝ(·) is the probability of censoring weight, estimated by the Kaplan-Meier estimator.

AUC. We define the area under the receiver operating characteristic curve AUC(t, δt) as

n∑
i=1

n∑
j=1

1riθ(t,δt)>r
j
θ(t,δt)

1T i>t+δt, T j∈[t,t+δt]wj

(
n∑
i=1

1T i>t+δt)(
n∑
i=1

1T i∈[t,t+δt]wi)
,

where wi are inverse probability of censoring weights, estimated by the Kaplan-Meier es-
timator.

B.4 Details of Experiments and Datasets

The main characteristics of the datasets used in the paper are summarized in Table
B.1 and we provide more detailed information of these datasets in subsections below. For
the experiments, each dataset is randomly divided into a training set (80%) and test set
(20%). Hyperparameter optimization is performed as follows. We split the training set,
using 4/5 for training and 1/5 for validation. We then re-fit on the whole training set with
the best hyperparameters and report the results on the test set for 10 runs. Note that the
performance is evaluated at numerous points (t, δt), where t is set to the 5th, 10th, and 20th
percentile of the distribution of event times.

Name n d Static Features Censoring Avg. Observation Times Source

Hitting time 500 5 ✗ Terminal (3.2%) 177 Simulation
Tumor Growth 500 2 ✗ Terminal (8.4%) 250 Simeoni et al. (2004)
Predictive Maintenance 200 17 ✗ Online (50%) 167 Saxena et al. (2008)
Churn 1043 14 ✗ Terminal (38.4%) 25 Private dataset

Table B.1 – Description of the 4 datasets we consider. The integer d is the dimension of
the time series including the time channel. Terminal censoring means that the individuals
are censored at the end of the overall observation period [0, τ ] if they have not experienced
any event. It is opposed to online censoring that can happen at any time in [0, τ ]. The
reported percentage indicates the censoring level i.e. the share of the population that does
not experience the event.
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B.4.1 Hitting Time of a partially observed SDE

Time series. The paths xt = (x
(1)
t , . . . , x

(d−1)
t ) are (d−1)-dimensional sample paths of a

fractional Brownian motion with Hurst parameterH = 0.6, and Bi(t) is a Brownian noise
term. We set d = 5. The paths are sampled at 1000 times over the time interval [0, 10]. All
simulations are done using the stochastic package 1. The time seriesXi are identical,
up to observation time, to the ones used for simulations.

Event definition We consider the stochastic differential equation

dwt = −ω(wt − µ)dt+
d∑
i=1

dx
(i)
t + σdBt,

where wt is trajectory of each individual with (σ, µ, ω) ∈ R3 are fixed parameters. In our
experiment, the parameters are chosen to be σ = 1, µ = 0.1 and ω = 0.1. We then
define the time-of-event as the time when trajectory cross the threshold w⋆ ∈ R during the
observation period [t0 tN ], which is

T ⋆ = min{t0 ≤ t ≤ tN |wt ≥ w⋆}.

In our experiments, we use the threshold valuew⋆ = 2.5. The target SDE is simulated using
an Euler discretization. We train on n = 500 individuals.

Censorship We censor individuals whose trajectory does not cross the threshold dur-
ing the observation period. This means that individuals are never censored during the
observation period, but only at the end. The simulated censoring level is 3.2%.

Supplementary Figures. Figure B.3 provides an example of the full sample path of an in-
dividual and the distribution of the event times of the whole population. We add additional
results on the test set in Figures B.4, B.5, B.6, B.7 and B.8.

0 2 4 6 8 10

-4

-2

0

2

4

6

w
t

w

T

0 2 4 6 8 10
Time

-2

0

2

x t

Observed Unobserved

x(1)
t

x(2)
t

x(3)
t

x(4)
t

0 2 4 6 8 10
Time

0

20

40

60

80

Co
un

t

Figure B.3 – Full sample path of an individual (left) and distribution of the event times
(left) for the partially observed SDE experiment. The surge in events at the terminal time
indicates terminal censorship.

1. Available at https://github.com/crflynn/stochastic

https://github.com/crflynn/stochastic
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Figure B.4 – C-Index (higher is better) for hitting time of a partially observed SDE for
numerous points (t, δt).
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Figure B.5 – Brier score (lower is better) for hitting time of a partially observed SDE for
numerous points (t, δt).

B.4.2 Tumor Growth

Time series. Similarly to the partially observed SDE experiment described above, we set
d = 2 which includes 1-dimensional sample path xt of a fractional Brownian motion with
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Figure B.6 –Weighted Brier score (lower is better) forhitting time of a partially observed
SDE for numerous points (t, δt).
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Figure B.7 – AUC (higher is better) for hitting time of a partially observed SDE for
numerous points (t, δt).

Hurst parameter H = 0.6. The paths are sampled at 1000 times over the time interval
[0, 10]. All simulations are done using the stochastic package. The time seriesXi are
identical, up to observation time, to the ones used for simulations.
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Figure B.8 – Running times on the partially observed SDE experiment (log-scale) averaged
over 10 runs including cross-validation of the hyperparameters on CoxSig, CoxSig+, Cox
and RSF (left) and over 1 run without cross-validation of the hyperparameters on CoxSig,
CoxSig+, Cox and RSF (right).

Event definition. Following Simeoni et al. (2004), we consider the differential equations

du
(1)
t

dt
=

λ0u
(1)
t[

1 + (λ0
λ1
wt)Ψ

]1/Ψ − κ2xtu(1)t
du

(2)
t

dt
= κ2xtu

(1)
t − κ1u

(2)
t

du
(3)
t

dt
= κ1(u

(2)
t − u

(3)
t )

du
(4)
t

dt
= κ1(u

(3)
t − u

(4)
t )

wt = u
(1)
t + u

(2)
t + u

(3)
t + u

(4)
t ,

wherewt is trajectory of each individualwith initial status of (u(1)0 , u
(2)
0 , u

(3)
0 , u

(4)
0 ) = (0.8, 0, 0, 0)

and (λ0, λ1, κ1, κ2,Ψ) ∈ R5 are fixed parameters. In our experiment, the parameters are
chosen to be λ0 = 0.9, λ1 = 0.7, κ1 = 10, κ2 = 0.15 and Ψ = 20. We then define the time-
of-event as the time when trajectory cross the threshold w⋆ ∈ R during the observation
period [t0 tN ], which is

T ⋆ = min{t0 ≤ t ≤ tN |wt ≥ w⋆}.

In our experiments, we use the threshold value w⋆ = 1.7. The target differential equations
are simulated using an Euler discretization. We train on n = 500 individuals.

Censorship. Similarly to the partially observed SDE experiment, we consider terminal
censorship: individuals that do not experience the event within the observation period are
censored. The censoring level is 8.4%.

Supplementary Figures. Figure B.9 provides an example of the full sample path of an in-
dividual and the distribution of the event times of the whole population. We add additional
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results on the test set in Figures B.10, B.11, B.12 and B.13.
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Figure B.9 – Full sample path of an individual (left) and distribution of the event times
(left) for the tumor growth experiment. The surge in events at the terminal time indicates
terminal censorship.
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Figure B.10 – C-Index (higher is better) for Tumor Growth for numerous points (t, δt).

B.4.3 Predictive Maintenance

Time series. This dataset describes the degradation of 200 aircraft gas turbine engines,
where 22 measurements of sensors and 3 operational settings are recorded each operational
cycle until its failure. After removing low-variance features, 16 longitudinal features are
selected for training models. The average time length of these features is about 25 cycles.
Note that we apply standardization for selected features before training.

Event definition. The times of event are given as-is in the dataset. We refer to Saxena
et al. (2008) for a precise description of the data generation.
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Figure B.11 – Brier score (lower is better) for Tumor Growth for numerous points (t, δt).

CoxSig CoxSig+ NCDE Cox RSF DDH SLODE
0.00

0.05

0.10

0.15

0.20

0.25

W
eig

ht
ed

 B
rie

r S
co

re

t = 1.04, t = 0.05
CoxSig CoxSig+ NCDE Cox RSF DDH SLODE

0.00

0.05

0.10

0.15

0.20

0.25

W
eig

ht
ed

 B
rie

r S
co

re

t = 1.04, t = 0.10
CoxSig CoxSig+ NCDE Cox RSF DDH SLODE

0.00

0.05

0.10

0.15

0.20

0.25

W
eig

ht
ed

 B
rie

r S
co

re

t = 1.04, t = 0.13

CoxSig CoxSig+ NCDE Cox RSF DDH SLODE
0.00

0.05

0.10

0.15

0.20

0.25

W
eig

ht
ed

 B
rie

r S
co

re

t = 1.09, t = 0.05
CoxSig CoxSig+ NCDE Cox RSF DDH SLODE

0.00

0.05

0.10

0.15

0.20

0.25

W
eig

ht
ed

 B
rie

r S
co

re

t = 1.09, t = 0.10
CoxSig CoxSig+ NCDE Cox RSF DDH SLODE

0.00

0.05

0.10

0.15

0.20

0.25

W
eig

ht
ed

 B
rie

r S
co

re

t = 1.09, t = 0.13

CoxSig CoxSig+ NCDE Cox RSF DDH SLODE
0.00

0.05

0.10

0.15

0.20

0.25

W
eig

ht
ed

 B
rie

r S
co

re

t = 1.17, t = 0.05
CoxSig CoxSig+ NCDE Cox RSF DDH SLODE

0.00

0.05

0.10

0.15

0.20

0.25

W
eig

ht
ed

 B
rie

r S
co

re

t = 1.17, t = 0.10
CoxSig CoxSig+ NCDE Cox RSF DDH SLODE

0.00

0.05

0.10

0.15

0.20

0.25

W
eig

ht
ed

 B
rie

r S
co

re

t = 1.17, t = 0.13

Figure B.12 –Weighted Brier score (lower is better) forTumorGrowth for numerous points
(t, δt).

Censorship. Censorship is given as-in in the dataset. The censoring level of this dataset
is 50%, which is a high censorship rate in survival analysis. We refer again to Saxena et al.
(2008) for more details.
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Figure B.13 – AUC (higher is better) for Tumor Growth for numerous points (t, δt).

Supplementary Figures. Figure B.14 provides an example of several randomly picked
sample paths of an individual and the distribution of the event times of the whole popula-
tion. We add additional results in Figures B.15, B.16, B.17 and B.18.
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Figure B.14 – Partial sample path of an individual (left) and distribution of the event times
(left) for the predictive maintenance experiment. On the left, the time series is filled with
the last observed value from the time of the event on.

B.4.4 Churn Prediction

For this dataset, the amount of details that we can release is limited both because of the
sensitive nature of the data and of the anonymity requirements of the reviewing process.

Time series. All longitudinal features have been computed on a temporal window of one
week, the raw data corresponding to all product orders placed on the platform from 06-12-
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Figure B.15 – C-Index (higher is better) for predictive maintenance for numerous points
(t, δt).
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Figure B.16 – Brier Score (lower is better) for predictivemaintenance for numerous points
(t, δt).

2021 to 12-11-2023. For clients who have no order during the week, we fill zero value for
all longitudinal measurements this week. After removing features with more than 90 % of
missingness, 14 longitudinal features of 1043 clients are selected for the training step. Note
that we apply standardization for selected features before training.
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Figure B.17 – Weighted Brier Score (lower is better) for predictive maintenance for nu-
merous points (t, δt).
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Figure B.18 – AUC (higher is better) for predictive maintenance for numerous points
(t, δt).

Event definition. We consider that a customer has churned if she has no passed any
order in the last 4 weeks. If the customer starts ordering again after a churn, we register
her as a new customer.
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Censorship. Censorship is terminal based on the data collection period (give dates here).
Hence any customer that has not churned by 12-11-2023 is censored. In this dataset, 38.4%
of the clients are terminally censored.

Supplementary Figures. Figure B.19 provides an example of four sample paths of four
randomly chosen individuals. We add additional results in Figures B.20, B.21, B.22 and B.23.
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Figure B.19 – Values of 4 different time-dependent features for 4 randomly chosen indi-
viduals from the churn prediction dataset. Individual time-to-event and distribution of
the event times cannot be displayed to protect consumer and business privacy. A precise
description of the different time-dependent features will be provided upon publication.
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Figure B.20 – C-Index (higher is better) for churn prediction for numerous points (t, δt).
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Figure B.21 – Brier score (lower is better) for churn prediction for numerous points (t, δt).
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Figure B.22 – Weighted Brier score (lower is better) for churn prediction for numerous
points (t, δt).
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Figure B.23 – AUC (higher is better) for churn prediction for numerous points (t, δt).
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