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Abstract

As life expectancy rises, cancer has tragically become one of the world’s leading
causes of death. Among the most challenging cancers are deep-seated tumors,
which are difficult to treat due to their location in vital organs like the liver or the
pancreas. A promising method to tackle these tumors is electroporation ablation,
which uses electric fields to create pores in the cell membranes of tumor cells. When
applied with high intensity, this results in irreversible electroporation, leading to
cell death without damaging nearby structures.

However, electroporation requires precise planning and real-time adaptation
due to its complexity. This involves numerical tools to analyze medical images
and estimate the treatment area. The aim of this work is to provide such tools,
analysing medical images, to per-operatively estimate the treatment area so that
the interventional radiologists may adapt their approach as they are performing
the procedure. More specifically, we tackle the localisation of the electrode by
introducing deep learning in the existing pipeline, and the registration of the
multiple scans captured during the intervention with novel auto-adaptive boundary
conditions. Both computer vision tasks are crucial for a precise estimation of the
electric field and need to be solved in near real time to be practical in clinical
settings.

These advancements in computer vision and image processing contribute to
more accurate electric field estimation and improve the overall effectiveness of
the procedure, leading to better patient outcomes for those battling deep-seated
cancers.

Keywords : Medical imaging, Variational methods, Image registration,
Deep-learning, Segmentation, Dose computation
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Résumé

Alors que l’espérance de vie augmente, le cancer est devenu l’une des principales
causes de décès dans le monde. Parmi les cancers les plus difficiles à traiter figurent
les tumeurs profondes, qui sont compliquées à soigner en raison de leur emplacement
près de structures vitales dans des organes tels que le foie ou le pancréas. Une
méthode prometteuse pour traiter ces tumeurs est l’ablation par électroporation,
qui utilise des champs électriques pour créer des pores dans les membranes des
cellules tumorales. Lorsqu’ils sont appliqués à haute intensité, cela entraîne une
électroporation irréversible, conduisant à la mort des cellules sans endommager les
structures avoisinantes.

Cependant, l’électroporation nécessite une planification précise et une adaptation
en temps réel en raison de sa complexité. Cela implique des outils numériques
pour analyser les images médicales et estimer la zone de traitement. L’objectif de
ce travail est de fournir de tels outils permettant d’analyser les images médicales
afin d’estimer, pendant l’opération, la zone de traitement, de manière à ce que le
radiologue interventionnel puisse adapter son approche. Plus précisément, nous
abordons la localisation des électrodes en introduisant l’apprentissage profond dans
le programme existant, ainsi que le recalage des multiples images capturées durant
l’intervention avec des conditions aux limites auto-adaptatives innovantes.

Ces deux tâches de vision par ordinateur sont cruciales pour une estimation
précise du champ électrique et doivent être résolues en quasi-temps réel pour être
praticables en contexte clinique. Ces avancées dans la vision par ordinateur et le
traitement d’images permettent une estimation plus précise du champ électrique et
améliorent l’efficacité globale de la procédure, conduisant à de meilleurs résultats
pour les patients atteints de tumeurs profondes.

Mots clés : Imagerie médicale, Méthodes variationnelles, Recalage d’image,
Apprentissage profond, Segmentation, Calcul de dose
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Résumé étendu

Le cancer continue d’être un défi sanitaire redoutable, touchant un nombre
croissant d’individus chaque année. Rien qu’aux États-Unis, plus d’un million de
nouveaux cas sont prévus pour 2024, soulignant l’urgence de solutions médicales
innovantes [87]. Parmi ces cas, les cancers impliquant des tumeurs profondes
présentent des obstacles thérapeutiques uniques en raison de leur emplacement
difficile dans le corps. Les thérapies traditionnelles peinent souvent à atteindre et
à éradiquer efficacement ces tumeurs, ce qui rend indispensable le développement
de nouvelles approches.

Une méthode prometteuse dans le traitement du cancer est l’ablation par électro-
poration irréversible (IRE). Cette technique innovante utilise un champ électrique
pulsé délivré par des électrodes peu invasives pour induire la formation de nanopores
dans la membrane cellulaire bilipidique. À mesure que ces pores se forment, les
matériaux internes des cellules commencent à s’échapper, déclenchant finalement
l’apoptose, ou mort cellulaire programmée. Contrairement aux méthodes ablatives
traditionnelles, qui peuvent endommager les tissus environnants, l’IRE préserve
efficacement l’intégrité structurelle de la matrice tissulaire. Cette préservation est
cruciale, car elle réduit considérablement les effets secondaires souvent associés à
d’autres options de traitement, permettant ainsi une récupération plus tolérable
pour les patients.

Nos efforts collaboratifs avec les radiologues interventionnels de l’Hôpital Avi-
cenne AP-HP ont été essentiels pour intégrer de manière fluide notre flux de
travail numérique dans leurs pratiques cliniques, créant ainsi une synergie bénéfique
pour les équipes médicales et les patients. En effet, tout au long de la procédure,
l’imagerie médicale joue un rôle crucial, car elle permet non seulement de car-
tographier la tumeur et les structures anatomiques environnantes avec une grande
précision, mais elle contribue également à la planification et à l’exécution des
interventions. Cela inclut le guidage pour l’insertion précise des électrodes, ce qui
est fondamental pour maximiser l’efficacité des traitements tout en minimisant les
risques pour le patient. De plus, l’évaluation de la zone de traitement effective après
l’ablation est un aspect essentiel pour s’assurer que la tumeur a été correctement
ciblée. Cette thèse se concentre spécifiquement sur ce dernier aspect, proposant
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de nouvelles méthodes pour l’estimation en ligne, soit en quelques minutes, de la
zone d’ablation, ce qui pourrait améliorer significativement les résultats cliniques
en permettant une adaptation de l’approche pendant l’opération-même.

Initialement, nous réalisons une tomodensitométrie à faisceau conique (CBCT)
au début de l’ablation afin de faciliter la segmentation précise de la tumeur. Cette
analyse est effectuée de manière semi-automatique par les radiologues à l’aide
d’un algorithme avancé d’optimisation des contours. Ensuite, les aiguilles sont
insérées sous guidage échographique et fluoroscopique en temps réel, garantissant
un placement optimal.

Pour confirmer la localisation des aiguilles, un deuxième CBCT est réalisé. Cette
répétition est cruciale, car les électrodes peuvent introduire d’importants artefacts
en raison de leur densité, rendant la tumeur difficile à discerner. Après l’insertion
des électrodes, des impulsions électriques sont délivrées et leurs chronogrammes sont
enregistrés. Combinées aux données de l’imagerie médicale, ces informations sont
essentielles pour modéliser le champ électrique délivré pendant le traitement. Si la
tumeur n’est pas entièrement incluse dans la zone de traitement, les radiologues
interventionnels peuvent adapter leur approche en temps réel — soit en ajoutant
une séquence d’impulsions électriques, soit en ajustant la profondeur des aiguilles
par une technique de retrait progressif.

Le processus de collecte des données nécessaires pour la simulation du champ
électrique englobe une série de tâches de vision par ordinateur. Dans un premier
temps, une segmentation précise de la tumeur est effectuée pour localiser avec
exactitude les cellules cancéreuses. Ensuite, la localisation des électrodes est réalisée.
Étant donné que ces électrodes servent de points d’entrée pour les impulsions élec-
triques, leur placement précis est essentiel pour estimer correctement la distribution
du champ électrique. Enfin, plusieurs scans d’imagerie doivent être recalés dans un
référentiel commun.

L’intégration de méthodes numériques est essentielle pour une analyse com-
plète et une exécution efficace du traitement. Dans ce contexte, nous présentons
des solutions innovantes conçues pour améliorer le programme existant, en nous
concentrant particulièrement sur l’amélioration de la localisation des aiguilles et
du processus de recalage. En perfectionnant ces tâches, nous visons à optimiser la
précision et la fiabilité des simulations du champ électrique, contribuant ainsi à des
interventions thérapeutiques plus efficaces.

***

D’une part, nous introduisons des méthodes d’apprentissage profond, désormais
reconnues comme particulièrement efficaces dans le domaine de la vision par

9



ordinateur, au sein de l’algorithme original adoptant une stratégie « coarse-to-fine
» pour la localisation des électrodes [47].

Une architecture U-Net est personnalisée pour gérer la segmentation grossière
d’objets fins dans des données ayant un faible rapport signal/bruit. Pour traiter
le déséquilibre de classes inhérent à la nature des aiguilles, des ajustements sont
apportés à la fois à l’architecture du réseau et à la stratégie d’apprentissage. Nous
introduisons une asymétrie dans le réseau pour accorder plus d’importance aux
informations de haut niveau provenant du décodeur, ce qui aide à capturer plus
efficacement les détails complexes. De plus, des ensembles de patchs, sous-parties
de l’image, sont créés pour contrer la sous-représentation des électrodes, avec
des pourcentages variés de patchs contenant des informations pertinentes sur les
aiguilles. Lorsqu’un équilibre est atteint avec 50% de patchs aiguille, la qualité
de segmentation se retrouve améliorée, sans imposer une charge computationnelle
importante. Cependant, le déséquilibre des classes reste un défi, et pour affiner
davantage les résultats, nous optimisons le seuil d’inférence en fonction de la
tendance du réseau à prédire avec une confiance accrue les voxels d’arrière-plan.
Notre approche s’avère plus efficace que le célèbre nnU-Net [48], probablement en
raison de la nature hautement spécialisée de notre stratégie d’entraînement adaptée
à ce problème.

Le masque de segmentation généré par les méthodes d’apprentissage profond
est ensuite affiné à l’aide de la transformation de Hough pour obtenir une représen-
tation analytique de la partie active des aiguilles, invisible sur le CBCT à cause
des artefacts. Les électrodes sont modélisées comme des lignes, en utilisant la
paramétrisation optimale de ligne de Robert. Bien que le processus d’insertion
puisse introduire une légère courbure dans les aiguilles, ce modèle reste une ap-
proximation valable pour localiser avec précision les pointes des aiguilles, d’où les
impulsions électriques sont appliquées.

Pour améliorer la détection, une procédure de vote identifie les lignes pertinentes
représentant les aiguilles. Lorsqu’elle est combinée avec l’apprentissage profond,
cette approche hybride montre d’excellentes performances, offrant une précision et
une fiabilité supérieures par rapport aux méthodes basées sur le seuillage utilisées
auparavant. Notre technique détecte avec succès des aiguilles qui avaient été
précédemment manquées, ce qui la rend particulièrement efficace dans des cas
difficiles.

***

D’autre part, en abordant les défis des conditions aux limites dans les tâches de
recalage, nous soulignons un problème critique souvent négligé : l’impact d’une
information insuffisante aux bords de l’image, qui peut entraîner des erreurs de
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recalage se propageant vers l’intérieur. Traditionnellement, les solutions se sont
appuyées sur des conditions aux limites standards—spécifiquement les conditions de
Dirichlet homogène (valeurs nulles aux bords) ou de Neumann homogène (tenseur
de cisaillement nul)—ou sur des méthodes spécifiques à la tâche.

Pour faire progresser ce domaine, nous proposons une condition aux limites
de type Robin automatiquement adaptable, qui exploite des cartes de champ de
flux dérivées des images à recaler [46]. Notre approche simplifie l’espace des hyper-
paramètres, le réduisant à deux paramètres clés. Le premier paramètre joue un
rôle crucial en équilibrant les conditions de Neumann et de Dirichlet, tandis que le
second ajuste le poids du terme source. Pour déterminer les valeurs optimales de ces
hyper-paramètres, nous avons recours à une recherche en grille, visant à minimiser
l’énergie de recalage. Nous démontrons que cette minimisation est étroitement liée
à une maximisation de la qualité du recalage, en confrontant nos résultats aux
données de réalité terrain disponibles. Cependant, il est important de souligner que
cette méthode, bien que prometteuse, présente des limitations dans un contexte
clinique. Les contraintes temporelles souvent imposées par les environnements
médicaux rendent son application difficile, ce qui soulève la nécessité d’explorer
des alternatives plus adaptées aux exigences du milieu clinique.

Par exemple, nous avons observé que des conditions de capture analogues—par
la modalité et la zone anatomique—permettent une réutilisation des mêmes hyper-
paramètres. Cette approche simplifie non seulement l’optimisation initiale, mais
ouvre également la porte à d’éventuels raffinements lorsque le temps le permet.
Autrement, l’adoption de méthodes d’apprentissage profond, connues pour leur
efficacité dans les tâches de recalage, pourrait réduire considérablement le temps
d’inférence. Bien que nous ayons validé notre méthode de conditions aux limites à
l’aide d’une méthode variationnelle, elle est facilement généralisable, ouvrant la
voie à une efficacité et à une précision accrues dans les applications cliniques.

Additionnellement, nous montrons que les conditions aux bords imposées lors de
la tâche de recalage ont un impact direct sur l’évaluation du champs électrique dans
le cadre d’une ablation de tumeur par IRE. En effet, différentes conditions aux bords
mènent à des zones de traitement variant de manière significante cliniquement
parlant. Entre autre, les volumes traités diffèrent au moins de 33mm3. Un
traitement inadéquat ou incomplet de la zone cible pourrait ainsi permettre la
persistance ou la reformation de la tumeur après l’intervention.

***

Les techniques proposées dans cette thèse pour améliorer la simulation du champ
électrique reposent sur l’intégration de l’apprentissage profond pour la segmentation
des aiguilles et des conditions aux bords auto-adaptatives pour la tâche de recalage.
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Ces technologies permettent de générer des estimations rapides et précises, en ligne.
Grâce à ces algorithmes, il est possible de calculer en environ deux minutes sur un
ordinateur standard des résultats cliniquement exploitables.

Le recours à l’apprentissage profond apporte des solutions robustes pour traiter la
segmentation d’image, tout en s’adaptant dynamiquement aux conditions variables.
Cela garantit non seulement une précision accrue, mais aussi une conformité aux
contraintes cliniques imposées, notamment en matière de rapidité, de fiabilité et
d’accessibilité des outils utilisés dans des environnements opératoires.

Cependant, l’apprentissage supervisé présente souvent une limitation en termes
de généralisation. Un modèle formé sur un ensemble de données spécifique, comme
des images de CBCT, peut avoir du mal à s’adapter à de nouvelles données, comme
celles provenant d’un scanner tomodensitométrie classique (CT), sans entraîner un
nouveau modèle.

Pour éviter la tâche coûteuse de recréer des jeux de données étiquetés et de
former un modèle entièrement nouveau, le « transfer learning » serait une solution
efficace. Cette approche consiste à utiliser les connaissances apprises par un
modèle sur une tâche initiale et à les réutiliser pour une nouvelle tâche. Cette
technique permettrait ainsi d’accélérer le processus d’entraînement et d’améliorer
la performance des modèles en capitalisant sur des représentations déjà apprises,
tout en offrant une grande flexibilité face à de nouvelles données.

Dans nos travaux futurs, l’intégration des réseaux de neurones profonds dans
le processus de recalage pourrait ouvrir la voie à des améliorations significatives,
notamment en matière de performance et de réduction du temps d’inférence. En
comparaison avec les algorithmes variationnels employés dans cette thèse pour
aborder les conditions aux bords, les réseaux de neurones profonds ont le potentiel
de produire des résultats tout aussi précis, mais avec une rapidité remarquable.
Cette efficacité accrue s’explique par la capacité des réseaux neuronaux à apprendre
de manière autonome les caractéristiques des données, éliminant ainsi la nécessité de
formuler explicitement les équations complexes associées à l’optimisation de l’énergie
de recalage. Cette approche novatrice pourrait transformer notre manière d’aborder
le recalage, en alliant précision et rapidité, tout en facilitant une adaptation
dynamique aux variations des données.

La réduction du temps d’inférence permettrait d’optimiser le processus en milieu
clinique ou opérationnel, rendant possible une adaptation rapide aux situations
spécifiques de chaque patient ou cas d’usage. Par exemple, avec une analyse plus
rapide des bords, le recalage peut être ajusté en temps réel ou quasi-temps réel,
tout en garantissant une évaluation précise et sur mesure.

Cette approche serait donc particulièrement adaptée aux besoins des radiologues
interventionnels qui doivent prendre des décisions rapides et précises basées sur
des simulations réalistes des champs électriques dans le cadre d’une ablation de



tumeur profonde par IRE.
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1.1 Medical context
Oncology is the branch of medicine dedicated to the comprehensive study

and treatment of cancer. This field encompasses a wide variety of pathologies
that are contingent upon the tumor’s location and specific characteristics. At the
core of the disease, cancerous cells in healthy tissue disrupt the body’s delicate
equilibrium, where the harmony of cellular function is overtaken by rogue elements.
In a normally functioning tissue, cells work in a regulated environment, adhering to
strict controls that dictate their growth, division, and death. This balance ensures
that tissues maintain their structure and function effectively, contributing to the
overall well-being of the organism.

However, cancerous cells defy these biological norms. They arise from mutations
that alter their DNA, effectively overriding the natural checkpoints that prevent
unchecked growth. Unlike healthy cells, which communicate and cooperate with
their neighbors, cancerous cells prioritize their survival and proliferation. They
disregard signals that would normally indicate to a cell to stop dividing or to
initiate programmed cell death, known as apoptosis.

In this chaotic environment, cancerous cells begin to dominate, rapidly multiply-
ing and invading the surrounding healthy tissue. They disrupt the architecture and
function of organs, creating a growing mass, called tumor, that consumes resources
and energy at the expense of the body’s health. This invasion is not just a physical
encroachment; it is a biological insurgency, where the fundamental rules of cellular
behavior are rewritten to favor survival over harmony. Illustrated in Figure 1.1,
the resulting tumors can vary greatly in size and malignancy.

A critical aspect of cancer’s danger lies in its ability to metastasize. This process
involves cancerous cells breaking away from the primary tumor and traveling through
the bloodstream or lymphatic system to colonize distant organs and tissues. These
secondary tumors, or metastases, complicate treatment and significantly impact
the prognosis of the patient.

The extent of the disease is summarised in a stage category: a number between
I and IV. It defines prognosis and treatment plans available, including inclusion in
a clinical trial. Briefly, stage I corresponds to less invasive cancer, stage II and III
have increasing tumor extent, and stage IV present with metastases. Historically,
staging takes into account anatomical criteria such as the tumor characteristics
(morphology, histology, etc), the involvement of regional nodes and the presence or
absence of metastases [34]. However, research showed that patient related factors
(gender, age, etc) also influence the prognosis. Though accounting for those new
criteria may prove valuable, it increases the complexity of the staging system and
makes comparison between patient more difficult.

Oncology is a critical and ever-evolving field of research, profoundly shaping
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Figure 1.1: Cancerous cells multiply uncontrollably, forming tumors that invade
healthy tissues, disrupting their structure and function. These cells consume re-
sources like nutrients and oxygen, while also manipulating nearby normal cells to sup-
port tumor growth, further weakening surrounding tissues (from smart.servier.com,
free medical images).

the lives of countless individuals worldwide. This discipline not only addresses the
complex nature of cancer but also strives to unlock new therapeutic possibilities
and improve patient outcomes. The high mortality rate associated with cancer
is, in part, a consequence of extended life expectancy, which, while a testament
to advancements in healthcare, also increases the population’s susceptibility to
developing cancer. As people live longer, the likelihood of encountering the myriad
of factors that can lead to cancer rises.

Effective solutions in oncology must address the constantly evolving landscape
of cancer epidemiology and leverage technological innovations in medical imaging,
surgical tools, and therapeutic approaches. For instance, the integration of advanced
imaging technologies can significantly improve diagnostic accuracy and treatment
planning.

Furthermore, these solutions must tackle the practical challenges faced by
healthcare professionals, such as ensuring that new technologies and treatments
are seamlessly integrated into existing clinical workflows, are cost-effective, and
enhance overall patient care. Only by balancing innovation with practicality can
the field of oncology continue to make significant strides against cancer.

Currently, deep-seated tumors, those located in areas that are challenging to
access surgically, contribute significantly to cancer-related mortality. In 2024, it
is projected that 22% of cancer deaths (Fig. 1.2) will be due to such tumors,
including those in the liver, pancreas, brain, and prostate. Addressing these tumors
is therefore a critical priority in oncology research.
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Figure 1.2: Projected Figures for 2024 regarding the incidence of new cancer cases
and associated fatalities, categorized by types of cancer, within the United States
population, encompassing both males and females [87], reproduced with permission.

To effectively target deep-seated tumors, the focus has shifted towards inno-
vative non-surgical approaches. These methods are essential as they reduce the
complexities and risks associated with traditional surgical interventions. By em-
phasizing non-invasive treatments, oncology aims to improve patient outcomes and
reduce the burden of deep-seated tumors on global health.

To help patients, medical imaging is indispensable at every stage of cancer
treatment: diagnosis, treatment planning, treatment guidance, and treatment
evaluation. The integration of computer vision into medical imaging is anticipated
to significantly enhance patient care from the moment of diagnosis.

Anomaly detection: Computer vision can automatically detect anomalies, such
as tumors or masses, in medical images. This serves as a crucial first step towards
diagnosis, enabling earlier and more accurate identification of cancerous regions.

Segmentation of anatomical structures: By accurately segmenting anatom-
ical structures, computer vision helps determine disease progression and aids in
precise treatment planning. This ensures that targeted therapies are delivered
effectively, reducing damage to surrounding healthy tissues.
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Image registration: Computer vision techniques can merge images captured at
different times and/or from different modalities, such as Computed Tomography
(CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography
(PET) scans, into a single comprehensive image. This fusion of information provides
a holistic view of the patient’s condition, enhancing the accuracy of diagnosis and
the effectiveness of treatment plans.

By incorporating these advanced computer vision techniques, medical imaging
not only streamlines the workflow for healthcare providers but also ensures that
patients receive the most accurate and effective care throughout their cancer
treatment journey.

In this work, we introduce computer vision tools designed to facilitate the
ablation process of deep-seated tumors through irreversible electroporation (IRE),
with a particular focus on hepatocellular carcinoma (HCC) and pancreatic cancer.
This intricate procedure leverages electric fields to effectively ablate the tumor,
demanding accurate and real-time data analysis for successful implementation. Our
paramount objective is to achieve precise estimations of the treated area during the
procedure, thereby ensuring optimal clinical outcomes. This endeavor encompasses
a range of image analysis challenges, with this thesis specifically delving into the
complexities of image registration and object localisation. While the proposed
techniques are specifically designed to enhance IRE applications, their versatile
potential extends across various domains, encompassing both oncology and broader
computer vision applications.

1.1.1 Deep seated tumors
We focus on two types of cancer caracterised by deep seated tumors, namely

liver cancer and pancreas cancer.

Liver cancer: Liver cancer is the sixth leading cause of cancer death [87] and the
first leading cause of death by cirrhosis [29]. The increasing number of diagnosed
cases results from a change in epidemiology: previously, liver cancer was mainly
caused by viral hepatitis, however, it is now increasingly linked to alcoholic and
non-alcoholic fatty liver disease following obesity.

Early diagnosis based on surveillance leads to improved prognosis (50.8% 5
year survival rate) as opposed to symptom-based only (27.9%) [29]. In general,
multiphase CT or MRI are used to identify the tumor. The former has a shorter
duration and a lower cost but necessitates radiation exposure and, sometimes,
iodinated contrast.
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In particular, HCC is a type of cancer characterized by deep-seated tumors that
primarily target the liver, a vital organ responsible for filtering blood and producing
bile to aid in digestion. The liver is situated in the upper right quadrant of the
abdomen, nestled beneath the diaphragm and above the stomach and gallbladder
(in green in Fig. 1.3). Its proximity to major blood vessels, including the aorta
(in red in Fig. 1.3) and the inferior vena cava (in blue in Fig. 1.3), makes surgical
intervention particularly challenging in most cases.

Figure 1.3: The liver and its surrounding anatomical structures, which include the
gallbladder depicted in green, the aorta in red, and the inferior vena cava in blue
(from smart.servier.com, free medical images).

For these reasons, there is an urgent need for intensive research in both preven-
tion and treatment. Personalised screening methods, which can detect cancer at its
earliest stages, and the development of advanced serological biomarkers are crucial.
These biomarkers can predict the onset of disease and monitor the effectiveness of
treatments, paving the way for more targeted and effective interventions.

Pancreas cancer: Pancreatic cancer ranks as the third leading cause of cancer-
related deaths globally [87]. The prognosis remains grim, with a mere 4% of
patients surviving beyond five years following diagnosis [94]. This malignancy is
predominantly linked to a combination of genetic predispositions, increasing age,
lifestyle factors such as obesity, and the harmful effects of smoking. In the majority
of cases, patients suffer conventional ductal adenocarcinoma, the most common
and aggressive form of this cancer [51].

The pancreas (Fig. 1.4) plays a crucial role as both an exocrine gland, secret-
ing digestive enzymes into the small intestine via ducts, and an endocrine gland,
releasing hormones such as insulin and glucagon into the bloodstream. Positioned
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posterior to the stomach, its location near major blood vessels, such as the supe-
rior mesenteric artery and vein, ensures efficient nutrient and hormone transport
throughout the body, while complicating surgical access to the organ.

Figure 1.4: Cross-sectional view of the pancreas: the bile duct, highlighted in green,
carries bile from the liver and gallbladder to the duodenum to aid in digestion,
particularly the breakdown of fats. The pancreatic ducts, shown in pink, transport
digestive enzymes produced by the pancreas to the duodenum, where they help
in the digestion of proteins, carbohydrates, and fats (from smart.servier.com, free
medical images).

Currently, routine screening for pancreatic cancer is not standard practice,
largely due to the limited sensitivity of existing imaging modalities for early-stage
detection. This limitation underscores the urgent need for more effective screening
techniques, particularly for identifying pre-invasive lesions, as their early resection
could significantly reduce the risk of developing invasive pancreatic cancer. Among
the various potential screening tools, endoscopic ultrasound has emerged as a
particularly promising option. This imaging modality is valued for its ability to
provide high-resolution images and precise tissue sampling, making it an invaluable
tool in the early detection and staging of pancreatic cancer [94].

Most pancreatic cancer are clinically silent, as symptoms start appearing when
the disease has progressed to surrounding tissues, or distant organs. Thus, most pa-
tient are diagnosed with unresectable cancer. Treatment often focuses on prolonged
survival or downstaging to eventually ablate the tumour.

Systemic treatments: Today, the landscape of treatment options for deep-
seated tumors is incredibly diverse, reflecting the complex nature of cancer itself.
No single protocol has emerged as universally effective, underscoring the need for
a tailored approach in each individual case. Systemic therapies aim to combat
cancer at a holistic level, targeting the body as a whole to inhibit tumor growth
and spread.

Chemotherapy: Chemotherapy drugs are administered to combat the growth
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of cancerous cells by inhibiting their cell division mechanisms. However, these
potent drugs do not exclusively target the cancerous site, resulting in widespread
systemic effects. This non-specificity means that healthy, rapidly dividing cells,
such as those in the bone marrow, digestive tract, and hair follicles, are also affected.
Consequently, patients often experience a range of side effects, including fatigue,
hair loss, gastrointestinal issues, and increased susceptibility to infections due to
suppressed immune function [75][21][89].

Anti-angiogenic therapy: Innovative cancer therapies now include drugs specifi-
cally designed to inhibit angiogenesis, the process by which tumors develop new
blood vessels to sustain their growth. By targeting angiogenesis, these drugs prevent
the formation of blood vessels within the tumor, thereby starving it of essential
nutrients and oxygen needed for proliferation. This approach is often combined
synergistically with chemotherapy, enhancing its effectiveness. Chemotherapy ben-
efits from the improved access to the tumor due to reduced blood flow caused
by angiogenesis inhibitors. Together, these therapies aim to shrink tumors and
improve patient outcomes by depriving cancerous cells of their blood supply and
delivering cytotoxic agents directly to the tumor site [107][4].

Immunotherapy: The patient’s immune system is stimulated in order to target
cancerous cells effectively. Immunotherapy stimulates specific components of
the immune system, such as T-cells, to recognize and attack cancer cells. This
stimulation often involves therapies that activate immune checkpoints or genetically
engineer immune cells to enhance their targeting capabilities. By boosting immune
responses against cancer, immunotherapy offers a promising strategy to achieve
long-term remission and improve survival rates. Moreover, reprogramming immune
cells to specifically target cancer cells has shown significant potential in overcoming
the challenges posed by tumor heterogeneity and resistance [20]. This personalized
approach not only minimises damage to healthy tissues but also enhances the body’s
ability to recognize and eliminate malignant cells, marking a pivotal advancement
in oncology [35][24][92][84].

Loco-regional treatments: Other approaches focus on targeting tumors more
locally, frequently incorporating surgical intervention as a critical component
of treatment. These localised strategies aim to minimise collateral damage to
surrounding healthy tissues while maximising the effectiveness of the intervention.
Surgical techniques can range from complete tumor resection to minimally invasive
procedures, each tailored to the specific characteristics of the tumor and the
individual patient’s needs.

Transplantation: In the demanding process of organ transplantation, the entire
diseased organ is removed and substituted with a healthy equivalent from a donor.
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This major surgical procedure is inherently complex and requires a prolonged
recovery period. To maximise the chances of a successful transplant, it is crucial to
ensure genetic compatibility between the donor and recipient. This compatibility
helps to minimise the risk of organ rejection. Furthermore, patients must undergo
continuous treatment with immunosuppressive drugs, which effectively dampen the
immune system’s response, thereby reducing the likelihood of the body rejecting
the new organ. This balancing act between preventing rejection and maintaining
immune function is a cornerstone of post-transplant care.

Tumor resection: During this operation, the diseased section of the organ
is excised. This major surgery requires significant medical expertise and carries
inherent risks. Patients may experience complications such as infection and bleeding
post-operation. In the case of the liver, despite its remarkable ability to regenerate
and restore its function over time, the recovery process can be extensive and
demanding. Additionally, the long-term effects can vary, with some patients
potentially facing persistent health challenges. Ensuring optimal recovery and
managing any long-lasting effects require careful postoperative care and monitoring.

Electro-chemotherapy: Bleomycin, a chemotherapy agent known for its limited
cellular penetration compared to more efficient drugs like cisplatin, is administered
in conjunction with the application of an electric field. These electric pulses create
temporary pores in the membrane of cancer cells, significantly enhancing the drug’s
ability to infiltrate malignant tissues. This innovative technique not only optimises
the delivery of the drug, ensuring that it reaches its intended target more effectively,
but also minimises systemic side effects by concentrating the therapeutic action
precisely where it is needed most. By focusing the treatment directly on the tumor,
this method represents a promising advancement in cancer therapy, maximising
efficacy while safeguarding healthy surrounding tissues [92][88][33].

Transarterial radio-embolisation: Utilizing microspheres loaded with radioac-
tive isotopes represents a sophisticated approach in targeted therapy. These
microspheres, administered intravenously near the diseased tissue, emit radiation,
damaging the DNA of nearby cells, particularly cancerous cells, and disrupt their
ability to replicate. This technique, while effective, is associated with significant
costs and complexities in administration and monitoring. Moreover, exposure
to radiation can lead to various side effects, including damage to healthy tissues
surrounding the treatment site. Despite these challenges, targeted radiation therapy
remains a critical tool in oncology, offering a tailored approach to treating localised
cancers with minimal systemic impact [82][2][15][97][91].

Photo-dynamic therapy: Photo-sensitisers, once injected into the bloodstream,
are activated by light of a specific wavelength. This activation unleashes reactive
oxygen species that overwhelm cancer cells’ defenses, leading to their demise through
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processes like apoptosis and necrosis. Photo-dynamic therapy stands out for its
ability to precisely target malignant cells while minimising damage to healthy tissue,
marking it as a promising therapeutic strategy in cancer treatment [108][54][11].

Radio-frequency ablation: High-frequency electric fields are administered via
electrodes strategically positioned near the affected site. The thermal effects
generated by these pulses induce cell death through necrosis, effectively eradicating
the cancer cells [66][57][37].

Micro-wave ablation: High frequency microwave energy is delivered through
antennas precisely inserted near the disease site. This electromagnetic energy is
focused to raise the temperature of cancerous tissue, leading to thermal destruction
of cancer cells. This technique offers a targeted and minimally invasive treatment
approach in oncology, effectively removing tumors while minimising damage to
surrounding healthy tissue [67].

Cryo-therapy: A hollow probe, filled with cooling gaz, is inserted near the
disease site. This method uses extreme cold to destroy cancer cells through induced
necrosis, ensuring precise targeting of tumors with minimal impact on healthy
tissue [106][9][58].

IRE ablation: Inserted electrodes emit high-intensity electric pulses near the
tumor, creating pores in cancer cell membranes. This process triggers apoptosis,
a programmed cell death mechanism, ensuring targeted destruction of cancerous
tissue [14][27].

It is worth noting that, prior to IRE ablation, surgical as well as non-invasive
local treatments were nearly impossible in the case of pancreatic cancer due to the
high risk of pancreatitis and the possible damages to adjacent vessels [53]. Also,
responses to chemotherapy, both adjuvant and neo-adjuvant, are rather poor in
that case [51].

1.1.2 Electroporation therapies
One promising method for the non-surgical ablation of deep-seated tumors is

electroporation based ablation.
The fundamental principle underlying this technique is electroporation, uti-

lized in various biological and medical applications. Electroporation involves
the application of a pulsed electric field to cells, which induces the formation of
transient nanopores within the cell membrane. These nanopores facilitate the
permeabilisation of the membrane to ions and macromolecules.

Depending on the intensity and duration of the electric field applied, the
resulting membrane damage can be either reversible or irreversible as seen in Figure
1.5. In the case of reversible electroporation, the cell membrane repairs itself after
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the electric field is removed, restoring the cell to its normal state and functionality
(Fig. 1.6). This reversible process is crucial for applications that require temporary
access to the cell interior without causing permanent damage.

Figure 1.5: Effects of electroporation, reversible, irreversible, as well as thermal
damage, in relation to variations in pulse duration and electric field intensity [59]
reproduced with permission.

Conversely, irreversible electroporation occurs when the electric field causes
extensive and permanent disruption of the cell membrane, leading to a critical loss
of homeostasis. This irreversible damage triggers cell death through apoptosis, a
programmed cell death mechanism [19]. This particular kind of cell death takes
hours [27], making evaluation from directly observing the tissues impossible.

The applications to such an increase in cell membrane permeability are numerous
in medicine.

Drug delivery: Electro-chemotherapy is an innovative therapeutic technique that
synergistically combines chemotherapy with electroporation to significantly enhance
the delivery of chemotherapeutic drugs, such as bleomycin, into cancerous cells.
This method addresses a key limitation of certain chemotherapeutic agents—namely,
their inability to efficiently penetrate cell membranes due to their hydrophilic nature.
By utilizing electroporation, electro-chemotherapy facilitates the direct entry of
otherwise non-permeant cytotoxic drugs into the tumor cells. In practice, the
procedure begins with the targeted injection of chemotherapy drugs into the tumor
site. The subsequent application of precisely timed electric pulses causes transient
pores to form in the cell membranes, allowing the drugs to diffuse into the cells
effectively [88][33]. Once inside, the drugs exert their cytotoxic effects, leading to
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Figure 1.6: The application of electric pulses to cells induces the formation of
pores in their plasma membrane, a process known as electroporation. When these
pores are reversible, the membrane recovers, allowing the cell to restore its normal
function. However, if the pulses cause irreversible damage, the disruption in cellular
homeostasis becomes too severe, leading to cell death, typically through apoptosis
[5], reproduced with permission.

increased cancer cell death. This strategic combination offers several advantages
over traditional chemotherapy. Most notably, it allows for significantly lower drug
dosages while still achieving high efficacy, thereby reducing the risk of systemic side
effects and toxicity that often accompany higher-dose chemotherapy treatments.

Gene Electro-Transfer (GET): GET is an innovative technique utilized to
introduce foreign DNA into cells by applying precise electric pulses. The induced
pores allow DNA molecules to enter the cell’s cytoplasm. Once inside, the foreign
DNA can integrate into the cell’s genome, enabling its expression to produce
specific proteins or modulate cellular functions [79]. This method holds significant
promise in therapeutic applications, such as DNA vaccines, where the introduced
genetic material can stimulate an immune response by instructing cells to generate
antigens.

Immunotherapy with electroporation: Both irreversible and reversible elec-
troporation not only disrupt cellular membranes but also play a pivotal role in
activating a systemic antitumor immune response, thereby enhancing the overall
efficacy of immunotherapy treatments [32]. The creation of transient or permanent
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pores in cell membranes leads to the release of intracellular material, including
tumor-specific antigens. This leakage triggers a robust immune response that ex-
tends beyond the immediate treatment site, a phenomenon known as the abscopal
effect. In this context, tumor antigens released from the treated site are recognized
by the immune system, which subsequently mounts a broader attack on tumor cells
throughout the body, even those not directly targeted by the electroporation pro-
cedure. Furthermore, the moderate tissue damage associated with the application
of electric fields during electroporation initiates a localised inflammatory response.
This tissue disruption attracts immune cells, such as macrophages and dendritic
cells, to the site of electroporation. These cells, along with the release of cytokines
and other signaling molecules, help orchestrate a more vigorous antitumor immune
response. The combination of these processes—tumor antigen release and immune
cell recruitment—primes the immune system for more effective recognition and
destruction of tumor cells, thereby complementing and amplifying the effects of
immunotherapy.

Tissue ablation: IRE ablates problematic tissues with precision and minimal col-
lateral damage. This technology is particularly effective in targeting and eliminating
tumors [27], where conventional methods might pose a higher risk to surrounding
healthy tissue. Beyond its application in oncology, IRE is also utilized in the field
of cardiology, where it ablates myocardial tissue to treat arrhythmias. By creating
controlled disruptions in the cell membranes of abnormal heart tissue, IRE helps
restore normal heart rhythm, offering a promising alternative to traditional ablation
methods with potentially fewer complications and improved outcomes [43].

1.1.3 Focus on IRE ablation
IRE provides a minimally invasive, non-surgical method for the ablation of deep

seated tumors: mainly liver [27], pancreas [14], prostate [10], and kidney [69]. The
procedure requires a direct current generator and the corresponding electrodes.
For example, the Nanoknife needles employed by our collaborating interventional
radiologists are 15 cm in length, providing optimal reach and accurate placement
during procedures. Additionally, they boast a diameter ranging between 16 and 19
gauge, facilitating precise application and minimising patient discomfort.

IRE ablation is distinguished by its focal-energy approach, which minimises
thermal effects, thereby preserving the extracellular matrix of surrounding tissues
and vital structures such as organs and blood vessels. This targeted energy delivery
ensures that nearby tissues experience minimal damage during the procedure and
that fluidic function in blood vessels is not compromised [74].

The recovery process following IRE is facilitated by the preservation of the
tissue scaffold. Normal tissue regrowth occurs rapidly post-procedure, with limited
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formation of scar tissue [73]. This stands in stark contrast to thermally based
techniques, which often lead to more significant tissue damage and scarring [53].

Furthermore, this technique does not suffer from the heat sink effect which
often compromises the completeness of ablation in traditional thermal techniques
due to heat dissipation through blood flow. It is worth noting that blood vessels
still impact IRE as the heterogeneity of tissues need to be taken into account in
the estimation of the delivered electric field [74].

Also, localised temperature elevation can occur near the electrodes within the
tumor’s surrounding tissues, influenced by factors such as the applied voltage
and electrode spacing. Proper electrode alignment is crucial to mitigate this risk:
inadequate parallelism increases the likelihood of thermal damage in areas where
electrodes are closest together [31].

In general, multiple electrodes are necessary for a single tumor, when most
thermal techniques only require one. Also, unlike thermal methods that induce
necrotic cell death, leading to immediate changes visible on medical imaging, IRE
mostly triggers apoptosis, a process where cells undergo programmed death hours
post-procedure. This delayed effect makes the precise delineation of the effective
treatment area challenging immediately after the intervention. Such intricacies
necessitate meticulous pre- and per-procedural planning to accurately assess and
optimise the diverse parameters crucial for achieving successful outcomes.

Pulse parameters: The pulse parameters determine the electric field the cells
are exposed to. They include the pulse strength (typically ranging between 1400
and 2000V), the pulse shape (square waves are most often used but there are also
sine waves, etc), the pulse duration (between 50 and 100 µs), the number of pulses
(80 to 100) generally delivered in trains of several tens [27], the pulse polarity, and
finally the delay between the pulses [31].

Electrode positioning: The location of electrodes plays a critical role in defining
both the spatial distribution and the intensity of the electric field applied during
procedures. Ideally, electrodes should be positioned in parallel alignment to ensure
uniform field distribution, at a similar depth within the tissue to optimise efficacy,
and separated by at least 2mm from major blood vessels to minimise thermal
damage [1]. The number of electrodes typically ranges between 2 and 6, depending
on the size and location of the target area, with variations in electrode shapes such
as plates, clamps, needles, or catheters offering tailored applicability [31].

Currently, establishing a universal protocol remains elusive due to the diverse
scenarios encountered, particularly in the context of deep-seated tumors. However,
needle electrodes emerge as the preferred choice for the ablation of deep seated
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tumors due to their ease of handling and relatively low invasiveness. Despite
these advantages, needle electrodes are susceptible to creating uneven electric field
distributions, which can impact treatment efficacy. This variability necessitates
careful consideration of electrode placement and configuration to ensure optimal
therapeutic outcomes.

1.1.4 Clinical and numerical workflows
IRE-based ablation stands out as a highly intricate procedure, demanding

meticulous planning and evaluation. The complexity lies in the precise application
of electric pulses to achieve targeted tissue ablation while preserving surrounding
structures. This work emphasizes the critical role of per-operative evaluation,
proposing innovative solutions to enhance the accuracy of efficacy estimation
during IRE procedures. By integrating advanced imaging techniques and real-
time monitoring, clinicians can better assess treatment outcomes and optimise the
procedure as it is performed.

In that respect, the interventional radiologist needs to check the effective area
of treatment, corresponding to the region where the electric field intensity reaches
the threshold for IRE. A numerical workflow was proposed in [27] to fully integrate
within the current clinical workflow followed by the contributors to the database
used in this work. It utilizes the medical images already captured along with the
electric pulses information recorded by the generator to provide an estimation
of the effective area of treatment. The symbiosis between clinical and numerical
workflows is shown in Figure 1.7 for the per-operative and post-operative sessions.

Figure 1.7: Combination of clinical and numerical workflows within the scope of
deep-seated tumor ablation via IRE [27], reproduced with permission.
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Pre-operative session: A CT-scan is conducted a few days before the operation
to precisely localise the tumor. Advanced algorithms propose an ideal electrode
configuration based on this data. However, these theoretical configurations often
overlook critical anatomical constraints encountered during the treatment of deep-
seated tumors, such as the presence of bones and nearby organs. Despite these
limitations, these programs prove invaluable for treating superficial tumors in
areas like the skin, subcutaneous tissue, prostate, and even certain bone tumors.
Their ability to pre-plan electrode placements enhances procedural efficiency and
accuracy, contributing significantly to patient outcomes [27].

Per-operative session: During the intervention, the patient is under general
anesthesia and neuromuscular blocking agents. This cautious approach is crucial
as the application of electric pulses during the procedure can potentially trigger
involuntary muscle contractions, thereby complicating the accurate targeting of
the tumor site.

The medical team then starts with a CBCT scan of the abdominal cavity.
A CBCT is captured via the synchronous rotation of a radiogenic source and a
scanning device around the patient [85]. This category of non-invasive medical
imaging measures the tissue density. The sinograms of the projections are then
used to reconstruct a 3D representation of the zone of interest, often through
filtered retroprojection [23] as it is a well-understood and fast algorithm. The
resulting 3D image is cylinder-shaped, as seen in Figure 1.8. This imaging modality
offers advantages over traditional CT scans, requiring a reduced radiation dose and
employing a lower-energy beam, which minimises exposure and enhances safety.

Figure 1.8: CBCT slices from our patient database, specifically for individuals
undergoing treatment for liver cancer: (a) displays the axial plane, (b) the coronal
plane, and (c) the sagital plane.

However, the benefits of this modality are tempered by significant challenges
that impact its overall effectiveness. One of the primary issues is its pronounced
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susceptibility to artifacts, particularly when high-density objects, such as electrodes,
are present within the field of view. These artifacts can severely distort the images.
Additionally, this imaging technique often suffers from poor contrast, making it
difficult to distinguish between different tissue types or to identify subtle anatomical
structures.

These limitations primarily arise from the use of a polychromatic X-ray beam,
which contributes to the common phenomenon of beam hardening. Beam hardening
occurs when lower-energy photons are absorbed more readily than higher-energy
ones as the beam passes through dense materials, resulting in uneven attenuation
and non-uniformity in the final images. This effect not only degrades image quality
but also complicates the interpretation of the results.

Furthermore, CBCT is inherently limited by its partial field of view. Unlike
traditional CT scans that can capture comprehensive images of larger anatomical
regions, CBCT is designed to focus on specific areas of interest, often excluding sur-
rounding tissues. This narrow targeting can lead to a lack of boundary information,
which is critical for the accurate application of computer vision tools. Without a
full context, these tools may struggle to accurately analyse the images, potentially
compromising the precision of automated diagnostics or treatment planning.

The dimensions are 512 voxels in the anterior-posterior and the right-left
direction, and between 195 and 512 voxels in the superior-inferior direction. The
voxel size is isotropic and between 0.362 and 0.453mm.

This initial scan serves to map out the precise geometry and location of the
region of interest, facilitating accurate electrode placement and ensuring optimal
treatment outcomes. The tumor and the affected organ main structures are seg-
mented either manually—which is still common but time consuming, laborious
because of the variability in shape, location, number and unclear boundaries of
tumors (in the case of liver cancer, it is even more so due to the low contrast between
the organ and its surroundings)—or semi-automatically—using, for instance, a
snake algorithm, as it is the case here [27].

The intervention proceeds with the percutaneous insertion of needles guided
by an interventional radiologist. Employing a free-hand technique, each needle is
carefully placed to closely mimic the configuration outlined in the pre-operative
proposal. Throughout this delicate process, real-time ultrasound and fluoroscopic
guidance are utilized. These advanced imaging modalities ensure not only the
accurate placement of electrodes but also parallel alignment and uniform depth.
Such precision is crucial for the success of IRE, as it enhances the efficacy of the
treatment while minimising risks to surrounding tissues.

Following the initial placement of electrodes, a second CBCT scan is performed
to confirm their precise positioning via a localisation algorithm. However, due to
their high density, the electrodes generate significant artifacts that obscure clear
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visualisation of the tumor. This limitation motivates the need for a second scan to
accurately assess the electrode placement and the surrounding tissue, separately.

Ensuring precise needle localisation is paramount as deviations from the planned
positions can introduce uncertainties in the electric field distribution. These uncer-
tainties impact the effectiveness of the treatment area, influencing the therapeutic
outcome evaluation [27].

Then, we join the geometrical information and the needle localisation into one
frame of reference. To do so, the segmented regions of interest are registered onto
the last CBCT scan in order to obtain the electrodes position with respect to the
tumor [27]. Ideally, this procedure takes into account the rigidity of the structures
(bones, needles, etc) to avoid unwanted distortions.

Concurrently, electric pulses are administered, synchronised with the patient’s
electrocardiogram (ECG) to coincide with the cardiac refractory phase, ensuring
minimal disruption to cardiac function. Moreover, comprehensive records of both
pulse intensities and their timing, known as chronograms, are documented. These
recordings serve crucial purposes in subsequent evaluation of the electric field,
facilitating further adjustments and evaluations.

An estimation of the delivered electric field is provided to the physicians for
them to adjust their approach if necessary. They may decide to add an extra train
of electric pulses to increase the area of effective treatment or do a pull-back—that
is, adjusting the depth of the needles—to adapt the depth of the treatment. The
information consists in the visualisation of the electric field as seen in Figure 1.9.
Generally, the isolines corresponding to the areas of reversible and irreversible elec-
troporation on the CBCT with the needles and the propagated tumor segmentation
are shown for clarity. When a change is made, the procedure may be repeated to
ensure a full treatment of the tumor.

Figure 1.9: Electric field simulation during an IRE HCC ablation: on the left for
the initial needle placement, in the center after the first pull-back and on the right
after the second pull-back. The tumor is depicted in yellow and the liver in purple
[27], reproduced with permission.
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Post-operative session: Ultimately, several days post-operation, the utilization
of MRI proves instrumental in evaluating the treatment’s efficacy. An MRI is
a sophisticated non-invasive imaging technique that offers a highly detailed 3D
anatomical depiction without exposing the patient to harmful radiation. Utilizing
powerful magnets, an MRI generates a magnetic field that aligns protons within
the body’s tissues. Subsequent application of a radiofrequency current disturbs
these aligned protons, causing them to emit signals as they return to their original
alignment state [3]. The MRI sensors capture these emitted signals, producing
detailed images of the body’s internal structures.

To enhance image clarity, contrast agents like gadolinium can be administered
intravenously, accelerating the proton realignment process and resulting in brighter
images. This imaging modality excels in visualising soft tissues rich in water,
making it invaluable for diagnosing conditions affecting the brain, spinal cord,
joints, and organs.

Despite its diagnostic advantages, MRI systems are costly to install and maintain,
and examinations can be time-consuming due to the detailed nature of the scans.
However, its unparalleled ability to provide non-invasive, detailed anatomical
information makes it indispensable in modern medical diagnostics.

Each sequence within the MRI showcases distinct facets of the therapeutic
response, providing a comprehensive view of the affected area’s healing and recovery.
By employing various imaging sequences, and contrast-enhanced imaging, clinicians
can discern different characteristics of tissue healing, presence of residual tumors,
and overall treatment impact:

• T1 weighted shows the largest zone of cell death, i.e. IRE,

• delayed phase of gadolinium enhanced T1 weighted shows the thermally
impacted regions: near the needle location (and scar tissue from previous
thermally-based treatments, if any),

• T2 shows the largest zone affected by electroporation, i.e. both reversible
and irreverible electroporation.

1.1.5 Challenges for numerical methods
To provide relevant information regarding the effective treated area, we must

face several challenges, inherited from the clinical settings.
First and foremost, CBCT stands out as the most informative imaging modality

available in the operating room, particularly when compared with alternatives such
as ultrasound and fluoroscopy. Despite its advantages, CBCT presents a challenge
with its relatively low signal-to-noise ratio, which complicates the clarity of the
images produced. As a result, the analysis of these images becomes a nuanced
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endeavor, whether it involves tumor segmentation, precise localisation of electrodes,
or image registration. This complexity underscores the necessity for advanced
analytical techniques to enhance the utility of CBCT in surgical settings.

Second, the entire application operates on commodity hardware, a crucial
consideration in clinical practices. In many hospitals, access to high-performance
computing clusters equipped with GPUs for accelerated computation is often
limited. This reality imposes significant constraints on the design of numerical
tools, necessitating innovative solutions that can optimise performance within the
confines of readily available technology. As such, it becomes imperative to create
tools that not only meet the demands of clinical efficiency but also adapt seamlessly
to the existing infrastructure in healthcare settings.

Additionally, the patient is on the operating table during the electric field
estimation, which introduces significant time constraints to the process. The
estimation must be completed in just a few minutes to remain practical, particularly
given that multiple estimates may be necessary throughout a single procedure.
This is essential to ensure that the adapted approach effectively ablates the entire
tumor. Such urgency underscores the importance of developing rapid, accurate
estimation methods that can seamlessly integrate into the fast-paced environment
of the operating room, ultimately enhancing patient outcomes and procedural
efficiency.

1.2 Contributions
The primary objective of this work is to equip interventional radiologists with

crucial and highly relevant insights necessary for the successful execution of IRE
ablation procedures. Central to this goal is the precise estimation of the electric
field delivered during the procedure, a task that demands a comprehensive array
of advanced image processing techniques. These techniques are employed to
extract critical information essential for accurate evaluation, particularly the precise
positioning of the needles relative to the tumor.

By harnessing state-of-the-art imaging methodologies, this thesis seeks to signif-
icantly enhance the precision and effectiveness of IRE ablation. This improvement
is anticipated to lead to better therapeutic outcomes for patients, while simulta-
neously advancing the field of interventional radiology by providing radiologists
with enhanced tools for decision-making during procedures. Moreover, the work
presented here addresses key clinical challenges in collaboration with the AP-HP
Avicenne Hospital, ensuring that the solutions proposed are both clinically relevant
and aligned with the practical needs of healthcare professionals. Through this
partnership, the research aspires to bridge the gap between cutting-edge technolog-
ical innovation and real-world clinical applications, ultimately contributing to the
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refinement of interventional radiology practices and patient care.
The accurate estimation of the delivered electric field is essential for determin-

ing the precise location of the effective treatment area, providing interventional
radiologists with invaluable real-time guidance. This information empowers them
to make critical adjustments during the procedure, ensuring that the ablation is
optimally targeted. By doing so, radiologists can ensure that the entire tumor
is effectively treated, significantly reducing the risk of incomplete ablation and
minimising the likelihood of cancer recurrence.

In the numerical framework previously developed by the MONC research team
[28], the linear static model is used:


−∇ · (σ∇ϕ) = 0
ϕ = ϕsrc at the active needles,
ϕ = ϕb such that

∫
active σ∂nϕ = 0 at the passive needles,

σ∇ϕ · n + αϕ = 0 at the simulation boundaries,

(1.2.1)

where ϕ is the linear static potential, ϕb is the potential of the boundary, σ is the
tissue conductivity, ϕsrc is the electric potential at the electrode, n is the normal
to the boundary and α is a weight.

This model is widely utilized in medical applications, particularly because of its
conservative nature, which tends to underestimate the electric field strength. This
built-in safety margin is crucial, as it guarantees that areas identified by the model
as electroporated have indeed undergone successful and complete electroporation,
thereby reducing the risk of partial or incomplete treatment. Such conservative
estimation is invaluable in clinical environments, where precision and reliability
are of the utmost importance. Ultimately, this model serves as a critical tool in
achieving optimal therapeutic outcomes, providing interventional radiologists with
the confidence that their procedures will be both effective and safe, contributing to
improved patient care and advancing medical practices.

To complete the problem formulation, we impose Dirichlet boundary conditions
on the active needles, ensuring a fixed potential that drives the electric field necessary
for the procedure. Simultaneously, floating potential conditions are applied to
the passive needles, allowing their potential to adjust dynamically in response to
the surrounding electric field, thereby influencing the overall distribution of the
field within the treatment area. Additionally, Fourier-Robin boundary conditions
are employed on the simulation boundaries, which serve to model the exchange
of electric energy between the simulated domain and its external environment,
ensuring a more realistic and accurate representation of the physical system.

This comprehensive combination of boundary conditions is critical to captur-
ing the intricate interactions that occur during the electroporation process. By
accurately modeling the behavior of active and passive needles within the tissue
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and maintaining the physical realism at the simulation boundaries, we can ensure
that the numerical model provides a highly reliable prediction of the electric field
distribution.

The effective evaluation of the treatment area in IRE ablation relies on several
critical steps. First, accurate segmentation of the tumor is essential, as it allows
for the adaptation of the tissue conductivity, σ, which is known to vary between
malignant and healthy tissues. This step not only aids in adjusting the parameters
for an improved electric field estimate but also ensures later that the tumor is
fully encompassed within the electroporated zone, thereby reducing the risk of
incomplete ablation.

Equally important is the localisation of the electrodes, which serves as the
foundation for estimating the electric field. Precise localisation ensures that the
electric field is appropriately mapped, minimising the risk of incomplete ablation
or damage to surrounding tissues.

Lastly, the alignment of CBCTs, is critical. This step involves registering the
initial imaging, which outlines the tumor’s location and boundaries, with the
subsequent scan that captures the actual position of the needles. This alignment
is paramount for ensuring that the targeted tumor area in the planning stage
corresponds precisely to the area treated during the procedure. By achieving this
seamless fusion of data from different stages of the process, the clinician can be
confident that the intervention is both accurate and comprehensive.

Together, these tasks—detailed further in the subsequent sections—are not
merely technical operations but are integral to advancing the precision, safety, and
efficacy of modern interventional radiology procedures. They play a crucial role
in improving patient outcomes and pushing the boundaries of what is possible in
minimally invasive cancer treatments.

In this thesis, we focus on two pivotal tasks: the precise localisation of the
electrodes and the registration of imaging scans, both of which are fundamental to
optimising the accuracy and success of interventional procedures.

1.2.1 Automated electrode localisation
This part was published in [47].
Our first contribution focuses on improving the automatic coarse segmentation

of needles, a vital step for precisely delineating the electrode tip and subsequently
estimating the electric field. The manual localisation of these electrode tips within
a 3D volume is not only labor-intensive but also consumes considerably more time
than the proposed automated method. Furthermore, this manual process demands
the undivided attention of a radiologist, which can be particularly challenging
when staffing is limited in the operating room. By streamlining this aspect of
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the procedure, we aim to enhance efficiency and allow medical professionals to
concentrate on critical tasks, ultimately facilitating better patient care.

We achieved a significant improvement in the electrode localisation by in-
tegrating deep learning into the existing pipeline. Specifically, we employed a
convolutional neural network (CNN) architecture, thoughtfully designed to address
the unique challenges posed by our data.

First, we adapted the U-Net architecture to suit the task of segmenting extremely
thin objects in 3D images. This adaptation involved modifying the network to
handle the intricate details and dimensions of needle-like structures. To further
refine the process, we implemented a patch-selective training strategy, which
significantly improved class balance by focusing on relevant sections of the images.

Moreover, we optimised the inference threshold to mitigate the effects of the
under-representation of our target objects within the dataset. This was crucial for
enhancing segmentation accuracy.

While various network configurations were explored, the simplest model consis-
tently delivered superior performance, both in terms of Dice coefficient and training
efficiency. This streamlined approach not only improved segmentation precision but
also reduced computational demands, making it a robust solution for our specific
application.

1.2.2 Partial fields of view registration
This part was published in [46].
Our second contribution introduces an innovative framework for auto-adaptive

boundary conditions in solving registration problems. When dealing with partial
fields of view, it is paramount to address the impact of mis-registration at the
borders, which results from an incomplete neighborhood of the pixels along the
perimeter. These boundary errors can propagate inward, significantly affecting
the regions of interest. Our novel approach adapts the boundary conditions on a
voxel-by-voxel basis, ensuring optimal results by mitigating the mis-registration
at the boundary. We propose to inject flux information computed online in the
boundary conditions and to estimate hyperparameters automatically through energy
minimisation.

While this thesis primarily focuses on the intra-operative registration of two
CBCT scans, the versatile method we propose holds significant potential for a
wide array of image registration tasks. This includes multi-modal registration,
which integrates different imaging modalities, as well as registration to anatomical
atlases for enhanced diagnostic accuracy. The innovative boundary conditions
we have introduced are designed to excel in scenarios with partial fields of view,
ensuring that our approach minimises errors at the image periphery and enhances

53



overall registration accuracy. Consequently, the improvements derived from our
method are expected to be particularly impactful in such challenging cases, offering
substantial advancements in the precision and reliability of medical imaging.

We conducted a thorough analysis of the impact of the automatically adaptable
boundary conditions applied during registration on the electric field estimate for
one patient from our database. We show an enhancement in the quality of electric
field estimation, a critical factor in ensuring effective treatment outcomes. Since
all spatial data fed into the electric field model is derived from CBCT images
captured during the procedure, registration becomes crucial in achieving a precise
estimation of the treated area. The refinement of the registration process ensures
that the tumor’s position relative to the electrodes is determined with greater
accuracy. A proper spatial alignment is essential for optimising the delivery of the
electric field to the tumor, maximising its impact on the targeted tissue. Together,
these advancements image registration contribute to a more precise, controlled,
and effective treatment process, ultimately improving patient outcomes.

1.3 Thesis outline
The current section sets the context for this thesis work: the ablation of

deep-seated tumor via IRE. We have identified various computer vision needs to
facilitate the procedure, including object segmentation — to outline the electrodes,
the tumor, etc — and image registration — to easily compare images taken in
different modalities and/or at different times during the diagnosis and the procedure.

The remaining is organised in two chapters, one for each contribution, succeeded
by a general conclusion.

The first chapter of this thesis presents a comprehensive literature review on
the field of image segmentation, encompassing both traditional methodologies
and cutting-edge deep-learning techniques. It delves into a detailed exposition of
our innovative method designed to enhance the coarse segmentation of needles,
which is crucial for the subsequent precise localisation of the electrode tip. This
chapter compares the outcomes achieved through the proposed approach with
those generated by the previously employed thresholding algorithm, highlighting
significant improvements. It concludes with an in-depth discussion and analysis
of these results, underscoring the advancements and potential implications of our
method in the broader context of medical imaging and computational accuracy.

The second chapter is structured similarly to the first, beginning with a thorough
review of existing methods for image registration, with a specific focus on boundary
condition usage. This foundational overview sets the stage for introducing our
innovative framework, which automates the adaptation of boundary conditions
within the context of variational methods. This chapter not only delineates the
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theoretical underpinnings of our approach but also provides comprehensive results
derived from extensive testing across multiple databases. These results are analysed
and discussed, highlighting the efficacy and robustness of the proposed framework in
enhancing image registration accuracy and reliability. We additionally investigate
the effect of such boundary condition applied in registration on the evaluation of
the electric field during an IRE ablation. We detail the method for the estimation
of the electric field as delivered by the electrodes. We then proceed to a thorough
analysis and discussion of the impact on the precision and accuracy of treatment
area estimation. This critical evaluation highlights the improvements and potential
applications of our approach in various medical and technological fields.

Finally, we synthesize the findings, providing a conclusive discussion that
underscores the significance of these results and outlines future directions for
research and practical applications.
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In brief

This work seeks to enhance the treatment of deep-seated tumors, such as those
in the liver and pancreas, which are difficult to access with conventional meth-
ods. IRE ablation offers a promising alternative by using high-intensity electric
fields to permeabilise cancer cell membranes and induce cell death. However, its
complexity—demanding precise electric field application through multiple elec-
trodes—requires careful planning and evaluation.

The objective of this research is to assess the real-time execution of IRE
ablation, utilizing advanced computer vision techniques like image segmentation
for needle localisation [47] and image registration to align intra-operative scans
[46]. The dataset comprises abdominal CBCT scans, with MRI validation, and the
study proposes innovative solutions for needle localisation and image registration,
analysing the latter’s impact on electric field estimation. By improving electrode
placement accuracy and field calculation, this work aims to enhance the efficacy of
IRE ablation in treating these difficult tumors, leading to better clinical outcomes.
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Chapter 2

Needle localisation

In this chapter, we tackle the critical challenge of needle localisation within
CBCT. This task is essential for accurately estimating the electric field, as electric
pulses are delivered to the tumor site through the tips of the needles. However,
the process is fraught with difficulties; the low signal-to-noise ratio and pervasive
artifacts in the imaging can significantly hinder precise localisation. Navigating
these complexities is vital for ensuring the effectiveness of the treatment, making
our exploration of advanced methodologies in this area all the more important.

We propose to integrate deep learning into the original coarse-to-fine algorithm,
enhancing the initial coarse segmentation of the needles. We employ a modified U-
Net architecture, designed to address the unique challenges presented by the imaging
modality and the characteristics of the objects of interest. A significant hurdle
we faced was the pronounced class imbalance within the dataset. To effectively
tackle this issue, we adopted an asymmetric U-Net design, which allows for greater
emphasis on the high-level information processed by the decoder. Additionally, we
crafted training patch sets specifically to bolster the representation of needles, and
we fine-tuned the inference threshold to better balance the network’s tendency to
predict background voxels with higher confidence. This multifaceted approach not
only improves segmentation accuracy but also enhances the overall robustness of
our localisation method.

The CNN is subsequently combined with the Hough transform, yielding an
analytical representation of the needle that can be seamlessly integrated into the
electric field estimation process, though the object of interest is not directly visible
on the CBCT due to artefacts. In contrast to the previous thresholding method,
our approach demonstrates enhanced accuracy and stability, significantly improving
the reliability of needle localisation. This advancement not only optimises the
precision of the electric field estimation but also paves the way for a more accurate
delineation of the treated area, ultimately contributing to better outcomes in
clinical applications.
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2.1 Role of needle localisation in IRE evaluation
To adequately assess the efficacy of the IRE procedure, and adapt the treatment

plan in real time accordingly, accurate computation of the electric field is imperative.
This necessitates precise and swift localisation of the electrodes responsible for
administering the electric pulses. These electrodes serve as the primary source
generating the electric field essential for electroporating cancerous cells. The
accuracy of electrode placement directly influences the distribution and strength
of the electric field, thereby impacting the treatment’s outcome and safety. By
ensuring precise electrode localisation, one can optimise the therapeutic efficacy of
IRE while minimising potential risks associated with inaccurate field application.

Since their actual position differs from the theoretical one proposed by a
specialised algorithm, to achieve greater accuracy, this data is extracted from
medical images, specifically through the use of CBCT within our operational
workflow. CBCT proves highly practical in surgical settings, delivering minimal
radiation doses that enable rapid, successive scans by radiologists. However, the
modality is challenged by its inherent drawbacks, such as a low signal-to-noise ratio
and the presence of artefacts. These complexities pose significant challenges for
computer vision tasks aimed at extracting reliable information from CBCT images.

There are two primary types of segmentation tasks in computer vision. The
first, semantic segmentation, involves assigning each pixel in an image to a specific
class, effectively creating a detailed map where each pixel is labeled according to its
corresponding object or region. This process results in a segmentation mask that
identifies and distinguishes between different classes, allowing for precise analysis
and understanding of the visual content. The second, instance segmentation,
similarly attributes a class to each pixel but also differentiate between different
objects belonging to a same class (Fig 2.1). Since we do not need to identify the
needles individually, we focus on instance segmentation for the remaining of this
work.

In this chapter, we present a novel coarse-to-fine localisation algorithm that
seamlessly combines the advanced capabilities of deep learning with the time-
tested robustness of the Hough transform technique. This innovative approach
is specifically designed to process CBCT scans, enabling the accurate analytic
identification of the electrode tip responsible for delivering the electric field.

By leveraging deep learning for the initial coarse segmentation, we capture the
broader region of interest with efficiency and speed. Following this, the Hough
transform is employed for precise fine-tuning, allowing for the exact localisation
of the electrode tip. This strategic integration not only ensures accuracy in pin-
pointing the tip’s position but also enhances the overall precision of the electric
field estimation, making the method both reliable and adaptable for clinical ap-
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Figure 2.1: Semantic segmentation (left) differs from instance segmentation (right)
in that it assigns a single label to each class of object throughout an image, whereas
instance segmentation provides distinct labels for each individual instance of an
object [93] ©2019.

plications. In doing so, our approach bridges the gap between modern machine
learning techniques and established analytical methods, offering a powerful solution
for high-precision medical imaging tasks.

The main challenges are the nature of the modality—CBCT are practical as they
are fast and low-dose but the capture has a low signal-to-noise ratio—, the nature
of the needles—electrodes are very dense, so they provoke extensive artifacts on the
scan and appear thicker—and the task itself—the segmentation of very thin objects
takes inherently place on highly skewed data. Indeed, across the dataset, there is
one voxel belonging to needles for 104 voxels belonging to the background on average.

This chapter is structured as follows. Section 2 offers a comprehensive literature
review on segmentation techniques, beginning with traditional approaches and
culminating in advanced deep-learning-based methods. Section 3 deals with the
clinical data, including the ground-truth generation for a deep learning application,
the data preprocessing and the assesment of the method’s efficacy. Section 4
delineates the contribution of this chapter: a CNN based coarse segmentation of
the needles. Subsequently, section 5 delves into the fine localisation of the needles,
using a Hough transform. Section 6 encapsulates the key contributions of this work
and outlines potential future directions for research in this domain. Finally, section
7 concludes on the proposed method and its results.

2.2 Object segmentation in the literature
This section explores the various existing segmentation methods, with a focus

on applications in medical imaging. We begin with traditional techniques, such as
thresholding and contour optimisation, which have long been used for their sim-
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plicity and effectiveness in specific scenarios. These foundational methods lay the
groundwork for understanding the evolution of segmentation approaches. We then
transition to advanced deep-learning-based techniques, which have revolutionized
the field by offering unprecedented accuracy and adaptability. These cutting-edge
methods leverage complex algorithms and datasets to achieve precise and robust
segmentation, addressing limitations of traditional approaches and opening new
frontiers in medical image analysis.

2.2.1 Traditional techniques
In this subsection, we delve into the two principal categories of traditional

segmentation algorithms: level set-based methods and region growing methods.
Level set-based methods are renowned for their ability to handle complex topological
changes, allowing for the precise delineation of object boundaries even in challenging
scenarios. On the other hand, region growing methods start from a seed point and
iteratively expand the region by including neighboring pixels that share similar
properties, making them particularly effective for segmenting homogenous regions.
Both approaches have been pivotal in advancing the field of image segmentation,
each offering unique advantages that cater to different types of segmentation
challenges.

Level set based methods: Rooted in edge detection theory, level set-based
methods possess an inherent sensitivity to noise. Despite this challenge, these
techniques are known for their ability to track and delineate moving fronts and
dynamically evolving shapes with precision. In the realm of level set methods,
contours are represented as the zero level set of a higher-dimensional hypersurface.
This conceptual framework allows the curve’s evolution to be analogous to the
transformation of a three-dimensional level set function. By leveraging the dynamic
nature of the level set function, these methods adeptly handle the intricacies of
varying shapes and structures, ensuring that segmentation remains both precise
and adaptable. Thus, despite their sensitivity to noise, level set-based methods
stand out for their robust capability to manage and interpret intricate, evolving
geometries in advanced imaging applications.

The common movement formula, governing the behaviour of the contour, is:

δφ

δt
+ F |∇φ| = 0, (2.2.1)

where t is the time, φ is the smoothing function representing a surface, and F is
the speed function describing the evolution of the surface and depending on image
characteristics.
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The level set function is ideally maintained near a signed distance function, which
provides a smooth representation of the evolving contour. However, it seldom attains
a precise value of zero on the desired edge, as its accuracy fundamentally relies on
the image gradients. These gradients guide the contour evolution, influencing the
positioning and shape of the segmented boundaries.

A variational formulation is possible where the energy to optimise consists of
an internal energy P , penalising deviation from a signed function, and an external
energy eG, driving motion towards image features:

E(φ) = αP (φ) + eG(ϕ) (2.2.2)
where α is a weight and G is the edge indicator function.

Narrow band methods excel by reducing computational costs through selective
level set updates. However, their effectiveness hinges on the dynamic management
of narrow band points, which poses a significant challenge. Ensuring timely and
accurate updates in response to evolving contours or features requires sophisticated
algorithms and careful parameter tuning. This dynamic adaptation is crucial to
maintain the method’s efficiency and accuracy in various applications, from medical
imaging to computer vision tasks.

More recently, homogeneity-based level set methods have emerged to achieve
optimal image partitioning by leveraging regional information rather than edge
detection. They exhibit robustness against noise and have the capability to detect
objects characterised by smooth gradients or no sharp edges. However, their
application is constrained by the formulation’s computational demands, particularly
in scenarios requiring segmentation into more than two regions. This limitation
arises from the inherent complexity of maintaining homogeneity across the image,
which necessitates intensive computational resources and careful parameter tuning
for effective implementation. The new energy functional is:

E(c1, c2, C) = α1Length(C) + α2Area(inside(C))+

α3

∫
inside(C)

|I(r)− c1|2dr + α4

∫
outside(C)

|I(r)− c2|2dr, (2.2.3)

where αi are fixed weights, I(r) is the intensity of the image at r, c1 and c2 are the
intensity best describing the two partitions of the image.

A worth-mentioning subcategory is contour optimisation, which represents a
sophisticated blend of automation and human interaction in image processing.
This method offers significant flexibility by allowing manual adjustments while
leveraging automated algorithms to refine contours. Despite its semi-automated
nature, contour optimisation retains a degree of subjectivity stemming from the
reliance on manual inputs for final adjustments. This approach is particularly
valuable in tasks requiring precision and nuanced adjustments that automated
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methods alone may not achieve effectively.
Such a standard approach is snake algorithms where a parametrised curve or

surface, in 2D and 3D respectively, provided manually, iteratively evolves according
to an energy minimisation criteria [52]. This energy formulation integrates an
internal and an external energy, which are further refined by internal bending forces
within a state space framework. However, their primary limitation lies in their
inability to effectively handle significant topological changes. When objects undergo
substantial transformations or deformations that alter their shape drastically, snake
algorithms struggle to adapt the contour appropriately, leading to inaccuracies in
segmentation results.

In [81], they associate a genetic algorithm, with selection, mutation and re-
combination of candidates, with a snake algorithm. The overall order complexity
is satisfyingly low: O(nλG) with n the number of control points, λ the number
of individuals per generation and G the number of generations. The selection
process employs a rank-based selector, evaluating candidates based on differences
in their performance. This approach effectively applies selective pressure, ensuring
optimal candidate selection even when energy disparities are minimal. The snake,
characterised by discrete control points, navigates this intricate landscape with
precision. Operating within a vast non-convex search space, the algorithm avoids
local minima, thus enhancing its robustness in capturing global optima. This capa-
bility is crucial in tasks where complex geometries or highly variable environments
require accurate and reliable solutions.

Two variations of the genetic active contour algorithm have been introduced.
In the supervised version, comprehensive global parameters are initially computed,
evaluated by the active contour algorithm to refine their effectiveness. Contrarily,
the unsupervised approach employs a nuanced strategy where the genetic algo-
rithm dynamically computes localised parameters specific to each control point.
These refined parameters are then seamlessly integrated into the active contour
algorithm’s iterative process, ensuring precise adjustments in response to image
features.

Compared to traditional generic snake algorithms, both methodologies demon-
strate notable advancements, consistently yielding satisfactory outcomes in various
segmentation tasks. These advancements underscore the algorithm’s adaptive
capabilities in optimising parameterization and contour refinement, enhancing its
applicability across diverse image processing applications.

Region growing based methods: Region growing based algorithms leverage a
collaborative strategy that integrates both region and line detection methodologies,
effectively navigating the complexities of pixel interactions within an image. By
dynamically examining the connectivity and similarity of neighboring pixels, these
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algorithms construct coherent regions based on predefined criteria. This methodical
process not only identifies distinct regions but also delineates their boundaries with
precision.

At the foundation of region growing based image segmentation, lies an elemen-
tary algorithm that clusters pixels based on their immediate attributes, initiating
the process of delineating distinct areas within an image. As segmentation tech-
niques advance, more intricate methodologies emerge, evolving from basic pixel
aggregation to the fusion of rudimentary regions. These advanced approaches
necessitate a refined framework capable of accurately defining regions, precisely
outlining boundaries, and seamlessly integrating segmented areas.

Local techniques: They delve into the details of individual pixels or their immediate
surroundings, analysing properties such as color, intensity, and texture. Blob
coloring exemplifies this approach, where contiguous groups of pixels with similar
attributes are categorised and often distinguished from their surroundings.
Global techniques: They harness the collective attributes of a vast array of pixels
across an entire image, aiming to delineate meaningful partitions effectively. These
methods analyse extensive pixel data to establish optimal thresholds, such as those
employed in thresholding algorithms.
Splitting and merging techniques: The manipulation of regions involves intricate
processes facilitated by region adjacency graphs (RAGs). These graphs provide a
structured framework where each node symbolises a distinct region identified within
an image. The edges between nodes in the RAG denote adjacency relationships,
capturing the spatial connectivity between regions. This approach allows for efficient
merging and splitting operations based on predefined criteria, such as similarity
in pixel attributes or geometric properties. By leveraging RAGs, algorithms can
systematically analyse and transform regions, adapting them to the complexities of
different images and tasks.

2.2.2 Deep-learning techniques
Machine learning, and more specifically deep learning, has been increasingly

used for many image processing tasks such as object recognition, segmentation,
classification, or target tracking. This recent surge is attributed to significant
advancements in graphics processing units (GPUs), which have enabled more
efficient computations. Consequently, this has facilitated the development of
increasingly complex and deep neural network architectures capable of handling
intricate visual data. Additionally, the expansion in the availability and diversity of
datasets has played a pivotal role. Larger and more varied datasets provide ample
training examples, allowing deep learning models to generalise better and achieve
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higher accuracy in diverse applications across various domains.
Unlike most traditional techniques, deep-learning methods extract features

automatically by noticing patterns in data (or tasks for reinforcement learning).
These features are often more effective than hand-crafted features [80] and less
laborious to set in place.

However, for methods requiring ground truth (supervised and semi-supervised
learning), the segmentation quality strongly depends on the ground-truths precision
[103]. Also, for 3D imaging, this kind of methods has high computational and
memory costs, calling for a careful implementation.

Amongst machine learning methods for object recognition, and more specifically
object segmentation, CNNs are dominant due to their better generalisation ability
[44] [62] and their ability to retain spatial coherence. Convolutional networks
consist in layers of operations, most of which are parametrisable.

Fully-connected layer: Each input xi is linked to each output y by a connexion
with a weight. The overall output is computed in considerations of those weights
wi, the inputs xi and the bias b. A scheme of the connectivity is presented in Figure
2.2 and the exact computation of the output from each cell is as follows:

y =
∑

i

wi · xi + b. (2.2.4)

where i is the input number.

Convolution: The input data is processed using a learnable kernel. The kernel
size determines the receptive field of the convolution, influencing the feature
extraction capabilities of the layer. Additionally, padding is employed to adjust
the spatial dimensions of the input, ensuring that the output dimensions match
the input when needed. This padding can be applied symmetrically to maintain
spatial resolution or asymmetrically to adjust output dimensions as required by
the network architecture. These fixed parameters play a crucial role in defining
how information is extracted and propagated through the network, impacting the
network’s ability to learn hierarchical representations from the input data.

Normalisation: normalisation in neural networks plays a critical role in stabiliz-
ing training dynamics and enhancing performance. By mitigating the impact of
differing feature scales and internal covariate shifts, normalisation methods ensure
smoother gradient descent trajectories and faster convergence [1] [2]. This not only
expedites training but also improves the model’s ability to generalise [3]. It is a
fundamental technique that contributes to the overall efficiency and effectiveness
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Figure 2.2: In a fully-connected layer, each neuron in a given layer (excluding the
input layer, which is represented in green) is interconnected with every neuron
from the preceding layer. When the input is an image, it undergoes a process of
flattening, where each individual pixel of the image is mapped to a corresponding
neuron in the green input layer, reproduced with permission.

of deep learning models. In the most common normalisation, namely batch nor-
malisation, the inputs xi, often sent in batch to the network, are normalised with
learnable shift β and scale γ:

x̂i = γ
xi − µi

stdi

+ β, (2.2.5)

with µi the mean and stdi the standard deviation of the i-th layer.

Non-linearity: Non-linear activation functions are pivotal in neural networks
because they introduce non-linearities, allowing the network to learn and approx-
imate complex mappings between inputs and outputs. These functions enable
neural networks to capture intricate patterns and relationships that linear functions
cannot represent effectively. Rectified Linear Unit (ReLU), which sets negative
values to zero and passes positive values unchanged, is favored for its simplicity
and efficiency in training deep networks:

ReLU(x) =
{

0 if x < 0
x otherwise. (2.2.6)
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Pooling: Pooling layers are integral in CNNs for spatial down-sampling, which
helps manage computational resources and control over-fitting. These layers operate
by dividing the input into smaller regions and applying a function (i.e., maximum
or average) to aggregate information within each region. On the one hand, max
pooling retains the most significant feature within each neighborhood, enhancing
robustness to variations in the input. On the other hand, average pooling provides a
smoother representation by averaging values, useful in scenarios where fine-grained
details are less critical.

Dropout: Dropout is a regularisation technique that combats over-fitting by
randomly deactivating neurons or features during training. This stochastic process
prevents the network from relying too heavily on specific neurons or features,
ensuring that the model generalises well to unseen data.

In the following, we only consider supervised learning. This training method
requires data and ground-truth to optimise the parameters. First an objective
(or loss) function is defined to measure the distance between the outputs of the
network and the ground-truth. A parametrisation giving a minimum (ideally the
global minimum) of this loss function is then obtained by retro-propagating the loss
through the layers of the network, starting from the end. Each step, the parameters
are updated following, for instance, the gradient descent algorithm. The parameters
are modified in the direction opposite the gradient, thus towards a minimum:

wn+1 = wn − lr∇L(wn), (2.2.7)

where wn is the parameter at iteration n, lr is the learning rate and L is the loss
function to optimise.

The iterative process of the algorithm continues until a predefined stopping
criterion is met, often determined by a specified number of iterations or the conver-
gence of certain parameters. This ensures that the algorithm reaches an optimal
state or a satisfactory approximation. Once in the inference phase, the parameters
remain static, and the algorithm applies its learned model to new data without
needing ground-truth labels for prediction.

Enhancing performance often hinges on integrating skip connections or leverag-
ing context vectors derived from pooling operations across the entire image. On
the one hand, skip connections facilitate gradient flow and enable the network to
retain fine-grained details essential for accurate segmentation or classification tasks.
On the other hand, context vectors synthesized from global pooling capture holistic
image context, aiding in robust feature extraction and improving spatial awareness.
Both mechanisms synergistically improve CNN capabilities by balancing local and
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global information flow, thereby elevating overall model efficacy and adaptability.
A number of relevant architectures have been proposed to solve the segmen-

tation problem. SegNet’s unique up-sampling method aids in retaining spatial
information crucial for accurate pixel-wise predictions. HRNet’s strategic use of
skip connections ensures that fine details are preserved throughout the hierarchical
processing stages. VNet’s adoption of the Dice coefficient for loss computation un-
derscores its effectiveness in handling imbalanced data distributions in 3D contexts.
Tensormask’s novel approach with 4D tensors exemplifies how segmentation can
benefit from predictive modeling and strategic data handling techniques [68].

However, the most used architecture in deep-learning method for medical image
segmentation is undoubtedly the U-net architecture. It consists in an encoder-
decoder structure as depicted in Figure 2.3. On the one hand, the contracting path
takes into account context and reduces the input to a representation in a smaller
latent space, behaving much like a classification CNN—accumulating semantic
information while losing spatial infomation. On the other hand, the symmetric
expanding path allows better localisation of objects of interest and recovers an
output of similar dimension to the input from the smaller representation. Moreover,
skip connections permit the combination of high resolution information from the
encoder, with the up-sampled features of the decoder. A convolutional layer then
learns to merge the activation features in a sensible way. In the original work [78],
only the valid part of the convolution was used, inducing a need for the cropping
of the encoder feature maps before concatenation with the decoder feature map,
and an extrapolation by mirroring the input to obtain a segmentation mask of the
same size as the image to segment. In the encoder, down-sampling is done via max
pooling while in the decoder, up-sampling is done by up-convolution.

On the learning side, batch training is performed to minimise the overhead. The
incorporation of a pixel-wise softmax in the loss function ensures precise probability
assignment per pixel, crucial for detailed segmentation tasks. Weighted cross-
entropy then adjusts these probabilities based on class frequencies in the ground
truth, prioritising learning in under-represented regions. This methodology not
only improves boundary delineation but also enhances overall model performance
in semantic segmentation applications.

It was initially proposed for the segmentation of structures in microscopical
images, specifically targeting neuronal structures and cells. The data augmentation
pipeline is intricately tailored for this purpose, emphasising techniques like elastic
deformation to simulate realistic variations in microscopic images. Additionally,
the network incorporates implicit augmentation through drop-out regularisation at
the end of its contracting path, enhancing generalisation capabilities.

This pioneering network, known for its efficacy in biomedical image segmentation,
achieved significant recognition by winning the ISBI cell tracking challenge in 2015,
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Figure 2.3: Original U-Net architecture proposed in [78], reproduced with permis-
sion. It features encoding and decoding paths linked by skip connections, which
enhance the flow of information by directly passing outputs from earlier to later
layers, preserving detailed spatial features.

underscoring its superiority in accurately delineating cell boundaries and neuronal
structures

In [103], a state-of-the-art modified U-net architecture is applied for real-time
needle localisation in ultrasound imaging. The inherent challenges of this modality,
including a low signal-to-noise ratio, presence of artifacts, and speckle effects,
necessitate advanced computational techniques for accurate localisation.

Ground truth data is derived through expert annotations of needle centers
across selected ultrasound slices. These landmarks undergo linear interpolation
to construct a detailed needle representation. Subsequently, this representation is
expanded to accurately reflect the needle’s true diameter, enhancing the model’s
robustness and precision in needle localisation tasks.

The improved architecture, shown in Figure 2.4, incorporates specialised atten-
tion gates to effectively mitigate false positives. This enhancement is crucial given
the ultra-thin nature of needles, akin to those utilised in IRE ablation procedures.
The attention gates are designed to refine the model’s focus on intricate details,
such as needle boundaries and subtle features amidst noisy ultrasound images.
However, they introduce additional parameters for the model to learn, specifically
the attention coefficients, making the network heavier.
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Figure 2.4: The U-Net architecture has been adapted to incorporate attention
gates, as detailed in the study [103]. This modification enhances the network’s
ability to focus on relevant features by incorporating mechanisms that selectively
emphasise important regions of the input data, reproduced with permission.

Also, the conventional composite loss function is substituted with a synergy
of total variation, which enhances spatial coherence by selectively boosting the
vertical axis—specifically aligned with the insertion direction of needles—and cross
entropy. This novel approach not only refines boundary detection but also optimises
segmentation fidelity in complex ultrasound images.

Moreover, the integration of deep supervision introduces companion objective
functions tailored for each hidden layer. This strategic augmentation not only
facilitates the extraction of more discerning features but also mitigates the challenge
of vanishing gradients, thereby fortifying the network’s capacity to achieve robust
and precise needle localisation.

The proposed method led to a statistically significant improvement compared
to the regular U-Net. 96% of the needles in their database were located within
0.442 ± 0.831 mm at the tip, where the radioactive source is located.

Oftentimes, good implementation and configuration are more important than
the architecture itself [49]. This is why taking into consideration the importance of
pre-processing, post-processing and adapted learning strategy is crucial. To adress
this issue, [48] provides a full self-adapting pipeline creating a suitable CNN from
a vanilla U-Net (2D, 3D or cascade, where a first network is fed a down-sampled
version of the input, the resulting smaller segmentation map is then up-sampled
and concatenated with the original input to segment, before being fed to another
network for refinement, see Figure 2.5).

The proposed pipeline goes as far as adjusting the loss function (a multi-class
dice loss with cross entropy), the optimiser settings (ADAM optimiser with adapt-
able learning rate), the data augmentation parameters, etc. The pre-processing
consists in cropping out eventual padding and resampling with a third order spline
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Figure 2.5: The vanilla cascade network, based on a U-Net architecture, employs a
sequential arrangement of multiple neural networks. In this setup, each network’s
output serves as the input for the subsequent network, once concatenated with the
original image. This process continues through the sequence, with each successive
network operating at progressively higher resolutions [48], reproduced with permis-
sion.

interposation to ensure the same voxel spacing while the post processing keeps the
largest connected components in the segmentation masks. 5-fold cross validation
is always performed and all the resulting networks are used as an ensemble to
increase robustness. This framework leads to state-of-the-art results on various
segmentation tasks without the need for manual tuning of the various parameters
that come with CNNs.

To address the substantial memory demands of processing 3D images, inno-
vative 2.5D architectures were devised. These sophisticated networks allow for
deeper and broader configurations, enabling comprehensive analysis of 3D datasets
through multiple cross-sectional slices. Moreover, in the realm of anisotropic data,
where voxel dimensions vary across different axes, 3D segmentation methodologies
often exhibit inferior performance compared to their 2D counterparts [48], thus
motivativating the resampling step in the nn-Unet.

A network architecture is proposed in [70], designed around a straightforward
encoder-decoder framework featuring a U-Net-like decoder (see Fig. 2.6). This
architecture employs strided convolution for efficient down-sampling. To enhance
the network’s performance, both bottleneck residual connections (illustrated in Fig.
2.7) and basic block residual connections are incorporated. These additions bolster
the network’s ability to preserve important features and gradients. Additionally,
the inputs are upscaled using two-fold bilinear upscaling, addressing the challenges
associated with segmenting small, critical objects such as brain metastases.

Furthermore, they employ mixup augmentation on a single dataset to subse-
quently validate their model across multinational datasets comprising hundreds of
brain MRI scans. This approach aims to rigorously assess the model’s resilience and
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Figure 2.6: The modified U-Net architecture designed for 2.5D segmentation,
as proposed in [70], incorporates several advanced features: deep supervision
to enhance the learning process, bottleneck structures to optimise computational
efficiency and feature extraction, and both basic and residual connections to improve
gradient flow and overall network performance, reproduced with permission.

its ability to generalise beyond specific data sources. Prior to analysis, preprocessing
involves brain extraction to isolate relevant structures and coregistration to ensure
spatial alignment for accurate comparative evaluations.

The loss function is a compound loss with batch-wise focal Tversky loss and
weighted binary cross entropy—where additional weight is attributed to metastases
slices. This puts emphasis on true positives to handle class imbalance. To further
reduce memory requirements, mixed precision training, where inputs are randomly
cropped, is used. The 2.5 CNN was trained alongside its 3D counterpart for
comparison. The authors end up recommending the 3D version as they observed a
considerable reduction in false positives while maintaining a satisfying sensitivity.

Transformers, a prominent category of deep-learning models, have gained trac-
tion in medical image segmentation due to their capacity for capturing global
dependencies. Despite their rising popularity, transformers typically exhibit lower
performance compared to CNNs under identical data augmentation conditions [49].
Likewise, they may suffer from large memory and computational requirements,
especially when processing 3D data.

This method comes from the field of natural language processing and is based
on self-attention [62]. Early approaches integrated CNNs with transformers’ self-
attention mechanisms to enhance spatial context awareness. Over time, this hybrid
model transitioned into vision transformers, where traditional convolutional layers
were entirely substituted with self-attention layers. In this advanced paradigm, im-

75



Figure 2.7: The bottleneck residual connection incorporates a residual block that
includes a "bottleneck" structure, where a sequence of convolutional layers is
compressed into a narrower dimensionality before being expanded back to its
original size. This approach allows the network to more effectively learn and
retain important features by facilitating smoother gradient flow and reducing
computational complexity, while still capturing intricate patterns in the data [40],
reproduced with permission.

ages are segmented by dividing them into manageable patches that are sequentially
processed by the transformer. This patch-based approach allows the transformer
to effectively capture global dependencies across the entire image, enabling robust
and accurate segmentation

The vanilla transformer has an encoder-decoder structure made of transformer
block, i.e. a multi-head self-attention to attend multiple parts of the input and
a position-wise feed-forward network [72] (Fig. 2.8). The integration of residual
connections and layer normalisation within both encoder and decoder components
enhances computational efficiency and gradient flow. Notably, while both encoder
and decoder share these optimisation techniques, the decoder introduces addi-
tional mechanisms essential for sequence generation tasks. Specifically, it employs
attention masks to prevent the model from attending to future tokens during
training. Moreover, positional encodings are incorporated to impart sequential
context, crucial for tasks like language translation and image captioning.

The loss function in transformer-based models often employs a combination
of various loss components tailored to specific tasks, known as compounded loss.
This comprehensive approach ensures that the model optimises across multiple
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Figure 2.8: The vanilla transformer architecture comprises two primary components:
the encoder, positioned on the left side of the diagram, and the decoder, on the
right side. The encoder processes and transforms the input data into a contextual
representation, which is then utilised by the decoder to generate the final output
[72], reproduced with permission.

objectives, balancing accuracy and robustness in predictions.
Newest designs for semantic segmentation include the use of category queries

with cross-attention in the decoder to better model global context [99], multiple
class tokens with patch tokens to obtain multi-class attention map [98], quad-
tree transforms for fine boundary/object [56] and dual frameworks combining
transformer and CNN to look into global and local context respectively [101].
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Integrating traditional graph models like conditional random fields (CRFs)
and Markov random fields (MRFs) with deep-learning approaches enhances the
contextual understanding and precision of segmentation tasks. These models
leverage structured dependencies among labels, refining predictions by considering
neighbouring pixel relationships.

In the DeepLabv2 architecture, the synergy between a CNN equipped with
dilated convolutions and a probabilistic graphical model further enhances localisa-
tion accuracy. By integrating these techniques, DeepLabv2 not only captures fine
details through dilated convolutions but also refines segmentations based on global
context provided by the graphical model [68].

2.2.3 Conclusion on the literature review
Building on insights from previous research, it is evident that deep learning

methods remain the most effective approach for fundamental computer vision tasks,
such as coarse segmentation. Among these techniques, CNNs continue to deliver
superior performance, even in the face of significant advancements in transformer-
based models. The U-Net, in particular, has garnered substantial attention due
to its powerful yet straightforward architecture, making it a favored choice in
segmentation tasks.

While numerous U-Net variants—incorporating elements such as attention gates
or deep supervision—have shown improved performance in specific cases, these
enhancements are often the result of highly customised modifications tailored to
particular datasets or challenges. Given this, we have chosen to begin with a
basic U-Net architecture, adapting it to suit the unique requirements of our task:
the precise segmentation of extremely thin structures. This pragmatic approach
allows for a balance between leveraging the proven strengths of the U-Net and
incorporating targeted adjustments necessary for our specific application.

2.3 Handling the clinical data

2.3.1 Ground-truth generation
Given that we are leveraging supervised learning to train our CNN for needle

segmentation on CBCT images, it is imperative to have accurate ground-truth
data for comparison during the optimisation process. However, the current data
provided by radiologists is limited to the coordinates of the needle tip, which falls
short of the comprehensive information needed for effective segmentation learning.
Consequently, we must undertake the creation of our own detailed ground-truth
annotations to ensure the network’s ability to accurately segment the needles in
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the images.
To do so, we utilise a semi-automatic segmentation technique, as implemented

in ITK Snap [100], combining a traditional method introduced in section 2.2.1, i.e.
the snake algorithm, with machine learning. We manually placed spheres along the
needles that are later iteratively optimised to fit the shape of the needle as seen on
the CBCT (Fig. 2.9). To do so, a random forest classifier is trained using features
extracted from the coarse labels placed by the user. The active contour algorithm
is then applied on the segmentation proposed by the classifier. The contour C
evolves such that:

∂C

∂t
= (s(C) + ακC)n, (2.3.1)

with κC the mean curvature, imposing smoothness of the solution, s the speed
function, n the unit outward normal vector and α a scalar parameter [100].

Figure 2.9: Ground-truth generation for a patient in our database is achieved
using the snake algorithm implemented within ITK-Snap [100]. At iteration zero
(it=0), the manually placed spheres are displayed as initial reference points. As
the algorithm progresses through successive iterations, we observe the gradual
refinement and convergence of the contour optimisation process, resulting in an
increasingly accurate representation of the target structure: the electrode.

2.3.2 Data preprocessing
In machine learning, the partitioning of data into training and test sets is

fundamental for robust model development and evaluation (Figure 2.10). The
training set, comprising data from 8 randomly selected patients in our scenario,
serves as the foundation for refining the algorithm through iterative adjustments
and parameter tuning. This iterative process ensures that the model learns patterns
and correlations within the data.

Conversely, the test set, consisting of the remaining 8 patients, acts as an
impartial measure of the model’s performance on unseen data. This critical
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evaluation step simulates real-world scenarios, gauging how effectively the algorithm
generalises to new, unseen patient data. By maintaining this separation, we mitigate
the risk of over-fitting, where the model performs exceptionally well on training
data but poorly on new data. Thus, the careful partitioning into training and
test sets ensures the reliability and applicability of machine learning models in
healthcare and beyond.

Figure 2.10: Partitioning of the dataset into a training dataset and a test dataset.
The patient in red was used for validation. Additionally, information about the
contrast is provided, where the contrast is considered low when the signal to noise
ratio, defined as SNR =

(
µ

std

)2
over a patch of the image, is lower than 5.

Furthermore, the dimensions of the scans are standardised, the dimension in
the superior-inferior direction being otherwise between 195 and 512 voxels.

Finally, by standardising the scaling process across the entire dataset, consistency
is maintained in the representation of intensity values. This approach ensures
that features of interest, such as anatomical structures or pathological findings,
are uniformly visualised and interpreted. Furthermore, applying uniform scaling
improves comparability between different scans and facilitates accurate quantitative
analysis. In our case, the values are thresholded between −999 (the padding
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value for the cylindrical CBCT to be stored as a cubic matrix) and 1500 before
normalisation.

2.3.3 Assessment
The Dice coefficient serves as a metric in evaluating the effectiveness of the

proposed CNN for the needle segmentation task. By quantifying the overlap between
the predicted segmentation (output ŷ) and the actual segmentation (ground-truth
y), it provides a measure of how accurately the CNN identifies and delineates
regions of interest within an image:

Dice = 2∑r∈Ω yr · ŷr∑
r∈Ω yr +∑

r∈Ω ŷr
. (2.3.2)

where r is the coordinates, y is the ground truth, ŷ is the estimate and Ω is the
image domain.

2.4 Coarse segmentation with a U-Net
In the following sections, we present the overall method later used in clinical

settings to precisely localise the needles delivering electric pulses. The approach
is coarse-to-fine: starting by a rough segmentation using deep-learning with a
suited loss function and a patch-selection optimisation strategy, and finishing with
a Hough transform improved via a voting procedure. A good first approximation
of the needle is necessary for the proper evaluation of the needle tip localisation,
though the Hough transform is able to adress the issue of potentially missing data
in the coarse segmentation, by providing an analytical representation of the object
of interest.

The main challenges arise from the nature of the imaging modality—low signal-
to-noise ratio—and the nature of the needles—their density causes extensive arte-
facts on the CBCT. Moreover, the dataset utilised in this study is relatively small,
a common limitation in oncology, consisting of only 16 patient samples. Com-
pounding this issue is the significant class imbalance, which presents a formidable
challenge for training an effective segmentation model. As highlighted in Table 2.1,
the proportion of voxels containing needle information is remarkably low, never
exceeding 0.1% of the total volume in the 3D scans. This is due to the extreme
thinness of the needles, which occupy a minimal number of voxels compared to the
overall image dimensions.

The scarcity of needle-related voxels severely constrains the algorithm’s ability
to accurately learn the distinct features necessary to segment these objects. The
limited representation of needle information within the training data poses a risk
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Patient Needle proportion Dimension Spacing (mm)
1 0.007% 512x512x510 0.453
2 0.028% 512x512x474 0.453
3 0.022% 512x512x380 0.362
4 0.010% 512x512x270 0.452
5 0.010% 512x512x504 0.452
6 0.013% 512x512x512 0.452
7 0.015% 512x512x382 0.453
8 0.012% 512x512x510 0.453
9 0.009% 512x512x510 0.453
10 0.032% 512x512x384 0.452
11 0.047% 512x512x194 0.453
12 0.011% 512x512x394 0.453
13 0.013% 512x512x406 0.452
14 0.006% 512x512x509 0.453
15 0.015% 512x512x464 0.452
16 0.003% 512x512x472 0.453

Table 2.1: General characteristics of the data collected on a set of patients whose
liver cancer was treated by IRE. The needle proportion is computed as the per-
centage of voxels including needle information in the whole image. The values are
extremely low, indicating a challenging class imbalance within the dataset.

of the model failing to generalise, potentially leading to poor performance and
reduced accuracy. If not carefully addressed through techniques such as data
augmentation, loss function adjustment, or specialised architectures, this imbalance
could significantly hinder the effectiveness of the deep learning models. Thus,
mitigating this challenge is crucial to achieving accurate and reliable segmentation
outcomes.

2.4.1 Adapted U-Net
As highlighted in section 2.2, the U-Net architecture emerges as one of the most

efficient and adaptable deep-learning techniques for segmentation tasks. Recognising
its potential, we have decided to customise the U-Net framework to address the
unique challenges posed by our specific task, namely, the segmentation of thin
objects. Additionally, we will tailor it to accommodate the characteristics of our
dataset, which is both small in size and imbalanced. This approach will allow us to
leverage the strengths of the U-Net, optimising it for our particular requirements
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and improving segmentation accuracy.
We retain some of the architectural and pipeline choices from the original article

[78].

Encoder-decoder architecture: The architecture includes a contracting path,
reducing the spatial dimensions while preserving essential features, to effectively
extract and capture contextual information from the input data. This is comple-
mented by an expanding path designed to achieve precise localisation of critical
features, by recovering the spatial information. This dual-path approach enhances
the model’s ability to understand the broader context while maintaining fine-grained
accuracy in feature detection.

Skip connections: At each level of the U-Net architecture, we incorporate
connections between the encoder and decoder paths. The feature maps from the
encoder are concatenated with the feature maps from the decoder before being
processed as a single input. These connections facilitate a deeper network structure
while preserving the seamless flow of information throughout the model. The
shorter connections between layers close to the input and those near the output
enable the integration of various levels of perception (low level edges and high level
shapes for instance) [45], similarly to the human visual system, thus enhancing
the network’s ability to capture both high-level context and fine-grained details
simultaneously.

Max pooling layer: Within the encoder, the down-sampling process employs
max pooling, a technique that condenses the input by selecting and preserving
the maximum values in each division. This operation not only reduces the spatial
dimensions of the data but also retains the most prominent features, ensuring
that critical information is efficiently carried forward to subsequent layers for more
advanced analysis and processing.

Large number of feature channels: Leveraging multiple channels enables the
extraction of a richer and more diverse set of information from a single input. This
multifaceted approach ensures that various aspects of the input data are captured,
enhancing the depth and breadth of the analysis and yielding more comprehensive
insights.

Patch-based approach: The inputs are divided into patches to artificially aug-
ment the volume of training data. This strategy not only bolsters the dataset
but also ensures the preservation of high resolution within the constraints of time
and memory. Indeed, larger inputs require more network layers to effectively
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down-sample, increasing computational costs. It thus answers the clinical con-
straints in the case of IRE ablation. When inputs are excessively large, additional
network layers are necessary to sufficiently down-sample the data during encoding.
Conversely, if the input size is too small, it encompasses insufficient contextual
information for thorough analysis, thereby impeding the model’s performance. By
using 64x64x64 patches, we balance data volume, memory efficiency, and resolution
quality, ensuring better model accuracy while addressing clinical challenges.

To address the unique challenges inherent to our dataset and the specialised
clinical environments for which our solution is tailored, we put forth the following
comprehensive modifications. These adjustments are crafted to enhance the efficacy
and precision of our model, ensuring it meets the stringent demands of medical
applications.

3D convolutions: Given that both the data and thus the extracted patches are
three-dimensional, the application of 3D kernels becomes essential for convolution
operations. This approach enables the CNN to effectively capture spatial relation-
ships in three dimensions, leveraging volumetric information from the data and
patches. By using 3D kernels, the network can analyse not only the traditional 2D
features across height and width but also depth, which is crucial for tasks involving
volumetric data such as medical imaging. This approach enhances the model’s
ability to discern intricate patterns and structures within the 3D data, leading to
more accurate and robust predictions.

Asymmetric encoder-decoder: In enhancing our network architecture, we
augment the number of feature channels within the encoder phase, thereby intro-
ducing an asymmetry. This adjustment enables our model to effectively capture
intricate local details, crucial for segmenting objects of exceptionally fine structures,
such as the electrodes. By doubling the feature channels, our network enhances
its capacity to discern subtle variations and nuances in the data, particularly
beneficial for tasks where precise localization is paramount. This approach aligns
with recent advancements in deep learning architectures tailored for medical image
segmentation, emphasising the importance of comprehensive feature extraction to
achieve accurate results [69].

Padded convolutions: In our approach, we integrate zero-padding into the
convolution process to uphold consistent feature map dimensions across our cus-
tomized U-Net architecture. By padding the feature maps with zeros, we maintain
the spatial dimensions throughout the network, making it easier to concatenate
the feature maps from the encoder with those from the decoder. This approach
preserves spatial fidelity and facilitates smoother integration of features, allowing
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for more efficient and accurate segmentation without the distortion that might
arise from cropping.

Up-sampling: In our segmentation model’s decoder phase, we opt for inter-
polative resizing over traditional deconvolution, as used in the original paper, to
enhance computational efficiency without compromising performance. By employ-
ing interpolation techniques, we efficiently scale up the feature maps to match
the original input dimensions. Interpolative resizing uses simpler operations like
bilinear interpolation to scale the feature maps, which reduces the computational
cost and memory usage compared to deconvolution. Deconvolution, or transposed
convolution, can introduce higher computational demands due to its more com-
plex calculations and the potential for artifacts, such as checkerboard patterns.
By opting for interpolation, we can upsample the feature maps more efficiently,
accelerating the segmentation process. This method retains the accuracy and
detailed localisation required for tasks like medical image analysis, without the
computational burden associated with deconvolution.

2-level decoder: The size of our patches being considerably smaller than those
used in the original U-Net (64 × 64 × 64 vs 572 × 572), only 2 levels are used
to avoid over-fitting. Over-fitting occurs when a model becomes overly complex,
learning not just the underlying patterns in the training data, but also noise and
specific details that do not generalise well to unseen data. By limiting the number
of levels to just two, we simplify the model. This helps the network focus on more
general features rather than memorising the training data, improving its ability to
generalise to new data. Additionally, reducing the complexity of the model can
lead to more efficient training and faster convergence

No batch training: In cases where the dataset is small, such as having only 16
patients, the model may face issues during training when using standard batch
normalisation, which relies on calculating statistics (mean and variance) across a
batch of data. With such a small batch size, these statistics might be unreliable,
which can negatively affect the performance and generalisation of the model.
To overcome this challeng, layer normalisation is used instead. Unlike batch
normalisation, which normalises across the batch dimension, layer normalisation
normalises across the features of each individual sample. This helps stabilise training
and improve the model’s ability to learn, especially when there is a limited amount
of data. By considering the CBCTs individually, the network applies normalisation
at the level of each scan rather than the entire batch, improving training efficiency
and model performance with small datasets like the one described.
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Loss function: The choice of the appropriate loss function plays a pivotal role
in guiding a model towards effectively learning the task at hand, especially in
the realm of image segmentation. Within segmentation tasks, there exist four
categories of loss functions, each tailored to address specific challenges and nuances
[50]:

• distribution based: measures the difference between two probability distri-
butions. Specifically, it quantifies the dissimilarity between the predicted
probability distribution generated by a model and the true distribution de-
rived from the actual data labels. For instance, the binary cross-entropy is
computed as:

LBCE = − 1
|Ω|

∑
r∈Ω

(yrlog(ŷr) + (1− yr)log(1− ŷr)), (2.4.1)

where Ω is the image domain, r is the voxel coordinate, y is the ground-truth
segmentation and ŷ is the estimated segmentation.

• region-based: exemplified by the Dice coefficient (Eq. 2.4.2), delves into the
intersections among distinct regions within a segmentation task. This metric,
often referred to as the overlapping index, evaluates the overlap between true
positive, true negative, false positive, and false negative regions. It can be
adapted as a loss function to minimise:

LDice = 1−Dice(y, ŷ) = 1− 2∑r∈Ω yr · ŷr + ϵ∑
r∈Ω yr +∑

r∈Ω ŷr + ϵ
. (2.4.2)

where ϵ = 10−3, in our implementation, is a smoothing factor.
Despite its widespread adoption due to its effectiveness in handling class
imbalances and boundary misalignments, the Dice coefficient is non-convex.
This characteristic can occasionally hinder its ability to achieve globally
optimal results, as it may converge to local minima rather than the optimal
solution,

• boundary based: emphasises the fidelity of predicted boundaries to their
true counterparts in segmentation tasks. This kind of metric quantifies
the maximum distance between points of the estimated and ground-truth
boundaries. By prioritising the accurate localisation of boundaries, the
Hausdorff distance, for instance, enhances the precision of segmentation
models, ensuring robust performance in scenarios demanding high spatial
accuracy:

D = maxŷ∈Ŷ miny∈Y ||ŷ − y||2, (2.4.3)
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• compounded loss: integrates diverse loss components to enhance model
performance by leveraging complementary strengths. For example, the combo
loss (Eq. 2.4.4) intertwines the Dice loss, emphasising spatial overlap accuracy,
with cross-entropy, which penalises probabilistic deviations between predicted
and actual distributions. This fusion addresses nuances across segmentation
tasks, balancing pixel-wise precision with holistic structural integrity. By
synergising distinct loss metrics, compounded approaches navigate complex
data distributions more adeptly, fostering robust learning frameworks crucial
in fields like medical imaging and autonomous systems.

There is no universal loss function. The choice needs to adapt to the data
set (class imbalance, skewness, etc) and the task at hand (impact of false posi-
tives/negatives on the solution quality, etc). The loss function we propose to use is
composed of the dice loss function and a binary cross-entropy instead of a pixel-wise
softmax with weighted cross-entropy:

L = LBCE + LDice (2.4.4)
The class imbalance is further dealt with in the learning and inference framework

themselves.
A variant, thereafter refered to as 3Loss-U-Net, proposes to add a term corre-

sponding to the Tversky loss to further adapt to the class imbalance thanks to an
extra parameter β:

LT versky = 1− 1 +∑
r∈Ω yr · ŷr

1 +∑
r∈Ω[yr · ŷr + β(1− yr)ŷr + (1− β)yr(1− ŷr)]

(2.4.5)

where (1− yr)ŷr are the false positives and yr(1− ŷr) are the false negatives.

ADAptive Moment (ADAM) optimiser: We employ the ADAM optimiser,
a powerful algorithm in machine learning that effectively navigates complex op-
timisation landscapes, accelerating convergence towards optimal solutions while
mitigating the risk of getting stuck in local minima. It is a combination of gradient
descent with momentum and Root Mean Square Propagation (RMSP). Parameters
are updated using multiple iterations of gradients, as follows:

wt+1 = wt −m∗
t (

lr√
v∗

t + ϵ
), (2.4.6)

with the bias corrected momentum:

m∗
t = mt

1− β1
, (2.4.7)
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the bias corrected velocity:

v∗
t = vt

1− β2
, (2.4.8)

the moment:

mt = β1mt−1 + (1− β1)
δL

δwt

, (2.4.9)

the velocity:

vt = β2vt−1 + (1− β2)
(

δL

δwt

)2

, (2.4.10)

where lr is the learning rate, t the iteration number, ϵ a small positive constant, β1
and β2 the decay rates of the moment and velocity respectively.

The architecture resulting from the afore-mentioned modifications is represented
in Figure 2.11.

Figure 2.11: The U-Net architecture has been customised to suit the specific
requirements of our dataset. This modified version incorporates two distinct levels
of resolution, up-sampling techniques to increase feature resolution, and twice
as many feature maps in the decoder compared to those in the encoder. These
adjustments allow the network to better capture and represent intricate details
pertinent to our data.

2.4.2 Post-processing optimisation
The over-representation of background compared to needles in the dataset

facilitates the classification of background voxels. Therefore, the network recognises
background voxels with more confidence than it does needle voxels. This translates
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to higher probabilities for the background channel of the output. Thus, when
computing the binary segmentation masks, it is useful to adjust the inference
threshold θ in order to take into account the increased confidence. Indeed, reducing
it allows to artificially give more weight to the needle prediction despite the skewness
in the dataset since the conventional threshold θ = 0.5 proves suboptimal given
the dataset characteristics.

The inference is therefore finely tuned to align perfectly with the training
dataset, establishing a robust foundation for the analysis. This calibrated value
will remain steadfast for the remainder of the thesis, ensuring consistency and
reliability in our findings.

Figure 2.12: Dice coefficients against inference thresholds for all 8 patients from
the training dataset, and their average. In average, a lower inference threshold of
0.2 allows to counter balance the under-representation of needles.

Low quality image: In CBCT presenting with weak signal and low contrast
(patient 4 and 6), the network struggles to detect the needles. The relationship
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between inference threshold and Dice coefficient is linear (Fig. 2.12) , that is the
more we allow positives, whether true or false, the more the network predicts needles.
The linear relationship highlights how cautious adjustments in thresholding can
influence the network’s propensity to detect needles amidst low contrast scenarios.

Satisfying quality image: In CBCT with higher signal-to-noise ratio and con-
trast, the neural network demonstrates enhanced capability in detecting needles.
This results in a nuanced relationship between the inference threshold and Dice
coefficient, characterised by a parabolic curve. As the threshold adjusts, the net-
work’s confidence in predicting needle voxels fluctuates, reflecting its ability to
discern subtle features amidst clearer imaging conditions.

Overall, the performance of the network exhibits notable enhancement when
utilising a lower threshold setting. This adjustment allows the model to capture
finer details and nuances in the data, thereby improving its accuracy and sensitivity
in identifying relevant features. In the subsequent sections of this chapter, we will
adopt an inference threshold of 0.2 to optimise the network’s performance and
ensure robust results, as it has proven to lead to higher segmentation quality on
the training dataset (Fig. 2.12).

2.4.3 Patch overlap
This section evaluates how the use of overlapping patches influences the net-

work’s effectiveness in image segmentation tasks. Overlapping patches can enhance
segmentation quality by providing redundant coverage of image regions, improving
the network’s ability to capture intricate details and boundaries. Moreover, they
contribute to robustness against variations and noise in input data, leading to more
reliable segmentation outcomes.

However, this approach also impacts computational efficiency. The time required
for processing increases as the overlap between patches grows, affecting real-time
application feasibility. Balancing the trade-off between segmentation accuracy
and computational cost is crucial for optimising network performance in practical
scenarios.

We test 3 degrees of overlap: no overlap, overlap of half the patch size, overlap
of 3 quarters of the patch size.

As can be seen in Table 2.2, overlapping patches barely improves compared
to no overlapping when the overlap is half the patch size. In fact, performing a
paired t-test shows that this increase in segmentation quality is not statistically
significant (p = 0.49).

For the stronger overlapping tested, the performance deteriorates. The high
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Patient No overlap Overlap = 1/2 Overlap = 3/4
9 0.7401 0.5176 0.4957
10 0.5198 0.5364 0.5073
11 0.3661 0.3657 0.3530
12 0.3094 0.5184 0.4945
13 0.3052 0.3779 0.3432
14 0.3721 0.3782 0.4801
15 0.6203 0.5679 0.5510
16 0.3928 0.3713 0.3002

Mean ± std 0.4532 ± 0.1581 0.4542 ± 0.0879 0.4406 ± 0.0934

Table 2.2: Dice coefficients for different degrees of overlapping patches. The
increased redundancy does not improve the segmentation quality significantly.

Overlap Training time (s)
0 3103

1/2 10446
3/4 48002

Table 2.3: Training time averaged over 5 training for different degrees of overlapping
patches. The inference time, and thus the training time, notably increases.

redundacy hinders the CNN’s ability to generalise to the test data. Furthermore,
increasing the overlap results in increasing the computation time (Tab. 2.3).
Therefore, we choose to discard the overlapping patch strategy proposed in [78] for
the remainder of this thesis.

2.4.4 Investigating a new loss
Our exploration into a novel loss function integrating binary cross-entropy (Eq.

2.4.1), Dice loss (Eq. 2.4.2), and Tversky loss (Eq. 2.4.5) signifies a strategic
approach to enhance model performance in complex tasks like image segmentation.
By leveraging the strengths of each component, we aim to achieve robustness
against class imbalance inherent to the segmentation task at hand. The binary
cross-entropy component provides a fundamental measure of dissimilarity between
predicted and ground-truth distributions, while the Dice loss emphasises overlap
between predicted and ground-truth masks, particularly effective for unbalanced
data. Additionally, the Tversky loss offers flexibility in adjusting model behavior
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by fine-tuning the balance between false positives and false negatives.

β Mean Dice coefficient ± std
0 0.3161 ± 0.0080

0.1 0 ± 0
0.2 0.3082 ± 0.0080
0.3 0.3678 ± 0.0659
0.4 0 ± 0
0.5 0.3342 ± 0.0310
0.6 0 ± 0
0.7 0.3067 ± 0.0081
0.8 0.3082 ± 0.0080
0.9 0 ± 0

Table 2.4: Mean Dice coefficients for different values of the 3 term loss parameter β.
The addition of a Tversky term in the loss does not lead to improved segmentation
quality.

The instability of the 3-term loss function in relation to parameter β is evident
in our findings, where significant fluctuations in mean Dice coefficients were noted
across different values of β sampled during experimentation (see Tab. 2.4). This
sensitivity highlights the challenge of maintaining consistency and predictability in
model performance when employing such loss functions. The variability observed
underscores the need for more robust formulations or adaptive strategies to mitigate
the impact of parameter changes on model outcomes, especially in tasks like image
segmentation.

Furthermore, the optimal value β = 0.3 does not lead to better results than the
combo loss (Dice= 0.4532). The decision to prioritise the combo loss henceforward
is grounded in its demonstrated capability to consistently outperform β = 0.3
across our experiments. This strategic shift ensures that our focus remains on
optimising model performance and achieving robust outcomes in U-Net training.

2.4.5 Patch-selective learning strategy
Addressing the representation imbalance between the needles and the back-

ground poses a significant challenge in our current task. To solve this problem, we
propose a patch selection strategy based on the information included within the
considered region of the image.

To comprehensively investigate the impact of needle presence on network per-
formance, we curated distinct training subsets from our dataset. Each subset was
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crafted to analyse how varying proportions of needle-inclusive patches influence
network efficacy. Needle patches were defined as regions where the ground-truth
segmentation masks confirmed the presence of at least one voxel belonging to a
needle. This strategic distribution not only facilitated precise training but also
enabled nuanced evaluation of the network’s responsiveness to different concen-
trations of needle-related information. By systematically varying these subsets,
we gained valuable insights into optimising the network’s ability to discern and
accurately process critical needle data amidst complex imaging scenarios. The
proportions tested are 100%, 67%, 50% and 7% (corresponding to all available
patches) of needle patches. To complete the patch sets with background patches,
a CBCT scan from our training dataset was selected at random. Subsequently,
patches were extracted from this chosen CBCT scan. This systematic extraction
process was pivotal in ensuring comprehensive coverage of all abdominal structures
within our training data, including vital organs such as the liver and intricate
skeletal elements like the ribs. By adopting this approach, we aimed to optimise
the neural network’s ability to discern and accurately interpret various anatomical
features present in complex abdominal imaging scenarios.

We anticipate achieving an equilibrium between the representation of needle
information and background details within one of these datasets. Despite our
methodological efforts, the network may still exhibit a stronger propensity for
confidently predicting background elements, due to the predominant representation
of background information compared to needles, which motivates the need for the
other proposed adaptations, such as the inference threshold for instance.

Initially, a specialised subset of patches was curated, focusing exclusively on
those containing crucial needle information. 38 distinct patches were identified
within the comprehensive training dataset.

We then added 23 supplementary background patches into the initial patch
set, deliberately sourced from a single patient, chosen through a random selection
process. By including diverse background samples from the same patient, the dataset
becomes more robust for training, facilitating the model’s ability to generalise
across different anatomical features

The third patch set integrates the entirety of the second patch set, with the
last 35 patches sourced from the same patient, selected at random.

Finally, the last patch set gathers all the patches extracted from the 8 patients
in our training database.

We seem to obtain an equilibrium for class representation around 50% of needle
patches as seen in Table 2.5. This equilibrium not only optimises our model’s
performance timewise but also enhances the Dice coefficient significantly, all while
maintaining a practical training duration. Subsequently, this curated dataset earns
the designation of the "balanced set".
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Training set Mean Dice coefficient Time/epoch (s)
Patch set 1 (100-0%) 0.1310 847
Patch set 2 (67-33%) 0.5179 1701
Patch set 3 (50-50%) 0.5754 2698
Patch set 4 (7-93%) 0.4532 6749

Table 2.5: Mean Dice coefficients following the training of the proposed architecture
on patch sets including different proportions of needle information. As a balance
is found between needle and background information, the segmentation quality
increases.

2.4.6 Comparison with the nn-U-net
We detail a performance comparison between our adapted U-net model and the

state-of-the-art nn-U-net algorithm [48] presented in the literature review (Section
2.2.2).

As a brief remainder, nn-U-net is an algorithm encompassing a pre-processing
pipeline, a segmentation U-net whose hyper-parameters are optimised with regards
to the dataset, and a post-processing pipeline. Known for its robust and self-
adapting framework, it automatically configures itself to various datasets, providing
high adaptability and strong baseline performance across numerous segmentation
tasks. The authors propose 3 networks: 2D, 3D and cascade, the closest to our
network being 2D and 3D.

By juxtaposing these models, our results highlight the advancements in seg-
mentation technology brought by our enhancements to the U-net architecture,
providing a compelling alternative to the already impressive nn-U-net.

Our proposed method consistently outperforms the other networks on average
due to its precise alignment with the specific requirements of the task (Tab. 2.6).
This tailoring ensures not only superior performance but also enhanced accuracy.
The method exhibits a lower standard deviation, indicating a more reliable and
consistent outcome. This reduced variability signifies that our approach provides
stable and dependable results, making it an optimal choice for the complex seg-
mentation of thin electrode segmentation.

The 3D version of the nnU-Net produces results comparable to those achieved
by our U-Net before implementing the patch selection strategy, with a p-value of
0.48 indicating no statistically significant difference. This observation underscores
a critical insight: the strategic selection of training data significantly enhances the
efficiency of the learning process (p = 0.04). By meticulously curating the training
dataset, our U-Net can more effectively focus on relevant features, thereby optimis-
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Patient Balanced Patch Set 2D nn-U-net 3D nn-U-net
9 0.7569 0.6396 0.6775
10 0.6487 0.7993 0.7507
11 0.4308 0.1948 0.3483
12 0.5419 0.4281 0.4381
13 0.4109 0.1086 0.4012
14 0.6529 0.1422 0.3936
15 0.7019 0.5780 0.5953
16 0.4590 0.0003 0.0003

Mean ± std 0.5754 ± 0.1326 0.2905 ± 0.2904 0.4506 ± 0.2335

Table 2.6: Dice coefficients for the proposed method against two versions of the
nn-U-net [48], namely the 2D and the 3D versions. In average, the proposed
approach outperforms the established nn-U-net.

ing performance and accuracy. This approach not only validates the importance
of data selection in training neural networks but also highlights the potential for
achieving superior results through targeted data curation.

Conversely, the 2D version demonstrates suboptimal performance. The implicit
data augmentation achieved by providing slices rather than the entire 3D image
fails to compensate for the deficiency of 3D contextual information. This limitation
is particularly pronounced given the object’s thin and longitudinal shape, which
requires comprehensive 3D data for accurate segmentation. Consequently, the 2D
approach struggles to capture the intricate spatial relationships and fine details
necessary for precise segmentation, underscoring the importance of utilising full
3D imagery for such tasks.

2.5 Fine localisation with a Hough transform
The segmentation approach using deep learning presents inherent challenges in

achieving the precision necessary for accurate electric field estimation. Firstly, due
to their density, the electrodes often appear thicker in CBCT scans, complicating
their precise localisation. Secondly, the segmentation of individual needles lacks
continuity guarantees, further impacting the reliability of the segmentation results.
These factors underscore the complexities involved in leveraging deep learning for
achieving high-precision segmentation required in medical imaging and electric field
simulations.

Therefore, the segmentation masks undergo additional processing to precisely
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pinpoint the localisation of the needle tip, addressing any gaps or inaccuracies in
the data. This refinement is crucial as it focuses solely on identifying the tip of
the needle, which is pivotal for delivering electric pulses in IRE procedures. By
isolating and accurately determining the needle tip, the method ensures optimal
placement and efficacy of therapeutic treatments, enhancing patient outcomes and
procedural success.

2.5.1 Hough transform improved with a voting procedure
To precisely localise the needles, we make use of the Hough transform to obtain

the most represented needles, parametrised as lines, in the segmentation masks.
The Hough transform is an algorithm for shape recognition that provides an analytic
representation of the object of interest. Given a shape parametrisation and a point
cloud, it consists in exhaustively searching the parameter space for any shape
present in the image. Doing so, it fills an accumulator array, whose dimensions
represent each parameter of the shape to detect. The values in the array correspond
to the number of points belonging to a given shape. Local maxima then indicate
the most represented shapes in the image.

Even though some bending may occur as the electrode is inserted, a line is
still a good approximation for the needle tip. We choose the Roberts’ optimal line
representation in the form of a 4-tuple (bx, by, x′, y′) where b = (bx, by, bz) is the
unit vector normal to the plane containing the origin and the line to parametrise,
and x′, y′ are the coordinates of the intersection between the line to parametrise
and the plane previously defined, in a local 2D Cartesian frame, as represented in
Figure 2.13. 4 is the minimum number of parameters required to uniquely define
a line in 3D. Moreover, the representation has the advantages of presenting no
singularities or special case and proposes an exact one to one correspondence with
respect to the point and orientation representation [77]:

b = (bx, by,
√

1− b2
x − b2

y) (2.5.1)
and:

p = x′(1− b2
x

1 + bz

,− bxby

1 + bz

,−bz) + y′(− bxby

1 + bz

, 1−
b2

y

1 + bz

,−bz), (2.5.2)

with x′, y′ ∈ [−∞,∞] and 0 ≤ b2
x + b2

y ≤ 1.
To improve the time efficiency of the algorithm, the orientation space, i.e. for

the parameters bx and by, is discretised based on a tessellation of a platonic solid.
The faces of the icosahedron are divided into four triangles as many times as
necessary to successfully cover the orientation space. Additionally, to further limit
the parameter space, the centre of the point cloud is defined as the origin [18].
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Figure 2.13: The diagram illustrates the relationship between the 4-tuple from
Roberts’ optimal line representation [17] and the corresponding line, depicted
in blue. Additionally, it shows the constructed plane, marked in red, within a
designated coordinate system, reproduced with permission.

Then, the binary segmentation mask undergoes a transformation into a point
cloud representation, a crucial step in preparing the data for the Hough transform
algorithm. This process involves converting the 3D binary mask, which outlines
the segmented object’s boundary, into a 3D point cloud format. By translating
the binary mask into a rich, spatially detailed point cloud, the Hough transform
can effectively analyse and interpret the geometrical characteristics and spatial
relationships within the segmented object.

While filling the accumulator array, we allow some imprecision in the localisation
of the points in the point cloud and use the radius of the needles as the maximum
distance between the point and the detected line, that is 8 to 9.5 gauges.

The search for the k ×N most represented lines, where k is a given coefficient
and N is the number of electrodes, additionaly takes into consideration a minimum
score for the line to be considered as detected.

Once the line with the most points is selected, a reverse Hough transform is
performed in which every point belonging to the selected line is removed from the
accumulator array. This allows to sequentially detect the required number of lines
by simply considering the global maximum in the accumulator array. Moreover,
the reverse Hough transform makes the process more efficient as each point in the
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point cloud is only used twice by the algorithm.
Following this procedure, as there are too many detected needles, we further

select the right representation of the electrodes with an elaborate voting procedure.
Criteria are:

• the inverse number of points belonging to a line: to favor most represented
needles,

• the inverse distance between the extremities of the segment: to favor long
objects that are more likely to be indeed needles as opposed to ribs for
instance,

• the mean distance from the points to their projection on the detected line:
to favor lines where actual points are closed to the representation,

• the distance between the extremity and the center of the image: to favor lines
that are close to the tumor and are thus more likely to be the needle tip.

Those scores are normalised across the set of k ×N lines previously selected
and their sum is considered as the final score. The N lines with the lowest scores
are then used as the final representation of the needles tip.

2.5.2 Overall needle localisation
We are now undertaking a comprehensive evaluation of our integrated framework,

which combines coarse segmentation using deep learning with precise localisation
via the Hough transform. This dual approach leverages the powerful abstraction
capabilities of deep learning for initial segmentation, followed by the classical
robustness of the Hough transform to refine and accurately localise features. By
synergising these techniques, we aim to achieve a precise analytic representation
of the needle tips, capitalising on the strengths of both modern and traditional
methods to handle complex image data effectively.

To evaluate our segmentation algorithm, we benchmark it against a previously
utilised thresholding-based method. Initially, a high threshold of 500 is applied
to the CBCT scans to achieve a coarse approximation of the structures. This
step is crucial for isolating the primary features of interest. Subsequently, a lower
threshold of 100 is employed to refine the delineation, ensuring that even the
finer details of the objects are accurately detected. This dual-threshold approach
allows us to balance between capturing the broader structural elements and the
intricate nuances of the scanned objects, thereby improving the overall accuracy
and reliability of the segmentation process.
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To assess the effectiveness of integrating the CNN and Hough transform in
localising needles, we quantify the quality of the needle localisation by computing
the L2 norm, a standard measure that captures the spatial accuracy between the
predicted and expert-marked coordinates of the needle tip:

L2 =
√

(x− x̂)2 + (y − ŷ)2 + (z − ẑ)2 (2.5.3)

where (x, y, z) are the true coordinates and (x̂, ŷ, ẑ) are the algorithm estimates.

Patient Average distance (mm) Average distance (mm)
with thresholding with proposed U-Net

9 76.98 1.88
10 0.97 1.44
11 1.25 0.72
12 1.11 1.17
13 7.69 5.80
14 4.99 6.07
15 3.66 2.18
16 18.13 1.56

Mean ± std 14.35 ± 25.94 2.60 ± 2.10

Table 2.7: Euclidean distance between needle tip coordinates estimated (either
through the thresholding method, or the proposed deep-learning method) and
the coordinates as determined by radiologists. In average, the proposed method
outperforms the previously used thresholding technique.

The method incorporating deep learning successfully outperforms the previously
used thresholding method, as seen in Table 2.7. Indeed, we observe a much
lower average distance between the ground-truth and the coordinate estimates.
This improvement in the needle localisation will in turn lead to a more accurate
estimation of the electric field delivered.

2.6 Feasibility in clinical settings
The proposed algorithm is suitable for clinical application time wise. visuali-

sation of the electric field onto the CBCT takes approximately 2 minutes, which
is highly acceptable within a clinical workflow. Moreover, the precise localisation
of the needles is achieved in just 10 seconds using standard hardware (an Intel
2.5 GHz i7 workstation (8 cores) with 32 GB of RAM), showcasing its remarkable
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speed and practicality. The implementation of GPU acceleration will further en-
hance segmentation speed, making the process even more efficient. Despite these
potential improvements, the current performances are already suitable for clinical
use, ensuring timely and accurate needle localisation in real-time scenarios.

In our search of an optimal learning strategy, we experimented with several
innovative variants. First, we investigated the impact of varying degrees of overlap
in the patches fed to the CNN. This involved assessing how different levels of patch
overlap influenced the network’s ability to learn and generalise from the training
data. Additionally, we evaluated the effectiveness of two distinct loss functions:
the combo loss, which combines the Dice coefficient and the binary cross-entropy
to improve training stability and performance, and the 3-term loss, designed to
take into account the class imbalance. These experiments aimed to fine-tune the
model’s accuracy and efficiency, ultimately contributing to more precise and reliable
outcomes.

The overlapping patch strategy presents mixed results. While it extends the
inference duration, it does not significantly enhance the network’s performance.
This inefficiency arises because only a small number of patches contain relevant
information about the object of interest. Consequently, the inherent data augmen-
tation achieved through overlapping patches introduces unnecessary redundancy.
This surplus of patches burdens the training process, increasing computational
costs without delivering proportional benefits in accuracy or effectiveness.

A similar line of reasoning elucidates why a selective patch strategy yields
superior performance compared to indiscriminately feeding all available patches to
the network. It is crucial to strike a balance between discerning what constitutes
the background and what represents the needle. Given the pronounced class imbal-
ance in the dataset, where background information is more prevalent, the network
naturally gravitates towards learning the background more effectively. However,
by implementing a patch selection strategy that mitigates this skewness, we en-
able the network to better focus on the object of interest—the needle—while still
maintaining its confidence in identifying the background. This targeted approach
ensures that the network’s learning process is more robust and nuanced, ultimately
enhancing its predictive accuracy and overall performance.

The advancement in needle tip localisation is noteworthy, demonstrating signifi-
cant improvements over previous methods in both precision and robustness. The
new approach provides more accurate and reliable needle tip detection, surpassing
the older thresholding-based technique. When applied to new CBCT scans, it
consistently succeeds in identifying all needles, whereas the previous method occa-
sionally failed to detect certain electrodes. This progress ensures a higher degree of
accuracy and reliability in clinical settings, making the new technique a substantial
advancement in needle localisation technology.
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2.7 Conclusion
The performance of the proposed U-Net model is significantly influenced by

several key factors. Foremost among these is the choice of loss function, which
directly affects how well the model learns to distinguish between different features
in the data. Additionally, the composition of the training data plays a crucial role;
diverse and well-represented data ensures that the model generalises effectively
across various scenarios. Lastly, the inference threshold, which dictates the decision
boundary for classifying voxels, impacts the precision of the segmentation results.
Each of these elements—loss function, training data composition, and inference
threshold—interacts to determine the overall efficacy and accuracy of the U-Net
model, making them critical considerations in the design and evaluation process.

As highlighted in [49], a more complex framework does not necessarily guarantee
improved precision in results. For instance, the use of an overlapping strategy or a
complex 3-term loss function—comprising three distinct terms—did not outperform
the simpler approach employing a no-overlap scheme with a two-term loss function.
This observation underscores that increased complexity in model design does not
always translate into enhanced performance. Additionally, while it might seem
intuitive that more training data would always lead to better results, this is not the
case. Excessive data redundancy can actually impede the training process, making
it harder for the model to discern meaningful patterns and leading to diminished
performance. Therefore, both the complexity of the model and the quality of data
need to be carefully balanced to achieve optimal results.

Incorporating this enhancement into the numerical workflow is anticipated
to significantly improve the accuracy of electric field estimates. Our findings
demonstrate that this modification refines the precision of needle tip localisation
and should therefore enhance the overall quality of the electric field estimation.
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In brief

Deep learning, particularly CNNs, has gained significant traction in the field
of image analysis, including segmentation tasks. In this work, we address the
problem of needle localisation using a coarse-to-fine approach. The initial coarse
segmentation is enhanced through deep-learning techniques, which significantly
improves the accuracy and robustness of the process.

However, several challenges complicate this task, stemming from the specific
nature of the electrodes, the imaging modality, and the size of the dataset. To
overcome these hurdles, we adapted a U-Net architecture and designed a tailored
learning strategy. This strategy includes the selection of an appropriate loss function,
as well as an effective patch selection process for training. After experimenting
with several variants, the most successful model is a 3D U-Net combined with a
combo loss function, trained on non-overlapping patches.

Once segmentation is complete, we further refine the results by adjusting the
inference threshold. This step helps mitigate the imbalance between the needle
class and the background, which is a common issue in medical image segmentation.
Ultimately, this approach, combined with the fine localisation by the Hough
transform, results in a more accurate and stable needle localisation compared to
the previously employed thresholding algorithms, offering significant improvements
in precision and consistency. The analytic representation can then be directly
incorporated in the electric field simulation.
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Chapter 3

Boundary conditions and image
registration

This chapter delves into the intricate challenge of boundary conditions in image
registration, a topic often overlooked despite its profound impact on the accuracy
of registered images. Mis-registration stemming from boundary conditions can lead
to significant distortions, yet this critical aspect remains under-explored in the
existing literature. Typically, algorithms resort to either homogeneous Dirichlet
boundary conditions for wide fields of view or homogeneous Neumann boundary
conditions. However, neither approach sufficiently addresses the complexities of
most scenarios, particularly in partial fields of view commonly encountered in
clinical practice, where the region of interest is often close to the borders. It is, for
instance, the case in IRE procedure, where multiple partial field of view CBCT
are taken to successfully locate the tumor and the electrodes, which are often near
the boundary. By examining these limitations, this chapter seeks to illuminate the
pressing need for more nuanced boundary condition strategies that enhance the
fidelity of image registration in medical applications.

In this work, we introduce a novel approach involving local boundary conditions
that dynamically adjust to the unique characteristics of the images being registered.
Specifically, we employ a Robin-type boundary condition, seamlessly integrating
flow field information derived from an initial transformation estimate. To stream-
line the optimisation process, we reduce the set of hyper-parameters to just two
critical hyper-parameters, which are fine-tuned through a comprehensive grid-search
aimed at minimising the registration energy. This innovative methodology has
demonstrated remarkable efficacy, significantly enhancing registration quality when
benchmarked against ground truth in both mono-modal and multi-modal tasks.
Our findings underscore the potential of this adaptive strategy to transform the
landscape of image registration, delivering more accurate and reliable results in
diverse applications.
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The proposed boundary conditions consistently surpass the performance of
widely used alternatives and validate their efficacy in specific contexts. For instance,
in the realm of abdominal cavity imaging, where minor movements occur across
all boundaries, our approach validates that the homogeneous Neumann boundary
conditions effectively model these subtle shifts, illustrating that while our method
excels in general, it also affirms the relevance of traditional approaches when applied
to particular situations. This nuanced understanding highlights the versatility and
adaptability of our boundary condition framework, paving the way for enhanced
accuracy in diverse imaging applications.

Finally, we show that this enhancement in registration quality can significantly
impact the accuracy of electric field estimates in the context of IRE ablation.
This is particularly pertinent given that partial fields of view are utilised in the
operating room to minimise radiation exposure to patients. By ensuring a precise
transformation that aligns the tumor and the electrodes within a unified frame of
reference, our approach directly influences the accuracy of electric field estimations
and the overall assessment of the ablation procedure. This synergy between
improved registration and electric field modeling will not only optimise clinical
outcomes but also contribute to safer, more effective treatment protocols.
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3.1 Role of the registration task
During the IRE ablation procedure, two CBCT scans are captured to ensure

comprehensive imaging and precise needle placement. The first CBCT scan is
performed prior to needle insertion, providing a clear and detailed view of the tumor
and adjacent anatomical structures. This preliminary scan is crucial for assessing
the spatial relationship between the tumor and surrounding tissues, facilitating
accurate targeting. The second CBCT scan is conducted after the needle insertion,
where the localisation algorithm, as discussed in the preceding chapter, is employed
to pinpoint the needles with high precision. This post-insertion scan enables
visualisation of the needle placement, ensuring optimal alignment and enhancing
the accuracy of the ablation process. However, it often suffers from artifacts
caused by the needle’s density. These artifacts can significantly degrade image
contrast, rendering the tumor less visible or even obscured. A CBCT after needle
insertion is shown in Figure 3.1, demonstrating the extent of the artifacts. Thus,
to overcome this challenge, two scans are captured, later registered to align the
relevant structures.

Figure 3.1: CBCT slices from our patient database, after needle insertion: (a)
displays the axial plane, (b) the coronal plane, and (c) the sagittal plane. Artifacts
include the dilation of the needles (in fact, they should not be more than 2 to 3
voxels wide) and streaking artifacts. Additionally, needles can be located close
to the borders, leading to tissue compression that the registration must take into
account.

Our primary objective is to provide interventional radiologists with critical
insights into whether the tumor, along with the necessary treatment margin, falls
within the effective treatment area. Achieving this necessitates a seamless inte-
gration of tumor location data from the initial CBCT scan with the estimated
treatment area computed on the subsequent CBCT scan. To facilitate this, we
implement a registration process that aligns the first CBCT with the second. Specif-
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ically, this thesis introduces innovative boundary conditions designed to enhance the
performance of various registration algorithms in a straightforward manner, adapt-
ing intelligently to the unique characteristics of the images involved. Furthermore,
we demonstrate that optimising these boundary conditions via registration energy
correlates directly with improved registration quality, as evidenced by comparisons
with available ground truth data. This comprehensive approach not only bolsters
the accuracy of tumor localisation with respect to the electrodes but also supports
more effective treatment evaluation in interventional radiology.

3.1.1 Registration in the medical field
Image registration is a pivotal computer vision task that involves determining

the optimal transformation to align a moving image with a reference image. Initially
developed to address challenges in remote sensing and medical imaging, registration
has evolved significantly, becoming a cornerstone in numerous disciplines. More
specifically, the registration task is crucial in the medical field as it enables precise
comparisons of anatomical images captured across various modalities and time
points. Aligning medical images allows healthcare professionals to accurately
track the progression of a patient’s condition. This is essential for assessing
the effectiveness of treatments by comparing pre- and post-intervention images.
By superimposing images from different sources, such as CT scans, MRIs, or
CBCT, practitioners can correct for potential discrepancies caused by variations
in patient positioning, movement, or changes in imaging equipment. This ensures
that any observed changes are attributable to the condition or treatment, not
technical factors. The ability to visualise these aligned images in one unified view
helps improve decision-making, enhances diagnosis, and facilitates personalised
treatment planning, leading to more accurate and reliable patient care outcomes.
Additionally, image registration can be a component of more complex workflows in
medical imaging, where it facilitates the integration of information from multiple
sources. For instance, in image data fusion, different images are aligned and
combined to provide a comprehensive view of the patient’s anatomy. In atlas-based
segmentation, an image is registered to a predefined atlas that contains the region
of interest’s segmentation, allowing for accurate delineation of structures. The
segmentation mask from the atlas is then transformed using the motion estimate to
match the target image, enabling precise identification of areas requiring attention.
Volumetric image reconstruction uses data from multiple 2D slices to create a 3D
volume, helping visualise complex anatomical structures. Additionally, motion
tracking allows the tracking of organ or tissue movement over time, which is crucial
for accurate treatment planning in radiology or surgery. Finally, tissue elasticity
estimation is facilitated by registering elastography images, where the deformation
of tissue under mechanical stress provides insights into its stiffness, aiding in the
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diagnosis of conditions like liver fibrosis or tumors.
In treatments requiring dose computation, such as calculating the electric

field in IRE procedures, accurate assessment is crucial for ensuring effective and
safe therapy. Image registration plays a pivotal role in this process by aligning
and fusing information from various medical images taken at different times or
modalities. For instance, this technique allows clinicians to more accurately evaluate
the electric field distribution and tissue response, leading to improved precision
in targeting abnormal cells while preserving healthy tissue. By integrating data
from multiple sources, image registration enhances the evaluation and monitoring
of the treatment’s efficacy and safety. IRE represents just one example among
various medical contexts where accurate dose calculations—such as the distribution
of electric fields—are crucial. Other methods like radiotherapy [66] [57] [15] [97] or
thermo-therapy [106] [9] [58] also require this kind of information for an optimal
outcome.

In the realm of image-guided therapy, registration is essential for maintaining
precision. Biological movements, such as breathing or gastrointestinal peristalsis,
can cause shifts in the position of the targeted area, which may impact the accuracy
of treatment delivery. Image registration compensates for these dynamic motions
by aligning images taken over time. This ensures not only the effectiveness of the
treatment but also minimises harm to surrounding healthy tissues, making it a
critical tool in therapies that rely on high accuracy.

While our work focuses on a specific application, it is crucial to recognise that
image registration is a foundational technique in medical imaging, playing a vital
role across numerous domains.

Rigid registration: Rigid registration involves transformations that preserve the
distances between any two points in an image, such as rotations and translations.
This method is the most straightforward form of image registration, focusing on
aligning images through basic geometric adjustments without altering the shape of
the objects within them. Despite its appealing simplicity, rigid registration is often
inadequate for capturing the complex movements observed in clinical contexts,
where biological tissues might undergo significant deformations due to factors like
patient motion or internal changes.

Nevertheless, rigid registration serves as a valuable preliminary step in many
imaging workflows. By first applying rigid transformations to align images roughly,
it can simplify and enhance the subsequent application of more sophisticated,
deformable registration techniques. This preparatory step helps in achieving a
more accurate and detailed alignment by reducing the complexity of the problem
for advanced algorithms that handle non-rigid deformations.
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Deformable Image Registration (DIR): DIR offers a greater range of flexi-
bility compared to rigid registration, accommodating various transformations such
as shearing, compression, and scaling. Unlike rigid registration, DIR can model
complex anatomical changes and patient movements more accurately. This method
is particularly beneficial for handling dynamic or non-rigid deformations, such
as those occurring during needle insertion, where tissues may be compressed, or
due to diaphragm motion during the breathing cycle, which can cause significant
extension or compression of anatomical structures.

While DIR tends to be more computationally demanding due to the complexity
of the transformations involved, it generally results in more precise and clinically
relevant alignments. Given the nature of the movements encountered in our specific
application —such as tissue compression and expansion— the enhanced accuracy of
deformable registration makes it the preferred choice for achieving optimal results.
Therefore, this thesis will focus exclusively on DIR techniques to address these
complex motion scenarios effectively.

Image registration can be performed between images of the same modality,
such as aligning two MRI scans, which generally consists in a simpler task due to
consistent imaging characteristics. However, the process becomes significantly more
complex when dealing with images from different modalities, such as aligning a CT
scan with an MRI to combine the spacial resolution and dense tissue contrast of the
former, with the soft tissue contrast of the latter [42]. This is because the images
may vary in scale, contrast, and resolution, making it challenging to establish
correspondences.

Multi-modal registration algorithms are designed to handle these complexities
and can align images from different modalities by finding common features across
varying image types. Interestingly, these sophisticated multi-modal algorithms can
also be applied to mono-modal datasets, where they may still provide benefits.
Conversely, using a mono-modal registration algorithm for multi-modal images is
not feasible because it lacks the capability to address the differences in imaging
characteristics and modalities. This distinction underscores the versatility of multi-
modal techniques while highlighting the challenges involved in solving a multi-modal
DIR problem.

On the one hand, mono-modal algorithms typically assume each object is present
in both images and maintain its gray levels to some extent [86], which is not the case
when considering different modalities. On the other hand, multi-modal registration
algorithms address the challenge of aligning images from different modalities by
relaxing the strict assumption of intensity preservation. This flexibility, however,
comes with increased computational complexity. To manage this, some innovative
approaches aim to simplify multi-modal registration by transforming the problem
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into a mono-modal context. These methods involve converting images from one
modality to another or employing modality-independent representations, such
as local phase or Magnitude and phase-based normalised Mutual INformation
Descriptor (MIND) [42]. These techniques facilitate registration by aligning images
on features that are invariant to modality differences, thus bridging the gap between
disparate imaging systems while potentially reducing the complexity of the task.
However, the former is highly dependent on the quality of the conversion and
the latter may not be discriminative enough to produce relevent transformation
estimates.

In this chapter, we delve into the intricate issue of boundary conditions in image
registration. These conditions play a crucial role in determining the behavior of
the solution, particularly in regions where the neighborhood of pixels or voxels is
incomplete. While it is well-established that constraints at the borders significantly
influence the overall quality of the registration outcome, the subject has been
relatively underexplored. This is primarily due to the complexity involved in
defining and implementing appropriate boundary conditions that effectively address
the inherent challenges. As a result, this area of study remains a formidable task,
demanding both innovative approaches and a deep understanding of the underlying
mathematical and computational principles.

Given the absence of ground-truth data in the available database dedicated to
IRE procedures, we begin by evaluating the proposed framework for adaptable
boundary conditions on publicly available medical datasets. This initial test-
ing phase enables us to rigorously assess the framework’s performance, allowing
for a comprehensive evaluation of its effectiveness. By leveraging these public
datasets, we can observe the improvements introduced by our method both quan-
titatively—through measurable metrics—and qualitatively—by visual inspection
of the results. This approach not only validates the adaptability of the boundary
conditions across various medical imaging tasks but also highlights the tangible
enhancements offered by our framework, setting the stage for its application to
IRE procedures.

We begin by examining existing solutions to the registration process itself in the
literature, categorising them into three primary types: landmark-based methods,
physical-model-based approaches, and data-based techniques. Additionaly, we
summarise more specifically the research tackling boundary conditions in medical
image registration, to motivate the proposed method in showing the influence
of boundary conditions on the solution. Following this review, we introduce our
novel enhancement to DIR algorithms through the use of automatically adaptable
boundary conditions. This innovation aims to improve registration accuracy and
robustness. Our proposed method is evaluated on two distinct datasets: a mono-
modal lung CT dataset, which serves as a control for intra-modality registration,
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and a multi-modal abdominal CT to MRI dataset, which tests the effectiveness
of our approach across different imaging modalities. We discuss our findings and
their implications for future research and clinical applications. The improvement
due to the proposed boundary conditions in the context of IRE are finally further
studied on a case extracted from our database.

3.2 Review of image registration techniques for
medical images

In this section, we explore various approaches to medical image registration that
have been developed so far. Registration algorithms can be classified into three
main categories. The first category includes landmark-based methods, which require
the identification of specific landmarks to align the images accurately. The second
group is physical-based methods, where the emphasis lies on modeling the physical
characteristics behind the transformation, allowing for more realistic estimation of
deformations. Finally, data-based methods focus primarily on the image data itself,
utilising the inherent features of the images to achieve the registration process.

3.2.1 Landmark-based approaches
Historically, landmark-based registration represents one of the earliest ap-

proaches to image registration algorithms. This method is intuitive in its search
of a transformation between corresponding anatomical landmarks across images
to align them. These landmarks can be either manually annotated by experts
or detected automatically by algorithms. Despite its straightforward concept,
landmark-based registration faces significant challenges, particularly in the context
of multi-modal registration. In such cases, the features used as landmarks may
not be visible or consistent across different imaging modalities, making the task of
finding and matching these points notably complex. This limitation underscores the
difficulties in achieving accurate alignment when the images do not share common
visual features [25].

More recently in [41], landmarks are extracted through the Förstner keypoint
operator. In this approach, local information around key landmarks is utilised
within a block matching framework that leverages self-similarity descriptors to en-
hance accuracy. The motion estimation process involves optimising an L1 similarity
measure across a finely sampled range of potential displacements associated with
the detected sparse but distinctive keypoints. To ensure inverse consistency, the
backward motion from the fixed image to the moving image is also calculated. By
averaging the resulting energy values, the method improves the reliability of the
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matching process. Following the block matching phase, a dense motion estimate is
derived through interpolation techniques such as thin plate splines, which provide
a smooth transformation field. This estimate undergoes iterative refinement by re-
executing the motion search with a narrower displacement range and/or additional
landmarks, thus progressively enhancing the precision of the motion estimate.

In [3], Lobachevsky splines are used for their simple expression and compact
support, to parametrise the transformation in a landmark based registration
algorithm. Due to the inherent sparsity of the interpolation matrix and the
fact that they lead to smaller linear system, they are proven more efficient than
Gaussian or thin plates parametrisation. Here, landmarks are readily available
which is rarely the case, especially in clinical settings.

3.2.2 Physical-based approaches
Physics-based models concentrate on the fundamental principles governing

motion by incorporating physical laws into their design. These models can be
broadly categorised into three types.

Regularised models: These models emphasise the incorporation of regulari-
sation techniques to enhance the plausibility and stability of the solutions. By
imposing constraints or penalties based on physical realism, they ensure that
the generated motions adhere more closely to expected physical behaviors. This
approach helps in producing more natural and feasible results while mitigating
artifacts that might arise from purely data-driven methods. Additionally, most
data-driven approaches without regularisation are ill-posed.

Diffusion regularisation: Also called Tikhonov regularisation, this technique
focuses on minimising the first-order spatial derivatives of the deformation field.
By smoothing out the gradients in the deformation field, diffusion regularisation
helps to reduce abrupt changes and discontinuities. This results in a more gradual
and physically plausible deformation, avoiding sharp transitions that are unlikely
in anatomical structures.

Curvature regularisation: This approach targets the minimisation of the second-
order spatial derivatives of the displacement field. By penalising higher-order
variations, curvature regularisation effectively reduces oscillations and irregularities
in the deformation field. This is particularly advantageous as anatomical structures
typically exhibit smooth, continuous deformations rather than abrupt or oscilla-
tory changes. Consequently, curvature regularisation contributes to producing
anatomically realistic and smooth deformation fields [25].
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A generalised formulation was proposed in [60], making use of fractional order
derivatives:

S = 1
2 ||∆

α/2T ||2, (3.2.1)

where α ∈ [1, 2], ∆ = ∇2 the Laplace operator and T is the transformation field.
It allows to regularise in between diffusion and curvature to obtain poten-

tially better registration, both in terms of image similarity and transformation
smoothness.

There are more specialised, physics-driven methods that leverage fundamental
physical principles such as elastic and fluid regularisation [60].

Elastic regularisation: It uses the concept of elastic energy to guide the defor-
mation process. The regularisation term is derived from the energy associated with
elastic deformations, ensuring that the deformations remain physically plausible by
penalising excessive changes. It assumes that the stress within a material is linearly
related to the strain. As a result, this approach excels in maintaining smooth and
realistic transformations but may struggle with large deformations, as it inherently
limits the extent of allowable movement.

To paliate this issue in [39], they introduce a linear elastic continuum mechanical
model designed specifically for large deformation estimation. This model leverages
the principles of linear elasticity to provide a robust framework for understanding
and predicting deformations. The model treats displacement estimates T as a
sequence, such that:

Im = Tn(Tn−1(...(If ))) (3.2.2)
and

If = T2n(...(Tn+1(Im))), (3.2.3)
where If is the fix image, Im is the moving image, and n is the number of itera-
tion necessary for a transformation estimate. The sequential approach allows a
dynamic representation of deformation over time or across various iterations, and
provides a detailed view of how displacement evolves, enhancing the accuracy of
the deformation predictions.

Furthermore, the motion is parameterised using 4D Fourier transforms, to esti-
mate low-frequency components before high-frequency ones, allowing the algorithm
to capture and register global features of the image first. By focusing on these
broad, global features initially, the system ensures a robust alignment of large-scale
structures before refining the details with higher-frequency adjustments.

The model incorporates a sophisticated second-order regularisation on the dis-
placement field, applied across both spatial and temporal dimensions, utilising
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a linear elastic operator. This advanced regularisation technique is specifically
designed to capture the inherent mechanical properties of elastic anatomical struc-
tures.

To minimise inverse consistency error, the iterative process estimates both
the forward (Tmoving→fix from moving image to fix image) and the backward
(Tfix→moving from fix image to moving image) and define a symmetric similarity.

Fluid regularisation: Alternatively, the fluid regularisation is based on the
Navier-Stokes equations, which describe the behavior of fluid flow. By applying
these equations to regularise deformations, this method ensures that the transforma-
tions adhere to the principles of fluid dynamics. However, solving the Navier-Stokes
equations is computationally intensive and time-consuming, often requiring signifi-
cant resources to achieve accurate and stable solutions.

Total Variation (TV) regularisation: An additional type of regularisation can be
introduced to manage the shearing effects observed during processes like breathing,
where the liver moves against the pleural wall. This motion causes friction and
tension, requiring a sophisticated approach to handle the resulting deformation.

The method described in [95] employs isotropic TV regularisation, which is
particularly effective in preserving sharp edges while minimising noise:

ST V (T ) =
∑
r∈Ω

√ ∑
i,j∈{x,y,z}

(∇iTj(r))2. (3.2.4)

This technique facilitates the modeling of non-smooth displacements, which are
essential for accurately capturing complex anatomical interactions. The isotropic
TV regularisation ensures that these displacements are represented while preserving
spatial coherence, effectively balancing the need for capturing sharp changes with
maintaining overall smoothness in the displacement field.

A significant limitation of this regularisation term is its inherent non-differentiabi-
lity, which complicates the use of gradient-based optimisation methods. To over-
come this challenge, the Alternating Direction Method of Multipliers (ADMM)
is employed for cost function optimisation. ADMM is particularly well-suited for
handling non-differentiable terms by decomposing the problem into more man-
ageable sub-problems that can be solved iteratively. Additionally, the motion is
parameterised using first-order B-splines, with control point displacements strictly
constrained. This approach ensures precise control over the displacement param-
eters and prevents the issue of overshooting, thereby maintaining stability and
accuracy in the optimisation process.

Purely physical models: These models are firmly rooted in fundamental physi-
cal principles, meticulously considering geometric configurations, material prop-
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erties, and other critical physical attributes. By simulating the inherent physical
forces and interactions, they strive to faithfully reproduce the real-world dynamics
of objects and materials. This approach offers a highly detailed and accurate
depiction of motion, capturing the true physical behavior of the system under study.
However, such models are relatively rare and can be computationally intensive.
They necessitate a detailed discretisation of the image to align with the physical
properties of the tissue, which can be demanding in terms of computational re-
sources and complexity.

For instance in [102], a finite element contact impact analysis provides a ro-
bust framework for simulating breathing motion by integrating detailed material
properties and geometric configurations into a finite element model. Initially, it
is crucial to accurately extract and define these properties to set up the model.
The simulation begins with a state of zero motion, where the model starts with no
initial displacement. As the simulation progresses, a gradual change in intrathoracic
pressure is applied, mimicking the physiological process of breathing. This approach
captures the dynamic interaction at the interface between the lungs and surrounding
structures, allowing for precise modeling of lung deformation during respiration.
Given the complexity of these interactions, the method relies significantly on a
deep understanding of the underlying motion dynamics to ensure accurate and
realistic results. This comprehensive approach is essential for reflecting the true
behavior of lung mechanics in response to varying pressure conditions.

Parameterised methods: Lastly, parameterising the solution to the registration
problem offers significant advantages by embedding physical constraints directly
within the parameterisation itself. This approach can effectively eliminate the
need for explicit physical constraints, as the chosen parameterisation inherently
incorporates the necessary regularisation. By doing so, it provides enhanced control
over motion properties and accelerates convergence, primarily because it reduces
the dimensionality of the search space.

For example, by selecting an appropriate parameterisation, one can easily
enforce constraints such as inverse consistency or sliding motion consistency. This is
achieved without requiring additional computational overhead for these constraints.
The optimisation process is typically conducted using nonlinear least squares
methods, guided by a predefined similarity metric that measures how well the
registration aligns with the target criteria. However, it is important to note that
the cost function in this context can be non-convex, which introduces sensitivity to
initial conditions and can affect the stability and reliability of the solution [13].

In [13], a parametric approach making use of cubic spline is associated with
block matching. The parameter search is performed by solving a constrained
non-linear least square problem on a subset of locations. The minimisers are the
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spline coefficients solving an L1 optimisation problem, with sparsest residual error
vector for the block match estimate. There is no guarantee on the accuracy of
the matching as the optimal point match might not lead to the optimal spatial
accuracy but a lower error in the non-linear least square problem suggest higher
spatial accuracy. The method is generalisable to other parametrisation and diverse
similarity metrics may be used for the block matching.

3.2.3 Data based approaches
Data-based techniques leverage directly observable information from the data,

focusing on pixel or voxel intensity values. This approach prioritizes data fidelity,
ensuring that the registration process accurately reflects the observed intensities
within the images. Such techniques are particularly valuable in applications where
maintaining the integrity of the original data is crucial. Among the various
subgroups within image registration methods, data-based techniques have garnered
significant scientific interest due to their robustness. It is worth noting that
regularisation is still mandatory as the minimisation of a data fidelity term alone
is an ill-posed problem [86].

Emphasis on data fidelity A well known intensity-based registration algorithm
is demons [36]. It is designed to be both swift and fully automated, streamlining
the alignment process for efficiency. This approach is predicated on the assumption
of small displacements, necessitating a multi-scale framework. This framework
is crucial for mitigating voxel-wise displacements and minimising computational
time, as it progressively refines the alignment at multiple levels of detail. In this
method, voxel intensities in the fixed image generate local forces that guide the
displacement of voxels in the moving image. such that:

Tt+1 = Tt + (I t
m − If )∇If

(I t
m − If )2 + |∇If |2

, (3.2.5)

where T is the deformation field, t is the iteration number and Im and If are the
intensities of the moving image and the fix image respectively.

This mechanism ensures that the alignment is precise and adheres closely to the
intensity patterns of the fixed image, enhancing the accuracy of the registration
process while maintaining speed and automation.

However, this formulation presents an inherent challenge: it is underdetermined,
meaning there is no single unique solution. This lack of a definitive solution arises
from the formulation’s inability to fully constrain the problem. Consequently, the
stopping criteria employed are typically based on the convergence of successive
solutions, rather than on direct image similarity metrics. This approach involves
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evaluating the differences between iterations to determine when to halt the process,
which helps ensure that the solution stabilises even in the absence of a clear, unique
result. Such criteria are crucial for managing the complexity and ensuring the
robustness of the solution in the face of the inherent underdetermination.

Some variants utilise a Gaussian filter to maintain geometric continuity while
effectively reducing noise, ensuring that important structural details are preserved
without distortion. Other approaches employ active forces or modified passive
forces equipped with normalisation factors, which enable dynamic adjustment of
strength to better match and align images. Additionally, the incorporation of inverse
consistency mechanisms further refines accuracy by ensuring that transformations
are consistent when applied in reverse, thus improving overall registration quality
[36]. These enhancements collectively contribute to more robust and precise image
registration outcomes.

Commonly used metrics are grounded in the principle of brightness constancy,
which assumes that the intensity of corresponding pixels should remain consistent
before and after movement. This assumption leads to the use of various quantitative
measures, such as squared differences, the Pearson correlation coefficient:

ρ(If , Im) = cov(If , Im)
stdIf

· stdIm

, (3.2.6)

or mutual information:

MI(X, Y ) =
∑

r

∑
r’

P(If ,Im)(r)log(
P(Im,If )(r)

PIf
(r)PIm(r’) , (3.2.7)

which is less restrictive but global: the data fidelity term is the same everywhere
on the image [25]. Thus, the latter performs poorly on non-rigid tasks.

On the one hand, brightness-based terms, which rely on the assumption of
brightness constancy, often perform well in mono-modal scenarios where both images
share the same intensity distribution. On the other hand, correlation-based terms
are versatile and can handle both mono-modal and multi-modal image registration
tasks effectively. These metrics evaluate the degree of linear relationship between
image intensities, making them robust to variations in intensity distributions across
different modalities and capable of accommodating non-rigid transformations.

An instance of information-based data fidelity term is presented in [90], where
they formulate a symmetric energy functional using either mutual information or
normalised mutual information. Symmetry is imposed through graph-based volume
forms to adress asymetries due to discretisation of the solution:

DS(T ) = 1 + det(Jacobian(T )) · T ∗, (3.2.8)
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where T ∗ is the standard volume form of T on Euclidean space.
This formulation ensures that positive semi-definiteness is maintained, which

guarantees that the objective function is both well-defined and has a meaningful
minimum. Positive semi-definiteness ensures that the Hessian matrix of the objective
function is non-negative, implying that the function is convex or at least not
negatively curved. This property is crucial for ensuring stable optimisation and
reliable solutions.

Additionally, the formulation induces invariance under volume-preserving trans-
formations. This means that the function’s value remains unchanged when trans-
formations that preserve volume are applied, such as certain linear transformations
or rotations. This invariance is essential for ensuring that the algorithm does not
introduce bias based on specific orientations or scales of the input data. As a
result, the formulation does not favor any particular transformation when constant
images are processed, thus preventing skewed results due to preferential treatment
of certain transformations.

Feature-based approaches: Relevant information can be extracted from the
intensities to facilitate registration. These are generally less sensitive to noise
and reduce redundancies and resolution requirements for optimal solutions [7].
In particular, the use of modality-independent features significantly enhances
this process by allowing for a unified approach to both mono-modal and multi-
modal registration. These features are designed to be invariant to the specific
imaging modality, meaning they can generalise across different types of images
(e.g., CT, MRI, etc) without needing modality-specific adjustments. This capability
streamlines the registration process, enabling the alignment of images from diverse
sources into a single cohesive framework, thereby simplifying and improving the
accuracy of the registration task.

One such feature is extracted by Scale Invariant Feature Transform (SIFT)
[63]. Its main advantage is its invariance to scale and rotation, which ensures that
keypoints can be reliably detected regardless of changes in image size or orientation.
Additionally, SIFT exhibits robust performance against affine distortions, occlusion,
clutter, and noise, making it highly effective in challenging visual environments.

Originally designed for object recognition, SIFT has also proven valuable in
image registration tasks. The algorithm employs a cascade filtering approach to
feature extraction, focusing computational resources on specific areas of interest
rather than the entire image, which helps manage its inherent computational
demands. It operates by analysing scale space extrema, which allows for the
extraction of stable features across varying scales. Each of these extrema is
assigned a consistent orientation based on the local image gradient, leading to the
generation of distinctive descriptors. These descriptors correspond to the keypoints
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identified at different scales, facilitating accurate matching and alignment in both
object recognition and registration contexts.

Another example is Speeded Up Robust Features (SURF) [7]. This particular
feature is scale and rotation invariant. Furthermore, it offers better robustness and
distinctiveness compared to SIFT. It is composed of a feature detector, using the
Gaussian second derivative mask to detect large intensity gradient variations in
multiple directions:

Gxx(x, y, σ) ·Gyy(x, y, σ)−Gxy(x, y, σ)2

σ2 , (3.2.9)

with

Gij(x, y, σ) = δN(0, σ)2

δiδj
∗ I(x, y), (3.2.10)

and a feature descriptor, determining the orientation of each detected features
with the local Haar wavelet response. This definition can be extended to higher
dimensions.

In [64], the nearest correspondence between SURF descriptors is found using
KD tree based nearest neighbor search. The transformation is then determined
with RANdom SAmple Concensus (RANSAC) algorithm, using a perspective
transformation model. RANSAC estimates the perspective transformation model
parameters in a hypothesize and test framework. During the hypothesize phase,
the parameters are determined from a random minimal set of relevant features.
Then, the model is tested on the whole dataset to verify how much data is actually
consistent with the parameters estimate. Those two steps are repeated until a
stopping criteria is verified.

MIND is another such feature that can be used in multi-modal cases. It assumes
that intensity distributions are locally reliable across modalities. It is computed
based on self-similarity between patches such that:

MIND = 1
N

exp(−Lp(I, r, r + ζ)
V (I, r) ), (3.2.11)

where Lp is the voxel wise square distance between patches of size p, ζ defines the
search region, N is a normalising constant, and V estimates the local variance to
account for noise perturbation.

This feature framework looks for local structures preserved across modalities.
MIND is robust to non-functional intensity relations, noise and non-uniform bias
fields, a common artefact in MRI. Moreover, it is highly directional and multi-
dimensional [42], thus carrying a good amount of information. However, it is
sensitive to low contrast, patch size, and texture changes from one modality to the
other [86].
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Image gradients can also be effectively leveraged across modalities, as exemplified
by the EVolution algorithm’s data fidelity term [86]. This approach is grounded
in the premise that structural contours remain discernible across various imaging
modalities, despite potential discrepancies in intensity and texture representation.
By harnessing these gradients, the algorithm capitalises on the underlying geometric
similarities between images, allowing for robust alignment and enhancing the
fidelity of multi-modal registration. This innovative utilisation of image gradients
underscores the versatility and potential of gradient-based techniques in bridging
the gaps between different imaging modalities, ultimately contributing to more
accurate and meaningful analyses. The data fidelity term is defined as:

D(T) = exp

( ∫
Γ |∇If

(T(r)) · ∇Im(r)|dr∫
Γ ||∇If

(T(r))||2||∇Im(r)||2dr

)
, (3.2.12)

with Γ a patch centered at r, If the fix image, Im the moving image, T the
transformation field.

By maximising edge alignment, EVolution effectively captures and preserves
critical structural details, making it a powerful tool for high-precision multi-modal
image analysis. This method necessitates a pronounced contrast between physiolog-
ical tissues, ensuring precise differentiation. However, it demonstrates remarkable
invariance to contrast reversals, enhancing its resilience. Additionally, it signifi-
cantly boosts robustness to dynamic anatomical structures, both incoming and
outgoing, offering a substantial improvement over MIND-based algorithms [86].

Finally, supervoxels may be used, considering regional intensities instead of
local intensities. They have the advantage to preserve pixel relationships and image
structure. For instance in [96], supervoxels, computed by iterative dichotomy are
used in conjunction with information entropy to eliminate redundant feature points:

H(I) = −
L∑

i=1
Pi(r)log(Pi(r)), (3.2.13)

where i ∈ [1, L],

Pi(r) = hi(r)∑L
i=1 hi(r)

, (3.2.14)

and hi(x) is the cumulative number when the state is i.
The selected supervoxels are then registered with the RANSAC algorithm, thus

improving registration speed. Though promising, this technique has only been
tested on rigid transformations and on a mono-modal case at the moment.

We may also cite features such as local phase, local entropy, or gradient orien-
tation [86].
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Machine-learning based approaches: In recent advancements, deep learning-
based methods have emerged as a powerful tool for image registration tasks. These
methods have demonstrated remarkable improvements in performance, akin to
their success in other areas of image processing. The application of deep learning
has led to enhanced accuracy and efficiency in image registration, often surpassing
traditional approaches.

Nevertheless, a significant challenge remains in fully understanding the underly-
ing mechanisms that drive these deep learning models. Specifically, the generation
of solutions and the metrics employed for evaluation in these methods can be
opaque. This lack of transparency makes it difficult to justify their use compared
to classical algorithms, which have well-understood processes and metrics. As deep
learning models are often seen as black boxes, their adoption in registration tasks
requires careful consideration of their effectiveness and the interpretability of their
outputs. Furthermore, some annotation is crucial for the learning [8], but it is not
easily obtainable and synthetic database may not represent natural movements.

Motion estimation: Deep learning offers a powerful approach for generating
motion estimates directly from data, utilising sophisticated neural network archi-
tectures. These models can learn complex motion patterns by analysing large
datasets, potentially yielding highly accurate predictions. However, designing an
effective loss function for these tasks can be quite challenging. It often requires
incorporating multiple components to capture various aspects of the motion, such
as spatial consistency, temporal dynamics, and smoothness constraints. Balancing
these terms to achieve an optimal performance can be intricate, as each term needs
to be weighted appropriately to guide the learning process effectively.

A CNN doing so is SymReg-GAN [105]. A Generative Adversarial Network
(GAN) comprises two distinct yet interconnected CNNs: the generator and the
discriminator. The generator creates synthetic data samples with the goal of mim-
icking the characteristics of real data from a database. Conversely, the discriminator
evaluates these samples, distinguishing between those generated by the generator
and genuine samples from the database.

The interaction between these two networks is driven by an adversarial process
(Fig. 3.2). The generator’s objective is to produce increasingly convincing samples
to deceive the discriminator, while the discriminator’s goal is to improve its accuracy
in distinguishing between real and fake data. This dynamic forms a game-like
scenario where the generator and discriminator continuously challenge each other.

Their loss functions are intricately designed to reflect this adversarial nature.
The generator’s loss function is aimed at maximising the discriminator’s error,
while the discriminator’s loss function is designed to minimise its error in classifying
real and fake samples. The convergence of this adversarial game results in the
generator producing high-quality samples that are indistinguishable from real data.
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Figure 3.2: The overall framework for GANs encompasses two primary components:
the generator and the discriminator. The generator is responsible for creating new
data samples, aiming to produce outputs that closely resemble those from the actual
dataset. Meanwhile, the discriminator’s role is to distinguish between the samples
generated by the generator and those from the real dataset. This adversarial
process, in which the generator and discriminator are trained simultaneously, drives
the continuous improvement of the generator’s ability to produce realistic data,
from developers.google.com.

The researchers utilised a sophisticated architecture involving two GANs, each
conditioned by the images being registered to foster symmetry between modalities.
This dual-GAN setup enhances the registration process by promoting alignment
and coherence in the transformed images.

Each GAN comprises several integral components: a modality translator de-
signed to mitigate modality-specific biases, a non-linear transformation regressor to
handle complex, non-linear mappings between the images and a spatial transformer
to provide an additional layer of flexibility by allowing spatial manipulations within
the network. The loss includes a data fidelity term Lfid depending on both the for-
ward and the backward motion estimates, a symmetry term Lsym, a regularisation
term Lsmt and an adversarial term LGAN :
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Lfid(If , Im, T, Tinv) =
√

((If −T(H(Im)))2 + ϵ2 +
√

((Tinv(Hinv(If )) + Im)2 + ϵ2,

(3.2.15a)
Lsym(If , Im, T, Tinv) = ||fI −Hinv(Tinv(T(H(If ))))||22 + ||Im −H(T(Hinv(Im))))||22,

(3.2.15b)
Lsmt(T, Tinv) = ||∇2T||22 + ||∇2Tinv||22, (3.2.15c)
LGAN(F, G, If , Im, I∗

f , I∗
m, T∗) = EI∗

f
,I∗

m,T∗log(F (I∗
f , I∗

m, T∗)) (3.2.15d)
+ EIf ,Imlog(1− F (If , Im, G(If , Im))),

where If is the fix image, I∗
f is a fix image from the annotated database, Im is the

moving image, I∗
m is a moving image from the annotated database, T it the forward

motion estimate, Tinv is the backward motion estimate, T∗ is a transformation
field from the annotated database, F is the discriminator, G is the generator, H
is the modality translator from moving modality to fix modality and Hinv is the
modality translator from the fix modality to the moving modality.

During the training phase, the network is designed to handle both labeled and
unlabeled data effectively. When using labeled data, the network incorporates a
supervised loss term, denoted as LSP V , which helps guide the learning process by
penalising incorrect predictions based on the true labels. This enables the network
to learn from explicit examples and refine its performance accordingly.

CNN can also be used conjointly with parameter-based methods to estimate
the parameters [26]. However, these methods still require expensive to obtain
groundtruth without removing the iterative nature of the process.
Learned metric: CNNs can be effectively employed to develop modality-indepen-
dent metrics, which are crucial for assessing the alignment of registered images
against a reference image. In this context, a CNN learns to evaluate whether
an image has been accurately aligned or registered with a fixed reference image,
irrespective of the specific modalities involved.

However, a significant challenge arises in this process due to the nature of the
metrics being learned. These metrics are frequently characterised by non-smooth
and non-convex properties [26]. Non-smoothness implies that the metric can exhibit
abrupt changes or discontinuities, while non-convexity indicates the presence of
multiple local minima. These characteristics complicate the optimisation process,
making it more difficult for conventional optimisation algorithms to converge to an
optimal solution. Consequently, advanced optimisation techniques or modifications
to the learning algorithms may be required to address these difficulties and achieve
robust performance in modality-independent image registration. When accomo-
dated properly, those metrics often lead to better registration accuracy [8]. The
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resulting algorithm is still relatively computationally demanding as it requires an
iterative registration process.
Learned regularisation: Another approach is to incorporate a high fidelity motion
model in a Plug-and-Play algorithm [83]. The method in question blends the
adaptability of traditional model-based techniques with the robust performance of
modern machine learning algorithms. This approach alternates between utilising a
model and applying a regulariser that is finely tuned based on data-driven insights.
The regularisation can be informed by various advanced techniques, including
Markov Random Field (MRF)—learnable undirected graph—, CNN image denoiser,
CNN artifact remover, etc. By integrating these techniques through proximal and
splitting algorithms, the method ensures a sophisticated interplay between model-
based flexibility and the data-driven precision of machine learning. This results in a
powerful tool for handling complex image processing tasks with both structural and
statistical efficacy. [55]. In the case of image denoisers, they should be non-blind
and handle wide range of noises since their generalisability could otherwise be very
limited [104]. Instances of proximal and splitting methods include:

• ADMM: decomposes a large problem into smaller, more manageable subprob-
lems, which are easier to solve. The ADMM algorithm iteratively updates the
solutions to these subproblems, leveraging the method of multipliers to ensure
convergence to an optimal solution. ADMM is particularly useful for prob-
lems involving large-scale data and complex constraints, where traditional
optimisation methods may be inefficient,

• primal-dual splitting: solves large-scale convex minimisation problems by
addressing both the primal and dual formulations simultaneously. This
method is particularly useful for problems involving complex constraints and
non-smooth terms. It works by decomposing the original problem into simpler
subproblems, which can be solved iteratively. The primal-dual splitting
approach applies gradient and linear operators directly without inversion,
making it efficient for high-dimensional problems. By alternating between
updates to the primal and dual variables, the method ensures convergence to
an optimal solution,

• Fast Iterative Shrinkage Thresholding Algorithm (FISTA): works by com-
bining proximal gradient steps with an accelerated gradient descent method,
allowing it to reduce the number of iterations required to reach a solution.
This makes FISTA more efficient and effective for large-scale problems where
quick convergence is crucial,

• Half Quadratic Splitting (HQS): aims to minimise a cost function by alter-
nating between two simpler optimisation problems. It works by splitting
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the original problem into subproblems that are easier to handle, making the
overall problem more tractable. HQS introduces auxiliary variables to refor-
mulate the original non-convex problem into a sequence of convex problems,
which can be solved iteratively. This approach leverages the quadratic form,
allowing the problem to be decomposed and solved efficiently. The method is
particularly useful for problems that are ill-posed or NP-hard.

These methods excel in improving performance by efficiently solving non-convex
optimisation problems, especially in high-dimensional settings. Despite their effec-
tiveness, these methods face limitations in generalisability because their learning
phase is tightly coupled with the specific training data. Consequently, they may
struggle with novel or unseen data. To address the challenge of large-scale images,
such as those encountered in 3D medical imaging, approximations of gradients and
proximal operators are often employed to manage computational complexity and
ensure practical applicability.

CNNs learning a regularisation can also be integrated in a framework with
another CNN estimating the transformation. Such a method was proposed in [83]
(Fig 3.3). The loss function of an unsupervised registration CNN is composed,
similarly to most variational technique, of a similarity term and a regularisation
term. Here, the latter is a feasibility prior of motion learned by a U-Net architecture
on the Jacobian of deformation fields derived from images of higher resolution
than the one eventually fed to the registration network. It is used to regularise the
Jacobian of the produced deformation field. The Jacobian matrix represents how
the local deformation changes in space, and the feasibility prior helps to regularise
these deformations by constraining them to plausible physical movements. This
regularisation helps in reducing noise and artifacts, leading to enhanced robustness
and accuracy of the registration. However, this approach is highly tailored to
specific types of motion that the U-Net has been trained to recognize, which may
limit its generalisability. Additionally, the requirement for high-resolution images
for training the U-Net can be a limitation, as such data may not always be readily
available in practical scenarios.
Bridge between modalities: To advance multi-modality deep learning, two primary
approaches are utilised.

CNNs can be employed to translate data from one modality to another. This
involves training networks to map information between different types of data, such
as translating MRI images to CT scans or vice versa. This translation process helps
integrate diverse data sources, allowing models to work cohesively across various
modalities. For instance, a modality translator is used in the aforementioned
SymReg-GAN [105].
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Figure 3.3: The methodology outlined in [83] involves an integrated approach where
Fan Beam Computed Tomography (FBCT) serves as the high-resolution reference
image. The deformation between the FBCT and CBCT images is quantified
and described using Deformation Vector Fields (DVF), which provide a detailed
representation of the spatial transformations required to achieve alignment between
the two imaging modalities, reproduced with permission.

Alternatively, networks can be designed to learn modality-independent de-
scriptors. These descriptors capture features that are invariant to the specific
modality of the data. Once these features are learned, they can be used for image
registration, aligning images from different modalities by comparing their shared,
modality-agnostic characteristics

Both methods enhance the ability of deep learning models to effectively process
and integrate multi-modal data.

3.2.4 The challenge of boundary conditions in image regis-
tration

Boundary conditions are constraints necessary for solving differential equations
that describe physical systems. These conditions specify the behavior of a system
at its boundaries, ensuring unique and meaningful solutions. Without proper
boundary conditions, the equations may yield infinite or non-physical solutions,
rendering them useless for practical purposes. Thus they play a crucial role in
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determining the final quality of solutions for registration problems.
When neighboring information is lacking at the borders, the registration task

becomes significantly more challenging. This difficulty arises because the lack of
contextual data at these edges can lead to inaccuracies in alignment and motion
estimation.

Research highlights that accurately estimating motion at the boundaries is
currently one of the most challenging aspects of optical flow methods [6]. This
difficulty is not isolated but rather extends to many variational methods used in
image registration. The absence of adequate boundary information often results in
suboptimal performance and reduced accuracy in these methods.

Mis-registration at the boundaries especially arises in scenarios where images
capture only partial fields of view, a situation commonly encountered in medical
imaging. Also, the issue may be caused by an absence of well-defined, sharp
boundaries between the anatomical structures of interest and the surrounding
background [12]. In such cases, the overlap between regions of interest and less
distinct areas can lead to inaccuracies in aligning and integrating images. This
problem is particularly prevalent in medical sciences due to the inherent complexity
and variability in anatomical structures, which often results in blurred or ambiguous
borders that challenge precise image registration and fusion. This error easily
propagates towards the Region Of Interest (ROI), even when said region is at the
center of the image. This is thus especially problematic in the case of partial fields
of view where the ROI is inherently closer to the boundaries. These practical
limitations come from the imaging sensor or the data acquisition process itself,
when multiple scans need to be conducted within a reduced timeframe for instance.

At all times, it is crucial that boundary conditions complement the regular-
isation operator used in the solution process. If the boundary conditions are
not aligned with the regularisation strategy, the problem can become ill-posed,
leading to unstable or inaccurate solutions [16]. This alignment ensures that the
regularisation process effectively addresses the inherent instability and ambiguity
of the problem. The regularisation operator stabilises the solution by introducing
additional constraints or smoothing, while the boundary conditions define the
constraints at the edges of the domain.

Despite this problem being known, it is rarely adressed in literature. To our
knowledge, the only study on the impact of boundary condition on image registration
is [12]. A synthetic database was used to test generic boundary conditions, namely
periodic:

T [0] = T [L], (3.2.16)

where L is the size of the 1D vector T , homogeneous Dirichlet boundary, imposing
a null motion field:
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T [x] = 0, (3.2.17)
where x ∈ δΩ, the boundary, and homogeneous Neumann, restricting the derivative
(or the shear tensor along the normal direction for higher dimensions):

dT

dx
= 0, (3.2.18)

where x ∈ δΩ.
The study found that periodic boundary conditions deliver reasonably good

results primarily when the ROI is sufficiently distant from the boundaries, min-
imising the effects of any mis-registration or boundary distortions. In contrast,
homogeneous Dirichlet boundary conditions are advantageous only under particular
circumstances where boundary movement is negligible. This requires prior knowl-
edge on the motion to ensure accuracy. Overall, homogeneous Neumann boundary
conditions tend to provide better performance across a wide range of scenarios.

However those simple boundary conditions are not suitable for very generic
movements such as a rotation, as seen in Figure 3.4.

In the image registration literature, boundary conditions frequently receive
minimal attention or are assumed to be homogeneous. When boundary conditions
are specified, homogeneous Dirichlet conditions are typically employed for scenarios
where the field of view is sufficiently expansive, ensuring that the ROI remains
unaffected by edge effects or boundary movements. This choice is suitable when the
domain’s boundaries do not influence the critical areas being analysed. Conversely,
in cases where the ROI is more susceptible to boundary effects—such as in smaller
or partially observed fields—homogeneous Neumann boundary conditions are often
utilised. These conditions help manage the influence of boundary flow field and are
better suited for mitigating errors that could arise from boundary misalignments
or constraints.

Addressing the issue of boundary conditions in image registration is rare and
typically tailored to specific applications. These specialised approaches frequently
shift the focus from conventional image boundaries to the boundaries of the ROI.
This adjustment allows for handling complex transformations, including shearing
and other non-smooth motions, which are not well-managed by standard methods.
Such methods are highly sensitive to the quality of the segmentation process;
if the segmentation is inaccurate, it directly impacts the registration outcome.
Additionally, the transformation estimates are only valid within the segmented
mask. Outside this mask, the estimated transformation field may lack meaningful
or reliable information, which can limit the utility of the registration in broader
contexts [95].

In [76], the approach leverages segmentation masks to reinforce the distinc-
tion between background and foreground pixels. By integrating these masks into
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Figure 3.4: Motion field estimated by the EVolution registration algorithm [86] for
different generic boundary conditions, namely homogeneous Dirichlet (imposing
a null displacement) and homogeneous Neumann (imposing a null shear tensor),
on a registration task consisting of a rotated square. Neither of the generic global
boundary conditions is adequate for the estimation of a rotational movement.

the boundary condition framework, the method encourages background pixels to
consistently remain registered in the background, and reciprocally for foreground
pixels. This is achieved through a sophisticated implementation of free boundary
conditions, where an additional term is introduced into the energy minimisation
process. This term represents the conditional probability that a pixel does not
belong to the background, thereby improving robustness against poor initialisations
of the ROI. This marks a significant advancement over previous methods that
utilised non-homogeneous Dirichlet boundary conditions on preliminary contours,
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which were less adaptable. While segmentation masks are effectively employed
in this technique, alternative strategies such as simpler thresholding functions or
segmentations provided by CNNs could also serve as effective conditional proba-
bility distributions, potentially simplifying the implementation while maintaining
performance.

Similarly in [102], the estimation of movement relies exclusively on the bound-
aries defined within the ROI. This approach is deeply influenced by the physical
dynamics of breathing. Initially, the boundary conditions are set using a homoge-
neous Dirichlet condition, which provides a uniform constraint across the boundary.
As the simulation progresses, these initial conditions are gradually refined to better
reflect the pressure variations within the lungs. This adaptive approach allows for a
more accurate simulation of the respiratory mechanics, capturing the complex inter-
play between lung expansion and contraction. The gradual adaptation ensures that
the boundary conditions evolve in response to the physiological changes, thereby
enhancing the fidelity of the movement estimation and improving the overall model
accuracy.

In machine learning approaches, incorporating boundary conditions significantly
enhances the physical realism of motion fields. By embedding these constraints,
models can generate more accurate and plausible predictions that align with real-
world physics. However, integrating such constraints can introduce complexity,
making it more challenging to precisely constrain and solve the models. The
trade-off involves balancing the benefits of improved physical accuracy with the
increased difficulty in managing and optimising the constraints effectively.

In [22], a U-Net architecture is employed to estimate transformation fields
using a one-shot learning strategy. This entails training the network to perform
image registration on the pair of image under consideration until convergence is
achieved. To ensure the quality and physical plausibility of the estimated transfor-
mation fields, boundary conditions are seamlessly integrated into the loss function.
Specifically, the loss function incorporates a regularisation term that promotes
boundary smoothness at patch borders, reducing artifacts and enhancing conti-
nuity. Additionally, a cyclic constraint is applied, which enforces that the sum of
deformation vectors along the trajectory of a boundary voxel approximates zero.
This cyclic term helps maintain consistency and prevent drift in the deformation
fields, contributing to more accurate and reliable registration outcomes.

A thorough examination of previous research reveals a notable gap: the absence
of a comprehensive, unified framework for boundary conditions that can be applied
broadly across diverse medical image registration tasks. Most of the existing meth-
ods reviewed in the context of boundary conditions are highly specialised, designed
to address the nuances of specific applications—whether it be the registration of
lung scans during the respiratory cycle or mammographic images taken at various
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stages.
This fragmentation highlights a critical need for a more generalised approach to

boundary conditions, one capable of adapting to the intricacies of different types of
motion estimation with minimal or no supervision. Such a framework would bridge
the current divide, offering a versatile solution that extends beyond highly tailored
scenarios. This motivates our pursuit of a robust generalisation, designed to flexibly
accommodate the specific motion characteristics inherent to each medical imaging
task, while maintaining broad applicability across a variety of contexts.

3.3 Framework for auto-adaptive boundary con-
ditions

We address the longstanding challenge of boundary conditions in image reg-
istration through the introduction of an auto-adaptive local boundary condition
methodology. This approach dynamically adjusts to the distinct characteristics
of each registration task, thereby ensuring superior accuracy and robustness in
registration tasks. By customizing the boundary conditions to meet the specific
demands of each registration scenario, we can significantly enhance the alignment
and integration of diverse image datasets. This advancement paves the way for
more precise and dependable results across a wide array of applications.

The proposed method is applicable to most registration algorithm though we
focus here on variational solutions, a deterministic class of methods that allows
to precisely determine the impact of the proposed boundary conditions. This
class of registration algorithm is chosen as it is fast and requires relatively few
hyper-parameters. In this framework, the registration task is formulated as an
optimisation problem involving an energy functional. This functional typically con-
sists of two components: a data fidelity term D, which ensures that the registered
image aligns accurately with the fixed image, and a regularisation term S, which
promotes the physical plausibility and smoothness of the solution:

E(T) =
∫

Ω
D(If , T(Im)) + S(T)dx. (3.3.1)

By balancing these terms, the method effectively aligns images while maintaining
realistic and coherent transformations, thus enhancing the robustness and reliability
of the registration process.

Variational methods have gained widespread use, highlighted in the previous
literature review, due to their modular nature. This modularity empowers these
methods to address diverse regularisation challenges, balancing the imposition
of physical principles with the fidelity to observational data. Such flexibility is
instrumental in fields where precise modeling of complex systems is paramount,
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ensuring robust and accurate solutions tailored to the unique demands of each
problem.

A boundary condition serves a crucial role in the formulation of the variational
problem. It can either confine the search space, as seen with the Dirichlet boundary
condition, which specifies the values a solution must take on the boundary, or it can
add a term to the energy functional, as demonstrated by the Neumann boundary
condition, which imposes conditions on the shear tensor of the transformation
along the boundary. By doing so, Neumann conditions add complexity to the
energy functional, guiding the solution to respect the physical laws modeled by
these boundary interactions.

We propose a flexible local Robin-type boundary condition that adapts based
on image information. This approach allows us to seamlessly transition between
the commonly used homogeneous Neumann and homogeneous Dirichlet boundary
conditions, and their non-homogeneous counterparts, by adjusting specific hyper-
parameters. To tailor the boundary conditions to the unique features of each image,
we introduce two methods for calculating an incoming/outgoing flow field map.
This map helps guide the selection of appropriate boundary conditions at a local
level. Additionally, we implement a hyper-parameter search process driven by the
registration energy, which automatically optimises the two key hyper-parameters
in our boundary condition model.

3.3.1 Mathematical formulation of locally adapted bound-
ary conditions

To effectively address the issue of mis-registration at the boundary, which
arises due to inappropriate boundary conditions, we implement a sophisticated
Robin-type boundary condition:

As(∇Ts · n) + BsTs = Cs, (3.3.2)

where s ∈ {x, y, z}, T = [Tx, Ty, Tz], A = [Ax, Ay, Az], B = [Bx, By, Bz], C =
[Cx, Cy, Cz] are vectors such that A and B have positive components, and n is the
normal to the boundary δΩ of the image.

This approach, named after the mathematician Victor Gustave Robin, elegantly
combines both Dirichlet and Neumann conditions, allowing for a more accurate and
stable solution to boundary value problems. The trade-off is characterised by the
vecors A, B and C. By incorporating this method, we can significantly enhance
the precision of our computational models, ensuring that boundary behaviors are
accurately represented and reducing the likelihood of errors caused by ill-designed
constraints.
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Our approach is further enhanced with an automatically computed flow field
map, which dynamically guides the registration process in harmony with the specific
characteristics of the image. This method ensures that the boundary conditions
are tailored to the unique details of each image. By leveraging the flow field
map’s dynamic adjustments, we can significantly improve the overall accuracy and
reliability of the registration. This precision ensures that every nuance of the image
is considered, resulting in a highly refined and dependable boundary representation.

It is possible to recover the most prevalent boundary conditions in image
registration, specifically the homogeneous Dirichlet and homogeneous Neumann
conditions, by making selections for the vectors A, B and C:

• Homogeneous Dirichlet boundary conditions are achieved with A = 0, B = I
and C = 0:

Ts = 0. (3.3.3)

• Homogeneous Neumann boundary conditions are similarly achieved with
A = 1, B = 0 and C = 0:

∇Ts · n = 0. (3.3.4)

The non-homogeneous counterparts are achievable for non-null C vectors.
To streamline the complexity of our model, we propose a strategic reduction

in the number of hyper-parameters. This approach will not only simplify the
model but also enhance its efficiency and balance. By focusing on essential hyper-
parameters and eliminating redundant or less impactful ones, we can achieve a
more streamlined and optimised solution:

A = 1−B. (3.3.5)

Furthermore, to significantly enhance the precision of our model, we integrate
incoming/outgoing flow field information into the two remaining hyper-parameters.
This refined approach ensures that we comprehensively account for the unique
characteristics of the image. We incorporate an incoming/outgoing flow field map,
denoted as g, directly into the boundary condition, such that:

β(gs)(∇Ts · n) + (1− β(gs))Ts = γgs (3.3.6)

where γ is a scalar hyper-parameter and β (Fig 3.5) is such that:

β(x) =
{

1− tanh(a− |x|) if |x| < a
1 otherwise. (3.3.7)

for any x ∈ R. a is thus the second hyper-parameter of the proposed local boundary
condition.
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Figure 3.5: β function (eq. 3.3.7) describing the balance between Dirichlet (β := 0)
and Neumann (β := 1) boundary conditions for different values of a.

The map g serves as an advanced guiding framework, fine-tuning the boundary
conditions to precisely match the specific flow field dynamics observed within the
image. By implementing this approach, we ensure that our boundary conditions
are not only adaptive but also acutely responsive to the details present in the image.
This method guarantees that our model achieves accuracy and reliability, yielding
precise results that reflect the complexity of the observed motion.

3.3.2 Incoming/outgoing flow field detection
In this section, we introduce two innovative methods for detecting incom-

ing/outgoing flow field. The first method offers a scalar detection approach by
leveraging the mean absolute error between the moving image, unregistered, and
the moving image, registered with an initial motion estimate. The second method
enhances the detection process by providing detailed, vector field information,
that captures the discrepancies between the forward and backward transformation
fields. This approach delivers a comprehensive representation of flow field dynamics,
offering nuanced insights into the intricate variations within the transformation
fields.

Scalar-valued flow field estimation: Mean absolute error (MAE) is a com-
monly utilised evaluation metric in the field of image registration due to its simplicity
and effectiveness in many scenarios. However, its performance tends to degrade
significantly when confronted with severe distortion types and in multi-modality
settings, where images from different modalities must be aligned. In such cases,
MAE often fails to capture the nuanced differences and complex relationships
between the images, leading to suboptimal registration results [38]. It is based on
pixel statistics as follows:
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MAE(r, If , Im) =
∑

r∈Γ |If (r)− T (Im(r))|
L

, (3.3.8)

where L is the number of pixel/voxel in the patch Γ centered around r.
In scenarios involving incoming/outgoing flow field at the boundary, a voxel

may be registered with missing information from beyond the image boundary.
This missing data is typically substituted with zeroes, resulting in a conspicuous
discrepancy between the current image and the moving image, as depicted in
Figure 3.6. This discrepancy can be effectively detected using MAE. While MAE
values do not convey specifics about the direction of the flow field, they can still be
employed to identify the presence of incoming/outgoing flow field at the boundary.
We hypothesize that the larger the difference, the more voxels were registered using
outside information and thus, the larger the flow field.

Figure 3.6: Computation of the scalar-valued flow field estimation on a translated
square. The difference in intensities within the partially registered image are
exacerbated for demonstration purposes: the voxels on the right are registered with
information from outside the field of view which is commonly replaced by zero,
therefore creating a local difference between the current image and the moving
image. It is this difference that we interpret as flux and that is detected by the
MAE. The image is only partially registered similarly to our implementation for
time efficiency.
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Since the MAE is computed between the registered and the moving image, it
always measure flow field between information from the same modality. It can thus
be used even in multi-modal tasks.

This first approximation of the flow field across the boundaries is advantageous
in its simplicity. It is a quick computation, only necessitating the fix image and
the moving image registered with the current estimation of the motion field. In
most variational framework, both those variables are readily available.

Vector-valued flow field estimation: Registration is a symmetric task. That
is, switching the fix and the moving image should lead to a transformation field
Tinv such that:

T = (Tinv)−1 (3.3.9)

However, due to numerical approximations, problem formulation and incom-
ing/outgoing flow field at the boundary, this relation is not always verified. Under
the assumption that the contributions from numerical approximations and problem
formulation are negligible with respect to discrepancies due to incoming/outgoing
flow fields, we interpret inverse inconsistency as incoming/outgoing flow fields:

InvC(r) = T + Tinv(T) + Tinv + T(Tinv)
2 (3.3.10)

In fact, we average the discrepancies between T and Tinv and between Tinv

and T.
This method involves the computation of both forward and backward motion

estimations, each of which is computationally intensive due to its iterative nature.
As a result, to manage computational resources efficiently, the estimates are limited
to a reduced number of iterations—specifically, only 10 iterations are performed in
this study. This reduction is a strategic choice to balance the trade-off between
computational expense and the accuracy of motion estimations, ensuring that the
process remains feasible while still providing valuable insights.

3.3.3 Automatic hyper-parametrisation
The proposed boundary condition involves two critical hyper-parameters that

must be precisely defined to optimise performance: the parameter a, which dictates
the specific form of the function β, and the parameter γ, which balances the
contribution of the source term. To tailor these parameters effectively for the
given task, we employ an adaptive strategy that identifies the optimal combination
by minimising the DIR energy (equation 3.3.1). This approach ensures that the
boundary condition is finely tuned to reduce discrepancies and enhance the accuracy
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of the registration process.
In our approach, we conduct a grid-search to optimise the boundary conditions

by systematically varying the hyper-parameters γ and a. Specifically, γ is explored
across a continuous range from 0 to 1, and a is varied from 0 to 100. This range
effectively spans the spectrum of boundary conditions from Neumann to Dirichlet
types. To enhance the accuracy and relevance of our results, we compute the energy
over the entire image or, when available, focus exclusively on groundtruth elements
such as landmarks or segmentation masks. This tailored approach ensures that our
evaluation metric closely aligns with the specific features and constraints of the
task at hand.

3.3.4 Numerical implementation
Integrating the proposed local boundary conditions within a pre-existing regis-

tration algortithm requires 2 additional steps.
Initially, it is essential to compute the incoming/outgoing flow fields map, which

provides local guidance for the boundary conditions, by performing a preliminary
motion estimation using homogeneous Neumann boundary conditions. In parallel,
the vectorial guidance based on inverse consistency necessitates the estimation
of the inverse transformation field, as detailed in Algorithm 2. While this step
is optional, initialising the registration algorithm with this inverse estimate has
been shown to enhance performance. This approach leverages a slightly imperfect
starting point to provide momentum for the algorithm, thereby facilitating a more
effective search for the accurate transformation field.

Evaluating the incoming/outgoing flow field can be performed in various ways
depending on the specific requirements of the algorithm and the computational
resources available. It may be executed just once at the beginning of the process,
during each iteration of the algorithm, or at every resolution level in a multi-
resolution scheme, as suggested in Algorithm 1 and visualised in Figure 3.7. The
choice between these approaches involves a trade-off between computational effi-
ciency and accuracy. Performing the step once can save computation time but may
not capture all necessary details, while executing it at each iteration or resolution
step provides more detailed results at the cost of increased computational demand.

Second, the application of boundary conditions to the motion estimate is crucial.
In the proposed method, this is executed explicitly to ensure that the boundary
conditions are rigorously applied and verified. From a numerical perspective, this
new boundary condition is implemented by adjusting the boundary condition
to fit the discrete grid of the image, thereby ensuring that the computational
representation accurately reflects the physical constraints imposed by the boundary
conditions. This approach guarantees that the boundary conditions are properly
enforced throughout the domain, thus enhancing the precision and reliability of
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Algorithm 1: Primary framework for registration
Input : (If , Il, Tinit) = (fix image, moving image, initial condition)
Output : T = motion field
T← Resample Tinit to (16× 16× 16)
for res ∈ {(16× 16× 16), (32× 32× 32), ..., (256× 256× 256)} do

I ′
f ← Resample If to res

I ′
m ← Resample Im to res

T← Resample T to res
g, T← Algorithm 2(I ′

f , I ′
m, T)

T← Algorithm 3(I ′
f , I ′

m, T, g)
end

Algorithm 2: Calculation of incoming/outgoing flow field in the boundary
Input : (If , Im, T) = (fix image, moving image, motion field)
Output : g = Voxelwise in/out flow field in the boundary

Tinv = motion field
D ← data fidelity term between If and Im

Tinv ← T
I∗

m ← Im transformed with T
i← 0
while i < 10 do

update T boundaries according to homogeneous Neumann boundary
conditions

T← L(If , I∗
m, D, T) where L is one update in the variational DIR

algorithm
i← i + 1

end
i← 0
while i < 10 do

update Tinv boundaries according to homogeneous Neumann boundary
conditions

Tinv ← L(I∗
m, If , D, Tinv)

i← i + 1
end
Update Tinv boundaries according to homogeneous Neumann boundary
conditions

g← guidance metric from T and Tinv

140



Figure 3.7: Generic multi-resolution scheme including the proposed framework for
adaptable boundary conditions. The fix and moving image are used at various
resolution. The resulting motion estimate are used as the starting point of the
registration process (blue blocks) at the subsequent higher resolution. This process
is further detailed in Algorithm 1. Furthermore, the incoming/outgoing flow field
maps are updated (yellow blocks) at the begining of each resolution step for a
balance between precision and efficiency. Typical inputs I and J of size 256x256x256
are used to illustrate the various resolution stages.

the motion estimate.
To apply the constraint in Equation 3.3.6, we first need to compute ∇Ts · n,

where s ∈ {x, y, z}. To do so, we make the following second order approximation:

∇T 0
s · n = −−3T 0

s + 4T 1
s − T 2

s

2 , (3.3.11)

and on the other side of the boundary:

∇T N
s · n = T N−2

s − 4T N−1
s + 3T N

s

2 , (3.3.12)

where N is the number of voxels along the direction considered.
Substituting in equation 3.3.6 and solving for T 0

s and for T N
s :

T 0
s = β0

s (4T 1
s − T 2

s ) + 2γg0
s

β0
s + 2 , (3.3.13)

T N
s = βN

i (4T N−1
s − T N−2

s ) + 2γgN
s

βN
s + 2 . (3.3.14)

.
Again, we may recover homogeneous Dirichlet boundary condition for β = 0

and γ = 0:
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T 0
s = 0, (3.3.15)

T N
s = 0, (3.3.16)

and homogeneous Neumann boundary condition for β = 1 and γ = 0:

T 0
s = 4T 1

s − T 2
s

3 , (3.3.17)

T N
s = 4T N−1

s − T N−2
s

3 . (3.3.18)

Finally, the motion field is estimated with the registration algorithm. An
overview of the steps included in such a procedure is proposed in Algorithm 3.

Algorithm 3: Calculation of the motion field estimate
Input : (If , Im, T, g) = (fix image, moving image, motion field,

incoming/outgoing flow)
Output : T = motion field
i← 0
while i < it do

I∗
m ← Im transformed with T

D ← data fidelity term between If and I∗
m

update T boundaries according to the boundary condition and g
T← L(If , I∗

m, D, T)
update T boundaries according to the boundary condition and g
i← i + 1

end

3.4 Validation with a variational method

3.4.1 EVolution: a multi-modal variational method
To rigorously evaluate the effectiveness of the proposed method, we integrate it

into the established variational algorithm known as EVolution [86]. This approach
allows us to leverage the robust framework of EVolution, ensuring a comprehensive
and precise assessment of our method’s performance. By doing so, we can observe
its behavior and efficacy within a proven and reliable algorithmic structure, provid-
ing clear insights and valuable comparative data.
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Variational algorithms present three significant advantages within the context
of this study. Firstly, their deterministic nature ensures that identical inputs consis-
tently yield the same outputs, offering a level of predictability and reproducibility
not commonly found in deep learning methods. Secondly, these algorithms re-
quire minimal hyper-parameters beyond those intrinsic to our method, simplifying
the optimisation process and reducing computational overhead associated with
extensive hyper-parameter tuning. Lastly, despite involving iterative procedures,
variational algorithms demonstrate commendable speed and efficiency, making
them an optimal choice for rapid yet accurate computations.

EVolution is a multi-modal DIR algorithm employing Tikhonov regularisation.
This ensures smooth and consistent transformations. The algorithm’s data fidelity
term, introduced in section 3.2.3, is designed to enhance edge alignment between
the registered images, thereby achieving superior accuracy and clarity in image
registration.

Hyper-parameters: The method comes with 2 hyper-parameters.
The first parameter, α, plays a pivotal role in determining the balance between

the data fidelity term and the regularisation within the energy functional that is
being minimised:

E(T) =
∫

Ω
D(T) + α

2 (||∇Tx||22 + ||∇Ty||22 +∇Tz||22)dr, (3.4.1)

with T = (Tx, Ty, Tz).
By adjusting α, one can control the trade-off between fitting the data accurately

and maintaining a smooth, regularised solution. This careful balancing act ensures
that the model does not overfit while still capturing essential patterns in the data.

Overall, the EVolution algorithm demonstrates considerable robustness to
variations in the parameter α. This resilience ensures that minor adjustments in α
do not significantly impact the algorithm’s performance or outcomes. Consequently,
for the purpose of this study, we will consistently employ a value of 0.5 for α,
striking a balance between regularisation and data fidelity that has proven effective
in preliminary testing.

The second critical hyper-parameter to consider is the patch size employed in
the computation of the data fidelity term. This parameter significantly enhances
the algorithm’s robustness to structural variations in the data, simultaneously
providing implicit regularisation. While a smaller patch size can markedly improve
the quality of registration by capturing finer details, it comes with a trade-off. If
the patch size is reduced excessively, it may introduce numerical instabilities that
could compromise the overall stability of the computation. For this work, a patch
size of 5x5x5 has been selected, balancing the need for high registration accuracy
with the necessity of maintaining computational stability.
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Numerically solving the optimisation problem: To obtain an iterative
scheme for finding T, we first apply the Euler-Lagrange equation to the energy
(Eq. 3.4.1) in every dimension s ∈ {x, y, z}:

δD(T)
δTs

−∇ · (2α

2 ∇Ts) = δD(T)
δTs

− α∆Ts = 0 (3.4.2)

Let us now introduce a time variable such that dTs

dt
= 0:

dTs

dt
= α∆Ts −

δD(T)
δTs

. (3.4.3)

Using an explicit fixed-point scheme, we obtain:

T t+1
s − T t

s

dt
= α∆Ts −

δD(T)
dTs

, (3.4.4)

where the superscript correspond to the time index.
Solving for T t+1

s :

T t+1
s = T t

s + dt(α∆Ts −
δD(T)

δTs

). (3.4.5)

The derivatives of the data fidelity term are computed as follows:

δD(T)
δs

= D(S+
s ·T)−D(S−

s ·T)
2 , (3.4.6)

with S+
s the forward shifted transformation in the s direction and S−

s the backward
shifted transformation.

Moreover, considering that the variational equation 3.4.1 is only applicable for
small displacements, a multi-resolution scheme is employed to effectively capture
movement at different scales (see Fig. 3.7). This approach enables the algorithm
to identify global motions at lower resolutions while resolving finer movements
at higher resolutions. The motion estimate calculated at each resolution level is
subsequently used as the initial point for the optimisation process at the next, finer
resolution. This hierarchical method ensures a comprehensive and accurate motion
analysis across various scales, enhancing the robustness and precision of the overall
motion estimation.

3.4.2 Hardware and implementation
The proposed method is implemented under the Python language with the

Cupy library to allow for the use of GPUs. The following results are obtained on a
24-core AMD Zen2 EPYC 7402 CPU paired with an Nvidia A100 GPU with 16
GB of memory from the Plafrim cluster.
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3.4.3 Assessment on a mono-modal task
The DIR-Lab dataset: Our initial focus is on a mono-modal image registration
task utilising the DIR-Lab dataset, which comprises 10 pairs of lung CT scans
from patients undergoing treatment for esophageal cancer. Each scan pair captures
the lung at two extreme phases of respiration: maximal inhalation and maximal
exhalation. This setup introduces substantial diaphragm-induced movement, pre-
senting unique challenges. We focus on the intricate issue of motion discontinuities
that manifest at the interface between the lung and the rib cage. This area is
particularly sensitive to the diaphragm’s movements, which can induce abrupt
alterations in both the shape and position of the lungs. Such dynamic changes
cause notable deformation in delicate structures, including small airways and blood
vessels, which are susceptible to significant distortion from the respiratory process.
These distortions present considerable challenges in achieving precise alignment
during registration procedures. Moreover, variations in image contrast are fre-
quently observed due to the compressive forces on the lungs during inhalation and
exhalation, which affect the clarity and accuracy of the images captured [86].

The primary characteristics of the CBCT scans and their corresponding ground
truth are detailed in Table 3.1. Notably, the magnitude of displacement caused by
breathing motion varies significantly between patients, introducing a broad spec-
trum of complexity across the dataset. This variability is particularly advantageous,
as it presents a diverse range of challenges, enabling a comprehensive evaluation of
the proposed method. By confronting these varying levels of difficulty, the robust-
ness and adaptability of our approach can be thoroughly assessed, ensuring that
it is capable of handling real-world scenarios with fluctuating and unpredictable
patient-specific respiratory motion.

Patient Dimension Spacing (mm) Displacement (mm) Observer uncertainty (mm)

1 256x256x94 0.97x0.97x2.5 4.01 ± 2.91 0.85±1.24
2 256x256x112 1.16x1.16x2.5 4.65 ± 4.09 0.70±0.99
3 256x256x104 1.15x1.15x2.5 6.73 ±4.21 0.77±1.01
4 256x256x99 1.13x1.13x2.5 9.42± 4.81 1.13±1.27
5 256x256x106 1.10x1.10x2.5 7.10 ± 5.14 0.92±1.16
6 512x512x128 0.97x0.97x2.5 11.10±6.98 0.97±1.38
7 512x512x136 0.97x0.97x2.5 11.59±7.78 0.8±1.32
8 512x512x128 0.97x0.97x2.5 15.16±9.11 1.03 ± 2.19
9 512x512x128 0.97x0.97x2.5 7.82±3.99 0.75±1.09
10 512x512x120 0.97x0.97x2.5 7.63±6.54 0.86 ± 1.45

Table 3.1: Data characteristics for the DIR-Lab dataset. The wide range of
displacement poses an interesting challenge for the registration method.

The preprocessing steps involve two key operations: scaling the intensity values
to a normalised range between 0 and 1, and cropping any artificial padding. The
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intensity scaling standardizes the data, facilitating consistent input across different
scans, while the cropping refines the dataset by preserving only the meaningful
regions of interest. This ensures that the boundaries of the scan precisely align
with the actual field of view, eliminating extraneous elements that could interfere
with the registration task.

To thoroughly evaluate the registration algorithm’s performance for scientific
and clinical applications, we utilised a comprehensive ground-truth comprising
3,000 expertly placed landmarks. These landmarks are integral for assessing the
algorithm’s accuracy in real-world scenarios. Lung CT scans were selected due to
their high contrast and rich anatomical details, including critical landmarks such
as vessels and bronchial bifurcations.

The manual registration process, for producing the landmark pairs, was con-
ducted using the Matlab-based software, Assisted Point Registration of Internal
Landmarks (APRIL). Initially, a primary expert manually placed landmarks across
the entire lung image (Fig 3.8). To evaluate intra-reader reproducibility, the same
expert re-placed a subset of these landmarks. Similarly, extra-reader reproducibility
was assessed by having two additional experts independently place a subset of
landmarks. The results showed intra-reader reproducibility ranging from 0.61 to
1.11 mm and extra-reader reproducibility from 0.74 to 1.14 mm. The landmarks
were strategically distributed throughout the lung volume to effectively capture
the complex tissue motions induced by breathing.

Assessment: The evaluation of registration solutions is conducted by comparing
them against the ground truth data provided. This process involves several key
steps to ensure accuracy and reliability.

Each registration result is assessed by aligning it with the ground truth data,
which serves as the benchmark for correctness. This comparison helps in quantifying
how closely the registration results match the expected outcomes. In general,
various metrics are used to measure the performance of the registration algorithms,
depending on the ground truth available. These metrics provide a quantitative
measure of the accuracy and quality of the registration.

In addition to quantitative metrics, visual inspection is performed to assess the
quality of the registration. This involves overlaying the registered images with the
ground truth to visually inspect alignment and detect any discrepancies.

The ground truth provided being under the form of landmarks, we compute a
Target Registration Error (TRE) as the Euclidean distance between the moving
landmarks, registered with the motion estimate, and the fix landmarks:

TRE(T) = ||rf + (Tx(rf ), Ty(rf ), Tz(rf ))− rm||2, (3.4.7)

where rf are the landmark coordinates on the fix image and rm are the landmark
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Figure 3.8: Slices of patient 1 from the DIR-lab dataset with corresponding
landmarks in red. (a) is the transversal plane, (b) the coronal plane and (c) the
sagittal plane.

coordinates on the moving image.
The TRE effectively reflects the accuracy of the registration by quantifying the

alignment error between corresponding landmarks in the moving and fixed images,
ensuring that the spatial transformations applied are accurate and reliable.

To locally assess the impact of the proposed boundary conditions, the error
data at individual landmarks is interpolated using trilinear interpolation. This
method maps the discrete error measurements onto a continuous, regular grid,
thereby enhancing the spatial resolution and accuracy of the error representation.
This technique helps in capturing the nuances of the error variation within the
volumetric space.

For effective visualisation, a mean intensity projection of the interpolated error
map is generated. This projection aggregates the error values to create a 2D
representation, facilitating interpretation and analysis of the error distribution
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Table 3.2: Mean TRE (mm) obtained for each case of the DIR-Lab data set
(mono-modal CT thorax registration) and for each tested boundary conditions,
with mean and standard deviation (std). Best scores are highlighted with bold
characters.

Case Homogeneous Homogeneous Inverse Consistency MAE
Neumann Dirichlet Auto Best Auto Best

1 1.05 1.06 1.05 1.05 1.06 1.05
2 1.02 1.02 1.02 1.01 1.02 1.02
3 1.20 1.23 1.20 1.20 1.20 1.20
4 1.43 1.42 1.42 1.42 1.42 1.42
5 1.57 1.56 1.51 1.51 1.56 1.56
6 1.49 1.53 1.42 1.41 1.46 1.49
7 1.67 1.68 1.47 1.47 1.67 1.67
8 4.56 4.61 4.39 3.83 4.56 4.56
9 1.26 1.26 1.24 1.24 1.24 1.24
10 1.71 1.73 1.71 1.71 1.71 1.70

Mean ± std 1.70 ± 1.04 1.71 ± 1.05 1.64 ± 0.99 1.59 ± 0.82 1.70 ± 1.03 1.69 ± 1.04

across different slices or sections of the model.
This approach ensures that the localisation of errors due to boundary conditions

is both detailed and visually accessible, providing a clear understanding of their
spatial impact.

Results: To benchmark the method’s performance, we compared the proposed
adaptive local boundary conditions against two widely utilised global boundary
conditions: homogeneous Neumann and homogeneous Dirichlet. Each boundary
condition variant was assessed using two different results.
Optimal parameterisation: This result reflects the configuration that minimises the
registration energy, as detailed in the automatic hyper-parameterisation section.
This configuration aims to automatically optimise the registration process by
fine-tuning the parameters to achieve the best fit.
Minimal achievable error: This result is obtained from identifying the configuration
that results in the lowest possible registration error during the grid-search. This
approach allows to verify the validy of the fully optimised framework for the
determination of hyper-parameters.

Among the widely used global boundary conditions, homogeneous Neumann
boundary conditions tend to yield superior results (Tab. 3.2). This advantage arises
from the inherently flexible formulation, which imposes constraints on the normal
shear tensor of the transformation rather than directly on the transformation itself.
By focusing on the rate of change normal to the boundary, Neumann conditions
allow for a more adaptable and nuanced approach to managing boundary constraints,
enhancing their effectiveness compared to homogeneous Dirichlet.

The inverse consistency guidance demonstrates superior performance in this
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context. Specifically, the regularisation achieved through DIR energy minimisation
results in significantly lower errors compared to global boundary conditions, with
a p-value of 0.03 as compared with homogeneous Neumann via a paired t-test,
and an average reduction of 4% and reaching up to 12% in case 7. Given that the
proposed method exclusively targets the boundary, these findings are promising,
particularly for scenarios where the fields of view are even more constrained than
those examined in this study. This indicates a robust potential for enhancing
accuracy in highly limited observational conditions.

However, the MAE guidance provides results very similar to homogeneous
Neumann, the best global boundary condition, with a p-value of 0.30.

This is explained by the sensitivity of each guidance and the level of information.
The inverse consistency based flow field map provides vectorial information of larger
magnitude than the MAE based map as seen in Figure 3.9 and 3.10.

While the MAE based flow field map successfully detect the upward flow field
near the boundary of the lung, the information does not propagate well to the
border where it is required to guide the boundary conditions. Indeed, values near
the diaphragm, where there is the strongest incoming/outgoing flow fields, are
about 1e-3.

On the contrary, the flow field map computed through inverse consistency
detects well the incoming/outgoing flow fields at the borders. In the front to back
direction (gu) some movement due to the lung expansion during inhalation are
detected in both organs. In the right to left direction (gv), some movement, located
mainly in the outercorners of the lungs are detected for the same reasons. Finally,
in the top bottom direction (gw), large motion is signalled near the diaphragm, as
expected.

As anticipated, the primary discrepancies in the transformations estimated
using different boundary conditions predominantly manifest near the edges of the
image. However, a closer examination of the error maps reveals that these variations
extend inward, affecting the regions of interest at the center of the image. This
propagation of errors highlights the significant influence that boundary conditions
exert on the accuracy of the transformation across the entire image, not just its
periphery. Such insights underscore the necessity for meticulous selection and
application of boundary conditions to ensure precise and reliable transformations
in critical regions.

We observe a significant reduction in the error near the diaphragm when
comparing the global boundary conditions (Fig. 3.11 a, b) with the local boundary
condition guided by the inverse consistency-based flow field map (Fig. 3.11 c). This
improvement underscores the efficacy of the local boundary condition approach in
enhancing accuracy in critical regions. By leveraging the inverse consistency-based
flow field map, the method adapts more precisely to local anatomical variations,
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Figure 3.9: A coronal slice of the flow field map, computed using the MAE
metric, is presented for Patient 1 from the DIR-Lab dataset. This visualisation
showcases the distribution of the flow field across the coronal plane, represented
in arbitrary units, allowing a closer examination of the accuracy and performance
of this estimation technique. Notably, the map reveals key insights into the flow
patterns, highlighting both incoming and outgoing flow field dynamics. However,
one significant observation is the method’s inability to capture the full extent
of the flow near the diaphragm region. This limitation directly correlates with
the minimal improvements observed when utilising this approach, particularly
compared to homogeneous Neumann boundary conditions, where the method’s
lack of sensitivity in this area limits its overall effectiveness.

thereby reducing discrepancies and yielding more reliable results in areas of complex
movement, such as near the diaphragm. For this patient, the MAE guidance leads
back to homogeneous Neumann boundary condition. The two corresponding error
maps are thus identical.

As demonstrated in Figure 3.12, the automation of hyper-parameter tuning is
achievable for both guidance methods. This approach efficiently aligns the energy
minimum calculated from the landmarks with the minimum of the TRE. The close
correlation between these two minima underscores the method’s effectiveness in
optimising parameters and achieving accurate alignment. The streamlined process
of hyper-parameter adjustment not only simplifies the calibration but also ensures
that the resulting model closely mirrors the optimal TRE, thereby enhancing
overall registration performance.
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Figure 3.10: A coronal slice of each component of the flow field map, which has been
computed using the inverse consistency for Patient 1 from the DIR-Lab dataset
where gu represent the flow field in the in-out direction, gv in the left-right direction
and gw in the up-down direction, in voxels. This method successfully detects a
significant upward motion (gw) near the diaphragm, due to breathing.

We note that the MAE guidance primarily allows a tradeoff between Dirichlet
and Neumann, and not between homogeneous and non-homogeneous boundary
conditions. Due to the fact that the so computed flow field map does not contain
any information regarding the flow field direction, the source term is not relevant
for the registration process. Over this dataset, the improvement is thus negligeable.
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Figure 3.11: The MIP of the error map, which has been interpolated from errors
associated with each landmark, is overlaid on the MIP of the fixed image for Case
7 in the DIR-Lab dataset. The detailed views are as follows: (a) shows the error
map under homogeneous Neumann boundary conditions, (b) under homogeneous
Dirichlet boundary conditions, (c) presents the result of applying inverse consistency
guidance, and (d) of applying MAE guidance, both with automatic computation
of the hyper-parameters.

3.4.4 Multi-modal task
The Learn2Reg dataset: The method is then evaluated using a multi-modal
dataset featured in the Learn2Reg 2021 challenge. This dataset comprises 122
scans, including both MRI and CT modalities, with most scans being unpaired.
For a comprehensive assessment of the registration process, the dataset includes
segmentation masks of key anatomical structures—namely the liver, spleen, and
both kidneys—available for 7 patients. These well-defined segmentation masks are
crucial for evaluating the accuracy and effectiveness of the registration technique,
ensuring that the method performs robustly across various anatomical regions and
imaging conditions.

The imaging data is characterised by a voxel spacing of 2 mm uniformly across all
three spatial dimensions, ensuring high-resolution and consistency in the volumetric
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Figure 3.12: The outcomes of the parameter search for Case 7 from the DIR-Lab
dataset are presented as follows: (a) displays the DIR energy calculated using MAE
guidance, (b) shows the TRE with MAE guidance, (c) represents the DIR energy
assessed with inverse consistency guidance, and (d) illustrates the TRE obtained
using inverse consistency guidance. This experiment shows that minimising the
DIR energy effectively maximises the segmentation quality. In the absence of
ground-truth, it can thus be used to optimise the hyper-parameters.

representation. This isotropic voxel size facilitates precise anatomical modeling
and accurate image analysis. The detailed dimensions of the scanned volume
are provided in the accompanying Table 3.3, which outlines the extent and size
of the dataset in each direction, enabling comprehensive spatial understanding.
The differences of dimensions between the MRI and the CT lead to an additional
preprocessing step compared to the preprocessing pipeline for the DIR-Lab dataset:
the largest image is cropped to the smallest image dimension for a successful
registration.
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Patient MRI Dimension CT Dimension
1 192× 159× 124 181× 143× 175
2 192× 160× 180 177× 150× 136
3 192× 130× 189 192× 149× 142
4 180× 125× 173 192× 141× 192
5 191× 146× 117 192× 160× 149
6 184× 160× 155 192× 160× 167
7 189× 158× 135 192× 160× 146

Table 3.3: Data characteristics for the Learn2Reg dataset. The different dimensions
between the moving and fix image require an additional cropping step.

Assessment: In this context, the ground truth data is represented as segmenta-
tion masks, which serve as the reference standard for evaluating image registrations.
To quantitatively assess the similarity between the registered masks and the fixed
reference mask, we employ the Dice coefficient:

Dice(Mf , T(Mm)) = 2|Mf ∩T(Mm)|
|Mf ||T(Mm)| , (3.4.8)

where Mf is the segmentation mask on the fix image If , and Mm is the segmentation
mask on the moving image Im.

This metric is used to gauge the degree of overlap between two binary masks.
The Dice coefficient ranges from 0 (no overlap) to 1 (perfect overlap), providing a
robust measure of the accuracy of the registration by comparing the overlap of the
segmented regions against the ground truth.

For qualitative assessment of the registration accuracy, we overlay the contours
of the registered masks onto the contours of the fixed reference masks. This
visualisation technique allows us to directly compare the alignment of the segmented
regions between the registered and fix masks. By examining these overlaid contours,
we can visually assess discrepancies and determine how well the registered masks
conform to the fixed masks. This method provides an intuitive understanding of
registration performance, revealing areas of alignment and misalignment through
clear, visual comparison.

Results: To validate the method’s efficacy, we present results aligned with the
minimum energy computations, which highlight the successful automation of hyper-
parameter tuning. Additionally, we showcase the optimal registration outcomes,
demonstrating the method’s capacity to achieve precise alignments under the
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Table 3.4: Dice coefficients (averaged over 4 labels) obtained for each case of the
Learn2Reg 2021 data set (multi-modal CT to MRI abdomen registration) and for
each tested boundary conditions, with mean and standard deviation (std). Best
scores are highlighted with bold characters

Case Homogeneous Homogeneous Inverse consistency MAE
Neumann Dirichlet Auto Best Auto Best

1 0.846 0.793 0.847 0.847 0.846 0.846
2 0.695 0.608 0.695 0.695 0.695 0.695
3 0.855 0.818 0.856 0.856 0.856 0.856
4 0.866 0.760 0.852 0.866 0.852 0.866
5 0.722 0.556 0.722 0.756 0.722 0.756
6 0.810 0.529 0.810 0.810 0.810 0.810
7 0.849 0.829 0.849 0.849 0.849 0.849

Mean ± std 0.806 ± 0.069 0.699 ± 0.130 0.804 ± 0.068 0.811 ± 0.064 0.804 ± 0.068 0.811 ± 0.064

given constraints. This thorough examination underscores the robustness and
adaptability of the approach in handling diverse and challenging registration tasks.

In this scenario, none of the flow field map yield improvements over the
global boundary conditions as seen in Table 3.4. Despite its potential, the hyper-
parametrisation frequently converges back to homogeneous Neumann boundary
conditions. This indicates that the anticipated enhancements from the locally
adaptable boundary conditions approach do not materialize, and the system re-
verts to the simpler, established boundary conditions, underscoring the fact that
Neumann boundary conditions may be the most suitable for the motion exhibited
in the abdomen.

To visualise the impact of different boundary conditions on the registration of
segmentation masks, we display the contours of the registered masks alongside the
fixed mask on a slice of the images. This approach clarifies why the homogeneous
Dirichlet boundary condition underperforms: organs such as the liver, as seen in
Figure 3.13, are positioned near the image borders. Despite experiencing some
movement, the homogeneous Dirichlet condition enforces a null displacement,
impeding accurate motion field estimation. Conversely, this visualisation confirms
that the three other tested boundary conditions effectively register the organs of
interest, demonstrating their superior performance in these scenarios.

As seen in figure 3.14, the DIR energy effectively reflects the registration quality
in terms of the ground truth provided, with both the MAE and inverse consistency
guidance. This confirms the validity of the automatic hyper-parametrisation.
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Figure 3.13: The edges of the segmentation masks for Case 4 of the Learn2Reg
dataset are displayed on a coronal slice of the corresponding images, as follows: (a)
the fixed MRI (the corresponding mask is shown in green in all 5 subsequent images),
(b) the moving CT scan, (c) the CT scan registered using homogeneous Dirichlet
boundary conditions, (d) using homogeneous Neumann boundary conditions, (e)
using inverse consistency guidance, and (f) using MAE guidance. The hyper-
parametrisation leading to the minimum energy is used for the last two cases.

3.5 Limitations and perspectives for the auto-
adaptive boundary condition framework

The introduced locally adaptable boundary conditions offer significant enhance-
ments over conventional boundary conditions like homogeneous Neumann and
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Figure 3.14: The outcomes of the hyper-parameter search for Case 4 from the
Learn2Reg dataset are presented as follows: a. displays the DIR energy calculated
using MAE guidance, b. shows the TRE with MAE guidance, c. represents the
DIR energy assessed with inverse consistency guidance, and d. illustrates the TRE
obtained using inverse consistency guidance.

homogeneous Dirichlet. These new conditions dynamically adjust to local image
characteristics, potentially offering better performance for specific scenarios. How-
ever, they also confirm that, under certain flow field conditions, the traditional
global boundary conditions might still be preferable. One reason that justifies
their common use in the literature is the ease and effectiveness of implementing
these global conditions using cosine and sine transforms, respectively. Despite this
advantage, it is important to note that such an approximation of the boundary
conditions can affect the overall quality of the image registration, as evidenced by
our analysis.

The inverse consistency method, designed to enhance flow field estimation accu-
racy, performs well in both mono-modal and multi-modal scenarios. Nonetheless, it
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is not without limitations. For example, in environments with poor or insufficient
tissue contrast, the technique may fail to detect true flow field accurately, often
resulting in false negatives. This is because the registration is heavily influenced
by the regularisation term, which may obscure subtle flow field signals. On the
other hand, in areas with transient or rapidly changing objects, the method might
produce false positives due to variations in the data fidelity term. Moreover, when
compared to homogeneous Neumann boundary conditions, this approach does not
demonstrate any significant improvement in the multi-modal case.

MAE based flow field estimation has similar limitations. Indeed, the values are
also influenced by flow field along the boundary and not only across it. To smooth
this behaviour, the flow field map is computed patch-wise. Furthermore, this
method of incoming/outgoing flow detections exhibits a much lower sensibility, as
highlighted by the fact that inhomogeneous boundary conditions are never favored
in the hyper-parameters search.

One common advantage between those two flow field estimation method is
the fact that no a priori information is required. Also, they are both usable in
multi-modal tasks as well. However, they are not universal: the inverse consistency
based flow field estimation performs better on the DIR-Lab dataset but do not
permit any improvement on the Learn2Reg dataset. We thus expect that more task
specific evaluation of the flow field at the boundary could show better improvement
than those tested here.

The proposed hyper-parameter optimisation demonstrates a correlation between
the minimisation of DIR energy and the maximisation of image registration quality.
Remarkably, when compared to ground truth—whether landmark-based or region-
based—the DIR energy consistently exhibits an inverse relationship with the
computed error values. This clear anti-correlation underscores the effectiveness of
using DIR energy as a proxy for error minimisation. As the DIR energy decreases,
image registration accuracy improves, making it a reliable indicator for fine-tuning
hyper-parameters. This insight is particularly valuable in clinical settings where
ground truth data is unavailable. In such cases, the use of DIR energy as a guiding
metric for optimisation becomes not only practical but essential, providing a robust
mechanism for enhancing registration quality without direct error measurements.

The calibration method employed in this study for boundary conditions, while
effective for detailed analysis, is not optimised for clinical environments due to its
time-consuming nature. Specifically, conducting a comprehensive grid-search for
a 192×149×142 image can take up to 3 hours, which is impractical for real-time
clinical applications. This exhaustive parameter search is crucial for meticulously
documenting how different boundary conditions affect outcomes. However, the
findings indicate several promising approaches to streamline the hyper-parameter
tuning process. These methods aim to significantly cut down the calibration time,
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potentially making the approach more feasible for clinical use and improving overall
efficiency in boundary condition optimisation.

First, given similar data acquisition settings, both guidances leads to very similar
boundary conditions. For example, in the mono-modal task, the optimal boundary
conditions with inverse consistency guidance were often a non-homogeneous Dirich-
let boundary conditions with γ between 0.6 and 0.7. This parametrisation is well
suited for the motion to be estimated: the breathing cycle involves a strong upward
motion on the diaphragm side of the CBCT with only little magnitude motions
on the other sides. An inhomogeneous Dirichlet boundary conditions represents
this configuration. In the multi-modal task, the best hyper-parametrisation nearly
always corresponded to a homogeneous Neumann boundary condition, due to minor
motions on every part of the boundary, inherent to a partial field of view of the
abdominal region. In clinical settings, it could thus be possible to estimate the
best boundary conditions on one patient and then use it for every similar cases.
If time allows it, the boundary condition could even be further optimised with a
reduced grid-search around the previously estimated boundary conditions, or both
parameters, a and γ could be estimated in each direction individually.

To enhance the efficiency of the grid-search process, one approach is to minimise
the time required for each registration task. Currently, registering a 192x149x142
image takes approximately 4 minutes per iteration. Leveraging deep learning-based
methods, which are recognized for their superior speed compared to traditional
iterative variational approaches, could significantly cut down this registration time.
These advanced methods, such as those utilising model-driven variational networks,
can expedite the optimisation process, thus allowing a more comprehensive and
efficient grid-search in a shorter period of time. The incorporation of these fast, data-
driven techniques can streamline the overall procedure, making it more practical
for real-time applications and extensive parameter exploration.

In the experiments presented, non-homogeneous Neumann boundary conditions
consistently did not correspond to the minimal energy state. This discrepancy
likely stems from two hypothetical factors. First, the datasets selected for these
experiments may not be representative of scenarios where such boundary conditions
play a significant role. Specifically, none of the depicted motions exert a direct
influence on the shear tensor, unlike in interventional radiology. In that context,
the insertion of surgical tools induces tissue compression, a phenomenon that can
be effectively modeled using non-homogeneous Neumann boundary conditions.

Second, the methods employed for estimating the flow fields may not be well-
suited to capturing this particular type of boundary condition. However, the inverse
consistency-based flow field map demonstrates overall satisfactory performance,
suggesting that the approach remains robust in general applications. Neverthe-
less, refining the flow field estimation process by experimenting with alternative
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techniques more tailored to this specific context could yield better results. This
would allow for the full range of boundary conditions, as defined by the current
formulation, to be potential candidates, ultimately enhancing performance.

3.6 Impact of registration boundary conditions
on the electric field estimation

3.6.1 Visualising the electric field
Many medical treatments rely on precise dose delivery, and IRE ablation is no

exception. IRE uses electric fields to destroy cancerous cells by creating permanent
pores in their membranes, leading to cell death. To maximise effectiveness and
minimise harm to surrounding healthy tissues, determining the appropriate dose of
electric pulses is crucial. This involves careful evaluation of the delivered electric
field and real-time adjustments of the procedure.

If the electric dose is insufficient, the ablation may fail to fully eradicate the
tumor. In such cases, clinicians might increase the treatment intensity by applying
an additional set of electric pulses or performing a pull-back, adjusting the depth
of the electrodes to ensure the entire tumor is encompassed by the electric field.
This flexibility allows for precise targeting of the tumor while protecting nearby
structures, making IRE a valuable, minimally invasive tool in cancer treatment

However, during an IRE ablation procedure, the interventional radiologist faces
the challenge of not being able to directly visualise the electric field applied or its
immediate effects on the surrounding tissues. Unlike thermal ablation techniques
where heat can be monitored via imaging, the nearly invisible nature of the electric
fields makes it difficult to predict the precise extent of tissue ablation. This
limitation can result in uneven treatment, with the possibility of under-treating
portions of the tumor or damaging nearby healthy tissue. Indeed, real-time feedback
remains a significant obstacle in IRE, making careful online evaluation and follow-up
imaging crucial to confirm complete tumor destruction.

On the one hand, the direct imaging of electric fields remains at an experimental
stage and poses significant challenges. The primary issue lies in the fact that
the materials used in most electric field sensors tend to interfere with the fields
they aim to measure. This distortion occurs due to factors like surface charging,
dielectric polarisation, and free carrier polarisation, which alter the electric field’s
natural behavior. Moreover, the sensitivity of many current electric field sensors is
insufficient to accurately detect and analyse fields deep within materials or tissues
[30].

If such sensors were applied in a medical context, such as IRE ablation, the
process of embedding them into the tissue could be more invasive than the ablation
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itself. This undermines their practical utility, as the very act of measuring the field
could damage the surrounding tissue, negating the minimally invasive nature of
IRE. Thus, until significant advancements are made, imaging electric fields in such
a scenario remains impractical.

On the other hand, the mechanism behind IRE induces cell death primarily
through apoptosis, a process that unfolds over several hours after treatment. Unlike
thermal ablation techniques, which cause immediate tissue destruction, apoptosis
triggered by IRE is a gradual process that cannot be immediately detected using
standard imaging techniques. While initial effects such as cell membrane disruption
can be observed, the full scope of cell death and tissue response becomes apparent
only after a delay, complicating real-time assessment through imaging modalities
like ultrasound or MRI.

As a result, while IRE is effective in sparing critical structures like vessels and
ducts, its delayed therapeutic impact makes it challenging to monitor the full
treatment effect in real time. Follow-up imaging is often required to confirm the
complete success of the ablation after the apoptotic process has taken place

The only feasible approach to visualising the treated area during IRE procedures
relies on estimating the electric field distribution. This estimation is made using
key information, such as the precise localisation of the needles, which are inserted
into the tissue, and the segmentation of the tumor, typically overlaid onto the same
imaging scan that includes the needle placements. Additionally, the chronograms
(timing and intensity) of the electric pulses are crucial to predict the electric field
spread. By combining these data points, we can model the electric field, thereby
approximating the ablation zone. This method, though indirect, enables some level
of control and planning during the procedure, ensuring the electric field reaches
the desired treatment area without damaging surrounding tissue.

In this section, we begin by presenting the model employed for estimating the
electric field, a fundamental aspect of accurately assessing treatment areas. The
next step involves experimenting with different boundary conditions during the
registration process, using data from a selected patient in our database. Specifically,
we test the effects of homogeneous Neumann boundary conditions, which have been
applied in previous studies, as well as homogeneous Dirichlet boundary conditions.
Additionally, we use the previously introduced novel approach investigating bound-
ary conditions designed to minimise the registration energy. These experiments
allow us to explore the impact of boundary condition choices on the precision
of dose calculations. Ultimately, our findings emphasise how carefully selected
boundary conditions can significantly enhance the accuracy of dose distribution,
improving treatment efficacy.
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3.6.2 Electric field model
When it comes to electric field simulations, choosing the right model depends

heavily on the context. Static models, which assume a steady-state system, are
often simpler and easier to implement. They offer a snapshot of the system at
a given moment but fail to capture changes over time. This can be a limitation
when the interactions or the system’s state evolves, such as in biological or physical
processes where time-dependent variables matter.

On the other hand, dynamic models introduce time as a factor, allowing for the
modeling of complex behaviors, such as interactions between different components,
feedback loops, and temporal variations in the electric field. While dynamic models
can offer deeper insights and more accurate representations of real-world phenomena,
their complexity increases computational demand. This tradeoff can make dynamic
models less practical or necessary in clinical or industrial settings where simpler,
more immediate insights may suffice.

In the case of IRE ablation, the model used is the static linear model [28]:

−∇ · (σ∇ϕ) = 0 (3.6.1)

where σ is the conductivity, that depends on the tissue characteristics, and ϕ is
the electric potential.

Then, the electric field E is related to the electric potential ϕ as follows:

E = −∇ϕ (3.6.2)

This model plays a critical role in medical procedures, particularly those involv-
ing IRE, where precision is key. Since it tends to underestimate the actual electric
field strength, clinicians can be confident that the threshold necessary for effective
IRE is surpassed during treatment. This ensures that cells targeted for destruction
are indeed affected. The ability of the model to provide this conservative estimate
leads to more accurate treatment planning and a better understanding of the
effective treatment area, ultimately improving patient outcomes.

Boundary conditions: To ensure the accuracy and stability of the electric
field model, appropriate boundary conditions must be imposed. The first step is
applying boundary conditions at the active needles, which serve as the primary
sources of the electric field. Since the electric potential at these locations is
predefined—originating directly from the source—homogeneous Dirichlet boundary
conditions are employed:

ϕ = ϕsrc, (3.6.3)
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where ϕ is the electric potential and ϕsrc is the electric potential delivered from the
electrode.

These conditions effectively fix the potential to known values—typically a
constant, which simplifies the mathematical treatment of the problem. This
approach ensures that the electric field distribution is precisely controlled in regions
where the field is injected, allowing for reliable modeling of the interaction between
the needles and the surrounding tissue.

Second, the presence of passive needles plays a critical role in shaping the
electric field distribution, primarily attributable to their high conductivity. These
conductive elements are influential modifiers of the surrounding electric landscape,
affecting how the electric field propagates through the tissue. To accurately account
for this interaction, we implement floating potential boundary conditions at these
needles:

ϕ = ϕb such that
∫

active
σ∂nϕ = 0, (3.6.4)

where ϕb is the potential of the boundary.
This approach allows the potential to adjust freely in response to the electric

field, ensuring that the passive needles do not impose fixed values that could skew
the simulation results. By using floating potential conditions, we can capture the
nuanced behavior of the electric field around these conductive components, leading
to more precise and realistic modeling outcomes.

Lastly, at the simulation boundaries, we implement homogeneous Fourier-Robin
boundary conditions to effectively account for the limitations of our field of view:

σ∇ϕ · n + αϕ = 0, (3.6.5)

where n is the normal to the boundary.
This consideration is crucial, as it acknowledges the existence of additional tissue

beyond the defined boundary, which can significantly influence the electric field
distribution within the simulation. By employing these boundary conditions, we
can model the interactions between the electric field and the surrounding biological
environment more accurately. This approach not only enhances the fidelity of our
simulations but also ensures that any potential effects from the adjacent tissue are
incorporated into the overall analysis, thereby providing a more comprehensive
understanding of the electric field behavior in a clinical context.

3.6.3 Impact of registration on the procedure evaluation
In order to efficiently use the electric field model, numerous information needs

to be extracted during the procedure.
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Firstly, it is essential to meticulously document the electric pulses generated
during the process. To achieve this, both voltage and current chronograms are
captured with precision, providing a detailed time-based representation of the
electrical signals. These chronograms serve as critical inputs, as they are directly
incorporated into the boundary conditions for the active needles. By doing so, we
can accurately model the entry point of electrical energy within the simulation
framework. This ensures that the dynamics of the electric field are properly
represented, allowing for a realistic depiction of the interactions between the
electrical stimuli and the surrounding medium. This thorough documentation and
integration not only enhance the fidelity of the simulation but also facilitate more
effective analysis and optimisation of the electroporation process.

Secondly, the successful application of the previously discussed boundary condi-
tions, along with the floating potential conditions, hinges on the precise localisation
of the needles. This critical task is accomplished through the innovative pipeline
outlined in Chapter 2, where deep learning techniques are synergistically integrated
with the Hough transform to provide an analytical representation of the electrodes.
The active needles play a pivotal role in delivering the electric field, while the
passive needles, characterised by their high conductivity, interact with the field in
significant ways. Therefore, accurately pinpointing the positions of both needle
types is essential for a comprehensive evaluation of the electric field distribution.
This precision not only enhances the effectiveness of the electroporation process
but also ensures the reliability of the simulation outcomes, ultimately leading to
more informed clinical decisions.

Lastly, it is imperative to address the differences in electrical conductivity
between the tumor and the surrounding liver tissue. To achieve this, test pulses are
administered prior to the IRE procedure to accurately measure the conductivity
values in both tissue types. Utilizing established values from the literature as
a foundation, these conductivities are meticulously adjusted by hand to ensure
precision.

Moreover, precise localisation remains crucial for effectively capturing the
dynamics of this phenomenon. Thus, the accurate registration that aligns the
tumor within the same reference frame as the electrodes responsible for delivering
the electric field is essential. As depicted in Figure 3.15, a mis-registration as small
as 1mm impacts significantly the electric field estimation, leading to errors in the
evaluation of the procedure. The alignment is thus vital for a thorough estimation
of the treated area, enabling the IRE procedure to be conducted with optimal
efficacy and safety. By ensuring these factors are considered, we can enhance the
overall outcomes of the treatment.

Additionally, ensuring that the tumor, along with a sufficient safety margin, is
effectively electroporated is paramount. This necessitates precise localisation of the
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Figure 3.15: Electric field distribution as delivered by electrodes in the liver during
IRE. A displacement of 1mm resulting in a change in the electric field magnitude of
90 V/cm can significantly affect the accuracy of electroporation treatments. This
could cause areas that were not irreversibly electroporated (non-treated) to appear
as if they were treated, and vice versa.

tumor in relation to the electrodes. Accurate positioning allows for optimal delivery
of the electric field, which is critical for maximising the treatment’s efficacy. By
confirming that the tumor is situated correctly with respect to the needles, we can
guarantee that the electroporation process targets not only the tumor but also the
surrounding tissue, thereby enhancing the therapeutic window. Ultimately, this
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attention to localisation plays a crucial role in the success of the electroporation
procedure and contributes to improved patient outcomes.

Hence, the registration process significantly impacts the estimation of the electric
field during electroporation procedures. Accurate tumor localisation is essential
for adjusting the conductivity parameters, which directly influence the equations
governing the electric field potential and the boundary conditions at the passive
electrodes. This precise mapping ensures that the electric field is appropriately
configured to target the tumor effectively. Furthermore, the successful assessment of
the procedure hinges on this registration; interventional radiologists must ascertain
whether the entirety of the tumor has undergone irreversible electroporation. This
information is critical for evaluating treatment efficacy and determining subsequent
patient management strategies. Ultimately, the accuracy of the registration process
not only enhances the effectiveness of the electroporation but also supports optimal
patient outcomes through informed clinical decision-making.

3.6.4 Experimental validation
To document the impact of boundary conditions for the registration on the

electric field simulation, we test 3 boundary conditions, namely homogeneous
Dirichlet, homogeneous Neumann, as used previously, and boundary conditions
minimising the DIR energy, as guided by the inverse consistency. We do so on
a patient of the database provided by the interventional radiologists at AP-HP
Avicenne Hospital. The patient was selected after consideration of the tumor
location: we chose a tumor close to the field of view boundary in order to observe
the effect of the boundary conditions best.

Cylindrical field of view: In this step, we adjust the boundary condition
application to accommodate the cylindrical field of view, which significantly alters
how spatial data is considered at the boundary compared to the cubic field of
view used in datasets like DIR-Lab and Learn2Reg. By tailoring the boundary
conditions to this specific geometry, we capture variations in shape and volume
more effectively, improving the precision of medical imaging registration and the
subsequent analysis such as the estimation of the delivered electric field.

In this process, artificial padding is added to match the cubic array dimensions
of a cylindrical CBCT scan. The padding, which is assigned a distinct value of
-999, is segmented using a thresholding technique to differentiate it from the actual
scan data. To reduce memory usage, only the central slice of this segmented mask,
in the vertical direction, is retained for the boundary condition application at
the edges of the field of view. As the multi-resolution scheme proceeds, both the
segmentation mask and the input images are downsampled at each stage. To isolate
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the perimeter, the mask is eroded once, and the difference between the original
and eroded masks is calculated. This technique also helps eliminate some noise
in the segmentation mask, as the intensity of -999 can also be present within the
CBCT field of view.

For each point along the perimeter of the boundary, the normal vector is
calculated by taking the difference between the coordinates of the point and the
center of the disk in the mask slice. This approach ensures that the normal vector
points towards the center, defining the direction normal to the boundary. Afterward,
this vector is normalised, meaning its magnitude is adjusted to 1. Once normalised,
this vector is subtracted either once or twice, depending on the required position,
to determine two key points along the normal. These two locations are used to
compute the transformation field at the boundary, which is essential for applying
the boundary conditions:

T r
s = βr

s(4T r−n1
s − T r−2n1

s ) + 2γgr
s

βr
s + 2 , (3.6.6)

where r is the location of the voxel on the boundary and n1 is the normalised
vector normal to the boundary.

The top and bottom slice of the cylinder are treated seperately following
equations 3.3.13 and 3.3.14.

Automatic adaptation of the boundary condition: We document the opti-
misation of the boundary conditions and the resulting transformation field. The
same grid-search strategy is used here as the purpose of this study is to establish
the impact of optimal boundary conditions prior to introducing this approach
in clinical settings. In the previous section, it was shown that the DIR energy
correlates with the registration quality as measured with different kinds of ground-
truth: landmarks and segmentation masks. The hyper-parametrisation results in a
non-homogeneous Dirichlet boundary conditions with γ = 0.1 as seen in Figure
3.16.

Different transformation fields: The spatial transformation obtained with the
optimal boundary conditions is compared to those resulting from the application of
the two most commonly used boundary conditions in the field of image registration,
namely homogeneous Neumann and homogeneous Dirichlet boundary conditions.
Prior to the implementation of the proposed framework for automatically adaptable
boundary conditions, Neumann boundary conditions were applied at the edges of
the multi-dimensional array representing the CBCT. It is worth noting that we
hereforth consider the edges of the cylindrical field of view.
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Figure 3.16: The outcomes of the hyper-parameter search for Patient 3 of the IRE
database. The data fidelity term, the regularisation term, and their sum, i.e. the
total registration energy, are displayed.

The Euclidean distance between transformations reveals deviations exceeding
10mm (Fig. 3.17), notably at both the perimeter of the cylinder and towards the

168



center of the image. This suggests that the choice of boundary conditions—whether
Neumann, Dirichlet, or optimised adaptive conditions—plays a critical role in influ-
encing tumor localisation within medical imaging. These disparities are particularly
significant when estimating the electric field, as they can lead to substantial errors
in treatment.

Treated areas comparison: To evaluate the impact of boundary conditions in
the registration process on IRE procedure assessment, we focus on the 400 V/cm
isoline, which defines the effective zone for IRE ablation. By analysing different
metrics, we can quantitatively determine how different boundary conditions, namely
homogeneous Dirichlet, homogeneous Neumann and locally adapted boundary
conditions, influence the quality of the registration and its resulting effect on the
estimation of the IRE treatment zone.

First, we use the Dice coefficient (Eq. 3.4.8) to assess the degree of overlapping
between the estimated treated area. A value close to 1 signifies a strong similarity.

Second, we compute the Hausdorff distance:

D = maxa∈Aminb∈B||a− b||2, (3.6.7)

where A and B are the region to compare.
The boundary-based metric quantifies disparities by measuring how the edges of

an object deviate under different boundary conditions. Since boundary conditions
significantly impact the edges of the field of view image registration, this metric is
crucial for ensuring accuracy. Specifically, the boundaries of the estimated treated
area in IRE must be carefully evaluated, as even a small number of surviving
cancerous cells can become the origin of tumor recurrence. Ensuring precision in
the determination of the IRE-affected area helps improve treatment efficacy and
prevent tumor regrowth. By accurately defining the boundaries of the ablation
zone, clinicians can minimise the risk of leaving behind viable cancer cells, leading
to a more complete and effective treatment.

Accurate volume estimation also helps in assessing the procedural outcome and
enables better planning for follow-up interventions if necessary, further improving
patient outcomes in cancer treatment.

The Dice coefficient, while useful for measuring the overall overlap between
segmented areas, often fails to capture fine differences in the boundaries of treated
areas, as seen in Table 3.5. In contrast, the Hausdorff distance provides deeper
insights as it measures the maximum deviation between boundary points, which is
crucial when comparing different boundary conditions.

For instance, in scenarios involving homogeneous Neumann boundary conditions
versus locally adapted boundary conditions, the Hausdorff distance reveals a more
pronounced difference, than between homogeneous Dirichlet boundary conditions
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Figure 3.17: Euclidian distance between a slice of the transformation fields estimated
with homogeneous Neumann, homogeneous Dirichlet, and locally adapted boundary
conditions

and locally adapted boundary conditions. This is due to the hyper-parameterisation,
where the automatically adapted boundary conditions are set to non homogeneous
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Table 3.5: Comparison of the treated areas, computed as the 400V/cm isoline of the
delivered electric field, with different boundary conditions for the registration tasks.
In blue are the Hausdorff distances in mm, in red the Dice coefficients and in black
the treated volumes in mm3. The Hausdorff distance highlights significant differences
in the estimated electric fields delivered under varying boundary conditions for the
task of image registration. When comparing the fields generated with homogeneous
Neumann boundary conditions to those from other boundary conditions, the
Hausdorff distance reveals substantial deviations. This is further supported by
the analysis of treated volumes, where the minimum discrepancy reaches 33mm3.
Although seemingly minor, this difference in volume is clinically significant, as it
could be enough to cause cancer recurrence by allowing untreated or insufficiently
treated areas to remain, posing a risk of the disease returning.

Homogeneous Neumann Homogeneous Dirichlet Locally adapted
Homogeneous Neumann 44117 1.4911 1.4953
Homogeneous Dirichlet 0.9938 43652 0.7829

Locally adapted 0.9936 0.9988 43685

Dirichlet boundary conditions with γ = 0.1, allowing local variations with respect
to the estimated flow fields g. This enables a more detailed comparison, especially
in the context of cancer treatment, where boundary accuracy is critical.

The discrepancies in treated volumes, ranging from 33mm3 to 465mm3, are
clinically relevant, especially since even 33mm3 of untreated tissue could serve as a
sufficient space for new tumor growth. This emphasises the critical need to carefully
apply accurate boundary conditions during treatment evaluation. Inaccurate or
improperly chosen boundary conditions can directly influence the estimation of the
treated area, leading to either over- or underestimation of the region affected by
IRE. By refining boundary conditions, clinicians and researchers can ensure a more
precise understanding of the treated volume, reducing the risk of recurrence.

Accurate tumor localisation is essential in IRE, where precise field targeting is
crucial. The findings underline the importance of boundary condition optimisation
to minimise such disparities, ultimately enhancing the reliability of medical image
registration and related treatment outcomes.

3.7 Conclusion
Registration is an essential pre-processing step in medical imaging, pivotal

for ensuring accurate image analysis and interpretation. Radiologists frequently
encounter images captured from various sources and at different times, each poten-
tially featuring slight variations in anatomical positioning or patient movement. To
provide a coherent view and facilitate accurate diagnosis, it is imperative to align
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these images. This process involves estimating and compensating for any movement
or misalignment between images, thereby ensuring that anatomical features are
correctly matched across different scans. By aligning anatomical structures across
images, registration enhances the clarity and consistency of the images, significantly
aiding in the diagnostic process and improving the reliability of clinical assessments.

This study highlights the pivotal role of boundary conditions in achieving high-
quality image registration. Specifically, the absence of adequate information beyond
the borders of the field of view can lead to significant mis-registration. This issue
arises because the registration process relies on boundary conditions to inform the
alignment of images. When boundary data is lacking, errors introduced at the edges
can propagate inward, exacerbating mis-registration across the entire image. This
phenomenon is particularly pronounced due to the influence of the regularisation
term, which attempts to smooth out discrepancies but can inadvertently amplify
errors originating from the boundaries. Consequently, ensuring accurate and well-
defined boundary conditions is essential for maintaining registration fidelity and
minimising distortions throughout the image.

We introduce an innovative approach utilising a Robin-type boundary condition
to enhance image registration. This technique involves incorporating flow field
information tailored to each specific image pair, which significantly improves the
accuracy of registration at the image borders. The proposed method is efficient
and straightforward, requiring only two hyper-parameters to fine-tune.

Prior to initiating the registration process, the flow field map that captures the
relevant boundary information for the image pair are calculated.

The computed boundary conditions are integrated into the registration algo-
rithm. This step ensures that the algorithm accurately aligns the images by using
the flow field information to guide the registration at the borders.

This method seamlessly integrates with most existing registration algorithms,
requiring minimal adjustments, thus offering a practical solution to enhance regis-
tration accuracy and efficiency.

For the flow field map, we investigated two methods. The first one, MAE-
based, relies on the voxel intensity to detect flow field. It requires an initial motion
estimate, with the homogeneous Neumann boundary condition as it is the least
restrictive. However, it does not allow to take advantage of the source term in the
boundary conditions. Indeed, the lack of direction information limits the use of
this term. Hence, we do not recommend this particular guidance when little is
known about the motion.

The second method, based on inverse consistency, involves both forward and
backward motion estimates to identify discrepancies. These discrepancies are
interpreted as flow field, which provides a deeper understanding of the motion
to estimate. This technique is notable for its potential to enhance registration
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accuracy beyond traditional boundary conditions. By comparing the results of
inverse consistency with standard boundary conditions, such as homogeneous
Neumann and homogeneous Dirichlet conditions, this method either demonstrates
improvements or validates the efficacy of the conventional choices. This comparative
analysis reveals whether more complex boundary conditions offer a significant
advantage or if the simpler, established methods remain optimal.

In our numerical workflow for IRE, we have chosen to integrate only the latter
approach to enhance the registration algorithm’s effectiveness. This deliberate
choice aims to refine the precision of electric field estimations, which are crucial
for accurately assessing the treatment area in IRE ablation, and potentially adapt
the procedure as it is performed. By incorporating this refined method, we show a
significant improvement in the overall quality of electric field mapping. This en-
hancement facilitates a more accurate and reliable evaluation of the treatment zone,
thereby optimising the efficacy of IRE procedures and ensuring better outcomes.
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In brief

Boundary conditions are a crucial yet often overlooked factor in image registra-
tion accuracy. To address this, we introduce a novel framework that automatically
adapts Robin-type boundary conditions, accounting for the complex flow field dy-
namics at the registration boundaries. Unlike conventional approaches that neglect
or inadequately handle boundary behavior, our method aligns boundary conditions
with the true physiological or physical aspects of the problem. This results in
improved registration outcomes and enhanced model robustness, emphasising the
significant role boundary conditions play in the overall accuracy and reliability of
image registration.

This method is integrated into a variational registration algorithm, though
its design is inherently versatile, making it adaptable to a wide range of other
registration algorithms. Its implementation necessitates two key modifications: first,
the computation of the flow field that governs the boundary conditions, and second,
the update of the transformation field specifically at the boundaries. Additionally,
the method introduces two new hyper-parameters that, crucially, are shown to be
optimisable by leveraging the DIR energy as a guiding metric. Minimising the DIR
energy correlates strongly with reducing the registration errors when ground truth
is available, demonstrating the efficacy of this approach. Importantly, in scenarios
where ground truth information is absent—such as in clinical settings—these hyper-
parameters can still be reliably optimised based on DIR energy minimisation alone.
This capability ensures that the method remains practical and effective in real-
world applications, where direct validation data is often unavailable, while still
maintaining a high level of registration accuracy.

Our approach has yielded promising results, both enhancing and validating
the effectiveness of commonly employed global boundary conditions. By directly
addressing the often-overlooked aspect of boundary conditions, our framework
makes a substantial contribution to improving the accuracy and reliability of image
registration outcomes. This novel approach provides a critical advancement in the
field, ensuring that boundary behaviors are no longer an afterthought but a key
factor in optimising registration quality. By refining how boundaries are managed
within registration algorithms, our method paves the way for more precise, robust
solutions across a variety of applications with or without subsequent analysis such
as dose computation, offering a significant step forward in the accuracy of medical
and computational imaging practices.
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Chapter 4

Conclusion
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In the realm of contemporary medical science, computer vision stands as a
cornerstone, revolutionising the way we approach patient care by delivering vital
insights with minimal risk to individuals. This technology has become indispensable,
particularly in the field of oncology, where precision and accuracy are paramount.
Medical imaging, powered by advanced computer vision techniques, plays a critical
role in diagnosing cancer, devising tailored treatment plans, and monitoring the
progression of the disease.

Among the various applications, certain therapies necessitate real-time image
guidance to ensure optimal outcomes. One such advanced procedure is IRE, a focal
point of this thesis. IRE exemplifies how image-guided techniques can enhance the
efficacy of cancer treatments, highlighting the transformative impact of computer
vision in modern medical practices. By integrating these cutting-edge technologies,
we can achieve unparalleled precision in cancer care, ultimately improving patient
outcomes.

In close collaboration with interventional radiologists conducting IRE on patients
with liver and pancreatic cancers, this work has significantly advanced the existing
numerical workflow. The enhancements made were crafted to seamlessly integrate
with the clinical protocols employed by the physicians, thereby optimising the overall
efficacy and precision of the treatment process. This integration not only refined
the procedural workflow but also ensured that the improvements were perfectly
aligned with the practical needs and routines of the healthcare professionals, leading
to a more streamlined and effective clinical practice.

Our initial contribution addresses the critical task of localising the electrodes
responsible for delivering electric pulses during IRE as captured in CBCT scans.
Recognising the exceptional efficacy of deep learning in visual recognition tasks,
we have integrated a deep neural network into our localisation algorithm. This
advanced network is designed to perform a preliminary, coarse segmentation of the
objects of interest—specifically, the extremely thin electrodes used in the procedure.

To tailor the network’s performance to the unique challenges of this task, in-
cluding the segmentation of highly slender structures, we optimised the network
architecture, learning strategy, and post-processing techniques, drawing on es-
tablished methodologies from the latest research. Given the significant extent of
artifacts present in the CBCT images, the initial segmentation provided by the
neural network is subsequently refined using a Hough transform, producing the
analytical representation of the active part of the electrode, invisible on the CBCT
due to artefact, and ensuring accurate placement within the clinical setting.

Secondly, this thesis makes a significant contribution to the expansive field of
image registration through the introduction of dynamically adaptable boundary
conditions. The challenge of boundary conditions in image registration is well-
documented as one of the most intricate and demanding aspects of the process, yet
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there have been relatively few advancements in addressing this complexity. In this
work, we propose a novel approach utilising Robin-Fourier type boundary conditions,
where flow field information is seamlessly integrated to tailor the registration process
to the specific requirements of the task at hand. This innovative method represents
a crucial advancement, offering a sophisticated solution to a long-standing problem.

The hyper-parameters derived from the boundary conditions are fixed through
an exhaustive grid search process aimed at minimising registration energy. However,
this approach is not without its drawbacks, particularly its time-consuming nature.

These innovative boundary conditions offer significant advantages across various
application domains by effectively mitigating mis-registration at the peripheries,
which can otherwise propagate towards the central regions of the image. More
specifically, they represent a substantial enhancement in the processing of partial
fields of view—a common challenge in medical imaging. In clinical settings, where it
is often necessary to limit the captured zone to reduce radiation exposure or address
other practical constraints, these boundary conditions ensure greater accuracy and
reliability in image registration. By addressing the inherent issues at the boundaries,
these advancements facilitate more precise and effective image analysis, even within
restricted capture areas, thereby improving diagnostic and treatment outcomes in
the medical field.

4.1 Perspectives

4.1.1 On the segmentation of fine objects
Preliminary experiments suggest that simpler neural network architectures

often yield better results for segmentation tasks. However, there are still numerous
untapped avenues for improvement. For instance, incorporating attention gates
could enhance the network’s ability to focus on critical regions during both training
and inference. These gates would help the model prioritise relevant areas, leading
to better segmentation outcomes. Additionally, deeper supervision could refine
segmentation accuracy by extracting information from multiple layers, which would
optimise the use of hierarchical features throughout the network.

Nevertheless, given the current U-Net architecture with just two resolution
levels, the impact of deeper supervision might be limited. The simplicity of
this design, prioritised to limit overfit, could be restricting its potential, and
increasing complexity through multi-resolution supervision might not lead to
significant improvements. Yet, these techniques—attention mechanisms and deeper
supervision—have shown success in similar tasks, such as segmenting thin structures
like needle, suggesting their potential benefits even in this scenario [103].

Moreover, it is essential to consider the time constraints that limit the complexity
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of algorithms in real-world applications. In clinical settings, any modifications or
enhancements to the simple U-Net architecture must be time-efficient to ensure
that they do not hinder the speed of image processing and decision-making. While
more advanced techniques, such as attention mechanisms or deeper supervision,
may enhance segmentation accuracy, they must be balanced with the requirement
for fast inference times. Maintaining this equilibrium is critical to ensuring that
the model remains practical and usable in the fast-paced environment of clinical
practice, where real-time or near-real-time decisions are necessary.

In clinical settings, the proposed coarse-to-fine approach has not yet been
adopted. The interventional radiologists favor the semi-automatic needle detection
algorithm. Though it meets the time and memory constraints, the accuracy and
precision are still questionable. The limitations of deep learning approaches, such as
CNNs, arise from the lack of a theoretical error bound. The learned convolutional
filters in CNNs are not always fully understood, adding to the uncertainty. Many
error metrics provided in research are empirical and often based on small datasets,
which limits their generalisability. To increase the trust in these algorithms for
clinical use, further work is needed. An entirely automatic algorithm for the electric
field modelisation, including the segmentation of the tumor, the localisation of the
electrodes, and the registration of the CBCT would be ideal.

4.1.2 On local boundary conditions for image registration
Flow field estimation utilising spatial transformation estimates calculated during

preliminary registration offers notable advantages in generality and versatility. This
methodology estimates flow fields indirectly through transformations, enabling
its application across diverse scenarios and datasets. However, this versatility is
accompanied by critical limitations. One significant challenge is the occurrence of
false positives, particularly in areas characterised by sudden intensity contrasts, such
as sharp edges or boundaries. In these cases, the data fidelity term in registration
algorithms may misinterpret rapid changes, failing to differentiate between genuine
object motion and intensity variations caused by lighting or noise, and to account
for transcient objects. Another limitation is the tendency for regularization, that
can result in the loss of subtle flow patterns, which are essential in contexts like
medical imaging or fine object detection.

Despite these drawbacks, the reliance on spatial transformation estimates
ensures broad applicability, making the approach adaptable across various contexts.
Ultimately, the choice lies in balancing the need for enhanced registration quality
tailored to specific tasks against the advantages of maintaining a more universal
application.

The calibration method used for boundary conditions in this study, while
effective for detailed analysis, poses challenges in clinical settings due to its lengthy
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process—taking up to three hours for a comprehensive grid search on a 192×149×142
image. This extensive parameter search is crucial for assessing how different
boundary conditions affect outcomes, but not pertinent in the operating room
when the main focus is on efficiency and precision. The experiment results indicate
promising approaches to streamline hyper-parameter tuning and reduce calibration
time, thereby improving clinical applicability.

For similar data acquisition processes, inverse consistency guidance often yields
comparable boundary conditions, with non-homogeneous Dirichlet boundaries
favored for the breathing motion and homogeneous Neumann boundaries preferred
for the abdominal region. Given a certain type of aquisition, a lung CT for instance,
the same set of hyper-parameters could thus be used for every instances. If time
allows, the boundary conditions could be further refined thanks to a grid search
restricted around the usual hyper-parameters for the type of acquisition at hand.

To enhance grid search efficiency, we also suggest minimising registration time,
currently around four minutes per iteration. Employing deep learning techniques,
recognised for their speed compared to traditional methods, could significantly
reduce this registration time and optimise the overall process. This would make
the calibration procedure more practical for real-time applications and facilitate
broader parameter exploration, tailored to each patient.

The experiments indicate that non-homogeneous Neumann boundary conditions
do not align with the minimal energy state, likely due to two factors. Firstly,
the selected datasets may not accurately reflect scenarios where these boundary
conditions are critical, as none of the motions analysed affect the shear tensor.
Secondly, the methods used to estimate flow fields might not effectively inform this
boundary condition type. Despite this, the inverse consistency-based flow field map
shows satisfactory overall performance, suggesting robustness in general applications.
However, exploring alternative flow field estimation techniques tailored to this
specific context may improve results, allowing a wider range of boundary conditions
defined by the current formulation to be considered, thereby enhancing performance.
Additionally, we could devise a synthetic dataset where non-homogeneous Neumann
boundary conditions are the correct constraint to apply. This would allow to fully
investigate the reason why this boundary condition do not effectively minimise the
DIR energy.

4.1.3 Evaluating both contributions with respect to IRE
efficacy

To better highlight the advancements brought forth by the contributions in
this thesis, notably the integration of deep learning into needle localisation and
the development of a framework for automatic adaptive boundary conditions in
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the registration task, further experimentation could leverage post-operative MRI
imaging. These scans, where both reversible and irreversible electroporation zones
are clearly visible, provide an ideal setting to quantitatively assess the performance
of each method individually, as well as their combined effectiveness. This approach
would offer a more robust analysis of the improvements achieved by deep learning
for accurate needle placement and by adaptive boundary conditions for more precise
image registration on the evaluation of the treated area. Together, these tools would
enable a better understanding of how both innovations contribute to more effective
medical procedures, improving precision and outcomes in complex interventions
like electroporation-based therapies.

4.1.4 Generalisability
Given the rapid evolution of medical sciences—encompassing advancements in

treatment methodologies, clinical protocols, and medical imaging technologies—it is
imperative that the proposed methods remain adaptable to these continual changes
within clinical environments.

The proposed enhancements to the neural network for the segmentation of
thin objects are not limited to the specific case of electrode localisation but hold
promise for broader applications involving the segmentation of thin objects. For
example, patch-based datasets can be crafted in a similar fashion to address the
inherent dataset imbalances, thereby improving segmentation accuracy for similarly
challenging scenarios. However, it is important to note that deep learning models
are intrinsically data-dependent; thus, a neural network trained for one specific
application may not be directly applicable to different setups. Each new task
necessitates a comprehensive learning process, including the creation of new ground
truth data, to fully leverage the proposed methodology.

To navigate this challenge for related tasks, transfer learning offers a valu-
able solution. By utilising a pre-trained network as a starting point, one could
significantly streamline the development of a new model. In this approach, the
pre-trained network is partially retrained to adapt to a new task, especially in
cross-domain transfer learning scenarios. When the source and target tasks differ
significantly, modifications are often necessary. For example, in classification tasks,
the pre-trained model might have a fully connected layer as the head, with output
neurons corresponding to the number of classes. However, if the new task is image
segmentation, the fully connected layer may be replaced by a convolutional layer.
This adjustment ensures that the model can handle the requirements of the new
task appropriately.

The pre-trained network may also more simply be partially or entirely fine-
tuned, choosing the pre-trained weights as a starting point for the optimisation on
the target task and/or dataset. Considering cross-modal transfer learning where
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the same tasks knowledge needs to be transferred to a different medical imaging
technique, one could choose to retrain the encoder to accommodate the unique
characteristics of the new data, while the decoder’s weights are preserved, given
that they have already been optimised for segmentation construction. This strategic
reuse of existing knowledge would not only reduce the time and computational
resources required to develop a new network but also alleviate the need for extensive
labeled dataset while ensuring that the results remain precise and relevant to the
new context.

The method has been successfully used before in cross-modal settings, signifi-
cantly improving the quality of the model when both modalities contain enough
information for the task [1], and cross-domain, experimenting with other medical
tasks like the segmentation of a different organ [61] or tasks on natural images [1].

Conversely, transfer learning could substantially improve the needle segmenta-
tion tasks by using pre-trained models from large, diverse datasets like FLARE
2021 [65]. This dataset includes 360 labeled CT scans, which focus on abdominal
organ segmentation, and its modality is quite similar to CBCT. Fine-tuning the
parameters of a pre-trained network on a large dataset can significantly enhance
segmentation quality in medical images. The network, already trained on a diverse
set of images, gains valuable insight into anatomical structures, allowing it to gener-
alise better to the new clinical dataset. This results in a reduced risk of over-fitting,
as the model does not need to learn from scratch, and speeds up the training
process. Such fine-tuning can lead to improved segmentation performance, even
when working with smaller datasets typical in clinical environments. Leveraging
knowledge from the FLARE dataset allows the model to better capture the nuances
of fine object segmentation near the liver, facilitating more accurate and efficient
clinical outcomes.

Similarly, the novel boundary conditions proposed here are designed with
flexibility in mind. The modular structure of this approach—characterised by
the separation between the highly parametric boundary conditions and the prior
information injected—facilitates straightforward enhancements and adaptations
to specific clinical scenarios. Future developments could include tailoring the
estimation of incoming and outgoing flow fields at the boundaries to more specific
tasks, as well as exploring even more comprehensive boundary condition frameworks.
This adaptability ensures that the methods can evolve alongside technological
advancements, maintaining their relevance and effectiveness in an ever-changing
medical landscape.
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