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Résumé

Les types algébriques, issus de langages fonctionnels tels qu'OCaml et Haskell, sont maintenant disponibles
dans de nombreux langages de programmation. Ils permettent de modéliser diverses structures de don-
nées inductives et, en utilisant le filtrage par motif, d’écrire des fonctions complexes de fagon concise
et élégante. Les types algébriques restent toutefois trés peu utilisés en programmation bas niveau, car
ils impliquent de masquer les détails exacts de la représentation mémoire des données. C’est égale-
ment le cas en Rust : malgré la présence d’optimisations, l'utilisateur.ice a trés peu de contréle sur la
représentation mémoire des données de types algébriques.

Lobjectif de cette thése est de permettre la spécification de représentations mémoire finement op-
timisées pour les structures de données inductives, de facon flexible et expressive, tout en conservant
les avantages de constructions haut niveau telles que les types algébriques et le filtrage par motif pour
manipuler ces données.

La contribution principale de cette thése est un langage de programmation appelé Ribbit, qui associe
d’une part un langage haut niveau avec types algébriques, filtrage par motif et manipulation simple de
valeurs immutables, et d’autre part des types mémoire précisant la représentation mémoire de chaque
type haut-niveau. La formalisation de Ribbit, qui comprend une sémantique formelle des deux parties
— haut-niveau et mémoire — ainsi que des critéres d’accord entre un type algébrique et un type mémoire
approrié, permet de raisonner facilement sur les valeurs telles qu’elles sont représentées en mémoire.

La compilation des langages haut-niveau est fortement influencée par la représentation mémoire des
données. Les approches classiques de compilation du filtrage par motif émettent un arbre de décision
a partir d"une matrice de motifs, et sont dédiées a des représentations relativement uniformes. Elles ne
sont donc pas adaptées a la compilation de programmes Ribbit, pour lesquels la représentation mémoire
est variable et potentiellement complexe. Cette thése présente une nouvelle approche de compilation
du filtrage par motif utilisant des arbres mémoire suivant précisément un type mémoire donné, pour
émettre un arbre de décision capable de manipuler des données dont la représentation mémoire est
arbitrairement complexe.

Au-dela du filtrage par motif, la compilation des constructeurs de données — qui n’est généralement
pas un probléme pour des représentations mémoire simples — devient particuliérement difficile des
lors que des fragments de données sont éparpillés dans différents emplacements mémoire : méme de
simples accesseurs peuvent nécessiter la construction de nouvelles valeurs. C’est notamment le cas
de représentations compactes utilisées pour des paquets réseau, des jeux d’instructions, des structures
de bases de données, etc. Cette these propose un algorithme de compilation pour Ribbit permettant
de générer des morphismes entre toute combinaison de types mémoire représentant un méme type
algébrique, et ainsi d’émettre les opérations bas niveau — allocations de mémoire, lectures et écritures —
correspondant a tout programme Ribbit.

Ces algorithmes de compilation sont implémentés dans un prototype de compilateur Ribbit, et leur
correction est prouvée grace aux critéres d’accord entre types algébriques et mémoire et a la sémantique
formelle de Ribbit, permettant ainsi d’établir une équivalence entre un programme Ribbit et sa version
compilée.



Abstract

Initially present only in functional languages such as OCaml and Haskell, Algebraic Data Types (ADTs)
have now become pervasive in mainstream languages, providing nice data abstractions and an elegant
way to express functions through pattern matching. Unfortunately, ADTs remain seldom used in low-
level programming. One reason is that their increased convenience comes at the cost of abstracting
away the exact memory layout of values. Even Rust, which tries to optimize data layout, severely limits
control over memory representation.

The goal of this thesis is to let programmers specify highly optimized memory layouts for inductive
data structures in a flexible and expressive way, while still enjoying high-level programming constructs
such as ADTs and pattern matching to manipulate this data.

To this end, we propose a language dubbed Ribbit which combines a high-level language, consisting of
ADTs, pattern matching and basic manipulation of immutable values, with memory types specifying the
precise memory layout of each high-level type, providing full control over the memory representation
of values. We provide formal semantics of both (high-level and memory) languages which, together
with agreement criteria stating the relationship between an ADT and a suitable memory layout, let us
reason easily about values as they are represented in memory.

Compilation of high-level language constructs is heavily influenced by the memory representation of
data. Traditional pattern matching compilation approaches, which emit a decision tree from a matrix of
patterns, are geared towards a rather uniform data layout. Therefore, they are not suitable for compiling
Ribbit programs, for which data layout is arbitrarily complex and variable. We propose a new pattern
matching compilation approach based on memory trees which follows the specified memory type to emit
an efficient decision tree suited to manipulating values with intricate memory layouts.

Aside from pattern matching, the compilation of expressions that construct values — which is a non-
issue for relatively simple memory layouts — becomes particularly challenging when data pieces are
broken and scattered in memory. Even simple accessors might require constructing new values. This
is the case for many low-level representations such as network packets, instruction sets, database data-
structures, or aggressively packed representations. We propose a compilation algorithm for the Ribbit
language which enables optimized compilation of any morphism between ADTs for arbitrary mangled
memory representations, provides full synthesis of bijections between memory representations of the
same type, and emits CFG-style programs with explicit memory allocation and full support for recursive
types.

Our compilation algorithms are implemented in the Ribbit compiler prototype, and proven cor-
rect using the formal agreement criteria and semantics defined for Ribbit as a basis for establishing
equivalence between high-level, memory-level and target programs.
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Chapter 1

Introduction

Initially present only in functional languages such as OCaml and Haskell, Algebraic Data Types (ADTs)
have now become pervasive in mainstream languages, providing nice data abstractions and an elegant
way to express functions through pattern matching. Unfortunately, ADTs remain seldom used in low-
level programming. One reason is that their increased convenience comes at the cost of abstracting away
the exact memory layout of values. Yet high-performance applications often rely on highly optimized
representations of data in memory, which are hand-tuned by programmers to leverage very fine, low-
level characteristics. (In this thesis, the term “High-Performance Computing” includes any application
— whether sequential, massively parallel or in-between — for which it is critical to optimise one or
more performance-related criteria — e.g., runtime speed and memory usage.) For instance, red-black
trees in the Linux kernel are a performance-intensive data structure for which it is crucial to minimize
memory usage as much as possible. Their implementation therefore relies on a clever bit-stealing
technique exploiting unused alignment bits in pointers. Such precise details are usually not exposed to
programmers when it comes to ADT values. Even Rust, which tries to optimize data layout, severely
limits control over memory representation.

The goal of this thesis is to let programmers specify highly optimized memory layouts for inductive
data structures in a flexible and expressive way, while still enjoying high-level programming constructs
such as ADTs and pattern matching to manipulate this data.

To this end, we propose a language dubbed Ribbit ' which combines a first-order, purely functional
high-level language featuring ADTs and pattern matching, with memory types specifying the precise
memory layout of each high-level type, providing full control over the memory representation of values.
We provide formal semantics of both (high-level and memory) languages which, together with agreement
criteria stating the relationship between an ADT and a suitable memory layout, let us reason easily about
values as they are represented in memory.

Compilation of high-level language constructs is heavily influenced by the memory representation of
data. Traditional pattern matching compilation approaches, which emit a decision tree from a matrix of
patterns, are geared towards a rather uniform data layout. Therefore, they are not suitable for compiling
Ribbit programs, for which data layout is arbitrarily complex and variable. We propose a new pattern
matching compilation approach based on memory trees which follows the specified memory type to
emit an efficient decision tree suited to manipulating values with intricate memory layouts.

Aside from pattern matching, the compilation of data constructors — which is a non-issue for
relatively simple memory layouts — becomes particularly challenging when data pieces are broken and
scattered in memory. Even simple accessors might require constructing new values. This is the case
for many low-level representations such as network packets, instruction sets, database data-structures,
or aggressively packed representations. We propose a compilation algorithm for the Ribbit language
which enables optimized compilation of any morphism between ADTs for arbitrary mangled memory
representations, provides full synthesis of bijections between memory representations of the same type,
and emits target programs in Control-Flow Graph form with explicit memory allocation and full support
for recursive types.

INamed after a metaphor for two key aspects of manipulating data in memory: knitting and frogging. For crochet enthusiasts,
frogging is the action of undoing the stitches: rip it, ripit, ribbit, ribbit. ..



Our compilation algorithms are implemented in the Ribbit compiler prototype, and proven correct us-
ing the formal agreement criteria and semantics defined for Ribbit as a basis for establishing equivalence
between high-level, memory-level and target programs.

The contents of this thesis are summarized below:

Chapter 2 presents a collection of real-world memory layouts for ADTs, and shows how to use the
Ribbit programming language to model them: by first declaring high-level types, then specifying
their underlying memory representation.

Chapter 3 presents the Ribbitulus, which formalizes Ribbit syntax and provides a simple type
system with formal criteria to define valid memory representations of high-level types. We define
a small-step semantics for both high-level and memory-level aspects of the language and exhibit
a bisimulation between the two.

Chapter 4 covers our pattern matching compilation approach for the Ribbit language, based on
memory trees, which compiles high-level patterns to layout-aware decision trees according to a
given memory type. We prove that our compilation algorithm is correct, i.e., that the emitted
decision tree accurately identifies which pattern matches a value solely from its memory repre-
sentation.

Chapter 5 provides a complete compilation approach for the full Ribbit language, which emits code
in a bespoke intermediate representation in destination-passing style. It handles all of the delicate
situations which may arise during compilation of a high-level language with custom memory
layouts, including coercions between different representations (so-called memory isomorphisms ),
and recursive code emission. These algorithms are also proven correct, by showing that the target
program’s behavior is simulated by that of the source program.

Chapter 6 describes some aspects of the Ribbit prototype compiler, which provides a practical
validation of our approach °. In particular, the mutually recursive nature of the compilation
algorithms manifesting memory isomorphisms makes their implementation especially delicate,
and this chapter also details the necessary memoization techniques.

Chapter 7 presents an experimental evaluation of our approach, with both static and runtime
measurements of the decision trees emitted by our pattern matching compilation algorithm. It
also demonstrates some of the performance impact of different memory representation choices.

Chapter 8 explores related language-based approaches and other optimized memory representa-
tions.

Chapter 9 concludes with some future work ideas.

This thesis includes and subsumes the following publications and research reports:

International Conference Bit-Stealing Made Legal: Compilation for Custom Memory Representations

of Algebraic Data Types, International Conference on Functional Programming, 2023 (Baudon,
Radanne, and Gonnord 2023) — contains a limited version of the Ribbit language presented in
Chapter 2, part of the calculus from Chapter 3, the pattern matching compilation approach de-
scribed in Chapter 4, as well as its experimental evaluation covered in Chapter 7.

National Conference Knit&Frog: Pattern matching compilation for custom memory representations

(doctoral session), french conference AFADL, (Baudon, Radanne, and Gonnord 2022a) — contains
a preliminary version of Chapter 4.

Research reports Compiling Morphisms of Algebraic Data Types (Baudon, Radanne, and Gonnord

2024), to be presented at FProper2024 — contains a preliminary version of Chapter 5.

Tool Ribbit tool on Software Heritage (Baudon, Radanne, and Gonnord 2022b)

?Die-hard portmanteau enthusiasts may prefer the alternative term memorphism.
3 As well as most of the CFG graphs appearing in this thesis.
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The Ribbit Language
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Chapter 2

Memory Layout Zoo

As a first introduction to Algebraic Data Types and their memory representations, this chapter is a
collection of exhibits showcasing a variety of real-world memory layouts for inductive data structures.
It also serves as a high-level tour of our Ribbit programming language, illustrating its syntax and
highlighting major features of its compiler.

2.1 My first Ribbit: Red-Black Trees

As our first exhibit, let us consider Red-Black Trees, a widely used inductive data structure. Its purpose
is to demonstrate the use of Algebraic Data Types, some memory representation tricks, and how Ribbit
allows to specify and compile them. We first describe their high-level type, then show various different
memory layouts using the Ribbit language.

2.1.1 Algebraic Data Types for inductive data structures

Red-Black Trees (Wikipedia 2024b) are a classic data structure from the family of search-trees whose
main idea is to maintain an invariant on nodes based on two colors. Exhibit 1 shows a high-level
implementation using Ribbit syntax. In Exhibit 1a, we first define the sum type Color, whose values
are the two constant constructors Red and Black. We then define Red-Black Trees (RBTs) through the
mutually recursive types Node for non-empty nodes, and RBT for trees themselves. A Node is a product
type containing a color, a value of the primitive type of 64-bit-wide integers, and its left and right children.
The type of trees RBT is a sum type with two cases: Empty and Node. This type enables the definition of
RBT values. For instance, the red-black tree depicted in Exhibit 1b corresponds to the following term:

Node({c: Black, v: 13,
1: Node({c: Red, v: 8,
1: Node({c: Black, v: 1,
1: Empty,
r: Node({c: Red, v: 6, 1: Empty, r: Empty})}),
r: Node({c: Black, v: 11, 1: Empty, r: Empty})}),
r: Node({c: Red, v: 17,
1: Node({c: Black, v: 15, 1: Empty, r: Empty}),
r: Node({c: Black, v: 25, 1: Empty, r: Empty})})})

10



(a) Type definitions for Red-Black Trees. (b) Example of Red-Black Tree.
// Colors for Red-Black Trees
enum Color { Red, Black }

// Nodes for Red-Black Trees

struct Node

{ c: Color, v: uéd, // color and value
1: RBT, r: RBT } // children

// Red-Black Trees
enum RBT { Empty, Node(Node) }

(c) Simple pattern matching: cardinal operation.
fn cardinal(x: RBT) -> ué6l {
match x {
Empty => 0,
Node({c:_, v:_, 1, r}) => 1 + cardinal(l) + cardinal(r)
}
}

(d) Less simple pattern matching: rebalancing operation.
fn balance(x: Node) -> RBT {
match (x.c, x.v, x.1, x.r) {

Black, z, Node({c: Red, v: vy, 1: Node({c: Red, v: x, 1: a, r: b}), r: c}), d

| Black, z, Node({c: Red, v: x, 1: a, r: Node({c: Red, v: vy, L: b, r: c¢})}), d

| Black, x, a, Node({c: Red, v: z, 1: Node({c: Red, v: vy, 1: b, r: c}), r: d})

| Black, x, a, Node({c: Red, v: vy, 1: b, r: Node({c: Red, v: z, 1: c, r: d})})

=> Node({c: Red, v: y, 1: Node({c:Black,v:x,l:a,r:b}), r:Node({c:Black,v:z,l:c,r:d})}),
_ => Node(x)

}
}

(e) Toplevel Ribbit program manipulating RBTs.
let tree : RBT = Node({c: Black, v: 42, 1: Empty, r: Empty});
let card : u6ld = cardinal(tree);
let node : Node = {c: Red, v: card, 1l: tree, r: tree.r};
balance(node)

Exhibit 1: Algebraic Data Types and pattern matching for Red-Black Trees in Ribbit.

Now that data types have been defined, we can write expressions and functions manipulating their
inhabitants. A key language construct for manipulating ADT values is pattern matching. For instance,
the cardinal function defined in Exhibit 1c takes a tree and returns its total number of nodes using
pattern matching. In Ribbit, pattern matching is introduced by the keyword match and inspects a single
value — in cardinal, it is x of type RBT. Pattern matching branches are enumerated in a list of the form
p => e where pis a pattern and e an expression to evaluate when the value under scrutiny matches p. If its
argument is of the same “shape” as the left-hand side of the rule, then the expression of the right-hand
side (body) is evaluated. Moreover, patterns can be nested, and the right-hand-side expression can use
named subterms. In our example, Empty yields a cardinal of 6 and Node({c, v, 1, r}) yieldsa cardinal
of 1+cardinal(1)+cardinal(r).

Red-Black Trees famously rely on a fairly complex balancing step, which redistributes colors depend-
ing on the internal invariant of the data structure. Thanks to nested patterns and “or”-patterns, this step
can be expressed very compactly using the pattern matching shown in Exhibit 1d. This pattern matching
inspects the four record fields of a Node value x: its color x.c, value x.v and left and right subtrees x.1
and x.r. The pattern of its second branch is a wildcard _ which matches all values; it ensures that the
pattern matching expression is exhaustive, i.e., that every possible value matches at least one pattern.

11



Such complex functions are expressible in a concise and safe way thanks to pattern matching; without
this language construct, writing rebalancing code would be a clumsy and tedious task.

Finally, Ribbit provides basic features of a first-order functional language manipulating immutable
data, namely let-bindings and function calls. Exhibit Te shows a toplevel program which creates an RBT
value, computes its cardinal and stores it in an intermediate ué4 value, builds a new Node value using
the previous tree as its left child, its cardinal as its integer value and its right child as its own right child,
and finally returns the balanced version of this RBT.

2.1.2 A naive memory representation for RBTs

Like most self-balancing trees, RBTs are a performance-intensive data structure. In a naive implementa-
tion, indirections in the memory representation limit locality, result in slow memory loads, cache misses,
and slowdowns of several orders of magnitude. To achieve best possible performance, it is critical to
pay attention to how values of our types are represented in the actual memory of the considered ma-
chine. We would nevertheless prefer to tweak the memory representation of data without mangling its
high-level type, which provides nice data constructors and accessors that are close to the programmer’s
view of the intended data structure. The Ribbit language provides detailed annotations called memory
types to precisely describe the memory layout of each ADT '. This memory layout specification language
lets us capture a wide variety of popular representation techniques including bit-stealing, unboxing,
aggressive struct packing, etc.

As our first foray into representation tweaking, we define a naive memory layout for RBTs. For
each of our three ADTs Color, Node and RBT, we specify a memory type introduced by the keyword
represented as. Let us first describe the memory type associated with Color in Exhibit 2.

(a) Graphical representation of memory contents (b) Memory layout specification in Ribbit
enum Color { Red, Black } represented as
Red Black split . {
| @ from Red => (0)<6U>
0 1 | 1 from Black => (1)<6u>
eapits 7 edbits }

Exhibit 2: A naive memory layout for Color.

The Color type is a sum type with two constructors Red and Black. To manifest the distinction
between these constructors in memory, Ribbit provides the notion of splits. Split types of the form
split mpath {...} indicate a choice between different memory layouts depending on the immediate
stored at position mpath within the memory value. The memory position mpath is known as the split
discriminant position, and consists of a sequence of operations such as pointer dereferences or memory
accesses. In Color, the empty split discriminant position “.” inspects the entire memory value. The
split then contains a list of branches, each containing an integer value dubbed its discriminant value and
a pattern dubbed its provenance on its left-hand side, and a memory type on its right-hand side. Each
branch indicates that high-level values which match its provenance (introduced by the keyword from)
must be represented in memory using the layout on its right-hand side, which contains the specified
discriminant value at the discriminant position. Here, we specify that Red is represented as the constant
0 encoded on 64 bits, denoted (0)<64>, and that Black is represented as the constant 1 encoded on 64 bits,
denoted (1)<6u>. This choice of layout is illustrated in Exhibit 2a using a graphical language consisting
of sized boxes representing memory words. We will reuse this graphical language throughout this
chapter.

IRibbit’s user-level syntax only allows for one memory type per ADT due to early design choices. However, it is sometimes
desirable to define multiple incompatible representations for a single ADT. The formal language described in Chapter 3 allows
for multiple memory types representing the same ADT to coexist in the same program.

12



(a) Graphical representation of memory contents corresponding to {{€], [/ I, [F]}

c & &
Y64 bits_ 64 bits ' 64/bits '~ 64 pits '
| r
: 128 bits ’ : 128 bifs ’

(b) Memory layout specification in Ribbit
struct Node {c:Color, v:uéld, 1:RBT, r:RBT} represented as
{{ (.c as Color), (.v as ue6d), &<64>((.1 as RBT)), &<6u4>((.r as RBT)) }}

Exhibit 3: A naive memory layout for Node.

Let us now describe the memory layout used to represent Node values in Exhibit 3. The ADT Node
is a product type which aggregates four fields together. We must represent each of these fields within
the memory representation of their parent Node value. To do so, Ribbit provides the notion of fragments.
Fragment types of the form (path as MemTy) indicate that the subterm at position path within the high-
level value should be represented using the memory type MemTy. In Node, we represent the four record
fields in a struct as follows:

* The color field corresponding to the subterm .c is encoded using the memory layout previously
defined for Color and stored in the first field of the struct with the fragment (.c as Color).

* The integer value corresponding to the subterm .v is encoded as a primitive 64-bit integer with
the memory type uéu. The resulting fragment (.v as uéu) is placed in the second field of the
struct. Each high-level primitive type has a memory counterpart which encodes its values using
a standard encoding for the considered target system and architecture.

e For the left and right subtrees, corresponding to the subterms .1 and .r respectively, we will
use the memory layout defined for their type RBT. As we will see, this memory layout yields
128-bit wide memory values. In order to keep each struct field 64-bit wide, we will store both of
these fragments behind a 64-bit wide pointer denoted &<64>((.1 as RBT)) for the left subtree and
&<64>((.r as RBT)) for the right subtree.

Note that Ribbit struct types do not include any implicit padding, unlike for instance C structs. This
behavior is similar to “packed” struct types in LLVM IR, or to the #[repr(packed)] annotation in Rust.
To ensure a given alignment for struct fields, the user can add explicit padding with uninitialized word
types of a given size 1 denoted _<1>. As seen in Exhibit 3a, our graphical language represents pointers
as sized words containing address bits denoted & and “pointing” to the memory contents stored at this
address.
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(a) Graphical representation of memory contents

Empty Node (n)
0 1 &
Y64 bits ' 64 bifs 64 bits ' 64 pits
N
s 256 bifs ’

(b) Memory layout specification in Ribbit
enum RBT { Empty, Node(Node) } represented as
split .0 {
| 0 from Empty => {{ (0)<6u>, _<6u> }}
| 1 from Node => {{ (1)<6u>, &<6U4>((.Node as Node)) }}
}

Exhibit 4: A naive memory layout for RBT.

We can now define the memory layout for the RBT type shown in Exhibit 4. Every tree is represented
in memory as a struct consisting of two 64-bit wide fields. The first field contains a tag which indicates
whether the represented tree is Empty or a Node — we will therefore use its position .0 as a split discrim-
inant. The second field is left uninitialized for Empty trees; for non-empty trees Node({c, v, 1, r}),it
contains a 64-bit pointer to the memory representation of the root node’s contents using the previously
defined Node memory layout. Note that Ribbit allows recursive memory types: here, Node and RBT are
two mutually recursive ADTs represented using two mutually recursive memory layouts.

Memory types allow us to specify the memory layout of each value down to a bit-precise level. In
order to properly manipulate data represented using such custom memory layouts, the Ribbit compiler
follows the structure of each memory type to emit appropriate target code. Two aspects of our input
language require particular attention due to this variability in memory representation: pattern matching
and data constructors. On our example, compiling the pattern matching in the cardinal function results
in the decision tree depicted in Fig. 2.1. It consists of a single switch node which inspects the discriminant
position .0 of the RBT memory type to determine whether a given value x represents the Empty tree or a

non-empty Node.
0

switch(x.0)

Figure 2.1: A decision tree for the pattern matching in the cardinal function.

As for the toplevel expression from Exhibit Te, Ribbit compiles it to the low-level pseudo-code
shown in Fig. 2.2. As before, this target code follows the specified memory layouts: for instance, Ribbit
represents the high-level value tree of type RBT by building a memory value which closely follows
the structure of its associated memory layout. Later on, to build the memory representation of the
node value, whose right child is the previous tree value’s right child, the Tree memory type is used to
determine that the subterm tree.rislocated at position .1.*.3 (i.e., the fourth field of the struct pointed
to by the second field of the root struct) within the memory representation of tree.
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let tree = {{ (1)<6u>, &<6u>({{ // Node
()<64>, // c: Black
(u2)<e6u>, // v: 42
&<6u>({{ (0)<64>, _<6u4> }}), // 1: Empty
&<6u>({{ (0)<64>, _<64> }}) // r: Empty
[EDREH
let card = cardinal(tree);
let node = {{ (1)<6u>, &<64>({{ // Node
(0)<6u>, // c: Red
(card)<6l>, // v: card
tree, // 1: tree
tree.1.%.3 // r: tree.r
I,

return balance(node);

Figure 2.2: Target code emitted by Ribbit for the source program of Exhibit le following the memory
layouts defined in Exhibits 2 to 4.

Naturally, compiling high-level programs to layout-aware target code is only possible when each
memory type adequately represents its associated ADT: we say that a high-level type must agree with
its memory layout. Here, the memory type specified for RBT in Exhibit 4b is valid and agrees with the RBT
ADT because:

¢ All subterms of the high-level type RBT (here, .Node) are properly accounted for in the memory
type with a fragment (here, (.Node as Node)).

¢ All constructors of the high-level type (here, Empty and Node) are properly accounted for in the
memory type with a split branch.

e Split branches are all distinguishable from each other: their left-hand sides contain different values
(here, 0 and 1), corresponding to distinct constructors (here, Empty and Node).

The formalization of these agreement criteria is also a key contribution of this thesis, which we will detail
in Section 3.2.

2.1.3 OCaml-like representation of RBTs

While correct, the naive memory layout defined in the previous section is not particularly efficient:
every tree takes up 128 bits of memory space, even in the Nil case; in addition, every node introduces
a layer of indirection, with disastrous consequences on performance. Such outrageous memory layouts
are unlikely to be found in real-world languages, even in garbage-collected high-level languages where
performance is not necessarily the main focus.

In this section, we take a first look at such a language, and show that Ribbit is expressive enough to
model its internal memory representation. The memory types defined in Exhibit 5 represent RBTs in
memory similarly to the OCaml runtime (Minsky and Madhavapeddy 2021).
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(a) Graphical representation of memory values

Empty o |1
Y63 bits” 16

Node ({lc. § I. 'r}) &/—O\ 0 < 1-ll | i

iy

S
)

Y63 bifs’ 1b Y64 bifs ' 63 bits' 1663 bits' 1b° 64 bits ' 64 bits

(b) Ribbit specification with memory types
enum Color { Red, Black } represented as
/* Composite word with two specified bit ranges */
_<6u4> with [0:1] : (1)<1>
with [1:63] : split . {
| © from Red => (0)<63>
| 1 from Black => (1)<63>
}

struct Node {c:Color, v:u63, L:RBT, r:RBT} represented as
&<6u>({{
(0)<6U>,
(.c as Color),
(.v as _<64> with [0:1] : (1)<1> with [1:63] : u63),
(.1 as RBT),
(.r as RBT)
V) with [0:1] : (0)<1>

enum RBT { Empty, Node(Node) } represented as
split .[0:1] {
| 1 from Empty =>
_<64> with [0:1] : (1)<1> with [1:63] : (0)<63>
| © from Node(_) =>
&<6u>({{ (0)<6U>,
(.Node.c as Color),
(.Node.v as _<64> with [0:1]:(1)<1> with [1:63]:u63),
(.Node.1l as RBT), (.Node.r as RBT)
}3) with [0:1] : (0)<1>

Exhibit 5: The OCaml layout for RBTs. Ribbit is also able to automatically generate these memory types from
its generic OCaml representation scheme.

In OCaml, all types are represented uniformly, for instance as 64-bit words on 64-bit architectures.
This uniformity allows for an easier implementation of polymorphism, and keeps the garbage collector
happy. The lowest bit of every memory value is used as a fag to distinguish between unboxed values (i.e.,
not stored in a pointer or other container) and pointers; standard immediates are therefore restricted to
63 bits rather than 64. Since pointers are word-aligned, their lowest bit is always zero; conversely, we tag
every immediate value by setting its lowest bit to one. To avoid needing to box the integer value of each
RBT node, we have slightly altered the high-level type so that nodes carry 63-bit integers of type u63.

This tagging scheme requires us to separately specify the contents of distinct bit ranges within
the same memory word. To express such bit-precise memory layouts, Ribbit provides the notion of
composite words, denoted MemTy with [o:1]:MemTy' with .... Such composite words consist of a base
memory type MemTy onto which we add an arbitrary number of bit range specifications. Each bit range
specification with [0:1]:MemTy' indicates that the range of 1 bits starting at offset o within MemTy follows
the memory layout MemTy'. Of course, this is only valid if these bits are not already used by the
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base layout MemTy. For instance, the memory representation of the Empty constructor of RBT is a 64-bit
word whose lowest bit is set to 1 and whose remaining 63 higher bits encode the constant 6, denoted
_<64> with [0:1]:(1)<1> with [1:63]:(0)<63>

In OCaml, unit constructors are represented as tagged immediates corresponding to their unique
identifier among unit constructors of the same type. For instance, Red and Black are represented as
_<6U4> with [0:1]:(1)<1> with [1:63]:(0)<63> and _<64> with [0:1]:(1)<1> with [1:63]:(1)<63>
respectively. Constructors with arguments, on the other hand, are represented as pointers to a struct
whose first field contains their unique identifier among non-unit constructors and whose other fields
encode their arguments. For instance, non-empty trees of the form Node({c, v, 1, r}) arerepresented
as a pointer to a struct whose first field encodes 6 on 64 bits and whose next four fields encode c, v, 1
and r. This adds up to a total of six 64-bit memory words, including the pointer.

Ribbit also provides generic memory representations — such as the OCaml representation — which auto-
matically generate a memory type from a given ADT according to a generic scheme. For our example,
we could have specified the Color, Node and RBT memory layouts of Exhibit 5 with represented by caml
rather than by writing specific memory types by hand. We will detail the available generic representa-
tions in Section 2.6.

2.1.4 Linux-like custom memory layout for RBTs

The OCaml layout removes a layer of indirection compared to the naive representation, but is hampered
by its uniform nature. For instance, a full word is used to store the color, even though it technically
requires only one bit. Let us look at a highly optimized representation of RBTs originally found in the
Linux kernel to model device trees (Torvalds 2023). The representation is hand-tuned to take as little
space as possible by embedding the color in pointer alignment bits. This optimization is known as
bit-stealing (Herlihy and Shavit 2012). The original type definition in C from the x86-64 Linux kernel
source version 6.9.2-gentoo is shown in Exhibit 6. The general red-black tree type (struct rb_root) does
not include the values (in our case, these would be 64-bit integers) carried by each node: instead, users
must define their own structs containing an rb_root and the element type of their choice. The type of
RBT nodes struct rb_node is a struct containing three 64-bit fields. Its two last fields are pointers to the
left and right subtrees. Its first field __rb_parent_color is more unusual: it is a 64-bit word containing
both a pointer to the parent node (or NULL) and the color of the current node stored in its lowest bit.
As we can see in Exhibit 6, many accessors which would be trivial to implement on a uniform memory
representation such as that of OCaml require hand-written code due to the extremely irregular memory
layout. Note in particular the parent pointer access, which requires some careful bit masking before
dereferencing.

struct rb_node {
unsigned long __rb_parent_color;
struct rb_node *rb_right;
struct rb_node *rb_left;
} __attribute__((aligned(sizeof(long))));
/* The alignment might seem pointless, but allegedly CRIS needs it */

struct rb_root {
struct rb_node *rb_node;

H

Exhibit 6: Type definition — excerpt from /include/linux/rbtree_types.h (Torvalds 2023).

#define rb_parent(r)  ((struct rb_node *)((r)->__rb_parent_color & ~3))

Exhibit 6: RBT constructors — excerpt from /include/linux/rbtree.h (Torvalds 2023).
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#define
#define

#define

#define
#define
#define
#define
#define
#define

Exhibit 6: RBT constructors — excerpt from /include/linux/rbtree_augmented.h (Torvalds 2023).

Our goal is now to capture this intricate memory layout in the Ribbit language, without having to
alter the high-level types Color, Node and RBT. Due to the limited scope of the high-level portion of Ribbit
—in particular, we do not handle mutable values and restrict ourselves to ADTs without back-references
to parent values — we eschew the parent pointer of the original version. Instead, we model a possible
version of such an intricate memory layout for immutable data. We combine the clever bit-stealing of
the original memory layout with OCaml-style pointer tagging, using a split with composite words to
model the multi-purpose 64 bits of __rb_parent_color. We also hard-code a 64-bit integer element type
which we store in a struct alongside left and right child trees. The resulting memory layout is shown in

RB_RED
RB_BLACK 1

__rb_parent(pc)

__rb_color(pc)
__rb_is_black(pc)
__rb_is_red(pc)
rb_color(rb)
rb_is_red(rb)
rb_is_black(rb)

Exhibit 7.

Even though we have specified a new, complex memory layout for red-black trees, the original

Node ({'c|. M.

split . {

Empty 1

Led | & [€0

((struct rb_node *)(pc & ~3))

((pc) & 1)
__rb_color(pc)
(!__rb_color(pc))

__rb_color((rb)->__rb_parent_color)

__rb_is_red((rb)->__rb_parent_color)

__rb_is_black((rb)->__rb_parent_color)

(a) Graphical representation of memory values

Y63 bifs’ 1b

32 birs 1816

(b) Ribbit specification with memory types
enum Color { Red, Black } represented as

| © from Red => (0)<1>
| 1 from Black => (1)<1>

}

struct Node { c: Color, v:

r

3

A)

64 bits

ps
[}

64 bits

S
[}

uéd, 1: RBT, r: RBT } represented as

64 bits *

&<64>({{ (.Node.v as uéd), (.Node.l as RBT), (.Node.r as RBT) }})

with [1:1] :

(.Node.c as Color)

enum RBT { Empty, Node(Node) } represented as

split .[0:1] {
| 1 from Empty => _<6uU4> with [0:1]

| © from Node =>

&<6u>({{ (.Node.v as u6l4), (.Node.l as RBT), (.Node.r as RBT) }})

with [0:1] : (.Node.c as Color)

Exhibit 7: The Linux memory layout for red-black trees.
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ADTs Color, Node and RBT are unchanged. As such, the rest of the program shown in Exhibit 1 is
still valid and will work unmodified. A similar change of representation in another context would
often require a significant code rewrite. In particular, writing low-level data manipulation code for
an optimized memory representation is rather painful and error-prone, requiring delicate handling
of memory contents with fine-grained operations for every data access. For instance, the original C
code manipulating red-black trees in the Linux kernel was shown in Exhibit 6 for a selection of simple
accessors. In Exhibit 8, we show one simple case of the rebalancing operation defined in Exhibit 1d. All
case analysis is implemented by hand using masks and manual dereferencing for every manipulation of
the corresponding data. On top of being tedious and error-prone, this also obscures program semantics
compared to pattern matching.

gparent = rb_red_parent(parent);

tmp = gparent->rb_right;

if (parent != tmp) { /* parent == gparent->rb_left */
if (tmp && rb_is_red(tmp)) {
/*

* Case 1 - node's uncle is red (color flips).

* However, since g's parent might be red, and
* 4) does not allow this, we need to recurse
* at g.
*/
rb_set_parent_color(tmp, gparent, RB_BLACK);
rb_set_parent_color(parent, gparent, RB_BLACK);
node = gparent;
parent = rb_parent(node);
rb_set_parent_color(node, parent, RB_RED);
continue;

Exhibit 8: One case of the rebalancing operation — excerpt from /lib/rbtree.c (Torvalds 2023).

Ribbit spares the user the tedious task of writing such low-level code by hand thanks to its compiler,
which automatically emits target code taking into account the specific memory layout of each piece of
data. For instance, given the memory layouts specified in Exhibit 7 and the balance function defined in
Exhibit 1d, the Ribbit pattern matching compiler emits the decision tree shown in Fig. 2.3.

Figure 2.3: Decision tree emitted by the Ribbit compiler for the pattern matching in the balance function
with the Linux-like RBT memory layout.

Decision trees are a common target for pattern matching compilation. Since this pattern matching is
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at the core of a performance-sensitive data structure, we naturally want it to be as efficient as possible.
Many pattern matching implementations come with clever techniques to output optimized decision
trees (Kosarev, Lozov, and Boulytchev 2020; Maranget 2008; Sestoft 1996). Unfortunately, these are
designed for terms that directly reflect the structure of their algebraic data types. In the context
of Ribbit, a decision tree consists of switch nodes which inspect locations in memory determined by
the specified memory layout, and of leaves (shown in light green) which return the identifier of the
pattern corresponding to the considered memory contents. For instance, the root node of the decision
tree in Fig. 2.3 is a switch on the memory location x.~[0:2].*.2.[0:1], which indicates whether the
right subtree of x is Empty or a Node. It first masks off the lowest bits (containing the tag and color),
dereferences the underlying pointer, accesses the second struct field to get the representation of x.1,
and finally extracts its lowest bit which corresponds to its tag. The design of new algorithms to compile
pattern matching in the presence of memory types is a second contribution of this thesis, which will be
described in Chapter 4.

2.2 A fine layout for a simple ADT: Zarith-like integers

While complex inductive structures such as red-black trees are an important use case of ADTs and
pattern matching, some simpler data types also benefit from these tools and from custom memory
layouts. We now dive deeper into Ribbit’s compilation process using such an example: Zarith (Leroy
and Miné 2010), an OCaml library for arbitrary-precision integers. To speed up computations, integers
in Zarith are either “small”, represented as unboxed OCaml integers and using usual instructions, or
“large”, stored on the heap and manipulated using the GMP Bignum library. The choice of memory
layout made in Zarith is not expressible in OCaml. Instead, it is implemented using unsafe operations
via the C foreign function interface (FFI). Exhibit 9 shows an excerpt of the Zarith C implementation,
including the conversion function ml_z_of_nativeint.
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/*

A z object x can be:

- either an ocaml int

- or a block with abstract or custom tag and containing:
. a 1 value header containing the sign Z_SIGN(x) and the size Z_SIZE(x)
. Z_SIZE(x) mp_limb_t

Invariant:

- 1f the number fits in an int, it is stored in an int, not a block
- if the number is stored in a block, then Z_SIZE(x) >= 1 and

the most significant limb Z_LIMB(x)[Z_SIZE(x)] is not 0

*/

/* a sign is always denoted as 0 (+) or Z_SIGN_MASK (-) */
#ifdef ARCH_SIXTYFOUR

#define Z_SIGN_MASK 0x8000000000000000

#define Z_SIZE_MASK OxT7fffffffffffffff

#else

#define Z_SIGN_MASK 0x80000000

#define Z_SIZE_MASK OxTfffffff

#endif

#1f Z_CUSTOM_BLOCK

#define Z_HEAD(x)  (*((value*)Data_custom_val((x))))
#define Z_LIMB(x)  ((mp_limb_t*)Data_custom_val((x)) + 1)
#else

#define Z_HEAD(x)  (Field((x),0))

#define Z_LIMB(x)  ((mp_limb_t*)&(Field((x),1)))

#endif

#define Z_SIGN(x)  (Z_HEAD((x)) & Z_SIGN_MASK)

#define Z_SIZE(x)  (Z_HEAD((x)) & Z_SIZE_MASK)

/* oo o*/

CAMLprim value ml_z_of_nativeint(value v)
{
intnat x;
value r;
Z_MARK_OP;
x = Nativeint_val(v);
#1f Z_USE_NATINT
if (Z_FITS_INT(x)) return Val_long(x);
#endif
Z_MARK_SLOW;
r = ml_z_alloc(1);
if (x > 0) { Z_HEAD(r) = 1; Z_LIMB(r)[0] = x; 1}
else if (x < 0) { Z_HEAD(r) = 1 | Z_SIGN_MASK; Z_LIMB(r)[0] = -x; }
else Z_HEAD(r) = 0;
Z_CHECK(r);
return r;

Exhibit 9: Zarith's C side — excerpt from caml_z.c (Leroy and Miné 2010).

We can readily describe the memory layout of Zarith integers in Ribbit. In Exhibit 10, we define the
type zint of Zarith-like integers and its memory layout following the previous specification. As Ribbit
does not interface with external libraries (yet), we model the GMP Bignum integer type with 128-bit

primitive integers 1128.
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(a) Graphical representation of memory contents (b) Implementation in Ribbit
enum Zint { Small(ié3), Large(il28), }
Small (n) Large (n) represented as
split .[0:1] { // inspect the lowest bit
| 1 from Small(.) =>

n |1 & |0 _<6U> with [1:63]:(.Small as i63)
63 b”s;\lr Y63 W\lr | © from Large(_) f>
&<64>(.Large as il28)
}
n
< 128 bits 7 struct Zpair(Zint, Zint); represented as

{{ (.0 as zint), (.1 as Zint)

¢ )

Al

iy
A ) 4

64 bits 64 bits

Exhibit 10: Memory layouts for Zarith-like integers and their pairs.

A Zint value is represented in the Small case as a 64-bit word with its lowest bit set to 1, and the
higher 63-bits encoding the actual integer. The Large case is represented as a 64-bit pointer to a 128-bit
word encoding its value, with the lowest bit set to 6 to distinguish it from the Small case. As before,
we use fragments to specify the memory representation of the integer subterm in both branches. Note
that we did not explicitly specify the discriminant value in the split’s branches. Ribbit is indeed able
to infer it from the split’s discriminant position . [0:1] and from the constant (0 or 1) associated with
each branch. It will automatically add the bit range specification with [0:1]:(1)<1> to the Small(_)
branch type and with [0:1]:(0)<1> to the Large(_) branch type. We also define the ADT Zpair, which
is a product type grouping two Zint values together. Its memory layout simply represents it as a struct
containing both of its fields’ representations.

Let us now focus on how Ribbit compiles data manipulation code according to this Zarith-like
memory layout. In Fig. 2.4, we define a function leq comparing the two fields of a Zpair value. Using
pattern matching, we determine the head constructors of these two zZint values. For this example, let
us assume that primitive operations i63.<= and i128.<= are available to compare raw 63-bit and 128-bit
integers respectively. If both head constructors are identical, we simply compare their identically-sized
integer values using the appropriate comparison operator. Otherwise, we must extend the Small field’s
integer value to 128 bits in order to compare it with the Large field’s value. We denote this primitive
cast operation with (i128)(n).

fn leq(p : Zpair) —> Bool {
match p {
(Small(n1), Small(n2)) => nl i63.<= n2,
(Large(nl), Large(n2)) => nl il128.<= n2,
(Small(nl), Large(n2)) => (i128)(nl) il128.<= n2,
(Large(nl), Small(n2)) => nl i128.<= (i128)(n2)

Figure 2.4: The leq function on Zarith-like integer pairs.

To compile the leq function, we must emit target code which performs the following tasks:

1. inspect memory contents to determine the head constructor of both Zint fields;

2. extract the raw integer values from both fields;
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3. perform the operation corresponding to the right-hand side of the matched pattern.

The Ribbit compiler automatically emits low-level code carrying out these tasks, using the specified
memory type to determine the precise location of each piece of data. Its output is shown in Fig. 2.5.
Its general structure is that of a decision tree inspecting each field’s discriminant value, corresponding
to the pattern matching on p. Its leaves contain instructions corresponding to the expression on each
pattern’s right-hand side. In all four cases, we must extract both fields’ raw integer values from their
respective memory locations before comparing them.

(}et nl = p.0.[1563] n1 163. < né:
2= P

let n [1:63]
itch(p.1.[0:1]) !
switch(p.1.[0: let n1 = p.0.[1:63] . .
; 0 let n2 = p.1.% (i128)(n1) 1128.< n2
(%witch(p.e.[0:1]) .
let n1 = p.0.% . . j)
1 n1 1128. < (1128)(n2
switch(p.1.[0:11) ; let n2 = p.1.[1:63] ( )(n2)
let N1 = p.0.% .
(iet n2 = p.1.% n 128, < n%j

Figure 2.5: Output of the Ribbit compiler for the leq function.

2.3 Irregular memory layouts: arithmetic expressions

All memory layouts we have seen so far were regular, in that the hierarchy of splits and fragments closely
followed that of the represented ADT. Even in complex layouts such as the Linux-like layout for red-
black trees, each sum type constructor was represented by exactly one split branch and each product
type field by exactly one fragment. In this section, we introduce irregular layouts which rearrange
these components in new ways. As we will see, this irregularity impacts data manipulation code and
compilation.

Consider the type ExpAST of simple arithmetic expressions on 32-bit integers defined in Exhibit 11.
Such an expression is either a variable name Var(str) with the string str modeled as a 512-bit integer,
a 32-bit integer constant Int(n), or a binary operation Bin(op, el, e2) where op is either Plus or Mult.
We specify a naive memory layout reminiscent of abstract syntax trees for the ExpAST ADT. First off, Op
values are represented on 8 bits similar to a C enum. Every expression is represented on 64 bits, using
the two lowest bits as a split discriminant to distinguish between the three possible head constructors
Var, Int and Bin. Assuming a 64-bit architecture with word-aligned machine pointers, the two lowest
bits of pointers are indeed unused, allowing us to use them to store the split discriminant in the var
and Bin cases. We store the 32-bit integer value of an Int expression into the 32 highest bits of its 64-bit
word. Var expressions are simply represented as a pointer to the pseudo-string (i512) argument. Finally,
we represent a Bin expression as a pointer to a struct containing the representations of its operation
identifier and of its two operands. In order to maintain 64-bit alignment, we explicitly pad the first field
with 56 unspecified bits _<56>.
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(a) Graphical representation of memory contents

Bin(op). et [€2D &/0\“’ o [

“62 bits’ 2 86 56b ' 64 bits ' 64 bifs

Int(n) | " 1
32 bifs30 7

YA

Var ( str) & 2\) str
“62 bits' 2

R

s
A

512 bits
(b) Specification in Ribbit

type String = i512; represented as i512
enum Op { Plus, Mult } represented as
split . {

| © from Plus => (0)<8>

| 1 from Mult => (1)<8>
}
enum ExpAST { Var(String), Int(i32), Bin(Op, ExpAST, ExpAST) } represented as
split .[0:2] {

| © from Bin(_ ) =>

&<6u>({{ (.Bin.0 as Op), _<56>, (.Bin.1l as ExpAST), (.Bin.2 as ExpAST) }})

| 1 from Int( ) => _<64> with [32:32]:(.I as i32)

| 2 from Var(_ ) => &<64>((.V as String))
}

Exhibit 11: Arithmetic expressions and their AST-like memory representation.

Even though the ExpAST layout is correct, it is quite wasteful. For instance, consider the expression

Bin ( Plus , Int(42) , -). We currently represent it as a pointer to a struct whose fields take
up a total of 192 bits, pictured below.

0| 2| |1
8 Y 56b 7 ‘32b"30b 7 V62 bits” ¥ ° 512 bifs ’

To save space, we could inline the 32-bit integer value into the unused space next to the Op value. By
reducing the remaining padding to 24 bits, we would get a 128-bit-wide struct as shown below.

Y32b” V62 bits 512 bits

More generally, Bin expressions with at least one Int operand can be compressed to save memory
by unboxing their integer values. We define this optimized memory layout ExpOpt in Exhibit 12. The
ADT modeling arithmetic expressions and its auxiliary types String and Op are unchanged from the
previous type ExpAST. The memory representations of standalone Int terms, of Var terms and of Plus
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expressions with no integer operands are also unchanged. Vertical bars | in split provenances denote
“or”-patterns — for instance, Bin(_) | Var(_) matches Bin and Var values.

(a) Graphical representation of memory contents for the new optimized Plus case

e, . [ B

Y62 bits’ 7 8624b°32b" © 64 bits '
Bin(O' e, In‘r(.)) 8(/—3\0 1-1 e
Y62 bits” 7 8624H°32b" " 64 bits *

(b) Specification in Ribbit
type String = i512; represented as i512
enum Op { Plus, Mult } represented as
split . { 0 from Plus => (0)<8> | 1 from Mult => (1)<8> }

enum ExpOpt { Var(String), Int(i32), Plus(ExpOpt, ExpOpt) } represented as
split .[0:2] {
| © from Bin(_, Bin(_)|Var(_), Bin(_)|var(.)) =>
&<6u>({{ (.Bin.0 as Op), _<56>, (.Bin.1 as ExpOpt), (.Bin.2 as ExpOpt) }})
| 1 from Int( ) =>
_<64> with [32:32] : (.Int as i32)
| 2 from Var( ) =>
&<6U>((.Var as String))
| 3 from Bin(_, Int( ), ) | Bin(_, _, Int(l)) =>
&<6u>(split .1 {
| © from Bin(_, Int(l), ) =>
{{ (.Bin.0 as 0p), (0)<24>, (.Bin.0.Int as i32), (.Bin.l1 as ExpOpt) }}
| 1 from Bin(_, Bin(_.)|var(_), Int())) =>
{{ (.Bin.0 as 0p), (1)<24>, (.Bin.1.Int as i32), (.Bin.0 as ExpOpt) }}
B

Exhibit 12: Optimized memory layout for arithmetic expressions.

To model binary expressions with inlined integer operands, we add a new branch to the toplevel split
with the previously unassigned discriminant value 3. These expressions are represented as a pointer
(whose two lowest bits are set to 3) to a struct containing their Op field on 8 bits as before, followed by
a 24-bit tag determining whether the integer operand appears in first or second position, the inlined
32-bit value of said integer operand, and finally the remaining operand encoded on 64 bits.

While the ExpOpt memory layout saves space compared to ExpAST, it pervasively impacts the compila-
tion process. Indeed, Int values are now represented differently depending on the context in which they
appear —either as a standalone expression or as an operand of a Bin expression. Conversely, the memory
representation of a Bin value may follow two different split branches depending on its operands. As a
consequence, seemingly simple patterns and values now require complex code to properly manipulate
data, which is why such optimizations are usually only done by programmers when absolutely neces-
sary (such as extremely performance-sensitive code). Ribbit alleviates this by automatically emitting
layout-aware target code, making such complex layouts completely transparent to client code.

As an example of a program whose compilation is complicated by irregular memory layouts, consider
the eval function shown in Fig. 2.6. It reduces all arithmetic expressions which can be evaluated without
knowing variable operands’ values. When both operands of a binary operation are integers, it computes
the result of the operation and returns an Int expression representing this integer value (lines 6 and 7).
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fn eval(e : ExpOpt) -> ExpOpt {
match e {
Int(l) | Var(l) => e,
Bin(op, el, e2) => match (eval(el), eval(e2)) {
Int(nl), Int(n2) => match op {
| Plus => Int(nl + n2),
| Mult => Int(nl * n2)
}l
el', e2' => Bin(op, el', e2')
}
11

Figure 2.6: User implementation of eval.

We now give a high-level view of Ribbit’s global compilation procedure, which we formalize in
Chapter 5, and of some intermediate program representations used in its implementation, which we
present in more detail in Chapter 6.

As a first compilation step, we desugar the body of eval to its normalized form shown in Fig. 2.7.
We use an explicitly typed A-Normal Form representation in which patterns contain no variables and
subterms are instead referred to by their positions. For instance, e.Bin.1 accesses the first operand of
the binary expression e. Such accesses are only valid under the right pre-conditions.

The final compiled output is shown in Fig. 2.8 as a Control Flow Graph in Destination Passing
Style (Shaikhha et al. 2017): rather than returning its result, it fills a destination memory location d
with appropriate contents. Corresponding parts of eval in normalized source and final target code are
highlighted in matching colors. As we have seen in previous examples, we compile pattern matching
to a decision tree consisting of switch nodes inspecting relevant parts of memory to determine the
shape of the considered input data. In our general compilation procedure for Ribbit, we integrate each
such decision tree into the output control-flow graph structure. For our eval example, the three source
matches on lines 2, 6 and 11 each correspond to one switch node in the compiled CFG inspecting the
adequate discriminant location.

Beyond pattern matching, the compilation of other elements of the source program, namely data
constructors and accessors, is complicated by the irregular memory layout. Consider the code which

extracts both operands of the Bin head constructor (on line 4 ). Given our ExpOpt memory layout, this is
not a straightforward memory access: the location of the subterms e.Bin.1 and e.Bin.2 depends on the
precise shape of their parent value e. Furthermore, either of these subexpressions may be unboxed (i.e.,
encoded as their integer value when their head constructor is Int), meaning their data is not necessarily
stored as ExpOpt within e. We must therefore rebuild the ExpOpt representation of both operands from
their pieces extracted from e to be used as arguments to eval calls. To do so, the generated code allocates
64 bits for both el and e2, inspects the discriminant e.*.1 which determines how their various pieces
are laid out within e, and finally fills their contents accordingly. More formally, we have synthesized an
isomorphism between the existing representation of e.Bin.1 (e.g., an inlined integer value within e) and
its desired representation (a standard ExpOpt).

As we have seen, simple accessors at the source level might require us to emit code that allocates

memory * and performs various other operations. Consider now line 20, where we return the value
Bin(op, el',e2'). Following the ExpOpt memory layout, it is split into three cases: depending on
whether the head constructor of el' or e2' is Int, we must build this value differently. Note that this
decision is factorized with the previous pattern matching. Again, in all cases, the emitted code allocates
and places every bit in memory. To do so, we once more had to synthesize a morphism from the available
memory representations of el' and e2' as standalone expressions to their representation as operands
of a Bin operation. This novel compilation procedure that can destruct and rebuild values and manifest
isomorphisms between representations is a large contribution of this thesis described in Chapter 5.
Naturally, to reap the full power of our tweaked representation, one would need to unroll the eval
function, allowing to completely skip some intermediate values. We consider such transformations

%In the context of Ribbit, we do not distinguish between stack- and heap-allocated memory: our target language, described in
Chapter 5, manipulates an abstract pool of memory locations.
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fn eval(e : ExpOpt) -> ExpOpt {

1}

Figure 2.7: Normalized representation of eval.

27

function eval(e, d)

/% case _ x/
d:=e

success

Figure 2.8: Simplified CFG after compiling
eval. For pedagogic and readability purposes, code has been
simplified (block sinking, variable renaming, simple constant prop-
agation).
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orthogonal to our contribution, and focus on emitting straightforward code that is easily optimized by
existing state-of-the-art transformations (here, unrolling and constant propagation).

2.4 Recursive data constructors: simple and packed linked lists

So far, we only considered one memory layout at once for each ADT. However, some situations call for
different memory layouts for the same data at different times. This usually requires converting data
from one layout to the other, which can be quite complex. In particular, some combinations of recursive
memory layouts require the compiler to emit recursive target code. In this section, we show how Ribbit
handles such situations using a list type with two different memory layouts. These types will also be
used in Chapter 3 as a running example to illustrate our formalization of the Ribbit language.

Consider the type of lists of 32-bit integers, which we define as the ADT List in Exhibit 13. We first
define a simple memory layout representing it as simply-linked lists with one level of indirection per
element. Notice how the second field of the struct used to represent the Cons case is not 64-bit aligned:
indeed, Ribbit will pack struct fields together without inserting any padding nor reordering fields. One
way to restore alignment would be to insert explicit 32-bit padding between the two fields. Even so, the
resulting memory layout would not be particularly efficient: each element of a list results in one new
level of indirection and uses 128 bits of memory (32 bits for the u32 value itself, 32 padding bits and 64
bits to represent the next link).

A more efficient way to represent lists of 32-bit integers on a 64-bit architecture would be to pack two
elements per level of indirection. In Exhibit 13, we demonstrate such a layout with the PairList ADT,
whoseinhabitants are exactly those of List. Its memory type is a split with three branches, distinguishing
between empty, single-element and multiple-element lists. Notice how in the Cons(_, Cons(_)) case,
we represent two list elements in the same struct, allowing us to maintain 64-bit alignment without
wasting any space.

enum List { Nil, Cons(u32, List) } represented as
split .[0:1] {
| 1 from Nil => _<6u4> with [0:1]:(1)<1>
| © from Cons(_) =>
&<6u>({{ (.Cons.0 as u32), (.Cons.l as List) }})
with [0:1]:(0)<1>
}

enum PairlList { Nil, Cons(u32, PairList) } represented as
split .[0:2] {
| © from Nil => _<64> with [0:2]:(0)<2>
| 1 from Cons(_, Nil) =>
_<64> with [0:2]:(1)<2> with [2:32]:(.Cons.0 as u32)
| 2 from Cons(_, Cons(_)) =>
&<ou>({{
(.Cons.0® as u32), (.Cons.1.Cons.0 as u32),
(.Cons.1.Cons.1l as PairlList)
D) with [0:2]:(2)<2>
}

fn single_to_double(l : List) —> PairlList { 1}
fn double_to_single(l : PairList) -> List { 1}
Exhibit 13: A recursive ADT for lists and two possible memory layouts.

On their own, neither of these two memory layouts is particularly noteworthy: Ribbit handles value
construction and pattern matching compilation for either List or PairList similar to previous examples.
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However, the fact that the List and PairList ADTs describe the same high-level data structure allows us
to convert values from one layout to the other, as is done by the single_to_double and double_to_single
functions.

Such user-level conversion code leverages the same feature of Ribbit that we used in Section 2.3
to compile the eval function with the ExpOpt irregular memory layout, that is, its ability to exhibit
isomorphisms between different memory representations of the same data. In this specific case, we are
dealing with two fundamentally different arrangements of the inductive structure of lists: in order to
convert a List to a PairList or vice-versa, we must walk the entire recursive structure to fuse blocks
into pairs. As we will see in Chapter 5, the Ribbit compiler handles such situations by emitting recursive
target code manifesting the isomorphism between the two representations. Figure 2.9 shows the emitted
recursive code for the single_to_double conversion function.

Cast d as 7?64 with [0:+2]:72
Cast d as ?64 with [32:+432]:?32 with [0:+2]:22) |leto ds = d.![0:+2]

Lleto do = d.[0:42] leto ds = d.[0:+2] ds := alloc(128)

ds 1= 0 dg = 1 leto dg = ds.x

/% Fragment _.Cons.@ in dest d; */ Cast dg as {{?32,?32,%64}}
(__ swcess ) leto d = d.[32:+32] leto do = d.[0:+2]

leti sg = 5.%.0.[0:+32] de := 2

- el i Ss .

Leti S50 = 5.%.1.[0:+1] . dr i= se /% Fragment _.Cons.@ in dest d,, %/
Switch s, u ‘ | |letodss = dox.0

success leti ss = s5.%.0.[0:+32]

dyq iz Sa

/x Fragment _.Cons.1.Cons.® in dest d,, */
leto dq, = d.*.1

leti s44 = S.%.1.%.0.[0:+32]

dqp =S

/x Fragment _.Cons.1.Cons.1 in dest d,; %/
leto dqy = d.x.2

leti sg = s.*%.1

Cast d as 264 with [0:+2]:22

Let rec convert = A lis d.

call convert Ll:se d4;

success

Figure 2.9: Generated code for rebuilding linked lists. s is the input ist and d the destination location.

2.5 Mangled primitives: RISC-V instruction set

In this section, we consider a restricted version of the 32-bit RISC-V assembly language. We will use
Ribbit to specify as a memory layout the encoding described in the instruction set (ISA) documenta-
tion (Waterman et al. 2019). A distinctive feature of this memory layout is the way it encodes integer
values: the immediate operand of some instructions is broken down into its individual bits, which are
then scattered across the memory representation of the whole instruction. Here, we show how such
mangled primitive values can be expressed and manipulated with Ribbit.

Before expressing it in Ribbit, let us describe the subset of the RISC-V instruction set we wish to
capture. It consists of four instructions: add, addi, sw, and jal, whose semantics are given in Fig. 2.10.
A RISC-V machine has 32 registers, x0 to x31 (encoded on 5 bits). As shown in Fig. 2.11, RISC-V 32-bit
instructions have different formats based on their addressing mode. Further characteristics of our four
instructions are in Fig. 2.10.

0x13 — | rd = rsl + imm
0x23 — | *(rsl+imm) = rs2
Ox6F | — | — | rd = PC+d; PC += imm

addi | Add Immediate
sw Store Word
jal Jump And Link

@
o]
s & 8
& 5 5
Inst Name O AV Description (in C)
add Add 0x33 | O 0O | rd = rsl + rs2
0
2

HU’""’_"]}Pe

Figure 2.10: Instruction semantics and encoding, excerpt.
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31 25 24 20 19 15 14 12 11 7 6 0

funct7 | rs2 rsl funct3 rd opcode | R-type
imm|[0 : 12] rsl funct3 rd opcode | I-type

imm[5: 7] | rs2 rsl funct3 | imm[0: 5] | opcode | S-type
imm[19] | imm[0 : 10] | imm][10] imm|[11 : 7] rd opcode | J-type

Figure 2.11: RISC-V Core instruction forrnat, excerpt. “rs1,2” are source registers, “rd” a destination register. “imm[n]”
denotes the n-th bit of imm. “imm[o : £]” means “{ bits starting from o in the binary representation of imm”.

Already, we see complications: in general, instruction characteristics (type, instruction name, in-
volved registers, etc.) are spread over opcode, funct3 and funct7, which are stored non-consecutively.
Moreover, the latter two are sometimes not present in the 32-bit instruction value. Immediates are par-
ticularly mangled, and cannot be readily extracted from the binary representation. For our particular
(simple) subset :

1. the four instructions are distinguishable from their opcode only, stored in bits 0 to 7 inclusive;
2. the destination registers of add and addi are at the same location, bits 7 to 11;

3. the immediate value (imm) for the sw instruction is split and stored in two bit ranges: bits 7 to 11
and 25 to 31;

4. the 20-bit immediate value for the jal instruction can be recovered from bits 12 to 31 but we need
to rebuild this immediate from four separate bit ranges.

We now use Ribbit to model RISC-V registers and instructions with the Reg and Instr ADTs and mem-
ory layouts in Exhibit 14. The Reg ADT is a simple sum type enumerating the 32 available RISC-V regis-
ters, which we wish to represent similarly to a C enum: each register Xi should be represented as the con-
stant i (for instance, X2 is the constant integer “3”). For this purpose, Ribbit provides a predefined repre-
sentation which we request with the keywords represented by C. It will automatically find the minimal
required width to encode each possible value — in our case, 5 bits since there are 32 registers and 2° = 32
—and assign each constructor to its identifier encoded on this width. For the Reg type, this corresponds
to the following memory type: split . { 0 from X0 => (0)<5> | ... | 31 from X31 => (31)<5> }.
Section 2.6 will provide more detail on memory representations predefined by Ribbit.
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/* C-like enum stored on 5 bits */
enum Reg { X0, X1, ..., X31 } represented by C

enum Instr {
Add(Reg, Reg, Reg), // add rd, rsl, rs2
Addi(Reg, Reg, i12), // addi rd, rsi, imml2
Jal(Reg, i20), // jal rd, imm20
Sw(Reg, Reg, i12), // sw rsl, rs2, imml2
} represented as
split .[0:7] { // inspect the opcode stored in the 7 lowest bits
| 0x13 from Addi(_, _, _) =>
_<32> with [0:7] : (0x13)<7> // opcode constant
with [7:5] : (.Addi.® as Reg) // register operand rd
with [12:3] : (0)<3> // funct3 constant
with [15:5] : (.Addi.l as Reg) // register operand rsl
with [20:12] : (.Addi.2 as il2) // immediate operand imm
| 0x23 from Sw(_, _, ) =>
_<32> with [0:7] : (0x23)<7> // opcode constant
with [7:5] : (.Sw.2.[0:5] as i5) // 5 lowest bits of immediate operand
with [12:3] : (2)<3> // funct3 constant
with [15:5] : (.Sw.0 as Reg) // register operand rsl
with [20:5] : (.Sw.1 as Reg) // register operand rs2
with [25:7] : (.Sw.2.[5:7] as i7) // 7 highest bits of immediate operand
| ox6f from Jal(_, _) =>
_<32> with [0:7] : (0x6f)<7> // opcode constant
with [7:5] : (.Jal.0 as Reg) // register operand rd
/* scattered pieces of the immediate operand imm */
with [12:7] : (.Jal.1.[11:7] as i7) with [20:1] : (.Jal.1.[10:1] as il)
with [21:10] : (.Jal.1.[0:10] as i10) with [31:1] : (.Jal.1.[19:1] as il)
| 0x33 from Add(_, _, ) =>
_<32> with [0:7] : (0x33)<7> // opcode constant
with [7:5] : (.Add.0 as Reg) // register operand rd
with [12:3] : (0)<3> // funct3 constant
/* register operands rsl and rs2 */
with [15:5] : (.Add.1 as Reg) with [20:5] : (.Add.2 as Reg)
with [25:7] : (0)<7> // funct7 constant

Exhibit 14: Ribbit ADTs and memory types for 32-bit RISC-V registers and instructions.

Our Instr ADT for RISC-V 32-bit instructions is a sum type with four constructors corresponding
to the four instructions in our subset. Their operands are either registers or integers of various widths.
Following the RISC-V specification shown in Fig. 2.11, we encode them on 32 bits and distinguish
them using their opcode stored in the 7 lowest bits. The Instr memory type is therefore a split whose
discriminant is the memory location . [0:7] and whose four branches each describe a 32-bit composite
word.

The memory layout of some instructions is relatively simple. For instance, in the Addi branch, we
partition the 32-bit uninitialized word _<32> into five distinct bit ranges. The bit ranges [0:7] and [12:3]
correspond to the opcode and funct3 constants: their contents are set to the adequate constant words
(0x13)<7> and (0)<3> following Fig. 2.10. The three remaining bit ranges each store an operand, as
specified in the S-type line of Fig. 2.11. For both register operands .Addi.0 and .Addi.1 and the 12-bit
immediate operand .Addi.2, we use a fragment to specify the adequate memory type Reg or i12.

Other instructions such as Jal have a more intricate representation. As in the previous branch,
we partition the 32-bit word into several bit ranges, with [0:7] containing the opcode constant and
[7:5] storing the register operand .Jal.0. However, the 20-bit immediate operand .Jal.1 is broken
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down into four parts which are stored non-consecutively in four separate bit ranges. We ask Ribbit
to represent portions of this 120 integer value separately using fragments with the following syntax:
(.Jal.1.[0:1] as il), where [0:1] denotes the 1 consecutive bits starting from offset o in the “standard”
i20 representation of this immediate.

Now that types and layouts have been defined, we can focus on high-level code manipulating
RISC-V instructions and, most importantly, its compilation to correct target data manipulation code
using Ribbit. Given a 12-bit integer value imm, consider the data constructor Sw(X1, X2, imm). From
a high-level perspective, this is a simple constructor: using a typical representation for such a value,
we would simply allocate an adequate amount of memory, then encode X1, X2 and imm as integers at
their assigned positions. Our representation, however, is not so straightforward: since imm is stored
non-consecutively, we need to break it down into two pieces read from two different positions in its own
memory representation. In essence, we need to synthesize code manifesting the isomorphism between
the previous representation of imm (here, a standard i12) and the representation embedded in Instr (two
pieces at stored at positions . [7:5] and .[25:7] within the instruction). As we have seen in previous
sections of this chapter, such implicit recombination of subterms is common in the context of embedded
and low-level memory representations. A simple struct flattening and reordering already exhibits a
similar behavior.

Given this data constructor, the Ribbit compiler emits the low-level code shown in Fig. 2.12, which
builds the memory representation of Sw(X1, X2, imm) by:

1. allocating enough memory — here, 32 bits — to hold this value in a new memory location x;

2. initializing the parts of x corresponding to constant parts of the desired value — here, its opcode
and funct3 constants and its two register operands;

3. reading both parts (bit ranges [0:5] and [7:5]) of the (non-constant) immediate operand from its
memory location imm, and writing their contents to their adequate positions in x.

let x = alloc(32);

x.[12:3] := 2; x.[0:5] := Ox23;

x.[15:5] := 1; x.[20:5] := 2;

x.[25:71 := imm.[5:7]; x.[7:5] := imm.[0:5];

Figure 2.12: Code building the memory representation of Sw(X1, X2, imm) in the memory location x.

Let us now consider a more complex example of a source program manipulating Reg and Instr values.
The RISC-V instruction set manual contains a standard extension for compressed instructions (Waterman
etal. 2019, chapter RISCV-C) which defines a compressed 16-bit encoding for some instructions. Whether
a given 32-bit instruction can be compressed according to this standard depends on the rules specified
for this operation. Usually, it requires immediate operands to be small enough to fit in reduced space,
and register operands to belong to the eight “most popular” registers X8 to X15 inclusive.

In Exhibit 15, we define the is_compressible function which determines whether a given Instr value
corresponds to a compressible 32-bit RISC-V instruction. Its two companion functions is_nonzero_register
and is_popular_register are predicates on Reg values whose names are self-explanatory. The defini-
tions of these three functions rely on boolean operations (equality, comparison, etc.) which are built into
Ribbit.
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fn is_nonzero_register(r : Reg) —> Bool {

match r {
X0 => False,
_ => True
}
}
fn is_popular_register(r : Reg) —> Bool {
match r {
X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 => True,
_ => False
}
}
fn is_compressible(x : Instr) —> Bool {
match x {
Jal(X1l, off) => off < U096,
Add(rd, rsl, rs2) => rd == rsl & is_nonzero_register(rsl) && is_nonzero_register(rs2),
Addi(rd, rs, imm) => rd == rs && is_nonzero_register(rs) && imm < 64,

Sw(rbase, roff, imm) =>

is_popular_register(rbase) && is_popular_register(roff) &&
imm.[0:5] == 0 && imm.[10:2] == 0,

=> False,

Exhibit 15: Function determining whether a given 32-bit instruction can be compressed into a 16-bit
one, in Ribbit syntax.

Ribbit’s compilation algorithm, detailed in Chapter 5, can emit the control flow graph depicted in
Fig. 2.13, which:

* inspects the internal representation of an input 0p32 value to determine its head constructor (Add,
Addi, Jal or Sw), as well as the nested register constructor in Jal;

¢ extracts from this representation all subterms that are bound to variables in the matched pattern.
For instance, in the Swcase , the parts of the immediate imm are combined in simm in order to
reconstruct a value that can be used in a mask;

¢ allocates and initialises memory to represent the appropriate values. For instance, the imm value just
mentioned is first allocated as dimm, filled, then promoted to a read-only value simm before being
used.
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Let rec is_compressible = A o:s d.

v

(/* match o %/ h
leti opcode = s.[0:+7]

Switch opcode
(0x13 | 0x33 | oxeF | ax23 )

N

V/\ '/ (/% case Sw(rbase, roff, imm) /)
/% Bindings */

//* case Addi(rd, rs, imm) */\ //* case Add(rd, rs1, rs2) */\ leti rbase = s.[15:+5]
/% Bindings x/ /% Bindings */ leti roff = s.[20:+5]
leti rd = s.[7:+45] leti rd = s.[7:+45] /% Operand imm */
leti rs = s.[15:+45] leti rs1 = s.[15:+5] leto dimm = alloc(12)
leti imm = s.[20:+12] leti rs2 = s.[20:+5] . -\ |dimm.[0:+5] := s.[7:45]
/% Simplified Computation %/ /% Simplified computation */ leti rd = s.[7:45] dimm.[5:+47] := s.[25:+7]
let db0 = rd = rs let b0 = rd = srs1 switch rd Freeze dimm to simm
let b1 =rs = @ let b1 = rs1 = 0 /x Simplified computation */
let db2 = imm < 64 let b2 = rs2 = 0@ let b1 = 8 < rbase < 15
let res = bo & b1 & b2 let res = b0 & b1 & b2 let b2 = 8 < roff < 15
/% Final Write %/ /% Final Write %/ let b3 = simm & 3103 = @
d := res d := res let res = b1 & b2 & b3 %/
/x Final Write */
L success VAR success d := res
L success Y,

//* case Jal(X1, imm) %/ h

/% Bindings */

leto dimm = alloc(20)
dimm.[11:+7] := s.[12:47]
dimm.[10:+1] := s.[20:+1]
dimm.[0:+10] := s.[21:+10]
dimm.[19:+1] := s.[31:+1]
Freeze dimm to simm

d := simm < 4096

/x case _ x/
d =9

success

\_ success )

Figure 2.13: Slmphfled CFG for is_compressible. From the input i, it identifies the head constructor using the 7 lowest bits,
then extracts subterms such as destination and source registers for Add or the 12-bit imm for Sw (in bold), and finally stores the result in dest.

2.6 Generic representations of ADTs in mainstream languages

In previous sections, we described a variety of memory layouts for specific ADTs. However, it is
not always possible nor desirable to specify the memory layout of each individual data type. Most
programming languages have their own standard way to represent data in memory, with varying
degrees of flexibility and customization by the user. Similarly, Ribbit provides a (very limited) selection
of predefined representations which follow common rules to represent any given ADT. In this section,
we explore the generic memory representations of several mainstream languages and show how they
can be modeled in Ribbit.

Note that most information presented in this section is potentially incomplete and obtained from a
variety of sources ranging from official language references to folklore knowledge of specific compiler
mechanics. Other sources include unofficial language documentation, various blog posts, as well as
manual inspection of intermediate representations emitted by compilers.

2.6.1 OCaml

OCaml is a garbage-collected, functional programming language. Such languages were the first to
natively support ADTs and pattern matching. Accordingly, OCaml features a rich type system which
includes ADTs in the form of tuples and records for product types and of sum types dubbed “variants”.
For instance, the red-black tree ADTs from Section 2.1 can be modeled as the following OCaml types:
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type color = Red | Black

type rbt =
| Empty
| Node of (color * int * rbt * rbt)

Exhibit 16: Red-black trees in OCaml.

As OCaml is a quite high-level language, it does not offer users precise control over low-level aspects
such as data layout. Furthermore, garbage collection requires memory contents to follow a somewhat
predictable pattern. The OCaml runtime therefore represents values according to a uniform memory
layout which we describe below, using Minsky and Madhavapeddy (2021) as our main source.

Every OCaml value is either unboxed, i.e., represented on a single machine word whose lowest bit is
set to 1 to tag it as an unboxed value, or boxed, i.e., represented as a pointer (whose lowest bit is always
0 due to address alignment) to a struct containing a header followed by data fields. Exhibit 17 depicts
these two kinds of values in memory for a 64-bit platform.

Unboxed/tagged immediate

63 bits’ ¥

header | field 0 |- [field n-1
Y 64 bits * 64 bits © Y 64 bits ©

Exhibit 17: OCaml generic representation for 64-bit architectures.

More precisely, unboxed values are used to represent small enough primitive values (e.g., 63-bit
integers of type int) and unit constructors of sum types (e.g., Red, Black and Empty constructors from
Exhibit 16).

All other values, such as floating-point numbers, tuples and non-unit value constructors, are repre-
sented using the boxed layout. For instance, consider a value of the type rbt defined in Exhibit 16 of
the form Node(c, v, 1, r). It will be represented as a pointer to a struct whose first field is a header
encoding the head constructor Node (as well as other metadata), followed by the 64-bit representations
of the four fields ¢, v, L and r.

In Ribbit, this generic way of representing any given ADT is available as a generic representation:
writing represented by caml after any ADT definition will automatically generate the corresponding
memory type.

2.6.2 Java Virtual Machine

Let us now focus on another uniform memory representation from a different ecosystem. The Java
Virtual Machine is a platform supporting several languages, providing a common runtime framework
with its own memory model. Like the OCaml runtime, it uses a rather uniform memory representation
scheme to satisfy the demands of its garbage collector. Unlike OCaml, most JVM-based languages are
heavily object-oriented: the basic memory management unit is an object, i.e., an instance of some class.

2.6.2.1 ADTs in JVM-based languages

The canonical JVM-based language is of course Java. Its type system is almost exclusively geared towards
an object-oriented programming paradigm, with the majority of data being stored in class attributes. In
this context, product types are easy to model as classes whose data attributes represent different fields,
as seen in Exhibit 18.
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(a) In Java (b) In Scala (c) In Ribbit

class Node { class Node( struct Node {
Color color; val color: Color, c: Color,
int value; val value: int, v: uél,
RBT left; val left: RBT, 1: RBT,
RBT right; val right: RBT r: RBT

} ) }

Exhibit 18: Product type for red-black tree nodes.

However, sum types are more delicate to model. Java provides an enum construct similar to C enums,
which is sufficient for sum types whose constructors are all argument-less. For more complex sum
types, a typical design pattern would be to create an abstract class from which every sum constructor
inherits, adding its own data attributes. Data manipulation code may then use overloaded methods or
a visitor pattern 3. Exhibit 19 shows how Java enums and inheritance can be used to model red-black
trees and their colors.

(a) In Java (c) In Ribbit
(b) In Scala
enum Color { RED, BLACK; }; enum Color { enum Color { Red, Black }
enum RBT {
case Red;
abstract class RBT {} case Black: Empty,
} ! Node(Node)
class EmptyRBT extends RBT {}; enum RBT { }
class NodeRBT extends RBT { case Empty:
. 1
}-Node node; case Node(Node);
1
}

Exhibit 19: Sum types for red-black trees and their colors.

In addition to Java, the JVM also supports other languages which support richer types and different
programming paradigms, most notably Scala. Specifically, Scala 3 introduces an enum feature (Scala3
GitHub issue #1970 2017) which a offers a more natural syntax for ADTs. We illustrate it on red-black
tree types in Exhibits 18 and 19. Note that this feature is mostly syntactic sugar around advanced
object-oriented features (Scala 3 Reference 2024).

2.6.2.2 Internal representation of JVM objects

Now that we have described how to model ADTs in JVM-based languages, let us focus on their internal
representation as JVM memory contents. All information about internal memory structures of the JVM
was obtained by examining test Java programs (using OpenJDK 21 for x86-64 with compressed references
enabled) with the JOL tool (Java Object Layout 2024), and is coherent with previous analyses (Shipilév
2020).

Broadly speaking, every toplevel object is represented as a pointer to a block, similar to OCaml
“boxed” values. The first 64 bits of this block are used by the mark word, which contains various
metadata about the object itself, such as information used by the garbage collector. Next to the mark
word, the 32-bit class word indicates which class this object is an instance of. After this 96-bit header, the
block contains the memory representation of each field of the object. In order to minimize space usage
while maintaining 64-bit alignment, the JVM may reorder fields so as to pack smaller fields within larger
fields” alignment gaps (so-called “field packing”). Primitive fields such as integers are unboxed within
their parent object’s representation.

Aninteresting feature of many JVM implementations is the ability to compress object references (Shipilév
2019). This optimization applies in situations where the host platform is a 64-bit machine, yet the size
of the Java heap does not exceed 232 bytes. In these situations, all pointers to Java objects (allocated on

3See for instance https://garciat.com/posts/java-adt for a practical example.
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the heap) will necessarily be between 0 and 232 — 1. The 32 highest bits of a machine pointer to any Java
object will therefore always be zero and can be discarded, enabling a significant reduction of memory
usage.

The diagrams in Exhibit 20 show the memory representation of instances of two simple Java classes,
illustrating both field packing and alignment gaps.

class C { long n; };

&/\) mark  |class n

52 oird S 64 bits ' 32 bif 32 bifs ©_ 64 bits

(4

class D { int m; long n; C o; };

&/\ mark |class| m | & n

Sore S 64 bits ' 32 bité 32 bifé 32 pité * 64 bifs

iy
4

~

Exhibit 20: Objects in JVM memory.

In Ribbit, we would model an object’s header and fields using ordinary structs and word types,
including explicit padding. For compressed references, we must model the following semantics: “take
only the 32 lowest bits of a 64-bit machine pointer, which contain all address bits”. This is exactly the
meaning of a Ribbit 32-bit pointer type (on a 64-bit platform), denoted &<32>(. . .).

263 C

In contrast to OCaml and to JVM-based languages, the C programming language does not support
high-level notions such as ADTs. Instead, C data types are directly expressed as their memory layout
using constructs such as structs and unions.

This has a number of drawbacks. As C is a relatively low-level programming language, all data
manipulation code must be written with its precise memory layout in mind, sometimes resulting in
significantly obfuscated code, as we have seen in Section 2.1.4 with red-black trees in Linux. Furthermore,
such low-level data types do not necessarily reflect the data structure the user actually had in mind, as
opposed to its concrete implementation. As a result, none of the safety guarantees provided by ADTs
are available: it is up to the user to write data manipulation code which is exhaustive, non-redundant
and keep memory contents “well-typed” w.r.t. the intended high-level data structure.

Despite all these drawbacks, many performance-intensive applications are still written in C. Indeed,
such programs often rely on manually specified, finely optimized memory layouts, whose specifica-
tion requires total control over low-level details. This ability to precisely specify the desired memory
representation of data is only afforded to users by C and a handful of other languages.

Here, we compare the language of C data types with Ribbit’'s memory types, highlighting their
common features and key differences. All information presented in this section comes from the precise
implementation of C data types. More precisely, our sources are the C17 standard and, for ABI-
dependent aspects, the System V generic ABI v4.1 (1997), the System V ABI AMD64 processor supplement
(2012) and the ABI for the Arm architecture (2024) (these two ABIs do not differ on aspects which are
relevant to us here).

Primitive data types C provides a variety of primitive data types (int, char, long, double, etc.), which
are used both to actually encode a primitive of this type and as a way to get a raw word of
this size. Ribbit separates actual primitive types (in practice, uint) from other usages of words:
uninitialized /unspecified contents _<1>, constants (c)<1>, composite ... with [o:1]:.... InC,
the intended contents of, say, an int are not encoded in its type.

Pointers C understands machine pointers to any given data type, as well as opaque pointers void*. In
Ribbit, pointer types indicate both a specific pointee type and a width. If this width is different from
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that of a native pointer, it designates pointers whose higher bits have been extended or removed.
Of course, this is only possible if shrinking the pointer in this way does not eat into address bits.
For an example of such resized pointers, see JVM compressed references in Section 2.6.2.

Structs According to the C standard, the C compiler does not reorder struct fields, although it does
automatically insert padding to meet alighment constraints. The contents of any padding are
unspecified and may change when copying the struct. It is up to programmers to reorder fields
to minimize the amount of space lost to alignment gaps; this technique is known as struct pack-
ing (Raymond 2020). On the other hand, Ribbit does not reorder fields nor add any padding:
the actual contents of a struct follow exactly its user-provided specification. This allows Ribbit to
model arbitrarily weird encodings such as {{(6)<7>, (1)<u>}}, which will indeed be 11-bit wide.

Enums can be seen as very simple sum types with only unit constructors, each represented as a value
of a char or any suitable signed or unsigned integer type — the actual primitive type used to store
enum values is implementation-defined. Note that there is no guarantee that the concrete contents
of any value of a given enum type actually represent one of its inhabitants (i.e., any integer of
the right width can be casted to a (possibly non-sensical) enum value). In Ribbit, C-like enums
correspond to a sum type with only unit constructors represented as a split in which each branch
represents one constructor as a constant word. The predefined representation represented by C,
which only works on such ADTs, will automatically find the minimal width necessary to encode
all constructors (not necessarily a power of 2, for instance we encode RISC-V registers on 5 bits in
Section 2.5) and generate such a split.

Unions can be seen as degenerate splits without an explicit discriminant. Similar to structs, the C
compiler will automatically add padding at the end of smaller variants to meet the alignment of
the largest variant. A possible representation of a sum type in C is a tagged union, i.e., a struct
which aggregates an explicit enumerated tag with its union payload. This pattern is captured and
generalized in a safe way by Ribbit split types.

Bit-fields are an alternative way to specify members of a struct or an union. They are rarely used by C
programmers in practice. C structs containing bit-fields resemble “packed” Ribbit-like structs, but
also rely on a notion of “storage units” (usually machine words). Whether bit-fields can straddle
storage unit boundaries is implementation-defined; as such, using bit-fields to specify precise
layout details is rather unreliable.

2.6.4 Rust

Rust is probably the most promising mainstream language when it comes to combining ADTs with
optimized memory layouts. Like Ribbit, Rust aims to offer as much low-level control as C while still
providing nice and safe abstractions such as ADTs and pattern matching. The syntax of Ribbit for
ADTs and pattern matching is heavily inspired by (and thus basically identical to) that of Rust. Here,
we focus on the memory representation of ADT values in Rust as described in its documentation (The
Rust Reference 2023; The Rustonomicon 2023), and on the (limited) ways in which Rust programmers can
customize this representation.

Every ADT defined in Rust can carry an annotation of the form #[repr(. . .)] which specifies one of
four possible memory representation schemes, optionally modified with packed or align attributes to
customize object alignment. We describe each of them below.

C representation As its name implies, the C representation aims to closely follow the memory layout
defined by the C standard, which we described in Section 2.6.3. Rust enums (a.k.a. sum types),
which have no native C equivalent, are represented as “tagged unions”. It is useful for interfacing
with C (and other cooperative languages) through Rust’s Foreign Function Interface, but also for
providing a mostly predictable representation of values. As we will see, the main other available
representation (Rust representation) is highly variable and purposefully unspecified.

Primitive representation The primitive representations (for instance, #[repr(u8)]) only apply to sum
types. Essentially, they allow the user to choose which primitive type backs the representation of a
C-like enum. For instance, #[repr(u8)] will guarantee that the given enum will be represented as
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an unsigned 8-bit integer. For sum types with non-unit constructors, the given primitive type in-
stead specifies the type of the “tag” within the “tagged union” representation. This representation
is easily specified in Ribbit, similarly to the C language’s enums.

Transparent representation The transparent representation applies to product types with a single field,
and to sum types with only one constructor which itself contains a single field. It represents values
of such a type as their unboxed field, similar to the unboxed OCaml attribute (OCaml manual 2024).
Again, this representation is easy to express as a Ribbit memory type.

Rust representation Unlike the three previous representations, the Rust reference states that the (de-
fault) Rust representation makes no data layout guarantees, except those required for soundness
(e.g., the fields of a struct do not overlap each other). According to the Rustonomicon, struct
fields may be reordered by the compiler, and padding is inserted as needed to meet alignment
constraints. On the other hand, the memory layout of enums is purposefully left unspecified.
Indeed, the Rust compiler reserves itself the right to apply arbitrary data layout optimizations,
without any explicit input from the programmer. A well-known example is the popular niche
optimization (Oxatticus.com 2024; The Rust Programming Language Forum 2020), which takes
advantage of unused values to represent extra sum constructors. For instance, consider an option
type wrapping pointer values: Option<Box<...>>. Since 0 is not a valid address, the Rust com-
piler will use this value to represent the None value, whereas values of the form Some(p) will be
represented as their unboxed pointer value p. Doing so saves space — no extra space is used for
the tag — and improves performance by removing any overhead associated with the Some wrapper.
This particular optimization, although expressible in Ribbit syntax, is not currently handled by
our formal validity criteria described in Chapter 3, nor by our compilation approach (Chapters 4
and 5).

2.7 Limits of Ribbit

2.7.1 WebKit-like NaN-boxing

As the final exhibit of our Memory Zoo, we describe a representation that models the memory layout
used in the JavaScriptCore engine (built into WebKit) to encode JavaScript values on 64-bit platforms,
which uses an optimization dubbed NaN-boxing. In doing so, we will expose some of Ribbit’s limitations.

Our description is based off the implementation of WebKit NaN-boxing (2023). According to the
ECMAScript Language Types (2023), JavaScript values consist of:

e four constants: undefined, null and the boolean values true and false;
o numbers, which consist of 32-bit integers and double-precision (64-bit) floating-point numbers;

* arbitrary-precision integers, character strings, symbols and objects, which we collectively refer to
as cells. Every cell value is represented behind a pointer; here, we ignore other representation
details.

We define the type of Javascript values in Ribbit as the Jsval ADT shown in Exhibit 21, Line 5. The
memory type that represents JSval values according to the layout used in JavaScriptCore is based on
the double-precision binary encoding defined by the IEEE 754 standard and takes advantage of unused
NaN values to represent all JavaScript values as 64-bit words.

More precisely, the IEEE 754 double-precision binary format consists of one sign bit (most significant
bit, numbered 63), 11 exponent bits (numbered 52-62) and 52 significand bits (numbered 0-51). NaN
values are defined as values whose exponent bits are all set, with quiet (as opposed to signaling) NaN
values flagged by setting the most significant bit of the significand (i.e., bit 51). The sign bit is irrelevant.

The space of 64-bit words whose top 13 bits are set (i.e., quiet NaNs with the sign bit set) is therefore
available to encode non-double values in the 51 remaining payload bits (excluding the zero payload,
reserved for NaNs originating from hardware or C library functions). Conversely, valid double-precision
encodings are necessarily within the range from 0 inclusive to 0xff£8000000000000 exclusive.

The JavaScriptCore implementation also takes advantage of the fact that no current x86-64 imple-
mentation uses more than 2% bytes of virtual address space, that is, 48 bits are sufficient to store any
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machine pointer. In order to keep pointer dereferencing unencumbered by extra decoding operations,
pointers are assigned the range from 0 inclusive to 2*3 exclusive. The four constants (Undef, Null, True
and False) are mapped to values in this range, using the fixed invalid pointer values 0xa, 0x2, 8x7 and
0x6 respectively.

We model this encoding as a memory type in Exhibit 21. Note that this program is not currently
supported by the Ribbit compiler: as detailed below, it requires features beyond the scope of the Ribbit
prototype. As seen on line 6, three main categories of values are distinguished based on their 16 high
bits. Lines 8 to 14 cover all non-numeric values (constants and cells).

type Cell = i256 repr as i256;
enum Num { Int(i32), Double(fé6u) }

enum JSVal { Undef, Null, Bool(Bool), Num(Num), CellRef(Cell) 1}
represented as split .[u48:16] {
| © from (CellRef(_) | Undef | Null | Bool) =>
split .[0:48] {
| 6 from Bool(False) => _<6u4> with [0:48] : (6)<u8>
| 7 from Bool(True) => _<64> with [0:48] : (7)<us>
| 10 from Undef => _<6u4> with [0:48] : (10)<u8>
| 2 from Null => _<64> with [0:48] : (2)<u8>
| _ from CellRef(_) => _<64> with [0:48] : &<u8>(.CellRef as Cell)
} with .[48:16] : (0)<l6>
| oxfffe from Num(Int( )) =>
_<64> with [0:32] : (.Num.Int as i32) with [32:16] : (0)<16> with [48:16] : (Oxfffe)<l6>
| _ from Num(Double(_)) =>
_<6u4> with [0:48] : (Cu48)(.Num.Double.[0:48]) as uu8)
with [48:16] : ((ul6)(.Num.Double.[18:16]) + 1 as ul6)

Exhibit 21: Javascript values and memory layout using NaN-boxing, in (speculative) Ribbit syntax.

32-bit integer values are assigned the range from 0xfffe000000000000 to Oxfffe0000Fffffffff inclu-
sive, and are distinguished by their 16 higher bits (exfffe), as seen on line 15. We then use the standard
32-bit integer encoding on the 32 lowest bits.

Finally, the range of double-precision numbers is offset by 2%, making its exclusive upper bound
0xfffa000000000000, so that it lies outside both pointer and integer value ranges. It corresponds to the
default split branch line 17. As the binary encoding of 2% contains only zeroes as its 48 lowest bits, we
only need to add this arithmetic offset to the 16 highest bits of the Num(Double(_)) representation. On
Line 19, we take the 16 highest bits of the féu representation of .Num.Double, cast them to an unsigned
16-bit integer u16 and finally add 1 (which is 2%° shifted right by 48 bits) to obtain the desired value.

While our syntax is expressive enough to describe the JSvVal memory layout, some of its features are
not supported by Ribbit beyond its syntax. They fall outside of the scope of the Ribbitulus (formalization
of the Ribbit language described in Chapter 3) and are not handled by the Ribbit compilation algorithms
(which we describe in Chapters 4 and 5). These unsupported features are:

¢ Primitive types beyond integers — for our example, double-precision floats. For simplicity, the
current formalization and implementation of Ribbit only support integer primitives.

¢ Complex primitive encodings in which reversible operations are applied to raw primitive values.
In our example, we use bitcasts (from portions of an féu to unsigned integers u48 and ul6) and
constant integer addition (+ 1). Currently, Ribbit only supports the extraction of specific bit ranges
from integer values (e.g., .Num.Double. [0:48]).

¢ Wildcard discriminant values in splits, indicating that a given split branch applies to memory
values whose contents at the discriminant position are not matched by other branches. The
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current formalization of Ribbit requires split branches” memory types to explicitly contain their
discriminant value as a constant at the appropriate position.

* Awareness of low-level details regarding the contents of machine pointers and primitive encodings.
Currently, pointers and primitives are treated as “opaque” values in memory whose contents are
completely unpredictable. However, depending on the considered system and architecture, some
information is in fact available. For instance, the Rust compiler exploits the fact that valid pointers
are never zero to encode pointer options on the same width as a pointer, by using the value 0 to
represent None. Such layout optimizations are known as niches. In our example, checking that the
split type is indeed valid would require Ribbit to “know” that 6, 7, 16 and 2 are not valid addresses,
and that the 16 upper bits of a double-precision float are always between 0 inclusive and 0xfff8
exclusive.

The first three features would probably be reasonably easy to fit into the existing Ribbit formalism
and implementation. However, properly modeling niches would most likely require a formalization
of the precise details of numeric encodings and of memory address allocation for a given system and
architecture. Ideally, such a formalization could then be integrated into Ribbit to allow for target-specific
layout optimizations; however, it is outside the scope of this thesis.

2.7.2 Arrays and linearization

Another important limitation of Ribbit is the lack of support for arrays, both in high-level types and
in memory layout specifications. This excludes important layout optimizations such as struct-of-
arrays/array-of-structs transformations (Wikipedia 2024a), as well as linearization of inductive data
structures using array-based, flattened representations. Such layout transformations are supported by
several other approaches, which we will present in Chapter 8.

2.8 Conclusion

In this chapter, we have explored ADTs and their memory representations in a wide variety of contexts.
We used this opportunity to introduce our Ribbit language, which combines high-level, safe abstractions
— namely ADTs and pattern matching — with a memory description language allowing for precise
specification of data layout by the user.

In the next chapter, we will go beyond this surface-level description and fully formalize the Ribbit
language, including its safety properties.
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Chapter 3

The Ribbitulus

This chapter presents a formalization of the Ribbit language presented in Chapter 2 dubbed the Ribbit-
ulus. In Section 3.1, we define a formal syntax which captures both high-level and memory elements of
our language, along with tools to manipulate these syntactic constructs. Section 3.2 introduces various
typing and validity judgments which characterize well-formed Ribbit programs. Section 3.3 defines
a two-tiered formal semantics for the Ribbit language, with high-level and memory-level evaluation
judgments. Finally, we state and prove the soundness of our semantics and establish an equivalence
between high-level and memory-level behavior of Ribbit programs in Section 3.4. Figure 3.34 provides
an index of notations introduced in this chapter.

3.1 Syntax

We first formalize our input language. As in Chapter 2, we present a two-tiered view: high-level types
used for programming and following a common presentation of ADTs, and memory layout specifications
detailing how to represent them in memory. We also detail the grammar of programs we consider for
our formal semantics and compilation algorithms.

3.1.1 High-level language

The high-level syntax of the Ribbitulus consists of Algebraic Data Types and their values, as well as
other objects, all sharing common syntactical constructs. In definitions that apply to different kinds of
objects, for instance to types, values and patterns, we will use the meta-variable 6 to denote any such
object.

3.1.1.1 Types
T € Types ==t € TyVars (type variable)
| I ({-bit wide unsigned integer primitive type)
| (To,..., Tn-1) (tuple/product type with n fields)
| Ko(to)|”-..“|"Kn-1(Th-1) (enum/sum type with n constructors)
A : TyVars — Types (type variable environment)

Figure 3.1: Algebraic Data Types in the high-level language.

Our source language features simple (monomorphic, immutable) algebraic data types whose grammar
is presented in Fig. 3.1. We denote types using T and type variables with t. We restrict primitive types
to unsigned integers of a given width ¢ (in bits), denoted I;. We denote all tuples with angle brackets,
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for instance (Is4, Iga) for the type of pairs of 64-bit integers. Constructors of sums are marked with a
capital letter, for instance “Some(t) | None” is an option type. In examples, we use K as a shortcut for
K((}). In addition, we use A to denote type name environments, i.e., maps from type variables t to types
T, which we use to model recursive types '.

Example 3.1 (Running example: lists). Consider the type Tiist = Nil | Cons((Isy, tiist)) in the type variable
environment Ajis; = {tist > Tiist }, which formalizes the List ADT from Section 2.4. In the remainder of
this chapter, we will regularly refer to Tjir and Ajigt from this example to illustrate various notions. A

3.1.1.2 Patterns and Specialization

Patterns, denoted p and defined in Fig. 3.2, describe the “shape” of a value with tuples, constructors,
primitive constants and wildcards denoted _. P denotes a set of patterns.

p € Patterns ::= _ (wildcard)
| c (primitive constant)
| <p01 sy Pn—1> (tuple)
| K(p) (constructor)

Figure 3.2: Patterns.

For instance, given the type None | Some(T), the pattern Some(_) matches values whose head
constructor is Some. We will formally define the semantics of pattern matching in Section 3.3.1.

The specialization operation, denoted T/ p and defined in Fig. 3.3, restricts the type T to values match-
ing the pattern p by filtering out constructors that donot appear in p. For instance, (None | Some(t)) /Some(_) =

Some(T).
t/_=n Ig/fc=1, (t0,-,Tn=1) / {0, -, Pn-1) = (T0/P0, -, Tn-1/Pn-1)

Ko(to) | -+ | Kn-1(tn-1)/Ki(p) = Ki(ti/p)

Figure 3.3: Specialization of a type according to a pattern.

Given two patterns p and p’, their intersection p M p’ captures values that match both p and p’,
as defined in Fig. 3.4. If p M p’ is undefined, then p and p’ are said to be incompatible. For instance,
_MSome(_) = Some(_), and None is incompatible with Some(_).

_MNp=pn_=p crfic=c Poseee Pty TP, o Py ) = (PoMPY, - Pt TP )

K(p) 1K) =Kpnp’)
Figure 3.4: Intersection of two patterns.

3.1.1.3 Paths and Focusing

Paths, denoted 7t and defined in Fig. 3.5, indicate a position within a type, pattern or valuexpression
(defined later, in Fig. 3.8). Given a path mand 0 € Types U ValuExprs U Patterns, we denote focus (7, 0)

IThis definition of A is temporary: it will be redefined in the next section to map type variables to both high-level and memory
types.
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the subterm at position 7 within 6. In addition to field and constructor accesses, which focus within
a product or sum type respectively, a path may contain a bit range, denoted v, as its last operation to
focus on individual bits within integers. More precisely, [o : {] designates { contiguous bits from offset
o inclusive. For instance, in the type T = Some((Is, t)) | None, the least significant bit of the Ig is located
at 7t = .Some.0.[0 : 1] and we have focus (7, T) = I;. Focusing also unfolds type variables as necessary.
The full focusing operation is defined in Fig. 3.6 %

riu=lo:{] (bit range)

7t € Paths = ¢ (empty path)
| v (integer bit range extraction)

| i (tuple field access)

| K.t (constructor access)

Figure 3.5: Paths indicating a position within a high-level term.

focus{
€ , 0 — 0
Jo ], Iy, — focus (71, Iy) when o+ { < {
Jo:t]m, c — focus (7, ¢’) wherec¢’ = (c >> o) A (2 = 1)
At , (60,...,0n-1) —> focus (7, 0;)
Kimr , Ko(to) | -+ | Kn-1(tn-1) — focus (7, 1)
K.t , K(0) — focus (71, 0)
T , t —> focus (71, A(t))
T , X.T0Q — x.(719.71)
T , —
}

Figure 3.6: Focus on the subterm at position 7 within 8 € Types U ValuExprs U Patterns, using the
type variable environment A to dereference type variables. >> denotes the bitwise logical right shift
operation and A the bitwise logical and operation; their combination allows us to extract the desired
range of bits from an integer c.

Similar to specialization by a pattern, T/7 defined in Fig. 3.7 restricts T to values v for which
focus (7, V) is defined. Note that unlike focusing, this does not return a subterm of t. For instance,
(None | Some(t)) / .Some = Some(T).

o+t

m (T0,+ -+, Tn-1) /-i-Tf = <T0,---,Ti—1,Ti/7T,Ti+1,---,Tn—1>

t/e=n1

Ko(to) | -+ | Kn-1(tn-1)/ Kit = Ki(ti / 70)

Figure 3.7: Specialization of a type according to a path.

2focus, as well as many other operations defined in this chapter, is a partial function; it is only defined for compatible paths
and terms. For instance, focus (.C, A | B) is undefined.

44



3.1.1.4 Source programs

ADT valuexpressions

u € ValuExprs == x.1t (variable subterm accessor)
|ceN (unsigned integer constant)
| (ug,...,un-1) (tuple)
| K(w) (constructor)

v e Values =:=c | (vg,...,vn-1) | K(v)
Full expressions

e€ Exprs :=(u:tas7) (pivot expression)
|letx:TasT=eine (value binding)
| £(x) (function application)
| match(x){po — €o ... Pn-1 — €en-1} (pattern matching)

Figure 3.8: Source expressions and values.

We formalize input programs as simplified expressions (shown in Fig. 3.8) where every expression is let-
bound, akin to A-normal form (Sabry and Felleisen 1993). Full expressions include function applications
f(x), pattern matching, and let-bindings. We assume that all function definitions have been processed
into an environment denoted X binding each function symbol f to a term of the form Ax.e. Pattern
matching constructs, as introduced in Section 2.1.1, consist of rules which filter value shapes with
a pattern on their left-hand side and return the expression on their right-hand side. Let-bindings are
annotated with both a type T and a memory type T, which corresponds to the memory layout specification
part of our language and will be explained in Section 3.1. Finally, pivot expressions, of the form (u : Tas7),
describe a concrete value of type T whose representation in memory should follow the memory type
T. The type and memory type in pivot expressions may be omitted when they are immediate from
context (for instance, let x : Tas T = u in e is a syntactic shorthand for let x : Tas T= (u: TasT) in e).
Valuexpressions, denoted u, have a syntax reminiscent of types, consisting of tuples and constructors,
along with integer constants ¢ € N. They also introduce accessors of the form x.7, representing the
subterm located at 7t within the value bound to x. For simplicity, we do not support recursive values
(even though types might be recursive). ADT values are the subset of valuexpressions that do not
contain any accessors.

Both valuexpressions and patterns can be focused on at a specific position, using the same focusing
operation defined in Fig. 3.6 as types. For instance, focus (.K.0, K(x)) = x.0.

Example 3.2 (Full expression with lists). Given a memory type T, the following expression:

~ Ay Nil — (0:1Izpasl
let x : Tyt @as T = Cons({42, Nil)) in match(x) { Cons((_,_)) — EX.C(?;S.O :322 as ) }

1. builds the value Cons((42, Nil)) of type T, assigns the memory layout T to it and binds it to x;
2. matches this value against two patterns;

3. returns a value of type I3, (represented as a standard 32-bit integer in memory), either the constant
0 or the subterm at position .Cons.0 in x.

A

3.1.2 Layout specification with memory types

We now formalize the second part of our language, which consists of user-specified memory layouts in
the form of memory types. As seen in Fig. 3.8, each high-level expression is associated with a memory
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type, denoted T, which specifies its memory layout. As a convention, all memory objects are given a hat.
For instance memory types, denoted T and defined in Fig. 3.9, describe how values of a given ADT t
will be represented in memory. At this representation level, we are bit-precise, yet abstract away some
architecture-dependent details such as endianness and machine pointer size and address alignment.
Let us first ignore the “split” alternation, and focus on the rest of the grammar. We extend the codomain
of A so that it now contains both high-level and memory-level type variable bindings — that is, it maps
each type variable to either a high-level type or a memory type.

T € Types = t € TyVars (type variable)
| ¢ (¢-bit wide word of unspecified contents)
| (c)e (¢-bit wide immediate encoding the constant c)
| & (T) (&-bit wide pointer to a T value)
|T DX ri:Ti  (composite word type with n extra values stored in unused bits of T)
0<i<n
| {7o,...,Th-1} (n-field struct)
| I (¢-bit wide unsigned integer encoding)
| (masT) (fragment representing the subterm at position 7 as T)

| Spht (7?0,. ..,ﬁN_1) { Ci0,.-.,Ci,N-1 from P; = Ti | 0<i< TL}
(split with N discriminant locations and n branches of provenances P;)

A : TyVars — Types U Types (type variable environment)

Figure 3.9: Memory types — the hat on T distinguishes them from high-level types .

Fragments, denoted (7t as 7), indicate that the subterm at the position 7t in the high-level type will be
represented by the memory type T. As a special case, the “atomic” integer type I; encodes an integer
value using the standard unsigned integer encoding on ¢ bits — it is equivalent to the fragment (¢ as Ip).
The contents of a memory word of a fixed width { (in bits) may be left unspecified with _, set to a
constant ¢ with (c), or filled with the address of a value of another memory type T with the pointer
type & (T). Structure types are denoted by {7, ..., Th-1}-

Example 3.3 (Memory type description). Let us consider the high-level types Igs and Twp = (I32, T, Is)
where T is an arbitrary high-level type associated with some memory type T. We have a straightforward
memory encoding for Ies: Tint = les which encodes a 64-bit integer as “itself”. For Ttup, We choose to
represent the tuple with a “struct”, but we can choose the order of the components: first, we store the
I3 (position .0 in the high-level type), then the Ig (position .2), then some 24-bit padding (with zeroes),
then a 64-bit pointer to the T value represented as T. We group the Ig,I3; and Ip4 padding bits together
and get Trup = {(.0 as I32), (.2 as Ig), (0)24, &e4 (.1 as 7))} A

Some of the memory types we have seen so far contain bits whose contents are unspecified. This is
the case for types of the form _¢, but also for pointers, depending on architecture-specific characteristics.
For instance, if T corresponds to an {-byte aligned structure, then the { lower bits of the address of
any such structure — that is, of any &; (7) value — are always zero. They can therefore be used to store
extra information — this technique, used in C programs such as parts of the Linux kernel described
in Section 2.1.4, is known as bit-stealing. On some systems, the sign bit of user-space pointers may be
reclaimed in a similar way °, as well as bits corresponding to unused virtual address space *.

We capture this notion of extra information stored in the unused bits of a word or pointer with
composite words. Given a memory type T and n pairs (ri, T;) each consisting of a bit range and a memory
type, TP ocin Ti : Tt denotes the type of values consisting of a “base” value of type T where, for each
i, the bits in 7 are used to store another value of type T;. The n bit ranges must fit within the width
of the base type and not overlap each other. We may also denote composite words in extenso with

3See for instance https://docs.rs/ointers/latest/ointers/.
4This is done in the NaN-boxing layout from Section 2.7.1.
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TXTQ:Tp< -+ X Tn_1: Tn-1 (Observe the priority of . on "x’). For instance, as we will see later on, the
memory representation of the Nil list constructor according to the simple linked-list memory layout is
_64><[0:1]: (1)1, which denotes an uninitialized 64-bit word whose lowest bit is set to 1.

The memory type constructs described so far are sufficient to specify the layout of virtually any ADT
combining integer and product types. However, none of these constructs are able to capture the notion
of different layouts for distinct constructors of a sum type. To this end, we introduce the split construct.
Splits model constraints of the form “if the value in memory at a given position is equal to some constant
¢, then we use the following memory type”. In split (7, ..., 7in) {B}, the 7j are N discriminant positions
and B is a set of branches of the form ¢y q,...,ci N from Py = T; where P; is a set of constant-free patterns
dubbed the provenances of the branch. It indicates that, if the value at each position 7Tj in memory is
¢ij, then it represents a value matched by a pattern in the set P; using the memory type 7. If P; is a
singleton, we may write its single element without the surrounding curly braces.

Discriminant positions follow the grammar of memory paths defined in Fig. 3.10. Memory path
operations include pointer dereferencing and struct field accesses, as well as operations that manipulate
words on a smaller scale: extraction of { bits from offset o, denoted .[o : {], and bitwise “and” with an
arbitrary (appropriately sized) bit mask m, denoted .m.

mau=¢|0m|lm (bit mask)

7 € Daths = ¢ (empty path)
| r 7 (bit range extraction)

| m.7T (bitwise and)

| .*.7T (dereference)

| A7 (struct field access)

Figure 3.10: Memory paths. Sets of memory paths are denoted .

Bit masks are sequences of bits written with the most significant bit on the left; we write 0 (resp. 1%)
for £ contiguous zeroes (resp. ones), and mj..... mp for the concatenation of n bit masks. |m| denotes
the total number of bits in m. In practice, we will almost always use bitwise ands to “mask off” a given
bit range from a composite word; to this end, —[o : £] denotes the bit mask whose total width is evident
from context, whose bits o inclusive to o + { exclusive are set to zero and whose other bits are set to one.
For instance, given the memory type T = _g4 < [0 : 32] : (42)32 < [32 : 32] : (0)3, the bit mask —[0 : 32] is
implied to be 64 bits wide; when applied to T, it designates the type _e4 = [32 : 32] : (0)3; — that is, the
specification applied to the 32 lowest bits in T has been masked off.

Example 3.4 (Splits in lists). Consider the high-level type Tjit in the type variable environment Aj;s; from
Example 3.1. We model the two memory layouts described in Exhibit 13 with two different memory
types. We first encode the naive (modulo pointer tagging) layout List as the following memory type:

% = split ([0 1]){ 1 from Nil = _eax[0:1]: (1) }
0 from Cons(_) = &4 ({(.Cons.0 as I3p),(.Cons.1as tc)}) < [0:1]: (0)
As this memory layout is fundamentally recursive, we add a new binding to our type variable environ-
ment:
Avist = {tiist = Thist, te = Te}

Since there are two possible representations depending on the head constructor, we use a “split” type
with two branches. In the first branch, the single pattern Nil indicates that it represents the Nil high-
level value. Its memory type is _gs >< [0 : 1] : (1)1: a 64-bit word whose lowest bit is set to 1. In the
second branch, the provenance Cons(_) encompasses all other Ty values and represents them using
the memory type &q4 ({(.Cons.0 as I3;), (.Cons.1 as Tc)}) = [0 : 1] : (0)1, which is a 64-bit wide pointer
whose lowest bit (address alignment bit) is set to 0, pointing to a struct encoding the first element of the
list as a 32-bit integer, followed by the list of remaining elements, itself represented as T.. Finally, the
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split discriminant .[0 : 1] indicates how to tell these two cases apart: by looking at the lowest bit, which
is 1 in the Nil case and 0 in the Cons case, as enforced in both memory types with a composite word
specification ([0 : 1]).

Another possible choice of representation for the same ADT is the “packed” layout PairList, which
we model with the following memory type:

Tp = split ([0 : 2]){
0 from Nil = _g1x[0:2]:(0)
1 from Cons({_, Nil)) = _ea>x[0:2]:(1)2%[2:32]:(.Cons.0as I3)
2 from Cons({_,Cons(_))) = & ({{(.Cons.O as I33), (.Cons.1.Cons.0 as I3p), (.Cons.1.Cons.1 as tp)}})
<[0:2] : (2)2
}

Again, we add a new binding to our type variable environment for this recursive memory type:
Alist = {tlist = Tiisty te = Te, tp & ?p}

We fit up to two elements per level of indirection, using a three-branch split whose first two branches
represent empty and singleton lists similarly to the previous layout T., and whose last branch inlines
the two first elements of longer lists into a struct. A

The size of a memory type T, denoted || and defined in Fig. 3.11, has a rather straightforward
definition. Note that we only consider memory types whose size can be computed; in practice, this
means that recursive types must always introduce some form of indirection (this is also the case in other
languages with low-level types, including C and Rust). For instance, in the type variable environment
{t — 7T}, this criterion forbids T = {_, t} but allows T = {_g, &¢ (t)}}.

[t] = AL |_el =¢ [(c)el = ¢ |&¢ (D) = ¢ T X T =T
0<i<n
{70, ..., T}l = [Tol + -+ + [Tl [Te| = ¢ (7 as T)| = |7]

|split(ﬁ1,...,ﬁN){cill,...,cilN from P; = T ’1 <ig n}| = max |Ti]
ssn

Figure 3.11: Size of a memory type T in the type variable environment A.

We formalize the notion of “memory contents at a given position 7 in a memory type T° with a

memory focusing operation, denoted focusa (7, T) and defined in Fig. 3.12. It is similar to focusing on
high-level terms, with the caveat that “focusing below a bitmask” is akin to performing a bitwise “and”,
as explained above.
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focusa{

€ , T — T
7 Lt —> focusa (7, At))
NUCK T — focusa (7,7)
(711 - b0) T, T gienl0i : ] : T —> focusa (T, TH< i[04 : ] : T)
wherelz{i O<i<n }
Vi€ {0,..., i =1}, bosj =1
2T ’ &g (?) — {(;(Z\MA(ﬁ,a
LT , T peian Ti T — focus, (7, T)
i7 , {70, ., T} —> focusa (%, 71)

Figure 3.12: Memory-level focusing operation on types in type variable environment A.

We can now define syntax-based operations on memory types that access parts relevant to the
represented high-level type in a generic way. The shatter operation, defined in Fig. 3.13, gathers all
fragments and primitive types that appear within a memory type, along with their positions.

shattera (7) = {(ﬁ > masT) | focusa (7, T) = (as 'f’)} U {(7’% — ¢as ly) | focusp (7T, 7) = I(}

Figure 3.13: Collect all fragments and atoms of a memory type.

Example 3.5 (Focus and shatter on pair lists). Consider the second split branch from Tp,of Example 3.4,
corresponding to the provenance Cons({_, Nil)): let T= _gs > [0:2] : (1)2 < [2:32] : (.Cons.0 as I32). We
can extract all fragments from this memory type with shatter:

shattera,, (T) = {(.[2: 32] — .Cons.0 as I3)}

Indeed, we do have focusa,, (.[2: 32],7) = (.Cons.0 as I3). A

This memory focusing operation is sufficient to destruct concrete memory structures such as pointers
and structs, but is undefined (for non-empty paths) on memory type constructs that refer back to a high-
level type — that is, primitive (integer) encodings, fragments and splits. Fragments should be explicitely
expanded as needed, rather than during focusing, so as to prevent non-termination in the presence of
recursive types. As for splits, we handle them with another syntactical operation: specialization.

Memory type specialization, denoted T/p and defined in Fig. 3.14, handles splits in a memory
type T by filtering out all parts of this type that do not match the pattern p, similar to high-level type
specialization. However, since each split may represent arbitrarily deep provenances in different ways,
it returns a list of branches rather than a single specialized type. Each of these branches consists of a
pattern which matches precisely the high-level values it represents, and of a split-free memory type. In
particular, T/ _ removes all splits from the memory type T and yields the list of all its fully specialized
versions.
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t/p=AMt)/p _e/p={(p,_0)} ©)e/p=A{p (c))} Ie/p={(p 1)}

& (?) /P = {(p,r & (?)) | (plr?) € :C\/p}

¥, 7) et/
('f < Ti:?i) [p=30"7 P r:7T)| Vie{0,...,n-1},(p,T) eTi/p
0<i<n O<i<n p/=p MpoN...Mpna

~ ~ g - Vie{0,....,n-1},(pi,T,) € T/p
{[TO/""T“—l}} /P - {(p’{{TO""’Tnl}}) p' =p0|—]...|—]pn_1

(mas ﬂ/P = {(p, (mas 1))}

pi € Py }

Split(ﬁo,...,ﬁ]\j_l){Ci,o,...,Ci,N_l from P; = T |0<i<n} /p= U {:f\i/p’ p,:pl_Ipi

0<i<n

Figure 3.14: Specialization of a memory type according to a pattern in the type variable environment A.

Example 3.6 (Specialization of pair lists). Recall the T, memory type with the type variable environment
Ajist from Example 3.4. Its specialization for non-empty lists, that is, for the pattern Cons(_), is:

Tp /Cons(_) = {
(Cons({_, Nil)) , 64 [0:2]: (1)2=[2:32] : (.Cons.0 as I3),)
(Cons({_,Cons(_))) , &es ({(.Cons.0 as I5), (.Cons.1.Cons.0 as I3p), (.Cons.1.Cons.1 as t,) }}) < [0: 2] : (2)y)

}

A

At this point, we have defined the main constituents of the Ribbitulus: high-level and memory
types, high-level patterns, valuexpressions and full expressions. Recall that valuexpressions are values
with the addition of path-based variable accessors. Notably, we defined two crucial operations for both
high-level and memory-level objects: specialization by a pattern which returns one or more restricted
types, and focusing on a path which returns a subterm of the given term. An index of all these concepts
and notations is available in Fig. 3.34 at the end of this chapter.

3.1.3 Memory model

Now that the user-visible part of our language has been defined, we provide an abstraction of memory
contents and a low-level representation of Ribbit programs.

3.1.3.1 Memory values and expressions

After having defined memory types and their associated tools, we can define their values and expressions
that represent computations on those values. Memory values, denoted v and defined in Fig. 3.15, feature
the same concrete memory structures as memory types (structs, composite words, etc., see Fig. 3.9), but
differ in how pointers are represented. While a pointer memory type directly contains its pointee
memory type, we use a more detailed memory model for values. A pointer memory value instead
contains an address, denoted a € Addrs, whose contents are accessible through a store ¢ which maps
addresses to memory values. Memory valuexpressions, denoted u and defined in Fig. 3.15, in the spirit
of high-level valuexpressions, are similar to memory values but retain some constructs that are yet to
be evaluated. There are two such constructs: pointers of the form &; (1) in which the pointee u has
not been stored and assigned an address yet, and pivot expressions of the form (u : T as T). A pivot
expression (u : T as T) expresses that the high-level valuexpression u of type T must be represented
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using the memory layout T. Within a memory valuexpression, a pivot expression acts as a placeholder
for a memory value that has not been computed yet.

Memory valuexpressions

ue ers s=(u:TasmT) (pivot expression)
| e (uninitialized {-bit wide word)

| (©)e (¢-bit wide constant)

| & (1) (¢-bit wide pointer to 1)

| & (a) (£-bit wide address)

(AT G FEE TS (composite word)

0<i<n
| {o, ..., Un1} (n-field struct)
Memory values
Ve Values == g | ()¢ | &e(a) |V DX 1i:9i | {30,..., Vna}
0<i<n
¢ : Addrs — Values (memory store)

Figure 3.15: Memory values and valuexpressions.

Similar to the memory focusing operation defined on memory types, we define a memory focusing
operation on memory valuexpressions in Fig. 3.16. It differs from memory focusing on types in that it
depends on a store ¢ to allow for focusing below addresses.

focusc (¢,0) =1u  focus. (.ri.ﬁ,ﬁ X o1y ﬁi) = focus. (7T, 1) focus. (.1'”' T, ﬁ) = focus. (7, 10)
0<i<n

m = b|ﬁ|_1 ..... bo I= {i

0<i<n
V] S {0,...,81—1},b01+]- =1

focusc

mﬁ,ﬁ D< [Oi . fi] : ﬁl) = mg (ﬁ,ﬁ >< [Oi : Ki] Zﬁi)

0<i<n i€l

(amV)ec

focusc (. * .7, & (1)) = focus. (7, 1) — — ——
focusc (. * .7, &¢ (a)) = focusc (71, V)

focusc (1.7, {Uo, ..., Un-1}) = focusc (7T, 1)

Figure 3.16: Memory-level focusing operation on valuexpressions in the store ¢.

Example 3.7 (Pair list memory valuexpression). Recall the memory type T, defined for the Tj;5s ADT from
Example 3.4. The following memory valuexpression is a pivot expression that requests the representation
of the high-level value Cons(42, Nil) according to the layout Tp:

(Cons(42,Nil) : Tyt as Tp)

After evaluation (which will be defined in Section 3.3.2), we would obtain the following memory value
(and an empty store):
V= _ea<[0:2]: (12 [2:32]:(42)3
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This memory value follows the structure of the specified memory type T,,, with each fragment instanci-
ated with the supplied concrete value. Focusing on it with the memory path .[2 : 32] yields the encoded
integer value of the first element:

focusy ([2:32], es =< [0:2] : (1)2 < [2:32] : (42)32) = (42)32
A

We can now define full memory expressions, which capture all stages from a source program down
to its fully evaluated form, that is, a memory value. To this end, full memory expressions, denoted e
and defined in Fig. 3.17, include all high-level full expressions, all memory valuexpressions, as well as
hybrid let-expressions that fit neither existing grammar but may arise during evaluation.

—

e € Exprs = e € Exprs (high-level expression)
|ue ers (memory valuexpression)
|letx:TasT=¢ine (intermediate let-bind form)

Figure 3.17: Full memory expressions.

Example 3.8 (Full memory expression for pair lists). The following memory expression binds x to the
memory value v from Example 3.7 and accesses its integer value encoded on 32 bits using the pivot
expression (x.Cons.0 : I3, as Isp).

e=let x: Tt as Tp = _ea < [0:2] : (1)2 < [2: 32] : (42)32 in (x.Cons.0 : 33 as I3p)

A
3.1.3.2 Memory patterns: shapes of memory contents

P € DPatterns = _ (£-bit wide wildcard)

| (c)e (£-bit wide constant)

| &¢ (P) (&-bit wide pointer)

[p X 1i:pi (composite word)

0<i<n
| {{EO/ o rﬁn—lﬂ (StruCt)

Figure 3.18: Memory patterns. Sets of memory patterns are denoted P.

Similarly to high-level patterns, we define a notion of memory patterns, denoted p and defined in Fig. 3.18,
which describe the shape of a given memory type of valuexpression. Empty word memory patterns act
as (sized) wildcards, in that _y matches any memory contents of size £. The function shape_of, defined in
Fig. 3.19, returns a memory pattern corresponding to the shape of a memory type or valuexpression; it
mostly follows the syntax of memory constructs. For constructs that refer to parts of a high-level type or
value — that is, primitive types, fragments, splits and pivot expressions — we use an appropriately sized
wildcard. Indeed, we consider such constructs as “black boxes” whose size is known but whose precise
contents are not determined yet.
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shape_ofg{

shape_of , {
_ —
t —> shape_of ,(A(t)) t
¢ — _¢ (C)e/\ — (C)E R
(c)e — (c)e & (u) — & (shape_ofg(u))
& (T) — &; (shape_of , (7)) & (a) — & (shape_ofg(g(a)))
T LT h f 1P —~ - N _
nginrA Ty — sAaPe_OAA(?) OzfnT P uozfnn :uy  — shape of (u) oifnn Py
oo Tnah = oo Pk (Tor-ee Tna} — (B0, Prr}

where p; = shape_of , (T}) where P; = shape_of (i)

l

T
}

(a) Shape of a memory type in the type variable environment A

-7

l

(u:TasT)

}

17
(b) Shape of a memory valuexpression in the store ¢
Figure 3.19: Memory pattern capturing the shape of a memory type or valuexpression.

Example 3.9 (Shapes of pair lists). The shape of the memory type T, from Example 3.4 is shape_of(Tp) =
_ea- Itfits all possible values: due to the toplevel split in T, the only available information is the maximal
size of its values — here, all of its values are necessarily 64 bits wide.

On the other hand, the shape of the memory value v from Example 3.7 is more precise since all
elements that were unevaluated in T, are now fully determined:

shape_of(V) = 1< [0:2]:(1)2 % [2:32]: (42)3

3.2 Typing and validity

To ensure the correctness of a given memory specification, we consider two complementary notions:
intrinsic validity and well-kindedness of a memory type, and agreement between high-level and memory

types.

3.2.1 Kinding and validity of memory types

The intrisic validity of memory types relies on two judgments. The notion of well-kindedness, denoted
A E 7, refers to memory types passing both of these judgments. While it would be possible to define
a single judgment, determining a kind and checking validity at the same time, this approach quickly
leads to cycles in derivation trees, which we would rather avoid. Using two separate judgments lets us
break the recursive cycle and still cover the entire structure of a (possibly recursive) memory type.
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— “the memory type T is valid in the type variable environment A”

VTyVar - VCoNSTANT VPOINTER
tedom(A)  A(t) € Types 0<c<2! XWORD 14 XPRIIMITNf'd Ak Tvalid
E vall E vali R —
AF t valid AF (c); valid - ¢ A F & (7) valid
VCoMPOSITE

Aezvalid Vie{0,...,m-1},ArTivalid Vije{0,...,n—1}i<j= oi+L <o
AET D< [oi : &4] : T valid

0<i<n
VStrUCT VFRAGMENT
vie{0,...,n—1},A e 7T valid A E T valid
Ae{T,...,Tn} valid Ak (mas T) valid

VSpLiT
Vie{0,...,n—1},AET; valid

Vj€{0,...,N=1},3¢ Vi€ {0,...,n—1},Y(p,7) € Ty / _ focus (7}, T) = (cij)e
Vi,i"€{0,...,n—1},i #i = Vp € Py, Vp’ € Py, p M p’ is undefined

AE Split (7?0, .. -/ﬁN—l) { Ci,0,---,CiN-1 from Py = ?i | 0<i< Tl} valid
Figure 3.20: Validity judgment on memory types

The wvalidity judgment, denoted A £ Tvalid and defined in Fig. 3.20, explores a memory type by
iterating over its entire inductive structure, stopping at type variables. It ensures that every specified
construct “makes sense” individually. Its main purpose is to check the good formation of memory
type constructs: the VIYVar rule checks that each type variable is bound to a memory type, while the
VCowrosite rule ensures that composite word bit ranges do not overlap. For splits (VSpLiT rule), we
check that each branch indeed contains the specified discriminant values at their respective positions
and that branch provenances do not overlap each other. In order to fully check the validity of a recursive
type, we simply iterate over each memory type bound in the type variable environment and check their
validity.

Example 3.10 (Invalid memory type: C unions). This validity judgment already rejects non-trivial user

mistakes. Let us emulate a traditional C union layout for the T 4t type defined in Section 2.2 which
takes up as much space as the largest variant (Large):

Thad = _128 < [0 : 63] : (.Small as I¢3) < [0 : 128] : (.Large as I12g)

Thad is not valid: the VComposiTE rule does not apply because [0 : 63] and [0 : 128] overlap. Since it lacks
distinguishing data to use as a discriminant, this layout is not expressible as a split. A

Example 3.11 (Valid memory type for lists). Recall the following memory type from Example 3.4, in the
type variable environment Ay

1 from Nil = _e><[0:1]: (1) }

Te = split (.[0: 1]){ 0 from Cons(_) = &4 (Ts) < [0:1]:(0)
where
Ts = {(.Cons.0 as I3;), (.Cons.1 as t¢)}

We show that T, is a valid memory type:

(te > T)EA T € Types

. VTyVar -

VPrivrTive A E I3, valid A E t. valid

VFRAGMENT VFRAGMENT

A E (.Cons.0 as I3p) valid A E (.Cons.1 as t¢) valid
A E T, valid

VSrrucT
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VCONSTANT VPOINTER VCONSTANT

VWorD 0<1<2 A E T, valid 0<0<2
A E _gq valid A E (1) valid Ak & (Ts) valid A E (0); valid
VCoMPOSITE - — - VCoMPOSITE
AE _gg>[0:1]: (1) valid A E &gq (Ts) < [0: 1] : (0) valid

focus ([0:1], < [0:1]: (1)) = (1)1 focus (.[0: 1], &4 (Ts) > [0: 1] : (O)1) = (0)s
Nil 1 Cons(_) is undefined

VSpLiT = ;
A E T, valid

A

The kinding judgment, denoted A £ T : K and defined in Fig. 3.21, checks that parts of a memory
type “make sense” in relation with each other. For instance, KComposITE ensures that composite word
bit ranges indeed fit within unused bits of the base memory type and do not overlap each other. To
this end, it assigns a kind, denoted X, to each memory type. A kind is either Block, which represents
structs and can never appear inside a composite word, or Word(m) representing words of the same
width as m, where m is a bit mask in which zeroes indicate bits that are necessarily free (not used for
storing data by the memory type). The kinding judgment, unlike the validity judgment, follows type
variables but does not recursively explore pointers. Indeed, only the address alignment (as opposed to
the full kind) of a memory type is needed to determine the kind of a pointer to this type. In the actual
judgment, we only informally state this address alignment criterion: since the actual set of available
bits in pointers is highly architecture/OS-dependent, we leave this information out of the validity and
kinding judgments. For now, this means that the validity of such optimizations is left up to the user; a
more satisfactory solution would be to develop architecture/OS-specific extensions for Ribbit to check
it automatically.

K == Word(m) | Block

— “the memory type T is of kind K in the type variable environment A”

KTyVar
AEA®R):K KConstanT KWorp KPriMITIVE
T AE ()¢ : Word(1%) AE _¢: Word(0Y) AE I : Word(1Y)
1K
KPoIiNTER SusKinNDING
m sets the address bits of any (-bit wide T pointer A e T:Word(m.0.m’)
A E & (T) : Word(m) A £ 7T:Word(m.1.m’)
KComposiTE

A £ T:Word(m)
| 7] bits
Vie{0,....,n-1},AeT : Word(m;)  Vie{0,...,n—1},m{£0...0 m; 0...0
—_

¢; bits 01 bits

AeT PK [oi: 4] : Ty : Word(m vV m{V---vm/ )

0<i<n

KFRAGMENT
KStruUCT AET: ¥

AEe {7, ..., Tn-1)} : Block _
o no} AE(mtasT): K

KSpLiT
vie{0,...,n—1},AET;:K

—~

AE Split(;fl,...,;fN){Cirl,...,Ci,N from P; = T; | 1<i< TL} T K
Figure 3.21: Memory kinds k and kinding judgment A k T : k, used on valid memory types.

Most of the rules are fairly immediate by direct induction. The KComposiTE proceeds by checking
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non-overlapping of masks. The SuBKinDING rule lets us relax a Word kind that has been assigned to a
memory type, by “forgetting” that a given bit is unused. This is useful to unify the kinds of all branches
in the KSpuiT rule.

Example 3.12 (Well-kinded memory type for lists). Recall the following memory type from Example 3.4,
in the type variable environment Ay

~ .. ] 1 from Nil = _u=[0:1]: (1)
Te = split([0: 1]){ 0 from Cons(_) = &4 (Ts) =< [0:1]:(0) }

where
Ts = {(.Cons.0 as I33), (.Cons.1 as t¢)}

We have |Ts| = |Is2| +|Tc| = 32 + 64 = 96. Assuming that the address alignment of a struct is equal to its
size in bytes, we can assert that the two lowest bits of any pointer to a 96-bits-wide struct are free to use.
Using the KPoiNTER rule, we can therefore assign the following kind to &4 (Ts):

A E &4 (Ts) - Word(19200)

We can now show that T, is of kind Word(16201). Note how the last KCompositE rule on the right marks
the last bit in the kind as used, manifesting the bit-stealing.

KWorp KConstant
AE _g - Word(0%) Ak (1)1 : Word(1) KConstant
KCowmrosiTE 3 - o
Ak _a><[0:1]:(1); : Word(0™1) A E &4 (Ts) : Word(1°-00) Ak (0); : Word(1)
SusKInDING @ — @ KCowmrosITE
XS Ak _g><[0:1]: (1)1 : Word(1°°01) Ak & (Ts) =< [0:1] : (0); : Word(1°°01)
PLIT

A E T, : Word(1%201)
A

We can now define well-formed type variable environments, in which every bound type is valid and
well-kinded.

Definition 3.1 (well-formed type variable environments). A type variable environment A is well-formed,
and we write £ A, if and only if every memory type is valid and well-kinded and all type variables that
appear in high-level (resp. memory) types are bound to a high-level (resp. memory) type, i.e.:

* V(t—> ) e AVt € TyVars, Vi € Paths such that focus (71, ) = t/, 31" € Types, (t' —> ') € A

e Vit T eAAETvalidATK,AET: K

3.2.2 Agreement between ADTs and memory layouts

Now that we have defined validity criteria for memory types on their own, we can state the relationship
between ADTs and their memory layout specifications — that is, whether a given memory type properly
represents, or agrees with, a given high-level type. This agreement relation is based on four criteria,
which we formally state in Definition 3.2. Coverage ensures that every piece of data from the high-
level type appears within the memory type, as an arbitrary combination of fragments and primitive
encodings. Note that it is acceptable to split a subterm into any number of pieces and scatter them
arbitrarily across the memory type, as long as every piece appears somewhere within the memory
type. Distinguishability ensures that the precise provenance of any given high-level value is always
identifiable from its memory representation, by inspecting a combination of split discriminant locations.
Again, any configuration of split locations, values and branch provenances is acceptable, as long as
every provenance is distinguishable from incompatible other provenances. The two remaining criteria
(fragment and branch coherence) simply propagate coverage and distinguishability through the entire
inductive structures of both high-level and memory types.
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Definition 3.2 (Agreement). Let T a high-level type and T a memory type considered in a type variable
environment A. We say that T represents T, or agrees with T, and we write agree , (T, 7), if either T and T
are identical primitive types (i.e., T = T = 1) or all of the following conditions hold:

All fragments bind subterms to their valid representation. (Fragment Coherence)
For all (7t — 7 as T) € shattera (T), T = focusa (7, 7) is defined and T agrees with .

Split branches are valid representations of high-level subtypes. (Branch Coherence)
For all 7 such that focusa (7, 7) = split(...) { ... from P; = 7T |0 <i< n}, for each branch

i€ {0,...,n—1} and each p € P; such that A + p : 7, T; agrees with T / p. Furthermore, for every
pattern p of type T, there exists a branch i € {0,...,n — 1} and p’ € P; such that p M p’ is defined.

All data from the high-level type is represented within the memory type. (Coverage)
For every high-level path 7t that leads to a single bit in T (i.e., focusa (7, T) = I1), T covers m: every
memory type T € T/ contains a fragment (or primitive type) for a position 7y prefix of 7. More

precisely, there exist high-level and memory paths 7y and 7t such that focusa (7, T) = (79 as T)
and either 7t = 7p.m" or t = 7'.[o : £], o = W.Jop : dp]land og K o< o+ L < og+ly(orm=¢,T=1I
and focusa (7, T) = 1¢).

Memory types provide a way to tell incompatible patterns apart. (Distinguishability)
For every high-level path mthatleads toasumin T (i.e., focusa (7, T) = Ko(to) | - - - | Kn=1(Tn-1)), for
every pair of distinct constructors in this sum (K3, Kj) (with 0 < i # j < n), Tdistinguishes between K;
and K;. More precisely, T/ m.K; # @, T/ nK; # @ and forany (p;, Ti) € T/ mKiand (pj, Tj) € T/ 7K;j,
there exists a memory path 7t such that either focusa (7, T1) = focusa (7"?, ?j) = (mg as T') with g a
prefix of 71, or focusa (7, T;) = (ci)e, focusa (7T, Tj) = (¢j)¢ and ci # c;.

As a first example, we show that our memory layout specification for lists agrees with their ADT.

Example 3.13 (Agreement for lists). Recall Ay, Tiist and T from our running example:

Alist = {tiist = Tiist, te = Te, tp ?p} Tiis¢ = Nil | Cons((I32, tiist))

% = split ([0 : 1]){ 1 from Nil = _ex[0:1]: (1) }

0 from Cons(_) = &g ({(.Cons.0 as I3p), (.Cons.1 as te)}) =< [0:1]:(0)

To establish agreement between Tjit and T, we first show that both branches agree with their specialized
ADT counterparts. As Tjist is a recursive type, we admit that the type variables forming the recursive
node agree with each other, i.e., agree At (tiist, te)-

¢ Nil branch: we show that agree Alist(Nil, _64><[0:1]:(1)1). All criteria are immediate, since there
are no fragments or splits in this memory type and the high-level type Nil contains no primitive
data and only has one constructor.

e Cons(_) branch: let Tcons = &es ({(.Cons.0 as I3;), (.Cons.1 as tc)}) < [0 : 1] : (0);. We show that
agreeAhst (COHS(< I32/ tlist))r ?Cons)'

Fragment coherence: agree(Is;, Is;) is immediate from the base case of Definition 3.2. The second
fragment corresponds to the recursive node: agree Am(tlistr te).
Branch coherence: immediate since there are no splits in this memory type.

Coverage: the primitive data in this high-level type consist of the I3, subterm at position .Cons.0,
which is covered by the fragment (.Cons.0 as I3), and of all primitive contents of the tj;s
subterm at position .Cons.1, which is covered by the fragment (.Cons.1 as t).

Distinguishability: immediate since there are no sums with more than one constructor in this
type, except below the recursive node.

We can now show that we have agree A (Tiist, Tc)-
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Fragment coherence: immediate since there are no fragments or primitive types outside of the toplevel
split (i.e., shattera (T¢) = @).

Branch coherence: asshownabove, we have agree A (Nil, _64<[0: 1] : (1);) and agree At (Cons({Isp, tiist ), TCons)-
Coverage: the coverage criterion for the full type follows from coverage for the Cons(_) branch.

Distinguishability: T, distinguishes between Nil and Cons, thanks to its split discriminant at position
[0 : 1]. Indeed, we have focus (.[0: 1], s> [0:1]:(1)1) = (1)1, focus (.[0 : 1], Tcons) = (0)1 and
1#0.

A

The rest of this section is dedicated to counter-examples, with memory types that disagree with Tjg.

Example 3.14 (Unit representation). Consider a primitive high-level type I, and the constant memory
type (42);. This memory type does not meet the coverage criterion for I, because no fragment nor
primitive type appears in it. Indeed, this type represents all high-level values as the constant 42 on {
bits. Therefore, the memory type

. . 1 from Nil = _p4 X [0 : 1] : (1)1
split(0: 1) { 0 from Cons(_) = &g4 ({(.Cons.0 as (42)¢),(.Cons.1as t)})<[0:1]: (0) }

does not meet the fragment coherence criterion for Tj;s, because it does not encode its primitive subtype
focus (.Cons.0, Tjist) = I3p. A

Example 3.15 (Non-coverage: tags without payload). A simple tag without payloads, similar to C
enums, is not sufficient to encode arbitrary sum types with non-unit variants, as it does not meet the
0 from Nil = (0)32
1 from Cons(_) = (1)3;
its subterms at positions .Cons.0 and .Cons.1. A

coverage criterion: split (¢) { } does not cover Tt since it does not represent

Example 3.16 (Non-distinguishability). Let T = {(.Cons.0 as Is;), &3 ((.Cons.1 as t))} with the type
variable t mapped to T. It includes the Cons constructor’s subterms in distinct struct fields but provides
no way to distinguish Nil from Cons values. T does not meet the distinguishability criterion for Tjs: we
have T/Nil = {(Nil,7)} and T/Cons(_) = {(Cons(_), 7)}; it lacks a discriminant that differs between Nil
and Cons(_). A

3.2.3 Typing for high-level objects
3.2.3.1 High-level typing judgment

We now define a typing judgment for high-level valuexpressions and patterns, which are accordingly
typed by high-level types (ADTs). Even though this judgment only deals with high-level values and
types, its environments include both high-level and memory-level bindings, so as to ease the definition
of a typing judgment for full expressions which we cover in Section 3.2.3.2. In the following definitions,
the meta-syntactical variable 6 denotes a high-level object which is either a pattern or a valuexpression,
i.e., 0 € ValuExprs U Patterns. The type variable environment A : TyVars — Types U I?p;s maps each
defined type variable to either a high-level or memory type, although we will only use bindings to
high-level types here. Similarly, the typing environment I" : Vars — Types X "fy—\pes maps each defined
variable to a pair of a high-level and a memory type, although we will only consider the former here.
The actual high-level typing judgment is denoted A,T" + 0 : T and defined in Fig. 3.22. For patterns,
which by definition never contain variables, we may omit the typing environment and write A+ p : T.

58



“the high-level term 0 is of type T in the type variable environment A and typing environment I'”

HLTTyPEVAR HLTVARIABLE HLTConsrtaNnT
(t—T1)€eA ATHO:T (x:tasT) el ELITWILDCARD 0<c<2t
T o1 _
ATHO:t A, T+ x.: focus (71, T) ATrce: Iy
HLTTurLE HLTConsTtr
Vie{0,...,n—1}, A T+O;:714 1e{0,...,n—-1} K = K; ATEO: Ty
AT +(B0,...,0n1) : {To, ..., Tn-1) A, T FK(O) : Ko(to) | -+ | Kn-1(Tn-1)

Figure 3.22: Typing judgment for patterns and valuexpressions (0 € ValuExprs U Patterns).

Example 3.17 (High-level typing for lists). Recall the high-level type Ty in the type variable environment
Ajigt from Example 3.1: 1 = Nil | Cons({Izp, tiist)). Consider the high-level value Cons({42, Nil)). We
show that this value is of type Tjist, using the HLConstr, HLTuPLE, HLTTYPEVAR and HLConsTaNT typing
rules.

Now consider the valuexpression x.Cons.0 in the following typing environment: I' = {x : Tjist as Tc},
where T, is one of the two memory types defined in Example 3.4 (here, it does not matter which layout
we pick as long as it agrees with Tjit). We type the valuexpression x.Cons.0 by applying the HLTVARIABLE
rule; since focus (.Cons.0, Tjist) = tiist, we have Ajigr, I' F x.Cons.0 : tyjg. A

Definition 3.3 (well-typed value environments). Let A a well-formed type variable environment and I
a well-formed typing environment in A. A value binding environment o is well-typed in A and T', and
we write A, T + o, if and only if dom (0) = dom (I') and for each (x : TasT) € T, we have A, T'F o(x) : T.

We finally state some early results on high-level typing, which will be used for proving type sound-
ness in Section 3.4. In the following, we assume A, T, o, T € Types and 0 € ValuExprs U Patterns such
that:

EA AET ATEOC ATED:T

Lemma 3.1 (Focusing traverses high-level typing). For any path m, if focus (m, 0) is defined, then focus (7, T)
is defined and we have A, T + focus (7, 0) : focus (7, T).

Proof. Immediate by induction. O

Lemma 3.2 (Accessors and their bound values have the same high-level type). Let x € dom (o) and
7t € Paths. We have A, T + x.7t : T if and only if focus (7, 0(x)) is defined and A, T + focus (7, 0(x)) : T.

Proof. Immediate. |

3.2.3.2 Typing for source programs

We can now type expressions, which represent full-fledged Ribbit programs. By design, each value
introduced in our language is associated with both an ADT and its memory layout. Our typing
judgment for full expressions therefore checks an expression e against both a high-level type T and a
memory type T, and we write A,T" + e : T as T. Its rules are defined in Fig. 3.23. Note that in order to
type function calls, ' now also contains bindings of the form (f : Tas T — T’ as T') which indicate that
the function bound to f € FunVars takes an argument of type T represented as T, and returns a value of
type T’ represented as T
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“the high-level expression e is of type T, associated with the memory type T, in the type variable
environment A and typing environment '

THLTYVar TMTyVar
(t—T1€eA ATre:TasT (t—TeA ATre:tasT
ATre:tasT ATre:Tast
TPivor TLeTBinD
AET  agree,(t1,7T) ATru:T ATre:tasT ATU{(x:tasT)}re :TasT
ATr(u:TasT):TtasT ATrletx:tasT=eine :TasT
TFunCaLL

(f:tasT—> T asT)eml (x:tasT) el
ATHEfxX):TasT

TMATcH
(x:tasT) el
ie{0,...,n—-1} Arpi:T ATrei:TasT {po,---,Pn-1} is exhaustive for T

A, T+ match(x){po = €0 ... Pn-1 = en-1}: T asT
Figure 3.23: Typing judgment for full expressions.

Pivot expressions are precisely where memory types are introduced in an expression. The TPivor
rule ensures that the high-level and memory types of every pivot agree with each other, and that all
memory types are well-kinded. The following immediate result propagates this property to every
well-typed expression:

Lemma 3.3. If A, T+ e: TasT, then A e Tand agree ,(T, 7).
Proof. Immediate by induction on e. o

The TMarcH rule types a pattern matching expression by checking that the left-hand side pattern and
right-hand side expression of each branch are well-typed. It also checks pattern matching exhaustivity:
if the patterns are all of type T, then every possible value of type T must be matched by at least one of
these patterns, using the pattern matching evaluation judgment defined in Fig. 3.26. This is similar to,
for instance, the OCaml compiler, in which pattern matching exhaustivity is checked during typing and
the pattern is completed if necessary. The actual procedure for checking exhaustivity in our TMatcH
rule is left unspecified as there is ample literature on the topic (Maranget 2007; Liu 2016).

Example 3.18 (Typing a program on lists). Recall the type variable environment Ay, the high-level type
Tiist and the memory type T, from Examples 3.1 and 3.4. Consider the following expression:

_ . ~ I Nil — (0: I3 as I3p)

e = let x : Ty as Tp = Cons((42,Nil)) in match(x) { Cons() — (x.Cons.0 : Isp as L)

It is immediate from the definitions of validity, kinding and agreement that the memory type Iz, is valid
and well-kinded, and that it agrees with its high-level counterpart I3;. Following the same reasoning as
Examples 3.11 and 3.12, we show that ?p is valid and well-kinded. We have shown that t;5; and :Ep agree
in Example 3.13. Using HLTTyPeVaR, HLTConstr and HLTWiLbcarD rules, we show that both patterns
Nil and Cons(_) are of type tys. Using the results from Example 3.17 and with T' = {(x : ts as Tp)}, we
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can now type e:

Ayt F :Ep agree, . (Ttist, :Ep) Ajist, @ F Cons({42, Nil)) : Tyt

TPwvot - — =
Alist, @ + (Cons((42, Nil)) : Tiis¢ as Tp) : tiist as Tp

Alist E 132 agreeAhst(Igz, 132) Alistr '+ x.Cons.0: 132

TPwvort —— -
Ajist, ' F (x.Cons.0 : I3p as I37) : I35 as I3

0<0<2%
HLTConSTANT ———M
At F 132 agree, (I, In) Aigt, THO: Inp
TPivor -

(x:tistas Tp) €T
Ajige B Nil : i Ajist F Cons(_) : tiist
Ajist, T F (x.Cons.0 : I3 as I3p) : I3 as Iz Nil > Nil A Vv, Cons(_) > Cons(v)
Nil — (O . 132 as 132)
Cons(_) — (x.Cons.0: I3 as I3p)

TMAaTcH

Ajist, T F match(x) { } :I3p as Isp

Atist, @ + (Cons((42, Nil)) : Tiist as Tp) : tiist as Tp

_ . —~ Nil - (O . 132 as 132) .
= {(x : tiist as Tp)} Ajist, T F match(x) { Cons() — (x.Cons.0: Iy as Isp) | ° I35 as Iz
TLerBinp
Alist, @ + e : Isp as I3n
A

In order to define an evaluation judgment for expressions (in Section 3.3.2), we need a notion of
function environments, usually denoted L, which bind function symbols to lambda-expressions of the
form Ax.e. Such an environment is well-typed iff. each bound expression is well-typed:

Definition 3.4 (well-typed function environments). Let A a well-formed type variable environment and
I' a well-formed typing environment in A. A function binding environment X is well-typed in A and T,
and we write A, T + Z, if and only if dom (X) = dom (') and for each (f : Tas T — 7’ as T) € I with
Z(f) = Ax.e,wehave A\TU{x:TasT}re:T asT.

3.2.4 Typing for memory-level objects

The last typing judgment we need to define in order to define a semantics for our language and prove
its soundness is memory typing. This judgment, denoted A, T, ¢ + e : T and defined in Fig. 3.24, assigns a
memory type T to a memory expression ¢ in the context of a memory store ¢.

As defined in Fig. 3.17, a memory expression e € ETprs is either a memory valuexpression u €

V@E\xprs (whose grammar also covers memory values and patterns), a high-level expression e € Exprs,
or an intermediate let-binding form let x : Tas T = € in e with'e ¢ Exprs. The two latter forms — high-level
expressions and let-bindings — are handled by MemTHLExp and MemTLET respectively, which rely on
the previously defined typing judgment for high-level expressions.

Memory valuexpressions require a store ¢ mapping addresses to memory values, in addition to the
usual type variable and typing environments. We use it in the MeMTADDREss rule, to type pointer
memory values (of the form & (a)) which, unlike pointer expressions (of the form &;¢ (1)), do not
embed the memory value they point to and instead only contain its address. Most of the other rules
are straightforward, defined by induction on T. Note that we ignore the parts of memory types that
are related to the high-level type they represent: for instance, MeMTSpLIT assigns a split type to any
expression which is accepted by the right-hand side of a branch, regardless of whether it actually
represents a value of the adequate provenance. Additional constraints on splits and fragments are
enforced by agreement criteria (Section 3.2.2) and high-level typing judgments (Section 3.2.3).
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“the memory expression ¢ is of type T in the type variable environment A, typing environment I' and
memory store ¢”

MemMTHLExp MeMTLET
It e Types, AT re:TtasT AT, cre:T agree(T,T) ATU{(x:TtasT)}re:(TasT)
AT, cre:T AT,C kletx:TasT=¢ine: T
MeMTTyYPEVAR
(t—T)eA A,T,cre:T MEeMTPRIMITIVE
— AT, ¢ I—(C)g:lz
A,l,cre:t
MemTFission

0020
Oon_1+n1="¢ ViE{1,...,“—1},0120171-%(7,171 ViE{O,...,TL—l}, AT, I—aillgi

AT, ¢k (_E D< [Oilei]Zﬁi):Ie

0<i<n

MEeMTADDRESS

MemMTWoRrD MEeMTCoONSTANT a ¢ dom (C) AT crv:T
AT, CF_g:_g AT, ¢k (c)e: (o) —
AT, cU{am V) + & (a): & (7)
MEeMTPOINTER MeMTCoMPOSITE
AT, cru:T AT, cru:T Vie{0,...,n—1}, AT, ¢ vU; : T
AT, ¢ F&e(ﬁ)I&e(:C) A,F,gkﬁxri:ﬁi:?xri:%
0<i<n 0<i<n
MeMTStrRUCT MeMTFRAGMENT
Vie{0,...,n—1}, AT, c +U; : T AT, cre:T
AT, ¢ F{Uo, ..., un1} {70, ..., Thot) AT,c Fe:(masT)
MeMTSpLIT

T = split(...) Ap,T)ex/_ AT, cre:T
AT, cre:T

Figure 3.24: Memory-level typing judgment. Environments appearing in gray in a rule are irrelevant
to its application.

Example 3.19 (Typing list memory values and expressions). Recall the memory type T, and the memory
value V from Example 3.7:

Tp = split ([0 : 2]){
0 from Nil = 1 x[0:2]:(0)
1 from Cons({_, Nil)) = _a=x[0:2]:(1)2=[2:32]:(.Cons.0as I3p)
2 from Cons({_,Cons(_))) = &g ({{(.Cons.O as I33), (.Cons.1.Cons.0 as I33), (.Cons.1.Cons.1 as tp)}})
<[0:2]: (2)

V=_e4x[0:2]:(1)2<[2:32] : (42)32
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We show that Vs of type Tp:

MeMTPrIMITIVE
MemMTWorD MeMTCONSTANT Ajit F (42)3 : I3
MeMTFRAGMENT
Alist F _64 © _64 Ajist F (1)2 : (1)2 Ajigt + (42)32 = (.Cons.0 as I3p)
MeMTComprosITE —

Alist FV i _ga><[0:2]:(1)2<[2:32]:(.Cons.0 as I3;)

(Cons({_,Nil)), _ea > [0:2]: (1)2<[2:32]: (.Cons.0as I)) € Tp / _
MEemMTSpLIT

Ajigt -V : Tp

Using results from Example 3.18 and the MemTLer rule, we can then show that the memory expres-
sion from Example 3.8'¢ = let x : Tjigt as Tp =V in (x.Cons.0 : I3; as I3) is of type I3,. A

The MemTFission rule is slightly unusual, in that it assigns a primitive type I, to a composite memory
value. Its purpose is to allow the interpretation of “mangled” integer values — that is, words which
are entirely filled with integers on disjoint bit ranges — as integers, even though their shape (composite
word) does not immediately match that of a primitive type.

Example 3.20 (Mangled integer value). Consider the high-level primitive type of 64-bit integers I¢4,
together with the following memory type which splits it into two 32-bit pieces:

64> [0:32]: (.[0:32] as I3p) =< [32:32] : (.[32: 32] as I3p)
Using this layout, the high-level value 6x111100002222 is represented as the following memory value:
_ea =< [0:32] : (0x2222)3; =< [32 : 32] : (Ox1111)3;

The TFission typing rule lets us assign the type Ig4 to this value to reinterpret it as the direct 64-bit
integer encoding (6x111100002222)c4. A

In practice, this rule lets us capture memory layouts that split primitive values into multiple pieces
scattered across the memory type, such as the RISC-V layout presented in Section 2.5.

Now that we have defined well-typed memory values and expressions, we can extend this judgment
to their environments. We define well-formed typing environments which, similar to well-formed type
variable environments, apply agreement criteria to every bound type pair.

Definition 3.5 (well-formed typing environments). Let A a well-formed type variable environment. A
typing environment I' is well-formed in A, and we write A & T, if and only if:

e for each (x : Tas T) € I, we have A £ Tand agree , (7, 7T);
e foreach (f: TasT— v asT) € I', we have A k£ T, agree , (1,7), A E T and agree , (7, 7).

Similar to high-level variable binding environments, a memory value binding environment © : Vars —
Values is well-typed iff. every bound value is well-typed.

Definition 3.6 (well-typed memory environments). Let A a well-formed type declaration environment,
I a well-formed typing environment in A and ¢ a memory store. A memory value binding environment
0 is well-typed in A, T and ¢, and we write A, T, ¢ + 0, if and only if dom (0) = dom (') and for each
(x:tasT) e, wehave A,T,CFG(x): T.

We finally state an immediate result on memory typing which will be used for proving type soundness
in Section 3.4.

Lemma 3.4 (memory focusing traverses memory typing). Let A a well-formed type declaration environment,

I a well-formed typing environment in A and ¢ a memory store. Let v € Values and T € Types such that
A,T, ¢ +V:7T. Forall @ € Paths such that focus (7, T) is defined, we have A, T, ¢ + focusc (7, V) : focus (7, T).

Proof. Immediate by induction. ]
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3.3 Semantics

Now that syntactical constructs and their typing and validity judgments have been formalized, we are
finally able to define a two-tiered operational semantics for our language that takes both high-level and
memory constructs into account.

3.3.1 High-level expression evaluation

The small-step evaluation judgment for high-level programs, defined in Fig. 3.25 and denoted
Z+T,0,e = 1T",0, ¢, operates on triples consisting of a typing environment I, a binding environment
o mapping variables to valuexpressions, and an expression e € Exprs. It is deterministic and its normal
forms are pivot expressions of the form (u : T as T). The function environment £ maps function names
f € FunVars to lambda-expressions of the form Ax.e. We assume that variables have been renamed in e
so that they are bound at most once, regardless of scope.

HLEFunCaLL
(x:tasT) el (f:tasT—> T as7T)eml (x—uweo (f—>A.e) el

YrT,0,f(x) > TU{x :TtasT},oU{x — u},e

HLELETSTEP
SrT,0e—=T,0,¢

SrT,o,letx:TasT=einey—1T",0,letx:tasT=¢ in g

HLELETBinD
YrT,oletx:tasT=(u:7TasT)ine—>TU{x:TasT},oU{x— u},e

HLEMaTcH
x € dom (o) ie{0,...,n-1} ok pi > o(x) Vje{0,...,i-1},0F pj ¥ o(x)

Z+T,0,match(x){po > € ... Pn-1 = en-1} — T, 0,¢€;

Figure 3.25: High-level expression evaluation.

Note that reducing an expression with < until a normal form is reached does not yield a value,
but a (typed) valuexpression which may be reduced further by applying substitutions from the bind-
ing environment o. These two layers of evaluation are separated so that it is possible to establish a
correspondence between high-level and memory-level evaluation, shown in Section 3.3.2.

The HLEMarcH rule relies on an ancillary big-step pattern matching judgment, denoted > and
defined in Fig. 3.26. Given a pattern p, a valuexpression or pattern 0 of the same type and a binding
environment o, we write o +- p > 0 if p matches 0 using o to substitute variables, and o + p % 0 otherwise.
0 may be omitted if 0 is a value or a pattern.

— “the pattern p matches the high-level term 6 in the binding environment ¢”

o+ p > focus (7, v) vVie{0,...,n=1}, o-p;i > 6;
orF_D>0 okFcb>c
cU{x—Vv}+kp>xm oF {po,.--,Pn-1) > {O0,...,0n-1)

orFpr>6
o+ K(p) > K(9)

Figure 3.26: High-level pattern matching judgment with 0 € ValuExprs U Patterns
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Example 3.21 (High-level evaluation with lists). Consider the following expression, taken from Exam-
ple 3.18:

. ~ . . Nil — (0 : 132 as 132)

let x : Tyis¢ @s Tp = Cons((42, Nil)) in match(x) Cons() — (x.Cons.0: Isp as L)

It creates a value of type T represented using the T, layout defined in Example 3.4. It then matches it
against patterns and extracts its first element. We reduce it to a pivot expression with the two following
high-level evaluation steps. We omit the empty function environment, merge typing and binding
environments, and indicate which elements are affected by a reduction step by highlighting them in the
corresponding color.

= P— Nil — (0:Ispasl1
0 =0, let x : Tt as Tp = Cons((42,Nil)) in match(x) { Cons( ) — EX C(i;s 0 '322 as Ixp) }
—( HLELETBIND )
Y X Nil — (0 : 132 as 132)
o={ x : Ty as Tp — Cons ((42,Nil)) }, match(x) Cons() — (x.Cons.0: Iy as Isp)

< ( HLEMATCcH )

0 = {x : Tjist as Tp — Cons((42,Nil))}, (x.Cons.0 : I, as I3p)

The second step (HLEMartch) leads to the expression on the right-hand-side of the Cons(_) pattern
matching branch, since we have Nil % Cons({(42, Nil)) and Cons(_) > Cons({42, Nil}). A

We now state and prove the soundness of our semantics w.r.t. the high-level typing judgment defined
in Section 3.2.3.

Theorem 3.1 (high-level type soundness). Let A, X, T, o, T, T and e such that:
EA AET ATEL ATro AET agree (T, T) ATre:TasT

We have the two following properties:

Preservation: forall 7, o/, ¢’ suchthat L+ T,0,e — [, 0’,¢’, we have:

AET AT FE AT RO AT re :tasT

Progress: either e is a pivot expression (normal form) or there exist I, o’ and e’ such that L + T, 0,e — 7,0/, €.
Proof. By inductionon A,T'+e:TasT.

e If Tor Tis a type variable t, we refer to the case corresponding to A(t).

e Ife = (u: Tas7),itis anormal form w.r.t. <.

e If e = lef x = €’ in ep, there exist T and T such that agree(t,7), A,T + e : T asT and A, Ty + ep :
TasTwherelp =T U{(x: T asT)}.

- Ife’ = (u: v as T), we have agree(t’,7) and A,T + u: 7. Let 0p = 0 U {x > u}. We have
A, Ty + og and exactly one evaluation rule applies: I', o, e < T, 09, €.
— Otherwise, we use the induction hypothesis for I', o and e’.
Progress: since e’ is not in normal form, there exist [/, 0’ and e” such that L + T, 0,¢’ —
[",0/,¢” andwehave X +T,0,e — I, 0/, let x = ¢” in e.
Preservation: the only applicable evaluation rules are of the form X + ', 0,e < [, 0’, let x =
e’ inewithX+T,0¢e —>1T1,0,¢”. Wehave AT/, AT+ X, AT+ 0o and A, T +
e” 7 asT. LetT) =T"U{(x: 7 as T)}. Assuming that all variable symbols are
unique, since we never remove bindings from I', we have A, T + e : T as T, hence
AT/ bFletx=¢"iney:TasT.
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e If e = f(x), there exist T, and Ty such that agree(tx, Tx), (x : Tx as Tx) € ['and (f : (T« as Tx) —
(tasT) € T. Let(A.¢)) = Z(f), " = TU{(X' : Tx as Ty)} and ¢’ = o U {x’ — o(x)}. We have
(well-typed environments) A, TV + e : Tas T, A, T + o(x) : T(x), hence A, T + ¢/, and exactly one
evaluation rule applies: L + T, 0, f(x) — I, 07, €’.

e If e = match(x) {pi — e —>| 0<i<g n}, there exist Tx and Ty such that agree(ty,Tx), (x :
TxasTx) €, AT Fpi:Tcand A, T + e; : Tas T for each i, and at least one pattern matches o(x).
Let i = argmin{p; > o(x)}. Exactly one evaluation rule applies: I',0,e < T, 0, e; and we have
ATFrei:TasT

O

3.3.2 Memory-level evaluation

The evaluation judgment defined in the previous section reduces all high-level language constructs,
but completely ignores memory-related elements, stopping at pivot expressions. We now formalize
a memory-level semantics for our language, which handles high-level constructs (matches, let-bindings
and function calls), but also reduces pivot expressions to memory values. By doing so, we also define
which memory values “properly represent” a high-level value according to a given memory layout —
they correspond to the result of fully evaluating this initial pivot expression. For instance, we reduce
the following pivot expression to its representation as a memory value in 6 memory-level steps:

(Cons((42,Nil)) : Tjist as Tp) Q—>,6n 64> [0:2]:(1)2<[2:32]:(42)32
Let us first informally introduce some key evaluation steps on our running example.

Example 3.22 (Memory-level evaluation on lists). Consider the following memory-level evaluation
sequence, which reduces the expression e from Example 3.7 to a memory value:

@, let X : Tiigt as Tp

(Cons((42, Nil)) : Tiist as Tp) in match(x) { il = 0:lpasly) }

Cons(_) — (x.Cons.0: I3 as I3p)
., (ESpLiT)
let x : Tjigt @s Tp =
@, (Cons((42,Nil)) : Cons({Is,Nil)) as _¢s < [0:2]: (1)2 =< [2:32]: (.Cons.0as I3))
in match(x){...}
+3_(EComposiTE, EWORD, ECONSTANT)
let X : Tyist @S Tp =
@, _ea=<[0:2]: (1) »<[2:32]: (Cons({42,Nil)) : Cons((Is>,Nil)) as (.Cons.0 as I3,))
in match(x){...}

>, (EFRAGMENT)
@, let x : Tiist as Tp = _ea < [0:2] : (1)2 < [2:832] : (42 : I35 as I3p) in match(x){...}
., (EATom)
@, let x : Tiist as Tp = _ea =< [0: 2] : (1)2 < [2: 32] : (42)3; in match(x){...}
s>, (ELETBIND )
hlgsti)esvel {x :Tistas Tp = _ea < [0:2] : (1)2 < [2:32] : (42)32 }, match(x) { 1(\2)1ns O : ((?c.‘CIZZrl:.S()I??ZZ as Inp) }
1 (EMATcH )
{m: Tt as Tp = _ea < [0:2] : (1)2 < [2: 32] : [[@2)33}, (RACORSO : I3; as I37)
+ m (EVAREGEHS))
(x:. ¥ :Inasly - (42)x), (<. : I as Ix)
> (EVARAGEESS)

{x:...x ..} @28

Our memory-level evaluation judgment, denoted +», defines a traditional call-by-value semantics
for high-level constructs. For instance, we evaluate let-binding expressions by first reducing the let-
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bound expression to a normal form, then binding it in a value environment and continuing eval-
uation. However, unlike <, the normal forms of +» are memory values, rather than pivot ex-
pressions. Pivot expressions are precisely where their behaviors begin to diverge. The + reduc-
tion steps from a pivot expression to a memory value are local to this particular expression; we
temporarily “forget” about high-level constructs and instead create concrete memory structures, us-
ing the memory type as a guide, until a memory value is reached. We label these memory-level
evaluation steps with an m. On this example, we first evaluate the let-bound pivot expression
(Cons((42, Nil)) : Tiist a5 Tp). Its informal meaning is “produce a memory value that represents the
high-level value Cons((42, Nil)) (which is of type Tjs) according to the memory layout T, ”. Its evalua-
tion is driven by its memory type Tp and yields the memory value _gg &< [0: 2] : (1)2 =< [2: 32] : (42)3; in
six e steps (ESpLit, EComposite, EWoRrD, EConstanT, EFRAGMENT, EATOM) Which we will detail in the
rest of this section.

Once the expression is fully reduced, +> resumes evaluation of the surrounding high-level constructs,
going back and forth between memory- and high-level evaluation until a single memory value is reached.
On our example, we bind the previously computed memory value to x in the environment with a
ELETBIND step, then evaluate the pattern matching expression by selecting the appropriate branch with
a EMartcH step. Both of these rules have a direct counterpart in the high-level semantics <. We label
these high-level reduction steps with an h.

Finally we reach the pivot expression (x.Cons.0 : I3y as Isp). Once again, we must reduce it to a mem-
ory value. Unlike the previous pivot expression, which contained a high-level value (Cons({42, Nil}))),
this pivot contains an accessor x.Cons.0 instead. Its informal semantics is “retrieve relevant data from
the memory representation of x to encode its subterm at position .Cons.0 as a 32-bit integer”. As hinted
in Section 2.5, even though this task is trivial in many situations, such accessors can present significant
challenges with some combinations of layouts. Here, we must bind an intermediate value x” and perform
two +>., steps to get the desired piece of data. The final result is the memory value [([@2)53.

Intuitively, we can see that this reduction strategy is “coherent” with the result of the < evaluation
sequence from Example 3.21, which is the pivot expression (x.Cons.0 : I3, as I3») with x bound to
Cons({(42,Nil)): (42)3, is indeed the memory representation of focus (.Cons.0, Cons((42,Nil))) = 42
according to the memory layout I3;. Section 3.4 will formalize and prove this equivalence between
high-level and memory evaluation results. A

A memory-level evaluation state consists of a type environment I', a memory value environment o,
a memory store ¢ and a memory expression to evaluate e. We denote an evaluation step in the type
variable environment A and function environment ¥ with: A,Z + I',G,¢, e + I',0/,¢’,¢. When A and
I are immediate from the context, they may be omitted from the judgment.

As shown in Section 3.1, memory expressions include both high-level constructs — pattern matching,
let-bindings and function calls — and memory-level structures. A “full” «» evaluation sequence reduces
a high-level expression to a memory value; memory expressions capture all intermediate stages that
may appear during this process.

The full evaluation judgment s is the union of +>}, which handles high-level constructs in e, and
+>m, which follows memory types to create concrete memory structures. Its normal forms are memory
values. <+ rules, defined in Fig. 3.27, are similar to <= and reduce arbitrary expressions to pivot
expressions, while >, rules, defined in Fig. 3.30, reduce pivot expressions to memory values. In both
definitions, environments appear in gray in a rule when they are unchanged and unused by this rule.
Note that the semantics defined by + is not equivalent to the sequence of < and +>,; high-level (+4)
steps may be interleaved with memory-level (+1,) steps (on different subexpressions). While defining
+> as the sequence of — and +, is possible, this behavior is not coherent with that of the compiled
program, which we describe in Chapter 5. Furthermore, +, is non-deterministic, so that it is flexible
enough to easily match the behavior of compiled programs.

3.3.2.1 From high-level constructs to pivot expressions

The subset of +» handling high-level constructs, denoted +»1, and defined in Fig. 3.27, is mostly similar to
the high-level evaluation judgment <. The only major difference between the two is pattern matching
evaluation. In <, variables are bound to high-level valuexpressions, and we use the high-level pat-
tern matching judgment > to determine whether a given pattern matches a high-level valuexpression.
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However, in +, variables are bound to memory values, which cannot be directly compared to high-level
patterns.

The rule EMarcH relies a notion of memory-level pattern matching, based on memory patterns as
defined in Section 3.1. The main idea is to first process each high-level pattern into a list of memory
patterns matching exactly those memory values that properly represent a high-level value matched by
the high-level pattern. We then use a memory-level big-step pattern matching judgment to determine
whether one of these memory patterns matches the memory value under scrutiny.

Let us first focus on the pat2mem function defined in Fig. 3.28, which lowers a high-level pattern to
an equivalent list of memory patterns according to a given memory layout °.

ELETSTEP
AXrT,0,¢ ey I,0,¢,¢

ASFT,0,¢letx:tasT=¢eines, 7,0, letx:TasT=¢ ine

ELEerBinD
ALZET,0, ¢ letx:tasT=vinewp TU{x:TasT},oU{x—> 7V}, ¢ e

EFunCALL
(x—>V)eo f>A.eeX

AZETT, ¢, f(x) »p TU{X :T(x)},0U{xX >V}, ¢ e

EMatcH
(x:tasT) €T 1e{0,...,n-1} A(p,p) € pat2zmem , (T, pi). <+ p » 0(x)
Vj€{0,...,i—1},¥(p’,p’) € pat2mem (T, p;j), S F P’ ¥ O(x)

A~ +T,0,¢,match(x){po — €y ... Pn-1 = en-1} ©n I,0,< e

Figure 3.27: Memory-level expression evaluation, high-level constructs +>1,. Environments appearing
in gray in arule are irrelevant to its application.

pat2mem , {

_, T — {Ca)}

c, I — {(c,(0)o)}

p,t — pat2mem , (p, A(t))

Pt — {(p,_0)}

p ., (c) — {(p, (0)0)}

P, & (7) — {(p", & (P)) | (p",P) € patzmem,, (p,T)}

(p’,p) € patzmem, (p, 7)
P, T cienTi T — (7P P¥ocicn Ti 1 P1) | (Pi,Pi) € pat2mem, (p, Ti)
P’ =p' MpoM...Mpn-1
(pi,Pi) € pat2mem (p, Ti) }

7 {?0/'-'/?11—1}} — {(P,/ {50/-"/511—1}})

P P =poM...Mpn-1
p, (mas7) — {(p[m < p],P) | (", P) € patzmem 4 (focus (m,p), T)}
~ . ~ (Po, To) € T/ _ }
, T=split(... t2 T ,
P split(...) —>U{pa mem, (p b)’ b = p P
}

Figure 3.28: From high-level to memory patterns, using the type variable environment A: pat2mem

Given a high-level pattern p and a memory type Tin the type variable environment A, pat2mem 4 (T, p)
produces a set of branches (p’,p) consisting of a refined high-level pattern p’ and of its equivalent

Spat2menm is also the first component of pattern matching compilation; see Chapter 4.
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memory pattern p. The goal is to decompose the pattern into finer (memory) branches. Each branch
characterizes a subset of values matched by p by the shape of their memory representation according
to T. Informally, pat2mem satisfies the following specification: for any high-level value v matched by
p, Given (p’,p) € pat2mem , (T, p), p’ is a more precise version of p and there exists exactly one branch
(p’,P) such that p’ matches v and p matches its memory representation according to T. We state and
prove the correctness of pat2mem w.r.t. this specification in Section 3.4. More precisely

e If p is a wildcard pattern, or Tis a constant or empty word type, all values should be accepted. We
return a single branch (p, p) where p matches all memory values of type 7.

e Primitives and fragments are straightforward by replicating their intended semantics. Exactly one
memory pattern matches memory values of type I that represents c: (c). For a fragment (1 as 7),
we capture memory values representing the subterm at .7 of a value matched by p according to 7.

® Struct and composite word types aggregate multiple fields together. We recursively explore each
of these fields, yielding a list of branches for each of them. Possible shapes for the memory values
we want to capture correspond to a struct or composite word of the same general shape, with
the same number of fields, in which each field belongs to its branch but also all branches in this
combination must be compatible with each other. To this end, we use pattern intersection and only
keep branches for which the intersection between all fields’ refined patterns is defined.

® Splits are where p may be forked into multiple subpatterns. Indeed, a high-level pattern may
match valuexpressions whose provenances are incompatible — for instance, Cons(_) matches both
Cons({x, Nil)) and Cons({x, Cons(_))). In this case, we must explore all branches of the split whose
provenance set contains at least one provenance matched by p, yielding multiple incompatible
branches/refined patterns. Actually, we process all splits at once in the definition: we specialize T
according to p in which constants have been replaced with wildcards, to obtain provenances, and
thus branches.

Example 3.23 (Memory patterns for lists). Our running example features two patterns of type T
Nil and Cons(_). According to the memory layout T,, Nil translates to a single memory pattern,
while Cons(_) yields two memory patterns corresponding to the two branches Cons({_, Nil)) and
Cons({_, Cons(_))) in the toplevel split. In Example 3.22, we first compute the following patterns to
evaluate the pattern matching construct:

pat2mem, (Nil, Tp) = {(Nil, _g4 < [0: 2] : (0)2)}

(Cons((_Nil)) , _ea<[0:2]:(1)2<[2:32]: ) }

pat2zmem, (Cons(L),Tp) = { (Cons({_,Cons(L))) , &es ({_32, 32, _ea}) = [0:2] : (2)2)

A

We can now define the big-step semantics of memory patterns with the relation » in Fig. 3.29. We
write ¢ F p » V if the memory pattern p matches the memory value v considered in the store ¢, and
< F P ¥ Votherwise. Similarly to the high-level pattern matching judgment >, it proceeds by induction
on p and v, with wildcards accepting any (appropriately sized) memory value. The only subtlety is the
MFission rule which, similarly to the TFission typing rule, allows recognizing mangled primitive values
as integer values. Such cases arise from memory types with particularly mangled primitives such as the
RISC-V layout.
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— “the memory pattern p matches the memory value Vv in the memory store ¢”

MWILDCARD MPOINTER

M < ¢ MConNsranT agdom(c) crprv
S SF(c)e ™ (c)e — —
Ch_ P>V cU{a—~V}F& (p)» & (a)
MFission
op=0 on-1+4ln1=1¢ Vie{0,...,n—1},01=01_1+fi_1
{ bits

Vie{0,...,n-1},ci£cAD0...01...10...0  Vie{0,...,n—1},cF (ci)e, » Wt
¢y bits o; bits

cr (e _¢ P& [oi: 4] : 9y

0<i<n
MCoMPOSITE MSrtruCT
cHpr»r VvV  Vie{0,...,n—-1},c+pi» Vi Vie{0,...,n—1},crHPi» V;
Cl—ﬁ >< Ti 251 (Y >< Ti : Vi Ck {50,...,]’5“_1}} > {Go,...,vn_lﬁ

O0<i<n O<i<n
Figure 3.29: Memory-level pattern matching judgment.

Example 3.24 (Memory-level pattern matching for lists). Recall the following expression from our
running example:

e = let x : Tyt as Tp = Cons((42, Nil)) in match(x) { Nil — (0:Ipas Is) }

Cons(_) — (x.Cons.0: I3 as I3p)

Its reduction sequence, shown in Example 3.22, contains the following EMarcH step:
—~ Nil — (0:Ixpasl
{x:Tistas Tp > _ea =< [0:2]: (1)2 < [2:32] : (42)32}, match(x) { Cons() — EX - ;; i .332 - }

L {x st @S Tp > _ea =< [0:2] 1 (1)p < [2:32] (42)32} ,(x.Cons.0 : I3 as I3p)

To apply the EMarcH rule here, we first compute the memory patterns obtained with pat2mem in
Example 3.23. We then take the first pattern matching branch for which a memory pattern matches
the memory value bound to x. Here, we take the second (Cons(_)) branch. Indeed, the only memory
pattern associated with Nil does not match the memory value under scrutiny, while the one associated
with the first subpattern of Cons(_) (Cons({_, Nil))) does:

64 [0:2]: (0)2 ¥ _6a><[0:2]: (1)2 < [2:32] : (42)32

64> [0:2]: (1)< [2:32] 1 3 > _a < [0:2]: (1)2p< [2:32] : (42)32

3.3.2.2 From pivot expressions to memory values

Let us now focus on %>, rules, which define the actual memory representation by actually lowering pivot
expressions down to memory values. The difficulty of this lowering is that we must purposefully break
type preservation during evaluation, as we are in the middle of building the memory representation of
a given high-level value. This yields complex rules with intermediate steps where the local structure
seems broken, but makes sense in the context of the global memory representation. In particular, for
pivot expressions (u : T as T), we do not necessarily have agreement between t and T. To keep track of
such global invariants and aid the proofs later on, we will add additional artifacts in purple, which do
not affect the outcome of evaluation. The first proof artifact is an additional environment o. It is only
used in accessor-related rules, which we will detail later.
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The main artifacts appear in pivot expressions: in + rules, they are of the form (u : T as T= T,.7),
rather than (u : T as T). The fourth element T,.7 keeps track of the latest well-typed state in the current
evaluation sequence, starting with T.e which is well-typed at the beginning of evaluation. For instance,
if T is a pointer type & (T'), we progress to a pivot which focuses on the pointee while keeping the
same high-level valuexpression and type, resulting in an ill-typed state. We keep track of this step by
appending a pointer dereference to 7, yielding the following pivot expression: (u : T as T'= T,.7.+). The
appearance of ill-typed states in inevitable, given that we define our semantics as a sequence of tiny
steps, which by design model unfinished memory values. We reset T,.7 at fragments, which correspond
to explicit synchronization points between high-level and memory types. More generally, we maintain
the following invariant: in every pivot expression (u : T as T= T,.7), we have focusa (7, T,) = T and
agree , (T, Ty).

We now look at each rule in Fig. 3.30 one by one, starting with the two in Fig. 3.30a. Memory
contexts, denoted C indicate the position of a hole O within a memory expression. They are only used to
state the ESusStep rule, which covers evaluation steps on nested sub-expressions, both within memory
structures and as let-bound expressions. Note that contexts do not mandate an evaluation order. The
rule EAppress finalizes the construction of memory values by lifting inlined pointer contents outside of
the memory valuexpression and into the store, using a fresh address.
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(a) Memory contexts and non-pivot rules
Clo]=z=0o| & (Cla])| Cla]xb:u|uxb:Clo]]| {i,..., 1, ClO)u,...,u} | letx:tasT=C[O] ine
ESusStEP EADDRESS
a ¢ dom (<)

A/ Z F r‘/ 0-/ 6:/ (:/ﬁ q_)m r// 0-,/ 8// C’, ﬁ/
A L+T,0,0,¢ Clu] »m I7,0,0, ¢, C[U] ANZET,0,0,¢8& V) om 1,00, cU{arV}, & (a)

(b) Memory structures

ETyrPeEVAr
(t—TeA A2 +T,0,0,¢,(W:TasT= Tu.7) o, 17,07,0,¢,€

A, +T,0,0,¢,(u:Tast=T,. ) ©om [7,0,0,¢,€

EConNsTANT
ATZET,0,0,¢,(u:Tas(c)e=Tx.T) =m 1,0,0,¢,(c)e

EWorp
ALET,0,0,¢,(W:Tas_¢=Tx.7) >m 1,0,0,<, ¢

EPOINTER
ALET,0,0,¢,(u:Tas & (T)=Tw. @) ©m 1,0,0,¢ & (U: Tas T= Ty.7.%))

EComprosiTE
T =TTy... " Thot Vie{0,...,n—1},m =71y
AL+T,0,0,¢,(u:TtasT D< TiITi= Tx.T) P 1,0,0,¢, (W: TasT= Ty.7T) D< Ti:(W:TasTi= Tu.7i)
0<i<n

0<i<n

EStrUCT
Vie{0,...,n—1}, U = (W: TasTi= Tx.7.1)

ALrT,0,0,¢,(u:tas {To,...,Tha1} =Tw.7) om 1,0,0,¢, {U, ..., Un1}

(c) Synchronization between high-level and memory types

ESpLiT
T=split(...) (p,T)eT/_ ATru:t/p 7T, =77 7]
= T,.70)

A, FT,0,0,¢,(w:TasT=T,7) ©om T, 0,0,¢,(u:t/pasT

focus (71, 1)
any inhabitant of the type focus (7, ) otherwise

’

EFRAGMENT
{ if defined

ALET,0,0,¢, (u:Tas(masT)= T @) ©m I,0,0,¢ (U : focus (71, T) as T= T.¢)

Figure 3.30: Memory-level expression evaluation, computation of memory values. Environments ap-
pearing in gray in a rule are irrelevant to its application. Purple elements are only useful for stating

and proving type soundness.
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(d) Subterm extraction

EVArRAccEss
Ty, (x:1casT) €T

AL vT, 0,0, ¢,(xe:TasT=Tx.7) o [, 0,0, ¢,0(x)

EVarFocus
(x:TxasTy) €T (Pv, Tb) € Tx/ _ AT, cro(x): Ty
(7Ts > 75 as Tr) € shatter(Ty) T¢ £ focus (75, Tx) V¢ £ focusc (7, 0(x)) x¢ fresh symbol

A,~ +T,0,0,¢, (x.(75.71) : T as T= Ty.7)

MU {(xf:TrasTr)}, o U {xs — x.7¢}, 0 U {xs > Vi), ¢, (xf.7T: TaS T= Ty 70)

(e) Primitive types
EArom
AT, 0,0,¢ (c:tasy=Tem) om [,0,0,¢, (c)e

EFission
Vie{O,...,n—l},ri:[01:13-1] 0020 0n—1+€n—l:£ Vie{l,...,n—l},oi_l +€i—l:01

ALET,0,0,¢, (u:tas ;=T o, [,0,0,¢, ¢ D< i : (focus (.ri,u) : focus (.1, T) as Iy, = Tu.7.14)

0<i<n

Figure 3.30: (continued). Memory-level expression evaluation, computation of memory values. Envi-
ronments appearing in gray in a rule are irrelevant to its application. Purple elements are only useful
for stating and proving type soundness.

The goal of all remaining rules is to reduce a given pivot expression (u : T as T) to a memory value
representing u using the layout T. This task relies on four kinds of rules.

* The most straightforward rules process memory structures such as structs, composite words or
pointers. These rules, defined in Fig. 3.30b, inspect the shape of T and distribute u (and T) over
its components. The result is a memory valuexpression in which the root memory construct has
been lifted from the type to the value itself. We then proceed by induction on each component of
the memory structure.

¢ As seen before, memory types do not only consist of memory structures. Some key constructs act
as synchronization points between an ADT and its memory layout, namely fragments, splits. We
handle such memory types with ESpLitT and EFraGMENT, defined in Fig. 3.30c.

— For splits, we proceed by specializing the memory type, then selecting the branch whose
provenance matches the considered valuexpression. There always exists exactly one such
branch if the valuexpression is well-typed.

— The semantics of a fragment type (7 as T) is “represent the subterm at position 7t within
the high-level value according to the memory layout T”. Accordingly, EFRAGMENT creates
a new pivot expression by focusing the high-level valuexpression and type on 7t and using
the specified memory type T. While focus (7, 7) is always defined owing to the fragment
coherence agreement criterion, focus (7r,1) may not be. Indeed, it is technically possi-
ble for fragments to refer to any high-level constructor T, even outside of a split branch
that specifically restricts possible values to this constructor. For instance, the memory type
{{split(a) { (1) ZZE BA z E(l)iz },(.A as I33),(.B as 132)}} is well-kinded and agrees with the
high-level type A(I3;) | B(Is2), yet the subterm at position .B is undefined for values of the
form A(v) and vice-versa. In this case, we simply use any inhabitant of T as the new val-
uexpression — given our ADT grammar, it is easy to find such a value for any high-level

type.
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¢ Unlike high-level values, for which we can build a memory value by induction on the memory
type using the previous two kinds of rules, evaluating an accessor x.7 according to the memory
type T involves a combination of two tasks:

- extracting the parts relevant to 7t from the memory representation of the value bound to x;

- rearranging these parts to fit the desired layout 7.

The first task is performed by two bound value extraction rules, defined in Fig. 3.30d. In the simplest
case (handled by EVarAccEss), 7 is empty and the existing memory representation of x follows 7.
In this case, the desired memory value has already been computed and stored as o(x). Otherwise,
we use the EVarFocus rule to inspect the layout of x, denoted Ty, in order to find the parts of o(x)
that are relevant to x.7t. More formally, we are looking for a fragment (or a primitive type) which
represents the subterm at position 7 (or a prefix of 7) within x. To this end, we use the shatter
operation defined in Fig. 3.13 to gather all fragments and primitive types in Ty, then filter these to
keep prefixes of 7. Before using shatter, we must remove splits from Ty by specializing it for the
wildcard pattern _, yielding a set of branches consisting of a more precise pattern and a split-free
memory type. Assuming that (x) is of type T, there exists at least one branch (py, Tp) such that
0(x) is of type Tp (and the original high-level value represented by o(x) matches py). Conversely,
no memory value can belong to more than one specialized type, owing to the distinguishability
agreement criterion. Therefore, there exists a unique branch that matches o(x); we select this
branch and shatter its memory type to search for a suitable fragment (or primitive type). If such a
fragment exists, the EVarFocus rule applies: we create an intermediate value binding this part of
0(x) and attempt to extract the desired piece of data from this new memory value. We keep also
track of this intermediate value in the high-level binding environment o, which will only be used
for proofs.

The second task is performed when neither of these two rules apply: we have to break down T
using other rules. Termination relies on the coverage agreement criterion: Ty must represent the
subterm .7tin some form, although it may break it down into smaller pieces represented at different
locations. Therefore, this process will eventually lead to an accessor for which the EVARAccEss
rule applies. The same problem is encountered during compilation of valuexpressions, and we
solve it in a very similar way in our compilation approach, as we will see in Chapter 5.

¢ Primitive (integer) types I; are handled by two different rules, defined in Fig. 3.30¢, depending
on the high-level valuexpression. EAtom handles primitive constants by encoding them on ¢ bits.
While primitive types are usually “atomic”, in that there is usually no need to decompose them
further, this is not always the case. For instance, consider the pivot expression (x.¢ : Igs as Igs)
with the typing environment {(x : Iss as {(x.[0 : 32] as Is2), (x.[32 : 32] as I32)})}. Here, x refers to
a 64-bit integer whose two 32-bit halves are represented as separate fields in a struct. Since x.¢ is
not a constant, EAtom does not apply, and since no toplevel primitive type or e-fragment appears
in the memory type used for x, neither do EVarRAccess and EVarFocus. Instead, we must extract
both 32-bit fragments and recombine them into a single 64-bit integer. EFission lets us break
down the primitive type Is4 into a combination of two I3; parts, yielding the following expression:
64> [0:32] 1 (x.[0:32] : Inp as I3p) =< [32 : 32] : (x.[32 : 32] : I3z as I3p). Both of the two new pivots
that appear in it can be reduced with EVarFocus. More generally, EFission allows to partition a
primitive type into any number of consecutive bit ranges, so as to rebuild an integer value piece
by piece when necessary. Its counterpart is the memory typing rule TFission, which interprets the
resulting composite words as proper integers.

Example 3.25 (Legal, but temporarily ill-typed expression). Recall the memory-level evaluation sequence
from Example 3.22. We focus on the first let-bound pivot expression, and extend it with a fourth field
initialized with Ty,.¢ since this pivot is well-typed:

(Cons((42,Nil)) : Tjist as Tp = Tp.€)

Let
To = _ea><[0:2]: (1)2<[2:32] : (.Cons.0 as I35)
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The evaluation sequence for this pivot is:

(Cons((42,Nil)) : Tjist as Tp= Tp.€)
> (Cons({(42,Nil)) : Cons({Isp, Nil)) as Tp= Tp.¢) (ESpLiT)
s> (Cons({(42,Nil)) : Cons({Is2, Nil}) as _g4= Tp.—[0 : 2].=[2 : 32])

=<[0: 2] : (Cons({42,Nil}) : Cons({I3», Nil}) as (1),= Tp.[0 : 2])

=<[2:32] : (Cons({42,Nil)) : Cons({I35, Nil}) as (.Cons.0 as I3y)= Tp,.[2 : 32])

(EComPoOsITE)
> m_ea < [0:2] : (Cons({42,Nil)) : Cons({Iz, Nil)) as (1)2= Tp.[0 : 2])
=[2 : 32] : (Cons({42,Nil)) : Cons({I32,Nil}) as (.Cons.0 as I3;)= Tp,.[2 : 32])
(EWorD)
m_es =< [0:2]: (1)
=<[2:32] : (Cons({42,Nil)) : Cons({Is,, Nil)) as (.Cons.0 as I33)= Tp.[2 : 32])
(EConsTaNT)
S _ea™<[0:2]: (1)a = [2:32]: (42 : I3 as I3p= I5p.¢€) (EFRAGMENT)
S _ea™<[0:2]: (1) = [2:32]:(42)3 (EATtom)

Notice how several pivot expressions that appear within this sequence are not well-typed when we only
consider their first three components. For instance, the ECompositE step introduces the two following
pivots:

(Cons({42,Nil}) : Cons({I33,Nil)) as _g4= Tp,.—[0 : 2].=[2 : 32])
(Cons({42,Nil}) : Cons({I32,Nil)) as (1),= Tp.[0 : 2])

Neither _g4 nor (1), agree with the high-level type Cons({I3p, Nil)) that appears in these pivots; therefore,
they are not well-typed according to the original high-level typing judgment. However, their fourth
component keeps track of the original memory type Ty, of which _g4 and (1), are subterms, which does
agree with Cons((Is, Nil)). A

3.4 Memotheory

We now state and prove properties of our semantics to ensure that the memory-level and high-level
behaviors of Ribbit programs are coherent. The most important result of this chapter is a proof of
branching bisimulation (Glabbeek and Weijland 1996; De Nicola and Vaandrager 1995) between < and
&> (Theorem 3.3). This concept is illustrated in Fig. 3.31. For this bisimulation, each step of the high-
level reduction sequence using the < rule labelled 1; has a counterpart in the memory-level reduction
sequence which uses the corresponding + rule labelled h, 1; (the h indicates that this is indeed a “high-
level” step). Between these synchronized steps, the memory-level reduction sequence may go through
%y, steps, which correspond to & -transitions % i.e., silent transitions which have no equivalent in the
high-level reduction sequence but preserve the bisimulation relation R with the current high-level
expression. In essence, we show that the traditional high-level semantics is replayed exactly during
low-level evaluation, with some additional steps interspersed to build memory values.

High-level e =, e =y e =L e

R ﬂ R : R\\\ R\‘, R

1 1
1 1
1 1
1 1
1 ! N < 1

Memory—level () q_)h,lo e q_)h,ll C[ﬁ] P m N e Sm ' C[’\;] q_)h,lz e

Figure 3.31: Diagram showing branching bisimulation between high-level and memory reduction se-
quences of the same source expression.

6Usually denoted T-transitions in most other contexts. However, as the T symbol is rather overloaded in this thesis, we use the
Japanese hiragana character & (pronounced [to]) to denote silent transitions.
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We first extend evaluation and typing, along with some notations, to help with the proofs (Sec-
tion 3.4.1). In Section 3.4.2, we define a simulation relation between evaluation states by combining the
typing judgements with a new notion of a memory value accurately representing a high-level value
according to a given memory layout. Finally, in Section 3.4.4, we leverage the previously defined tools
to show our results:

¢ correctness of pattern matching (Theorem 3.2);
* progress and preservation of memory evaluation (Lemmas 3.13 and 3.14);

¢ the branching bisimulation between < and + (Lemma 3.15 and Theorem 3.3).

3.4.1 Expanded Judgements and notations
3.4.11 Labelled Transitions

We aim to show preservation of evaluation between high-level evaluation steps. We must thus equip
our transitions with labels that will be preserved by bisimulation. In the rest of this section, we label
high-level evaluation steps with the name of their rules: foreachl € {EFunCaLL, ELETBinD, EMaTcH}, we
write < for high-level evaluation steps which use the rule HL1 and +1,; for memory-level evaluation
steps with use the rule . On the other hand, +», steps do not carry any additional label.

3.4.1.2 Typing judgment extension

As seen in Section 3.3.2, some intermediate stages reached by memory evaluation are not well-typed
w.r.t. the current memory typing judgment, even though they always eventually reach a well-typed
state. In order to reason on these ill-typed expressions, we must relax the well-typed criterion while still
constraining expressions enough to ensure correctness. To this end, we annotated each pivot (u : T as 7)

with a parent memory type T, and a memory path 7 such that focus (7, Tx) = T and which represents
“the latest well-typed state”. Formally, we have F (u : T as T4) : Tx, but not necessarily + (u: TasT) : T.
We use T, for typing and T for evaluation. We broaden the TPivor rule of the typing judgment for
expressions defined in Fig. 3.23:

TPivor
agree , (T, Ty) ATrFu:T

AT E(:TasTy): (Tas Ty) focus (7, T,) = ©

AT, cr(W:TasT=T,.mM):TasT

3.4.1.3 Notational relief

We define the following notational shorthands for well-formed and well-typed environments, expres-
sions and pivots. Each combines an existing judgement, such as typing, with validity of all its premises.

EATFO & EAANAETAATEO (Validity of evaluation contexts)
EAT,CFO e EAANAETAAT,CFO (Validity of memory evaluation contexts)
EATFe: T &= FEAANAETAATFe:T (Validity and typing)

EAT,CHe:T S EAANAETAAETAAT,CHE:T (Validity and memory typing)
ATr(u:TasT) & AETAagree,(T,T)AATFuU:T (Validity of pivot expression)

ATFU:TasT=T,.7T) & ATFU:TasT ) AAETAfocus (T, Ty) =T
(Validity of annotated pivot expr.)
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3.4.2 Simulation and representation relations

We now define our simulation relation denoted R in Fig. 3.32, which underpins our branching
bisimulation theorem. We first introduce a relation between high-level expressions e and memory
expressions e defined in Fig. 3.32a and denoted A,T,0,¢ + e R €. We then extend it to high-level

evaluation states S = (I',, o, e) and memory evaluation states S= (Fm, Om, 0, G, €) in Fig. 3.32b.

AT, 0,creRe

AT,0,crletx:TasT=¢einegRletx:TasT="¢in e

AT, ocreRe

A, ¢ +Fuf[o] reprs (u[[o] : Tas T = T.€)

AT,0,¢r(u:tasTRU

(a) Relation between expressions
EATHFonh AThEFZ Th CTm EA,Tm, ¢ FOreprs (op U om)
agree (T, 7) EAThFe:TasT EATm,CHE:T AT, 0hlUom,creRe
A/ Z/ T/ ? F (rh/ O-h/ e) R (rTTL/ O-TTU 6/ §,€)

(b) Relation between full states

Figure 3.32: Simulation relation between high-level and memory evaluation states.

The first cases (Fig. 3.32a) apply to memory expressions that contain high-level constructs. They
ensure that these constructs are exactly the same as those found in the high-level expression e. The case
of Fig. 3.32bis more complex: it describes the memory-level stage of evaluation, when e has reached
a normal form for < (that is, a pivot expression (u : T as T)) and memory-level evaluation (i.e., ->m
steps) of e is underway. It requires the notion of a memory value representing a given high-level value
according to a memory layout. This is captured by the reprs relation defined in Fig. 3.33. It is a
syntactical characterization of memory valuexpressions which are reachable via -, steps from a given
pivot (u : T as T = Tyx.71). We write A, ¢ + U reprs (v : T as T = T,.7) when the memory valuexpression
u represents the high-level value v of type T according to the memory type T, which is at position 7@
within the latest well-typed layout T,. The reprs relation is defined for normalized valuexpressions: we
assume that v, as well as the first component of every pivot appearing within U, are values (as opposed
to valuexpressions containing variables). Given a high-level binding environment o, u[c] denotes
the substitution of every variable in u with its bound value in o, and u[[c] denotes U in which the
valuexpression of every pivot has been normalized in this way. Thanks to this relation, we capture all
intermediate stages of the s>, reduction sequence from (v : Tas T = T,.7) to a memory value. The base
case is RIDENTITY; all other rules correspond to a +,, evaluation rule. Most rules are straightforward
syntactical translations of their evaluation counterparts, with some simplifications (as they simply relate
existing expressions and do not need to construct a new state).
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A,crureprs(v:TasT= ?*.ﬁ)‘

“the memory valuexpression 1 represents the high-level value v of type T according to the memory
type T, at position 7t within the latest synchronised memory type T4, in the type variable environment
A and memory store ¢”

RTypPEVAR
RIpenTITY N A, < Fureprs (v:Tas A(t) = Ty.7)

A,¢ F(v:TasT= Ty ) reprs (v: Tas T = Ty.70)

A, ¢ Fureprs (v:Tast = Ty.7)

RADDRESS

ag¢g A,c k& (V) reprs (v:Tas T = Ty. ) RATOM

A, < +(c)e reprs (¢ : Tas [ = Ty.7)

A,cU{a V}+ & (a) reprs (v: TasT = Ty.7)

RFission
op=0 on-1+4€1=1¢ Vie{1,...,Tl—1},01=01_1+fi_1
Vie{0,...,n—1}, A ¢ Fu; reprs (focus (.14, v) : focus (11, 7) as [¢; = Ty.70.11)

Acr_o P& reprs (v : Tas [y = T,.7)
0<i<n

RFrRAGMENT
A, < +ureprs (focus (7, v) : focus (71, T) as T = T.g)

A, < Fureprs (v:Tas (mas T) = Ty.70)

RSpLIT

T=split(...) (p,T)eT/_ Arv:t/p A,c Fureprs (viT/pasT =Ty [T — T].7)
A, ¢ Fureprs (v:TasT = Ty.7)
RWorp RConstaNT
A, F_greprs (v:Tas g = Ty.M) A, < +(c)e reprs (v:Tas (C)¢ = Tx.T0)

RPOINTER
A, ¢ Fureprs (V:TasT= Ty.T0x)

A, < F & (1) reprs (v : Tas & (T) = Ty.7)

RComPOSITE
A, ¢ Fureprs (v:TasT= Ty MM, . ... —Tn-1)
Vie{0,...,n—1}, A, ¢ FU;reprs (v:TasTi = Ty.MTi)
Acrt P& ricUireprs (vitasT P& 11 T = Tl
0<i<n 0<i<n

RStrUCT
Vie{0,...,n—1}, A ¢ Fujreprs (v:TasTi = Tx.71)

A< F{to,..., un-1} reprs (v:tas {To,..., Tn-1} = Tw.T0)

Figure 3.33: Representation relation between normalized (i.e., variable-free) pivot expressions and mem-
ory valuexpressions.

Finally, we extend this relation to environments. Given high-level and memory-level binding envi-
ronments ¢ and 0, we write A, T, ¢ + © reprs o if we have dom (¢) = dom (0) = dom (T') and for each
(x:tasT) €T, A cFo(x)[o] reprs (o(x)[o] : TasT = T.¢).

As before, we also define the following syntactical shorthands for the representation relation with a
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well-typed pivot expression in well-formed and well-typed environments:
EACRUreprs (V:TasT=Ty.M) &= AF(V:TasT= T AA,CFUTEPrs (V:TasT = Ty.M)
(Validity and reprs)
EA,T,cr0oreprs 0 & dom /(o) =dom(0) = dom (') A

V(x:tasT) el kA ¢ o(x)[o] reprs (o(x)[o] : Tas T = T.e)
(Validity and Environment reprs)

3.4.3 Results on high-level and memory-level pattern matching

As a prerequisite for our main results on < and +, we first establish an equivalence between high-
level and memory-level pattern matching through pat2mem and our reprs relation. The main result
of this section is Theorem 3.2. To prove it, we will use alternative characterizations of both high-level
(Lemma 3.5) and memory-level (Lemma 3.6) pattern matching judgments. Along with agreement
criteria between high-level and memory types, these will allow us to show that every part of a given
high-level pattern corresponds to specific parts of its memory counterparts obtained with pat2mem.

In this section, several results will be proven by induction on a pair (p, T) consisting of a high-level
pattern and a memory type. To ensure this induction is well-founded, we assume that all fragments of
the form (e as Tf) appearing in memory types have been replaced with T¢. This unrolling of epsilon-
fragments always terminates for the memory types we consider (indeed, memory types containing
cycles of such epsilon-fragments have limited practical interest: such types do not have a computable
size or shape, nor any finite inhabitant).

We also relax the typing judgment for memory patterns to allow for (adequately sized) wildcards. In
this section, preconditions and conclusions of the form A r p : T may use the following rule in addition
to existing memory typing rule:

MemMTWIiLDCARD

It < ¢
AT, CF 7T

Lemma 3.5 (Characterization of high-level pattern matching). Let A, T, p and v such that
FEAFDP:T EAFvV:T

We have p > v if and only if both of the following conditions hold:

Each individual bit of every primitive matches:

V7t € Paths, (focusa (71, T) = I1 A focus (7, p) = ¢ A focus (r,v) =c’) = c=¢’

Each head constructor matches:

V7t € Paths, | focusa (71, 7) = |Ki(”ci) A focus (71, p) = K(p') A focus (7,v) = K'(V)| = K=K’

0<i<n

Proof. Immediate by induction. O

The following result states that a memory pattern matches a memory value of the same type if and
only if both belong to the same specialized branch of this type and all of their parts corresponding to a
fragment or primitive in their type (as gathered by shatter) match.

Lemma 3.6 (Characterization of memory-level pattern matching). Let A, ¢, T, p and v such that
FAFD:T EACFV:T
We have ¢ + P » V if and only if there exists a branch (pyv, Tv) € T/ _ such that

AFD: Ty ACHV: Ty V(7 +— mas T') € shattera(Tp), ¢ + focus (7T, p) » focusc (7T, V)
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Proof. Immediate by induction on T. o

Through Lemma 3.5 (resp. Lemma 3.6), we have established a correspondence between high-level
(resp. memory-level) pattern matching and specific locations within high-level (resp. memory) types
consistent with agreement criteria. In order to use this correspondence to prove our main result
(Theorem 3.2), we need to be able to “reach” these locations within values and patterns. We do so using
the following Lemmas 3.7 to 3.10, which let us synchronize the exploration of memory types with that
of memory patterns obtained through pat2mem and of memory values representing a given high-level
value.

Lemma 3.7 (Matching type branches for pat2mem). Let A, T, pv, Tv, p, p’ and p such that
AET (p’,p) € pat2mem , (p, 7) (Pv, Tv) € T/ _ AFD: Ty
The pattern intersection py M p’ is defined and we have
(v',P) € pat2mem, (p, %)
Proof. Immediate by induction on (p, 7). o
Lemma 3.8 (Memory focusing and pat2mem commute). Let A, T, p, p’, p and 7 such that
AET (p’,p) € pat2mem  (p, 7) focusa (7T, 7) is defined

Either p is a wildcard pattern _ or there exists p” such that
(p”, focus (7, ’ﬁ)) € pat2mem , (p, focusa (7T, 7))

Proof. Immediate by induction on (p, 7). ]

Lemma 3.9 (Matching type branches for value memory representations). Let A, ¢, T, T, Ty, T, Pb, Tb, V
and Vv such that

EA,CFVreprs (v:TasT= Ty.Tlx) (pb,?b)e?/_ ACHV: Ty
We have
Arv:T/py P >V A,cHVreprs (v:iT/pp as Ty = Ty [T «— Tb] . 7x)
Proof. Immediate by induction on (v, 7). ]

Lemma 3.10 (Memory focusing and reprs commute on memory values). Let A, G, T, T, Tx, T, v, Vand 7t
such that

EA,CHVreprs (v:TasT= Ty.My) focusa (7T, T) is defined
We have o
A, < + focusc (T5,V) reprs (v : T as focusa (7T, T) = Ty.70%.70)
Proof. Immediate by induction on (v, 7). O

We can now state our main result on pat2mem.

Theorem 3.2 (pat2mem correctness). Let A, ¢, T, T, p, v and V such that

EA,CFVreprs (v:TasT= T.g) Arp:T
We have
p>v & 3A(p/,p) € pat2mem,(p,T), CFP >V
Proof. We prove each direction of the equivalence in the following Lemmas 3.11 and 3.12. ]
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Lemma 3.11 (High-level matching implies memory matching). Let A, ¢, T, T, Ty, T, p, v and v such that
EA,CHVreprs (v:TasT= Ty.M) ACHV:T Arp:T P>V

There exist p’ and p such that

<)
A)
A
-

<)
v
<)

(p’,p) € pat2mem , (p, 7) PV AF
Proof. Let us proceed by induction on (p, 7).

Wildcard: p = _. Immediate: we have

pat2mem,(p,T) ={(_,_j5)} _>Vv  AFr_5 T (MeMTWILDCARD) <k _j7 » V (MWILDCARD)

Primitive constant: p = ¢c and T = [;. We have
pat2mem , (p, T) = {(c, (c)e)} A+ ()¢ : Ig (MEMTPRIMITIVE)

According to the fragment coherence criterion of agreement between T and T4, we necessarily have
T =1y, hence v = ¢’ and Vv = (¢’)¢. Finally, ¢ > ¢’ implies ¢ = ¢/, hence (c)¢ » (¢’)¢ (MCONSTANT
rule).

Type variable: T = t € TyVars. Suppose that the result holds for (p, A(t)). From the definitions of
memory typing and of reprs, we immediately have

pat2mem , (p, T) = pat2mem , (p, A(t)) A, CHV:A(Y) A, ¢ FVreprs (v:Tas At) = Ty.7)
and our result is immediate from the induction hypothesis.
Constant word: T = (c)¢. SinceV is of type T, we necessarily have v = (c); and we conclude with
pat2mem , (p, T) = {(p, (c)¢)} A+ (c)e : (c)¢ (MEMTCONSTANT) G+ (c)e » (c)¢ (MCONSTANT)
The same reasoning applies if T is an empty word type _g.

Struct: T = {To, T1}. Suppose that the result holds for (p, 7o) and (p, T1). We have

(Po, Po) € pat2mem , (p, To)

pat2mem 5 (p,T) = { (po M p1, {Po, P1}) | (p1,P1) € pat2mem, (p, T1)
Po M p1 is defined

{vo, vi}

<)
Il

ACHV Ty A, < FVireprs (v:Tas Ty = Ty.Tl1)

According to our induction hypotheses, for both fields i € {0, 1}, there exists (pi, pi) € pat2mem , (p, Ti)
such that

Pib>Vv Al-ﬁii?i Cl-f)\ibvi
Since pp and p; both match the same value v, they are compatible and their intersection also

matches v: pg Mp; > v. We conclude with

A"ﬁi::f\i (_,‘I-ﬁibi)\i
— ———— (MemTStrUCT) _
A+ {po,pi}: {70, T} <k {pop1lr»v

(MStrUCT)

The same reasoning applies if Tis a struct with any other number of fields, a pointer or a composite
word type.
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Fragment: T = (mas 7). According to the fragment coherence criterion between T and 7T, since 7 is
a fragment that appears within T, T = focusa (71, 7) is defined and agrees with 7. Let p’ =
focus (71, p) and V' = focus (71, v). Suppose that the result holds for (p’, 7). We have

pat2mem , (p,T) = pat2mem,(p’,T) p'>Vv A crVv:T A crVreprs(V :TasT =7T.¢)
According to our induction hypothesis, there exists (p”,p) € pat2mem , (p’, T) such that

P>V Arp:T SHPPV
and we conclude with

ArD:
Arp:

Ay Q

(MeEMTFRAGMENT)

Split: T =split(...). Let {(p;,T1) | 0 < i < n} = T/_. According to the branch coherence criterion
between T and T, since T is a split that appears within T,, there exists a branch i € {0,...,n -1}
such that p; > v. Since p also matches v, the pattern intersection p’ = p Mp; is defined and matches
v. Let U = t/p’ and T, = T [.7T < Ti]. Suppose that the result holds for (p’,T;). We have

pat2mem , (p’, Ti) C pat2mem , (p, T) P>V Arp T Arv:T Acrv:T
A,cFVreprs (v:T asT = T,.m)
and according to our induction hypothesis, there exists (p”,p) € pat2mem , (p’, T;) such that
P>V Arp:T CHP»V
We conclude with

AF 5 : ?i
——— (MemTSpLrT)
Arp:7

Lemma 3.12 (Memory matching implies high-level matching). Let A, ¢, T, T, p, p’, v, p and V such that

EA,CHVreprs (v:TasT= T.e) ACHEV:T  Arp:7 Arp:7T (p’,p) € pat2mem  (p, 7)

SHEP»V
We have p > v.
Proof. Let us proceed by induction on (p, T).
Wildcard base case: p = _. Immediate:
patzmem, (_,7T) = {(_, =)} >V

Primitive bit constant base case: p = c and T = I;. We have pat2mem(c,I;) = {(c,(c)1)}, hence p =
(c)1. According to the fragment coherence criterion of agreement between T and T, we necessarily
have T = Ij (or a type variable which we unroll to I;), hence v = ¢’ and Vv = (¢’);. Finally, since
<k (c)1 » (c')1, we have ¢ = ¢’ (MConstanT rule), hence c > ¢’.

Induction step. Here, we finally use the various intermediate results stated earlier. According to
Lemma 3.6, since ¢ + P » v, there exists a branch (py, Tp) € T/ _ such that

AFD:Th ACHV: Ty V(7T mas T') € shattera(Ty), < F focus (7, p) » focusc (7, V)
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Lettp = T/pb. From Lemmas 3.7 and 3.9, we have
po Mp’ is defined (p’,p) € pat2mem  (p, Tv) P >V AFV:Th
A, G FVreprs (v: Ty as Tp = Tp.€)

Induction hypothesis: suppose that for every (7 +— m as T') € shattera(Ty), the result holds for
(focus (7, p), 7). We use Lemma 3.5 to show that p > v.

Each individual bit of every primitive matches: Let 7 € Paths such that
focusp (1, T) = 3 focus (7,p) = ¢ focus (7,v) = ¢’

We show that ¢ = ¢’. According to the coverage criterion of agreement between T and T,
there exist ¢, 77/, 7 and Tr such that m = 7¢.v’ and (T — 7¢ as Tf) € shattera(Ty). Let
T = focusa (7, Ty ), Pr = focus (7, p) and V¢ = focus. (7, V). We have:

CHPs» Ve Ip”, (p”,Ps) € pat2mem (p, T') (Lemma 3.8)
A, FVereprs (Vi Tp as T = Tp.7) (Lemma 3.10)

Let t¢ = focusa (s, Tv), pr = focus (¢, p), p; = focus (7, p”) and v¢ = focus (s, v). Since
T is a fragment or primitive type representing the piece of data at position ¢ as Ty, from the
definitions of pat2mem and reprs, we have:

(p%, Pr) € patzmem , (pr, Tr) A, <+ Vg reprs (v @ T as Tp = Tr.€)

According to our induction hypothesis, we have pf > vy, therefore focus (7', pf) > focus (7, v¢),
and we conclude that ¢ = ¢’ with

focus (7, ps) = focus (7,p) = ¢ focus (7', v¢) = focus (7,v) = ¢’ c>c
Each head constructor matches: Let 7t € Paths such that
focusa (7, 7) = Ko(to) | -+ | Kn1(Trno1) focus (7, p) = Ki(p”) focus (7, v) = Kj(v')

We prove by contradiction that K; = Kj. Suppose that K; # Kj. According to the branch
coherence criterion of agreement between T and T, Ty agrees with Tp. According to the
distinguishability criterion of agreement between T, and Tp and because Ty is already a

specialized memory type, there exists a memory path 7 such that either focusa (7, Tp) =
(ci)e = (cj)e with ¢ # ¢; — which is impossible — or there exists 7t¢, 7" and Tf such that
7t = mie.70’ and (7T — 7¢ as Tr) € shattera(Ty). Let t¢ = focusa (7, Tv), pr = focus (s, p),
p} = focus (¢, p”) and v¢ = focus (17, v). Since T’ is a fragment or primitive type representing
the piece of data at position 7t as Ty, from the definitions of pat2mem and reprs, we have:

(p%, Pr) € patzmem , (pr, Tr) A, < + Vg reprs (v @ T as Tf = Tr.€)
According to our induction hypothesis, we have pf > v¢, therefore focus (7', pf) > focus (77, v¢).

Since focus (7', pr) = focus (71, p) = Ki(p”) and focus (7, v¢) = focus (7,v) = K;(V’), this im-
plies K; = K;.

3.4.4 Results on — and +

We are now ready to state and prove our main results. Most of our proofs proceed by induction on
memory types, or on R (defined in Fig. 3.32) derivation trees. Even though types may be recursive,
expressions are finite, ensuring that typing and representation derivation trees are always finite.
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Lemma 3.13 (+>,, preserves R on memory valuexpressions). Let A, X, T, T, S = (Th, on, (un : Th as Th)),
S =(m,0m,0,¢,u) and S’ = (I, 0%, 0, <", W) (note that w, W € ValuExprs) such that

A,Z,Tas?l—Sﬂg Akg%mg’

We have _
AY,tTasTHSRS

Proof. From now on, we omit A and X from judgments. Let 0 = oy, Lo, 0/ = on U0}, and v, = up[[o].
Note that since +»,,, does not affect existing bindings in o, we always have un [0’]] = vi.

Without loss of generality, we assume that T, = T and Thn = T. Indeed, our typing hypothesis
M F (un @ Th as Th) : T as T necessarily involves the following TPivor step:

ETh agree(Tn, Th) Th FUn : Th
TPivor

Th F (Up : Th @S Th) : Th @S Th

after which only TMTYVaRr, MEMTTYPEVAR, MEMTSPLIT and MEMTFRAGMENT rules are applicable to reach
the type pair T as T. — meaning that T is essentially a more general version of Th.

Some preconditions of our goal tas T+ S R S are unchanged from our hypothesis Tas T+ S R S.
We only need to prove the four following properties to prove preservation:

T, ¢ FO (3.1)

I, <"+ 0 reprs o (3.2)
AT (3.3)

<" FU'[[0’] reprs (Vi : Th @S Th = Th.€) (3.4)

We proceed by induction on u. For each case, we show that every possible +,, step preserves the
relation. Most >, rules apply to pivots, which are our main base case.

Pivot: U = (U : Tm a8 Tm = Tx.7) (and T, isnota type variable). Without loss of generality, we assume
that T, = T and Ty, = 7T, using the same reasoning as above for T, = T and Th, = T. Our typing
hypothesis becomes:

M, SF(UWm : TaST= T 0) : T

and implies (since we have to use the TPivor and MEMTHLEXxp rules):
agree(T, Ty) MTmbFWm:T focus (,T4) =T

Using a similar reasoning, we also assume that u, [0]] = vi. Indeed, the representation relation
between two pivots is restricted to RIpentiTy and to RTYPEVAR, RFrRaGMENT and RSprit, which do
not depend on the pivot value. Our representation hypothesis becomes:

CF (VR :TasT=T,.m) reprs (Vp : Tas T = T.€)
Let us proceed by case analysis on the s>, rules. We start with subterm extraction rules.

EVARAcCcEss: there exists (x : Ty as Ty) € 'm such that
Um = X.€ Tx =T S = (Tm, Om, 0, <, 0(x))

We prove our result for 3

Eq. (3.1) and Eq. (3.2) are immediate from preconditions.

Eq. (3.3): T, < F 0(x) : T follows from the environment typing hypothesis I'n,, ¢ + ©.

Eq. (3.4): ¢+ O(x) reprs (vi : Tas T = T.¢).
Since we have v, = x.e[[o]] = o(x)[ o], this is implied by our environment representation
hypothesis I'm, < 0 reprs o.
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EVarFocus: there exist

(x : Tx as Tx) € T 7t € Paths (Pv, Tb) € T/ _ (7ts > 715 as Tr) € shatter(Ty)

x¢ € Vars \ dom (I'y,)

such that
Um = X.(71¢.77) I'm, CFO(x): Ty I = Tm U{(x¢ : focus (7, ) as T¢)}
0% = om U {x¢ > x.71¢} 0 =0 U {xs — focusc (7tr, 0(x))} ¢ =cq

U = (x.7: TAS T = Ty.TT)

We prove our result for S

Eq. (3.1): E Ty, agree(focus (7t¢, Tx), Tf) and I, < F mg (7t¢, 0(x)) : focus (1t¢, T) as Ts.
E T follows from E Ty (implied by our environment typing hypothesis); agree(focus (7t¢, ), T)
follows from the fragment coherence agreement criterion between Ty and Ty, which is
also implied by our environment typing hypothesis. The last result is immediate from
our environment typing hypothesis, which implies 'y, ¢ F 0(x) : T as Ty, using struc-
tural and fragment or primitive memory typing rules to descend into the memory value,
high-level type and memory type.

Eq. (3.2): ¢’ + focusc (7, 0(x)) reprs (x.7¢[o] : focus (7, T) as Tf = Tg.€).
Our environment representation hypothesis implies:

< F o(x) reprs (x.e[0] : Ty as Tx = Ty.€)

We destruct the reprs derivation tree leading to this conclusion, and show that it necessar-
ily involves a rule whose conditions lead to our result. Since o(x) is a memory value, the
rules RIDEnTITY and RAppress will never be used. Starting from the conclusion and going
backwards in reprs deduction steps, we go through structural rules before encountering
the first split in T, at some position 7ty,, which is derived from the following RSpuit step:

Fx.ello] : Tx /o

RS ¢ + focusc (7y, 0(x)) reprs (x.e[o] : Tx /Pb as Tp = Tx [T < To] .7b)
PLIT

¢ + focusc (T, 0(x)) reprs (x.e[o] : T« as focus (Tp, Tx) = Tx.Tp)

From there, we continue to descend into the memory type until we reach the position

7. We have (7iy — 77 as Tr) € shatter(T, ), which means that focus (7, Ty) is either a
fragment or a primitive type. If it is a fragment, we go through the following RFRAGMENT
step:

¢ + focusc (7r, 6(x)) reprs (focus (rt¢, x.e[0]) : focus (7t¢, Tx /Pv) as Tr = Tr.€)

RFRAGMENT —— — ——— ———
¢ + focusc (7t¢, 0(x)) reprs (x.e[[o] : TX/‘pb as (7t¢ as Tf) = Ty [T« Tv] -7¢)

and our result is immediate from the precondition of this step. Otherwise, it is a primitive
type: T¢ = Iy and 7ty = ¢. We go through either a RAtom or a RFission rule. Here, we
only cover the RATom case (the RFission case is similar to a combination of RFRAGMENT
and RArtowm cases). This rule does not have any preconditions, but restricts the possible
shapes for our expressions:

focus. (¢, 0(x)) = (c x.e[o] =¢
RAront < (76, 0(x)) = (c)e [ol

¢ + focusc (7tr, 0(x)) reprs (x.e[o] : Tx/Pb as Iy = Tx [T «— Tp].7f)
We use these constraints to prove our result using the RAtom rule:

RAtom G F (¢)¢ reprs (¢ : Tx as I = Ij.€)
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Eq. (3.3): T, <’ F (xf.7T: TAS T = Ty.70) : T.
We only have to prove I}, + x¢.71: T, which is immediate from the definition of I'},,.

Eq. 3.4): ¢’ + (xm[0’] : Tas T = Ty.m) reprs (vp : T as T = T.¢) is immediate from our
representation hypothesis since x¢.mt[0’]] = x.t¢. [ 0] = vh.

Other rules are specific to a given memory type — either a primitive type, a synchronization point
with the high-level type or a memory structure. We destruct T, and prove the result for each case.

EATom: we have
Vh =¢C T=1I §/ =(Mm, o0m, o,¢ (c)e)

Our result is immediate: we do have I'm, ¢ F (¢)¢ : Ig and ¢ F (c)¢ reprs (c : Tas Iy = Ij.¢).

All other rules: similar to EAtoM, each evaluation rule restricts U/, T, T and vy, so that our result
is immediate from the corresponding typing and representation rules.

Type variable pivot: U = (W : T aS ty = Tx.7) with ty, € TyVars. The only applicable +, rules are
subterm extraction rules, which we treated in the previous pivot case, and ETypEVAR. Suppose
that the property holds for (um : Tm as A(tm) = Tx.7). In the ETYPEVAR case, we have:

(P, O, G, €, (U Ty @S Altin) = T ) 9 S
and our result is immediate from the induction hypothesis.
Pointer expression: u = &; (v). The only applicable +, rule is EAbpress. We have
S = (M, om, T, < U{a - 3}, & (a))
with a ¢ dom (<), and our result is immediate using MeMTADDREss and RADDREss rules.

Other expression: it = C[Uy] where C is a memory context. The only applicable >, rule is ESusStep.
Without loss of generality, we assume that there exists a memory type Tp such that T = C[7].

Suppose that the result holds for T, Ty, So = (T, on, (un : Tas Tp)) and So = (Mm, Om, 0, ¢, Up). The
precondition T as Tp F So R Sp is immediate from tas T+ S R S. We have

S = (I, 0, @, <, C[W]) So =m S) = (M, 0, &, ¢, T))

From the induction hypothesis, we get Tas Tp + So R S , from which our conclusiontasT+ S R S
is immediate.

O

Lemma 3.14 (s>, progresses on memory valuexpressions). Let A, T and S = (T, 0,0,¢, 1) (note that
u € ValuExprs) such that

AET EAT,CHO EAT,crHU:T
There exists at least one state S’ = (7, 040,07, <", W) such that A v S LR S
Proof. Immediate by induction on . O
Lemma 3.15 (s simulates <). Let A, Z, T, T, S = (T, oh, €) and S= (M, Om, 0, <, €) such that
AL, tasTHSRS
From now on, we omit A and L from judgments. One of the three following conditions holds:

* Both expressions are in normal form: e = (u: T as T) and e € Values;
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S steps and remains bisimilar to S: there exists S = (I, 0%, 0,<,€) such that S > S’ and (tasT) +
SRS;
e both S and §step and remain bisimilar to each other: thereexist S’ = (T, cr;l, e’)and S = (., om,0,¢,e)
suchthat S < S',S &>, S and (tasT)F S’ R S,
Proof. Let 0 = o, U 0. We proceed by induction on 'y, 0, F e R e

Function call: e = & = f(x). Since f(x) is of type (T as T), there exist T and T such that (x : T"as 7)) € I,
and (f: T asT — tas 1) € . Let X’ and e’ such that Z(f) = Ax".e’. We assume that x’ is a unique
symbol. We have

’ A < < ’ -~ ’
S “SHLEFunCawL S’ = (rh/ O, € ) S “hEFunCan S’ = (rm/ Om,0,¢, € )

where
M =ThU{(x': T asT)} o7, = op U{x" = on(x)} Mo=TmU{(x : 7 asT)}
0 =0 U{xX > 0o(x)}

Using hypotheses on S and S, we immediately have tras T+ $’ R s

Pattern matching: e = € = match(x) {pi — e | 0<i< n}. Leti € {0,...,n — 1} the smallest branch
such that o, F pi > on(x). Since e is well-typed, such a branch always exists. Let T and T such
that (x : 7 as T) € Th. According to Theorem 3.2, iis also the first branch that matches o(x) at the
memory level, that is, the smallest i € {0, ..., n—1} for which there exists (p’, p) € pat2mem(pi, T')
such that ¢ + p » (x). We have

S —HLEMaren S” = (Th, o, €1) S —nEMarcn S’ = (T, Om, B, <, €1)
and Tas T+ S’ R S’ is immediate from hypotheses on S and S.
Let-binding: there exist x, T/, T, ey, ¢’ and €’ such that
e=letx:TasT =¢ inep e=letx:TasT =¢ ineg Mm,0,cFe’RE

Let S’ = (T, o, €’) and S = (Mm, 0m, 0, G, €). Since e and e are well-typed, and using hypotheses
on S and S, we have 7 as T + S’ R S’ and use the induction hypothesis:

e If both bound expressions are in normal form, i.e., ¢’ = (W : T as T) and € =V € Values, then
both expressions go through a let-binding step: we have

S “—HLELeBo S0 = (7, 03, €0) S = hELeBo S0 = (M, Om, 07, S, €0)
where
M =ThU{(x:7asT)} oy, =opU{x > u'} Mo=TmU{(x:17asT)}

o' =0U{x "V}

and Tas TF Sy R Sy is immediate from hypotheses on S and S.

o« If S steps and remains bisimilar to S, i.e., there exists S” = (.., 0%, 0,¢’,€") such that
S v S”and T as T F S’ R S”, then S goes through the same step using the ESusStep rule
and remains bisimilar to S: we have

Sery S*=(T,00,0,¢ letx: T asT =€ in ep)

and Tas T+ SR S* is immediate from hypotheses on S, Sand S”.
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e Ifboth S’ and S’ step and remain bisimilar, i.e., there exist a rule label 1, S” = (I7, o e”) and
S” = (., o0,0,¢,€)suchthat S’ <1 S”,8" a1 S”and v asT + S” R S”, then both S and

S go through the same step using the (HL)ELETStEP rule and remain bisimilar: we have
S S*=(I7, 0, letx: T asT =e” in eg)

S S*=(I7,00,,0,¢ letx:t"asT =¢" in ep)

and Tas T F S$* R $* is immediate from hypotheses on S, S, $” and S”.

Pivot: there exist u, U, T and T’ such that

—~

e=(u:7Tas7T) e=1u Mm,0,CFUureprs (u: T asT = T.¢)
According to Lemma 3.14, there are two possible cases:

* U isin normal form, i.e., U € Values. The first condition holds: e is a pivot and € is a memory
value.

e There exists S’ = (7., 0%, 0,¢’, ') such that S >m s According to Lemma 3.13, since
TasTFSRS, wehave tas T+ SR S/, therefore the second condition holds.

O

At last, we can state our final branching bisimulation theorem, which formalizes the intuition given
by the diagram shown in Fig. 3.31.

Theorem 3.3 (R is a branching bisimulation). Let S and S such that S R S, we have:
o if S < S, then there exist S"and S” such that S T S/ S h1 §”, SRS and S’ R §”;
. zf§ L. §', then S R §/;
. zf§ SRl §/, then there exists S’ such that S <> S’ and S’ R S

Proof. Immediate from Lemma 3.15. ]

3.5 Conclusion

In this chapter, we have formalized the Ribbitulus, whose syntax includes a formal version of the user-
visible language presented in Chapter 2 — ADTs and their inhabitants, and memory types — as well
as a model of memory contents. For both high-level and memory-level components of the language,
we defined their semantics through a combination of a typing judgment and a small-step evaluation
judgment. Perhaps most importantly, we formally defined the notion of agreement between high-level
and memory types, and used it to show that high-level and memory semantics of a given program are
always coherent with each other. Although Ribbit currently only supports programs operating on finite
data, the choice of a small-step style to define the semantics of the Ribbitulus independently of program
(non-)termination could potentially allow us to consider infinite values (e.g., streams of data) in the
future. Of course, this would still require a significant extension to some aspects of its core design, and
probably some form of coinductive proofs.
In the next part of this thesis, we provide a formal compilation scheme for the Ribbitulus.

88



Syntax

Envs.

Typing  Operations

Semantics

High-level Memory-level
) . (variables) x € Vars (type variables) t € TyVars
identifiers
(function symbols) f € FunVars (addresses) a € Addrs
e € E C Exprs ceEc Exprs 2 Vm;'s U Exprs
exlzressmns we U C ValuExprs Fig. 3.8 | e U C ValuExprs ¢ Exprs ~ Fig. 3.17
an _ .
values v eV C Values C ValuExprs v eV C Values ¢ ValuExprs
(pivot expressions) (u : T as T) € Exprs N ValuExprs
patterns p € P C Patterns Fig.3.2 | pe P C Datterns Fig. 3.18
paths ne T C Paths Fig. 35 | T e Tl C Paths Fig. 3.10
types TeTC Types Fig.3.1 | Te T C Types Fig. 3.9
(kinds) K € {Word({0,1}*), Block}
typing A : TyVars — Types U Types I': Vars — Types X Types
value o : Vars — ValuExprs G : Vars — Values
other (function definitions) X : f — Ax.e (store) ¢ : Addrs — Values
focusing focus (7, 0) Fig. 3.6 | focus (7, T) € Types Fig. 3.12
focus. (7T, u) € ValuExprs Fig. 3.16
specialization | T/p € Types Fig. 3.3 | T/p C Patterns X Types Fig. 3.14
misc. M : Patterns X Patterns — Patterns Fig. 3.4 shape_ofA,C(é\) € Datterns Fig. 3.19
shattera (T) ¢ PathsxPathsxTypes Fig. 3.13
typing and | AT+HO:T Fig.322 | AT Figs. 3.20 and 3.21
validity ATre:(tasT) Fig. 323 | AT,cre:T Fig. 3.24
agreement agree, (t,T)  Definition 3.2
pattern oFp>u Fig.326 | crpw» v Fig. 3.29
matching
expression | ZFS < § Fig.325 | A,£+S e § Figs. 3.27 and 3.30
evaluation S =(T', 0, €), normal form iff. S = (T, 3,¢,¢), normal form iff. € € Values

e=(u:tasT)

Figure 3.34: Index of Ribbitulus notations.
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Part 11

Compiling Ribbit
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In the previous part of this thesis, we introduced the Ribbit language and its formalization (the
Ribbitulus). We now focus on compiling this source language to low-level target code which precisely
manipulates memory contents.

A central component of the Ribbitulus is the use of memory types to link high-level values to their
desired memory representation. These custom memory layouts significantly impact the compilation
of two aspects of the source language, namely pattern matching and data constructors with variable
accessors. We will cover their compilation in Chapter 4 and Chapter 5 respectively.

As we will see, the compilation technique we develop in Chapter 4 for pattern matching is also a
key component of our global compilation approach for the full Ribbitulus presented in Chapter 5. As
such, we will wrap our pattern matching compiler in a Destruct interface which will be used both by
the toplevel compilation function CompIiLe and by the specific procedures for data constructors REBUILD
and Seex. The following diagram gives an overview of our global compilation chain:

Typed input program

Chapter3 A L e 1 T

|

( N
CoMPILE
Chapter 5 Resuno 5 DestrUCT
apret - SEEK Chapter 4

Chapter 5 Output in Destination Passing Style

As shown in the previous diagram, our compilation target is a custom program representation
in Destination-Passing Style, for which we also define a formal execution model. We will prove our
compilation algorithms correct by showing that they emit target code whose behavior is simulated by
the source program’s memory-level semantics.
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Chapter 4

Compilation of Pattern Matching

This chapter covers pattern matching compilation for the Ribbit language. The problem of compiling
pattern matching has been studied since the eighties, starting with Cardelli (1984) and Augustsson (1985).
Since then, several approaches have been proposed to compile high-level patterns to efficient decision
trees (or other representations such as backtracking automata). However, these existing approaches do
not handle custom memory layouts and are geared towards uniform memory representations which
closely follow the shape of high-level terms. Such memory layouts are typically found in garbage-
collected functional programming languages, which are where pattern matching was originally available
(see for instance the OCaml runtime representation, which we presentin Section 2.6.1). Adapting existing
approaches to our setting is non-trivial: indeed, our memory types (more precisely, the split construct)
introduce dependencies between memory locations (for instance, a value behind a pointer may “depend
on” this pointer’s tag) which do not mesh well with most state-of-the-art compilation approaches.

In the context of Ribbit, our goal is to compile a list of high-level patterns to low-level code with
equivalent semantics, that is, which inspects a memory value representing a given high-level value and
returns the identifier of the first pattern matching this value. For instance, consider the Ribbit program
in Fig. 4.1a, which reuses the Zarith layout from Section 2.2.

type ZarithPair = (Zarith, Zarith);
represented as
{{C.0 as zZarith), (.1 as Zarith)}}

fn leq(x: ZarithPair) -> bool { 101] 1
match x { . / 0
(Small(_), Small(l)) => ..., x0[01]
(Large(.), Large()) => ..., '\ x1[01) [
=>

(Small(_), Large(_.)) R
(Large(_), Small(.)) => ...,

|
\"

§008

(a) Source code (b) Output decision tree
Figure 4.1: Running example: leq comparison function on pairs of Zarith integers.

The leq function operates on pairs of Zarith integers represented as a two-field struct, and determines
which integer in a pair is the largest depending on whether the two individual integers are both “small”
(63-bit), both “large” (128-bit, stored behind a pointer) or a mixed combination. Throughout this chapter,
we will use this program as a running example to illustrate the process through which we emit the low-
level code depicted in Fig. 4.1b. This decision tree consists of leaves carrying a pattern identifier (0, 1, 2
or 3), and of decision nodes akin to C switches inspecting a given location in memory.

More generally, we aim to emit low-level code which is equivalent to a given pattern matching
expression. Perhaps the simplest way to achieve this is to do a linear scan over each patterns, leveraging
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the same tools as memory-level pattern matching evaluation from Section 3.3.2.1. For each pattern, it
would test whether it matches the input value, repeating the process until a match is found. The first
step would be to compile each high-level pattern to an equivalent list of memory patterns using pat2mem.
We could then emit low-level code acting as an interpreter for the memory pattern matching judgment »
for this particular list of memory patterns. While correct (as proven in Theorem 3.2), this naive approach
is very inefficient, as demonstrated by the following example.

Example 4.1 (Naive approach for leq). We model Zarith and ZarithPair, along with their mem-
ory layouts, as the following high-level and memory types (using a 128-bit wide integer to emulate
GMP: :BigInt):

Trarith = Small(Ie3) | Large(IIZS) Tozarith = {Tzarith, Tzarith)

~ . ) 1 from Small(_) = _g4><[0:1]: (1)1 [1:63]:(.Small as Ig3)
Tarith = split([0: 1]) { 0 from Large( ) = &4 ((Large as Iizs)) < [0:1]: (0)1 }

Tozarith = {(0as :Ezarith)/ (las ?zarith)}}

The T,arith memory type encodes small integers directly in a 64-bit word whose lowest bit is set to 1 to
distinguish it from pointers, and boxes large integers into a 64-bit pointer whose lowest bit is set to 0. As
specified in the source program Fig. 4.1a, To,arith encodes a pair of Zarith integers as a two-field struct.

The leq pattern matching function corresponds to the four following high-level patterns of type
Tozarith, associated with their respective identifiers 0, 1, 2 and 3:

po = (Small(_), Small(_)) P1= (Small(_), Large(_)>
P2 = <Large(_), Small(_)) P3 = (Large(_), Large(_))

Using pat2mem, we get the four following memory patterns, each representing one high-level pattern
according to Tozarith:

Po = 6a[0:1]: (1)1 <[1:63]: 3, 6ar<[0:1]: (1)1 [1:63]: e}
P1 = {&ea (L128) < [0: 1] : (0)1, _a < [0: 1] : (1)1 < [1:63] : _g3}

P2 = ear<[0:1]: (1)1 = [1:63]: 63, &e4( 128) < [0:1]:(0)1}

P3 = { &4 (L128) < [0: 1] : (0)1, &oa (L128) =< [0: 1] : (0)1}

In order to match a memory value of type Tosarith against each of these four memory patterns, we
must inspect the tag — that is, the least significant bit, which distinguishes between Small and Large
constructors — of both fields. This potentially adds up to 4 X 2 = 8 computations, as demonstrated by
the following pseudo-code:

if (x.0&1==18&8x.1&1==1)
return 0;

else if (x.0 & 1 == 0 & x.1 & 1 == 1)
return 1

else if (x.0 & 1 == 1 & x.1 & 1 == 0)
return 2;

else if (x.0 & 1 == 0 && x.1 & 1 == 0)
return 3;

else
return -1

This is considerably less efficient than the decision tree shown in Fig. 4.1b, which achieves the same
semantics with only three switch nodes in total, and only two in each possible code path. A

4.1 Problem statement

Following the TMartcH typing rule from Fig. 3.23, we model a well-typed pattern matching expression
of type T in the type variable environment A as a list of N patterns {po, ..., pn-1} such that each pattern
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pj is of type T and every value of type T is matched by at least one of these patterns. Given a memory
type Tin agreement with , our goal is to emit executable code which, given the memory representation
according to T of a value v of type T as input, returns the smallest identifier j € {0,..., N — 1} such that
p; matches v.

In our pattern matching compilation approach, we first lower each high-level pattern p; to a list
of memory patterns using pat2mem, (pj, 7). As Example 4.1 shows, matching against each memory
pattern sequentially yields highly redundant code. A more efficient strategy is to emit a decision tree such
as the one shown in Fig. 4.1b. Each of its switch nodes inspects a given location in memory indicated
by a memory path 7T, while each leaf indicates the identifier j € N of the first high-level pattern which
matches the input value. Previous works on pattern matching compilation provide approaches emitting
compact and efficient decision trees, but do not handle custom memory layouts.

Our approach relies on a bespoke intermediate representation dubbed memory trees to compile
memory patterns to decision trees. We assume patterns are exhaustive and non-redundant. This is
enforced by our typing judgment and can be achieved with well-known techniques (Maranget 2007).
We define memory trees in Section 4.2, then detail our compilation algorithms in Section 4.3 and prove
them correct in Section 4.4. Section 4.5 covers related work on pattern matching compilation.

4.2 Intermediate Representation: Memory Trees

Memory trees are a superset of decision trees. In addition to switches and leaves, they include constructs
which allow us to encode fine notions of dependency which arise from splits in memory types. As we have
seen in Section 3.1, splits are an essential part of the Ribbitulus, allowing us to handle case disjunction
gracefully, even in cases where the discriminant between branches is found in unexpected places.
Therefore, we must enforce throughout our compilation process that we respect split dependencies,
i.e., we always inspect a split’s discriminant location, which distinguishes between different constructors,
before accessing its branches” contents. For instance, we must check that a memory value is indeed a
pointer by inspecting its tag before dereferencing it.

4.2.1 Syntax

Memory trees, denoted 7~ and defined in Fig. 4.2, are our main intermediate representation during pattern
matching compilation. The key idea is to preserve dependencies, yet leave the compiler free to arrange
independent operations in any order. Similar to decision trees, a memory tree can be a leaf (J) where
] is the list of output branch identifiers that accept memory values for which evaluation reaches this
point, or a “decision node” switch(7){. ..} which inspects the position 7 in memory and picks a branch
accordingly. Each branch consists of an immediate ¢ on its left-hand side and of a memory tree on its
right-hand side. As a special case, the last branch may be a default branch denoted _ — 7, which
catches any memory value whose subterm at position 7t does not match any previous branch. In the rest
of this chapter, switch nodes with a gray default branch appearing in a definition or statement indicate
that it applies to both kinds of switches (with and without a default branch). A tree can also be a bud
(J as 7): a leaf which already carries a set of accepting output identifiers ], but could still be developed
further if needed using the memory type T. Finally, trees can be assembled “in parallel”: 7 || 7 is a tree
where one of 7 and 7’ is executed first, and the other second, the order being not yet decided.

J=4o, .-+, in-1} (list of case identifiers)
T ==()) (leaf with list | of possible outputs)
| (Jas7T) (fragment bud with subterm layout T and list ] of possible outputs)

| 7ol ... || Tr-1 (parallel node with n branches)

| switch(7) {co = T0,...,cn-1 = Tn-1,_— T}
(switch node with n cases and an optional default branch)

Figure 4.2: Memory trees.
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Example 4.2 (Intermediate memory tree from Zarith leq compilation). The memory tree 7 = 71| 7+
appears during the compilation of the leq function for the Ty,arith layout from Fig. 4.1a, where:

1 — ({0,2H) 11 {0,211l ({0,2} as Le3) }
0 — ({1,3} as Inzs) || ({1,3})

1 — ({0,3}) 11 {0,3}) 11 (0,3} as Ie3) }
0 — ({1/2} as I128) ” ({112})

T = switch(.0.[0 : 1]){
T+ = switch(.1.[0 : 1]){

Its graphical representation is:

switch .0.[0:1] switch .1.[0:1]
1]

L_\v

(03)
'

For switch(7r) { ci & 71 | 1<i<g n}, the memory path 7 is at the top of the node and each concrete
value c; labels a branch to its subtree 7;. Buds are depicted in yellow, leaves in green. Empty sets are
not displayed. A

As a shortcut, we define a mapping operation denoted 7~ [f] in Fig. 4.3, which substitutes the output
identifier set ] in each leaf and bud of the memory tree 7~ with f(J). Forinstance, 7 [({j1,...,jn}) = ({H1,---,in,i})]
adds the output identifier j to each leaf in 7.

() [f] = (£())) (Jas D [f] = (f(J) as T) Tl N T [f] = T[] - [ T[]
a — 7 ca — 7i[f]
switch(7T) . : 771 [f] = switch(7) Cn : ;]';;[f]
Y _ > Tf]

Figure 4.3: Mapping operation on memory trees.

4.2.2 Semantics

In this section, we define the big-step evaluation of a memory tree 7~ on an input consisting of a memory
value v and a store ¢. This judgment, denoted ¢,V + 7 » | and defined in Fig. 4.4, returns the ordered
set ] of identifiers which correspond to patterns matching v. For leaves and buds, we simply return the
pattern identifier set ] that they carry. In a “Par” node, each subtree corresponds to a different part of
the memory value being inspected; in order to match a specific memory pattern, each of these parts
must match its associated sub-pattern. That is, the set of patterns which match the whole memory value
is the intersection of the sets of patterns which match each of its parts. Finally, we evaluate a switch on
the memory location 7 by focusing on this position in the memory value being inspected, which must
contain a constant value at this position (ensured by typing); depending on this value, we either take
the case branch associated with this constant (ESwitcHCask) or the default branch (ESwitcuDEF).
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ESwitcuCase

ELear EBup ie{0,...,n-1} focusc (75,V) = (ci)e SVET » ]
SVE()w ] ¢V (JasT)m | — — -
S,V switch(m){co = 70, ., cn-1 = Tn-1, . — T} » ]
EPar ESwitcHDEF
Yie{0,...,n—-1}, ¢, VETi» Ji focus. (7,V) = (¢)¢ cé&{co,...,Cn-1} SVET "we ]
SVFTol .|| Ty »» ﬂ Ji S,V kswitch(m){co = To,...,cn-1 = Tn-1,_ > T} ]
0<i<n

Figure 4.4: Memory tree evaluation.

Example 4.3 (Evaluation of a memory tree for our running example.). Let 7 = 77| 7+ the memory
tree described in Example 4.2. Consider the following memory value and store, which represent the
high-level value (Small(42), Large(7)> according to Toarith:

V={ 64 [0:1]: (1)1 = [1:63]:(42)s3, &4 (a) =< [0:1]: (0)1}
¢={ar (7)1s}

We evaluate this tree on the input ¢,V, starting with 77:

ELEAF EBup
C,VHk ({0,2,3}) » {0,2,3} ¢,V ({0,2,3} as Ig3) » {0,2,3} P
= —~ = AR
focusc (.0.[0: 1],v) = (1) <, vk ({0,231 ({0,2,3}) | ({0,2,3} as Ie3) » {0,2,3}
= ESwitcHCAsE
<,V Timw {0,2,3}
then 7;:
EBup ELEAF
C,’\-)\F({l,Z} as 1128) »> {1/2} C/GF ({1r2})» {1/2}
—— —~ — AR
focusc (.1.[0: 1],v) = (01 ¢,V ({1,2} as Ios) | ({1,2}) »» {1,2}
ESwitcaCase

SVETm {1,2}

and finally 7°, which yields the intersection of the two previous results:

<, VT w {0,2,3} S, VET » {1,2}
R

EPa —
S VETU T » {2}

The final result is the singleton {2}, which expresses that only the third pattern ((Small(_), Large(_)))
from the initial pattern matching matches the value ((Small(42), Large(7)>) represented by V. A

4.3 From Memory Patterns To Memory Trees

We now describe our actual compilation procedure. Given a memory type T, we now consider a list
of branches {p; — ji | 0 < i < n}, each consisting of a memory pattern p; of type T (obtained via
pat2mem) and its output identifier j;. In order to compile it to an equivalent sequential decision tree —
that is, whose evaluation on a memory value of type T yields the identifiers of all matching memory
patterns — we proceed in three steps:

1. Scaffold (Section 4.3.1) a memory tree template from the memory type T.
2. Weave (Section 4.3.2) each memory pattern onto the current tree.

3. Finalize (Section 4.3.3) the memory tree by sequentializing and optimizing it.
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The detailed compilation process will be illustrated on our running example. The successive memory
trees are depicted graphically in Figs. 4.5 to 4.7.

Par switch [0:1]

7S

OO

(zarith) ( Zarith )
o ) U

(a) After scaffolding Ty ayith (first tree for the running example) (b) After scaffolding T,ayith (grown during weaving)

Figure 4.5: First compilation step: scaffolding.

swn‘ch 0. Ol] switch .1.[0:1]
1 1]

- Por

()
-

a) After weaving the first pattern

\

@
@

SWITCh 0. Ol] switch .1.[0:1]
1 1]

Figure 4.6: Second compilation step for the running example: weaving.
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switch .0.[0:1] switch .1[0:1]

1,2 1,2
(a) After trimming
switch .0.[0:1]
Par 1 I 0
switch .0.[0:1] switch .1.[0:1] switch .1.[0:1] switch .1.[0:1]
1 | o 1 | o 1 | o 1 | o
A/ A A
0,2 1,3_) G:) 1,2 0 27 (_3 1
(b) After pruning (c) After sequentialization (and finalization)

Figure 4.7: Last compilation steps for the running example.

4.3.1 Scaffolding: Memory Type-Specific Tree Templates

Scaffolding builds a memory tree “template” based on a memory type. This memory tree does not yet
contain any actual output branch, since no pattern has been taken into account yet. More precisely,
ScarroLpa (], 7T, T), defined in Fig. 4.8, creates a memory tree based on the position 7 (initialized as ¢)
in the type T, with | placed at the leaves. Constant and empty word types are directly turned into
leaves, as they do not involve any choice. Fragments (7 as T) are turned into buds (J as 7), keeping the
type T available for later expansion by nested patterns. Struct and composite types are all treated as
parallel nodes: indeed, the order in which to explore fields is irrelevant, and will be determined later
on. Splits are turned into switch nodes that inspect their discriminant position; splits with multiple
discriminants become a parallel node containing a switch for each discriminant. Note that, unlike splits,
the discriminant of a switch is absolute, hence the use of 7t.77". Additionally, provenances are not useful
at this stage anymore, and are thus not recorded in the memory tree. Finally, primitive types I, are
represented by a switch on the current position with an initial default branch accepting all values, which
will be used as a simple C-like switch on integers.
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ScarroLpa (], T

t —> ScarroLpa (], 7T, A(t))
(c)e — ()
0 — ()
I, — switch(m){_ — (J)}
& (7) —> ScarroLDA (], %, T)
TP pcian Ti i T —> ScarroLpA (], T=Tg ... = Tho1,T) H0<i<n ScarroLpa (], T.ri, Ti)
{~o,...,Th-1} —> ScarroLpa (], 7.0, 7o) || - . . || ScarFoLpa (], T.(n — 1), Tr—1)
(1 as T) — (Jas7T)
Split (7?1, ey 7?]\1) { _ SWiTCh(ﬁ.;fi){ o
ci1,.--,c1,N from P = T c1,i — ScarroLba(], 7, T1)
from ... = ... ” ) — ...
> 1I<i<N ~ ~
Cnls.--,CnN from Py = T, Cni — ScarroLDA(], 7T, Tn)
} }
}

Figure 4.8: Scaffold a memory tree from a memory type, a list of accepted identifiers | and a base
memory location 7.

Example 4.4 (Scaffolded tree from Toarith). Recall the memory type Tozarith = (.0 as Tarith), (-1 as Tarith) }
from Fig. 4.1a. We begin with SCAFFOLD(, €, Tozarith). The resulting memory tree is the following, as
depicted in Fig. 4.5a:

T-1 = (@ as Tyarith) || (D as Tyarith)

The “struct” rule generates a parallel node; its two children are generated from the fragments (.0 as Tyaritn)
and (.1 as Tyarith), which both yield a bud of type T,arith. A

4.3.2 Weaving Patterns Into A Memory Tree

We can now weave each memory pattern onto the previously generated memory tree. For each memory
pattern branch (pi — ji), we define 7; = WEaVEA(ji, €, T, Pi, Ti-1) until exhaustion of all patterns. The
initial tree 7_; is the output of the scaffolding phase. Each weaving adds relevant choices and outputs
from the pattern p; to the tree. The general form WEavea (j, 7T, T, p, 7)), defined in Fig. 4.9, takes a memory
pattern p and a tree 7, along with the current path 77, memory layout T and an output identifier j, and
returns a new memory tree. It inspects both pattern and tree, and integrates the latter into the former.

Branch identifiers, leaves and wildcards The general goal of weaving is to add the branch identifier j to
each leaf or bud that is relevant to this pattern. By design of scaffolding, leaves always correspond
to memory types for which no more inspection is necessary (i.e., constant or empty word types);
the WeaveLear rule simply adds the output identifier j to the list of accepting branches. Conversely,
wildcard patterns accept all inputs and the WeavEWiLDcarD rule simply adds a wildcard’s output
identifier to every leaf and bud in the tree.

Fragments, buds and tree expansion Fragments and buds enable the memory tree to be expanded as
needed to handle nested patterns. This expansion is only necessary for non-wildcard memory
patterns and handled by the WeaveBup rule, which uses ScarroLp to grow a new memory tree in
place, then weaves the subpattern onto this new tree.

Aggregates and parallel nodes The purpose of parallel nodes is to model “aggregate” constructions,
which include structs, composite words and (technically) pointers. In all these cases, the order
in which sub-patterns should be explored is not set in stone, and will be decided during sequen-
tialization (Section 4.3.3) based on heuristics. The WeavePoINTER rule simply weaves the memory
pattern below the pointer, since a pointer only “aggregates” one field (its pointee). WeaveCom-
posITE and WEAVESTRUCT recursively explore every subtree, each corresponding to a struct field or
composite word element. Note how we rely on the fact that the order of the subtrees is unchanged
during the weaving phase.
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WEeAVEWILDCARD WEAVELEAF

o~~~

(J) = (Ju{jb Weavea(j, 70, T, p,(J)) = J U {j}H)

WEAVEA(, 7T, T, ¢, T) =T (JasT) — (JU{j}asT)

WEAVEFRAGMENT
WEeAVETYVAR 9 isnot a bud

Weavea(, 7T, t,P, T ) = Weavea(j, T, A(t), D, T) WEavEA(j, T, (T as T),p, T ) = WEeavea(§, 7T, T, P, T)

WEeaveBup
p is not a wildcard pattern

Weavea(j, 7T, (e as T), p, (J as T)) = WEavea(j, 7T, T, P, ScarroLpa (], 7T, T))

WEAVEPRIMITIVECASE

co — (Jo) co — (Jo)
WEavE, |, 7T, I¢, (ci) ¢, switch(7) “ : (o) = switch(7) Ci : (Jiu{ih)

Cn-1 — (In—l) Cn-1 — (]n—l)

) - =0
WEAVEPRIMITIVEDEFAULT

cé{co,...,Cn-1}

W - (o) @~ W
WEAVEA | j, 7T, I¢, (), switch(7) c. : '(] ) = switch() { cn-1 — (Jn-1)

A\ c = (Ju{p

)

WEAVEPOINTER

WEAVEA(j, T, &¢ (T), &¢ (P), T) = WEAVEA(, T4, T, P, T)

WEAVECOMPOSITE

7' £ WEAVEA (j, T.=Tg... 7 Th-1,T,P,T) vie{0,...,n—1},7" £ Weavea(j, 7.1y, Ty, Pi, 71)

WEAVEA j,ﬁ,?x ri:?i,ﬁx i pL T ” T =T ” T

0<i<n 0<i<n 0<i<n 0<i<n

WEAVESTRUCT

vie {0,...,n—1},7; £ Weavea(j, .1, Ty, i, T7)
WEAVEA (j/ﬁ/ {?O/ e /?Tl.—l} /{50/ o /511—1}} 176 || A ” 7;L—1) = 76, || M || 7:1,_]

WEAVESPLIT
T= Split(;’t\o, .. /ﬁN—l) { Ci,0,---,Ci,N-1 from P; = ?i | 0
Vk € {0,...,N =1}, Tgy = switch(.mm) { cix — 71 |0<i<n}
Vk€{0,...,N =1}, 7 = switch@rk) {cix — 77 |0<i<n}
WEAVEA(j, 7?,?1,5,7{) if Vk € {O,. ..,N— 1}, Ci,k = f()’C\uS (ﬁk,ﬁ)
Ti otherwise

<i<n}
i
i

Vie{0,...,n—1},7; %

WEAVEA (j,ﬁ/?zﬁz “ (Ek): ” T
0<k<N 0<k<N

Figure 4.9: Weave a memory pattern onto a memory tree.
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Splits, primitive types and switches Switches are decision nodes used to model sum-like constructs
(i.e., splits), as well as a traditional C-like switch on primitive types. For split types, switch nodes
correspond to discriminant locations, which are combined with a “Par” node. The WEaAvESPLIT
rule inspects all of a split’s discriminant values simultaneously, so as to only propagate patterns
to trees corresponding to split branches which are correct types for this pattern.

Primitive types are modelled as a single switch node with a default branch, which captures all
possible primitive values. The memory pattern found at the position inspected by the switch
should be a constant or empty word pattern. Depending on this subpattern and on existing
switch branches, we use one of three possible rules. Wildcard patterns accept all values and
therefore propagate to every switch branch, including the default branch if it exists, using the
WEeavEWILDCARD rule. Constant patterns only accept a specific primitive value, and will only
propagate to a single switch branch. If this constant value is already present as the left-hand-side
of a switch branch, we weave the pattern onto this particular branch with WeavePrimiTiveCasE.
Otherwise, we must add a new case branch to the switch with WeavePrimiTiveDerauLr. We use
the default switch branch as a base subtree on which to weave the memory pattern; the design of
ScarroLD, together with typing of memory patterns, ensures that the default branch always exists
in this situation.

Example 4.5 (Woven tree). We can now weave the four memory patterns from Example 4.1 onto the
scaffolded tree 71 from Example 4.4. Let us first weave the memory pattern associated with the first
branch (corresponding to the high-level pattern (Small(_), Small(_)) and to the output identifier 0):

P0o = {Psmall, Psmall} where Psman = _64 >< [0: 1] : (1)1 =< [1:63] : _g3.

The WeaveStrucrt rule explores the ‘Par’ node, whose two children correspond to the two fields of
the struct. Let us compute its first child with WEAVE(0, .0, Tozarith, PSmall, (2 @S Tyarith)). Since Psman is not
a wildcard memory pattern, we expand the left bud with WeaveBup, replacing it with the following
memory tree (depicted in Fig. 4.5b):

~ o ' 0 — ScarroLD(2, .0, &e4 ((.Large as I1ng)) =< [0: 1] : (0)1)
ScarroLD(@, 0, Traritn) = switch(.0.[0 : 1) { 1 — ScarroLp(@,.0, s =< [0:1]: (1)1 < [1:63]: (.Small as Ig3)) }

0 — (@aslpg)| (@) }

= switch(.0.[0 : 1]){ 1 - @) (@)] (2 as Ig)

The split in T, is mirrored by a new switch node, on which we then weave the pattern psman. We
inspect the subpattern at the position inspected by the switch (removing the leading .0 since it is the

position of this subpattern): focus (-[0: 1], Psman) = (1)1. Using the WeaveSpLIT rule, weaving will only
explore the branch corresponding to the value 1. We then propagate the new identifier 0 to the bud and
two leaves of this subtree, using WeaveComrosite, WEavELEaF and WEavEWILDCARD rules and yielding
the following tree:

. , 0 — (2as )l (2)
switch(.000: 1) { 1= ({0} {0} ]| ({0} as Ies) }

We repeat the same process for the second field, which is identical, and finally get the result of
WEeAVE(0, €, Tozarith, Po, 7-1) as depicted in Fig. 4.6a:

0 — (2aslg)|l (2) })
1 — ({0 ({0} [l ({0} as Le3)

0 — (2aslg)ll (2) })
1 — ({0 ({0} [l ({0} as Ie3)

After weaving the three remaining memory patterns on resultant memory trees, we finally obtain

To = (swiTch(.O.[O :1]) {

| (swiTch(.l.[O : 1]){
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the following memory tree, which is depicted in Fig. 4.6b:

T3 =Tl T+

1 — ({0,211 ({0,211 ({0,2} as Igs) }
0 — ({1/ 3} as I128) ” ({1/ 3})

({0,311 ({0,3}) [ ({0, 3} as Ie3) }
({1,2} as Ip8) | ({1, 2})

At this point, we have integrated all information from memory type and patterns into the memory
tree. As seen in Example 4.3, 73 already has the desired semantics, that is, its evaluation outputs the
identifiers of patterns which match the input memory value. A

T1 = switch(.0.[0 : 1]){

1

7+ = switch(.1.[0 : 1]){ 0

1

4.3.3 Decision tree finalization

At this stage, we have woven all patterns into the memory tree. Our memory tree is thus “complete”,
in that it contains all information from both memory type and patterns. During weaving, the shape of
the tree must not be changed: indeed, it must remain synchronized with the memory type for memory
patterns to be woven in the right places. Now that weaving is done, however, we can reshape the tree in
arbitrary ways as long as semantics are preserved. The goal of this phase is to simplify the memory tree
to prepare it for sequential code generation. At the end of these simplification passes, we get a decision
tree which corresponds to “switch nest”-style executable code. As a first step, we “trim” the tree by
removing its remaining typing information. We then sequentialize it and keep a single output identifier
for each leaf. At any point after trimming, we can apply various classic optimizations, some of which
are sketched in Section 4.3.4.

Trimming Since we have explored all patterns, the remaining buds will never be expanded, and can
thus be turned into normal leaves. This is done by the following operation:

Trem(77) = 7 [(Jas T) = (])]
From now on, we assume that no buds remain in the tree.

Sequentialization The next, and most important step, is to remove ‘Par’ nodes to fit a sequential
execution model. SeQ(7"), defined in Fig. 4.10 is the sequentialized version of 7, i.e., a semantically
equivalent tree that does not contain any parallel nodes. Its definition is based on the following
description. When we encounter a parallel node, we first pick a branch i (based on heuristics,
as described in the next section). We then graft the remaining branches onto each leaf of 7.
GRAFT (Tparent, Tenild), defined in Fig. 4.10, places Tchilg at the leaves of Tparent and specializes the
child tree’s leaves by intersecting them with the initial parent leaf. This might result in empty
leaves (indicating unreachable code), which can be removed later. Finally, we sequentialize the
resulting tree. Note that we sequentialize the remaining trees after grafting. Sequentializing
remaining branches before grafting would produce a faster compilation algorithm, but give less
freedom for heuristics to pick an appropriate branch at each grafting point.

Finalization The very last step to obtain an actual decision tree is to remove every output identifier
but the smallest one from each leaf. This reflects the “first pattern wins” semantics of pattern
matching. This is done the following operation:

Finavize(7) = 7 [({§1, .-, in}) = ({H1D)]

Note that we never encounter empty leaves at this stage, since the typing judgment for high-level
expressions ensures pattern exhaustivity.

102



SEQ{

() — ()
switch(7){co = 70, ..., cn1 — Tn-1, _ — 7'} — switch(7){co — SEQ(T)), ..., cn-1 — SEQ(Tr-1), _ — Sea(7')}
Toll - .-l Ta-1 — SEQ (GRAFT (‘7{, o<i/<n 7})) where 1 = pick(7y, ..., Tn-1)

#i

GRAFT (Tparent, Tehild) = Tparent [(J) = Tehita [(J') = (J N ])]]

Figure 4.10: Sequentialization of memory trees.

Example 4.6 (Running example — Trim and SeQ). Figure 4.7a is immediately obtained from Fig. 4.6b by
trimming type information from buds. After this step, some redundancy remains, thus we apply an
easy simplification to obtain Fig. 4.7b. We are now ready to remove parallel nodes. Let us pick the left
branch 77 as the new parent tree and graft the right branch 7 with Grarr(77, 7+). All leaves of 77 are
replaced with a copy of 7 in which leaves’ sets are intersected. For instance, the right child {1, 3} of
T is replaced with a switch(.1.[0 : 1]) whose leaves are {1,3} N {0,2,3} = {3} and {1,3} N {1,2} = {1},
hence Fig. 4.7c. Notice how the semantics of each tree mentioned in this example are unchanged from
73 obtained after weaving (Example 4.5). A

4.3.4 Optimizations

At this stage, we are able to compile any given pattern matching and memory layout to an equivalent
decision tree. However, this decision tree is possibly inefficient, redundant, or both, as we show next
in Example 4.7. In this section, we describe how to make the output of our compilation procedure as
compact and efficient as possible, by 1) selecting the “best” possible trees during the sequentialization
pass, and 2) applying post-processing optimizations to remove dead code after the fact.

4.3.4.1 Sequentialization heuristics

The first opportunity for optimization in our compilation process arises during sequentialization. In Seq,
we non-deterministically pick one of a “Par” node’s branches to become the parent of all its siblings. As
the following example shows, this choice can dramatically impact the size and efficiency of the resulting
decision tree.

Example 4.7 (Good, bad and ugly decision trees). Consider the following pattern matching in Fig. 4.11
on pairs of Zarith integers, inspired by the list merge example from (Maranget 2008).
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Par

r//\i

fn has_bigint(p : ZarithPair) —-> bool { switch .0.[0:1] switch .1.[01]
match p { 1 | o 1 | o
(Large(_), ) => 0,

(_, Large()) => 1, y Y
- =>2 1,2 o.1._2) 62 01,2

}
}
(a) Source code (b) Memory tree right before sequentialization
Switch .0.[0:1] Switch .1.[0:1]
1 | o 1 [ e
Switch .1.[0:1] Switch .0.[0:1] Switch .0.[0:1]
1 [ o 1 [ o 1 ] o
(2 ) (o) (1) (o)
(c) Sequentialisation by switching on the field 0 first (d) Sequentialisation by switching on the field 1 first

Figure 4.11: A simple pattern matching, with different sequentialization heuristics.

After scaffolding the memory type, weaving each memory pattern and trimming, we obtain the
memory tree shown in Fig. 4.11b. It contains a single ‘Par’ Node, and there are two ways to sequen-
tialize it depending on whether we pick the switch node on the first or second field to go first. After
sequentialization, finalization and a minor constant folding pass (described later in this section), they
yield the two decision trees shown in Figs. 4.11c and 4.11d. These two decision trees are semantically
equivalent, but do not correspond to the exact same executable code. Indeed, Fig. 4.11c is better than
Fig. 4.11d in two aspects:

® ijts code size is smaller, since it contains one less switch node;

e it features a “shortcut”: while every path in the second tree goes through two switches, the first
tree reaches a leaf after only one switch when the first Zarith integer is of the form Large(x).

A

While the difference between the two trees in the previous example seems negligible, some larger
programs may benefit from judiciously ordering switch nodes in decision trees, as Scott and Ramsey
(2000) show. While runtime performance seems relatively unaffected, static metrics such as code size are
more significantly impacted for deep enough pattern nesting, and a handful of (sometimes synthetic)
benchmarks are tremendously impacted.

Traditional Heuristics adapted for Memory Trees In our approach, the arrangement of switch nodes
in the final decision tree is determined by a series of choices (between children of a “Par” node) in
the Seq procedure. Such non-deterministic choices between independent subpatterns are common
in all pattern matching compilation approaches. As a result, the problem of deciding the order of
switches in a decision tree has been extensively studied since the eighties (Cardelli 1984; Baudinet
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and MacQueen 1985; Maranget 1992; Scott and Ramsey 2000), yielding a variety of heuristics tailored
to traditional pattern matching compilation approaches. Here, we informally describe the heuristics
presented in (Scott and Ramsey 2000) and how they can be adapted to our setting. Consider a parallel
node 7 = 7g|| ...|| Tn-1 that we want to sequentialize. We assume that each child tree 77 is a switch
node. This is easy to achieve: if there exists i such that 7; is a leaf (J;), we process it by intersecting all
other children trees’” leaves with J;; if 7i is itself a parallel node 7| ...[| 7._,, we replace it in 7~ with
its own children; we recursively apply the two previous transformations on every “Par” node’s children
until fixpoint.

Relevance A switch node is said to be relevant to a given pattern identifier j if it is useful to determine
whether an input value is accepted or rejected by j, that is, if j appears in some of its branches
and not in others. For our approach, a subtree 77 is relevant to j if some of its leaves contain j and
others do not. The relevance heuristic prioritizes trees which are relevant to “early” patterns, that
is, to small identifiers. It assigns the score —j; to each 77 where j; is the smallest pattern identifier
for which 73 is relevant, or —jmax — 1 if it is not relevant to any identifier where jmax is the largest
pattern identifier.

Small defaults Here, the notion of “defaults” of a switch node refers to pattern identifiers for which it
is irrelevant, that is, which appear in every leaf (and therefore act as a “default” for values which
are not matched by other patterns). This heuristic minimizes the number of such patterns by
assigning the score —Nj; to each 73, where Nj is the number of distinct pattern identifiers which
appear in every leaf of 75.

Fewer child rules This heuristic prioritizes trees which lead to the fewest possible pattern identifiers.
It assigns the score —Nj; to each 73, where N; is the number of pattern identifiers that appear in at
least one leaf of 75.

Small/large branching factor The branching factor of a switch node refers to its number of branches,
including its default branch if it exists. The small (resp. large) branching factor heuristic assigns
the score —N; (resp. —N;) to each 73, where Nj; is the branching factor of its root switch node.

Arity factor The arity factor of a tree refers to the number of distinct locations that it explores. We
therefore define the arity factor of a leaf to be 0, of a “Par” node to be its number of children, and of
a switch node to be the sum of its branches’ arity factors. This heuristic minimizes the number of
distinct locations to inspect by assigning to each 73 a score equal to the negation of its arity factor.

Leaf edges The leaf edge of a switch node refers to the number of its children that are leaves. This
heuristic prioritizes higher leaf edges by assigning to each 75 a score equal to its leaf edge.

Failure (“artificial rule” in (Scott and Ramsey 2000)) This heuristic prioritizes trees which never lead
to a failure to match any pattern, by assigning the score —1 to every 7; switch node in which at
least one branch is an empty leaf (or, equivalently, a “Par” node having at least one empty leaf
child), and 0 to other subtrees.

Left-to-right/Right-to-left Unlike previous heuristics, which were based on the general shape of each
switch node 77, these heuristics measure their discriminant paths, which we denote 7;. While
the precise score assigned to each 7; depends on the exact set of their discriminant paths, both
heuristics prioritize shorter paths by assigning a higher score to 77 than to 73 if 7t; is shorter
than 7y.. If two of these trees” discriminant paths share a common prefix 7 but differ in their last
operation, the left-to-right heuristic prioritizes the leftmost path, while the right-to-left heuristic
prioritizes the rightmost path. For instance, when comparing two subtrees 7; and 7iy whose
discriminant paths are 7t; = .k and 7ty = 7K/, if k < K/, then the left-to-right (resp. right-to-left)
heuristic will assign a higher score to 7 (resp. 7ty’).

Towards Heuristics based on Layouts Previous works on pattern matching compilation consider
high-level pattern matching and assume that a somewhat uniform memory layout is used. In our
setting, we must consider the added complexity of potentially intricate memory layouts. Indeed, the
choice of memory representation may dramatically impact the runtime cost of individual switches. For
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instance, dereferencing a pointer is more costly than arithmetic and bitwise operations on words. Given
the choice between a switch node whose discriminant path contains such costly operations and another
switch with only arithmetic and bitwise operations, it seems better to pick the latter rather than the
former as the first switch in the final decision tree, performance-wise. Indeed, doing so gives us a chance
to get a cheaper path for some memory values.

Furthermore, these heuristics were developed in the 80s-90s. Scott and Ramsey (2000) shows that
for most programs, they do not significantly improve runtime performance. However, metrics such as
data locality and cache performance are now better predictors of overall performance. Heuristics which
have access to memory-level information (for instance, memory paths) may be critical to optimize such
aspects. Some initial informal experiments with Ribbit suggest that they are indeed useful.

Here, we briefly explore how precise memory layout specifications could be leveraged to offer more
information regarding which switch may lead to a better decision tree. In the same vein as the left-
to-right and right-to-left heuristics described earlier, we can measure each switch node’s discriminant
path and prioritize those with “cheaper” memory paths. As a first approximation of a memory path’s
“cost”, we can use its total number of pointer dereferences. This crude metric could be refined by
prioritizing switches on recently accessed locations and not counting the cost of already-accessed pointer
dereferences. This would require keeping track of accessed memory paths, which is easy to add to our

SEQ procedure (for instance by propagating a list T across recursive calls).

Note that in traditional pattern compilation approaches, non-deterministic choices between disjoint
patterns are made throughout the compilation process, whereas we perform a single sequentialization
pass (SeQ) after all patterns have already been woven into the memory tree. As a result, metrics such
as code size or average execution path length/cost are already available during sequentialization. This
makes it possible to directly measure each subtree and choose the “best” one based on these metrics, at
the expense of exponential space requirements. Some initial informal experiments with Ribbit suggest
that aggressive hash-consing makes comparing trees directly a viable, albeit slow solution with results
similar to heuristic-based sequentialization.

4.3.4.2 Elective surgeries

Optimizations on decision trees from literature can be used at any point after trimming. Sequentializa-
tion, in particular, might introduce redundant tests or create unreachable branches. Two optimizations
are particularly relevant. Constant folding propagates information from switches, such as “position 7@
contains value ¢”, and uses it to remove redundant switches. Dead branch elimination removes branches
that lead to empty leaves (i.e., (2)).

Throughout the compilation process, we may also use sharing to reduce space requirements, meaning
we manipulate Directed Acyclic Graphs rather than trees. In the Ribbit compiler, we achieve this through
hash-consing (see Chapter 6 for more details).

Example 4.8 (Optimizations and sharing for memory trees/DAGs). Consider the following memory
layout, which wraps pairs of Zarith integers in a pointer whose two lower bits are reclaimed as a tag,
which lets us determine the composition of a pair (e.g., two small integers) without having to dereference
it.

0 from (Small(_),Small(_)) = (0)2

1 from <Large(_), Large(_)> = (1),

2 from (Small(_), Large(_)) = 2)n

3 from <Large(_), Small(_)) = 3)

&4 (:EZzarith) =< [0:2]: Split (e)

This memory type is redundant by design, leading to empty leaves after sequentialization. After
scaffolding it and weaving the memory patterns corresponding to leq onto it, we get the following
memory tree:
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P S

switch [0:2]
ol1]2]3

| NV ‘ r/ v \\1—’\1
's/vvlﬁch|.0.[g.1] Swlmh|'1'[(< ( g ) ( : ) ( : ) ( : )

Par ar ar ar

Par

D0 D 0

As mentioned in Section 4.3.4.1, before sequentializing this tree, we collapse its nested parallel nodes
and remove those whose children are all leaves:

Par
Nm
switch .0.[0:1] switch .1[0:1] switch [0:2]

1 | o 1 | o ol1]2]3

N
C2) () (ea) C2) (o) () () &)

<

Let us now select the “tag” switch (discriminant path .[0 : 2]) as the root node and graft the rest of
the tree to its leaves. We get the following tree, which contains an empty leaf shown in red.
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switch [0:2]

ol1]2 |
(j_\—j Par
SWITCh .0.[0:1] swr’rch 1[0:1] serch .0.[0:1] SWITCh 1[0:1] SWITCh O[O 1] swt’rch 1.[01] swﬁrch .0.[0:1] swm:h 1[0:1]
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 2 3

Before attempting to sequentialize the remaining parallel nodes, we can simplify this tree by pruning
all “dead paths” (shown in red) which lead to the empty leaf.

switch [0:2]
0 | 1]2 | 3
Par Par Par
switch O[O 1] switch .1.[0:1] switch O [0:1] switch .1.[0:1] switch O[O 1] switch 1[0 1] switch .0.[0:1] switch .1.[0:1]

® @ ® @

The resulting tree consists of a root switch node with four branches in which every path leads to
the same leaf. We can therefore simplify it by collapsing each branch into a single leaf, yielding the
following decision tree:

switch [0:2]
o123

N
olalolo
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4.4 Metatheory

We now state and prove the soundness of pattern matching compilation, using the memory-level pattern
matching judgment » as a bridge between high-level pattern matching > and memory tree evaluation
». We have already proven in Theorem 3.2 that high-level and memory-level pattern matching (using
pat2mem with an adequate layout to get memory patterns) are equivalent. The main result of this
section is Theorem 4.1, which states that the semantics of the decision tree emitted by our compilation
procedure is equivalent to memory-level pattern matching with its input memory patterns.

441 Tree typing

We restore typing information discarded by our compilation scheme using a separate tree typing judg-
ment denoted A, 7T + 7 : T and defined in Fig. 4.12. It ensures that the structure of 7~ reflects that of
the considered memory type T when its switch nodes” discriminant paths are prefixed with the current
memory path relative to the root memory type 7.

“the memory tree 7 is of type T in the type variable environment A and at position 7 relative to the

root”
TreeTTTyYVar
(t— a € dom ( A) ATFT i T TREETLEAFWORD TREETLEAFCONSTANT
= A,TCI—(DZ_({ A,T[I—(I)Z(C)e
ATHT it
TRrReeTSwitcHINT
Co - (Jo) TreeTPOINTER
_ PN = AT T T
A, Tt + switch(7) 1 I _—
cn-1 = (Jn-1) ATHT & (7)
_ =)
TreeTPARCOMPOSITE TreeTParSTRUCT
AT=Tg...Thaa FT 0T vie{0,...,n—1}LA"Ari -7 : T Vie{0,....n—-1},A Wi+ 97 : Ty
A,ﬁ"T ” ﬂ:?x'ri::f\i Arﬁ'_%”-nnﬁl—l:{?O/-”r?n—l}
0<i<n 0<i<n

TresTBUDE TREETGROWNFRAGMENT
REETBUDFRAGMENT ATFT : 7T

A7+ (JasT): (masT)

ATHT :(masT)

TReeTSwiTcHSPLIT

Vie{0,..., n—1}LAT-T: T

A TF H (swi’rch(ﬁﬁk){ck,i - T | 0<i< n}) : split (7o, . ..., 7IN=1) { Cois---,CN-1,i from Py = T; [0<1i< n}
0<k<N

Figure 4.12: Typing judgment for memory trees.

Example 4.9 (Tree typing). Consider the following memory tree from Fig. 4.11b:
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Par

r/\«

switch .0.[0:1] switch .1.[0:1]
1 0 1 0

71 1N
G (09 (60 ()

We show that it is of type Tozarith With an empty root path:

TrREeTLEAFCONSTANT TrREeTLEAFCONSTANT TREeTLEAFCONSTANT TREETLEAFCONSTANT
TReeTS 5 OF({1,2}): (1) .0+ ({0,1,2}): (0); OF({0,2}): (1) .0+ ({0,1,2}):(0);
RER T SWITCHSPLT switch(:0.[0 : 1]){ switch(1.[0 : 1]){
15 ({12) 15 ({0,2)
0 — ({O/ 1, 2}) : Tzarith A 0 — ({0, 1, 2}) * Tyarith
} }
TREETGROWNFRAGMENT
switch(.0.[0 : 1]){ switch(.1.[0 : 1]){
1 — ({1,2 - 1 - ({0,2 .
0 - gol 1?;}) : (.0 as Tarith) A+ 0 — gol 1,};}) 2 (.1 as Tyarith)
TreeTParSTRUCT )
switch(.0.[0 : 1] switch(.1.[0 : 1]){
1 - ({1,2)) 1- ({02 | _
erl 0 - (o,12) |1 0 = (0,1,2) | Tosarien
} }

4.4.2 Pattern matching compilation correctness

We now state and prove that each of our compilation steps produces a memory tree (i.e., “progresses”)
and preserves memory tree typing as well as correct pattern identifiers. As a first result, we show that
scaffolding yields a well-typed tree whose evaluation on any well-typed memory value yields the initial
identifier set.

Lemma 4.1 (ScarroLp correctness). Let A, ¢, ], 7, T and V such that
EAFT ACHYV:T focusc (7, V) is defined
There exists a memory tree T such that

ScarroLpa (], 7T,T) =T ATHT T SVET » ]
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Proof. Immediate by induction on T. o

We then prove the correctness of our weaving step. In addition to progress and preservation of
tree typing, we show that all pattern identifiers already present in the memory tree are preserved by
weaving, and that memory values matched by the woven pattern reach its identifier in tree evaluation.
We first extend the typing judgment for memory patterns so as to accept any memory pattern generated
by pat2mem(p, T) as a member of the type T. Indeed, when the high-level pattern p is a wildcard _,
pat2mem emits a wildcard _5 which is not typed as T by the memory typing judgment in its current
state. A naive solution would be to add a typing rule accepting all appropriately-sized wildcards (i.e.,
F _j7 : T for every T). However, such a rule would also accept memory patterns which are unsuitable
for our purposes — for instance, a memory value of a split type in which all discriminants have been
replaced with wildcards, rendering its provenance undistinguishable.

Instead, we follow a finer characterization of memory patterns produced by pat2mem for a given 7. It
is very similar to the existing memory-level typing judgment, but also allows wildcard memory patterns
to occur at toplevel and at fragments, which are exactly the positions where a high-level wildcard pattern
may be encountered. We handle the former manually through a separate precondition in Lemma 4.2,
and the latter by adding the following rule to the typing judgment for memory patterns:

MeMTWILDCARD

A F 7 :(T[as:f)
Lemma 4.2 (WEaVE correctness). Let A, ¢, |, 7L, T, Ve, V, P, j & ] and T such that
EAFT  AcHY:T  focusc (BV) =V  AFP:TVP=_5 ARFT T U rT » ]
There exists a memory tree 7' such that
~ ~ ~ ~ U{j} ifcrpev
WEeavea(, T, T, 9, T) =T ATHT T SV FT o Juiit e p v
] otherwise

Proof. 1f p is a wildcard pattern _j, the WeaveEWiLDCARD rule applies:

P ()] = (JU{})
WesEAG LR T =T | (a5 @) 1> (U} as7)
Let 7 this woven tree. We always have

CHPPV S Va T o JU {5}

Otherwise, we proceed by induction on 7, using tree and memory typing to synchronize p, v and 7~
with T. Most cases are immediate; here, we only detail four of them.

Primitive type: T = I;. We have

Co = (Jo)
P =(c) v=(c)e SEPPV & c=¢ T = switch(®)) -1 : .(j‘fl)
- (J)

]: ]i ifﬂi’G{O,...,n—l},c’zci,
]’ otherwise

e If thereexistsi € {0,...,n—1} such that ¢ = c;, the SwitcHOLpConst and Lear weaving rules

apply:
co — (Jo)
WEAVEA(), TP, T) = switch(®) { " : Jiu{ib)
Cn-1 — (In—l)
- =)
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Let 7’ thiswoven tree. If p matchesV, thatis,if ¢’ = ¢;, wehave] = Jiand ¢,V F 77 »» J; U{j}.
Otherwise, tree evaluation selects another branch and we have ¢, v, + 77 »» J.

¢ Otherwise, the SwitcHNEwConst and Lear weaving rules apply:

co — (Jo)
WEeavea (G, 7T, T, p, T ) = switch(7) .c.n._l — .(i;x—l)

c - Juiib

N )

Let 7 this woven tree. If p matchesV, thatis,if ¢’ = c, wehave ] = " and ¢, Vi + 7/ »» J'U{j}.
Otherwise, tree evaluation selects another branch and we have ¢, v, + 77 »» J.

Fragment type: T= (mas 7). Wehave A+ p: T and A, ¢ + v : T. Suppose that the results holds for T'.
There are two possible cases for 7 :

TreeTBubFrAGMENT: 7 is a bud (J as T'). Since P is not a wildcard memory pattern, we expand
the bud during weaving with the BubExpanp rule:

WEeavea(§, 7T, T, P, T ) = WEavea(§, T, T, P, Ts)

where
Ts = ScarroLpA(], 7T, T)

From Lemma 4.1, we have
ATRTS T S Vx FTsm ]
and we conclude using the induction hypothesis.
TrReETGROWNFRAGMENT: we have A, 7T+ 7 : T and conclude using the induction hypothesis.

Struct type. Without loss of generality, we only consider two-field structs: T = {7o, T1}. We have

52{50,51}} Al-’ﬁoi:t\() Akﬁli?l 32{30,31]} A,C I—Vo:?o A,(I—;ﬁ 2’?1
CHEPPV & CHP» VACHEDPI > W) T =% 71 A0+ T ATIRET T
Ve FTo» Jo Sk FTI 1 J=JoN

Suppose that the result holds for Ty and T;. The ParStrucT weaving rule applies:
WEeavea(j, 7T, T, p, T ) = Weavea (j, .0, To, Po, 7o) || Weavea(j, .1, T1, P1, T1)

For both fields k € {0,1}, let 7,/ = Weavea(j, Tk, Tk, Pk, 7). From our induction hypotheses, we
have

Je Ui} if < kP> Vi

<,V T o> )
0k {]k otherwise

and therefore
JonJyu{j} ifcrprv

SV FT | T, w> ‘
»F TN, JonTi otherwise

The same reasoning applies to composite word types.

Split type. Without loss of generality, we only consider splits with two discriminant positions:

T= Split (7%, 1) { Coi,C1,1 from Py = T; ’ 0<i< T‘L}
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We have 7 = T || 751 where for both k € {0,1},

cko — To
Tsi = switch(t.m ) ... — ...
Ckn-1 — Tn-1

with A, 7T+ 75 : T foreach i € {0,...,n — 1} (the 77 are the same in 75 and 751). Suppose that the
result holds for every T;. Since p is of type 7, there exists a unique branch i € {0,...,n — 1} such
that

Arp:T focus. (7, P) = (co.)e focus. (71,P) = (c1.0)e
(from MemTSprir and VSpuir rules). Similarly, since V is of type T, there exists a unique branch
1 € {0,...,n—1} such that
AcHY:Ty  foeusc (M, ¥) = (cor)e  foeusc (MW =(cip)e Uk T
The WEeaveSeLT rule applies: we have
Weavea(, 7T, 7,0, 7)) = T | T4

where

C,0 7o

T = switch(7L.7) § ¢k i WEavea(j, T, T4, P, 71)

e Ifi =1, we have
SV FTh ]
with ]’ such that
<, Vi F WEAVEA(), 7T, T1, P, T7) »» ]
and we conclude using our induction hypothesis on T;.
e Otherwise, p does not match v as they contain distinct constants in at least one discriminant
position, and since 7- is unchanged in the woven tree for all i’ # i, we have
SV FT G ]
O

For all subsequent operations, we only need to show that the result of tree evaluation for any well-
typed memory value is preserved at each step (typing becomes unnecessary at this stage, and progress is
immediate). This is immediate for Trim (the semantics of a bud and of a leaf with the same set of pattern
identifiers are exactly the same). We now prove that sequentialization never alters tree semantics:

Lemma 4.3 (SeqQ correctness). Let 7, ¢, v and | such that
SVET » ]

We have
S, VESEQ(T) » ]

Proof. We first prove the correctness of Grarr, i.e., given a “parent” tree 7, and a “child” tree 7 such
that

SVET, » Jp SVETew e
we have
S,V + Grarr(Tp, 7c) » Jp N Jc
This is immediate by induction on 7. The result on Seq is then immediate by induction on 7. ]
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We can finally prove our whole compilation approach correct:
Theorem 4.1. Let A, T, <, V, {Po,---,Pn-1} and ] € {0,...,n — 1} such that:

EAFT ArDi:T ACHV:T J={jlo<j<nAacrp;»V}
We define the following memory trees according to our compilation algorithm:
-1 = ScAaFFOLDA(, €, T) T; = Weavea(j, €, T, Py, T5-1) T = SEQ(TRM(T1-1))
We have
SVETn» ]
Proof. Immediate from Lemmas 4.1 to 4.3. ]

4.5 Related work

Our memory trees are inspired by AND-OR trees, which are used to compile pattern matching in Standard
ML of New Jersey (MacQueen 2022; Aitken 1992). Similar to memory trees, AND-OR trees consist of
leaves, AND nodes representing products (analogous to “Par” nodes) and OR nodes representing a
choice between constructors of a sum type (analogous to switch nodes). The procedure for building an
AND-OR tree encoding a given match and emitting a decision tree from it is informally described in
an obscure research report (Aitken 1992). MacQueen (2022) mentions representing the “concrete shell”
of a type, as well as each pattern, as AND-OR trees, then “overlaying” each pattern tree successively
onto the type tree, which seems similar to our ScarroLp and WEave procedures. Unfortunately, no more
details have been published.

The most seasoned approach to pattern matching compilation (Cardelli 1984; Augustsson 1985;
Maranget 2008) uses pattern matrices where each row corresponds to a possible pattern and each column
to a subterm of these patterns. Therefore, each row can be seen as encoding a conjunction between
multiple parts of a given pattern (akin to our “Par” nodes) and each column as encoding a disjunc-
tion between different patterns (akin to our switch nodes). The procedure for building a decision tree
from a pattern matrix starts with non-deterministically picking a column to inspect. A switch node
corresponding to this column’s path is then emitted, and its branches are built by recursively com-
piling the same matrix specialized for each branch. Other representations of high-level patterns for
this approach include simple lists of patterns (Baudinet and MacQueen 1985) and sets of subpatterns
dubbed unmatched frontiers (Scott and Ramsey 2000). This approach is effective in general, but encodes
dependencies poorly: adding information such as “column i must be inspected before accessing column
j” to pattern matrices would be rather unwieldy. This is also a problem for pattern matching on GADTs
and dependent types. The solution used in the OCaml compiler, for instance, is to force the order of
columns to also encode the dependencies, thus preventing optimizations.

As detailed in Section 4.3.4.1, various heuristics have been developed to pick columns yielding
compact and efficient decision trees (Baudinet and MacQueen 1985; Cardelli 1984; Maranget 1992; Aitken
1992; Sestoft 1996). Scott and Ramsey (2000) provides an experimental evaluation of these heuristics,
and shows that their usefulness is rather limited. Maranget (2008) introduces a notion of necessity and
uses it to define new heuristics. Kosarev, Lozov, and Boulytchev (2020) explore a different optimization
technique by encoding the choice of optimal decision tree into a relational synthesis problem, and
solving through miniKanren. Their idea is very promising, but fails to scale to big matches.

Other matrix-based approaches for strict languages produce backtracking automata, which are usu-
ally less efficient (since a location/subterm may be inspected multiple times) but more compact than
decision trees (Fessant and Maranget 2001), or (acyclic) deterministic finite automata (Pettersson 1992).
Another approach consists in partially evaluating a naive match evaluator for a given list of patterns, then
optimizing the resulting program to get a decision tree (Sestoft 1996).

Pattern matching compilation for lazy languages may use similar techniques (mainly matrix-based)
as for strict languages, but is more complex since the semantics chosen for pattern matching is not fixed
and affects program termination. Early approaches solve this problem by fixing a left-to-right order of
evaluation (Augustsson 1985; Philip Wadler 1987). Laville (1991) defines an alternative semantics based
on partial terms. This more flexible semantics forms the basis of later approaches (Puel and Suarez 1993;
Maranget 1992; Maranget 1994; Sekar, Ramesh, and Ramakrishnan 1995), in which some heuristics are
applicable.
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4.6 Conclusion

In this chapter, we described how to compile pattern matching, which is a key component of the Ribbit
language (and more generally of programs working with ADTs) to efficient decision trees.

However, pattern matching in most languages (and in the Ribbit DSL presented in Chapter 2) is
richer than the simplified model handled by our compilation procedure. A crucial missing feature is the
ability to use patterns to bind parts of the matched value to variable symbols, in addition to recognizing
its shape.

Indeed, this chapter only covered the compilation of a small fragment of the Ribbit language to
a simplified target representation (decision trees). In the next chapter, we will provide a detailed
compilation approach for the full expression language of the Ribbitulus. To this end, we will define
a lower-level and more expressive target representation superseding decision trees, which handles
memory allocation, reads and writes on multiple independent memory locations.

The procedures introduced in this chapter are a crucial component of our full compilation approach.
Indeed, in addition to pattern matching compilation, our memory tree-based approach is able to emit
code which retrieves the provenance of any high-level value solely from its memory representation
following a given (possibly heavily mangled) memory layout. As we will see in the next chapter, this is
frequently necessary throughout expression compilation: subterm accessors require us to dynamically
determine another value’s precise high-level provenance.
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Chapter 5

Compilation of Valuexpressions

The previous chapter solved the problem of pattern matching compilation with custom memory layouts.
We now consider the remaining constructs of the Ribbit language. The most problematic are pivot
expressions, which combine data constructors and variable accessors with arbitrary memory layouts.
Constructors and accessors are simple operations when the underlying memory layout is somewhat
similar to high-level values. However, in the context of Ribbit, this is not the case in general: we
allow users to specify an arbitrary memory layout for each value. In particular, a pivot expression
(u : T as 7) specifies a memory layout for each variable appearing in u, which may be very different
from the existing memory representation of this value. In other words, pivot expressions may introduce
coercions between different memory layouts!

In this chapter, we provide a compilation approach for pivot expressions which handles such arbitrary
combinations of memory types. We supersede the decision trees defined in the previous chapter
with a new target representation in Destination-Passing Style and a finer memory model supporting
multiple memory locations as well as explicit allocation, reads and writes. We then combine this new
approach with the pattern matching compilation scheme described in the previous chapter into a single
compilation procedure which covers the full Ribbit language.

5.1 Motivating Examples

Before formally describing our compilation approach, let us illustrate the problems it solves on several
examples. In this chapter, we will use the RISC-V instruction model presented in Section 2.5 and
the packed list layout presented in Section 2.4 as running examples to illustrate different parts of our
compilation scheme.

Example 5.1 (High-level and memory types for RISC-V instructions.). Recall the Reg and Instr ADTs
and memory layouts presented in Section 2.5, which model a subset of the RISC-V instruction set
consisting of four instructions: Add (addition of two register operands), Addi (addition of a register and
an immediate), Jal (unconditional jump-and-link) and Sw (store a 32-bit word in memory). We model
registers as a simple enumeration of the 32 possible registers Xy to X31, encoded similarly to a C enum
on 5 bits:

Treg = Xo | -+ | Xa1 ?reg = split(¢) {i from X; = (i)s | 0<i< 32}

For our particular instruction subset, each of the four possible constructors can be identified using only
its opcode stored in the 7 lowest bits of a 32-bit instruction. The Ribbitulus model for these four RISC-V
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instructions corresponds to the following high-level and memory types:

Triscv = Add(<Treg/ Tregs Treg>) 0x33 from Add(_) = :C\Add
| Addi({Treg, Treg, I12)) ~ ' 0x13 from Addi(() = Taddi
| Jal({Treg, I20)) Trisev = split([0:7) ox6f from Jal(_) = T
| SW(<Tregr Treg, I12>) 0x23 from Sw(_) = Tsw

Tadd = _32 =< [0:7] : (0x33)7

_ Taddi = 0:7]:(ex13
< [7 : 5] : (Addo as Treg) Tadd - [7 : 5% : E:sdd)fo as :l:re )
= [12 : 3] : (0)3 12:3]: (0)s )

< [15: 5] : (Add.1 as Treg)
< [20 : 5] : ((Add.2 as Treg)

< [
< [
< [15: 5] : (Addi.1 as Treg)
< [25: 7] : (0); |

20:12] : ((Addi.2 as Ip)

Tjal = 32 %< [0: 7] : (0x6F)7 Tow = _32 = [0: 7] : (0x23)7
< [7:5] : (Jal.0 as Treg) =< [7:5]:(Sw.2.[0: 5] as I5)
< [12:7]: (Jal.l.[11: 7] as Iy) =< [12:3]:(2)3
< [20:1]:(Jal.l.[10: 1] as I1) < [15:5] : (.Sw.0 as Treg)
= [21 :10] : (Jal.1.[0 : 10] as I1p) < [20:5] : (.Sw.1 as Treg)
< [31:1]:(Jal.1.[19:1]as 1) < [25:7]:(Sw.2.[6:7]as Iy)

We model the RISC-V instruction sw x1, x2, 42 as the high-level value v = Sw((Xy,X3,42)), and its
representation as Triscy is the following memory value:

V= _gpx [0:7]:(0x23)7 < [7Z:5]: (10)s = [12: 3] : (2)3
< [15:5] : (1)5 < [20:5]: (2)5 = [25:7] : (1)7

To obtain the previous memory value, we decomposed the 12-bit immediate 42 = 0b00eG 0010 1010
into its 5 lowest bits |0b81010 = 10 and 7 highest bits |0b000 0001 =1 . A

One of the problems addressed by our compilation approach is how to compile source value con-
structors — that is, pivot expressions such as (v : Triscv as Trisev) — to low-level instructions for building a
memory value which adequately represents the requested value — in this case, v. Such low-level instruc-
tions may include memory allocation, casts from unspecified words to more precise memory structures
and initialization of constants at specific positions. Our compilation approach therefore emits target
programs in a custom intermediate representation featuring explicit allocation !, read and write instruc-
tions. This target program representation will be formally described in Section 5.2. As a first example
of a target program, the following code snippet builds the memory value v from Sw((X1, Xz, 42)):

let x = alloc(32); // allocate the necessary space for the memory value
x.[0:5] := 0x23; x.[12:3] := 2; // constant parts of the memory layout
x.[15:5] := 1; x.[20:5] := 2; // register fragments: rsl = X1, rs2 = X2
x.[25:7] := 1; x.[7:5] := 10; // split immediate 42

Figure 5.1: Target instructions building the memory value Vv representing Sw({Xi, X»,42)) in the root
memory location x.

The low-level code shown in Fig. 5.1 is rather straightforward: it is reasonably easy to produce such
code through a simple exploration of the desired memory value. Section 5.4.1 will provide a more
formal description of such a procedure.

For pivot expressions containing a valuexpression with accessors x.7 rather than a simple value,
the target code also needs to read from the existing memory value x. For instance, consider the pivot
(x.5w.0 : Treg S :Ereg), which accesses the first register operand of an Sw instruction stored in x. We

IWe do not distinguish between stack and heap allocation and instead assume the existence of an abstract pool of memory
locations.
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only need to extract the 5 bits at offset 15 within x to get the desired memory value: for instance,

with the previously built memory value v, we have focus (.[15 : 5],V) = (1)s5, which is indeed the Treg
representation of the register value X;. The following low-level code snippet performs this access for
any memory value x, storing the result in a newly allocated memory value 1

let r = alloc(5); // allocate 5 bits for the extracted register value
r := x.[15:5]; // extract the desired subterm from the value stored in x

Figure 5.2: Code extracting the first register operand from the representation of an Sw instruction stored
in the memory location x.

Again, this low-level accessor code is immediate from a simple inspection of the memory type Triscy-
Section 5.4 will provide a formal procedure to compile such simple accessors.

However, other accessors can be trickier to compile. Broadly speaking, the compilation of an arbitrary
accessor (x.7 : T as T) may be problematic for two reasons:

e the subterm .7t may not be stored as a single fragment within the representation of its parent value
x (or may be stored as a single fragment using a different memory layout from 7), requiring us to
gather multiple pieces before reassembling them into a T memory value, as in Example 5.2;

¢ the actual location of the fragment encoding .7 within x may depend on the precise provenance of
the high-level value represented in x, requiring us to find and inspect split discriminant locations
in x to determine its shape and retrieve the representation of x.7, as in Example 5.3.

Example 5.2 (Scattered immediate in RISC-V: imm accessor). Consider the pivot (x.Sw.2 : Ijp as Iyp),
which accesses the immediate operand of an Sw instruction as a standard, consecutive 12-bit primitive.
This piece of data is not immediately accessible in the memory representation of an Sw instruction.
Indeed, in Tsy, the immediate subterm .Sw.2 is broken down in two pieces stored in separate locations:
its 5 lowest bits are stored at memory position .[7 : 5] and its 7 highest bits at .[25 : 7]. The following
low-level code snippet performs this access on a Tre; memory value stored in x, storing the extracted
immediate in a newly allocated location imm:

let imm = alloc(12); // allocate 12 bits for the rebuilt immediate
imm.[0:5] := x.[7:5]; // 5 lowest bits stored at offset 7 in the instruction
imm.[5:7] x.[25:7]1; // 7 highest bits stored at offset 25 in the instruction

Figure 5.3: Code rebuilding the immediate operand from its two pieces extracted from the representation
of an Sw instruction stored in the memory location x.
A

So far, value constructors and accessors only required us to allocate memory and initialize it with the
contents of various parts of the input (parent) memory value. However, the following example shows
that seemingly simple accessors may require more in-depth inspection of the input value and the use of
a “switch” construct reminiscent of decision trees.

Example 5.3 (Variable head location in lists). Recall the high-level list type Ty;st and “packed” memory

118



layout T, (along with the type variable environment Ajjs) from Example 3.4:
Ajist = {tiist = Tiist, tp — Tp} Tiist = Nil | Cons((Is2, tiist))
Tp = split ([0 : 2]){

0 from Nil = 61 [0:2]:(0)2
1 from Cons({_, Nil)) = g4 [0:2]:(1)2<[2:32]:(.Cons.0 as I3p)

2 from Cons((_, Cons())) = (%:64[10( {{z(]CcErzl)SZO as I33), (.Cons.1.Cons.0 as I3;), (.Cons.1.Cons.1 as tp)}})

}

Assume that x isbound to anon-empty list represented as T, , and consider the following pivot expression
which accesses its first element: (x.Cons.0 : I3, as I3;). Depending on the precise provenance of x, its
subterm .Cons.0 may be stored in two different locations: if x represents a list with only one element,
then it is a composite 64-bit word whose 32 bits at offset 2 encode the single I3; element. However, if x
represents a list with more than one element, it is a pointer to a struct whose first field encodes the first
element on 32 bits. As a result, in order to extract the I3, representation of x.Cons.0, we must first inspect
the two lowest bits of x (as indicated by the split discriminant position .[0 : 2] in its layout T ) to identify
its provenance, which determines where the subterm .Cons.0 will be stored. The following low-level
code snippet performs this access, assuming that the memory location x contains the T, representation
of a non-empty list:

let res = alloc(32); // allocate 32 bits for the extracted element
switch(x.[0:2]) { // identify the provenance of x
0 -> fail; // Nil: not supposed to happen
1 -> // Cons(<_, Nil>): extract from composite word
res := x.[2:32];
2 —> // Cons(<_, Cons(_)>): extract from pointer and struct
res := X.*.0;

Figure 5.4: Code extracting the first element of a non-empty list from its memory representation as T,
stored in the memory location x.

A

The four previous examples have illustrated various situations which can arise during compilation
of valuexpressions/pivot expressions. As a final motivating example, let us consider a full Ribbitulus
expression in which pivots are combined with other syntactical constructs, namely function calls, let-
bindings and pattern matching.

Example 5.4 (Full expression with RISC-V values.). Recall the is_compressible function from Exhibit 15,
which inspects a 32-bit RISC-V instruction to determine whether it can be compressed into a 16-bit
instruction according to Waterman et al. (2019). It uses two auxiliary functions is_nonzero_register
and is_popular_register. Both are simple predicates using pattern matching to determine whether a
given register is x@ or not, or whether it is one of the eight “most popular registers” x8 to x15.

Both of these functions return booleans, which we model through the following types:

0 from False = (0)g }

Thool = True | False Thool = split (5){ 1 from True = (1)s

For simplicity, we assume that the following primitive operations are available: an “AND” operation
between booleans denoted A, a comparison predicate x < ¢ between a primitive value stored in x and a
constant c of the same width, and an equality operator x = x’ between two values of the same type.
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We model is_nonzero_register, is_popular_register and is_compressible with the function en-
vironment X and typing environment I" defined below. Their bodies correspond to the expressions e,
€oreg and epreg respectively. Note that or-patterns and variable patterns have been processed into Ribbit-
ulus pattern matching branches by expanding or-patterns into multiple branches and lifting variables
to let-bindings in right-hand-side expressions.

is_compressible ¢ ( Trisev @8 :Enscv — Thool @S Thool)
I'= is_nonzero_register ( Treg aS Treg — Thool AS ?bool)
is_popular_register : ( Treg as Treg — Tpool @S Thool)

is_compressible > Ax. e ~
* P * ¢ Xo — (False : Thool @S Thool) }

Y =4 is_nonzero_register — AX. eqre e = match(x) {
- - g Oreg T . o
— (True:
is_popular_register > AX. €preg - (True : Toool AS Thoot)

Xs — (True : Tpool S Thool)
X15 — (True . Tbool aS ?bool)
— (False : Tpool @S Thool)

€preg = mMatch(x)

ec = match(x) {

Jal({(X1,_)) — let n: Iy as I =x.Jal.l in
(Tl < 4096 : Tphool as '?bool)
Add((_,_,_)) — lef1q: Trgas ’T}eg =x.Add.0 in
lef 151 : Treg @s Treg = x.Add.1 in let bs1 : Tpoo! as Tbool = is_nonzero_register(rg1) in
lef 152 : Treg @s Treg =x.Add.2 in let bgy : Tpool S Thool = is_nonzero_register(Tsy) in
(ra=1s1A bsl A B2 & Thool @S Thool)
Addi((_,_,_)) — letrq : Treg as Treg = x.Addi.0 in
let T : Treg @S Treg = X.Addi.1 in let b : Tpeel as Thool = is_nonzero_register(Ts) in
let n : I1p as I1p = x.Addi.2 in
(Ta =Ts AbATL < 64 : Tpool aS Thool)
Sw({_,_,_)) — letry: Treg aS ?reg = x.Sw.0 in let by : Thool @S Thool = is_popular_register(rg) in
lef 11 @ Treg as ?reg = x.Sw.1 in let by : Tpool @S Thool = is_popular_register(ry) in
let n:IpasIip =x.Sw.2in
let ny:IsasIs =n.[0:5] inletn, : I as I = n.[10: 2] in
(bo Aby Any=0Anp =0: Thool @S Thool)
— (False : Tpool @S Thool)

}

The expression e, which corresponds to the body of is_compressible from Exhibit 15, combines several
syntactical constructions. At toplevel, itis a pattern matching expression, which requires us to emit code
that recognizes the shape of the input value — this has been covered in Chapter 4, and we will provide a
more formal interface in Section 5.3.

Let us now focus on the right-hand side of its branches, for instance the Sw({_, _, _)), which matches
our value v from Example 5.1. The right-hand side of this branch is an expression which binds the three
operands of an Sw instruction — two registers 19 and 11 and a 12-bit immediate n. It then uses these
extracted values to compute a boolean value determining whether x is a compressible instruction.

From a high-level perspective, extracting these values is a simple task. Indeed, a simple represen-
tation for the input value x would simply encode its 12-bit immediate operand at position .Sw.2 as the
primitive type I1. The actual memory layout Tyiscy, however, is not so straightforward: since the im-
mediate operand is stored non-consecutively in two separate pieces, we must reassemble them to bind
the expected 12-bit immediate to n. In essence, we need to synthesize code manifesting the isomorphism
between the non-consecutive representation of n and its desired standard immediate representation. A

Our compilation procedure is able to emit the control flow graph shown in Fig. 5.5, which repre-
sents low-level code combining a decision tree for the toplevel match with memory reads, writes and
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allocations that perform the tasks required for its branches.

success

[[Functi.on is_popular_register : Reg — Bool = A reg res .j}’[switch(reg)

success

ﬁ}unction is_compressible : Riscv — Bool = A instr resjj

v

/% match instr %/

let opcode = instr.

[0:7]

switch(opcode)

(0x13 [ ox33 [ exeF | ox23)

/% case Addi(rd, rs, imm) */
/% Bindings %/

let rd = instr.[7:5]

let rs = instr.[15:5]

let imm = instr.[20:12]

/% Result computation x/

let breg = alloc(8)

breg

res := breg & (imm < 64)

= (rd =rs) & (rs == 0)

l success

J

/x case Add(rd, rs1, rs2) *]\
/% Bindings %/

let rd = instr.[7:5]

let rs1 instr.[15:5]

let rs2 instr.[20:5]

T o e
let rd = instr.[7:5]

/% Result computation */
let bd = alloc(8)

switch(rd)

bd := (rd = rs1)

let bs = alloc(8)

bs := (rs1 == 0 & rs2 == 0)
res := bd & bs

success )

/x case Jal(X1, imm) */

/% Bindings =/
let imm = alloc(20)

imm.[11:7] := instr
imm.[10:1] := instr
imm.[0:10] := instr
imm.[19:1] := instr
res := imm < 4096

.[12:7]
.[20:1]
.[21:10]
.[31:1]

l success

J

res =

/% case _ */

0

success

S

/)* case Sw(rbase, roff, imm) */

/% Bindings */

let rbase = instr.[15:5]

let roff = instr.[20:5]

let imm = alloc(12)

imm.[0:5] := instr.[7:5]

imm.[5:7] := instr.[25:7]

/% Result computation x/

let bbase = alloc(8)

bbase := is_popular_register(rbase)
let boff = alloc(8)

boff := is_popular_register(roff)
let immlow = imm.[0:5]

let immhigh = imm.[10:2]

let bimm = alloc(8)

bimm

res := bbase & boff & bimm

:= (immlow = @) & (immhigh = @)

I\ success

/)

Figure 5.5: Simplified CFGs for is_popular_register and is_compressible. From theinput instr, is_compressible

identifies the head constructor using the 7 lowest bits, then extracts subterms such as destination and source registers for Add or the 12-bit imm for Sw,

and finally computes the boolean result and stores it in res.

More precisely, this target program:

e inspects the internal representation of an input Tyscy value to determine its head constructor (Add,
Addji, Jal or Sw), as well as the nested register constructor in Jal;

e extracts from this representation all subterms that are bound to variables in the matched pattern.

For instance, in the [Sw case , the two parts of the 12-bit immediate operand are combined in imm

in order to reconstruct a value that can be used in a mask;

* allocates and initialises memory to represent the appropriate values. For instance, the imm value just
mentioned is first allocated as 12 uninitialized bits, filled, then used to compute the final result.

The rest of this chapter is organized as follows. In Section 5.2, we define a target representation in
Destination Passing Style supporting all previously mentioned operations, as well as a detailed execution
model. Our compilation procedure consists of several smaller algorithms, each translating a subset of the
Ribbit language to target expressions. The first of these procedures, Destruct, is defined in Section 5.3
and provides an opaque interface around the pattern matching compilation approach from Chapter 4. In
Section 5.4, we introduce necessary tools through simple but incomplete procedures for compiling value
constructors and accessors. Section 5.5 details our main compilation algorithms for pivots dubbed Seex
and ResuiLp. Section 5.6 brings everything together in our toplevel compilation function CompILEPROG,
which handles the whole Ribbitulus in a unified way while also ensuring termination. Finally, in

Section 5.7, we state and prove the correctness of our compilation algorithms.
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5.2 Target in Destination Passing Style

As we have seen in the previous section, compiled Ribbit programs must perform a variety of tasks,
including:

¢ reading from locations in memory and switching on their values;
* writing results to their appropriate memory locations;
¢ allocating and initializing memory following the shape of the intended output value.

In this section, we define a target intermediate representation in which each of these tasks is made
explicit. ~ We use a Destination-Passing Style (Shaikhha et al. 2017) representation in A-normal form
(2023). This provides us precise control over memory management and input/output arguments, and
could enable further memory improvements, such as using stack allocation when appropriate and
applying tail-call modulo cons (Bour, Clément, and Scherer 2021). Another avenue would naturally be
to use Continuation-Passing Style (Appel 1992), notably to simplify handling of recursive calls, as we will
seein Section 5.6.1. Thisis in line with numerous compilers for functional languages (Laviron, Chambart,
and Shinwell 2023; Hall, Hammond, et al. 1992) and easily allows moving to SSA representations such
as Rust’s MIR and LLVM.

5.2.1 Syntax

Our target IR consists of expressions denoted €, whose grammar is given in Fig. 5.6. As a convention,
target keywords are typeset in a monospaced font, and target elements are given a tilde hat (for instance, &
is a target expression). Target expressions include calls to functions, which are defined in a global target
function environment denoted £ mapping each function symbol f € FunVars to a lambda-expression
with an arbitrary number of arguments A(Xin0, - - ., Xinn—1, Xout)-€. Note that sharing is not explicit in the
IR, even though we use a control-flow-graph style representation underneath.

pu=_¢ P [oi:bl:_eo | {leoreoorens )} (shallow memory shapes)
0<i<n

€ ::= success | fail (return statements)
| freeze(Xout—in); € | let in Xjn = Xjn.7T; & (create input locations)
| let out Xout = alloc({); & | let out Xout = Xout-TT; & (create output locations)
| Xout := C; € | Xout := &alloc(£); & | Xout := Xin; € (write to memory)
| cast Xout to P; & | cast Xout to I¢; € (reinterpret or refine the shape of a memory location)

| call f(Xin,Or -+« Xinn-1, Xout)} €
(function call with n input arguments and one destination argument)
| switch (xin){co = &o,...,cn-1 = én-1,_ — €&} (switch node reading from an input location)
Life AXin,0 - - - Xinn—-1)Xout-€ (target function environment)

Figure 5.6: Target IR grammar.

The essence of destination passing style is that each function takes a destination argument which
indicates where it should write its result. Similarly, in our IR, memory locations, usually denoted x, are
identifiers for unaligned pointers. We distinguish between input locations (“xin”), which are read-only
and correspond to already-built values, and output locations (“xout”), which are write-only and corre-
spond to values currently being built. This distinction allows us to formally segregate “analysis” code
(i.e., pattern matching) from “building” code (i.e., value constructors). Destination passing style is thus
immediately visible in function declarations and calls: the last argument of call f(Xin, - - -, Xinn-1, Xout)
is an output memory location xqyt that should be filled with the result computed by f. For instance,
in both CFGs shown in Fig. 5.5, the destination res is an output location whose contents at the end of
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either function call represent a Tpoo1 memory value. Indeed, every success statement follows a write
instruction of the form res := rhs where rhs designates a boolean value.

Input and output sub-locations are obtained by focusing an existing location with a memory path,
for instance with the instruction let out X’ = x.7t. Additionally, an output location x can be frozen to
turn it into an input location with freeze(x). Constructing values requires memory to write into: either
by focusing an existing output location with a memory path (let out X’ = x.7), or by claiming a given
amount of unused memory (let out x = alloc({)). This memory is then filled using write instructions,
with several kinds of contents: constants denoted c, the contents of an input location, or the address of
newly allocated memory of a given size denoted &alloc(¥).

Newly allocated output locations are filled with an uninitialized word of the form _;. To model
memory structures such as structs or composite words, they must first be cast to an adequate shallow
shape. Shallow shapes, denoted P, are a subset of memory patterns consisting of composite and struct
patterns in which every field is a wildcard. Nested memory structures are obtained through several
successive casts. Cast instructions are also used to reinterpret integers as primitive values, in situations
where they have previously been cast to composite words in order to build their contents as separate bit
ranges.

Example 5.5 (Target IR for building an Sw value). The following target code creates a new output
location x and fills it with the memory representation of Sw({X1, X2,42)) as Triscv:

€sw = let out x = alloc(32);
castxto_gp = [0:7]: 7= [7:5]: 5= [12:3]: _3%[15:5]: _5x[20:5]: 5= [25:7]:_7;
Let out Xopcode = X-[0: 7]; Xopcode 1= 0x23; freeze(Xopcode);

let out Xfunct3 = X.[12 : 3]/ Xfunct3 := 2; 'Freeze(xfunctl%);

let out Xrego = X.[15 : 5]; Xrego := 1; freeze(xregp); (register X;)
Llet out Xregl = X.[20 : 5]; Xreg1 := 2; freeze(Xreg1); (register X»)
let out Ximmlow = X-[7 : 5]; Ximmiow := 10; freeze(Ximmiow); (5 lowest bits of immediate 42)

Llet out Ximmhigh = X-[25 : 7]; Ximmlow := 1; freeze(Ximmnigh); (7 highest bits of immediate 42)
freeze(x);

success
This code is driven by the memory layout used for Sw instructions:

Tow = 32 %< [0:7] : (0x23)7 =< [7: 5] : (Sw.2.[0:5] as I5) = [12: 3] : (2)3
< [15: 5] : (.Sw.0 as Treg) > [20 : 5] : (.Sw.1 as Treg) < [25: 7] : (Sw.2.[5: 7] as I7)

We start by allocating 32 bits to store the future Ts,, value (since |Ts,| = 32) into a new output location
x. We then cast these uninitialized 32 bits to a shallow shape which lets us access the location of every
constant and every fragment in Tsy. We then fill each of these locations with appropriate contents.
For each of these components, we start by binding a new output identifier to its location, then write
appropriate contents and freeze it after its contents are final. For constants (opcode and funct3 in
the RISC-V layout specification), we simply write their values specified in Tsy to their locations. For
fragments, which each correspond to an operand of the source Sw instruction, we must first determine
the representation of the designated register or immediate. Here, this is easy to achieve: for instance,
the representation of the register Xj as :Ereg is (1)5 and the representation of the five lowest bits of the
immediate 42 as I5 is 10. A

Example 5.6 (Target IR for rebuilding an Sw immediate). We now define a function fimm which, given an
input location xi, which contains the memory representation as Triscy Of an Sw instruction (as obtained,
for instance, from the code in Example 5.5), and an output location (a.k.a. destination) xo,+ which contains
12 uninitialized bits, fills x,u¢ with the representation as I, of the immediate operand (position .Sw.2)
of the input value.

Our target function environment will contain the following function binding:

fimm = AXinXout-€imm
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with its body &imm defined as follows:

Eimm = cast Xout to _12 < [0:5]: 5% [5:7]:_7;
let in Xinlow = Xin-[7 : 5]; let out Xoutlow = Xout-[0 : 5]; Xoutlow = Xinlow; freeze(Xoutlow);
let in Xinhigh = Xin-[25 : 7]; let out Xouthigh = Xout-[5 : 7]; Xouthigh = Xinhigh; freeze(Xouthigh);
cast Xout to I12;

success

A closed program which builds the representation of Sw((X1,X»,42)) (using the target program &s,
from Example 5.5), then calls fimm to extract its immediate operand would be:

Esw; let out Xjmm = alloc(12); call fimm(X, Ximm); freeze(Ximm); success

A

"o

Traditional control flow relies on the switch construct with a default branch marked by “_", along
with success and fail return statements which do not return any value. The default branch of a switch
may be omitted, which is equivalent to having a fail default branch. Given two target expressions & and
&', their sequence €&; &’ corresponds to € in which every success statement has been replaced with &’.

Example 5.7 (is_popular_register target code). Recall the pattern-matchingbased function is_popular_register
from Example 5.4. We translate it to the following target function:

freg — AXinXout-switch (xin) {

0 — Xout :=0; success

e

7 > Xout := 0; success

8 — Xout := 1, success

e

15 — Xout := 1; success

16 — Xout := 0; success

cee

31 — xout := 0; success

_ = fail

}

As we will see in Section 5.3, this translation from match constructs to target switches is directly based
on our pattern matching compilation algorithms presented in Chapter 4. A

5.2.2 Semantics

We now define a small-step evaluation judgment for our target IR. The evaluation judgment, denoted
T+ S v § and defined in Figs. 5.9a to 5.9¢, uses evaluation states S and a target function environment
¥ which remains fixed throughout execution/evaluation. It is deterministic (modulo fresh addresses).
Elements that appear in gray in an evaluation rule are not necessary for nor affected by the application
of this rule.

Evaluation States Target evaluation states, denoted S = (p, Gin, Gout, G, €), consist of several config-
uration elements defined in Fig. 5.7, namely a call stack p, two environments &j, and Gou for input
and output locations respectively, and a memory store ¢. The normal forms are states of the form
(2, Gin, Gout, G, success); fail corresponds to a “stuck” state. We now detail each piece of the evaluation
state while looking at the rules that affect them.
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S == (p, Gin, Gout, S, €) (configuration tuple)

p =@ | (Cin, Oout, €) = P (call stack)
G : Vars — Addrs X Paths (location binding environment)
< : Addrs — Values (memory store)

Figure 5.7: Target evaluation states.

Memory Stores The actual memory content is found within the store ¢ which, as in Chapter 3, maps

addresses a € Addrs to concrete memory values v € Values. However, unlike before, we will manipulate
memory contents imperatively. Indeed, we will allocate and write in memory piece by piece. In particular,
a central operation is to insert the value Vv at position 7 in ¢(a). We denote this operation ¢[a.7t « V].
It relies on an insertion operation denoted ins/e\rtg (¢(a), 7, V), which writes the new value V at position
7t within the previous value stored at a. The result of insertion is a pair of a new memory store and
value (¢’,7%) such that focus. (7,) = V. Its actual definition is rather cumbersome and can be found
in Fig. 5.8. It proceeds by induction on memory values in the store, following pointers when necessary.
We also define foc/TsC (7, v), which defines the value at position 7 in V in the store <.

(a—>V)ec insert. (v, T,V = (¢, V") insert. (v, T, V") = (¢/,V”)
clam—V]=cU{amV"} focuso (T, V") =V

insert.(O0,0,V'){

v , € — (¢, V)
v I —> insertc (v, T,V')

v D< [Oiifi] 2()\1 ’ .(b|§|,1...b0).7/'[\ — Q',V’ D< [Oi : fi] :Vi

0gi<n 0gi<n
igl
here 1 {i O<si<n }
w = .
V] S {O,...,(’,i - 1}/b0i+j =1
and (¢/,V') = ins—’e\rtC (3 PX[oi: 8] : vy, ﬁ,?)
iel
& (a) , % — (¢’ U{a -V}, & (a)) where (¢/,V) = insert. (¢(a), 7T, V')
v X 1y , T — | Vxriivi Bty iV | where (¢, V) = insert (vi, 7T, V)
0<i’<n 0gi/<n
HE .
o, ..., Vn1} , AT — (¢, {{VO,...,Vi_l,V'i,ViH,...,Vn_l}}) where (¢, V}) = insert. (Vi, 7T,V")

}

Figure 5.8: Write at some position in memory.

3= [0:7]: 7= [12:3]:(2)s
Example 5.8. Let us consider ¢ = {a — = [15:5] : (1)5 < [20 : 5] : (2)5 ¢, a store containing a partially
=< [7:5]:(10)5 < [25:7]: (1)7
initialized representation of Sw((Xi, X2,42)) where the tag, at position [0 : 7] is missing. We wish to do
the insertion ¢[a.[0 : 7] « (0x23)7]. We have:

insert,, (c(a),.[0: 7], (0x23)7) = (@, _32 < [0: 7] : (8x23)7 < ...)
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hence the following modified store: {a — _3 =< [0:7]: (0x23)7 =...} A

Memory Locations and Bindings Target instructions however never manipulate concrete addresses
directly, they are indeed absent from the target language. Instead, each memory address is referred to
by its identifier x. As mentioned in the previous section, memory locations are either read-only input
locations xin or write-only output locations xoyut. They are stored in two separate location environments Gin
and Gout. Both location environments map location identifiers to unaligned pointers of the form a.7,
where a is an address in the store and 7 is a memory path referring to a precise subterm within the
memory value ¢(a).

The creation of new locations is handled by four rules IRENEwOutLoc, IRESuBOutLoc, IRESusInLoc
and IREFreezeLoc, defined in Fig. 5.9a. Newly allocated memory is represented as a fresh address a
in the store ¢ mapped to an “uninitialized” word _;. Note that the three other rules do not modify
the store: they have no effect on concrete memory contents, but instead (dis)allow read /write accesses
to precise memory locations. These four rules enforce some degree of separation between input and
output locations by maintaining the following invariant:

dom (Gin) N dom (Goyt) = @

Unfortunately, this is not sufficient for a complete partition of memory between read-only and write-only
contents. For instance, if two bindings x — a.mand x’ — a.(7.77) are in the output location environment
Gout, after freezing x, we might expect the entire contents of the location a.7t to remain unchanged for
the rest of the program’s execution. However, this is not guaranteed as x’ has not been frozen, which
means there is still a way to write to a location within a.7t (namely its subterm at position 7).

(a) Memory locations

IRENewOurtLoc
x ¢ dom (Gin) U dom (Gout) a ¢ dom(q)

Y+ p,8in, Gout, G, Llet out x = alloc(£); & w> 0, &in, Sout U {x — a.e},cU{am— _¢},&

IRESusOuTtLoc
(x > a.7g) € Gout x" ¢ dom (Gj,) U dom (Gout)

Z F p 7 E‘)-il’ll 6out/ < /-l-e‘t out X, = Xﬁ/ é e p 4 6-111/ 6-0ut U {X/ = a'ﬁO'ﬁ}/ < 7 é

IREFRreEZELOC
x ¢ dom (6out)

i F p 4 6-i111 6out U {X = a'ﬁ}/ < ,-Freeze(X); é i p 7 6-11’1 U {X = a'ﬁ}/ 6-0ut/ < 7 é

IRESusINLoc
(x > a.7y) € Gin x' ¢ dom (Gj,) U dom (Gout)

Z F p 4 6-in/ 6-Oth/ < /.l-e‘t in X/ = X'71[\/ é s p 4 6-i1’1 U {X, = a'ﬁO'ﬁ}/ 6-Oth/ < 7 é

Figure 5.9: Target IR semantics, memory locations.

Effects on Memory Locations: Writes and Casts We can now define the semantics of operations which
write to existing memory locations, namely writes and casts, with the rules shown in Figs. 5.9b and 5.9c¢.
To read from an input location xin with &in(xin) = a.7t, we first retrieve the memory value bound to a in
the store ¢, then focus on its subterm at position 7 to get its value. To write to an output location Xyt
with Gout(Xout) = a.7T, we rely on the store update operation ¢[a.7 < V] defined before. We implement
write operations (rules IREWRriTEConstanT, IREWRITEALLOC, IREWRITEREAD) according to the previous
principles. For instance, IREWRITEREAD retrieves the locations of both output and input identifiers, reads
the contents of the input location, checks that the output location contains an uninitialized word of the
same size, and finally update the store so that the output location receives the input location’s contents.
Casts are similar to writes: to cast a memory value from an uninitialized word to a shallow shape, we
simply interpret this shape as a memory value which we write to the adequate location (IRECASTSHAPE).
The IRECastINT rule reinterprets composite words as primitive (integer) values similarly to -Fission
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rules in various parts of the Ribbitulus. More precisely, it only applies to composite words whose bit
ranges partition the total word range and each specify constant contents.

(b) Memory writes
IREWRITECONSTANT
(x > a.7) € Gout focus. (7T, ¢(a)) = _¢

Z F pr 6i11 7 6out/ C/X = C; é s p/ a_in 7 6-Ol.lt/ g[aTC A (C)e]/ é

IREWRITEALLOC
(x > ap.mM) € Gout  focusc (7T, <(ap)) = _g, a ¢ dom (¢)

kD, Gin, Gout, S, X := &alloc(L); & w> 0, Tin , Sout, S[a0-T  &¢, (@) U {a > ¢}, &

IREWRITEREAD
(Xin d Clin-7'(in) € Oin
(Xout = aout-ﬁout) € Oout fOClng (ﬁin/ C(ain)) = vin fOClng (ﬁout/ C(aout)) =_¢ |vin| =1{

2 F 0, Gin, Gouts S, Xout := Xin; € ®» 0, Fin, Gout, S[Aout-Tout <= Vin), €

(c) Memory casts
IRECASTSHAPE
(x > a.7) € Gout (a—V)ec focus. (,V) = _ |pl < ¢

I+ P, 6in 7 6-out/ ¢, cast X to f)/ € v P, 6‘iﬂ ’ 6out/ C[aﬂ — ]5]/ €

IRECastINT
(x > a.7) € Gout (a—v)ec focus. (,v) = _¢ P& [oi : 4] : (ci)e,
0<i<n
0p=0 Oon_1+4€n1=¢ Vie{1,...,n—1},o-1=oi_1+€i_1 c= Z (2°i><ci)

0<i<n

P 0, Gin , Oout, G, cast X to Ig; € v 0, Gin » Gout, C[Cl.’ﬁ — (C)e]/ €

Figure 5.9: (cont’d). Target IR semantics, memory store.

Conditionals Conditionals are simply interpreted as C-style switches. The two rules IRESwitcHCasE
and IRESwitcHDErauLT defined in Fig. 5.9d evaluate switches using the same logic as the decision tree
semantics defined in Fig. 4.4. To do so, we read the discriminant value as described above.

Functions and Call Stack Finally, the semantics of functions is modeled via a call stack. The stack p
is either empty @ or consists of a triple (Eri’n, 0/ .- €) pushed onto another stack p’, which we denote
(6,60, €)= p’. Weuse it to evaluate each function call in a fresh context, using two rules IREFunCarLL
and IRERETURN defined in Fig. 5.9e. In IREFUNCALL, we push the current location environments and
continuation onto the stack, and evaluate the function body in location environments containing only
its arguments. The previous context is restored at the end of the function call with IRERETUrN. Only

the memory store ¢ persists through function calls and returns.
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(d) Switch nodes
IRESwitcHCASE
(x > a.m) € Gin (amV)ec 1e{0,...,n-1} focus. (7T, V) = (ci)e

S ~ ~ . ~ ~ ~/ ~ ~ ~
Lk P, 0Oin, Oout , <, switch (X) {CO —€0,.--,Cn-1 2 €n-1,_—¢€ } > 0,0in, Oout ,$, €4

IRESwitcHDEFAULT
(x > a.7) € Gin (a—V)ec focus. (7,V) = (¢)¢ cé¢{co,.-.,cn-1}

T ~ ~ . ~ ~ ~/ ~ ~ ~/
I+ P, 0Oin, Oout , <, switch (X) {CO —€0,...,Cn-1 2> €n-1,_—¢€ } > 0 ,0in, Oout ,<,€

(e) Function calls

IREFunCaLL N
(f> AX) ... X )xb&) € £ Vie{0,...,n—1},(xi = ai.7) € Fin (Xout F> Q.7T) € Gout

T+ p,5in, Gout, <, call f(xg,...,Xn-1,Xout); & » (Gin, Gout, €) 2 0, <, {xi > aim | 0<i<n}, {x), — amn},&

IRERETURN

< ~) o~/ =/ .. ~ ~ ~ =~/ 5/
2 F (67,00, €) P, Gin, Oout, € , success w» p, &), 67, €, €

Figure 5.9: (cont’d). Target IR semantics, control flow.

Example 5.9 (Execution of Sw((Xy, X2,42)) value constructor code.). Recall the &g, target expression
from Example 5.5:
€sw = let out x = alloc(32);
castxto_3p < [0:7]: gy [7:5]: 5 [12:3]: _3<[15:5]: 5= [20:5]: _5x[25:7]: _y;
Llet out Xopcode = x.[0:7]; Xopcode ‘= 0x23; -Freeze(xopcode);

let out Xfunct3 = X-[lz : 3]/ Xfunct3 := 2; ‘Freeze(xfuncﬂ%);

let out Xrego = X.[15 : 5]; Xrego := 1; freeze(Xrego); (register X1)
Llet out Xregl = X.[20 : 5]; Xreg1 := 2; freeze(Xreg1); (register X»)
let out Ximmiow = X-[7 : 5]; Ximmiow := 10; freeze(Ximmiow); (5 lowest bits of immediate 42)

Llet out Ximmhigh = X-[25 : 7]; Ximmlow := 1; freeze(Ximmnigh); (7 highest bits of immediate 42)
freeze(x);

success

We execute it in empty initial environments (we do not show the stack p as it remains empty throughout
execution):
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@,D,,let out X = alloc(32);...
~» (IRENewOutLoc)
@, {x—> a.c},{ar 3}, castxto_zx[0:7]: 7<[7:5]: 5x...;...
~» (IRECASTSHAPE)
2,{x — a.e},{a 3px[0:7]: _7%...}, let out Xopcode = X-[0: 7]; Xopcode := 0x23; freeze(Xopcode); - - -
~» (IRESusOutLoc)
@,{x — a.g, Xopeode > @.[0: 7]}, {a > 3= [0:7]: _7x...}, Kopeode := 0X23; freeze(Xopcode); - - -
~> (IREWRITECONSTANT)
@,{x = a.£,Xopcode M a.[0: 7]}, {a > 32 = [0:7]:(0x23)7 < ...}, freeze(Xopcode); - - -
~» (IREFrEEZELOC)
{Xopcode > @.[0: 7]}, {x — a.e}, {ar> 3= [0:7]:(0x23)7 ... },...
1% (IRESuBOutLoc, IREWriTECoNstANT, IREFREEZELOC)®

Xopcode M a.[0:7]

Xfunct3 F> @.[12: 3] 30 [0:7]:(0x23); =< [12: 3] : (2)3
;:Zg(l) : zgg g} Ax e ael,{a— < [15:5]:(1)5=[20:5]:(2)s , freeze(x); success
Ximow > @[5 7] <[7:5]: (10)5 < [25: 7] : (1)7

Ximmhigh F (1.[25 : 7]
~» (IREFRrEEZELOC)

{x=>ag,...},2,{...}, success

Notice that the final result bound to a in the store is the same memory value we obtained in Example 5.5.
A

Example 5.10. Recall the following target program from Example 5.6, which extracts the immediate
operand from a previously built Sw instruction:

&sw; let out Xjmm = alloc(12); call fimm(X, Ximm); freeze(Ximm); success
with the target function environment Y = {fimm — AXinXout-Eimm}, where

€imm = cast Xout to _1o=< [0:5]: 5= [5:7]:_y;
let in Xinlow = Xin.[7 : 5]; let out Xoutlow = Xout-[0 : 5]; Xoutlow = Xinlow; freeze(Xoutlow);
Llet in Xjnhigh = Xin-[25 : 7]; let out Xouthigh = Xout-[5 : 71; Xouthigh *= Xinhighs 'Freeze(xouthigh)}
cast Xout to I12;

success

Starting from the final state of &s,, execution (see Example 5.9), the execution sequence of the remaining
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program let out Ximm = alloc(12); call fimm(X, Ximm); freeze(Ximm); success is:

fro, {x > a.e},8,{a ...}, let out Ximm = alloc(12);...
~» (IRENewOutLoc)

@,{x — a.c}, {Ximm > Gmm-€}, {a — ..., [Gmm P 212}, call fimm(X, Ximm); - - -
~» (IREFuNCALL)
e, {xpeae}, {(XewE @mme ), {a ..., Gimm & _12}, Eimm
Y (IRECastSHarPE, {IRESusINLoc, IRESusOutLoc, IREWRITEREAD, IREFREEZELOC}?)
Qimm > _12 < [0: 5] : (10)s

’ t to I17;
< [5:7]:(1); } cast Xout to 112, success

v @, {xin P a.g,. .. b {Xout M Qimm-£€}, {a ...,

~» (IRECasTINT)

e @ {xin o ag, . b {Xout P Qimm-€},{a ..., Qimm — (42)12 }, success
~> (IRERETURN)

@, {xesvave}, {KmmEamme ), {a - ..., dimm P (42)12}, | freeze(Ximm); success
~» (IREFREEZE)

@,{x — a.¢, Ximm P Gmm-€}, D, {a ..., dimm — (42)12}, success

5.3 Pattern matching compilation interface

Now that our target representation is defined, we can describe our compilation approach for the source
Ribbit language. It consists of various procedures which compile a subset of Ribbit expressions e € Exprs
to target programs €. Our main procedure CompiLg, which covers the entire Ribbit expression language
by wrapping around previous specialized procedures, will be defined in Section 5.6. As a convention,
all such compilation procedures are typeset in SmMaLLCaps and defined as algorithms in pseudo-code.
Many of these algorithms use Python-style generators with the “yield” keyword and “for-each” style
loops.

In Algorithm 1, we define our first compilation procedure Destruct, which handles pattern matching
expressions. The actual mechanics of pattern matching compilation have already been detailed in
Chapter 4: DesTrRUCT merely acts as a wrapper around its components pat2mem, ScarroLp, WEavVe, TrRiM
and Seq. It also lowers the decision tree emitted by these procedures to equivalent target code. This lets
us connect the output of our previous compilation approach to actual memory locations and compiled
expressions corresponding to the right-hand sides of pattern matching branches.
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Data: A a type variable environment
Data: X = {xg,...,xn-1} alist of n root input locations
Data: T = {T0,...,Tn-1} their memory types
Data: {({pjo,---,Pjn-1},&) | 0 <j < N} alist of N pattern matching branches
Result: Target code determining the first branch j such that every p; ; matches the contents of
x{, then branching to &;
1 function DestrUCTA (X, :l:,{(Pj, &) 0<j<N}):
// Treat the set of distinct inputs as a single tuple represented as a struct
2 :t\<— {{:C\O,. . '/:En—l}}
3 7 :=ScAFFOLDA(Q, €,T)
// Assign a fresh output identifier to each memory pattern
k=0
B:=0
forje{0,...,N—-1} do
p; — (Pj0r -/ Pim-1)
for (p’,p) € pat2mem , (p;, T) do
T .= Weavea(k, &,9,7)
10 B:=BU{(k &)}
11 k:=k+1

© @ N S U =

12 T := SeQ(TriM(7))
// Lower the decision tree to a target expression
13 return TReeToTarGer(X,B,7")
Algorithm 1: Wrapper around Chapter 4: DesTrRUCT.

As we will see in the next sections, we will sometimes need to determine which patterns match
multiple input values. To this end, DestrucT takes as input a list of n memory locations xo, ..., Xn-1
to inspect, along with their contents’ respective memory types T, ..., Tn-1. Similarly, the N pattern
matching branches consist of a list of n high-level patterns pjy,...,pjn-1 on the left-hand side, and
of a target expression &; on the right-hand side. The semantics of a given branch ((pj0,---,Pjn-1), &)
is “if j is the smallest identifier such that each input x; is matched by its corresponding pattern p; i,
then continue execution with &;”. Our previous pattern matching compilation approach was designed
to inspect a single input value. However, we can easily “trick” it into compiling matches on multiple
values by grouping them into a tuple (x,...,Xn-1) and aggregating their memory layouts in a struct
T={%0,...,Tn-1}-

The first compilation steps closely follow the approach described in Chapter 4. We first ScarroLp a
memory tree 7~ from the memory layout T. We process each pattern matching branch j using pat2mem
to get memory patterns which capture the representations of values matched by this branch. We then
WEAVE each of these memory patterns into 7. Note that we weave each memory pattern with a fresh
identifier k (which we map back to the right-hand side expression &; in B). Indeed, it would be incorrect
to use the same identifier j for all memory patterns. For instance, if pat2mem yielded two memory
patterns po = {(0)32, (0)32} and p1 = {(1)32, (1)32}, successively weaving po and p; with the same
identifier j would yield a tree which accepts incorrect memory values such as {(0)32, (1)s2}. Finally, after
weaving all patterns, we use Trim and SeQ to obtain a decision tree.

The last compilation step, which translates the final decision tree 7~ to a target expression, is delegated
to the TREETOTARGET function defined in Fig. 5.10. Given a list of input locations X = {xg,...,Xn—1} and a
mapping from pattern identifiers to their compiled right-hand side expressions B = {(j, &) | 0 < j < N},
it processes decision tree nodes as follows:

e Leaves ({j,...}) indicate that the first pattern which matches the input value is the one associated
with the identifier j. At this point, the program should continue with the expression corresponding
to the right-hand side of this pattern matching branch: we replace the leaf with &; (TRee2IRLEAF
rule). Conversely, empty leaves (@) indicate that no pattern matches the input value: in this case,
we abort execution with fail (TREg2IRFAIL rule).
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e Switch nodes switch(7) inspect the memory value located at position 7t within the “root input
value”. Since we grouped our n actual input locations xy, ..., xn-1 into a single struct, we neces-
sarily have 7T = .i.77" with i € {0,...,n — 1}. This discriminant path corresponds to the subterm
at position 7 within the input memory location x;, which we bind to a fresh location identifier
x” with a let in X’ = x{.77 target instruction. We can then emit a target switch expression which
inspects this new location x’ and whose branches are obtained by recursively transforming the
decision node’s branches (TrRee2IRSwitcHDEF rule). If the initial switch had no default branch, we
use fail as the target switch node’s default branch (Tree2IRSwitcHNoDEF rule).

Tree2IRLEAF TrRee2IRFAIL
TreeToTarGeT(X, {(j,&;) | 0 < j < N}, ({jo,...})) = &, TreeToTarGer(X, B, (@)) = fail
TrRee2IRSwiTcHNODEF
x” fresh symbol Vj€{0,...,N—-1}, é; £ TreeToTaRGET({x0, ..., Xn-1}, B, 7})
c — &
Co - T 0 N 0
TrReeToTARGET| {Xo,...,Xn-1}, B, switch(im){ ... — ... = let in X’ = x{.7; switch (x’) c . é,
N-1 _
CN-1 —™ 7-1‘\1—1 N. 1
_ — fail
TRrRee2IRSwITCcHDEF
x” fresh symbol Vje{0,...,N—-1}, é; 2 TreeToTarGET({X0,...,Xn-1},B,75)
¢’ £ TreeToTArRGET({X, ..., Xn-1},B,7")
Co — T €o - éE)
TreeToT ( }, B, switch(i.7) - let in X’ = xi. 7 switch (x) o
REETOTARGET| {Xo,...,Xn-1},B, A = x' = X{.7T, switc .
0 ot cN-1 — TN-1 e ' eN-1 = €N
N 47'/ N ~/

Figure 5.10: From decision trees to target IR expressions.

Let us illustrate this first compilation procedure on a simple pattern matching example.

Example 5.11 (Compilation of is_popular_register). Recall the is_popular_register function from
Example 5.4, which we modelled as the following source function:

Xg — (True : Tpool @S Thool)
freg > Ax.match(x) X15 — (True : Tpool aS Thool)
_ — (False : Tpool aS Thool)

Let xout an output location which we will use as a destination for its result. We admit that the
source expression (True : Thool @S Thool) translates to the target expression Xout := 1;success and
(False : Thool @S Thool) tO Xout := 0; success. The body of freg is a simple pattern matching expression,
which we compile with the following Destrucr call:

DestrucT ({x}, {Treg}, {({Xj}, &) | 0<j< 32})
where

5 = {Xout :=1;success if8<j<16
j =

Xout := 0; success otherwise

The ScarroLp, WEavE, TriM and Skq steps yield the following decision tree:
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switch .0

Figure 5.11: Intermediate decision tree in the compilation of is_popular_register.

Using TrReeToTARrGET, we replace the switch discriminant .0 with x, each leaf j with the corresponding
target expression €; and get the following target expression:

0 — Xout := 0; success
7  — Xout := 0; success
8 — Xout :=1;success

switch () 15 — Xout := 1; success
16 — Xout := 0; success
31 — Xout := 0; success
_ = fail

which corresponds to the CFG depicted in Example 5.4. A

5.4 First Naive Approaches for Valuexpressions

We now focus on the compilation of pivot expressions of the form (u : T as T). Given a destination output
location xqyt, our goal is to emit target code which fills xout with the memory representation of uaccording
to the layout T. As hinted in Section 5.1, this may raise some unexpected issues: some seemingly simple
accessors can require complex manipulation of both input and output memory contents (see for instance
Example 5.3).

In this section, we present incomplete compilation procedures which handle simple subsets of pivot
expressions. These first algorithms provide us with an opportunity to introduce some tooling required
for our full compilation approach, presented in the next sections.

5.4.1 Compilation of Value Constructors

As our first foray into the compilation of pivot expressions, we consider their simplest case: (v : T as T)
where v is a high-level value of type T, without variables. Since values do not contain variable accessors,
the memory value v representing v according to T is static and largely follows the structure of the
memory type T. Given a destination xoyut, our goal is to emit a target expression & which allocates, casts
and initializes memory so that at the end of its execution, xout contains v. This is accomplished with the
Construcr algorithm defined in Algorithm 2.

133



Data: A a type variable environment
Data: x,u: an output location
Data: v a high-level value to represent
Data: T its type
Data: T a memory layout agreeing with t
Result: Target code building the memory representation of v as T in Xout
1 function CoNsTRUCTA (Xout, (V : T as T)):
// Base case: target value is a constant encoded as a primitive type.
if v=c AT =1I; then return x,,; := c;success
else // Otherwise, break down the memory type into smaller pieces.
// Remove splits by selecting the single branch matching v.
4 | TeTfv
s | (7)) < Ty

// Allocate memory, cast and fill in constant parts as needed for this memory type.

W N

6 | @onst < REFINE (Xout, _j7), shape_of(7))

// Recursively build memory values representing each fragment (or primitive).
7 | frags « shattera(7’)

8 | @frags < for (s > 71¢ as Tr) € frags do

9 x¢ < fresh symbol

10 T « focus (715, )

11 v < focus (71¢,V)

12 &s « ConsTrUCTA (X7, (V£ : T as T¢))

13 yield let out X¢ = Xout.Tf; €f; freeze(xs)

14 | return €const; €frags

Algorithm 2: ConstrucT: a simple compiler for value constructors.

In Construct, and in all other algorithms going forward, we assume the existence of a type equiva-
lence (up to type variables) relation denoted =, for instance we consider “t = I” to be true if A(t) = I,.
Consrtrucr proceeds by inspecting the desired value v and memory type T simultaneously to determine
which operations are needed to represent v as T. We assume that at the beginning of execution, Xoyt is
an output location whose contents are an adequately sized uninitialized word _jz. If T is a primitive
type I, then from agreement and typing hypotheses, v is necessarily a constant c, and all we have to do
is to write it to xout With a single instruction xqut := c.

Otherwise, we break down the memory type into smaller components. We first process all splits in T
by specializing it for v (high-level values can indeed be interpreted as patterns). This necessarily yields
a single branch (p, T'), since it is impossible for a value to match more than one branch of the same split.

The next steps follow the resulting split-free memory type T to build the desired memory value. We
first consider its “constant” parts which describe concrete memory structures such as words, pointers
and structs — these correspond to its shape shape_of , (T'). In order to mirror the desired memory shape
in the contents of xout, we refine them using the RerINE function defined in Fig. 5.12 (on line 6).
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ReFINEA (%){

P , P — success
_t ’ (C)( — X = (C)g,‘ success
) , & (p) —> x := &alloc(|P]); REFINE (x, &y (_|f,|) , & (ﬁ))
) , P BX [oi: €] :py — castxto_¢ D<o 00t i) eys
osi<n REFINE (X/ _o P¥ocicnlon il ey, P P<oeicnlon : 4] 351)
0 , {{50/--'/5n—1}} —> cast X to {{_|50|,...,_|ﬁn_1|}},’ REFINE (X, {_|ﬁ0\r~-/_\ﬁn_1|}}/{{EO/'--/ﬁn—l})
& (p) , & (P) —> let out X’ = x.*; RerINE(X/, P, P’)
p X ri:pi ,p X miip] —> letout X = X.—Tp...Tn_1; let out X9 = X.Tg; ...; let out Xn—1 = x.(n — 1);

0<i<n 0<i<n Rerine(X/, P, P'); REFINE(Xo,po,pé); o REFINE(Xn_1,pn_1,p;171)

{po,..-, Pn-1}t {{56, . ,ﬁ’n_l}} —> letout xg = x.0; ...; let out X1 = x.(n —1);
REFINE(xo,ﬁo,ﬁé); . REFINE(Xn_l,ﬁn_1,E;l71)
P , P — fail
}

Figure 5.12: ReFINE(X, Pold, Pnew) — Memory shape refinement instructions.

REerFINE takes as inputs an output location x, a memory shape poig which describes the initial contents
of x, and a more precise shape Ppew. It emits memory allocation, cast and write instructions which
capture precisely the difference between Poig and Prew. For instance, to go from an uninitialized word
_¢ to a pointer & (p), we first allocate memory and store its address in x, then recursively RerFINE its
uninitialized contents to p. After executing these instructions, which will be shown in [green’ in the

following examples, the contents of x conform to the desired shape Pnew-

Example 5.12 (Refine the shape of an Sw instruction.). Recall the Tyjscy Value v = Sw((X1, Xp,42)) from
Example 5.1. Our goal is to emit code which builds its memory representation as Triscy in the output
location Xyt with the following Construcr call:

ConstrRUCT(Xout, (SW({X1, X2,42)) : Trisev @S Trisev))

The specialization of Tyisey for v yields the memory type Tsy. Assuming that xoy¢ initially contains an
empty 32-bit word _s, the first step is to refine its shape to that of Ts,, which is:

shape_of(Tgy) = 32 [0:7]: (0x23)y < [7:5]: 5 [12:3]:(2)3<[15:5]: _5=[20:5]: _5%[25:7]: 7
We are able to do so with a single cast instruction, which is emitted by REFINE(Xout, _32, sShape_of(Tsw)):
cast Xout to _3p < [0:7]: (0x23)7 < [7:5]: 5= [12:3]:(2)3=[15:5]: _5x[20:5]: _5x[25:7]: 7

A

The next step is to emit target code which fleshes out the skeleton created by RerINE with the
“variable” parts of T. These parts correspond to fragments and primitive types appearing in T/, which
we gather on line 7 as a set of triplets of the form (7t¢ — 77 as Tr) using the shatter function (which was
defined in Fig. 3.13, Section 3.1). Unlike constant parts whose memory contents are solely determined
by the memory type, the contents of these variable parts also depend on the input value v. Indeed, each
triplet (7t +— 7t as Tyr) specifies that the memory value at position 7ty within the root destination xout
should represent the subterm at position 7t¢ in the high-level value v as the memory layout T¢. Our goal
is now to emit code, gathered into &g, which builds the memory representation of these subterms in
their appropriate locations. For each fragment (or primitive) (7¢ +— 7t¢ as Tf), we proceed as follows
(lines 8 to 13):

1. Define a new output location xs which will be the destination of this fragment. It corresponds to
the position 7ty within the current destination Xoy.

2. Recursively call ConstrucT to emit code & which builds the representation of the desired subterm
focus (75, v) as T in x+.
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3. Freeze x since there is no need to modify its contents after this point.

In examples, we will display the target instructions emitted by these steps in a | light blue box.

Note the use of Python-style generators with for and yield keywords on lines 8 and 13. In general, we
will reuse this functional iterator-based style throughout this chapter to build lists of target expressions.

Example 5.13 (Build variable parts of an Sw instruction). The target expression shown in Example 5.12
handled all constant parts of Ts,. We now resume the execution of this Construcr call after line 6. We
emit target code which handles all variable parts of Ts,, to build the representation of the high-level
value v = Sw((X1, X2,42)). We have

(.[7 : 5] > .Sw.2.[0: 5] as I5),
~ ] ([15:5] > .Sw.0 as Treg),
shatter(Ts,) = (.[20:5] — .Sw.1 as ?rez),

([25:7] — .Sw.2.[5: 7] as Iy)

Let us first deal with the first immediate fragment (.[7 : 5] = .Sw.2.[0 : 5] as I5). The corresponding
subterm in our input value v is

focus (.Sw.2.[0: 5],v) = focus ([0 : 5],42) = 10
which is of type
focus (.Sw.2.[0: 5], SW((Treg, Tregs 112>)) = focus (.[0: 5], I12) = I5

We perform the following recursive Construcr call to build its representation as Is, where x5 g5 is a fresh
location symbol:
ConstrucT (x2,05, (10 : I5 as I5))

Since 10 is a primitive value which we want to represent as the primitive memory type Is, this call is a
“base case” of ConstrucT and yields the target expression x5 := 10; success. To build this fragment,
we therefore emit the following target expression:

let out X205 = Xout-[7 : 5]; X2,05 := 10; freeze(xz,05); success

We now process the first register operand represented by the triplet (.[15 : 5] +> .Sw.0 as Treg). The cor-

responding subterm in our input value vis focus (.Sw.0,v) = X1, which s of type focus (.Sw.0, SW((Treg, Treg, 112>)) =
Treg- We perform the following recursive Construcr call to build its representation as ?reg, where xg is a
fresh location symbol:

CONSTRUCT (g, (X1 : Treg @S Treg))

We first specialize Treg for X, yielding the memory type (1)s. This constant type does not contain any
primitive or fragment, therefore the code emitted by this recursive Construcr call is:

RerFINE(Xq, _s5,(1)5) = [Xg := 1; success
To build this fragment, we finally emit the following target expression:
let out Xg = Xout-[15 : 5]; Xp :=1; freeze(xq); success

The two other fragments are handled similarly. A

The final target expression emitted by CONSTRUCTA (Xout, (V : T as T)) on line 14 is the sequence of
€const, which refines the contents of xoyt to build the constant parts of T, and of €frags, Which recursively
builds the variable parts of T in their respective locations.
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Example 5.14 (Construct the representation of an Sw value). Using the target expressions shown in
Examples 5.12 and 5.13, we finally obtain the following target code:

Gast Xout €O _32 h
X[0:7]:_7 X[7:5]: s IX[12:3]:_,
P [15:5]: s DX[20:5]: 5 P<[25:7]:_7

let out opcode = Xou.[0:7]

opcode := 0x23

let out funct; = Xour.[12:3]

funct; := 2

/* Subterm .Sw.2.[0:5] %/

let out immlow = Xout.[7:5]
immlow := 10
freeze(immlow)

/% Subterm .Sw.0 */

let out reg, = Xout.[15:5]
reg, := 1

freeze(reg,)

/* Subterm .Sw.1 x/

let out reg, = Xout.[20:5]
reg, := 1

freeze(reg,)

/* Subterm .Sw.2.[5:7] %/
let out immhigh = Xout. [25:7]

immhigh := 1
freeze(immhigh)
\_ success Y

Figure 5.13: Final code to construct the RISC-V Sw((X1, X, 42)) value according to Tsy.

5.4.2 Compilation of Accessors: A First Attempt

The ConstrucTt algorithm presented in the previous subsection is able to emit target code which builds
the memory representation of any value as any suitable memory layout. However, most of the complexity
associated with compilation of pivot expressions comes from valuexpressions which combine constant
values with variable accessors of the form x.7t. As Section 5.1 demonstrates, seemingly simple accessors
can require extensive manipulation of both input and output values. Our general compilation approach
for arbitrary pivot expressions, which we will present in Section 5.5, is rather complex and relies on
several tools to handle different aspects of valuexpressions and memory layouts. We now introduce
the basic concepts used to handle accessors in our full approach through a simple, but incomplete
procedure.

Consider an accessor x.7, where x is known to be bound to a value v of type T whose memory
representation vV follows the layout T. A first intuition to compile this accessor could be to look for a
position 7 at which v contains the memory representation of the subterm focus (7, v). For instance,
consider the RISC-V “store word” instruction v = Sw(<vreg0, vregl,vimm>) represented using the memory
type Tsw from Example 5.1. The memory representation of its first register operand vrego is stored at
position .[15 : 5] within V, since this position corresponds to the following fragment in Tsy:

focus (.[15 : 5], Tsw) = (.Sw.0 as Treg)
To extract this register, we can simply use the following target expression:
let in Xin1 = Xin.[15 : 5]; success

The ExtrAcT procedure, defined in Algorithm 3, implements this idea by looking for “the right
memory path” corresponding to a given high-level path. Its first argument is a description of the form
(xin <p : T as T) which characterizes the parent/input value from which to extract a subterm. This
description indicates that the input location xj, contains the memory representation of a (statically
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unknown) high-level value of type T which is known to match the pattern p, according to the memory
layout T. Given such an input description, a destination xoyt and a high-level path 7, it emits code to
store in xqyt the representation of the subterm located at 7t within the input value. Here, we are looking
for “the right memory path”, as such, there should exist a fragment within T that exactly corresponds to
the (high-level) subterm 7. Note that we do not specify the desired memory layout for this subterm: for
now, we assume that any fragment corresponding to 7t is acceptable. All we have to do now is to find
where.

Data: A the type variable environment

Data: (xin <p : T as T) the input description

Data: x,,t the output location

Data: 7 the path in the input to the desired value

Result: Code binding xout to the representation of the subterm at position 7 in the input

1 function ExtrACTA (X <P : T @S T), Xout, 70):
// Base case: the desired subterm is exactly the input value.

2 if m = ¢ then

3 | return Xt := Xjn; success

4 else // Otherwise, explore each branch of the input memory type.

5 | B« for (py, Tv, Tv,frags,) € Explore, (p, T,7) do

// Look for a fragment encoding a parent of the desired subterm.

6 if 3(7T > mp as T) € frags,, I, m = mp.7’ then

7 x;, < fresh symbol

8 T,p’ « focusa (1o, Tv ), focus (70, pv)

/ / Recursively explore this parent subterm.

9 € « ExTracTA((X{ <P’ : T as T), Xout, )

10 €p < letin x| = Xin.T; €
11 else &, « fail
12 yield (pv, €b)

// Dynamically determine the branch used for the actual input value.

13 | return DestrRUCTA (Xin, T, B)

Algorithm 3: ExtracT: an incomplete compilation algorithm for variable accessors.

If T = ¢, then the desired subterm is the input value itself: xi, already contains its memory repre-
sentation, and we simply copy its contents to the destination xqy¢ (Line 3). Otherwise, we must explore
the memory type T to find the position of the desired subterm’s representation, depending on its actual
value. Indeed, a key specificity of the compilation of accessors is that the precise shape of the accessed
value is statically unknown. While a value v always matches at most one branch of a split memory type,
the actual interpretation of an accessor x.7t depends on the value bound to x, which is not available at
compile time. We must therefore emit code which dynamically determines the precise shape of x, and
uses this information to find the representation of x.7. Let us illustrate this on an example.

Example 5.15 (Variable head location in lists, cont’). In Example 5.3, we already showed that the exact
position of a given subterm within a value’s memory representation was not always fixed. Recall the
following type definitions from Example 3.4:

Ajist = {tlist = Tiist, tp H> Tp} Tist = Nil | Cons((I32, tiist))
Tp = split ([0 : 2]) {

0 from Nil = 61 [0:2]:(0)2
1 from Cons({_, Nil)) = _a=x[0:2]:(1)2=[2:32]:(.Cons.0as I3p)
2 from Cons({_,Cons(_))) = & ({{(.Cons.O as I33), (.Cons.1.Cons.0 as I35), (.Cons.1.Cons.1 as tp)}}) =< [0:2]:(2)2
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Consider a call to Extract with the following arguments:
EXTRACT A, ((Xin <Cons({_, _)) : Tiist as Tp), Xout, -Cons.0)

Here, our goal is to emit code which stores in x,,: the memory representation of the subterm at position
.Cons.0 within the (high-level) input value of type Tj;s. This input value is statically unknown; however,
it is known to match the pattern Cons({_, _)), and its memory representation as Ty, is known to be stored
in the input location Xjn.

While this information is enough to exclude the Nil case (in which it would be impossible to extract
the subterm at .Cons.0), it is not sufficient to determine the exact layout of the concrete contents of xjy.
Indeed, there are two different branches in the root split of T, whose provenances are compatible with
Cons({_,_)).

e If the concrete input memory value represents a list with a single element, then its precise layout
follows the Cons({_, Nil)) branch, and the fragment (.Cons.0 as I3;) representing the desired
subterm is located at .[2 : 32].

e Otherwise, the contents of xi, follow the Cons({_,Cons(_))) branch, in which the fragment
(.Cons.0 as I3) is located at . = .0.

A

To handle such situations, we use the Explore function on line 5. Explore, defined in Fig. 5.14,
combines memory type specialization with shatter to examine both splits and fragments. Given a high-
level type T, a memory type T which agrees with T (both considered in the type variable environment A)
and a pattern p of type T, Explore , (p, T, T) yields a list of branches of the form (pv, Tv, To, frags, ). These
branches characterize the space of high-level values matched by the pattern p and of their memory
representations. Each branch consists of a precise pattern py, the specialized type T, and layout Ty for
this pattern, and the list of fragments and primitives contained therein frags, .

Explore  (po, To, %) = {((p, To/p, T, shattera (7)) | (p,7) € T/ po}
Figure 5.14: Explore the branches of a given memory layout.

Example 5.16 (Explore the packed list layout.). Recall the following ExTracr call from Example 5.15:
EXTRACT A, ((Xin <Cons({_, _)) : Tiist as Tp), Xout, -Cons.0)

where
Ajist = {tiist = Tiist, tp — Tp} Tist = Nil | Cons((I32, tist))
Tp = split ([0 : 2]) {

0 from Nil = 61 [0:2]:(0)2
1 from Cons({_, Nil)) = _ea>[0:2]:(1)2%[2:32]:(.Cons.0 as Isp)
2 from Cons({_,Cons(_))) = & ({{(.Cons.O as I33), (.Cons.1.Cons.0 as I35), (.Cons.1.Cons.1 as tp)}}) =< [0:2]:(2)2

}

We explore all branches T, which are relevant to the input pattern Cons({_, _)):

=\ _ | (Cons({_ Nily), Cons({I, Nil), 71, frags, )
Explore,,  (Cons({_, ), Tist, Tp) = { (Cons({_, Cons(_))), Corizs(( Igz,Colns(thst)l», T, frags,)

where

T1 = _ea>[0:2]:(1)2<[2:32]:(.Cons.0 as I3;) frags, = {(.[2:32] + .Cons.0 as I3;)}
(.Cons.0 as I3p), (.*.0 > .Cons.0 as I3p),
Ty = &4 (.Cons.1.Cons.0 as I3p), =<[0:2]:(2), frags, = { (.*.1+ .Cons.1.Cons.0 as I32),
(.Cons.1.Cons.1 as tp) (.Cons.1.Cons.1 as tp). * .2
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Note that the types and layouts of branches are specialized according to their patterns Cons({_, Nil)) and
Cons({_, Cons(_))) respectively. A

After gathering all possible branches with Explore, we process each of them by emitting specialized
target code which extracts the memory representation of the desired subterm .7t from the contents of
Xin. For each branch (py, Ty, Ty, frags, ), we proceed as follows. The main idea is to look for a part of Ty,
which represents a parent of the desired subterm, i.e., a fragment (or primitive) (7 - 7 as T) € frags, such
that 7 is a prefix of 7. If it exists, we narrow down our search to this specific part (at position 7) of the
input value. We bind this part to a new input location, focus its type and pattern accordingly (line 8),
then recursively ExtracT the desired subterm from this new input value (line 10). If no such part exists,
we are unable to determine a memory position containing the representation of the subterm at 7: in
this case, we emit a fail statement.

At this point, we have determined how to extract the desired subterm’s representation from xi, for
every possible branch. We must now assemble these specialized target expressions into a single program.
At runtime, this program must determine which of the branches gathered by Explore corresponds to
the actual, concrete input value. This is precisely what our pattern matching compilation approach
was designed for: this task is easily carried out using DestrucT on line 13 to emit code which inspects
the input value in X, determines which branch py, matches it and continues with the associated target

expression &,. In examples, we will display the code emitted by DestrucT in  yellow boxes.

Example 5.17 (ExTrAcT the first element of a packed list.). Let us consider again the first element of a
non-empty list with the following ExTracr call:

EXTRACT A, ((Xin <Cons({_, _)) : Tiist as Tp), Xout, -Cons.0)

Recall the branches collected with Explore in Example 5.16:

~ ~\ _ | (Cons({_,Nil)), Cons((I3, Nil)), Ty, frags, )
Explore,, (Cons(( ). s, ) = { (Cons({_, Cons()}), Cons((1xz, Cons(tiu)), T, frags,)
where
Ty = _a<[0:2]:(1)2<[2:32]:(.Cons.0 as I3p) frags, = {(.[2 : 32] — .Cons.0 as I3)}
(.Cons.0 as I3y), (.#.0 > .Cons.0 as I3p),
Ty, = &4 (.Cons.1.Cons.0 as I3p), =<[0:2]:(2), frags, = { (.*.1— .Cons.1.Cons.0 as I32),
(.Cons.1.Cons.1as t}) (.Cons.1.Cons.1 as tp). * .2

We now emit specialized target code for both of these branches.

¢ The first branch (Cons((_, Nil)), Cons({I3, Nil}), 71, fragsl) corresponds to lists containing a single
element. The fragment (.[2 : 32] + .Cons.0 as I32) in frags, represents exactly the desired subterm
.Cons.0. We bind the location at position .[2 : 32] within X, to a fresh input location symbol Xin1,
then recursively explore it with the following base case call:

ExtrACT A, (Xin1 < 132 as I32), Xout, €)
We emit the following target expression for this branch:

€1 = let in Xin1 = Xin.[2 : 32]; Xout := Xin1; Success

¢ Thesecond branch (Cons((_, Cons(_))), Cons({I3p, Cons({Is2, tiist)))), T2, fragsZ) corresponds to lists
with more than one element. Similar to the first branch, we focus on the fragment (. * .0 —
.Cons.0 as I3) in frags,, binding it to the fresh input location x> and recursively exploring it with
the following base case call:

ExtrACTA, (Xin2 <_ ¢ T2 @s I52), Xout, €)
We emit the following target expression for this branch:

€ = let in Xjn2 = Xin- * .0; Xout := Xin2, success
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We then emit target code which dynamically selects the appropriate branch &; or &, with the following
Destrucr call:

DESTRUCT A, ((Xin : Tp), {(Cons({_,Nil)), &), (Cons({_, Cons(_))), éz)})

We finally obtain the target program represented by the following control flow graph:

/let in tag = Xin.[0:2]\

switch(tag)

\°|1|2/

e e

let in Xinq = Xin.[2:32]] [let in Xino = Xin.-[0:2].%.0
Xout == Xinq Xout = Xinz
) k success )

k Success

Note that the fail branch generated for the 0 tag value, which corresponds to the Nil branch of T, is
never taken since xi, represents a non-empty list. Going forward, we will omit such unreachable switch
branches from CFGs. A

To implement Extract, we assumed that once we have narrowed down the layout T to a single branch
Tp, any given high-level path 7t can be translated to a single memory path 7t. While this is true for some
configurations, it is not the case in general, as demonstrated by the following example.

Example 5.18. Recall the RISC-V types and values from Example 5.1:

Triscv = Add(<Tregr Treg, Treg>) 0x33 from Add(_) = Tadd
| Addi({Treg, Treg, I12)) Tieee = split(0: 74 23 from Addi(_) = Taddi

|]al(<Tregr Izo>) Ox6f from Jal(_) = T
| SW(<Tregr Treg/ I12>) 0x23 from Sw( ) = Tsw
e v = Swi(X4, %, 42))
:5]: (Sw.2.[0: 5] as I5)
3]:(2)s

2:
15 : 5] : (.Sw.0 as Treg) ~_ <10 - 71 - < [7-5]- 9 .21
20 - 5] (SW 1as Trez) vV=_13 [0 : 7] : (0X23)7 [7 : 5] : (10)5 [12 : 3] : (2)3

ol
< [7
= [1
<
<[
< [25:7]: (Sw.2.[5: 7] as I) < [15:5]: (1)5<[20:5]: (2)5=[25:7]:(1)7
The subterms at positions .Sw.0 and .Sw.1 within v, which correspond to the two register operands of an
Sw instruction, are both accessible as a single fragment within its memory representation v, at positions
.[15 : 5] and .[20 : 5] respectively. Our ExtracT procedure is able to emit target code which extracts their
representations from the parent memory value v: we have

EXTRACT ((Xin < SW(_) : Triscy @S Trisev), (Xout © Treg @S Treg), SW.0) = letinx/, = Xin.[15 : 5]; Xout := X/,; success

However, we are not yet able do the same for the immediate operand at position .Sw.2. Indeed, this
subterm is broken into two pieces within Tsy: its 7 lowest bits are stored at position .[0 : 7], and its 5
highest bits at .[25 : 7]. Our ExtracT procedure is therefore unable to emit adequate target code, since
there does not exist any fragment within Ts,, which covers the entire subterm .Sw.2. A

In this section, we have shown how tools such as Rerine and Explore can be combined to design
fairly complex compilation procedures such as Construct and Extract. However, these procedures are
incomplete. On one hand, ConstrucT is by design limited to statically known value constructors. On
the other hand, ExtrAcT fails to retrieve subterms such as the immediate operand at position .Sw.2 from
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a Trisev Value. In order to handle such situations, we must emit target code which assembles multiple
pieces together into a single memory value. This is done by our full compilation procedure, which
we present in the next section. As we will see, it leverages previous tools to compile any given pivot
expression to equivalent target code.

5.5 Compilation of Arbitrary Valuexpressions

We are now ready to present our main compilation approach for pivot expressions (u : T as T), which
consists of two mutually recursive procedures: ResuiLb (Algorithm 5) and Seex (Algorithm 4). Seex is
an extended version of Exrract which looks for a fragment corresponding to a given high-level subterm.
Unlike ExtrAcT, if no such fragment exists, it defers to ResuiLp which will break down the desired
subterm into smaller pieces. ReBuILD is somewhat similar to ConstrucT: it handles the constant parts
of the desired valuexpression u, using RerINE to build a first skeleton and Seex to fill its variable parts.
The main ideas underlying both algorithms are:
¢ Alternatively Explore input and output values, using Seex and ResuILD respectively.
e Identify each input value with a quadruple (xi, <p : T as T) and the output value with a triple
(Xout * Tout AS :Eout)~
¢ Break down the desired valuexpression u until we reach the smallest possible pieces — individual
bits of primitive values — which are necessarily directly available within T (assuming that Tis valid,
well-kinded and agrees with 7).
* Since the exact layout of data may be statically unknown, we use Destruct to emit code which
dynamically determines the precise shape of the output value by inspecting input values, and
branches to the corresponding specialized program. As in Extract, we will highlight the code

emitted by DestrucT in  yellow .

5.5.1 Seek a subterm

SEEK, in Algorithm 4, compiles an accessor x.7 to target code. We consider the memory representation
of the value bound to x (which is already built and read-only at execution time) as the input value and
identify it with the quadruple (xin < Pin : Tin as Tin), composed of its input location, type, layout and
pattern respectively. That is, at execution time, x;, is expected to contain the memory representation
according to Tin of some value of type T, matching the pattern pi,. Similarly, we refer to the memory
representation of the desired subterm (which is the piece of data currently being built) as the output
value and identify it with the triple (Xout @ Tout as Tout) composed of its output location, type and
layout respectively. Our goal is to emit code that, given an input location x;, containing the memory
representation of v following the layout Ti, and an output location Xoyt, stores in xqu the representation
of focus (7, v) following the layout Toyt.

SeEk is similar to the ExTrAacT procedure presented in Section 5.4.2. The differences are highlighted
in|orange . As we have seen, in some cases, there exists no single fragment that covers the desired path.

Alternatively, we might reach m = ¢, but Tin # Tout, indicating that we should exhibit an isomorphism
between Tin and Tout to get the desired memory value. In both cases, we need to break down the desired
output value into smaller pieces in order to reconstruct it differently, on Line 4. For primitive types
(Line 4), we expose the underlying individual bits using a cast operation to consider the output value as
a composite word. We restore its primitive integer type after rebuilding its contents with another cast *.
For other memory types, these smaller pieces correspond to fragments and primitives. We now need to
rebuild the output value from these pieces. This task is carried out by our next procedure: ResuiLp.

2While correct, rebuilding each bit individually is not optimal. Ideally, we would explore the input values to determine which
pieces are available and avoid unnecessarily breaking down values.
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Data: A the type variable environment

Data: (Xin < Pin : Tin as Tin) the input description

Data: (Xout : Tout as Tout) the output description

Data: 7t the path to the desired subterm within the input value

Result: Code binding xoyt to the representation of the subterm at position 7t in the input value
1 function SEekA ((Xin < Pin © Tin @S Tin), Xout : Tout @S Tout), T0):

10
11
12
13
14
15
16

17

18

// Invariant: 7t and pi, are compatible.
// Base case: input and output values are the same data with the same representation.

ift=¢ _ then return x,,; := X;; success

else // Otherwise, Explore all cases of the input value.

B « for (pv, Tv, Tv, frags,,) € Explore 5 (pin, Tin, Tin) do
// Seek a fragment containing the piece of data at 7.
if 3(7t¢ > 7¢ as Tf) € frags,, I, m = .U then

// Found one. We focus on it and Seek inside.

x¢ < fresh symbol

T¢, Pt < focus (7, Tv) , focus (7f, pp)

else // Otherwise, Rebuild from smaller pieces.

_yield (pb, éb)

// Assemble the code of these branches via a decision tree.

return DEesTRUCTA (Xout, Tin, B)

Algorithm 4: Seek — Seek the memory location representing 7t in Xjn.
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5.5.2 Rebuild a valuexpression

Data: A the type variable environment
Data: (xi <p; : Ti as T;) the n input descriptions
Data: (Xout : Tout as Tout) the output description
Data: u a valuexpression to compile
Result: Target code building the memory representation of u as Tout in Xeut from the n input
values.
1 function ReBuiLpa ({(x¢ <pi: T asTi) | 0 < i <}, (Xout © Tout @S Tout), W):
// Base case: target value is a constant encoded as a primitive type.

2 ifu=c ATy = I then return x,,; := c; success
3 else // Otherwise, explore all cases of the output value.
4 | pouto — ux.mm— _]
5 | Posgut « {(x.7t, ') | focus (77, u) = x.7t}
6 | Pout <~ Remap ({xi = pi | 0 <1< n}, pouo, Posout)
7 | B « forpy, Ty, Tv, frags, € Explore,(Pout, Tout, Tout) dO
// Allocate memory, cast and fill in constant parts as needed for this memory type.
8 Econst < REFINE (Xout, _z,,|, Shape_of 5 (Tp))
// Rebuild target fragments from input values, which we specialize for the current branch.
9 forie {0,...,n—1}do
10 Posi « {(xout-7t, ') | focus (7, u) = x;.7'}
11 | P} < Remap({Xout = pv}, pi, Posi)
12 Efrags < for (7tr > 7r as Tr) € frags, do
13 x¢ < fresh symbol
14 T¢ « focus (715, Tp)
15 if 3 e {0,...,n— 1}, I(xi. 7, Tout) € PoSeyt, AT, 0070 = 77 then
// If this fragment corresponds to a single piece of an input value, Seek it within this value.
16 & « SEEKA((xi <P} : Ti as Ty), (Xf : Tr @S Tf), TTin.T0)
17 else // Otherwise, Rebuild it from smaller pieces.
18 Léf — ReBupa ({(xi <pf : Ti as T1) | 0 < i< n},(xf:7Tr as Tr), focus (75, 1))
19 yield et out X¢ = Xout.7f; €f; freeze(xy); success
20 | | yield ({xi — pi| 0 <1< n}, Eonsts; Efrags)

// Assemble these branches into a decision tree.

21 | return DestrRucta ({Xi: 71 | 0< i< n},B)

Algorithm 5: ResuiLp — Rebuild the value in memory representing u from the x;s.

ResuiLp (Algorithm 5) compiles an arbitrary valuexpression u to target code that constructs its memory
representation as Toyut in the destination xou. Whereas Seex retrieves a (possibly mangled) relevant
fragment from a single input value, ResuiLD inspects the shape of the output value to assemble its
constituent pieces, which include constant parts of the memory layout as well as fragments extracted
from multiple input values. It reuses the general structure of Seex (and ExtracT), but considers n input
values described by quadruples (x; <p; : Ty as Ty) with 0 < i < n.

Firstly, when u is a primitive value ¢ and the output layout Toy: is a fixed-width primitive encoding
I;, we simply write the constant ¢ to the output location xqy¢ (Line 5). Otherwise, we operate in a
similar manner as in the previous procedures Exrract and Seex: we Explore all suitable branches of Tout
(Line 5), whose code we will eventually combine with Destrucr (Line 5).

However, unlike Extract and Seex which explore and destruct an already-built input value, ResuiLp
explores the output value. By definition, we cannot use DesTtrucT to determine the shape of the output
value, since it is not built yet! Instead, we must infer it from the shapes of the n input values xy, . .., Xn-1.
To do so, we build a pattern poyt which is known to match the output value with the following steps.

® On Line 5, we substitute accessors in u with wildcards to get a first approximation of its shape
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Pouto Which matches its statically known parts.

® On Line 5, we capture the variable parts of u by collecting all accessors x;.7 that appear in it, along
with their positions.

® On Line 5, we finally get a pattern po,: which integrates both static and variable information, using
the Remap function defined in Fig. 5.15.

Remap ({x;i = pi | 0<i<n},p,Pos)=p [ .« focus (7, pi) — | (xi.7t, ") € Pos ]

Figure 5.15: Remap: refine patterns according to a position map.

The Remap function, defined in Fig. 5.15, takes as inputs a map P from variable symbols to patterns, a
“parent” pattern p and a set Pos of pairs (x.7, 7). It returns a pattern based on p in which for each pair
(x.7t, '), the subterm at position 7’ has been replaced with focus (7, P(x)).

Example 5.19 (Remap list patterns.). Recall Ajg = {tist — Tiist} and Tjise = Nil | Cons((Isp, tiist)) from
Example 5.15. Consider the valuexpression u = Cons({x;.Cons.0, x».Cons.1)) which, given two non-
empty lists x1 and x, returns a new list consisting of the head of x; appended to the tail of x,. Its “static”
pattern is Cons({_, _)), and we collect its accessors and their positions in the following set:

Posout = {(x1.Cons.0,.Cons.0), (x2.Cons.1, .Cons.1)}
We can now use Remap to get a precise pattern for u:
Remap ({x; — Cons(_), x2 = Cons(_)}, Cons({_, _)), Poseut) = Cons({_, _))
A

Using this function, we are able to characterize the output value with a pattern poy, which we use to
Explore all possible branches of its memory layout Tou (Line 5). Note that there is a bijection between
the pout branches and the possible combinations of p; branches since, by definition, the only variable
parts of u are its accessors x;..

For each of these branches, we proceed similarly to ConstrucT: we first RErINE the contents of the
output location Xy to capture all constant parts of the memory layout (Line 5). We then move on to the
variable parts of the output value. On Line 5, we derive a new pattern p} for each input value, which is
at least as precise as p; and also integrates information from the considered output branch py,. We then
build the memory representation of each fragment appearing in Tp. Depending on whether a given
fragment corresponds to a variable accessor in u, we either use Seex or REBUILD to recursively build it in
its adequate location. On Line 5, we determine whether the high-level path 7t; corresponds to a variable
accessor x;.7t using the previously computed map Poseyt. If so, we can simply Seek the corresponding
subterm within the input value x; (and discard all other input values). Otherwise, we must recursively
ResuiLp this part of u. As with ConstruUCT, in upcoming examples, we will highlight the code emitted
by RerFINE in [green| and the code emitted to process each fragment in | light blue .

=

On Line 5, we finally assemble each branch into a single target program using Destruct. As
mentioned earlier, at execution time, the only way to determine the shape of the desired output value is
to infer it from input values. Consequently, we pass the n input values xy, ..., Xn—1 to DESTRUCT.

Example 5.20 (ResuiLp the head of a packed list). Recall the following type definitions from Example 5.15:

Ajist = {tiist — Tiist, tp — Tp} Tiist = Nil | Cons((I32, tiist))
Tp = split (.[0:2]) {

0 from Nil = _61<[0:2]:(0)2

1 from Cons({_,Nil)) = _ea=[0:2]:(1)2%[2:32]:(.Cons.0 as I3)

2 from Cons({_,Cons(_))) = & ({{(.Cons.O as I3;), (.Cons.1.Cons.0 as I33), (.Cons.1.Cons.1 as tp)}})
<[0:2]: (2)
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Recall the Explored branches for the pattern Cons(_) from Example 5.16:

~ ~\ _ | (Cons({_,Nil)), Cons((I3, Nil)), Ty, frags, )

Explore,,, (Cons((_, ). s, %) = { (Cons({_, Cons()}), Cons((1xz, Cons(tiz)), B, frags,)

where

Ty = _6a<[0:2]:(1)2%<[2:32]:(.Cons.0 as I3p) frags, = {(.[2 : 32] — .Cons.0 as I3)}

(.Cons.0 as I3), (.#.0 > .Cons.0 as Isp),

Ty, = &4 (.Cons.1.Cons.0 as I3p), =<[0:2]:(2), frags, =4 (.*.1 > .Cons.1.Cons.0 as I3p),

852

(.Cons.1.Cons.1as t}) (.Cons.1.Cons.1 as tp). * .2

Consider the following pivot expression which, given a non-empty list x, rebuilds a list containing only
its head.
(Cons((x.Cons.0, Nil)) : Tjist as Tp)

We now compile it using our ResuiLb and Seex procedures. In this situation, we statically know the
exact shape of the output value, since the pattern Cons({_, Nil)) corresponds to exactly one branch of
the memory layout T,. However, we do not know the precise shape of the input value x: its statically
known pattern Cons(_) matches two branches of its memory layout T,. Consequently, at some point
during compilation, we will explore two branches of a Seex call, which we will then join using DestrucrT.

Here, we detail this compilation process using intermediate results from Examples 5.16,5.17 and 5.19.
The emitted code is shown in Fig. 5.16. We start with the following ResurLp call:

REBUILDA ({(x <Cons(_) : Tyig as ?p)} , (Xout : Tiist as Tp ), Cons((x.Cons.0, Nil)))

We explore the output memory layout with the pattern Cons((_, Nil)) with Explore (Cons({_, Nil)), Tiist, Tiist),
which yields a single branch (Cons((_, Nil)), Cons({I3, Nil)), 71, fragsl). We first process the constant
parts of the specialized memory type T; using RerINE:

€const = REFINE (Xout, 64, _64 > [0:2] : (1)2 < [2:32] : _3p)

The next step deals with the only variable part of the output value, which is the head of the list
represented by the triple (.[2 : 32] = .Cons.0 as I32) in frags, . It corresponds to the accessor x.Cons.0 in
the considered valuexpression. We bind its destination to a new output location headoyt, then Seex this
piece of data with:

& = SEEKA, ((x <Cons(_) : Tiist as Tp), (headout : 132 as I2), .Cons.0)

The input pattern Cons(_) is compatible with two branches of the input memory type T, corresponding
to the refined patterns Cons((_, Nil)) and Cons({_, Cons(_))). We explore both of these branches:

Branch (Cons((_, Nil)), Cons({Is,, Nil}), T1, frags,): We find the fragment (.[2 : 32] — .Cons.0 as Iz)
in frags, and emit a target expression & which binds its location to a new symbol head, then
recursively seeks the desired subterm with:

SEEKAlist ((head <_:1Izpas 132), (headout : Isp as 132), £)

This Seex call is a base case: the input location head contains exactly the desired piece of data, and
we write its contents to the destination headgys.

Branch (Cons({_, Cons(_)}), Cons((Iz2, Cons((1x2, tiist))}), T, frags,): We find the fragment ([0 : 2].
.0 — .Cons.0 as I3) in frags, and emit a target expression & which binds its location to a new
symbol head, then recursively seeks the desired subterm with the same Seek call as the previous
branch:

SEEKA]iSt ((head <_:1Izppas 132), (headout : I3 as 132), 5)
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The Seex call returns a target expression € which determines which branch matches the input value,
emitted by the following Destrucr call:

DestRUCT A, ((x : Tp), {(Cons({_, Nil)), &), (Cons({_, Cons(_))), &)})

We append a freeze instruction to € and get a target expression €gags Which processes all variable parts
of the output value. Finally, we assemble and return the complete target program €consts; €frags-

Gast Xout to _s, X[0:2]:_, l><[2:32]:_32\
let out tagout = Xout.[0:2]

tagout = 1

/% Subterm .Cons.0 */

let out headout = Xout.[2:32]

let in tag = x.[0:2]

switch(tag)

L 1 | 2

/x Case Cons(_, Nil) =*/
let in head = x.[2:32]

/* Case Cons(_, Cons(_)) */
let in head = x.-[0:1].%.0

headout := head headout := head
freeze(headout) freeze(headout)
success success

Figure 5.16: Target code emitted by ReBuiLD A, ({(x <Cons(_) : Tiist as ?p)} , (Xout * Tiist as Tp ), Cons({x.Cons.0, Nil))).

A

Together, our Seex and ResuiLp procedures are able to handle a variety of situations, including
memory types in which integer values are shattered in multiple pieces scattered accross memory such
as RISC-V instructions.

Example 5.21. Recall the RISC-V types defined in Example 5.1:

0x33 from Add(l) = Tadd
0x13 from Addi(_) = Taddgi

Triscv = Add(<Treg/ Tregs Treg>)

| Addl((Treg, Treg, 112>) ?l‘iSCV = Split ('[0 : 7])

| ]al(<Treg, Izo>) ox6f from Jal(_) = Ta
|SW(<Treg,Treg,112>) 0x23 from Sw( ) = Tsw
Tow = _32 < [0: 7] : (0x23)7

=< [7:5]:(.Sw.2.[0: 5] as I5)

< [12:3]:(2)3

< [15: 5] : (.Sw.0 as Treg)

< [20 : 5] : (Sw.1 as Treg)

< [25:7]:(Sw.2.[5:7]asIy)

In Example 5.18, we showed that ExtrRAcT was unable to retrieve the immediate operand of a store-word
RISC-V instruction. Using Resuip and Seex, we are now able to do so by collecting the two relevant
pieces of data and reassembling them into a single I3; value. We achieve this with the following Seex
call:

SEEK ((Xin <SW({_, _, _)) : Triscv @S :Eriscv)r (Xout : 132 as I32), .Sw.2)

which yields the following target program (note that we have chosen to break down the output value
“optimally”, rather than in individual bits as specified in the general Seek algorithm):
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//* Subterm .[0:5] */ )

let out lowour = Xout. [0:5]
let in lowin = Xin.[7:5]
Lowout := Llowin
freeze(Lowour)

/* Subterm .[5:7] %/

let out highout = Xout.[5:7]
let in highin = Xin.[25:7]
highou: := highin
freeze(highou)

_ success )

A

In this section, we described two procedures Seex and ResuiLp which, together with Destrucr,
provide all of the necessary tools to compile the full space of source expressions. In the next section, we
will show how to ensure termination of these algorithms in the presence of recursive combinations of
memory layouts, and finally provide a unified compilation procedure for the Ribbit language.

5.6 Wrapping up: a complete compilation procedure for Ribbit

5.6.1 Dealing with recursion

Although the compilation approach presented in the previous section is sufficient to handle most
situations, it does not necessarily terminate in the presence of recursive types and layouts. Let us
demonstrate this on an example.

Example 5.22 (Recursive rebuilding of linked lists). Recall the following type definitions from Exam-
ple 5.20:

Ajist = {tiist = Tiist, tp > Tp, te — Te} Tiist = Nil | Cons((Is2, tiist))
Tp = split ([0 : 2]) {

0 from Nil = 61 [0:2]:(0)2

1 from Cons({_, Nil)) = g4 [0:2]:(1)2<[2:32]:(.Cons.0 as I3p)

2 from Cons({_,Cons(_))) = &g ({{(.Cons.O as I33), (.Cons.1.Cons.0 as I3;), (.Cons.1.Cons.1 as tp)}})
<[0: 2] : (2)2

}

Consider the simply-linked list layout T., which we introduced in Example 3.4:

~ ‘ { 1 from Nil = _ux=[0:1]: (1) }
Te = split(.[0:1])
0 from Cons(_) = &4 ({(.Cons.0 as Isp), ((Cons.1 as tc)}) < [0: 1] : (0);
Onits own, this naive memory layout is easily handled with our existing compilation procedures ResuiLp,
Seex and Destruct. The two memory layouts T, and T, specify two different ways to encode the same
inductive structure (lists). For instance, consider the valuexpression u = Cons({x.Cons.0, Nil)) where x is
bound to a Tjis; value. As we have seenin Example 5.20, we can compile the pivot expression (. : Tjist as Tp )
(assuming that x is represented as Tp) with ReBUILDA, ((x <Cons(_) : Tiist @s Tp), (Xout © Tiist aS Tp), ).
Similarly, if x is represented as T., we can compile the pivot expression (u : Tjs as T ) with
REBUILDA,, ((x <Cons(_) : Tiist as Te), (Xout : Thist @S Tc), ), which yields the following target program:
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(Cast Xout tO _e4 PX[0:1]:_,

let out tag = Xout.[0:1]

tag := 0

let out ptr = Xout.-[0:1]

ptr := &alloc(96)

let out str = ptr.x

cast str to {{_ 3., _ea}}

/% Subterm .Cons.0 */

let out headout = Xout.-[0:1].%.0
let in head = x.-[0:1].%.0
headout := head

freeze(headout)

/% Subterm .Cons.1 = Nil */

let out tailout = Xout.-[0:1].%.1
cast tailouw to _e, X[0:1]:_,
let out tag' = tailout.[0:1]

~

tag' := 1
freeze(tailout)
\_ success Y,

However, using both of these layouts together raises new issues. For instance, given a Tyg value
whose memory representation using the simple layout T is stored in x, consider the following pivot
expression, which reencodes it using the packed layout Tp: (x.€ : Tjist as Tp ). We can readily ask Seex to
emit such conversion code:

SEEKAhSt ((X <_: tlist as tC)/ (Xout : tlist as tp)/ 8)

Nevertheless, emitting code which transforms an entire inductive data structure in memory is not so
simple: it requires recursive target code to walk the entire list structure and fuse blocks two-by-two,
as shown in Fig. 5.17. Given this input, our current algorithms will not terminate: we will attempt to
ResurLp/Seek each element of the list without ever converging. Let us demonstrate this by walking
through each compilation step of the above Seex call.

We first Explore the input memory layout T.. We get two branches corresponding to the patterns
Nil and Cons(_), for which we will emit two target expressions denoted &y and écons respectively. We
emit code which determines which branch matches the input value with the following DestrucrT call:

DEsTRUCT A, (% : te), {(Nil, éni1) , (Cons(_), €cons)})

which yields a switch node inspecting the split discriminant position .[0 : 1].
Neither of these two branches contains any fragment representing a parent of the desired subterm
e. We must therefore rebuild it from smaller pieces with the following ResuiLp calls:

énil = REBUILDA ({(x <Nil : Nilas _g4 > [0: 1] : (1)1)}, (Xout : tiist as tp), X.s)
&cons = REBUILD A, ({(x <Cons(_) : Cons({Is2, tiist)) as &ea (... ) < [0: 1] : (0)1)}, (Xout : tiist as tp), x.€)

Following the ResuiLp algorithm, we first determine which pattern is known to match the output value
using its specified valuexpression and each input value’s pattern. Here, the desired output value encodes
exactly the same data as the input value x (as specified by the accessor x.€). We then Explore all branches
of the output memory type T, which are compatible with this pattern. Following the three-branch split
in Tp, we get a single branch in the Nil case and two branches Cons({_, Nil)) and Cons({_, Cons(_)))
in the Cons(_) case. To distinguish between the two possible branches in écons, we use the following
Destruct call, where &consnil and €conscons designate the target code emitted for each branch:

DEsTRUCT A, (% @ Tc), {(Cons({_, Nil)), Econsnil) , (Cons({_, Cons(_)}), EconsCons)})

which yields a switch node inspecting the nested discriminant at position .=[0 : 1]. .1.[0 : 1] within x.
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Let us now detail the code emitted for each of these three branches énj, €consnil and €consCons-
Following the RepuiLD algorithm, we first use RerINE to emit code which allocates, casts and initializes
memory in Xoyt according to the shape of the considered branch’s memory type. Here, all three branches
cast the contents of xoyut to a composite word shape revealing the T, split discriminant location .[0 : 2],
whose contents are then initialized to the appropriate discriminant value. In the Cons({_, Cons(_)})
case, we also allocate 128 bits of memory to store a struct with two 32-bit and one 64-bit fields.

For the empty list Nil, this is sufficient and the program ends with success. For the two remaining
branches Cons({_, Nil)) and Cons({_, Cons(_))), the next step is to fill the location of each fragment in
the output memory type with its concrete contents. For the Cons({_, Nil)) branch, we must retrieve the
single element of the list x.Cons.0 and store it at position .[2 : 32] within xut. We bind its destination to
a new output location headyy: and perform the following Seex call:

SEEKA,,,, ((x «Cons({_, Nil)) : Cons({I3z, Nil)) as &4 (... ) =< [0 : 1] : (0)1), (headout : I32 as I32), .Cons.0)

Its memory representation as Is; is stored at position . » .0 within the input location x. We bind this
location to a new symbol head and recursively Seex the desired subterm from it:

SEEKA,, ((head <_: I3 as I3p), (headoyt : I32 as I3p), €)

We have reached the base case of Seex and extract the subterm by copying the contents of head into its
destination heady;.

In the Cons({_, Cons(_))) case, we proceed similarly for the first and second elements of the list
x.Cons.0 and x.Cons.1.Cons.0. Let us now focus on the last subterm of this branch, which is the tail of
the list x.Cons.1.Cons.1. We first bind its destination, which is at position . * .2 within the root output
location xqyt, to a new output location tailyy:. We then Seex it within x with the following call:

SEEK A, ((x <Cons({_, Cons(_))) : Cons((Is2, Cons(...))) as &e4 (-..) = [0 : 1] : (0)1), (tailoyt : tiist as tp), .Cons.1.Cons.1)
The input memory type has already been specialized from T to the following split-free type:
&4 ({{(.Cons.0 as I35), (.Cons.1 as te)}) < [0: 1] : (0);

It contains the fragment (.Cons.1 as t.), which represents a parent of the desired subterm .Cons.1.Cons.1.
We bind its location in memory, which is at position .=[0 : 1]. * .1 within x, to a new symbol tail, and
recursively seek the desired subterm in it with:

SEEKA,,, ((taﬂ <Cons(_) : Cons((Iaz, tiist)) as te), (tailout : tiist as tp), .Cons.l)

We explore the only branch of T, which is compatible with the input pattern Cons(_), which yields
the same specialized memory type as above. Again, we find the fragment (.Cons.1 as t.) at position
[0 1]. %1, bind its location to a new symbol tail” and recursively seek the desired subterm in it with:

SEEKA,, ((tail” < _ : tist as te), (tailoue © tiist as tp), €)

This call is identical (modulo location identifiers) to the initial Seex call: we have exhibited a cycle in its
call graph. In their current state, our ResuiLp and Seek algorithms fail to handle such situations. A

To properly handle such cases, we must emit recursive target code. Naturally, we could also refuse to
emit such code (in contexts when recursion is not acceptable). In both cases, we need to detect recursion.

Intuitively, a call to Seek or ResuiLD leads to infinite recursion if it attempts to recursively rebuild the
same combination of arguments as its own —1i.e., an output value with the same type, layout and relative
position from an input value with the same type, layout and pattern. This indicates that the output
value contains a subterm which must be rebuilt in the exact same way as itself: the only way to emit
correct code is to introduce an explicit recursive node and emit recursive calls at this position. For this
purpose, we replace Seek and ReBuiLp with their memoized versions using the Wrap function defined in
Algorithm 6.
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1 function Wrapr(REBUILD):
H:=0
return H, A ({(xi <pi:TiasTi) | 0 < 1 <n}, (Xout : Tour @S Tour), W) - {
h « ({(mr, ', 71, Ti, pi) | focus (7, u) = Xi.70}, Tout, Tout, U [x.7t— _])
if h € dom (H) then
f «— H(h)
if H(h) = Uncalled(f) then H(h) := Called(f)

return

N o Uk 0N

@

else
10 f « fresh symbol
11 H(h) := Uncalled(f)

12 € «— ReBunD({(xi <pi : Ti as Ty) | 0 < 1 <}, (Xout : Tour @S Tout), W)
13 if H(h) = Uncalled(f) then

14 H:=H\h

15 return é

16 else if H(h) = Called(f) then

i - RN ETe]

17

19 end
20 end
21 }

Algorithm 6: Wrapper for emitting recursive code (ResuILD).

1 function WrAP(SEEK):

H:==0

return H, A (Xj <P : Tiy as Tin), (Xout : Tout S Tout), 70) . {
h — (Tin, Tin, P, Tout, Touts )

if h € dom (H) then
f «— H(h)
if H(h) = Uncalled(f) then H(h) := Called(f)

return

N o Uk WN

@

else
10 f « fresh symbol
11 H(h) := Uncalled(f)

12 & « SEEK((Xjn <P : Tin @8 Tin), (Xout : Tout aS Tout), 70)
13 if H(h) = Uncalled(f) then

14 H:=H\h

15 return é

16 else if H(h) = Called(f) then

o | [ - Do
19 end

20 end

21 }

Algorithm 6: Wrapper for emitting recursive code (SEek).

Both Seex and ReBuILD get assigned their own hashmap H, in which all calls will be recorded. Wrar
memoizes each Seek or ResuiLp call by hashing its anonymized arguments, i.e., its arguments without
any input or output memory locations (Line 6). For instance, we remove variable accessors from the
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valuexpression argument of ResuiLp and instead keep a map from positions within the valuexpression
to input value subterms. We record when we enter one of the algorithms, and generate a fresh function
symbol f. If we enter this function again, we emit a call call f(xy, ..., Xn-1, Xout) With the appropriate
arguments and mark this function as “Called” (Line 6). Afterwards, we can use simple deforestation to
get rid of extra functions. Note that, on top of emitting recursive code, this also improves sharing.

let in tag = x.[0:1]

switch(tag)
,j—k—acﬁw
/% Case NiL / (/% case Cons(_) */

cast Xour to _es PX[0:2]: .| [let in tag' = x.-[0:1].%.1.[0:1]
let out tagout = Xout.[0:2]

switch(tag')

tagout := 0
success 1 | 0\
/% Case Cons(_, Cons(_)) */
cast Xour to _s, X [0:2]:_;
let out tagout = Xout.[0:2]
tagout = 2
let out ptr = Xout.-[0:2]
ptr := &alloc(128)
let out str = ptr.x
cast str to {{_s2, _3z2, _64}}
/x Case Cons(_, Nil) %/ /% Subterm .Cons.0 x/
cast Xout to _gs X[0:2]:_, X[2:32]: ;. let out headout = Xout.~[0:2].%.0
let out tagout = Xout.[0:2] let in head = x.-[0:1].%.0
tagout := 1 headout := head
/% Subterm .Cons.o */ freeze(headou)
let out headowt = Xout.[2:32] /% Subterm .Cons.1.Cons.@ */
let in head = x.-[0:1].%.0 let out head'ouw = Xou.=[0:2].%.1
headout := head let in taL'L.', = x.-[0:1].%.1
e diee G let in head' = tail,.-[0:1].%.0
Success head'out := head'
freeze(head'out)
/% Subterm .Cons.1.Cons.1 */
let out tailout = Xout.-~[0:2].%.2
let in tail, = x.-[0:1].%.1
let in tail' = tail,.-[0:1].%.1

freeze(tailout)

L success )

Figure 5.17: Generated code for rebuilding linked lists with a recursive convert function.

Example 5.23 (Recursive rebuilding of lists). Recall the following cyclic Seex call from Example 5.22:
SEEKA, (X <_ : tist @s te), (Xout : tist as tp), €)

Thanks to memoization, this call terminates and emits target code featuring a recursive function convert
as shown in Fig. 5.17. Here, we detail the steps taken by our memoized compilation procedure to
emit this recursive target code. We instantiate memoized compilation procedures and their associated
hashmaps with Wrap as follows:

(HRresuno, RecReBuUILD) = WRAP(REBUILDA,,) (Hsgex, RECSEEK) = WRAP(SEEKA,,,)
We then call the memoized compilation procedure REcSeek with the same arguments:
RECSEEK ((x <_ : tiist a8 te), (Xout © tiist as tp), €)
Its anonymized argument tuple, which characterizes the task of converting a list from T to T, is:

h= ((tlistr te, —)l (tlist/ tp )1 8)
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At this point, Hgg is still empty (and thus does not contain h). We add h to Hggec and associate it with a
new function symbol convert, which we initially mark as Uncalled. We then proceed with the actual SEex
call, whose steps have been detailed in Example 5.22. The code emitted for the Nil and Cons((_, Nil})
branches is unchanged from the unwrapped version, since no Seex or ResuiLp call is encountered more
than once. For the third branch Cons({_, Cons(_)}), the code emitted for shape refinement and for the
first two subterms .Cons.0 and .Cons.1.Cons.0 is also unchanged.

Let us now focus on the last subterm of this branch .Cons.1.Cons.1, which is the tail of the list. We
seek it within x with

RecSeex ((x <Cons({_, Cons(_))) : Cons((Is2, Cons(...))) as &es (...) < [0: 1] : (0)1), (tailoyt : tist as tp),.Cons.1.Cons.1)

Following the same first steps as the unwrapped version of Seek, we find a fragment representing this
subterm as t. at position .=[0 : 1]. # .1.=[0 : 1]. * .1 within x. We bind this memory location to a new
symbol tail’ and attempt to seek the desired subterm with:

RecSEEk ((tail” <_ : Tyt as te), (tailout : tiist as tp), €)

The anonymized arguments of this call are identical to those of the initial RecSeek call: they are present
in the hashmap Hsg« and associated with the convert function symbol. We do not proceed with the

recursive Seek call, and instead emit a function call to convert shown in - in the CFG to recursively
rebuild the tail of the list. We mark this function as Called and return to the toplevel RecSeek call, which
finalizes the recursive node by defining the function convert using the returned target expression as its
body. A

5.6.2 Complete compilation algorithm

We are, at last, equipped with all necessary tools to compile the full language of Ribbit expressions. We
now combine all of the individual algorithms presented in this chapter into a single unified compilation
procedure for the complete Ribbitulus.

In Algorithm 7, we define our general compilation procedure CompiLe for source expressions. Given
n input descriptions characterizing already-built values, a destination x,y: and a source expression e, it
proceeds by case analysis on e to emit a target expression which evaluates e and stores its result in Xoyt-
Compilation of pivot expressions is delegated to our dedicated procedures Seex and ResuiLp defined in
Section 5.5, with the former being used for accessors and the latter for other forms of valuexpressions.
Both of these functions are hashconsed with Wrar to handle situations which require recursive target
code: we use their wrapped versions RecSeek and RecResuiLp, which are instantiated in our toplevel
compilation procedure ComrpiLEProG. Similarly, compilation of pattern matching is delegated to the
DestrucT procedure described in Section 5.3 after each right-hand side expression has been recursively
CowmriLed. The compilation of remaining source language constructs is straightforward. For let-bindings,
we emit code which allocates an adequately-sized new memory location, fills its contents by evaluating
the let-bound expression, then freezes it for later use before evaluating the rest of the expression. Finally,
source function calls are immediately translated to target function calls with the same function symbol
and input arguments, using Xxout as the destination argument.
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Data: A the type variable environment
Data: | ReEcSEEK  the memoized version of SEEK A

Data: RecReBuiLD the memoized version of REBUILDA
Data: n input descriptions (x; <pi : Ti as Ty) for free variables in e
Data: x.y¢ the destination location
Data: e the source expression
Result: Target expression € storing its result in Xyt
function CompiLea ({(xi <pi:TiasTi) | 0 < i< n},xou, €):
cases e :
case (xi.T: TasT):
‘ return  RECSEEK ((xi <Pi : Ti as Tq), (Xout : T as T), )
case (U:Tas7T):
‘ return |REcReBUILD ({(xi <pi:TiasTi) | 0<i<n}, (xou:TasT),u)
caselet x:(tasT)=ey in ey :
&y « CompiLEp ({(xi <pi:TiasTy | 0<i<n},x, e)
&1 « CompiLEp ({(xi<pi:TiasTy) | 0<i<n}U{(x<_:TasT)}, Xout €1)
return let out x = alloc(|T]); &y; freeze(x); &
case f(xq):
| return call f(xi, Xout); success
case mafch(xi) {p; — € |0<j<N}:
fori’ € {0,...,n =1} \ {i} do p}, < pv
forje {0,...,N—-1} do

PL < Pj
& « CompiLea ({(xi <P}, : T as Ty) | 0 < i < n}, Xout, &)

return Destruct, ((%1 : T1), {(pj, &) | 0 <j < N})

Algorithm 7: Main compilation procedure for expressions: ComriLe. [RECSEEK and |RECREBUILD
refer to the wrapped versions of Seek and ResuILD respectively, which we define in Algorithm 8.

Our outermost compilation interface CompiLEPROG is presented in Algorithm 8. Its inputis a complete
Ribbit program represented by a function environment ¥, a typing environment I', an identifier x and
a toplevel source expression e of type T and layout T. This procedure is responsible for initializing the
hashmaps Hggex and Hresuwn, compiling each source function’s body as well as the toplevel expression
with ComriLg, and adding the recursive functions defined in Wrarp to the target function environment.
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Data: A the type variable environment

Data: T the (function) typing environment

Data: X the source function environment

Data: (x : T as T) the output description for the toplevel result

Data: e the toplevel source expression

Result: T the target function environment (includes compiled versions of £ functions)

Result: € the toplevel target expression (compiled version of e)
function CoMPILEPROGA (T, Z, (x : T as T), e):
(Hsgex, RECSEEK ) := WRAP(SEEKA )
(HResumo, | RECREBUILD ) := WRAP(REBUILDA )
=0
for (f — Axs.ef) € £ do
((Tin as :Em) - (Tout as :Eout)) — r(f)
& « CoMPILEA ({(Xf <_: Tin @S Tin)}, X, €f)
L= L U{(f — Axsx.85)}
& « let out x = alloc(|T]); CoMPILEA (D, X, €); freeze(x); success
for (h +— Defined(f,Axg . . . Xn-1Xout-€)) € Hseex U HRepuno do
Li =ZU{(f = AX0... Xn-1Xout-&)}
return (£, &)
Algorithm 8: CompiLEPROG — main compilation interface handling both functions and toplevel ex-
pressions.

We finally have a single compilation procedure for the Ribbitulus. The following example illustrates
the compilation of a program with multiple functions manipulating RISC-V instructions.

Example 5.24 (Compilation of a program with RISC-V instructions). Recall the following collection of
types, functions and expressions from Example 5.4

~ 0 from False = (0)g
T = True | False T = split (e
bool | bool = split (¢) 1 from True = (1)g
is_compressible : ( Triscv AS ?riscv — Thool AS ?bool)
= is_nonzero_register ( Treg aS ?reg — Tpool AS ?bool)

is_popular_register ( Treg @S Treg  — Thool aS ?bool)

i i = AX. ~
. 1s_compre551l.31e AX.  ec Xo — (False : Toool a5 Thool)
L =1 is_nonzero_register > AX. €preg eoreg = Match(x) S (T Toool)
rue :
is_popular_register > AX. €preg - UE€ * Thool aS Thool

Xs — (True : Tpool aS Thool)
teh(a) | — ...
epreg = Match(x =
preg X15 — (True : Tpool AS TbOOl)

— (False : Tpool @S Thool)
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ec = match(x) {

Jal({(X1,_)) — let n: Iy as I =xJal.l in
(Tl < 4096 : Tphool as '?bool)
Add((_,_,_)) — lef1q: Trgas ’T}eg =x.Add.0 in
lef 151 : Treg @s Treg =x.Add.1 in let bg1 : Thool as Tbool = is_nonzero_register(rs1) in
let 152 @ Treg @S Treg = X.Add.2 in let by : Tpool @S Thool = is_nonzero_register(Ts2) in
(ra =7s1 A bsl A B2 & Thool @S Thool)
Addi((_,_,_)) — letrq : Treg as Treg = x.Addi.0 in
lef T : Treg as Treg =x.Addi.1 in let b : Tpeol @S Thool = is_nonzero_register(Ts) in
let n : I1p as I1p = x.Addi.2 in
(Ta =Ts AbATL < 64 : Tpool aS Thool)
Sw({_,_ ) — letrp: Tregas ?reg = x.Sw.0 in let by : Thool @S Thool = is_popular_register(ry) in
lef 11 @ Treg as ?reg = x.Sw.1 in let by : Tpool @S Thool = is_popular_register(ry) in
let n:Ipas i =x.Sw.2in
let ny:IsasIs =n.[0:5] inlet n, : I as I = n.[10: 2] in
(bo Aby Any=0Anp =0: Thool S Thool)
— (False : Tpool @S Thool)

}

Consider the following toplevel expression, which builds a value representing a store-word instruction
as in Example 5.5, then calls the is_compressible function to determine whether it is compressible:

e = lef instr : Trigey @S Trisey = SW({X1, X2,42)) in is_compressible(instr)
We compile this complete program with
CompILEPROG (T, Z, (res : Thool S Thool), €)

which yields the CFG forest depicted in Fig. 5.18. In this forest, each compiled function corresponds
to a | pink node leading to its body. Note that the specification of a compilation scheme for primitive

operations — in this example, on booleans and integers — is implementation-dependent; here, we assume
that comparison and “AND” operators of arbitrary arity are available. The compilation rules defined by
CowmpriLE are clearly visible in the different parts of each CFG. A
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(Tet_out res = alloc(8)
/% Let instr = Sw(X,, Xz, 42) %/
let out instr = alloc(32)

freeze(instr)

freeze(res)

success

(7% case Addi() %/

/% Bind rd
let out rd
let in rd'
d := rd'

freeze(rd)

/% Bind rs
let out rs
let in rs'

rs'

rs
freeze(rs)

/% Bind imm to x.Addi.2 %/
let out imm = alloc(12)

let in imm'
imm := imm'
freeze(imm)

Freeze(bs)

/% Bind bs to is_nonzero_register(rs) #/
let out bs = alloc(8)

Xout

/% Compute result */
(rd = rs) & bs & (imm < 64)

/% Match x %/
let in opcode = x.[0:7]]

/% Case Jal( ) %/
let in rd = x.[7:5]

switch(rd)

7% Case Jal(Xa, ) */
/% Bind imm to x.Jal.1 %/
let out imm = alloc(20)

freeze(imm)

/% Compute result */
Xout_:= (imm < 4096)

success )

(1% case su() »/

/x Bind reg, to x.5u.0 %/

freeze(reg,)

/% Bind reg, to x.Sw.1 %/
let out reg, = alloc(5)
let in reg,' = x.[20:5]
reg, := reg,’'
freeze(reg,)

(1% case Add() #/

/% Bind rd to x.Add.@ */

let out rd = alloc(5)
let in rd' = x.[7:5]

rd = rd'

freeze(rd)

/% Bind rs, to x.Add.1 %/
let out rs, = alloc(5)
let in rs,' = x.[15:5]
rs, i=rs,'

freeze(rs,)

/% Bind rs, to x.Add.2 %/

1let out rs, = alloc(s)
let in rs,' = x.[20:5]
rs, 1= rs;’'
freeze(rs,)

/% Bind imm to x.Sw.2 */
let out imm = alloc(12)

freeze(imm)

Tet out b, = alloc(8)

freeze(b.)

/% Bind b, to is_nonzero_register(rs,) %/

/% Bind bool, to is_popular_register(rego) */
let out bool, = alloc(8)

freeze(bool,)

/% Bind b, to is_i
let out b, = alloc(8)

Freeze(b,)

onzero_register(rs,) */

Jx Bind bool, to is_popular_register(reg,) */
Tet out bool, = alloc(8)

freeze(bool,)

/% Compute result */
Xow := by & b, & (rd = rs,)

/% Bind imml to imm.[0:5] */
let out imml = alloc(5)

let in imml' = imm.[0:5]
imml := imml"

freeze(imml)

g success

switch(x)

/x Bind inmh to imm.[10:2] %/
Let out immh = alloc(2)

et in immh' = imm.[10:2]
inmh := inmh’
Freeze(immh)

/x Bind bool, to (imml = 0) & (immh = @) %/
let out bool, = alloc(8)

bool, := (imml = @) & (immh = @)
freeze(bool,)

/% Compute result */
bool, & bool, & bool,

Xout

success Y

.15

Figure 5.18: Output of CompiLEPROG for the program of Example 5.24.
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5.7 Metatheory

We now prove our compilation approach correct by exhibiting a weak simulation relation between the
source memory evaluation + from Section 3.3.2 and the target evaluation ~» from Section 5.2.2. Com-
bined with Theorem 3.3, this gives us a weak simulation between source and target evaluation, showing
correctness of the CompILE procedure.

The key idea is to modify our compilation algorithm to emit synchronization tokens in the target
program to synchronize its execution with source evaluation. All other steps from the target evaluation
~» are &-transitions. Tokens may either appear by themselves, in which case the corresponding
transition has no effect on the underlying target evaluation state, or be attached to another target
instruction — for instance x := c[EConstanT-token];... — in which case the normal semantics of this
instruction applies.

Note that our target semantics ~» is deterministic, whereas the memory-level source semantics + is
non-deterministic. To prove that the latter simulates the former, we show that > can always take a step
which corresponds to the program order determined by our compilation algorithms.

5.7.1 Relation on constants and RerINE

We start with the R const relation defined in Fig. 5.20, which characterizes target code emitted by RerINE.
This relation also allows us to demonstrate our approach in a somewhat restricted context. An annotated
version of RerINE is shown in Fig. 5.19. The new proof-exclusive elements are shown in purple. We
simply emit specific tokens for allocation and cast operations.

We then define a simulation relation R consts in Fi g.5.20 for target code building the “constant” parts
of memory values, i.e., target code which only allocates, casts and writes constants in memory. We will
use this simulation to prove the correctness of RErINE.

Given an output location Xqut, @ memory environment Gy, a target location environment Gy, and
target memory environment G, we have: xout, Prew F (Ssre, ) R consts(Tout, Gtgt, €) if Xout points to a
value of shape polq = shape_of (1) in Ggt before execution of € and of shape Prew after.

Its base rule IRRConsTsREFINE corresponds exactly to the application of ReriNe. The other rules
corresponds to cases where the toplevel constructor of Polq and Prew are identical, which proceed by
induction.

REFINEA (%){
P , P —> success
e , (©)¢ —> x := ¢[EConstanT-token]; success
) , & (P) — x := salloc(|p|)[EPonTER-token]; ReFINE (x, &¢ (_i5)) , & (P))
) ,p BX oi: 4] :pi — castxto_g D<o i [0i: &i] : ¢, [EComposiTE-token];
O<i<n REFINE (%, _¢ P gcicnl0i s 6]t _ei, P P pcianloi : il : Pi)
) , {Po,.. ., Pn1} — cast X to {{_|§0|,...,_|5n71|}} [EStrUCT-tOken];
RerNg (%, 5, it} AP0 Pra})
& (p) , & (P) —> let out X’ = x.»; RerINe(X/, P, P’)
p XK ri:pi P XK P — letout X’ = X.1Tg...Tn_1; let out Xg = X.Tg; ...; let out X1 = x.(n —1);

0<i<n 0<i<n Rerine(X/, P, P'); REFINE(Xo,‘po,pé); o REFINE(Xn_1,]:)n_1,]D:1_1)

{ro,---, Pn-1} , {{56, .. ,ﬁ’n_l}} —> letout xg = x.0; ...; let out X1 = x.(n —1);
REFINE(XO,pO,pé),' el REFINE(Xn_l,pn_l,pfn_l)
P , P —> fail

Figure 5.19: Version of RerINE augmented with tokens.
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‘ Xout/ ﬁnew F (Core, 1) R consts(Tout, Ctgt/ é)

“the target expression €, executed in the context Gout, Sigt, Will refine the contents of Xyt from U t0 Prew”

IRRCoNsTSREFINE
(Xout P Qout-Tout) € Fout Pold = ShaPe_Ofgm W

ShaPE_Ongt (fOCllSQgt (ﬁout; Ctgt(aout))) = ﬁold REFINE (Xout, 50101, ﬁnew) # fail

Xout, 5new F (Gore, ) R consts (6out/ Ctgt/ REFINE (Xout, ﬁold/ ﬁnew))

IRRConsTsPOINTER
= ~ ’ = ~ r = DR ~ 5
(Xout > Qout-Tout) € Fout (Xout > Qout-Tout-*) € Fout Xout” Pnew F (¢, 1) R consts(Tout, €)

Xouts &Z (Enew) F (Cr &2 (ﬁ)) ﬁ consts(a-out/ é)

IRRConstsCoMPOSITE
(Xout H~aout-ﬁout) € Oout (X:)ut — Qout-Tout-T0 - - - 7Tn-1) € Gout
Xgut/ﬁ - (C: ‘fl) R consts (Gout/ é) Vie {0/ e, 1}~1 (Xout,i [ aout'ﬁout-ri) € Oout
vie{0,...,n -1}, Xout,irs 51 (¢ al) R consts(Fout, €i)

Xout, P D< Tiipik|Cu D< Ti Ui | R consts (6out; €¢€o;...; énfl)

0<i<n 0<i<n

IRRConsTsSTRUCT
(Xout = aout-ﬂout) € 6-Ou‘[ 5
vie{0,...,n—-1}, (Xout,i = Qout-Tout-1) € Gout Vie{0,...,n—-1}, Xout,i,Pi F (¢, ui) R consts(Tout, €1)

Xouts {{50/ . rﬁn—l]} - (Cr {{ﬁ()/ . /ﬁn—lﬂ’) ﬁ consts (6out/ €055 én—l)

Figure 5.20: Relation characterizing RerFINE intermediate states: Xout, Prew F (Ssre, U) R consts (Fout, Ctgts €).

Lemma 5.1 (ReFINE). Let A, T, T, Prew, Ssre, Wy Xout, Qout, Tout, Oout, Stgr and € such that

EAT, GreFu:T (xout (d aout-ﬂout) € Oout focusc[g[ (7Toutr Ctgt(aout)) = Vout

Xouts ﬁnew F (Core, W) R consts(Gout, Ctgts é)

We either have

shape_of_ () = shape_ofggt (foc’Engt (Tout, Qgt(aout))) = Puew ¢ = success
or there exist &, and & such that for any L, 0, Gin,

I P, Oin, Oout, Ctgts €~y 0, Giy, 6-:)ut/ Ctgts 4 (Xout P> Qout-Toout) € 6-:)ut
Xouts 5new F (Ssres 1'AL) R consts(aéut/ Ctgts él)

or there exist a label L, ¢/,., W, &, ,, gt/gt and & such that for any £, G, L, 0, Gin,

ALFET,0, G, T,0, (:s/rcl u Ik P, Oin, Oout, Ctgts €~ p, Gin, 6(’%5/ Ct/gt/ 4

(Xaut = aaut-ﬁout) € 6-(lmt Xout, ﬁnew - (Cslrgr ﬁ’) ﬁ consts(a-;ut/ Ct,gt' é,)

Proof. By induction on R consts-

IRRCoNsTSREFINE: let

Pold = shape_of __ (u)
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We have
ShaPe_Ongt (Vout) = 5old € = REFINE(Xout, 501(11 5new) # fail

We proceed by case analysis on é:

REFINE success case If Polg = Prew, We have & = success.

RerINE token cases We have poig = _¢. For simplicity, we only consider the following case:
U= (u:7tas(c)) Prew = (C)¢ € = Xout := c¢[ECoNsTANT-tOken]; success

The source and target programs U and & both go through a EConstanT step (using the
IREWRITECoNsTANT rule for €), yielding normal forms related to each other by R consts
(IRRConstsREFINE rule):

I,0, Gsre, (Wi Tas (c)e) = T, 0, Gore, (C)e Gout, Stgt, € ™ Gout, Ctgt[aout-ﬁout — (c)¢], success
RerINE non-token cases For simplicity, we only consider the following case:
50101 =& (5;1d) u=&; (ﬁ’) 5new =& (E;ew)
€ = let out X,y = Xout-*; REFINE(X{, P/ 1, Prew)

’ =’

Induction hypothesis: the result holds for W, Py, and RerINE(X],, P! ;, Prew)- The target
program € goes through a & -transition (IRESusOutLoc) binding the new symbol x/ . to the

out
pointee memory value, and we conclude using the induction hypothesis and the IRRConsTs-
PoiNTER rule:

~. ~ ~ ’ - ’ =/ =/
Tout, Stgt, € ™ Fout U {Xoyue — Qout-Tout-*}, Stgt, REFINE(X( ¢, P14 Prew)

IRRConsTsPoINTER, IRRCoNsTsComposITE, IRRCoNnsTsSTRUCT: immediate from induction hypothe-
ses.
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5.7.2 Annotated compilation code

1 function ReBuiLpa ({(x1 <pi: T as Ti) | 0 < 1 <}, (Xout © Tour @S Tour), W):
/ / Explicitly unroll type variables.

2 if Toy =t € TyVars then
3 € « ReBupp ({(xi <pi:TiasTi) | 0 < i<}, (Xout : Tout as A(t)), w)
4 Lreturn ETyPEVAR-token; &
// Base case: target value is a constant encoded as a primitive type.
5 elseif u=c AT, = I then return x,,; := c|EATOM-token|; success
6 else // Otherwise, explore all cases of the output value.

// Insert ESpLit-tokens before accessing branch-specific locations.
7 | Econsts < REFINE (Xout, 7|, Shape_of 5 (Tout))

5 | Moplits — {7? focusa (7, Tout) = spht(...)}

9 | Esplits < for 7T € Tyt do yield ESpLiT-token

10 | Posgyut < {(x.7r,77') | focus (70, 1) = x.7t}

11 | Pout ¢« Remap ({xi — pi | 0<i<n},ulxmt— _],Posout)

12 | B « forpy, Ty, Tv,frags, € Explore,(Pout, Tout, Tout) do

// Allocate memory, cast and fill in constant parts as needed for this memory type.
13 &l nsts < REFINE (Xout, shape_of , (Tout), shape_of 5 (Tv))
// Allow EWorbp steps for definitively uninitialized words.

14 Mwords < {ﬁ focusn (7T, Tp) = _e}
15 €words < for 7 € Tl do yield EWORD-token

// Allow EADDREss steps for new pointers.

16 Maddrs — {7? focus (7, shape_of , (Tp)) = & (. )}
17 Eaddrs — for 7T € Tagars do yield EADDRESs-token

// Rebuild target fragments from input values, which we specialize for the current branch.

18 forie {0,...,n—1}do

19 Posi « {(xout.7t, ') | focus (7, u) = x;.7'}
20 | Pl Remap({xout — pu}, pi, Posi)
21 Efrags < for (TTr > 7r as Tr) € frags, do
22 x¢ < fresh symbol
23 T¢ « focus (715, Tp)
24 if 30 < 1 <, A(xq. Ty, Tour) € Posout, 7T, e 7T = 71¢ then
// 1f this fragment corresponds to a single piece of an input value, Seek it within this value.
25 €r «— SEEK((x4 < pg 1T as Ty), (xf : T as Tg), n.70)
26 else // Otherwise, Rebuild it from smaller pieces.
- ;. ~ ) ) ~
27 | & < Resumn({(xi <p{:TiasTi) |0 <1i<n}, (xs: s as Tr), focus (s, u))
28 8¢ « if focusa (7, Tp) = I then success
29 else EFRAGMENT-token; success
30 yield et out X¢ = Xout.T05; E¢; €f
31 ¥yield ({xi = P'i | 0 <1<}, &onsts; Esplits; ééonsfs; éwords;éfmgs; Caddrs)

// Assemble these branches into a decision tree.
32 | return Destructa ({Xi : Ty | 0 < i< n},B)

Algorithm 9: Version of ResuiLp adapted for a less painful proof.
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1 function SEEKA ((Xin < Pin : Tin aS Tin), (Xout : Tout AS Tout), T0):

10
11
12
13
14
15
16
17
18
19

20

21

To prepare for the main simulation proof, we redefine our compilation algorithms so that they emit code
whose execution order is easily simulated by memory-level evaluation. For the purposes of our proofs,
we discard the Wrap function and other mechanisms to emit recursive code. Extending our results and
proofs to capture recursive code emission is left as future work °. The rest of our algorithms is modified

// Invariant: 7t and pin are compatible.
// Explicitly unroll type variables in Toyt.
if Toy = t € TyVars then
Lé < SEEKA ((Xin <4Pin : Tin AS :Ein)/ (Xout * Tout AS A(t))/ 7-[)
return ETYPEVAR-token; €
// Base case: input and output values are the same data with the same representation.
if T = £ ATy, = Toue then return xgy; := Xin| EVARACCESS-token|; success
else // Otherwise, Explore all cases of the input value.
B « for py, Ty, T, frags, € Explore, (pin, Tin, Tin) do
// Seek a fragment containing the piece of data at 7.
if 3(7t¢ = 7¢ as Tf) € frags,, ¢ < 7 then
// Found one. We focus on it and Seek inside.
x¢ < fresh symbol
T¢, pr < focus (7, Tp ) , focus (7t¢, pv)
€ « SEEK ((xf <pf : Tr as Tr), (Xout : Tout S Tout), focus (7ts, 7))
8p < let in x¢ = Xjn.7¢| EVaRFoCus-token|; &
else // Otherwise, Rebuild from smaller pieces.
if Ty = I then // If we are seeking a primitive, decompose it in individual bits
T — —t Pociceli= 1] ([i: 1] as Iy)
& « ReBUILD ({(Xin <Pb : Tb a8 Tv)}, (Xout : Tout S T, ,;), Xin-7T)
P e Pociceliz 1
€p « cast Xout to P[EFission-token]; €; cast xout to Ig; success
| else &, < ReBUILD ({(Xin <Pb : Tb a8 Tb)}, (Xout * Tout @S Tout), Xin-7r)

| yield (pyv, &b)
// Assemble the code of these branches via a decision tree.
return DestrRUCTA (Xout, Tin, B)

Algorithm 10: Version of Seex adapted for a less painful proof.

in the following ways:

¢ weadded tokens at appropriate places within the emitted target code to synchronize with memory-

level source evaluation;

we explicitly unroll type variables in memory layouts before exploring them further, and synchro-

nize this with ETYPEVAR source evaluation steps;

we split the RerINE step of ResuiLp into two parts: we first reify the shape of the unspecialized
memory layout —i.e., memory structures common to all branches, then refine it into a specialized
shape. Indeed, refining to the specialized shape requires that all splits have been processed, which
is done through an ESpuit step in source evaluation. We must therefore separate these two stages

of shape refinement.

30r to the reader, should they feel adventurous.
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Data: A the type variable environment
Data: n input descriptions (xi <p;i : Ti as T;) for free variables in e
Data: x,y; the destination location
Data: e the source expression
Result: Target expression € storing its result in Xout
function CompiLEA ({(xi <pi :TiasTi) | 0 < 1< n}, xou, €):
cases e :
case (x{.71: TasT):
| return Seex ((x; <pi : Ty as Ti), (Xout : T as T), )
case (U:Tas7T):
| return ReBuiLp ({(x; <pi:TiasTi) | 0 < i< n}, (xou : TasT),w)
case /et x: (TasT) =eg iney:
&y « CompiLEp ({(xi<pi:TiasTy | 0<i<n},x, e)
&1 « CompiLep ({(xi<pi:TiasTy) | 0<i<n}U{(x<_:TasT)}, Xout €1)
return let out x = alloc(|T]); €y; freeze(x)|ELETBIND-token]|; &
case f(x) :
| return catl f(xi, Xout)| EFUNCALL-token]; success
case match(x;) {p; — ¢ |0<j <N}
fori’ € {0,...,n -1} \ {i} do p}, < pv
forje {0,...,N—-1} do

P, — P;
& — CompiLea ({(xi <P}, : T as Tyr) | 0 < i < n}, Xout, €)

return Destruct, ((xi : Ti), {(pj, EMATCH-token;&) | 0 < j < N})

Algorithm 11: Version of CompiLE adapted for a less painful proof.

5.7.3 Simulation Relation on Environments

We now define a family of relations which synchronize evaluation environments of (source) memory
expressions and target programs. They are defined in Fig. 5.21 for function environments ( R ¢), input
location environments (R in) and output location environments (R out)- These three relations ensure
that bindings are synchronised on both sides and that memory values bound in various environments
have the same shape. Note that, for input locations, it proceeds by induction on call stacks, to find
the right stack segment which contains the considered binding. We also add extra information in the
source typing environment I" to synchronise it with ResuiLp and Skek calls, by remembering the current
pattern of each input argument x;. More precisely, each variable symbol x is bound to a triplet of the
form (p:TtasT)inT.

(f = Axjn.e) € (f = MinXout-8) € £ A, TU{(Xin <_: Tin @S Tin)} F € : Tout aS Tout
YCsre, YWste, \V/Ctgtl tht/ Vp, Vout, Vgtgtr Yain, Y7tn,
(A, Gore F Vere : Tin A shape_of__(Vire) = shape_of_ (Vig)

A focuscy, (Tin, Sigt(@in)) = Vigt A focusey, (Tout, Stgt(Qout) = _j7,,)
= A, Xout F (MU {(Xin <_: Tin a8 Tin)}, {Xin = Vsrc}, Ssre, €) R (P, {Xin = Qin-Tlin}, {Xout — Qout-Tout}, Ctgt/ €)

ATFT,ZR ¢

V(f: (Tin as Tin) = (Tout a5 Tow)) €T, A, f+T, L RE
ArT,ZR L

Figure 5.21: Relation R ¢ between function environments.
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(x P a.m) € Gin shape_of (V) = shape_ofgtgt (focusCtgt (7, g‘tgt(a)))

A F (X/v/ CSI‘C) ﬁ il’l(p/ 6-in/ Ctgt)

At (X/G/ Csrc) 7? in(p/ 6;n/ (tgt) V(X = ’\;) € 8/ Ar (X/ {;/ gsrc) 7? in(p/ Gin, Ctgt)

At (X/G/ Gre) R in ((6-;n/ Gout, €) 12 P, Tin, Ctgt) Ar (8/ Gsre) R in(p, Gin, Ctgt)

Figure 5.21: Relation R in between source and target input environments.

€ ¢ ValuExprs AT, CaeFe€:T  (Xout > Q.7T) € Gout focusc,, (7, Gige(a)) = 5

A, Xout F (T, Gsre, €) R out(Tout, gtgt)

(Xout > A.T) € Tout shape_of,gtgt (focusctgt (7, ctgt(a))) = shape_of ()

A, Xout F (T, Gsre, 1) R out(Tout, gtgt)
Figure 5.21: Relation R o between source (memory) expressions and target output environments.

5.7.4 Seex and ReBuiLD

Before defining the simulation relation between full evaluation states, let us define some helper functions.
We define the sequence of a list (or set if the order is arbitrary) of target expressions as:

concat ({&g,...,8n-1}) = &p; ...; €n-1

Given A, ¢ and U such that £ A, ¢ + U :, we define notational shortcuts in Fig. 5.22 which establish a
correspondence between the source memory valuexpression U and parts of the target program emitted
by ResUILD.
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consts(A, ¢, ) = {(7"5,"() ‘ focus. (T, ) = (u: Tas ﬂ}
Peonsts(A, ¢, i) = shape_of (u0) [7? «— shape_of , (7) | (75, 7) € consts(A, ¢, ﬁ)]

focusc (), W) = (u: TasT)
splits(A, ¢, ) = 4 (.7, T) | A focusa (7, 7) = split (...)
A Jp,T)eT/_ATru:t/p

Psplits(A, €, 1) = Peonst(A, €, 1) [ﬁ «— shape_of ,(7) ’ (7T, T) € splits(4, §)]

R focus. (T, 1) = (u: TasT)
Mwords(A, ¢, W) =37 | A Ip,T)eT/_ATru:T/p
A focusa (7, 7)) =

focus. (T, 1) = (u: Tas7)
frags(A, ¢, 1) = { (7.7, focus (77, 1), focus (7r,7),Te) | A F(p,T)eT/_ATrFu:T/P
A (Tts > 7t¢ as T¢) € shattera (7T7)

R focus. (T, ) = (u: Tas7T)
Madars(A, ¢, W) ={7w | A F(p,T)eT/_ATru:T/p U {ﬁ| focus. (7T, 0) = &g (ﬁ’)}
A focusa (70,7) = &¢ (T')

Figure 5.22: Helper functions mirroring intermediate expressions emitted by ReBuILD.

In order to exactly match + reduction steps, we should do the same for type variables that occur
in pivots’ memory types; for simplicity, we omit this and assume that type variables only occur in
source-level pivots and in fragments.

We can now define our actual simulation relation R between source and target evaluation environ-
ments, in Fig. 5.23. It consists of five rules corresponding to the toplevel target code emitted by CompILE;
one rule IRRAtomFusion which allows the recombination of atoms destroyed by Seek; and three rules
corresponding to intermediate execution stages of the target code emitted by ResuiLp.
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IRRLETBIND N
Axk(T,0,¢c,e)Re ¢’ = CompPiLEp ({(xi <pi:TiasTy) | 0<i<n}U{(x<_:TasT)}, Xout, €)

A X0, Xn-1},Xout F (T, 0, ¢, let x : Tas T="€ in e) R (p, Gout, &; freeze(x)[ELETBinD-token]; &)

IRRSTACKSUCCESS _
agut(xgut) = Gout(xout) AI {XO, cecy XTL—]}/ Xgut F (r/ Gl C/ e) R (p/ 6—:)ut/ é)

A/ {XO/ ey Xn—l}/ Xout F (r/ 6:/ C/E) ﬁ ((ain/ aout/ SUCCQSS) LR, 6;ut/ é)

IRRComPILE
Vie{0,...,n—1},(xi<pi:TiasT) €T ATre:TasT

A/ {XOI oo /Xn—l}/xout F (r/ 6:/ <, e) ﬁ (p/ 6—Ou’t/ COMPILEA ({(X"L <4piiTias ?l) | 0 < i< Tl}, (Xout .Tas a/ e))

IRRSEEK
1€{0,...,n—-1} (xi<pi:TiasTy) €T focusa (m,Ti) =T AET agree (T, 7)

A/ {XO/ vy XTL—1}/ Xout F (r/ 6:/ </ (Xi'ﬂ -Tas :E)) ﬁ (pl 6-out/ SEEKA ((X 4piiTias ?"L)/ (Xout .Tas a/ Tt))

IRRREBUILD
Vie{0,...,n—1},(xi<pi:TiasTy) €T ATrFu:T AET agree (T, 7)

A/ {XO, e an—l}/Xout F (r/ 6:/ < (LL ;tTas a) ﬁ (p/ E‘)-01.11:/ REBUILDA ({(Xi <pi ©Tias :El) | 0 < 1 < n} /(XOut -tTas a/ u))

Figure 5.23: Simulation relation R between memory and target expressions.

IRRATtomFusion N
A/ Xout - (r/ 0,¢<, u) R (pl 6-0111:/ é)
shape_of (1) = D< [oi: 8] g,
0<i<n
0op=0 ViE{1,...,“—1},01=Oi_1+fi_1 on_1+€n_1:€

A/ {XO/ ey XN*l}/ Xout F (r/ 6—/ <, ﬁ) Q (pl 6-Out/ é1 cast Xout to I@/ success)

Figure 5.23: Simulation relation for memory valuexpressions: SEex code.
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IRRReBUILDCONSTS N
Xout, pconsts(A S, u) F (S, 1) R const(Touts Econsts)
esphts = concat {ESPLIT token | (7, 7T) € splits(A, ¢, u)}

& onsts = REFINE (Xou’u Peonst(A, €, ), psphts(A < U))
@words = concat ({EWORD-tOkeI‘l | Te ﬂwords(A, <, u)})

A, {x0,-- -, Xn-1},%out F (T', T, ¢, 1) R frags(pr Oout, éfrags)

A, {XO/ ceey Xn—l}/ Xout F (r/ 8/ </ ﬁ) 7? (p/ Gouts €consts; ésplits; ééor\sts/‘ €words; éfrags)
IRRREBUILDSPLITS
Esplits = concat ({ESPLIT—token | (7T, 7) € splits(A, g, ﬁ)})
Xout, 5splits (A, ¢, 1) + (S, W) R const(Touts Econsts)
Bwords = concat [ {EWorp-token | 7t € TTiyoras(A, <, ﬁ)})
A {x0, ..., Xn-1},Xout + (T, 0, ¢, ) R frags(pr Gout, éfrags)

A A{xo, .., Xn-1}, Xout F (T, 0, ¢, W) R (0, Gout, ésplits; €consts; Ewords, éfrags)

IRRReBUILDFRAGS
focus (,C) = O Fout(X)ye) = Gout(Xout)- 70 AAxo, ... X1}, x5 F (T,0,¢, 1) R (p, Gout, €)

Ar {XOI ey Xn—l}rxout F (rr 6/ <, C[—|ﬁ| ]) Q frags(pr 6—Ol,ltr éfrags)

A, {x0, -+, Xn-1}, Xout + (T, 0, ¢, C[u]) R (P, Gout, & éfrags)

Figure 5.23: Simulation relation for memory valuexpressions: ResuiLp code.

The R frags Telation defined in Fig. 5.24 characterizes the portion of target code emitted by ResuiLp
which deals with non-constant parts of the memory type —i.e., €frags; €addrs- Its definition follows exactly
the corresponding portions of the RepuiLp algorithm.

(x4 <4pi:Tias ?1.) er (Xout F> Clout-ﬁout) € Oout fl‘agS(A, Csres ﬁ) = {(ﬁf/ ur, Tf, :Ef) |0< <N}
Y(7T, T) € consts(A, Cgre, W), If € {0,...,N -1}, T = 7¢
s = SEEKA ((x4 <pi: Ty as Ty), (xf : T as T¢), 70) if ug = xq.70
f Rebupa ({(xi <pi:TiasTi) | 0 <i<n}, (xf:7TrasTe),uf) otherwise

AAx0, .. xm1}b,xp b (T,6,¢, (up s e as Tf)) R (p, Gin, Gout U {Xf — Qout-Tout-Tir}, Stgt, &)
. Jsuccess if mg (Tr, ) = (u:Tas )
e = EFrRAaGMENT-token; success otherwise

€frags = concat ({Llet out Xt = Xout.7ir; €rf; &r | 0 < f < N})

8addrs = concat ({EADDRESS—tOken | TE ﬁaddrs(A, c, ﬁ)})

A {x0,- -, xn-1}, %out F (T, 0, ¢, 1) R frags(p/ Oout, Efrags; €addrs)

Figure 5.24: The R frags Telation

167



5.7.5 Statement of Simulation

Theorem 5.1 (R is a weak simulation). Let A, £, S = (T, 3, S ), £, S = (0, Gin, Gout, Ctgt, €), Xour and
X0, - - -, Xn—1 Such that

EART A,cro:T
Vie{0,...,n—1},(xi <pi:TiasTy) € T = (AF pi: i A3(pl, Pi) € pat2mem, (pi, Ti), S F Pi » 0(x4))
Ar (T, L) R fi A+ (0, Core) R in(0, Gin, Ctgt) A, Xout + (T, Sore, ©) R out(Tout, Ctgt)

If
A/ {XOr o rxn—l}/xout FSRS

then one of the three following conditions holds:
* Both S and § are in normal form w.r.t. &> and ~> respectively.
e There exists S’ such that

fl—gwk s A,{XO,...,xn_l},xgutI—§7~€§'

o There exist a memory-level evaluation step label L, S, 8,8 and a finite number of steps m such that
A,ZI-’S\%[_ §, il—gw‘; g/ ML g” A,{xo,...,xn_l},xomk§'7~2§"

Proof. By induction on R .

IRRCompILE: we have
e =ee€ Exprs ¢ = CompiLEp ({(xi <pi:TiasTi) | 0 <1< n}, xout €)

and proceed by case analysis on e and €. If e is a pivot, it is handled by the IRRSeex and
IRRREBUILD cases below. The remaining CompILE cases are let-binding, function call and pattern
matching expressions. Here, we focus on the match case: there exists i € {0,...,n — 1} such that

e=ma‘rch(xi){pj — ej |0<j<N}

& = DEsTRUCTA ((xi 1T, {(pj,EMATCH—tOkel’l; &) | 0<j< N})

where for each branch j € {0,...,N -1},

~ ) ;U =1
&; = Compien ({(xv apl it asTy) | 0< i <n}, Xour ej) Py = {p] .
piv otherwise
Using Theorem 3.2, there exists at least one branch j € {0, ..., N — 1} such that
H(P,I 5) € PatzmemA(Pj,?i), Cere E > E(Xi)

We pick the smallest such j. Using Theorem 4.1 and the definition of DestruCT, there exists a finite
number of steps m such that

. Mmoo < .
P, Bin, Gout, Stgt, € M) P, Op, Gout, Stgt, EMATCH-token; €;
L ]

S

with &i, € &7 (which preserves R in). At this point, both programs (Sand &) go through an
EMartcH evaluation step and yield the following states:

S, = (r/ 6:/ Csres e]) g” = (p/ 6;11/ 60ut/ Ctgt/ é])

and we conclude using the IRRCompILE rule.
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IRRSEEk: there exists i € {0,...,n — 1} such that we have

(xi<pi:TiasTy) €T focusp (1, Ti) =T AET agree , (T, 7) e=(xi.m:Tas7)

€ = SeEkA ((xi <Pi : Ty as i), (Xout : T as T), 1)

Here, we only consider the case where T is not a type variable, either 7t # ¢ or T; # T, and Seek
finds a fragment within the input value on which to focus. The target program & first goes through
the decision tree emitted by DestrucT in a finite number m of & -transitions, reaching the target
expression &, of the corresponding input branch (py, Tv, Tv, frags, ) € Explore, (pi, Ti, Ti). There
exists a fragment (7t¢ — 7t¢ as Ty) € frags, and a suffix path 7’ such that 7w = 7.7, and we have

8p = let in x¢ = x1.7tf; EVarRFocus-token; &¢
where x¢ is a fresh symbol and
&r = SEEKA ((xf <Py : Tr as Tf), (Xout : Tas T), )
with
T¢ = focusa (71, Tp) ps = focus (7t¢, pp)

From there, the target expression &, goes through a &-transition (IRESusINLoc rule) to execute
the let in instruction. Both programs then go through a EVarFocus step: the target program
consumes its token, and the source expression performs the following reduction step:

I,0,Csre, (xi.m:TasT) & FU{(xf: TrasTs)}, 0 U {xs —> foc/FsCsrc (7r, 0(x4))}, Ssre, (x5.77 1 Tas T)
We conclude using the IRRSEex rule.
IRRREBUILD: We have
e=(u:TasnT) (xi<pi:TiasTy) €T ATru:T AET agree , (T,7)
€ = ReBuiLppa ({(xi <pi:TiasTi) | 0 <i<n},(Xou : TasT),u))
Here, we ignore the type variable and primitive base cases. Let
Posout = {(x.7, ') | focus (7', u) = x.7t}
Pout = Remap ({x; = pi | 0 < i <n},u[x.t— _],Posout)

The target program € first goes through the decision tree emitted by DesTruUCT in a finite num-

ber m of &-transitions, reaching the target expression &, of the corresponding output branch
(pv, Tv, To, frags, ) € Explore , (pout, T, T). It is immediate from their definitions that TTyords, MMaddrs,

—~

TMspiits defined in the ResuiLp algorithm are identical to those derived from the source state us-
ing helper functions in Fig. 5.22. It is also immediate from their definitions that the consistuent
pieces of &y Esplits, € netss Ewords are identical to those derived from the source state in the IR-
RReBuiLbConsts rule. The target expressions &frags and €,ddrs are defined in such a way that we
have

A, {x0, -+, Xn-1},%out F (I', 0, Gsre, (W : T @8 T)) R frags(p/ Gin, Oout, Stgt, Efrags; €addrs)

Finally, the first piece of &y, is defined as follows:
Econsts = REFINE (Xout, _j7, shape_of 5 (7))
and according to the precondition on output values, we have
Xout, _j7| F (Gsre, (W 2 T S T)) R const(Fout, Gigt, Econsts)
We conclude with the IRRReBuiLDCoNsTs rule using Lemma 5.1.

Other rules: immediate by induction or done similarly to previous cases.
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5.7.6 Future work

We have shown that our compilation algorithms, if they succeed, emit target code whose execution is
simulated by the source program’s memory-level evaluation. Ideally, we would also state and prove the
following results:

* Given well-formed inputs, CompiLE and other compilation procedures succeed. It would probably
involve a cumbersome, but not fundamentally difficult, induction on the source expression and
types, similar to many of the proofs presented in Section 3.4.

e Termination (and correctness) of the memoized versions of Seek and ResuiLp. The termination
property would stem from the fact that input programs are finite. We would extend the existing
correctness proofs with new base cases corresponding to hashmap hits.

5.8 Conclusion

In this chapter, we presented a unified compilation procedure for the whole Ribbit language. The
Ribbitulus combines a small high-level language, manipulating immutable ADT values with pattern
matching, accessors and data constructors, with a much lower-level memory specification language.
Although both of these components are relatively easy to compile on their own, their combination
creates new compilation problems.

In order to define a complete compilation scheme for the Ribbitulus, we considered each language
construct separately, yielding a collection of compilation procedures dedicated to specific aspects of our
language. We provide a toplevel compilation interface which handles the full language by combining
these smaller procedures together.

Two aspects of our language, namely pattern matching and pivot expressions, stand out as their com-
pilation is significantly complicated by custom memory layouts. The compilation procedures handling
these two language constructs are therefore driven by the exploration of their memory types, following
their structure to emit appropriate target code.

Our target is an intermediate representation in Destination-Passing Style which provides the neces-
sary tools for both of these aspects: decision nodes are used as the target of pattern matching compila-
tion, while explicit memory allocations, reads and writes support the precise manipulation of memory
contents required by pivot expressions.

We were able to consider pattern matching in isolation: in Chapter 4, we provided a compilation
approach solely for the “recognition” aspect (i.e., excluding variable bindings) of pattern matching. It
took custom memory layouts into account by lowering high-level patterns to the memory-level language.

We were not able to isolate the compilation of pivot expressions as much: indeed, the combination
of data constructors and accessors causes interaction between arbitrary memory layouts. Since the
Ribbit language provides enough flexibility to specify any combination of memory layouts, as long as
they agree with the considered high-level data type, this situation may cause seemingly trivial data
constructors/accessors to require complex recursive target code.

We established the correctness of our compilation scheme w.r.t. the source language by proving that
each of its components was correct w.r.t. the corresponding Ribbitulus fragment.
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Part 111

The Ribbit Implementation
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In the first two parts of this thesis, we presented the Ribbit language and a full formal compilation
approach for this language. This compilation approach included some fairly complex algorithms,
for which it is desirable to have some form of practical validation. In this final part, we detail our
implementation of these algorithms in the Ribbit prototype compiler. Chapter 6 describes the compiler
itself and details how it implements complex procedures such as our mutually recursive and memoized
ResurLp and Seek. This prototype implementation allowed us to experimentally validate our approach:
Chapter 7 will provide an evaluation of our pattern matching compilation approach.
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Chapter 6

Ribbit compiler implementation

This chapter describes our prototype implementation of the Ribbit language and compiler. It is written
in OCaml and available at https://gitlab.inria.fr/ribbit/ribbit under the MIT license. In addition
to the source code, the Ribbit distribution includes various example input files, including the memory
zoo exhibits from Chapter 2. A web interface is also available at https://ribbit.gitlabpages.inria.f
r/ribbit/ to experiment with the Ribbit language and with predefined examples interactively.

Our implementation can verify the validity of ADTs, memory layouts and programs, compile pro-
grams to our intermediate representation, show the obtained CFGs, and run them. In addition, it will
verify the correctness of compiled code against a reference source interpreter.

Note that the input Ribbit syntax shown in this chapter differs slightly from that shown in exhibits
in Chapter 2. Indeed, at the time of writing, the Ribbit implementation still uses a previous version of
memory types with minor differences in how constant, pointer and composite words are modeled.

6.1 Running example: arithmetic expressions

Recall the arithmetic expression example from the Memory Zoo (Section 2.3). Listing 1 shows the
contents of a Ribbit input file (extension .rbt) which defines the ADT Exp for arithmetic expressions
with an optimized memory layout corresponding to ExpOpt, along with the eval function.

As mentioned before, there are slight differences between the idealized syntax of Chapter 2 and
the concrete input syntax accepted by the current Ribbit prototype. In this program, they manifest
themselves in the following ways:

¢ Both primitive (integer) types and unspecified word types are modeled with wl, which designates
an 1-bit “word” without specifying its contents. When it appears on the left-hand side of a bit range
specification with ..., wl acts as an uninitialized word type (_<1> in idealized syntax) which is
used to build a composite word type. When it occurs on its own, without bit ranges specifications,
wl is interpreted as an integer encoding (il in idealized syntax).

¢ Memory words whose contents are set to a given constant c are expressed with a “whole-word”
specification with . : and an unsized singleton type (= ¢) added onto an adequately sized word
type wl, rather than with a constant word type (c)<1> as in Chapter 2.

® The number of bits which are unused due to address alignment is specified for each pointer type
— for instance, &<64, 2>(...) indicates that the two lowest bits may be used to store extra data.

¢ All other syntactical differences are purely cosmetic: bit ranges are denoted [0, 1] (rather than
[0:1]), subterm paths in fragments are prefixed with _, and function call arguments are specified
in a rather strange way — for instance, f(x=v) rather than simply f(v).

173


https://gitlab.inria.fr/ribbit/ribbit
https://ribbit.gitlabpages.inria.fr/ribbit/
https://ribbit.gitlabpages.inria.fr/ribbit/

1 type String = i512;
> represented as (_ as w512)

4+ enum Op { Plus, Mult }

5 represented as w8 with . : split . {
6 | © from Plus => (= 0)

7 | 1 from Mult => (= 1)

s}

1 enum Exp { Var(String), Int(i32), Bin(Op, Exp, Exp) }
n represented as split .[0, 2] {

12 | © from Bin(_, Bin|Vvar, Bin|Var) =>

13 &<6u, 2>({{ _.Bin.0 as Op, w56 with . = 0, _.Bin.1 as Exp, _.Bin.2 as Exp }})
14 | 1 from Int => wed with .[32, 32] : (_.Int as w32)

15 | 2 from Var => &<64, 2>(_.Var as String)

16 | 3 from Bin(_, Int, Bin|Var)|Bin(_, Bin|Var, Int)|Bin(_, Int, Int) =>
17 &<6uU, 2>(split .1 {

18 | © from Bin(_, Int, ) =>

19 {{ _.Bin.® as Op, w24, _.Bin.1.Int as w32, _.Bin.2 as Exp }}

2 | 1 from Bin(_, Bin|V, Int) =>

2 {{ _.Bin.0 as Op, w24, _.Bin.2.Int as w32, _.Bin.l as Exp }}

2 D)

» }

24
» let v : Exp = Bin(Plus, Int(42), Var(e));
26

» fn eval (e : Exp) —> Exp {

28 match e {

2 Int(l) | var(l) => e,

30 Bin(Cop, el, e2) => match (eval(e=el), eval(e=e2)) {
31 (Int(nl), Int(n2)) => match op {
» Plus => Int(nl + n2),

33 Mult => Int(nl * n2)

3 },

35 (e1', e2') => Bin(op, el', e2')
36 }

37 }

38 }

39

o let res : Exp = eval(e=v);

Listing 1: Optimized memory layout for arithmetic expressions and user implementation of eval.

6.2 Intermediate forms and interpreters

In this section, we provide an overview of the various intermediate forms that a Ribbit program goes
through during its compilation. Many of these intermediate program representations have their own
interpreter, which lets us check empirically that the semantics of a given program is preserved by each
compilation pass. We will use the program on arithmetic expressions from Section 6.1 as our running
example to illustrate each representation. All of them can be obtained at once by invocating ribbit with
verbose, graph and debug options enabled, using the command ribbit -m batch -ir -g -s -debug
arithexprs.rbt. Crucially, all intermediate forms shown in this section were taken straight from the
compiler’s output, without any modifications.

The Ribbit prototype first processes all type declarations before moving on to function and value
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declarations. Let us illustrate this processing on the String, Op and Exp type declarations from the pro-
gram shown in Listing 1. This step normalizes memory types given by programmers, or computes them
based on a generic representation (as described in Section 2.6). The syntax is exactly the same as memory
types, with some minor expansions (such as expanded or-patterns in split branches’ provenances).

[Type declarations]:
enum Exp {Var(String), Int(i32), Bin(Op, Exp, Exp)}
represented as
split(_.[0:+2]) (
0 from
Bin(_, Bin(.), Bin(.)), Bin(_, Bin(l), Var(l)),
Bin(_, var(_.), Bin(_.)), Bin(_, Var(.), Var(.)) =>
&<64,2>({{_.Bin.0 as Op, w56 w _:(= 0), _.Bin.1 as Exp, _.Bin.2 as Exp}})
w _.[0:+2]:(= 0),
1 from Int(_) => wed w _.[0:+2]:(= 1) w _.[32:+32]:_.Int as w32,
2 from Var(_) => &<6u4,2>(_.Var as String) w _.[0:+2]:(= 2),
3 from
Bin(_, Bin( ), Int(.)), Bin(_, Int( ), Bin(.)),
Bin(_, Int(_), Int(.)), Bin(_, Int( ), Var())),
Bin(_, Var(l), Int(l)) =>
&<6u,2>(split(_.1) (
0 from Bin(_, Int(l), ) =>
{{_.Bin.0 as Op,
w2d w _:(= 0),
_.Bin.1.Int as w32,
_.Bin.2 as Exp}},
1 from Bin(_, Bin(_), Int(.)), Bin(_, var(_), Int(.)) =>
{{_.Bin.0 as Op,
w2d w _:(= 1),
.Bin.2.Int as w32,
.Bin.1 as Exp}}

))
w _.[0:+2]:(= 3)

enum Op {Plus, Mult}
represented as
w8 w _:split( ) (
0 from Plus(_) => (= 0),
1 from Mult(_) => (= 1)
)

type String = i512 represented as _ as w512

Listing 2: Ribbit output: Processing type declarations.

Let us now consider the value declaration from the program shown in Listing 1:
let v : Exp = Bin(Plus, Int(42), Var(0));. Ribbit outputs its representation as a memory value in
both textual and graphical form, as shown in Listing 3.

175



0 on 8 bits

0 on 24 bits

[0:+2]

&<64> a, with [0:+2] L
2 uninit bits with [0:+2]

3 on 2 bits .
8<64> a, with - . . [0:+2] 0 on 512 bits
2 uninit bits with
2 on 2 bits

\

42 on 32 bits

[Value Declaration]:
Compiling Bin(Plus, Int(42), Var(0))

[Value Declaration]:
Elaborated to Bin(Plus, Int(42), Var(0))

[Value Declaration]:

v = Bin(Plus, Int(42), Var(0)) = Bin(Plus, Int(42), Var(0))
represented as

&<6U4>(a0) with [0:+42] = ?2 with [0:+2] = (3)2

with a0 —>

{{ ©)s;
(0)au;
(u2)32;
&<6u4>(al) with [0:+2] = 2?2 with [0:+2] = (2)2;
IR
al -> (0)512

Listing 3: Ribbit output: Processing the first value declaration.

In general, the Ribbit prototype processes such declarations with the following sequence of actions:

typecheck and desugar the bound expression;

prepare new identifiers and compute the shape of its memory type;

compile the expression and optimize the resulting target expression;

prepend an allocation instruction and append a freeze instruction to the resulting target expression;

evaluate the desugared source expression as a purely high-level object (— then substitute all
variables), yielding a high-level value;

evaluate the compiled expression with the target interpreter, yielding a memory value and its
accompanying store;

convert the high-level value to a memory value;
compare both memory values to check that both routes of evaluation yield the same result;

if both succeed and yield equivalent memory values, add both high-level and memory values to
the current value environment.

This means that, for every program, we check the correctness of CompiLE empirically. This has proven
crucial in practice to converge towards a correct compilation algorithm.

Let us now consider the successive intermediate forms of a full-fledged function: eval. The Ribbit
prototype first typechecks and normalizes its body to the explicitly typed A-normal form shown in
Listing 4. This elaboration was already showcased in Section 2.3.
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[Function declaration]:
Compiling eval(e: ) = match e {
Int(l) | Var(l) => e,
BinCop, el, e2) => match (eval(
e: el), eval(e: e2)) {
(Int(nl), Int(n2)) => match op {
Plus => Int(nl + n2),
Mult => Int(nl * n2),
}l
(el', e2') => Bin(op, el', e2'),
}l

[Function declaration]:
Elaborated to eval(e: Exp) : Exp
= let x : Exp = e;
match x {
Int(l) => e,
Var(_) => e,
Bin(_, _, ) =>
let x1 : Exp = x.Bin.1;
let x2 : Exp = eval(e: x1);
let x3 : Exp = x.Bin.2;
let x4 : Exp = eval(e: x3);
match x2, xt {
Int(.), Int(l) =>
let x5 : Op = x.Bin.0;

match x5 {

Plus =>
let x6 : i32 = x2.Int;
let x7 : i32 = xd.Int;
let x8 : i32 = ADD(x6, x7);
Int(x8),

Mult =>
let x9 : i32 = x2.Int;

let x10 : i32 = x4.Int;
let x11 : i32 = MUL(x9, x10);
Int(x11),
H
_, — => Bin(x.Bin.0, x2, xd),
}l

Listing 4: Ribbit output: Desugared eval.

Following our compilation algorithms, we then process the pattern matching and each right-hand
side expression. The resulting CFG is given in Fig. 6.1. This CFG was already shown, with some minor
optimizations applied, in Section 2.3.

Finally, we evaluate eval(v) in two ways: as a source expression using Ribbit’s built-in interpreter
for the source language, and as a target expression using its compiled version and Ribbit’s built-in
interpreter for the target language. Here, both evaluations yield equivalent results, and we obtain the
output shown in Listing 5, which represents the result as a memory value. Note the use of ?2 to represent
the 2 uninitialized padding bits.
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/% case Int(),Int( 1) */
Jx et xs = X.Bin.0 %/
Teti 5,4 = S4.%.0

/x match xs */

Leti 540 = 544

Switch s,
3 [ 1

y Y

Let rec eval

/x match x %/
leti S10 = 5q.[0:42]

Switch s4o

x case Bin(_, _, ) #/
/% let x, = X.Bin.1 %/
new out dx, (64 bits)
leti 5,0 = 54.[0:42]

Switch s,o
[]

/x Shape 76, to Zay w [32:+32]:7,2 w [0:42]:1,
Cast dx, as 264 with [0:+2]:72

Teto dyp = dx,. 1[0+

Cast d,g as ?64 with [32:432]:2?32

Leto dyo = dx,.[0:+2]

dyg 1= 1

/% Fragnent _.Int in dest i, %/

leto dao = dx4.[32:432

leti sy = 5,.%.2

Freeze dx, to s:
/& let x; = eval(e: x,) %/
new out dx, (64 bits)

call eval e:sx, dx;

Freeze dx; to sx;
/x let x; = x.Bin.2 %/
new out dx; (64 bits)
leti 40 = S,.[0:42]

Switch s4o
[}

Cast dx; as ?64 with [
leto dyy = dxs. 1[0:4
Cast da as 264 with [32:+32]:732
leto dzz = dx,.[0:42]

1

dzz
/& Fragnent _.Int in dest da; %/
leto dz5 = dxs.[32:432]
leti 55 = 5,.%.2
das 1= s,

/% Shape 2, to %6, w [32:432]:7,, w [0:+2]:1, #/
421172

Freeze dx; to sx,
/% let x, = eval(e: x;) %/
new out dx, (64 bits)

call eval

Freeze dx, to sx,
/x match xz,x. */
Teti szz = sxa.[0:+2]

Switch s..

/% case _,_ %/
leti 55, = sx,.[0:+2]
Switch s,

] 1 2,3

/x case Plus /

/et xe = X;.Int */

leti 5, = 5X,.[32:432]

Jx let ¥ = x,.Int #/

leti 5., = sx,.[32:432]

/% let xs = ADD(xs, X7) */

new out dxs (32 bits)

dXs = ADD 42 Sis

Freeze dxs to sXs

/% Shape 25, £0 %, w [32:432]:2,; w [0:42]:1, %/
Cast V as 264 with [0:+2]:72
leto dzq = V.1[0:42]

Cast d., as ?64 with [32:+32
leto dzs = V.[0:42]

/% Fragnent _.Int in dest dao %/
leto dzg = V.[32:432]

leti 545 = X

das 1= Sas

/% let Xaq = MUL(Xs, Xa0) */
new out dx,, (32 bits)

dxyq = MUL S,z S5

Freeze dx,, to sx,

/% Shape %6, to %6, w [32:+32]:25, w [0:+2]:1, %/

Cast V as 264 with [0:42]:72
leto dzq = V.1[0:42]

Cast d,, as ?64 with [32:+32]:732
leto ds = V.[0:42]

dos = 1

/% Fragment _.Int in dest dss %/
leto das = V.[32:432]

Teti 547
das = S47

SXq4

(eti szr = sxa.[0:42] ) (et 54 = sxa.(0:42])
Suitch s, |

[ 23 )

[ suitch s.,
e [ 1) [

success

success

Cast V as 264 with [0:+2]:22
leto day = V.1[0:+2]

dae 1= alloc(128)

leto da7 = dyg.x

Cast d,; as {{?8,724,732,764}}
Tleto dzo = dar.t

dao i= 1

leto dys = V. [0:42]

Cast d,s as ?2 with [0:+2]:72
leto dss = das.[0:42]

leto dag =
leti Syq = S4.%.0

leto dys = V.ox
Leti 545 = sx,.[32:432]
dys iz 54y

leto dye = V.x.3
leti Syo = SXz
dss 1= 40

/+ Shape %6, t0 8<64>({{%s, 124, %22,

dss =3
/x Fragnent _.Bin.0 in dest dy, %/
Vox.0

/% Fragnent _.Bin.1 in dest dys */

D) w [0:42]:7, w [0:42]:3, /

dyy iz S44
/% Fragment _.Bin.2.Int in dest dys #/
2

success

/x Shape 76, to &<64>({{%s, 024; P52, Zee}}) W [0:42]:2, v [0:42]:3, #/
Cast V as 264 with [0:+2]:72

Teto day = V.1[0:42]

day := alloc(128)

Teto dyr = dau.®
Cast do7 as {{?8,724,732,764}}
leto dzo = dar.1

20 0=
leto dos = V.[0:42]

Cast d,s as ?2 with [0:42]:72

leto dyy = dys.[0:42]

dyy = 3

/x Fragment _.Bin.0 in dest d,, */
Teto dyy = Vok.0

Teti 544 = 54.%.0

34 1= Syg
/x Fragnent _.Bin.1.Int in dest dss %/

/x Shape %o, to &<64>({{%, Oss, %ea, Z64}}) W [0:42]:7; w [0:42]:0, #/
Cast V as 264 with [0:+2]:72

leto day = V.1[0:42]

day := alloc(192)

Teto dyr = dau.®
Cast do7 as {{?8,756,764,764}}
leto do = dar.1

20 0=
leto dos = V.[0:42]

Cast d,s as ?2 with [0:42]:72

leto dyy = dgs.[0:42]

s = 0

/x Fragment _.Bin.0 in dest dy, */
leto dyy = V.0

Teti 544 = 54.%.0

34 1= Sqs
/+ Fragnent _.Bin.1 in dest dys %/

Teto dys = V.ox.2 leto dys = Vox.2
leti 5.2 = 5%,.[32:432] Leti 540 = sX;
dss = S4a 35 = Sao

/x Fragment _.
leto dys = V.%.3
Leti 5z = SXq
dss i= Sa0

Bin.2 in dest dys #/

C )

Figure 6.1: Ribbit output: target CFG for eval.
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0 on 8 bits

0 on 24 bits
[0:+2] -
42 on 32 bits
&<64> a,, with L . [0:+2] >
2 uninit bits with - [0:+2]
3 on 2 bits

&<64> a, with [0:+2]

2 uninit bits with

2 on 2 bits

~—

[Value Declaration]:
Compiling eval(e: v)

[Value Declaration]:
Elaborated to let x12 : Exp = v;
eval(e: x12)

[Value Declaration]:
res = eval(e: v) = Bin(Plus, Int(42), Var(0))
represented as
&<64>(a0) with [0:42] = 2?2 with [0:+2] = (3)2
with a0 —>
{{ (0)8;
(0)24;
(u2)32;
&<6u4>(al) with [0:+2] = 2?2 with [0:+2] = (2)2;
3
al —> (0)512

Listing 5: Ribbit output: Evaluation of eval(v).

6.3 Technical Features

0 on 512 bits

In this section, we go over some specific technical aspects of the Ribbit implementation.

Hash-consing Classically, directed acyclic graphs (DAGs) with maximal sharing can be created from
trees by using hash-consing (Fillidtre and Conchon 2006). For both termination and tractability, we
apply these techniques pervasively in Ribbit, both on memory trees (described in Section 4.2) and on

target IR expressions (described in Section 5.2).

For this purpose, we use the Hashtbl interface from OCaml standard library to provide a generic
hash-consing-aware recursion scheme for trees. Listing 6 shows some parts of Ribbit’s source code
using this interface. The fixpoint operator memo_rec memoizes a given function f by hash-consing its
input. We use it to define a sharing-aware fold over memory trees. This fold recovers maximal sharing,
even when it was not originally present. We use this fold pervasively throughout pattern matching

compilation.
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(** Memoize a function on Memory Trees by hash-consing them. *)
let memo_rec f =
let tbl = Hashtbl.create 17 () in
let rec f_rec (t : M.t) =
match Hashtbl.find_opt tbl t with
| Some res -> res
| None —>
let res = f f_rec t in
Hashtbl.replace tbl t res;
res
in
f_rec

(** Fold over a Memory Tree, up to hash-consing.
Each labeled function (f_leaf, ...) is applied to the relevant construct.
*)
let fold ~f_bud ~f_leaf ~f_par ~f_switch =
let f f_rec t =
let acc = match t with
Leaf 1 -> f_leaf 1
Bud (ty, 1) —> f_bud ty 1
Par trs -> f_par @@ List.map (fun tr -> f_rec tr) trs
Switch { discr; path; cases; default } ->
f_switch discr path
(List.map (fun (z, tr) -> z, f_rec tr) cases)
(Option.map f_rec default)

in

acc
in
memo_rec f

Listing 6: excerpt from Ribbit: hash-consing on Memory Trees.

Memoization On top of hash-consing, and as described in Section 5.6.1, we memoize each call to SEex
and ResuiLp with the Wrar algorithm. The different functions making up the Compile_adt module
have a nearly one-to-one correspondence with the various compilation procedures defined in Chapter 5.
The actual implementation of WraP uses a polymorphic hash table to avoid code duplication, but is
otherwise identical to the formal algorithm in every point.

Algorithmic checking of types Most of our compilation algorithms are directly translated into our
implementation. However, the implementation of formal agreement criteria between high-level and
memory types, as well as intrinsic validity and kinding of memory types (all defined in Chapter 3), is
not as clear-cut. First, these judments are not defined in a procedural way. Furthermore, especially for
agreement, we allow ourselves to quantify over rather unreasonable sets (e.g., every single bit of every
primitive for coverage).

The current Ribbit prototype implements a limited version of agreement checking. In particular, it
verifies agreement with the granularity of a whole memory word and simply accepts any splitting of
atoms (as used, notably, in our RISC-V example).

6.4 Visualizing execution traces
The mutually recursive nature of our Seex and ResuiLp compilation procedures, presented in Chapter 5,

makes it difficult to know precisely which parts of the input expression and memory type are responsible
in the event of a crash during this stage of compilation.
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To ease debugging of these two algorithms’ implementation, Ribbit includes a logger to emit an
execution trace in Chrome trace format. Coupled with a trace visualization tool such as Perfetto
(https://ui.perfetto.dev/), it allows to observe the full stack of nested calls to various compilation
functions. Such a trace is shown in Fig. 6.2. It shows the stack of Seex and ResuiLp calls, along with
various auxiliary functions corresponding to smaller pieces of our compilation algorithms. For each
call, we can observe its arguments in the bottom window.

In addition to debugging the implementation per se, this tool also informed some aspects of the
actual ReBuiLD and Seek algorithms, most notably how to anonymize their arguments so that recursive
nodes are emitted precisely when necessary.

3 | current Selection T
Slice Seek Contextual Options ~
Details Arguments

~ args

Example Traces o
B Open Android example
B Open Chrome example

Support
outargs {id:V:ty Exp miy:Exp)

Figure 6.2: Part of a debugging trace for the arithmetic expressions example, in Perfetto.

6.5 In memoriam: the legacy LLVM backend

The formal compilation approach described in Chapters 4 and 5 outputs an expression following the
syntax of an abstract target language. Similarly, the current version of the Ribbit implementation
compiles input programs this our custom target program representation. It also features an interpreter
for this target language. Our target IR is the end of the current compilation chain: the Ribbit prototype
lacks a proper backend to either native assembly or a standard low-level intermediate representation.
However, at some point during Ribbit development, our implementation did in fact have a working
LLVM IR backend. This backend allowed us to run the few benchmarks covered in Chapter 7. In
this section, we describe the legacy LLVM IR backend, explain why it was eventually abandoned and
explore some possibilities for a future Ribbit backend that would once again allow our implementation
to produce executable programs.

The global code generation procedure is rather straightforward: constructors are turned into memory
allocation and initialization code and decision trees are turned into LLVM control flow graphs. Two
difficulties remain: deal with LLVM’s explicitely typed IR and generate code for memory paths.

6.5.1 Values and memory allocation

Words, pointers and struct values correspond to basic low-level memory structures. However, memory
values only describe some arrangement of data in memory; where and how we may allocate memory to
hold this data remains unspecified. The choice of allocation scheme highly depends on the language and
its memory management policy. In Ribbit, all data is allocated on the “main” stack frame, which remains
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available during pattern matching execution. The object under scrutiny is then passed by reference to
the compiled pattern matching function.

6.5.2 Lowering Memory Types

Our compilation procedure discards type information, yielding a decision tree whose input is a single
untyped root memory value. Backend targets such as LLVM IR require each memory value (including
the root value, bound subterm values and intermediate switch discriminants) to be explicitely typed.
This section describes the process of building an adequate LLVM IR type for each memory value, using
information retrieved from the initial memory type.

Since every memory value in the decision tree is expressed as a position within the root memory
value, we can deduce their types from the root memory type. However, our memory types contain splits,
which are not expressible as LLVM types (LLVM Language Reference Manual 2023). Indeed, LLVM types
are unambigous, in that they only describe fully concrete types (in terms of bit width, legal operations,
etc.) and do not capture multiple branches. For our purposes, they consist of:

1. fixed-width integer types, such as i32;
2. an opaque pointer type ptr;
3. structures that aggregate other LLVM types, such as {i6u, ptr}.

For simplicity, we assume LLVM pointer types are by default 64-bit wide with 8 unused bits due to
address alignment. Different pointer types requires using LLVM address spaces with different data
layout specifications (in the LLVM sense).

We now describe, given a type T, how to build the corresponding LLVM type. This is straightforward
for non-split memory types: we map any {-bit-wide word or pointer to the integer type if, discarding
any bitword content specification. We do not use the specific ptr type yet so as to freely manipulate
pointer alignment bits. We map structs to LLVM structs and type variables and subterm types to their
bound memory type’s LLVM type.

Lowering split types to LLVM IR types is less immediate. We need an LLVM type that is able to
store values of any branch, and in which the split discriminant is accessible. By definition, the exact
shape of a memory value instanciated from a split type (and an unknown source value) is unknown
until we inspect its discriminant. Type validity ensures this is possible: indeed, a split type has one kind
and each branch type must be of this kind. Furthermore, the discriminant location is always accessible
in each branch type. Conservatively, we use the “largest” branch type to determine the common type
shape. If the kind is Word, every branch maps to an LLVM integer type and we take the largest. If the
kind is Block, every branch maps to an LLVM struct and we recursively find a common type for each
field, and keep extra fields. After inspecting the discriminant, we refine the memory type and cast the
value to a more precise LLVM type in order to perform operations specific to the identified variant. By
validity of memory types, this cast should always be valid.

6.5.3 Code Generation for Memory Paths

Memory paths 7t are used to specify the discriminant of each switch node and to specify values in binding
environments. Code generation transforms memory paths into sequences of instructions extracting the
part of the root memory value specified by the path. Memory path operations consist of pointer
dereferencing, field access and arbitrary operations on bitwords. Given a target providing instructions
for dereferencing, field access and all operations used in bitword content specifications, as well as casts
from pointers to words and back, mapping operations on structs and on words to target instructions
is immediate. Dereferencing operations require additional care to reset all alignment bits and cast the
value to a pointer type before dereferencing it.

%x1 = and i6U %x0, OxFfEFFfFffFFFF£o0
Example 6.1. The path .x on &gsg(...) becomes %x2 = inttoptr i64 %x1 to ptr A
%x3 = load ty, ptr %x2
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6.5.4 Possible future backends

The LLVM backend was written at a time when Ribbit was only able to compile the recognition aspect of
pattern matching (corresponding to Destruct/to Chapter 4), a very limited subset of variable accessors
(corresponding to ExtracT) and constant value constructors (corresponding to Construct). As such,
its output prior to going through the LLVM backend consisted of decision trees (for pattern matching),
memory paths (for accessors) and constant memory values (for data constructors).

Since then, we have extended our compilation approach to cover the entire Ribbit language, as
described in detail in Chapter 5 (corresponding to CompiLe, SEek and Resuip). This required us to
define a proper target language (the DPS IR which we defined in Chapter 5) specifically integrated with
our formalism, to allow for the complex manipulation of memory types and values which underlie
ResurLp and SeEk.

Our target IR is richer and more complex than the previous combination of decision trees, memory
paths and constant memory values. It also comes with its own memory model. As such, it quickly out-
grew the existing LLVM backend, which was subsequently abandoned. Specifically, LLVM IR features
its own low-level type system, which restricts the possible data casts in a way which is incompatible
with the code emitted by our new compilation algorithms (ReriNE). In particular, Ribbit’s richer type
system allow casts that are rejected by LLVM, such as casting an uninitialized 512bit words into a struct.

Nevertheless, it would of course be desirable to restore Ribbit’s ability to emit executable code in the
future. Doing so would involve writing a backend translating our custom target IR to either assembly or
(more likely) a standard IR from a common compiler framework. Possible targets include LLVM IR, but
also others such as C—— (S. L. P. Jones, Ramsey, and Reig 1999) or WebAssembly (Wikipedia 2024c). In
particular, C—— seems less opinionated than LLVM on possible casts and does not have its own memory
type system, thus would probably be easier to interface with Ribbit than LLVM.
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Chapter 7

Experimental evaluation of pattern
matching compilation

This chapter presents an experimental evaluation of the pattern matching compilation procedure pre-
sented in Chapter 4. These experiments were run using a version of the Ribbit prototype which is
available as an artifact associated with (Baudon, Radanne, and Gonnord 2023), available at https:
//doi.org/10.5281/zenodo.7994178 '. This version includes the now-defunct LLVM backend, which
allowed us to measure concrete execution times.

The experiments we describe here have been performed on a laptop running Gentoo GNU/Linux x86-64
on an Intel Core i5 CPU @ 1.60GHz X8 (although Ribbit is single-threaded), with 32 GiB of RAM. As for
compiler versions, we used Rust 1.67.1, OCaml 4.14.0 and LLVM 14. We demonstrate that:

¢ Ribbit is expressive enough to reproduce the behavior of native OCaml and Rust compilers on
some representative middle-sized examples, with similar performance;

e acting on low-level memory layouts impacts static characteristics of generated decision trees, as
well as execution-time performance.

For this purpose, we consider two examples: the red-black trees motivating example from Section 2.1,
and a stack machine interpreter example used in (Maranget 2008) to showcase various heuristics for
OCaml pattern matching compilation. The full programs are both available in the artifact. For these two
examples, we have implemented native OCaml and Rust versions, two Ribbit versions mimicking the
internal memory representations of OCaml and Rust, along with the Linux-like red-black tree encoding
from Section 2.1.4. However, we do not attempt to match compilation heuristics.

1Which was given the “available” as well as “reusable” ACM badges, see https://www.acm.org/publications/policies/arti
fact-review-and-badging-current
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stack interpreter red-black trees
compﬂer & layout exec. time ‘ memsize ‘ #pointers || exec. time ‘ memsize ‘ #pointers
ocamlopt 4.15 12 4 3.13 155 31
rustc 3.31 7 2 3.37 124 30
OCaml 1.89 13 4 5.45 156 31
Ribbit | Rust 1.87 8 3 4.61 125 31
Linux - - - 4.54 94 31

Figure 7.1: Average execution times and memory usage over 10° runs (exec. time is in ns, memsize in
words).

In Fig. 7.1, we first compare the memory usage and number of pointers of some concrete values
(a small stack program and a red-black tree with 30 nodes), to cross-validate our memory layout
specifications (the size of objects in OCaml/Rust versus the size obtained in Ribbit with our encoding).
As we can see, the results are coherent for all implementations. We then compare execution-time
performance of the target code generated by each compiler. This comparison should be made while
keeping in mind that this version of Ribbit emits code which does far less than native OCaml or Rust:
our prototype implementation did not implement sophisticated memory management, or even proper
function calls. Additionally, the measured times are very tiny, making measurement difficult. Our
goal here is only to show that our pattern matching compilation technique can emit code of similar
efficiency to seasoned industry-ready compilers using their memory layouts, which is indeed the case.
The final lesson from these dynamic measurements is that improving the memory representation of
values is very worthwhile: each reduction from the OCaml representation to the Rust and then to the
Linux layout significantly reduces memory footprint and execution times. The Linux red-black trees
implementation, in particular, is extremely efficient while having a tiny footprint, demonstrating the
gain of such sophisticated bit-stealing.

stack interpreter red-black trees
memory layout OCaml | Rust || OCaml | Rust | Linux
code size (switches) 38 30 26 21 21
avg 5.25 4.55 9.25 873 | 872
path length (switches) min 2 2 1 1 1
max 8 6 13 13 13
avg 2.56 2.55 4.45 419 | 236
deref ops min 1 1 1 1 0
max 4 3 7 7 3

Figure 7.2: Static metrics of decision trees generated by Ribbit : code size is the total number of switches; we also compute
the number of switches per path in the decision tree and the number of dereferences along these paths.

Figure 7.2 depicts static metrics obtained via Ribbit for different memory layouts. For both bench-
marks, the better performance obtained with the Rust layout and to a further extent with the Linux
layout seems to correlate with fewer derefencing operations. The case of red-black trees is even more
interesting: despite a greater number of switches and similar path lengths in decision trees, the per-
formance of the Linux encoding still achieves better performance. Perhaps unsurprisingly, it seems
that a good static measurement to predict performance is the amount of indirection. These results
suggest that we should complement existing heuristics for pattern matching compilation with new ones
taking data layout-related metrics into account, such as the number of dereferencing operations and
cache-friendliness.
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Chapter 8

Related Work

Ribbit is not the only language allowing to describe the memory layout of values. In Section 8.1, we
will showcase other approaches to language design which allow programmers to fine-tune, to various
degrees, the memory representation of data. We will then present some sources of inspiration. A first
source is the rich literature on pattern matching compilation, which was described in Section 4.5. A
second inspiration is the variety of memory representations that are used in practice by programmers
and language designers. Some of them were already presented in Chapter 2, and we showcase others
in Section 8.2.

8.1 Language Approaches to Memory Layout Specification

We first consider language-integrated approaches which allow programmers to design the complete
memory representation of some objects. This has been done for numerous purposes, either for perfor-
mance and control, as is the case for Ribbit, or for verification. It can even arise from the combination of
various independent language features.

Low-level Types with High-level Views One approach to achieve precise control over memory layout
is to combine two features: an expressive type language allowing to describe the representation, and
the ability to create “smart constructors”, which hide the low-level representation behind a high-level
presentation.

The most complete example of such an approach is probably the Habit language (Diatchki, M. P.
Jones, and Leslie 2005), described as “a pure functional language that explores the intersection of
low-level programming problems and high-level programming paradigms” '. It introduces the notion
of bitdata: “bit-level representations of data that are required in the construction of many different
applications, including operating systems, device drivers, and assemblers.” The main idea is to combine
two complementary language features: the bitdata memory specification language on the one hand,
and views (P. Wadler 1987) on the other hand to provide high-level constructors.

As described by Diatchki and M. P. Jones (2006), and unlike Ribbit, it is an extension of Haskell
which extends and leverages its rich type system to capture very low-level aspects including alignment
and placement in virtual and physical address spaces. Similar to Ribbit’s agreement criteria, they
describe an informal property dubbed “no junk and confusion”, although they do not provide any
decision procedure to check that property beyond a small static analysis able to emit warnings in some
cases. However, they do not detail their compilation approach (Hasp 2013), delegating most delicate
compilation problems to an IR called Fidget.

These two features —low-level memory specifications and views —may also be combined in other lan-
guages. For instance, active patterns (Syme, Neverov, and Margetson 2007) and pattern synonyms (Pick-
ering et al. 2016) allow users to abstract over patterns by exposing “constructors” which do not directly
reflect the underlying definition of the algebraic data type. This allows for both a “programmer” view

Thttp://www.habit-lang.org/
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and a “representation” view, similar to our approach. Combined with a rich type algebra with unbox-
ing annotations, it allows some representation tricks. Similarly, (Solodkyy, Reis, and Stroustrup 2013)
propose patterns-as-library for C++ based on objects and template meta-programming. Combined with
the precise low-level constructs available in C data types, this provides a way to (do the same stuff) in
CH+.

Verification-oriented approaches Many of the links between ADTs and low-level programming were
initially made for verification. Notably, Dargent (Chen et al. 2023) allows to specify memory represen-
tations in an external DSL which outputs C code for accessors, and Isabelle/HOL theorems; with the
aim of formally verifying embedded systems. (Swamy et al. 2022) propose a similar approach to for-
mally verify binary format parsers in F*. Simonnet, Lemerre, and Sighireanu (2023) provide a rich type
system capturing a very complete selection of low-level aspects of memory contents, and verify them
using abstract interpretation. All these approaches are precise and very expressive, but do not provide
language-integrated constructs such as pattern matching. They also also provide far less optimizations
than Ribbit.

Memory Layout Optimizations for ADTs Some general-purpose languages with ADTs also provide
ways to improve data layout. As we have seen in Section 2.6.4, Rust provides users with a choice between
some pre-defined memory representations; in addition, it performs semi-automatic layout optimizations
via the notion of niche (RFC: Alignment niches for references types 2021) to exploit unassigned values. It
would be interesting to combine these existing language-level tools with precise data layout annotations
such as Ribbit’s memory types to provide users with even greater control over memory representation.

OCaml provides a standard language extension featuring an [@@unboxed] annotation to unbox sum
types with a single constructor. Such sum types do not require any extra precaution to unbox: as there
is only one possible constructor, there is no need to distinguish between different cases. Even though
this standard extension is limited to this very simple situation, Chataing et al. (2024) propose to extend
it to a wider variety of scenarios. They propose a sufficient condition and an associated static analysis
to ensure that such unboxed constructors do not lead to “confusion” — i.e., using Ribbit terminology,
non-distinguishability. This generalization of constructor unboxing still restricts data layout enough to
require minimal changes to existing compilation algorithms.

Performance-oriented approaches for serialized/array data LoCal (Vollmer et al. 2019) and Gib-
bon (Koparkar et al. 2021), on the other hand, provide DSLs tailored to describe and manipulate
low-level and serialised representations. Their memory layouts are less flexible than what we pre-
sented, making it impossible to provide truly customised representations, but allowing them numerous
powerful optimisations we do not provide, such as leveraging parallelism. We hope to combine our
approaches in the future.

Memory layouts for arrays, while largely out of scope of this thesis, have been explored in numerous
high-performance languages. For instance, Accelerate * (Chakravarty et al. 2011) is an embedded DSL
to express idiomatic array transformations in Haskell. At the source level, it allows users to explicitly
specify the precise shape of each array. During compilation, it automatically applies memory layout
optimizations such as converting “array-of-structs” to “struct-of-arrays”. Finally, its CUDA backend
must automatically deal with various array shapes to emit efficient GPU code.

Some approaches (Bhaskaracharya, Bondhugula, and Cohen 2016) based on the polyhedral model (Feautrier
1991) allow to automatically optimize the memory layout of array-based data using techniques such as
array compaction.

8.2 Optimized Memory Representations

Another important source of inspiration is the plethora of representation tricks and design choices
in programming languages to suit various needs. These serves as motivating examples. In an ideal
world, Ribbit should be able to express all such representations! In Chapter 2, we showed some specific

2ht‘cps ://www.acceleratehs.org/
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representation tricks, along with some generic language representation. Here, we showcase some
feature-specific designs.

In particular, memory representation in functional polymorphic garbage-collected languages was
quickly identified as an important area for performance improvements (Peterson 1989; Leroy 1992;S. L. P.
Jones and Launchbury 1991). Our work encourages new development in this area, as it easily supports
such representation and allows experimenting with new representations easily.

Unboxing and arrays has been the subject of numerous work and libraries (see for instance (Keller
et al. 2010)). We believe many of the data-layout proposed in these works would enhance our approach,
notably regarding mutability and concurrency, which we do not explore. Colin, Lepigre, and Scherer
(2018) refine the criterion for recursive yet unboxed types in the OCaml case.

Iannetta, Gonnord, and Radanne (2021) and Koparkar et al. (2021) propose completely flattened
representations for recursive types, which provide excellent cache behavior and parallelism but require
whole-program transformations. In contrast, our technique provides great manual control over memory
representation and follow a more traditional compilation pipeline. Supporting such fully flattened
layouts in Ribbit would be highly desirable.

Several approaches try to mix polymorphism with optimized data layout. Leroy (1990) shows
how to make polymorphic and monomorphic representations work conjointly and Hall, S. L. P. Jones,
and Sansom (1994) show how to marry specialization and unboxing. Classically, C++ and Rust rely
aggressively on specialization. All these approaches would be compatible with our work.
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Chapter 9

Conclusion and future work

This thesis presented the Ribbit language, and demonstrated its usefulness to capture optimized memory
layouts for Algebraic Data Types thanks to its fine-grained memory types. The Ribbit compiler lets
programmers use high-level, safe language constructs while still reaping the performance benefits of
custom memory layouts. Abstractions such as pattern matching are translated to equivalent target
code which properly manipulates data following the specified (and possibly quite convoluted) memory
representation, thanks to compilation algorithms which follow the structure of memory types.

Let us now consider some possible extensions to our formalism, which would broaden its scope of
application and allow it to capture finer, lower-level representations.

Memory management strategies Chapter 5 presented a compilation approach to emit target code
which allocates and initializes memory structures to properly represent data. However, it did not
explore the topic of deallocation, and our target program representation does not distinguish between
deep and shallow copy of memory contents. This last aspect would be particularly important to consider
in order to extend Ribbit to work with mutable data.

In the future, we hope to investigate memory management strategies, for instance following Loren-
zen, Leijen, and Swierstra (2023) which prevent unnecessary memory allocation, allowing to potentiate
the memory usage and performance benefits already associated with optimized memory layouts.

Another possibility would be to leverage stack allocation by encoding the distinction between data
allocated on the stack and on the heap within memory types.

Richer memory layouts As shown in Section 2.7.1, some existing memory layouts (e.g., NaN-boxing)
rely on characteristics of non-integer primitive encodings (e.g., using NaN float values in NaN-boxing),
which Ribbit does not currently support. More importantly, our current approach is unable to check
that memory layouts using techniques such as NaN-boxing or niches are correct (i.e., that such memory
types are valid, well-kinded and agree with the associated ADT). Doing so would require extending
our formalism to capture architecture- and system-specific details of numeric encodings and machine
addresses, which we currently view as completely opaque data.

Another feature which is completely absent from Ribbit is data linearization and array-based layouts.
Extending Ribbit with array types, as sketched in (Baudon, Radanne, and Gonnord 2023), would allow
users to express “struct-of-arrays” and “array-of-structs” representations, and more generally combine
optimized array-based memory layouts with ADTs.

High-level language features So far, Ribbit only supports monomorphic ADTs. However, data types
such as finger trees (Hinze and Paterson 2006) (or many of Okasaki’s data structures) which require
polymorphic recursion do not yield themselves well to monomorphization.

We believe defining memory layouts for polymorphic types is absolutely feasible, following the
literature on the topic (Leroy 1990). A simple approach would be the OCaml trick: polymorphic data
is always one word (immediate, or pointer), which allow easily emitting polymorphic code. Extending
Ribbit with richer high-level types would allow modeling such nested data types.
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Automatic synthesis of memory layouts In the future, we also hope to synthesize memory repre-
sentations automatically, given some specific metrics to optimize. Such metrics might include memory
usage or number of pointer dereferences, as mentioned in Chapter 7.
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