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French summary

Disclaimer

In accordance with the regulations of the doctoral school, this summary chapter is written
in French. An English translation is available in appendix.

Résumé de la thèse

L’objet de cette thèse est de fournir de nouvelles méthodes d’estimation de probabilités d’évé-
nements rares reposant sur la simulation de processus deMarkov déterministes par morceaux
(PDMPs). Cette classe très générale de processus offre la flexibilité nécessaire pour représenter
fidèlement des systèmes industriels dynamiques complexes. Elle permet en particulier de modé-
liser conjointement la dynamique déterministe et continue des variables physiques du système
(température, pression, niveaux de liquide, etc.), et la dynamique de saut aléatoire qui régit le
changement de statut de ses composants (pannes, réparations, mécanismes de contrôle, etc.).
L’enjeu industriel est de permettre à l’outil PyCATSHOO, utilisé par l’entreprise Électricité de
France pour ses études probabilistes de sûreté, d’estimer la probabilité de défaillance de tels
systèmes efficacement, et avec une précision garantie. Une approcheMonte-Carlo classique
réclame, à niveau de précision fixé, une quantité de simulations inversement proportionnelle à la
probabilité recherchée. Elle n’est donc pas adaptée au cas de systèmes hautement fiables et dont le
coût de simulation est élevé. L’échantillonnage d’importance est une méthode de réduction de
variance populaire en situation d’événements rares. Elle consiste à générer les simulations sous
une distribution biaisée favorisant la réalisation de l’événement, et à rectifier le biais a posteriori.
Des travaux récents ont proposé un cadre théorique d’implémentation de l’échantillonnage
d’importance pour des PDMPs, et mis en évidence le lien existant entre la distribution biaisée
optimale et ce qu’on appelle la fonction committor du processus.
À l’aide d’outils issus de l’analyse fiabiliste et de la théorie des marches aléatoires sur graphes, de
nouvelles familles d’approximations de la fonction committor sont introduites dans cette thèse.
La méthodologie proposée est adaptative : une approximation de la fonction committor est
construite a priori puis raffinée au cours des simulations d’une procédure d’entropie croisée. Les
simulations sont ensuite recyclées pour produire un estimateur par échantillonnage d’importance
de la probabilité cible. Les résultats de convergence obtenus permettent la construction d’inter-
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valles de confiance asymptotiques malgré la dépendance entre les simulations. Cette méthode
produit d’excellents résultats en pratique sur les systèmes industriels testés.

À propos de l’auteur

Je m’appelle Guillaume Chennetier et suis né en 1995 à Nice. Je reste et effectue ma scolarité
dans les environs de Nice jusqu’au baccalauréat puis entame mes études supérieures à Toulouse
en licence d’économie et mathématiques1. En troisième année de licence, je bifurque en mathé-
matiques appliquées toujours à Toulouse2. Je “monte” ensuite à Paris pour suivre le Master 1
Mathématiques et applications à Sorbonne Université3. Je me spécialise en mathématiques aléa-
toires et m’inscris enMaster 2 dans la mention Statistique pour l’année universitaire 2019-2020.
J’effectue mon stage de fin d’études au sein de la division R&D de l’entreprise EDF (Électricité de
France), déjà sur le même sujet et avec le même encadrement que pour la thèse qui suivra.

Cadre de la thèse

Cette thèse est une collaboration industrielle sur le format du dispositif CIFRE4. Mon temps
de travail, bien qu’entièrement dédié à cette thèse, était donc partagé entre un laboratoire
académique et une entreprise.

Environnement industriel

L’entreprise EDF (Électricité de France) est le premier producteur et fournisseur d’électricité
en France et en Europe. Elle possède trois centres de R&D (Recherche et Développement) sur
le territoire national : les Renardières, Chatou et Paris-Saclay. Mon stage de fin d’études puis
ma thèse, se sont déroulés au centre EDF Lab Paris-Saclay au sein du département PERICLES
(PERformance et prévention des Risques Industriels du parC par la simuLation et les EtudeS).

J’ai été intégré au groupe i21 Etudes probabilistes de sûreté et de disponibilité des systèmes, l’un des
huit groupes du département PERICLES. Cette équipe est constituée d’une quinzaine d’agents
EDF auxquels s’ajoutent chaque année quelques doctorants et stagiaires. J’étais encadré au sein de

1À l’époque licenceMASS, à présentMIASHS , à l’Université Toulouse I Capitole.
2LicenceMAPI 3 à l’Université Toulouse III Paul Sabatier.
3À l’époque Université Pierre et Marie Currie, toujours Paris VI et surnommée Jussieu.
4Conventions Industrielles de Formation par la REcherche.
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l’équipe par Hassane CHRAIBI5, ingénieur-chercheur et chef de projet, et Anne DUTFOY6,
chercheuse senior.

Environnement académique

Ma thèse était dirigée par Josselin GARNIER, professeur à l’École polytechnique (école membre
de l’Institut polytechnique de Paris).
J’étais doctorant au laboratoire CMAP (Centre de mathématiques appliquées) de l’École poly-
technique et membre de l’équipe de statistiques CMAP-SIMPAS et de l’équipe de probabilités
INRIA-ASCII. Enfin, j’étais inscrit à l’école doctorale de mathématiques Hadamard (EDMH).

Au-delà de mon affiliation académique, mon travail de thèse s’inscrit dans les thématiques
de recherche du réseau thématique en quantification d’incertitude RT-UQ (anciennement
MASCOT-NUM). J’ai beaucoup profité de la possibilité d’échanger et de diffuser mon travail
auprès de cette communauté. Enfin, je suis secrétaire du groupe Jeunes Statisticien⋅ne⋅s de la
Société Française de Statistique (SFdS) depuis juin 2023.

Motivations

Cette thèse est d’abord motivée par un problème industriel situé à la croisée de deux domaines :
l’analyse fiabiliste et la simulation d’événements rares.

Fiabilité des systèmes

En 2023, 77.7% de l’électricité produite par le groupe EDF dans le monde était d’origine nu-
cléaire ; et 9.1% d’origine hydraulique. La défaillance critique d’une centrale ou d’un barrage ayant
des conséquences majeures, EDF est tenue de garantir la sûreté de ses installations nucléaires et
hydrauliques.

Études probabilistes de sûreté

Le groupe i21 est spécialistes d’études probabilistes de sûreté (EPS, ou PSA en anglais pour
probabilistic safety assessment). D’après la Règle Fondamentale de Sûreté (RFS n° 2002-01)

5hassane.chraibi@edf.fr
6anne.dutfoy@edf.fr

xv

https://josselin-garnier.org/
https://cmap.ip-paris.fr/
https://cmap.ip-paris.fr/recherche/decision-et-donnees/simpas
https://team.inria.fr/ascii/
https://www.ip-paris.fr/education/doctorat/ecole-doctorale-de-mathematiques-hadamard
https://uq.math.cnrs.fr/
https://www.sfds.asso.fr/fr/jeunes_statisticiens/468-les_jeunes_statisticiens/
https://www.sfds.asso.fr/
https://www.asn.fr/l-asn-reglemente/rfs/rfs-relatives-aux-rep/rfs-2002-1-du-26-12-2002
mailto:hassane.chraibi@edf.fr
mailto:anne.dutfoy@edf.fr


foreword

rédigée par EDF, l’IRSN (Institut de radioprotection et de sûreté nucléaire) et l’ASN (Autorité
de sûreté nucléaire) :

“Les EPS sont une méthode d’évaluation des risques fondée sur une investiga-
tion systématique des scénarios accidentels. Elles se composent d’un ensemble
d’analyses techniques permettant d’apprécier les fréquences d’événements redou-
tés et leurs conséquences. Elles permettent d’obtenir une appréciation globale
du niveau de sûreté, intégrant aussi bien la fiabilité des équipements que le
comportement des opérateurs.”

La sûreté de fonctionnement est pilotée selon quatre aspects que l’on rassemble sous l’acronyme
FMDS7 pour :

(i) Fiabilité : l’aptitude d’un dispositif à accomplir une fonction requise, dans des conditions
d’utilisation et pour une période de temps déterminées.

(ii) Maintenabilité : dans des conditions données d’utilisation, l’aptitude d’un dispositif à
être maintenu ou rétabli dans un état dans lequel il peut accomplir sa fonction requise,
avec des moyens de maintenance prescrits.

(iii) Disponibilité : l’aptitude d’un système à être en état de remplir une fonction dans des
conditions et à un instant donnés.

(iv) Sécurité : l’aptitude d’un système à ne pas générer d’événements critiques ou catastro-
phiques dans des conditions données et pendant une durée donnée.

Dans le cadre de cette thèse, on s’intéresse à la fiabilité de systèmes industriels multicomposants
intervenant dans le fonctionnement des centrales hydrauliques et nucléaires. En analyse de
fiabilité, un système multicomposant désigne un système complexe composé de multiples
éléments ou sous-systèmes interconnectés, appelés composants. Chaque composant peut être
un équipement, une machine, un dispositif électronique, etc. Il contribue d’une manière ou
d’une autre, et le plus souvent en interaction avec les autres composants, à accomplir la fonction
globale du système. Les interactions peuvent inclure des flux de matière, d’énergie, d’information
ou de contrôle entre les composants. Par exemple, un composant peut recevoir des entrées d’un
autre composant et produire des sorties qui sont ensuite utilisées par d’autres composants. Un
composant peut être dans différents modes de fonctionnement, par exemple : actif, inactif,
dégradé, en panne, etc. Ce mode de fonctionnement est appelé le statut du composant. Le statut
peut être automatiquement modifié via des mécanismes de contrôle ou suite à des événements
aléatoires tels que des pannes ou des réparations.

7L’acronyme anglais est RAMS pour Reliability – Availability –Maintainability – Safety.
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french summary

Modélisation de PDMPs avec l’outil PyCATSHOO

La fiabilité d’un système industriel est sa capacité à accomplir sa fonction globale pendant une
période donnée dans des conditions spécifiées. Une défaillance critique est déclarée lorsque cette
fonction n’est plus remplie. Elle correspond généralement au dépassement de seuils critiques par
des variables physiques continues du système (par exemple, une température, une pression ou
un niveau de liquide dans un réservoir). Si le système est bien conçu, cela ne peut se produire
que si le système reste suffisamment longtemps dans un état très dégradé, c’est-à-dire après la
défaillance de groupes vitaux de composants et avant leur réparation. Dans l’industrie nucléaire
et hydraulique, ces systèmes ont en général un très haut niveau de fiabilité. Cela s’explique
d’une part par leur haut niveau de redondance : le système peut être reconfiguré en utilisant
plusieurs composants identiques pour assurer son fonctionnement en attendant la réparation ou
le remplacement des composants défectueux. D’autre part, le temps d’attente moyen avant une
panne ou un incident est généralement considérablement plus long que le temps d’attente moyen
avant la réparation du problème.
La défaillance critique est donc très rare. Sa probabilité d’occurence ne peut en pratique pas
être estimée à partir de données réelles mais les systèmes impliqués se prêtent en revanche très
bien à la simulation informatique. Une représentation dynamique du système doit modéliser
à la fois les trajectoires des variables physiques à surveiller et le statut de chaque composant au
cours du temps. C’est le rôle d’un outil de calcul développé à EDF nommé PyCATSHOO [CHS16;
Des+21].

figure 1 Logo de l’outil PyCATSHOO.
Plus d’informations sur le site :
http://www.pycatshoo.org/.

Une fonctionnalité essentielle de PyCATSHOO est la simulation, via une API Python et une API
C++, de systèmes industriels dynamiques sous la forme de processus deMarkov déterministes
par morceaux ou PDMP (pour “Piecewise Deterministic Markov Processes”) [Dav84; DDZ15].
Les PDMPs forment une classe très large de processus stochastiques, celle de tous les processus
markoviens sans partie diffusive. Ce sont des processus dit hybrides, car leur variable d’état est
constituée d’une partie continue (appelée “position”) et d’une partie discrète (appelée “régime”).
La position évolue selon des trajectoires déterministes paramétrées par le régime. À des instants
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aléatoires (dont la distribution dépend continuellement de l’état du processus) ainsi qu’à des
instants déterministes (lorsque la position atteint la frontière de l’espace d’états), le processus
saute vers une nouvelle position et un nouveau régime aléatoires, puis reprend une nouvelle
trajectoire déterministe.
Les pannes et les réparations des composants sont considérées comme des événements aléatoires
ponctuels, tandis que l’évolution des variables continues est régie par des équations différentielles
déterministes dérivées de lois physiques. Chaque composant a ses propres caractéristiques de
fiabilité qui peuvent dépendre continuellement de variables physiques continues (par exemple,
un composant immergé peut être affaibli par une pression ou une température excessive d’un
liquide). Les équations différentielles régissant l’évolution des variables physiques sont, à leur
tour, paramétrées par le statut des composants (l’eau, par exemple, circulera dans le système à un
débit différent si une vanne reste bloquée en position ouverte ou fermée). Un tel comportement
se prête donc bien à la modélisation et à la simulation de PDMPs. Ces simulations peuvent
cependant être coûteuses, essentiellement à cause de la résolution des équations différentielles.

Simulation d’événements rares

Notre objectif est d’estimer la probabilité qu’un système industriel donné entre en défaillance
critique avant une date fixée. Mathématiquement, cela se représente par la probabilité qu’une
trajectoire de PDMP de distribution donnée atteigne une région cible de son espace d’états avant
une date fixée.

Le problème avec l’approche Monte-Carlo classique

Puisque l’on dispose d’un simulateur de PDMPs (PyCATSHOO), l’idée la plus naturelle est de
recourir à une estimationMonte-Carlo classique. Le principe est très simple : générer un grand
nombre de trajectoires possibles du PDMP et retourner la proportion de ces trajectoires qui
réalisent l’événement d’intérêt (la défaillance du système). Cet estimateur a, sur le papier, toutes
les bonnes propriétés : il n’est pas biaisé et converge vers la quantité d’intérêt. De plus, sa vitesse
de convergence, donnée par le théorème central limite, est indépendante de la dimension de
l’espace. Il n’est cependant pas adapté à l’estimation de probabilités d’événements rares. C’est un
problème bien connu. Lorsque la probabilité cible est très inférieure à l’inverse du nombre de
simulations générées 𝑛, deux cas de figures sont possibles :

(i) avec grande probabilité, n’observer aucune réalisation de l’événement d’intérêt, et
retourner 0 à tort,

(ii) observer “par chance” 𝑘 ≥ 1 réalisations de l’événement d’intérêt, et retourner 𝑘/𝑛 qui est
bien plus grand que la probabilité cible.

xviii



french summary

En clair, l’estimateur est toujours loin (relativement) de la quantité à estimer. C’est donc un
problème de variance. On considère généralement qu’il faut générer un échantillon de taille
supérieure à 100 fois l’inverse de la probabilité cible pour estimer correctement cette dernière (le
coefficient de variation est alors légèrement inférieur à 0.1).
Comme on l’a dit, la défaillance critique des systèmes industriels d’intérêt est un événement
rare. Les probabilités de défaillance typiques sont comprises entre 10−5 et 10−7. Leur estimation
Monte Carlo à l’aide de l’outil PyCATSHOO requiert donc des centaines de millions, si ce n’est des
milliards de simulations. En raison de la physique complexe des systèmes considérés, le coût de
simulation d’une seule trajectoire de PDMP peut déjà être très élevé. Il faut en effet résoudre
numériquement de nouvelles équations différentielles après chaque saut, parfois avec un code
industriel dédié, pour déterminer les portions de trajectoire déterministe. L’estimation de la
probabilité de défaillance du système est donc extrêmement coûteuse.

Travaux de Thomas Galtier

Des alternatives aux méthodes Monte Carlo adaptées à l’estimation de probabilités d’événements
rares existent et forment un champ riche et dynamique des mathématiques appliquées ([Buc04;
RT+09]). Dans sa thèse soutenue en 2019 ([Gal19]), Thomas Galtier a étudié l’application
de deux grandes familles de méthodes aux PDMPs. D’abord les méthodes d’échantillonnage
d’importance [Chr+19] et ensuite les méthodes dites de “splitting” basées sur des systèmes de
particules en interaction [Chr+21]. Ma thèse fait suite à celle de Thomas Galtier auprès de la
même équipe.
Des résultats assez spectaculaires ont pu être obtenus sur de petits systèmes industriels à l’aide
de l’échantillonnage d’importance. Le principe est de simuler une trajectoire de PDMP, non
pas selon sa véritable distribution mais selon une distribution biaisée favorisant la réalisation
de l’événement d’intérêt (la défaillance du système), et de corriger le biais à l’aide du rapport de
vraisemblance approprié. Thomas Galtier et ses co-auteurs ont défini à la fois

⋄ la mesure dominante selon laquelle on pouvait expliciter la densité de probabilité d’une
trajectoire de PDMP de durée fixée (essentielle pour évaluer les rapports de vraisemblance
intervenant en échantillonnage d’importance),

⋄ la distribution d’importance optimale à utiliser dans le cadre des PDMPs et permettant
de produire un estimateur de variance nulle de la quantité d’intérêt.

Le processus de distribution d’importance optimale est un PDP (processus déterministe par
morceaux), que l’on peut rendre markovien, vivant dans le même espace d’états et suivant les
mêmes trajectoires déterministes que le PDMP originel. La distribution de ses instants de sauts
et de la destination de ses sauts est complètement caractérisée par ce qu’on appelle la “fonction
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committor”8 du processus. Cette fonction renvoie la probabilité qu’une trajectoire de PDMP
réalise l’événement d’intérêt avant une date fixée, sachant son état actuel.
Cette fonction committor n’étant évidemment pas connue, il faut l’approximer en pratique.
Comme on l’a dit, Thomas Galtier et ses co-auteurs ont proposé une méthode d’approximation
ayant donné de bons résultats sur de petits systèmes industriels dans [Chr+19], mais beaucoup
moins performantes pour des systèmes complexes et/ou de grande taille. L’objectif de ma thèse est
de proposer une méthodologie plus complète et systématique de l’approximation de la fonction
committor de PDMPs modélisant des phénomènes complexes. Ceci implique de connaître a
priori ou d’apprendre au cours des simulations, les mécanismes et les chemins conduisant une
trajectoire de PDMP à réaliser l’événement d’intérêt.

Structure du manuscrit

Le corps du manuscrit, en dehors de cette introduction et de ce qui la précède, est divisé en trois
parties, chacune constituée de plusieurs chapitres. Leur contenu est brièvement décrit ci-dessous.

État de l’art

L’objectif de cette partie est d’introduire les notions permettant d’énoncer le problème que traite
cette thèse, et de décrire les méthodes déjà existantes sur lesquelles nous pourrons nous reposer.
Pour des raisons de cohérence dans les chapitres et de concision, cet état de l’art ne cherche pas à
présenter l’ensemble des notions utilisées pour la résolution du problème. Celles-ci seront décrites
en temps utile dans les chapitres concernés de la section 3.3.2 dédiée aux contributions.

Prérequis

Cet état de l’art se veut accessible aux mathématiciens débutants. On suppose néanmoins le
lecteur familier des notions suivantes :

⋄ Bases de théorie de la mesure : tribus, mesures, mesures sigma-finies, boréliens, intégra-
tion par rapport à une mesure, Radon-Nikodym et densité par rapport à une mesure.
Ces notions interviennent principalement dans le chapitre 3.

⋄ Probabilités élémentaires en lien avec la théorie de la mesure : espérance, variance,
conditionnement, distributions de probabilités classiques et leurs propriétés (gaussiennes,
uniformes, exponentielles).

⋄ Statistique mathématique rudimentaire : moyenne empirique et variance empirique,
comportement asymptotique (“loi forte des grands nombres” et “théorème central
limite”), intervalles de confiance.

8Une traduction possible serait “fonction d’engagement”.
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⋄ Processus stochastiques à temps discret : martingales, chaînes de Markov, temps d’arrêt.

Chapitre 1 : Monte-Carlo et événements rares

En simulation numérique probabiliste, une tâche courante consiste à évaluer une quantité
d’intérêt définie comme l’espérance d’une fonction sous une distribution de référence. Selon la
nature et la dimension de l’espace, il n’est pas toujours possible d’approcher cette intégrale à l’aide
d’une méthode déterministe. On a alors recours à une méthode deMonte Carlo : l’espérance
est approchée par une moyenne empirique de tirages i.i.d. (indépendants et identiquement
distribués) par ordinateur. Lorsque la distribution de référence attribue peu de masse là où la
fonction à intégrer est grande (en valeur absolue), la variance relative de l’estimateur deMonte
Carlo devient grande. Il est alors préférable d’utiliser des méthodes dites de réduction de variance.
Nous nous concentrerons en particulier sur le cas de la simulation d’événements rares. L’objectif
de ce chapitre est tout d’abord de rappeler les bases de la simulation de variables aléatoires et des
méthodes deMonte Carlo. Nous décrivons ensuite deux familles de méthodes de réduction de
la variance adaptées aux événements rares : les méthodes d’échantillonnage d’importance et les
méthodes dites de “splitting”.

Chapitre 2 : Fondamentaux des PDMPs

La classe des processus de Markov déterministes par morceaux (PDMP) est l’objet mathématique
central de cette thèse. L’objectif de ce chapitre est de fournir au lecteur toutes les notions sur les
PDMPs nécessaires pour comprendre pleinement les contributions de cette thèse. Un PDMP
est un processus stochastique à temps continu avec sauts, non diffusif. Sa particularité (qui en
fait en réalité un processus très général) est son comportement hybride. D’une part, il prend des
valeurs dans un espace composé d’une partie continue et d’une partie discrète. D’autre part, il
évolue selon une dynamique déterministe entre les sauts, et saute à la fois à des instants aléatoires
et déterministes. Ce comportement est en fait assez intuitif pour les lecteurs familiers avec les
processus de Poisson inhomogènes. Nous rappelons d’abord les fondamentaux des processus de
Poisson, avant d’aborder les caractéristiques essentielles des PDMPs. Enfin, nous proposons des
approches classiques pour simuler des trajectoires de PDMP.

Chapitre 3 : Échantillonnage préférentiel de PDMPs

Ce chapitre vise à présenter les fondements de l’échantillonnage d’importance de PDMPs. Cette
méthode nécessite l’évaluation de la vraisemblance d’une trajectoire de PDMP. Nous donnons
tout d’abord la définition d’une mesure dominante sur l’espace des trajectoires de PDMP par
rapport à laquelle elles admettent une densité de probabilité. Nous décrivons ensuite le processus
de distribution d’importance optimale. Ce processus optimal d’importance est un processus
déterministe par morceaux (pas nécessairement markovien). Il préserve l’espace d’états et le
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flot du PDMP original. La dynamique de saut du processus d’importance optimale peut être
décrite explicitement. Dans le cas de l’estimation de probabilités d’événements rares, il existe une
reformulation markovienne de ce processus optimal. L’expression de son intensité de saut et de
son noyau de saut est alors directement liée à la fonction dite committor du processus. Cette
fonction renvoie la probabilité qu’une trajectoire réalise l’événement d’intérêt étant donné son
état actuel. Cette fonction committor n’est pas connue mais peut être approchée. À la fin du
chapitre, nous présentons une implémentation de l’échantillonnage d’importance basée sur une
approximation simple de la fonction committor.

Contributions

Les trois chapitres de contributions sont une réorganisation de deux articles rédigés pendant la
thèse.

⋄ Le premier article [Che+24a] correspond à une version antérieure de la méthodologie
décrite dans le chapitre 4, et introduit les scores de proximité adaptés à la modélisation de
systèmes industriels décrits dans le chapitre 5. Il a été publié en 2024 par le SIAM Journal
of Uncertainty Quantification.

GuillaumeChennetier, HassaneChraibi, AnneDutfoy et JosselinGarnier.
“Adaptive importance sampling based on fault tree analysis for piecewise deterministic
Markov process”. In : SIAM/ASA Journal on Uncertainty Quantification 12.1 (2024),
p. 128-156

⋄ Le second article correspond aux ajouts proposés dans la méthodologie du chapitre 4
par rapport à celle de l’article [Che+24a], et introduit de nouveaux scores de proximité,
décrits dans le chapitre 6, basés sur les temps d’atteinte d’une marche aléatoire sur un
graphe. Il sera prochainement soumis auprès d’un éditeur.

GuillaumeChennetier, HassaneChraibi, AnneDutfoy et JosselinGarnier.
“Graph-informed importance sampling for rare event estimation with piecewise determi-
nistic Markov process”. In : (Submission in 2024)

Chapitre 4 : Méthodologie pour l’échantillonnage préférentiel adaptatif

On souhaite estimer la probabilité qu’une trajectoire de PDMP atteigne une région cibleℱ de
son espace d’états avant une date donnée. Les liens entre la fonction committor du processus
et la distribution optimale pour l’échantillonnage d’importance de PDMP ont été rappelées
dans le chapitre 3. Ce chapitre vise à présenter une méthodologie complète d’échantillonnage
d’importance adaptative basée sur l’approximation de la fonction committor d’un PDMP. Nous
introduisons d’abord la forme générale d’une famille d’approximations de la fonction committor.
Nous détaillons ensuite une procédure d’entropie croisée avec recyclage des échantillons passés
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permettant de déterminer conjointement un bon candidat au sein de la famille d’approximations
et d’estimer la probabilité d’intérêt. Nous prouvons l’optimalité et la normalité asymptotique
de notre méthode sous des conditions à la fois simples à vérifier et à interpréter. Enfin, nous
discutons des choix d’implémentation de cette méthode.

Chapitre 5 : Fonction d’importance pour systèmes multicomposants

La famille d’approximations de la fonction committor proposée au chapitre 4 repose sur
une transformation paramétrique d’un score de proximité 𝛽 entre tout régime du PDMP et
l’ensemble 𝒱ℱ des régimes permettant d’accéder à la région critiqueℱ. Dans ce chapitre, nous
considérons des PDMPs modélisant des systèmes industriels multi-composants. L’événement
rare d’intérêt correspond à la défaillance critique du système. Cette défaillance critique ne peut
se produire que lorsque certaines combinaisons clés de composants restent en panne pendant
une durée suffisamment longue. Il existe d’autres combinaisons de composants appelés chemins
minimaux qui sont les plus petits groupes de composants dont le bon fonctionnement empêche
la défaillance du système. Nous proposons un score de proximité basé sur la proportion de
chemins minimaux endommagés dans un régime donné. Notre méthode d’échantillonnage
d’importance adaptative est testée avec ce score de proximité sur des systèmes série/parallèle
simples, puis sur un cas test industriel plus complexe : la piscine de combustible nucléaire usagé.

Chapitre 6 : Fonction d’importance informée par graphe

Nous avons proposé dans le chapitre 5 un score de proximité 𝛽mps basé sur la proportion de
chemins minimaux endommagés. Celui-ci s’est avéré très efficace lorsque le PDMPmodélise
un système industriel multicomposants cohérent. Dans ce chapitre, nous souhaitons aller plus
loin et proposer un score de proximité à la fois plus général, au sens où l’on ne souhaite pas faire
d’hypothèse sur ce que modélise le PDMP, et plus expressif encore. Le régime d’un PDMP
évolue selon une marche aléatoire (𝑉𝑡)𝑡 sur un graphe dont les régimes sont les sommets. Le
temps moyen d’atteinte de la région 𝒱ℱ pour cette marche aléatoire partant du sommet 𝑣 serait
un score de proximité naturel pour le régime 𝑣. Ce temps moyen d’atteinte est explicite lorsque
la marche aléatoire est markovienne et homogène en temps. La marche aléatoire (𝑉𝑡)𝑡 donnée
par le PDMP étant typiquement non markovienne, nous calculons ces temps moyens d’atteinte
pour une marche aléatoire simplifiée (𝑌𝑡)𝑡 approchant (𝑉𝑡)𝑡. Notre méthode d’échantillonnage
d’importance est implémentée avec ce score de proximité sur le cas de test final du chapitre
précédent : la piscine de combustible nucléaire usagé.

Conclusion
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Chapitre 7 : Conclusion et perspectives

Enfin, les résultats principaux de la thèse sont résumés dans le chapitre 7 et discutés. Différentes
perspectives s’offrent pour enrichir la méthode proposée ou pour étendre son application à de
nouveaux cas tests. Nous proposons plusieurs pistes.
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Notations and abbreviations

table 1 Table of notations. PDMPs.

Notation Meaning

𝑍𝑡 Position (continuous component) of the PDMP at time 𝑡
𝑉𝑡 Regime (discrete component) of the PDMP at time 𝑡

𝛸𝑡 = (𝑍𝑡, 𝑉𝑡) State of the PDMP at time 𝑡
𝒵 Space of the position of the PDMP
𝒱 Set of the regimes of the PDMP

𝒳 = 𝒵 × 𝒱 The state space of the process (𝛸𝑡)𝑡
Ψ Deterministic flow for the state of the PDMP
𝜓 Deterministic flow for the position only
𝜆 Jump intensity of the PDMP

𝜆𝑥(𝑡) 𝜆(Ψ(𝑥, 𝑡))
Λ(𝑥, 𝑠) ∫𝑠

0 𝜆𝑥(𝑡) d𝑡
𝑄 Jump kernel of the PDMP

𝑞(⋅ ∣ 𝑥) Jump kernel density of the PDMPwith respect to a measure 𝜈𝑞(⋅ ∣ 𝑥)
𝑡𝜕(𝑥) Waiting time from state 𝑥 before reaching the boundaries of𝒳 by following

Ψ
𝛵𝜆(𝑥) Waiting time from state 𝑥 before a random jump with intensity 𝜆
𝚻 Space of PDMP trajectories
𝜁 Dominant measure on𝚻
p p.d.f. characterizing the reference distribution of a PDMP trajectory (of finite

duration) with respect to the dominant measure 𝜁
𝑠max Maximal duration of a PDMP trajectory
𝚾 PDMP trajectory (𝛸𝑡)𝑡∈[0,𝑠max]
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table 2 Table of notations. Committor function and rare events.

Notation Meaning

ℱ Critical region of the state space. We are looking for the hitting probability of
this set before date 𝑠max

𝐅 Subset of PDMP trajectories of𝚻 that reach the critical regionℱ before time
𝑠max

𝒱ℱ Subset of PDMP regimes (in 𝒱) from which the critical regionℱ can be accessed
by following the flowΨ (without jumping)

𝚰 Function of interest whose expectation is sought under the reference distribu-
tion p. Most often corresponds to the indicator function of the event {𝚾 ∈ 𝐅}

ℐ 𝔼p[𝚰(𝚾)], i.e. the quantity of interest. Most often corresponds to the probability
of the rare event of interest

𝜉∗ Committor function of the PDMP associated with the event {𝚾 ∈ 𝐅}
𝜉∗− Edge committor function of the PDMP associated with the event {𝚾 ∈ 𝐅}
𝜉𝜽 Importance function, i.e. an approximation of the committor function parame-

terized by 𝜽 ∈ Θ
𝜉−𝜽 Edge importance function, i.e. an approximation of the edge committor

function parameterized by 𝜽 ∈ Θ
𝜙𝑗 Basis function involved in the expression of the importance function
𝛽 Proximity score between regimes and 𝒱ℱ, involved in the expression of the

importance function
g∗ Optimal importance sampling distribution ∝ |𝚰| × p
g𝜽 Importance distribution parameterized by 𝜽 ∈ Θ
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table 3 Table of notations. Sets and basic functions.

Notation Meaning

]𝑎, 𝑏[ {𝑥 ∶ 𝑎 < 𝑥 < 𝑏}, open interval (French notation)
⟦𝑎, 𝑏⟧ [𝑎, 𝑏] ∩ ℤ = {𝑎, 𝑎 + 1, … , 𝑏 − 1, 𝑏}with 𝑎, 𝑏 ∈ ℤ and 𝑎 ≤ 𝑏
𝑎 ∧ 𝑏 min(𝑎, 𝑏)
𝑎 ∨ 𝑏 max(𝑎, 𝑏)
⋀𝑖∈𝛪 𝑥𝑖 min {𝑥𝑖 | 𝑖 ∈ 𝛪}
⋁𝑖∈𝛪 𝑥𝑖 max {𝑥𝑖 | 𝑖 ∈ 𝛪}
Leb(𝛣) Lebesgue measure of a set 𝛣
supp(𝑓) {𝑥 ∶ 𝑓(𝑥) ≠ 0}, support of the function 𝑓
𝑓[𝛢] {𝑓(𝑥) ∶ 𝑥 ∈ 𝛢}, image of the set𝛢 under the function 𝑓

table 4 Table of notations. Random variables and standard distributions.

Notation Meaning

𝒳 State space of the random variable𝛸
𝜁 Dominant measure of the probability space𝒳
p P.d.f. characterizing the reference distribution with respect to the dominant

measure 𝜁
𝔼p[𝛸] Expectation of the random variable𝛸 distributed according to p
ℒ= or 𝑑= Equality in distribution
Φ C.d.f. of the standard Gaussian distribution (mean 0 and variance 1)
Φ−1 Quantile function of the standard Gaussian distribution

𝒩(𝜇, 𝜎2) Gaussian distribution with mean 𝜇 and variance 𝜎2

Unif(𝛢) Uniform distribution on the set𝛢
Exp(𝜆) Exponential distribution with parameter 𝜆 (inverse of the mean)
Bin(𝑛, 𝑝) Binomial distribution with number of trials 𝑛 and probability of success 𝑝
Ber(𝑝) Bernoulli distribution with probability of success 𝑝

Geom(𝑝) Geometric distribution with probability of success 𝑝
Pois(𝜆) Poisson distribution with intensity 𝜆
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table 5 Table of abbreviations.

Abbreviation Meaning

w.r.t. with respect to
i.i.d. independent and identically distributed
p.d.f. probability density function
c.d.f. cumulative distribution function
a.s. almost surely
a.e. almost everywhere

càdlag right continuous with left limits (from french)
(S)LLN (Strong) Law of large numbers
CLT Central limit theorem
PDP(s) Piecewise deterministic process(es)
PDMP(s) Piecewise deterministic Markov process(es)
CMC Classical Monte Carlo
IS Importance sampling
MIS Multiple importance sampling
AIS Adaptive importance sampling
CE Cross entropy
mCE multilevel Cross entropy
iCE improved Cross entropy
IF Importance function
FTA Fault tree analysis

MPS(s) Minimal path set(s)
MCS(s) Minimal cut set(s)
BFGS The Broyden-Fletcher-Goldfarb-Shanno method in optimization
MHT Mean hitting times
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chapter 1

Monte Carlo simulation
and rare events

In probabilistic numerical simulation, a common task is the evaluation of a quantity of
interest defined as the expectation of a function under a reference distribution. Depending
on the nature and dimension of the space, it is not always possible to approximate this
integral using a deterministic method. One then resorts to a Monte Carlo method: the
expectation is approximated by an empirical average of i.i.d. draws by computer. When
the reference distribution puts little mass where the function to be integrated is large (in
absolute value), the relative variance of the Monte Carlo estimator becomes large. It is then
preferable to use so-called variance reduction methods. We will focus in particular on the
case of rare event simulation. The objective of this chapter is firstly to recall the basics of
random variable simulation andMonte Carlo methods. We then describe two families of
variance reduction methods adapted to rare events: importance splitting and importance
sampling methods.

Content of this chapter

1.1 Introduction toMonte Carlo methods 4
1.1.1 Generating random variables 4

1.1.2 Monte Carlo methods 9

1.2 Particle-based methods 12
1.2.1 Subset simulation 13

1.2.2 Adaptive multilevel splitting 15

1.3 Importance sampling 15
1.3.1 The essentials 17
1.3.2 Adaptive procedures 23

1.3.3 Curse of dimensionality 29
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1.1 Introduction to Monte Carlo methods

Computer generation of random variables generation is a fundamental technique in applied
mathematics. Far from being limited to the simulation of directly probabilistic models, it is an
essential component of many methods for solving deterministic problems. This is the very idea
behindMonte Carlo methods: approximating an integral through an empirical mean of random
draws. The introduction of randomness, particularly when controlled by convergence theorems
or concentration inequalities, allows for efficient exploration of the space. This approach is
also fruitful in optimization, where traditional deterministic methods may struggle with the
dimensionality of the space, the multimodality of the objective function, its lack of smoothness,
or its black-box nature (typically with an absence of gradients). Famous examples include genetic
algorithms [Mit98] or simulated annealing [NJ10; DCM19]. Randomized space exploration is
also at the heart of many multi-arm bandit and reinforcement learning algorithms.
In practice, there is not always a direct method to generate a random variable according to
an arbitrary distribution. This remains an active area of research, especially for the efficient
simulation of high-dimensional multi-modal distributions. Here, we present the fundamental
principles.

1.1.1 Generating random variables

The first challenge is to generate random variables with a uniform distribution on the interval
[0, 1]. As we will see, it is theoretically possible to simulate any other distribution using these
uniform variables. Producing “true” randomness requires equipment exploiting the quantum
properties of physical processes. This involves significant effort, considering that similar benefits
can be obtained from a deterministic sequence of numbers whose statistical properties make
them almost indistinguishable from a sequence of truly random, uniform, and independent
variables. An algorithm capable of generating such a deterministic sequence is called a pseudo-
random number generator.

Pseudo-random generator

The idea behind a pseudo-random generator is to iterate the application of a transformation 𝑓
starting from an initial value called the seed 𝑥0. Early attempts at algorithms appeared in the 19th
century for encrypting messages, but the “middle-square digits” algorithm proposed in 1946 by
John VonNeumann is generally considered the first pseudo-random generator. This generator
takes an input seed 𝑥0 ∈ ℕwith 𝑑 digits and returns the 𝑑-digit number in the middle of the
number 𝑥20 (which has 2𝑑 digits). Later came the linear congruential generators (for example, the
Lehmer generator introduced in 1948: 𝛸𝑛+1 = 𝑎𝛸𝑛 mod𝑚), which were widely used throughout
the 20th century. Today, the most frequently implemented algorithm is theMersenne-Twister
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generator (notably the default generator for the R language and the numpy.random library in
Python). While better generators exist, few applications (typically cryptography) require a more
advanced generator.
In the following, we will assume the availability of an exact and inexpensive pseudo-random
generator for independent uniform variables on the interval [0, 1]. Let us now discuss methods
for generating a variable from an arbitrary one-dimensional distribution using the uniform
random variable generator.

Inversion method

To simulate a real random variable𝛸, it is sufficient to apply the generalized inverse of the
cumulative distribution function (c.d.f.) of𝛸 to a uniform variable𝑈 ∼ Unif([0, 1]).

definition 1 ⋅ Generalized inverse

Let 𝐹 be a non-decreasing function from𝛢 ⊂ ℝ to 𝛣 ⊂ ℝ. We call the generalized inverse
of 𝐹 the following function :

𝐹−1 ∶ 𝑢 ∈ 𝛣 ⟼ inf{𝑡 ∈ 𝛢 ∶ 𝐹(𝑡) ≥ 𝑢} = sup{𝑡 ∈ 𝛢 ∶ 𝐹(𝑡) < 𝑢}. (1.1)

If 𝐹 is continuous and strictly increasing, it is bijective and 𝐹−1 is then its reciprocal bijection [La
20]. When 𝐹 is a c.d.f. i.e. 𝛣 = [0, 1] and 𝐹 is càdlag (right continuous with left limits), 𝐹−1 is the
corresponding quantile function.

proposition 1 ⋅ Inversion method

Let𝛸 be a random variable with c.d.f. 𝐹 and𝑈 ∼ Unif([0, 1]) be a random uniform
variable.

(i) The random variable 𝐹−1(𝑈) has the same distribution as𝛸,

(ii) if𝛸 is continuous then 𝐹(𝛸) has the same distribution as𝑈.

Proof. (i) Note that 𝐹−1(𝑈) ≤ 𝑥 ⟺ sup{𝑡 ∈ ℝ ∶ 𝐹(𝑡) < 𝑈} ≤ 𝑥 ⟺ 𝑈 ≤ 𝐹(𝑥). It results
ℙ(𝐹−1(𝑈) ≤ 𝑥) = ℙ(𝑈 ≤ 𝐹(𝑥)) = 𝐹(𝑥).

(ii) Next, by the same argument, we have ℙ(𝐹(𝛸) ≤ 𝑥) = ℙ(𝛸 ≤ 𝐹−1(𝑥)) = 𝐹(𝐹−1(𝑥)). Since 𝐹 is
continuous and increasing, 𝐹(inf{𝑡 ∈ ℝ ∶ 𝐹(𝑡) ≥ 𝑥}) = 𝑥.

�

The variable − log(𝑈)/𝜆, for instance, follows an exponential distribution with parameter
𝜆. For more complex distributions, the explicit form of 𝐹−1 is seldom known. In some cases,
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numerically inverting 𝐹 is not too costly, but it leads to approximate simulations. Exact simula-
tion methods employ two types of mechanisms: first, the transformation of random variables
that we can simulate (as seen in the inversion method just discussed), and most importantly,
acceptance-rejection procedures.

Acceptance-rejection method

An acceptance-rejection procedure involves simulating random variables and keeping only those
that satisfy a given criterion. The criterion is chosen in such a way that the retained random
variables follow a target distribution. Therefore, we deliberately draw our variables in a “too
large” space in which simulation is easy. Obtaining a sample from the target distribution by
simply removing points from the initial sample is possible again thanks to the properties of
the uniform distribution. It is stable under rejection: drawing points uniformly in a set𝛢 and
retaining only those falling into a subset 𝛣 ⊂ 𝛢 is equivalent to drawing uniformly in 𝛣. This
property generalizes under the term “fundamental theorem of simulation” [RC99]. We aim to
simulate a real random variable𝛸with density p.

proposition 2 ⋅ Fundamental theorem of simulation

Let p be a p.d.f. on a space𝒳 ⊆ ℝ𝑑 and 𝛣 be the following set :

𝛣 ∶= {(𝑥, 𝑦) ∈ 𝒳 × ℝ+ ∶ 0 ≤ 𝑦 ≤ p(𝑥)}. (1.2)

If (𝛸, 𝑌) ∼ Unif(𝛣) then the marginal p.d.f. of𝛸 is p.

Proof. If (𝛸, 𝑌) ∼ Unif(𝛣), the density of the couple is (𝑥, 𝑦) ↦ 1
Leb(𝛣) 𝟙(𝑥,𝑦)∈𝛣. We have :

Leb(𝛣) = ∫
𝒳
∫
ℝ+

𝟙(𝑥,𝑦)∈𝛣 d𝑦 d𝑥 = ∫
𝒳
∫

p(𝑥)

0
d𝑦 d𝑥 = ∫

𝒳
p(𝑥) d𝑥 = 1. (1.3)

The marginal p.d.f. of𝛸 is given by :

𝑥⟼ ∫
ℝ+

1
Leb(𝛣) 𝟙(𝑥,𝑦)∈𝛣 d𝑦 = ∫

p(𝑥)

0
d𝑦 = p(𝑥). (1.4)

�

Wewould like to draw a couple (𝛸,𝑈) uniformly on 𝛣 through rejection, i.e. by uniformly
drawing the couple in a larger set until𝑈 ≤ p(𝛸). This method is formalized as follows: we
assume that we know a probability density function (p.d.f.) g on𝒳 that we can simulate and a
constant𝑚 > 0 such that p(𝑥) ≤ 𝑚 ⋅ g(𝑥) for all 𝑥 ∈ 𝒳. One just has to draw couples (𝑌𝑘, 𝑈𝑘)𝑘∈ℕ∗

with 𝑌𝑘 ∼ g and𝑈𝑘 ∼ Unif([0, 1]) until𝑈𝑘 ≤
p(𝑌𝑘)
𝑚⋅g(𝑌𝑘)

to get a variable with p.d.f. p:

6
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proposition 3 ⋅ Accept-reject method

Let p and g be two p.d.f., (𝑈𝑘)𝑘∈ℕ∗ be a sequence of i.i.d. uniform random variables on
[0, 1] and (𝑌𝑘)𝑘∈ℕ∗ be a sequence of i.i.d. random variables (also independent from the
𝑈𝑘) with p.d.f. g. Finally, let𝛮 = inf{𝑘 ∈ ℕ∗ ∶ 𝑈𝑘 ≤

p(𝑌𝑘)
𝑚⋅g(𝑌𝑘)

}. Then p is the p.d.f. of the
variable𝛸 = 𝑌𝛮.

Proof. Let𝑈 ∼ Unif([0, 1]) and 𝑌 ∼ 𝑔. First, note that all terms of the two sequences (𝑈𝑘)𝑘∈ℕ∗ and
(𝑌𝑘)𝑘∈ℕ∗ are distributed as𝑈 and 𝑌. The probability of success of each trial is then given by :

ℙ(𝑈 ≤
p(𝑌)

𝑚 ⋅ g(𝑌) ) = 𝔼𝑌∼g[ℙ𝑈∼Unif([0,1])(𝑈 ≤
p(𝑌)

𝑚 ⋅ g(𝑌) ∣ 𝑌)] = 𝔼g[
p(𝑌)

𝑚 ⋅ g(𝑌) ]

= ∫
ℝ

p(𝑦)
𝑚 ⋅ g(𝑦) g(𝑦) d𝑦 = 1

𝑚 ∫
ℝ
p(𝑦) d𝑦 = 1

𝑚 . (1.5)

Each trial is independent of the previous ones, so𝛮 follows a geometric distribution of parameter 1
𝑚 .

Using the same arguments1, for any 𝑥 ∈ ℝ, we have :

ℙ(𝑌 ≤ 𝑥,𝑈 ≤
p(𝑌)

𝑚 ⋅ g(𝑌) ) = 𝔼𝑌∼g[ℙ(𝑌 ≤ 𝑥,𝑈 ≤
p(𝑌)

𝑚 ⋅ g(𝑌) ∣ 𝑌)]

= 𝔼p[𝟙𝑌≤𝑥
p(𝑌)

𝑚 ⋅ g(𝑌) ] = 𝔼p[𝟙𝛸≤𝑥
1
𝑚 ]

= 1
𝑚 ℙp(𝛸 ≤ 𝑥). (1.6)

Finally :

ℙ(𝛸 ≤ 𝑥) = ∑
𝑛≥1

ℙ(𝑌𝑛 ≤ 𝑥,𝛮 = 𝑛)

= ∑
𝑛≥1

ℙ(𝑌 ≤ 𝑥,𝑈 ≤
p(𝑌)

𝑚 ⋅ g(𝑌) ) × ℙ(𝑈 >
p(𝑌)

𝑚 ⋅ g(𝑌) )
𝑛−1

=
ℙp(𝛸 ≤ 𝑥)

𝑚 ×∑
𝑛≥1

(1 − 1
𝑚 )

𝑛−1
=

ℙp(𝛸 ≤ 𝑥)
𝑚 × 1

1 − (1 − 1
𝑚 )

= ℙp(𝛸 ≤ 𝑥). (1.7)

�

Therefore, the rejection criterion is random. The uniform variables only come into play as
auxiliary variables for the acceptance test. The simulation cost of a random variable with
distribution p is the number𝛮 of pairs (𝑌𝑘, 𝑈𝑘) that must be drawn before𝑈𝑘 < p(𝑌𝑘)

𝑚⋅g(𝑌𝑘)
.

Since the successive pairs are independent, the variable𝛮 follows a geometric distribution

1The equality 𝔼p[𝛸] = 𝔼g[𝛸
p(𝛸)
g(𝛸) ] is known as the “importance sampling” trick and is detailed in sec-

tion 1.3.1.

7
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with parameter 1
𝑚 . Therefore, we generate on average𝑚 pairs before obtaining a realization

distributed according to p. For a given g, we cannot do smaller than𝑚∗ ∶= sup𝑥
p(𝑥)
g(𝑥) . Let 𝒢 be

the set of densities for which we assume we know how to simulate. The auxiliary density that is
most efficient on average for the accept-reject procedure belongs to :

𝒢∗ = argmin
g∈𝒢

{sup
𝑥

p(𝑥)
g(𝑥) }. (1.8)

When trying to sample from a high-dimensional distribution p, it becomes very difficult to find
an auxiliary distribution g that can be simulated and is not much smaller than p at any point
in space. A second drawback of the rejection method is that the density pmust be explicitly
evaluated at each point drawn according to the auxiliary density g. In many applications, p is
only known up to a multiplicative constant (very common in statistical physics and Bayesian
statistics). Calculating the associated normalization constant via a numerical integration method
is much too expensive in high dimensions. The vanilla version of the accept-reject method is
therefore generally limited to low dimensions.

Monte Carlo Markov Chain (MCMC)

The accept-reject method is slow because a candidate is proposed according to the same distribu-
tion at each attempt, always with the same small chance of success. This is the price to pay for the
produced variable to be exactly distributed according to p. The simulation can be accelerated
by giving up exactness. We present a method that, when iterated a sufficient number of times,
produces a variable approximately distributed according to p. The idea is to construct, using
successive accept-reject proposals, a Markov chain whose invariant distribution is p. Under
suitable conditions, the state of theMarkov chain is asymptotically distributed according to p.
These methods are calledMarkov ChainMonte Carlo (MCMC)methods. I refer the reader
interested in an in-depth study of the properties of convergence of Markov chains to [BH22].
We present the most famousMCMCmethod: the Metropolis-Hastings method [Has70]
(generalization of Metropolis method [Met+53]). We aim to simulate according to a target
distribution p on a space𝒳. Let𝑄 be a transition kernel on𝒳, i.e., a family of distributions
(𝑄(⋅ | 𝑥))

𝑥∈𝒳
on𝒳 indexed by each element of𝒳. For any 𝑥 ∈ 𝒳,𝑄(⋅ | 𝑥) is a probability mass

function if𝒳 is finite or countable, and it is a probability density function if𝒳 is continuous
(with respect to some dominating measure 𝜇 on𝒳). For any pair 𝑥, 𝑦 ∈ 𝒳, we also define the
acceptance ratio:

𝑟 ∶ (𝑥, 𝑦) ∈ 𝒳2 ⟼ min(1,
p(𝑦)𝑄(𝑥 ∣ 𝑦)
p(𝑥)𝑄(𝑦 ∣ 𝑥) ) . (1.9)

TheMetropolis-Hastings algorithm corresponds to the following procedure: at each iteration, a
new candidate 𝑌 is proposed from the state𝛸 according to the kernel𝑄(⋅ ∣ 𝛸), and is accepted

8
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with probability 𝑟(𝛸, 𝑌). Assume𝑄 is irreducible, i.e. for any pair of states (𝑥0, 𝑦) ∈ 𝒳
2 there

algorithm 1 ⋅ Metropolis-Hastings

1 Initialization state𝛸0 ∈ 𝒳.
2 for 𝑘 = 1, … , 𝑛 do
3 Sampling step

𝑌𝑘 ∼ 𝑄(⋅ ∣ 𝛸𝑘−1). (1.10)

4 Accept-reject step
𝑈𝑘 ∼ Unif([0, 1]), (1.11)

𝛸𝑘 = 𝛸𝑘−1𝟙𝑈>𝑟(𝛸𝑘−1,𝑌𝑘) + 𝑌𝑘𝟙𝑈≤𝑟(𝛸𝑘−1,𝑌𝑘). (1.12)

5 end
6 Return𝛸𝑛.

exists a path of non-zero probability between them. Said otherwise, either𝑄(𝑦 ∣ 𝑥0) > 0, or there
are 𝑛 ≥ 1 and (𝑥1, … , 𝑥𝑛) ∈ 𝒳

𝑛 such that:

(
𝑛
∏
𝑘=1

𝑄(𝑥𝑘 ∣ 𝑥𝑘−1)) × 𝑄(𝑦 ∣ 𝑥𝑛) > 0 . (1.13)

Moreover, assume than𝑄(𝑦 ∣ 𝑥0) > 0 ⟹ 𝑄(𝑥0 ∣ 𝑦) > 0. Then, it can be proved that the
asymptotic distribution of the produced sequence (𝛸𝑛)𝑛 (when 𝑛 → ∞) is p.
Metropolis-Hastings performs much better than the standard accept-reject method in high
dimensions, but convergence remains slow. Proposing transitions according to a non-reversible
kernel allows for faster independence from the initial state of the chain. ModernMCMCmeth-
ods use different strategies to reduce the correlation between iterations to speed up convergence.
These include, among others, the Metropolis-adjusted Langevin algorithm (MALA) [GC11],
HamiltonianMonte Carlo (HMC) [Bet17], the No-U-Turn Sampler (NUTS) [HG+14], or
PD-MCMCmethods based on PDMPs (see chapter 2). The article [RR98] is an original review
of a large number of theoretical and practical questions concerningMCMCmethods.

1.1.2 Monte Carlo methods

TheMonte Carlo method emerged in the United States during the 1940s with the advent of
the first electronic computers. Driven primarily by Stanislaw Ulam and John von Neumann, its
early applications enabled much faster resolution of the neutronic calculations involved in the
development of nuclear weapons. It was first referred to as Monte Carlo in [MU49]. The name

9
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of the method was proposed by Nicholas Metropolis, in a nod to the Monte Carlo casino where
Stanislaw Ulam’s uncle used to gamble. For readers interested in the origins of the method, I
recommend the following short articles, which also cover the first attempts at pseudo-random
simulation and the birth of the accept-reject method: [Met+87; Eck87].
The principle of theMonte Carlo method is to approximate an expectation by an empirical
mean, using independent and identically distributed random samples. Suppose we aim to
estimate:

ℐ ∶= 𝔼𝛸∼p[𝚰(𝛸)] , (1.14)

where 𝚰 ∶ 𝒳 → ℝ is a target function, and𝛸 follows a reference distribution (also called nominal
distribution) p. The classical Monte Carlo method (CMC) then simply consists in estimating
the expectation ℐ by the empirical mean of variables drawn i.i.d. according to the reference
distribution p.

ℐ̂cmc
𝑛 = 1

𝑛

𝑛
∑
𝑘=1

𝚰(𝛸𝑘) with 𝛸1, … , 𝛸𝑛
i.i.d.∼ p . (1.15)

No specific assumptions about the space𝒳 are necessary as long as a probability distribution
can be defined. Important remark: this method more generally allows estimating the integral
of a function 𝜑 ∶ 𝒳 → ℝwith respect to a measure 𝜇 on𝒳. It suffices to choose a reference
distribution characterized by a p.d.f. p absolutely continuous with respect to 𝜇 and whose
support contains that of 𝜑, i.e. 𝜑(𝑥) ≠ 0 ⟹ p(𝑥) > 0 for 𝜇-a.e. 𝑥 ∈ 𝒳. Then by noting 𝚰 = 𝜑

p ,
we have2:

∫
𝒳
𝜑(𝑥)𝜇(d𝑥) = ∫

𝒳

𝜑(𝑥)
p(𝑥) p(𝑥)𝜇(d𝑥) = 𝔼𝛸∼p[

𝜑(𝛸)
p(𝛸) ] = ℐ . (1.16)

Properties of the classical Monte Carlo estimator

It is immediately clear from the linearity of expectation that the estimator ℐ̂cmc
𝑛 is unbiased. By a

direct application of the strong law of large numbers, we have :

proposition 4 ⋅ Consistency

ℐ̂cmc
𝑛

a.s.−−−−→𝑛→∞ ℐ. (1.17)

The variance of ℐ̂cmc
𝑛 is given by

𝜎2p
𝑛 with 𝜎2p ∶= Varp(𝚰(𝛸)). This variance can be estimated,

from the same sample𝛸1, … , 𝛸𝑛, by :

�̂�2p =
1

𝑛 − 1

𝑛
∑
𝑘=1

(𝚰(𝛸𝑘) − ℐ̂
cmc
𝑛 )

2
. (1.18)

2This trick will be generalized to give rise to the importance sampling method (discussed in section 1.3).
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Assuming 𝜎2p < ∞, we have from the central limit theorem :

proposition 5 ⋅ Asymptotic normality

√𝑛(ℐ̂cmc
𝑛 − ℐ) ℒ−−−−→𝑛→∞ 𝒩(0, 𝜎2p). (1.19)

By application of Slutsky’s lemma, we also have :

√𝑛
ℐ̂cmc
𝑛 − ℐ
�̂�p

ℒ−−−−→𝑛→∞ 𝒩(0, 1). (1.20)

We deduce an asymptotic confidence interval for ℐ. Let 𝛼 ∈ [0, 1], we noteΦ−1(1 − 𝛼/2) the
1 − 𝛼/2-quantile of the𝒩(0, 1) distribution. We have :

ℙ(ℐ ∈ [ℐ̂cmc
𝑛 − Φ−1(1 − 𝛼/2)

�̂�p
√𝑛 , ℐ̂cmc

𝑛 + Φ−1(1 − 𝛼/2)
�̂�p
√𝑛 ]) −−−−→𝑛→∞ 1 − 𝛼. (1.21)

The estimator therefore converges to ℐ at the classical rate of𝒪(𝑛−1/2). This rate is independent
of the dimension of the space𝒳. This is the great strength of theMonte Carlo method. Deter-
ministic numerical methods, in comparison, converge more and more slowly as the dimension
increases.

Rare event simulation and variance reduction

The performance of theMonte Carlo estimator ℐ̂cmc
𝑛 can be measured by its relative variance

(square of the coefficient of variation): 𝜎2p/ℐ2. This relative variance is large when the nominal
distribution p puts weight where the function 𝚰 is close to zero. Indeed, most of the realizations
𝛸1, … , 𝛸𝑛 then fall where |𝚰| is small. The estimator ℐ̂cmc

𝑛 is therefore the result of a large
number of almost zero contributions and a small number of important contributions. Unless we
sample enough, we find ourselves in one of the two following cases :

(i) More frequently, ℐ is underestimated because we do not observe the regions where |𝚰| is
large.

(ii) Less frequently, we quickly draw a point where |𝚰| is large, but we are unable to reweight
it by the small probability of this event, resulting in a significant overestimation of ℐ.

The situation that is most representative of this problem, and the one that is of interest in this
thesis, is the case where 𝚰 = 𝟙ℱ is the indicator function of a regionℱ hat is rarely visited in the
space𝒳. This is known as rare event probability estimation. In this case, we have :

ℐ = 𝔼𝛸∼p[𝚰(𝛸)] = 𝔼𝛸∼p[𝟙𝛸∈ℱ] = ℙp(𝛸 ∈ ℱ). (1.22)

11
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The rarer the event {𝛸 ∈ ℱ} is under p, the more difficult it is to estimate ℐ using classical
Monte Carlo. For 𝑛 ≪ ℐ−1, the estimator ℐ̂cmc

𝑛 is most often 0 but exceeds ℐ by much when at
least one realization belongs toℱ. This is indeed a variance problem since the estimator is often
far from ℐ on average. Its relative variance is given by :

Var(ℐ̂cmc
𝑛 )

𝔼[ℐ̂cmc
𝑛 ]

2 = 1 − ℐ
𝑛ℐ . (1.23)

The relative variance is approximately inversely proportional to ℐwhen ℐ is small. A rule of
thumb is to keep 𝑛ℐ > 100 to ensure that the coefficient of variation is under 0.1.
There are many alternative sampling methods that produce estimators with smaller variance than
classical Monte Carlo. These are known as variance reduction methods.
In this chapter, we discuss two major families of variance reduction methods adapted to the simu-
lation of rare events: splitting methods in section 1.2, and importance sampling in section 1.3.
However, other variance reduction methods should also be mentioned, on a non-exhaustive basis.
Some of which are general-purpose, such as quasi Monte Carlo [Sob90], control variates [GS02],
antithetic variables [HM56]. Others are specifically designed for rare event simulation, such as
line sampling [Lu+08] and directional sampling [Bje88]. The FORM-SORMmethod [ZO99],
which is not a sampling method per se, is also very popular in industrial reliability. A recent
literature review [SK23] examines the application of all these methods in structural reliability. We
do not cover them in this thesis, as most are difficult to adapt to the case of dynamic rare events.
A rare event is said to be static when𝛸 is a random vector, and dynamic when𝛸 is the trajectory
of a stochastic process. In the latter case,ℱ generally corresponds to a subregion of the process
state space, and the rare event of interest occurs ifℱ is reached before a given stopping time.
The dynamic case is not necessarily more difficult than the static case (as we will see in the next
section), but it has several specific features that often require adaptation of classical variance
reduction methods.

1.2 Particle-based methods

The methods presented in this section belong to the broad family of sequential Monte Carlo
(SMC) methods [CP20]. They involve simulating a large number of interacting particles that
are iteratively selected, cloned, and mutated so that the distribution of the particle sample
approaches a target distribution. As a result, we also speak of particle-based methods. There is a
very wide variety of methods based on this principle, developed by different communities, under
different names, and for different applications. The term SMCwas traditionally associated with
filtering methods such as the celebrated Kalman filter [KB+18]. The formalism of Feynman-
Kac models [Mor04] has allowed a more general formulation of particle methods, which now
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encompasses most cases of interest.
In particular, particle methods include algorithms specifically designed for the simulation of
rare events called “splitting methods”. They were originally introduced in [KH51] to study the
transmission of particles through an obstacle. They are sometimes referred to as importance
splitting, as opposed to importance sampling methods (which are covered in section 1.3). The
history of this method is detailed in [CGR19]. The principle is simple: a small probability can be
expressed as the product of larger probabilities, which are therefore simpler to estimate. More
specifically, if we seek to estimate:

ℐ = ℙ𝛸∼p(𝛸 ∈ ℱ), (1.24)

and we know a sequence of nested sets

𝒳 =∶ ℱ0 ⊃ ℱ1 ⊃ ⋯ ⊃ ℱ𝐿 = ℱ, (1.25)

then we can re-express ℐ using Bayes theorem :

ℐ = ℙ(𝛸 ∈ ℱ𝐿) =
𝐿
∏
ℓ=1

ℙ(𝛸 ∈ ℱℓ ∣ 𝛸 ∈ ℱℓ−1). (1.26)

We seek to estimate the probabilities ℙ(𝛸 ∈ ℱℓ ∣ 𝛸 ∈ ℱℓ−1) one after the other. To do this,
we need to be able to simulate at each step ℓ = 1, … , 𝐿 according to ℒ(𝛸 ∣ 𝛸 ∈ ℱℓ−1), i.e.,
according to a density proportional to 𝟙ℱℓ−1p. If we could do this directly, we could estimate
ℐwith a single draw (see proposition 6). The trick is that it is much easier (but not trivial) to
transform a variable X already inℱℓ into another variable Y distributed according to p onℱℓ, than
to simulate Y from scratch. Let us first assume that we can simulate 𝑌 ∼ p|ℱℓ from a particle
𝑥 ∈ ℱℓ and a transition kernel �̃�ℓ(⋅ ∣ 𝑥). We will discuss the construction of such a kernel below.

1.2.1 Subset simulation

We first present a standard version of the algorithm. This is known as subset simulation or
subset sampling (SS) [AB01] in reliability engineering, and as multilevel splitting in molecular
dynamics (derived from [KH51]). However, one can find slight differences in formulation and
implementation between these two versions depending on the sources and the time period.
The operation of the method is described in Algorithm 2. The method is initialized with n
independent particles drawn according to p. The algorithm stops after 𝐿 iterations (one for
each subsetℱℓ). At each iteration ℓ, a selection step is performed during which the particles
that have not reachedℱℓ are removed and replaced by copies of particles that have reachedℱℓ.
The copied particles are drawn uniformly. This selection step is followed by a mutation step
where each particle makes a transition using the Markov kernel �̃�ℓ. The intermediate probability
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ℙ(𝛸 ∈ ℱℓ+1 ∣ 𝛸 ∈ ℱℓ) can therefore be estimated by the proportion of particles reachingℱℓ+1
after mutation. The final estimator of the rare event probability ℐ is simply the product of the
estimates of the intermediate probabilities.
There is a risk that the method will get stuck before iteration ℓ. This happens when no particle
reaches the target regionℱℓ. To avoid this, it is therefore necessary to choose carefully the
proposal kernel �̃�, the number of subsetsℱℓ, the subsets themselves, and the number of particles
𝑛.

Kernel choice

If a kernel𝑄 is known for which the distribution p is reversible, it is sufficient to draw a proposal
according to𝑄 and accept it only if it belongs toℱℓ to sample according to an admissible kernel
�̃�ℓ. One can apply𝑄 several times without losing invariance to increase the chances of accepting
at least one transition. Even in case of acceptance, it is recommended to apply𝑄 several times
to reduce the correlation between successive states of each particle, which also reduces the
variance of the final estimator [Cér+12]. Once again, this is less difficult than drawing directly
fromℱℓ proportionally to p, because the kernel𝑄 usually makes local proposals around a point
𝑥 ∈ ℱℓ. Most of the time, no such kernel𝑄 is known, but it can be constructed using anMCMC
method (see theMetropolis-Hastings method described in algorithm 1). A detailed analysis of
the use of MCMCmethods for subset sampling can be found in [Pap+15].

algorithm 2 ⋅ Subset simulation

1 Initializationwith 𝑛 particles: 𝛸(1)
1 , … , 𝛸(1)

𝑛 ∼ p.
2 for ℓ = 1, … , 𝐿 do
3 Selection step. Let

𝐽ℓ = {𝑘 ∈ ⟦1, 𝑛⟧ ∶ 𝛸(ℓ)
𝑘 ∈ ℱℓ}. (1.27)

4 for 𝑘 ∈ 𝐽ℓ do 𝑌
(ℓ)
𝑘 = 𝛸(ℓ)

𝑘 .
5 for 𝑘 ∉ 𝐽ℓ do𝛫 ∼ Unif(𝐽ℓ) and 𝑌

(ℓ)
𝑘 = 𝛸(ℓ)

𝛫 .
6 Mutation step.
7 for 𝑘 ∈ ⟦1, 𝑛⟧ do𝛸(ℓ+1)

𝑘 ∼ �̃�ℓ(⋅ ∣ 𝑌
(ℓ)
𝑘 )

8 end
9 Estimation step.

ℐ̂ss
𝑛,𝐿 = 𝑛−𝐿

𝐿
∏
ℓ=1

Card(𝐽ℓ). (1.28)
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1.2.2 Adaptive multilevel splitting

Another way to consider the subsetsℱℓ for ℓ = 1, … , 𝐿 is to define a so-called importance
function 𝜉 ∶ 𝒳 → ℝ and levels −∞ = 𝑆0 < 𝑆1 < ⋯ < 𝑆𝐿 = 𝑆∗ such that 𝜉(𝑥) > 𝑆ℓ ⟺ 𝑥 ∈ ℱℓ.
We are therefore trying to estimate ℐ = ℙ(𝜉(𝛸) > 𝑆∗). This is a natural formulation for many
rare events that can be written as threshold exceedances3.
It is known (see [Cér+12]) that the optimal distribution of the levels 𝑆1, … , 𝑆𝐿 (the one that
minimizes the variance of the estimator ℐ̂ss) is evenly spaced in terms of probability of success.
This means that the optimal choice is such that ℙ(𝜉(𝛸) > 𝑆ℓ+1 | 𝜉(𝛸) > 𝑆ℓ) is constant regard-
less of ℓ. A natural way to free oneself from the choice of these thresholds is to determine them
sequentially in the form of quantiles of the performance achieved by the particles (according
to the importance function 𝜉). This idea was first mentioned in[Gar00] and then formalized
in [CG07]. More precisely, at each iteration ℓ, the threshold 𝑆

(ℓ)
is set so that a proportion 𝜌

(or a number ⌈𝜌𝑛⌉) of particles have a score higher according to 𝜉. Therefore, this time we have
a fixed and no longer random number of particles selected at each iteration. The intermediate
probability ℙ(𝜉(𝛸) > 𝑆

(ℓ+1)
∣ 𝜉(𝛸) > 𝑆

(ℓ)
) can be estimated by ⌈𝜌𝑛⌉

𝑛 .

Dynamic rare event case

The historical applications of the method correspond to the case where𝛸 is the trajectory of a
stochastic process, and one is interested in the probability that this trajectory reaches a region
ℱ before a given stopping time. One usually considers an importance function of the form
𝜉([𝛸𝑡]𝑡) = sup𝑡 𝛽(𝛸𝑡)where 𝛽 is a scoring function that quantifies the proximity of𝛸𝑡 to the set
ℱ. The choice of 𝛽 is then crucial [Dio+17; Vil07].
WhenMarkovian, the dynamic case has a major advantage over the static case: one always knows
a transition kernel that allows to simulate inℱℓ proportionally to p. It is sufficient to clone the
best trajectories up to the instant when they reached their peak (according to 𝛽), and to simulate
the rest of the trajectories until the planned stopping time.
There are many theoretical results (convergence and variance analysis) for this version of the
method [Bré+16; DG21; Cér+19].

1.3 Importance sampling

Importance Sampling, abbreviated as IS, is arguably the most well-knownmethod for variance
reduction and perhaps the simplest to describe in its raw form. The method is introduced under

3Care should be taken not to confuse multilevel splitting methods with multilevel Monte Carlo meth-
ods[Gil15]. The latter consists in estimating an expectation 𝔼p[𝚰(𝛸)] using a sequence of auxiliary variables 𝑌1, … , 𝑌ℓ
which approximates pwith increasing accuracy but with increasing cost. The term “level” refers to the level of
accuracy of each auxiliary variable.
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algorithm 3 ⋅ Adaptive multilevel splitting

1 Initializationwith 𝑛 particles: 𝛸(1)
1 , … , 𝛸(1)

𝑛 ∼ p. Set ℓ = 1 and 𝑆
(ℓ)

= −∞.

2 while 𝑆
(ℓ)

≤ 𝑆∗ do
3 Selection step.
4 for 𝑘 ∈ ⟦1, 𝑛⟧ do 𝑆(ℓ)𝑘 = 𝜉(𝛸(ℓ)

𝑘 ).
5 Let 𝜎ℓ be a permutation on ⟦1, 𝑛⟧ such that :

𝑆(ℓ)𝜎ℓ(1)
≤ ⋯ ≤ 𝑆(ℓ)𝜎ℓ(𝑛)

. (1.29)

Let 𝑆
(ℓ)

∶= 𝑆(ℓ)𝜎ℓ(⌈(1−𝜌)𝑛⌉)
be the 1 − 𝜌 quantile of (𝑆(ℓ)𝑘 )

𝑛

𝑘=1
.

6

𝐽ℓ = {𝑘 ∈ ⟦1, 𝑛⟧ ∶ 𝑆(ℓ)𝑘 ≤ 𝑆
(ℓ)
}. (1.30)

7 for 𝑘 ∈ 𝐽ℓ do 𝑌
(ℓ)
𝑘 = 𝛸(ℓ)

𝑘 .
8 for 𝑘 ∉ 𝐽ℓ do𝛫 ∼ Unif(𝐽ℓ) and 𝑌

(ℓ)
𝑘 = 𝛸(ℓ)

𝛫 .
9 Mutation step.

10 for 𝑘 ∈ ⟦1, 𝑛⟧ do𝛸(ℓ+1)
𝑘 ∼ �̃�ℓ(⋅ ∣ 𝑌

(ℓ)
𝑘 )

11 end
12 Estimation step.

ℐ̂ams
𝑛 = (

⌈𝜌𝑛⌉
𝑛 )

ℓ

. (1.31)

this name in 1951 by Kahn and Harris [KH51], but the idea was proposed in 1949, also by Kahn
and other researchers working on the problem of neutron and gamma ray attenuation in thick
shields4.
In this section, we present the fundamental principles of importance sampling, its application to
rare event simulation, and some refinements. For more detailed information, we refer the reader
to [Owe13, Chapter 9] for a general overview, [RT+09; Buc04] for an approach more focused on
rare events, and [Bug+17; EM21] for reviews of recent advances.
We consider the framework of Monte Carlo methods (see section 1.1.2). The goal is to estimate a
quantity of the form ℐ ∶= 𝔼p[𝚰(𝛸)], where𝛸 is a random variable taking values in a space𝒳 and
whose distribution is characterized by a probability density function (p.d.f.) pwith respect to a
dominant measure 𝜇. Finally, 𝚰 ∶ 𝒳 → ℝ is a function of interest that we will sometimes refer to

4Readers interested in the historical development of the method can find more details in [And22].

16



1 monte carlo simulation and rare events

as the target function.

1.3.1 The essentials

The principle of importance sampling is to estimate ℐwith a sample drawn not according to
the reference distribution p but under an alternative distribution characterized by a p.d.f. g
(still with respect to the measure 𝜇), referred to as the “importance distribution” (also called
“proposal”). The bias introduced by the change in distribution is corrected using weights given
by the likelihood ratio p/g. More formally, under the assumption of support 𝚰(𝑥)p(𝑥) ≠ 0 ⟹
g(𝑥) ≠ 0 for 𝜇-a.e. 𝑥 ∈ 𝒳, we have:

ℐ ∶= 𝔼p[𝚰(𝛸)] = ∫
𝒳
𝚰(𝑥) p(𝑥) 𝜇(d𝑥)

= ∫
𝒳
𝚰(𝑥)

p(𝑥)
g(𝑥) g(𝑥) 𝜇(d𝑥) = 𝔼g[𝚰(𝛸)

p(𝛸)
g(𝛸) ]. (1.32)

This leads to the definition of an estimator for ℐ using importance sampling. Let𝛸1, … , 𝛸𝑛 be an
i.i.d. sample from the distribution g, we have:

ℐ̂is
𝑛 ∶= 1

𝑛

𝑛
∑
𝑘=1

𝚰(𝛸𝑘)
p(𝛸𝑘)
g(𝛸𝑘)

. (1.33)

Similar to the standardMonte Carlo estimator5, ℐ̂is
𝑛 is an unbiased, consistent, and asymptoti-

cally normal estimator of ℐ. Its variance is given by Var(ℐ̂is
𝑛 ) = 𝜎2g/𝑛where:

𝜎2g ∶= 𝔼g[𝚰(𝛸)
2 p(𝛸)2

g(𝛸)2
] − ℐ2 = 𝔼p[𝚰(𝛸)

2 p(𝛸)
g(𝛸) ] − ℐ

2. (1.34)

It can be conventionally estimated, using the same i.i.d. sample𝛸1, … , 𝛸𝑛 from the distribution g,
by:

�̂�2g ∶=
1

𝑛 − 1

𝑛
∑
𝑘=1

(𝚰(𝛸𝑘)
p(𝛸𝑘)
g(𝛸𝑘)

− ℐ̂is
𝑛 )

2

Of course �̂�g = √�̂�2g is the estimator of the corresponding standard deviation. For any 𝛼 ∈ [0, 1],
we denoteΦ−1(𝛼) as the 𝛼-quantile of the𝒩(0, 1) distribution. By applying the central limit
theorem and Slutsky’s lemma, we have asymptotic validity of the following confidence interval:

ℙ(ℐ ∈ [ℐ̂is
𝑛 − Φ−1(1 − 𝛼

2 )
�̂�g
√𝑛 ; ℐ̂is

𝑛 + Φ−1(1 − 𝛼
2 )

�̂�g
√𝑛 ]) −−−−→𝑛→∞ 1 − 𝛼. (1.35)

5The importance sampling estimator in eq. (1.33) is ultimately just a classical Monte Carlo estimator for the
last expectation in eq. (1.32).
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Benefits of importance sampling

Importance sampling is a generalization of classical Monte Carlo estimation, which is recovered
when choosing g = p. It is an interesting alternative to MCMCmethods when it is not possible
to directly simulate from the distribution p. Another scenario arises when there is no sampling
step, but the practitioner has access to a sample under a known distribution g different from
p. In this case, using the trick in eq. (1.32), we can estimate 𝔼p[𝚰(𝛸)]with the sample from the
distribution g. This is more commonly referred to as importance weighting (IW), and this “what-
if” approach [Owe13, Section 9.14] has numerous applications, for example in deep learning
[BL19], off-policy reinforcement learning [Mun+16], or in sensitivity analysis [Cha+18].

In this thesis, we focus on cases where sampling according to p is a poor strategy to estimate ℐ
due to the large variance 𝜎2p. The variance of the estimator ℐ̂is

𝑛 essentially relies on the choice of
the importance distribution g. It is observed that:

𝜎2g − 𝜎
2
p = 𝔼p[𝚰(𝛸)

2 p(𝛸)
g(𝛸) ] − 𝔼p[𝚰(𝛸)

2] = 𝔼p[𝚰(𝛸)
2(

p(𝛸)
g(𝛸) − 1)]. (1.36)

This implies that the variance of the importance sampling estimator for the importance
density g is smaller than the variance of the classical Monte Carlo estimator if and only if
𝔼p[𝚰(𝛸)

2( p(𝛸)
g(𝛸) − 1)] < 0.

Optimal importance sampling

There exists an optimal importance distribution that minimizes the variance 𝜎2g, and its expres-
sion is known.

proposition 6 ⋅ Optimal importance sampling

Assume that 𝜎2p < ∞. Then the following function is the probability density function of
the optimal importance distribution:

g∗ ∶ 𝑥 ⟼
|𝚰(𝑥)| p(𝑥)

∫𝒳 |𝚰(𝑦)| p(𝑦) d𝜇(𝑦)
. (1.37)

For any distribution gwe have: 𝜎2g ≥ 𝜎2g∗ . Moreover, if the sign of 𝚰 is constant, then
𝜎2g∗ = 0. In other words, sampling only one realization according to g∗ would be sufficient
to estimate ℐ exactly.
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Proof. The application 𝑥 ↦ 𝑥2 being convex, we deduce from Jensen’s inequality that

𝜎2g = Varg(𝚰(𝛸)
p(𝛸)
g(𝛸) ) = 𝔼g[𝚰(𝛸)

2 p(𝛸)2

g(𝛸)2
] − ℐ2

≥ 𝔼g[|𝚰(𝛸)|
p(𝛸)
g(𝛸) ]

2

− ℐ2 = 𝔼p[|𝚰(𝛸)|]
2 − ℐ2 .

(1.38)

The equality case only occurs when the random variable |𝚰(𝛸)|p(𝛸)/g(𝛸) is a.s. constant. In that case,
there exists a constant 𝑐 > 0 such that for 𝜇-a.e. 𝑥 ∈ supp(g)we have

g(𝑥) =
|𝚰(𝑥)|p(𝑥)

𝑐 . (1.39)

This relationship is verified only by a single probability density function g∗ with the normalization
constant 𝑐 = ∫𝒳 |𝚰(𝑥)|p(𝑥)𝜇(d𝑥). This density thus minimizes the variance 𝜎2g, the minimal value of
which is therefore

𝜎2g∗ = 𝔼p[|𝚰(𝛸)|]
2 − ℐ2 . (1.40)

One immediately observes that this variance is zero if the sign of 𝚰 is constant. �

The apparent power of this result is offset, on the one hand, by the fact that we do not know6

the quantity∫𝒳 |𝚰(𝑥)| g(𝑥) 𝜇(d𝑥), and, on the other hand, by the fact that we do not know a
priori how to sample proportionally to |𝚰| × p. Nevertheless, it provides an idea of what a good
importance distribution should accomplish. The high variance of theMonte Carlo estimator
arises because |𝚰| and p do not take high values in the same regions of𝒳. Therefore, it takes
time to explore the “important” regions for |𝚰| by sampling under p. The correct approach is to
sample according to a probability density function proportional to both |𝚰| and p to correct the
mismatch and not favor one over the other.

Warning! Explosive variance

Determining a suitable importance distribution is highly challenging in practice, and it is far
easier to end up with an increase in variance than a reduction in variance compared to a classical
Monte Carlo method. While achieving optimal variance reduction is generally out of reach, the
unwary practitioner may easily find themselves with an estimator of infinite variance7.

example 1 ⋅ Infinite-variance IS estimator

We seek to estimate ℐ = 𝔼p[𝛸]where p(𝑥) = 𝜆𝑒−𝜆𝑥𝟙𝑥≥0 is the p.d.f. of an exponential
random variable with parameter 𝜆 (thus ℐ = 1

𝜆 ). Consider g(𝑥) = 𝜇𝑒−𝜇𝑥𝟙𝑥≥0 the p.d.f. of

6This is precisely the quantity we seek to estimate in the case where 𝚰 has a constant sign.
7The following example comes from the first version of [CD18] on arXiv: https://arxiv.org/abs/

1511.01437v1 but it does not appear on the final version.
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an exponential random variable with parameter 𝜇 as the importance distribution. We have
from eq. (1.34):

𝜎2g = Varg(𝛸
p(𝛸)
g(𝛸) ) − 𝔼g[𝛸

p(𝛸)
g(𝛸) ]

2

= 𝔼p[𝛸
2 p(𝛸)
g(𝛸) ] − 𝔼p[𝛸]

2 ,

= 𝜆
𝜇 𝔼p[𝛸

2𝑒−(𝜆−𝜇)𝛸] − 1
𝜆2

= 𝜆
𝜇 ∫

∞

0
𝑥2𝑒−(2𝜆−𝜇)𝑥 d𝑥 − 1

𝜆2
.

(1.41)

This last integral diverges when 𝜇 ≥ 2𝜆, thus 𝜎2g = +∞ in that case.

The likelihood ratio p/g is more likely to take high values when the proposal g is more concen-
trated or has lighter tails than p.

Application to rare event simulation

The most classical application of importance sampling as a variance reduction method is precisely
the one that concerns us in this thesis: the simulation of rare events. We return to the framework
of section 1.1.2. Letℱ ⊂ 𝒳, and define 𝚰 ∶ 𝑥 ↦ 𝟙𝑥∈ℱ. We aim to estimate the following quantity:

ℐ = 𝔼p[𝚰(𝛸)] = 𝔼p[𝟙𝛸∈ℱ] = ℙp(𝛸 ∈ ℱ). (1.42)

As mentioned earlier, the classical Monte Carlo estimator proves to be inefficient when the
probability ℐ is small. The use of importance sampling is clear: we generate a sample under an
importance distribution g that favors the occurrence of the event. The optimal importance
distribution is proportional to 𝑥 ↦ p(𝑥|𝑥 ∈ ℱ). The event𝛸 ∈ ℱ can often be reformulated
as a threshold crossing 𝑓(𝛸) > 𝑠ℱ

8. It is then necessary to find an importance distribution that
strikes the right balance between pushing observations into the regionℱ and preserving a tail
behavior that decreases like that of p (and certainly not faster!). The problem is extensively
addressed in the literature on industrial reliability, and a recent review can be found in [TJG22].
Let us take the application of the method to the event𝛸 > 𝑠ℱ where𝛸 follows a centered
Gaussian distribution. For example if 𝑠ℱ = 4 and𝛸 ∼ 𝒩(0, 1) then ℐ ≈ 3.16 × 10−5. It is
demonstrated that the best importance distribution among all Gaussians with the same variance
as𝛸 is the one with mean 𝑠ℱ. Table 1.1 presents the values of four independent estimates of ℐ
for a sample size of 10 variables and then for 100 variables. We can see that the right order of
magnitude can be obtained with just a few dozen simulations, whereas at least 1 million would be
needed to achieve the same degree of accuracy with a standardMonte Carlo method. We also
illustrate the method on a less rare case for visualization in fig. 1.1.

8This connects the problem to extreme value theory and large deviations theory
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table 1.1 Results of the estimation of ℙ(𝒩(0, 1) > 4) using importance
sampling with an importance distribution𝒩(4, 1). The exper-
iment is independently repeated 4 times for each of the two sample
sizes: 𝛮 = 10 and𝛮 = 100.

Experiment no. 1 no. 2 no. 3 no. 4

ℐ̂ for𝛮 = 10 1.17 × 10−5 1.79 × 10−5 6.36 × 10−5 2.08 × 10−5

ℐ̂ for𝛮 = 100 3.79 × 10−5 3.44 × 10−5 3.47 × 10−5 2.52 × 10−5

figure 1.1 Importance sampling estimation of ℙ(𝛸 > 𝑠ℱ) with reference
distribution𝒩(0, 4), importance distribution𝒩(𝑠ℱ, 4) and
𝑠ℱ = 3. The estimate is given by the mean value of the weighted
samples, which corresponds to the mean height of the blue bars. It
is not a very rare event but the weighted samples would have been
too large and the red area too small for a clear visualization of the
method with larger 𝑠ℱ.

Self-normalized importance sampling

Importance sampling requires being able to explicitly evaluate the densities p and g at each
sampled point. Sometimes, only unnormalized versions pun = 𝑐pp and gun = 𝑐gg of these
densities are evaluable. The self-normalized importance sampling (SNIS) estimator circumvents
this issue [Owe13, Chapter 9]. Let𝛸1, … , 𝛸𝑛 be an i.i.d. sample from the distribution g, we have:

ℐ̂snis
𝑛 =

∑𝑛
𝑘=1 𝚰(𝛸𝑘)

pun(𝛸𝑘)
gun(𝛸𝑘)

∑𝑛
ℓ=1

pun(𝛸ℓ)
gun(𝛸ℓ)

=
ℐ̂is
𝑛

1
𝑛 ∑𝑛

𝑘=1
p(𝛸𝑘)
g(𝛸𝑘)

. (1.43)

Unlike classical importance sampling, this estimator is biased9, but the bias converges asymptoti-

9A recent variant aimed at reducing this bias can be found in [Car+22].
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cally to zero. Indeed, by the strong law of large numbers, we have:

1
𝑛

𝑛
∑
𝑘=1

p(𝛸𝑘)
g(𝛸𝑘)

a.s.−−−−→𝑛→∞ 𝔼g[
p(𝛸)
g(𝛸) ] = 1, (1.44)

and thus ℐ̂snis
𝑛

a.s.−−−−→𝑛→∞ ℐ.

Multiple importance sampling

Importance sampling can be generalized to the case where multiple importance distributions are
used and combined to construct an estimator for ℐ. This is referred to as multiple importance
sampling (MIS) [VG95]. There are numerous sampling and weighting strategies, most of which
are documented in [Elv+19].
Suppose we have 𝑛 samples. For 𝑖 ∈ ⟦1, 𝑛⟧ each element of the sample (𝛸𝑖,1, … , 𝛸𝑖,𝑛𝑖) is
distributed according to g𝑖. AnMIS estimator is determined by a weighting strategy, i.e., a
sequence of functions (𝑤𝑖)

𝑛
𝑖=1 from𝒳 toℝ+ such that∑

𝑛
𝑖=1 𝑤𝑖(𝑥) = 1 for all 𝑥 ∈ 𝒳. A general

formulation of anMIS estimator is as follows:

ℐ̂mis =
𝑛
∑
𝑖=1

1
𝑛𝑖

𝑛𝑖
∑
𝑘=1

𝑤𝑖(𝛸𝑖,𝑘)𝚰(𝛸𝑖,𝑘)
p(𝛸𝑖,𝑘)
g𝑖(𝛸𝑘)

. (1.45)

This estimator is unbiased:

𝔼[ℐ̂mis] =
𝑛
∑
𝑖=1

1
𝑛𝑖

𝑛𝑖
∑
𝑘=1

𝔼g𝑖[𝑤𝑖(𝛸)𝚰(𝛸)
p(𝛸)
g𝑖(𝛸)

] =
𝑛
∑
𝑖=1

∫
𝒳
𝚰(𝑥)

p(𝑥)
g𝑖(𝑥)

g𝑖(𝑥)𝑤𝑖(𝑥)𝜇(d𝑥)

= ∫
𝒳
𝚰(𝑥)p(𝑥)

𝑛
∑
𝑖=1

𝑤𝑖(𝑥)𝜇(d𝑥) = ℐ. (1.46)

Let us first mention the two most common weighting schemes in MIS.

⋄ We can adopt a classical approach and consider the weight 𝑤𝑖(𝑥) =
1
𝑛 for all 𝑥 ∈ 𝒳 and

all 𝑖 ∈ ⟦1, 𝑛⟧.

⋄ Alternatively, we may consider that the observation𝛸𝑖,𝑘 was not drawn from g𝑖 but from
a mixture of (g𝑗)

𝑛
𝑗=1. We then use the weights 𝑤𝑖(𝑥) =

g𝑖(𝑥)
∑𝑛

𝑗=1 g𝑗(𝑥)
. This weighting scheme

is called the balance heuristic and yields the following estimator:

ℐ̂mis-bh =
𝑛
∑
𝑖=1

1
𝑛𝑖

𝑛𝑖
∑
𝑘=1

𝚰(𝛸𝑖,𝑘)
p(𝛸𝑖,𝑘)

∑𝑛
𝑗=1 g𝑗(𝛸𝑖,𝑘)

. (1.47)

MIS methods are generally more robust than classical importance sampling. They make it easier
to tackle multimodal target distributions using simple importance distributions. They have
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gained popularity, particularly through the work of Eric Veach since the late 1990s, in the field
of computer graphics (image synthesis, ray tracing, etc.)10. In his article [VG95, Theorem 1], he
also proves that the variance of the MIS estimator with balance heuristic cannot be much larger
than the best possible weighting scheme. For anyMIS estimator ℐ̂mis with weighting scheme
𝑤1, … , 𝑤𝑛, the following bound holds:

Var(ℐ̂mis-bh) ≤ Var(ℐ̂mis) + ( 1
min(𝑛𝑖)

𝑛
𝑖=1

− 1
∑𝑛

𝑖=1 𝑛𝑖
)ℐ2. (1.48)

The balance heuristic still serves as a reference [Pap+19], but can be too conservative. Numerous
recent works attempt to generalize and surpass it [Elv+19; SE22], allowing for negative weights
[HO14], optimizing weights [SS23; Kar+19], drawing more from certain g𝑘 [SHS16; SHS18], or
incorporating information via estimated variances [Gri+19]. Also noteworthy is a generalization
to a continuum of importance densities [Wes+20].

1.3.2 Adaptive procedures

Determining a good importance distribution (in terms of the variance of the generated IS
estimator) is a complex task. Combining several distributions, as seen with theMIS method,
reduces the risk of exploding variance but does not necessarily lead to a drastic reduction. The
most commonly used approach in importance learning nowadays is sequential: the importance
distribution is updated throughout the simulations to better approximate the target distribution.
This is known as adaptive importance sampling (AIS).
For a given family of importance distributions 𝒢, the process is as follows. At iteration ℓ =
1, … , 𝐿:

(i) Sampling step: draw a sample according to g(ℓ) ∈ 𝒢.

(ii) Adaptation step: determine a new distribution g(ℓ+1) ∈ 𝒢most often based on the
drawn sample.

After a certain number of iterations 𝐿, we should have an effective importance distribution g(𝐿)

that can be used for importance sampling estimation.
There are a large number of variants, including the choice of the proposal distribution family,
sampling strategy (sample size per iteration, MIS, number of iterations), and adaptation strategy
(updating the used importance distribution). Here, we provide the basics of the main methods
and refer interested readers to [Bug+17] for a comprehensive review. More specific aspects, such
as the convergence of recycling schemes of past samples [MPS19; DP18], will be addressed in the
chapter 4.

10Eric Veach’s doctoral research on theMIS method was even honored with a technical Oscar in 2014 for
”foundational research on efficient Monte Carlo path tracing for image synthesis.”
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Empirical variance minimization

The most natural idea is undoubtedly to directly search for the distribution g ∈ 𝒢 that minimizes
the expected variance of the IS estimator [Buc04, Chapter 14], [RK16, Chapter 5.7].
Suppose that at iteration ℓ, we observe a sample𝛸1, … , 𝛸𝑛 under an importance distribution
g(ℓ) ∈ 𝒢. For any other importance distribution g ∈ 𝒢, we have:

𝜎2g + ℐ
2 = 𝔼g[𝚰(𝛸)

2 p(𝛸)2

g(𝛸)2
] = 𝔼g(ℓ)[𝚰(𝛸)

2 p(𝛸)2

g(𝛸)2
g(𝛸)
g(ℓ)(𝛸)

]

= 𝔼g(ℓ)[𝚰(𝛸)
2 p(𝛸)
g(𝛸)

p(𝛸)
g(ℓ)(𝛸)

]

≈ 1
𝑛

𝑛
∑
𝑘=1

𝚰(𝛸𝑘)
2 p(𝛸𝑘)
g(𝛸𝑘)

p(𝛸𝑘)
g(ℓ)(𝛸𝑘)

. (1.49)

Thus we can “improve” the quality of the next sample by chosing a new proposal g(ℓ+1) :

g(ℓ+1) ∈ argmin
g∈𝒢

𝑛
∑
𝑘=1

𝚰(𝛸𝑘)
2 p(𝛸𝑘)
g(𝛸𝑘)

p(𝛸𝑘)
g(ℓ)(𝛸𝑘)

. (1.50)

To solve the optimization problem eq. (1.50), one typically considers a parametric family of
importance distributions 𝒢 = (g𝜃)𝜃∈Θ differentiable with respect to 𝜃 ∈ Θ ⊂ ℝ𝑑Θ . The
optimization problem eq. (1.50) is then solved using gradient descent to find a zero of the
function:

𝜃 ⟼
𝑛
∑
𝑘=1

𝚰(𝛸𝑘)
2 p(𝛸𝑘)

2

g(ℓ)(𝛸𝑘)
∇𝜃g𝜃(𝛸𝑘)
g𝜃(𝛸𝑘)2

. (1.51)

The main drawback of this method is its instability. It tries to improve the quality of the next
sample by relying on the current sample. If the current sample is of poor quality, the solution to
eq. (1.50) can be a very poor candidate for minimizing 𝜎2𝑔 . Initialization is crucial. Moreover, we
minimize a variance estimated by importance sampling, which involves a product of likelihood
ratio, increasing the instability of the estimation11.

Cross entropy minimization

The most popular alternative to empirical variance minimization is the so-called “Cross entropy”
method [RK04]. Instead of anticipating the variance of the estimator, it seeks the importance
distribution closest to the target distribution g∗ in terms of Kullback-Leibler (KL) divergence12.

11As we will see in section 1.3.3, likelihood ratios are subject to a degeneracy phenomenon that makes IS
estimators unstable.

12The KL divergence is also called “Cross entropy” divergence, hence the method’s name.
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definition 2 ⋅ Kullback-Leibler divergence

The KL divergence of two distributions characterized by p.d.f. p and g on𝒳 is given by:

𝒟KL(p‖g) = 𝔼p[log(
p(𝛸)
g(𝛸) )] (1.52)

The KL divergence quantifies the proximity between two distributions but it is not a distance
(hence the term “divergence”) since it is not symmetric. Nevertheless it verifies the following
property.

proposition 7 ⋅ Kullback-Leibler nonnegativity

For any pair of p.d.f. p and gwith respect to a dominant measure 𝜇we have:

⋄ 𝒟KL(p‖g) ≥ 0,

⋄ 𝒟KL(p‖g) = 0 ⟺ p(𝑥) = g(𝑥) for 𝜇-a.e. 𝑥 ∈ 𝒳.

Proof. ⋄ Recall that log 𝑥 ≤ 𝑥 − 1 for all 𝑥 > 0. Indeed, 𝑥 ↦ log(𝑥) − 𝑥 + 1 is a concave function
whose derivative vanishes at 1, and therefore, it is bounded above by log(1) − 1 + 1 = 0. Let us
apply this inequality to −𝒟KL (p‖g) :

−𝒟KL (p‖g) = ∫
𝒳
p(𝑥) log(

g(𝑥)
p(𝑥) )𝜇(d𝑥) ≤ ∫

𝒳
p(𝑥)(

g(𝑥)
p(𝑥) − 1)𝜇(d𝑥) (1.53)

And thus:
𝒟KL (p‖g) ≥ −(∫

𝒳
g(𝑥)𝜇(d𝑥) −∫

𝒳
p(𝑥)𝜇(d𝑥)) = 1 − 1 = 0. (1.54)

⋄ Since log 𝑥 = 𝑥 − 1 if and only if 𝑥 = 1, we have𝒟KL (p‖g) = 0 if and only if g(𝑥)
p(𝑥) = 1 for 𝜇-a.e.

𝑥 ∈ 𝒳. This gives us the desired result.
�

We are once again in the parametric framework 𝒢 = (g𝜃)𝜃∈Θ and we aim to determine the
parameter 𝜃∗ minimizing 𝜃 ↦ 𝒟KL (g

∗‖g𝜃). The following calculations explain the choice of this
specific divergence13. It is possible to estimate an unbiased objective function equivalent to the
KL divergence from a sample𝛸1, … , 𝛸𝑛 distributed according to any proposal g.

13It is worth adding that the KL divergence plays a central role in information theory and has many other
interesting properties. An example of interpretation: the value of 𝜃 that minimizes an unbiased estimator of
𝒟KL (g

∗‖g𝜃)with observations distributed under g
∗ is the maximum likelihood estimator.
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argmin
𝜃∈Θ

𝒟KL (g
∗‖g𝜃) = argmin

𝜃∈Θ
𝔼g∗[log g

∗(𝛸)] − 𝔼g∗[log g𝜃(𝛸)]

= argmax
𝜃∈Θ

𝔼g∗[log g𝜃(𝛸)]

= argmax
𝜃∈Θ

𝔼p[|𝚰(𝛸)| log g𝜃(𝛸)]

= argmax
𝜃∈Θ

𝔼g[|𝚰(𝛸)|
p(𝛸)
g(𝛸) log g𝜃(𝛸)].

(1.55)

This provides us with the following adaptation strategy. At each iteration ℓ, we have an impor-
tance distribution g(ℓ) ∶= g𝜃(ℓ) , and we apply the two-step procedure:

(i) Sampling step: generate𝛸(ℓ)
1 , … , 𝛸(ℓ)

𝑛 ∼ g(ℓ).

(ii) Adaptation step: solve

𝜃(ℓ+1) ∈ argmax
𝜃∈Θ

𝑛
∑
𝑘=1

|𝚰(𝛸𝑘)|
p(𝛸𝑘)
g(ℓ)(𝛸𝑘)

log g𝜃(𝛸𝑘). (1.56)

A clear advantage over empirical variance minimization is the presence of only one likelihood
ratio in the objective function estimation: the second likelihood ratio in eq. (1.50) is replaced by
log g𝜃 in eq. (1.56).

Another reason for the popularity of this method is given by the following result [KR04]:

proposition 8 ⋅ Explicit minimization of CE for exponential families

Suppose the proposal belongs to a natural exponential family (NEF) [ML09], i.e., there
exist known functions 𝑥 ↦ ℎ(𝑥), 𝑥 ↦ 𝛵(𝑥), 𝜃 ↦ 𝜂(𝜃), and 𝜃 ↦ 𝛢(𝜃) such that:

g𝜃(𝑥) = ℎ(𝑥) exp[⟨𝜂(𝜃), 𝛵(𝑥)⟩ − 𝛢(𝜃)]. (1.57)

Then the optimization problem eq. (1.50) has an explicit solution.

Proof. First, we note that the gradient of the proposal is:

∇𝜃 log 𝑔𝜃(𝑥) = 𝛵(𝑥) − ∇𝜃𝛢(𝜃). (1.58)
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We deduce that:

∇𝜃
𝑛
∑
𝑘=1

|𝚰(𝛸𝑘)|
p(𝛸𝑘)
g(ℓ)(𝛸𝑘)

log g𝜃(𝛸𝑘) = 0 (1.59)

⟺
𝑛
∑
𝑘=1

|𝚰(𝛸𝑘)|
p(𝛸𝑘)
g(ℓ)(𝛸𝑘)

[𝛵(𝛸𝑘) − ∇𝜃𝛢(𝜃)] = 0 (1.60)

⟺ ∇𝜃𝛢(𝜃) =
∑𝑛

𝑘=1 |𝚰(𝛸𝑘)|
p(𝛸𝑘)
g(ℓ)(𝛸𝑘)

𝛵(𝛸𝑘)

∑𝑛
𝑘=1 |𝚰(𝛸𝑘)|

p(𝛸𝑘)
g(ℓ)(𝛸𝑘)

. (1.61)

�

Exponential families encompass a wide range of common distributions but exclude certain
heavy-tailed distributions, such as Student’s t-distributions, which are valuable for impor-
tance sampling. A recent article [GCE23] considers an extension that includes Student’s
t-distributions: the 𝜆-exponential family. It demonstrates that for these families, one can ex-
plicitly solve the minimization problem of an 𝛼-Rényi divergence [Rén61], of which the KL
divergence is a special (limit) case.

Multilevel cross entropy

In rare event simulation, with 𝚰(𝛸) = 𝟙𝑓(𝛸)>𝑠ℱ , one either needs to generate a very large number
of variables in the first iteration to ensure that at least one realizes the event of interest, or
initialize the Cross Entropy method with a good importance distribution from the start. A
refinement of the method called “multilevel Cross Entropy” (mCE) has been proposed to address
this situation (it is detailed in [KR04; RK16; De +05]).
The idea is as follows: instead of seeking an importance distribution adapted to the estimation of
ℙp(𝑓(𝛸) > 𝑠ℱ) at each iteration, we set intermediate thresholds 𝛾1, … , 𝛾𝛵 ≤ 𝑠ℱ that are easier to
reach. At iteration ℓ, we seek:

𝜃(ℓ+1) ∈ argmax
𝜃∈Θ

𝑛
∑
𝑘=1

𝟙𝑓(𝛸𝑘)>𝛾ℓ
p(𝛸𝑘)
g(ℓ)(𝛸𝑘)

log g𝜃(𝛸𝑘). (1.62)

This allows distributing the effort across iterations. There exists a sequential procedure for setting
these thresholds. Given a sample𝛸1, … , 𝛸𝑛, let 𝑌𝑘 = 𝑓(𝛸𝑘) for all 𝑘 ∈ ⟦1, 𝑛⟧, and 𝑌(𝑘) denote the
𝑘-th order statistic. Let 𝜌 ∈ [0, 1], and the following rule is applied:

𝛾ℓ = min(𝑠ℱ, 𝑌(⌈(1−𝜌)𝑛⌉)). (1.63)

Thus, at each iteration, we determine the most suitable importance density within our family 𝒢
to estimate the probability of achieving better than a proportion (1 − 𝜌) of the observed draws.
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This principle also allows the construction of original optimization methods (especially combi-
natorial optimization) [Bot+13]. When seeking to maximize a function 𝚰, random points can
be drawn, and the multilevel Cross entropy method can be used to sequentially determine an
importance distribution that draws points for which 𝚰 takes increasingly higher values.
Finally, a drawback of the method is the lack of smoothness of the indicator function 𝟙𝑓(𝛸)>𝛾.
It introduces threshold effects (a distribution adapted to the event 𝑓(𝛸) > 𝛾may be unable to
achieve the event 𝑓(𝛸) > 𝛾 + 𝜀), and implies using only a fragment of the simulated variables.
An alternative version of theMultilevel Cross entropy method, called the improved Cross
entropy method (iCE), has been proposed in [PGS19]. It replaces the indicator with a smoother
function: 𝛪𝛾(𝛸) = Φ(− 𝑠ℱ−𝑓(𝛸)

𝛾 )withΦ being the cumulative distribution function of a
standard normal distribution. We have 𝛪𝛾(𝛸) ⟶

𝛾→0
𝟙𝑓(𝛸)>𝑠ℱ . The hyperparameter 𝛾 is not

updated using quantiles this time but is chosen as small as possible such that the anticipated
coefficient of variation is below a fixed threshold 𝛿target :

𝛾ℓ = argmin
𝛾∈(0,𝛾ℓ−1)

(
�̂�𝑔(𝛾)

ℐ̂is
𝑛 (𝛾)

− 𝛿target)
2

. (1.64)

Non parametric adaptive importance sampling

Tomake the parametric approaches described so far work, one needs either a good intuition
about the form of the parametric family used or a family of very high dimension. However,
the latter confronts us with other problems, as described in section 1.3.3. Nonparametric
approaches, inspired by traditional density estimation methods in statistics, have been proposed
to overcome the problem.
When referring to nonparametric adaptive importance sampling (NAIS), we generally mean an
approach introduced in the 1990s based on a kernel density estimation (KDE), also called kernel
smoothing [WJ94]. In its simplest version [AAT92], the importance density used at iteration
ℓ + 1 is constructed from a sample𝛸1, … , 𝛸𝑛 from distribution g(ℓ):

g(ℓ+1)(𝑥) ∶= 1
𝑛

𝑛
∑
𝑘=1

𝚰(𝛸𝑘)
p(𝛸𝑘)
g(ℓ)(𝛸𝑘)

𝛫H(𝑥 − 𝛸𝑘), (1.65)

where𝛫𝚮 is most often a Gaussian kernel (i.e., the density of a multivariate Gaussian distribution
with mean zero and covariance matrix𝚮). There are many refinements by varying the kernel
[Ned09], sequentially adjusting its hyperparameters [GR96], and estimating the importance
density using all past samples [Zha96]. Note that the use of kernels is proposed in a generalized
version of the Cross entropy method [BK11].
Finally, recent advances in machine learning and deep learning methods provide excellent tools
for approximating nonlinear functions in high dimensions. The family of non-parametric
importance sampling methods thus includes techniques based on kriging [BMM13; ZWS20],
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support vector machines [LL21], variational autoencoders [Dem+23], and normalizing flows
[Mül+19; DJ24].

1.3.3 Curse of dimensionality

Like many methods in applied mathematics, importance sampling is not immune to the curse of
dimensionality. Determining an effective importance distribution in high-dimensional spaces is
extremely challenging. This is not surprising in the context of AIS methods because either the
family 𝒢 is not flexible enough to approximate the target distribution, or it is, but the adaptation
step becomes impractical with the allowed sample sizes. However, the major issue remains
the phenomenon of weight degeneracy, which can occur even in low dimensions but appears
inevitable as the dimension increases.

Degeneracy of the weights

When the importance distribution differs too much from the target distribution, especially in the
tails of the distribution, we observe a phenomenon called weight degeneracy. This is a situation
where the overwhelming majority of likelihood ratios of simulated variables are close to 0, and
only a few carry most of the weight. This inevitably increases the estimator’s variance since we
find ourselves in a situation similar to the rare event case: we waste the majority of simulations
and assign disproportionate weight to a few observations that are not representative of the target
distribution if we have not generated enough variables. Here is a simple example from [RK16,
Section 5.7] where this situation occurs.

example 2 ⋅ Degeneracy of the weights for vectors with i.i.d. coordinates

We are interested in the behavior of the variable p(𝛸)
g(𝛸) when𝛸 ∼ g. We assume that

𝛸 ∈ ℝ𝑑 and that p(𝛸) = ∏𝑑
𝑖=1 𝑝(𝛸𝑖) and g(𝛸) = ∏𝑑

𝑖=1 𝑔(𝛸𝑖). On the one hand,
independently of the dimension 𝑑:

𝔼g[
p(𝛸)
g(𝛸) ] = ∫

ℝ𝑑
p(𝑥) 𝜇(d𝑥) = 1. (1.66)

On the other hand:

p(𝛸)
g(𝛸) =

𝑑
∏
𝑖=1

𝑝(𝛸𝑖)
𝑔(𝛸𝑖)

= exp[
𝑑
∑
𝑖=1

log(
𝑝(𝛸𝑖)
𝑔(𝛸𝑖)

)]. (1.67)
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By the law of large numbers, for large 𝑑, we have the approximation:

𝑑
∑
𝑖=1

log(
𝑝(𝛸𝑖)
𝑔(𝛸𝑖)

) ≈ 𝑑 𝔼g[log(
𝑝(𝛸1)
𝑔(𝛸1)

)] = −𝑑 𝔼g[log(
𝑔(𝛸1)
𝑝(𝛸1)

)] < 0. (1.68)

The last inequality follows from the positivity of the Kullback-Leibler divergence. We
finally deduce that:

p(𝛸)
g(𝛸) ≈ exp(−𝑑 𝔼g[log(

𝑔(𝛸1)
𝑝(𝛸1)

)]) −−−−→
𝑑→∞

0. (1.69)

The paradox in example 2 is that the weights tend to zero as the dimension increases, while
their mean value remains 1. This implies that in high dimensions, a few weights will take very
large values to compensate for the others. The phenomenon can be observed in fig. 1.2, a
specific numerical application of example 2 inspired by [BBL08]. The reference distribution
p and the importance distribution are both multivariate Gaussian of dimension 𝑑with an
identity covariance matrix. The mean is zero everywhere for the p distribution and equal to 0.1
everywhere for the g distribution. We depict the histogram of the ratio p

g for several values of 𝑑,
and we observe weights that collapse toward 0while their empirical mean remains close to 1.

Stabilization of importance sampling

Several approaches aim to modify the weights, the target distribution, or the arrangement of
proposals to stabilize the IS estimator.
The most well-knownmethod is probably the truncated importance sampling method [Ion08],
also called clipping [Mar+18]. It belongs to a broader class of methods known as nonlinear im-
portance sampling (NIS) [Míg17; MMV18], which involves applying a nonlinear transformation
to the importance weights to prevent their degeneracy. By normalizing the transformed weights,
an estimator with asymptotically vanishing bias is obtained. Clipping applies the transformation
𝑤 ↦ min(𝑤, 𝑠), where 𝑠 is a threshold set in advance or based on the data, to each weight. This
prevents a small number of weights from being much larger than the others. A smoother version
of clipping is presented in [Veh+15].
Another family of approaches can be grouped under the name tempering [APB22]. In its
simplest version, it involves replacing the target distribution 𝑔∗(𝑥)with 𝑔∗(𝑥)𝛽 with 𝛽 < 1. The
new target distribution is then “flattened” making it easier to approximate (and the likelihood
ratios are less sensitive to small variations in 𝑥). The power 𝛽 can be fixed or evolve sequentially.
This philosophy might bring to mind a weighted likelihood method [HZ02] to give less weight to
the data, simulated annealing [DCM19] and distribution interpolation [ABV23] to connect a
simple pseudo-target distribution to a complex target distribution.
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figure 1.2 Histogram of likelihood ratios between two multivariate
Gaussian variables for different values of the dimension 𝑑.
Reference distribution: ⨂𝑑

𝑖=1𝒩(0, 1). Importance distribu-
tion: ⨂𝑑

𝑖=1𝒩(0.1, 1). Sample size of 104 in the four cases.
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It is often considered good practice to include the reference distribution p as a component of
a mixture for static importance sampling (in this case, MIS) or as a member of the family 𝒢 in
AIS to achieve at least the performance of classical Monte Carlo. This is known as defensive
importance sampling [Hes95]. It is worth noting that a mixture g𝜆 = 𝜆p+(1−𝜆)g upper-bounds
the likelihood ratio:

p(𝑥)
g𝜆(𝑥)

≤
p(𝑥)
𝜆p(𝑥) = 1

𝜆 . (1.70)

This stabilization strategy for importance sampling using a mixture has been generalized into
“safe importance sampling” [OZ00; DP21].
Many recent works propose new, more advanced methods to overcome the dimensionality
challenge. Notably, there are dimensionality reduction methods employing projection into
lower-dimensional subspaces [EMS21a; EMS21b; Uri+21; Ehr+23]. Other approaches suggest
more efficient non-informed proposals in high dimensions compared to Gaussian mixtures
(which are strongly discouraged beyond 𝑑 > 50), such as vonMises-Fisher mixtures [WS16;
PGS19].
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chapter 2

Piecewise deterministic
Markov processes

The central mathematical object of this thesis is the PDMP (piecewise deterministic
Markov process). The aim of this chapter is to provide the reader with all the notions
about PDMPs needed to fully understand the contributions of this thesis. A PDMP is
a non-diffusive continuous-time jump stochastic process. Its specificity (which actually
makes it a very general process) is its hybrid behavior. On the one hand, it takes values on
a space composed of a continuous part and a discrete part. On the other hand, it evolves
according to a deterministic dynamics between jumps, and jumps both at random and
deterministic times. This behavior is actually quite intuitive for readers familiar with
inhomogeneous Poisson processes. We first recall the basics of these processes (which are
special cases of PDMPs), before addressing the essential characteristics of PDMPs. Finally,
we propose classical approaches for simulating PDMP trajectories.
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2.1 Poisson process

In this section, we introduce the fundamentals of Poisson processes onℝ+. The intuition
behind these processes is simple. Events occur successively at random times. The counting
process associated with these events provides, at each instant 𝑡 > 0, the number of events already
observed up to time 𝑡. A Poisson process is a counting process associated with events whose
occurrence times are mutually independent. We refer to a simple Poisson process (also called
homogeneous or stationary) if the probability of observing an event in a given time interval is
identical for any other interval of the same length. Otherwise, the Poisson process is said to be
inhomogeneous or non-stationary.
Beyond modeling numerous physical, biological, or social phenomena, Poisson processes also
describe the mechanics of jump times occurring in piecewise deterministic Markov processes at
the heart of this thesis.

2.1.1 Introduction to Markovian jump processes

A stochastic process is a collection of random variables with values in a given state space, usu-
ally (but not necessarily) indexed by time. A stochastic process indexed by time is said to be
Markovian when it satisfies a memoryless property: the distribution of its future states given
current and past states only depends on the current state. The randomness of continuous-time
Markovian stochastic processes can manifest itself in two ways: continuously at every instant of
the trajectory (these are referred to as diffusion processes), and punctually at given instants of the
trajectory (these are known as jump processes). AMarkov process can exhibit both diffusive and
jump characteristics. In the context of this thesis, we focused on piecewise deterministic Markov
processes, a class that encompasses all non-diffusive Markov processes. We will, therefore, leave
diffusion processes aside and concentrate onMarkovian pure jump processes.

definition 3 ⋅ Stochastic process

Let ℑ be an abstract index set. A stochastic process indexed on ℑ is a collection of random
variables (𝛸𝑡)𝑡∈ℑ from a probability space (Ω,ℱ, ℙ) to a measurable space (𝒳,𝒳).

Only stochastic processes indexed by time will be considered in the following. Thus ℑ is a totally
ordered set representing time and inf (ℑ) = 0 (so𝛸0 is the initial state of the stochastic process
(𝛸𝑡)𝑡∈ℑ). If ℑ is a countable set (typicallyℕ), then (𝛸𝑡)𝑡∈ℑ is a discrete-time stochastic process. If
ℑ = [0, 𝑎)with 𝑎 ∈ ℝ+ ∪ {+∞}, then (𝛸𝑡)𝑡∈ℑ is a continuous-time stochastic process. We will
also adopt the following notation conventions:

⋄ for any 𝛣 ⊆ ℑ, we note𝛸𝛣 = (𝛸𝑡)𝑡∈𝛣,
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⋄ uppercase variables are used for random variables (or processes) and lowercase variables
for fixed realizations.

In order to more easily express the conditioning of a random variable with respect to the past of
the process, we also introduce the definition of a filtration.

definition 4 ⋅ Filtration

Let (ℱ𝑡)𝑡∈ℑ be a collection of sub-𝜎-algebras ofℱ. The collection (ℱ𝑡)𝑡∈ℑ is called a
filtration if it is non-decreasing in terms of set inclusion: ℱ𝑠 ⊆ ℱ𝑠+𝑡 for any 𝑠, 𝑡 ∈ ℑ.
Equipped with this filtration, the probability space (Ω,ℱ, (ℱ𝑡)𝑡∈ℑ, ℙ) is called a filtered
probability space.

example 3 ⋅ Natural filtration of the process

For any 𝑠 ∈ ℑ, letℱ𝑠 be the 𝜎-algebra generated by the process until time 𝑠 (included), i.e.:

ℱ𝑠 ∶= 𝜎 (𝛸[0, 𝑠]) = 𝜎({𝛸−1
𝑡 (𝛢𝑡) ∶ 𝛢𝑡 ∈ 𝒳, 𝑡 ≤ 𝑠}) . (2.1)

Then (ℱ𝑡)𝑡∈ℑ is a filtration and is called the natural filtration ofℱwith respect to𝛸ℑ. We
also noteℱ𝑠− ∶= 𝜎 (𝛸[0, 𝑠)) the 𝜎-algebra generated by the process before time 𝑠.

Markov property

A stochastic process is said to be Markovian if it verifies the following memoryless property.

definition 5 ⋅ Markov property

The process𝛸ℑ is Markovian if, for any 𝛣 ∈ 𝒳 and any 𝑠, 𝑡 such that 𝑠, 𝑠 + 𝑡 ∈ ℑ, it verifies:

ℙ(𝛸𝑠+𝑡 ∈ 𝛣 |ℱ𝑠) = ℙ(𝛸𝑠+𝑡 ∈ 𝛣 |𝛸𝑠) . (2.2)

An alternative formulation is the following, for any bounded measurable function
𝑓 ∶ 𝒳 → ℝ, we have:

𝔼[𝑓(𝛸𝑠+𝑡) ∣ℱ𝑠] = 𝔼[𝑓(𝛸𝑠+𝑡) ∣𝛸𝑠] . (2.3)

In other words, knowing the value of𝛸𝑠 gives us the same insight into the future state distri-
bution as having complete knowledge of the entire process history up to time 𝑠. Although this
property might appear restrictive at first glance, it is often feasible to consider an analogous
process that satisfies it on an extended version of the state space𝒳. This extension is chosen
such that each state encompasses the necessary information from previous states that makes the
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distribution of the next state explicit. Here is a very simple example with an autoregressive model
of order 2.

example 4 ⋅ Autoregressive model AR(2)

Let 𝑎0, 𝑎1, 𝑎2 ∈ ℝ and (𝜀𝑛)𝑛∈ℕ be a sequence of i.i.d. standard Gaussian variables𝒩(0, 1).
We define (𝛸𝑛)𝑛∈ℕ the autoregressive model of order 2 (denoted byAR(2)) satisfying for
any 𝑛 ≥ 2 :

𝛸0 = 𝑎0 + 𝜀0,

𝛸1 = 𝑎0 + 𝑎1𝛸1 + 𝜀1,

𝛸𝑛 = 𝑎0 + 𝑎1𝛸𝑛−1 + 𝑎2𝛸𝑛−2 + 𝜀𝑛.

(2.4)

The process𝛸ℕ is obviously not Markovian since the distribution of the state𝛸𝑛+1
given (𝛸𝑘)𝑘≤𝑛, also relies on𝛸𝑛−1 (and not only𝛸𝑛) for any 𝑛 ≥ 2. However, the process
(𝑌𝑛)𝑛∈ℕ∗ with values inℝ2 and defined by 𝑌𝑛 = (𝛸𝑛, 𝛸𝑛−1) for 𝑛 ≥ 1, is Markovian.

Another example of such extension of the state space is the time-augmented process where
the elapsed time completes the state variable𝛸. This trick will be used several times in this
manuscript.

definition 6 ⋅ Time-augmented process

Let (𝛸𝑡)𝑡∈ℑ be a stochastic process with values in a state space𝒳 and indexed by time
in a set ℑ. The time-augmented process associated with (𝛸𝑡)𝑡 is the stochastic process
(𝛸𝑡, 𝑡)𝑡∈ℑ with values in𝒳 × ℑ.

A specific case of Markov processes that is simpler to study is the time-homogeneous case
(sometimes simply referred to as ”homogeneous”).

definition 7 ⋅ Time-homogeneous process

The stochastic process𝛸ℑ is said time-homogeneous if it is Markovian and the distribu-
tion of its future states does not depends on elapsed time, i.e. for any 𝛣 ∈ 𝒳, any 𝑥 ∈ 𝒳
and any 𝑠, 𝑡 such that 𝑠, 𝑠 + 𝑡 ∈ ℑwe have:

ℙ (𝛸𝑠+𝑡 ∈ 𝛣 ∣ 𝛸𝑠 = 𝑥) = ℙ (𝛸𝑡 ∈ 𝛣 ∣ 𝛸0 = 𝑥) (2.5)

Under the right conditions, the distribution of successive states of a homogeneousMarkov
process can be characterised by operators whose properties are very useful in practice (semigroup,
infinitesimal generator, etc.). A process can generally be made homogeneous by considering
the associated time-augmented process, but at the cost of making the state space more complex
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(especially if𝒳 is finite or countable whereas ℑ is continuous).

Strong Markov property

TheMarkov property holds that the distribution of states of the process after a fixed date 𝑠 ∈ ℑ
given all the past of the process up to that date depends only on the state of the process at time 𝑠.
Under the right conditions, this property can be extended to the case of a random date 𝜏. This is
known as the strongMarkov property. This random date must be a stopping time for the filtered
probability space.

definition 8 ⋅ Stopping time

A random variable 𝜏, with values in ℑ, is called a stopping time with respect to the
filtration (ℱ𝑡)𝑡∈ℑ if for any 𝑡 ∈ ℑ:

{𝜏 ≤ 𝑡}  ∈ ℱ𝑡 . (2.6)

To condition a process on all its past before stopping time 𝜏, we define the 𝜎-algebra on
𝜏-past:

ℱ𝜏 = {𝛢 ∈ ℱ∞ ∶ ∀ 𝑡 ∈ ℑ, 𝛢 ∩ {𝜏 ≤ 𝑡} ∈ ℱ𝑡}, (2.7)

withℱ∞ = 𝜎(∪𝑡∈ℑℱ𝑡).

definition 9 ⋅ Strong Markov property

The process𝛸ℑ is a strongMarkov process if, for any stopping time 𝜏with respect to the
filtration (ℱ𝑡)𝑡∈ℑ, any time 𝑡 ∈ ℑ and any 𝛣 ∈ 𝒳, it verifies:

ℙ(𝛸𝜏+𝑡 ∈ 𝛣 |ℱ𝜏) = ℙ(𝛸𝜏+𝑡 ∈ 𝛣 |𝛸𝜏) . (2.8)

An alternative formulation is the following, for any bounded measurable function
𝑓 ∶ 𝒳 → ℝ, we have:

𝔼[𝑓(𝛸𝜏+𝑡) ∣ℱ𝜏] = 𝔼 [𝑓(𝛸𝜏+𝑡) ∣𝛸𝜏] . (2.9)

Put simply, the distribution of the future states of a strongMarkov process after a stopping time
𝜏 depends neither on the past of the process before 𝜏 (as in the classical Markov property), nor on
the value of 𝜏 itself (conditioning on𝛸𝜏). All discrete-timeMarkov processes (ℑ countable) are
strongMarkov processes. It is trickier for continuous-time processes. An example of a Markov
process that is not strongMarkov is given in [FG13, Problem 13 pp. 626–627, Chapter 31]1.

1The example is given in [FG13] as an exercise. The interested reader can find a solution in the Stochastic
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Jump times of a Markovian jump process

A pure jump process is a process in which randomness only occurs at specific time points along
its trajectory, causing events called jumps. These jumps trigger a change in the state of the process.
The distribution of a pure jump process is therefore entirely characterised by the distribution of
its jump times and the distribution of its state after each jump. If the jump process is Markovian,
then the distribution of the next jump time relies only on the current state of the process and not
on past states. In particular, conditioning on the current state, it does not depend on the time
elapsed since the previous jump. Thus, not all distributions are permitted.

example 5 ⋅ A non-Markov jump process

Let (𝛸𝑡)𝑡∈ℝ+
be a time-continuous jump process with values inℕ. Let 𝛵0, 𝛵1, … be

i.i.d. random variables with uniform distribution on [0, 1], and for any 𝑛 ∈ ℕ∗, let
𝑆𝑛 = 𝑆𝑛−1 +𝛵𝑛−1 be the time of the 𝑛-th jump (with 𝑆0 = 0). The process (𝛸𝑡)𝑡∈ℝ+

starts at
𝛸0 = 0, is constant between jumps and increments by 1 after each jump. In other words,
for any 𝑠, 𝑡 ∈ ℝ+,𝛸𝑠+𝑡 − 𝛸𝑠 counts the number of jumps occurred in interval (𝑠, 𝑠 + 𝑡]:

𝛸0 = 0 ,

𝛸𝑠+𝑡 = 𝛸𝑠 +
∞
∑
𝑛=1

𝟙𝑆𝑛∈(𝑠, 𝑠+𝑡] .
(2.10)

The process𝛸ℝ+ is not Markovian. Indeed, the distribution of the next jump time
knowing the past of the trajectory up to the current state depends on the time of the last
jump and therefore not only on the current state. Let 𝑠, 𝑡 > 0, 𝜀 ∈ (0, min(𝑠, 1)) and let
𝑛 ∈ ℕ∗. On the one hand, we have:

ℙ(𝛸𝑠+𝑡 = 𝑛 + 1 |𝛸𝑠 = 𝑛, 𝑆𝑛 = 𝑠 − 𝜀) = ℙ(𝛵𝑛 ≤ 𝑡 + 𝜀 | 𝛵𝑛 > 𝜀) ,

=
𝐹𝛵𝑛(𝑡 + 𝜀) − 𝐹𝛵𝑛(𝜀)

1 − 𝐹𝛵𝑛(𝜀)
,

= min( 𝑡
1 − 𝜀 , 1) ,

(2.11)

with 𝐹𝛵𝑛 ∶ 𝑥 ∈ ℝ ↦ min(1,max(0, 𝑥)) the c.d.f. of 𝛵𝑛 ∼ Unif([0, 1]). On the other
hand, ℙ(𝛸𝑠+𝑡 = 𝑛 + 1 |𝛸𝑠 = 𝑛) cannot be a function of 𝜀.

Let us now assume that the waiting times between jumps from example 5 are drawn i.i.d.
according to an exponential distribution with parameter 𝜆 > 0 instead of a uniform distribution
on [0, 1]. We note 𝐹 ∶ 𝑥 ∈ ℝ ↦ 1 − 𝑒−𝜆𝑥𝟙𝑥≥0 their c.d.f. The memoryless property of the

Processes (Advanced Probability II) course from Cosma Shalizi’s website: Example 167 pp. 96, Chapter 13. Strong
Markov, Martingales.
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exponential distribution leads to the following consequence in eq. (2.11):

ℙ(𝛸𝑠+𝑡 = 𝑛 + 1 |𝛸𝑠 = 𝑛, 𝑆𝑛 = 𝑠 − 𝜀) = 𝐹(𝑡 + 𝜀) − 𝐹(𝜀)
1 − 𝐹(𝜀)

= 1 − 𝑒−𝜆𝑡 . (2.12)

The distribution of the waiting time before the next jump no longer depends on 𝜀 and therefore
on the time already waited since the previous jump. The jump process is thenMarkovian, and
more precisely in that case, a simple Poisson process.

2.1.2 The simple Poisson process

A Poisson process is a counting process, i.e. an increasing, continuous-time stochastic process
(𝛮𝑡)𝑡∈ℝ+

with values inℕ. Events are assumed to occur punctually. The process counts the
number of events occurring over time. In particular, for any 𝑠, 𝑡 ∈ ℝ+,𝛮𝑠+𝑡 −𝛮𝑠 represents the
number of events that occur in the time interval (𝑠, 𝑠 + 𝑡]. In the case of Poisson processes, this
number of events follows a Poisson distribution (hence the name). One key property of a Poisson
process is its Markovian nature: the distribution of the number of events occurred in the time
interval (𝑠, 𝑠 + 𝑡] does not depend on what happened up to time 𝑠. It can also be seen and more
easily understood as a continuous-time version of a Bernoulli process.

Bernoulli process

A Bernoulli process of parameter 𝜆 ∈ [0, 1] is simply a sequence (𝛸𝑛)𝑛∈ℕ∗ of independent
and identically distributed Bernoulli random variables with parameter 𝜆. From a modeling
perspective, this implies that at each discrete time step, an event may occur with a probability of
𝜆. Consequently, we can deduce the following:

(i) the waiting time until the next event is discrete and follows a geometric distribution with
parameter 𝜆,

(ii) let𝑚, 𝑛 ∈ ℕ∗ be discrete times, the number of events that occur between time𝑚 and
time𝑚 + 𝑛 follows a binomial distribution Bin(𝑛, 𝜆).

The Bernoulli process is obviously a time-homogeneousMarkov process since it is a sequence
of i.i.d. variables. Let (𝛮𝑡)𝑡≥0 be the time-continuous counting process associated with the
Bernoulli process, i.e. for any time 𝑠 ≥ 0:

𝛮𝑠 =
⌊𝑠⌋

∑
𝑘=1

𝛸𝑘 ∼ Bin(⌊𝑠⌋, 𝜆) . (2.13)

Let us now consider a Bernoulli process whose Bernoulli trials are spaced by a time increment
of ℎ > 0 (and not necessarily 1) but succeed with probability 𝜆ℎ (instead of 𝜆). When ℎ is small,
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the trials are 1/ℎ times more frequent but fail ℎ times more often, such that the frequence of
successes remains the same as in the case ℎ = 1. A Poisson process with intensity 𝜆 corresponds to
the limit of this Bernoulli process as ℎ tends to 0.

proposition 9 ⋅ Convergence of accelerated Bernoulli process

Let (𝛸(ℎ)
𝑛 )

𝑛∈ℕ∗
be a sequence of i.i.d. random variables of Bernoulli distribution with

parameter 𝜆ℎ. Let also (𝛮(ℎ)
𝑡 )

𝑡≥0
be the associated counting process knowing a Bernoulli

trial is attempted at each time step ℎ, i.e., for any time 𝑡 ≥ 0:

𝛮(ℎ)
𝑡 =

⌊ 𝑡
ℎ ⌋

∑
𝑘=1

𝛸(ℎ)
𝑘 . (2.14)

Then:

(i) The number of events in the time interval (𝑠, 𝑠 + 𝑡] is asymptotically distributed
according to a Poisson distribution whose parameter is proportional to the
elapsed time. For any 𝑘 ∈ ℕ:

lim
ℎ→0

ℙ(𝛮(ℎ)
𝑡 = 𝑘) = exp(−𝜆𝑡) (𝜆𝑡)

𝑘

𝑘! . (2.15)

(ii) The waiting time before the next event asymptotically follows an exponential
distribution of parameter 𝜆. For any time 𝑠, 𝑡 ≥ 0:

lim
ℎ→0

ℙ(𝛮(ℎ)
𝑠+𝑡 = 𝛮(ℎ)

𝑠 ) = exp(−𝜆𝑡) . (2.16)

Proof. First, we clearly have𝛮(ℎ)
𝑡 ∼ Bin(⌊ 𝑡

ℎ ⌋, 𝜆ℎ).

(i) It should be noted that limℎ→0 𝜆ℎ⌊
𝑡
ℎ ⌋ = 𝜆𝑡 since ℎ⌊ 𝑡

ℎ ⌋ ∈ (𝑡 − ℎ, 1]. Using 𝜆ℎ ∼
ℎ→0

𝜆𝑡/⌊ 𝑡
ℎ ⌋, we

obtain:

ℙ(𝛮(ℎ)
𝑡 = 𝑘) = (

⌊ 𝑡
ℎ ⌋
𝑘
)(𝜆ℎ)𝑘(1 − 𝜆ℎ)⌊

𝑡
ℎ ⌋−𝑘 ∼

ℎ→0

⌊ 𝑡
ℎ ⌋

𝑘

𝑘!
(𝜆𝑡)𝑘

⌊ 𝑡
ℎ ⌋

𝑘 (1 − 𝜆𝑡
⌊ 𝑡
ℎ ⌋

)
⌊ 𝑡
ℎ ⌋−𝑘

,

∼
ℎ→0

(𝜆𝑡)𝑘

𝑘! exp[⌊ 𝑡
ℎ ⌋ log(1 − 𝜆𝑡/⌊ 𝑡

ℎ ⌋)] ⟶
ℎ→0

(𝜆𝑡)𝑘

𝑘! 𝑒−𝜆𝑡 .

(2.17)

40



2 piecewise deterministic markov processes

(ii) The event {𝛮(ℎ)
𝑠+𝑡 = 𝛮(ℎ)

𝑡 } corresponds to an absence of success between time 𝑠 and time 𝑠 + 𝑡.

ℙ(𝛮(ℎ)
𝑠+𝑡 = 𝛮(ℎ)

𝑡 ) = ℙ(
⌊ 𝑠+𝑡

ℎ ⌋

∑
𝑘=⌊ 𝑠

ℎ ⌋+1
𝛸(ℎ)
𝑘 = 0) = (1 − 𝜆ℎ)⌊

𝑠+𝑡
ℎ ⌋−⌊ 𝑠

ℎ ⌋−1

= exp[(⌊ 𝑠 + 𝑡ℎ ⌋ − ⌊ 𝑠
ℎ ⌋ − 1) log(1 − 𝜆ℎ)]

∼
ℎ→0

exp[−𝜆 × (𝑠 + 𝑡) + 𝜆𝑠 + 𝜆ℎ] ⟶
ℎ→0

𝑒−𝜆𝑡 .

(2.18)

�

The emergence of the Poisson distribution as the probability of occurrence decreases is what
earns it the nickname “the law of rare events”.

Construction of the Poisson process

Poisson processes are, in a sense, the limit version of Bernoulli processes: at any given instant, an
event can occur independently of what came before, with a “rate” 𝜆. There are several equivalent
definitions of a Poisson process. The classical characterisation gives the expected properties of
such a counting process.

definition 10 ⋅ Poisson process, characterization as a counting process

A Poisson process with intensity 𝜆 > 0 is defined as the counting process (𝛮𝑡)𝑡≥0 (starting
at𝛮0 = 0 a.s.) satisfying:

(i) The number of events in non-overlapping intervals are independent, i.e. for any
0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑡3 ≤ 𝑡4, the random variable𝛮𝑡4 − 𝛮𝑡3 is independent of𝛮𝑡2 − 𝛮𝑡1 .

(ii) The probability of observing one event in a time interval is proportional to the
length of this interval when it tends to 0 (with proportionality coefficient 𝜆):

ℙ (𝛮𝑡+ℎ − 𝛮𝑡 = 1) = 𝜆ℎ + 𝑜(ℎ) for any 𝑡 ≥ 0. (2.19)

(iii) The probability of observing strictly more than one event in a time interval is zero
when its length tends to 0:

ℙ (𝛮𝑡+ℎ − 𝛮𝑡 > 1) = 𝑜(ℎ) for any 𝑡 ≥ 0. (2.20)

Here 𝑜(ℎ) is the Landau notation of any function such that 𝑜(ℎ)
ℎ −−−−−→

ℎ→0+
0.

The disadvantage of this definition is that it does not directly indicate how to construct a Poisson
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process. The results of proposition 9 suggest a way by focusing on the waiting times between
events.

definition 11 ⋅ Poisson process, characterization as a jump process

Let (𝛵𝑛)𝑛∈ℕ be a sequence of independent and identically distributed random variables
following an exponential distribution with parameter 𝜆. We note

⋄ 𝑆𝑛 = ∑𝑛−1
𝑘=0 𝛵𝑘 the sum of the 𝑛 first times for any 𝑛 ∈ ℕ∗.

⋄ 𝛮𝑡 = ∑∞
𝑛=1 𝟙𝑆𝑛≤𝑡 = sup{𝑛 ∈ ℕ ∶ 𝑆𝑛 ≤ 𝑡} the number of events occurring before

time 𝑡 for any 𝑡 ≥ 0.

The stochastic process (𝛮𝑡)𝑡≥0 is referred to as a Poisson process of intensity 𝜆.

theorem 1 ⋅ Equivalence between Poisson process characterizations

Definition 11 and definition 10 are equivalent. More precisely:

(i) Let (𝛮𝑡)𝑡∈ℝ+
be a counting process with values inℕ and satisfying the three

properties of definition 10. For any 𝑛 ∈ ℕ, we define the random variable:

𝑆𝑛 = inf{𝑡 ≥ 0 ∶ 𝛮𝑡 ≥ 𝑛}. (2.21)

Then the variables 𝛵𝑛 = 𝑆𝑛+1 − 𝑆𝑛 are mutually independent for any 𝑛 ∈ ℕ and
follow an exponential distribution with parameter 𝜆.

(ii) Let (𝛵𝑛)𝑛∈ℕ be a sequence of i.i.d. random variables following an exponential
distribution with parameter 𝜆. The process (𝛮𝑡)𝑡 defined for any 𝑡 ≥ 0 by:

𝛮𝑡 = sup{𝑛 ∶
𝑛−1
∑
𝑘=0

𝛵𝑘 ≤ 𝑡} , (2.22)

statisfies the three properties of definition 10.

Moreover, in both cases, the number of events occurred in any time interval of length 𝑡
follows a Poisson distribution with parameter 𝜆𝑡. For any times 𝑠, 𝑡 > 0 and 𝑘 ∈ ℕ, we
have:

ℙ(𝛮𝑠+𝑡 − 𝛮𝑠 = 𝑘) = exp(−𝜆𝑡) (𝜆𝑡)
𝑘

𝑘! . (2.23)

Proof. (i) This result is known as the interval theorem. A proof is given in [Kin92, Section 4.1 pp.
39].
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figure 2.1 Representation of a simple Poisson trajectorywith intensity
𝜆 = 1.

(ii) The process (𝛮𝑡)𝑡 has clearly independent increments. Let 𝛵1 and 𝛵2 be two independent random
variables with exponential distribution with parameter 𝜆.

ℙ(𝛮𝑡+ℎ − 𝛮𝑡 = 1) = ℙ(𝛵1 ≤ ℎ, 𝛵1 + 𝛵2 > ℎ) = 𝔼[𝟙𝛵1≤ℎℙ(𝛵2 > ℎ − 𝛵1 | 𝛵1)]

= ∫
ℎ

0
𝑒−𝜆(ℎ−𝑡)𝜆𝑒−𝜆𝑡 d𝑡 = 𝜆ℎ𝑒−𝜆ℎ .

(2.24)

Thus:
1
𝜆ℎ ℙ(𝛮𝑡+ℎ − 𝛮𝑡 = 1) ⟶

ℎ→0+
1 . (2.25)

Similarly:

ℙ(𝛮𝑡+ℎ − 𝛮𝑡 > 1) = ℙ(𝛵1 + 𝛵2 < ℎ) = 𝔼[𝟙𝛵1≤ℎℙ(𝛵2 < ℎ − 𝛵1 | 𝛵1)]

= 𝔼[𝟙𝛵1≤ℎ(1 − 𝑒
−𝜆(ℎ−𝛵1))] = 1 − 𝑒−𝜆ℎ − 𝜆ℎ𝑒−𝜆ℎ .

(2.26)

Thus:
1
ℎ ℙ(𝛮𝑡+ℎ − 𝛮𝑡 ≤ 1) = (1 − 𝜆ℎ) 𝑒

−𝜆ℎ

ℎ ⟶
ℎ→0+

1 . (2.27)

�

A trajectory of a Poisson process with intensity 𝜆 can therefore be generated by drawing the
inter-jump waiting times independently according to an exponential distribution of parameter 𝜆.
A realization of such a trajectory is shown in fig. 2.1.
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2.1.3 Inhomogeneous Poisson process

A typical application of Poisson processes is the modeling of queues: individuals arrive one
by one at random times and join a queue. In example 5, we have a non-Markovian queue: the
waiting time before the next arrival in the queue depends on the time elapsed since the last arrival.
On the other side, if a queue is described by a simple Poisson process, then:

(i) Markov process: at any time, the waiting time before the next arrival does not depend on
the number or the dates of the previous arrivals,

(ii) Time-homogeneous process: the probability of observing 𝑘 ∈ ℕ arrivals in a given time slot
is the same for any other slot of the same duration.

If we are interested in the queue of a store, it is quite realistic to assume that consumers do not
coordinate and arrive independently of each other (property (i)). On the other hand, property
(ii) is probably too restrictive. Some time slots are busier than others. The Poisson process can be
generalized to the case of a non-constant intensity 𝜆 but a function of the total elapsed time.

Construction of the inhomogeneous Poisson process

The intensity 𝜆 ∶ ℝ+ → ℝ+ is from now on a non-negative function of time. The greater its
value at a time 𝑡, the more likely an event is to occur at that time. It is perhaps more natural to
generalize the definition 10 in that case. The corresponding process is called an inhomogeneous
Poisson process or a non-stationary Poisson process.

definition 12 ⋅ Inhomogeneous Poisson process (counting process characterization)

A counting process (𝛮𝑡)𝑡∈ℝ+
(starting at𝛮0 = 0 a.s.) is an inhomogeneous Poisson

process of intensity function 𝜆 if and only if:

(i) The increments are independent (same condition as the first of definition 10).

(ii) The probability of observing one event in a time interval is proportional to the
length of this interval when it tends to 0 (but the proportionality coefficient 𝜆
changes with time):

ℙ (𝛮𝑡+ℎ − 𝛮𝑡 = 1) = 𝜆(𝑡)ℎ + 𝑜(ℎ) for any 𝑡 ≥ 0. (2.28)

(iii) The probability of observing strictly more than one event in a time interval is zero
when its length tends to 0:

ℙ (𝛮𝑡+ℎ − 𝛮𝑡 > 1) = 𝑜(ℎ) for any 𝑡 ≥ 0. (2.29)
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As before, this definition does not explicit a construction method for the process. There also
exists a generalization of the second characterization (definition 11). Let us noteΛ ∶ ℝ+ → ℝ+

the integrated intensity defined as:

Λ ∶ 𝑠 ⟼ ∫
𝑠

0
𝜆(𝑢) d𝑢. (2.30)

definition 13 ⋅ Poisson process, characterization as a jump process

Let (𝛵𝑛)𝑛∈ℕ be a sequence of random variables inℝ+. For any 𝑛 ∈ ℕ and any 𝑡 ∈ ℝ+

we note 𝑆𝑛 = ∑𝑛−1
𝑘=0 𝛵𝑘 and𝛮𝑡 = ∑∞

𝑛=1 𝟙𝑆𝑛≤𝑡. Assume that for any 𝑛 ∈ ℕ∗, the survival
function of 𝛵𝑛 given 𝑆𝑛 is:

𝑠 ↦ ℙ(𝛵𝑛 > 𝑠 ∣ 𝑆𝑛) = exp[−(Λ(𝑠 + 𝑆𝑛) − Λ(𝑆𝑛)) ] . (2.31)

Equivalently we have:

ℙ(𝑆𝑛+1 > 𝑠 ∣ 𝑆𝑛) = exp[−(Λ(𝑠) − Λ(𝑆𝑛)) ]𝟙𝑠≥𝑆𝑛 . (2.32)

The stochastic process (𝛮𝑡)𝑡≥0 is referred to as an inhomogeneous Poisson process of
intensity 𝜆.

The successive times of an inhomogeneous Poisson process can be interpreted as exponentially
distributed draws whose parameter fluctuates continuously over time. Once again, the two
definitions are equivalent and the number of points in any interval follows a Poisson distribution.

theorem 2 ⋅ Equivalent definitions of inhomogeneous Poisson processes

Definition 13 and definition 12 are equivalent. More precisely:

(i) Let (𝛮𝑡)𝑡∈ℝ+
be a counting process with values inℕ satisfying the four properties

of definition 12. Then, for any 𝑛 ∈ ℕ, eq. (2.32) is the survival function of the
random variable

𝑆𝑛 = inf{𝑡 ≥ 0 ∶ 𝛮𝑡 ≥ 𝑛} . (2.33)

(ii) Let (𝛵𝑛)𝑛∈ℕ be sequentially defined as random variables with survival function
eq. (2.31). The process (𝛮𝑡)𝑡 defined for any 𝑡 ≥ 0 by:

𝛮𝑡 = sup{𝑛 ∶
𝑛−1
∑
𝑘=0

𝛵𝑘 ≤ 𝑡} , (2.34)
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statisfies the four properties of definition 12.

Moreover, in both cases, the number of events occurred in the time interval (𝑠, 𝑠 + 𝑡] for
any time 𝑠, 𝑡 ≥ 0 follows a Poisson distribution with parameterΛ(𝑠 + 𝑡) − Λ(𝑠). Thus, for
any times 𝑠, 𝑡 > 0 and 𝑘 ∈ ℕ, we have:

ℙ(𝛮𝑠+𝑡 − 𝛮𝑠 = 𝑘) = exp[−(Λ(𝑠 + 𝑡) − Λ(𝑠))] (Λ(𝑠 + 𝑡) − Λ(𝑠))
𝑘

𝑘! . (2.35)

The proof of (i) is given in [Tij03, Theorem 1.3.1]2. The proof of (ii) is similar to the proof of
theorem 1.

Connection with the Poisson binomial distribution

Remember that the simple Poisson process could be seen as a passage to the limit of the counting
process associated with a Bernoulli process. The inhomogeneous Poisson process corresponds
to the limit of a sum of independent Bernoulli (when the step tends to 0) but with a different
parameter 𝜆𝑘 at each discrete time step. The distribution of the sum is actually known as the
Poisson binomial distribution.

definition 14 ⋅ Poisson binomial distribution

A Poisson binomial variable𝛫with parameters 𝑛 ∈ ℕ∗ and (𝜆𝑘)
𝑛
𝑘=1

∈ [0, 1]𝑛 is
distributed as the sum of 𝑛 independent Bernoulli variables, the 𝑘-th having parameter 𝜆𝑘
for 𝑘 = 1, … , 𝑛.

𝑝𝑛(𝑘) = ℙ (𝛫 = 𝑘) = ∑
𝛢∈𝐹𝑘

∏
𝑖∈𝛢

𝜆𝑖 ∏
𝑗∈𝛢𝑐

(1 − 𝜆𝑗), (2.36)

where 𝐹𝑘 = {𝛢 ⊆ ⟦1, 𝑛⟧ ∶ Card(𝛢) = 𝑘}.

2.2 PDMP essentials

Piecewise deterministic Markov processes (PDMPs) were introduced in 1984 byMark H. A.
Davis, originally to provide a framework for the rigorous study of problems arising in queuing
systems, inventory theory, resource allocation, in his words. Since their formalization (initially
in the article [Dav84] then detailed in Davis’s reference book onMarkovian processes [Dav18])
PDMPs have proved to be a very rich probabilistic modeling tool and have found applications in
a great variety of scientific fields. These include industrial reliability [DDZ15; Des+21; Ben+16],
insurances [Sch98; Kri+19; ES94], and in particular many applications in biology [RT17; Kre23;

2More precisely, the author proves that the process (𝛮𝑡)𝑡 of definition 12 is Poisson-distributed. The survival
function eq. (2.31) can then be deduced from eq. (2.35) with 𝑘 = 0.
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Clo+17], for example to model the evolution of a population [ASS18; GHL22], the electrical
activity of a neuron [LTT18; Tho19] or model gene regulatory networks [LB18; Her+17].
The use of PDMPs is not limited to probabilistic modeling. They have gained popularity in the
statistical community over the past decade, forming the foundation of the so-called PD-MCMC
methods [Van+17]. As variants of MCMC (Markov ChainMonte Carlo) methods, PDMPs are
instrumental processes employed in place of traditional Markov chains to simulate an intractable
distribution. Notable examples include the Bouncy Particle Sampler [BVD18] and the Zig-
Zag sampler [BFR19]. These methods provide motivation for further research on the ergodic
properties of PDMPs [DGM21; CD08; Ben+15]. These two recent PhD theses on PD-MCMC
methods [Ber23; Gra23] provide a good overview of the state of the art in the field3.

Hybrid process

This variety of application is not surprising, as PDMPs form a very broad class of stochastic
processes, in fact those of all non-diffusive Markovian processes. However their expressive power
comes with the price of an intricate formalism. These are continuous-time stochastic jump
processes with values in a space known as hybrid, as it is the product of a Euclidean subspace
and a finite or countable set. Thus, the state variable of the process consists of a continuous part,
called position, and a discrete part, called regime.
A PDMP is a generalization of a continuous-timeMarkov chain (CTMC) on this hybrid space.
It differs in two aspects. Firstly, the state variable is not fixed between jumps. The regime remains
constant between two jumps, and the position of the process evolves continuously along a
deterministic trajectory dependent on the regime. Secondly, the process has two different jump
mechanisms: a CTMC-style random one, and a deterministic one. It is subject to spontaneous
jumps at random times drawn from an inhomogeneous Poisson process (with intensity depend-
ing on the state variable and not just time). It also jumps at “deterministic” times when the
position hits the boundary of the state space (if it exists). The destination of the jumps is drawn
from a transition kernel on𝒳 similarly to the CTMC case. After the jump, the position follows a
new deterministic trajectory depending on the new regime.

2.2.1 Local characteristics of the PDMP

A PDMP is a stochastic process with values in a hybrid space𝒳 = 𝒵 × 𝒱with𝒵 ⊂ ℝ𝑑𝒵 and 𝒱 a
finite or countable set. Its state over time𝛸𝑡 = (𝑍𝑡, 𝑉𝑡) ∈ 𝒳 is described by both the continuous
variable𝑍𝑡 ∈ 𝒵 called position, and by the discrete variable𝑉𝑡 ∈ 𝒱 called regime. The complete
behavior of the PDMP is characterized by three functions.

3I also recommend this webpage maintained by Joris Bierkens: https://diamhomes.ewi.tudelft.nl/
~jorisbierkens/pdmps.html.
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figure 2.2 Representation of a PDMP trajec-
torywith local characteristics (Ψ, 𝜆, 𝑄).
The position follows the flowΨ be-
tween the jumps starting from an initial
state𝛸0 = (𝑍0, 𝑉0). The process first
jumps when it hits the boundary of the
state space at time 𝛵1 to state (𝑍𝛵1 , 𝑉𝛵1)
drawn with jump kernel𝑄. It then
jumps at a random time 𝛵2 drawn with
jump intensity 𝜆 to state (𝑍𝛵2 , 𝑉𝛵2)
drawn with jump kernel𝑄.

(i) The flowΨ gives the deterministic trajectory of the position between the jumps. This is
generally the solution of a system of differential equations.

(ii) The jump intensity 𝜆 characterizes the distribution of the time of the spontaneous jumps.
This is a function that associates a non-negative real value with each state of the space.
The higher the value, the more likely the process is to jump when it is in that state.

(iii) The transition kernel 𝑄 determines the distribution of the state of the process after a
jump. The distribution of the destination of a jump only depends on the state of the
process right before the jump.

The triplet (Ψ, 𝜆, 𝑄) is called the local characteristics of the PDMP on𝒳.

Piecewise deterministic motion

Between two jumps, the regime of the process remains constant while the position follows a
deterministic motion that depends on the regime. This deterministic motion is given by a flow
functionΨ ∶ 𝒳 × ℝ+ ↦ 𝒳 in the following way: for any 𝑠, 𝑡 ≥ 0 and state𝛸𝑠 ∈ 𝒳, if there is no
jump between the time 𝑠 and the time 𝑠 + 𝑡, then𝛸𝑠+𝑡 = Ψ(𝛸𝑠, 𝑡). A flow function verifies the
following properties:

(i) for any 𝑥 ∈ 𝒳,Ψ(𝑥, 0) = 𝑥,

(ii) and the flow has the semigroup propertyΨ(Ψ(𝑥, 𝑡), 𝑠) = Ψ(𝑥, 𝑠 + 𝑡).
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Notice that, since only the position moves between the jumps, we can also define, in a given
regime 𝑣 ∈ 𝒱, a flow function 𝜓𝑣 on𝒵 × ℝ+ associated with the position only. For any 𝑥 =
(𝑧, 𝑣) ∈ 𝒵 × 𝒱 and any 𝑡 ≥ 0, we have :

Ψ((𝑧, 𝑣), 𝑡) = (𝜓𝑣(𝑧, 𝑡), 𝑣). (2.37)

In the most common case, the position of the PDMP evolves according to one or more ordinary
differential equations (ODEs), from which the flow is deduced. Let 𝑥 = (𝑧, 𝑣) ∈ 𝒵 × 𝒱 and
let Ξ𝑣 ∶ 𝒵 → 𝒵 be a Lipschitz continuous function of the position. Then by Picard-Lindelöf
theorem, there exists a unique solution function 𝜓𝑣 to the ODE problem:

{
d
d𝑡 𝜓𝑣(𝑧, 𝑡) = Ξ𝑣(𝜓𝑣(𝑧, 𝑡))

𝜓𝑣(𝑧, 0) = 𝑧
(2.38)

The case of time-dependent ODEs is handled by considering the time-augmented process
(see definition 6) that includes the elapsed time in the position variable. We also define 𝔛, the
differential operator of the first order.

definition 15 ⋅ Differential operator of the first order

Let 𝑓 ∶ 𝒳 → ℝ be such that for any 𝑣 ∈ 𝒱, the application 𝑧 ∈ 𝒵 ↦ 𝑓((𝑧, 𝑣)) is𝐶1

(continuously differentiable), and let 𝑥 = (𝑧, 𝑣) ∈ 𝒳. We have:

𝔛𝑓(𝑥) ∶= ⟨∇𝑧 𝑓 (𝑥) , Ξ𝑣(𝑧)⟩ =
𝑑𝒵
∑
𝑖=1

𝜕𝑓
𝜕𝑧𝑖

((𝑧, 𝑣)) × [ dd𝑡𝜓𝑣(𝑧, 𝑡)]𝑖
. (2.39)

Note that 𝔛 satisfies (for the same 𝑓 and 𝑥):

d
d𝑡 𝑓(Ψ(𝑥, 𝑡)) = 𝔛𝑓(Ψ(𝑥, 𝑡)) . (2.40)

This operator is mainly involved in the expression of the infinitesimal generator of the PDMP
(see proposition 12).

Jumps at the boundary

A PDMP trajectory jumps when the position reaches the state space boundary (if it exists)
following the flow. Let𝒳𝑣 ∶= {(𝑧′, 𝑣′) ∈ 𝒳 ∣ 𝑧′ ∈ 𝒵, 𝑣′ = 𝑣} be the subspace of states that can
only be reached in the regime 𝑣 ∈ 𝒱. We have𝒳 = ⋃𝑣∈𝒱𝒳𝑣. If𝒳𝑣 has boundaries noted 𝜕𝒳𝑣, the
process jumps when the position reaches them. For any 𝑥 = (𝑧, 𝑣) ∈ 𝒳𝑣, the waiting time before
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this jump is thus defined by:

𝑡𝜕(𝑥) = inf {𝑠 > 0 ∶ Ψ(𝑥, 𝑠) ∈ 𝜕𝒳𝑣} with inf{∅} = +∞ .

Boundary jumps are often referred to as deterministic jumps, because they occur on a fixed date.
This can be misleading, as the destination of the jumps remains random, and the date of the
jumps is “deterministic” provided that a spontaneous jump does not occur beforehand. Similarly,
we prefer to refer to jumps occurring at random times as spontaneous jumps rather than random
jumps.

Jump intensity function

As we said, the spontaneous jumps occur at random times. From any initial state 𝑥 ∈ 𝒳, the
waiting time before the next spontaneous jump is drawn according to an inhomogeneous Poisson
process of intensity 𝜆 ∘ Ψ(𝑥, ⋅)where 𝜆 ∶ 𝒳 → ℝ+ is the jump intensity of the PDMP. It
associates to each state 𝑥 ∈ 𝒳 a weight 𝜆(𝑥) ∈ [0, +∞). The larger 𝜆(𝑥) is, the more likely it is
that the PDMP jumps when it passes through state 𝑥. To simplify notation, we define the two
following functions from 𝜆 for any 𝑥 ∈ 𝒳:

𝜆𝑥 ∶ 𝑢 ∈ ℝ+ ↦ 𝜆(Ψ(𝑥, 𝑢)) , (2.41)

Λ ∶ (𝑥, 𝑠) ∈ 𝒳 × ℝ+ ⟼∫
𝑠

0
𝜆𝑥(𝑢) d𝑢 . (2.42)

It is assumed that 𝜆𝑥 is locally integrable. From state 𝑥 ∈ 𝒳, let 𝛵𝜆(𝑥) be the waiting time drawn
according to the inhomogeneous Poisson process before the next spontaneous jump4. Its survival
function is given by:

ℙ (𝛵𝜆(𝑥) > 𝑠) = exp (−Λ(𝑥, 𝑠)) . (2.43)

The waiting time 𝛵𝜆(𝑥) admits a probability density function with respect to the Lebesgue
measure that can be deduced from its cumulative distribution function:

𝑠 ⟼ d
d𝑠ℙ (𝛵𝜆(𝑥) ≤ 𝑠) = 𝜆𝑥(𝑠) exp(−Λ(𝑥, 𝑠)). (2.44)

4Throughout this document, we adopt a conventional notation. Uppercase variables generally correspond to
random variables, and lowercase variables to observed realizations. The boundary hitting time 𝑡𝜕 is therefore always
in lowercase. The waiting time before a spontaneous jump will be written in uppercase 𝛵𝜆 or lowercase 𝑡𝜆 depending
on whether we consider the random variable or its realization.
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True jump time

Ultimately, starting from a state 𝑥 ∈ 𝒳, the waiting time 𝛵(𝑥) before the next jump is the shortest
time between the (deterministic) waiting time to reach the boundary of the state space, and the
(random) waiting time drawn according to the inhomogeneous Poisson process. Thus:

𝛵(𝑥) = min (𝑡𝜕(𝑥), 𝛵𝜆(𝑥)) . (2.45)

Its survival function is given by:

ℙ (𝛵(𝑥) > 𝑠) = 𝟙𝑠≤𝑡𝜕(𝑥) exp (−Λ(𝑥, 𝑠)) . (2.46)

Its also admits the probability density function:

𝑠 ⟼ 𝑝𝜆(𝑠 ∣ 𝑥) = 𝑝𝜆𝑥(𝑠) = 𝜆𝑥 (𝑠)
𝟙𝑠<𝑡𝜕(𝑥) exp (−Λ(𝑥, 𝑠)) 𝟙𝑠≤𝑡𝜕(𝑥), (2.47)

with respect to the measure:

𝜈𝜆(⋅ ∣ 𝑥) ∶ 𝛣 ∈ ℬ([0, 𝑡𝜕(𝑥)]) ↦ Leb (𝛣 ∩ [0, 𝑡𝜕(𝑥))) + 𝛿𝑡𝜕(𝑥)(𝛣), (2.48)

where Leb is the Lebesgue measure5.

The state space𝒳 as a metric space

The jumps of a PDMP can simultaneously modify its position and regime. Thus, the state of the
process after a jump is randomly drawn in𝒳. To define a probability measure on𝒳, we need to
define a Borelian 𝜎-algebra on𝒳 and therefore a metric on this space. To our knowledge, there
is no natural distance on a hybrid space. However, such a distance can be constructed from a
distance dist𝒵 on𝒵. Let𝐶𝒵 be a constant upperbound of dist𝒵, i.e. 𝐶𝒵 ≥ sup(𝑧,𝑧′)∈𝒵2 dist𝒵(𝑧, 𝑧

′)
and𝐶𝒵 = ∞ if𝒵 is unbounded. For any 𝑥1 = (𝑧1, 𝑣1), 𝑥2 = (𝑧2, 𝑣2) ∈ 𝒳, we define the distance
dist𝒳 on𝒳 by:

dist𝒳((𝑧1, 𝑣1), (𝑧2, 𝑣2)) = {
dist𝒵(𝑧1, 𝑧2) if 𝑣1 = 𝑣2,
1
2 𝐶𝒵 else.

(2.49)

Choosing a constant𝐶𝒵 < sup(𝑧,𝑧′)∈𝒵2 dist𝒵(𝑧, 𝑧
′)would not ensure that dist𝒳 verifies the triangle

inequality. Indeed, let 𝑥1 = (𝑧1, 𝑣1), 𝑥2 = (𝑧2, 𝑣2), 𝑥3 = (𝑧3, 𝑣3) ∈ 𝒳 be three states such that
𝑣1 = 𝑣3 ≠ 𝑣2 and dist𝒵(𝑧1, 𝑧3) > 𝐶𝒵. We have:

dist𝒳((𝑧1, 𝑣1), (𝑧2, 𝑣2)) + dist𝒳((𝑧2, 𝑣2), (𝑧3, 𝑣3)) = 𝐶𝒵 < dist𝒳((𝑧1, 𝑣1), (𝑧3, 𝑣3)) . (2.50)

5Restricting the Lebesgue measure to the interval [0, 𝑡𝜕(𝑥))makes 𝑝𝜆 a p.d.f. without having to renormalize it
in eq. (2.47).
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Equipping the state space with a metric allows us to define the desired Borelian 𝜎-algebra on𝒳
notedℬ(𝒳) (whereℬ(⋅)more generally indicates the Borel sets of a set).

Jump transition kernel

After a jump, the process resumes a new deterministic trajectory from a new state randomly
chosen according to aMarkovian transition kernel𝑄, i.e. a family [𝑄(⋅ ∣ 𝑥)]

𝑥∈𝒳
of probability

distributions on𝒳 indexed by each element of𝒳. If the process is in state 𝑥 ∈ 𝒳 at time 𝑠 ≥ 0
and the waiting time before the next jump is 𝑡 ≥ 0, then its probability to land on a subset 𝛣 ⊂ 𝒳
after its next jump is given by:

ℙ(𝛸𝑠+𝑡 ∈ 𝛣 |𝛸𝑠 = 𝑥, 𝛵(𝛸𝑠) = 𝑡) = 𝑄(𝛣 ∣ Ψ(𝑥, 𝑡)) . (2.51)

Let also 𝑞 = [𝑞(⋅ ∣ 𝑥)]
𝑥∈𝒳

be a family of probability density functions for𝑄with respect to a
family of reference measures 𝜈𝑞 = [𝜈𝑞(⋅ ∣ 𝑥)]𝑥∈𝒳 on (𝒳,ℬ(𝒳)). Jumping from the state 𝑥− ∈ 𝒳,
the probability to land on a subset 𝛣 ⊂ 𝒳 is thus given by:

𝑄(𝛣 ∣ 𝑥−) = ∫
𝛣
𝑞 (𝑥 ∣ 𝑥−) 𝜈𝑞(d𝑥 ∣ 𝑥

−) . (2.52)

A jump necessarily changes the state of the PDMP (no jump in place). The jump kernel therefore
verifies𝑄({𝑥} ∣ 𝑥) = 𝑞(𝑥 ∣ 𝑥) = 0 for any 𝑥 ∈ 𝒳. We also introduce the following notation. Let
𝑓 be a function of𝒳, for any 𝑥− ∈ 𝒳we note𝑄𝑓(𝑥−) the mean value of 𝑓 knowing the process
jumps from state 𝑥− :

𝑄𝑓(𝑥−) = 𝔼𝛸∼𝑄(⋅∣𝑥−)[𝑓(𝛸)] = ∫
𝒳
𝑓(𝑥) 𝑞(𝑥 ∣ 𝑥−) 𝜈𝑞(d𝑥 ∣ 𝑥

−) . (2.53)

In practice, PDMPs often model phenomena for which the number of possible transitions from
any state 𝑥− ∈ 𝒳 is finite. The measure 𝜈𝑞(⋅ ∣ 𝑥

−) is then simply a counting measure, and 𝑞(⋅ ∣ 𝑥−)
can be represented by a vector.

2.2.2 Strong Markov PDP

It is clear that the process we have described so far is at least a piecewise deterministic process
(PDP), but is it Markovian and even homogeneous? It is easy to have a local intuition. The
randomness only concerns the time and the destination of the jumps. Firstly, the distribution
of the next jump time given the entire past of the PDP only depends on its current state (see
eq. (2.46)). Secondly, the distribution of the destination of a jump, given the entire past of the
process before the jump and given the time of the jump, only depends on the state preceding
the jump (see eq. (2.52)). To prove this globally, an additional assumption is needed: the non-
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explosion of the process.

Explosion

A situation one wants to avoid is the explosion of the process. This is an acceleration of the jump
dynamics such that an infinite number of jumps can occur over a finite time span. Let (𝛸𝑡)𝑡 be a
PDP on𝒳with local characteristics (Ψ, 𝜆, 𝑄). Let us denote by 𝑆𝑘 the time of the 𝑘-th jump and
𝛵𝑘 the waiting time between the 𝑘-th and the (𝑘 + 1)-th jump. More formally, starting at time
𝑆0 = 0, we have:

𝛵𝑘 = 𝛵(𝛸𝑆𝑘) = inf{𝑡 ≥ 0 ∶ Ψ(𝛸𝑆𝑘 , 𝑡) ≠ 𝛸𝑆𝑘+𝑡} ,

𝑆𝑘+1 = 𝑆𝑘 + 𝛵𝑘 .
(2.54)

The first line can be interpreted as follows: a jump has occurred when the state of the PDMP is
no longer the one that would have been obtained by following the flow since the previous jump.

definition 16 ⋅ Non-explosion

A jump process with jump times (𝑆𝑘)𝑘∈ℕ∗ and interjump times (𝛵𝑘)𝑘∈ℕ is said non-
explosive if:

sup
𝑛∈ℕ∗

𝑆𝑛 = lim𝑛→∞

𝑛−1
∑
𝑘=0

𝛵𝑘 = +∞ a.s. (2.55)

Conversely, if lim𝑛→∞ 𝑆𝑛 < 𝑠 for some 𝑠 > 0, we have no proper definition of𝛸𝑠+𝑡, the state of the
process at time 𝑠 + 𝑡 for any 𝑡 ≥ 0. It is therefore very inconvenient to study the process in long
(or event short) time without assuming that it is non-explosive.

proposition 10 ⋅ Sufficient conditions for non-explosion

Let (𝛸𝑡)𝑡 be a PDP with values in𝒳 and local characteristics (Ψ, 𝜆, 𝑄). The non-
explosivity of the process (definition 16) holds under the two following assumptions:

(i) For any 𝑥 ∈ 𝒳 the jump intensity (as a function of time) 𝜆𝑥 is upper bounded on
[0, 𝑡𝜕(𝑥)].

(ii) Let𝛢𝜀 = {𝑥′ ∈ 𝒳 ∣ 𝑡𝜕(𝑥
′) ≥ 𝜀}. There exists 𝜀 > 0 such that𝑄(𝛢𝜀 ∣ 𝑥) = 1 for any

𝑥 = (𝑧, 𝑣) ∈ 𝜕𝒳𝑣.

The proof is given in [Dav18, Proposition 24.6] under a slightly stronger second assumption:
there exists 𝜀 > 0 such that𝑄(𝛢𝜀 ∣ 𝑥) = 1 for any 𝑥 ∈ 𝒳 and not only for any 𝑥 in the boundary,
but the proof remains the same. All we need is to ensure that a jump at boundary cannot occur
an arbitrarily short time after another. This is easily illustrated by the following example:
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example 6 ⋅ Explosive process

Let (𝛸𝑡)𝑡 be the following PDMP:

⋄ the state space is𝒳 = 𝒵 × 𝒱 = [0, 1] × ℕ,

⋄ the flow function isΨ ∶ (𝑥, 𝑡) = ((𝑧, 𝑣), 𝑡) ∈ 𝒳 × ℝ+ ↦ 𝑧 − 𝑡,

⋄ the jump intensity is constant and equal to zero: 𝜆(𝑥) = 0 for any 𝑥 ∈ 𝒳,

⋄ the jump kernel is a Dirac distribution, for any 𝛣 ∈ 𝒳 and any departure state
𝑥− = (𝑧−, 𝑣−):

𝑄(𝛣 | (𝑧−, 𝑣−)) = 𝛿(𝑣−+1)−2, 𝑣−+1(𝛣) .

Jumps only occur at the boundary when the position returns linearly to 0. The post-
jump position is closer and closer to 0 as jumps are made. Starting from 𝑥0 = (1, 0), the
𝑘-th waiting time before a jump is 𝛵𝑘−1 =

1
𝑘2 . Thus∑

∞
𝑘=1 𝛵𝑘−1 =

𝜋2
6 < ∞ and we have

explosion.

Generator of a PDMP

Let (𝛸𝑡)𝑡 be a PDP with values in𝒳 and local characteristics (Ψ, 𝜆, 𝑄). Let {𝛲𝑡}𝑡 be the family of
operators defined, for any time 𝑠 > 0, any state 𝑥 ∈ 𝒳, and any bounded measurable functions
𝑓 ∶ 𝒳 → ℝ, by:

𝛲𝑠 𝑓(𝑥) ∶= 𝔼[𝑓(𝛸𝑠) ∣𝛸0 = 𝑥] . (2.56)

The following proposition from [Dav18, Theorem 25.5] assures us that the process is Markovian
with transition kernels {𝛲𝑡}𝑡.

proposition 11 ⋅ Piecewise deterministic strong Markov process ([Dav18])

Let (𝛸𝑡)𝑡 be a non-explosive PDP with values in𝒳 and local characteristics (Ψ, 𝜆, 𝑄).
Then, the process (𝛸𝑡)𝑡∈ℝ+

is a homogeneous strongMarkov process, i.e. for any a.s. finite
stopping time 𝜏:

𝔼[𝑓(𝛸𝜏+𝑠) ∣𝛸[0, 𝜏]] = 𝔼[𝑓(𝛸𝜏+𝑠) ∣𝛸𝜏] = 𝛲𝑠 𝑓(𝛸𝜏) . (2.57)

The family of transition kernels {𝛲𝑡}𝑡 completely characterizes the distribution of the PDMP.
They are the reference tool for studying Markov processes in simple cases, such as discrete time or
countable state space. Their explicit expression and manipulation are much less straightforward
in continuous time and on general state spaces. Indeed, explicitly knowing 𝛲𝑡 for all 𝑡 ≥ 0means
knowing the distribution of all future states of the PDMP given its current state. It is simpler to
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characterize the local behavior of the process (as allowed by the local characteristics (Ψ, 𝜆, 𝑄))
by studying the distribution of the “closest” future state. By differentiating the transition kernel
with respect to time, we obtain the infinitesimal generator of the process.

definition 17 ⋅ Infinitesimal generator of a Markov process

The infinitesimal generator𝒜 is the operator defined, for any state 𝑥 ∈ 𝒳, by:

𝒜𝑓(𝑥) = lim
𝑡→0+

𝛲𝑡 𝑓(𝑥) − 𝑓(𝑥)
𝑡 = lim

𝑡→0+
𝔼[𝑓(𝛸𝑡) ∣𝛸0 = 𝑥] − 𝑓(𝑥)

𝑡 , (2.58)

for any function 𝑓 in the so-called domain of the generator 𝒟(𝛢). A function 𝑓 belongs
to the domain𝒟(𝛢) if:

(i) 𝑓 is continuous on𝒳 and vanishes at infinity in the following sense: for any 𝜀 > 0,
there is a compact subset𝐶 ⊂ 𝒳 such that ∣𝑓(𝑥)∣ < 𝜀 for any 𝑥 ∈ 𝒳 ∖ 𝐶,

(ii) the limit in eq. (2.58) exists with respect to the supremum distance:

sup
𝑥∈𝒳

∣𝑡 × 𝒜𝑓(𝑥) − (𝛲𝑡 𝑓(𝑥) − 𝑓(𝑥))∣ ⟶𝑡→0+
0 . (2.59)

In [Dav18, Theorem 26.14], Davis gave the explicit expression of the infinitesimal generator of a
PDMP on an extended domain𝒟(𝒜). This extended domain is the set of measurable functions
satisfying the Dynkin formula (discussed in more detail in theorem 13), i.e. such that the process
(𝛭𝑡)𝑡, defined below for any 𝑠 > 0, is a local martingale:

𝛭𝑠 = 𝑓(𝛸𝑠) − 𝑓(𝑥) −∫
𝑠

0
𝒜𝑓(𝛸𝑡) d𝑡 . (2.60)

proposition 12 ⋅ Infinitesimal generator of a PDMP ([Dav18])

The infinitesimal generator of a PDMPwith local characteristics (Ψ, 𝜆, 𝑄) on𝒳 is given,
for any state 𝑥 ∈ 𝒳 and any function 𝑓 ∈ 𝒟(𝒜), by:

𝒜𝑓(𝑥) = 𝔛𝑓(𝑥) + 𝜆(𝑥) (𝑄𝑓(𝑥) − 𝑓(𝑥)) . (2.61)

The characterization of the distribution of a PDMP via the generator allows to define an
invariant measure for the PDMP, which paves the way for PD-MCMCmethods [Van+17]. A
measure 𝜇 is invariant for the PDMP with generator𝒜 if and only if any function 𝑓 ∈ 𝒟(𝒜) (see
[Dav18, Proposition 34.7]):

∫𝒜𝑓(𝑥)𝜇(d𝑥) = 0 . (2.62)
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2.3 Modeling and simulation with PDMPs

We need to generate PDMP trajectories in practice. This implies being able to:

⋄ Follow the flowΨ between the jumps. Most often,Ψ is unknown. We only have access
to a system of ODEs of the form eq. (2.38). When the solution is not explicit, it must
be approximated numerically using classical deterministic methods. This introduces
approximation errors, but we assume they are negligible (see [Kri+19; BBD22] for
the study of PDMPs approximated by discretization and [BM24] for an extension to
piecewise diffusionMarkov processes). The main issue is the computational cost of
this approximation, especially for complex ODEs encountered in the modeling of large
industrial systems. We do not focus here on the method for solving the flow, but consider
it to be the main computational cost for simulating a PDMP trajectory.

⋄ Determining the time of the next jump starting from an initial state 𝑥 ∈ 𝒳. On the
one hand, it is necessary to determine whether it is a boundary jump or a spontaneous
jump. In the first case, everything relies on solving the flowΨ (see previous point). In
the second case, a time has to be drawn according to an inhomogeneous Poisson process
with intensity 𝑡 ↦ 𝜆𝑥(𝑡) = 𝜆(Ψ(𝑥, 𝑡)).The most frequent models using PDMPs do not
provide direct access to the global intensity 𝜆, but rather to marginal intensities (𝜆(𝑗))

𝑗
associated with specific transitions. The global intensity is then the sum of the marginal
intensities, this is the principle of superposition of Poisson processes (see section 2.3.1).
This principle and the resolution of the flowΨ give us access to 𝜆𝑥. We then propose two
methods for drawing a jump time with intensity 𝜆𝑥: the thinning based on a rejection
method specific to Poisson processes (see section 2.3.2) and the true jump method based
on the numerical inversion of the c.d.f. of the jump time (see section 2.3.3).

⋄ Finally, determining the arrival state of the process after a jump from a departure state
𝑥− ∈ 𝒳. This state is drawn according to a jump kernel𝑄 that is rarely known explicitly.
Indeed, as mentioned in the previous point, the most commonmodels using PDMPs
do not provide the local characteristics directly, but rather the different possible types
of transitions and the associated probabilities or rates. Knowing𝑄 is not difficult
from a computational point of view, but it is very tedious (or impossible) to describe it
exhaustively. Most often, we have access to𝑄(⋅ ∣ 𝑥−) for a departure state 𝑥− = (𝑧−, 𝑣−)
belonging to the boundary 𝜕𝒳𝑣− . In the case of spontaneous jumps, the kernel𝑄 is a
function of the marginal intensities (𝜆(𝑗))

𝑗
described in the previous point according to

the Poisson superposition principle (see section 2.3.1). We will not delve into the details
of simulating jump destinations, as the methods are straightforward when the number of
possible transitions is finite or countable, and very problem specific otherwise.
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If these three aspects are well handled, then a PDMP trajectory can be generated as follows. Let
𝛸0 = 𝑥0 ∈ 𝒳 be the initial state, at time 𝑡 ≥ 0:

(i) Compute the waiting time before reaching the boundary of the state space

𝑡𝜕(𝛸𝑡) ← inf {𝑠 > 0 ∶ Ψ(𝛸𝑡, 𝑠) ∈ 𝜕𝒳𝑉𝑡} . (2.63)

(ii) Draw a random time 𝛵𝜆(𝛸𝑡) according to its survival function

𝑠 ⟼ ℙ(𝛵𝜆(𝛸𝑡) > 𝑠) = exp(−Λ(𝛸𝑡, 𝑠)) . (2.64)

(iii) Follow the flow during time

𝛵(𝛸𝑡) ← min(𝑡𝜕(𝛸𝑡), 𝛵𝜆(𝛸𝑡)) , (2.65)

and set
𝛸−
𝑡+𝛵(𝛸𝑡)

← Ψ(𝛸𝑡, 𝛵(𝛸𝑡)) . (2.66)

(iv) Jump by drawing a destination state 𝑌 ∈ 𝒳 according to the jump kernel

𝑌 ∼ 𝑄(⋅ ∣𝛸−
𝑡+𝛵(𝛸𝑡)

) , (2.67)

and set
{𝛸𝑡+𝛵(𝛸𝑡), 𝑡} ← {𝑌, 𝑡 + 𝛵(𝛸𝑡)} , (2.68)

then repeat steps (i) to (iv).

2.3.1 PDMP superposition

From the modeler’s perspective, it is not always straightforward to formally separate the distribu-
tion of jump times from the distribution of jump destinations. Rather than characterizing the
latter with an intensity 𝜆 and a kernel𝑄 independent of the nature of the jump, it is sometimes
more natural to consider the different events that can trigger a jump. The set of triggering events
is an arbitrary categorization proposed by the modeler. For example, consider a PDMPmodeling
an industrial system with 𝑑𝐜 components, where a jump occurs when a functional component
fails or when a broken component is repaired. One modeling choice is to consider that there are
only two possible triggering events at each jump: the failure or repair of a component. Another
choice would be to consider that there are 𝑑𝐜 possible triggering events: the change in status of
the 𝑗-th component for 𝑗 ∈ ⟦1, 𝑑𝐜⟧. The modeling of industrial systems using PDMPs will be
explored in several examples in section 3.3.2 and in section 5.3.
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For any state 𝑥 ∈ 𝒳, we assume that the modeler has definedC(𝑥) = (𝑐(𝑗)(𝑥))
𝑑C(𝑥)

𝑗=1
a finite or

countable set of cardinality 𝑑C(𝑥) corresponding to the set of possible triggering events from
𝑥 ∈ 𝒳. It is reasonable to assume that this set does not change between jumps, since we can
define a change as a boundary jump. Thus 𝑑C(𝑥) = 𝑑C(Ψ(𝑥, 𝑡)) for all 𝑡 ∈ [0, 𝑡𝜕(𝑥)). The idea is
to chooseC(𝑥) such that we can easily characterize the distribution of the next jump given the
event that triggered it and not just given 𝑥. More precisely, we assume that for all 𝑗 ∈ ⟦1, 𝑑C(𝑥)⟧,
we have a marginal jump intensity 𝜆(𝑗) specific to the triggering event 𝑐(𝑗)(𝑥), and a marginal
jump kernel𝑄(𝑗) with marginal density 𝑞(𝑗) such that:

⋄ the waiting time 𝛵𝜆(𝑗)(𝑥) before the next jump, given its triggering event 𝑐(𝑗)(𝑥) and the
current state of the process 𝑥, is distributed as the waiting time before the next jump of
an inhomogeneous Poisson process with intensity 𝑡 ↦ 𝜆(𝑗)(Ψ(𝑥, 𝑡)),

⋄ the destination of the next spontaneous jump, given its triggering event 𝑐(𝑗)(𝑥) and
the waiting time 𝛵𝜆(𝑗)(𝑥) before the jump from state 𝑥, is distributed according to the
marginal kernel𝑄(𝑗)(⋅ ∣ Ψ(𝑥, 𝛵𝜆(𝑗)(𝑥))).

A property of Poisson processes called superposition implies that the global intensity 𝜆 of the
process is equal to the sum of its marginal intensities 𝜆(𝑗). Similarly, the global kernel𝑄 is
the mean of the marginal kernels𝑄(𝑗) weighted by the weights 𝜆(𝑗)/𝜆 corresponding for all
𝑗 ∈ ⟦1, 𝑑C(𝑥)⟧ to the probability that 𝑐

(𝑗)(𝑥) is the triggering event of the jump. This gives us an
alternative procedure for generating a PDMP trajectory in the case 𝑑C(𝑥) < ∞ for any 𝑥 ∈ 𝒳.

Alternative jump dynamics with multiple trigger events

Let (𝛸𝑡)𝑡≥0 be a stochastic process with values in𝒳, piecewise deterministic trajectories given by
Ψ and boundary jumps but with an alternative mechanics for spontanous jumps.

⋄ For any state 𝑥− ∈ 𝜕𝒳, the distribution of the jump destination is given by a boundary
kernel𝑄(𝜕)(⋅ ∣ 𝑥−).

⋄ For any state 𝑥 ∈ 𝒳 ∖ {𝜕𝒳}, assume we know 𝑑C(𝑥) ∈ ℕ functions 𝜆(𝑗) ∶ 𝒳 → ℝ+

such that 𝑡 ↦ 𝜆(𝑗) ∘ Ψ(𝑥, 𝑡) is locally integrable on [0, 𝑡𝜕(𝑥)). For any 𝑥 ∈ 𝒳 ∖ {𝜕𝒳} and
any 𝑗 ∈ ⟦1, 𝑑C(𝑥)⟧ let us also denote byΛ

(𝑗) the function satisfying 𝑡 ↦ Λ(𝑗)(𝑥, 𝑡) =
∫𝑡
0 𝜆

(𝑗)(Ψ(𝑥, 𝑢)) d𝑢.

⋄ For the same state 𝑥 ∈ 𝒳 ∖ {𝜕𝒳}, assume we also know 𝑑C(𝑥) operators𝑄
(𝑗) such that

𝑄(𝑗)(⋅ | Ψ(𝑥, 𝑡)) is a Markovian kernel on𝒳with kernel density 𝑞(𝑗)(⋅ | Ψ(𝑥, 𝑡)) (with
respect to a dominant measure 𝜈𝑞(𝑗)(⋅ | Ψ(𝑥, 𝑡)) on𝒳) for any time 𝑡 ∈ [0, 𝑡𝜕(𝑥)).

A trajectory of the process (𝛸𝑡)𝑡 can be generated as follows. Let𝛸0 = 𝑥0 ∈ 𝒳 be the initial state,
at time 𝑡 ≥ 0:
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(i) Compute the waiting time before reaching the boundary of the state space

𝑡𝜕(𝛸𝑡) ← inf {𝑠 > 0 ∶ Ψ(𝛸𝑡, 𝑠) ∈ 𝜕𝒳𝑉𝑡} . (2.69)

(ii) For 𝑗 ∈ ⟦1, 𝑑C(𝛸𝑡)⟧, drawmutually independent random times 𝛵𝜆(𝑗)(𝛸𝑡) according to
their survival function

𝑠 ⟼ ℙ(𝛵𝜆(𝑗)(𝛸𝑡) > 𝑠) = exp[−∫
𝑠

0
𝜆(𝑗)(Ψ(𝛸𝑡, 𝑢)) d𝑢] , (2.70)

and set
𝐽∗ ← argmin

𝑗∈⟦1, 𝑑C(𝛸𝑡)⟧
𝛵𝜆(𝑗)(𝛸𝑡) , (2.71)

𝛵𝜆(𝛸𝑡) ← 𝛵𝜆(𝐽∗)(𝛸𝑡) . (2.72)

(iii) Follow the flow during time

𝛵(𝛸𝑡) ← min(𝑡𝜕(𝛸𝑡), 𝛵𝜆(𝛸𝑡)) , (2.73)

and set
𝛸−
𝑡+𝛵(𝛸𝑡)

← Ψ(𝛸𝑡, 𝛵(𝛸𝑡)) . (2.74)

(iv) Jump by drawing a destination state 𝑌 ∈ 𝒳 according to the jump kernel

𝑌 ∼ 𝑄(𝜕)(⋅ ∣ 𝛸−
𝑡+𝛵(𝛸𝑡)

)𝟙𝛵(𝛸𝑡)=𝑡𝜕(𝛸𝑡) + 𝑄
(𝐽∗)(⋅ ∣ 𝛸−

𝑡+𝛵(𝛸𝑡)
)𝟙𝛵(𝛸𝑡)<𝑡𝜕(𝛸𝑡) , (2.75)

and set
{𝛸𝑡+𝛵(𝛸𝑡), 𝑡} ← {𝑌, 𝑡 + 𝛵(𝛸𝑡)} , (2.76)

then repeat steps (i) to (iv).

proposition 13 ⋅ PDMP superposition

The stochastic process (𝛸𝑡)𝑡≥0 is a PDMP

(i) with jump intensity 𝜆 ∶ 𝑥 ↦ ∑𝑑C(𝑥)
𝑗=1 𝜆(𝑗)(𝑥),

(ii) and jump kernel given for any 𝛣 ⊂ 𝒳 and any state 𝑥 ∈ 𝒳 by:

𝑄(𝛣 ∣ 𝑥) = 𝟙𝑥∈𝜕𝒳𝑄
(𝜕)(𝛣 ∣ 𝑥) + 𝟙𝑥−∉𝜕𝒳

𝑑C(𝑥)

∑
𝑗=1

𝑄(𝑗)(𝛣 ∣ 𝑥) 𝜆
(𝑗)(𝑥)
𝜆(𝑥) . (2.77)
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Proof. (i) For any 𝑥 ∈ 𝒳, using independence of the 𝛵𝜆(𝑗)(𝑥) for 𝑗 ∈ ⟦1, 𝑑C(𝑥)⟧we have:

ℙ ( min
𝑗∈⟦1, 𝑑C(𝑥)⟧

{𝛵𝜆(𝑗)(𝑥)} > 𝑠) = ℙ (
𝑑C(𝑥)
⋂
𝑗=1

{𝛵𝜆(𝑗) > 𝑠}) =
𝑑C(𝑥)

∏
𝑗=1

exp [−∫
𝑠

0
𝜆(𝑗) (Ψ(𝑥, 𝑢)) d𝑢]

= exp[−∫
𝑠

0

𝑑C(𝑥)

∑
𝑗=1

𝜆(𝑗)(Ψ(𝑥, 𝑢)) d𝑢]

= ℙ(𝛵
∑𝑑C(𝑥)

𝑗=1 𝜆(𝑗)
(𝑥) > 𝑠) .

(2.78)

Thus, we can identify and deduce:

𝜆(𝑥) =
𝑑C(𝑥)

∑
𝑗=1

𝜆(𝑗) (𝑥) . (2.79)

(ii) Let us note𝑄 the jump kernel of the process (𝛸𝑡)𝑡 and 𝛣 ⊂ 𝒳. For any 𝑥 ∈ 𝜕𝒳, we clearly have
𝑄(𝛣 ∣ 𝑥) = 𝑄𝜕(𝛣 ∣ 𝑥). For any 𝑥 ∈ 𝒳 ∖ {𝜕𝒳} such that 𝜆(𝑥) > 0, we have:

𝑄(𝛣 ∣ 𝑥) = lim
𝑡→0+

𝑄(𝛣 ∣ Ψ(𝑥, 𝑡)) = lim
𝑡→0+

ℙ(𝛸𝛵𝜆(𝑥) ∈ 𝛣 ∣ 𝛵𝜆(𝑥) = 𝑡)

= lim
𝑡→0+

𝑑C(𝑥)

∑
𝑗=1

ℙ({𝛸𝛵(𝑥) ∈ 𝛣} ∩ {𝛵𝜆(𝑗)(𝑥) = 𝑡} ∣ 𝛵𝜆(𝑥) = 𝑡)

= lim
𝑡→0+

𝑑C(𝑥)

∑
𝑗=1

ℙ(𝛸𝛵(𝑥) ∈ 𝛣 ∣ 𝛵𝜆(𝑗)(𝑥) = 𝛵𝜆(𝑥) = 𝑡) × ℙ(𝛵𝜆(𝑗)(𝑥) = 𝑡 ∣ 𝛵𝜆(𝑥) = 𝑡)

= lim
𝑡→0+

𝑑C(𝑥)

∑
𝑗=1

𝑄(𝑗)(𝛣 |Ψ(𝑥, 𝑡)) × ℙ(𝛵𝜆(𝑗)(𝑥) = 𝑡 ∣ 𝛵𝜆(𝑥) = 𝑡) .

(2.80)

Remember that for any 𝑥 ∈ 𝒳 and any 𝑗 ∈ ⟦1, 𝑑C(𝑥)⟧, the waiting time 𝛵𝜆(𝑗)(𝑥) admits the
probability density function

𝑠 ↦ 𝑝𝜆(𝑗)(𝑠 ∣ 𝑥) = 𝜆(𝑗)(𝑥) exp (−Λ(𝑗)(𝑥, 𝑠)) , (2.81)

whereΛ(𝑗)(𝑥, 𝑠) = ∫𝑠
0 𝜆

(𝑗)(Ψ(𝑥, 𝑡)) d𝑡 is the marginal integrated jump intensity.

ℙ(𝛵𝜆(𝑗)(𝑥) = 𝑡 ∣ 𝛵𝜆(𝑥) = 𝑡) =
ℙ(⋂𝑘≠𝑗{𝛵𝜆(𝑘)(𝑥) > 𝑡} ∩ {𝛵𝜆(𝑗)(𝑥) = 𝑡})

𝑝𝜆(𝑡 ∣ 𝑥)

=
𝑝𝜆(𝑗)(𝑡 ∣ 𝑥)
𝑝𝜆(𝑡 ∣ 𝑥)

× exp(−∑
𝑘≠𝑗

Λ(𝑗)(𝑥, 𝑡))

=
𝜆(𝑗)(Ψ(𝑥, 𝑡)) exp(−Λ(𝑗)(𝑥, 𝑡))
𝜆(Ψ(𝑥, 𝑡)) exp(−Λ(𝑥, 𝑡)) × exp[−(Λ(𝑥, 𝑡) − Λ(𝑗)(𝑥, 𝑡))]

= 𝜆(𝑗)(Ψ(𝑥, 𝑡))
𝜆(Ψ(𝑥, 𝑡)) .

(2.82)
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By substituting into eq. (2.80), we get:

𝑄(𝛣 ∣ 𝑥) = lim
𝑡→0+

𝑑C(𝑥)

∑
𝑗=1

𝑄(𝑗)(𝛣 |Ψ(𝑥, 𝑡)) × ℙ(𝛵𝜆(𝑗)(𝑥) = 𝑡 ∣ 𝛵𝜆(𝑥) = 𝑡)

=
𝑑C(𝑥)

∑
𝑗=1

lim
𝑡→0+

𝑄(𝑗)(𝛣 |Ψ(𝑥, 𝑡)) × 𝜆(𝑗)(Ψ(𝑥, 𝑡))
𝜆(Ψ(𝑥, 𝑡))

=
𝑑C(𝑥)

∑
𝑗=1

𝑄(𝑗)(𝛣 | 𝑥) × 𝜆(𝑗)(𝑥)
𝜆(𝑥) .

(2.83)

�

2.3.2 PDMP thinning

The superposition principle offers the possibility to decompose a PDMPwith intensity 𝜆
into several marginal PDMPs with marginal intensity 𝜆(𝑗) such that 𝜆 is the sum of the 𝜆(𝑗),
and therefore to generate the target process by combining the marginal processes. This is a
phenomenon that works in both directions: generating a process with intensity 𝜆 and keeping
the points with probability 𝜆(𝑗)/𝜆 is equivalent to generating the process with intensity 𝜆(𝑗). This
is known as Poisson marking or thinning.

theorem 3 ⋅ Thinning of an inhomogeneous Poisson process

Suppose we want to generate an inhomogeneous Poisson process with intensity 𝜆. Let
𝛵1, 𝛵2, … be the inter-jump times of an other inhomogeneous Poisson process with
intensity 𝜆 such that 𝜆(𝑡) ≥ 𝜆(𝑡) for any 𝑡 ≥ 0. Then, the counting process (𝛮𝑡)𝑡 formed
by the remaining times when deleting each point 𝛵𝑖 with probability 1 −

𝜆(𝛵𝑖)
𝜆(𝛵𝑖)

is an
inhomogeneous Poisson process with intensity 𝜆.

The proof is given in the original article of 1979 by Lewis and Shedler ([LS79]) with an associ-
ated algorithm for the simulation of the process.
This is also one of the most popular methods for generating the jump times of a PDMP. In this
case, however, only one point can be generated at a time (rather than a sequence from which
elements are subsequently removed) because the intensity changes randomly after each jump. It
is a sequential rejection method:

(i) after each jump, from a state 𝑥 ∈ 𝒳, we draw a time 𝛵𝜆(𝑥) according to the survival
function: 𝑠 ↦ exp[−∫𝑠

0 𝜆(Ψ(𝑥, 𝑢)) d𝑢],

(ii) if 𝛵𝜆(𝑥) > 𝑡𝜕(𝑥), we jump at the boundary,

(iii) else, we generate𝑈 ∼ Unif([0, 1]) and accept 𝛵𝜆(𝑥) only if 𝜆(Ψ(𝑥, 𝛵𝜆(𝑥))) ≥ 𝑈𝜆(Ψ(𝑥, 𝛵𝜆(𝑥))),
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(iv) if this jump time is rejected, we follow the flowΨ until time 𝛵𝜆(𝑥) (no jump occurs
before), then we restart the procedure from this new state.

The efficiency of the method depends on the average proportion of proposed jump times that are
accepted, and therefore on the tightness of the upper bound 𝜆. The article [LTT18] analyses the
efficiency of the method for several types of bounds.
In practice, the true computational cost lies in solving the flow and not in proposing jump times.
Therefore, we propose algorithm 4, an algorithm that aims to be economical in terms of the
number of flow calls, at the cost of a potentially large number of generated random variables.
The idea is to progress with a time step ℎ > 0. At each iteration, starting from the current state
𝑥 ∈ 𝒳:

(i) we solve the flow for a duration ℎ or shorter if the boundary of the state space is met:

[Ψ(𝑥, 𝑡)]𝑡∈[0, ℎ∧𝑡𝜕(𝑥)) ,

(ii) we determine 𝜆, a constant upperbound of 𝜆 on this interval,

(iii) we generate a proposition 𝛵with exponential distribution with parameter 𝜆,

(iv) if the proposed time is greater than 𝑡𝜕(𝑥), we jump at the boundary,

(v) if the proposed time is greater than ℎ, we restart the procedure from stateΨ(𝑥, ℎ),

(vi) else, with probability 𝜆(𝛵)
𝜆

, the jump time is accepted and we jump from stateΨ(𝑥, 𝛵),

(vii) and with probability 1 − 𝜆(𝛵)
𝜆

, we do not jump and start over the procedure from state
Ψ(𝑥, 𝛵) on interval [0, ℎ − 𝛵) (we go to the end of the time step before re-evaluating the
flow over a new interval).

2.3.3 The inversion method with a twist

The other method, even more natural, for generating the jump times of an inhomogeneous
Poisson process is the inversion method (proposition 1) of the c.d.f. of the inter-jump times.
Indeed, let us note

𝐹𝑥 ∶ 𝑠 ∈ ℝ+ ⟼ℙ(𝛵𝜆(𝑥) > 𝑠) = 1 − exp[−∫
𝑠

0
𝜆(Ψ(𝑥, 𝑡)) d𝑡] . (2.92)

We have:

𝐹−1𝑥 ∶ 𝑢 ∈ [0, 1] ⟼ inf{𝑠 ≥ 0 ∶ 𝐹𝑥(𝑠) ≥ 𝑢} = inf{𝑠 ≥ 0 ∶ ∫
𝑠

0
𝜆(Ψ(𝑥, 𝑡)) d𝑡 ≥ − log(1 − 𝑢)} .

(2.93)
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This leads to a “direct” simulation method. It is sufficient to solve:

𝛵𝜆(𝑥) = 𝐹−1𝑥 (Unif([0, 1])) = inf{𝑠 ≥ 0 ∶ Λ(𝑥, 𝑠) ≥ Exp(1)} . (2.94)

If we know for all ℓ > 0 the functionΛ−1(𝑥, ℓ) = inf{𝑠 ≥ 0 ∶ Λ(𝑥, 𝑠) ≥ ℓ}, the method is
immediate. Otherwise, we must numerically invertΛ. This is why this method is usually less
recommended. This inversion is not necessarily simple, and unlike the thinning method, it
requires evaluating the integralΛ at several points rather than simply the intensity 𝜆. It can
therefore be very costly in terms of flow calls.
However, there are more refined implementations that can partially overcome these difficulties.
We propose the following implementation. It consists of two sequences.
In the first sequence:

(i) we draw once and for all 𝑌 ∼ Exp(1),

(ii) we evaluateΨ(𝑥, 𝑡) step by step on time intervals of lenght ℎ > 0,

(iii) if we meet the boundary, we jump when we reach it,

(iv) by additivity of the integral, we updateΛ by adding the integral of 𝜆 on the new time
interval covered,

(v) we stop the first sequence as soon asΛ exceeds 𝑌.

This first sequence allows us to determine an interval [𝐿−, 𝐿+] containing 𝑌, and therefore an
interval [𝑡, 𝑡 + ℎ] of length ℎ containing 𝛵𝜆(𝑥). The function 𝑓 defined by

𝑓 ∶ 𝑠 ∈ [𝑡, 𝑡 + ℎ] ⟼ Λ(𝑥, 𝑠) − 𝑌 , (2.95)

is negative in 𝑡, nonnegative in 𝑡 + ℎ and has a positive derivative 𝑓′(𝑠) = 𝜆(Ψ(𝑥, 𝑠)). It therefore
has a unique root in the interval [𝑠, 𝑠 + ℎ] that can be determined in a second sequence using a
Newton-Raphson method [VC95]. At each iteration, a new point is proposed

𝑠𝑛+1 = min(max(𝑠, 𝑠𝑛 −
𝑓(𝑠𝑛)
𝑓′(𝑠𝑛)

), 𝑠 + ℎ) . (2.96)

The evaluation of the flow in the expression of 𝑓 and 𝑓′ is made much less costly by the fact that
it is performed several times on the same small time interval.
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algorithm 4 ⋅ PDMP thinning

1 Initialization state 𝑥 ∈ 𝒳 and step size ℎ > 0.

[𝑦, ℎ, 𝑡] ← [𝑥, ℎ ∧ 𝑡𝜕(𝑦), 0] . (2.84)

while a jump time 𝛵 is not returned do
2 Majoration step

𝜆 = sup
𝑡∈[0, ℎ)

𝜆(Ψ(𝑦, 𝑡)) . (2.85)

Sampling step
𝛵 ∼ Exp(𝜆) . (2.86)

if 𝛵 ≥ 𝑡𝜕(𝑦) then
3 Return

[𝛵, 𝑥𝛵] ← [𝑡 + 𝑡𝜕(𝑦), Ψ(𝑦, 𝑡𝜕(𝑦))] . (2.87)

4 else if 𝛵 ≥ ℎ then
5 Update

[𝑦, ℎ, 𝑡] ← [Ψ(𝑦, ℎ), ℎ ∧ 𝑡𝜕(𝑦), 𝑡 + ℎ] . (2.88)

6 else
7 Accept-reject step

𝑈 ∼ Unif([0, 1]), (2.89)

if 𝑈 × 𝜆 ≤ 𝜆(Ψ(𝑦, 𝛵)) then

8 Return
[𝛵, 𝑥𝛵] ← [𝑡 + 𝛵,Ψ(𝑦, 𝛵)] . (2.90)

else
9 Update

[𝑦, ℎ, 𝑡] ← [Ψ(𝑦, 𝛵), ℎ − 𝛵, 𝑡 + 𝛵] . (2.91)

10 end
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chapter 3

Importance sampling of piecewise
deterministic Markov processes

This chapter aims to present the fundamentals of importance sampling of PDMPs. This
method requires the evaluation of the likelihood of a PDMP trajectory. We first give the
definition of a dominant measure on the space of PDMP trajectories with respect to which
they admit a probability density function. We then describe the process with optimal
importance distribution. This optimal importance process is a piecewise deterministic
process (not necessarily Markovian). It preserves the state space and flow of the original
PDMP. The jump dynamics of the optimal importance process can be explicitly described.
In the rare event estimation case, there is a Markovian reformulation of this optimal
process. The expression of its jump intensity and jump kernel is then directly connected to
the so-called “committor function” of the process. This function returns the probability
that a trajectory realizes the event of interest given its current state. This committor
function is not known but can be approximated. At the end of the chapter, we present
an implementation of importance sampling based on a simple approximation of the
committor function.
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3.1 Distribution of a PDMP trajectory

Many statistical problems and methods (such as importance sampling) require the ability to
compute the likelihood of an observation. Do we have such a notion for observed PDMP
trajectories? In his PhD thesis [Gal19, Section 3.1 p72] (see also [Chr+19, Section 3.1]), Thomas
Galtier proved that we do. He explained a dominant measure according to which a PDMP
trajectory of fixed duration admits a probability density function. The essential results for
constructing a measure space of trajectories and the explicit pdf are given here. The first step is
to construct a relevant space in which PDMP trajectories live. This space will then be equipped
with the appropriate 𝜎-algebra and measure.
A PDMP trajectory is an application fromℝ+ to𝒳. The Skorokhod spaceD(ℝ+, 𝒳) of càdlàg
functions fromℝ+ to𝒳 is a common choice to describe the set of all possible trajectories1, but it
is too general in our case. It is more convenient to restrict ourselves at least to the space of feasible
trajectories on𝒳 for a given deterministic flowΨ. Recall that for any set 𝛣 ⊆ ℝ+, we denote
𝛸𝛣 = (𝛸𝑡)𝑡∈𝛣. We also introduce the following notation: for any 𝑠 > 0,𝛸−

𝑠 is the last state of the
trajectory𝛸[0, 𝑠)

2.

3.1.1 Skeleton of a trajectory

For any 𝑠 ∈ ℝ+ ∪ {+∞}, let 𝑥[0, 𝑠) be a PDMP trajectory (of finite or infinite duration) on𝒳
with deterministic flowΨ. Let us denote by 𝑠𝑘 the time of the 𝑘-th jump and 𝑡𝑘 the waiting time
between the 𝑘-th and the (𝑘 + 1)-th jump. More formally, starting at time 𝑠0 = 0, we have :

𝑡𝑘 = 𝑡(𝑥𝑠𝑘) = inf{𝑡 ≥ 0 ∶ Ψ(𝑥𝑠𝑘 , 𝑡) ≠ 𝑥𝑠𝑘+𝑡},

𝑠𝑘+1 = 𝑠𝑘 + 𝑡𝑘.
(3.1)

The first line can be interpreted as follows: a jump has occurred when the state of the PDMP is
no longer the one that would have been obtained by following the flow since the previous jump.
We define 𝜅, the companion counting process of the PDMP (𝛸𝑡)𝑡. It associates to any time 𝑠 ≥ 0,
the number of jumps performed by the PDMP before time 𝑠.

𝜅 ∶ 𝑠 ∈ ℝ+ ⟼ sup{𝑘 ∈ ℕ ∶ 𝑠𝑘 < 𝑠} . (3.2)

Assuming non explosion of the PDMP (definition 16) we have 𝜅(𝑠) < +∞ for any 𝑠 < ∞.

1The space of trajectories is more often referred to as the path space in the literature on stochastic processes.
However, we wanted to avoid confusion with the reliability notion of path set, which will be introduced in
chapter 5.

2In the case of a jump at time 𝑠,𝛸−
𝑠 refers to the starting state of the jump, and𝛸𝑠 to the ending state (𝛸𝑠 being

the last state of𝛸[0, 𝑠]).
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Converting a trajectory into its skeleton

Since the randomness of the process only intervenes at jump times, a PDMP trajectory can be
precisely reconstructed from its pairs of jump times and jump destinations.

definition 18 ⋅ Skeleton of a trajectory

The skeleton of a PDMP trajectory is the list of the states of the trajectory after each jump
and the list of the waiting times between the jumps. We note𝔖 the map that changes a
trajectory 𝑥[0, 𝑠) of duration 𝑠 ∈ [0, ∞] in its skeleton.

𝔖 ∶ 𝑥[0, 𝑠) ⟼ (𝑥𝑠𝑘 , 𝑡𝑘)
𝜅(𝑠)

𝑘=0
. (3.3)

The times (𝑡𝑘)
𝜅(𝑠)−1
𝑘=0 are those given in eq. (3.1). If the duration 𝑠 is finite, we have 𝑡𝜅(𝑠) =

𝑠 − 𝑠𝜅(𝑠).

Let (𝑥𝑠𝑘 , 𝑡𝑘)
𝑛

𝑘=0
be a sequence in (𝒳 × ℝ∗

+)
𝑛+1. We set 𝑠𝑘+1 = 𝑠𝑘 + 𝑡𝑘 for all 𝑘 ∈ ⟦0, 𝑛⟧. It is the

skeleton of a PDMP trajectory with 𝑛 jumps and deterministic flowΨ only if the jumps did not
occur after hitting the boundaries of the state space, i.e. for all 𝑘 ∈ ⟦0, 𝑛⟧:

𝑡𝑘 ≤ 𝑡𝜕(𝑥𝑠𝑘), i.e. Ψ(𝑥𝑠𝑘 , 𝑡) ∉ 𝜕𝒳𝑣𝑠𝑘
∀𝑡 < 𝑡𝑘. (3.4)

Converting a PDMP trajectory into its skeleton (or conversely converting a skeleton into a
PDMP trajectory) requires the knowledge of the deterministic flowΨ, but not of the jump
intensity 𝜆 and jump kernel𝑄.

Mesurable space of skeletons

For any 𝑛 ∈ ℕ, we define 𝒮(𝑛) the set of skeletons of PDMP trajectories with 𝑛 jumps and
deterministic flowΨ :

𝒮(𝑛) = {(𝑥𝑠𝑘 , 𝑡𝑘)𝑘∈⟦0, 𝑛⟧ ∈ (𝒳 × ℝ∗
+)

𝑛+1 ∣ 𝑡𝑘 ≤ 𝑡𝜕(𝑥𝑠𝑘), ∀𝑘 ∈ ⟦0, 𝑛⟧} . (3.5)

A skeleton (𝑥𝑠𝑘 , 𝑡𝑘)
𝑛
𝑘=0

∈ 𝒮(𝑛) corresponds to a PDMP trajectory of duration 𝑠𝑛 + 𝑡𝑛. The
advantage of decomposing the space of skeletons according to the number of jumps 𝑛 is that 𝒮(𝑛)

can easily be equipped with a topology. Indeed, as seen in eq. (2.49), we can define a distance
between two states of the PDMP. Suppose that we have a distance between two states of the
time-augmented PDMP (where the position includes the elapsed time). Since two skeletons in
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𝒮(𝑛) have the same number of elements, it suffices to take:

dist𝒮(𝑛)([𝑥(1)𝑠𝑘 , 𝑡(1)𝑘 ]
𝑛

𝑘=0
, [𝑥(2)𝑠𝑘 , 𝑡(2)𝑘 ]

𝑛

𝑘=0
) =

𝑛
∑
𝑘=0

dist𝒳(𝑥
(1)
𝑠𝑘 , 𝑥(2)𝑠𝑘 ), (3.6)

where 𝑥𝑠𝑘 = (𝑥𝑠𝑘 , 𝑠𝑘) is the time-augmented state and𝒳 the time-augmented space𝒳 × ℝ+. Note
that this distance only requires the two skeletons to be the same length, but does not require
them to correspond to trajectories of the same duration or to start from the same point. Thereby,
we can defineℬ(𝒮(𝑛)), the Borel 𝜎-algebra on 𝒮(𝑛) equipped with dist𝒮(𝑛) .

definition 19 ⋅ 𝜎-algebra on the skeleton space

We define 𝒮, the 𝜎-algebra on the skeleton space generated by the union, for every possible
numbers of jumps 𝑛, of the Borelians of every skeletons with 𝑛 jumps :

𝒮 = 𝜎(⋃
𝑛∈ℕ
ℬ(𝒮(𝑛))). (3.7)

3.1.2 Space of admissible trajectories

The application𝔖 is bijective. Its inverse is given for all 𝑛 ∈ ℕ (with 𝜅(𝑡) given in eq. (3.2)) by :

𝔖−1 ∶ (𝑥𝑠𝑘 , 𝑡𝑘)
𝑛

𝑘=0
∈ 𝒮(𝑛) ⟼ [Ψ(𝑥𝑠𝜅(𝑡) , 𝑡 − 𝑠𝜅(𝑡))]𝑡∈[0, 𝑠𝑛+𝑡𝑛)

. (3.8)

So any skeleton of 𝒮(𝑛) corresponds to a unique PDMP trajectory of duration 𝑠𝑛 + 𝑡𝑛. In practice,
it is useful to know the states preceding the jumps without additional call to the flow. One can
keep in memory an extended skeleton from a simulation: (𝑥−𝑠𝑘 , 𝑥𝑠𝑘 , 𝑡𝑘)𝑘 with 𝑥

−
𝑠𝑘+1 = Ψ(𝑥𝑠𝑘 , 𝑡𝑘).

definition 20 ⋅ Measurable space of PDMP trajectories

We denote by𝚻 the space of all feasible trajectories on𝒳with flowΨ. It can be defined as
the preimage for𝔖 of all the admissible skeletons.

𝚻 ∶= ⋃
𝑛∈ℕ

𝔖−1(𝒮(𝑛)). (3.9)

We also define𝒯 the 𝜎-algebra on the trajectory space :

𝒯 = 𝔖−1(𝒮). (3.10)
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Trajectories of fixed duration

For any 𝑠 ∈ ℝ+, we define 𝒮
(𝑛)
𝑠 the set of skeletons of PDMP trajectories with 𝑛 jumps, determin-

istic flowΨ and of duration 𝑠 :

𝒮(𝑛)
𝑠 = {(𝑥𝑠𝑘 , 𝑡𝑘)𝑘∈⟦0, 𝑛⟧ ∈ 𝒮

(𝑛) ∣ 𝑠𝑛 + 𝑡𝑛 = 𝑠}. (3.11)

We can therefore extend the previous definitions to the case of spaces of trajectories of finite
duration 𝑠 > 0 :

𝚻𝑠 ∶= ⋃
𝑛∈ℕ

𝔖−1(𝒮(𝑛)
𝑠 ),

𝒮𝑠 = 𝜎(⋃
𝑛∈ℕ
ℬ(𝒮(𝑛)

𝑠 )),

𝒯𝑠 = 𝔖−1(𝒮𝑠).

(3.12)

Trajectories of random duration

Similarly, we can generalise to the case of trajectories of random duration. First, remark that
(𝒯𝑠)𝑠≥0 is a filtration for the measurable space (𝚻,𝒯). Let 𝜏 be a stopping time with respect to
(𝒯𝑠)𝑠≥0. We have:

𝚻𝜏 = {(𝑥𝑡)𝑡∈[0, 𝜏) ∈ 𝚻},

𝒮(𝑛)
𝜏 = 𝒮(𝑛) ∩ 𝔖(𝚻𝜏),

𝒮𝜏 = 𝜎(⋃
𝑛∈ℕ
ℬ(𝒮(𝑛)

𝜏 )),

𝒯𝜏 = 𝔖−1(𝒮𝜏).

(3.13)

3.1.3 Likelihood of a PDMP trajectory

The space of skeletons and the space of trajectories are characterized by the state space𝒳 and
the deterministic flowΨ. The distribution of a PDMP trajectory, on a given space and for a
given flow, is characterized by the jump intensity 𝜆 and the jump kernel𝑄. Since the process is
Markovian, the law of a PDMP trajectory can be expressed as the product of the distributions of
the consecutive elements of its skeleton knowing the previous one. For any𝛢 ⊂ 𝒳,𝛢′ ⊂ ℝ+, we
have:

ℙ[(𝛸𝑆𝑘+1 , 𝛵𝑘) ∈ 𝛢 × 𝛢′ ∣ (𝛸𝑆𝑘 , 𝑆𝑘) = (𝑥𝑠𝑘 , 𝑠𝑘)] =∫𝛢
∫
𝛢′
𝑝𝜆(𝑡 ∣ 𝑥𝑠𝑘) × 𝑞(𝑥 ∣ Ψ(𝑥𝑠𝑘 , 𝑡))

× 𝜈𝑞(d𝑥 ∣ Ψ(𝑥𝑠𝑘 , 𝑡)) × 𝜈𝜆(d𝑡 ∣ 𝑥𝑠𝑘), (3.14)
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where 𝑝𝜆, given in eq. (2.47), is the pdf of a jump time with respect to the measure 𝜈𝜆, and 𝑞 is the
pdf of the jump kernel𝑄with respect to the measure 𝜈𝑞.

Product measure for a 𝑛-jumps skeleton

It is clear from eq. (3.14) that a reference measure on (𝒮(𝑛),𝒮) contains at least the product
of measures 𝜈𝜆 and 𝜈𝑞 among the various elements of the skeleton. Therefore, we define the
following measure for skeletons with 𝑛 jumps:

𝜈(𝑛)𝜆,𝑞 (d[𝑥𝑠𝑘 , 𝑡𝑘]
𝑛

𝑘=0
) ∶=

𝑛−1
∏
𝑘=0

𝜈𝜆(d𝑡𝑘 ∣ 𝑥𝑠𝑘) × 𝜈𝑞(d𝑥𝑠𝑘+1 ∣ Ψ(𝑥𝑠𝑘 , 𝑡𝑘)). (3.15)

Let 𝑥[0, 𝑠) be an observed PDMP trajectory of duration 𝑠 > 0. Suppose 𝑥[0, 𝑠) has 𝑛 jumps. The
corresponding skeleton is𝔖(𝑥[0, 𝑠)) = [𝑥𝑠𝑘 , 𝑡𝑘]

𝑛

𝑘=0
∈ 𝒮(𝑛)

𝑠 . The last state of the trajectory is

𝑥−𝑠 = Ψ(𝑥𝑠𝑛 , 𝑡𝑛) and 𝑡𝑛 = 𝑠 − 𝑠𝑛. The probability distribution of 𝛵𝑛, the 𝑛-th and last element of
the skeleton of a PDMP trajectory of finite duration 𝑠, is given, for any𝛢 ∈ ℝ+, by:

ℙ[𝛵𝑛 ∈ 𝛢 ∣ (𝛸𝑆𝑛 , 𝑆𝑛) = (𝑥𝑠𝑛 , 𝑠𝑛)] = ∫
𝛢
exp(−Λ(𝑥𝑠𝑛 , 𝑡)) 𝛿𝑠−𝑠𝑛(d𝑡)

= exp(−Λ(𝑥𝑠𝑛 , 𝑠 − 𝑠𝑛))𝟙{𝑠−𝑠𝑛}⊂𝛢 .
(3.16)

Here exp(−Λ(𝑥𝑠𝑛 , 𝑡𝑛)) represents the probability that no other jump has occurred between
the time 𝑠𝑛 and the time 𝑠𝑛 + 𝑡𝑛, the end date of the trajectory. The probability distribution of
a skeleton with 𝑛 jumps and duration 𝑠 > 0 can be derived, given its initial state 𝑥0. For any
𝛣 ⊂ 𝒮(𝑛)

𝑠 , we have :

ℙ[(𝛸𝑆𝑘 , 𝛵𝑘)
𝑛

𝑘=0
∈ 𝛣 ∣𝛸0 = 𝑥0] =∫

𝛣
(
𝑛−1
∏
𝑘=0

𝑝𝜆(𝑡𝑘 ∣ 𝑥𝑠𝑘) × 𝑞(𝑥𝑠𝑘+1 ∣ Ψ(𝑥𝑠𝑘 , 𝑡)))

× 𝜈(𝑛)𝜆,𝑞 (d[𝑥𝑠𝑘 , 𝑡𝑘]
𝑛

𝑘=0
) × exp(−Λ(𝑥𝑠𝑛 , 𝑡𝑛)) × 𝛿𝑠−𝑠𝑛(d𝑡𝑛). (3.17)

More generally, for any𝐶 ⊂ 𝒮(𝑛)
𝜏 with 𝜏 an a.s. finite stopping time, we have the same result

except for the final Dirac term:

ℙ[(𝛸𝑆𝑘 , 𝛵𝑘)
𝑛

𝑘=0
∈ 𝐶 ∣𝛸0 = 𝑥0] =∫

𝐶
(
𝑛−1
∏
𝑘=0

𝑝𝜆(𝑡𝑘 ∣ 𝑥𝑠𝑘) × 𝑞(𝑥𝑠𝑘+1 ∣ Ψ(𝑥𝑠𝑘 , 𝑡)))

× 𝜈(𝑛)𝜆,𝑞 (d[𝑥𝑠𝑘 , 𝑡𝑘]
𝑛

𝑘=0
) × exp(−Λ(𝑥𝑠𝑛 , 𝑡𝑛)) × 𝛿𝜏−𝑠𝑛(d𝑡𝑛). (3.18)
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Reference measure and probability density function for PDMP trajectories

Based on eq. (3.18) and using the application𝔖, we can establish a reference measure and a pdf
for PDMP trajectories of finite duration3.

definition 21 ⋅ Dominant measure

Let 𝜏 be an almost surely finite stopping time with respect to the filtration (𝒯𝑠)𝑠≥0. The
reference measure on the measurable space (𝚻𝜏,𝒯𝜏) of PDMP trajectories of duration 𝜏 is
defined as the product of :

(i) the pullback measure, by the function𝔖, of the product of the transitions
measures between the elements of the skeleton,

(ii) a Dirac measure to ensure that the last waiting time brings us to the expected end
date 𝜏.

𝜁𝜏(d𝑥[0, 𝜏)) = 𝛿𝜏−𝑠𝜅(𝜏)(d𝑡𝜅(𝜏)) × 𝜈
(𝜅(𝜏))
𝜆,𝑞 (𝔖(d𝑥[0, 𝜏))) ,

= 𝛿𝜏−𝑠𝜅(𝜏)(d𝑡𝜅(𝜏))
𝜅(𝜏)−1

∏
𝑘=0

𝜈𝜆(d𝑡𝑘 ∣ 𝑥𝑠𝑘) × 𝜈𝑞(d𝑥𝑠𝑘+1 ∣Ψ(𝑥𝑠𝑘 , 𝑡𝑘)) .
(3.19)

theorem 4 ⋅ Probability density function of a PDMP trajectory

Let 𝜏 be an almost surely finite stopping time with respect to the filtration (𝒯𝑠)𝑠≥0.

(i) If sup𝑥∈𝒳 𝜈𝑞(𝒳 ∣ 𝑥) < +∞ then 𝜁𝜏 is a 𝜎-finite measure.

(ii) Let 𝑥[0, 𝜏) be a PDMP trajectory of duration 𝜏with local characteristics (Ψ, 𝜆, 𝑞).
We note [𝑥𝑠𝑘 , 𝑡𝑘]

𝑛

𝑘=0
= 𝔖(𝑥[0, 𝜏)) its skeleton with 𝑛 = 𝜅(𝜏) its number of jumps.

Then the probability density function of a PDMP trajectory with respect to the
measure 𝜁𝜏 and evaluated on 𝑥[0, 𝜏) is given by:

p(𝑥[0, 𝜏)) = exp(−Λ(𝑥𝑠𝑛 , 𝑡𝑛))
𝑛−1
∏
𝑘=0

𝑝𝜆(𝑡𝑘 ∣ 𝑥𝑠𝑘) 𝑞(𝑥𝑠𝑘+1 ∣ 𝑥
−
𝑠𝑘 ) . (3.20)

The proof is provided in [Chr+19, Theorem 3.3]. The initial state 𝑥0 of the trajectory is not
considered as random in theorem 4. It is still possible to assume that𝛸0 is randomly drawn from
a pdf 𝑞0 with respect to a measure 𝜈𝑞0 on𝒳. One just has to multiply 𝜁 by 𝜈𝑞0 and p by 𝑞0(𝑥0).

3It is a slight extension of Thomas Galtier’s work [Gal19] who established them for PDMP trajectories of fixed
duration.
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3.2 Importance sampling of PDMP

We finally reach the central problem addressed in this thesis: efficiently estimating the probability
that a trajectory of a piecewise deterministic Markov process hits a target region of its state space
before a given time. As seen in section 1.1.2, at a given level of precision, classical Monte Carlo
methods consume a simulation budget inversely proportional to the rarity of the event whose
probability we seek to estimate. We first present the general case of importance sampling of
PDMPs for the estimation of the mean value of any function of a trajectory. We then discuss the
specific case of rare events.
A state space𝒳 and a triplet of local characteristics (Ψ, 𝜆, 𝑄) are assumed to be fixed once and for
all. Let 𝜏 be an almost surely finite stopping time. We denote again by𝚻 the space on which the
PDMP trajectories live, and𝚻𝜏 the subspace of trajectories of duration 𝜏. Finally, let p denote
the pdf of the distribution of a PDMP trajectory on𝚻𝜏 characterized by the jump intensity
𝜆 and jump kernel𝑄. We are interested in estimating ℐ, the mean value of a target function
𝚰 ∶ 𝚻𝜏 → ℝ of a PDMP trajectory of duration 𝜏. In the following, we denote 𝐱 = 𝑥[0, 𝜏) ∈ 𝚻𝜏, a
PDMP trajectory of duration 𝜏.

(QoI) ℐ ∶= 𝔼𝚾∼p[𝚰(𝚾)] = ∫
𝚻𝜏
𝚰(𝐱)p(𝐱) 𝜁𝜏(d𝐱) . (3.21)

The standardMonte Carlo estimator for ℐ is derived from an i.i.d. sample of trajectories from
the distribution p, given by:

ℐ̂cmc
𝑛 ∶= 1

𝑛

𝑛
∑
𝑘=1

𝚰(𝚾𝑘)
a.s.−−−−→𝑛→∞ 𝔼p[𝚰(𝚾)] = ℐ with 𝚾1, … , 𝚾𝑛

i.i.d.∼ p . (3.22)

To estimate ℐ using importance sampling, it is necessary to be able to generate trajectories
according to an alternative and admissible distribution with evaluable pdf g. We would then
have :

ℐ̂is
𝑛 ∶= 1

𝑛

𝑛
∑
𝑘=1

𝚰(𝚾𝑘)
p(𝚾𝑘)
g(𝚾𝑘)

a.s.−−−−→𝑛→∞ 𝔼g[𝚰(𝚾)
p(𝚾)
g(𝚾) ] = ℐ with 𝚾1, … , 𝚾𝑛

i.i.d.∼ g . (3.23)

3.2.1 Admissible importance process

An admissible importance process must have an absolutely continuous density gwith respect
to the measure 𝜁𝜏. Therefore, a trajectory of this process should be reconstructible from its
skeleton using the mapping𝔖−1. It follows that an admissible process is a piecewise deterministic
process (PDP) living in the same state space and subjected to the same deterministic flowΨ as
the original process with distribution p. A more detailed version of this reasoning is provided
in [Gal19, section 4.1]. However, there is no requirement for the admissible process to be
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Markovian. The jump mechanism can rely on the entire past of the trajectory and not only of the
current state.

Partial trajectories

Let (𝛸𝑠)𝑠 be the original PDMPwith local characteristics (Ψ, 𝜆, 𝑄) and consider the partial
trajectory 𝑠 ↦ 𝛸[0, 𝑠]. Since (𝛸𝑠)𝑠 is Markovian, (𝑠 ↦ 𝛸[0, 𝑠]) is also a PDMP, but on𝚻. Its local
characteristics are function of the past of the original PDMP trajectory.

(i) Its deterministic flow𝚿 is given for any times 𝑠, 𝑡 and any partial trajectory 𝑥[0, 𝑠] by:

𝚿(𝑥[0, 𝑠], 𝑡) = (𝑥𝑢)[0, 𝑠+𝑡) , (3.24)

with 𝑥𝑢 = 𝑥𝑢 for any 𝑢 < 𝑠 and 𝑥𝑢 = Ψ(𝑥𝑠, 𝑢 − 𝑠) for any 𝑢 ≥ 𝑠.

(ii) Its jump intensity 𝛌 is given for any partial trajectory 𝑥[0, 𝑠) by:

𝛌(𝑥[0, 𝑠)) = 𝜆(𝑥−𝑠 ) . (3.25)

(iii) Finally its jump kernelQ admits a pdf q given for any partial trajectories 𝑥[0, 𝑠) and 𝑥[0, 𝑠]
by:

q(𝑥[0, 𝑠] ∣ 𝑥[0, 𝑠)) = 𝑞(𝑥𝑠 ∣ 𝑥
−
𝑠 )𝟙𝑥[0, 𝑠)=𝑥[0, 𝑠) . (3.26)

We now introduce a tool that will be useful in the following. The family of operators {P𝑡}𝑡,
described in definition 22, can be interpretated as a semigroup for the process (𝑠 ↦ 𝛸[0, 𝑠]).

definition 22 ⋅ Trajectorial semigroup

For any bounded function 𝝋 ∶ 𝚻 → ℝ, any partial trajectory 𝑥[0, 𝑠] and any time 𝑡 ≥ 0, we
define:

P𝑡 𝝋(𝑥[0, 𝑠]) ∶= 𝔼[𝝋(𝛸[0, 𝑠+𝑡)) ∣ 𝛸[0, 𝑠] = 𝑥[0, 𝑠]] . (3.27)

For any 𝑡 ≥ 0, the operator P𝑡 characterizes the distribution of the partial trajectory after an
additional time 𝑡 > 0. It is worth noting that ℐ = P𝜏 𝚰(𝑥0) (considering 𝑥0 as a partial trajectory
of duration 0). We also introduce the family of operators {P−𝑡 }𝑡 that assumes that the trajectory
jumps immediately before being extended.
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definition 23 ⋅ Edge trajectorial semigroup

For any bounded function 𝝋 ∶ 𝚻 → ℝ, any partial trajectory 𝑥[0, 𝑠] and any time 𝑡 ≥ 0, we
define:

P−𝑡 𝝋(𝑥[0, 𝑠)) = QP𝑡 𝝋(𝑥[0, 𝑠)) = 𝔼𝛸[0, 𝑠]∼q(⋅∣𝑥[0, 𝑠))[P𝑡 𝝋(𝛸[0, 𝑠])] ,

= ∫
𝚻𝑠
𝔼[𝝋(𝛸[0, 𝑠+𝑡)) ∣ 𝛸[0, 𝑠] = 𝑥[0, 𝑠]]Q(d𝑥[0, 𝑠] ∣ 𝑥[0, 𝑠)) ,

= ∫
𝒳
𝔼[𝝋(𝛸[0, 𝑠+𝑡)) ∣ 𝛸[0, 𝑠) = 𝑥[0, 𝑠), 𝛸𝑠 = 𝑥𝑠]𝑄(d𝑥𝑠 ∣ 𝑥

−
𝑠 ) .

(3.28)

Support conditions for the importance process

Let (𝑌𝑠)𝑠 be the importance piecewise deterministic process and (𝑠 ↦ 𝑌[0, 𝑠]) the associated partial
trajectory. Since the deterministic flow of (𝑌𝑠)𝑠 isΨ, the flow of (𝑠 ↦ 𝑌[0, 𝑠]) is given by𝚿. The
jumpmechanism of (𝑌𝑠)𝑠 can be characterized by a jump intensity 𝛌′ and a jump kernelQ′ with
density q′ for the process (𝑠 ↦ 𝑌[0, 𝑠]). For any partial trajectory 𝑦[0, 𝑠] and time 𝑡 ≥ 0, we note:

𝚲′(𝑦[0, 𝑠], 𝑡) = ∫
𝑡

0
𝛌′(𝚿(𝑦[0, 𝑠], 𝑢)) d𝑢 ,

𝑝𝛌′(𝑡 ∣ 𝑦[0, 𝑠]) = 𝛌′(𝚿(𝑦[0, 𝑠], 𝑡))
𝟙𝑡<𝑡𝜕(𝑦𝑠) exp(−𝚲′(𝑦[0, 𝑠], 𝑡)) .

(3.29)

Let 𝑦[0, 𝜏) ∈ 𝚻𝜏 be a trajectory of the importance process with 𝑛 jumps. The pdf g of 𝑦[0, 𝜏) with
respect to 𝜁𝜏 is thus given by:

g(𝑦[0, 𝜏)) = exp(−𝚲′(𝑦[0,𝑠𝑛], 𝑡𝑛))
𝑛−1
∏
𝑘=0

𝑝𝛌′(𝑡𝑘 ∣ 𝑦[0,𝑠𝑘]) q
′(𝑦[0,𝑠𝑘+1] ∣ 𝑦[0,𝑠𝑘+1)) . (3.30)

The pdf g characterizes an admissible distribution for importance sampling if and only if:

𝚰(𝑦[0, 𝜏)) × p(𝑦[0, 𝜏)) ≠ 0 ⟹ g(𝑦[0, 𝜏)) ≠ 0 for 𝜁𝜏-almost all 𝑦[0, 𝜏) ∈ 𝚻𝜏 . (3.31)

The proposition [Gal19, Property 6.] provides conditions on 𝛌′ and q′ for the admissibility of
the process.
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proposition 14 ⋅ Admissible importance process

We have 𝚰(𝐲)p(𝐲) ≠ 0 ⟹ g(𝐲) ≠ 0 for 𝜁𝜏-almost all 𝐲 ∈ 𝚻𝜏 if and only if for any times
𝑠 > 0 and 𝑡 ∈ [0, 𝑡𝜕(𝑦𝑠)) such that 𝑠 + 𝑡 < 𝜏, we have:

𝑞(𝑦𝑠 ∣ 𝑦
−
𝑠 ) × P𝜏−𝑠 𝚰(𝑦[0, 𝑠]) ≠ 0 ⟹ q′(𝑦[0, 𝑠] ∣ 𝑦[0, 𝑠)) ≠ 0 ,

𝜆(Ψ(𝑦𝑠, 𝑡)) × P𝜏−𝑠−𝑡 𝚰(𝑦[0, 𝑠+𝑡)) ≠ 0 ⟹ 𝛌′(𝚿(𝑦[0, 𝑠], 𝑡)) ≠ 0 .
(3.32)

This condition can be interpreted rather straightforwardly. It is possible to trigger jumps from
and to states that are impossible for the distribution p, provided that the expected value of 𝚰
given the past is nonzero before and after the jump. This implies that at any time 𝑠 ∈ [0, 𝜏), all
transitions are still possible, independently of 𝜆 and 𝑞, as long as the event {𝚰(𝑌[0, 𝜏)) ≠ 0 ∣ 𝑌[0, 𝑠]}
has non-zero probability. However, it can be challenging to verify this condition in practice
depending on the target function 𝚰. We instead choose to impose:

𝑞(𝑦𝑠 ∣ 𝑦
−
𝑠 ) > 0 ⟹ q′(𝑦[0, 𝑠] ∣ 𝑦[0, 𝑠)) > 0 ,

𝜆(Ψ(𝑦𝑠, 𝑡)) > 0 ⟹ 𝛌′(𝚿(𝑦[0, 𝑠], 𝑡)) > 0 .
(3.33)

3.2.2 Optimal importance process

We call “optimal importance distribution”, the importance distribution that produces the IS
estimator with the smallest variance. As we know, the optimal distribution admits the pdf:

g∗ ∶ 𝐱 ∈ 𝚻𝜏 ⟼
1
ℐ × |𝚰(𝐱)| × p(𝐱) . (3.34)

Based on the foregoing, this is the distribution of a PDP on𝒳with flowΨ. Its jump mechanism
remains to be specified. It is known that it can be characterized using the optimal jump intensity
𝛌∗ and the optimal jump kernel densityQ∗ of the associated partial trajectory.
The following theorem contains one of the main results of Thomas Galtier’s thesis [Gal19], and
on which all my contributions are based. It provides the explicit expression for the optimal jump
intensity 𝛌∗ and the density q∗of the optimal jump kernelQ∗.

theorem 5 ⋅ Optimal jump intensity and optimal jump kernel

Let p be a PDMP distribution on a state space𝒳with local characteristics (Ψ, 𝜆, 𝑄). The
optimal importance distribution for the estimation of ℐ = 𝔼𝚾∼p[𝚰(𝚾)] is the distribution
g∗ of a PDP with the same flowΨ, an optimal jump intensity 𝛌∗ and an optimal jump
kernel density q∗. These optimal intensity and kernel density are given, for any partial
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trajectory 𝑥[0, 𝑠], by:

𝛌∗(𝑥[0, 𝑠)) = 𝜆(𝑥−𝑠 ) ×
P−𝜏−𝑠 |𝚰| (𝑥[0, 𝑠))
P𝜏−𝑠 |𝚰| (𝑥[0, 𝑠))

,

q∗(𝑥[0, 𝑠] ∣ 𝑥[0, 𝑠)) = 𝑞(𝑥𝑠 ∣ 𝑥
−
𝑠 ) ×

P𝜏−𝑠 |𝚰| (𝑥[0, 𝑠])
P−𝜏−𝑠 |𝚰| (𝑥[0, 𝑠))

.
(3.35)

The proof is given in [Chr+19, Theorem 4.3 and 4.4] or alternatively in [Gal19, Theorem 17 and
18]. We propose the following interpretation:

(i) If the expected value of |𝚰| is twice by jumping now than by not jumping, then the
optimal importance jump intensity 𝛌∗ is twice the nominal jump intensity 𝜆 on the
current state.

(ii) If the expected value of |𝚰| is twice by jumping to a specific state than by jumping
randomly, then the optimal importance jump kernel density 𝐪∗ is twice the nominal
jump kernel density 𝑞 on this specific state.

Markovian importance process

The optimal importance process is generally not a PDMP because the optimal jump intensity
and optimal jump kernel can depend on all the states of the partial trajectory. This dependence
comes from the fact that the target function 𝚰 itself can depend on all the states of the trajectory.
However, when 𝚰 only depends on the last state of the trajectory, the importance process can be
madeMarkovian and thus, a PDMP.
For any bounded function 𝜑 ∶ 𝒳 → ℝ, any states 𝑥−, 𝑥, and any time 𝑡 < 𝜏, we define:

𝛲𝑡 𝜑(𝑥) = 𝔼[𝜑(𝛸𝑡) ∣ 𝛸0 = 𝑥] ,

𝛲−
𝑡 𝜑(𝑥

−) = 𝑄𝛲𝑡 𝜑(𝑥
−) = 𝔼𝛸∼𝑞(⋅∣𝑥−)[𝛲𝑡 𝜑(𝛸)] .

(3.36)

The collection {𝛲𝑡}𝑡 is the semigroup of the PDMP of distribution p. Let us assume that there
exists a function 𝛪 ∶ 𝒳 → ℝ such that for any trajectory 𝑥[0, 𝜏) ∈ 𝚻𝜏 we have: ∣𝚰(𝑥[0, 𝜏))∣ =
|𝛪(𝑥−𝜏 )|. For any partial trajectory 𝑥[0, 𝑠] we thus have:

P𝜏−𝑠 |𝚰| (𝑥[0, 𝑠]) = 𝔼[|𝛪(𝛸𝜏)| |𝛸𝑠 = 𝑥𝑠] = 𝛲𝜏−𝑠 𝛪(𝑥𝑠) . (3.37)

This last quantity depends on the state 𝑥𝑠 but also on the elapsed time 𝑠. Now let us assume that
the position space𝒵 includes time (or let us consider the time-augmented process instead of the
nominal PDMP). In that case, the optimal importance process is Markovian. The optimal jump
intensity and optimal jump kernel density can be reexpressed as functions of the current state
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instead of the partial trajectory. For any partial trajectory 𝑥[0, 𝑠], we have:

𝛌∗(𝑥[0, 𝑠)) = 𝜆∗((𝑥−𝑠 , 𝑠)) ∶= 𝜆(𝑥−𝑠 ) ×
𝛲−
𝜏−𝑠 |𝛪| (𝑥

−
𝑠 )

𝛲𝜏−𝑠 |𝛪| (𝑥−𝑠 )
,

q∗(𝑥[0, 𝑠] ∣ 𝑥[0, 𝑠)) = 𝑞∗(𝑥𝑠 ∣ 𝑥
−
𝑠 , 𝑠) ∶= 𝑞((𝑥𝑠, 𝑠) ∣ (𝑥

−
𝑠 , 𝑠)) ×

𝛲𝜏−𝑠 |𝛪| (𝑥𝑠)
𝛲−
𝜏−𝑠 |𝛪| (𝑥−𝑠 )

.
(3.38)

3.3 Rare event application

The contributions of this thesis focus on the case where the target function 𝚰 is the indicator of a
rare event achievable by a PDMP trajectory. We consider this event to occur when the PDMP
trajectory reaches a target regionℱ ⊂ 𝒳 of its state space before a fixed time 𝑠max. From an
applied perspective, the PDMPmodels an industrial system, and the target regionℱ determines
the set of possible states corresponding to a critical failure of the system. The goal is to estimate
the probability of this critical failure.

3.3.1 Committor function

For any subsetℱ ⊂ 𝒳 of the state space, and any maximal duration 𝑠max ≥ 0, we define the
following stopping time4:

𝜏 ∶= inf{𝑡 ≥ 0 ∶ 𝛸𝑡 ∈ ℱ} ∧ 𝑠max . (3.39)

We also define 𝐅 as the set of trajectories that pass throughℱ before time 𝑠max:

𝐅 ∶= {𝑥[0, 𝜏] ∈ 𝚻𝜏 ∣ ∃ 𝑡 ∈ [0, 𝑠max] ∶ 𝑥𝑡 ∈ ℱ} = {𝑥[0, 𝜏] ∈ 𝚻𝜏 ∣ 𝜏 < 𝑠max} . (3.40)

Let 𝛪 and 𝚰 be the two following functions:

𝛪 ∶ 𝑥 ∈ 𝒳⟼ 𝟙𝑥∈ℱ ,

𝚰 ∶ 𝑥[0, 𝜏] ∈ 𝚻𝜏 ⟼𝟙𝑥[0, 𝜏)∈𝐅 = 𝟙𝜏<𝑠max
= 𝛪(𝑥−𝜏 ) .

(3.41)

We recall the notation 𝐱 = 𝑥[0, 𝜏) ∈ 𝚻𝜏. Our objective is to estimate:

ℐ ∶= 𝔼𝚾∼p[𝚰(𝚾)] = ℙ𝚾∼p(𝚾 ∈ 𝐅) , (3.42)

where p is the pdf of a nominal PDMP distribution on𝚻𝜏.
The optimal importance distribution for the estimation of ℐwith importance sampling, has been
described in section 3.2.2. In the case of rare events, this optimal distribution can be linked to a
concept frommolecular dynamics: the committor function.

4Everything that follows remains valid by taking 𝜏 = 𝑠max a.s. provided thatℱ is an absorbing region.
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Committor function in molecular dynamics

A classical sampling problem in computational physics and chemistry is simulating systems in
spaces with free-energy barriers, i.e., composed of highly attractive regions separated by regions
of nearly zero attraction. This is a dynamic view of a multimodal distribution. Metastability in
the transition path theory is a fundamental example. A metastable region for a stochastic process
is an ”attractive” part of the state space where the process stays for a very long time on average
before escaping. The focus is then on the probability of reaching a metastable region 𝛣 before
another metastable region𝛢. In this context, the committor function associates to any state 𝑥,
the probability that the stochastic process starting from 𝑥 reaches region 𝛣 before region𝛢. For
a fixed state 𝑥0 very close to𝛢, the probability to reach 𝛣 before𝛢 is very small and, therefore,
challenging to estimate usingMonte Carlo methods. This is a domain in which methods like
AMS (Adaptive Multilevel Splitting, see Section 1.2.2) are highly popular. It is well-known
that the committor function serves as the optimal importance function (also referred to as the
reaction coordinate in the molecular dynamics community) to use in the diffusive case [BK16;
CGR19; MPP23].

Optimal importance sampling and committor function

In our context, we define the committor function as the probability that a PDMP trajectory with
distribution p reaches the regionℱ before the time 𝑠max given its current state.

definition 24 ⋅ Committor function

For any state 𝑥 ∈ 𝒳 and any time 𝑠 ≥ 0, we define:

𝜉∗((𝑥, 𝑠)) ∶= 𝛲𝜏−𝑠 𝛪(𝑥) = ℙ𝚾∼p(𝛸𝜏 ∈ ℱ ∣ 𝛸𝑠 = 𝑥) . (3.43)

This definition can be related to the one used in molecular dynamics for the time-augmented
process. The set𝛢 corresponds to all the states (𝑥, 𝑠) ∈ 𝒳 × ℝ+ such that 𝑠 ≥ 𝑠max, and the set 𝛣
corresponds toℱ × ℝ+. We then have:

𝜏 = inf{𝑡 ≥ 0 ∶ (𝛸𝑡, 𝑡) ∈ 𝛢 ∪ 𝛣},

𝜉∗((𝑥, 𝑠)) = ℙ((𝛸𝜏, 𝜏) ∈ 𝛣 ∣ 𝛸𝑠 = 𝑥) .
(3.44)

We also define the variant called “edge committor function” as the probability that a trajectory of
the PDMPwith distribution p reaches the regionℱ before the time 𝑠max given its current state
and that it jumps immediately from this state.
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definition 25 ⋅ Edge committor function

For any state 𝑥− ∈ 𝒳 and any time 𝑠 ≥ 0, we define:

𝜉∗−((𝑥−, 𝑠)) ∶= 𝛲−
𝜏−𝑠 𝛪(𝑥

−) = 𝔼𝛸∼𝑄(⋅∣𝑥−)[𝜉
∗((𝛸, 𝑠))] . (3.45)

We deduce a reformulation of the optimal jump intensity and the optimal jump kernel in rare
event simulation for PDMPs.

proposition 15 ⋅ Optimality with committor function

For any states 𝑥−, 𝑥 ∈ 𝒳 and any time 𝑠 ≥ 0, we have:

𝜆∗((𝑥−, 𝑠)) = 𝜆(𝑥−) × 𝜉∗−((𝑥−𝑠))
𝜉∗((𝑥−, 𝑠))

,

𝑞∗((𝑥, 𝑠) ∣ (𝑥−, 𝑠)) = 𝑞(𝑥 ∣ 𝑥−) × 𝜉∗((𝑥, 𝑠))
𝜉∗−((𝑥−, 𝑠))

.
(3.46)

This result can be interpretated as follows:

(i) If the probability of reachingℱ before the time 𝑠max is twice as high by jumping im-
mediately rather than by jumping later, then 𝜆∗ is twice as high as 𝜆 on the current
state.

(ii) If the probability of reachingℱ before the time 𝑠max is twice as high by jumping to a
specific state 𝑥, given that we jump from a state 𝑥−, than by jumping randomly, then 𝑞∗

must be twice as high as 𝑞 between 𝑥− and 𝑥.

The full knowledge of the committor function would make it possible to generate trajectories
according to the optimal distribution g∗, and therefore to estimate the probability of interest ℐ
with a single draw.

3.3.2 Practical implementation

In practice, the committor function is never known. Its behavior, however, is quite intuitive. It
is often possible to propose an approximation of it based on some knowledge, even if limited,
of the phenomenon modeled by the PDMP. This approximation should be simple yet flexible,
allowing for refinement during iterations. We present an example based on the methodology
proposed by [Chr+19].
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Adaptive methodology

Suppose we have an approximation 𝜉𝜽 of the committor function, parameterized by a vector
𝜽 ∈ ℝ𝑑𝜽 . For any value of the parameter 𝜽 and any pair of states 𝑥−, 𝑥 ∈ 𝒳, we set:

𝜉−𝜽 (𝑥
−) = 𝔼𝛸∼𝑄(⋅∣𝑥−)[𝜉𝜽(𝛸)] ,

𝜆𝜽(𝑥) = 𝜆(𝑥) ×
𝜉−𝜽 (𝑥)
𝜉𝜽(𝑥)

,

𝑞𝜽(𝑥 ∣ 𝑥
−) = 𝑞(𝑥 ∣ 𝑥−) ×

𝜉𝜽(𝑥)
𝜉−𝜽 (𝑥

−)
.

(3.47)

For each value of 𝜽, there corresponds a distribution with pdf g𝜽 on𝚻𝜏. For any trajectory 𝐱 ∈ 𝚻𝜏,
we have:

g𝜽(𝐱) = exp(−∫
𝑡𝑛

0
𝜆𝜽(Ψ(𝑥𝑠𝑛 , 𝑡)) d𝑡)

𝑛−1
∏
𝑘=0

𝑝𝜆𝜽(𝑡𝑘 ∣ 𝑥𝑠𝑘) 𝑞𝜽(𝑥𝑠𝑘+1 ∣ 𝑥
−
𝑠𝑘 ) . (3.48)

We then have a family of importance distributions (g𝜽)𝜽∈Θ. The authors of [Chr+19] propose
to sequentially determine a “good” value of the parameter 𝜽 by cross entropy. The quantity of
interest ℐ can then be estimated by importance sampling using the distribution parameterized
by the final value provided by the cross entropy procedure. We have described this procedure in
section 1.3.2.

The heated room system

The method is applied to the test case of the heated room from the documentation of the tool
PyCATSHOO. This is the main case study of Thomas Galtier’s thesis [Gal19] and the article
[Chr+19].

example 7 ⋅ The heated room

The temperature of a roommust be maintained between a value 𝑧min and a value 𝑧max.
As the room is not perfectly insulated, it is cooled by transmission of the low outside
temperature 𝑧out. It is equipped with three identical heaters in passive redundancy.
Each heater can be active, inactive or broken, but only one can be active at a time (one
is enough to heat the room in any circumstances). An active heater switches off
automatically when the temperature reaches 𝑧max, and one inactive heater switches on
automatically when the temperature reaches 𝑧min. Heaters can break spontaneously (at a
given failure rate 𝜆fail), or on demand when they are switched on (with a given probability
𝑞𝜕). A broken heater can be repaired spontaneously (at a given repair rate 𝜆rep).

The dynamics of this system are well described by a PDMP (𝛸𝑡)𝑡 = (𝑍𝑡, 𝑉𝑡)𝑡. At any time 𝑡 ≥ 0,
the temperature in the room corresponds to the position 𝑍𝑡 and the status of the different heaters
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corresponds to the regime𝑉𝑡 = (𝑉(𝑗)
𝑡 )

3

𝑗=1
∈ {−1, 0, 1}3 (with −1 for broken, 0 for inactive and 1

for active). The temperature evolves according to a deterministic flow depending on the status of
the heaters:

d𝑍𝑡
d𝑡 = 𝑤out × (𝑧out − 𝑍𝑡) + 𝑤heat × 𝟙max(𝑉𝑡)=1 , (3.49)

where 𝑤out is the rate of heat transmission between the room and the outside, and 𝑤heat is the
heating power of each heaters. One active heater is enough to heat the room to temperature 𝑧max

if and only if 𝑤heat > 𝑤out(𝑧max − 𝑧out).
There are jumps at the boundaries of [𝑧min, 𝑧max]. If the temperature reaches 𝑧max, then the active
radiator becomes inactive with probability 1. If the temperature falls below 𝑧min, an attempt is
made to activate a non-broken radiator. Each attempt results in either the failure on demand
of the solicited radiator with probability 𝑞𝜕, or its activation (with probability 1 − 𝑞𝜕). The
activation process stops as soon as a radiator is active or when all radiators are broken.
For all 𝑗 ∈ ⟦1, 3⟧, the heater 𝑗 has a marginal jump intensity 𝜆(𝑗) that depends on its status 𝑣(𝑗)

and the temperature 𝑧. For any 𝑥 = (𝑧, 𝑣)with 𝑣 = (𝑣(𝑗))
3

𝑗=1
, we have:

𝜆(𝑗)(𝑥) ⟼ 𝜆fail(𝑧)𝟙𝑣(𝑗)>−1 + 𝜆rep(𝑧)𝟙𝑣(𝑗)=−1 . (3.50)

The jump intensity 𝜆 corresponds to the sum of marginal jump intensities:

𝜆 ∶ 𝑥 ⟼
3
∑
𝑗=1

𝜆(𝑗)(𝑥) = 𝜆fail(𝑧)
3
∑
𝑗=1

𝟙𝑣(𝑗)>−1 + 𝜆rep(𝑧)
3
∑
𝑗=1

𝟙𝑣(𝑗)=−1 . (3.51)

A spontaneous jump from state 𝑥 corresponds to a change in the status of heater 𝑗with probabil-
ity 𝜆(𝑗)(𝑥)/𝜆(𝑥). An activation attempt is made after each jump if the temperature is less than or
equal to 𝑧min. The system parameters are given in table 3.1.

Numerical results

We are interested in the probability that the room temperature falls below a threshold 𝑧ℱ <
𝑧min before a given time 𝑠max. This can only happen if all three radiators remain failed, si-
multaneously, for a long enough time. It is clear that the states closest to the failure region
ℱ = {(𝑧, 𝑣) ∈ 𝒳 ∶ 𝑧 ≤ 𝑧ℱ} are those for which multiple radiators are broken. The authors of
[Chr+19] propose the following approximation of the committor function:

𝜉𝜽((𝑧, 𝑣)) = exp[(𝜃1𝟙𝑧>𝑧min
+ 𝜃2𝟙𝑧≤𝑧min

)(
3
∑
𝑖=1

𝟙𝑣𝑖=−1)
2

] . (3.52)

This approximation is therefore a function of the number of failed radiators. It is parameterized
by two real numbers 𝜃1 and 𝜃2. Each one allows to control howmuch the failures should be
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table 3.1 Parameters of the heated room. Values taken from [Chr+19].

Parameter Value Description
𝑧min 0.5 Minimal temperature before switching ON a heater
𝑧max 5.5 Maximal temperature before switching OFF a heater
𝑧out −1.5 Outside temperature
𝑤out 0.1 Rate of heat transition with exterior
𝑤heat 5 Heating power of each heater
𝑞𝜕 0.01 Probability of failure on demand

𝜆fail(𝑧) 0.0021 + 0.00015𝑧 Failure rate of each heater
𝜆rep(𝑧) 0.2 Failure rate of each heater
𝑠max 100 Duration of the mission
𝑧0 7.5 Initial temperature in the room
𝑧ℱ 0 Threshold of critical failure

favored and the repairs hindered. The first parameter 𝜃1 is used when the transition does not
involve the activation of a radiator and therefore corresponds to spontaneous failures and repairs.
The second parameter 𝜃2 is used when the transition requires the activation of a radiator and
interacts with the probability of failure on demand.
We now present the experiment they carried out and the results they obtained. The parameters
of the flow, the failure and repair rates, and the probability of failure on demand are those
given in table 3.1. The sample size used at each iteration of the cross-entropy procedure is such
that each sample contains 𝑛ce = 100 failing trajectories. Three cross-entropy iterations were
performed (with respective sample sizes of 1970, 126, 127). The method is initialized with
𝜽(0) = (0.5, 0.5). The cross-entropy procedure returned at the third iteration the parameter value
𝜽(3) ≈ (0.915, 1.197). Importance sampling (IS) with distribution g𝜽(3) is compared to a classic
Monte Carlo (CMC) method in table 3.2 for different sample sizes 𝑛.
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table 3.2 Comparison of the classic Monte Carlo
(CMC) method with an importance sampling
method for different sample sizes 𝑛. Results
obtained by the authors of [Chr+19].

𝑛 ℐ̂ × 105 �̂�2/𝑛 95% ĈI × 105

CMC
106 0.4 4.00 × 10−12 [0.01, 0.79]

107 1.3 1.28 × 10−12 [1.07, 1.51]

IS

103 1.28 4.37 × 10−13 [1.15, 1.41]

104 1.273 5.07 × 10−14 [1.228, 1.317]

105 1.289 5.07 × 10−15 [1.275, 1.303]

106 1.288 5.05 × 10−16 [1.283, 1.292]
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chapter 4

Adaptive importance
sampling strategy

The optimality conditions of an importance distribution for importance sampling of
PDMPs were recalled in chapter 3. We are interested in the case of rare event simulation
realized by PDMPs. The optimal importance distribution is then characterized by an
optimal jump intensity and optimal jump kernel, which are given by the committor
function of the process. This committor function associates to each possible state of a
PDMP trajectory the probability that it realizes the event of interest. We first introduce
the general form of a family of approximations of the committor function. We then detail
an adaptive importance sampling procedure with recycling to jointly determine a good
candidate within the family of approximations, and to estimate the probability of interest.
We prove the asymptotic optimality and normality of the method under easily verifiable
and interpretable conditions. Finally, we discuss implementation choices of the method.
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4.1 Towards committor function approximation

Before delving into our contributions, here is a summary of the concepts you will need from the
chapter 3.

4.1.1 Reminder on importance sampling of PDMP

Let𝒳 be the state space of a PDMPwith local characteristics (Ψ, 𝜆, 𝑄). Let alsoℱ be a target
region of𝒳 and 𝑠max > 0 the maximum considered duration of a PDMP trajectory. For any
PDMP trajectory (𝛸𝑡)𝑡, we define the stopping time:

𝜏 ∶= inf{𝑡 ≥ 0 ∶ 𝛸𝑡 ∈ ℱ} ∧ 𝑠max. (4.1)

We denote by𝚻𝜏 the space of PDP trajectories of duration 𝜏with flowΨ on𝒳. Let also p be the
pdf of a reference distribution of a PDMP trajectory (characterized by (Ψ, 𝜆, 𝑄)) in𝚻𝜏. For the
following, we note 𝐱 = 𝑥[0,𝜏) ∈ 𝚻𝜏 a PDMP trajectory. Finally, let 𝐅 be the set of trajectories that
reachℱ before time 𝑠max:

𝐅 ∶= {𝑥[0,𝜏) ∈ 𝚻𝜏 ∣ ∃ 𝑡 ∈ [0, 𝑠max) ∶ 𝑥𝑡 ∈ ℱ} = {𝐱 ∈ 𝚻𝜏 ∣ 𝜏 < 𝑠max}. (4.2)

We aim to estimate the integral
ℐ ∶= 𝔼p[𝚰(𝚾)], (4.3)

in the rare event case
𝚰 ∶ 𝐱 ∈ 𝚻𝜏 ⟼𝟙𝐱∈𝐅 = 𝟙𝜏<𝑠max

= 𝟙𝑥𝜏∈ℱ. (4.4)

Thus ℐ = ℙ𝚾∼p(𝚾 ∈ 𝐅). It is the probability that a trajectory of a PDMPwith pdf p reaches a
regionℱ of its state space before a specified time 𝑠max. As previously discussed, on a given state
space𝒳 and under a fixed deterministic flowΨ, the distribution of a PDMP is characterized by
its jump intensity 𝜆 and jump kernel𝑄 (or by the probability density function 𝑞 of the kernel).
The optimal distribution for importance sampling (yielding an estimator with zero variance of
the probability of interest) is characterized by an optimal jump intensity 𝜆∗ and an optimal jump
kernel𝑄∗ of pdf 𝑞∗.

Committor function

The forms of the optimal jump intensity and kernel are known and admit explicit expressions
based on the committor function of the process. Recall that the committor function represents
the probability that the trajectory realizes the event of interest before the time 𝑠max given its
current state. Additionally, we define the edge committor function, which represents the
probability that the trajectory realizes the event of interest before the time 𝑠max given that the
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process is about to jump from its current state.

𝜉∗(𝑥, 𝑠) = 𝔼p[𝚰(𝚾) |𝛸𝑠 = 𝑥] = ℙp(𝚾 ∈ 𝐅 |𝛸𝑠 = 𝑥), (4.5)

𝜉∗−(𝑥−, 𝑠) = 𝔼𝛸∼𝑄(⋅∣𝑥−)[𝜉
∗(𝛸, 𝑠)] = ∫

𝒳
𝜉∗(𝑥, 𝑠)𝑞(𝑥 ∣ 𝑥−)𝜈𝑞(d𝑥 ∣ 𝑥

−). (4.6)

The expressions for the optimal jump intensity and optimal jump kernel are given by:

𝜆∗((𝑥, 𝑠)) = 𝜆(𝑥) 𝜉
∗−(𝑥, 𝑠)
𝜉∗(𝑥, 𝑠)

, (4.7)

𝑞∗((𝑥, 𝑠) ∣ (𝑥−, 𝑠)) = 𝑞(𝑥 ∣ 𝑥−) 𝜉∗(𝑥, 𝑠)
𝜉∗−(𝑥−, 𝑠)

. (4.8)

Hence, knowing the committor function 𝜉∗ is sufficient to completely characterize the optimal
importance distribution. Note that we even have ℐ = 𝜉∗(𝑥0, 0). However, the committor
function is not explicitly known. The idea, as discussed in the preceding chapter, is to replace
the committor function 𝜉∗ with an approximation. Instead of searching for new jump intensity
and new jump kernel among the set of all possible ones, we considerably reduce the size of
the problem by focusing on finding a good approximation of the committor function. The
interpretation of such a function with respect to the rare event is much clearer than that of an
alternative intensity and kernel, making it also more intuitive to determine good candidates.

4.1.2 Problem parameterization

A good approximation of the committor function should, in some sense, quantify the proximity
between the current state of the trajectory and the region of interestℱ. A function fulfilling
this role is sometimes referred to in the literature as an “importance function” (IF) [Vil07; BS20;
Lou+17], “reaction coordinate” (RC) [MPP23; Bit+23; Kri13; BH05], or “collective variable”
(CV) [Hol+24; FKH13; Che21; Bha22]. We are interested in this function not for what it would
teach us about the process but solely as fuel for an importance sampling method. Hence, we will
preferentially use the term IF in the following1. Saying this also implies that we are not concerned
with the faithfulness of an IF to the true committor function 𝜉∗ but rather with the performance
of the importance distribution that can be associated with it.

1Furthermore, RC and CV are terms with a stronger “molecular dynamics” connotation, which is not the
application we have in mind.
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Parametric family of importance distributions

In practice, we consider a parametric family of importance functions (IFs) denoted by (𝜉𝜽)𝜽∈Θ,
where 𝜽 ∈ Θ ⊂ ℝ𝑑Θ is a vector parameter. Instead of learning an IF that closely mimics the
behavior of 𝜉∗, we select the best corresponding importance distribution using a cross-entropy
method (see section 1.3.2).
The distribution g𝜽 corresponding to an IF 𝜉𝜽 is characterized by the jump intensity 𝜆𝜽 and the
jump kernel 𝑞𝜽, obtained by replacing 𝜉

∗ with 𝜉𝜽 in eqs. (4.6) to (4.8). For any states 𝑥, 𝑥
− ∈ 𝒳,

and any time 𝑠, 𝑡 ≥ 0, we have:

𝜉−𝜽 (𝑥
−, 𝑠) = 𝔼𝛸∼𝑄(⋅∣𝑥−)[𝜉𝜽(𝛸, 𝑠)] = ∫

𝒳
𝜉𝜽(𝑥, 𝑠)𝑞(𝑥 ∣ 𝑥

−) 𝜈𝑞(d𝑥 ∣ 𝑥
−) (4.9)

𝜆𝜽(𝑥) = 𝜆(𝑥)
𝜉−𝜽 (𝑥, 𝑠)
𝜉𝜽(𝑥, 𝑠)

, (4.10)

𝑞𝜽(𝑥 ∣ 𝑥
−) = 𝑞(𝑥 ∣ 𝑥−)

𝜉𝜽(𝑥, 𝑠)
𝜉−𝜽 (𝑥

−, 𝑠)
, (4.11)

𝑝𝜆𝜽(𝑡 ∣ 𝑥) = [𝜆𝜽(Ψ(𝑥, 𝑡))]
𝟙𝑡<𝑡𝜕(𝑥) exp[−∫

𝑡

0
𝜆𝜽(Ψ(𝑥, 𝑢)) d𝑢] . (4.12)

For a given family of importance functions (𝜉𝜽)𝜽∈Θ, we deduce the family of importance distri-
butions (g𝜽)𝜽∈Θ, characterized by the p.d.f. given in eq. (4.13). For any trajectory 𝐱 ∈ 𝚻𝜏 with 𝑛
jumps and whose skeleton is [𝑥𝑠𝑘 , 𝑡𝑘]

𝑛
𝑘=0, we have:

g𝜽(𝐱) = exp(−∫
𝑡𝑛

0
𝜆𝜽(Ψ(𝑥𝑛, 𝑡))d𝑡)

𝑛
∏
𝑘=0

𝑝𝜆𝜽(𝑡𝑘 ∣ 𝑥𝑠𝑘) × 𝑞𝜽(𝑥𝑠𝑘+1 ∣ Ψ(𝑥𝑠𝑘 , 𝑡𝑘)) . (4.13)

Practical considerations

For most of the phenomena modelled by PDMPs, the number of possible transitions is finite
from any departure state. The integral 𝜉−𝜽 is then a simple finite sum. In particular, jumping to a
new state often modifies the regime only and not the position (which only moves with the flow).
The committor function then only appears in the expressions for the optimal jump intensity
eq. (4.7) and the optimal jump kernel eq. (4.8) as ratios evaluated at identical times and positions
but distinct regimes, which removes some of the position and time dependence. Since what
happens in a given regime is deterministic, achieving the event of interest depends more on the
regimes to which the process jumps than on the position and time. It remains relevant, and
perhaps more reasonable, to restrict ourselves to IFs that depend only on the regime and not on
the position or time.
Since the committor function only appears as ratios in eq. (4.7) and eq. (4.8), we only need
a good approximation up to a multiplicative constant. Therefore, the IFs do not need to be
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normalized and interpreted as probabilities.

4.2 General parametric form of the importance function

In this section, we propose a general form of importance function that depends only on the
PDMP regime. A possible equivalent of the committor function but restricted to the regime
could be the following function:

𝑣 ∈ 𝒱 ⟼ ∫
𝑠max

0
𝔼p[𝜉

∗(𝛸𝑠, 𝑠) | 𝑉𝑠 = 𝑣] d𝑠. (4.14)

It is clear that this function takes its largest values when the target regionℱ is accessible by
staying in regime 𝑣 for a sufficiently long time. The integrand then corresponds roughly to the
probability of not leaving such a regime untilℱ is reached.

definition 26 ⋅ Critical regimes

We define the set 𝒱ℱ of critical regimes that lead to reach the region of interestℱ.

𝒱ℱ ∶= {𝑣 ∈ 𝒱 | ∃ 𝑧 ∈ 𝒵 ∶ 𝑥 = (𝑧, 𝑣) ∈ ℱ}. (4.15)

It may happen that some states inℱ are not accessible to a trajectory𝚾 of distribution
p. In this case, it is more cautious to consider the following definition (although more
difficult to verify in practice):

𝒱∗
ℱ ∶= {𝑣 ∈ 𝒱 ∣ ∃ 𝑡 ∈ [0, 𝑠max] ∶ ℙp(𝛸𝑡 ∈ ℱ |𝑉𝑡 = 𝑣) > 0}. (4.16)

It is necessary to be in 𝒱ℱ to end up inℱ. Therefore, the committor function is large for a given
regime 𝑣 if the set 𝒱ℱ can be reached from 𝑣 in a small number of not too unlikely jumps. We
now consider reaching 𝒱ℱ as the main obstacle to overcome in order to realize the rare event. We
are thus looking for IFs that can quantify the proximity of a regime to the set 𝒱ℱ

2.

4.2.1 Parametric form of the IF

Since we are looking for 𝜉𝜽 only among IFs depending solely on the regime, we have only a
countable (and most often finite) number of values to choose from. In the case where the
number of regimes 𝑑𝒱 = Card(𝒱) is finite, it suffices to define 𝜉𝜽(𝑥) = 𝜃𝑣 for all 𝑥 = (𝑧, 𝑣)
with 𝑑Θ = 𝑑𝒱 to express the set of IFs of interest. Unfortunately, the number of regimes 𝑑𝒱 is

2Note that 𝒱ℱ does not necessarily represent a minority of existing regimes. Whenℱ corresponds to the
critical failure of large industrial systems (a case that we will address in chapter 5), most regimes belong to 𝒱ℱ. Indeed,
there are many more possible configurations in which the system does not work than configurations in which it
works correctly. However, these are regimes that are rarely visited or for durations that are too short to reachℱ.
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often too large in interesting cases for such a family of IFs to be explorable. We need to restrict
ourselves to families of IFs parameterized by vectors of smaller dimension. While the family
(𝜉𝜽)𝜽∈Θ may then lack flexibility, it becomes easier to determine one of its best representatives. We
want the form of our IF to allow easy adjustment of the dimension 𝑑Θ of its parameter vector 𝜽.
The key idea of our approach is to introduce a minimal amount of information about the PDMP
to guide the IF. This a priori information (i.e., before any simulation) takes the form of a score
function quantifying the proximity between a given regime and the region 𝒱ℱ . The IF we
propose is a parametric transformation of this proximity score.
The proximity score can be very rudimentary. Once again, the goal is not to construct the most
faithful approximation of the committor function. Only the performance of the importance
distribution associated with the IF matters. Introducing a priori information about the behavior
of the PDMP helps to avoid over-parameterizing a family of IFs. We no longer seek the best
function of the regime (a nearly impossible task without specifying links between the different
regimes), but the best function of the score (a unidimensional variable in the interval [0, 1]).

definition 27 ⋅ Parametric form of the IF

For any state 𝑥 = (𝑧, 𝑣) ∈ 𝒳 and any time 𝑠 ≥ 0we introduce:

𝜉𝜽(𝑥, 𝑠) = exp[
𝑑Θ
∑
𝑗=1

𝜃𝑗 × 𝜙𝑗(𝛽(𝑣))]. (4.17)

This form is defined by:

(i) the vector parameter 𝜽 ∈ Θ ⊂ ℝ𝑑Θ with dimension 𝑑Θ > 0,

(ii) the proximity score 𝛽 ∶ 𝒱 ↦ [0, 1],

(iii) a family of basis functions (𝜙𝑗)
𝑑Θ

𝑗=1
with 𝜙𝑗 ∶ [0, 1] ↦ ℝ for any 𝑗 ∈ ⟦1, 𝑑Θ⟧.

The flexibility of the IF is determined by the dimension of the vector 𝜽, as this determines the
number of basis functions used to transform the proximity score 𝛽.
Note, that the edge committor function 𝜉∗− depends on the jump kernel 𝑞, which is a function
of the complete state of the process and not just its regime. Except for special cases (where the
destination of a jump depends only on the departure regime), the approximation 𝜉−𝜽 is therefore
not solely a function of the regime, even when 𝜉𝜽 is. On the other hand, the edge committor
function does not depend on the elapsed time. Therefore, we will allow ourselves the notational
abuse of using 𝜉𝜽(𝑥) and 𝜉

−
𝜽 (𝑥) in the following rather than 𝜉𝜽(𝑥, 𝑠) and 𝜉

−
𝜽 (𝑥, 𝑠).
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Eligibility

The exponential ensures that 𝜉𝜽 > 0 and thus that 𝜆𝜽 and 𝑞𝜽 are non-negative (thus valid jump
intensities and kernels). It is then observed that 𝑞𝜽 remains normalized to 1 (independently of
whether 𝑞 is normalized):

∫
𝒳
𝑞𝜽(𝑥 ∣ 𝑥

−) 𝜈𝑞(d𝑥 ∣ 𝑥
−) =

∫𝒳 𝑞(𝑥 ∣ 𝑥
−) 𝜉𝜽(𝑥) 𝜈𝑞(d𝑥 ∣ 𝑥

−)
∫𝒳 𝑞(𝑥

′ ∣ 𝑥−) 𝜉𝜽(𝑥′) 𝜈𝑞(d𝑥′ ∣ 𝑥−)
= 1. (4.18)

Another desirable property of the IF is to prevent the explosion of the importance process. It
suffices to observe that inf𝑥 𝜉𝜽(𝑥) > 0 and sup𝑥 𝜉𝜽(𝑥) < ∞when the parameter 𝜽, the score

function 𝛽, and the family of basis functions (𝜙𝑗)𝑗 are fixed. We then note that the ratio 𝜉−𝜽
𝜉𝜽

is
upper-bounded, which ensures that 𝜆𝜽 is bounded if 𝜆 is (see proposition 10).
Including the reference distribution pwithin the family of importance distributions (g𝜽)𝜽∈Θ is a
useful precaution (ensuring that one can always find an importance distribution that performs
no worse than classical Monte Carlo). Let 𝟎𝑑Θ = (0, … , 0) ∈ ℝ𝑑Θ . We have 𝜉𝟎𝑑Θ(𝑥) = 1 for all
𝑥 ∈ 𝒳, hence 𝜆𝟎𝑑Θ = 𝜆, 𝑞𝟎𝑑Θ = 𝑞, and thus g𝟎𝑑Θ = p.

4.2.2 Proximity scores

As we have said, it is not reasonable to explore all the possible values that can be assigned to each
regime. Nevertheless, we will see in the chapters 5 and 6 that it is possible to assign an initial
value (even a very naive one) to the different regimes based on the practitioner’s a priori idea of
their proximity to 𝒱ℱ. For each regime 𝑣 ∈ 𝒱, we denote 𝛽(𝑣) ∈ [0, 1] as its proximity score to
the set 𝒱ℱ. The higher the score 𝛽(𝑣), the more we assume that 𝑣 is “close” to 𝒱ℱ. We impose
the following condition: 𝛽(𝑣) = 1 ⟺ 𝑣 ∈ 𝒱ℱ. This proximity score is transformed by our
IF, whose parameters will be calibrated during the simulation and optimization phases of the
cross-entropy method, to associate the most relevant possible value to each regime.
This is one of the main messages of this thesis. As tempting as it may be, using totally agnostic
distributions (today conjugated with deep learning methods in generative models) to do
multimodal importance sampling in high dimension is not always the most relevant approach.
Very good results can be obtained by introducing a minimal amount of information into a
parametric model. We will see that this is a small price to pay in the context of PDMPs because
the relevant information can be extracted without an in-depth knowledge of the problem’s
specificities. Our approach aims to clearly separate the information that enters the model,
completely characterized by the proximity score 𝛽, from the rest of our methodology, which is
truly “generalist”.
Let us now focus on the form of our IF. The proximity score 𝛽 is assumed to be fixed and so are
the scores 𝛽(𝑣) for all 𝑣 ∈ 𝒱. They define the maximum degree of expressiveness of our IF (up to
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𝑑𝒱 different values if all score values 𝛽(𝑣) are distinct). It remains to determine how to express a
wide variety of functions of 𝛽 ∈ [0, 1]with a limited number of parameters.

4.2.3 Basis functions

We first write 𝜉𝜽 = exp(−𝑈𝜽)where𝑈𝜽 is a function of 𝛽, which is zero when 𝜽 is identically
zero3. The exponential ensures both the positivity of the IF (without restricting the sign of𝑈𝜽)
and that the IF is equal to 1 for 𝜽 = 𝟎𝑑Θ . Furthermore, it facilitates optimization by further
convexifying the problem4. Finally, we construct𝑈𝜽 by drawing inspiration from truncated
projection methods on 𝐿2 for the approximation of functions from [0, 1] toℝ. The function
𝑈𝜽 = −∑𝑑Θ

𝑗=1 𝜃𝑗 × 𝜙𝑗(𝛽) is a finite linear combination of basis functions 𝜙𝑗 in 𝛽with 𝜃𝑗 as
coefficients.
There is no shortage of options for the basis functions 𝜙𝑗 (starting with the set of orthonormal
bases of 𝐿2([0, 1])). We have been guided by the two following principles:

(i) There must always exist combinations of parameters 𝜽 allowing the IF to be strictly
increasing in 𝛽. This is the expected behavior of the IF if the proximity score 𝛽 has not
been too poorly chosen.

(ii) Increasing the dimension of the parameter vector should generally allow for a refined
approximation. The IF should be able to coincide with any step function of 𝛽 at the
points (𝛽(𝑣))

𝑣∈𝒱
when the dimension 𝑑Θ is large enough.

We propose and discuss two families of basis functions: monomials and piecewise linear func-
tions.

Polynomial

For any 𝑗 ∈ ⟦1, 𝑑Θ⟧ and any 𝛽 ∈ [0, 1]we define:

𝜙𝑗(𝛽) = 𝛽𝑗. (4.19)

The IF is then simply the exponential of a polynomial of degree 𝑑Θ. Other polynomial bases
than monomials can be used, such as Bernstein polynomials: 𝜙𝑗(𝛽) = (𝑑Θ𝑗 )𝛽

𝑗(1 − 𝛽)𝑑Θ−𝑗. By
associating a polynomial of degree 𝑑Θ with each parameter 𝜃𝑗, we avoid the situation where
the IF is driven by only a few 𝜃𝑗 as the degree increases. Increasing the degree allows for the

3This form inevitably recalls what a Boltzmann-Gibbs distribution with the potential𝑈𝜽(𝛽) = −∑𝑑Θ
𝑗=1 𝜃𝑗 ×

𝜙𝑗(𝛽)would be, but this is not a path we pursue here.
4Let = (𝜙𝑗)

𝑑Θ

𝑗=1
be different from the zero vector. The Hessian of 𝜉𝜽 at 𝜽 is given by 𝜉𝜽 ×𝝓 ⋅ 𝝓

𝛵, which is positive

definite, while the Hessian of𝑈𝜽 at 𝜽 is zero.
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approximation of any function in 𝐿2([0, 1])without the issues encountered in interpolation (i.e.,
𝑈𝜽 is not constrained to pass through specific points but is adjusted to minimize a loss).
High-degree polynomials are particularly effective for approximating multimodal functions.
They are likely useful for correcting poorly chosen proximity score 𝛽 and allow great global
freedom to𝑈𝜽, including the freedom to not increase everywhere in 𝛽. However, they are less
suitable for finely approximating the slope of “more monotonic” functions and offer less local
freedom to𝑈𝜽.

Piecewise linear functions

Let c = (𝑐0, … , 𝑐𝑑Θ) ∈ [0, 1]
𝑑Θ such that 0 = 𝑐0 < 𝑐1 < ⋯ < 𝑐𝑑Θ = 1. For any 𝑗 ∈ ⟦1, 𝑑Θ⟧, and any

𝛽 ∈ [0, 1]we define:

𝜙𝑗(𝛽) = (𝛽 − 𝑐𝑗) 𝟙𝛽≥𝑐𝑗 . (4.20)

At a fixed 𝛽, the supports [𝑐𝑗, +∞) for 𝑗 ∈ ⟦1, 𝑑Θ⟧ are overlapping to allow for the continuity of
𝑈𝜽 with respect to 𝛽. This avoids threshold effects that would occur at points 𝑐𝑗 with a support
of the form {𝛽 ∈ [𝑐𝑗, 𝑐𝑗+1)}. Here, unlike polynomial-based IFs, the 𝜃𝑗 have a local influence and
allow for fine-tuning𝑈𝜽 when 𝑑Θ is high.
It can be noted that the 𝛽(𝑣) values are not necessarily evenly distributed over [0, 1]. Thus, we
do not recommend to choose the (𝑐𝑗)𝑗 evenly spaced. A first simple alternative is to choose c
such that each interval [𝑐𝑗, 𝑐𝑗+1] contains the same number of elements of (𝛽(𝑣))𝑣∈𝒱. We suggest
another option: building 𝑑Θ classes on [0, 1] using a 1D 𝑘-means method.

4.3 Adaptive importance sampling with recycling scheme

Let us consider, for the remainder of this chapter, a family of proximity scores (𝛽𝑣)𝑣∈𝒱 (whose
construction is addressed in chapter 5 and chapter 6) and a family of basis functions (𝜙𝑗)𝑗. Con-
sequently, we have a family of importance functions (IFs) (𝜉𝜽)𝜽∈Θ (as defined in definition 27),
along with an associated family of importance distributions (g𝜽)𝜽∈Θ (characterized by a p.d.f.
whose expression is given in eq. (4.13)). We now present the adaptive importance sampling
method upon which we rely to both sequentially determine a suitable candidate importance dis-
tribution and to estimate the probability of the event of interest. We also examine its asymptotic
properties.

4.3.1 Cross entropy with recycling scheme

We rely on a cross-entropy method as outlined in section 1.3.2 to sequentially improve the
importance distribution. We briefly recall the principle of the method:
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⋄ We seek the distribution g𝜽∗ that minimizes the forward Kullback-Leibler (KL) diver-
gence with the optimal distribution g∗ within the family (g𝜽)𝜽∈Θ.

𝜽∗ ∈ argmin
𝜽∈Θ

𝒟KL (g
∗‖g𝜽) . (4.21)

⋄ It can be demonstrated (see eq. (1.55)) that this is equivalent to determining:

𝜽∗ ∈ argmax
𝜽∈Θ

𝔼p[𝚰(𝚾) log g𝜽(𝚾)]. (4.22)

⋄ We do not directly maximize this expectation but rather an iterative importance sampling
approximation. Each iteration ℓ is decomposed into two steps: first, we simulate a sample
𝚾1, … , 𝚾𝑛ℓ according to a distribution g𝜽(ℓ) , and then we determine the parameter for
the next iteration 𝜽(ℓ+1) that maximizes an estimate of 𝔼p[𝚰(𝚾) log g𝜽(𝚾)] based on the
sample𝚾1, … , 𝚾𝑛ℓ .

⋄ After several iterations, assuming we have obtained a good importance distribution, we
then simulate a final sample according to this distribution to construct the importance
sampling estimator of the probability of interest.

We summarize this version of the method in algorithm 5. Implementation details such as
initialization, termination criterion, or the size of each sample will be discussed in section 4.3.3.

Recycling scheme

The method described in algorithm 5 is simple to implement, analyze, and converges quickly
in practice5. However, it has some drawbacks. Only the last drawn sample contributes to the
estimation of the probability of interest. We do not take advantage of the realizations generated
throughout the iterations. The importance distribution also cannot be updated too frequently
because the cross entropy loss has to be estimated with a large sample size at each iteration.
The alternative is to recycle realizations from previous iterations at each optimization step and at
the final estimation step. Recycling an observation𝚾(ℓ)

𝑘 generated at iteration ℓ simply requires
associating it with the proper likelihood ratio p/g𝜽(ℓ) (with g𝜽(ℓ) being the distribution that
generated the observation). This leads us to algorithm 6.

5A good importance distribution is usually obtained in 4 or 5 iterations.
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algorithm 5 ⋅ Vanilla cross entropy for rare events

1 Initializationwith parameter 𝜽(1) ∈ Θ.
2 for ℓ = 1, … , 𝐿 − 1 do
3 Sampling step

𝚾(ℓ)
1 , … , 𝚾(ℓ)

𝑛ℓ
i.i.d.∼ g𝜽(ℓ) . (4.23)

4 Optimization step

𝜽ℓ+1) ∈ argmin
𝜽∈Θ

−
𝑛ℓ
∑
𝑘=1

𝚰(𝚾(ℓ)
𝑘 )

p(𝚾(ℓ)
𝑘 )

g𝜽(ℓ)(𝚾
(ℓ)
𝑘 )

log g𝜽(𝚾
(ℓ)
𝑘 ). (4.24)

5 end
6 Final sampling step

𝚾(𝐿)
1 , … , 𝚾(𝐿)

𝑛𝐿
i.i.d.∼ g𝜽(𝐿) (4.25)

7 Estimation step

ℐ̂ce = 1
𝑛𝐿

𝑛𝐿
∑
𝑘=1

𝚰(𝚾(𝐿)
𝑘 )

p(𝚾(𝐿)
𝑘 )

g𝜽(𝐿)(𝚾
(𝐿)
𝑘 )

. (4.26)

4.3.2 Asymptotic properties

Using a scheme to recycle past samples necessarily complicates the study of the asymptotic
properties of the method. The data used are indeed no longer all from the same distribution
(since it changes between iterations), and above all are not independent since the distribution of
the data at a given iteration is constructed from the data generated in previous iterations.
The recycling scheme presented above corresponds to the one found in the article [DP18]. In
this article, the authors rely on a martingale property of the cross-entropy loss estimator and of
the final estimator of the quantity of interest to demonstrate the consistency of the algorithm
[DP18, Theorem 2] and its asymptotic normality [DP18, Theorem 3]. We restate below the
conditions of their theorem in the context of our work with our notations6.

6These results are valid for any family of importance distributions (g𝜽)𝜽∈Θ satisfying the conditions of
theorems 6 and 7. We are therefore not restricted to the case of families of distributions constructed from a family of
IFs, which is simply the approach we propose but not the only possible one.
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algorithm 6 ⋅ Cross entropy with recycling scheme

1 Initializationwith parameter 𝜽(1) ∈ Θ.
2 for ℓ = 1, … , 𝐿 − 1 do
3 Sampling step

𝚾(ℓ)
1 , … , 𝚾(ℓ)

𝑛ℓ
i.i.d.∼ g𝜽(ℓ) . (4.27)

4 Optimization step

𝜽(ℓ+1) ∈ argmin
𝜽∈Θ

−
ℓ
∑
𝑚=1

𝑛𝑚
∑
𝑘=1

𝚰(𝚾(𝑚)
𝑘 )

p(𝚾(𝑚)
𝑘 )

g𝜽(𝑚)(𝚾
(𝑚)
𝑘 )

log g𝜽(𝚾
(𝑚)
𝑘 ). (4.28)

5 end
6 Final sampling step

𝚾(𝐿)
1 , … , 𝚾(𝐿)

𝑛𝐿
i.i.d.∼ g𝜽(𝐿) (4.29)

7 Estimation step

ℐ̂rce = 1
∑𝐿

ℓ=1 𝑛ℓ

𝐿
∑
ℓ=1

𝑛ℓ
∑
𝑘=1

𝚰(𝚾(ℓ)
𝑘 )

p(𝚾(ℓ)
𝑘 )

g𝜽(ℓ)(𝚾
(ℓ)
𝑘 )

. (4.30)

theorem 6 ⋅ Theorem 2 from [DP18]

Assume that:
⋄ Θ ⊂ ℝ𝑑Θ is a compact set.

⋄ For any 𝐱 ∈ supp(𝚰p), the integrand of the cross entropy loss 𝜽 ↦
−𝚰(𝐱) log g𝜽(𝐱) is a continuous function of 𝜽.

⋄ The cross entropy loss is always finite:

𝔼p[𝚰(𝚾) sup
𝜽∈Θ

{− log g𝜽(𝚾)}] < ∞. (4.31)

⋄ 𝜽∗ is the unique minimizer of the cross entropy loss, i.e. for any 𝜽 ∈ Θ ∖ {𝜽∗}, we
have:

𝔼p[−𝚰(𝚾) log g𝜽∗(𝚾)] < 𝔼p[−𝚰(𝚾) log g𝜽(𝚾)]. (4.32)
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⋄ The following quantity is bounded:

sup
𝜽∈Θ

𝔼p[𝚰(𝚾)
p(𝚾)
g𝜽(𝚾)

(sup
𝜽′∈Θ

{− log g𝜽′(𝚾)})
2
] < ∞. (4.33)

⋄ The size of every sample is positive: 𝑛ℓ ≥ 1 for any iteration ℓ ∈ ⟦1, 𝐿⟧.
Then, under these conditions, the algorithm 6 is consistent:

𝜽(𝐿) a.s.−−−−→
𝐿→∞

𝜽∗. (4.34)

theorem 7 ⋅ Theorem 3 from [DP18]

Under the assumptions of theorem 6, and with the additionnal assumption that there
exists 𝜂 > 0 such that:

sup
𝜽∈Θ

𝔼p[𝚰(𝚾)
2+𝜂(

p(𝚾)
g𝜽(𝚾)

)
1+𝜂

] < ∞ , (4.35)

and by denoting𝛮𝐿 = ∑𝐿
ℓ=1 𝑛𝐿, we have:

√𝛮𝐿(ℐ̂
rce − ℐ) ℒ−−−−−→

𝛮𝐿→∞
𝒩(0, 𝔼p[𝚰(𝚾)

2 p(𝚾)
g𝜽∗(𝚾)

] − ℐ2) . (4.36)

These conditions, especially eqs. (4.31), (4.33) and (4.35), are unfortunately challenging to
interpret and verify in practice.

A proof for the PDMP case

We propose explicit conditions on the PDMP and the family of IFs (𝜉𝜽)𝜽∈Θ that are easier to
interpret and verify and that imply the satisfaction of the assumptions of theorems 6 and 7.

assumption 1 ⋅ Assumptions on the PDMP

The PDMP of distribution p on𝚻𝜏 with states in𝒳, flowΨ, intensity 𝜆 and kernel𝑄
verifies the following conditions:

⋄ There exist 𝜆min, 𝜆max > 0 such that for any 𝑥 ∈ supp(𝜆), we have 𝜆min ≤ 𝜆(𝑥) ≤
𝜆max.

⋄ There exist 𝑞min, 𝑞max > 0 such that for any 𝑥− ∈ 𝒳 and 𝑥 ∈ supp 𝑞(⋅ ∣ 𝑥−), we
have 𝑞min ≤ 𝑞(𝑥 ∣ 𝑥−) ≤ 𝑞max.
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⋄ For any 𝜀 > 0, let𝛢𝜀 = {𝑥′ ∈ 𝒳 ∣ 𝑡𝜕(𝑥
′) ≥ 𝜀}. There exists 𝜀 > 0 such that

𝑄(𝛢𝜀 ∣ 𝑥) = 1 for any 𝑥 = (𝑧, 𝑣) ∈ 𝜕𝒳𝑣.

assumption 2 ⋅ Assumptions on the IF family (𝜉𝜽)𝜽∈Θ

⋄ The function 𝐱 ↦ |𝚰| is bounded.

⋄ Θ is a compact subset ofℝ𝑑𝜽 for some 𝑑𝜽 > 0.

⋄ 𝜽∗ ∈ Θ is the unique minimizer of 𝜽 ↦ −𝔼p[𝚰(𝚾) log g𝜽(𝚾)].

⋄ There exist 𝜉min, 𝜉max > 0 such that for any 𝜽 ∈ Θ and 𝑥 ∈ 𝒳, 𝜉min ≤ 𝜉𝜽(𝑥) ≤
𝜉max.

We simply need the optimization problem to be well-posed, the functions 𝜆𝜽 and 𝑞𝜽 to be
bounded from above and below on their support, and ensure that a jump at the boundary
cannot occur arbitrarily close to the previous one.

We can now introduce our theorem.

theorem 8 ⋅ Asymptotic optimality

Assume that one of the two following conditions is satisfied:

(i) 𝑛ℓ > 0 for any ℓ ∈ ℕ∗ and 𝐿 → ∞,

(ii) 𝐿 < ∞ is fixed, 𝑛𝐿−1 → ∞ and 𝑛𝐿/𝑛𝐿−1 → ∞.

Under assumption 1 and assumption 2, we have consistency:

𝜽(𝐿) a.s.−−−−→
𝐿→∞

𝜽∗, (4.37)

and asymptotic normality:

√𝛮𝐿(ℐ̂
rce − ℐ) ℒ−−−−−→

𝛮𝐿→∞
𝒩(0, 𝜎2g𝜽∗) , (4.38)

with total sample size𝛮𝐿 = ∑𝐿
ℓ=1 𝑛ℓ and asymptotic variance 𝜎2g𝜽∗ given by:

𝔼p[𝚰(𝚾)
2 p(𝚾)
g𝜽∗(𝚾)

] − ℐ2 . (4.39)

The asymptotics can therefore be taken either in the number of iterations 𝐿 or in the size of the
last two samples 𝑛𝐿−1 and 𝑛𝐿. These are two different yet specific ways to make the total number
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of simulated trajectories tend towards infinity. The first case, more standard, is proven in the
paragraph below7. In the second case, with a fixed number of iterations 𝐿, if the number of
simulated trajectories at the second to last iteration 𝑛𝐿−1 tends to infinity, then we minimize
𝜽 ↦ −𝔼p[𝚰(𝚾) log g𝜽(𝚾)]which gives 𝜽

∗. Thus at the last iteration 𝐿, the trajectories are
generated according to g𝜽∗ . It is then sufficient that 𝑛𝐿/𝑛𝐿−1 tends to infinity for the proportion
of trajectories drawn according to g𝜽∗ to converge to one.
We have defined the duration of a trajectory as bounded in the problem statement : 𝜏 ≤ 𝑠max.
The theorem 8 can be proved under a less restrictive assumption, the duration 𝜏 just needs to
admit exponential moments of all orders:

𝔼[𝑒𝑐×𝜏] ≤ +∞  for any 𝑐 > 0 . (4.40)

However, this condition is more difficult for practitioners to interpret and verify.

Proof. The results come directly from showing that we verify the hypotheses of Theorems 2 and 3
from [DP18]. We know by assumption 2 thatΘ is compact and that we have −𝔼p[𝚰(𝚾) log g𝜽(𝚾)] >
−𝔼p[𝚰(𝚾) log g𝜽∗(𝚾)] if 𝜽 ≠ 𝜽∗. Moreover, since 𝜉𝜽 is uniformly bounded from above and below,
the continuity of the application 𝜽 ↦ 𝜉𝜽(𝑣) for any 𝑥 = (𝑧, 𝑣) ∈ 𝒳 implies the continuity of 𝜽 ↦
𝚰(𝐱)p(𝐱) log g𝜽(𝐱) for any 𝐱 ∈ 𝚻𝜏. To obtain the convergence of the sequence (𝜽

(𝐿))
𝐿>0

, it remains to
show that:

− 𝔼p[𝚰(𝚾) sup
𝜽∈Θ

log g𝜽(𝚾)] < ∞, (4.41)

sup
𝜽∈Θ

−𝔼p[𝚰(𝚾)
p(𝚾)
g𝜽(𝚾)

(sup
𝜽′∈Θ

log g𝜽′(𝚾))
2
] < ∞. (4.42)

And to get the asymptotic normality of the estimator ℐ̂rce, we have to prove that there exists 𝜂 > 0 such
that:

sup
𝜽∈Θ

𝔼p[𝚰(𝚾)
2+𝜂(

p(𝚾)
g𝜽(𝚾)

)
1+𝜂

] < ∞. (4.43)

From the definitions eqs. (4.10) and (4.11) of 𝜆𝜽 and 𝑞𝜽, then from assumption 1 and assumption 2, we
obtain that for any 𝑥 ∈ supp(𝜆):

𝜆min𝜉min/𝜉max ≤ 𝜆𝜽(𝑥) ≤ 𝜆max𝜉max/𝜉min, (4.44)

and for any 𝑥− ∈ 𝒳 and any 𝑥 ∈ supp 𝑞(⋅ ∣ 𝑥−):

𝑞min × 𝜉min/𝜉max ≤ 𝑞(𝑥 ∣ 𝑥−) ≤ 𝑞max × 𝜉max/𝜉min. (4.45)

7This proof does not assume that the IF 𝜉𝜽 takes the form given in definition 27, nor that it is a function of the
regime only.
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Then from the definition eq. (4.13) of the density of a PDMP trajectory 𝐱 ∈ 𝚻𝜏 with 𝜅(𝜏) jumps, there
exist 𝑐min, 𝑐max > 0 such that:

sup
𝜽∈Θ

g𝜽(𝐱) ≤
𝜅(𝜏)−1

∏
𝑘=0

max(𝜆max
𝜉max
𝜉min

, 1)𝑞max
𝜉max
𝜉min

≤ (𝑐max)
𝜅(𝜏)−1

inf
𝜽∈Θ

g𝜽(𝚾) ≥ exp[−𝜆max
𝜉max
𝜉min

𝑠max]
𝜅(𝜏)−1

∏
𝑘=0

min(𝜆min
𝜉min
𝜉max

, 1) exp[−𝜆max
𝜉max
𝜉min

𝑠max]𝑞min
𝜉min
𝜉max

≥ (𝑐min)
𝜅(𝜏)

(4.46)

These results also hold for p since p = g𝟎. Using eq. (4.46) we see that conditions eqs. (4.41) to (4.43) are
ensured by the following one: for any positive constant 𝑐 > 0, 𝔼p[𝑐

𝜅(𝜏)] < +∞.

We have 𝜅(𝜏) = 𝜅𝜆(𝜏) + 𝜅𝜕(𝜏)with 𝜅𝜆(𝜏) the number of spontaneous jumps with jump rate 𝜆 and 𝜅𝜕(𝜏)
the number of jumps at boundaries. At most, the process reaches the state space boundary “almost
immediately” after each spontaneous jump, and a time 𝜀 after reaching another boundary. So 𝜅𝜕(𝜏) ≤
𝜅𝜆(𝜏) + 𝑠max/𝜀, and thus 𝜅(𝜏) ≤ 2𝜅𝜆(𝜏) +

𝑠max/𝜀. We just need to prove that 𝔼p[𝑐
𝜅𝜆(𝜏)] < +∞ for any

positive constant 𝑐.

We define �̃� as a jump process analogous to a PDMP but with some jumps rejected and not taking place.
It is characterized by its flowΨ, its constant jump intensity 𝜆max and its jump kernel �̃� defined as follows:

�̃�(d𝑥 ∣ 𝑥−) = {
𝑄(d𝑥 ∣ 𝑥−) 𝜆(𝑥−)

𝜆max
+ (1 − 𝜆(𝑥−)

𝜆max
)𝛿𝑥−(d𝑥) if 𝑥− ∉ 𝜕𝒳 ,

𝑄(d𝑥 ∣ 𝑥−) otherwise.
(4.47)

Thus a part of the spontaneous jumps are “rejected” because the process remains on the same state at each
jump with probability (1 − 𝜆(𝑥−)

𝜆max
). Following theorem 5.5 from [Dav84], we notice that the generator

of this process is the same as that of the PDMP𝚾. Indeed by denoting𝒜 the generator of the PDMP
𝚾 and𝒜 the generator of the process �̃�, for any state 𝑥− ∈ 𝒳 and 𝜑 a function of the domain of the
extended generator𝒜 (see theoretical detail in [Dav84] and our brief presentation of the PDMP generator
in section 2.2.2):

𝒜𝜑(𝑥−) = 𝔛𝜑(𝑥) + 𝜆max(𝑥
−)∫

𝒳
[𝜑(𝑥) − 𝜑(𝑥−)]�̃�(d𝑥 ∣ 𝑥−) ,

= 𝔛𝜑(𝑥) + 𝜆(𝑥−)∫
𝒳
[𝜑(𝑥) − 𝜑(𝑥−)]𝑄(d𝑥 ∣ 𝑥−) + (1 − 𝜆(𝑥−)

𝜆max
)[𝜑(𝑥−) − 𝜑(𝑥−)] ,

= 𝒜𝜑(𝑥−) .

(4.48)

Since the generator characterizes the distribution of the process, the trajectories of the PDMP𝚾 and of
the jump process �̃� are identically distributed. In particular, the number of jumps 𝜅(𝜏) of the process
�̃� follows the same distribution than 𝜅(𝜏), and 𝜅𝜆max

(𝜏) follows the same distribution than 𝜅𝜆(𝜏). Let us
note 𝜅 ′𝜆max

(𝜏) the number of proposed jumps for the process �̃�with jump intensity 𝜆max including the
rejected ones. The number of proposed jumps in the time interval [0, 𝜏) therefore does not depend on
the states occupied by the process �̃� and follows a Poisson distribution with intensity 𝜆max × 𝜏. It is also
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straightforward to see that 𝜅 ′𝜆max
(𝜏) ≥ 𝜅𝜆max

(𝜏). Thus, for any 𝑐 > 0, we have:

𝔼p[𝑐
𝜅𝜆(𝜏)] = 𝔼[𝑐𝜅𝜆max(𝜏)] ≤ 𝔼[𝑐𝜅

′
𝜆max

(𝜏)] = 𝔼[𝔼[𝑐Pois(𝜆max×𝜏) ∣ 𝜏]]

= 𝔼[
∞
∑
𝑘=0

𝑐𝑘
(𝜆max × 𝜏)

𝑘

𝑘! 𝑒−𝜆max×𝜏] = 𝔼[𝑒𝜆max𝜏(𝑐−1)] < +∞ .
(4.49)

The last inequality comes from the assumption eq. (4.40), which is clearly met in the case 𝜏 ≤ 𝑠max. This
completes the proof of the theorem.

�

Asymptotic confidence intervals

If the convergence of the parameter 𝜽(𝐿) to 𝜽∗ is reassuring, it is primarily the asymptotic
normality of the estimator that will serve us in practice. Indeed, it opens the door to asymptotic
confidence intervals allowing us to quantify the uncertainty around our estimate.
For a number of iterations 𝐿 and a total sample size𝛮𝐿 = ∑𝐿

ℓ=1 𝑛ℓ, and under the assumptions of
theorem 8, we propose in eq. (4.50) a consistent estimator �̂�2g𝜽∗ of the asymptotic variance 𝜎2g𝜽∗
given in eq. (4.39):

�̂�2g𝜽∗ =
1
𝛮𝐿

𝐿
∑
ℓ=1

𝑛ℓ
∑
𝑘=1

𝚰(𝚾(ℓ)
𝑘 )2[

p(𝚾(ℓ)
𝑘 )

g𝜽(ℓ)(𝚾
(ℓ)
𝑘 )

]
2

− (ℐ̂rce)
2
. (4.50)

We thus have asymptotic validity of the following confidence interval through an application of
Slutsky’s lemma:

theorem 9 ⋅ Asymptotic confidence interval

Let 𝛼 ∈ [0, 1] be a confidence level andΦ−1 be the quantile function of the𝒩(0, 1)
distribution. Then, as𝛮𝐿 → ∞, we have:

ℙ(ℐ ∈ [ℐ̂rce − 𝐶𝛼, 𝐿 ; ℐ̂
rce + 𝐶𝛼, 𝐿])⟶ 1 − 𝛼, (4.51)

with𝐶𝛼, 𝐿 ∶= Φ−1(1 − 𝛼
2 )√

�̂�2g𝜽∗
𝛮𝐿

.

4.3.3 Implementation guidelines

The previous subsection aimed to present the adaptive importance sampling algorithm with
recycling scheme and its properties in the most general way. Some aspects of the method were not
mentioned (initialization, sampling policy, optimization procedure). Essential for an efficient
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implementation, these aspects are more specific to the considered problem, and the practitioner
should have control over them.

Initialization of the algorithm

It is known that the choice of the initial distribution of an AIS method is crucial. A common
option that has the advantage of being without a priori is to take g𝜽(0) = p, but it is not suitable
to deal with rare events. Let us recall that we would like to maximize 𝔼p[𝚰(𝚾) log g𝜽(𝚾)] but we
minimize in practice an empirical approximation eq. (4.28). With a poorly chosen initial auxiliary
distribution, the minimizer of the approximation could be too far from the true minimizer. It
is then difficult to find the right track over the iterations and the final result of the procedure
depends therefore a lot on this initial choice. Determining an initial importance distribution that
both frequently realizes the event of interest and produces reasonably stable likelihood ratios is
generally too ambitious. It is often better to “help without pushing too hard” initially, even if it
consumes a large number of simulations to obtain the first realizations of the event of interest.
The multilevel approach described in section 1.3.2 is a classic and effective alternative in this
case. Levels can here be defined by the maximum proximity scores reached by the trajectory. A
generated trajectory then no longer needs to realize the event of interest to contribute to the
objective function but only needs to exceed a given threshold. However, this may not necessarily
solve the initialization problem. The initial state of the trajectory usually has a small proximity
score (typically 𝛽𝑣0 = 0), and there is no guarantee that it is likely to exit this state within a time
less than 𝑠max. This is the case, for example, when simulating highly reliable industrial systems
where no component fails over long periods.
We propose the following heuristic, which works very well in our test cases. The user sets a time
𝑠 < 𝑠max and a probability �̃� ∈ [0, 1]. We determine the initial parameter 𝜽(0) with the smallest
norm such that the probability of the first jump occuring before time 𝑠 is greater than or equal to
�̃�.

Θinit ∶= {𝜽 ∈ Θ ∶ ℙ𝛵∼𝑝𝜆𝜽(⋅∣𝑥0)(𝛵 ≤ 𝑠) ≥ �̃�} ,

𝜽(1) ∈ argmin
𝜽∈Θinit

‖𝜽‖ .
(4.52)

We recommend the use of a Newton-Raphson method to determine the root of the function
𝜽 ↦ ℙ𝛵∼𝑝𝜆𝜽(⋅∣𝑥0)(𝛵 ≤ 𝑠) − �̃� (its derivative is explicitly known). Thus no preliminary sampling is
required.

Sampling size policy and stopping criterion

Given a fixed simulation budget, we would like to choose 𝑛ℓ the sample size at iteration ℓ, and 𝐿
the total number of iterations. Let us recall that𝛮𝐿 = ∑𝐿

ℓ=1 𝑛ℓ is the total number of trajectories
to be drawn.
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If we do not opt for a recycling scheme, it is imperative to set 𝑛ℓ large enough (at the very least
𝑛ℓ = 100) even if it means doing few iterations, because we cannot rely on past samples to
approximate the true objective function in eq. (4.24). On the other hand with a recycling scheme,
we would ideally like to choose 𝑛ℓ as small as possible in order to perform as many iterations as
possible, thus as many minimizations as possible, and to give ourselves the best chances to get
close to g∗.
In practice, it all depends on the optimization method used to solve eqs. (4.24) and (4.28). If it is
expensive, we cannot afford too many iterations. Moreover, the cost of calling the function to
be minimized depends linearly on the number of terms in the sum, so the minimization will be
more and more expensive with each iteration (using a recycling scheme). To get an idea, if we do
not want the cost dedicated to the optimization to exceed the cost dedicated to the simulation,
the number of iterations 𝐿 should be smaller than 2𝑐𝑆/𝑐𝛰 − 1with 𝑐𝑆 the computational cost of
simulating one trajectory and 𝑐𝛰 the computational cost of maximizing eq. (4.24) for a single
trajectory.
For a fixed simulation budget𝛮𝐿, we propose to determine 𝑛ℓ at iteration ℓ as the minimum
between the remaining budget𝛮𝐿 − 𝛮ℓ−1 and the (random) smallest number of trajectories to
be drawn such that 𝑛CE of them belong to 𝐅 (with for example 𝑛CE = 10 in the case of a total
budget𝛮𝐿 = 104).

Numerical optimization

It is necessary at each iteration to call an optimization program to solve eq. (4.28). Let us point
out that with a large number of iterations and few new trajectories at each sample, it is not useful
to determine the true minimizer (which would imply using sophisticated methods adapted to
non-convex problems). We only need to improve our instrumental distribution a little bit at each
iteration.
We employed the BFGSmethod [Dai02] that can be found in many toolboxes. We used the
function minimize(⋅,method=BFGS) from the scipy.optimize toolbox in Python
[Vir+20]. A classical stopping criterion of a BFGSmethod is to obtain a sufficiently small
gradient (i.e. close to zero). The default threshold in scipy.optimize is 10−5. It is better to
drastically lower this threshold to 10−20 for example because since the set of possible trajectories is
a very high dimensional space, the p.d.f. of the trajectories are very small and the gradient of the
objective function is small.
The BFGSmethod performs better when given the explicit gradient of the function to be mini-
mized rather than letting it approximate it by finite differences. The only quantity depending on
𝜽 in the objective function is the log-likelihood: 𝐱 ↦ log g𝜽(𝐱). Let 𝐱 ∈ 𝚻𝜏 be a PDMP trajectory
of duration 𝜏, with 𝑛 = 𝜅(𝜏) jumps and skeleton (𝑥𝑠𝑘 , 𝑡𝑘)

𝑛

𝑘=0
. The gradient of log g𝜽(𝐱)with

respect to 𝜽 is given by:
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∇𝜽 log g𝜽(𝐱) =
𝑛−1
∑
𝑘=0

[∇𝜽 log 𝑝𝜆𝜽(𝑡𝑘 ∣ 𝑥𝑠𝑘) + ∇𝜽 log 𝑞𝜽(𝑥𝑠𝑘+1 ∣Ψ(𝑥𝑠𝑘 , 𝑡𝑘))]

−∫
𝑡𝑛

0
𝜆(Ψ(𝑥𝑠𝑛 , 𝑢))∇𝜽𝑟𝜽(Ψ(𝑥𝑠𝑛 , 𝑢), Ψ(𝑥𝑠𝑛 , 𝑢)) d𝑢 ,

(4.53)

with, for any states 𝑥−, 𝑥 ∈ 𝒳, and any time 𝑡 > 0:

𝑟𝜽(𝑥
−, 𝑥) ∶= 𝜉−𝜽 (𝑥

−)/𝜉𝜽(𝑥) (4.54)

∇𝜽𝑟𝜽(𝑥
−, 𝑥) = ∫

𝒳

𝜉𝜽(𝑥)∇𝜽𝜉𝜽(𝑥
+) − 𝜉𝜽(𝑥

+)∇𝜽𝜉𝜽(𝑥)
𝜉𝜽(𝑥)2

𝑞(𝑥+ ∣ 𝑥−) 𝜈𝑞(d𝑥
+ ∣ 𝑥−) , (4.55)

∇𝜽 log 𝑟𝜽(𝑥
−, 𝑥) =

∇𝜽𝑟𝜽(𝑥
−, 𝑥)

𝑟𝜽(𝑥−, 𝑥)
, (4.56)

∇𝜽 log 𝑝𝜆𝜽(𝑡 ∣ 𝑥) = 𝟙𝑡<𝑡𝜕(𝑥)∇𝜽 log 𝑟𝜽(Ψ(𝑥, 𝑡), Ψ(𝑥, 𝑡))

−∫
𝑡

0
𝜆(Ψ(𝑥, 𝑢))∇𝜽𝑟𝜽(Ψ(𝑥, 𝑢), Ψ(𝑥, 𝑢)) d𝑢 , (4.57)

∇𝜽 log 𝑞𝜽(𝑥 ∣ 𝑥
−) = −∇𝜽 log 𝑟𝜽(𝑥

−, 𝑥) . (4.58)

Finally, the importance function 𝜉𝜽 we proposed in definition 27 admits a very simple gradient
for any 𝑥 = (𝑧, 𝑣) ∈ 𝒳:

∇𝜽𝜉𝜽(𝑥) = (𝜙𝑗(𝛽(𝑣)))
𝑑Θ

𝑗=1
× 𝜉𝜽(𝑥) . (4.59)

If the number of possible transitions from any state 𝑥 ∈ 𝒳 is finite, then the above quantities
simplify, and the computation of∇𝜽 log g𝜽 reduces to vector operations that can be implemented
efficiently.
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chapter 5

Importance function for
multicomponent systems

An adaptive importance sampling strategy has been proposed in chapter 4 for rare event
simulation of PDMPs. The importance distribution is built upon an approximation of
the committor function of the process. This approximation, called importance function,
is a parametric transformation of a proximity score 𝛽 between any regime of the PDMP
and the set 𝒱ℱ of regimes allowing to access the critical regionℱ. In this chapter, we
consider PDMPs modeling multi-component industrial systems. The rare event of interest
is the critical failure of the system. This critical failure can only occur when certain key
combinations of components remain in a failed state for a sufficiently long time. Fault
tree analysis provides tools to rigorously define and determine these combinations of
components. We propose a proximity score based on the notion of minimal path sets,
which corresponds to the combinations of components that prevent the system failure.
Our adaptive importance sampling method is tested with this proximity score on toy
series/parallel systems then on a more complex industrial test case: the spent fuel pool.
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5.1 A first approach for multicomponent systems

The previous chapter established the connection between a general parametric family of
importance functions (𝜉𝜽)𝜽∈Θ (viewed as a family of approximations of the committor function
𝜉∗ of the process) and an adaptive importance sampling method with a recycling scheme of
past samples for the estimation of rare event probabilities. On the one hand, we provided
guarantees on the asymptotic behavior of the estimator for any family of IFs. On the other hand,
we proposed a particular (yet very general) form of IF. For any 𝜽 ∈ Θ and any 𝑥 ∈ 𝒳, we have set:

𝜉𝜽(𝑥) = exp[
𝑑Θ
∑
𝑗=1

𝜃𝑗 × 𝜙𝑗(𝛽(𝑣))]. (5.1)

We clarified the role of proximity scores 𝛽 and basis functions (𝜙𝑗)𝑗 (specifying several families
of examples for the latter) in section 4.2.1. As a reminder, the score 𝛽(𝑣) of a regime 𝑣 ∈ 𝒱
should quantify its proximity to the set of critical regimes1 𝒱ℱ. The IF, although a function of
the process state, only depends on the regime of the process in practice. It is a transformation
parameterized by 𝜽 of the regime’s proximity score.

5.1.1 Multicomponent systems in reliability analysis

This chapter focuses on the main case study of the thesis: the reliability analysis of multicom-
ponent industrial systems. It is mainly based on our paper [Che+24a]. Here,ℱ represents the
region of critical system failure. The major contribution of this work is to propose families of
proximity scores that enable the construction of IFs suitable for approximating the committor
functions of high-dimensional hybrid systems.
In the context of reliability analysis, a multicomponent industrial system refers to a complex
system composed of multiple interconnected elements or subsystems, called components. Each
component can be an equipment, a machine, an electronic device, etc. It contributes in one
way or another, and most often in interaction with the other components, to accomplish the
overall function of the system. Interactions may include flows of material, energy, information,
or control between components. For example, a component may receive inputs from another
component and produce outputs that are then used by other components. A component can be
in different operating modes, for example: active, inactive, active in a degraded mode, failed, etc.
This operating mode is called the component’s status. The status can be automatically changed
via control and feedback mechanisms or following random events such as failures or repairs.

1A critical regime is a regime leading to the failure regionℱ.
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Critical failure and PDMP interpretation

The reliability of an industrial system is its ability to perform its overall function for a given
period of time under specified conditions. Critical failure is declared when this function is no
longer fulfilled. It generally corresponds to the exceeding of critical thresholds by key continuous
quantities of the system (e.g., temperature, pressure, or liquid level in a tank). If the system is
well designed, this can only happen if the system stays long enough in a very degraded state,
i.e., after the failure of vital groups of components and before their repair. This falls within the
framework of PDMPs. Component failures and repairs are viewed as random one-time events,
while the evolution of continuous variables is governed by deterministic differential equations
derived from physical laws. Each component has its own reliability characteristics that may
continuously depend on continuous physical variables (for example, an immersed component
may be weakened by excessive pressure or temperature of a liquid). The differential equations
governing the evolution of physical variables are, in turn, parameterized by the status of the
components (water, for example, will flow through the system at a different rate if a valve remains
stuck in the open or closed position).
The high reliability of these systems is explained on the one hand by their high level of redun-
dancy: the system can be reconfigured using several identical components to ensure its operation
while waiting for the repair or replacement of broken components. On the other hand, the
average waiting time before the failure of a component is generally considerably larger than the
average waiting time before its repair.

Static and binary interpretation

Our task is to determine how to quantify the proximity of a regime 𝑣 ∈ 𝒱, partially or fully
determined by the status of the components, to the set 𝒱ℱ. We assume throughout this chapter
that the broken2 or unbroken status of each component of the system is sufficient to determine
whether the regime 𝑣 belongs to 𝒱ℱ. Therefore, we adopt a binary and static view of the state of a
system and its components.

(i) Regardless of the variety of possible statuses of a component, it only admits one signifi-
cant degraded mode: failure. Its status can therefore be represented by a Boolean variable
equal to 0 if it is failed and 1 otherwise.

(ii) The system is said to work or function in a given state 𝑥 = (𝑧, 𝑣) ∈ 𝒳 if and only if
𝑣 ∉ 𝒱ℱ (and not just as long as 𝑥 ∉ ℱ). And as we have said, belonging to 𝒱ℱ depends on
which components are failed.

In the static point of view, we consider the final regime of the trajectory and we declare that the
trajectory has failed if that regime belongs to 𝒱ℱ (without taking account the time during which

2“broken” and “failed” are used interchangeably.
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the position evolves toℱwhen its regime belongs to 𝒱ℱ as well as the possibility that the system is
repaired during this time).

5.1.2 Coherent systems

The proximity scores we propose are based in part on a so-called “coherence” assumption of the
system.

definition 28 ⋅ Coherent system

A system is said to be coherent if it verifies the following conditions:

(i) it works when none of its components is broken,

(ii) it does not work when all its components are broken,

(iii) if it does not work in a given regime then it does not work with the additional
failure of a component,

(iv) conversely if it works in a given regime then it still works if broken components
are repaired,

Interpretation and counterexample

It is not a big assumption to suppose that there always exists at least one configuration in
which the system works and at least one in which it does not. There is no guarantee that these
configurations correspond respectively to the one where all components are failed and the one
where none are. Indeed, and sometimes counterintuitively, there are systems for which the
malfunction of an additional component at the right time can prevent critical failure. Here is a
simple example of a non-coherent system.

example 8 ⋅ Controlled Mixing System with Intersection Priority

⋄ The system comprises two production lines, LA and LB, intersecting at a junction.

⋄ Each line transports a distinct product, denoted as PA and PB, respectively.

⋄ The system has to ensure that PA and PB do not mix at the intersection.

⋄ A valve VB, is positioned on production line LB to block the flow of product PB

until product PA has traversed the intersection.

110



5 importance function for multicomponent systems

figure 5.1 Representation of the controlled mixing system.

However, if valve VB malfunctions and remains open, allowing PB to flow prematurely,
it is preferred for production line LA to also malfunction. This additional malfunction
prevents component PA from reaching the intersection, thereby avoiding mixing with
PB. This is a non-coherent behavior because an additional malfunction, which typically
leads to system failure, actually prevents the occurrence of a critical failure scenario, thus
defying the expected outcome.

Most well-designed systems do not suffer from this issue, but it is difficult to verify the coherence
of a complex system. This coherence assumption can be formulated mathematically using some
basic notions of Boolean algebra.

Formal definition with Boolean algebra

Let 𝑑𝐜 be the number of components in the system.

(i) For 𝑗 ∈ ⟦1, 𝑑𝐜⟧, the Boolean variable 𝑐𝑗(𝑣) ∈ {0, 1} represents the status of the 𝑗-th
component in regime 𝑣 ∈ 𝒱, with 𝑐𝑗(𝑣) = 0 if the 𝑗-th component is failed and 𝑐𝑗(𝑣) = 1
if it is operational.

(ii) The Boolean vector c(𝑣) = (𝑐1(𝑣), … , 𝑐𝑑𝐜(𝑣)) ∈ {0, 1}𝑑𝐜 denote the status of all 𝑑𝐜
components in regime 𝑣 ∈ 𝒱.

(iii) For any Boolean variable 𝑐 ∈ {0, 1}, we denote by 𝑐 = 1 − 𝑐 its Boolean opposite, and for
any Boolean vector c ∈ {0, 1}𝑑, we note c = (𝑐𝑗)

𝑑

𝑗=1
.
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definition 29 ⋅ Structure function

We call the structure function of the system the Boolean functiona 𝜑ℱ which associates 1
to the regimes for which the system works and 0 to the other ones. For any regime 𝑣 ∈ 𝒱
and denoting by c(𝑣) ∈ {0, 1}𝑑𝐜 the status of the components in that regime, we define :

𝜑ℱ ∶ c(𝑣) ⟼ 1 − 𝟙𝑣∈𝒱ℱ . (5.2)

aA function from {0, 1}𝑑 to {0, 1}with 𝑑 ∈ ℕ∗.

Let 𝐜′ = (𝑐′1, … , 𝑐′𝑑𝐜) ∈ {0, 1}
𝑑𝐜 , we write 𝐜 ≤ 𝐜′ if and only if 𝑐𝑗 ≤ 𝑐′𝑗 for all 𝑗 ∈ ⟦1, 𝑑𝐜⟧. Let us

recall that a Boolean function 𝜑 is non-decreasing if and only if 𝜑(𝐜) ≤ 𝜑(𝐜′) ⟺ 𝐜 ≤ 𝐜′ for all
𝐜, 𝐜′ ∈ {0, 1}𝑑𝐜 .

proposition 16 ⋅ Coherent system

A system with structure function 𝜑ℱ is coherent (i.e. verifies the conditions of defini-
tion 28) if and only if :

(i) c(𝑣) = 1𝑑𝐜 ⇒ 𝜑ℱ(c(𝑣)) = 1,

(ii) c(𝑣) = 0𝑑𝐜 ⇒ 𝜑ℱ(c(𝑣)) = 0,

(iii) 𝜑ℱ is non-decreasing.

5.1.3 Broken Components Rate approach

The first approach we propose does not strictly require the assumption of system coherence.
However, this assumption ensures that the more components are failed in the system, the more
degraded it is and the more likely it is to be close to a critical regime (belonging to 𝒱ℱ). A very
natural idea is therefore to construct an IF based on the quantity of failed components in the
system. For any regime 𝑣 ∈ 𝒱, we denote 𝑏(𝑣) the number of failed components in regime 𝑣.

𝑏 ∶ 𝑣 ∈ 𝒱⟼
𝑑𝐜
∑
𝑗=1

1 − 𝑐𝑗(𝑣) =
𝑑𝐜
∑
𝑗=1

𝑐𝑗(𝑣). (5.3)
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definition 30 ⋅ Broken Components Rate proximity score

We define the proximity score 𝛽bcr as the square of the proportion of broken compo-
nents in the system:

𝛽bcr ∶ 𝑣 ∈ 𝒱 ⟼ ( 𝑏(𝑣)𝑑𝐜
)
2
= ( 1

𝑑𝐜

𝑑𝐜
∑
𝑗=1

𝑐𝑗(𝑣))
2

. (5.4)

We also note 𝜉bcr𝜽 the IF defined for any 𝜽 ∈ Θ and basis functions (𝜙𝑗)𝑗 by:

𝜉bcr𝜽 ((𝑧, 𝑣)) = exp[
𝑑Θ
∑
𝑗=1

𝜃𝑗 × 𝜙𝑗(𝛽
bcr(𝑣))]. (5.5)

Associated with a parameter 𝜽 of dimension 1 and a polynomial or piecewise linear basis

function, we obtain an importance function (IF) of the form 𝜉bcr𝜽 (𝑥) = exp[𝜃1 × (
𝑏(𝑣)
𝑑𝐜

)
2
]. We

then virtually obtain the IF proposed by [Chr+19] that we have described in section 3.3.2 (see
eq. (3.52)). Our general form of IF based on the score 𝛽bcr with 𝜽 of flexible dimension allows us
to generalize the IF proposed by [Chr+19].

Justification

The proportion of broken components keeps 𝛽bcr ∈ [0, 1]. Thus, for any 𝑣 ∈ 𝒱, 𝛽bcr(𝑣) = 0
only in the least degraded state (no failed components), and 𝛽bcr(𝑣) = 1 ⇒ 𝑣 ∈ 𝒱ℱ. It is also
more interpretable than the raw number of failed components in the system, which provides
little information when not normalized by the total number of components.
We kept the square from the IF of [Chr+19]. Their justification is the following. During a
trajectory leading to failure, either the successive failure times occur very close together, or many
components remain failed for a long time. These two scenarios are highly unlikely, unless the bias
of the IF in favor of failures and against repairs increases with the number of broken components.
Without the square and with a one-dimensional parameter 𝜃 ∈ ℝ, we would have:

exp ( 𝜃
𝑑𝐜
(𝑏(𝑣) + 1))

exp ( 𝜃
𝑑𝐜
𝑏(𝑣))

= exp ( 𝜃
𝑑𝐜

) . (5.6)

To avoid constant ratios (in 𝑏(𝑣)), it is therefore necessary to choose 𝛽 as a function that grows in
𝑏(𝑣) faster than a linear function (hence the square).
The argument proposed in [Chr+19] is actually more general. If the event {𝚾 ∈ 𝐅} is rare, then
the process is more likely to move away fromℱ at each jump than to move closer to it. If the
value of the committor function is large at the current state of the trajectory, then it is expected
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that with high probability it will be lpower after the next jump. Let 𝑥 = (𝑧, 𝑣) ∈ 𝒳 be a state with
𝑣 ∉ 𝒱ℱ and let 𝑠 ≥ 0 be a time instant, we denote 𝛵(𝑥) as the waiting time before the next jump
from state 𝑥. Since 𝑣 ∉ 𝒱ℱ, the event {𝚾 ∈ 𝐅} can only occur if 𝛵(𝑥) ≤ 𝑠max − 𝑠.

𝜉∗(𝑥, 𝑠) = 𝔼[𝔼[𝟙𝚾∈𝐅 ∣𝛸𝑠+𝛵(𝑥)] ∣𝛸𝑠 = 𝑥, 𝛵(𝑥) ≤ 𝑠max − 𝑠] × ℙ(𝛵(𝑥) ≤ 𝑠max − 𝑠) ,

= 𝔼[𝜉∗(𝛸𝑠+𝛵(𝑥), 𝑠 + 𝛵(𝑥)) ∣𝛸𝑠 = 𝑥, 𝛵(𝑥) ≤ 𝑠max − 𝑠] × ℙ(𝛵(𝑥) ≤ 𝑠max − 𝑠) ,

= 𝔼[𝜉∗−(Ψ(𝑥, 𝛵(𝑥)), 𝑠 + 𝛵(𝑥)) ∣𝛸𝑠 = 𝑥, 𝛵(𝑥) ≤ 𝑠max − 𝑠] × ℙ(𝛵(𝑥) ≤ 𝑠max − 𝑠) .
(5.7)

We observe that the expected value of the committor function after the next jump is its current
value (in the case where the jump occurs). Therefore, there is a compensation phenomenon; after
the next jump, the committor function will take:

⋄ a slightly smaller value with high probability,

⋄ or a much larger value with small probability.

The committor function increases the gaps in order to take into account the probability of
moving backward (away fromℱ). Ideally we expect the proximity score of a good importance
function (IF) to tighten up the smaller values and keep out the larger ones.
This was a crucial aspect in the article [Chr+19], but one that we will not really have to worry
about with our IF. The proximity score only needs to correctly order the states. The gaps will be
correctly adjusted during the adaptive procedure if the dimension of 𝜽 is large enough.

5.2 Proximity scores based on fault tree analysis

The IF 𝜉bcr𝜽 constructed from the proximity score 𝛽bcr is a relevant generalization of the
IF proposed in [Chr+19] for simple industrial systems. As we will see, the score 𝛽bcr is not
necessarily suitable for complex systems. One of the main contributions of this thesis is a
new proximity score, as relevant as 𝛽bcr on simple systems, and able to take advantage of the
specificities of complex systems.

5.2.1 The limits of structure blindness

It should be noted that while we have 𝛽bcr(𝑣) = 1 ⇒ 𝑣 ∈ 𝒱ℱ, the reverse implication is not true.
For most systems, the critical failure is reachable with only a portion of its components broken.
The proximity score 𝛽bcr is more suitable for some systems than for others. We introduce
several industrial systems that will serve us both as theoretical examples and test cases for the
implementation of our method.
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Series and parallel systems

Series and parallel systems form two opposite poles among multi-component systems. They are
also basic building blocks. Any coherent industrial system (see definition 28) can be decomposed
into subsystems of series and parallel types.

example 9 ⋅ Series and parallel systems

A series system is a configuration of components in which the failure of any one compo-
nent is sufficient to cause system failure (see Figure 5.2).

figure 5.2 Series systemwith 𝑑𝐜 components.

A parallel system is a configuration of components in which the failure of all components
is necessary to cause system failure (see Figure 5.3).

figure 5.3 Parallel systemwith 𝑑𝐜 components.

We will once again turn to Boolean algebra to shed light on these notions. To avoid any ambi-
guity, the operator +will always be used in its traditional sense and never in its Boolean algebra
sense (where 1 + 1 = 1). We introduce the operators ∨ and ∧. For any 𝑐, 𝑐′ ∈ {0, 1}, we note
𝑐 ∨ 𝑐′ = max(𝑐, 𝑐′) and 𝑐 ∧ 𝑐′ = min(𝑐, 𝑐′). For any 𝐽 ⊂ ⟦1, 𝑑𝐜⟧, we also note :

⋁
𝑗∈𝐽

𝑐𝑗 = max{𝑐𝑗, 𝑗 ∈ 𝐽} and ⋀
𝑗∈𝐽

𝑐𝑗 = min{𝑐𝑗, 𝑗 ∈ 𝐽}. (5.8)

From the structure function 𝜑ℱ perspective, a system with 𝑑𝐜 components is:

(i) a series system if: 𝜑ℱ(c) = ⋀𝑑𝐜
𝑗=1 𝑐𝑗 for any c ∈ {0, 1}

𝑑𝐜 ,
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(ii) a parallel system if: 𝜑ℱ(c) = ⋁𝑑𝐜
𝑗=1 𝑐𝑗 for any c ∈ {0, 1}

𝑑𝐜 .

The proximity score 𝛽bcr is very well suited for parallel systems, since each component must be
broken to achieve the system failure, and we indeed have 𝛽bcr(𝑣) = 1 ⇔ 𝑣 ∈ 𝒱ℱ. The heated
room system described in section 3.3.2 is a good example of a parallel system. Failure is only
possible when all the heaters are broken. This is why an importance function (IF) close to that
provided by 𝛽bcr gives such good results in [Chr+19]. In the case of series systems, however, we
have 𝛽bcr(𝑣) > 0 ⇔ 𝑣 ∈ 𝒱ℱ, since a single broken component can cause the failure, regardless
of the total number of components in the system. Of course, dealing with a full series system is
not a difficulty in practice (and rarely constitutes an example of a highly reliable system). This
example mainly serves to show that 𝛽bcr does not always reflect a true degree of damage to the
system.

Spent fuel pool system

We now introduce an example of a complex industrial system. We propose a redesigned version of
the system presented in [CHS16]. It is a simplification of the real operation of the storage pools
of water for spent fuel from nuclear reactors.

example 10 ⋅ The spent fuel pool system (SFP)

The spent nuclear fuel is stored in the bottom of the pool. The water in the pool cools
the fuel and provides protection from radiation. Conversely, the fuel heats the water in
the pool, which will eventually boil, evaporate and allow the fuel to damage the structure
and contaminate the outside environment. All the components of the system (shown
in fig. 5.4) are designed to keep the water in the pool cold enough to prevent it from
evaporating. System failure is declared when the water level in the pool falls below a
critical level.
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figure 5.4 Representation of the spent fuel pool. The temperature of an external
cold water source S1 is transferred to the pool by means of three sealed
circuits connected by heat exchangers L1,1, L2,1 and L3,1 forming a line L1.
The system has a general power supply G0. In the event of a problem with
one of these components, the system is equipped with two other lines L2 and
L3 identical to L1, an emergency diesel generator for each line G1, G2 and G3,
and a second outside water source S2 accessible only to the third line L3.

The state evolution of this system can be described by a PDMP. The position corresponds to
the water temperature and the water level in the pool. The regime is the combination of the
status (active, inactive, broken) of the 15 components. The critical regionℱ is defined by all the
states of𝒳 in which the water level (second coordinate of the position) is lower or equal to a
critical threshold 𝑧(2)min. The system data allowing to compute the flow, and the different failure
and repair rates of each component allowing to build the jump intensities and kernels are given in
section 5.3.2.
We notice that these positions are not accessible for the flow in any given regime. This system ad-
mits a non-trivial structure function 𝜑ℱ indicating the regimes belonging to 𝒱ℱ. The complexity
of 𝜑ℱ has a direct impact on the relevance of the score 𝛽bcr. For example, we can see that:

(i) the system can fail with the failure of a very small number of components, for example
the accesses to the two water sources S1 and S2,

(ii) the system can work with a large number of failed components, for example when the
combination (G1, G2, G3, S2, L1,2, L2,2, L3,2, L1,3, L2,3, L3,3) is failed.
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5.2.2 Minimal cut sets and minimal path sets

The previous examples show that there are groups of components whose simultaneous malfunc-
tion leads to system failure. Such groups are called system “cut sets”.

definition 31 ⋅ Cut set and minimal cut set

A group of components forms a cut set if and only if the joint failure of these components
causes the system failure. This cut set is said minimal if none of its strict subsets is an
other cut set. In this case we abbreviate MCS (minimal cut set).

For highly reliable complex systems, the complete failure of a cut set is always a rare event. Two
scenarios can lead to the failure of a cut set:

(i) the system has experienced a very large number of failures, statistically resulting in the
failure of all the components in a cut set,

(ii) or the system has only experienced a small number of failures, but these have precisely
targeted the components in the same cut set.

The second condition of the system coherence assumption (see definition 28) implies that the
set of all system components forms a cut set. This cut set is minimal only in the case of a parallel
system. The proximity score 𝛽bcr marks the progression of the trajectory along this specific
cut set. The associated IF 𝜉bcr𝜽 seeks to maximize the number of broken components along
the trajectory. It therefore focuses on the first scenario. By breaking components at random, it
always ends up breaking an entire cut set. It does not consider the role played by each component
within the system. In the real world, however, the second scenario represents a more plausible
risk. It is less unlikely that few failures target the right components rather than failures could
affect a large number of components without repairs intervening. We therefore wish to present
another proximity score, better able to realize the second scenario. It is clear that this one can
no longer be blind to the role played by the component in the system. The failure of a specific
component in a specific system configuration has to be encouraged to a greater or lesser extent
depending on how it interacts with the other components.

From minimal cut set to minimal path set

As mentioned before, if a regime belongs to 𝒱ℱ, then the failed components in this regime
forms a cut set. The necessary information to evaluate the level of degradation of the system is
contained in the respective status of eachMCS (Minimal Cut Set). A good proximity score with
respect to 𝒱ℱ must therefore quantify how close eachMCS is to being completely failed. Each
MCS can be seen as a gauge to be filled and the proximity score monitors the state of these gauges.
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The challenge is to capture the useful information provided by the state of these gauges into a
single score variable. A first idea would be to only look at the state of the most advanced gauge.
For example, by choosing as the proximity score the highest proportion of failed components
among all MCSs. This amounts to considering eachMCS as a subsystem and returning the
maximum of 𝛽bcr among all these subsystems. The problem is that the score does not progress if
components fail outside of the most damagedMCS. However, we will see that these failures also
contribute to bringing us closer to the failure.
A change of perspective gives us the key. If there are groups of components, called cut sets,
whose malfunction guarantees critical system failure, the inverse also exists. There are groups of
components, called “path sets”, whose proper functioning prevents system failure.

definition 32 ⋅ Path set and minimal path set

A group of components forms a path set if and only if the joint operation of these
components prevents the system failure. This path set is said minimal if none of its strict
subsets is an other path set. In this case we abbreviate MPS (minimal path set).

A regime in which all the components of at least one MPS are functioning does not belong to 𝒱ℱ.
Conversely, if the regime belongs to 𝒱ℱ, then eachMPS has at least one failed component. Thus,
rather than monitoring the gauges corresponding to eachMCS, we can simply monitor a single
global gauge: the proportion of MPSs with at least one failed component.

Formal definition of MPS

Still using Boolean algebra, we can propose a more formal definition of MPS andMCS. Combin-
ing Theorem 1.14 and Theorem 1.21 from [CH11], we obtain the following decomposition:

theorem 10 ⋅ Complete disjonctive normal form

If 𝜑 is a non-decreasing Boolean function, then it admits a unique decomposition (except
for the numbering of the terms) of the form:

𝜑(c) =
𝑑𝜑
⋁
𝑖=1

⋀
𝑗∈𝐽𝑖

𝑐𝑗 for all c ∈ {0, 1}𝑑𝐜 , (5.9)

where 𝑑𝜑 is an integer and 𝐽1, … , 𝐽𝑑𝜑 ⊂ ⟦1, 𝑑𝐜⟧ are such that 𝐽𝑖 ⊄ 𝐽𝑖′ for all 𝑖, 𝑖
′ ∈ ⟦1, 𝑑𝜑⟧

with 𝑖 ≠ 𝑖′.

We assume from now on that the system is coherent, so we can apply theorem 10 to its structure
function 𝜑ℱ. There are then 𝑑mps sets of components 𝐽1, … , 𝐽𝑑mps

⊂ ⟦1, 𝑑𝐜⟧ such that none of
them is contained in another and such that the operation of all the components of a set causes
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the operation of the system independently of the status of the components in the other sets.
These sets are the unique minimal paths sets of the system. By switching to the complementary
with 𝑐 = 1 − 𝑐 for any 𝑐 ∈ {0, 1}, we can notice that:

𝜑ℱ(c(𝑣)) =
𝑑mps

⋁
𝑖=1

⋀
𝑗∈𝐽𝑖

𝑐𝑗(𝑣) ⟺ 𝜑ℱ(c(𝑣)) =
𝑑mps

⋀
𝑖=1

⋁
𝑗∈𝐽𝑖

𝑐𝑗(𝑣) . (5.10)

Therefore the minimal paths sets can be alternatively defined such that the failure of at least one
component in each set causes the system failure.

Formal definition of MCS

Let us first note that since 𝜑ℱ is a non-decreasing Boolean function, the function c(𝑣) ↦
𝜑ℱ(c(𝑣)) is also non-decreasing (it is called the dual function of 𝜑ℱ). Indeed: let c(𝑣) ≤ c′(𝑣) ∈

{0, 1}𝑑𝐜 , we have c(𝑣) ≥ c′(𝑣) so 𝜑ℱ(c(𝑣)) ≥ 𝜑ℱ(c′(𝑣)) and finally 𝜑ℱ(c(𝑣)) ≤ 𝜑ℱ(c′(𝑣)). We can
therefore apply theorem 10 to it and get a set of 𝑑mcs lists of indices 𝐽1, … , 𝐽𝑑mcs

⊂ ⟦1, 𝑑𝐜⟧with
𝐽𝑖 ⊄ 𝐽𝑖′ for any 𝑖, 𝑖

′ ∈ ⟦1, 𝑑mcs⟧with 𝑖 ≠ 𝑖′ such that:

𝜑ℱ(c(𝑣)) =
𝑑mcs

⋁
𝑖=1

⋀
𝑗∈𝐽𝑖

𝑐𝑗(𝑣) i.e. 1 − 𝜑ℱ(c(𝑣)) = 𝜑ℱ(c(𝑣)) =
𝑑mcs

⋁
𝑖=1

⋀
𝑗∈𝐽𝑖

𝑐𝑗(𝑣) . (5.11)

These 𝑑mcs sets of components 𝐽1, … , 𝐽𝑑mcs
are the unique minimal cuts sets of the system. If all

the components of a MCS are broken then this causes (from the static point of view) the system
failure. And again by switching to the complementary, if at least one component per MCS works,
the system failure is prevented:

𝜑ℱ(c(𝑣)) =
𝑑mcs

⋁
𝑖=1

⋀
𝑗∈𝐽𝑖

𝑐𝑗(𝑣) ⟺ 𝜑ℱ(c(𝑣)) =
𝑑mcs

⋀
𝑖=1

⋁
𝑗∈𝐽𝑖

𝑐𝑗(𝑣) . (5.12)

5.2.3 Proximity score and implementation

We propose the following proximity score based on the proportion of MPSs with at least one
broken component.
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definition 33 ⋅ MPS-based proximity score

We define the proximity score 𝛽mps as the square of the proportion of MPSs with at least
one broken component. Let 𝐽1, … , 𝐽𝑑mps

⊆ ⟦1, 𝑑𝐜⟧ be the 𝑑mps MPSs of the system.

𝛽mps ∶ 𝑣 ∈ 𝒱 ⟼ ( 1
𝑑𝐜

𝑑mps

∑
𝑖=1

⋁
𝑗∈𝐽𝑖

𝑐𝑗(𝑣))
2

. (5.13)

We also note 𝜉mps
𝜽 the IF defined for any 𝜽 ∈ Θ and basis functions (𝜙𝑗)𝑗 by:

𝜉mps
𝜽 ((𝑧, 𝑣)) = exp[

𝑑Θ
∑
𝑗=1

𝜃𝑗 × 𝜙𝑗(𝛽
mps(𝑣))]. (5.14)

We still have 𝛽mps ∈ [0, 1]. In contrast to 𝛽bcr, we have 𝛽mps(𝑣) = 1 ⇔ 𝑣 ∈ 𝒱ℱ. The square
plays here the same role as for 𝛽bcr. Implementing this proximity score requires the MPS of the
system to be determined before the simulation phase.

MPS/MCS on test cases

A series system only works if all its components are functioning and fails as soon as a component
is broken. A series system with 𝑑𝐜 components therefore has a uniqueMPS containing all the
components of the system, and 𝑑𝐜 MCSs, one per component.

Conversely, a parallel system works as long as at least one component is functioning and fails as
soon as all the components are broken. A parallel system with 𝑑𝐜 components therefore has 𝑑𝐜
MPSs, one per component, and a unique MCS containing all the components of the system. We
can deduce that for parallel systems, we have 𝛽bcr = 𝛽mps and therefore 𝜉bcr𝜽 = 𝜉mps

𝜽 .

The SFP example can be represented as a series/parallel diagram (see fig. 5.5) facilitating its
decomposition into MPSs andMCSs. The MPSs correspond to all vertical combinations and the
MCSs to all horizontal combinations.
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figure 5.5 Series/Parallel diagram of the spent fuel pool of
Figure 5.4.

There are 8 MPS and 69MCS in the SFP system. Here is the comprehensive list of its MPSs:

(i) {G0, S1, L1,1, L2,1, L3,1},

(ii) {G1, S1, L1,1, L2,1, L3,1},

(iii) {G0, S1, L1,2, L2,2, L3,2},

(iv) {G2, S1, L1,2, L2,2, L3,2},

(v) {G0, S1, L1,3, L2,3, L3,3},

(vi) {G3, S1, L1,3, L2,3, L3,3},

(vii) {G0, S2, L1,3, L2,3, L3,3},

(viii) {G3, S2, L1,3, L2,3, L3,3}.

Fault tree analysis

Listing all the MPS or MCS of a system is an NP-hard problem. This task can be done by hand
on the SFP system but it becomes impractical in the case of very large, highly redundant systems.
The literature presents more methods to determine the MCS than theMPS of a system but the
two problems are strictly equivalent. The search for theMCS of the system belongs to a field
called fault tree analysis (FTA). Fault trees are the most common representation of systems in the
static Boolean approach, but FTA is not restricted to the fault tree representation. This is an old
but still active field in the industrial and academic communities. A complete and relatively recent
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survey of the field is proposed in [RS15]. In particular, the interested reader can refer to [RS15,
Table 1] for a list of methods (with or without dedicated modelling and calculation tools) that
can be used to determine MCSs.
New approaches offer other perspectives on the decomposition of the structure function, for
example based on the differential logic calculus [Rus+22; Bri+21] or quantummethods [SD24].
We should also mention [RA21], which tackles the derivation of MCSs from the list of MPSs.
FTA also offers tools to construct quantitative measures of system reliability such as importance
indices for the components or approximations of the probability of failure [Rau93; Lee+85;
Čep11]. The construction of importance functions proposed in [TPZ16] to apply a restart
method to hybrid systems is very close to our philosophy (see also [BS20] for the same idea with a
splitting method for dynamic fault trees).

5.3 Numerical experiments

In this section we present the results obtained with the AIS method described in chapter 4, for
the two families of IF 𝜉bcr𝜽 and 𝜉mps

𝜽 . We compare the performances of our method to a CMC
(classical Monte Carlo) method first on series and parallel systems (see example 9), and then on
the spent fuel pool system described in example 10.

5.3.1 Series and parallel systems

We study series and parallel systems with 𝑑𝐜 components. We set 𝒱 = {0, 1}𝑑𝐜 . The regime of the
system is 𝑣 = (𝑣(1), … , 𝑣(𝑑𝐜))where for 𝑗 ∈ {1, … , 𝑑𝐜}, the status of the 𝑗-th component 𝑣(𝑗) = 1
if the component is active and 0 if it is broken. The regime at time 𝑡 ≥ 0 thus corresponds to the
current status of each component: 𝑉𝑡 = (𝑉(1)

𝑡 , … , 𝑉(𝑑𝐜)
𝑡 ). Therefore in the case of series systems

𝑉𝑡 ∈ 𝒱ℱ if there is 𝑗 ∈ ⟦1, 𝑑𝐜⟧ such that𝑉
(𝑗)
𝑡 = 0, and in the case of parallel systems𝑉𝑡 ∈ 𝒱ℱ if

𝑉(𝑗)
𝑡 = 0 for any 𝑗 ∈ ⟦1, 𝑑𝐜⟧.

Flow and jump intensity

The system failure is reached either as soon as the process has spent a total time larger than 𝑧(1)max

in 𝒱ℱ (global grace period), or when it remains in 𝒱ℱ a time larger than 𝑧(2)max without leaving it
(local grace period). We note 𝑍𝑡 = (𝑍(1)

𝑡 , 𝑍(2)
𝑡 , 𝑍(3)

𝑡 ) the position of the process at time 𝑡 ≥ 0
with𝑍(1)

𝑡 the total time spent in 𝒱ℱ during the entire trajectory,𝑍(2)
𝑡 the elapsed time since the

entry in 𝒱ℱ if the process is there and 0 otherwise, and finally 𝑍(3)
𝑡 = 𝑡 the total elapsed time. For

an initial time 𝑡0 > 0 and a departure state𝛸𝑡0 = (𝑍𝑡0 , 𝑉𝑡0), the flow of the PDMP is given by
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Ψ(⋅ ∣ 𝛸𝑡0) ∶ ℎ ↦ (𝑍𝑡0+ℎ, 𝑉𝑡0+ℎ)with:

𝑍(1)
𝑡0+ℎ

= 𝑍(1)
𝑡0 𝟙𝑉𝑡0∉𝒱ℱ + (𝑍

(1)
𝑡0 + ℎ)𝟙𝑉𝑡0∈𝒱ℱ ,

𝑍(2)
𝑡0+ℎ

= (𝑍(2)
𝑡0 + ℎ) 𝟙𝑉𝑡0∈𝒱ℱ ,

𝑍(3)
𝑡0+ℎ

= 𝑡0 + ℎ.

(5.15)

Under distribution p, for 𝑗 ∈ ⟦1, 𝑑𝐜⟧, the 𝑗-th component has a marginal jump rate 𝜆(𝑗)

that depends on its status (in other words it has a constant failure rate and a constant repair
rate). From the state 𝑥−, the next jump occurs at a random time of jump intensity 𝜆(𝑥−) =
∑𝑑𝐜

𝑗=1 𝜆
(𝑗)(𝑥−). At each jump from state 𝑥−, only one component is randomly selected with

probability 𝜆(𝑗)(𝑥−)/𝜆(𝑥−) for 𝑗 ∈ ⟦1, 𝑑𝐜⟧ and it then changes status. The marginal jump rates
of each system component are given in table 5.1. Note that we have 𝜉bcr𝜽 = 𝜉mps

𝜽 for parallel
systems since a parallel system has 𝑑𝐜 MPS containing each 1 component.

table 5.1 Marginal jump intensity of each component for the series and parallel systems.

Component 𝜆(𝑗) for Series system 𝜆(𝑗) for Parallel system
𝑐1 1 × 10−9 𝟙𝑣(1)=0 + 1 × 10

−6 𝟙𝑣(1)=1 6 × 10−5 𝟙𝑣(1)=0 + 1 ⋅ 10
−4 𝟙𝑣(1)=1

𝑐2 5 × 10−9 𝟙𝑣(2)=0 + 5 × 10
−6 𝟙𝑣(2)=1 2 × 10−4 𝟙𝑣(2)=0 + 5 × 10

−4 𝟙𝑣(2)=1
𝑐3 5 ⋅ 10−9 𝟙𝑣(3)=0 + 1 × 10

−6 𝟙𝑣(3)=1 2 × 10−4 𝟙𝑣(3)=0 + 1 × 10
−3 𝟙𝑣(3)=1

𝑐4 1 × 10−9 𝟙𝑣(4)=0 + 5 × 10
−6 𝟙𝑣(4)=1 6 × 10−5 𝟙𝑣(4)=0 + 5 × 10

−4 𝟙𝑣(4)=1
𝑐5 8 × 10−9 𝟙𝑣(5)=0 + 6 × 10

−6 𝟙𝑣(5)=1 5 × 10−4 𝟙𝑣(5)=0 + 8 × 10
−4 𝟙𝑣(5)=1

Results for series and parallel systems

We compare on a series and on a parallel system the performance of a CMCmethod to our AIS
method with the two families of IF 𝜉bcr𝜽 and 𝜉mps

𝜽 . The sample size of the CMCmethod is
ranging from 105 to 107. The sample size of the AIS method is ranging from 103 to 104. For
both the series and parallel systems, we generated trajectories of duration 𝑠max = 1500with global
grace period 𝑧(1)max = 75 and local grace period 𝑧(2)min = 50. Each system has five components. The
jump parameters of the two systems are described in table 5.1. The results obtained on the series
system, resp. parallel system, are described in table 5.2, resp. in table 5.3.
The AIS method is initialized here with the procedure proposed in section 4.3.3. We choose
the smallest 𝜽 (in norm) such that the probability that at least one component failure occurs
before the end of the simulation is larger than 1/3. We set 𝑑𝜽 = 5. At each iteration, we generate
trajectories until we have 𝑛CE = 10 failures before updating 𝜽 for𝛮𝐿 = 103 and 𝑛CE = 50 for
𝛮𝐿 = 104. We stop when the total budget𝛮𝐿 is reached. The estimated probability ℐ̂𝛮𝐿 is given
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table 5.2 Results on the series system case (with jump rates of the five components from
table 5.1).

Method 𝛮𝐿 ℐ̂𝛮𝐿 C.o.v
�̂�𝛮𝐿
ℐ̂𝛮𝐿

95% confidence interval

105 4 × 10−5 158 [8.02 × 10−7 ; 7.92 × 10−5]

CMC 106 2.9 × 10−5 186 [1.84 × 10−5 ; 3.96 × 10−5]

107 2.7 × 10−5 192 [2.38 × 10−5 ; 3.02 × 10−5]

IS with 𝜉bcr𝜽
103 2.96 × 10−5 0.76 [2.82 × 10−5 ; 3.09 × 10−5]

104 2.89 × 10−5 0.78 [2.84 × 10−5 ; 2.93 × 10−5]

IS with 𝜉mps
𝜽

103 2.82 × 10−5 0.80 [2.68 × 10−5 ; 2.96 × 10−5]

104 2.91 × 10−5 0.77 [2.87 × 10−5 ; 2.95 × 10−5]

by eq. (4.30), the estimated asymptotic standard deviation �̂�𝛮𝐿 is the square root of the variance
estimator given in eq. (4.50) and the confidence interval formula is given by theorem 9. For
the CMCmethod, we simply generate𝛮𝐿 trajectories and we count the proportion of faulty
trajectories.
The AIS method performs better than the CMCmethod in all configurations. The estimated
probabilities are of the same order and the confidence intervals produced by the AIS method for
a given sample size are of comparable length to the confidence intervals produced by the CMC
method for a sample size 104 larger. It can be seen that the best performance is obtained on the
series system despite a slightly smaller failure probability. This result is not surprising since the
failed trajectories of a series system generally contain few jumps and thus produce likelihood
ratios that are easier to stabilize. The 𝜉bcr𝜽 and 𝜉mps

𝜽 seem to have the same effectiveness here.
Each of the two systems presents a different challenge for importance sampling. The series system
requires multi-modal importance distribution since the failure can come from any component.
On the other hand, the importance distribution for a parallel systemmust produce sequences
where all components fail that are plausible from the perspective of jump times.

5.3.2 The spent fuel pool

The roles of the components (𝑐𝑗)
𝑑𝐜=15

𝑗=1
are described in fig. 5.4. We set 𝒱 = {−1, 0, 1}𝑑𝐜 . The

regime of the system is 𝑣 = (𝑣(1), … , 𝑣(𝑑𝐜))where for 𝑗 ∈ ⟦1, 𝑑𝐜⟧, the status of the 𝑗-th com-
ponent 𝑣(𝑗) = 1 if the component is active, 0 if it is inactive and −1 if it is broken. The regime
𝑉𝑡 = (𝑉(1)

𝑡 , … , 𝑉(𝑑𝐜)
𝑡 ) of the process at time 𝑡 ≥ 0 corresponds to the current status of each

component. Recall that we have𝑉𝑡 ∈ 𝒱ℱ if at time 𝑡 ≥ 0 all MPS are damaged or equivalently if at
least one MCS has all its components broken.
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table 5.3 Results on the parallel system case (with jump rates of the five components from
table 5.1 in appendix).

Method 𝛮𝐿 ℐ̂𝛮𝐿 C.o.v
�̂�𝛮𝐿
ℐ̂𝛮𝐿

95% confidence interval

105 8 × 10−5 111.75 [2.46 × 10−5 ; 1.35 × 10−4]

CMC 106 6.7 × 10−5 112.54 [5.10 × 10−5 ; 8.30 × 10−5]

107 6.73 × 10−5 121.84 [6.22 × 10−5 ; 7.24 × 10−5]

IS with 𝜉bcr𝜽 = 𝜉mps
𝜽

103 4.85 × 10−5 3.65 [3.76 × 10−5 ; 5.94 × 10−5]

104 5.80 × 10−5 4.36 [5.29 × 10−5 ; 6.31 × 10−5]

Flow and jump intensity

We note𝑍𝑡 = (𝑍(1)
𝑡 , 𝑍(2)

𝑡 , 𝑍(3)
𝑡 ) the position of the process at time 𝑡 ≥ 0with𝑍(1)

𝑡 the tempera-
ture of the water in the pool in °C, 𝑍(2)

𝑡 the water level in the pool in meters (m) and 𝑍(3)
𝑡 = 𝑡

the total elapsed time. The evolution of these variables is described by the system of ordinary
differential equations:

d𝑍(1)
𝑡
d𝑡 = 𝟙𝑍(1)

𝑡 <100 ×
𝑟 + 𝜌𝐶𝛫(𝑧(1)𝑆 − 𝑍(1)

𝑡 )𝟙𝑉𝑡∉𝒱ℱ
𝜌𝐶𝛢𝑍(2)

𝑡

,

d𝑍(2)
𝑡
d𝑡 = −𝟙𝑍(1)

𝑡 =100 ×
𝑟

𝜌𝐶𝛢ℓ ,

d𝑍(3)
𝑡
d𝑡 = 1,

(5.16)

where the physical parameters are given in the table 5.4 (values taken from [CHS16]).
Under distribution p, each component 𝑣(𝑗) has a marginal jump rate 𝜆(𝑗) which depends
on its status and on the values of the physical variables of the system. The jump intensity
of the PDMP in a state 𝑥 ∈ 𝒳 is the sum of the jump rates of the components in state 𝑥:
𝜆(𝑥) = ∑𝑑𝐜

𝑗=1 𝜆
(𝑗)(𝑥). At each jump from state 𝑥−, a component 𝑐𝑗 is randomly selected with

probability 𝜆(𝑗)(𝑥−)/𝜆(𝑥−) and changes status (it is repaired if it was broken, and fails otherwise).
The system automatically reconfigures itself by enabling or disabling components so that exactly
1MPS has all its components active if possible (be careful not to confuse inactive component
𝑣(𝑗) = 0 and broken component 𝑣(𝑗) = −1).
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table 5.4 Physical parameters of the SFP. Values taken from [CHS16].

Physical parameters Value Description

𝑟 2.106 × 1010 J ⋅ h−1 Residual power of the fuel

𝐶 4180 J ⋅ kg−1 ⋅ K−1 Mass heat capacity

𝜌 990 kg ⋅m−3 Density of the water

𝛢 77m2 Area of the pool.

𝑧(1)𝑆 15°C Temperature of the water sources

𝛫 550m3 ⋅ h−1 The debit water

ℓ 2.257 × 106 J ⋅ kg−1 Latent heat of vaporization

𝑠max 3600 h Duration of the mission

𝑧(2)0 19m Initial level of water in the pool

𝑧(2)min 16m Critical threshold of the level of water in the pool

table 5.5 Marginal jump intensity of each component for the standard SFP case.

Component Marginal jump intensity 𝜆(𝑗) for 𝑗 = 1, … , 𝑑𝐜
𝑐𝑖 when 𝑣(𝑖) = −1 when 𝑣(𝑖) = 0 when 𝑣(𝑖) = 1

𝑐1 = G0 4 ⋅ 10−2 4 × 10−6 6 ⋅ 10−6

𝑐𝑖+1 = G𝑖, 𝑖 = 1, 2, 3 8 × 10−2 2 × 10−6 30 × 10−6

𝑐5 = S1 1 × 10−2 4 × 10−6 20 × 10−6

𝑐6 = S2 3 × 10−2 1 × 10−6 5 ⋅ 10−6

𝑐6+𝑖 = L𝑖,1, 𝑖 = 1, 2, 3 (6 − 0.03𝑍(1)
𝑡 ) × 10−2 (1 + 0.05𝑍(1)

𝑡 ) × 10−6 (3 + 0.1𝑍(1)
𝑡 ) × 10−6

𝑐9+𝑖 = L𝑖,2, 𝑖 = 1, 2, 3 (6 − 0.03𝑍(1)
𝑡 ) × 10−2 (1 + 0.05𝑍(1)

𝑡 ) × 10−6 (3 + 0.1𝑍(1)
𝑡 ) × 10−6

𝑐12+𝑖 = L𝑖,3, 𝑖 = 1, 2, 3 (6 − 0.03𝑍(1)
𝑡 ) × 10−2 (1 + 0.05𝑍(1)

𝑡 ) × 10−6 (3 + 0.1𝑍(1)
𝑡 ) × 10−6

It is assumed that no water can be re-injected into the pool in case of evaporation for the duration
of the mission 𝑠max. Once in 𝒱ℱ there is a first grace period before the temperature of the water
reaches 100°C, but this temperature can go back down once the system is repaired. Then we have
a second grace period before the water level in the pool reaches a critical threshold 𝑧(2)min. In our
model, the evaporated water is lost and the water level cannot rise again if the system is repaired.

Results for the spent fuel pool

We carry out three series of numerical simulations on the spent fuel pool system.

(i) We first compare the performance of each version of our AIS method to a CMCmethod
on a standard case with jump rates described in table 5.5, results described in table 5.7
and a probability of system failure about 10−5. The sample size of the CMCmethod is
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table 5.6 Marginal jump intensity of each component for the extreme SFP case.

Component Marginal jump intensity 𝜆(𝑗)0 for 𝑗 = 1, … , 𝑑𝐜
𝑐𝑖 when 𝑣(𝑖) = −1 when 𝑣(𝑖) = 0 when 𝑣(𝑖) = 1

𝑐1 = G0 4 × 10−2 4 × 10−6 6 ⋅ 10−6

𝑐𝑖+1 = G𝑖, 𝑖 = 1, 2, 3 10 × 10−2 15 × 10−6 30 × 10−6

𝑐5 = S1 1 ⋅ 10−2 4 × 10−6 20 ⋅ 10−6

𝑐6 = S2 3 ⋅ 10−2 1 × 10−6 5 ⋅ 10−6

𝑐6+𝑖 = L𝑖,1, 𝑖 = 1, 2, 3 (12 − 0.04𝑍(1)
𝑡 ) × 10−2 (1 + 0.1𝑍(1)

𝑡 ) × 10−6 (3 + 0.1𝑍(1)
𝑡 ) × 10−6

𝑐9+𝑖 = L𝑖,2, 𝑖 = 1, 2, 3 (12 − 0.04𝑍(1)
𝑡 ) × 10−2 (1 + 0.1𝑍(1)

𝑡 ) × 10−6 (3 + 0.1𝑍(1)
𝑡 ) × 10−6

𝑐12+𝑖 = L𝑖,3, 𝑖 = 1, 2, 3 (15 − 0.05𝑍(1)
𝑡 ) × 10−2 (1 + 0.08𝑍(1)

𝑡 ) × 10−6 (3 + 0.08𝑍(1)
𝑡 ) × 10−6

ranging from 105 to 107. The sample size of the AIS method is ranging from 103 to 104.

(ii) We then check the stability of the best version of our method which seems to be based
on 𝜉mps

𝜽 . We represent in fig. 5.6 50 confidence intervals at 95% level obtained with
the AIS-MPSmethod with a sample size of 103 trajectories still on the standard case
(table 5.5) and we compare them to the confidence interval obtained with the CMC
method and a sample size of 107.

(iii) Since the method is stable, we can trust the confidence intervals produced and confront it
with even rarer events for which it cannot be compared to a CMCmethod. Therefore
we test the AIS-MPS method on an extreme case with jump rates described in table 5.6,
results described in table 5.8 and a probability of system failure about 10−7. The sample
size of the AIS method is ranging from 103 to 104.

The AIS method is initialized with the procedure proposed in section 4.3.3. We choose the
smallest 𝜽 (in norm) such that the probability that at least one component failure occurs before
the end of the simulation is larger than 1/3. We set 𝑑𝜽 = 8. At each iteration, we generate
trajectories until we have 𝑛CE = 10 failures before updating 𝜽 for𝛮𝐿 = 103 and 𝑛CE = 50 for
𝛮𝐿 = 104. We stop when the total budget𝛮𝐿 is reached. The estimated probability ℐ̂𝛮𝐿 is given
by eq. (4.30), the estimated asymptotic standard deviation �̂�𝛮𝐿 is the square root of the variance
estimator given in eq. (4.50) and the confidence interval formula is given by theorem 9. For
the CMCmethod, we simply generate𝛮𝐿 trajectories and we count the proportion of faulty
trajectories.
The first observation on table 5.7 is that even the BC-IF method, which does not distinguish the
role of each component, manages to drastically reduce the variance of the estimator compared
to the CMCmethod (almost by a factor of 1000). The AIS-MPS method is extremely efficient
with a variance reduction of 104. Note that the coefficient of variation in table 5.7, which can be
used as an indicator of the performance of an estimator, does not necessarily decrease with the
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table 5.7 Results on the standard SFP case (with jump rates from table 5.5).

Method 𝛮𝐿 ℐ̂𝛮𝐿 C.o.v
�̂�𝛮𝐿
ℐ̂𝛮𝐿

95% confidence interval

105 2 × 10−5 223.60 [0 ; 4.77 × 10−5]

CMC 106 1.3 × 10−5 277.35 [5.93 × 10−6 ; 2.01 × 10−5]

107 1.77 × 10−5 237.68 [1.51 × 10−5 ; 2.03 × 10−5]

AIS with 𝜉bcr𝜽
103 2.16 × 10−5 10.88 [7.05 × 10−6 ; 3.63 × 10−5]

104 1.79 × 10−5 16.82 [1.37 × 10−5 ; 2.22 × 10−5]

AIS with 𝜉mps
𝜽

103 2.19 × 10−5 3.01 [1.78 × 10−5 ; 2.60 × 10−5]

104 1.99 × 10−5 1.01 [1.96 × 10−5 ; 2.03 × 10−5]

table 5.8 Results with the AIS-MPS approximation on the extreme SFP case (with jump
rates from table 5.6). Same method as in Table 5.7 except that the initialization follows
the method described in section 4.3.3 with the smallest 𝜽 (in norm) such that the
probability that at least one component failure occurs before the end of the simulation
is larger than 0.9.

Method 𝛮𝐿 ℐ̂𝛮𝐿 C.o.v
�̂�𝛮𝐿
ℐ̂𝛮𝐿

95% confidence interval

AIS with 𝜉(𝛭𝛲𝑆)
𝜽

103 3.31 × 10−7 3.35 [2.63 × 10−7 ; 4.00 × 10−7]

104 3.83 × 10−7 3.29 [3.58 × 10−7 ; 4.08 × 10−7]

sample size. This is due to the fact that in the first iterations of the method, the parameter 𝜽 is not
yet well chosen and that a poor importance distribution in high dimension tends to produce too
small likelihood ratios. The coefficient of variation is underestimated at this time.
Figure 5.6 confirms the performance of the AIS-MPS method. The majority of the confidence
intervals produced by the AIS method with a sample size of 103 are shorter than the confidence
interval produced by the CMCmethod with a sample size of 107. Only 1 interval out of 50 is
significantly larger than the interval produced by CMC, but remains relevant since it gives a
probability of failure between 1 × 10−5 and 3.5 × 10−5. We deduce that the AIS-MPS method is
robust and that we can therefore have faith in its estimates.
Finally, we see on the table 5.8 that the AIS-MPS method still offers excellent performances for a
100 times rarer event. A reliable estimate of the probability that is of order 10−7 can be obtained
with a sample size smaller than 104.
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figure 5.6 Comparison of 50 confidence intervals at 95% level obtained with AIS-MPS
approximation. Each confidence interval corresponds to a run of the AIS-MPS
method on the standard case of the SFP (table 5.5) with 103 trajectories (same
conditions as for table 5.7). They are compared to the confidence intervals obtained
with the CMCmethod on 107 trajectories.
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chapter 6

Graph-informed
importance function

An adaptive importance sampling strategy has been proposed in chapter 4 for rare event
simulation of PDMPs. The importance distribution is built upon an approximation of
the committor function of the process. This approximation, called importance function,
is a parametric transformation of a proximity score 𝛽 between any regime of the PDMP
and the set 𝒱ℱ of regimes allowing to access the critical regionℱ. The proximity score
𝛽mps, proposed in chapter 5, has proven to be very effective when the PDMPmodels a
coherent multicomponent industrial system. In this chapter, we aim to go further and
propose a proximity score that is both more general and more accurate. The evolution of
the PDMP regime can be roughly summarized by a randomwalk (𝑉𝑡)𝑡 on a graph whose
regimes are the vertices. The mean hitting time of the region 𝒱ℱ for the randomwalk
starting from vertex 𝑣 is a natural proximity score for 𝑣. This mean hitting time is explicit
when the randomwalk is Markovian and time-homogeneous. The randomwalk (𝑉𝑡)𝑡
given by the PDMP being typically non-Markovian, we compute these mean hitting times
for a simplified random walk (𝑌𝑡)𝑡 approximating (𝑉𝑡)𝑡. Our importance sampling method
is implemented with this proximity score on the final test case of the previous chapter: the
spent fuel pool.
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6.1 Motivations

The proximity score 𝛽mps, as a reminder, corresponds to the proportion of minimal path sets
(MPSs) of the system having at least one broken component in a given regime. It is thus suitable
for estimating the failure probability of coherent multi-component industrial systems.

6.1.1 Broadening the scope of applications

Our aim is not to limit ourselves to these systems. We wish to propose a relevant proximity score
for the widest possible variety of applications.

Non-coherent systems

The reliability literature contains several proposals for extending fault tree analysis theory to
non-coherent systems [IS18; BA18; Ali+17]. The thesis [Bee02], although dated, provides a
useful introduction to essential fault tree analysis concepts and their extension to non-coherent
systems. The previous chapter could undoubtedly be rethought in light of this work, but we have
adopted a different, more general perspective.

Multi-state systems

We recall that for any regime 𝑣 ∈ 𝒱, we denote c(𝑣) ∈ {0, 1}𝑑𝐜 the failed or intact (0 or 1) status
of each component in regime 𝑣. We have so far assumed the existence of a Boolean structure
function 𝜑ℱ such that for any 𝑣 ∈ 𝒱, we have: 𝜑ℱ(c(𝑣)) = 𝟙𝑣∉𝒱ℱ . Even by relaxing the assumption
of coherence (characterized by the monotonicity of 𝜑ℱ), we have therefore assumed that the
binary status of each component (failed or intact) was sufficient to determine whether a regime
belongs to 𝒱ℱ. However, there exist systems, known as multi-state systems, where neither the
components status nor their image by the structure function are Boolean variables. This is
typically the case when multiple degradation levels are possible [SL13]. This is again a topic
covered in the reliability literature [YJ12; Sed+21] but it is not the path we have followed.

Beyond industrial reliability

Ameticulous unification of the existing refinements of fault tree analysis theory would certainly
allow for the construction of a versatile proximity score. However, this would still be limited
to considering only the failure of a multi-component industrial system as the sole rare event of
interest. The methodology and form of IF that we proposed in chapter 4 do not constrain us this
way. The PDMP can model anything else, and we could always describe the rare event of interest
as reaching a regionℱ before a fixed date. Other rare/catastrophic events realized by PDMPs
are considered in the literature, such as the extinction of a population [GHL22] or the ruin of
an insurance company [Kri+19]. In section 4.1.2, we provided arguments to justify that this
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event always consisted of reaching or staying long enough in a given set of regimes 𝒱ℱ. We simply
assume in the sequel that the set of regimes 𝒱 is finite and that we know (or can easily determine
in practice) the subset 𝒱ℱ.

6.1.2 Regime as a random walk on a graph

Our ambition is therefore to propose a family of proximity scores that is independent of what the
PDMPmodels (and more specifically, of what the regime represents in the model). Let us return
to a simple explanation of the PDMP behavior. Recall that the state space of the PDMP is of the
form:

𝒳 = ⋃
𝑣∈𝒱

𝒳𝑣 = ⋃
𝑣∈𝒱

(𝒵𝑣 × {𝑣}) = ⋃
𝑣∈𝒱

({𝑧 ∈ 𝒵 | (𝑧, 𝑣) ∈ 𝒳} × {𝑣}) . (6.1)

PDMP as a random walk in a multiverse

One possible interpretation is to describe each subspace𝒵𝑣 for any 𝑣 ∈ 𝒱 as a small universe with
its own physical laws (its deterministic flow 𝜓𝑣). Reaching the boundary of a universe triggers a
jump to another randomly chosen universe (according to the kernel𝑄) with new physical laws.
Jumps to other universes can also occur spontaneously. Some universes and some regions of each
universe are more likely than others to trigger these random jumps (susceptibility measured by
the jump intensity 𝜆). The critical regionℱ is the union of regions located in different rarely
visited universes 𝒱ℱ. A PDMP is therefore a random walk in this multiverse. We seek to quantify
the proximity of each universe to the universes indexed by regimes of 𝒱ℱ.
To come back to a less metaphorical interpretation, it is easy to see that the evolution of the
PDMP regime over time (𝑉𝑡)𝑡, is a non-Markovian random walk on a graph. The vertices of the
graph are the different regimes of 𝒱 and a directed edge exists from regime 𝑣 to regime 𝑣′ if and
only if there exist two positions 𝑧, 𝑧′ ∈ 𝒵 such that 𝑞((𝑧′, 𝑣′) ∣ (𝑧, 𝑣)) > 0. This walk is indeed
non-Markovian, as knowing only the current regime (i.e., the universe in which we are located)
does not suffice to determine the distribution of the next jump time and the next destination
regime/universe. This random walk is illustrated in fig. 6.1.
Quantifying the proximity of a regime to the set 𝒱ℱ therefore amounts to quantifying the
proximity of a vertex of the graph to the subset of vertices 𝒱ℱ.

Shortest path distance on a graph

The usual distance between two vertices of a graph is the length of the shortest path (in terms of
the number of edges) that separates them1. A decreasing function of the length of this shortest
path is a natural candidate for a proximity score. In reality, such a proximity score is not very

1Since the graph is directed, we are talking here about the shortest path starting from a given vertex to any
vertex of the set 𝒱ℱ
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figure 6.1 PDMP as a random walk in a “multiverse”.

expressive, as it only exploits a small part of the available information2. This is quite apparent
in the case of coherent multi-component systems from the previous chapter. The length of the
shortest path then corresponds to the minimum number of possible transitions before a MCS is
completely failed, or equivalently before all MPSs are damaged.
In practice, only the information carried by the most degradedMCS (or equivalently, by the
shortest sequence of failures that can damage the remaining functional MPS) is used. The
additional failure of a component that does not belong to the most degradedMCS does not
bring us closer to the region of interest from the perspective of this particular distance. A
proximity score aiming to generalize 𝛽mps must therefore at least take into account all the ways to
damage the remainingMPS (and therefore the information carried by all the MCS and not only
the most damaged one). A generalization of the notions of MPS andMCS on a graph is possible.

System cut sets are graph paths and system path sets are graph cuts

We need to assume the existence of an initial regime 𝑣0 that is furthest from the region 𝒱ℱ. In the
case of coherent industrial systems, the initial regime corresponds to the regime with no failed
components. We will see that the cut sets of the system translate into paths on the graph, and
conversely, the path sets of the system translate into cuts of the graph.
Let us start by generalizing theMCSs. In the reliability framework, a cut set is a set of compo-
nents whose joint and sustained failure guarantees the critical failure of the system. This cut

2The level of connection between two people in a network is not measurable only by the minimum number of
handshakes that separates them (and which is always relatively low, see https://en.wikipedia.org/wiki/
Six_degrees_of_separation). Two people are close if they can be connected by multiple combinations of
short sequences of handshakes.
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set encodes several regimes belonging to 𝒱ℱ. Viewed dynamically, a single cut set corresponds
to several possible transitions sequences leading from 𝑣0 to 𝒱ℱ. It is therefore a set of paths

3 on
the graph between 𝑣0 and 𝒱ℱ. The cut sets of the system describe the set of all the paths on the
graph leading from 𝑣0 to 𝒱ℱ, and theMCSs of the system describe the subset of these paths on
the graph that do not pass through the same vertex twice (no cycle). A possible proximity score
for a regime 𝑣would be an increasing function of the progress of the regime on each of these
paths on the graph. However, we face the problem already mentioned in chapter 5: this involves
monitoring and combining many gauges (here, the paths on the graph) in a single proximity
score.
Let us now generalize theMPSs. In the reliability framework, a path set is a set of components
to be kept intact to ensure that the regime belongs to 𝒱ℱ. Viewed dynamically, a single path
corresponds to several possible regimes through which the process must not pass. This is
therefore what is called an 𝑠-𝑡 cut (or 𝑠-𝑡 separator) on the graph : a set of vertices separating the
set 𝒱 into two disjoint subgraphs, one containing the source 𝑣0 and the other containing the sink
𝒱ℱ. The path sets of the system correspond to the set of all 𝑠-𝑡 cuts on the graph between the
source 𝑣0 and the sink 𝒱ℱ. The MPSs of the system correspond to the 𝑠-𝑡 cuts that do not contain
any others (these minimal 𝑠-𝑡 cuts are called bonds [RRU24]). A possible proximity score for
a regime 𝑣would be a decreasing function of the number of minimal 𝑠-𝑡 cuts still separating
the regime 𝑣 from 𝒱ℱ. We would ultimately have only one gauge to monitor (the number of
remaining s-t cuts).
This idea could even be generalized beyond graphs to any general set provided that it contains
a source point and a target sink region. A point is close to the sink from the perspective of the
source :

(i) if it is well advanced on a portion of the paths leading from the source to the sink,

(ii) or equivalently, if it has crossed a large proportion of the barriers separating the source
from the sink.

Defining the set of all possible minimal barriers for our set means defining a score according to
which being far away is simply having many barriers to cross.

In practice

As appealing as this construction may be, it remains very costly to implement in practice. On the
one hand, it is necessary to be able to determine the set of all these 𝑠-𝑡 cuts between 𝑣0 and 𝒱ℱ, to
minimize them and to store them. On the other hand, for any given vertex 𝑣, we must either be
able to quickly evaluate (during simulations) which 𝑠-𝑡 cuts for the source 𝑣0 also separate 𝑣 from
𝒱ℱ, or perform the calculation in advance for each vertex and store all the results. In the previous

3A path on a graph is a sequence of connected vertices from a starting vertex to an arrival vertex or set.
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chapter, we exploited the particular structure adopted by the graph for coherent industrial
systems to efficiently determine theMPSs/MCSs. The literature on the computation of 𝑠-𝑡
cuts is generally quite old (mainly from the 70s to the 90s) but contains some recent proposals
[RRU24; KK20]. It also offers several avenues for generalizing this idea, such as [Con+20] for
listing 𝑠-𝑡 cuts in temporal graphs (whose edges change over time). Finally, the existing work
around theMax-flowmin-cut theorem [GK13] allows us to consider the jump intensity as a
weight on the edges of the graph (associated here with the notion of network capacity). The
approach we propose manages to take into account all these elements without resorting to
advanced notions of graph theory.

6.2 Graph-based mean hitting times

Many statistical problems on graphs have required the development of metrics capable of finely
taking into account the connectivity of the graph (see [Che+23] for an overview of such metrics
for graph sparsification). One approach that has proven fruitful is to rely on the properties
of randomwalks on the graph. Of course, one can refer to algorithms of the PageRank type
[Pag+99; Ber05] and their variants (personalized PageRank [Hav02; Lia+23], random walk with
restart [TFP06], Katz similarity [Kat53; NB18], SimRank [JW02; Zha+23; ZHZ24], etc.). Here
is a survey on the basic theoretical concepts of randomwalks on graphs [Lov93] and a recent
survey on applications and algorithms related to random walks on graphs [Xia+19].
A central notion associated with random walks on graphs is that of hitting time (or first passage
time). The hitting time ℎ𝑣,𝑣′ between two vertices 𝑣 and 𝑣

′ of a graph is the time it takes for a
randomwalk to go from 𝑣 to 𝑣′. We are generally interested in the mean hitting time (MHT)
between two vertices:

𝛨𝑣,𝑣′ = 𝔼[ℎ𝑣,𝑣′]. (6.2)

This is not a distance because the MHT is not symmetric. To obtain a distance, we often consider
its symmetrized version called commute time:

𝐶𝑣,𝑣′ = 𝛨𝑣,𝑣′ + 𝛨𝑣′,𝑣. (6.3)

In the literature, the term “effective resistance” can also be found. The graph is interpreted as an
electrical network with edges (and weights on edges) as resistances. The effective resistance is then
the potential difference between two vertices when a unit current is injected at 𝑣 and extracted
from 𝑣′. It is a renormalized version of the commute time:

𝑅𝑣,𝑣′ =
𝐶𝑣,𝑣′
𝑑𝒢

, (6.4)

where 𝑑𝒢 is the volume of the graph 𝒢 (the sum of degrees of all vertices). The links between
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hitting times, commute times, effective resistance, Laplacian, and invariant measure are explained
in [Zhu+23]. The links between hitting times and the mixing times of the random walk can also
be found in [PS15]. Finally [CZ08] propose various explicit expressions of MHT for several
kinds of graphs.

Measures of dissimilarity based onMHT are undoubtedly among the most popular measures for
graph problems, after the shortest path distance (see also [Yen+08] for a family of dissimilarity
measures generalizing both the shortest-path and the commute-time distances). They are used for
clustering [Yen+05; QH07; Ale+17], graph embedding [Gua98; QH06], collaborative filtering
[Bra05; KS07; Fou+07], and many other fields. They have the advantage of being robust to
noise (the MHT varies little after the deletion/addition of a small number of edges or after a
small perturbation of weights on edges). The major asset of MHT is that they can be explicitly
calculated in the case of a Markovian and time-homogeneous random walk.

6.2.1 Explicit computation of mean hitting times

The vast majority of the references cited above only examine the case of discrete-time random
walks. Continuous time offers us greater flexibility and no particular disadvantages. We detail
both continuous-time case and discrete-time case, the results of the second being deduced from
the first (the first being more interesting for us).

Reminder on time-homogeneous Markov chains

Let us recall that a Markov chain only changes state at discrete points in time, called jump
times. AMarkov chain is said to be time-homogeneous if the distribution of its future states
does not depend on the elapsed time (see definition 7). If a time-homogeneousMarkov chain
evolves on a finite state space 𝒱with cardinality Card(𝒱) = 𝑑𝒱, then its distribution can be fully
characterized by a 𝑑𝒱 × 𝑑𝒱 matrix. We consider two types of Markov chains: continuous-time
Markov chains (CTMCs) and discrete-timeMarkov chains (DTMCs).

(i) Let (𝑌𝑡)𝑡∈ℝ+
be a time-homogeneous CTMC on 𝒱. Its jump times are random and

follow an exponential distribution whose parameter depends on the current state of the
chain. At each jump, the chain randomly changes state according to a probability vector
that also depends on the current state of the chain. The distribution of the chain can
be characterized by its infinitesimal generator𝛢 = [𝛢𝑣,𝑣′]𝑣,𝑣′∈𝒱. For any 𝑣, 𝑣

′ ∈ 𝒱 such
that 𝑣′ ≠ 𝑣, the coefficient𝛢𝑣,𝑣′ is non-negative and corresponds to the jump rate from
state 𝑣 to 𝑣′. The rows of the matrix sum to zero, so for all 𝑣 ∈ 𝒱, the diagonal coefficient
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satisfies𝛢𝑣,𝑣 = −∑𝑣′≠𝑣 𝛢𝑣,𝑣′ . For any state 𝑣 ∈ 𝒱 and any function 𝑓 ∶ 𝒱 → ℝ4, we have:

lim
𝑡→0+

𝔼[𝑓(𝑌𝑡) ∣ 𝑌0 = 𝑣] − 𝑓(𝑣)
𝑡 = ∑

𝑣′∈𝒱
𝛢𝑣,𝑣′ 𝑓(𝑣

′) . (6.5)

Starting from a state 𝑣 ∈ 𝒱, after a time distributed according to an exponential law
with parameter −𝛢𝑣,𝑣, the CTMC jumps to a random state in 𝒱 ∖ {𝑣} according to the
probability vector [ −𝛢𝑣,𝑣′

𝛢𝑣,𝑣
]
𝑣′≠𝑣

. If 𝑣 ∈ 𝒱 is an absorbing state, then𝛢𝑣,𝑣′ = 0 for any

𝑣′ ∈ 𝒱.

(ii) Let (𝑌𝑘)𝑘∈ℕ∗
be a discrete-time and time-homogeneousMarkov chain on 𝒱. Its jump

times are deterministic and occur at each integer time step. At each jump, the chain
randomly changes state according to a probability vector that also depends on the
current state of the chain. The distribution of the chain can be characterized by its
transition matrix𝛢 = [𝛢𝑣,𝑣′]𝑣,𝑣′∈𝒱. All coefficients are non-negative and each row
sums to 1. Starting from a state 𝑣 ∈ 𝒱, the chain randomly jumps at the next time
step to a state in 𝒱 according to the probability vector [𝛢𝑣,𝑣′]𝑣′∈𝒱. Unlike a CTMC, a

Markov chain can therefore jump in place. If 𝑣 ∈ 𝒱 is an absorbing state, then𝛢𝑣,𝑣 = 1
and𝛢𝑣,𝑣′ = 0 for all 𝑣′ ≠ 𝑣. Note that any DTMC that does not jump in place can
be modeled by a CTMC (𝑌𝑡)𝑡∈ℝ+

whose jump times are not known, but only the
order of transitions. By denoting (𝑆𝑘)𝑘 the successive jump times of the CTMC, the
process (𝑌𝑆𝑘)𝑘∈ℕ∗

is a discrete-timeMarkov chain with transition matrix𝛢 defined for all
𝑣, 𝑣′ ∈ 𝒱 (assuming that 𝑣 is not an absorbing state) by:

𝛢𝑣,𝑣′ =
−𝛢𝑣,𝑣′

𝛢𝑣,𝑣
𝟙𝑣≠𝑣′ . (6.6)

Continuous-time version

Let (𝑌𝑡)𝑡 be a time-homogeneous continuous-timeMarkov chain on the finite graph 𝒱with the
matrix𝛢 ∈ ℝ𝑑𝒱×𝑑𝒱 as infinitesimal generator. We do not specify the edges of the graph since they
correspond to all the pairs 𝑣, 𝑣′ such that𝛢𝑣,𝑣′ > 0.

4All such functions can be characterized by a vector of size 𝑑𝒱 and belong to the domain of the generator.

138



6 graph-informed importance function

definition 34 ⋅ Mean hitting time

For any subset 𝛣 ⊂ 𝒱 and any 𝑣 ∈ 𝒱, let us define ℎ𝑣,𝛣 the waiting time before reaching 𝛣
starting from vertex 𝑣:

ℎ𝑣,𝛣 = inf{𝑡 ∈ ℝ+ ∶ 𝑌𝑡 ∈ 𝛣 ∣ 𝑌0 = 𝑣}. (6.7)

The mean hitting time (MHT) of the set 𝛣 from vertex 𝑣 is thus given by:

𝛨𝑣,𝛣 = 𝔼(𝑌𝑡)𝑡∼𝛢[ℎ𝑣,𝛣]. (6.8)

When 𝛣 = {𝑣′} is a single vertex, we note ℎ𝑣,𝑣′ = ℎ𝑣,{𝑣′} and𝛨𝑣,𝑣′ = 𝛨𝑣,{𝑣′}. We can
therefore also define the matrices ℎ = [ℎ𝑣,𝑣′]𝑣,𝑣′∈𝒱 and𝛨 = [𝛨𝑣,𝑣′]𝑣,𝑣′∈𝒱.

The following well-known result establishes the link between mean hitting times and the process
generator.

theorem 11 ⋅ Mean hitting times for a time-homogeneous CTMC

For any subset 𝛣 ⊂ 𝒱, the vector𝛨⋅,𝛣 = (𝛨𝑣,𝛣)𝑣∈𝒱 is the unique minimal non-negative
solution to the linear system:

{
𝛨𝑣,𝛣 = 0 if 𝑣 ∈ 𝛣,

∑𝑣′∈𝒱 𝛢𝑣,𝑣′𝛨𝑣′,𝛣 = −1 if 𝑣 ∉ 𝛣.
(6.9)

A solution vector [𝛨𝑣,𝛣]𝑣∈𝒱 of eq. (6.9) is minimal if for any other non-negative solution
[𝛨𝑣,𝛣]𝑣∈𝒱, we have𝛨𝑣,𝛣 ≤ 𝛨𝑣,𝛣 for any 𝑣 ∈ 𝒱.

Proof. For simplicity of notation in the proof, we will directly note ℎ𝑣 = ℎ𝑣,𝛣 and𝛨𝑣 = 𝛨𝑣,𝛣 for any
𝑣 ∈ 𝒱. The case𝛨𝑣 = 0 if 𝑣 ∈ 𝛣 is obvious. Suppose 𝑣 ∉ 𝛣. Either 𝑣 is absorbing and then𝛨𝑣 = +∞, or
𝑣 is not absorbing and then the randomwalk (𝑌𝑡)𝑡 leaves 𝑣 after a random time 𝛵1. In the latter case, the
remaining time before reaching 𝛣 is ℎ𝑌𝛵1 (with ℎ𝑌𝛵1 = 0 if 𝑌𝛵1 ∈ 𝛣). Thus, for any non-absorbing vertex
𝑣 ∈ 𝒱 ∖ 𝛣, we have:

𝛨𝑣 = 𝔼[ℎ𝑣] = 𝔼[𝛵1 | 𝑌0 = 𝑣] + 𝔼[ℎ𝑌𝛵1 ∣ 𝑌0 = 𝑣] . (6.10)

Since 𝛵1 ∼ Exp(−𝛢𝑣,𝑣)we have 𝔼 [𝛵1 | 𝑌0 = 𝑣] = −(𝛢𝑣,𝑣)
−1. On the other hand, thanks to the strong

Markov property,

𝔼[ℎ𝑌𝛵1 ∣ 𝑌0 = 𝑣] = 𝔼[𝔼[ℎ𝑌𝛵1 ∣ 𝑌𝛵1] ∣ 𝑌0 = 𝑣] = 𝔼[𝛨𝑌𝛵1
∣ 𝑌0 = 𝑣] ,

= ∑
𝑣′≠𝑣

𝛨𝑣′ ℙ(𝑌𝛵1 = 𝑣′ ∣ 𝑌0 = 𝑣) = − 1
𝛢𝑣,𝑣

∑
𝑣′≠𝑣

𝛢𝑣,𝑣′𝛨𝑣′ .
(6.11)
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Finally, it comes:

𝛨𝑣 = − 1
𝛢𝑣,𝑣

(1 +∑
𝑣′≠𝑣

𝛢𝑣,𝑣′𝛨𝑣′), (6.12)

and thus the desired result:
𝛨𝑣𝛢𝑣,𝑣 +∑

𝑣′≠𝑣
𝛢𝑣,𝑣′𝛨𝑣′ = −1 . (6.13)

It remains to prove the minimality of the solution vector [𝛨𝑣]𝑣∈𝒱. Let [𝛨𝑣]𝑣∈𝒱 be another non-negative
solution of the linear system eq. (6.9). Let 𝑣0 be the initial state of the random walk. If 𝑣0 ∉ 𝛣, then:

∑
𝑣1∈𝒱

𝛢𝑣0,𝑣1𝛨𝑣1 = −1 ⟺ ∑
𝑣1≠𝑣0

𝛢𝑣0,𝑣1𝛨𝑣1 + 𝛢𝑣0,𝑣0𝛨𝑣0 = −1 ,

⟺ 𝛨𝑣0 =
−1
𝛢𝑣0,𝑣0

+ ∑
𝑣1≠𝑣0

−𝛢𝑣0,𝑣1
𝛢𝑣0,𝑣0

𝛨𝑣1 .
(6.14)

The same result holds for𝛨𝑣1 for any 𝑣1 ∉ 𝛣, and thus we can write:

𝛨𝑣0 =
−1
𝛢𝑣0,𝑣0

+ ∑
𝑣1≠𝑣0
𝑣1∉𝛣

−𝛢𝑣0,𝑣1
𝛢𝑣0,𝑣0

( −1
𝛢𝑣1,𝑣1

+ ∑
𝑣2≠𝑣1

−𝛢𝑣1,𝑣2
𝛢𝑣1,𝑣1

𝛨𝑣2) ,

= −1
𝛢𝑣0,𝑣0

+ ∑
𝑣1≠𝑣0
𝑣1∉𝛣

𝛢𝑣0,𝑣1
𝛢𝑣0,𝑣0

1
𝛢𝑣1,𝑣1

+ ∑
𝑣1≠𝑣0
𝑣1∉𝛣

∑
𝑣2≠𝑣1

−𝛢𝑣0,𝑣1
−𝛢𝑣0,𝑣0

𝛢𝑣1,𝑣2
𝛢𝑣1,𝑣1

𝛨𝑣2 .
(6.15)

By recurrence, for any𝑚 ∈ ℕ∗ and any 𝑣0 ∉ 𝛣, we have:

𝛨𝑣0 =
−1
𝛢𝑣0,𝑣0

+
𝑚
∑
𝑘=1

∑
𝑣1≠𝑣0
𝑣1∉𝛣

… ∑
𝑣𝑘≠𝑣𝑘−1
𝑣𝑘∉𝛣

(
𝑘
∏
ℓ=1

−𝛢𝑣ℓ−1,𝑣ℓ
𝛢𝑣ℓ−1,𝑣ℓ−1

)( −1
𝛢𝑣𝑘,𝑣𝑘

+ ∑
𝑣𝑘+1≠𝑣𝑘
𝑣𝑘+1∉𝛣

−𝛢𝑣𝑘,𝑣𝑘+1
𝛢𝑣𝑘,𝑣𝑘

𝛨𝑣𝑘+1) ,

≥
𝑚
∑
𝑘=1

∑
𝑣1≠𝑣0
𝑣1∉𝛣

… ∑
𝑣𝑘≠𝑣𝑘−1
𝑣𝑘∉𝛣

(
𝑘
∏
ℓ=1

−𝛢𝑣ℓ−1,𝑣ℓ
𝛢𝑣ℓ−1,𝑣ℓ−1

) × −1
𝛢𝑣𝑘,𝑣𝑘

.
(6.16)

The inequality comes from the non-negativity of −𝛢𝑣,𝑣′

𝛢𝑣,𝑣
and by assumption, of𝛨𝑣, for any 𝑣 ≠ 𝑣′ ∈ 𝒱.

The right term of this inequality can be reexpressed in terms of the jump times of the random walk (𝑌𝑡)𝑡.
Let 𝛵1, 𝛵2, … be the successive waiting times before each jump and 𝑆1, 𝑆2, … the times of the jump (𝑆0 = 0
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and 𝑆𝑘 = 𝑆𝑘−1 + 𝛵𝑘 for 𝑘 ∈ ℕ
∗). For any 𝑘 ∈ ℕ∗, we have:

𝔼[𝛵𝑘+1𝟙𝑆𝑘+1≤ℎ𝑣0 ∣ 𝑌0 = 𝑣0] = ∑
𝑣1≠𝑣0
𝑣1∉𝛣

−𝛢𝑣0,𝑣1
𝛢𝑣0,𝑣0

× 𝔼[𝛵𝑘𝟙𝑆𝑘≤ℎ𝑣1 ∣ 𝑌0 = 𝑣1] ,

= ∑
𝑣1≠𝑣0
𝑣1∉𝛣

∑
𝑣2≠𝑣1
𝑣2∉𝛣

−𝛢𝑣0,𝑣1
𝛢𝑣0,𝑣0

−𝛢𝑣1,𝑣2
𝛢𝑣1,𝑣1

× 𝔼[𝛵𝑘−1𝟙𝑆𝑘−1≤ℎ𝑣2 ∣ 𝑌0 = 𝑣2] ,

= ∑
𝑣1≠𝑣0
𝑣1∉𝛣

… ∑
𝑣𝑘≠𝑣𝑘−1
𝑣𝑘∉𝛣

(
𝑘
∏
ℓ=1

−𝛢𝑣ℓ−1,𝑣ℓ
𝛢𝑣ℓ,𝑣ℓ

) × 𝔼[𝛵1𝟙𝑆1≤ℎ𝑣𝑘 ∣ 𝑌0 = 𝑣𝑘] ,

= ∑
𝑣1≠𝑣0
𝑣1∉𝛣

… ∑
𝑣𝑘≠𝑣𝑘−1
𝑣𝑘∉𝛣

(
𝑘
∏
ℓ=1

−𝛢𝑣ℓ−1,𝑣ℓ
𝛢𝑣ℓ,𝑣ℓ

) × −1
𝛢𝑣𝑘,𝑣𝑘

.

(6.17)

Using the monotone convergence theorem, it comes:

𝛨𝑣0 ≥ 𝔼 [
𝑚
∑
𝑘=1

𝛵𝑘𝟙𝑆𝑘<ℎ𝑣0 ∣ 𝑌0 = 𝑣0] −−−−−→𝑚→∞ 𝔼[ℎ𝑣0] = 𝛨𝑣0 . (6.18)

�

Discrete time version

This result is better known for classical Markov chains. Let (𝑌𝑛)𝑛 be a time-homogeneous
discrete-timeMarkov chain with transition matrix𝛢 on 𝒱. Let 𝛣 ⊂ 𝒱, we note:

ℎ𝑣,𝛣 = inf{𝑛 ∈ ℕ ∶ 𝑌𝑛 ∈ 𝛣 ∣ 𝑌0 = 𝑣}, (6.19)

and
𝛨𝑣,𝛣 ∶= 𝔼 [ℎ𝑣,𝛣] . (6.20)

theorem 12 ⋅ Mean hitting times for a time-homogeneous Markov chain

The vector𝛨⋅,𝛣 ∶= (𝛨𝑣,𝛣)𝑣∈𝒱 is the unique minimal non-negative solution to the linear
system:

{
𝛨𝑣,𝛣 = 0 if 𝑣 ∈ 𝛣,

𝛨𝑣,𝛣 = 1 +∑𝑣′∈𝒱 𝛢𝑣,𝑣′𝛨𝑣′,𝛣 if 𝑣 ∉ 𝛣.
(6.21)

The proof follows the same pattern as the previous one. Note that if 𝑆𝑘 is the elapsed time before
the 𝑘-th jump for the continuous-time randomwalk (𝑌𝑡)𝑡 and if𝛢𝑣,𝑣′ =

−𝛢𝑣,𝑣′

𝛢𝑣,𝑣
for any vertices

𝑣, 𝑣′ ∈ 𝒱, we have𝛨𝑣,𝛣 = 𝔼 [inf{𝑘 ∶ 𝑌𝑆𝑘 ∈ 𝛣} ∣ 𝑌0 = 𝑣].
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Dynkin’s formula approach

Theorem 11 actually is a special case of a much more general result.

theorem 13 ⋅ Dynkin’s formula

Let (𝑌𝑡)𝑡 be a strongMarkov process with infinitesimal generator𝛢 on a finite space𝒴.
Let also 𝜑 be a function from𝒴 toℝ and 𝜏 a stopping time such that 𝔼[𝜏] < ∞. We
have :

𝔼 [𝜑(𝑌𝜏) ∣ 𝑌0] = 𝜑(𝑌0) + 𝔼 [∫
𝜏

0
𝛢𝜑(𝑌𝑠) d𝑠 ∣ 𝑌0] . (6.22)

A proof for general strong Markov processes is given by Dynkin in [Dyn65, Theorem 1.3.C p23].

Let 𝛣 be a subset of𝒴. We are looking for a function𝛨 from𝒴 toℝ solution of the following
system:

{
𝛢𝛨 = −1 on 𝒴 ∖ 𝛣,

𝛨 = 0 on 𝛣.
(6.23)

We define here 𝜏 ∶= inf{𝑡 ≥ 0 ∶ 𝑌𝑡 ∈ 𝛣}. By definition we have 𝔼 [𝛨(𝑌𝜏) ∣ 𝑌0] = 0 and
𝛢𝛨(𝑌𝑠) = −1 for any 𝑠 < 𝜏. By applying Dynkin’s formula (theorem 13) we get:

𝛨(𝑌0) = −𝔼 [∫
𝜏

0
−1 d𝑠 ∣ 𝑌0] = 𝔼 [𝜏 | 𝑌0] . (6.24)

Finally, it comes:

{
𝛢 (𝑦 ↦ 𝔼 [𝜏 ∣ 𝑌0 = 𝑦]) = −1 on𝒴 ∖ 𝛣,

(𝑦 ↦ 𝔼 [𝜏 ∣ 𝑌0 = 𝑦]) = 0 on 𝛣.
(6.25)

6.2.2 Mean hitting times as proximity scores

Let 𝜏 ∶= inf{𝑡 ∈ ℝ+ ∶ 𝑉𝑡 ∈ 𝒱ℱ}. The evolution of the PDMP regime over time (𝑉𝑡)𝑡 is, as
mentioned earlier, a non-Markovian randomwalk on 𝒱. Attempting to solve the linear system
eq. (6.9) does not make sense in this case. Firstly, we do not have a well-defined generator.
Secondly, the vector (𝔼 [𝜏 | 𝑉0 = 𝑣])𝑣∈𝒱 is ambiguous since the distribution of 𝜏 also depends on
the starting position𝑍0 and not only on the initial regime𝑉0.
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True mean hitting times for the PDMP

The reasoning used previously using Dynkin’s formula (theorem 13) could be applied to the
PDMP (𝛸𝑡)𝑡 with infinitesimal generator𝒜. Let 𝑥 = (𝑧, 𝑣) ∈ 𝒳, we have :

{
𝒜(𝔼 [𝜏 |𝛸0 = 𝑥] ) = −1 if 𝑣 ∉ 𝒱ℱ,

𝔼 [𝜏 |𝛸0 = 𝑥] = 0 if 𝑣 ∈ 𝒱ℱ.
(6.26)

We would then like to determine the function𝛨 ∶ 𝒳 ↦ ℝ+ equal to 0 onℱ and solution on
𝒳 ∖ ℱ of :

⟨ d
d𝑡 𝜓𝑣(𝑧, 𝑡) ; ∇𝑧𝛨((𝑧, 𝑣))⟩ + 𝜆(𝑥) [∫𝒳

𝛨(𝑥′)𝑞(𝑥′ ∣ 𝑥) 𝜈𝑥(d𝑥
′) − 𝛨(𝑥)] = −1. (6.27)

Solving this problem explicitly is of course out of reach. Rather than obtaining an approximate
solution for the exact process, we prefer to determine the exact solution for an approximated
process.

Simplified random walk

We consider a Markovian and time-homogeneous randomwalk (𝑌𝑡)𝑡 on 𝒱. The randomwalk
can be chosen to be discrete-time, but we prefer the flexibility offered by continuous time5. We
denote by𝛢 ∈ ℝ𝑑𝒱×𝑑𝒱 its infinitesimal generator. It is then a PDMPwhose flow is zero (thus
no jumps at the boundaries) and whose jump intensity and jump kernel depend only on the
regime. The intensity in regime 𝑣 is given by −𝛢𝑣,𝑣 and the jump kernel between a vertex 𝑣 and 𝑣′

is −𝛢𝑣,𝑣′/𝛢𝑣,𝑣. We call (𝑌𝑡)𝑡 the Simplified RandomWalk (SRW).
Ideally, we would like to choose a SRWwhose behavior is close to that of (𝑉𝑡)𝑡. In practice, a
simple (uniform) randomwalk with the right support already offers excellent performance on
our test case. By “right support”, we mean a support that respects that of (𝑉𝑡)𝑡 in the following
sense : for all 𝑣, 𝑣′ ∈ 𝒱,𝛢𝑣,𝑣′ is non-zero if and only if there exist 𝑧, 𝑧

′ ∈ 𝒵 such that 𝜆((𝑧, 𝑣)) and
𝑞((𝑧′, 𝑣′) ∣ (𝑧, 𝑣)) are non-zero. It is possible to do better, but the quality of a time-homogeneous
random walk depends heavily on the problem at hand.

Proximity scores

For any 𝑣 ∈ 𝒱, let𝛨𝑣,𝒱ℱ be the mean hitting time of the critical region 𝒱ℱ starting from the regime
𝑣 for the SRW (𝑌𝑡)𝑡. We can apply theorem 11 to explicitly determine the vector (𝛨𝑣,𝒱ℱ)𝑣∈𝒱 by
solving a linear system. We define a new proximity score based on mean hitting times.

5The sojourn time in a given regime can be more impactful than the number of jumps required to reach the
target region.
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definition 35 ⋅ MHT-based proximity score

For any time-homogeneousMarkovian randomwalk (𝑌𝑡)𝑡 on 𝒱, let (𝛨𝑣,𝒱ℱ)𝑣∈𝒱 be the
vector of mean hitting times of 𝒱ℱ for (𝑌𝑡)𝑡:

𝛨𝑣,𝒱ℱ = 𝔼(𝑌𝑡)𝑡∼𝛢 [inf{𝑡 ∈ ℝ+ ∶ 𝑌𝑡 ∈ 𝒱ℱ} | 𝑌0 = 𝑣] . (6.28)

The proximity score associated with the simplified random walk (𝑌𝑡)𝑡 on 𝒱 is given by:

𝛽mht ∶ 𝑣 ∈ 𝒱 ⟼ 1 −
𝛨𝑣,𝒱ℱ

max
𝑣′∈𝒱

𝛨𝑣′,𝒱ℱ
. (6.29)

We indeed have 𝛽mht(𝑣) ∈ [0, 1] for any 𝑣 ∈ 𝒱 and more specifically:

(i) 𝛽mht(𝑣) = 0 if and only if 𝑣 belongs to the set of vertices from which the SRW (𝑌𝑡)𝑡
takes the longest time to reach 𝒱ℱ (i.e., the regimes furthest from 𝒱ℱ in the sense we have
defined).

(ii) 𝛽MHT(𝑣) = 1 if and only if 𝑣 ∈ 𝒱ℱ.

The degree of expressiveness of this score is directly given by that of the mean hitting times
(𝛨𝑣,𝒱ℱ)𝑣∈𝒱. It can potentially assign a distinct value to each vertex, even on large graphs. In this
respect, it is much more refined than the score 𝛽mps for industrial systems6. Suppose that the
failure of an additional component brings us from a vertex 𝑣 to a vertex 𝑣′, but this component
did not belong to any intact MPS. We would then have 𝛽mps(𝑣) = 𝛽mps(𝑣′). However, the
neighbors of 𝑣′ correspond to regimes with a number of damagedMPS greater than or equal to
that of the neighbors of 𝑣. This is because this additional failure likely increases the number of
broken components in at least oneMPS, thereby lenghtening its total repair time. We would
then like to consider 𝑣′ as slightly closer to 𝒱ℱ than 𝑣. It is an other strength of the proximity
score 𝛽MHT. It does not require us to think about howmuch importance to give to this type of
phenomenon. If the difference in situation is perceptible for the SRW, then it will be taken into
account.

6.3 Numerical experiments

We now turn to the implementation of this method. First, we will focus on the computation
of these mean hitting times in practice. Then, we will present the application of our adaptive
importance sampling method with the proximity score 𝛽MHT.

6It is also more refined than what would be obtained by a generalization of 𝛽mps on arbitrary graphs, as
suggested at the end of section 6.1.2.
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6.3.1 Computation of mean hitting times

The explicit derivation of the mean hitting times has a numerical cost depending on the size of
the graph. The development of efficient algorithms for computing hitting/commute times in
large graphs has been a very active field for about thirty years (in fact, since the advent of the
internet).

Hitting and commute times computation for large graphs

The current literature is mainly interested in the case of very large graphs (with millions or even
billions of vertices). It is then rarely possible to estimate the entire matrix𝛨 (i.e., the MHT
between all pairs of vertices). The goal is to quickly estimate, upon request, the MHT (and
more frequently the commute time or effective resistance) between two given vertices 𝑣 and 𝑣′

[Pen+21] (or between a vertex 𝑣 and a given group 𝛣 ⊂ 𝒱 [Guo+24]). An exploratoryMonte
Carlo approach is then favored, exploiting the centrality of particular vertices [Lia+23] or
combining exploration with a clever rewriting of the linear system [YT23; LL20]. Monte Carlo
approaches are relevant for individual queries but become very expensive when the MHTmust
be estimated for several possible starting vertices. The rewriting of the linear system, on the other
hand, often relies on the assumption of a uniform randomwalk which comes with exploitable
properties (for example, its invariant measure is known explicitly).
In our case, we want to be able to efficiently estimate𝛨𝑣,𝑣′ for any starting vertex 𝑣 (or rather
𝛨𝑣,𝒱ℱ for any 𝑣). This remains much less expensive than estimating𝛨𝑣,𝑣′ for any destination vertex
𝑣′. The second problem involves solving a system eq. (6.9) (or eq. (6.21)) for each destination ver-
tex 𝑣′. Several options exist in this case, such as truncating the MHTs [SM12], using distributed
algorithms [Can+19], or cleverly determining an approximation of the pseudo-inverse of the
graph Laplacian [Bol21; AG17].
The relevance of MHTs has recently been questioned by the article [VRH10]. It notes that
theMHTs of a uniform randomwalk become very uninformative when the size of the graph
explodes because they then depend only on the degree of the destination vertex. This is not a
problem in our case. On the one hand, the size of the graphs we consider is probably still far
from this asymptotic situation, on the other hand, we can often propose better than a uniform
random walk. Moreover, the result is only valid for certain families of random graphs.
Finally, let us mention the article [KTD19] which is interested in the calculation of MHTs
not for a given randomwalk but for a family of possible walks with the formalism of imprecise
probabilities.

Sparse methods for linear systems

The vector of mean hitting times of 𝒱ℱ is solution of a known linear system given in eq. (6.9)
if the simplified randomwalk is time-continuous, or in eq. (6.21) if the SRW is time-discrete.
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Since𝛨𝑣,𝒱ℱ = 0 (resp. 𝛨𝑣,𝒱ℱ = 0) in the case 𝑣 ∈ 𝒱ℱ, the size of the system to be solved is actually
given by 𝑑𝒱∖𝒱ℱ , the cardinal of the set {𝒱 ∖ 𝒱ℱ}. We note 𝟏 the vector of length 𝑑𝒱∖𝒱ℱ whose
coordinates are all 1 and Id the identity matrix of size 𝑑𝒱∖𝒱ℱ × 𝑑𝒱∖𝒱ℱ . One just needs to solve:

𝛢′𝛨′
⋅,𝒱ℱ = −𝟏, (6.30)

in the time-continuous case with𝛢′ = (𝛢𝑣,𝑣′)𝑣,𝑣′∈𝒱∖𝒱ℱ
and𝛨′

⋅,𝒱ℱ = (𝛨𝑣,𝒱ℱ)𝑣∈𝒱∖𝒱ℱ
, and:

(𝛢
′
− Id)𝛨

′
⋅,𝒱ℱ = −𝟏, (6.31)

in the time-discrete case with𝛢
′
= (𝛢𝑣,𝑣′)𝑣,𝑣′∈𝒱∖𝒱ℱ

and𝛨
′
⋅,𝒱ℱ = (ℎ𝑣)𝑣∈𝒱∖𝒱ℱ

. A very naive approach

to solving this system numerically involves inverting𝛢′ (resp. 𝛢
′
− Id). The cost of this resolution

is in𝛰(𝑑3𝒱∖𝒱ℱ), which remains a problem for large graphs.
The graph is large if there is a large number of possible regimes for the modeled process. How-
ever, the number of possible transitions from a given regime then generally represents only a
small fraction of the existing regimes. In other words, it is often relevant to choose an SRW
whose generator is sparse. If most of the coefficients of𝛢′ (or𝛢

′
) are zero, then there are many

sparse methods for storing the matrix, performing matrix/vector products, and especially solving
linear systems involving𝛢′ that are memory-efficient and computationally efficient. These
methods were primarily developed for solving PDEs but are now common. Interested readers
are referred to this reference book [Saa03] and a history of these methods by the same author
[Saa20].
We recommend the use of a GMRES method [SS86; Zou23]. It does not require strong assump-
tions about𝛢′ (such as symmetry), and has given good results in practice. It is now a well
established method and therefore efficiently implemented in many numerical toolboxes. More-
over, any subtleties in its implementation (restart, preconditioning, etc.) are extensively covered
in the literature [GLJ19].

6.3.2 Application on the spent fuel pool

The adaptive importance sampling (AIS) method presented in chapter 4 is now tested with
the proximity score 𝛽mht. It is once again applied to the test case of the spent fuel pool (SFP
example 10), under the same conditions as in section 5.3.2. We compare its performance to a
classical Monte Carlo method (CMC) and to our AIS method with the proximity score 𝛽mps.

Size of the linear system

The set of regimes 𝒱 for the SFP system is given by the status of its 15 components (active,
inactive, failed). Therefore, there are 315 = 14 348 907 possible regimes. A naively-encoded
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CTMC on this set would have a generator matrix with approximately 2 × 1014 coefficients. Since
the membership of a regime 𝑣 to 𝒱ℱ only depends on which components are broken, we can
restrict oursleves to a subset of size 215 = 32 768. Within this subset, 27 854 regimes belong
to 𝒱ℱ. The linear system to be solved to determine the mean hitting times is therefore of size
4914. Such a reduction can be explained by combinatorial reasons. Among the 32 768 possible
configurations, most correspond to regimes with a large number of broken components and
therefore often a cut set. For example, 85% of the 32 768 configurations have at least 6 broken
components out of 15 (i.e. more than 40% of the SFP system).
Then comes the sparsity of the system. The possible transitions for the SRW correspond to the
additional failure or repair of a component. Therefore, there are 𝑑𝐜 = 15 possible transitions
at each moment and thus at most 15 non-zero values per row in the final matrix. All of this
combined allows us to store a matrix in sparse format with only 53 030 non-zero coefficients.

Quasi-uniform random walk

We propose a simplified randomwalk (𝑌𝑡)𝑡 simple enough to illustrate the effectiveness of
the method without complex hyperparameter tuning. The SRW is time-continuous. Two
regimes are neighbors on the graph if and only if one of them has precisely one more broken
component than the other. This preserves the support of the true random walk (𝑉𝑡)𝑡. We assign
all components a constant failure rate 𝜆 and a constant repair rate 𝜇. The SRW (𝑌𝑡)𝑡 therefore has
an infinitesimal generator given by the matrix𝛢 defined for any 𝑣, 𝑣′ ∈ 𝒱 by:

𝛢𝑣,𝑣′ = 𝜆𝟙𝑏(𝑣′)=𝑏(𝑣)+1 + 𝜇𝟙𝑏(𝑣′)=𝑏(𝑣)−1 − (𝜆(𝑑𝐜 − 𝑏(𝑣)) + 𝜇𝑏(𝑣)) 𝟙𝑣=𝑣′ , (6.32)

with 𝑏(𝑣) the number of broken components in the regime 𝑣. We have chosen the failure rate
𝜆 = 1 and the repair rate 𝜇 = 20. This walk remains very simple because it is uniform among
failures and uniform among repairs. The essential aspect is that failures occur less and less
frequently as the number of broken components increases.
The input information is deliberately limited. On the one hand, this allows us, as mentioned
earlier, to observe the method’s performance in a suboptimal situation. On the other hand,
since we are not looking at mean hitting times as output, it is not certain that the SRW (𝑌𝑡)𝑡
that is “the closest” to (𝑉𝑡)𝑡 is the most effective for estimating ℐ. Moreover, a generator𝛢with
very heterogeneous values is more likely to be ill-conditioned and to complicate the numerical
resolution of the system eq. (6.9).

Numerical results

We carry out two series of numerical simulations on the spent fuel pool system.

(i) We first compare the performance of the AIS method based on the proximity score 𝛽mht
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table 6.1 Results on the standard SFP case (with jump rates from table 5.5).

Method 𝛮𝐿 ℐ̂𝛮𝐿 C.o.v
�̂�𝛮𝐿
ℐ̂𝛮𝐿

95% confidence interval

105 2 × 10−5 223.60 [0 ; 4.77 × 10−5]

CMC 106 1.3 × 10−5 277.35 [5.93 × 10−6 ; 2.01 × 10−5]

107 1.77 × 10−5 237.68 [1.51 × 10−5 ; 2.03 × 10−5]

AIS with 𝜉mps
𝜽

103 2.19 × 10−5 3.01 [1.78 × 10−5 ; 2.60 × 10−5]

104 1.99 × 10−5 1.01 [1.96 × 10−5 ; 2.03 × 10−5]

AIS with 𝜉mht
𝜽

103 1.86 × 10−5 1.62 [1.67 × 10−5 ; 2.04 × 10−5]

104 2.01 × 10−5 0.88 [1.98 × 10−5 ; 2.05 × 10−5]

to the results obtained with the CMCmethod and the AIS method based on 𝛽mps in
chapter 5 for the standard case with jump rates described in table 5.5. The results are
described in table 6.1 and a probability of system failure about 10−5. The sample size
of the AIS method is ranging from 103 to 104. The sample size of the CMCmethod is
ranging from 105 to 107.

(ii) We then check the stability of the AIS method based on 𝜉mht
𝜽 . We represent in fig. 6.2

15 confidence intervals at 95% level obtained with the AIS-MHTmethod with a sample
size of 103 trajectories still on the standard case (table 5.5) and we compare them to the
confidence interval obtained with the CMCmethod and a sample size of 107.

The AIS method is initialized with the procedure proposed in section 4.3.3. We choose the
smallest 𝜽 (in norm) such that the probability that at least one component failure occurs before
the end of the simulation is larger than 1/3. We set 𝑑𝜽 = 8. At each iteration, we generate
trajectories until we have 𝑛CE = 10 failures before updating 𝜽 for𝛮𝐿 = 103 and 𝑛CE = 50 for
𝛮𝐿 = 104. We stop when the total budget𝛮𝐿 is reached. The estimated probability ℐ̂𝛮𝐿 is given
by eq. (4.30). The estimated coefficient of variation (C.o.v) is the ratio between the estimated
asymptotic standard deviation �̂�𝛮𝐿 (square root of the variance estimator given in eq. (4.50))
and the estimated probability ℐ̂𝛮𝐿 . The confidence interval formula is given by theorem 9. For
the CMCmethod, we simply generate𝛮𝐿 trajectories and we count the proportion of faulty
trajectories.
We observe in table 6.1 that the method’s performance with the IF 𝜉mht

𝜽 is very similar, if not
better, than that obtained with the IF 𝜉mps

𝜽 . Indeed, for the same sample size, the coefficient
of variation (C.o.v) and the length of the confidence intervals are slightly smaller for 𝜉mht

𝜽 .
The analysis of the results is therefore similar to that proposed in section 5.3.2. The variance
reduction compared to the CMCmethod is of the order of 104. We also observe in fig. 6.2 that
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figure 6.2 Comparison of 15 confidence intervals at 95% level obtained with AIS-MHT
method approximation. Each confidence interval corresponds to a run of the
AIS-MHTmethod on the standard case of the SFP (table 5.5) with 103 trajectories
(same conditions as for table 5.7). They are compared to the confidence interval
obtained with the CMCmethod on 107 trajectories.

the method is just as empirically robust with 𝜉mht
𝜽 as with 𝜉mps

𝜽 (see fig. 5.6). The confidence
intervals are indeed all of similar relative length for a sample size of 103 and comparable to that of
the CMCmethod for a sample size of 107.
We conclude that the IF 𝜉mht

𝜽 , which is much more general than 𝜉mps
𝜽 , performs at least as

well in the specific case of coherent industrial systems for which 𝜉mps
𝜽 is designed. However,

the calculation of the mean hitting times before executing the AIS method seems to us more
expensive for very large industrial systems than the determination of theMPSs (and rarely
benefits from directly dedicated methods mastered by reliability engineers).
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chapter 7

Conclusion and perspectives

Disclaimer

In accordance with the regulations of the doctoral school, the introduction was written
in French. This conclusion is written in English but a French translation is proposed in
appendix (right after the English translation of the introduction).

Content of this chapter

7.1 Conclusion 154
7.1.1 Summary of contributions 154

7.1.2 Discussion 157

7.2 Perspectives 158
7.2.1 Refinements to the AISMethod 158

7.2.2 Bandits: Best Arm Identification 161

153



conclusion

7.1 Conclusion

The topic of this thesis was motivated by industrial reliability issues faced by the company EDF
(Électricité de France). We specifically focused on estimating the failure probability of industrial
systems involved in the operation of nuclear power plants and dams.

Problem reminder

The industrial systems we are concerned with can be represented as piecewise deterministic
Markov processes (PDMPs). Mathematically, this estimation problem is expressed as:

ℐ = 𝔼𝚾∼p[𝚰(𝚾)], (7.1)

with𝚾 a PDMP trajectory, p its reference distribution, and 𝚰 is the indicator function for the
event of interest: the trajectory leads to failure. Since PDMP trajectories are costly to simulate
and the failure probability we are looking for is typically very small, we cannot rely on a Classical
Monte Carlo method.

It is known that the optimal distribution for importance sampling of PDMPs is fully charac-
terized by the committor function of the process. This committor function associates to each
moment 𝑡 of a PDMP trajectory the probability that the trajectory will lead to the event of in-
terest, given its state at time 𝑡. We hypothesized that it is possible to approximate the committor
function at a reasonable cost, and that an importance distribution constructed from a good
approximation of the committor function would produce a low-variance estimator.

7.1.1 Summary of contributions

All the contributions of this thesis are related to the problem we just described. They can
be grouped into a single global estimation methodology based on the approximation of the
committor function. This methodology consists of two phases. In the first “offline” phase, i.e.,
before any simulation, a family of approximations of the committor function is constructed.
Each approximation corresponds to a possible importance distribution. In the second “online”
phase, the best importance distribution is sequentially determined within the family defined
in the previous phase. The simulations generated during this second phase allow both refining
the approximation of the committor function and contributing to the final estimation of the
quantity of interest.
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Approximation a priori de la fonction committor

We first introduced in chapter 4 the general form of a parametric family of approximations for
the committor function:

𝜉𝜽(𝑥) = exp[
𝑑Θ
∑
𝑗=1

𝜃𝑗 × 𝜙𝑗(𝛽(𝑣))]. (7.2)

with,

(i) a parameter vector 𝜽 ∈ Θ ⊂ ℝ𝑑Θ with dimension 𝑑Θ > 0,

(ii) a proximity score 𝛽 ∶ 𝒱 ↦ [0, 1], where 𝒱 is the set of regimes of the PDMP,

(iii) a family of basis functions (𝜙𝑗)
𝑑Θ

𝑗=1
with 𝜙𝑗 ∶ [0, 1] ↦ ℝ for any 𝑗 ∈ ⟦1, 𝑑Θ⟧.

An implicit contribution of this thesis is to clearly distinguish:

⋄ the prior information provided to the model, here represented by the proximity score 𝛽,

⋄ from the information learned during the simulations, represented by the successive
values of the parameter 𝜽, used to guide the importance distribution.

We proposed two families of proximity scores that can be determined a priori, without sim-
ulations, and at a reasonable cost using suitable algorithms. In chapter 5, we constructed a
proximity score valid for coherent multi-component industrial systems, based on the proportion
of minimal paths damaged in a given regime. These minimal paths exploit the system’s structure
function and correspond to the barriers the process must necessarily cross to reach failure. In
chapter 6, we introduced a more general score, not making any assumptions about what the
PDMPmodels, and based on the mean hitting times of a random walk on a graph represented by
the PDMP regimes. This score can be explicitly computed for a homogeneous Markov random
walk on this graph. It is therefore conditioned on the choice of the homogeneous walk approx-
imating the actual walk performed by the PDMP, but a very simple walk, such as a uniform
random walk, proved sufficient in practice.

Adaptative strategy

We proposed an adaptive preferential sampling methodology (AIS) based on a cross-entropy
(CE) procedure. The drawback of classical sequential methods is that they use only part of
the simulations generated for optimization steps and the final estimation step. The advantage
of importance sampling lies in its ability to recycle all past samples at any time by adjusting
the likelihood ratio. This significantly increases the precision of the method for the same
computational budget.
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Convergence results for simple recycling schemes exist in the literature, but their assumptions
are often difficult to interpret and verify in practice. For PDMPs, we proposed interpretable
and minimally restrictive assumptions for practitioners. Our theorem guarantees convergence
and asymptotic normality, enabling the construction of asymptotic confidence intervals for the
quantity of interest.

Dissemination of the work

The contributions of this thesis have resulted in two research articles, with the three contribution
chapters reorganized accordingly.

⋄ The first article, [Che+24a], corresponds to an earlier version of the methodology
described in chapter 4, and introduces proximity scores tailored to the modeling of
industrial systems, detailed in chapter 5. This work was published in 2024 in the SIAM
Journal of Uncertainty Quantification.

Guillaume Chennetier, Hassane Chraibi, Anne Dutfoy, and Josselin Garnier. “Adaptive
importance sampling based on fault tree analysis for piecewise deterministic Markov
process”. In: SIAM/ASA Journal on Uncertainty Quantification 12.1 (2024), pp. 128–
156

⋄ The second article corresponds to enhancements proposed in the methodology of
chapter 4 relative to the first article [Che+24a], and introduces new proximity scores,
described in chapter 6, based on hitting times for a random walk on a graph. This article
is planned for submission in 2024.

Guillaume Chennetier, Hassane Chraibi, Anne Dutfoy, and Josselin Garnier. “Graph-
informed importance sampling for rare event estimation with piecewise deterministic
Markov process”. In: (Submission in 2024)

The results obtained throughout the thesis were also presented at various national and interna-
tional conferences. Selected examples:

⋄ uncecomp (Conference on Uncertainty Quantification in Computational Science
and Engineering), 2023 edition,

⋄ mcm (Monte Carlo Methods and applications), 2023 edition,

⋄ siam uq (Conference on Uncertainty Quantification), 2024 edition,

⋄ jds (Journées de Statistique), 2022, 2023, 2024 editions.

Two awards were also granted for my work at the mascot-num meetings, 2022 and 2024
editions, organized by the thematic group RT-UQ:
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⋄ mascot-num 2022 edition: prize of best PhD Student poster.

⋄ mascot-num 2024 edition: prize of best PhD Student talk.

7.1.2 Discussion

It is very clear that the nature of the integral we aim to estimate lends itself exclusively to
probabilistic simulation. The highly specific geometry of the PDMP trajectory space makes it
challenging to explore through other means. However, importance sampling is a risky approach
for multimodal distributions in high dimensions. This thesis has, at least partially, justified the
use of this method for this problem.

Relevance of the approach

One criticism of importance sampling is its intrusive nature. This is not an issue here since
the practitioner fully controls all the simulation parameters of the model. We chose to build
upon the methodology introduced in Thomas Galtier’s thesis [Gal19]. It was not immediately
obvious:

⋄ that expressing the family of importance distributions solely in terms of an approxima-
tion of the committor function would offer the necessary flexibility,

⋄ or that the minimizer of the Kullback-Leibler divergence, within a fairly constrained
family, would yield a low-variance estimator.

This gamble proved effective in practice. The current literature on importance sampling
heavily relies on modern learning methods to infer the optimal importance distribution during
simulations in high-dimensional and multimodal contexts. These methods are well-suited
for learning very complex functions with a high simulation budget. In our case, the target
distribution is not particularly complex, as it is simply the product of a known distribution and
an indicator function. However, the budget is limited to fewer than 104 simulations, which
precludes optimizing the importance distribution iteratively in a non-parametric framework (or
one with a very large number of parameters).
The key idea is as follows: a lightly parameterized family of distributions is sufficiently flexible,
provided it is given the right input information. We demonstrated that, in practice, very few
assumptions about the PDMP are necessary to provide this prior information.

Limitations

Not all questions are resolved at the end of this thesis. Firstly, the weights in an importance
sampling method can always explode, and it is very challenging to assess the quality of an
importance sampling estimate without comparing it to a brute-force Monte Carlo method.
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conclusion

Evaluation metrics based on variance or effective sample size are themselves poorly estimated
when the method fails.
Our method is designed for cases where the cost of simulating a PDMP trajectory represents the
sole significant expense of the procedure (due to the resolution of differential equations involved
in the flow). It remains to be determined how high this cost needs to be (relative to the cost of
constructing the family of committor function approximations and optimizing across iterations)
for the method to remain competitive.
Conversely, if the physics play a major role in the system’s dynamics, simulations will be expen-
sive, but approximating the committor function using only the regime and not the position
becomes less defensible. However, incorporating the position would make density evaluation
and all optimization phases much more costly, as the flow would need to be recalculated multiple
times for the same trajectory.

7.2 Perspectives

Numerous opportunities naturally arise for extending this thesis, either by refining the proposed
methods or broadening the range of applications. We can list a few examples:

⋄ Applying our method to new test cases outside of industrial reliability. Since the
proximity score 𝛽mht makes no assumptions about the nature of what the PDMP
models, new applications—such as population dynamics or transportation network
modeling—are entirely possible.

⋄ Comparing the performance of our importance sampling method to splitting methods.
Additionally, it would be worth investigating whether the importance functions 𝜉𝜽 we
proposed are also effective for these methods.

⋄ Developing the theoretical framework for importance sampling to “General stochastic
hybrid systems” (GSHS) [BL06]. These stochastic processes generalize PDMPs: the
process’s evolution between jumps is governed by stochastic differential equations
instead of ordinary ones. A similar problem to ours for GSHS was addressed using an
interacting particle system in [MB23].

Two additional key directions are detailed below.

7.2.1 Refinements to the AIS Method

The adaptive importance sampling (AIS) method proposed in chapter 4 is relatively simple. It
combines a cross-entropy minimization procedure with a sample-recycling scheme, both in
their most basic forms. This simplicity allowed us to guarantee the convergence and asymptotic
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normality of our algorithm under practical and verifiable conditions. Many refinements to these
methods exist in the literature but complicate the convergence proofs.
One major difficulty with the cross-entropy procedure is determining a good initial importance
distribution:

⋄ If the initial distribution is too close to the reference distribution p, a large number of
trajectories must be generated for some to realize the event of interest. The first iteration
of the algorithm is thus costly.

⋄ If the initial distribution is too far from p, it becomes difficult to control the likelihood
ratio explosion risk.

⋄ If the initial distribution covers only part of the target distribution’s support (due to its
strong multimodality), some regions of the trajectory space may never be observed after
several optimization steps.

To mitigate the impact of the initial distribution p, the target distribution g∗ can be varied.
The idea is to define a family (g∗𝛾)𝛾∈ℝ+

of intermediate target distributions, parameterized by 𝛾,
interpolating between the reference distribution p and the target distribution g∗. By convention,
lim
𝛾→0+

g∗𝛾 = g∗.

Multilevel Cross entropy

Many rare event problems can be expressed as threshold exceedances:

𝚰 ∶ 𝚾 ⟼ 𝟙𝛃(𝚾)>𝑠∗ , (7.3)

where 𝛃 is a performance score associated with the realization𝚾. In reliability analysis, events
are often of the form {𝛃 ≤ 0}, and 𝛃 is referred to as the “limit state function”. We discussed
in section 1.3.2 two variants of the Cross entropy method: “multilevel Cross entropy” (mCE)
and “improved Cross entropy” (iCE). The intermediate target distributions take the form
g∗𝛾 ∝ ∣𝚰𝛾∣ × pwhere 𝚰𝛾 replaces 𝚰.

⋄ The mCEmethod uses lower threshold indicators:

𝚰mCE
𝛾 ∶ 𝐱 ⟼ 𝟙𝛃(𝐱)> 𝑠∗−𝛾, (7.4)

⋄ While the iCEmethod uses the cumulative distribution functionΦ of a𝒩(0, 1)
distribution as an approximation of the indicator function:

𝚰iCE𝛾 ∶ 𝐱 ⟼ Φ(
𝛃(𝐱) − 𝑠∗

𝛾 ). (7.5)
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The update strategy for 𝛾 differs between methods. At iteration ℓ (without recycling scheme),
a sample𝚾1, … , 𝚾𝑛ℓ ∼ g𝜽(ℓ) is produced. In the mCEmethod, 𝛾mCE

ℓ+1 is chosen to ensure a
proportion 𝜌 of trajectories exceed the corresponding threshold.

𝛾mCE
ℓ+1 ∈ inf{𝛾 ∈ ℝ+ ∶

𝑛
∑
𝑘=1

𝚰mCE
𝛾 (𝚾𝑘) > 𝜌𝑛}. (7.6)

In the iCE method, 𝛾iCEℓ+1 is selected such that the coefficient of variation of [𝚰𝛾(𝚾𝑘)
p(𝚾𝑘)

g𝜽(ℓ)(𝚾𝑘)
]
𝑛ℓ

𝑘=1
is

the closest possible to a fixed target valueCVtarget.

𝛾iCEℓ+1 ∈ argmin
𝛾∈[0, 𝛾iCE𝑡 ]

(ĈV𝛾 − CVtarget)
2
. (7.7)

Trajectory Score

Let us return to our case: 𝚾 = (𝛸𝑡)𝑡∈[0, 𝜏) is a PDMP trajectory of duration 𝜏. The process takes
values in𝒳 and the trajectory lies in𝚻𝜏. We are interested in the probability that the trajectory𝚾
reaches a regionℱ ⊂ 𝒳 before a given time 𝑠max. We define:

𝜏 = inf{𝑡 ≥ 0 ∶ 𝛸𝑡 ∈ ℱ} ∧ 𝑠max . (7.8)

We denote 𝐅 = {𝐱 ∈ 𝚻𝜏 ∶ 𝜏 < 𝑠max}. Our goal is to estimate ℐ = 𝔼𝚾∼p[𝚰(𝚾)]with:

𝚰 ∶ 𝐱 ∈ 𝚻𝜏 ⟼𝟙𝐱∈𝐅 . (7.9)

To apply the mCE or iCE procedure, a relevant performance score 𝛃 for a trajectory must be
chosen. One can draw inspiration from a classic choice used in splitting methods applied to
stochastic processes ([Lou+17; CGR19]). If a scoring function 𝛽 is already defined on the state
space𝒳, the total score of a trajectory in𝚻 can be selected as the maximum value of 𝛽 along the
trajectory:

𝛃(𝚾) = sup
𝑡∈[0, 𝜏)

𝛽(𝛸𝑡) . (7.10)

Two natural choices arise: the proximity score 𝛽 already defined in this manuscript and the
importance function 𝜉𝜽 at the current iteration.

Recycling and Confidence Intervals

Applying the mCE/iCEmethod to our case is not straightforward. First, the event {𝚾 ∈ 𝐅}
cannot be fully expressed as a threshold exceedance for the score function 𝛽. However, if𝚾 ∈ 𝐅,
then sup𝑡∈[0, 𝜏) 𝛽(𝛸𝑡) = 1. Thus, it is necessary to transition from 𝚰𝛾 to 𝚰0, and then from 𝚰0 to 𝚰.
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Moreover, varying the target distribution at each iteration (when updating 𝛾) takes us outside the
conditions of theorem 8. Consequently, asymptotic confidence intervals constructed using all
past simulations are no longer accessible.
One possible solution is to divide the AIS algorithm into two phases. During a first ”burn-in”
phase, the target distribution evolves according to one of the described schemes. Once the target
distribution corresponds to g∗, all simulations generated during this phase are discarded, but the
importance distribution from the last iteration is retained. In the second phase, the AIS method
continues with recycling but without varying the target distribution or using simulations from
the first phase.
Other refinements to the AIS method, such as adaptive multiple importance sampling (AMIS
[MPS19]), can be implemented during phase one without disrupting the convergence and
asymptotic normality of the estimator produced in phase two.

7.2.2 Bandits: Best Arm Identification

The initial problem was estimating the failure probability of an industrial system for a given
distribution, represented by the failure and repair rates of its components. One expected use
of our method is determining, among several configurations (i.e., among multiple reference
distributions p1, … , p𝛫), which is the most reliable:

(QoI) argmin
𝑖∈⟦1,𝛫⟧

𝔼𝚾∼p𝑖[𝚰(𝚾)] . (7.11)

A naive approach would independently apply the AIS method𝛫 times (once for each expecta-
tion) and compare the𝛫 resulting estimators. If the distributions (p1, … , p𝛫) share a common
support, the same sample can be used to estimate each expectation by simply adjusting the
likelihood ratio. For any i.i.d. sample𝚾1, … , 𝚾𝑛 from the distribution g, and for any 𝑖 ∈ ⟦1,𝛫⟧,
we have (under appropriate support conditions):

ℐ̂𝑖 =
1
𝑛

𝑛
∑
𝑘=1

𝚰(𝚾𝑘)
p𝑖(𝚾𝑘)
g(𝚾𝑘)

. (7.12)

Best Arm Identification

This problem is a variant of the best arm identification (BAI) problem for multi-armed bandits
[AB10; GGL12; GK16]. In its classical formulation:

⋄ 𝛫 distributions, referred to as ”arms,” are available,

⋄ at each iteration, one arm can be chosen, generating an observation under this distribu-
tion,

161



conclusion

⋄ the goal is to identify the distribution with the highest mean.

The sequential arm selection strategy should minimize the total number of arm pulls at a fixed
confidence level (”fixed-confidence setting”) or maximize the confidence level of the final decision
under a fixed simulation budget (”fixed-budget setting”).
In our case, the objective is to find the arm with the lowest mean. Observations can be drawn
under an importance distribution of our choice, providing joint information on all𝛫 expecta-
tions per draw. If the importance distribution is fixed (non-adaptive setting), the only decision
involves stopping the method once the result is sufficiently confident. An interesting problem lies
in determining the confidence level of the decision for a given sample size 𝑛.

With Adaptive Importance Sampling

To achieve optimal performance, it is expected that the importance distribution will need
to be updated as simulations proceed. While the choice of the target distribution g∗ is clear
for estimating the mean of a single arm, it becomes less straightforward when estimating the
expectation of a vector:

𝔼𝚾∼g[
𝚰(𝚾)
g(𝚾) (p𝑗(𝚾))

𝛫

𝑖=1
] . (7.13)

For the specific case of two arms, the density proportional to |𝚰| × |p1 − p2| allows the exact
estimation of the difference between the two means in two draws.
Developing an adaptive importance sampling strategy capable of identifying the minimizer of a
family of expectations while providing the confidence level associated with this decision remains,
to our knowledge, an open problem.
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English summary

Disclaimer

This is the English translation of the French summary of the foreword part.

Abstract

The purpose of this thesis is to provide newmethods for estimating rare event probabilities
based on the simulation of Piecewise Deterministic Markov Processes (PDMPs). This very
general class of stochastic processes offers the flexibility needed to accurately represent complex
dynamic industrial systems. In particular, it allow for the joint modeling of the deterministic
and continuous dynamics of the physical variables of the system (temperature, pressure, liquild
levels, etc.), and the random jump dynamics that govern the change in status of its components
(failures, repairs, control mechanisms, etc.).
The industrial challenge is to enable the tool PyCATSHOO, used by the company Électricité de
France for its probabilistic safety assessment studies, to efficiently estimate the failure probability
of such systems with guaranteed accuracy. A classical Monte Carlo approach requires, for a fixed
level of accuracy, a number of simulations inversely proportional to the probability sought. It is
therefore not suitable for highly reliable systems with high simulation costs. Importance sampling
is a popular variance reduction method in the rare event context. It consists of generating
simulations under a biased distribution that favors the occurrence of the event, and correcting
the bias a posteriori. Recent work has proposed a theoretical framework for implementing
importance sampling of PDMPs, and has highlighted the connection between the optimal biased
distribution and the so-called committor function of the process.
Using tools from reliability analysis and the theory of randomwalks on graphs, new families
of approximations of the committor function are introduced in this thesis. The proposed
methodology is adaptive: an approximation of the committor function is constructed a priori
and then refined during the simulations of a cross-entropy procedure. The simulations are then
recycled to produce an importance sampling estimator of the target probability. Convergence
results have been obtained, making it possible to overcome the dependence between simulations
and construct asymptotic confidence intervals. This method produces excellent results in practice
on the tested industrial systems.
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“Les EPS sont une méthode d’évaluation des risques fondée sur une investiga-
tion systématique des scénarios accidentels. Elles se composent d’un ensemble
d’analyses techniques permettant d’apprécier les fréquences d’événements red-
outés et leurs conséquences. Elles permettent d’obtenir une appréciation globale
du niveau de sûreté, intégrant aussi bien la fiabilité des équipements que le
comportement des opérateurs.”

That can be translated by:

“PSAs are a risk evaluation method based on a systematic investigation of
accidental scenarios. They consist of a series of technical analyses to evaluate the
frequencies of adverse events and their consequences. They provide an overall
assessment of the safety level, integrating both equipment reliability and operator
behavior.”

System safety is managed according to four aspects, commonly summarized by the acronym
RAMS (Reliability, Availability, Maintainability, Safety):

(i) Reliability: the ability of a device to perform a required function under specified
conditions and for a defined period.

(ii) Maintainability: under given usage conditions, the ability of a device to be maintained
or restored to a state in which it can perform its required function, using prescribed
maintenance methods.

(iii) Availability: the ability of a system to be operational and perform its function under
given conditions at a specific time.

(iv) Safety: the ability of a system to avoid causing critical or catastrophic events under given
conditions and for a defined duration.

This thesis focuses on the reliability of multi-component industrial systems involved in the
operation of hydropower and nuclear plants. In reliability analysis, a multi-component system
refers to a complex system composed of multiple interconnected elements or subsystems, called
components. Each component can be an equipment piece, a machine, an electronic device,
etc. It contributes in some way—often interactively with other components—to the system’s
overall function. These interactions may involve flows of matter, energy, information, or control
between components. For instance, one component may receive inputs from another and
produce outputs that are used by other components.
A component can operate in different modes, such as active, inactive, degraded, or failed. These
modes are referred to as the component’s status. Status changes can occur automatically via
control mechanisms or as a result of random events like failures or repairs.
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Modeling PDMPs with the PyCATSHOO tool

The reliability of an industrial system refers to its ability to perform its overall function over a
given period under specified conditions. A critical failure is declared when this function can
no longer be fulfilled. This typically occurs when the system’s continuous physical variables
(e.g., temperature, pressure, or liquid level in a tank) exceed critical thresholds. If the system is
well-designed, such scenarios can only arise if the system remains in a severely degraded state for
an extended period—this means after the failure of essential groups of components and before
their repair. In the nuclear and hydropower industries, such systems generally exhibit very high
reliability. This is explained by two factors:

(i) High redundancy: the system can be reconfigured using multiple identical compo-
nents to maintain functionality while awaiting the repair or replacement of defective
components.

(ii) Dyssimetric frequencies: the mean time to failure or incident is usually significantly longer
than the mean time to repair.

As a result, critical failures are extremely rare. Their probabilities cannot be practically estimated
using real-world data, but these systems lend themselves well to computer simulations. A
dynamic representation of the systemmust model both the trajectories of the continuous
physical variables being monitored and the status of each component over time. This is the role
of a computational tool developed by EDF called PyCATSHOO [CHS16; Des+21].

figure 1 Logo of the PyCATSHOO tool. For
more information, visit: http:
//www.pycatshoo.org/.

A key feature of PyCATSHOO is its ability to simulate dynamic industrial systems using Python
and C++ APIs, representing them as “Piecewise Deterministic Markov Processes” (PDMPs)
[Dav84; DDZ15]. PDMPs form a broad class of stochastic processes, encompassing all Markov
processes without a diffusive component. They are referred to as hybrid processes because
their state variable consists of a continuous part (called “position”) and a discrete part (called
“regime”). The position evolves deterministically, depending on the regime. At random times
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(with distributions that continuously depend on the process’s state) or at deterministic times
(when the position reaches the boundary of the state space), the process undergoes jumps to new
random positions and regimes, before resuming a new deterministic trajectory.
Failures and repairs of components are modeled as discrete random events, while the evolution of
continuous variables is governed by deterministic differential equations derived from physical
laws. Each component has reliability characteristics that may depend continuously on physical
variables (e.g., a submerged component might weaken due to excessive pressure or tempera-
ture). Conversely, the differential equations governing the evolution of physical variables are
parametrized by the components’ statuses (e.g., water may flow at different rates depending
on whether a valve is stuck open or closed). This behavior is well-suited for PDMPmodeling
and simulation. However, these simulations can be costly, primarily due to the need to solve
differential equations.

Rare event simulation

Our objective is to estimate the probability that a given industrial system experiences a critical
failure before a specified time. Mathematically, this corresponds to the probability that a PDMP
trajectory, following a given distribution, reaches a target region in its state space before a fixed
time.

The issue with the Classical Monte Carlo approach

Given the availability of a PDMP simulator (PyCATSHOO), the most natural idea is to rely on
a classical Monte Carlo estimation. The principle is straightforward: generate a large number
of potential PDMP trajectories and calculate the proportion of these trajectories that lead to
the event of interest (system failure). This estimator has, in theory, all the desirable properties:
it is unbiased, converges to the target quantity, and its convergence rate—determined by the
central limit theorem—is independent of the dimension of the space. However, it is not suitable
for estimating the probabilities of rare events. This is a well-known problem. When the target
probability is much smaller than the inverse of the number of generated simulations 𝑛, two
scenarios are likely:

(i) with high probability, no realization of the event of interest is observed, leading to an
incorrect estimate of 0,

(ii) “by chance”, 𝑘 ≥ 1 ealizations of the event of interest are observed, resulting in an
estimate of 𝑘/𝑛, which is much larger than the target probability.

In short, the estimator is always significantly off from the true value in relative terms. This is
a variance problem. It is generally accepted that the sample size needs to exceed 100 times the
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inverse of the target probability to obtain a reliable estimate (with a coefficient of variation
slightly below 0.1).
As stated earlier, the critical failure of the industrial systems of interest is a rare event, with
typical failure probabilities ranging between 10−5 et 10−7. Using PyCATSHOO to estimate these
probabilities withMonte Carlo simulations would require hundreds of millions, if not billions,
of runs. Given the complex physics of the systems involved, the simulation cost of a single
PDMP trajectory is already high. This is because each jump in the trajectory requires solving
new differential equations, often with dedicated industrial codes, to determine deterministic
trajectory segments. Estimating the system’s failure probability is, therefore, extremely costly.

Work of Thomas Galtier

Alternative methods to Classical Monte Carlo, specifically tailored for estimating rare events
probabilities, exist and constitute a rich and dynamic field in applied mathematics ([Buc04;
RT+09]). In his PhD thesis, defended in 2019 ([Gal19]), Thomas Galtier studied the application
of two major families of methods to PDMPs: importance sampling methods [Chr+19] and
then splitting methods based on interacting particle systems [Chr+21]. This thesis builds
upon Thomas Galtier’s work within the same research team. Remarkable results have been
achieved using importance sampling methods on small industrial systems. The principle involves
simulating a PDMP trajectory, not under its true distribution, but under a biased distribution
that increases the likelihood of the event of interest (system failure), and then correcting the bias
using the appropriate likelihood ratio. Thomas Galtier and his co-authors defined:

⋄ the dominant measure, under which the probability density of a fixed-duration PDMP
trajectory can be explicitly formulated—essential for evaluating the likelihood ratios
involved in importance sampling,

⋄ the optimal importance distribution for PDMPs, enabling the construction of a zero-
variance estimator for the target quantity.

The optimal importance distribution process is a piecewise deterministic process (PDP) that can
be renderedMarkovian. It evolves within the same state space and follows the same deterministic
trajectories as the original PDMP. The distribution of its jump times and destinations is fully
characterized by the so-called “committor function” of the process. The committor function
returns the probability that a PDMP trajectory will realize the event of interest before a fixed
time, given its current state.
Since this function is obviously unknown in practice, it must be approximated. As previously
mentioned, Thomas Galtier and his co-authors proposed an approximation method that
delivered promising results for small industrial systems ([Chr+19]) but was much less effective
for complex and/or large-scale systems.
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The goal of this thesis is to propose a more comprehensive and systematic methodology for
approximating the committor function of PDMPs that model complex phenomena. This
involves understanding, either a priori or through simulations, the mechanisms and pathways
that lead a PDMP trajectory to realize the event of interest.

Structure of the manuscript

The body of this manuscript, apart from this introduction and the preceding sections, is divided
into three parts, each consisting of several chapters. Their content is briefly described below.

State of the art

The purpose of this section is to introduce the concepts necessary to formulate the problem
addressed in this thesis and to describe the existing methods on which our work is based. For
coherence and conciseness, this state-of-the-art does not aim to cover all the notions used to solve
the problem. These will be introduced as needed in the chapters of section 3.3.2 dedicated to the
contributions.

Prerequisites

This state-of-the-art aims to be accessible to beginner mathematicians. However, the reader is
expected to be familiar with the following concepts:

⋄ Measure theory basics: sigma-algebras, measures, sigma-finite measures, Borel sets,
integration with respect to a measure, Radon-Nikodym derivatives, and densities relative
to a measure. These concepts are mainly used in chapter 3.

⋄ Elementary probability theory related to measure theory: expectation, variance, con-
ditioning, classical probability distributions, and their properties (Gaussian, uniform,
exponential).

⋄ Basic mathematical statistics: empirical mean and variance, asymptotic behavior (“law of
large numbers” and “central limit theorem”), and confidence intervals.

⋄ Discrete-time stochastic processes: martingales, Markov chains, and stopping times.

Chapter 1: Monte Carlo simulation and rare events

In probabilistic numerical simulation, a common task is the evaluation of a quantity of interest
defined as the expectation of a function under a reference distribution. Depending on the nature
and dimension of the space, it is not always possible to approximate this integral using a deter-
ministic method. One then resorts to a Monte Carlo method: the expectation is approximated
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by an empirical average of i.i.d. draws by computer. When the reference distribution puts little
mass where the function to be integrated is large (in absolute value), the relative variance of the
Monte Carlo estimator becomes large. It is then preferable to use so-called variance reduction
methods. We will focus in particular on the case of rare event simulation. The objective of this
chapter is firstly to recall the basics of random variable simulation andMonte Carlo methods.
We then describe two families of variance reduction methods adapted to rare events: importance
splitting and importance sampling methods.

Chapter 2: Piecewise deterministic Markov processes

The central mathematical object of this thesis is the PDMP (piecewise deterministic Markov pro-
cess). The aim of this chapter is to provide the reader with all the notions about PDMPs needed
to fully understand the contributions of this thesis. A PDMP is a non-diffusive continuous-time
jump stochastic process. Its specificity (which actually makes it a very general process) is its
hybrid behavior. On the one hand, it takes values on a space composed of a continuous part and
a discrete part. On the other hand, it evolves according to a deterministic dynamics between
jumps, and jumps both at random and deterministic times. This behavior is actually quite
intuitive for readers familiar with inhomogeneous Poisson processes. We first recall the basics of
these processes (which are special cases of PDMPs), before addressing the essential characteristics
of PDMPs. Finally, we propose classical approaches for simulating PDMP trajectories.

Chapter 3: Importance sampling of piecewise deterministic Markov processes

This chapter aims to present the fundamentals of importance sampling of PDMPs. This method
requires the evaluation of the likelihood of a PDMP trajectory. We first give the definition of
a dominant measure on the space of PDMP trajectories with respect to which they admit a
probability density function. We then describe the process with optimal importance distribution.
This optimal importance process is a piecewise deterministic process (not necessarily Markovian).
It preserves the state space and flow of the original PDMP. The jump dynamics of the optimal
importance process can be explicitly described. In the rare event estimation case, there is a
Markovian reformulation of this optimal process. The expression of its jump intensity and
jump kernel is then directly connected to the so-called “committor function” of the process.
This function returns the probability that a trajectory realizes the event of interest given its
current state. This committor function is not known but can be approximated. At the end of the
chapter, we present an implementation of importance sampling based on a simple approximation
of the committor function.
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Contributions

The three chapters presenting the contributions are a reorganization of two articles written
during the thesis:

⋄ The first article, [Che+24a], corresponds to an earlier version of the methodology
described in chapter 4, and introduces proximity scores tailored to the modeling of
industrial systems, detailed in chapter 5. This work was published in 2024 in the SIAM
Journal of Uncertainty Quantification.

Guillaume Chennetier, Hassane Chraibi, Anne Dutfoy, and Josselin Garnier. “Adaptive
importance sampling based on fault tree analysis for piecewise deterministic Markov
process”. In: SIAM/ASA Journal on Uncertainty Quantification 12.1 (2024), pp. 128–
156

⋄ The second article corresponds to enhancements proposed in the methodology of
chapter 4 relative to the first article [Che+24a], and introduces new proximity scores,
described in chapter 6, based on hitting times for a random walk on a graph. This article
is planned for submission in 2024.

Guillaume Chennetier, Hassane Chraibi, Anne Dutfoy, and Josselin Garnier. “Graph-
informed importance sampling for rare event estimation with piecewise deterministic
Markov process”. In: (Submission in 2024)

Chapter 4: Adaptive importance sampling strategy

The optimality conditions of an importance distribution for importance sampling of PDMPs
were recalled in chapter 3. We are interested in the case of rare event simulation realized by
PDMPs. The optimal importance distribution is then characterized by an optimal jump inten-
sity and optimal jump kernel, which are given by the committor function of the process. This
committor function associates to each possible state of a PDMP trajectory the probability that it
realizes the event of interest. We first introduce the general form of a family of approximations
of the committor function. We then detail an adaptive importance sampling procedure with
recycling to jointly determine a good candidate within the family of approximations, and to
estimate the probability of interest. We prove the asymptotic optimality and normality of the
method under easily verifiable and interpretable conditions. Finally, we discuss implementation
choices of the method.

Chapter 5: Importance function for multicomponent systems

An adaptive importance sampling strategy has been proposed in chapter 4 for rare event simula-
tion of PDMPs. The importance distribution is built upon an approximation of the committor
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function of the process. This approximation, called importance function, is a parametric trans-
formation of a proximity score 𝛽 between any regime of the PDMP and the set 𝒱ℱ of regimes
allowing to access the critical regionℱ. In this chapter, we consider PDMPs modeling multi-
component industrial systems. The rare event of interest is the critical failure of the system.
This critical failure can only occur when certain key combinations of components remain in
a failed state for a sufficiently long time. Fault tree analysis provides tools to rigorously define
and determine these combinations of components. We propose a proximity score based on the
notion of minimal path sets, which corresponds to the combinations of components that prevent
the system failure. Our adaptive importance sampling method is tested with this proximity score
on toy series/parallel systems then on a more complex industrial test case: the spent fuel pool.

Chapter 6: Graph-informed importance function

An adaptive importance sampling strategy has been proposed in chapter 4 for rare event simula-
tion of PDMPs. The importance distribution is built upon an approximation of the committor
function of the process. This approximation, called importance function, is a parametric trans-
formation of a proximity score 𝛽 between any regime of the PDMP and the set 𝒱ℱ of regimes
allowing to access the critical regionℱ. The proximity score 𝛽mps, proposed in chapter 5, has
proven to be very effective when the PDMPmodels a coherent multicomponent industrial
system. In this chapter, we aim to go further and propose a proximity score that is both more
general and more accurate. The evolution of the PDMP regime can be roughly summarized by
a randomwalk (𝑉𝑡)𝑡 on a graph whose regimes are the vertices. The mean hitting time of the
region 𝒱ℱ for the randomwalk starting from vertex 𝑣 is a natural proximity score for 𝑣. This
mean hitting time is explicit when the random walk is Markovian and time-homogeneous. The
random walk (𝑉𝑡)𝑡 given by the PDMP being typically non-Markovian, we compute these mean
hitting times for a simplified random walk (𝑌𝑡)𝑡 approximating (𝑉𝑡)𝑡. Our importance sampling
method is implemented with this proximity score on the final test case of the previous chapter:
the spent fuel pool.

Conclusion

Chapter 7: Conclusion and perspectives

Finally, the main results of the thesis are summarized and discussed in chapter 7. There are
various ways in which the proposed method can be enriched, or its application extended to new
test cases. We propose several avenues.
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French conclusion

Disclaimer

This is the French translation of the English conclusion.

Conclusion

Le sujet de cette thèse était motivé par des problématiques de fiabilité industrielle rencontrées par
l’entreprise EDF (Électricité de France). Nous nous sommes plus précisément intéressés à l’estima-
tion de la probabilité de défaillance de systèmes industriels intervenant dans le fonctionnement
de centrales nucléaires et de barrages.

Rappel du problème

Les systèmes industriels qui nous intéressent peuvent être représentés par des processus de
Markov déterministes par morceau (PDMPs). Mathématiquement, ce problème d’estimation
s’exprime sous la forme :

ℐ = 𝔼𝚾∼p[𝚰(𝚾)], (14)

avec𝚾 une trajectoire de PDMP, p sa distribution de référence et 𝚰 l’indicatrice de l’événement
d’intérêt : la trajectoire réalise la défaillance. Les trajectoires de PDMP étant coûteuses à simuler,
et la probabilité de défaillance recherchée étant typiquement très faible, on ne peut pas recourir à
une méthode de Monte-Carlo classique.
On sait que la distribution optimale pour l’échantillonnage d’importance de PDMPs est
entièrement caractérisée par la fonction committor du processus. Cette fonction committor
associe à chaque instant 𝑡 d’une trajectoire de PDMP la probabilité que cette trajectoire réalise
l’événement d’intérêt sachant son état à cet instant 𝑡. Nous avons fait le pari qu’il était possible
d’approcher la fonction committor à un coût raisonnable et qu’une distribution d’importance
construite sur une bonne approximation de la fonction committor produirait un estimateur de
faible variance.

Synthèse des contributions

L’ensemble des contributions de cette thèse se rapportent au problème que l’on vient de décrire.
Elles peuvent être rassemblées dans une seule méthodologie globale d’estimation basée sur
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l’approximation de la fonction committor. Cette méthodologie se décompose en deux phases.
Dans une première phase “hors-ligne” c’est-à-dire avant toute simulation, on construit une
famille d’approximations de la fonction committor. À chaque approximation correspond
une distribution d’importance possible. Dans une seconde phase “en-ligne”, on détermine
séquentiellement la meilleure distribution d’importance au sein de la famille définie à la phase
précédente. Les simulations générées pendant cette seconde phase permettent à la fois de raffiner
l’approximation de la fonction committor et de contribuer à l’estimation finale de la quantité
d’intérêt.

Approximation a priori de la fonction committor

Nous avons introduit d’abord dans le chapter 4 la forme générale d’une famille paramétrique
d’approximations de la fonction committor:

𝜉𝜽(𝑥) = exp[
𝑑Θ
∑
𝑗=1

𝜃𝑗 × 𝜙𝑗(𝛽(𝑣))]. (15)

avec,

(i) un vecteur de paramètres 𝜽 ∈ Θ ⊂ ℝ𝑑Θ de dimension 𝑑Θ > 0,

(ii) un score de proximité 𝛽 ∶ 𝒱 ↦ [0, 1], où 𝒱 est l’ensemble des régimes du PDMP,

(iii) une famille de fonctions de base (𝜙𝑗)
𝑑Θ

𝑗=1
avec 𝜙𝑗 ∶ [0, 1] ↦ ℝ pour tout 𝑗 ∈ ⟦1, 𝑑Θ⟧.

Une contribution implicite de cette thèse, est de distinguer clairement:

⋄ l’information a priori que l’on fournit au modèle, ici représentée par le score de proximité
𝛽,

⋄ de l’information apprise au cours des simulations, représentée par les valeurs successives
du paramètre 𝜽, pour guider la distribution d’importance.

Nous avons proposé deux familles de scores de proximité pouvant être déterminées a priori, sans
simulation, et à un coût raisonnable en employant les algorithmes adaptés. Dans le chapter 5,
nous avons construit un score de proximité valide pour les systèmes industriels multicomposants
cohérents, et basé sur la proportion de chemins minimaux endommagés dans un régime donné.
Ces chemins minimaux exploitent la fonction de structure du système et correspondent aux
barrières que le processus doit nécessairement traverser pour atteindre la défaillance. Dans
le chapter 6, nous avons proposé un score plus général, ne faisant pas d’hypothèse sur ce que
modélise le PDMP, et basé sur les temps moyens d’atteinte d’une marche aléatoire sur un graphe
représenté par les régimes du PDMP. Ce score peut être calculé explicitement pour une marche
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aléatoire markovienne homogène sur ce graphe. Il est donc conditionné au choix de la marche
homogène approchant la marche réellement effectuée par le PDMP, mais une marche très simple
comme la marche aléatoire uniforme s’est révélée suffisante en pratique.

Stratégie adaptative

Nous avons proposé une méthodologie d’échantillonnage préférentiel adaptative (AIS) basée
sur une procédure d’entropie croisée (CE). L’inconvénient des méthodes séquentielles classiques
est de n’utiliser qu’une partie des simulations générées pour les étapes d’optimisation ainsi que
pour l’étape finale d’estimation. L’avantage de l’échantillonnage d’importance est de pouvoir,
en ajustant le rapport de vraisemblance, recycler tous les échantillons passés à tout moment.
On peut donc grandement augmenter la précision de la méthode à budget computationnel
équivalent.
Des résultats de convergence pour des schémas de recyclage simples existent dans la littérature,
mais leurs hypothèses sont difficiles à interpréter et vérifier dans la pratique. Nous avons proposé
des hypothèses interprétables et peu contraignantes pour le praticien dans le cas des PDMPs.
Notre théorème garantit convergence et normalité asymptotique, ce qui permet de construire des
intervalles de confiance asymptotiques pour la quantité d’intérêt.

Diffusion des travaux

Les contributions de cette thèse ont fait l’objet de deux articles, dont les trois chapitres de
contributions sont une réorganisation.

⋄ Le premier article [Che+24a] correspond à une version antérieure de la méthodologie
décrite dans le chapter 4, et introduit les scores de proximité adaptés à la modélisation de
systèmes industriels décrits dans le chapter 5. Il a été publié en 2024 par le SIAM Journal
of Uncertainty Quantification.

Guillaume Chennetier, Hassane Chraibi, Anne Dutfoy, and Josselin Garnier. “Adaptive
importance sampling based on fault tree analysis for piecewise deterministic Markov
process”. In: SIAM/ASA Journal on Uncertainty Quantification 12.1 (2024), pp. 128–
156

⋄ Le second article correspond aux ajouts proposés dans la méthodologie du chapter 4
par rapport à celle de l’article [Che+24a], et introduit de nouveaux scores de proximité,
décrits dans le chapter 6, basés sur les temps d’atteinte d’une marche aléatoire sur un
graphe. Il sera prochainement soumis auprès d’un éditeur.

Guillaume Chennetier, Hassane Chraibi, Anne Dutfoy, and Josselin Garnier. “Graph-
informed importance sampling for rare event estimation with piecewise deterministic
Markov process”. In: (Submission in 2024)
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Les résultats obtenus au fur et à mesure de la thèse ont également été présentés dans différentes
conférences nationales et internationales. Exemples choisis:

⋄ uncecomp (Conference on Uncertainty Quantification in Computational Science
and Engineering), édition 2023,

⋄ mcm (Monte Carlo Methods and applications), édition 2023,

⋄ siam uq (Conference on Uncertainty Quantification), édition 2024,

⋄ jds (Journées de Statistique), éditions 2022, 2023, 2024.

Deux prix ont également été attribués à mes travaux lors des rencontres mascot-num,
éditions 2022 et 2024, organisés par le groupe thématique RT-UQ:

⋄ mascot-num édition 2022 : prix du meilleur poster,

⋄ mascot-num édition 2024 : prix du meilleur oral.

Discussion

Il est très clair que la nature de l’intégrale que l’on souhaite estimer ne se prête à rien d’autre
qu’à de la simulation probabiliste. La géométrie très particulière de l’espace des trajectoires de
PDMP le rend difficile à parcourir autrement. Pour autant, l’échantillonnage d’importance est
une approche risquée pour des distributions multimodales en grande dimension. Cette thèse a
justifié au moins en partie l’usage de cette méthode sur ce problème.

Pertinence de l’approche

Un reproche fait à l’échantillonnage d’importance est son caractère intrusif. Ce n’est pas un
problème ici puisque le praticien a de toutes façons la main sur l’intégralité des paramètres de
simulation du modèle. Nous avons choisi de poursuivre la méthodologie initiée dans la thèse de
Thomas Galtier [Gal19]. Il n’était pas évident :

⋄ qu’exprimer la famille de distributions d’importance uniquement en fonction d’une
approximation de la fonction committor offre la flexibilité nécessaire,

⋄ que le minimiseur de la divergence de Kullback-Leibler, au sein d’une famille assez
contrainte, produise un estimateur de faible variance.

Ce pari s’est révélé payant dans la pratique. La littérature actuelle sur l’échantillonnage d’im-
portance s’appuie fortement sur des méthodes d’apprentissage modernes pour apprendre la
distribution d’importance optimale au cours des simulations dans un contexte de grande di-
mension et multimodalité. Ces méthodes sont adaptées pour l’apprentissage de fonctions très
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complexes avec un budget de simulation élevé. Dans notre cas, la distribution cible n’est pas si
complexe puisque simplement le produit d’une distribution connue et d’une indicatrice. Le
budget est en revanche restreint à moins de 104 simulations, ce qui ne permet pas d’optimiser la
distribution d’importance au cours des itérations dans un cadre non paramétrique (ou avec un
très grand nombre de paramètres).
L’idée clé est la suivante : une famille de distributions faiblement paramétrée est bien assez
flexible, pourvu qu’on lui fournisse la bonne information en entrée. Nous avons montré que très
peu d’hypothèses sur le PDMP étaient nécessaires en pratique pour fournir cette information a
priori.

Limites

Toutes les questions ne sont pas tranchées à l’issue de cette thèse. Premièrement, les poids d’une
méthode d’échantillonnage d’importance peuvent toujours exploser et il est très difficile d’évaluer
la qualité d’une estimation par échantillonnage d’importance sans la confronter à une méthode
de Monte-Carlo massif. Les métriques d’évaluation basées sur la variance ou l’effective sample size
sont elles-mêmes mal estimées lorsque la méthode se trompe.
Notre méthode est pensée pour le cas où la simulation d’une trajectoire de PDMP représente le
seul coût non négligeable de la procédure (en raison de la résolution des équations différentielles
intervenant dans le flot). Il faudrait déterminer à quel point ce coût doit être élevé (par rapport
au coût de la construction de la famille d’approximations de la fonction committor, et à celui de
l’optimisation entre les itérations) pour que la méthode reste compétitive.
Inversement, si la physique joue un rôle majeur dans la dynamique du système, les simulations
coûteront cher, mais l’approximation de la fonction committor par une fonction du régime
uniquement et pas de la position est moins justifiable. La prise en compte de la position rendrait
cependant l’évaluation de densité et toutes les phases d’optimisation bien plus coûteuses car il
faudrait réévaluer le flot plusieurs fois pour une même trajectoire.

Perspectives

De nombreuses pistes s’ouvrent naturellement pour prolonger cette thèse, en raffinant les
méthodes proposées ou en étendant les cas d’application. Nous pouvons citer quelques exemples.

⋄ Appliquer notre méthode à de nouveaux cas tests hors fiabilité industrielle. Le score de
proximité 𝛽mht ne faisant pas d’hypothèse sur la nature de ce que modélise le PDMP,
rien n’interdit de nouvelles applications, par exemple en dynamique de population ou en
modélisation de réseaux de transport.

⋄ Comparer les performances de notre méthode d’échantillonnage d’importance à des
méthodes de type splitting. Il faudrait de plus vérifier si les fonctions d’importance 𝜉𝜽 que
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nous avons proposées sont aussi pertinentes pour ces méthodes.

⋄ Développer le cadre théorique de l’échantillonnage d’importance aux “General stochastic
hybrid systems” (GSHS) [BL06]. Il s’agit de processus stochastiques généralisant les
PDMPs: l’évolution du processus entre les sauts est décrite par des équations différen-
tielles stochastiques et non plus ordinaires. Un problème similaire au nôtre dans le cas
des GSHS a été traité à l’aide d’un système de particules en interaction dans [MB23].

Deux autres pistes importantes sont développées ci-dessous.

Raffinements de la méthode AIS

La méthode d’échantillonnage d’importance adaptatif que nous avons proposée dans le chapter 4
est assez simple. Elle combine une procédure de minimisation d’entropie croisée avec un schéma
de recyclage des échantillons passés, tous les deux dans leur version la plus classique. Cette
simplicité nous a permis de garantir la convergence et la normalité asymptotique de notre
algorithme sous des conditions vérifiables et peu contraignantes en pratique. De nombreux
raffinements de ces méthodes existent dans la littérature mais compliquent précisément les
preuves de convergence. L’une des principales difficultés posées par la procédure d’entropie
croisée est de déterminer une bonne distribution d’importance initiale.

⋄ Si celle-ci est trop proche de la distribution de référence p, alors il faut générer un grand
nombre de trajectoires pour que certaines réalisent l’événement d’intérêt. La première
itération de l’algorithme coûte donc cher.

⋄ Si celle-ci est trop éloignée de p, alors on contrôle difficilement le risque d’explosion des
rapports de vraisemblance.

⋄ Enfin, si celle-ci ne recouvre qu’une partie du support de la distribution cible (en raison
de la forte multi-modalité de cette dernière), on manque des régions de l’espace des trajec-
toires qui ne seront sans doute jamais observées après plusieurs étapes d’optimisation.

On peut minimiser l’impact de cette distribution initiale p en faisant varier la distribution
cible g∗. L’idée est de se donner une famille (g∗𝛾)𝛾∈ℝ+

de distributions cibles intermédiaires,
paramétrées par un réel 𝛾, interpolant entre la distribution de référence p et la distribution cible
g∗. On suppose par convention que lim

𝛾→0+
g∗𝛾 = g∗.

Entropie croisée multiniveaux

De nombreux problèmes d’événements rares s’écrivent sous la forme d’un dépassement de seuil :

𝚰 ∶ 𝚾 ⟼ 𝟙𝛃(𝚾)>𝑠∗ , (16)
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avec 𝛃 un score de performance associé à la réalisation𝚾. Dans le domaine de l’analyse de fiabilité,
il est courant de plutôt considérer un événement de la forme {𝛃 ≤ 0}. Le score de performance 𝛃
est alors appelé “limit state function”. Nous avons déjà évoqué en section 1.3.2 deux variantes de
la méthode d’entropie croisée : les procédures de “multilevel Cross entropy” (mCE) et “improved
Cross entropy” (iCE). Les distributions cibles intermédiaires sont de la forme g∗𝛾 ∝ ∣𝚰𝛾∣ × p où
𝚰𝛾 remplace l’indicatrice 𝚰. La méthode mCE utilise des indicatrices de seuils plus faibles, tandis
que la méthode iCE utilise la fonction de répartitionΦ d’une loi𝒩(0, 1) comme approximation
de l’indicatrice :

𝚰mCE
𝛾 ∶ 𝐱 ⟼ 𝟙𝛃(𝐱)> 𝑠∗−𝛾, (17)

𝚰iCE𝛾 ∶ 𝐱 ⟼ Φ(
𝛃(𝐱) − 𝑠∗

𝛾 ). (18)

La stratégie de mise à jour du paramètre 𝛾 diffère également selon la méthode. À l’itération ℓ
(sans recyclage des échantillons passés), on dispose d’un échantillon𝚾1, … , 𝚾𝑛ℓ ∼ g𝜽(ℓ) . Dans le
cas mCE, on sélectionne 𝛾mCE

ℓ+1 tel qu’une proportion 𝜌 ∈ (0, 1) dépassent le seuil correspondant.

Dans le cas iCE, on sélectionne 𝛾iCEℓ+1 tel que le coefficient de variation de [𝚰𝛾(𝚾𝑘)
p(𝚾𝑘)

g𝜽(ℓ)(𝚾𝑘)
]
𝑛ℓ

𝑘=1
soit

le plus proche possible d’une valeur cibleCVtarget.

𝛾mCE
ℓ+1 ∈ inf{𝛾 ∈ ℝ+ ∶

𝑛
∑
𝑘=1

𝚰mCE
𝛾 (𝚾𝑘) > 𝜌𝑛}. (19)

𝛾iCEℓ+1 ∈ argmin
𝛾∈[0, 𝛾iCE𝑡 ]

(ĈV𝛾 − CVtarget)
2
. (20)

Score d’une trajectoire

Revenons à notre cas : 𝚾 = (𝛸𝑡)𝑡∈[0, 𝜏) est une trajectoire de PDMP de durée 𝜏. Le processus est
à valeur dans𝒳 et la trajectoire vit dans𝚻𝜏. On s’intéresse à la probabilité que la trajectoire𝚾
atteigne une régionℱ ⊂ 𝒳 avant une date 𝑠max. On a :

𝜏 = inf{𝑡 ≥ 0 ∶ 𝛸𝑡 ∈ ℱ} ∧ 𝑠max . (21)

On note 𝐅 = {𝐱 ∈ 𝚻𝜏 ∶ 𝜏 < 𝑠max}. On souhaite donc estimer ℐ = 𝔼𝚾∼p[𝚰(𝚾)] avec:

𝚰 ∶ 𝐱 ∈ 𝚻𝜏 ⟼𝟙𝐱∈𝐅 . (22)

Pour pouvoir appliquer la procédure mCE ou iCE, il faut choisir un score de performance 𝛃
pertinent pour une trajectoire. On peut s’inspirer d’un choix classique pour les méthodes de
splitting appliquées à des processus stochastiques ([Lou+17; CGR19]). Si on dispose déjà d’une
fonction de score 𝛽 sur l’espace d’états𝒳, le score total d’une trajectoire sur𝚻 peut être choisi
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comme la valeur maximale obtenue par le score 𝛽 le long de la trajectoire:

𝛃(𝚾) = sup
𝑡∈[0, 𝜏)

𝛽(𝛸𝑡) . (23)

Deux choix naturels s’offrent à nous : le score de proximité déjà noté 𝛽 dans ce manuscrit, et la
fonction d’importance 𝜉𝜽 à l’itération courante.

Recyclage et intervalles de confiance

L’application de la méthode mCE/iCE dans notre cas n’est pas immédiate. Tout d’abord,
l’événement {𝚾 ∈ 𝐅} ne s’exprime pas totalement comme un dépassement de seuil pour la
fonction de score 𝛽, mais on a𝚾 ∈ 𝐅 ⟹ sup𝑡∈[0, 𝜏) 𝛽(𝛸𝑡) = 1. Il faut donc passer d’abord de 𝚰𝛾
à 𝚰0, puis de 𝚰0 à 𝚰. Ensuite, la variation de la distribution cible à chaque itération (lors de la mise
à jour de 𝛾) nous fait sortir des conditions du theorem 8. On n’a alors plus accès aux intervalles de
confiance asymptotiques construits à partir de l’intégralité des simulations passées.
Une possibilité est de décomposer l’algorithme AIS en deux phases. Pendant une première
phase dite de “burn in”, la distribution cible varie selon l’un des schémas décrits. Lorsque la
distribution cible utilisée correspond à g∗, on efface toutes les simulations générées mais on
conserve la distribution d’importance obtenue à la dernière itération. Dans une seconde phase,
on poursuit la méthode AIS avec recyclage mais sans faire varier la distribution cible et sans
utiliser les simulations générées en première phase.
D’autres raffinements de la méthode AIS comme l’adaptive multiple importance sampling
(AMIS [MPS19]) sont possibles en phase 1, et ne perturbent pas la convergence et la normalité
asymptotique de l’estimateur produit en phase 2.

Bandits : identification du meilleur bras

Le problème de départ était l’estimation de la probabilité de défaillance d’un système industriel
pour une distribution donnée, représentée par les taux de panne et de réparations des différents
composants. Un usage attendu de notre méthode est de déterminer parmi plusieurs config-
urations (entendre parmi plusieurs distributions de référence p1, … ,p𝛫), laquelle est la plus
fiable.

(QoI) argmin
𝑖∈⟦1,𝛫⟧

𝔼𝚾∼p𝑖[𝚰(𝚾)] . (24)

Une approche naïve consisterait à appliquer𝛫 fois indépendamment la méthode AIS (une fois
pour chaque espérance) et comparer les𝛫 estimateurs obtenus. Si les distributions (p1, … ,p𝛫)
ont support commun, on peut en fait utiliser le même échantillon pour estimer chacune des
espérances en changeant simplement de rapport de vraisemblance. Pour tout échantillon i.i.d.
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𝚾1, … , 𝚾𝑛 de distribution g, et tout 𝑖 ∈ ⟦1,𝛫⟧, on a (sous les bonnes conditions de support) :

ℐ̂𝑖 =
1
𝑛

𝑛
∑
𝑘=1

𝚰(𝚾𝑘)
p𝑖(𝚾𝑘)
g(𝚾𝑘)

. (25)

Identification du meilleur bras

On a affaire à une variante du problème d’identification du meilleurs bras (BAI pour best
arm identification) pour des bandits multibras [AB10; GGL12; GK16]. Dans sa formulation
classique :

⋄ 𝛫 distributions sont disponibles et sont appelées “bras”,

⋄ à chaque itération, on peut choisir l’un des bras et générer une observation sous cette
distribution,

⋄ l’objectif est de déterminer la distribution avec la moyenne la plus haute.

La stratégie séquentielle de sélection des bras doit permettre de minimiser le nombre total de bras
actionnés à niveau de confiance fixé (“fixed-confidence setting”), ou de maximiser le niveau de
confiance de la décision finale à budget de simulation fixé (“fixed-budget setting”).
Dans notre cas, on cherche plutôt le bras avec la moyenne la plus basse. On peut tirer nos
observations sous la distribution d’importance de notre choix et obtenir de l’information
conjointement sur chacune des𝛫 espérances à chaque tirage. Si la distribution d’importance
est fixée (cadre non adaptatif), la seule décision à prendre est l’arrêt de la méthode lorsqu’on est
assez confiant dans le résultat. Il y a déjà un travail intéressant à faire pour déterminer le niveau de
confiance de la décision pour un échantillon de taille 𝑛 donné.

Avec échantillonnage d’importance adaptatif

Pour obtenir les meilleures performances possibles, on s’attend à devoir mettre à jour la distri-
bution d’importance au fur et à mesure des simulations. Le choix de la distribution cible g∗ est
évident dans le cas de l’estimation de la moyenne d’un seul bras. Il ne l’est plus ici, car il n’y a pas
de définition évidente de la distribution optimale permettant d’estimer l’espérance d’un vecteur :

𝔼𝚾∼g[
𝚰(𝚾)
g(𝚾) (p𝑗(𝚾))

𝛫

𝑖=1
] . (26)

On a tout de même le cas particulier du BAI à deux bras : la densité proportionnelle à |𝚰| ×
|p1 − p2| permet d’estimer exactement la différence entre les deux moyennes en deux tirages.
Construire une stratégie d’échantillonnage d’importance adaptatif capable de déterminer
le minimiseur d’une famille d’espérances, et de donner le niveau de confiance associé à cette
décision, est à notre connaissance un problème encore ouvert.
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Titre : Simulation d’événements rares avec des processus de Markov déterministes par morceaux, application
en fiabilité industrielle pour l’outil PyCATSHOO.
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Résumé : Cette thèse porte sur l’estimation de
probabilités d’événements rares pour des proces-
sus de Markov déterministes par morceaux (PDMPs).
Ces processus offrent la flexibilité nécessaire pour
représenter des systèmes industriels dynamiques
complexes. Ils peuvent modéliser conjointement la dy-
namique déterministe et continue des variables phy-
siques du système (température, pression, niveaux
de liquide, etc.), et la dynamique de saut aléatoire
qui régit le changement de statut de ses composants
(pannes, réparations, mécanismes de contrôle, etc.).
L’enjeu industriel est de permettre à l’outil PyCAT-
SHOO, utilisé par l’entreprise Électricité de France
pour ses études probabilistes de sûreté, d’estimer la
probabilité de défaillance de tels systèmes efficace-
ment, et avec une précision garantie. Une approche
Monte-Carlo classique réclame, à niveau de précision
fixé, une quantité de simulations inversement propor-
tionnelle à la probabilité recherchée. Elle n’est donc
pas adaptée au cas de systèmes hautement fiables et
dont le coût de simulation est élevé. L’échantillonnage
d’importance est une méthode de réduction de va-
riance populaire en situation d’événements rares. Elle

consiste à générer les simulations sous une distribu-
tion biaisée favorisant la réalisation de l’événement,
et à rectifier le biais a posteriori. Des travaux récents
ont proposé un cadre théorique d’implémentation de
l’échantillonnage d’importance pour des PDMPs, et
mis en évidence le lien existant entre la distribu-
tion biaisée optimale et la fonction dite ”committor”
du processus. À l’aide d’outils issus de l’analyse fia-
biliste et de la théorie des marches aléatoires sur
graphes, de nouvelles familles d’approximations de la
fonction committor sont introduites dans cette thèse.
La méthodologie proposée est adaptative : une ap-
proximation de la fonction committor est construite
a priori puis raffinée au cours des simulations d’une
procédure d’entropie croisée. Les simulations sont
ensuite recyclées pour produire un estimateur par
échantillonnage d’importance de la probabilité cible.
Les résultats de convergence obtenus permettent la
construction d’intervalles de confiance asymptotiques
malgré la dépendance entre les simulations. Cette
méthode produit d’excellents résultats en pratique sur
les systèmes industriels testés.

Title : Rare event simulation with piecewise deterministic Markov processes, a reliability application for Py-
CATSHOO tool

Keywords : Stochastic processes, Importance sampling, Committor function, Reliability analysis

Abstract : The purpose of this thesis is to provide
new methods for estimating rare event probabilities for
Piecewise Deterministic Markov Processes (PDMPs).
Theses processes offer the flexibility needed to re-
present complex dynamic industrial systems. They
can jointly model the deterministic and continuous dy-
namics of the physical variables of the system (tem-
perature, pressure, liquild levels, etc.), and the ran-
dom jump dynamics that govern the change in status
of its components (failures, repairs, control mecha-
nisms, etc.). The industrial challenge is to enable the
tool PyCATSHOO, used by the company Électricité de
France for its probabilistic safety assessment studies,
to efficiently estimate the failure probability of such
system with guaranteed accuracy. A classical Monte
Carlo approach requires, for a fixed level of accu-
racy, a number of simulations inversely proportional
to the probability sought. It is therefore not suitable
for highly reliable systems with high simulation costs.
Importance sampling is a popular variance reduction
method in the rare event context. It consists of ge-

nerating simulations under a biased distribution that
favors the occurrence of the event, and correcting the
bias a posteriori. Recent work has proposed a theore-
tical framework for implementing importance sampling
of PDMPs, and has highlighted the connection bet-
ween the optimal biased distribution and the so-called
”committor function” of the process. Using tools from
reliability analysis and the theory of random walks on
graphs, new families of approximations of the commit-
tor function are introduced in this thesis. The propo-
sed methodology is adaptive: an approximation of the
committor function is constructed a priori and then re-
fined during the simulations of a cross-entropy proce-
dure. The simulations are then recycled to produce an
importance sampling estimator of the target probabi-
lity. Convergence results have been obtained, making
it possible to overcome the dependence between si-
mulations and construct asymptotic confidence inter-
vals. This method produces excellent results in prac-
tice on the tested industrial systems.
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