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Résumé

Nous partons du constat que les systemes énergétiques en Europe sont en pleine mutation. Cette
mutation est due a I'intégration croissante depuis les années 2000 pour certains pays d’Europe, 2010
pour les autres, d’une part de plus en plus importante d’énergies renouvelables variables (ERVs) que
sont I'énergie solaire et éolienne. Les causes de cette mutation sont multifactorielles, bien qu’en pre-
mier lieu nous pourrons noter la volonté politique de décarboner la production d’électricité qui comp-
tait en 2010 pour environ 25 % des émissions totales européennes de gaz a effet de serre, contre en-
viron 20 % en 2021, afin de réduire 'impact de la production d’électricité sur le climat et I'accélération
du changement climatique d’origine anthropique. A ces considérations d’ordre écologique s’ajoutent
des décisions d’ordre politique, comme la sortie ou la limitation du nucléaire dans certains pays eu-
ropéens, d’ordre industriel, les ERV permettant potentiellement de créer une filiere industrielle et de
créer de I'emploi et de I'activité économique, et d’ordre géostratégique enfin, les ERV solaire et éoli-
enne permettant potentiellement de reconfigurer les relations de collaboration et d’interdépendance
a I'échelle globale.

Il est possible que cette transformation se poursuive dans un futur proche, et que la part dERV
dans le mix de production continue d’augmenter. Lintroduction d’'une large part ERV dans le mix
énergétique européen souléve des questions de faisabilité technique et économique. La question du
potentiel technique est relativement consensuelle et il ne fait pas de doute quand a la possibilité de
s’approvisonner en grande partie a partir 'ERV, ou méme quand a la possibilité d’en intégrer une
grande partie dans le systéme électrique: tous les problémes techniques associés ont en effet des
solutions technologiques éprouvées. Si la question de la faisabilité économique faisait encore débat
récemment, les études les plus récentes font état de peu d’'impacts économiques pour des pénétra-
tions en-deca de 35 % et vont méme jusqu’a proposer des optimums économiques de pénétration
de 75 % a 98 % de toute I'électricité produite selon les scénarios. Nous considérerons donc que des
scénarios de pénétration compris entre 40 % et 90 % sont alors tout a fait plausibles a la fois tech-
niguement et économiquement. En paralléle de la potentielle augmentation de la part ’'ERV dans le
mix de production, 'ambition de décarbonation du systeme énergétique dans son ensemble, incluant
donc les secteurs du transport, I'industrie, les secteurs du résidentiel et du tertiaire et I'agriculture
ameéne a considérer la possibilité d’'une plus grande électrification de ces secteurs économiques, qui,
couplés a la décarbonation du secteur de la production d’électricité, permettent de s’affranchir de
vecteurs énergétiques a émissions positives. Nous nous focalisons dans cette étude sur la demande
de chaud et de froid et nous concentrons plus précisément sur I'électrification de la demande de
chauffage dans les batiments (résidentiels et tertiaires) couplée a I'adoption de climatiseurs (qui est
une demande exclusivement électrique). Le potentiel d’électrification de la demande de chauffage
d'une part et d’adoption de climatiseurs d’autre part sont trés importants. Du c6té de la demande
de chauffage on estime que dans le cas de la France, seuls 20 % de la demande de chaud et et de
froid du secteur du batiment (constituée majoritairement de la demande de chauffage) sont satisfaits
par le vecteur électricité. Pour la climatisation, des études suggérent que la demande pourrait étre
multipliée par 6 si tous les besoins de climatisation étaient satisfaits en Europe. Lampleur du po-
tentiel d’électrification apparait également lorsque I'on regarde les taux d’équipement des batiments
en chauffages électriques ou en climatiseurs. En France on estime que ces taux d’équipement at-
teignent respectivement 35% et 23%. S'il existe de nombreuses études sur les scénarios futurs
d’électrification du chauffage et d’adoption de climatiseurs, peu d’entre elles étudient I'impact de
ces scénarios sur les investissements optimaux en ERV. Ces travaux ne sont donc pas capables
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d’estimer le potentiel d’adaptation du systéme électrique a des scénarios d’électrification de la de-
mande de chauffage ou d’adoption de climatiseurs. Nous nous attachons a étudier ce point dans
ce travail. Bien-sir, il existe d’autres facteurs affectant le devenir des systémes énergétiques: parmi
eux nous pouvons mentionner la population, I'activité économique ou les comportements individuels
et collectifs. Nous ne cherchons pas ici a étre exhaustifs mais plutdét a étudier deux phénoménes
qui nous semblent pertinents, parmi tant d’autres. Nous avons présenté jusqu’ici deux phénomenes
d’ordre socio-économique pouvant impacter le systeme énergétique dans le futur. Cependant le
fonctionnement du systéme énergétique dépend grandement de I'état du climat, et ce d’autant plus
que la pénétration d’ERV est grande. Nous discutons ce point dans le paragraphe suivant.

Si le systeme énergétique lié au systéme économique actuel est une des causes majeures du
changement climatique d’origine anthropique, et impacte donc le climat actuel, celui-ci est égale-
ment affecté par I'état du climat et donc le changement climatique confirmé et potentiel. Nous nous
focalisons ici sur 'impact sur le systeme électrique. Cet impact se traduit d’abord au niveau des com-
posantes du systéme électrique. Les impacts peuvent étre classés entre ceux affectant la demande,
ceux affectant la production et ceux impactant les infrastructures physiques. Nous nous intéressons
dans cette étude au deux premiers et laissons de c6té les impacts sur les infrastructures qui concer-
nent principalement des capacités de transmission réduites en cas de forte température. En France,
les impacts au niveau de la demande dds au seul changement climatique sont de faible amplitude
dans les différents scénarios étudiés dans la littérature. La diminution de la demande de chauffage
est majoritaire comparée a 'augmentation de la demande de climatisation, ce qui se traduit par une
diminution de l'ordre de 5% de la demande totale. En ce qui concerne les moyens de production,
ceux-ci voient leur capacité de production changer de maniére modérée, i.e. dans une fourchette de
+20 %. Ces études au niveau des composantes du systéme électrique ne sont pas suffisantes pour
étudier les impacts du changement climatique sur les systémes électriques: l'intégration de toutes
les composantes est nécessaire pour déterminer les impacts finaux. Nous étudions la litérature cor-
respondante et trouvons plusieurs limites aux travaux réalisés jusqu’a aujourd’hui. Comme pour les
scénarios d’électrification du chauffage et d’adoption de la climatisation mentionnés plus haut, toutes
les études ne prennent pas en compte les impacts des changements futurs sur l'investissement opti-
mal en ERYV, et ne peuvent donc pas étudier le potentiel d’aptation du systéme électrique au change-
ment climatique. Parmi les études qui prennent en compte les effets du changement climatique sur
les décisions d’investissement optimales, nous trouvons qu’aucune ne prend en compte a la fois
I'effet du changement climatique sur la ressource en ERV et celui sur la demande électrique. Nous
étudions donc ce point précis dans cette étude. Nous notons finalement qu'il existe peu d’études
sur I'impact couplé du changement climatique et de scénarios socioéconomiques sur des systemes
énergétiques a forte pénétration d’ERV.

Comment réagir face a ces changements futurs? Quels sont leurs impacts? Peut-on s’y adapter?
A quel colt? Quels mixes de production en résultent? Voila les questions qui structurent notre thése
et motivent notre travail. Lapproche de modélisation permet de donner des points de vue perti-
nents pour le décideur sur ces questions. Elle permet soit de tester des mixes donnés (présents
ou futurs) face a de futurs changements potentiels, soit d’optimiser les mixes de production aux
conditions futures potentielles. A ce titre 1a, 'approche de modélisation permet de tester les ca-
pacités d’adaptation du systeme électrique a des changements futurs, et les colts induits asso-
ciés. Nous nous focalisons dans cette étude sur I'impact couplé du changement climatique et
de lélectrification. Nous nous demandons en particulier comment le changement climatique et
I'électrification du chauffage additionné a I'adoption de climatiseurs impactent les décisions opti-
males d’investissement en ERV et les colits associés. Nous avons vu que cette question générale
est partiellement traitée dans la littérature. Nous nous focalisons donc sur des sous-questions en-
globées dans cette problématique générale, qui ne sont pas ou peu traitées. Dans un premier temps
nous nous demandons quel est 'impact de scénarios d’electrification du chauffage et d’adoption de
la climatisation sur les décisions optimales d’investissement en ERV. Nous explorons donc de ce fait
la capacité d’adaptation du mix électrique a ces scénarios. Dans un second temps, nous nous at-
taquons au probléme de I'impact du changement climatique sur le systéme électrique et étudions plus



précisément I'effet du changement de ressource en ERV couplé a un changement de demande sur
les décisions optimales d’investissement et le potentiel d’adaptation. Dans un troisieme temps nous
étudions ces deux phénomenes de maniere couplée et nous demandons si ces deux phénomeénes
peuvent étre étudiés de maniére séparée.

Afin de répondre a ces questions nous créons des scénarios d’états futurs de demande avec
un modele de demande prenant en entrée des données climatiques et paramétré par les conditions
socioéconomiques d’électrification et d’adoption de climatiseurs. Nous créons en paralléle des scé-
narios d’états futurs de ressource en ERV a partir de données climatiques. Nous modélisons ensuite
les décisions d’investissement optimales ainsi que les colts associés sous ces différents scénarios
avec un modele de systéme électrique. Ce travail de thése se décompose en trois temps.

Dans un premier temps, nous étudions les impacts de scénarios d’électrification via I'électrification
de la demande de chauffage et I'adoption de climatiseurs. Nous nous concentrons donc sur des
effets liés a la demande exclusivement. Nous montrons d’abord que les scénarios d’adoption de cli-
matiseurs sans modification de 'usage de la climatisation n'ont d'impact significatif ni sur les mixes
optimaux, ni sur les co(ts totaux systeme a climat actuel. Des impacts plus importants a climat futur
ne sont pas a exclure, méme a usage constant. Nous recommandons cependant I'exploration de
scénarios d’adoption et d'usage de la climatisation a climat présent et futur dans de futurs travaux.
Nous explorons donc principalement des scénarios d’électrification de la demande de chauffage,
que nous comparons a des scénarios d’augmentation moyenne de la demande afin d’exclure les
effets d’augmentation moyenne de la demande. Nous montrons que I'électrification de la demande
de chauffage augmente les colts totaux systéme en méme temps qu’elle favorise la pénétration
d’ERV. Lénergie éolienne est installée préférentiellement par rapport au solaire qui lui est préféré
dans le cas d’'une augmentation moyenne de la demande. Cependant, ces différences sont du sec-
ond ordre par rapport a 'impact des co(ts d’installation et des capacités maximales installables par
région, qui déterminent la composition du mix au premier ordre. Nous nous attendons donc a ce que
la sensibilité des mixes optimaux aux scénarios d’électrification augmente si les contraintes maxi-
males d'installation venaient a étre relaxées. Nous obtenons ces résultats dans un cadre idéalisé
ou l'investissement dans les moyens de production conventionnels n’est pas pris en compte. Nous
nous attendons a ce que la prise en compte de ces processus favorise la pénétration d’ERYV, fasse
augmenter les colts systéme et accentue de ce fait les effets observés dans le cadre idéalisé. Nous
laissons cependant la confirmation de ces conclusions a de futures recherches.

Dans un deuxiéme temps nous montrons que I'effet du changement climatique sur la ressource
en ERV et la demande électrique tend a faire baisser les colits systeme tout en faisant diminuer la
quantité optimale d’ERV dans le mix. La variable d’ajustement est I'éolien, dont la proportion tend a
diminuer avec l'intensité du changement climatique, alors que les capacités de solaire photovoltaique
restent constantes. Nous montrons que le lien entre les effets du changement climatique sur la de-
mande et la ressource en ERYV, et les mixes optimaux correspondants n’est pas trivial, et ce méme en
tenant compte de la corrélation entre la demande et les facteurs de charge des ERV. Les effets sur
cette derniére, couplés a des effets de demande moyenne permettent cependant d’avancer une ex-
plication plausible sur les causes des effets que nous observons dans nos expériences numériques,
confirmant que la corrélation entre demande et facteurs de charge joue un réle prépondérant dans
la détermination de I'évolution des mixes optimaux. Nous montrons que cette corrélation est peu
dépendante aux effets de changement de ressource. Les impacts du changement climatique sur les
mixes optimaux seraient donc majoritairement lié a des effets de changement de demande plutét
gu’a des effets sur la ressource en ERV, dans le cas de la France. Des études dans d’autres ré-
gions seraient nécessaires pour généraliser ce constat, la France étant un pays avec une forte ther-
mosensibilité et des changements attendus modérés de ressource éolienne et solaire (n’excédant
pas +20 %). Nous montrons également qu’avec nos hypothéses de travail, le changement climatique
n’induit pas de surco(ts, que ce soit avec ou sans adaptation du mix de production. Les surco(ts
entrainés par le changement de mix et les actifs échoués rendent méme I'adaptation au changement
climatique moins attractive économiquement. Ces résultats ne doivent cependant pas étre sortis du
contexte idéal dans lequel ils ont été produits: d’'un c6té nous ne prenons pas en compte les codlts
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d’investissement dans les capacités de production des producteurs conventionnels, de I'autre, nous
ne prenons en compte que I'impact du changement climatique sur la demande et la ressource en
ERYV et laissons de c6té tout les impacts sur les producteurs conventionnels et en particulier les con-
séquences d’'un changement de la disponibiité de la ressource en eau pour le refroidissement des
centrales thermiques et la production hydroélectrique. Prendre en compte les colts d’investissement
en capacité conventionelle devrait amener a investir plus en capacité d’ERV. Ces derniéres étant de
moins en moins corrélées a la demande, cela devrait entrainer une augmentation des colts totaux
systéme. La prise en compte de I'impact du changement climatique sur les producteurs convention-
nels dépend majoritairement de I'évolution de la ressource en eau (disponibilité, température) et est
potentiellement un facteur de surco(ts. Nous soulignons donc I'importance de conduire les études
d’'impact du changement climatique de maniere intégrée, en prenant en compte tous les éléments
du systeme de production et tout les processus susceptibles de les impacter. Nous laissons de tels
travaux, nécessitant des développement méthodologiques, pour de futures recherches.

Nous étudions finalement les impacts de I'électrification et du changement climatique de maniére
couplée. Nous montrons que pour les scénarios considérés, qui s’appuient sur des changements
plausibles d’électrification et de changement climatique, les changements liés a I'électrification sont
de premier ordre comparés aux changements liés au changement climatique. Lélectrification en-
traine une augmentation de la demande thermosensible et non thermosensible. Lélectrification du
chauffage entraine un couplage plus important entre le climat et la demande et rend le systéme
plus sensible au changement climatique. Les effets de I'adoption de la climatisation, amplifies par
le changement climatique, restent toutefois toujours minoritaires du fait de la non prise en compte
des changements potentiels d’'usage. Nos scénarios sont donc conservateurs du point de vue de
I'augmentation de la demande causée par I'effet couplé du changement climatique et I'électrification,
et des colts systéeme que cela pourrait entrainer. Nous montrons que les effets du changement
climatique sur la demande thermosensible de chauffage ne contrebalancent pas I'augmentation de
la demande liée a cette électrification ainsi qu’a 'augmentation de la demande non thermosensible.
Limpact couplé de I'électrification et du changement climatique entraine donc des surcodts pour le
systéme dans son ensembile, principalement dis a des effets sur la demande, les effets du change-
ment de la ressource en ERV étant encore plus marginaux qu’avec le changement climatique seul.
Dans ce cadre, il devient plus intéressant économiquement de s’adapter aux potentielles conditions
futures: le potentiel d’adaptation est positif et implique I'ajout de capacité d’ERV solaire et éolienne
en proportions variables en fonction du scénario d’électrification et de changement climatique consid-
éré. Nous montrons finalement qu’il est nécessaire de prendre en compte le changement climatique
et I'électrification de maniére couplée dans I'étude du potentiel d’adaptation des mixes aux change-
ments futurs. Létude de ces processus de maniere séparée, puis la somme de leurs effets entraine
une mauvaise quantification du potentiel d’adaptation et peut méme conduire a des conclusions er-
ronées quand a l'impact du changement climatique sur ce potentiel d’adaptation. Nous montrons
donc dans un cadre idéalisé que la prise en compte des processus socioéconomiques impliquant
une modification de la sensibilité du systeme électrique au climat doivent étre étudiés de maniére
couplée au changement climatique dans les exercices de modélisation des systemes énergétiques
pour produire des résultats pertinents pour les parties prenantes. Nous nous attendons qu’une telle
conclusion soit valide pour des études plus complétes allant au dela du seul effet sur la ressource en
ERV couplé & la demande électrique.

Bien que partant d’'un cadre idéalisé, nous montrons que I'électrification des usages et le change-
ment climatique impactent significativement les systemes électriques. Leffet de ces deux processus
sur la demande électrique est majoritaire par rapport a celui du changement climatique sur la future
ressource en ERV. Ces changements de demande guident donc la capacité du systeme électrique
a s’adapter: nous montrons que des changements de demande thermosensible chaude sont plutot
liés a I'ajout ou la suppression de capacités de production éoliennes, alors que les capacités de pro-
duction solaire réagissent quant a elles plutét a des changements de demande non thermosensible.
Les changement de demande thermosensible froide ont été peu explorés dans cette étude. Nous
montrons finalement la valeur de I'approche intégrée énergie-climat, et 'importance de prendre en



compte tous les éléments du secteur de la production électrique ainsi que les processus les affectant
de maniere couplée, pour produire des résultats significatifs au niveau opérationnel.

Nous recommandons donc le développement d’une approche le plus intégrée possible pour
informer la décision sur la planification du systéme énergétique face aux changements potentiels
futurs. Cela pourra commencer par l'intégration de plus d’éléments du systéme électrique dans
les exercices de modélisation, la prise en compte de plus de processus de maniére couplée ou la
considération du systeme énergétique dans son ensemble. D’autres processus pouvant affecter la
demande comme le potentiel de sobriété ou de flexibilité de la demande n’ont pas été considérés
dans cette étude et mériteraient d’étre pris en compte dans de futurs travaux.
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8 INTRODUCTION

1.1 Socio-ecological context

The european electricity systems have been undergoing profound transformations over the last two
decades. A major axis of transformation corresponds to the introduction of large shares of Variable
Renewable Energies (VRES) in the electricity generation sector, as shown in Figures 1.1 and 1.2.

Determining the drivers of such a transformation is a piece of work in itself, belonging to history
and political science books, and not the goal of this study. The causes of these transformations are
nonetheless very probably multifactorial, with the primary factor being the political will to deal with
the stringent ecological crisis humanity is facing (Bonneuil and Fressoz 2016; Bonneuil 2016). A
part of mankind is currently operating outside of the safe operating space for humanity (Rockstrém
et al. 2009; Persson et al. 2022; Wang-Erlandsson et al. 2022; Richardson et al. 2023), while all
of humanity and other living collectives around the globe face the consequences of the collapse
of biodiversity (Pimm et al. 2014; Ceballos et al. 2015; IPBES 2019b; IPBES 2019a) and climate
change (IPCC 2021; IPCC 2022a; IPCC 2022b), both issues being intimately entangled (Pértner
et al. 2021). European energy systems accounted in 2019 for 5.3 % of all referenced anthropogenic
Greenhouse Gas (GHG) emissions' (without Land Use, Land Use Change and Forestry (LULUCF)),
while the electricity generation sector (including heat generation) was responsible for 1.5 % of the total
GHG emissions?. These figures correspond to respectively 0.6 % and 0.06 % for the case of France®.
Although these figures might seem small, for the case of France in particular, the decarbonization of
the european energy system and the electricity generation sector in particular is crucial to reduce the
contribution of these sectors to climate change, and commit to Paris agreement targets in terms of
climate change mitigation*. To give an idea of the importance of such reductions, the emissions by
the electricity generation sector account for about a third of the yearly remaining carbon budget for
the case of France®.

Aside from this ecological drivers other processes are potentially favoring the penetration of
VREs in the electricity generation sector. Among these we can cite all political processes pushing for
the integration of these energy sources, such as nuclear phaseout or limitation plans (McCauley et al.
2018; Johnstone and Stirling 2020; Faber 2023), or sociological effects going in the same direction
(Hermwille 2016). VRE also represent a strategic and industrial opportunity. First a strategic one,
as albeit not being exempt from geopolitical tensions, the increased development of the VRE sector
might reconfigure the geopolitical interdependencies associated to supply chains, international trade
and cooperation, a typical example of which is the reconfiguration of the european to russian gas
imports dependency (Blondeel et al. 2021; Ah-Voun, Chyong, and C. Li 2024). The introduction of
large shares of VRE can also represent an industrial opportunity through the creation of economic
activity (IPCC 2022b, Chapter 6)(IEA 2023b).

How these trends will unfold in the future is uncertain. In the case of France, assuming the
installed renewable capacity remains at least at its current levels, taking into account the decom-
missioning of historical nuclear power plants, and further assuming that the total installed capacity
remains constant to that of 2023 results in about 64 GW (i.e. nearly 43 %) of electricity generation
capacity to be allocated by 2050 (see Figure 1.2). From this point on, many possible futures are
possible. We discuss some of the potential future unfoldings in the next section.

"Data from https://di.unfccc.int /detailed_data_by_party and (IPCC 2022b, Figure 2.5).

2|bid.

3Ibid.

4These targets correspond to the ambition of keeping climate change “well below 2 °C above pre-industrial levels” and to
pursue efforts to limit this warming to 1.5 °C.

5This is computed from (IPCC 2021, Table 5.8) for 1.5 °C of warming. Without uncertainty, the median remaining carbon
budget is of 500 Gtcozeq- Supposing that we have 50 years to reach carbon neutrality and that the remaining carbon budget
is equally divided between all those years, this amounts to a remaining carbon budget of 10 Gtcoaeq per year. This is about
20 times the total GHG emissions of France in 2019. However, if we weight the remaining carbon budget by total population,
then as France is about 1 % of the world’s population, its remaining carbon budget for the next 50 years before reaching a
carbon-neutral economy is of 0.1 Gtcozeq-
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1.2 The future state of the energy sector

Before discussing the future state of the european energy system, we give a brief contextualization.
We first discuss some aspects of what we define as a suitable energy system and then discuss very
briefly how this work articulates with what we know of the history of energy systems.

Based on (IIASA 2012), Pfenninger, Hawkes, and Keirstead (2014) define energy systems as
“the process chain [...] from the extraction of primary energy to the use of final energy to supply
services and goods”. This definition is large and quite suitable as it encompasses all sectors of the
energy system, from the fossil-fueled transportation sector to the electricity generation one. If this
defintion can be deemed as objective, what services and goods should this energy system provide
and how it should provide them is necessarily subjective. In this work, we adopt the broad consensus
in the scientific literature that energy systems should be able to guarantee this supply of services and
goods in a secure and affordable manner. Secure is a broad term, which is most often understood
as the adequate and reliable supply of critical services and goods: we can think of the supply of fuel
for mobility, or the supply of electricity to power pumps that provide drinking water. Affordable is more
specific and directly relates to the economic cost of the energy system, which in a welfare maximiza-
tion perspective is directly linked to the price of the goods and services provided. Affordability is a
key challenge to tackle the issue of energy poverty and inequity (Bednar and Reames 2020; Huang
et al. 2023) in a world with increasing inequalities (Piketty 2019; Millward-Hopkins 2022). Ensuring
a secure and affordable energy system while addressing the environmental concerns at stake pre-
sented earlier is deemed to be one of the challenges of the 21st century (Pfenninger, Hawkes, and
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Figure 1.1. Historical VRE penetration for Spain, Germany and the EU30 (EU27 + Norway, Switzerland and
the UK). Data from (https://www.irena.org/Data/Capacity-building/Data-Collection-Guide).
Note that pumped hydro is not considered as renewable, but is included in the Hydro. field.

Keirstead 2014). Some authors mention these challenges as the energy trilemma, as energy sys-
tems must deal at the same time with the security of supply, environmental concerns and affordability
(Qadrdan et al. 2019). Energy systems can be designed with other constraints or objectives, thus
potentially expanding the energy trilemma. We can cite, among others, social justice (Burke 2020;
Carley and Konisky 2020; Lonergan, Suter, and Sansavini 2023), or energy sufficiency (Steinberger
and Roberts 2010; Millward-Hopkins et al. 2020; Okushima 2024). Tackling all these aspects at once
can be challenging, especially in modeling studies (Lonergan, Suter, and Sansavini 2023). However,
the focus on a sole aspect of an energy system functionality in energy system policy design may
lead to adverse consequences in the other aspects, as shown in (Vazquez-Rowe et al. 2015) for
the case of climate change-centrism. This highlights the need for an integrated approach to policy-
making in this regard. In the following we will greatly simplify what a suitable energy system should
be, by simply considering that it should supply energy at all times when required, and at minimal
economical cost. The complexity of energy system design should however not be reduced to these
considerations.

The history of energy systems is complex and non-linear (Jarrige and Vrignon 2020). It would be
a mistake to consider that the sole incentive to decarbonize has led to the emergence of alternative
sources of energy such as wind and solar. As early as in the second half of the 19th century the
search for alternatives to coal (and later oil) was motivated by the foreseen finitude of the resources
and the concerns about the environmental problems (air pollution mainly). If locally energy transitions
could be observed, these were not homogeneous across human societies. In fact, globally, the
history of energy is more a history of material additions than that of transitions (Bonneuil and Fressoz
2016; Bonneuil 2016; Fressoz 2024). In this piece of work we somehow adopt the opposite point
of view compared to the historian. If the historian produces narratives about the past, we aim at
proposing narratives about the future of energy systems. The objective is obviously not to guess what
will happen, but rather what could: i.e. to unfold storylines about desirable or nondesirable futures
which make sense starting from today. The ultimate goal of these narratives being to inform the
present-day decision-making. Producing narratives to explore the future, also coined as the storylines
approach, is a widespread approach in the energy economics (Siddiqui and Marnay 2008; Trutnevyte,
Barton, et al. 2014; Cao et al. 2016) and climate change community (Nakicenovic, Lempert, and
Janetos 2014; Vuuren and Carter 2014; Shepherd et al. 2018; Shepherd 2019; Guivarch et al.
2022). The main limitations of this approach lie in the fact that (i) scenarized futures appear as
more plausible as unscenarized ones and (ii) scenarios are strongly constrained by the perception
of the future in present-day conditions, and extreme events or radical changes are often neglected
(Trutnevyte, McDowall, et al. 2016; McCollum et al. 2020; Hickel et al. 2021). We thus try in the


https://www.irena.org/Data/Capacity-building/Data-Collection-Guide

1.2. The future state of the energy sector 11

| . pY
Wind
BN Bioenergy
[ Hydro.
Nuclear
| EEE Gas
. 0l
mmm Coal
|

140 A

) IIIII..I...
61.4

10

)

61.4
614 i
631 P31 4

80

Installed capacity (GW

20 2021 2022 202 2050

“Year

Figure 1.2. Historical and future electricity generation mix for France. Data from RTE
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following to explicit our scenario choice, and to explore a broad range of possibilities, even if they
might seem unprobable or extreme in some regard.

We discuss in this section two of the possible paths the european energy system could take
in the near future: the transition to high-VRE penetration electricity generation systems and the
electrification of other sectors of the energy system.

1.2.1 VRE penetration

We explore first the feasibility of high-VRE electricity generation systems. High-VRE penetration
scenarios receive a lot of credit for the attention that has been and is currently given to them at the
level of intergovernmental organizations such as the International Energy Agency (IEA), or at the
state level: high-VRE electricity systems are becoming a cornerstone of climate change mitigation
and energy policies across Europe (MTES 2020; BEIS 2020; OFEN 2020; BMWK 2022).

Projections at the global level from the IEA have evolved through the different World Energy
Outlooks (WEOQOs). Early projections for 2035 in the New Policies scenario (middle ground decar-
bonization) reached 20 % for the whole European Union (EU) (IEA 2010). The projected penetration
increased in later reports with VRE generation projected to reach 26 % of total electricity generation
globally in the New Policies scenario, and 40 % of total electricity generation in the EU in the 450
scenario (high ground decarbonization). (IEA 2018) projected a penetration of up to 40 % in 2040 at
the EU level and 21 % at the gobal level, in the New Policies Scenario as well. From the 2021 WEO
onwards, scenarios changed and penetrations were projected to reach between 40 % to 68 % in 2050
globally depending on the scenario considered (IEA 2021). These projections were reconsidered
and increased to between 46 % and 68 % in the 2022 WEO (IEA 2022), and between 55 % to 70 % in
the 2023 WEO (IEA 2023b) for 2050 at the global level. We can see how the increase in VRE in the
present pushed for more optimistic projections in the future.

At the level of France, electricity system actors such as the french Transmission System Operator
(TSO) Réseau de Transport de I'Electricité (RTE) or the Agence de 'Environnement et de la Maitrise
de I'Energie (ADEME) also projected the state of the electricity generation sector in accordance with
french legislation regarding GHG emissions and energy policy. Early projections by the ADEME
envisioned penetrations between 52 % to 80 % of total electricity generation in 2050, associated to
110 GW to 165 GW of installed capacity (ADEME 2015). These projections were later revised to
50% to 67 %, with asociated capacities of 135 GW to 210 GW (ADEME 2018). The french TSO
issued in 2021 projections in the same range, with penetrations reaching between 38 % to 88 % (RTE
2021). However, these where associated to much higher installed capacities, ranging from 135 GW
to 344 GW in 2050. The popularity of high VRE futures, perceived as desirable by a certain share of
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the population, and as we saw, important energy agencies, and the political incentive to reach higher
penetration levels than currently, e.g. see (MTES 2020; IEA-RTE 2021) for the case of France, do
not ensure that such increased VRE penetration scenarios will unfold with certainty. It does however
give them some credit, which makes them certainly worth studying.

Envisioning a future with a high penetration of VREs in the electricity generation sector requires
first that such a future is technically feasible. Technical potential is evaluated as the resource that can
be extracted with the current technological capabilities (Edenhofer et al. 2013). It has been assessed
that technical potential for renewable energies and VRE in particular will not constrain their develop-
ment, see e.g. (IPCC 2011) for a global assessment and (Dupré la Tour 2023) for an assessment
at the level of France and the EU. VRE electricity generation sources are however technically differ-
ent from historical hydrothermal generators that supply the vast majority of the generated electricity
currently. The most marked difference lies in their variability and unpredictability: to the contrary
of dispatchable generators, the output of VRE generators cannot be controlled at all (dispatchable
generators are not controllable at will and instantaneously either) or programmed. This increases the
needs for operating reserves (or system flexibility). A second salient feature of VRE generators is
that they are grid-following as opposed to grid-forming. The fact that VRE generators do not provide
inertia as opposed to hydrothermal generators requires additional measures to be taken to ensure
frequency and voltage control in the grid. High penetrations of decentralized VRE might also pose
congestion issues in the distribution and transmission networks. Finally, because of their daily and
seasonal variability, VRE output does not necessarily correlate with periods of high demand, forcing
backup hydrothermal generation to be kept, or increasing the need for operating reserves. These
technical issues have proven and mature technical solutions (T. W. Brown et al. 2018). However this
leads to the question of the cost of such accomodations. This relates to the economic feasibility of
the integration of VREs in the electricity generation sector (Edenhofer et al. 2013). The economic
feasibility of VRE integration was first assessed through the estimation of specific integration costs
(Hirth 2012; Ueckerdt et al. 2013; Sijm 2014; Hirth, Ueckerdt, and Edenhofer 2015; Heptonstall and
Gross 2021). However this approach has been superseeded by integrated approaches modeling the
whole energy/electricity system that focused directly on the optimal levels of VRE integration rather
than on the associated costs for different levels of penetration (Edenhofer et al. 2013; Heptonstall
and Gross 2021).

Sudies exploring economic optima of VRE penetration are often decarbonization studies. The
literature is very rich in this regard. The majority of studies tackle either the decarbonization of the
energy (Henrik Lund 2007; Brian Vad Mathiesen, Henrik Lund, and Karlsson 2011; J. Weyant et al.
2013; David Connolly and Brian Vad Mathiesen 2014; Fernandes and Ferreira 2014; Hooker-Stroud
et al. 2014; Jacobson, Delucchi, Ingraffea, et al. 2014; Kriegler et al. 2014; Jacobson, Delucchi,
Bazouin, et al. 2015; Jacobson, Delucchi, Cameron, et al. 2015; D. Connolly, H. Lund, and B. V.
Mathiesen 2016; T. Brown et al. 2018; Traber, Hegner, and Fell 2021; Williams et al. 2021; Pickering,
Lombardi, and Pfenninger 2022; Hainsch 2022) or electricity (Amorim et al. 2014; Elliston, MacGill,
and Diesendorf 2014; T. Mai et al. 2014; Riesz, Vithayasrichareon, and MacGill 2015; Frew et al.
2016; Krakowski et al. 2016; Mileva et al. 2016; Heuberger et al. 2017; PleBmann and Blechinger
2017; D. P. Schlachtberger, T. Brown, Schramm, et al. 2017; D. P. Schlachtberger, T. Brown, Schéfer,
et al. 2018; Sepulveda et al. 2018; Zeyringer et al. 2018) system. Some target specifically the
optimal VRE mixes to satisfy an electricity demand with (Heide et al. 2010; Eichman et al. 2013;
Becker et al. 2014; Rodriguez et al. 2014; Safaei and W. Keith 2015; Brouwer et al. 2016; Després,
Mima, et al. 2017) or without (Budischak et al. 2013) considering balancing capabilities (such as
storage or a generic form of dispatchable producers), or grid developments (MacDonald et al. 2016).
Some other studies explore the decarbonization of the whole economy (Bibas and Méjean 2014), the
specific role of certain technologies, such as storage (Sisternes, Jenkins, and Botterud 2016; M. T.
Craig, Jaramillo, and Hodge 2018), or other socioeconomic trajectories not specifically targeted at
decarbonization or VRE penetration (Maizi and Assoumou 2014; Alimou et al. 2020). Most recent
studies show economically optimal VRE penetrations on the order of 75% (T. Brown et al. 2018),
92 % to 98 % (Williams et al. 2021) or 93 % (Pickering, Lombardi, and Pfenninger 2022).
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What is high VRE penetration then? From (Heptonstall and Gross 2021) we could give a value
of 35 %, which is the value above which integration costs start to increase significantly. It however ap-
pears from the most recent energy system modeling studies that, most often under a decarbonization
constraint, VRE penetration could reach more than 90 % in an economically viable way. Of course,
the hypothesis of the modeling studies arriving to those figures, and in particular their handling of the
flexibility mix of the energy system, could be discussed. We however consider that penetrations com-
prised between the broad range of 40 % to 90 % are representative of what is feasible technically and
economically, and thus considered valid hypothesis in the construction of plausible future scenarios.

1.2.2 Electrification

In parallel to renewable energies, and in particular VRE, penetration, electrification of the energy
sector is considered to be a serious candidate for decarbonization, and was featured in early de-
carbonization studies (MacKay 2009; Schellekens et al. 2010; Committee on Climate Change 2011;
IIASA 2012; Pfenninger, Hawkes, and Keirstead 2014; Dennis 2015). Electrification is in general
envisioned through a sectoral approach: either the building (commercial and residential), industrial
or transportation sector are seen as potential electrification candidates. If the transportation (Mu-
ratori 2018; Khalili et al. 2019; Kapustin and Grushevenko 2020; Ferdousee 2022; IEA 2023a) and
industrial (Lechtenbdhmer et al. 2016; Palm, Nilsson, and Ahman 2016; Vogl, Ahman, and Nilsson
2018) sectors show a certain potential for electrification, we choose in this study to focus on the
building sector. More specifically, we focus on the electrification of the space heating demand and
the adoption of Air Conditioning (AC) to satisfy the potentially growing cooling demand in the building
sector.

Heating and cooling demand represents a significant share of the total final european energy
demand. This heating and cooling demand (comprising other end-uses than space heating and
cooling) accounted for 51 % of the final energy demand in 2012 (Fleiter, Steinbach, and Ragwitz
2016) and 50 % of the final energy demand in 2015 (Fleiter, Elsland, et al. 2017) for the EU28. Space
heating accounted at this time for 27 % of the total final energy demand while process heating and
water heating accounted for 16 % and 4 % of the total final demand respectively, making the most
of the total final heating and cooling energy demand to all three end-uses. The building sector
accounted in 2015 for 62.5 % of the final energy demand for heating and cooling, of which about
75 % was associated to the space heating end-use (space cooling is very minoritary). Space heating
demand in the building sector is thus the major end-use associated to the heating and cooling energy
demand. Considering now that only 12 % of the final heating and cooling demand is supplied by
electricity in the residential sector and 19 % of it is supplied by electricity in the tertiary sector, we can
see straight away that there is a huge electrification potential for space heating demand in the building
sector in the EU. In the case of France, about 20 % of both the residential and tertiary sector heating
and cooling demand is supplied through electricity. Supposing that a similar share of end-uses holds
as for Europe, this shows similar electrification potential for the space heating demand electrification
in the building sector. Cooling demand is not completely an analogue of heating demand, since all
of the former is supplied through electricity. However estimates of the electrification potential exist
in the literature. (Werner 2016) argue that if all cooling needs were to be satisfied in Europe, then
cooling demand would increase sixfold. This is due to the fact that most cooling needs as of today are
not met since people are keen to accept some discomfort during the hot summer days (D. Connolly
2017).

Another way to look at the eletrification potential of space heating and AC adoption in the building
sector is to look at the equipment rates of the sector. For example, the share of households using
electric heating amounts to 35 % in the US as of 2015 (White et al. 2021) according to the United
States (US) Energy Information Administration (EIA) RECS © from 2015. In Germany and the UK,

Shttps://www.eia.gov/consumption/residential/index.php. Note that other surveys focusing on the
commercial buildings sector https://www.eia.gov/consumption/commercial/, the industry sector https:
//www.eia.gov/consumption/manufacturing/ and transportation https://www.eia.gov/energyexplained/
use-of-energy/transportation.php also exist.

=
|
A
O
O
c
0
=
®)
=


https://www.eia.gov/consumption/residential/index.php
https://www.eia.gov/consumption/commercial/
https://www.eia.gov/consumption/manufacturing/
https://www.eia.gov/consumption/manufacturing/
https://www.eia.gov/energyexplained/use-of-energy/transportation.php
https://www.eia.gov/energyexplained/use-of-energy/transportation.php

14 INTRODUCTION

this share amounts to 4 % and 10 % respectively as of 2015 (Bossmann and I. Staffell 2015). We can
estimate the current percentage of equipment of electric heating in France to be of 35 % and 23 % for
the equipment of AC in the building sector (see Chapter 3 for more details on this estimation). This
shows the huge potential for space heating demand electrification and AC adoption as well.

This state of things is related in France to the different thermal regulations that have been issued
since the 1970s (RTE/ADEME 2020), creating path-dependency effects that make it harder to switch
from one technical solution to another (Bertelsen and Brian Vad Mathiesen 2020). The short-term
evolution, i.e. until 2050, will however not be determined by thermal regulations that only apply to
new buildings (the renovation of the building stock is of only 1% per year). Instead, policy packages
designed for building retrofit and renovation as well as switching from one heating solution to an-
other will be crucial for near-term system transformation (RTE/ADEME 2020). This shouldn’t prevent
research studies as this one to study extreme cases of electrification.

The literature on future scenarios of electricity demand related to heating demand electrification
and AC adoption is rich and diverse, and we refer the reader to Chapter 3 for a detailed overview.
We can here nonetheless underpin that most of these studies do not consider the impacts of such
scenarios on the electricity system investment decisions: studies that consider the impacts on a
prescribed mix (current or projected) are more numerous, but if they allow to compute the vulnerability
of these mixes to future demand scenarios, they are unable to assess the adaptation potential to
future changes. Studies that incorporate this latter feedback are scarce and not well-suited to account
for combined high VRE penetration scenarios. We tackle this gap in the literature in this work.

The future changes in the energy system considered so far consist of socioeconomic changes.
However this is not the sole determinant of future conditions. We saw that the ecological context and
in particular climate is changing and will potentially do so even more markedly than what is currently
observed. We explore the impacts of a changing climate on energy system operations in the next
section.

1.3 Climate change impacts on the energy system

Energy systems are a key component in climate change mitigation policies because of their impact
on the climate system. They are however vulnerable to changing climatic conditions as well. The
literature on the impacts of climate change on the energy system is quite exhaustive. We review
here briefly its most salient features but refer the reader to Chapter 4 for a more detailed overview.
Energy systems will be impacted at all component levels: on the supply side, the demand side and
at the level of physical infrastructure (M. T. Craig, S. Cohen, et al. 2018; Cronin, Anandarajah, and
Dessens 2018; Yalew et al. 2020). This component-level impacts need to be assessed but are not
sufficient by themselves to assess the compound impacts of climate change on the energy system
(Chandramowli and Felder 2014; Miara, Macknick, et al. 2017; M. T. Craig, S. Cohen, et al. 2018).
For this last purpose, integrated studies are necessary. We thus briefly review first component-
level studies found in the literature and then briefly summarize the main limitations of the integrated
assessment literature.

Component-level studies can be classified into demand-side impacts, supply-side impacts and
physical infrastructure-related impacts. Numerous reviews exist on this topic (Schaeffer et al. 2012;
Chandramowli and Felder 2014; Bonjean Stanton, Dessai, and Paavola 2016; M. T. Craig, S. Co-
hen, et al. 2018; Cronin, Anandarajah, and Dessens 2018; Sara C. Pryor et al. 2020; Yalew et al.
2020). The demand-side component-level studies reviewed in this work address the impact of climate
change at different geographical scales: either at the regional or country/state scale (Ruth and A.-C.
Lin 2006; Davis and Gertler 2015; Ralston Fonseca, Jaramillo, et al. 2019), at the continental scale
(Eskeland and Mideksa 2010; M. D. Bartos and Chester 2015; Auffhammer, Baylis, and Hausman
2017; Damm et al. 2017) or at the global scale (Isaac and Vuuren 2009; Levesque et al. 2018; Enrica
De Cian and lan Sue Wing 2019; Ruijven, Enrica De Cian, and lan Sue Wing 2019). Demand evo-
lutions due to climate change are region-specific, although there are robust trends on the reduction
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of the space heating demand and the increase of the space cooling demand with the sole effect of
climate change. Socioeconomic factors are sometimes explored in the aforementioned studies and
are found to have a greater impact on demand than climate change alone. In the case of France a
net decrease on the order of 5 % is attributed to climate change ceteris paribus. On the supply-side
studies vary in scope and geographical area considered. In the studies we reviewed, the impact of
climate change on thermal power plants has been studied for the US and Europe (Vliet, Yearsley, et
al. 2012), Europe alone (Forster and Lilliestam 2010; I. Tobin et al. 2018), China (Zheng et al. 2016)
and globally (Vliet, Wiberg, et al. 2016; Gernaat et al. 2021), Impacts on hydropower generation
have been studied for Europe and the US (Vliet, Yearsley, et al. 2012), Europe (Lehner, Czisch, and
Vassolo 2005; I. Tobin et al. 2018), Sweden (Bergstrom et al. 2001), Switzerland (Schaefli, Hingray,
and Musy 2007) and globally (Vliet, Wiberg, et al. 2016; Gernaat et al. 2021). Assessments of VRE
resource change have also been conducted in different regions and at different spatial scales. For
solar, we reviewed studies over Europe (l. Tobin et al. 2018; Jerez et al. 2015), South-Africa (Fant,
Adam Schlosser, and Strzepek 2016) and the whole world (Gernaat et al. 2021), while for wind,
studies reviewed included Europe (S. C. Pryor, Schoof, and Barthelmie 2005; Isabelle Tobin, Vau-
tard, et al. 2015; Isabelle Tobin, Jerez, et al. 2016; Reyers, Moemken, and Pinto 2016; Soares et al.
2017; Moemken et al. 2018; I. Tobin et al. 2018), Finland (Venaldinen et al. 2004), South-Africa (Fant,
Adam Schlosser, and Strzepek 2016) and the whole world (Gernaat et al. 2021). It can be drawn
from these studies, that at the level of Europe, projected changes on the supply-side are of moderate
intensity (comprised within a 420 % evolution). Finally, impacts of climate change on the electricity
systems physical infrastructure are mainly related to decreased transmission capacity due to high
temperatures (M. Bartos et al. 2016; Loew, Jaramillo, and Zhai 2016; M. T. Craig, S. Cohen, et al.
2018; Cronin, Anandarajah, and Dessens 2018) but we do take this phenomena into account in this
work.

We review in this work a set of 15 studies on the integrated assessment of the impacts of cli-
mate change on the energy or electricity system. We refer the reader to Chapter 4 for a detailed
overview. Among these studies, a single one addresses the vulnerability of current mixes to climate
change for the case of the US (Miara, Macknick, et al. 2017). Considering plausible future power
system configurations (e.g. increased VRE penetration or electrification) has however been shown
to be crucial in climate change studies: it is not enough to consider the current mainly hydrothermal
systems (M. T. Craig, S. Cohen, et al. 2018). The rest of the reviewed studies do consider a changed
energy/electricity system either by prescribing it to some educated guess (M. T. Craig, Carrefio, et al.
2019; Kozarcanin, Liu, and Andresen 2019; Turner et al. 2019; Bloomfield, D. J. Brayshaw, Troccoli,
et al. 2021), or by optimizing it to future conditions (Ciscar and Dowling 2014; Jaglom et al. 2014;
Mima and Criqui 2015; McFarland et al. 2015; Schlott et al. 2018; Miara, S. M. Cohen, et al. 2019;
Peter 2019; Khan et al. 2021; Ralston Fonseca, M. Craig, et al. 2021b; Ralston Fonseca, M. Craig,
et al. 2021a). We find however several limitations in the existing literature. First no study assesses
the combined impact of a VRE resource change coupled to a change in demand caused by climate
change on the optimal investment decisions. Secondly there are only scarce assessments of the
impact of climate change coupled to socioeconomic change on high VRE electricity systems. Both
these issues are addressed in this work.

1.4 Main questions and approach

How to react facing those potential future changes? What are the impacts of such changes? Can
we adapt to them? To what cost? What are the resulting mixes? These are the questions that
structurate our thesis and motivate our work. The goal of this work is not to give a definite answer
to all these overarching questions, but rather to contribute to the building of scientific knowledge and
make progress in the understanding of those questions.

We focus in this study on the coupled impact of climate change and electrification scenarios on
electricity systems. We ask in particular how vulnerable are electricity systems to scenarios of
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climate change coupled to the electrification of heating demand and the adoption of AC, and
how do these changes impact economically optimal investment decisions in VRE capacity.
We have seen that this question has been partially addressed in the literature. We thus focus on
three more precise research questions that have not been addressed previously. These questions
structurate our work and are as follows:

* Q1 — What are the impacts of scenarios of heating demand electrification and AC adoption on
optimal investment decisions in VRE capacity, and what are the associated system costs?

+ Q2 — What are the impacts of climate change induced modifications of demand and VRE
resource on high VRE mixes and on the optimal investment decisions in VRE capacity, and
what is the associated adaptation potential?

+ Q3 — Can we study both drivers of change separately or should we do so in a compound way
to get relevant adaptation potential policy advice?

We address these questions by developing an innovative methodological framework that allows us
to proceed to scenarization of potential future outcomes: of heating demand electrification and AC
adoption on the one side, of climate change impacts on the demand and on the VRE resource on the
other side. These scenarios are then considered separately to tackle questions Q1 and Q2 or used in
combination to tackle question Q3, by using the different separated or compound scenarios as input
to an electricity system model to study the optimal allocations of VRE capacity and the necessary
balancing needs.

1.5 Thesis outline

The thesis is structured as follows. Chapter 2 presents the methodological developments put into
place to address the research questions. We detail in particular the model of demand we use to
scenarize climate change impacted demand and socioeconomic scenarios of electrification. We
then present the methodology employed to derive climate sensitive VRE resource time series. After
that, climate data used throughout this thesis is presented. After giving a brief introduction to en-
ergy system modeling, we present the electricity system model used in this thesis for the different
applications.

In Chapter 3 we present the analysis developed around question Q1. After giving an introduction
on the scenarization of heating demand electrification and AC adoption, and giving an overview of
the literature associated to the corresponding impacts on the energy system, we present the differ-
ent scenarios considered in this study and their associated impacts on the demand. We show that
AC adoption scenarios do not have an significant impact at constant climate given that the intensive
margin is not modified. We then proceed in a last section to the investigation of the impact of heating
demand electrification on the optimal investment decisions in VRE capacity and the associated sys-
tem costs. This last work was the subject of an article submitted for publication in a peer-reviewed
journal, whose preprint is reproduced in this thesis and serves as a presentation of the conducted
work.

Then, in Chapter 4 we tackle question Q2. The content of this chapter consists in an article
submitted to a peer-reviewed journal.

Finally, the results of addressing question Q3 are presented in Chapter 5. These results are also
presented in the form of a paper in preparation to be submitted to a peer-reviewed journal as well.

We finally conclude in Chapter 6.
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18 METHODS

We develop a framework to be able to derive cost optimal VRE mixes that fulfill hourly system
adequacy with optimal dispatch under different scenarios and test the resilience of those mixes to
different scenarios. To do so we develop a minimal temperature-sensitive demand model that we
use for scenarization, which we present in Section 2.1. We then adapt a methodology to obtain
VRE capacity factors at the regional level, which we present in Section 2.2. Both demand and VRE
capacity factors models depend on weather data, which can be obtained for reference conditions or
different levels of projected climate change. This is presented in Section 2.3. We finally present the
energy system model that we adapted to fulfill our numerical experiments objectives in Section 2.4.

2.1 Development of a minimal temperature sensitive demand
model

2.1.1 A review on the modeling of electricity demand
Electricity demand depends on the weather

The electricity demand relationship to weather has been studied for more than 50 years and it is
now well established that the heating temperature sensitive demand depends to the first order on
temperature, whereas the cooling electricity demand depends to the first order both on temperature
and humidity. Early studies in academic literature tackled the question with a variety of purposes: to
study the potential of temperature modification via contrails to reduce electricity demand in the US
(S. R. Johnson, McQuigg, and Rothrock 1969), study the impacts of rare extreme heat waves on
the cooling electricity consumption in the US (Karl and Quayle 1981) or study the potential impacts
of climate change on gas and electricity consumption in the US (David J. Sailor and Mufioz 1997).
(Dubin 1985) is a typical example of a bottom-up approach (or engineering model) relating demand
to temperature to answer economically focused problematics related to households electricity con-
sumption (e.g. the response to price signals), while (Henley and Peirson 1997) discuss the relevance
of parametric and non-parametric statistical methods to represent the demand-temperature relation-
ship in the United Kingdom (UK). Studies vary in the geographical area considered, at the scale of
national grids or regions, with studies focusing on Spain (Valor, Meneu, and Caselles 2001), the UK
(Hor, Watson, and Majithia 2005), Europe (Bessec and Fouquau 2008), Ireland (P. G. Leahy and Fo-
ley 2012) or India (Harish, Singh, and Tongia 2020); or at the scale of cities such as Athens (Greece)
or London (UK) (Psiloglou et al. 2009). Most studies focus on the single demand vs. temperature re-
lationship. Among studies that explore the impacts of other meteorological variables, some consider
wind speed, rainfall, relative humidity and sunshine (Hor, Watson, and Majithia 2005), wind speed,
relative humidity and cloud cover (Apadula et al. 2012), or humidity alone (Maia-Silva, Kumar, and
Nateghi 2020). What stands out from these studies is that temperature is the main driver of electricity
demand, at least for heating, whereas humidity plays also a crucial role for cooling.

The quasi-linear regime of demand as a function of temperature in the heating and cooling
temperature ranges allows to compute so-called temperature sensitivity coefficients. These measure
the linear response of demand to a change in temperature, in units of GWhh~' °C~*. Typical values
of heating temperature sensitivities are e.9. 0.4GWhh~'°C 10 0.5GWhh~' °C~* for the UK (H. E.
Thornton, Hoskins, and Scaife 2016), 2.4 GW hh~!°C~! in the case of France (RTE 2021) (this high
value is due to high levels of electric heating in the building sector, as discussed in Chapter 3)
or 42GWhh~1°C™! for Europe (Wiel et al. 2019). A value of 0.8 GWhh~'°C~" for the cooling
temperature sensitivity of Europe is also given in (Wiel et al. 2019).

Can we forecast electricity demand ?

Electricity demand is a weather-dependent process, and as such is unpredictable with perfect accu-
racy since the initial conditions are never perfectly known and the governing equations are chaotic.
If socioeconomic behavior exhibits a typical pattern that confers some predictability to the demand
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(e.g. more demand on weekdays than sundays, more demand during the day than at night), some un-
predictable short-term socioeconomic behavior adds to the weather uncertainty. Short-term hourly
demand forecasting is an already well-established field of research with mature theoretical back-
ground and a diverse panel of available models: see e.g. (Chan et al. 2012; Tao Hong 2014) for
reviews on point-forecasting, (Tao Hong and Fan 2016; Wang et al. 2019) for reviews on probabilistic
load forecasting or (Weron 2007; Tao Hong, Pinson, et al. 2020) for a global overview. At longer
lead times (typically more than a year), socioeconomic factors dominate and demand forecasting
is a different exercise, where demand is forecast at a coarser time granularity (typically yearly de-
mand). Future demand is then projected according to forecasts on socioeconomical factors such as
population, GDP, fuel prices, etc.

Both types of forecast are used by system operators, although for different purposes: short-term
forecast is used for system operation, while long-term forecasts are mainly used to evaluate the future
security of supply and discuss potential capacity expansion decisions. An example for each case are
given in Figure 2.1 for short-term forecast and Figure 2.2 for long-term forecast. Each figure presents
the forecast absolute and relative error depending on the type of forecast for the short-term forecast
and as a function of the lead times for the long-term forecast. Figure 2.1 is obtained by comparing
the J and J-1 types of forecast from the french TSO RTE to observed hourly national demand data
(RTE 2024). Both forecasts have a different lead time that cannot be exactly determined due to an
untransparent methodology. We can however suppose that the J type of forecast has a smaller lead
time than the J-1 forecast. This is why the error of the J type of forecast is smaller than that of the
J-1 type. State-of-the-art operational forecast models thus have forecast errors on the order of 1%
(i.e. a few hundreds of MW) for the shorter lead times. Figure 2.2 presents the forecast absolute and
relative errors from the long-term forecast exercises of the US EIA, as a function of the forecast lead
time (USEIA 2022). We can see that if for lead times below ten years it can happen that forecasts are
correct (almost zero relative error), it can also happen that forecasts are way off (up to 20 % relative
error). On average, the absolute and relative error increase with increasing lead time. Note that the
convergence of the min. max. and mean errors for lead times above 17 years is simply due to a lack
of data, so that the error distribution at those lead times is not properly sampled.
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Figure 2.1. Example of short-term forecast error. Panel (a) gives the absolute error and panel (b) the relative
error. Errors are represented as box plots, with the median represented in orange, the box representing the
interquartile range between the first and third quartile, with the whiskers extending to 1.5 times the interquartile
range outside of the box. The forecast lead time is not perfectly clear since the methodology is not transparent,
but it can be estimated to be between 1h and 48h for the J-1 forecast and 1h to a few hours for the J forecast.
Data and forecast from RTE (https://opendata.reseaux-energies.fr/) (RTE 2024).

Electricity demand cannot be forecast with certainty at any lead time. However, similarly to
the difference in paradigm between weather forecasts and climate simulations, we aim at producing
plausible time-series of demand given a stationary climate and a set of socioeconomic conditions.
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Figure 2.2. Example of long-term forecast error as a function of lead time. Panel (a) gives the absolute error
and panel (b) the relative error. Data and forecast from US EIA (https://www.eia.gov/) (USEIA 2022).

As such, restrospectively modelling the observed electricity demand or trying to forecast what the
future electricity demand could be is not the focus of this study. We instead focus on producing long
multi-year time series of electricity demand at a sufficient time granularity so that typical features of
the observed electricity demand can be reproduced. We review in the following section the different
modelling approaches developed to this end.

Modelling electricity demand

Modelling the electricity demand as a function of the weather follows two main paradigms (M. T. Craig,
S. Cohen, et al. 2018): top-down models deriving more or less complex relations between spatially
and sectorally aggregated electricity demand and weather variables (most often temperature), and
bottom-up approaches that usually derive electricity demands by sector or end-use, often from the
physical simulation of a set of buildings representative of a larger ensemble. Such a distinction is
similar to that of (D. H. W. Li, Yang, and Lam 2012) that differentiate modelling approaches based on
the Heating Degree Days (HDD)/Cooling Degree Days (CDD) approach and building energy simula-
tion methods, although the top-down category encompasses more models than just the HDD/CDD
approach and some models that qualify themselves as bottom-up are not strictly speaking physical
building simulation models, see e.g. (Ruijven, Vuuren, et al. 2011; Daioglou, Ruijven, and Vuuren
2012; Eom et al. 2012; Chaturvedi et al. 2014; Levesque et al. 2018).

Still, most top-down models use the HDD/CDD approach (Hargy 1997; Spinoni, Vogt, and Bar-
bosa 2015; Mistry 2019) or similar (Auffhammer, Baylis, and Hausman 2017; Enrica De Cian and
lan Sue Wing 2019; Ruijven, Enrica De Cian, and lan Sue Wing 2019; Ralston Fonseca, Jaramillo,
et al. 2019), to represent the electricity demand relationship to temperature, although the details of
the HDD/CDD calculation may differ, see e.g. (Hargy 1997) vs. (David J Sailor 2001). This approach
consists in general in a regression of observed electricity demand against the HDD and CDD vari-
ables to determine temperature sensitivities. Some models however use directly the temperature
variable (Hor, Watson, and Majithia 2005; Damm et al. 2017; Wiel et al. 2019), or an effective tem-
perature parameter to account for the lag between outer and inner temperature equilibration (J. W.
Taylor and Buizza 2003; Bloomfield, D. J. Brayshaw, Shaffrey, et al. 2016; Bloomfield, D. J. Brayshaw,
Shaffrey, et al. 2018; Ruhnau, Hirth, and Praktiknjo 2019; Peacock, Fragaki, and Matuszewski 2023;
lain Staffell, Pfenninger, and N. Johnson 2023). Population weighted temperature is also sometimes
used to account for the heterogeneous distribution in population across the area(s) studied (Ruth and
A.-C. Lin 2006; Isaac and Vuuren 2009; Klein et al. 2013; E. De Cian and |. Sue Wing 2014). Other
top-down models that rely on the HDD/CDD quantities are not properly speaking regression mod-
els, as in (Isaac and Vuuren 2009), or (Bossmann and |. Staffell 2015), the latter scaling typical daily
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hourly demand profiles for each sector to total yearly sectoral demand (which is closer to a bottom-up
approach). Finally, some top-down regression models do not use a meteorological variable at all (Al-
berg Ostergaard, Mgller Andersen, and Kwon 2015). Note that regression models deriving demand
vs. temperature relationsips, depending on their design (this comment applies mainly to models of
total electricity demand), are not exactly speaking models os space heating/cooling demand: as
noted in e.g. (lain Staffell, Pfenninger, and N. Johnson 2023), other temperature sensitive end-uses
like cooking, hot water heating, lighting, or increased appliances cooling needs are captured as well.
This is discussed further in the introduction of Chapter 3. Furthermore, as noted in (Ruth and A.-C.
Lin 2006; H. E. Thornton, Hoskins, and Scaife 2016; Cozian 2021), fitting a model to temperature
also captures other seasonal phenomena not necessarily related to but correlated to temperature:
this is typically the case for lighting, which is related to the seasonal variation in daylight hours.

Bottom-up models do not necessarily rely on the HDD/CDD approach (Eom et al. 2012; Chaturvedi
et al. 2014; Dirks et al. 2015), although some incorporate it in their heating/cooling demand modules
(Ruijven, Vuuren, et al. 2011; Daioglou, Ruijven, and Vuuren 2012; Levesque et al. 2018). Energy-
Plus (Crawley et al. 2001) is an example of a bottom-up, physical building simulation model, whose
use is so widespread that it is worth mentioning. The power of bottom-up models lies in the pre-
cise description of energy demand at the end use level coupled to a fine description of demand
drivers, allowing for the testing of precise socioeconomic scenarios, like for example the replacement
of resistive heaters by heat pumps. This precision usually comes to the computational cost of being
able to simulate only a limited number of buildings and for a limited time range. As such, although
they are relevant to assess changes in demand characteristics (e.g. total or peak demand), most
bottom-up studies lack the accurate representation of demand aggregated over the different energy
sectors, simply because modelling studies focus on a sector, most often the building (Dirks et al.
2015; Levesque et al. 2018) or residential sector (White et al. 2021), or an end-use (Viguié et al.
2020) in particular. Some bottom-up approaches however model the total electricity demand from
computed sectoral demands, often with the addition of a final calibration step (Eggimann, J. W. Hall,
and Eyre 2019; Eggimann, Usher, et al. 2020).

The HDD/CDD family of approaches typically requires the determination of a single or multiple
threshold temperatures, sometimes also called base or balance point temperatures. These corre-
spond to ambient temperatures below resp. above which some heating resp. cooling occurs. When
multiple values are defined, a threshold temperature is usually given for heating and cooling. Typical
values of those threshold temperatures are 11.7°C to 15.6 °C for the state of Maryland (US) (Ruth
and A.-C. Lin 2006), 12.6°C to 24.1°C for Europe (Damm et al. 2017), 18 °C for the whole world
or India (Isaac and Vuuren 2009; Ruijven, Vuuren, et al. 2011), 18.3°C for the US (David J Sailor
2001; D. J Sailor and Pavlova 2003), when a unique threshold temperature is set, whereas values in
the literature for the heating threshold temperature are 15.5°C for Ireland (Hargy 1997; P. G. Leahy
and Foley 2012), 15.5°C over England and Wales (Hor, Watson, and Majithia 2005), 18 °C for Eu-
rope (Eskeland and Mideksa 2010), 18 °C for the whole world (Levesque et al. 2018) while typical
values found in the literature for the cooling threshold temperature are 18.3°C for Mexico (Davis
and Gertler 2015), 20°C over England and Wales (Hor, Watson, and Majithia 2005), 21 °C for the
US (Auffhammer, Baylis, and Hausman 2017) or the whole world (Levesque et al. 2018), 22°C for
Europe (Eskeland and Mideksa 2010).

Electricity demand models are developed for various purposes, the most salient ones being to
project future demand and its characteristics under the impact of climate change in top-down (Ruth
and A.-C. Lin 2006; Isaac and Vuuren 2009; Eskeland and Mideksa 2010; M. Bartos et al. 2016;
Auffhammer, Baylis, and Hausman 2017; Damm et al. 2017; Ralston Fonseca, Jaramillo, et al.
2019) or bottom-up (Dirks et al. 2015) studies, the impacts of socioeconomic drivers in top-down
(Alberg Qstergaard, Mgller Andersen, and Kwon 2015; Bossmann and |. Staffell 2015; lain Staffell
and Pfenninger 2018; Deakin et al. 2021; Peacock, Fragaki, and Matuszewski 2023) and bottom-up
(Eom et al. 2012; Chaturvedi et al. 2014; Eggimann, J. W. Hall, and Eyre 2019; Eggimann, Usher, et
al. 2020; White et al. 2021) studies, or a combination of the two, in top-down (D. J Sailor and Pavlova
2003; Davis and Gertler 2015; Levesque et al. 2018; Enrica De Cian and lan Sue Wing 2019; Ruijven,
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Enrica De Cian, and lan Sue Wing 2019) and bottom-up (Ruijven, Vuuren, et al. 2011; Levesque et al.
2018; Tarroja et al. 2018) studies as well. Other studies focus on studying the relationship of demand
to weather variables (Hor, Watson, and Majithia 2005; Tianzhen Hong, Chang, and H.-W. Lin 2013)
or weather patterns (Bloomfield, D. J. Brayshaw, Shaffrey, et al. 2018). Finally, some of the reviewed
studies focus on the resulting impacts of a modified demand on the power system, through the use
of key power system indicators (demand, demand net of VRE) (Bloomfield, D. J. Brayshaw, Shaffrey,
et al. 2016; Bloomfield, D. J. Brayshaw, Shaffrey, et al. 2018; Wiel et al. 2019; Viguié et al. 2020), or
by using state-of-the-art power system models (Tarroja et al. 2018; Ralston Fonseca, M. Craig, et al.
2021Db; Ralston Fonseca, M. Craig, et al. 2021a).

We can finally note that demand models vary in their space and time granularities, although the
time resolution and length of the modelled time frame are determining. Top-down approaches can
be split between those models that project yearly demand changes usually at large spatial scales,
such as the whole world or main world regions (Europe, China, etc.) (Isaac and Vuuren 2009), or
Europe/european countries (Eskeland and Mideksa 2010), and those models that compute demand
at a finer time resolution, the latter increasing as available data and computational resources allowed
it. Among these we find e.g. (David J Sailor 2001; Ruth and A.-C. Lin 2006) that compute monthly
statewide (US) demand, or (Hor, Watson, and Majithia 2005) for the monthly demand at the level
of England and Wales. Later studies usually reach the hourly time resolution for a whole year,
see e.g. (Alberg Jstergaard, Maller Andersen, and Kwon 2015) for Denmark or (Bossmann and
|. Staffell 2015) for the UK and Germany, for tens of years at the state or country level for the UK
(Bloomfield, D. J. Brayshaw, Shaffrey, et al. 2016; Bloomfield, D. J. Brayshaw, Shaffrey, et al. 2018;
lain Staffell and Pfenninger 2018; Peacock, Fragaki, and Matuszewski 2023) or the US (Ralston
Fonseca, Jaramillo, et al. 2019) or globally (lain Staffell, Pfenninger, and N. Johnson 2023), and up
to thousands of years at the European level (Wiel et al. 2019), despite only daily average demand
being considered. Among bottom-up approaches, the same splitting applies, principally because of
the distinction between physical building simulation bottom-up models and the other approaches,
the former typically having a higher time resolution. Examples of the former include (Tianzhen Hong,
Chang, and H.-W. Lin 2013), which compute hourly demand at the city level, (Dirks et al. 2015), which
compute hourly year long demand at the multistate (US eastern interconnection) level, (Tarroja et al.
2018), computing hourly year long demand at the state level in California (US), (Eggimann, J. W. Hall,
and Eyre 2019; Eggimann, Usher, et al. 2020), which compute the hourly demand at the scale of local
authority districts in the UK, (Viguié et al. 2020) computing subhourly resolution demand for a month
at the scale of Paris (France), or (White et al. 2021), which compute the hourly year long demand at
the county level for a whole state interconnection (ERCOT, US). Other bottom-up approaches usually
focus on the yearly demand at the country (Ruijven, Vuuren, et al. 2011; Daioglou, Ruijven, and
Vuuren 2012; Eom et al. 2012; Chaturvedi et al. 2014) or global (Levesque et al. 2018) level. While
time resolution is of crucial importance for some applications, like energy system impacts assessment
or modeling (Bloomfield, D. J. Brayshaw, Shaffrey, et al. 2016), some models focus exclusively on
the demand vs. temperature relationship, leaving aside the time dimension (Davis and Gertler 2015;
M. Bartos et al. 2016; Auffhammer, Baylis, and Hausman 2017; Damm et al. 2017; Enrica De Cian
and lan Sue Wing 2019; Ruijven, Enrica De Cian, and lan Sue Wing 2019).

We showed that a great variety of electricity demand models exist, going from high time resolu-
tion residential building energy demand simulation to yearly global total electricity demand estimates.
Our ultimate goal is to be able to produce synthetic realistic long (20-30 years) time series of hourly
electricity demand at the regional level under stationary climate and socioeconomic conditions, to
be used in power system modeling tools. Our model should be sensitive to climate, such that the
impacts of climate change can be asssessed. We are interested in methodologies that are able to
capture the change in shape of electricity demand as well as its temporal correlation with VRE gen-
eration. Interannual variability related to weather dependence should also be captured. This implies
being able to produce long (multi year, typically ten) time series of national/regional total electricity
demand (and not just sectoral demand) at fine time resolution (typically hourly). Finally, we want a
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minimal model that gives us access to the temperature sensitivity coefficients and allows us to mod-
ify them without compromising electricity demand signatures, so that scenarios of heating demand
electrification can be derived straightforwardly. The model developed to this end is presented in the
rest of this section.

2.1.2 Model description

We develop a probabilistic linear regression model of electricity demand adapted from (Tantet, Sté-
fanon, et al. 2019). We present in the following sections the general and detailed formulation of the
model, as well as some theoretical background on the fitting and estimation procedure.

Model formulation

Let L(t) be the hourly electricity demand, and T'(¢) the hourly outdoor surface temperature. The
model can be generally formulated as a probabilistic linear model, i.e.

L) =w’+w- X(t,T(t))+nt), (2.1)

where w? is the intercept of the model, w is the vector of model coefficients, X is a well chosen vector
of features that depends both on time ¢ and temperature T'(t), and n is a residual that accounts for all
stochastic processes affecting the demand that are not captured by the model (typically short-term
unpredictable changes in behavior). We assume this residual to be a Gaussian white noise with
variance o (t). This general formulation will be used to describe the fitting and prediction procedure
in next section. We give now a detailed formulation that explicits the models architecture and design
principles.

At its core, our model is a piecewise linear model of demand as a function of temperature, which,
drawing inspiration from the HDD/CDD approach, assumes that there exist two temperature thresh-
olds Ty and T, below resp. above which electricity demand increases linearly with temperature, and
is thus proportional to a heating (w™) resp. cooling (w®) temperature sensitivity coefficient. Demand
is supposed to remain constant between those two thresholds and is equal to a baseline coefficient
wB. To account for the characteristic hourly daily demand profile and weekly variations in demand,
we introduce two dummy variables h(t) € [0, 23] and j(t) € {0, 1, 2} (discriminating between calendar
days, j(t) = 0, saturdays j(¢) = 1, and sundays/holidays j(t) = 2) that factorize our coefficients such
that our model can be written in its detailed form as

L(t) = w° + @iy iy - X2 () + @i i - X + Wiy gy - X (@) +0(0), (2.2)
where XB, X" and X are given by

XBt)=1 (2.3)
XU (t) = (Tu —T(t))0Tu — T(t)]
X© (T

S~—
|

(t) = Tc)O[T(t) — Tc] (2.5)

where T'(t) is the average daily temperature at time ¢ and © is the Heaviside step function. In Equa-
tion 2.2, w,]?(tm(t), Wiy (1> @nd w}?(t),j(t) are the factorized baseline, heating and cooling coefficients
respectively, which collected together form the vector of 216 model coefficients w. Similarly, XB(t),
XH(t) and X©(t) can be factorized by our dummy variables to wit

(XB(t), XH(t), XC(t)) if kv = h(t) and jr = j(t)

2.6
(0,0,0) otherwise, (2.6)

(Xfl?/,j/(t)vX}Iz{/,j/(t)ﬂX}(zJ/,j/(t)) = {
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and then collected into a single feature vector X (¢) (the explicit dependence on temperature has
been dropped here for clarity). The model then translates back to the general formulation given in
Equation 2.1.

This model design has several implications. First, using the average daily temperature over
the hourly temperature will tend to increase the average daily demand in heating and cooling days
without modifying too much the characteristic demand profile. Using the average daily temperature
rather than hourly temperature is motivated by the fact that heating and cooling processes have some
inertia and that the temperature variations within a day will not impact the building’s inner temperature
as much as average temperature. The second motivation is that the characteristic daily demand
cycle, whether it is associated to heating, cooling or baseline days, is determined by socioeconomic
behavioral factors rather than by the temperature variations within the day (although the daily mean
temperature influences its shape some). As such, using the hourly temperature would introduce
artificial intraday demand variations that would not correspond to any observed behavior.

Second, factorizing the coefficients by hour of the day has the advantage of generating a char-
acteristic intraday demand variation, or daily demand profile, for each type of day (any combination of
heating/cooling/baseline daytype with workday/saturday/sunday and holiday daytype), that is directly
learnt from the data. No external intraday parametrization is thus needed. The demand profiles for
each daytype can further be split between the baseline contribution and the heating/cooling contri-
bution. This allows us to directly derive from the data typical daily temperature sensitive (heating
or cooling) demand profiles. Note finally that as these temperature sensitive demand profiles are
multiplied by a temperature difference in the case of heating/cooling daytypes, the resulting demand
profile (heating/cooling + baseline) will be slightly modified: the latter will have a higher amplitude in
the days where the temperature difference is more important. We discuss further these daily demand
profiles in Section 2.1.4.

Fit and estimation

We use a Bayesian regression framework (MacKay 1992; Tipping 2001; Bishop 2006) to determine
the optimal model coefficients, while also being able to estimate the posterior noise on the model
estimates (i.e. the o2(t) parameter introduced in Equation 2.1). The Bayesian framework is a regu-
larization method and as such prevents the model from overfitting (Bishop 2006, Chapter 3.3). We
use a sparse version of the Bayesian regression framework to prune coefficients of poor quality
(those that are very close to zero or those for which not enough data is available): the Automatic
Relevance Determination (ARD) bayesian framework (Tipping 2001; Wipf and Nagarajan 2007) and
(Bishop 2006, Chap. 7.2), also coined as sparse Bayesian learning or relevance vector machine (Tip-
ping 2001). The regression procedure is streamlined through a scikit-learn pipeline (Pedregosa et al.
2011): alinear model is created for each geographical area (french administrative regions), while the
ARD hyperparameters are empirically set to the same small values for all regions to make the priors
non-informative. Model hyper-parameters Ty and T¢ are determined jointly for all regions through
grid search with k-fold cross-validation. We develop briefly some aspects of the regression frame-
work, to introduce the parameters of the model and to give visibility on the inference of the posterior
noise o (t).

We use for simplification the general formulation of our model, where w is the vector of model
coefficients, of size M (216 in our case). Given a set of training data u of size N (equivalent to N
observations of hourly demand in our case) and a training feature matrix X of size (IV x M), the prior
over the data is given by

p(ulw, B) ~ N(u|Xw, 571), (2.7)

i.e. by a normal distribution with mean X w and variance 3.  is also called noise precision. Note
that we omit X in the conditional probabilities for clarity (i.e. p(u|w, 8) = p(u\X, w, 8)). A particularly
interesting feature of ARD is that a different prior can be given to each coefficient. This allows the
pruning of coefficients that should be zero (this is discussed later) and thus allows the reduction of
the effective number of model parameters (Tipping 2001). The prior over the weights is given by a
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centered elliptical gaussian:
M-—1

p(w|a) = H N (w0, 1), (2.8)
1=0
where « is a vector of size M of precisions for each coefficient.

Parameters $ and « could be determined empirically or via well-chosen hyperparameter deter-
mination procedure (e.g. grid search with k-fold cross validation). However the bayesian formulation
allows us to infer those parameters from the data by defining hyper-priors over them. These hyper-
priors are given by

M—1

pla) = H Gammal(a;la, b), (2.9)
i=0

p(f) = Gamma(f|c, d), (2.10)

where Gamma(-) is the gamma distribution with shape and rate parameters a, c and b, d respectively.
These parameters are empirically given small values so as to obtain a flat and thus non-informative
prior. For general discussion on why priors are given those shapes (gaussian and gamma distribu-
tions) see (MacKay 1992; Tipping 2001; Bishop 2006).

Given the training data, we seek to determine the posterior over all unknowns p(w, «, 5|u).
This distribution is then used in the prediction step, where given a new feature vector X (t) the
corresponding demand is given by

p(L(t)|w) = / (L) w, B)p(w, e, flu)dwdfda, (2.11)

where we omitted the condition over the new feature vector. Since the posterior distribution can not
be analytically derived (Tipping 2001; Bishop 2006), it is decomposed as

p(w, @, flu) = p(w|e, B, u)p(e, flu), (2.12)

where the first term can be shown to follow a gaussian distribution, p(w|a, 3,u) ~ N(w|my, Sy),
with parameters

my = Sy X"y, (2.13)
Sy =(A+pXTX), (2.14)
where A = diag(ao,...,an—1) is the diagonal matrix of precisions associated to each weight.

Evaluation of the hyperparameter posterior p(«, 8|lu) needs an approximation, e.g. see (Tipping
2001)(Bishop 2006, Chapter 3.5), and is reduced to the determination of the hyperparameter poste-
rior modes

IE%X{p(a, Blu) o p(ula, B)p(a)p(B)}. (2.15)

The maximization problem in Equation 2.15 must be solved iteratively since no closed form can be

analytically derived for its solution (&, 5). The update formulas depend on the chosen hyperparame-
ters for the gamma distributions. In the general case:

Y + 2a

o = o (2.16)
new\—1 __ ||u_XmN||§+2d
gy = NS yi+2c (2.17)

where ~; is the quantity defined by
vi =1 — ;SN,iis (2.18)
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where the Sy ;; are the variance/covariance matrix diagonal elements. The interpretation of param-
eter ~ is discussed hereafter. Note that this is the step where pruning of coefficients occurs (Tipping
2001). All weights whose precision goes to infinity - and numerically beyond a certain threshold .,
- are set to zero. The value of a., is empirically determined.

The predictive distribution is then given by

p(L(t)|w) = p(L(t)|u, &, 5) = / p(L(D)|w, B)p(w|é, 5, u)dw, (2.19)
and one can show that p(L(t)|u) ~ N(L(t)| X (t)my, o%(t)), where
o (t) =B+ X (1) TSN X (1), (2.20)

where o (t) is the standard deviation of the Gaussian white noise 7(t).

These developments allow us to discuss two important points. The main informations we want to
get from our model are twofold. First we want to know how accurate are our coefficients estimations
(how good are the temperature sensitivities estimates we get ?). Then we want to know what infor-
mation is given by the posterior deviation o (is this true noise, noise coming from a lack of data, noise
from true temperature sensitivity coefficients ?). Model coefficients quality is given by the parameter
~. By definition, we have v € [0, 1]. A coefficient w; (with expectation value my ;) is of good quality
when ~; — 1 and of bad quality otherwise. In some sense this gives an idea of how well the data
available allowed to constrain the coefficients. If we look at the right part of Equation 2.18, we see
that it corresponds to the ratio between the prior deviation of the coefficient i, ¢; !, and its posterior
deviation, Sy ;. This ratio tends towards zero when the posterior deviation is much smaller than the
prior deviation. We think it is important to note, as suggested by empirical numerical experiments
(not shown here), that nor ¢; " nor Sy ;; give an estimation of the true intrinsic/posterior noise on
the coefficients. In this sense we disagree with (Tipping 2001) that states that the values of Sy ;; can
be used as errorbars for model coefficients. In fact the interpretation of « is rather counterintuitive: a
high prior precision does not mean a good coefficient quality: we have that Sy ;; — 0 when @; — +oo,
which yields w; — 0 (Equations 2.13 and 2.14). This property is used to prune coefficients that “we
are a posteriori certain to be zero”(Tipping 2001). We thus leave aside interpretations related to
the coefficients prior and posterior noise and concentrate on ~, which is a measure of how well the
available data allowed to constrain the coefficient (i.e. reduce the coefficients noise compared to the
prior noise). Note that we empirically observe that for the same amount of data available, coefficients
close to zero have a lesser quality than more positive or negative coefficients. Further research is
needed to fully explicit this mechanism.

We postulated that the posterior noise would be the result of all stochastic processes affecting
the demand our model is not able to capture. By that we mean all processes that affect the load once
intraday, weekly variability (including holidays) and temperature sensitivity are taken into account.
From Equation 2.20 we can see there are two contributions to the predicted noise on the data. The
term in 3! is the contribution of the estimated precision of the noise to the posterior deviation. The
second term is the contribution of the data to the posterior deviation. We can see that when the
number of data points is very big (N — +o0), this contribution vanishes. We do also empirically
observe in numerical experiments (not shown here) that the posterior deviation equals to the square
root of the inverse precision of the noise when N is sufficiently big (in the order of a hundred to a
thousand data points per degree of freedom). There is thus an explicit contribution of the lack of data
to the posterior deviation. We can loosely see things as if the 3! term captured the true noise of
the data whereas the other term would add noise if not enough data was available. However, even
with enough data available, the interpretation of the posterior deviation should be prudent. Numerical
experiments (not shown here) suggest that the model in its state (Bayesian ARD) cannot differentiate
noise in the data coming from true intrinsic noise or noisy coefficients. One cannot differentiate
wether the data is noisy because some process were not explained by the model or if simply the true
temperature sensitivity coefficients are noisy. This could be tested by running numerical experiments
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with artificial data generated with an intrinsic standard deviation and/or with noisy linear coefficients,
and is left for future research.

Hyperparameters selection

The rate parameters of the Gamma function that determine the hyper-priors over parameters o and 3
are empirically given small values to make the priors flat and non-informative. These parameters are
reported in Table 2.3. We then select the best models against hyperparameters Ty and T, via the
grid search with k-fold cross-validation procedure implemented in scikit learn (Pedregosa et al. 2011).
The number of folds corresponds to the number of whole years available in the data to preserve the
seasonal cycle in each fold. The metric used at each gridpoint to evaluate the quality of the model
is the coefficient of determination r2. We implement one linear model per region/geographical area
(i.e. model coefficients are region-specific). However, hyperparameters are determined over the
whole geographical area and are thus the same for every regional model. We thus use the mean
coefficient of determination over the whole area to select the best set of hyperparameters and as
a measure of regional models quality. The motivation for this procedure is twofold: it makes the
model less computation-intensive by reducing the number of hyperparameters and creates a weak
correlation between regional models. The first point is motivated by the fact that numerical complexity
is divided by the number of regions in the total geographical area considered. This could be tackled
by model parallelization but goes beyond the scope of this study. The second point is motivated by
the consideration that some correlation in electricity consumption patterns must exist between the
contiguous regions constitutive of the whole geographical area.

2.1.3 Model training data

We fit a model for each one of the 12 metropolitan France administrative regions. We use weather
reanalysis data to train the model (to compute the training feature matrix X), although a different
data source is used in Chapter 3 and Chapter 5. More information on weather data is given in
Section 2.3. In both cases gridded values of the surface temperature field are averaged over every
administrative region to yield hourly time series of surface temperature used to derive X to train
the model corresponding to a region. The training data u is computed from hourly total electricity
demand data at the level of each french administrative region from the french TSO RTE (https://
opendata.reseaux—-energies.fr/). The training datasets are presented in Tables 2.1 and 2.2.

Data source | Chapter Reference
Opendata réseaux énergie | Chapter3and5 https://opendata.reseaux—-energies.fr/
MERRAZ reanalysis Chapter 3 (Gelaro et al. 2017)
ERAS5 reanalysis Chapter 5 (Hersbach et al. 2020)

Table 2.1. Demand model training data sources description.

Data source | Temporal resolution Spatial resolution Common range
Opendata réseaux énergie Hourly French administrative regions 2014 — 2019
MERRAZ2 reanalysis Hourly (0.5°1at, 0.625 °10n) 2014 - 2019
ERAS5 reanalysis Hourly 31 km (0.281 25°) 2014 -2019

Table 2.2. Demand model training data sources resolution.

2.1.4 Model results

We present an overview of the resulting best model over the whole area of study for the model in
its Chapter 3 version (i.e. using MERRAZ2 reanalysis data, see Table 2.1). We first present model
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hyperparameters and then turn to model coefficients. Although the model is already validated via
k-fold cross-validation over the 2014-2019 period, we conduct a final validation step over aggregated
national data with the model predictions and observations for the year 2013 (which was not used for
training).

Model parameters

Hyper-priors hyperparameters a, b, c and d, as well as the threshold used to prune coefficients o, are
empirically set and reported in Table 2.3. For parameters 71y and T, the grid used to conduct the grid
search as well as the corresponding score for each hyperparameters pair are shown in Figure 2.3. As
these hyperparameters are determined jointly for all regional models, the score corresponds to the
average over the regions of the coefficient of determination r2 of each regional model. The grid was
designed based on usual values found in the literature as well as iterated score space explorations.
Following this logic, the best pair of 7T and T hyperparameters would be (Ty,7¢) = (15°C, 18°C),
for a best score of 2 = 0.887. However we can observe that the best score does not change much
with the values of T when the optimal value of Ty is considered. We thus decide to set the T¢
parameter to a value of 20°C, to avoid having negative cooling temperature sensitivity coefficients
(w®). Although a value of 18°C for the Tz parameter would perfectly fit with values found in the
literature, setting T = 20°C is motivated by an increased physical meaning of the resulting model.
Still, the score for the (Ty,Tc) = (15°C,20°C) pair is of > = 0.887 as well, and thus the loss
in prediction performance is not significant up to 3 significative digits in the prediction score. The
resulting coefficients and coefficient qualities do not change either to the first order, as discussed
later. Increasing the T hyperparameter however comes to the price of having less data to constrain
the w® coefficients, as well as missing some days where cooling actually occurs. Although the value
of 20°C decreases the number of negative coefficients it does not resolve all the issues (this is
discussed further in Chapter 3) related to negative coefficients. This value is thus a compromise
between sticking to a value that gives the best prediction score and preventing non-physical model
behavior from occurring. The best value and chosen value for the Ty and T hyperparameters are
reported in Table 2.3. The model with chosen hyperparameters is referred to as the best model, and
is the best as in the compromise between the best purely statistical model and the model that has
the most physical meaning.

Parameters | Range Bestvalue ! Chosen value
Heating temperature threshold (Ty) | [13,17]°C 15°C 15°C
Cooling temperature threshold (T¢) | [18,22]°C 18°C 20°C
Hyper-priors parameters (a, b, ¢, d) - - 1076
Pruning threshold (c..) - - 106

Table 2.3. Demand model hyperparameters for the ARD bayesian regression framework. ! If applicable -
parameters related to Gamma distributions (a, b, ¢, d) and pruning threshold o, are empirically set.

Model coefficients

The best model coefficients are presented Figure 2.4 for the intercept (w°), Figure 2.5 for the baseline
coefficients (w®), Figure 2.6 for the heating temperature sensitivity coefficients (w™) and Figure 2.7
for the cooling temperature sensitivity coefficients (w®). Model coefficients quality (v) is presented
Figure 2.8.

The intercept corresponds to the part of the training data independent from temperature. It
thus corresponds roughly to the average demand on the baseline days. Regions do not contribute
equally to this baseline part of the national energy demand: the greatest intercept is about 4 to 5
times higher than the lowest one (Figure 2.4, by reading the values at the extremities of the box’s
whiskers), while half of the regions have an intercept between 2 GW and 4 GW. The baseline part of
the demand is the result of the addition between the intercept w° and the baseline coefficients w?,
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Figure 2.3. Grid and scores for the Ty and T hyperparameters determination. The cross-validation score
(CV Score) corresponds to the coefficient of determination 2. Values of the T parameter are given on the y
axis on the left, and values of the Ty parameter are given on the x axis on the top (see also Table 2.3).

which represent variations around the intercept. As such here coefficients can be negative without
any issue regarding the physical meaning. The baseline daily demand profile (or daily cycle) is thus
encoded in the baseline coefficients. It corresponds to the demand profile when there is no heating
nor cooling, to which the heating/cooling demand profiles are added on the heating/cooling days. We
can observe from Figure 2.5 that the baseline coefficients are higher during workdays (Cal. Daytype
= 0) than saturdays or sundays/holidays (Cal. Daytype = 1 or Cal. Daytype = 2). The baseline
demand profile presents the usual main features, e.g. (Créti and Fontini 2019): a broad peak during
the day and an evening peak between 17h and 19h (Coordinated Universal Time (UTC)), followed
by a late evening peak at around 22h (UTC). Baseline coefficients are overall well constrained by the
data, except for those that are close to zero. This is evidenced by looking at coefficients quality ~,
which is shown in Figure 2.8, between indices 72 and 143. Although all coefficients have the same
amount of data to be constrained, those close to zero exhibit a lower quality (v closer to 0). This
hints at the fact that the model cannot distinguish those coefficients that should actually be zero from
the coefficients that should be zero because they cannot be satisfactorily constrained by the data.
Further exploration of the model is needed to explicit this behavior and its impact on the modeling
results.

Heating and cooling coefficients encode the heating and cooling temperature sensitive demand
variations within the day. They vary across regions due to probable differences in population, level of
electric heating equipment and other socioeconomic factors. Heating coefficients w! give the hourly
demand profile of heating temperature sensitive demand, which to first order can be considered to
be that of electric heating (this is discussed later). The heating demand profile is roughly constant
throughout the day (even at night) with light peaks in the morning during workdays and in the evening
throughout the week. This daily profile will be added to the baseline profile during heating days with
as much intensity as the day is colder than the heating threshold temperature: increased peaks in
the morning and in the evening are thus expected in the demand profile of heating days. The heating
demand profile is quite homogeneous through the different regions (with variations in magnitude)
with the notable exception of two regions with very flat profiles and one region (coresponding to
lle-de-France) with a notably higher and more variable profile. Heating coefficients quality are very
good (v — 1) throughout the day and for every region (see Figure 2.8, between indices 0 and 71).
This is expected since the amount of occurrences of heating days — and the associated amount
of data available to constrain the coefficients — is relatively important in France, compared to that
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Figure 2.4. Intercept of the linear model. The box represents the distribution over the study area (metropolitan
France). The orange line represents the median while the box represents the interquartile range between first
quartile and third quartile. Whiskers extend to the farthest point within 1.5 times the interquartile range.

of exclusively baseline or cooling days. Compared to the baseline coefficients, here no coefficients
should naturally be zero.

Cooling coefficients w® encode the cooling demand profile. The latter is more variable than
the heating demand profile with a broad daylight peak followed by an evening peak around 20h-21h
(UTC). A notable feature of cooling temperature sensitivity coefficients is the occurrence of negative
coefficients, around 6h-7h and 18h (UTC), Figure 2.7. This is discussed later. The cooling demand
profile is more heterogeneous than the other profiles across regions. Two groups of regions can
be distinguished: those with positive coefficients and a marked daily profile and those with a rather
flat and almost zero demand profile. This translates the fact that only some regions in France use
the AC as of the 2014-2019 period. This will have consequences in the design of AC adoption
scenarios and is further discussed in Chapter 3. Cooling coefficients quality is much worse (v — 0)
than for the heating coefficients, with the notable exception of regions Nouvelle-Aquitaine, Auvergne-
Rhéne-Alpes, Occitanie and PACA (see Figure 2.8, between indices 143 and 215). This due to those
coefficients being close to zero or due to a lack of data to constrain these coefficients satisfactorily.
The occurrence of cooling days in France is indeed much less than that of baseline or cooling days.

Two important points merit further discussion. The first is the fact that not all temperature sensi-
tive demand is related to space heating (for space cooling the hypothesis is more accurate). This is
further discussed in Chapter 3. In fact, it can be inferred from available data that the ratio of space
heating demand to temperature sensitive demand amounts to about 2/3. However, this is true for
daily average demand data. The relative distribution of space heating throughout the day is not ev-
idenced by the available data. This could pose a problem in our scenarization exercise where we
project scenarios of heating demand electrification by multiplying the temperature sensitivity coeffi-
cients (see Chapter 3). It could be that other end-uses not related to space heating with a minoritary
average daily contribution still concentrate on a few hours of the day, thus significantly modifying the
daily demand profile that is later to be multiplied in the scenarization exercise. An example of such
an end-use would be lighting, which is typically cited as a temperature sensitive end-use, and whose
usage — at least in the residential sector — is very probably concentrated in the morning and the
evening when people are awake but there is no daylight. This could explain the morning and evening
peaks that we observe in the heating temperature sensitive demand profile (Figure 2.6) in particular
for workdays (Cal. Daytype = 0). However some studies suggest that these peaks are meaningful
(Peacock, Fragaki, and Matuszewski 2023). Further research with data disagrgegated by end-use at
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a high time resolution (hourly rather than daily) would be needed to better characterize the contribu-
tion of each end-use to the observed temperature sensitive demand profile aggregated at the level of
a french administrative region or France. We thus here point out — and this should be kept in mind
— that even if we scale our scenarios of heating electrification by the contribution of electric heating
to the current temperature sensitivity (2/3), we cannot disentangle the relative importance of space
heating at each hour of the day. The resulting demand profiles in the increased heating electrification
scenarios will thus keep the same shape, scaled by a coefficient.

The second point necessitating further discussion is the occurrence of negative coefficients. This
behavior poses no problem in the case of baseline coefficients since the baseline part of the demand
is the addition of the intercept w® and the baseline coefficients w®, and as such is always positive.
This behavior can however pose problems in the case of heating and cooling coefficients, and as
only the latter are affected, we will focus our discussion on the cooling coefficients case. It can make
physical sense that some cooling coefficients w® are negative: this can represent a modification of
the baseline demand profile during cooling days where, e.g. less demand is needed over a certain
hour. However it should be that the daily average of the cooling coefficients is positive or zero. Indeed
if some cooling via AC occurs during cooling days, then the average demand over the day should
be larger in the end. This is not the case for each region, and this issue is further discussed in
Chapter 3. To prevent this from happening we increase the T threshold. As already discussed this
does not change model prediction performance significantly. We can also show that the intercept,
baseline and heating coefficients are not significantly affected either. This is shown qualitatively by
comparing Figures 2.4, 2.5 and 2.6 to Figures A.1, A.2 and A.3 in Appendix A. We can however
observe that increasing the T¢ threshold has the desired effect: cooling coefficients are increased
and less coefficients are non-zero (compare Figure 2.7 to Figure A.4, or Figure 2.8 to Figure A.5). As
was already discussed, while increasing the cooling threshold tends to reduce the undesired model
behavior, it also reduces the amount of data available to constrain the coefficient. We empirically
find that T = 20°C is a good tradeoff. The impacts of such model behavior is further discussed in
Chapter 3.

Final validation & summary

We focus in this section on the predicted demand aggregated at the national level, since this is the
input to the power system model, and compare it to observations from the year 2013. The observed
and predicted demand for France for the year 2013 are shown Figure 2.9a. We can see that the
overall seasonal trend is well represented by our model: a higher demand in the winter and a lower
demand in the summer. The weekly cycle is also well represented (shown by the high frequency
oscillation in the figure, most visible in the summer). There are some periods however where the
demand is either overestimated (in late spring, between days 100 and 150) or underestimated (e.g.
during early summer, between days 150 and 200). A notable phenomena that we do not capture
is the summer holidays, between days 200 and 250. Nonetheless our model has a good predictive
power: the daily average Root Mean Square Error (RMSE) is of 3.26 GW (from 3.8 % to 9.1 % of the
observed demand) and the coefficient of determination (0.927) is close to a value of one. For the
hourly values, both indicators are a bit worse but still very good: the hourly RMSE is of 3.81 GW, i.e.
from 4.1 % to 12.8 % of the observed demand, while the coefficient of determination (0.914) is also
close to a value of one. These values compare well to other state-of-the-art demand models with a
similar approach to ours (lain Staffell, Pfenninger, and N. Johnson 2023).

The demand response to temperature is well represented by our model. This is qualitatively
shown in Figure 2.9b. This figure evidences how France is a heating dominated country, with little
cooling temperature sensitivities and only a few excursions above 20°C. A notable feature of our
model is to be able to discriminate between workdays, saturdays and sundays, which explains a
sensible share of the vertical spread of demand for a given temperature. We can however observe
that the spread predicted from our model is much lower than that of the actual demand. Note that the
notion of heating and cooling days is a bit ambiguous here since we are dealing with french national
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averages (i.e. averages over the different administrative regions) and it can happen that on the same
day one region experiences a cooling day whereas the other will experience a baseline or even a
heating day. We thus speak in this section of cold, mild and hot days instead of heating, baseline and
cooling days.

If the seasonal behavior of demand, associated to the temperature dependence of the former, is
well represented, so are the hourly variations. We show this by comparing the modeled and observed
demand profiles at the national aggregated level and for mild, Figure 2.10a, cold, Figure 2.10b,
and hot days, Figure 2.10c. We can see that these differing demand profiles are qualitatively well
reproduced by our model. We give as an indication the count for each type of day, to make clearly
visible that cold days are much more frequent in France than hot days or purely mild days.

We thus work with a demand model capable of reproducing the main features of the electricity
demand aggregated at the national level: from the seasonal cycle to the daily demand profiles, our
model has a good prediction power that translates in average errors on the order of 5 % to 10 % of the
observed demand, while more than 90 % of the demand variability is explained. This model allows us
to generate long (from 10 to 30 years long) time series of hourly demand representative of a given
set of socioeconomic conditions. Scenarios of electrification can also be designed from the model by
multiplying its coefficients. It should however be kept in mind that these scenarios of electrification
will retain demand profiles with similar shapes to those learnt during the training process, and as
such will keep a signature of given socioeconomic conditions.
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Figure 2.5. Baseline coefficients of the linear model. Model coefficients are represented throughout the day (to
each hour of the day corresponds a coefficient). The different lines correspond to the different french
adminsitrative regions.
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Figure 2.6. Heating temperature sensitivity coefficients of the linear model. Model coefficients are represented
throughout the day (to each hour of the day corresponds a coefficient). The different lines correspond to the

different french adminsitrative regions.
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2.1. Development of a minimal temperature sensitive demand model
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Figure 2.8. Model coefficients quality (). Heating coefficients w are indexed between 0 and 71, baseline
coefficients wB between 72 and 143, and cooling coefficients wC between 144 and 215.
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modeled demand in 2013.
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2.2 Determination of VRE capacity factors

To determine long (tens of years) time series of VRE capacity factors to be used as input for our
power system model, we rely on the methodology presented in (Tantet, Stéfanon, et al. 2019) to
which we add some extra features. We briefly summarize the methodology here.

2.2.1 VRE capacity factors computation

Wind capacity factors

Wind capacity factors are computed by passing the total wind speed through a power curve transfer
function and dividing by the turbine nominal power. We use a reference power curve extrapolated
from the Siemens SWT-2.3 MW-101m model specifications (Tantet, Stéfanon, et al. 2019) that we
reproduce in Figure 2.11.

T T T
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Figure 2.11. Reference wind turbine power curve. The vertical dotted lines mark the cut-in, nominal power and
cut-out wind speeds.

Zonal and meridional wind speeds components are first extrapolated at hub height (101 m) using
a power law with exponent 1/7 according to (Justus and Mikhail 1976), which is a satisfactory ap-
proach, as discussed in (Tantet, Stéfanon, et al. 2019, Section A.3.1-). We assume that the turbine
is always facing the wind and we neglect wake losses, so that total wind speed is used.

In Chapter 3 wind speeds at height are directly passed to the power curve transfer function. As
a consequence, the influence of temperature, pressure and humidity on air density and thus power
output are neglected. In Chapter 5 the influence of temperature is accounted for by correcting wind
speeds for deviating air densities for which the power curve has been established before passing it
through the power curve transfer function. Wind speeds are thus multiplied by a factor (p/p)*/3, with
p the corrected density and p, the reference density. This allows to preserve the cut-in and cut-out
behavior of the turbine. Density is corrected for a deviation from the reference temperature following
(Dupré 2020), such that

p = Pr— e, (2.21)
L
where MP,
po = 250 (2.22)
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and
AT =Ty, — Ty, (2.23)

with P, the reference pressure (1013.25 x 102 Pa), T, the reference temperature (288.15K or 15°C),
M is the dry air molar mass (0.028 964 4 kg mol '), and T}, is the temperature at hub height. The latter
is extrapolated from the temperature at surface following

Th =T - L(Zh - Z), (224)

where T is the surface temperature, L is the lapse rate (0.0065 Km™!), z, is the hub height in m, z is
the height of the surface temperature field in m. Only the effect of temperature is taken into account
as it is the main factor affecting density, compared to pressure and humidity (Dupré 2020). Including
other variabes would be computationally expensive compared to the gains in accuracy.

We thus obtain hourly wind capacity factors at every weather variables grid point, that we then
average at the level of french administrative regions for bias correction. In Chapter 5, wind capacity
factors will be impacted by climate change via the potential changes in wind regimes as well as via
the effect of increasing temperatures.

Solar capacity factors

Solar (Photovoltaic (PV)) capacity factors are computed from the cell efficiency times the incom-
ing global tilted surface radiation (GTS), divided by the modules nominal power, following (Tantet,
Stéfanon, et al. 2019). We present here the main lines of the GTS derivation and cell efficency
computation.

To compute the hourly global tilted surface radiation GTS, we must first compute the hourly
clearness index CI, which is the ratio of incoming global horizontal surface radiation GHS (i.e. the ra-
diative power hitting a horizontal surface at ground level) to global horizontal extraterrestrial radiation
GHET. GHET is obtained from the sun’s position, that determines all angles of interest and varies
as function of time, which we call s. GHS is a field from climate models and reanalyses. The hourly
clearness index is then computed as

GHS(t)

Cl) = GHET(s(1)

(2.25)
Note that it can happen that climate models or reanalyses products used give a GHS variable which
is not hourly. In this case, following (Tantet, Stéfanon, et al. 2019), the hourly GHET is resampled to
the coarser GHS time resolution. An average coarser clearness index is computed following Equa-
tion 2.25 and then upsampled to houly frequency by assuming a constant value through the coarser
time frequency. As an example, if GHS has a daily frequency, then the hourly CI will be constant
throughout the day. This procedure has its importance since it determines whether or not processes
such as changing cloud cover during the day will be accounted for or not (Tantet, Stéfanon, et al.
2019).

Once the hourly clearness index has been computed, the tilted surface radiation GTS can be
computed from it and the global horizontal surface radiation GHS. If GHS is not hourly then it is
recomputed from the hourly clearness index and hourly extraterrestrial radiation using Equation 2.25.
Following (Gueymard 2009; John A. Duffie and William A. Beckman 2013), the global tilted surface
radiation is then computed as

GTS = DirTS + DifT'S + RefTS, (2.26)

where DirTS is the direct component of the GTS, DifTS is its diffuse component, and RefTS its
reflected component. The direct component of the global tilted surface radiation DirTS is computed
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as a function of the hourly global horizontal surface radiation GHS and clearness index CI as
DirTS(t) = DirTF(s(¢),p) - [1 — a(s(t), CI(¢))] - GHS(¢), (2.27)

where DirTF(s(t), p) is the direct transposition factor, computed as a function of the sun’s position at
hour s(t) and the panel characteristics (tilt, azimuth) p that we assume to be constant through time.
The coefficient a(s(t), CI(t)) is the ratio of diffused horizontal surface radiation to global horizontal
surface radiation and is a function of the sun’s position and the hourly clearness index. It is computed
following (Reindl, W. A. Beckman, and J. A. Duffie 1990a). Similarly the diffused component of the
global tilted surface radiation is computed as the product of a diffuse transposition factor DifTF and
the diffuse horizontal surface radiation to wit

DifTS(¢) = DifTF(s(t), p, GHS(t), C1(t)) - a(s(t), CL(t)) - GHS(2), (2.28)

where «(s(t), CI(¢)) was introduced in Equation 2.27 and DifTF(s(t), p, GHS(¢), CI(¢)) is computed
from the HDKR model (Reindl, W. A. Beckman, and J. A. Duffie 1990b)(John A. Duffie and William
A. Beckman 2013, Equation 2.16.7). In turn, the reflected component is computed according to
(Gueymard 2009) as

RefTS(t) = RefTF(a, p) - GHS(t), (2.29)

where RefTF(a, p) is the reflected transposition factor that depends on the albedo a and the panels
characteristics (tilt and orientation). In our study the albedo is considered to be constant through time
and geographical location, and equal to 0.2.
Once the hourly global tilted surface radiation GTS is computed, the hourly solar generation is
computed from
Qpv(t) =¢€-at)- GTS(t) -n-a, (2.30)

where ¢ is the circuit efficiency, n the number of modules in the array, a the area per module, and « is
the cell efficiency which depends on the weather variables wind speed u and temperature T following
(John A. Duffie and William A. Beckman 2013, Chapter 23.3)

a(t) = agpr - (1 = 0 (Teen(t) — Trer)), (2.31)

where agrgr is the cell efficiency at reference temperature Trer = 25°C, § = 0.004 K1 is the thermal
loss and T is the hourly cell temperature defined as

GTS(t) 9.5

Teen(t) =T(t - (Tee — T o
u(t) ()+GTSNOCT (Teen,xoor = Txoor) 15.7 + 3.8u(t)

(2.32)
where GTSxoct = 800 W m~2 is the GTS at Nominal Operating Cell Temperature (NOCT), Teen,NoCT
46 °C is the cell temperature at NOCT, Tnoct = 20°C is the temperature at NOCT, and w(¢) is the
time dependent wind speed. The latter is set to a constant value of © = 1 ms~! so that the influence
of wind speed on cell efficiency and subsequent generation is not accounted for in our model. We
can further notice from Equations 2.31 and 2.32 that the cell efficiency decreases with increasing
temperature (and increasing GTS). The hourly capacity factor Hpy is then computed by dividing the
array generation by the array nominal power to wit

a(T(t)) - GTS(t) - a

Hpv(t) = €- -
dpv

: (2.33)

where g5, = 250 W m~2 is the nominal power per module. Note that the value of the circuit efficiency
(Equation 2.33) does not matter in our case because of the subsequent bias correction step (Tantet,
Stéfanon, et al. 2019).

We thus obtain hourly solar PV capacity factors at every weather variables grid point, that we
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then average at the level of french administrative regions for bias correction. In Chapter 5, PV capac-
ity factors will be impacted by climate change via the effect of increasing temperatures and potential
changes in global horizontal surface radiation (GHS).

2.2.2 Capacity factors bias correction

Regional average capacity factors are then bias corrected following the procedure described in (Tan-
tet, Stéfanon, et al. 2019) by using regional observed wind and solar capacity factors training data

from the french TSO RTE. The data is freely available at ht tps: //opendata.reseaux-energies.

fr/. We hereby briefly describe the methodology.

The computed VRE capacity factors at each grid point are spatially averaged at the level of french
administrative regions. This supposes that in our power system model, VREs are installed uniformly
over each region, and not in the most favorable or simply possible locations. In turn, this allows
for the bias correction of the computed regional capacity factors against observed regional capacity
factor data. This is motivated by the fact that our generation models are simplistic in the sense that
they do not account for technological diversificationin the PV panels and wind turbines fleet, nor do
they account for possible down time due to operation and maintenance activities. Bias correction
also somehow corrects for the spatially uniform distribution of generation capacities hypothesis. We
however need to assume that the bias between simulated and observed capacity factors is stationary,
which is a hypothesis that can be discussed (Bakker, Van den Hurk, and Coelingh 2013; Tantet,
Stéfanon, et al. 2019).

Bias correction is conducted using a linear regression with ridge regularization, using cross-
validation to estmate the prediction error and conducting a grid search to estimate the best regular-
ization parameter. The training data covers the 2014-2019 period.
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2.3 Weather and climate change data

2.3.1 Reanalysis data

We use reanalysis data to train our demand model (see Section 2.1), calibrate the data from climate
models that are used in Chapter 5 (see below), and run our numerical experiments under present
climatic conditions in Chapter 3. Two data sources are used: MERRA-2 (Bosilovich, Lucchesi, and
Suarez 2016; Gelaro et al. 2017) over the 2010 — 2020 period, and ERA5 (Hersbach et al. 2020)
over the 1980 — 2020 period. Further information on both datasets is also available at https:
//gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ for MERRA-2 and https://confluence.
ecmwf.int/display/CKB/ERAS for ERA5. We summarize in Tables 2.4 and 2.5 the data we
extract from these reanalyses as well as the purpose they serve in our study, for MERRA-2 and
ERADS respectively.

Variable Name Data collection Time resolution  Spatial resolution  Application
Surface temperature TLML tavg1_2d_flx_Nx hourly (0.5 °14¢, 0.625°101) PV
Demand
Surface radiation SWGDN tavg1_2d_rad_Nx hourly (0.5 °1at, 0.625 °1n) PV
Zonal wind U10M tavgl_2d_slv_Nx hourly (0.5 °1at, 0.625 °10n) Wind
Meridional wind V10M tavgl_2d_slv_Nx hourly (0.5 °1at, 0.625 °10n) Wind

Table 2.4. MERRA-2 reanalysis data and applications in this study.

Variable Short name Time resolution Spatial resolution  Application
Surface temperature t2m hourly 31km (0.28125°)  Calibration
Surface radiation msdwswrf hourly 31km (0.28125°)  Calibration
Zonal wind u100 hourly 31km (0.28125°)  Calibration
Meridional wind v100 hourly 31km (0.28125°)  Calibration

Table 2.5. ERA5 reanalysis data and applications in this study.

2.3.2 Climate change data

In Chapter 5 we study the effect of climate change on the optimal VRE investments by using climate
change projections from state of the art Global Climate Models (GCMs) and Regional Climate Models
(RCMs) forced with widely used emission scenarios (we use CMIP-5 Representative Concentration
Pathways (RCPs) (Moss et al. 2010)). We present here briefly the models that we select for our
analysis, the data we extract from the modeling exercises, and the data post-processing steps that
we needed to apply to get ready-to-use data fit for our purposes.

Model and data selection

We use climate data from the EURO-CORDEX initiative' (Jacob et al. 2014; Coppola et al. 2021),
which is based on diverse RCMs driven by CMIP-5 GCMs (K. E. Taylor, Stouffer, and Meehl 2012)
forced with the same CMIP-5 RCPs (Moss et al. 2010) for climate change projections. We use six
different (GCM, RCM) model pairs available from the initiative, which we summarize in Table 2.6,
together with the associated experiment and period covered. The references for each GCM and
RCM are given in Tables 2.7 and 2.8. The reader is further referred to (Kotlarski et al. 2014; Vautard
et al. 2021) for a review of the EURO-CORDEX RCMs, the latter including four of our six considered
model pairs.

Thttps://euro-cordex.net/index.php.en
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We select four weather variables for the different applications considered in the study: demand
and VRE capacity factors time series computation. These variables are reported in Table 2.9 together
with their time and spatial resolution.

ID Driving GCM Variant RCM Experiment Period

0 ICHEC-EC-EARTH rlilpt  COSMO-crCLIM  historical 1975 — 2005
RCP 85 2020 —-2099

1 MOHC-HadGEM2-ES riitpt  COSMO-crCLIM  historical 1975 — 2005
RCP 8.5 2020 —2099

2 MPI-M-MPI-ESM-LR r3ilp1  COSMO-crCLIM  historical 1975 — 2005

RCP 8.5 2020 —2099
3 CNRM-CERFACS-CNRM-CM5 r1itp1  COSMO-crCLIM  historical 1975 — 2005
RCP 85 2020 -2099

4 CNRM-CERFACS-CNRM-CM5  r1it1p1 ALADING3 historical 1975 — 2005
RCP 8.5 2020 —2099
5 MOHC-HadGEM2-ES r1i1p1 ALADING3 historical 1975 — 2005

RCP 85 2020 —2099

Table 2.6. EURO-CORDEX (GCM, RCM) model pairs considered in the study.

Driving GCM Version References
ICHEC-EC-EARTH 2 (Wilco Hazeleger et al. 2010; W. Hazeleger et al. 2012)
MOHC-HadGEM2-ES 2 (Collins et al. 2011)
MPI-M-MPI-ESM-LR - (Gutjahr et al. 2019; Mauritsen et al. 2019)
CNRM-CERFACS-CNRM-CM5 5 (Voldoire et al. 2013)

Table 2.7. GCMs considered in the study. More informations on the models can be found at
https://ec—earth.org/ for ICHEC-EC-EARTH, https://www.metoffice.gov.uk/ for
MOHC-HadGEM2-ES, https://mpimet .mpg.de/en/homepage for MPI-M-MPI-ESM-LR and
http://www.umr-cnrm. fr/ for CNRM-CERFACS-CNRM-CM5.

RCM Version References
COSMO-crCLIM 4 (Leutwyler et al. 2016; Sgrland et al. 2021)
ALADING3 6 (Daniel et al. 2019; Nabat et al. 2020)

Table 2.8. RCMs considered in the study. More informations on COSMO-crCLIM can be found at
http://www.cosmo-model .org/content/default.htm, while more informations on ALADING3 can be
found at http://www.umr—-cnrm. fr/.

Data curation

A data curation step is necessary for some of the data obtained from the models to be fit for use.
These are summarized in Table 2.10 for each (GCM, RCM) pair. The calendar conversion from 360
to 365/366 format for model pair 1 is sone by splitting each 360 days year in four periods and then
adding one day at the end of each period, except the last one where three days are added. Each
day added takes the last value of the previous day throughout the day. If this method is fine for daily
average values, it is more problematic for subdaily time resolution values as in our case. Further
methodological developments should take this point in consideration. In the meantime, we should
pay close attention to results obtained from model pair 1 (MOHC-HadGEM2-ES + COSMO-crCLIM).

The cutoff values procedure that needs to be applied for model pair 2 consists in identifying those
EURO-CORDEX values whose magnitude is higher than 10 times the maximum ERA5 reanalysis
value. Those values are then interpolated via linear interpolation when possible, and otherwise taken
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Variable Short name Time resolution  Spatial resolution Application
Surface temperature tas 3h 0.11° (~ 12km)  Wind, PV, demand
Surface radiation rsds 3h 0.11° (~ 12km) PV
Zonal wind ua100m 1h 0.11° (~ 12km) Wind
Meridional wind va1l00m 1h 0.11° (~ 12km) Wind

Table 2.9. EURO-CORDEX variables considered in the study. Wind, PV and demand applications correspond

to wind capacity factors, PV capacity factors and electricity demand time series computation.

as equal to closest previous the non-aberrant value when it exists, or equal to the closest next non-

aberrant value otherwise.

It is not excluded that such aberrant values still remain in the final data

as the cutoff procedure is only applied during the calibration step and thus applies only to historical
data (1975 — 2005). Further methodological developments could focus on consistently checking the
data for aberrant values and systematically applying a cutoff value procedure to the data. In the
meantime, close attention should be payed to results potentially influenced by aberrant meridional
wind field values (e.g. wind capacity factors) in the case of model pair 2 (MPI-M-MPI-ESM-LR +
COSMO-crCLIM) for the RCP 8.5 experiment.

(GCM, RCM) pair ID

Issue

Solution

0
1

o b

Data calibration

calendar is 360 days

downloaded va100m file for year 2093 cannot be read
downloaded va100m file for year 2094 cannot be read
downloaded va100m file for year 2095 cannot be read
downloaded va100m file for year 2096 cannot be read
downloaded va100m file for year 2097 cannot be read
downloaded va100m file for year 2098 cannot be read

year 2099 missing for ua100m, va100m, tas, rsds
downloaded va100m file for year 2099 cannot be read

va100m field show absurdly high magnitude values

downloaded ua100m file for year 2070 cannot be read
downloaded ua100m file for year 2092 cannot be read

year 2047 missing for ua100m, va100m, tas, rsds
downloaded ua100m file for year 2097 cannot be read
downloaded ua100m file for year 2098 cannot be read
downloaded ua100m file for year 2099 cannot be read

Table 2.10. Data curation steps needed in the study.

convert to 365/366 days calendar
replace it with year 2089
replace it with year 2090
replace it with year 2091
replace it with year 2092
replace it with year 2089
replace it with year 2090

replace it with year 2095 or 2091
replace it with year 2098

set a cutoff value

replace it with year 2066
replace it with year 2088
replace it with year 2046
replace it with year 2093
replace it with year 2094
replace it with year 2095

We calibrate the EURO-CORDEX models data to the ERA5 reanalysis using the CDF-t algorithm
(Michelangeli, Vrac, and Loukos 2009; Lavaysse et al. 2012; Vrac et al. 2012; Vigaud, Vrac, and
Caballero 2013) implemented in (Robin, Smith, and Bourgault 2023). As the ERA5 and EURO-
CORDEX models grids do not necessarily match, we first interpolate the ERADS fields at the EURO-
CORDEX models grid points, using 2D linear (bilinear) interpolation. Calibration is then carried at
every EURO-CORDEX model grid point using the interpolated ERA5 data. We show the effects of
data calibration on VRE capacity factors and the load duration curve for each model of the EURO-
CORDEX ensemble in Figures 2.12, 2.13 and 2.14 for PV capacity factors, wind capacity factors and
the load duration curve respectively.
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Figure 2.12. Effect of climate model data calibration on PV capacity factors.
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Figure 2.13. Effect of climate model data calibration on wind capacity factors.
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Figure 2.14. Effect of climate model data calibration on the load duration curve.
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2.4 Power system model

2.4.1 Literature review and motivation

Energy system models where developed in the 70s-80s to support policy making in the energy sector,
see e.g. (Fishbone and Abilock 1981). Since then, advances in computing power and sustained
interest in the topic have seen the landscape of energy system modelling grow in numbers and
capability (see e.g. (Fodstad et al. 2022) and the numerous reviews cited therein). As such, a variety
of energy systems models exist, that can be classified according to their purpose and scope (Grubb et
al. 1993; Pfenninger, Hawkes, and Keirstead 2014; Després, Hadjsaid, et al. 2015; L. M. H. Hall and
Buckley 2016; Ringkjeb, Haugan, and Solbrekke 2018; Prina et al. 2020). Such classifications are
mainly driven by the aim of providing assistance in the model selection process to answer specific
research questions. They can also prove useful in identifying gaps and challenges in modelling
capability to address a specific problem.

The first and maybe most used classification axis is the analytical approach of models, which
distinguishes top-down, bottom-up and hybrid paradigms, see e.g. (Grubb et al. 1993)(Després, Had-
jsaid, et al. 2015). This is a fundamental distinction in the modelling approach between top-down
models that aim at capturing the interplay of energy system variables (supply, demand, etc.) with
other sectors of the economy or typical economic quantities (e.g. GDP) versus bottom-up models
which model technnico-economical systems and aim at deriving the quantities of a system and their
interplay from the modelling of their parts (e.g. the supply of energy will be derived from a set of
power plants with a given operational schedule and the demand from a set of buildings whose de-
mand depends on air temperature). Bottom-up models typically only represent the energy sector
whereas top-down models may represent the interplay between different sectors of the economy. As
such an analytical approach making the most of the two paradigms was developed and coined as
hybrid modelling (Grubb et al. 1993; Strachan and Kannan 2008; Després, Hadjsaid, et al. 2015). Ex-
amples of models falling in each category can be found in either of the precited classification reviews.
Pfenninger, Hawkes, and Keirstead (2014) classify energy system models in four categories, namely
(i) energy system optimization models, (ii) energy systems simulation models, (iii) power systems
and electricity market models and (iv) qualitative and mixed-methods scenarios. Two axis of classi-
fication are also identified: the first axis consisting in the predictive vs. normative paradigm, which
reflects the dichotomy between simulation and optimization models, and the second axis consisting
in the planning vs. operational dichotomy, the latter two corresponding to different yet not irreconcil-
iable modelling paradigms. Widely used bottom-up energy system optimization models are e.g. the
MARKAL/TIMES (Fishbone and Abilock 1981) developed by the IEA ETSAP?, MESSAGE (Schrat-
tenholzer 1981) developed by the IIASA® or OSeMOSYS (Howells et al. 2011) models or family of
models. Energy system simulation models differ fundamentally from the former in their purpose, in
that they are meant to be predictive of the future state of the energy system, rather than exploring po-
tential future states. Examples of such models include NEMS (Gabriel, Kydes, and Whitman 2001),
PRIMES, developed by the E3M team* or LEAP, developed by the Stockholm Environment Institute®.
Power systems and electricity market models, as the name suggests, focus on the power system
part of the energy system. The reader is referred to (Foley et al. 2010) for a review of such mod-
els as of 2010. Finally, qualitative and mixed-method scenarios encompass the type of approaches
on the other hand of the quantitative-qualitative spectrum. (Després, Hadjsaid, et al. 2015) review
power-sector bottom-up models that deal with the integration of variable renewables. They focus
on the models PRIMES, SWITCH, REEDS, E2M2 and ELMOD. They highlight the dichotomy be-
tween these models that can give a high level of detail of the power system but fail at representing
other parts of the energy system, and long-term energy system models, whih lack the temporal and

2https://iea-etsap.org/
Shttps://iiasa.ac.at/models-tools-data/messageix
“http://www.e3mlab.com/e3mlab/index.php
Shttps://leap.sei.org/
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spatial resolution to rigorously account for VRE integration in their studies. The latter are discrimi-
nated depending on their computational approach (simulation like MEDEE, POLES, PRIMES, WEM,
Prometheus and LEAP, vs. optimization like EFOM/MARKAL/TIMES/ETSAP-TIAM, MESSAGE or
0SeMOSYS), their modelling paradigm (top-down vs. bottom-up or hybrid) and introduce the cat-
egories of partial/general equilibrium models (Edmond-Reilly-Barns/SGM/Phoenix, GREEN, EPPA,
MARKAL-MACRO/MARKAL-EPPA, NEMS, AMIGA, CIMS, IMACLIM, NEMESIS, which are all top-
down or hybrid models with a simulation approach — except for the MARKAL family), integrated as-
sessment models (DICE, MERGE, MESSAGE-MACRO, IMAGE, MiniCAM/GCAM, WITCH, DNE21,
MIND/ReMIND, AIM/CGE which are all hybrid or top-down simulation or optimization models) and
economy-energy-environment models (GEM-E3, GEMINI-E3, EBME/E3MG, Three-ME, which are
all top-down simulation models) ¢. L. M. H. Hall and Buckley (2016) propose a classification of
models used in the UK energy modelling community, based on their purpose and structure (general
and specific purpose of the model in plain words, i.e. forecasting/exploring/backcasting and energy
demand/supply, environmental impacts, etc., model structure as in its assumptions, i.e. description
of non-energy sectors, end-uses, etc., geographical coverage, sectoral coverage, time horizon and
time step), their technological detail (renewable technologies, storage, demand sectors, types of
costs), and their mathematical description (analytical approach, i.e. top-down, bottom-up and hybrid,
methodology, i.e. simulation, optimization, etc., mathematical approach, i.e. linear programming, etc.,
and the data requirements). 22 energy system models are reviewed and categorized with this clas-
sification. Ringkjab, Haugan, and Solbrekke (2018) review 75 energy and electricity system models
used to study systems with large shares of VREs. They use the same classification paradigm as in
(Després, Hadjsaid, et al. 2015), namely the model general logic (purpose, e.g. long-term investment
vs. operation, approach, i.e. the typical top-down vs. bottom-up dichotomy, and methodology, i.e.
optimization vs. simulation), the spatiotemporal resolution and the level of technico-economical de-
tail. Finally, Prina et al. (2020) emphasize the disctinction between top-down, hybrid and bottom-up
models and give examples for each category. Following (Després, Hadjsaid, et al. 2015), bottom-up
models are then split in static or short-term models vs. long-term models. Note that this distinc-
tion does not relate to the faculty of representing investment in capacity vs. operation of the energy
system. Static or “short-term” models can solve for capacity expansion, but to the contrary of “long-
term” models, do so in a once-and-for-all fashion, i.e. the investment trajectories are not represented.
They thus have by definition perfect foresight, while long-term models might work under the myopic
planner paradigm, i.e. have limited or no information about the future. Bottom-up models are then
classified according to the energy sectors covered (specific vs. all sectors), geographical coverage
(single vs. multi-node), time resolution, methodology (simulation, dispatch optimization, investment
optimization) and programming technique (linear, etc.).

Challenges in energy system modelling evolved with the scientific questions tackled by mod-
ellers to support policymaking. As an example, traditional energy system models as developed until
the 2000s-10s were unable to address the question of the (un)feasibility of 100 % or high-VRE pene-
tration energy systems, putting forward key challenges to be addressed (D. Connolly, H. Lund, B. V.
Mathiesen, and M. Leahy 2010; Pfenninger, Hawkes, and Keirstead 2014). This led to the develop-
ment of models such as in (Fripp 2012; Haller, Ludig, and Bauer 2012; Pfluger and Wietschel 2012).
Ringkjeb, Haugan, and Solbrekke (2018) identified four key challenges of energy system modelling:
(i) the representation of variability, (i) consumer participation, electrification and sector coupling, (iii)
impacts and links beyond the energy system and (iv) validation and transparency. The first challenge
(i) is mainly presented under the scope of the temporal resolution challenge, i.e. how to get sufficient
time granularity to represent well VRE generation time series in the models. Challenge (ii) is related
to future system transformations and how they can be incorporated in the modelling frameworks,
while challenge (iii) highlights the need for taking into account other sectors (e.g. life-cycle analysis)
to draw more robust analysis on the general impacts of this or that energy system configuration. Fi-
nally challenge (iv) calls for increased openness in energy system modelling. Similarly, Prina et al.

6This review was conducted within the scope of a thesis that ended-up in the coupling of the long-term energy system
model POLES with the power system model EUCAD (Després 2015).
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(2020) identify five of them, four of which deal with the issue of resolution: either in time, in space, in
techno-economical detail or in sector coupling, all of these related to the study of high shares of VRE
integration. The fifth challenge, as already emphasized by (Ringkjgb, Haugan, and Solbrekke 2018),
relates to model openness and transparency. On top of the time and space resolution challenge, Fod-
stad et al. (2022) point out the need to account for sectoral coupling (i.e. considering multi-energy
systems), the rigorous treatment of uncertainty (as already mentioned in (Prina et al. 2020)) and
the integration of social aspects (socio-technical transitions dynamics, behavioral models, etc.) into
energy system modelling.

A central point of our study is to address the issue of high-VREs optimal mix planning while en-
suring the adequacy constraint at all times (i.e. proper system operation), with a detailed description
of VREs installed capacities and generation. Of particular interest to us is thus the temporal and
spatial resolution challenge, which is intimately related to the study of the introduction of high levels
of VREs. A high temporal resolution (typically hourly) is more important than technico-economical
detail (Pina, Silva, and Ferrdo 2011; Haydt et al. 2011) or model complexity regarding operational
constraints (such as flexibility, stability or sector coupling) (Poncelet, Delarue, Six, et al. 2016; Helistd
et al. 2019), when dealing with the capacity investment decision issue. If the number of available
models is large in general, tackling a specific research question can quickly narrow down the list of
available options. For example, among the list of 75 models in (Ringkjeb, Haugan, and Solbrekke
2018), only 30 are able to conduct coupled investment and operation of the electricity system, and 21
out of these 30 have hourly or sub-hourly time resolution. Once all technical factors of model scope
and capabilities are taken into account, model choice then boils down to the stringent need for prac-
ticality of use and human resources availability, which are greatly enhanced if the model relies on a
open science paradigm (Pfenninger, DeCarolis, et al. 2017). The greatest discriminant factor is then
indeed the accessibility of the models to verify fitness for purpose: some models have poor docu-
mentation or contact information, while other are proprietary or rely on proprietary software (the most
common being GAMS and proprietary solvers like CPLEX). Aside of these practical considerations,
proceeding to such a model landscape analysis allows us to point out the strengths and weaknesses
of available tools and to better understand the strengths and weaknesses of our own. We thus men-
tion some tools whose a priori scope and capabilities would have made them tentative candidates
to tackle the research questions addressed in this thesis. Those include, non exhaustively, Calliope
(Pfenninger and Pickering 2018), PyPSA(Tom Brown, Hérsch, and D. Schlachtberger 2018), Eoles
(Shirizadeh and Quirion 2022) or Switch (Johnston et al. 2019). We are however particularly inter-
ested in taking into account long time series (typically 20 to 30 years at hourly resolution) of weather
dependent variables like electricity demand and VRE capacity factors, which allows for the rigorous
study of given climatic conditions (Bloomfield, D. J. Brayshaw, Shaffrey, et al. 2016; Pfenninger 2017;
lain Staffell and Pfenninger 2018; Zeyringer et al. 2018), which in turn allows the incorporation of
climate change impacts.

We adapt to this end the bottom-up, linear programming, power system model E4CLIM (Tantet,
Stéfanon, et al. 2019) in its most recent version (Tantet and Drobinski 2021). The model is a simple
description of a power system where conventional dispatchable producers are treated as an aggre-
gate and a variable share of PV and wind energy can be introduced. By simple we mean that the
model doesn’t represent a state of the art energy system with a diversity of generation technologies,
accounting for operational constraints and having a high level of technico-economic detail. Instead we
insert sufficient complexity for non-trivial economic impacts of VRE integration to be evidenced while
keeping a problem that is mathematically conveniently tractable. This allows us to study the problem
of capacity planning ensuring the adequacy constraint at all times at an hourly level 7. The corelation
of VRE generation and demand is represented at an hourly level as well. Finally, the model is capable
of handling long time series (20-30 years) of demand and VRE capacity factors to smooth out low fre-
quency climate variability and have time series representative of average climatic conditions. Spatial

7Implementing the adequacy constraint in capacity expansion bottom-up models is not straightforward. It is usually ad-
dressed via the Planning Reserve Margin (PRM), i.e. the installed capacity must equal the peak capacity plus the PRM, with
a PRM determined in advance. However this method sometimes fails, see e.g. (Mertens et al. 2021).
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resolution is of particular importance in capacity expansion decisions modelling (Krishnan and Cole
2016). The model has the advantage of representing VRE producers at a medium spatial scale (re-
gional level, i.e. typically 250 km x 250 km) although the entire energy system is represented assuming
the copper plate hypothesis, which is equivalent to a single node. As such, no network constraints
are accounted for. Furthermore, our model does not incorporate operational constraints: start-up or
ramping costs as well as any network stability constraints are not accounted for. Dispatchable pro-
ducers are supposed to be able to instantaneously react to a change in demand and the network is
supposed to remain stable no matter the penetration of grid-following generation (VRE generation in
our case). Although this simplification might have an impact on model results (Poncelet, Delarue, and
D’haeseleer 2020), it greatly simplifies the mathematical complexity of the problem at hand. Then,
the representation of dispatchable producers is purposedly simplified, to consider a single aggregate
producer. If this still allows for the implementation of a variable cost function that mimicks merit-order
dispatching, this simplified representation comes at the cost of not fully resolving the fixed costs of
the dispatchable production. The model mathematical formulation relies on stochastic programming
to account fo the stochasticity of the input variables, demand and VRE capacityfactors. It is however
deterministic regarding other input variables, and in particular regarding costs hypothesis (which are
supposed to be static, i.e. remain constant through the optimization horizon). Finally, the model fo-
cuses only on the power sector and leaves aside any sector coupling. No market mechanisms are
taken into account either, which is equivalent to consider a central planner problem (Créti and Fontini
2019, Chapter 9). We furthermore neglect storage and import/export of electricity to/from the area of
study. No feasibility constraints other than that explicitly mentioned are considered (economic, tech-
nical, political, social, environmental, etc.). We can see that if the model is well-suited to rigorously
take into account weather-related time series and the problem of VRE capacity expansion under the
hourly adequacy constraint, this is at the expense of some limitations. These limitations do not how-
ever impair our subsequent analyses. Following the “modelling for insight” philosophy (Huntington,
J. P. Weyant, and Sweeney 1982), our focus is on producing sensitivity studies which could evidence
non-trivial generalizable effects of VRE integration coupled to socioeconomic and climate change,
rather than trying to derive plausible generation mixes, or prove the feasibility of high-VRE energy
systems 8. Last but not least, the model and the data are open-source and fully accessible upon
request, to improve the transparency of the modelling exercise (Cao et al. 2016; Ringkjgb, Haugan,
and Solbrekke 2018; Prina et al. 2020).

2.4.2 Problem statement

Stochasticity, cyclostationarity and convergence

In our setup, the electricity demand and VRE capacity factors are stochastic processes, because they
depend on weather variables that are themselves stochastic processes following a given probability
distribution related to the climatic conditions. These stochastic processes have however the particular
characteristic to exhibit some cyclicity. Indeed we expect the value of the demand to be more or less
the same every year on some hour of the year in winter, compared to another given hour of the year in
summer, simply because temperature follows a seasonal pattern. Similarly, solar irradiance and wind
speed are expected to exhibit a similar cyclicity because of the seasons. These cyclic stochastic
processes are supposed to be cyclostationary processes (Gardner, Napolitano, and Paura 2006),
which require a particular mathematical setup to be dealt with, presented in detail in (Tantet and
Drobinski 2021, Appendix A).

Furthermore, on top of the cyclostationarity hypothesis, we must suppose that correlations over
the years for a given hour decay fast enough. This is not completely true for the climate system,
and we must thus verify numerically that the sample means converge to the expectation value for

8This follows the early criticism on the fitness for purpose of energy system models and the fact that energy system models
cannot be properly validated by a physical measure, see e.g. (Pfenninger, Hawkes, and Keirstead 2014) and references therein
or (J. Beckman, Hertel, and Tyner 2011).
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the number of years N present in the data. This is, we must verify that for a cyclostationary pro-
cess (X (t)):er, the yearly average of the expectation over the outcomes w (w € Q) of a sample
(X (t,w))eT, €quals the sample average, i.e.

to+NTo—1

To—1
E (Tlo ) X(t,w)) _ NLTO Y X (2.34)

t=0 t=to

Tantet and Drobinski (2021) show that convergence is satisfactory for ten years of data, which we will
use in the following.

Dispatchable producers

Dispatchable producers are treated as a single aggregated producer with maximum generation ca-
pacity xp;. This producer is an idealized producer that can generate power instantaneously when
needed at no extra costs, i.e. it has no start-up or ramping costs, nor operational constraints. Its
generation is thus a non-negative (no storage) cyclostationary process (Gp;(t)):ct. We further sup-
pose in this work that the maximum capacity xp; of this dispatchable producer is always in excess
compared to the demand to be served. This strong hypothesis is necessary to safely discard the
dispatchable production fixed costs from the following analyses. We however anticipate that this hy-
pothesis will have a strong impact on the model results, which is something that will be discussed
in every subsequent analysis. In particular, it implies that the adequacy constraint will always be
verified. Anticipating that introducing VRE will reduce system total costs, we are thus not so much
solving for the problem of optimal mix dimensioning than solving for the problem of optimal VRE mix
dimensioning to satisfy the adequacy constraint at the least cost.
We further suppose that dispatchable generation comes at a variable cost of production VCp;
given by
VCp; = aq?, (2.35)

where ¢ is the generation in MWh, and « is the Dispatchable Variable-Cost Coefficient (DVCC) in
€ MWh 2. The motivation for this form of the dispatchable variable costs is twofold: it has the right
mathematical properties (Tantet and Drobinski 2021) at the same time as it mimicks merit order dis-
patching. Even if only one dispatchable producer is taken into account, the cost of dispatchable
generation will increase as the generation ¢ increases. The generation to meet peak demand thus
comes at a higher cost than that of meeting base demand. The cost of no generation is zero. The
variable costs of the dispatchable generation depend on the DVCC. This parameter, that can be as-
similated to a carbon tax, can be tuned to increase or decrease the variable costs of the dispatchable
generation, which will in turn determine the optimal levels of VRE penetration.

VRE producers

We then introduce m VRE producers indexed by i € {0,...,m — 1} into the mix. Two technologies
distributed across a set of geographical areas are considered: onshore wind and solar PV. Each
producer i is thus referred to as a technology-region.

In the same way as for dispatchable producers a cost function for VRE producers is designed.
VRE producers are supposed to incur no variable costs and thus only fixed costs are taken into
account. This is motivated by the fact that PV or wind-onshore plants are capital intensive assets that
do not however incur any costs related to fuel utilization, nor much operation and maintenance costs.
It is also common practice in the literature to count discounted operation and maintenance costs as
fixed costs (Tsiropoulos, Zucker, and Tarvydas 2018). The cost function of a single VRE producer is
thus constant in time and entirely determined by its hourly rental cost hRC; (€ GW ) and installed
capacity x; (GW), following
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The total cost of VRE producers over a year, C, is simply given by the sum over all technology-
regions,

Cp = TohRC” z, (2.37)

where hRC7 is the transpose of hRC = (hRCy,...,hRC,,_;) the vector of VRE producers hourly
rental costs and = := (xy, ..., z,,—1) the vector of VRE installed capacities.

To the contrary of dispatchable producers VRE producers are not supposed to be able to produce
at all times. Their generation depends on weather variables. As such, as for the demand (L(¢)):er,
the generation of VRE producers is given by the non-negative cyclostationary stochastic process
(H;(t)):eT, Where H; is the time-dependent capacity factor of technology-region i. It corresponds to
the fraction of energy that the producer is generating over the maximum energy that the producer
could generate over an hour. We thus have H;(t) € [0, 1] for every technology-region i. It is assumed
that the probability density function of H;(¢) has the right mathematical properties (Tantet 2021) for
subsequent developments. We define H := (H,, ..., H,,_1) the vector of capacity factors. The total
generation of VRE producers is thus given by

Qo (t) = H(t), (2.38)
where =7 is the transpose of the vector of VRE capacities.

Long term investment problem

We derived so far the cost functions for dispatchable and VRE producers. Some further assumptions
are needed to derive a system total cost that will be used in the long term investment problem. The
first one is related to network costs. In our setup, we work under the ideal copper plate hypothesis, i.e.
we suppose that no transmission capacities limits exist. As such our model can be considered as a
single spatial node with distributed VRE generation that can be aggregated at no extra cost. Network
costs are thus zero. Secondly, operational constraints are neglected: dispatchable producers have
no start-up or ramping costs and grid stability is supposed to be met at any time. Our system is thus
perfectly flexible at no extra costs. Finally, curtailment of VRE generation is allowed and assumed to
come at no extra cost, while imports and exports are not accounted for. These hypothesis yield the
following one year system total cost, given a sample of the dispatchable generation over one year
(Gpi(t,w))ter, -

To—1
STC(, (Gpilt,w))ier,) = Ca + . VCpi(Gpi(t,w)), (2.39)

t=0

for a given w € Q. In plain words, the system total cost over a year is the sum of the VRE pro-
ducers total costs (Equation 2.37) and the dispatchable producers total costs (Equation 2.35) over
a year. This cost function is of interest since it implements formally the tradeoff between the cost of
installation of new VRE capacities and the avoided costs of dispatchable generation. It thus allows
an economical analysis - yet simple - that goes beyond the sole analysis of the Levelized Cost of
Electricity (LCoE) per technology, or the simple consideration of the residual demand.

The long term investment problem then corresponds to finding the mix of VRE producers « that
minimizes the expectation of the system total cost over a year, while ensuring optimal dispatch of
electricity at every time step. In other words, given a load (L(t)):cT, we want to minimize the system
total cost presented in Equation 2.39 so as to serve the demand at all times (adequacy constraint)
at a minimum total cost. The problem is twofold: at the same time we want to find the optimal VRE
capacities to be installed and we want to determine what is the best way to dispatch the conventional
producers generation over the period considered. For the latter is expected: the producers with the
least marginal costs, in this case the VRE producers, should produce first, and dispatchable genera-
tion occurs only when all VRE producers are producing at full capacity. For the former, we expect that
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introducing VREs will tend to increase the total fixed costs of the system (as enough dispatchable
generation is installed to be able to cover the load at all times) but to decrease the variable costs of
satisfying the load. Finally it must be highlighted that because of the cyclostationary and stochastic
nature of the load (L(t)):ct and VRE capacity factors (H (t)).ct processes, we compute the expecta-
tion over all periods of one year (that each represent a given outcome w € 2) of the one-year system
total cost. Note that this is only valid under the hypothesis of a stationary climate, which we already
discussed in Section 2.4.2. Formally, this optimization problem translates into the following program
(Tantet and Drobinski 2021):

min K (STC(x)) (2.40)

st @ <z for i€{0,...,m— 1},
x; >0 for i €{0,...,m—1},

with STC(x, w) the optimal solution of:

min STC((L‘, (GDi(t,w))teTo) (241)

(Gpi(t,w))ter,
st. Gpi(t,w) + Qu(t,w) > L(t,w),
Gpi(t,w) < opj,
Gpi(t,w) > 0.

The first problem (Equation 2.40) corresponds to the problem of long-term investment in VRE ca-
pacities. The second problem (Equation 2.41) corresponds to the problem of optimal dispatch and is
referred to as the scheduling problem. The first and second constraints of problem (Equation 2.40)
ensure that the installed capacities of VRE producers are capped by maximum installable capacities
x*® for each technology-region, and that they should be positive. The constraints on the decision
variable of the scheduling problem are the same as previously stated: the aggregated dispatchable
generation should always be positive (no storage) and not exceed a maximum capacity xzp;. Note
however that the adequacy constraint of the scheduling problem (Equation 2.41) does not impose
that the sum of dispatchable and VRE generation be strictly equal to the demand. It can occur in-
stead that the total generation exceeds the demand for some hours. This formally translates the fact
that we assume in this setup that the demand can be curtailed at no extra cost. We can observe
that the optimal solution of the second problem (2.41), depends on the optimal value of the decision
variable of the first problem = (2.40). Inversely, the optimal solution to the first problem depends on
the the uncertain values of L(t,w) and Q.(t,w) that determine the optimal solution to the second
problem.

The necessary conditions satisfied by the optimal solutions to the long-term investment and
scheduling problems are detailed in (Tantet and Drobinski 2021).

Scheduling problem For the scheduling problem (Equation 2.41), the optimal primal/dual solutions
Gp; (dispatchable generation, MWh) and X (system marginal cost, € MWh™') must verify, for all
t € Ty, and for some residual load RL(t,w),

— when zp; > RL(t,w) >0:

Gpi(t,w) = RL(t,w), (2.42)
At,w) = cpi(RL(t,w)), '

— when RL(t,w)<0:
Gnilt,w) =0, (2.43)
Nt w) =0, '
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where RL(t,w) := L(t,w) — Q(t,w) is a certain realization of the cyclostationary stochastic process
(RL(t)):er (note that it is not necessarily positive) which corresponds to the net demand (or residual
load), i.e. the demand to be served after all generation by VRE producers has been accounted
for. These conditions ensure merit-order dispatching between dispatchable and VRE producers:
dispatchable producers only generate if the net demand is positive. Otherwise they are idle and the
system marginal cost is zero. The form of the cost function of dispatchable producers (Equation 2.35)
ensures overall merit-order dispatching within the system.

Long-term investment problem Before presenting the necessary conditions given by the invest-
ment problem (Equation 2.40), we must introduce some notions about VRE producers profits. Let P;
(€ GW ') be the one year potential profits per unit of installed capacity of VRE producer 1,

To*l
P, = ToE (7{ Z )\(t)Hi(t)> — TohRC;, (2.44)
0 =0

where E(1/T tTigl A(t)H;(t)) is the expectation of the yearly average of producer’s i revenue, that
we will later denote (\H;). Dividing by the capacity factor H;(t) one obtains the potential profits per
unit generation (€ MWh™?):

where v; and LCoE; are respectively the value factor and the LCoE (€ MWh™!) of VRE producer i.
They are defined by

_{(AHy)
Y ) (2:49)
and
LCoE; = lzg(i (2.47)

Theorem 1 in (Tantet 2021) then states that if the VRE mix  is an optimal solution to the investment
problem (Equation 2.40) then only producers with non-negative potential profits have some capacity
installed. While maximum installable capacity «*** is not reached producer i makes zero profits.
Profits only become positive when z; = «**. These positive profits are equivalent to an economic
rent.

Impact of VREs

Given a load (L(t)):cr to be satisfied at all times, a mix of dispatchable producers with maximum
capacity xp; and optimal dispatching schedule (Gp;(t)):et, and an optimal mix of VRE producers =,
we want to estimate the economic impact of introducing VRE producers in the system. Costs and
challenges associated to the introduction of large shares of VREs in electricity systems were already
discussed in Chapter 1. We will hereafter focus on the estimation of the VRE total and marginal
value. VRE total and marginal value are defined as in (Tantet and Drobinski 2021). The expected
system total value over a year for a given VRE mix x is given by:

E(STV,) = E (STC(0)) — E (STC(x)) (2.48)
= To((VCni(L)) — (VCpi(Gmi))) — Ca. (2.49)

Similarly, the marginal system value of VREs is given by:

E (SMV,) = (A(0)) — (A(®)). (2.50)
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2.4.3 Model parameters: the case of France

Maximum dispatchable capacity (zp;) In the adapted version of the E4CLIM model we use, the
maximum capacity of the aggregated dispatchable producer zp; is set to a level high enough so that
the adequacy constraint without VREs can be satisfied at all times. The exact value depends on the
study considered and is of 200 GW in Chapter 3 and of 300 GW in Chapter 5. This has no impact on
the evaluation of system total costs, since the dispatchable producer fixed costs are not taken into
account in our studies (see Equation 2.39).

Dispatchable costs and DVCC («) Fixed costs of dispatchable producers are not accounted for in
our studies. In turn, variable costs of the dispatchable production are assumed to be quadratic with
respect to the generated amount (see Equation 2.35) and are parametrized via the DVCC («). This
parameter is tuned to allow for different levels of optimal VRE penetration. In Chapter 3 the DVCC is
varied between 1.0 x 10"5€MWh 2 and 6.0 x 1073 € MWh 2 with steps of 1.0 x 10~*€ MWh 2.
In Chapter 5 only two values of the DVCC are considered to emulate a low penetration (« = 0.5 x
10~3€ MWh?) and a high penetration scenario (o = 1.5 x 1073 € MWh?).

Maximum installable VRE capacities (+}***) Maximum installable VRE capacities are a crucial
parameter of the model (see Chapter 3). In Chapter 3, maximum installable capacities per french
administrative region for wind-onshore and utility-scale solar PV are taken from (ADEME 2015). In
Chapter 5, maximum installable capacities per french administrative region for wind-onshore are
taken from (ADEME 2015) as well, whereas maximum installable solar PV capacities correspond
to those in (ADEME 2015) multiplied by a factor 4, to get values of the national installable potential
closer to those in (RTE 2021), knowing that some estimates are much larger (Dupré la Tour 2023).

VRE fixed costs VRE fixed costs are computed from (Tsiropoulos, Zucker, and Tarvydas 2018;
Shirizadeh, Perrier, and Quirion 2020). They are shown in Table 2.11.

Wind PV
Overnight cost (€ /kWe) 1130 423
Lifetime (year) 25 25
Annuity (€/kWe/year) 81.2 30.7
Operation and maintenance (€ /kWe/year) 34.5 9.2
Rental costs (€ /kWe/year) 115.7 39.9

Table 2.11. VRE fixed costs data for the E4CLIM model.
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We proceed in this section to a detailed analysis of the impacts of heating and cooling demand
scenarios on the electricity system optimal VRE mixes and associated costs. We suppose in this
section that the climate is stationary and equivalent to that of 2010 to 2020 in France.

3.1 Introduction

As introduced in Chapter 1, electric heating and cooling demand are expected to change in the near
future because of climatic and socioeconomic drivers. In this chapter, we focus on the socioeco-
nomic drivers of a changing electric heating and cooling demand and leave the analysis of coupled
socioeconomic and climate change for Chapter 5. These changes will mainly happen in the residen-
tial and tertiary sector — often regrouped as the building sector — which concentrate the majority
of the temperature sensitive part of the electricity demand. Industrial heating and cooling processes
are thus left aside in this analysis. It is also imortant to note that electric heating and cooling demand
corresponds to a fraction of the energy demand related to the space heating/cooling and hot water
provision end uses. This electric heating/cooling demand does not necessarily match the temper-
ature sensitive electricity demand: typical examples are that some heating demand will always be
present for hot water no matter the daily temperature, whereas lighting demand tends to correlate
with temperature even though it is not related to heating and cooling. We present first the drivers
of the electric heating and cooling demand and discuss later its relation to the temperature sensitive
electricity demand, that we use for scenarization.

Following (Davis and Gertler 2015; Enrica De Cian and lan Sue Wing 2019), socioeconomic
drivers of the heating and cooling electricity demand can be decomposed between those affecting
the extensive or intensive margin. Changes along the extensive margin relate to changes in the
stock of devices used to supply heat and cold in the building sector. Changes in population and
the subsequent change in the building stock can also fall in this category. Given a fixed number of
buildings, changes along the extensive margin are typically measured by the percentage of buildings
that rely on an electricity-based technology for heating and cooling services, without discriminating
by technology type. They correspond for example to changes in the percentage of buildings that rely
on some form of electric device for space heating, whether it is through a heat pump or a resistive
heater, or the percentage of buildings that rely on AC for cooling, or the percentage of buildings
equipped with an electric rather than a gas water boiler. Changes along the intensive margin relate
to how the stock of devices is used to provide a given heating or cooling service. In plain words, it
gives us the level of electricity demand given a level of electrification. Changes along the intensive
margin are impacted by changes in the technological diversification of the stock of devices used to
provide heating and cooling services, changes in the level of building retrofitting and floor space,
and changes in user behavior. Changes in technological diversification of the heating and cooling
stock impact the demand along the intensive margin as they impact the efficiency with which heating
or cooling is provided given a certain electricity consumption. A typical example is the transition
from a resistive heater stock to a heat pumps stock and the associated gains in efficiency for space
heating. A given technological diversification of the heating and cooling appliances stock gives us the
amount of electricity that needs to be consumed to give an extra degree of heating/cooling. It relates
a given level of heating/cooling demand to the necessary electricity demand to provide it. Changes
in building retrofitting and floor space mainly apply to space heating/cooling. They impact the level of
heating/cooling demand needed to maintain a given temperature difference between the inside and
the outside. A given floor space and a given level of building retrofit — and associated insulation
— gives us the need for heating/cooling, i.e. the magnitude of the heating/cooling demand needed
to maintain a certain temperature difference between the inside and the outside. Finally, changes in
heating and cooling behavior along the intensive margin are related to changes in the heating/cooling
comfort temperature: they give us the relation between the temperature difference imposed by the
user as a function of the outside temperature. Other drivers that do not fall into this two categories but
still worth mentioning are the potential changes in user behavior regarding the heating and cooling
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strategy, i.e. whether the heating profile is flat throughout the day or more marked at certain periods
of the day, etc. These different drivers will impact the electricity demand in magnitude and in shape
(Bossmann and |I. Staffell 2015; lain Staffell and Pfenninger 2018; Eggimann, Usher, et al. 2020;
Peacock, Fragaki, and Matuszewski 2023). In particular, the demand variability at short sub-daily
time scales, which characterizes the demand daily cycle (also called load profile in some studies), will
be strongly impacted by the heating and cooling appliances technological stock' (Peacock, Fragaki,
and Matuszewski 2023) and the heating and cooling behavior of users. If these drivers can add up
to yield potentially strongly challenging impacts (more interannual variability, higher peak demands
and increased ramps), they can also combine to enhance the potential for demand side efficiency,
sufficiency and flexibility measures.

Studies that project potential electricity demand changes are numerous and we focus here on
those that account for the previously introduced socioeconomic drivers of the electricity demand and
thus leave aside those that focus exclusively on external drivers such as climate change, e.g. (Burillo
et al. 2019). Changes in demand due to socioeconomic drivers have been studied for at least 20
years (Henrik Lund 2005) but most of the reviewed studies concentrate from the 2010s up until to-
day. Although they do not specifically focus on changes in future demand, (Henrik Lund 2005) study
the potential for wind power integration in Denmark. They conclude that the potential for large-scale
integration of wind power in the danish energy sytem is very weak and that such an integration would
present high challenges, unless some investments are made in flexibility options such as investment
in heat pumps by using them as a flexibility option. Some studies focus exclusively on changes in
the heating and cooling demand. (Hedegaard et al. 2012) study the impacts of heat pump adoption
and subsequent gains in flexibility on wind power integration in Denmark. (Wilson et al. 2013) qual-
itatively discuss the impacts on the energy system of transferring the heating demand from gas to
electricity in the UK. (Waite and Modi 2014) study the potential for wind power integration through
the penetration of heat pumps (in urban areas) with a case study in New York City (US). (Zhang
et al. 2016) study the potential for wind power integration via electric boilers installation in West Inner
Mongolia (China). (Henrik Lund 2018) compare the impacts on the energy system of scenarios of
heating electrification via resistive heaters, heating electrification via heat pumps and sector coupled
district heating and heat pumps installation. (Tarroja et al. 2018) study of coupled heating electri-
fication and climate change, and its impacts on building energy and subsequent impacts on GHG
emissions and grid capacity expansion requirements in California. (Eggimann, J. W. Hall, and Eyre
2019) analyze the potential impacts of demand-side management policies under scenarios of 50 %
penetration of heat pumps. (White et al. 2021) conduct a qualitative analysis of the potential impacts
of heating electrification (100 % heat pump adoption with different levels of heat pump efficiencies)
on the ERCOT grid, Texas (US). (Deakin et al. 2021) characterize the impacts of switching to heat
pumps for the heating demand on the loss of load expectation and subsequent additional capacity
to secure, given prescribed VRE capacities. (Peacock, Fragaki, and Matuszewski 2023) proceed to
a detailed analysis of heat pump introduction under two scenarios: one where all heating demand is
provided by heat pumps and another one where 41 % of the demand is provided by heat pumps.

Other studies proceed in a more integrated way, where changes in heating and cooling demand
are usually coupled to changes in electricity demand due to technological changes in the transport
sector (mainly plug-in electric vehicles adoption). These are usually aimed at studying the impacts
of future demand changes on the energy system. (Kiviluoma and Meibom 2010) study the potential
for wind integration in Finland via the extra flexibility brought to the system by plug-in electric vehi-
cles, heat pumps and electric boilers. (Bossmann and |. Staffell 2015) project Load Duration Curve
(LDC) changes for the UK and Germany following a socioeconomic scenario of a transition to a low
carbon energy system by 2050 (for each country). They test the sensitivity of the obtained LDCs
to the charging profile of electric vehicles and to the degree of electrification (i.e. adoption fraction
of electric heating devices, heat pumps in this study, and electric vehicles). (Alberg Jstergaard,
Mgller Andersen, and Kwon 2015) study scenarios of transportation demand electrification and heat

'In particular, if the heating and cooling supply stock is mainly composed of heat pumps, the way heat pumps are pro-
grammed will impact the shape of the demand daily cycle.
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pumps adoption, and the associated impacts on wind power integration in Denmark. (lain Staffell
and Pfenninger 2018) use the Two Degrees scenario from the UK Nationl Grid FES2016 (ESO 2016)
to project electrification of heating as well as transportation (among other socioeconomic changes).
(Eggimann, Usher, et al. 2020) model levels of heat pump penetration between 20 % to 60 %, coupled
to industry electrification and changes in heating behavior (shape of the daily load profile) as well
as population. (Murphy et al. 2020) study the impacts on the energy system of two demand-side
scenarios following (T. T. Mai et al. 2018): a reference electrification scenario is considered where
the electrification of space and water heating goes from 12% and 26 % in 2018 to 17% and 26 %
respectively in 2050, and a high electrification scenario where these levels go up to 61 % and 52 %
respectively in 2050. In parallel electrification of transport (in both scenarios) and industry (in the
high electrification scenario only) are considered. The former is the main driver of electricity demand
increase in the high electrification scenario.

All these studies vary in time and spatial resolution. Some studies consider the aggregated de-
mand over a country (Henrik Lund 2005) or a state (Tarroja et al. 2018) whereas others disaggregate
it at finer levels (e.g. county level in the US (White et al. 2021) or local authority districts in the UK
(Eggimann, Usher, et al. 2020)). Similarly, the changes in demand are accounted for on yearly values
or on full hourly time series over multiple years (Eggimann, Usher, et al. 2020; Peacock, Fragaki, and
Matuszewski 2023), while some studies focus exclusively on peak demand changes (Cooper et al.
2016; Love et al. 2017). It is finally interesting to note that all these studies account exclusively for
changes along the extensive margin, and that changes along the intensive margin (typically building
retrofit or lowering the comfort temperature) are not accounted for in the projected scenarios.

From all the reviewed studies, about only a half consider the subsequent impacts of a change
in shape and magnitude of the electricity demand on the energy system. Among those that do, VRE
capacities are most of the time prescribed (Henrik Lund 2005; Hedegaard et al. 2012; Waite and
Modi 2014; Alberg Ostergaard, Mgller Andersen, and Kwon 2015; Zhang et al. 2016; Henrik Lund
2018; Tarroja et al. 2018; Deakin et al. 2021) and only some studies focus on capacity expansion
decisions due to changes in demand (Kiviluoma and Meibom 2010; Murphy et al. 2020). We find
several limitation to the remaining studies. (Kiviluoma and Meibom 2010) use the sector coupled
(heat + electricity) model Balmorel. The model is able to optimize capacity expansion decisions while
also ensuring system adequacy at every hour. As such, they are able to study the tradeoff between
installing wind and using dispatchable production to supply the necessary demand. However two
main limitations remain in the fact that (i) PV is not included in the study (the effects of PV introduction
are unclear since it is not clear whether it will displace wind or dispatchable capacity), and (ii) the
study lacks accounting for multi-year time series, which can lead to under or overestimation of the
optimal wind fleet depending on the weather-year selected (Hilbers, David J. Brayshaw, and Gandy
2019). (Murphy et al. 2020) are not able as per their protocol design to disentangle the effects of
heating and transportation electrification, although both will impact the demand in different ways (in
particular one is temperature sensitive while the other is not). Furthermore, the model architecture
prevents it from fully capturing the electricity demand and VRE generation correlation, as well as the
inter-annual variability of both these quantities and subsequent impacts on the VRE and dispatchable
stock dimensioning.

We address these gaps by specifically studying the impact of heating and cooling demand elec-
trification on VRE capacity investment decisions using an electricity system model designed to take
into account the year-to-year variability of demand and VRE generation time series in the capacity
investment decisions while ensuring system adequacy at all times. We first present in Section 3.2
several heating and cooling electrification scenarios and their impacts on the electricity demand under
current climatic conditions that we suppose stationary. We find that the impacts of heating electrifica-
tion are much larger than those of cooling electrification, due to both a little number and intensity of
cooling days under current climate conditions, and the fact that we did not account for modifications
along the intensive margin. Thus, in a second time, we focus on the impacts of heating electrification
scenarios on optimal regional VRE mixes and associated costs, which we present in Section 3.3.
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3.2 Socioeconomic scenarios of electric heating and cooling

3.2.1 Scenario design

We build on the model of hourly electricity demand developed and presented in Chapter 2 to build
our scenarios of heating and cooling demand electrification. We recall that the model can be written
as

L(t) = % 4+ X(t) - w + €(t), (3.1)

where w° is the intercept of the data, X (¢) a feature vector that potentially depends on the weather
conditions at time ¢, w the coefficients of the model and ¢(¢) a white noise with standard deviation
computed as a function of the prior noise on the model coefficients (also called noise precision) and
the quality of the data. For a day where the average daily temperature T is below a certain threshold
Ty, the feature vector has the right form such that the demand is given by

L(t) = w° + wB(t) + W (t) (T — T), (3.2)

where wB(t) is the baseline coefficient in GWhh~! and w' () is the heating temperature sensitivity
coefficientin GWhh~!°C~'. The dependence in time is here to signifiy that these coefficients vary
with the hour of the day and calendar daytype (whether the considered day is a working day, saturday
or holiday). w" and w® represent the temperature insensitive part of the demand, that we also call
baseline demand. Then w™(¢)(T — T') corresponds to the temperature sensitive part of the demand.
The same reasoning holds for a day where the average temperature is above a certain threshold 7.
The cooling temperature sensitivity coefficient is then w®(t).

Assuming the building stock is in fact composed of the same average building with a given
average heating/cooling demand, the temperature sensitivity coefficients can be further decomposed
as

WC () = a1/l 1), (3.3)
i.e. into a coefficient a''/€ representing the fraction of buildings equipped with electric devices for
space heating/cooling and a coefficient wgt/c(t) that then represents the total temperature sensitivity
of the building stock (electric and non-electric). All other socioeconomic drivers of changes in the
electric heating/cooling demand would thus affect this second coefficient.

This decomposition necessitates an important hypothesis. If w"/C(t) is the temperature sen-
sitivity coefficient, o/ is the fraction of buildings that use an electric appliance for space heat-
ing/cooling. This implies that we consider that all temperature sensitive demand is related to space
heating/cooling and thus neglect the share of the temperature sensitive demand that is related to
other end-uses such as water heating or lighting (and probably cooking to some extent). Such a
hypothesis is e.g. made in (lain Staffell, Pfenninger, and N. Johnson 2023). The relevance of such
a hypothesis is hard to verify: data aggregated over a large number of buildings at a sufficient time
resolution to compute the temperature sensitivity of each end use is not easily available. We still
show a figure from (Ozkizilkaya 2014) in Figure 3.1a, that represents the residential monthly demand
in France in 2005 disaggregated by end-uses. We can qualitatively see from the figure that most of
the heating temperature sensitive demand (that demand that varies seasonally in the figure) is due
to space heating. Thus to the first order (variations on the order of 6 TWh) space heating is the sole
driver of the demand heating temperature sensitivity. To the second order (variations on the order of
1 TWh or less), lighting, domestic hot water and cooking to a lesser extent, also vary seasonally (and
thus are correlated to temperature variations) and are drivers of the demand heating temperature
sensitivity. The demand cooling temperature sensitivity is visibly here only due to cooling. Although
the data is for the residential sector only, we can suppose that a similar behavior happens for the
tertiary sector as well, and even more so since domestic hot water and cooking are probably very
minoritary. A similar graph is found in (RTE/ADEME 2020), although the data is not available, for the
system-wide weekly average electricity demand (for the 2017-2018 period) disaggregated by sector
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or end-use. We reproduce it in Figure 3.1b. Here about 2/3 of the heating temperature sensitivity of
the demand is due to space heating alone (about 20 GW of seasonal variations due to space heating
and about 10 GW for the rest). Although this is less clear from the figure, space cooling appears
to be the only end-use to increase in the summer and decrease in the winter. It thus accounts for
the totality of the cooling temperature sensitivity of the demand. We find again this figure of 2/3 of
the heating temperature sensitive electricity demand related to space heating, when comparing the
value of the temperature sensitive electricity demand computed from our model (91 TWh for the av-
erage total yearly temperature sensitive electricity demand over the 2010-2020 period) and the value
of 63 TWh given in (RTE/ADEME 2020) for the year 2018. Considering that all heating temperature
sensitive demand is due to space heating might thus make us overestimate the resulting demand due
to electrification scenarios. The hypothesis seems to be approximately verified for space cooling.
We thus work with the alternative hypothesis that 2/3 of the heating temperature sensitive de-
mand are due to space heating and that the totality of the cooling temperature sensitive demand is
due to space cooling. We note however that the exact figures contained within this hypothesis have
little consequences for the remainder of this work, as we are interested in performing a sensitivity
analysis of the impact of an increased temperature sensitive demand on the electricity system. As
such the exact value of the resulting electricity demand for a given level of heating/cooling electrifi-
cation is not of crucial importance to us. What matters is that the values stay in the right order of
magnitude, which is done by encoding these scenarios of temperature sensitive demand as space
heating electrification scenarios. Even if the value of 2/3 for space heating is thus probably an ap-
proximation, the hypothesis is considered to be safe for the remainder of this work. This working
hypothesis brings us to instead decompose the heating temperature sensitivity coefficients as

2 1
wh(t) = gO‘HWgHtot(t) + gw?s(t)’ (3.4)
where of! is the fraction of buildings equipped with space heating, wngtot(t) is the total temperature
sensitivity of the building stock (electric and non-electric) related to space heating and wiy is the
buildings temperature sensitivity related to other usages than space heating. The cooling tempera-
ture coefficients are still decomposed as

wC(t) = aCw(t), (3.5)

with o representing the fraction of buildings equipped with electric devices for space cooling and
wi(t) representing the cooling temperature sensitivity of all the building stock if all buildings were
equipped with AC given a certain AC usage.

We base our scenarios on the level of building electrification by tuning the parameter o!/C,
Other drivers of changes of the space heating/cooling demand, and in particular all changes related
to @ whyy Wi Or w, modification are not accounted for in this study. We thus suppose that heating
electrification occurs with an average technology somewhere in-between of a resistive heater and
a heat pump and that AC adoption occurs with an average technology representative of the current
stock. Typical values of the o' parameter in the residential sector in Europe in 2015 are e.g. 8.5%
for the UK, 15.5% for Spain, 19.6 % for Italy, 8.9% for Belgium, 2.5% for Luxembourg and 3.3 %
for Germany?, for France’s neighboring countries (data unavailable for Switzerland). The values
for France for the residential sector according to the same dataset are of 35.5 %, while estimates
from (RTE 2021) give a value on the order of 40 % for 2020. Other estimates for France can be
computed and a historical perspective can be given by using data from the Centre d’Etudes et de
Recherches Economiques sur I'Energie (CEREN)3 (CEREN 2020; CEREN 2023). The values for o'
are represented Figure 3.2a for the last 30 years in France. We can see that some electrification has

20wn computations based on the data presented in (Fleiter, Elsland, et al. 2017) and available for download at https:
//heatroadmap.eu/heating-and-cooling-energy-demand-profiles/, accessed 28 March 2024. Are considered
as electric heating the fields Heat pumps total (electric) and Electric Heating.

Shttps://www.ceren.fr/, the data being freely available at https://www.ceren.fr/publications/
les-publications—du-ceren/, accessed 30-03-2024.
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(@) Adapted from (Ozkizilkaya 2014, Figure 2.16).
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(b) Adapted from (RTE/ADEME 2020, Figure 1.3).

Figure 3.1. Temperature sensitivity of electricity end-uses in France. Panel (a): monthly national residential
electricity demand disaggregated by end-use (2005). End-uses are in french and translate as follow: Chauffage
elec — electric heating, Eclairage — lighting, ECS elec — domestic hot water, Cuisson elec — cooking, Lavage
— washing, Brun — electronic devices (computers, television, etc.), Elec spécifique autres — other specific
electricity, Froid — cooling. Panel (b): weekly average electricity demand by sector and end-use (2017-2018).
End-uses are in french and translate as follow: Chauffage — space heating, Climatisation — space cooling,
ECS — domestic hot water, Eclairage — lighting, Cuisson — cooking, Industrie et énergie — industry and
energy, Pertes — losses, Autres — other.

already taken place. The value for 2015 is of about 35 %. Typical values of the a© parameter cannot
be computed from the (Fleiter, Elsland, et al. 2017) dataset. The value for France as estimated from
(RTE 2021) for the residential sector is of 23 %*. Because of the way data is collected, no such
estimates of o'/C are available for the tertiary sector, where data is not given by building count but
per floor space. However the two are equivalent as long as the number of buildings is kept constant
and that we suppose this time that the building stock is composed of the same average building
with identical average heating demand and the same average floor space. This simplification does
not allow to enter in the detail of renovation policies etc. but is entirely valid as long as the total
aggregated space heating/cooling demand is considered. We represent a historical perspective on
the values of o!! based on CEREN data (CEREN 2020; CEREN 2023) for the aggregated® residential
and tertiary sectors in Figure 3.2b. We can see that some electrification has taken place over the last
30 years and that the aggregated values are close (within less than 5 percentage points) to those
of the residential sector alone. Once the fraction of tertiary floor space heated via electric heating
has been accounted for, the value of o'! for the aggregated building sector is of about 35 % in 2015.
This is the value that we will retain for our analysis. Regarding the o parameter in the tertiary

4Own computation based on the annual electricity demands for cooling given for 2020 (6 TWh) and 2050 (14 TWh), and
the fraction of buildings equipped with AC in 2050 (55 %). We thus assume that the average demand per household remains
constant between 2020 and 2050.

5Aggregation is carried by considering the total residential surface assuming a surface of 65 m? for apartments and 110 m?
for homes, following (RTE/ADEME 2020, Section 2.8).
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sector, data equivalent to that of CEREN (CEREN 2020; CEREN 2023) does not exist to the best of
our knowledge and we thus simply assume that the a© parameter is equal to that observed in the
residential sector. We will thus use the 23 % value estimated from (RTE 2021) for our analysis.
Given reference values of o'/ for the 2010-2020 period, different levels of electric heating/cooling,

are reached by multiplying the o!'/© parameter by a multiplicative factor eq/c- For computational sim-
plicity the whole temperature sensitivity coefficient w™/€(t) is multiplied by an equivalent er/c factor,
that accounts for the 2/3 factor in the case of heating demand (for the cooling demand e, = ¢c).
Scenarios are built such that the level of electric heating/cooling with our approximations does not go
above 100 %. The values of ey, (and when relevant e /C) used to explore different percentages of
electrification that we describe in the following section are given in Tables 3.1 and 3.2. Scenarios of
heating electrification are explored between the current value of 35 % to values of 88 % (correspond-
ing to ey = 2.0), while scenarios of AC adoption are explored between the current value of 23 % to
complete adoption of AC (100 %, for ec = 4.35).
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Figure 3.2. Percentage of electrification for space heating of the french building stock, according to (CEREN
2020; CEREN 2023).

% Electric heating | en €l
35 1. 1.
48 1.25 1.375
61 1.5 1.75
74 1.75 2.125
88 2. 2.5

Table 3.1. ey parameter and levels of electric heating.

% Electric cooling | €c

23 1.

50 217
75 3.26
100 4.35

Table 3.2. - parameter and levels of electric cooling.

We thus build a set of scenarios which are rigorously speaking scenarios of increased cooling
and heating temperature sensitive demand. To design scenarios that correspond to realistic potential
future changes in temperature sensitive demand, we associate changes in temperature sensitive
demand to changes in the level of space heating/cooling electrification of the building stock. This
equivalence is valid under one main assumption: that 2/3 of the heating temperature sensitive deman
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and all of the cooling temperature sensitive demand is related to space heating/cooling. As this
hypothesis is an approximation, our scenarios of electric heating/cooling will not correspond exactly
to what would be expected from the actual electrification of space heating and cooling in the building
stock. This is however safe for the sensitivity analysis performed here. Then, importantly, no factors
other than the level of electrification o''/€ are considered. In particular electrification is supposed
to occur with a constant average technology equivalent to that of the current technological mix and
that users do not change any heating/cooling behavior with respect to today. These scenarios are
however relevant as they still give an approximation of what the change in temperature sensitive
demand could be due to an increased electrification of space heating/cooling, which is perfectly valid
for the sensitivity study performed here. A finer study with more predictive power is left for future
works.

3.2.2 Data and scope

We consider the period 2010-2020 in metropolitan France and use weather data from MERRA2
reanalysis (Fujiwara et al. 2017; Gelaro et al. 2017), see Chapter 2 for further details. Gridded data
is then averaged at the level of french administrative regions (12 in total) to compute the average
daily temperature for each day of the 2010-2020 period. A map of the different regions is given in
the presented paper, Section 3.3, Figure A.6. A model of regional electricity demand is computed for
each french administrative region, following the methodology presented in Chapter 2, Section 2.1.
Each model is trained against observations from the 2014-2019 period® and then applied to the
2010-2020 temperature time-series. The demand is then aggregated at the national level by simply
summing over the resulting regional demands. We consider the fraction of electric heating/cooling to
be the same in each region and equal to the one at the national level, which we discuss throughout
the analysis.

3.2.3 Electric heating scenarios

We present in this section the different scenarios of electric heating considered, as shown in Ta-
ble 3.1. We first assess the impact on model coefficients and then discuss the impacts of the different
scenarios on the electricity demand.

Model coefficients

Model coefficients for each region and as modified for each scenario of electric heating are presented
in Appendix B, Figure B.1. The figure shows the coefficients of the model for each region per hour
of the day and for each daytype, which is a combination of a day’s temperature daytype, i.e. whether
a day is a heating day (space heating is turned on), a cooling day (space cooling is turned on) or
none of the former, and a day’s calendar daytype, i.e. whether a day is a working day, a saturday or
a sunday/holiday. Since we focus on heating demand scenarios, only heating daytype coefficients
should be modified by our protocol, as the ey coefficient multiplies only the w™ coefficients. We thus
plot the coefficients corresponding to other temperature daytypes as a control measure. We can
effectively see that they are not modified in our different heating demand scenarios. We focus in the
following on the heating temperature daytype coefficients only.

Two observations can be drawn from the figure. The first one is that the way heating temperature
sensitivities are modified yields an offset electric heating daily cycle with an increased variability: the
amplitude of the daily cycle is more important for higher levels of electric heating. This is best seen in
Figures B.1g and B.1a, corresponding to administrative regions ile-de-France and Auvergne-Rhone-
Alpes respectively, by comparing the curves associated to eg = 1.0 and eg = 2.0.

6Data is from the french TSO and freely available at https://opendata.reseaux-energies.fr/, accessed 31-03-
2024.
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The second important observation is that although the same multiplicative coefficient is applied
to all regions, the impact of electrification is regionally differentiated. This can be seen by e.g. com-
paring Figure B.1g and Figure B.1h, where we can observe a greater difference between model
coefficients for the different scenarios in the former than in the latter. This is simply due to some re-
gions having higher reference temperature sensitivities (i.e. for ey = 1.0). Those regions contributing
the most to the nationally aggregated temperature sensitivity will thus in proportion contribute even
more in the increasing electrification scenarios. This model behavior doesn’t have to be the case
in what could actually be observed, since regions with an already high temperature sensitivity could
be more electrified than others. This approximation could be refined by deriving regional levels of
electrification and then applying a regionally differentiated ey coefficient. Such a refinement could
be of interest since the contribution of each region to the aggregated national electricity demand can
also be differentiated depending on the weather patterns affecting the whole area of study: we can
imagine weather conditions where the mediterranean part of France experiences mild temperatures
whereas the northern part of France experiences colder temperatures. The regional differentiation of
temperature sensitivities then plays an important role in the resulting nationally aggregated electricity
demand. We however leave such analyses for future works and consider the model behavior to be
safe for the sensitivity analysis performed here.

We thus expect that such modified model coefficients will lead to an increased and increasingly
variable electricity demand during heating days with a similar response to weather patterns as for the
reference electrification scenarios.

Impacts on the demand

We study how the different scenarios impact the resulting electricity demand. We first look at how the
demand seasonal and daily variability are modified. We then focus on key quantities that characterize
the electricity demand: base, mean and peak demand. We finally assess the impacts of the different
scenarios on the load duration curve.

Demand variability Demand daily variability is represented Figure 3.3. The daily cycle is repre-
sented for each electrification scenario and each daytype. We expect only the daily cycles corre-
sponding to a heating temperature daytype (Temp. daytype = -1) to change across the scenarios
since only the heating temperature sensitivity coefficients were modified. The other daytypes are
thus represent for control purposes. As expected from the coefficients modifications, the daily cycle
is offset and more variable with increasing electrification (compare e.g. the curves for ey = 1.0 and
eg = 2.0). This is true for all calendar daytypes. We can furthermore notice that the heating daily
cycle general features are conserved: a trough during the night and early morning, a morning peak
with a subsequent plateau, an evening peak between 17h and 19h (UTC) and finally a late evening
plateau around 23h to 1h or 2h in the morning. This latter plateau is not observed in the baseline
and cooling daytypes where the night trough starts right after a secondary evening peak around 21h
(UTC) (we can also note that the 17h-19h evening peak is much less pronounced in these daytypes).

Yearly variability of demand aggregated at the national level for all scenarios of electrification
is represented in Figure 3.4. As expected, demand is more pronounced in winter with increasing
electrification, and demand in summer is left unchanged. The seasonal variations of demand are
thus much more pronounced in increased electrification scenarios. In short, electrification of space
heating causes the electricity demand to be more variable, both at the daily level, where features of
the typical daily cycle are exacerbated, and at the yearly level, where the typical seasonal cycle is
more pronounced as well.

Base, mean and peak demand We now assess the impacts of the electrification scenarios con-
sidered on key aspects of the electricity demand: base demand, average demand and peak demand.
We define here base demand as that demand that is observed 95 % of the time: demand is lower
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Figure 3.3. Daily variability of the heating demand scenarios considered. Load is a synonym for electricity
demand. Temp. daytype corresponds to whether the day is a heating day (-1), cooling day (1) or none of the two
(0). Cal. daytype corresponds to whether the day is a working day (0), saturday (1) or sunday/holiday (2).

than that value only 5 % of the time. Base demand changes across the different scenarios are repre-
sented Figure 3.5a for the aggregated national demand and in Appendix B, Figure B.2 for a regional
picture. Base demand is little affected by changes in space heating electrification. Although it steadily
increases with increasing electrification, the changes are kept within 1.0 % of the reference value. At
the regional level, no notable difference can be noticed. Base demand thus remains stable with
increasing electrification.

Mean demand is a proxy for the yearly total demand. Mean demand changes across the different
electrification scenarios are represented Figure 3.5b for the aggregated national demand and in
Appendix B, Figure B.3 for the regionally disaggregated impacts. At the national level, average
demand, and thus the yearly total energy demand, increases markedly with increasing electrification.
Reaching a 50 % electrification rate (eg = 1.25) causes a 5 % increase in the yearly total demand, and
demand increases up to 19 % for the most extreme scenario. At the regional level, the contribution
to that increase is regionally differentiated with a higher contribution of the upper west coast regions
(Bretagne, Normandie, {le-de-France and Centre-Val-de-Loire).

Finally, peak demand changes across the different scenarios are presented Figure 3.5¢ for the
nationally aggregated demand and in Appendix B, Figure B.4 for regional changes. We define here
peak demand as the demand observed 5%’ of the time: i.e. demand is lower than that value 95 %
of the time. At the national level, peak demand increases strongly with increasing electrification.
Reaching a 50 % electrification rate (eg = 1.25) causes a 9% increase in peak demand, and it in-
creases up to 38 % for the most extreme scenario. Not all regions contribute equally to peak demand.
An East-West gradient is observed, with a greater contribution of the western regions to the peak
demand increase.

To summarize, heating electrification has a differentiated impact on the demand: base demand
remains roughly constant, whereas peak and total demand increase significantly. Peak demand in-
creases more than average demand with the electrification of space heating, with increases roughly

"This is equivalent to 438 hours in a year which is much more than the allowed hours of adequacy failure allowed in
national regulations (in France it is 2 to 3 hours). As such the peak demand so defined is lower than the peak demand values
usually given by TSOs.
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Figure 3.4. Yearly variability of the heating demand scenarios considered, as given by the average daily load
(electricity demand) throughout a year. The shaded area represents the daily average demand
minimum-maximum range over the 2010-2020 period.

2 times higher than for the average demand. The contribution to those changes is regionally differ-
entiated with different patterns for different parts of the demand. The reasons and impacts of such
a varibale regional contribution are not studied here, mainly since only the national aggregated de-
mand is of importance to us. This could however be the focus of further studies, in particular if the
transmission network is considered in the electricity system modelling step (typically some regions in
France are at higher risk of experiencing blackouts than others).

Load duration curve We finally study the impacts of the different electricity demand scenarios on
the Load Duration Curve (LDC). The LDC for the different electrification scenarios is represented
Figure 3.6. The way the LDC evolves with increasing electrification summarizes what has been
said earlier: base demand is little affected whereas the demand increases even more so that we are
close to peak demand. The demand is also more variable, in the sense that it covers a wider range of
values, with increasing electrification. We can see that there is a particular threshold around the 60 %
probability above which the curves clearly separate from each other whereas they are mixed together
below this point. This emphasizes the fact that heating demand electrification has a differentiated
impact on the demand, with demand above the median (50 % probability) being more impacted than
below.

3.2.4 Electric cooling scenarios

We present in this section the considered scenarios of electric cooling as summarized in Table 3.2.
We first discuss the impacts on model coefficients of the change in the rate of AC adoption and then
present the subsequent impacts on the nationally aggregated and regional electricity demand.

Model coefficients

The modified model coefficients for the different scenarios of AC adoption are presented in Ap-
pendix B, Figure B.5. The graphical representation follows what has already been introduced in
Section 3.2.3. As for the heating electrification scenarios, here only the cooling temperature sensitiv-
ity coefficients w® are multiplied by ec. The other coefficients thus shouldn’t change and are plotted
as a control measure.

The first important thing to notice is that AC adoption scenarios exacerbate the cooling daily
cycle. This is best seen in e.g. Figures B.5¢g, B.5j or B.5k, where the magnitude of the coefficients in
the afternoon is increased. A regional trend exists in the distribution of cooling coefficients: southern
regions of France (Auvergne-Rhone-Alpes, Nouvelle-Aquitaine, Occitanie, PACA) have higher cooling
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Figure 3.5. Base, average and peak demand for the heating demand scenarios considered. The values
correspond to the height of the bars.

coefficients than the rest with the notable exception of Tle-de-France. As for the heating electrification
scenarios, because of our scenario building method, the regions that contribute the more to the
cooling demand in the reference case (e¢ = 1.0) will have a relatively even higher contribution in
the scenarios considered. This model behavior stems from the hypothesis that all regions have the
same level of AC adoption, which can be discussed. It is however left for further studies to represent
regionally differentiated scenarios of AC adoption.

Finally we should note that the model has sometimes an erratic behavior as some cooling coeffi-
cients w® are negative. Negative coefficients can still have a physical meaning if we consider that the
daily cycle is the sum of the coefficients w?, wB(t) and w®(t). As such it can be that a different shape
of the daily cycle during cooling daytypes is encoded in the cooling coefficients: typically the early
morning (5h-6h UTC so 6h-7h UTC+1 in wintertime and 7h-8h UTC+1 in summertime) peak is lower,
as e.g. seenin Figure B.5g or B.5e. However the average over the day should be positive so that cool-
ing coefficients have a physical meaning. Demand integrated over the whole day should be higher
when there is some cooling than when there is neither cooling nor heating. Regions and daytypes for
which this is not the case are marked with a red circle in Figure B.5. This behavior can be avoided
by increasing the cooling temperature threshold T¢ (see Chapter 2). However there is a tradeoff be-
tween increasing this threshold and avoiding having negative cooling coefficients, capturing all days
where some cooling takes place and following the mathematical logic of choosing the best set of
hyperparameters according to the best »? metric: a too high threshold would miss some days where
cooling occurs, whereas increasing the cooling threshold decreases the value of 2. Furthermore,
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Figure 3.6. LDCs for the heating demand scenarios considered.

increasing the cooling threshold reduces the data available to constrain the w® coefficients. The
most problematic case is that of region Hauts-de-France (Figure B.5f) where coefficients are clearly
negative and non-zero. However the mean over the day is close to zero (=7.5 x 10~*GWhh~1°C™!
for the reference case and —3.3 x 1073 GWhh~'°C~" for e¢ = 4.35) and we can expect this region
to have a negligible impact in the nationally aggregated demand. The choice of hyperparameters as
presented in Chapter 2 is thus a good compromise, and the model behavior safe for our analysis.
This however points out one main limitation of our model, which is not to consider changes in the use
of electric heating and AC in particular.

We thus expect a modified daily cycle during days of cooling with a majoritary contribution of
the southern regions to the national electricity demand. Northern regions are not expected to be the
cause of demand increases since most of them are lowly to not sensitive to increases in the daily
mean temperature.

Impacts on the demand

We study in this section how the modified coefficients impact the regional and nationally aggregated
demand. We focus first on the impacts on demand variability and then focus on the key indicators
of the demand main characteristics introduced before (base, mean and peak demand) and finally
present the resulting LDCs for each scenario.

Demand variability The demand daily cycle for each daytype and across all scenarios of AC adop-
tion is shown in Figure 3.7. We show the daily cycle for all daytypes as a control measure, as only
the one corresponding to the cooling temperature daytype should be modified by our experimental
protocol. As expected from the model coefficients modifications, the variability of the demand over
the day increases with increasing AC adoption. To the contrary of the heating electrification scenar-
ios, here the shape of the daily cycle during cooling daytypes is notably altered: the midday peak
and plateau increases and merges with the early evening peak to yield a broad late daytime peak
going from 7h (UTC, equivalent to 9h UTC+1 in summertime) to around 18h. This broad peak is
then followed by a late evening peak around 21h, which increases in magnitude with increasing AC
adoption. Increasing the share of buildings equipped with AC causes the shape of the demand to
change during those days where some cooling occurs, with an increased broad daytime peak that
peaks around 13h-14h (UTC+1), when the sun is at its zenith.

The seasonal variations of the demand are in turn shown in Figure 3.8. Summer demand in-
creases with increasing AC adoption, with daily average demand reaching more than 60 GW in the
10 years considered for the most extreme scenario (e = 4.35). Otherwise demand is still dominated
by the winter seasonal peak with daily average values reaching on average more than 70 GW. The
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variability — in the sense of the range of values covered — of demand is thus not affected by the
considered scenarios of AC adoption. However, the seasonal cycle is altered with the appearance
of a summertime secondary peak. By summarizing the effects on the daily and seasonal cycles we
can conclude that in our case AC adoption does not so much increase the variability of the demand
than it alters the shape of the daily and seasonal cycles: a broader daytime peak appears at the daily
scale while a summertime peak appears at the yearly level.
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Figure 3.7. Daily variability of the cooling demand scenarios considered. Load is a synonym for electricity
demand. Temp. daytype corresponds to whether the day is a heating day (-1), cooling day (1) or none of the two
(0). Cal. daytype corresponds to whether the day is a working day (0), saturday (1) or sunday/holiday (2).
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Figure 3.8. Yearly variability of the cooling demand scenarios considered, as given by the average daily load
(electricity demand) throughout a year. The shaded area represents the daily average demand
minimum-maximum range over the 2010-2020 period.

Base, mean and peak demand We now turn to the analysis of key features of the demand, base,
mean and peak demand, as introduced in Section 3.2.3. Impacts of the different scenarios on base
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demand are represented Figure 3.9a for the nationally aggregated demand and in Appendix B, Fig-
ure B.6 for the regional demands. At the national levels, increasing AC adoption has a mild but
consistent impact on base demand: base demand increases with increasing levels of AC adoption.
However this impact is minor as the increase remains below 1.1 % for the most extreme scenario
(ec = 4.35). At the regional level there is a clear disctinction between the two southernmost regions
(Occitanie, PACA) and the rest, the former contributing more than the latter to the base demand
increase.

Average demand across the different scenarios is represented Figure 3.9b for the national de-
mand and Appendix B, Figure B.7 for the regional demand. Similar to base demand, increasing AC
induces a mild but consistent increase in the average demand. The impact is slightly more important
in absolute terms (a few hundreds of MW) but decreases in relative terms as it remains below 1.0 %.
The same pattern as for base demand is observed at the regional level, with what seems to be a
slightly higher heterogeneity in the contribution to mean demand increase. This is evidenced by the
fact that Occitanie and PACA contribute more to the relative increase in mean demand, whereas the
total relative contribution is slightly lesss than for the base demand. The other regions must thus
contribute less.

The same effect is observed at the regional level for peak demand (Figure B.8, Appendix B). The
two southermost regions of France contribute each to up to 5% in relative increase of the peak de-
mand. Surprisingly enough, at the national level, peak demand remains stable across the scenarios.
The inconsistent trend of peak demand with increasing electrification, as shown in Figure 3.9c, gives
us low confidence that the observed changes in peak demand are significant.

All in all, AC adoption scenarios have a low impact on the national electricity demand. This
is a direct consequence of our working hypothesis since only AC adoption is considered and an
increased usage is not envisioned. As such those regions that did not have any cooling habits so
far (most northern regions) do not change those habits, and as a result demand increase is mostly
due to two regions (Occitanie, PACA) over the twelve that constitute metropolitan France, even in the
most aggressive scenarios of AC adoption. We leave for future works to tackle this issue, by e.g.
propagating the cooling coefficients from one neighbor region to the other to mimick the onset of AC
usage increase. Another factor of explanation for this low overall impact on the nationally aggregated
demand is the relatively low occurrence of cooling days throughout the year compared to heating
days. The intensity of the experienced hot days or heatwaves will also play a role. Both these factors
will be affected by climate change, which we will account for in the next Chapter 5.

Load duration curve We finally analyze the impacts of the different scenarios on the LDC. These
are represented Figure 3.10. As for the impacts on the different key indicators considered, the im-
pacts of AC adoption as modelled in our study on the LDC are minor. The greatest impact is observed
around the median demand (50 % probability), while the rest of the Figure confirms our previous in-
terpretations: base demand is more affected than peak demand, which remains the same throughout
the scenarios.

3.2.5 Summary and discussion

We have shown that space heating electrification increases the total and peak demand. We find that
reaching a 50 % rate of electrification increases the yearly total demand by 5 % and by twice as much
for the peak demand. Space heating electrification increases the demand variability as well: demand
has a higher spread over the period considered as a result of both the daily and seasonal cycle
having higher amplitudes. We have shown that our AC adoption scenarios do not change notably
the total demand, nor any part of the demand on the LDC (all changes are on the order or below
1%). However the daily and seasonal variations are strongly affected by an increased AC adoption:
the typical midday plateau turns into a broad peak during a typical cooling day, whereas electricity
demand increases in the summer. We put in perspective those scenarios with existing prospective
exercises for the case of France or similar countries in the (grey) literature.
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Figure 3.9. Base, average and peak demand for the cooling demand scenarios considered.

Prospective exercises vary in their projected demands for heating and cooling depending no-
tably on the time horizon considered, their underlying assumptions regarding efficiency and whether
or not they account for climate change effects. In their special focus on the electricity system in the
WEO 2018, the IEA projects heating and cooling demand increases on the order of 1 % for advanced
economies (IEA 2018). These estimates are quite far off to what we project for heating demand and
quite in accordance with our cooling demand projections, if it weren’t that in our case the cooling
demand increase due to AC adoption is probably much underestimated. However, these projections
rely on the FPS (Future Policies) scenario assumptions, which are conservative with respect to elec-
trification compared to e.g. the FiES (Future is Electric) scenario assumptions. However no estimates
of the heating and cooling demand growth are available for the latter. Furthermore, their projections
are a mean over all advanced economies and do not focus on the specific case of France, which can
also explain the discrepancy.

In their prospective exercise about the potential future state of the french electricity system in
2050, the french TSO RTE project a 20 % decrease in heating electricity demand and a 40 % increase
in the cooling electricity demand (RTE 2021, Chapter 3). Their projections however account for effi-
ciency measures and the effect of climate change, which could explain the discrepancy between our
projected increase and their projected decrease in heating demand (efficiency measures and climate
change will both tend to reduce this share of the demand). Their increase in cooling demand related
to AC adoption — although it accounts for the climate change effects — seems more reasonable than
our projections, given the levels of AC adoption that they consider (55 %) and that we consider (up to
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Figure 3.10. LDCs for the cooling demand scenarios considered.

100 %). This reinforces our belief that our electric cooling scenarios are not really representative of
such levels of electrification. Still, the effect of climate change could enhance the overall impacts of
the cooling scenarios considered. A more representative model of AC adoption and usage is left for
future works.

In their specific focus on the future of heating in buildings in 2035 the french energy transition
agency ADEME, in collaboration with the french TSO RTE, projected the impact of efficiency and
electrification policies on the building sector heating energy demand (RTE/ADEME 2020). From a
total heating demand of 61 TWh (value that we use to calibrate our heating electrification scenarios,
see Section 3.2.1) associated to a peak demand of 99 GW in 2018, they project a 8 % to 20 % space
heating demand and a 4 % to 7% peak demand increase in 2035, depending on whether electrifica-
tion occurs with heat pumps or resistive heaters only. These projections correspond to their scenarios
C and D, and do not account for any efficiency measures. The total demand increase corresponds
to half of what we project in our 50 % electric heating scenario, whereas it corresponds to a rate of
electric heating of 49 % for the residential sector and 41 % in the tertiary sector in their case. Our
scenarios of electrification thus yield a higher total demand increase than what is estimated in their
case. Regarding peak demand, a 20 % total space heating demand increase results in a 7% peak
demand increase in their case (a ratio of 7/20 = 0.35), whereas in our case peak demand increase
to total space heating demand increase has a ratio of 9/38 = 0.23. We thus tend to underestimate
the peak demand increase resulting from space heating electrification compared to what they find.
This discrepancy probably comes from the way the daily cycle is encoded in the model and modified
by future electrification, as e.g. described in (Peacock, Fragaki, and Matuszewski 2023), but as the
methodology in (RTE/ADEME 2020) is not clearly explicited it makes it difficult to compare it with our
own.

Other studies on heating electrification in Europe are harder to compare to our scenarios since
the reference levels of electrification can differ. We can however compare the ratio of peak demand
increase to total demand increase, which has a value of 2 in our case. (D. Connolly 2017) show
ratios of peak demand to total demand increase close to what we find: e.g. from 1.8 to 2.6 in Italy or
from 1.3 to 1.6 in the UK, based on a methodology detailed in (David Connolly, Drysdale, et al. 2015)
(HDD approach). This gives us confidence that our projections are relevant for a sensitivity study.
Given this perspective on the projected scenarios, we now assess what are the expected impacts on
the electricity system and on the optimal VRE mix in particular.

We give here a qualitative analysis of how the different scenarios considered might impact the
optimal VRE mix. In particular, we assess whether any of the aforementioned features of our heating
and cooling scenarios might favor VRE penetration or favor one type of VRE technology over an-
other. We do not however discuss any impacts related to storage technologies, network expansion or
flexibility needs. For this analysis we rely on the nationally averaged typical daily and yearly capacity
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factors profiles of VRE sources as modelled in our study (see Chapter 2) for the 2010-2020 period.
These are presented Figure 3.11 for PV and in Figure 3.12 for Wind.

The changes in daily cycle due to AC adoption will probably favor the installation of PV genera-
tion capacity. PV generation is always zero at night and has a marked daytime peak that follows the
average daily cycle of incoming solar radiation (Figure 3.11a). A such there is a good complemen-
tarity between the daily cycle during the cooling days and PV average generation, and even more
so when AC adoption levels are increased. The complementarity between heating electrification and
PV generation is not so evident, although we can suppose that as heating electrification scenarios
tend to offset the daily cycle, which has a morning to early afternoon plateau, this will also favor the
installation of PV generation capacity. However it should be noted that PV generation will never be
correlated to the increased early and late evening peaks observed during the cooling days. It is hard
to predict whether wind energy will be correlated to those peaks increase. The average daily wind
generation profile (Figure 3.12a) is similar in shape to that of solar, but the min and max envelope in-
dicates that wind can generate most of the time and even at night, all the same as it can not generate
at all. A detailed study of the hourly correlation of wind power to electricity demand as in (Hazel E.
Thornton et al. 2017) would be needed to further conclude. The average profile of wind generation
however hints at the fact that there can be a good complementarity between wind generation and
an increased AC adoption. If both energy sources have a good complementarity with demand dur-
ing cooling days, then they enter in competition to satisfy the demand. This issue must be tackled.
We however considered an average daily cyle over the whole period (2010-2020) regardless of the
season the day belongs to. This is a limitation, since wind and PV capacity factors exhibit a strong
seasonal variability.

The changes in seasonal cycle due to heating electrification will probably favorable to wind gen-
eration. Wind capacity factors exhibit a moderately strong seasonal variability with generation peak-
ing in winter time, as shown Figure 3.12b: the daily average capacity factor varies between about
~ 0.1 in summer and ~ 0.3 in winter. This variability is however small compared to the interannual
variability for a given day of the year (from almost 0 to ~ 0.9 for a given day of the year). We can
notice that if the minimum average daily capacity factor is roughly constant throughout the year, the
maximum capacity factor tends to follow the same seasonal cycle as the average capacity factor. This
is not the case for the PV capacity factors seasonal variations where the interannual variations of av-
erage daily capacity factor (~ 0.1 spread) are smaller than the seasonal variations (~ 0.15 spread),
as shown Figure 3.11b. To the contrary of wind seasonal cycle, the more definite PV seasonal cycle
peaks in summer. The changes in seasonal cycle due to AC adoption will thus be probably favorable
to PV generation.

We qualitatively analyzed possible synergies between the demand derived from our scenarios
and VRE capacity factors. We have the intuition that heating electrification scenarios will tend to
favor both wind and PV installation, although from the seasonal cycle analysis we infer that wind
will be preferred. It is hard to tell how AC adoption scenarios will impact wind energy integration,
although from the seasonal cycle analysis it seems that PV capacities will be preferred in that case.
However, the analysis presented here has several inherent limitations. The main one being that the
actual hourly correlation between demand and VRE capacity factors is not accounted for. Then, we
considered so far national averages whereas weather patterns can be regionally differentiated and
as such the hourly correlation of demand to VRE capacity factors may not be the same from one
region to another. We also discussed the potential synergies of each VRE technology separately,
while competition or complementarity effects can be observed when both are considered at the same
time. Finally, as averages where considered, we missed the inherent interannual variability due to
the stochasticity of the demand and capacity factors (let aside the low frequency internal climate
variability). To fully account for the regional hourly correlation between demand and VRE capacity
factors, their stochasticity, as well as the wind and PV technological complementarity, we use the
E4cLIM framework (Tantet, Stéfanon, et al. 2019; Tantet and Drobinski 2021) presented in Chapter 2,
Section 2.4. We showed that the impacts on the demand of scenarios of AC adoption are limited
with the climate conditions of reference. They are expected to be higher in the future due to climate
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change. We thus focus exclusively in this chapter on heating demand electrification and its impacts
on the obtained VRE mixes and their economic properties. We assess in the following section what
are the impacts of our different heating demand scenarios on the choice of the optimal VRE mix.
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3.3 Impacts of socioeconomic scenarios of electric heating on
VRE optimal mixes and system costs

K

SOIIVNIOS ANVINIA ONITOOD ANV ONILV3IH



80 HEATING AND COOLING DEMAND SCENARIOS

Highlights

Impacts of space heating electrification on variable renewable en-
ergies regional mixes and system total costs

Joan Delort Ylla, Alexis Tantet, Philippe Drobinski

e A minimal model of temperature-sensitive electricity demand was de-
veloped,;

e Space heating electrification favors the penetration of Variable Renew-
able Energies (VREs);

e Increases in system total costs are moderately compensated by VRE
value;

e Optimal energy mixes are governed by the LCoE and maximal instal-
lable VRE capacities;
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Impacts of space heating electrification on variable
renewable energies regional mixes and system total
costs
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Abstract

Decarbonising heating demand is a necessary step towards meeting the Paris
Agreement goals. We study the decarbonisation of the former in the case of
France, where an electrification of the heating demand seems plausible. We
design to this end a temperature-sensitivity model of demand and use the
E4CLIM electricity system model to study a variety of heating electrification
scenarios in an electricity system with high shares of VREs. We find that
the electrification of heating demand favors the installation of VRE capac-
ities at the same time that it increases the system total cost. We find also
that increasing heating demand electrification is not the main driver for the
determination of optimal VRE mixes. These are mainly driven by the tech-
nologies LCoEs and maximal installable capacities. We suggest to perform a
similar sensitivity study within the context of climate change in future works.

Keywords: Decarbonisation, VRE, Heating, Temperature-sensitive demand

1. Introduction

Current and projected climate change impacts are a threat to the well-
being of numerous human and non-human populations around the globe.
This is particularly true for the already most vulnerable ones [1, Executive
Summary, B.1]. Mitigation of climate change is a necessary but not sufficient
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step in ensuring a livable environment for all [2]. The objectives to mitigate
climate change impacts as defined by the Paris agreement! cannot be reached
without reduction of the carbon emissions of the world energy systems |[3,
Chapter 6]. Reduction of Greenhouse Gas (GHG) emissions of the electricity
generation sector is key to reaching low carbon energy systems [3, Chapter
6]. Aside from other low carbon energy technologies, Variable Renewable
Energies (VREs) like solar Photovoltaic (PV) and wind energy will be key
players in the decarbonisation of the electricity generation sector. Although
debated [4, 3|, some studies strongly support that a fully renewable low car-
bon electricity generation mix based on wind, solar PV and hydroelectricity
is feasible and viable [5]. Such mixes have already been incorporated into
states’ energy policies and industrial stakeholders projections. These projec-
tions and roadmaps define energy mixes that contain a high share of VREs:
from 60 % to 90 % of installed capacity and up to 90 % in production accord-
ing to 2050 scenarios from the french Transmission System Operator (TSO)
[6, Chapter 5]. Studying the properties of such mixes is key to understand
processes that might compromise their social, environmental or economical
viability.

Tackling the decarbonisation of the heating sector is also key to reduce
global carbon emissions. In France, emissions from the heating demand sup-
ply accounted for 15 % to 20 % of the total emissions in 2019 [7], whereas in
Europe they accounted for at least 10 % to 15 %? in 2020 [8]. Space heating
accounts for the majority of the heating demand (54 %), in particular in the
residential and services sectors, in the case of Europe [9]. It alone accounts
for 80 % of the heating demand in the residential sector and 10 % of the global
European Union (EU)-28 GHG emissions in 2015 3. Decarbonisation of the
heating sector has received much attention at the national and international
levels, with commissioned reports from EU-funded projects [11, 12] — part

https://unfccc.int/process-and-meetings/the-paris-agreement/
the-paris-agreement

20wn computation based on data from https://di.unfccc.int/detailed_data_by_
party and considering the sum of sectors 1.A.4.a and 1.A.4.b as corresponding to the actual
residential and tertiary heating. Note that electric and district heating contributions are
in this case not taken into account, which would in general increase the estimation by a
few percent.

30wn computation based on data by [10] for sectoral emissions and [8] for total GHG
emissions with Land Use, Land Use Change and Forestry (LULUCEF).
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of the Heat Roadmap Europe (HRE) project — and national reports like
[7] in the case of France, for the most recent ones. Apart from gains in en-
ergy efficiency, use of low carbon fuels — including the parsimonious use of
biomass [13] — or connection to local decarbonated district-heating systems,
electrification of services and residential sectors heating demand will play an
important part in their decarbonisation [3|. In the case of France, 40 % of
households rely on electric heating (heat pumps or resistive heaters) as of
2020. This number is projected to rise to 70 % in 2050 [6], although the over-
all electricity demand is expected to remain stable. In the case of Europe,
the transition to heat pumps to satisfy the heating and cooling demand could
increase the electricity demand by 30 % to 50 % for some countries, and by
100 % in the case of resistive heaters [14].

Before considering the impact of heating demand?* electrification on the
electricity system, an electricity system with high shares of VRE already im-
plies multiple challenges to be tackled. In particular, high shares of VREs
in the mix induce (positive or negative) extra costs related to their intrinsic
characteristics IEA-RTE [15]. If introducing high shares of VREs has an im-
pact on the energy system from the production side of things, increasing the
electricity demand due to heating electrification will also affect the electric-
ity system considered. In the literature, the most mentioned impacts consist
of an increase in average demand and peak demand [14] and an increased
temperature-sensitivity [6, Section 6.4.4]. The effects on other components
of the electricity system, e.g. the need for greater flexibility or the need
for network expansion [14, 16, 6|, although mentioned, are not well char-
acterized. In particular the effects of heating demand electrification on the
optimal generation mixes are — to the best of our knowledge — not well
documented.

We ask in this study what are the impacts of increased heating demand
electrification on optimal VRE mixes and system total costs. This allows
us to identify and discuss the possible synergies between an increase of the
rate of electric heating and the integration of large shares of VRE. We focus
on the techno-economical impacts of a transition from low to high heating
demand electrification in the case of France.

4We denote in the following as heating demand this share of the demand that comprises
space heating in the residential and services sectors. The former are often regrouped into
the more generic term of building sector and we will not differentiate the two terms in the
following.
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We use a modified version of the open-source EACLIM model [17] as a
tool to study coupled investment and optimal dispatch of demand in a power
system with high shares of VRE. The model architecture allows for the mod-
elling of capacity factors and demand from climate and energy data at a
regional scale, which allows us to study demand scenarios corresponding to
various rates of electric heating and different levels of VRE penetration. One
originality of this model is its mathematical simplicity, allowing for straight-
forward analysis of the phenomena at play. In particular, it is technology
agnostic: no assumptions on the mix that supplies the heating electricity
demand, nor on the mix of dispatchable producers that complement VRE
producers in supplying the electricity demand are needed. Finally, the exact
definition of VRE integration costs being subject to discussion [18], we base
our techno-economical analysis on the optimisation of a system total cost
[19], rather than the simple use of an Levelized Cost of Electricity (LCoE)-
like metric or the decomposition into VRE integration costs.

A more detailed description of the methods is presented in Section 2.
In Section 3, we present the main results of the study, some of which are
discussed in Section 4. We finally present the main conclusions in Section 5.

2. Methods

In order to analyze the effect of heating demand electrification on an elec-
tricity system with high shares of renewables, we use a temperature-sensitive
electricity demand model to estimate hourly variations of the demand in re-
sponse to temperature variations, in which the temperature-sensitivity can
be controlled according to different electrification scenarios. The resulting
demand is then fed to electricity systems with varying penetrations in VRE
modeled in E4CLIM at the regional scale with a minimal representation of
dispatchable producers. In this section, the temperature-sensitive demand
model, the heating electrification scenarios and the electricity system model
are presented.

2.1. Temperature-sensitive demand model

We are interested in modeling the impact of climate and meteorologi-
cal variability on electricity demand for a given geographical region. The
demand model presented by Tantet et al. [20] is adapted to this end. We
design a probabilistic generalized linear regression model of demand taking
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temperature as input. The main purpose of this model is to give one ac-
cess to the temperature-sensitivity coefficients and to allow one to modify
them without compromising the demand statistical features (yearly, weekly
and daily variability). The hour of the day, & in [0, 23], and the calendar
daytype, j in {0, 1,2}, are included as dummy variables, to account for the
daily and weekly variability. The calendar dummy j discriminates work days
(7 = 0), saturdays (j = 1) and holidays (j = 2).

Let L(t) be the hourly demand for a particular region and T'(¢) be the
surface temperature for time ¢. We also note h(t) and j(t) the hour of the
day and the daytype for t, respectively. The factorized temperature-sensitive
model may be written as

L(t) = w® + Wiy i X P () + Whiny i X T () + Wy ;0 X&) + (), (1)

0 ; : B H C :
where w” is an intercept and wy ;, wy, ; and wy, ; are respectively the Base,

the Heating temperature-sensitivity and the Cooling temperature-sensitivity
coefficients for the hour of day h and daytype j. The corresponding input
features X2, X and X are given by

XBt)=1

XU(t) = (Tu — T()O(Tu — T(1)), (2)

XO(t) = (T(t) - Te)O(T(t) — Tc)
where Ty and T are the heating and cooling threshold temperatures and © is
the Heaviside step function. Note that we must have Ty < T¢. The quantity
T(t) is the daily-mean surface air temperature of the region considered; it is
kept constant throughout the day. The term 7 is a residual which accounts for
all processes other than changes in air temperature that influence the demand
as well as variations in the demand in response to temperature changes that
cannot be captured by the model (1). We assume this residual to be a
Gaussian white noise with variance 0. Given Ty and T¢, the model (1) can
be turned into a linear model by replacing the inputs (2) by the factorized
inputs,

5B SH e
(Xh’,j'<t)7 Xh’,j’ (t), Xh',j/ (t)) = { (O7 O7 0) otherwise,

(3)

(XB(t), XH(t), XC(t)) if ¥ = h(t) and j' = j(t)
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for all A’ in [[0,23] and j" in {0, 1,2}. The factorized coefficients and inputs
can then be collected into a vector w and a random vector X (t) to wit,

L(t) = w” + X (t) - w + n(t). (4)

The coefficients of the linear model (4) are fitted using a training set of
input temperatures and target demands for each region (see Sect. 2.1.1). To
avoid overfitting we apply a regularization method instead of simply esti-
mating the coefficients via an ordinary least-squares regression. We choose
a method that is both Bayesian and sparse: the Automatic Relevance De-
termination (ARD) regression (Tipping [21|, Chap. 7.2 in Bishop [22| and
Wipf and Nagarajan [23]) implemented in Scikit-learn [24], with small values
of the hyperparameters to make the priors non-informative. The coefficients
in w are region specific; however, to limit the number of hyperparameters
and the risk of overfitting, we assume that the thresholds Ty and T¢ are
independent of the regions. This pair of hyperparameters is optimized in
order to minimize the prediction coefficient of determination averaged over
all regions. The latter is estimated via the k-fold grid-search cross-validation
procedure implemented in Scikit-learn [24]. The number of folds is set to the
number of years of data in order to preserve the seasonal cycle in each fold.
Having estimated the coefficients for all regions, the coefficients w™ can then
be modified to account for the increased temperature-sensitivity due to the
electrification of heating in the demand that is then fed to the power system
model module of the E4CLIM model.

2.1.1. Temperature-sensitive model training data

The meteorological data used to compute the feature vector X is from
MERRA-2 reanalysis (surface temperature field, hourly resolution) following
Tantet et al. [20]. The training vectors are computed from demand data
from the french TSO Réseau de Transport de 1'Electricité (RTE)®, which is
also available at an hourly time resolution. The metropolitan France ad-
ministrative regions considered in the study are presented in Appendix A,
Figure A.6.

®https://opendata.reseaux-energies.fr/explore/dataset/
eco2mix-regional-cons-def/information/?disjunctive.libelle_region&
disjunctive.nature, accessed on 17 January 2022.
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2.1.2. Electrification scenarios

From the obtained temperature-sensitivity coefficients (see Figure B.7),
we design simplified scenarios of increased electrification as equivalents to
the technological transition from non-electric to electric heating appliances
for the case of France.

These electrification scenarios are determined by the rate of electric heat-
ing. Two families of electrification scenarios are defined. In the Uniform
Electrification (UE) family, electrification occurs uniformly for all hours, so
that the demand is simply multiplied by a constant. One scenario from
this family will be analyzed in more details: the Uniform Electrification
65 (UE65) scenario, for which (L) = 65 GW. In the Heating Temperature-
sensitive Electrification (HTE) family, only the heating temperature-sensitive
demand is multiplied (for all hours). In particular, the Heating Temperature-
sensitive Electrification 65 (HTEG65) scenario is associated with the same av-
erage demand as UEG5. Last, in the Reference scenario, no electrification
is performed. Those scenarios are presented in Table 1, with the Reference
scenario corresponding to the french rate of electric heating as of 2015 (rep-
resentative of the 2010-2020 period), that we take equal to 35% |25, 26].
The HTEG5 scenario corresponds to an increase of the temperature-sensitive
demands in all regions yielding a rate of electric heating of 70 %. The UE65
scenario corresponds to a uniform increase in the demand equivalent on av-
erage to that of the HTE65 scenario. The detail of all demand scenarios is
given in Appendix B, while the obtained temperature-sensitivity coefficients
for each scenario are presented in Figures B.7b and B.7c.

Scenario  Average demand (L) (GW) % electric heating

Reference 54.6 35%
UE6H 65.0 35%
HTEG65 65.0 88 %

Table 1: Main electrification scenarios of the study.

We represent the Load Duration Curve (LDC) for each of these three
demand scenarios in Figure 1. We can observe that the LDC of the UEG5
case is to the first order a translation of the LDC of the Reference case,
whereas the shape of the LDC in the HTEG65 case is altered: there is an
increased demand variability and a higher probability to observe demands

K

SOIIVNIOS ANVINGIA ONITOOD ANV ONILV3IH



88

HEATING AND COOLING DEMAND SCENARIOS

above the mean than for the UE65 case. Peak demand is also higher in
the HTEG5 case, with a value of 162 GW, compared to the UEGH case with
124 GW. A 20% increase in the average demand is thus associated with a
60 % increase of the peak demand in the HTEG65 case.
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Figure 1: LDC (thick colored lines) for the Reference (plain blue), HTE65 (plain
orange) and UE65 (dashed orange) scenarios.

2.2. Energy system model

In order to analyze the response of optimal VRE mixes to heating elec-
trification we adapt the Energy System Model (ESM) E4cLim [17]. We
refer the reader to Appendix C for a summary of the main methodological
developments.

2.2.1. VRE-penetration scenarios

Different levels of VRE penetration can be explored in E4CLIM by con-
troling the variable cost of dispatchable producers with the Dispatchable
Variable-Cost Coefficient (DVCC) («). The higher the DVCC, the more
costly the dispatchable production, and so the larger the optimal penetra-
tion of VRE. This is shown Figure 2a, e.g. for the Reference case (plain blue
line). Thus, for each of the electrification scenarios presented in Section 2.1.2,
the VRE mix is optimized for a range of DVCC values in [1-107%6-1073].
This range is sufficient to explore both low and high VRE-penetration sce-
narios. Additionally scenarios without VRE can be considered for any DVCC
value.

Three main scenarios are considered in particular in the following: Low
penetration, High penetration and Max penetration, corresponding to o =



3.3. Impacts of socioeconomic scenarios of electric heating on VRE optimal mixes and system costs

89

0.8-103€MWh 2 o =32-102€MWh % and a = 6.0- 10> € MWh? re-
spectively. These VRE-penetration scenarios correspond to levels of penetra-
tion of 25 % to 35 %, 65 % to 70 %, and 70 % to 85 % for the Low-penetration,
High-penetration and Max-penetration scenarios respectively (the variations
being attributed to the different electrification scenarios). This is shown in
Figure 2, where the total penetration of VRE (Figure 2a) corresponds to the
amount of energy served by VRE per total energy served. VRE curtailment
is also shown in Figure 2b, and corresponds to the amount of excess VRE
generation per total energy served by VRE. The aforementioned levels of
VRE penetration correspond to curtailments levels of less than 5%, 15%
to 20 %, and 20 % to 25% for the Low-penetration, High-penetration and
Max-penetration scenarios respectively.

In summary, the electricity demand estimated in Section 2.1 for different
electrification scenarios are fed to the E4ACLIM model in order to estimate
optimal VRE mixes at different penetrations. In the next section, the result-
ing VRE mixes are analyzed in order to evaluate the response of the value
of VREs depending on the electrification scenario.
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Figure 2: Global VRE penetration (left) and curtailed energy fraction (right) as
a function of the DVCC for optimal VRE mixes for the three main electrification
scenarios. Dashed lines correspond to the Low-, High- and Max-penetration sce-
narios. Inset shows both quantities for penetrations below 20 %.

3. Results

We present in this section the results of the different scenarios to study
the impact of heating demand electrification on the electricity system, and
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on VREs mixes value and technological diversification. In a first step, in
Section 3.1, we analyse the impact of electrification on VRE mixes without
discriminating VRESs by technology. Then, in a second step, in Section 3.2, we
analyze the regional and technological diversification of the obtained mixes.

3.1. VRE mixes

We now analyze the effect of electrification on the system for optimal
VRE mixes, with VRE producers considered as a whole. A finer analysis of
the VRE technological diversification is presented in Section 3.2.

3.1.1. Penetration and curtailment

In any of the considered electrification scenarios (Reference, HTEG5,
UE65) penetration increases with increasing DVCC up to a threshold where
it remains constant (Figure 2a). This corresponds to the point where all
VRE capacities have been installed and regional maximum installable capac-
ities have been reached. Regarding the effect of an increased electrification,
we observe that as long as maximal capacities have not been reached, an in-
creased average electrification implies a higher VRE penetration in the mix
(Figure 2a). At a given value of the DVCC, the penetration is higher for the
HTEG5 scenario than for the UEG5 one. This suggests that at a given level of
average electrification, a temperature-sensitive electrification tends to favor
VRE capacity installation. Regarding VRE curtailment, we observe that it
increases with increasing DVCC, in a similar fashion as penetration: a first
phase of increase and then a plateau, once the maximal penetration has been
reached (Figure 2b).

At a given variable cost of the dispatchable production (i.e. for a given
DVCC), a temperature-sensitive demand electrification tends to favor instal-
lation of VREs compared to the Reference or UE scenarios. Up to 14 %
more VRE capacity is installed in the HTE65 scenario compared to the Ref-
erence scenario, for penetrations of (60 4+ 5) %. This higher penetration of
VRE is followed by an increased curtailment compared to the Reference sce-
nario. As our mixes minimize the electricity system’s total cost, this should
mean that VRE are preferred over dispatchable producers when increasing
the temperature sensitive electricity demand. We discuss this conclusion in
the next sections by analysing the total and marginal costs for the different
electrification scenarios and through the assessment of VRE value.

10
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3.1.2. Total costs and VRE value

The System Total Cost (STC) is analyzed for mixes with optimal VRE
capacities and for the values of the DVCC corresponding to the Low- (o =
8.01 - 10"*€MWh™?), High- (¢ = 3.2 - 103€MWh?) and Max- (a =
6.0 - 1073€ MWh?) penetration scenarios (Figure 3a). The differences in
VRE penetration for a given DVCC («) in Figure 2a show that points in
Figure 3 for the HTE and UE scenarios — for the same average demand
and DVCC — may be associated with different mixes. We observe Figure 3a
that an increase in average electrification yields an increase in STC. Notably,
the increase in STC compared to the Reference scenario is 9 points higher in
the HTEG5 scenario than for the UEG5 scenario (High-penetration scenario).
This effect is more, resp. less, pronounced for higher, resp. lower, values of
the DVCC. To summarize, a temperature-sensitive increase of the demand
implies a higher STC than a uniform increase of the demand. In the next
paragraph, the impacts of the different scenarios on the VRE value are as-
sessed by comparing an energy mix without renewables and only dispatchable
producers to optimal VRE mixes.

We define by System Total Value (STV) of VRE the difference in STC
between a mix with optimal VRE capacities and one without VREs for a
given scenario. Formally, the expected STV over a year for a given VRE mix
x is given by

E (STV,) = E (STC(0)) — E (STC(=)) . (5)

The STV of VRE are given in Table 2, while the STV for all demand
scenarios relative to the Reference case is plotted in Figure 3b. We first
observe from the results reported in Table 2 that the VRE value is always
positive for the scenarios considered: there is no scenario where disinvesting
in VRE would benefit the system. This is expected since the VRE mixes are
always optimal with respect to the system total cost, and as such, investment
in VRE occurs only if this total cost decreases. Introducing VRE reduces
notably the system costs: the STV is 2%, resp. 24 %, of the STC without
VRE for the Low-penetration, resp. High-penetration, scenarios (Reference
electrification scenario).

We observe that VRE total value is multiplied by 1.4 to 1.8 (Figure 3b)
when increasing the average demand (HTE65 scenario). This relative in-
crease is higher for low values of the DVCC. We should however keep in
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mind that VRE total value is higher for higher values of the DVCC, as
shown earlier. This relative increase in STV is significantly lower for a uni-
form demand increase than for a temperature sensitive demand increase at
high penetrations (plain vs. dashed lines). This difference between HTE and
UE scenarios is not so significant at lower penetrations and gets inverted for
lower values of average demand.

In conclusion, we find that increasing the average demand tends to in-
crease the VRE value with respect to the Reference scenario. This increase
is more marked for a temperature-sensitive increase of the demand (HTE
scenarios) as long as maximum capacities are not reached.
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Figure 3: Mean STC (left) and mean STV with respect to the Reference case (right)
as a function of the average demand (corresponding to increasing levels of electrifi-
cation) and for the Low (o = 8 -10"*€MWh™?), High (o = 3.2- 103 € MWh?)
and Max (a = 6-1073 € MWh™2) VRE penetration scenarios. Dashed colored lines
correspond to the UE scenarios while plain colored lines correspond to the HTE
scenarios. Thick black diamonds show the Reference, UE65 and HTE6G5 electrifica-
tion scenarios. The magnitude of the VRE STV for the Reference case is reported
in Table 2

3.2. Technology-level assessment

We analyze the impact of heating demand electrification on the optimal
VRE mixes. We expect that a change in demand will affect which VRE
technology-regions will be invested in preferentially. The optimal VRE mixes
per region and technology are plotted in Appendix D, Figure D.9, for the
Low-penetration scenario and Figure D.10 for the High-penetration scenario.

12
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Scenario STV (Low %) STV (High %)

Reference 3.4G€ 43.8 GE
HTE65 6.1G€ 1 67.1G€ 11
UE65 6.1G€ 1 64.5 G€ 1

Table 2: System total value for the main scenarios of the study. Low % stands
for low VRE penetration, while High % corresponds to the high VRE penetration
scenarios. The arrows represent the evolution in magnitude with respect to the
Reference scenario, between electrification scenarios only.

K

We observe that no matter the electrification scenario (Figures 4a and 4b),
the mix is composed to the first order only of PV for values of penetration
below 10 %, then is dominated by PV up to (20 + 5) % penetration, where
Wind then becomes the dominant generation source. Except for the total
level of VRE penetration, which is higher in the HTE scenrios, the two
investment trajectories differ only by what happens at low penetration values,
where we observe that more solar PV capacity is installed sooner in the UE65
case. Inversely Wind capacity is installed earlier in the HTEG5 case.

The technology-level penetrations presented here correspond to the re-
gionally aggregated technologies. It can be shown that there is no regional
diversification between the HTE65 and UE65 scenarios: the investment tra-
jectories with increasing DVCC value are the same than for the Reference
case, except that capacities are installed sooner for the higher electrification
scenarios, and sooner for the HTE scenarios compared to the UE ones (see
Appendix D, Figures D.9 and D.10). In particular, maximal capacities per
region are reached in the same order.

We recall that investment in VRE capacity is determined by a technology-
region potential profits. For VRE capacity to be installed, the potential
profits of some technology-region ¢ must be non-negative. These profits are
given by

SOIIVNIOS ANVINGIA ONITOOD ANV ONILV3IH

where v; and LCoE; are respectively the value factor and the LCoE (€ MWh™!)
of VRE producer . The detail of the mathematical development is given in
Appendix C. The System Marginal Cost (SMC) (A) is the same for all pro-
ducers, thus it affects the optimal VRE mixes level of penetration. The two
other factors — the value factor, v; and the LCoE of technology-region i,
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LCoE; — control the differences in installed capacity between regions, and
thus determine the mix composition per technology-region. We plot the
average over all regions of the VRE value factor before VRE is installed,
against the different demand scenarios in Figure 5. We observe, and this is
computed in Appendix B, Equation (B.16), that the initial value factor for
the UE scenarios doesn’t change. However, the initial value factor of wind
technology-regions is increased on the order of 2% to 3 % for the HTE65 sce-
nario compared to the Reference one. The opposite behavior is observed for
solar PV, where the initial value factor of all technology-regions is decreased
on the order of 5% for the HTEG5 scenario compared to the Reference one.
The variations in LCoE between wind energy and solar PV are on the order
of 50% to 100 % for the most extreme cases (see also Figure C.8). These
variations are thus much higher than the variations in value factor.

These observations allow us to conclude that, to the first order, VRE
mixes are not impacted by a uniform increase in the demand (UE scenar-
ios) nor by a temperature-sensitive increase in the demand (HTE scenarios):
optimal VRE mixes vary with the penetration of VRESs, with solar PV dom-
inated mixes at low penetrations and wind dominated mixes up a certain
penetration threshold. However, for low penetrations — i.e. below 10 % to
15 % — we observe that wind energy is favored in the case of a temperature-
sensitive electrification (HTE scenarios), whereas solar PV is preferred in the
case of a uniform electrification (UE scenarios).

4. Discussion

We showed so far that although it had an impact on system total and
marginal costs, as well as on VRE value, a temperature-sensitive electrifica-
tion did not impact (to the first order) the optimal VRE mixes installed to
satisfy a given demand. In particular, we show that VRE mixes were gov-
erned at low penetrations by solar PV whereas Wind energy takes up once
a certain penetration threshold is reached. We discuss in this section some
of the previous results, as well as put them in perspective with results from
the literature.

We can compare the obtained system costs with projections from system
operators. If we take for example the projected values of a decarbonated
energy system at the 2050 horizon in the case of France [6], we get values
for the system total cost in the order of 40 G€ per year, for the production
costs only and up to 75 G€ per year for the system’s total cost. These
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Figure 4: Penetration of Wind and PV for optimal VRE mixes at different values
of the DVCC and for the HTE65 (left panel) and UE65 (right panel) scenarios.
The total penetration is represented as a full black line for the HTEG65 case, and as
a black dashed line for the UE65 case. A zoom into what happens for low global
penetrations (0 % to 35 %) is given in the insight of each panel. The vertical dashed
lines mark the Low, High and Max VRE penetration scenarios.

- 1.075 7(0) (HTE)
==+ i5(0) (VE
L070 #i(0) (UE)
1.01
1.065
=1 .
2 00 £ 1.060
& &
g 0.99  1.055
S g
0.98 1.050
007 1.045
7(0) (HTE) 1.040
0.961 —— #%(0) (UE)
56 ) 60 62 61 56 58 60 62 61
(L) (GW) (L) (GW)
(a) PV (b) Wind

Figure 5: National median of the regional value factors — Equation (C.6) — without
VRE, for PV (left), and Wind (right) panel; plotted against the average demand for
each case. The plain blue line corresponds to the increased temperature-sensitive
electrification scenarios (HTE scenarios), whereas the orange dashed line corre-
sponds to the UE scenarios. The shaded area corresponds to the first and third
interquartile range (linear method).
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values are close to those in our Low penetration scenario — 50 G€ to 70 G€
— but lower by one order of magnitude compared to the High penetration
scenarios, where the yearly average STC is on the order of 150 G€ to 200 G€.
Despite these lower STC values, VRE penetration is brought to high levels,
up to 88 %, in the RTE scenarios. This discrepancy might come from the
internalisation of the emission costs in our model: the DVCC then becomes
a proxy for the emission costs, i.e. the equivalent of a carbon tax. It is thus
interesting to note that high VRE penetrations are economically optimal only
under a high cost of the dispatchable production (in this study), which can
be interpreted as a high carbon tax (in general).

The synergies between electrification and VRE were already explored in
the case of resistive heaters [27], or in the case of heat pumps [28, 29|. Zhang
et al. [27] find that resistive heaters are in good synergy with wind power in
the periods of high wind power production. This is something we observe in
our study, but only at low penetration values. Hedegaard et al. 28] find that
a technological transition to heat pumps, causing the displacement of less
efficient technologies and the subsequent electrification of heating demand, is
the most effective way in their model to reduce Wind power curtailment. We
would have expected a similar result in our case, however, we have shown that
increasing the rate of electric heating has opposedly the effect of increasing
the overall curtailment. Waite and Modi [29] presented similar results with
a modelling experiment at the scale of the city of New York (USA): Wind
power integration was favored by the installation of heat pumps. However,
instead of optimizing VRE capacities, those were set beforehand, limiting
the reach of their conclusions in terms of economically optimal mixes.

Perhaps the main limitation of this study is the extent to what the mini-
malism of both our demand and energy system models are able to reproduce
the complex mechanisms of the electricity system as a whole. Limitations of
the energy system model are well described in Tantet and Drobinski [17]. In
our case the absence of storage is maybe the greatest factor of uncertainty as
to the generalization of our results: indeed, the possibility of storage could
weaken the effects the value factors have on optimal mixes at low penetra-
tions. As for the demand model, the main limitation is probably its techno-
logical agnosticity, i.e. the fact that: one, the initial mix supplying the Refer-
ence heating demand is never addressed; and two, that this mix is supposed
to remain the same when increasing electrification. It would be interesting to
explore if technological diversification could be added into our linear model
of demand, to be e.g. able to study an electrification that would be carried
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out only through the installation of heat pumps. Our model can thus from
this point of view be seen as a worst case scenario where no improvement
in terms of heating technologies is envisioned, and only the transition from
non-electric to electric heating appliances is taken into account. Further work
could try to include the energy mix supplying the heating demand, for exam-
ple through the use of more sophisticated energy system models accounting
for sector coupling.

5. Conclusions

This study allowed us to tackle the impacts of increased heating demand
electrification on optimal VRE mixes and system total costs. We conducted
the analysis thanks to two minimal models, of demand on one side, and of
an energy system model on the other side. From this study, we draw the
following general conclusions.

We find that a temperature-sensitive increase in the demand — which is
in this study an equivalent of the electrification of heating demand — favors
the installation of Variable Renewable Energy (VRE) capacity compared to
the actual level of heating demand electrification. This effect is more pro-
nounced at high penetrations (60+5) % of VRE, where the extra investment
in VRE capacities due to an increased temperature-sensitive demand to be
served reaches up to 15%. This results confirms the synergies between in-
creased electrification scenarios and the installation of VRESs, and extends it
to a temperature-sensitive increase in the demand. We show in particular
that this increased penetration is higher than for a uniform increase in the
demand.

In a second time, we show that although an increased electrification of
heating demand increases the system total cost, the System Total Value
(STV) of VRE increases as well, which tends to reduce the increase in total
costs: for example, the increase in STC between the current state and the
projected 80 % electrification of heating demand is reduced by 2% due to
the introduction of VRE, while its absolute value is reduced by a quarter.
The major effect of introducing VRE is thus to reduce the system total costs,
while a minor effect lies in an increased VRE value when increasing the rate
of electric heating.

Last, we show that the composition of the optimal mixes is dominated by
the technologies LCoEs and the regionally maximum installable capacities,
rather than by the correlation between VRE generation and the demand to be
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served. We would have expected, in accordance with the literature, that in-
creasing the heating demand electrification would have favored Wind energy;,
the latter being correlated to peak demand hours in winter. Surprisingly,
this effect is only observed at low penetrations — on the order of (10 +5) %
— while at higher penetrations it is the technology-region LCoE and the
regional maximum installable capacities that determine the composition of
the optimal mixes.

Finally it is worth noting that we did not take into account any other
factor that could influence the electric demand. In particular, we did not
take into account the effects of climate change. Regarding heating demand,
in Europe, this study can thus again be considered as a worst case scenario
as heating demand is expected to drop due to milder air temperatures in
winter. This will be tackled in future works.
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Appendix A. Area of study

@® Auvergne-Rhdne-Alpes
Bourgogne-Franche-Comté
Bretagne
Centre-Val de Loire
Grand Est
Hauts-de-France

@ lle-de-France
Normandie

® Nouvelle-Aquitaine
Occitanie

® PACA
Pays-de-la-Loire

Figure A.6: Map of the french administrative regions considered in the study,
adapted from [17].

Appendix B. Scenarios

We work with a set of scenarios corresponding to different levels of heating
demand electrification. The scenarios are derived from a Reference scenario
by multiplying the temperature-sensitivity coefficient w' by a factor e. The
temperature-sensitivity factor € for each scenario is given in Table B.3. To
each HTE scenario corresponds a UE scenario where all coefficients of the
linear model — including the intercept w® — are multiplied by a pseudo-
temperature-sensitivity factor €* to yield the same average demand. These
pseudo-temperature-sensitive factors, €*, are given in Table B.3 for the dif-
ferent scenarios.
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Appendiz B.1. FElectrification scenarios

The obtained temperature-sensitivity coefficients are presented in Fig-
ure B.7a while the modified coefficients for the UE65 and HTEG5 scenarios
are presented in Figures B.7b and B.7c respectively. We can observe that
the temperature-sensitivity coefficients for the UE65 scenario are close to
the Reference case: this is evidenced by the similar coloring of the maps be-
tween Figure B.7b and Figure B.7a. Instead, one can also observe that the
temperature-sensitivity coefficients are much higher in the HTE65 scenario,
Figure B.7c : this is particularly clear for regions Ile-de-France, Aquitaine and
Auvergne-Rhone-Alpes. In fact, the vectors mapped in Figure B.7b and B.7¢c
are collinear with that mapped in Figure B.7a, but the coefficient of pro-
portionality with respect to the Reference scenario is larger for the HTE65
scenario than for the UE65 scenario.

Appendiz B.2. Implication for the demand

We compute now quantities of interest derived from the demand, for
a given scenario different from the Reference one. We recall the demand
model, for a given hour and calendar daytype and assuming only heating
temperature-sensitivity:

Lt) = W' +wP 4+ (Ty —Tt)0(Tu — T(t)) + n(t), (B.1)
with the equation parameters detailed in the text. If we consider the expecta-

tion of the yearly average, i.e. we apply E(1/Tj 251 (+)) to Equation (B.1)
we get:

(L) = &+ (W°1) + @"(Ta = T(1)O(Tu — T(t)) +n(t)), (B.2)
= W'+ +(E@), (B.3)
since w® is constant for a given hour and calendar daytype, and n(t) is

a gaussian white noise (with mean zero). We note E(t) the temperature-
sensitive part of the demand.

In a scenario where we multiply the temperature-sensitivity coefficient,
wh, by a factor €, we get the new average demand (Equation (B.4)):

(L(€)) = o+ wP+e(B(). (B.4)
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Figure B.7: Map of the computed regional temperature-sensitivity coefficients (w™).
The plotted values correspond to the mean over the two factors hour of the day and
daytype. The upper panel corresponds to the reference case. The bottom panels
correspond to the magnitude of the regional temperature-sensitivity coefficients in

the UE65 (left panel) and HTE65 (right panel) scenarios (Table 1).

In turn, if we multiply instead by the pseudo-temperature-sensitivity coeffi-
cient €*, the average demand is then (Equation (B.5)):

(L(e)) = e+ Wb+ e (E(). (B.5)

Appendiz B.3. Implication for the system’s total and marginal costs

Given the two modified versions of the demand (HTE vs. UE), we com-
pute the expected system total cost and the system marginal cost without
VREs for both scenarios. For the HTE scenario, the expected STC yields
(Equation (B.7))
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E(STC(0,L)) = To(aLle?), (B.6)
= aTy({L(e))* + Var (L(¢))). (B.7)

The computation for the offset case is the same and makes also appear
the variance of the demand. For the system marginal cost, we get (Equa-
tion (B.9)):

MO,L)) = (2aL(e)), (B.8)
= 2a(L(e)). (B.9)

where we can see that it only depends on the average of the demand.

Appendiz B.4. Implication on VRE profits
We recall that a VRE technology-region potential profits are given by:

where v; and LCoE; are respectively the value factor and the LCoE (€ MWh ™)
of VRE producer ¢. They are defined by

 (\Hy)
v = SRR (B.11)
and
hRC;

From Equation (B.12), we can see that the LCoE; of any technology-region
1 is not affected by a change in average demand, nor by the change in the
shape of the demand: increasing the electrification rate or simply increasing
the average demand will not change it. This is not the case for the value
factor as the term (AH;) is affected by a change in the demand, through the
system marginal cost factor. The value factor given some modified demand
gives:
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vi(0,L(e)) = % (B.13)
(2aL(e)H;)
= Ral(e) (H)' (1)

For the UE scenarios we have L(e*) = e¢*L(e = 1.0) = €*L,.s, the latter
being the reference demand (Reference scenario). With this equality, Equa-
tion (B.14) yields:

Y 2046*<L7«ein>
Vi(ov L(€ )) - 2a6*<Lref> <Hz>

= 14(0, Lyey), (B.16)

(B.15)

where v;(0, Ly.s) is the value factor without VREs for the Reference scenario.
The initial value factor (i.e. without renewables) is thus constant in the UE
scenarios. This is not true for the HTE scenarios.

scenario (L) (GW) € (¢*) % electric heating

Reference 54.6 n.a. 35%
HTES7.2 57.2 1.25 48 %
UEb57.2 — 1.048 35 %
HTEH9.8 59.8 1.5 61%
UEbD9.8 — 1.095 35%
HTE62.4 62.4 1.75 4%
UE62.4 — 1.143 35 %
HTE65 65.0 2.0 88 %
UEG65 — 1.190 35 %

Table B.3: Temperature-sensitive factors e (resp. €*) for each scenario.

Appendix C. Energy-system model

The model is a minimal description of a power system where conventional
dispatchable producers are treated as an aggregate represented by a single
cost function and in which variable shares of PV and wind energies can
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be introduced in each region of the domain. By minimal we mean that
the model is not meant to represent a state of the art power system with
a diversity of electricity generation technologies, network constraints and
costs, different demand sectors, etc. as in Shirizadeh et al. [30] or RTE [6].
Instead we insert sufficient complexity for non-trivial economic impacts of
VRE integration to be evidenced — including the cannibalization effect on
the side of VRE producers and the utilization effect and wholesale price
effect on the side of conventional producers — while keeping a problem that
is sufficiently tractable to perform sensitivity analyses such as this one. The
mathematical framework of the long term investment problem is presented
in detail in Tantet and Drobinski [17]. We summarize here briefly the main
points of interest.

Dispatchable producers are treated as an aggregate that is capable of
delivering power instantaneously when needed. The capacity of this single
aggregate producer is set to a value high enough (200 GW) to avoid any lost
demand in any of the scenarios. This latter assumption would only influence
fixed costs of dispatch generation, which can be safely ignored in our study,
because of the focus on VRE integration effects [17]. We further assume that
the variable cost of dispatchable producers is given by

VCpi(q) = ag?, (C.1)

where ¢ is the amount of demand to be served by dispatchable producers and
« is the DVCC in units of € MWh™2. This key parameter can be tuned to
modify the cost of generation for the dispatchable producers, and thus the
optimal level of VRE penetration.

Then a set of m VRE producers is introduced into the mix. Only solar
PV and onshore wind producers are considered, and we suppose that every
region of our study area contains one producer of each technology, whose ca-
pacity can either be prescribed or optimized. We denote by x; the generation
capacity of technology-region ¢. The cost of a VRE producer ¢ is given by
its fixed cost of installation hRC;x;, where hRC; is its hourly rental cost in
€ GW . This allows us to compute the STC over a year, which is given by

m—1 To—l
STC(z, (VCnpi)ier,) == Ty Z hRC;z; + Z VCni(q(t)), (C.2)
i=0 =0
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where @ is the vector of VRE producers capacities in GW, VCp; the variable
cost of dispatchable producers in €, Ty the set of hours in a year, T the
number of hours in a year, and ¢(¢) the amount of demand to be served at
a given time ¢, in MWh. The problem considered next is the minimization
of the sample-mean estimate of the annual STC expectation over a year.
Investment in VRE capacities as well as the optimal dispatch of demand
are optimized simultaneously for a given value of the DVCC and for a given
scenario. Formally, the optimization problem translates into the following
program |[31, 17|,

mwin E (STC(x)) (C.3)

st x; <a™ for i€{0,...,m— 1},
x; >0 for i€{0,...,m—1},

with STC(z) the optimal solution of:

(GDig,longl)tgrO STC(z, (Gpi(t,w))ter,) (C4)
s.t. Gpi(t,w) + Qu(t,w) > L(t,w),
Gpi(t,w) < zp,
GDi(t,w) Z 0.

The first problem (Equation (C.3)) corresponds to the problem of long term
investment in VRE capacities. The second problem (Equation (C.4)) corre-
sponds to the problem of short term dispatch of electricity producers and is
referred to as the scheduling problem. The first and second constraints of
problem (Equation (C.3)) ensure that the installed capacities of VRE produc-
ers are capped by maximum installable capacities z}*** for each technology-
region, and that they should be positive. The constraints on the decision
variable of the scheduling problem are the same as previously stated: the ag-
gregated dispatchable generation should always be positive and not exceed a
maximum capacity xp;. Note however that here we do not impose that the
sum of dispatchable and VRE generation be strictly be equal to the demand.
It can occur instead that the total generation exceeds the demand for some
hours. We assume in this setup that the demand can be curtailed at no extra
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cost: this property is a direct consequence of the hypothesis on the cost for
VRE producers and the optimal solution for the scheduling problem.

We refer the reader to Tantet and Drobinski [17] for a full development
of the STC minimization problem. In particular, Theorem 1 in Tantet and
Drobinski [17] states that if the VRE mix Z is an optimal solution to the
investment problem, then only producers with non-negative potential profits
have some capacity installed. Their potential profits per unit generation,
€MWh ™, are given by

where v; and LCoE; are respectively the value factor and the LCoE (€ MWh™!)
of VRE producer ¢. They are defined by

(C.6)

and

hRC;

LOOE; — ——=t.
(H;)

(C.7)

where ) is the SMC in € MWh ™', i.e. the cost of serving one more unit of
demand [32], and H; is the capacity factor of VRE producer i. The brackets
(-) denote the mean over the years of the annual-average of the quantity. The
value of the LCoE per technology-region is presented in Figure C.8.

Appendiz C.1. Demand, capacity factor and cost data for EACLIM

The cost data used to compute the rental costs hRC; in Equation (C.2)
is reported in Table C.4. It is the same as in [17], and taken from [33, 30].
Annuities are computed using [30, Equation 2| and operation and mainte-
nance (O&M) costs are taken from [30]. Capacity factors data are the same
as in [17], following the model presented in [20], while the demand time se-
ries are computed using the temperature-sensitive demand model presented
in Section 2.1.
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Wind PV
Overnight cost (€/kWe) 1130 423
Lifetime (year) 25 25
Annuity (€/kWe/year) 81.2 30.7
O&M (€/kWe/year) 345 9.2

Rental costs (€/kWe/year) 115.7 39.9

Table C.4: Cost data for the E4CcLIM model.

&

LCoE (€/MWh)
&

LCoE (€/MWh)

s

(a) PV (b) Wind

Figure C.8: Map of the LCoE — Equation (C.7) — for solar PV (left) and for Wind
energy (right).

Appendix D. Regional mixes

We present in this section the regional mixes obtained for the Low- and
High-penetration scenarios. We can observe for the former (FigureD.9) that
PV is installed in more regions than Wind at this level of global penetra-
tion. Getting a closer look at PV shows that most capacities have been
installed to their maximum (dotted regions) except in Ile-de-France region
in the Reference and HTEG65 scenarios. Wind capacity is installed near the
Atlantic and Mediterranean coasts mainly, with an increasing installed capac-
ity from the Reference scenario to UE65 and HTE65 scenarios. Comparing
Figures D.9a and D.9¢, and D.9b and D.9f shows that increasing heating
demand electrification does not change the PV mix for this value of global
penetration, while it slightly increases the total installed Wind capacity. For
the latter (Figure D.10, High-penetration scenario) we can observe that PV
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capacity is installed at its max capacities for the three demand scenarios
HTEG65, UE65 and Reference. We observe however that Wind capacity is
not installed in Bourgogne-Franche-Comté and Tle-de-France (see Figure A.6)
in the Reference scenario, whereas maximum capacities are reached in the

HTEG6S scenario.
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Figure D.9: Regional map of PV (left) and wind (right) capacities for the Low
VRE penetration scenario (o = 8-107*€ MWh™2) and the Reference (top), UE65
(middle) and HTE65 (bottom) scenarios. The colorbars are specific to a technology.
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Figure D.10: Regional map of PV (left) and wind (right) capacities for the High
VRE penetration scenario (a = 3.2 - 1073€MWh™?2) and the Reference (top),
UEG65 (middle) and HTE65 (bottom) scenarios. The colorbars are specific to a
technology.

34



115

Chapter n

Impacts of climate change on the
electricity system optimal wind and
solar mixes and system total costs:
the case of France



10

15

20

116 IMPACTS OF CLIMATE CHANGE: THE CASE OF FRANCE

Impact of climate change on high-VRE optimal mixes and
system costs: the case of France.

Joan Delort Ylla!, Alexis Tantet', and Philippe Drobinski'

"Laboratoire de Météorologie Dynamique/Institut Pierre-Simon Laplace, Ecole Polytechnique, IP Paris, Sorbonne
Université, ENS, PSL University, CNRS, 91120, Palaiseau, France

Correspondence: Joan Delort Ylla (joan.delort-ylla@tuta.com)

Abstract. The electricity generation sector is undergoing profound transformations via the introduction of variable
renewable energies (VRE). If in its present state, this sector is accountable for a major share of the observed and
commited climate change, it is impacted by changing climate conditions as well. These impacts are related to mul-
tiple processes both on the demand and the supply side, which have been thoroughly studied in previous literature.
We find however that the impact of a change in VRE resource coupled to a change in demand has not been studied
in regard of its effect on optimal investment decisions. We tackle this issue through the use of EURO-CORDEX
climate projections coupled to a minimalistic electricity system modeling tool. We first assess the implied changes
at the component level and find potentially degraded wind generation conditions and virtually no changes in solar
generation conditions under increasing levels of climate change. Impacts on the demand lead to a higher resp. lower
correlation with solar resp. wind generation. These changes lead to a constant share of solar and a reduced share
of wind in optimal mixes with increasing climate change, with no trivial relation to the component-level impacts.
Furthermore, the sole impact of climate change on the VRE resource and the demand is found to have no adverse
consequences on system total costs, with adaptation measures in this regard being less attractive economically than
their passive counterparts. This comes in contradiction with previous research exploring other processes, showing
the importance of specifying the working hypotheses and phenomena taken into account when issuing policymaking
advice. Further research should explore exhaustively how combining all processes related to climate change impacts
all relevant elements of the electricity generation sector, to issue relevant policymaking advice for the planifica-
tion issue. We also encourage continued research at the climate and energy interface, to increase the precision and

interpretability of similar studies.

1 Introduction

The ambitious climate change mitigation goals set out under the Paris agreement! call for a rapid decarbonization of

the world’s economy and supporting infrastructures. In particular, electricity generation, which in 2021 accounted

ITo limit global warming to well below 2°C and to pursue efforts to limit global warming to 1.5°C with respect to pre-industrial level

temperatures.
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for 20% of total greenhouse gas emissions?

is a key sector to decarbonize, potentially allowing the decarbonization
of other sectors of the economy through electrification. Such decarbonization is expected to occur via the introduc-
tion of wind and solar photovoltaic generators — regrouped under the generic term of variable renewable energies
(VREs). The share of VREs has been increasing in almost all european countries since the 2010s® and is expected
to surge in the coming decades, see e.g. (IEA, 2023) for projections at the world’s level or (RTE, 2021) for pro-
jections at the level of France. The introduction of high shares of VREs will pose adaptation challenges from a
techno-economic perspective (Sijm, 2014; Heptonstall and Gross, 2021). Even disregarding other sociopolitical fac-
tors (Carley and Konisky, 2020; Faber, 2023; Ah-Voun et al., 2024), the composition of the future generation mix
and in particular the amount of installed VRE capacity thus remains uncertain. This raises the question of planning
and policymaking to incentivize for the most suitable generation mix under the decarbonization constraint.

If the electricity generation sector impacts the current climate state through greenhouse gas emissions, it is im-
pacted by the climatic conditions as well (Craig et al., 2018; Yalew et al., 2020). Historically, the dependence of
demand to weather conditions — temperature in particular — makes the electricity generation sector vulnerable to
weather states causing high electricity demands. On the supply side, the thermal and hydraulic dominated gener-
ation sector is mainly sensitive to the hydrologic conditions, which impact the available water for thermal power
plants cooling and hydraulic power plants generation (van Vliet et al., 2012; Tarroja et al., 2016; van Vliet et al.,
2016; Turner et al., 2017). Increasing the share of VREs in the electricity generation mix will increase the weather
dependency of the sector (Bloomfield et al., 2016) since electricity generation will be directly conditioned to wind
and surface radiation conditions. Electricity systems have been recently found to be switching from temperature
dominated systems to wind dominated systems (Bloomfield et al., 2018). This important and increasing weather
sensitivity makes it crucial to understand how changing climatic conditions will impact the current and future elec-
tricity generation sector. An increased understanding of these impacts will in turn help investigate the overarching
question of optimal system operation and planning.

Many studies focus on a particular aspect of the impact of climate change on the electricity generation sector, see
e.g. (van Vliet et al., 2016; Tobin et al., 2018; Gernaat et al., 2021) for impacts on the supply side or (Davis and
Gertler, 2015; Damm et al., 2017; van Ruijven et al., 2019) for impacts on the demand side. However, if the study
of the impacts of climate change at the component level is necessary, it is not sufficient and can lead to erroneous
conclusions (Chandramowli and Felder, 2014; Miara et al., 2017; Craig et al., 2018; Yalew et al., 2020; Khan et al.,
2021).

Assessing the impacts of a changing climate on the electricity generation sector in a systemic way via energy
system modeling tools is challenging due to the number of processes to be accounted for and their relevant spatial
and temporal scales. A typical example of this is the complex handling of the high intricacy of the water-energy

nexus (Payet-Burin et al., 2018; Qadrdan et al., 2019; Turner et al., 2019; Ralston Fonseca et al., 2021a). These

20wn computation base on data from https://di.unfccc.int/detailed_data_by_party without LULUCE.
3See e.g. https://www.irena.org/Data.

z
>
0
—]
(72]
@)
M
0
-
<
=
0
L
>
<
©
m
-]
L
m
0
>
(%2]
m
@)
M
-
A
>
<
@)
m



60

65

70

75

80

85

90
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challenges add up to those encountered when dealing with high VRE systems (Ringkjgb et al., 2018; Prina et al.,
2020). In this last case, a particular attention must be given to the proper representation of the weather and climate
dependent VRE and demand time series. The wrong representation of intraday (peak smoothing) and seasonal (e.g.
by using yearly averages) variability can lead to unrealistic representations of the VRE generation and demand cor-
relation. Not accounting for the interannual climate variability by using only a single year of climate data can lead to
biased results, whereas using a typical meteorological year/mean weather year can lead to missing climate extremes
and typical weather variability. As such multiple year, from 10 years to several decades (Bloomfield et al., 2016;
Pfenninger, 2017; Staffell and Pfenninger, 2018; Zeyringer et al., 2018), hourly to 3-hourly time series should be
used when no other time resolution reduction method is explicitly applied and tested beforehand (Pfenninger, 2017).
Conclusions of modeling exercises with a high penetration of VREs failing to address, or a minima acknowledge
this issue, would be highly compromised.

Historically, energy system models were not designed to deal with the issue of high resolution climate data
incorporation (Ciscar and Dowling, 2014). VRE generation is typically handled at a too coarse time resolution for all
its characteristics to be accounted in the modeling exercise (Jaglom et al., 2014; Mima and Criqui, 2015; McFarland
etal., 2015; Miara et al., 2019). On the other hand, studies fulfilling the requirements of climate data incorporation in
the study of high VRE systems are limited in their handling of the energy system modeling step: some studies focus
solely on the residual demand (demand net of wind and solar generation) (Bloomfield et al., 2021) or associated
indicators (Kozarcanin et al., 2019) and do not consider the feedback to energy system planning or operation, while
others, albeit incorporating an energy system modeling step, work with a fixed generation mix and do not take into
account the feedback of climate change impacts on the VRE and dispatchable capacity investment decisions (Craig
et al., 2019; Turner et al., 2019). Finally, all reviewed studies up to date are not exhaustive in the number of processes
considered. While some studies do not account for the changes in water availability (Jaglom et al., 2014; McFarland
et al., 2015), others miss the effect of climate change on the VRE resource (Jaglom et al., 2014; McFarland et al.,
2015; Mima and Criqui, 2015; Miara et al., 2019; Khan et al., 2021; Ralston Fonseca et al., 2021a), or neglect the
impact of climate change on the electricity demand (Schlott et al., 2018; Peter, 2019). Among these limitations, we
note that the compound impact of VRE resource and electricity demand changes due to climate change has up to
date not been studied in regard of its effect on optimal investment decisions.

We focus in this study on how the compound impact of climate change on the future VRE resource and electricity
demand influences the optimal investment decisions in VRE capacity as well as the resulting system costs. The
treatment of non-VRE (i.e. dispatchable) sources is highly idealized to reduce modeling complexity, placing us in
a best case setting in this regard. This allows us to discard the added complexity of having to deal with the water-
energy nexus. Storage, transmission and imports/exports are also not included to keep the problem as minimalistic
as possible. We leave for further work a more thorough and complex study on the compound effect of all climate
impacts on the optimal investment decisions. As climate change impacts and demand characteristics are region-

specific, we tackle this question for the particular case of France. However this does not prevent our results and



95

100

105

110

115

120

119

conclusions to be applicable to world regions with similar characteristics or our methodology to be applied in any
other world region.

The paper is organized as follows. We detail in Section 2 the methodology employed in the study to fulfill the
research objectives. In Section 3, we detail as a first step the impacts of climate change on system components for
the particular case of France. We assess then in Section 4 the compound impact of a change in demand and VRE
resource in optimal investment decisions for different levels of climate change. Then, in Section 5 we investigate
how these impacts translate in terms of system costs and discuss different adaptation strategies. We finally discuss

the obtained results and conclude in Sections 6 and 7.

2 Methods

We use climate projections for the 21st century to assess the impact of climate change on the electricity system. We
present this climate data in Section 2.1. Modeling the impact of a change in VRE resource and demand on optimal
VRE investment decisions requires then to be able to translate climate variables into associated VRE generation and
electricity demand. This is presented in Sections 2.2 and 2.3. We briefly introduce the energy system model used to

conduct the analysis in Section 2.4 and finally present the set of scenarios used in this study in Section 2.5.
2.1 Climate data

We use six different global/regional climate models pairs from the EURO-CORDEX initiative (Jacob et al., 2014;
Coppola et al., 2021) for the 1975-2005 (historical) and 2020-2099 (future) periods. We use the output runs forced
with the widely used CMIP-5 RCP 8.5 as a climate change scenario (Moss et al., 2010) for the future period. The
detail of models used and associated references are given in Tables 1 and 2. The models were chosen for practical
reasons (availability of variables at the right time resolution) and are not the result of a more elaborate selection. The
choice of climate models has been shown to impact studies results (Gutiérrez et al., 2020; Wohland, 2022). This is
further discussed in Section 6.1.

We use the near-surface air temperature (tas) and surface downward shortwave radiation (rsds) at 3h time res-
olution, and zonal (ual00m) and meridional (val00m) wind components variables at 1h time resolution*. Spatial
resolution is approximately 12 x 12km over the whole area of study. Data curation steps are needed to obtain a
homogeneous and exploitable dataset, which we detail in Appendix A2.

To reduce model biases, each model pair output is calibrated to ERAS reanalysis data (Hersbach et al., 2020)
over the 1980-2005 period. Calibration is conducted by using the CDF-t algorithm (Michelangeli et al., 2009;
Lavaysse et al., 2012; Vrac et al., 2012; Vigaud et al., 2013). As the ERAS5 and EURO-CORDEX grids do not
overlap, we interpolate ERAS data on the EURO-CORDEX grid using bilinear interpolation and then calibrate the
EURO-CORDEX data at every grid point. This step considerably reduces model biases (not shown here).

4Words in parenthesis indicate the EURO-CORDEX short variable name
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Table 1. EURO-CORDEX GCM/RCM model pairs considered in the study.

ID Driving GCM Variant RCM Abbreviation

0 ICHEC-EC-EARTH rlilpl  COSMO-crCLIM ICHEC-EC-EARTH + COSMO

1 MOHC-HadGEM2-ES rlilpl  COSMO-crCLIM MOHC-HADGEM2 + COSMO
2 MPI-M-MPI-ESM-LR r3ilpl  COSMO-crCLIM MPI-ESM + COSMO

3  CNRM-CERFACS-CNRM-CM5  rlilpl COSMO-crCLIM CNRM-CMS5 + COSMO

4  CNRM-CERFACS-CNRM-CM5  rlilpl ALADING63 CNRM-CMS + ALADING63

5 MOHC-HadGEM2-ES rlilpl ALADING63 MOHC-HADGEM?2 + ALADING63

GCM: Global Climate Model. RCM: Regional Climate Model.

Table 2. GCMs and RCMs considered in the study.

Driving GCM/RCM Version References
ICHEC-EC-EARTH 2 (Hazeleger et al., 2010, 2012)
MOHC-HadGEM2-ES 2 (Collins et al., 2011)
MPI-M-MPI-ESM-LR - (Gutjahr et al., 2019; Mauritsen et al., 2019)
CNRM-CERFACS-CNRM-CMS5 5 (Voldoire et al., 2013)
COSMO-crCLIM 4 (Leutwyler et al., 2016; Sgrland et al., 2021)
ALADING63 6 (Daniel et al., 2019; Nabat et al., 2020)

More informations on the models can be found at https://ec-earth.org/ for ICHEC-EC-EARTH,
https://www.metoffice.gov.uk/ for MOHC-HadGEM2-ES, https://mpimet.mpg.de/en/homepage for
MPI-M-MPI-ESM-LR, http://www.umr-cnrm.ft/ for CNRM-CERFACS-CNRM-CMS5,
http://www.cosmo-model.org/content/default.htm for COSMO-crCLIM, http://www.umr-cnrm.fr/ for ALADIN63. GCM:
Global Climate Model. RCM: Regional Climate Model.

2.2 VRE generation

Wind and solar generation are computed from climate time series. As generation depends on the installed capacity,
which is a decision variable in our optimization problem, we focus instead on deriving time series of VRE generation
125  per unit capacity, or capacity factors, which give the availability of the wind and solar resource for each hour of the
time series. These hourly capacity factors time series — computed at each grid point — are averaged per region
(see Figure Al) and then bias corrected with respect to observations of regional capacity factors following the
methodology detailed in (Tantet et al., 2019) and regional capacity factors data from the french TSO RTE freely
available at https://opendata.reseaux-energies.fr/. This bias correction step supposes that model biases are stationary
130 with respect to observations (i.e. are the same now than they will be in the future) which is a point discussed in
(Bakker et al., 2013; Tantet et al., 2019). We now briefly detail the computation of the wind and solar capacity

factors.
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Wind capacity factors are computed from the zonal and meridional wind, as well as surface air temperature
weather variables. Both these wind speeds are extrapolated at hub height (101m) following a power law with expo-
nent 1/7 (Justus and Mikhail, 1976; Tantet et al., 2019). Total wind speed is then corrected for temperature variations

following (Dupré, 2020) by multiplying it by a factor

1/3
(p/po)'? = (TLJ(E;LZ)> ; (1)

where p is the air density at hub height, pg the reference air density, T} the reference temperature (288.15K or 15°C),
T is the surface temperature variable, L the lapse rate (0.0065Km™1), z is the height of the surface temperature
variable (2m), and zj, the hub height (101m). Because we want to obtain hourly capacity factors time series, surface
temperature climate data is resampled from 3-hourly to hourly by keeping the value constant over the 3 hours. This
corrected total wind speed is then passed through a standard power curve transfer function (Siemens SWT-2.3 MW-
101m model, see (Tantet et al., 2019)). In doing so, we allow the power produced by wind power plants to depend
on air temperature (and thus climate change) while preserving the cut-in and cut-out behavior of the turbines. Using
total wind speed is a consequence of not accounting for wake losses and further supposing that the turbines are
always facing the wind.

Solar capacity factors are computed from the surface downwelling shortwave radiation and surface air temper-
ature weather variables. Because both these variables come at 3-hourly time resolution, we resample the surface
temperature in a similar fashion as for wind and resample the surface radiation from the hourly global horizontal
extraterrestrial radiation assuming a constant clearness index over the three hours. The global tilted surface radia-
tion (GTS) is computed from the surface radiation according to (Reindl et al., 1990a, b; Gueymard, 2009; Duffie
and Beckman, 2013) assuming fixed tilt panels facing due south, while both air temperature and surface radiation
are used to compute the panels efficiency () (Duffie and Beckman, 2013). Both are combined to yield a panel’s

generation and subsequent capacity factor (Hpy) according to

How(t) = ca X NGTS(E) o
dpy

where ¢ is the circuit’s efficiency, a the area of the panel, gpy the nominal power per module. Note that these
constant parameters are not of crucial importance because of the bias correction step that will rescale the capacity
factors anyway.

We thus obtain hourly time series of wind and solar capacity factors for the historical (1975-2005) and future
(2020-2099) periods. Wind capacity factors are impacted by climate change through any change in the wind regimes
and through changes in air temperature (capacity factors decrease when temperature increases). Solar capacity fac-

tors are impacted by any change in surface radiation patterns as well as changes in air temperature (capacity factors

decrease when temperature increases).
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2.3 Demand model

Key to our study is the derivation of climate-sensitive plausible electricity demand time series for the historical and
future periods. We use to this end the demand model described in (Delort Ylla et al., 2023), of which we summarize
the main features here. The model is a probabilistic piecewise linear regression model of demand as a function of
temperature and is thus directly linked to the surface temperature weather variable and so to the associated climate.
We use electricity demand data from the french TSO RTE (freely available at https://opendata.reseaux-energies.fr/)
for the years 2014-2019 and surface temperature time series from ERAS reanalysis data (Hersbach et al., 2020)
to train the model. We then validate the model against data for the year 2013. This gives us a model of the hourly
national aggregated demand for the historical and future periods with a good representation of the daily and seasonal
cyclicity of the demand. The model has a mean error of 5% to 10% of the observed demand and explains 90% of
its variability. Note however that because of the time span of the training data, the model corresponds to socioe-
conomic electricity demand conditions (level of electrification, population, etc.) of the years 2014 to 2019. Such
socioeconomic parameters are supposed to remain constant in this study to isolate the effect of climate change, but

their evolution could be explored in further works.
2.4 Energy system model

We adapt the energy system model EACLIM (Tantet et al., 2019) in its latest version (Tantet and Drobinski, 2021)
to study the impacts of a changing demand and VRE capacity factors on optimal investment decisions. The model
version is the one presented in (Delort Ylla et al., 2023). Our modeling domain is metropolitan France, a map of
which is shown in Appendix A, Figure Al. E4CLIM is a bottom-up linear programming stochastic power system
model performing greenfield optimization in a single step, while ensuring hourly adequacy for the considered time
period. It minimizes a system total cost that accounts for investment in VRE capacity (fixed costs) and generation
of dispatchable (i.e. non-VRE) producers (variable costs).

VRE capacity can be installed in each french administrative region up until its maximum installable capacity (see
Appendix A3.3). The model is minimalistic in its representation of dispatchable producers which are considered to
be always available at no costs: this greatly simplifies the models mathematical formulation and places us in a best
case situation where investment in VRE capacity will thus be a lower bound of what it could be if investment costs
in dispatchable generation were accounted for. A tradeoff between installing VRE capacity which then generate at
no costs and generating via dispatchable producers at a given variable cost still remains. This variable cost of the
dispatchable generation is supposed to increase quadratically compared to the amount of generation (Tantet and
Drobinski, 2021) to reproduce the merit-order dispatch of producers. It is determined by a parameter «, which we
call the dispatchable variable cost coefficient (DVCC), that can be tuned in our model to favor the penetration of
VRE and can be pictured as a cost of CO2 emissions. This parameter is however kept constant over the historical

and future periods to single out the effect of climate change. Further discussion on this parameter is provided in
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Appendix A3.2. Other model parameters (VRE fixed costs, maximum installable capacities) are also discussed in
Appendix A3.

We finally mention that we work under a copper plate hypothesis, i.e. transmission constraints are not accounted
for, nor do we account for storage or import/exports. In this study, optimization is conducted over 30 year long

hourly time series of demand and VRE capacity factors.
2.5 Scenarios

The study focuses on the response of the electricity generation sector to climate change and thus relies on a set of
scenarios. In this study, socioeconomic determinants of the electrcity demand are kept constant and equal to the
average conditions of 2014-2019 in metropolitan France. They are learnt via the training step of the demand model.
VRE fixed costs are also kept constant and equal to lower values than today (in particular for solar energy) to favor
VRE competitiveness, as detailed in Appendix A3.1. The parameter that determines the magnitude of the variable
costs of the dispatchable producers («) is kept constant to a value higher than that of today to favor the penetration
of VREs. This is further discussed in Appendix A3.2.

The socioeconomic parameters are then combined to different levels of climate change to yield the scenarios
considered in this study. The combination of the aforementioned socioeconomic parameters to the historical (1975-
2005) period gives us the Reference (REF) scenario. Then different levels of climate change are considered by
sampling the climate data of the future period forced with the RCP 8.5 scenario over different 30 year long time
periods. Sampling the future climate around 2035 (2020-2050 period) yields an average warming of +1.75°C above
pre-industrial levels, thus giving scenario REF1.75. Similarly, periods centered around 2050, 2060, 2070 and 2085
give scenarios REF2.35, REF2.80, REF3.28 and REF4.04 associated to their respective temperature increase. These

scenarios are then used for the purpose of our study.

3 Impact of climate change on system components

Before assessing the systemic impact of climate change on optimal investment decisions we first focus on the
component level impacts deriving from the climate models used. We analyze the impacts of climate change first
on demand, at the aggregated national and regional level in Section 3.1. Then we analyze the impacts of climate
change on the VRE capacity factors in Section 3.2. We finally assess how climate change influences the correlation
between demand and VRE capacity factors in Section 3.3. Previous literature exists on the impacts of climate
change on demand and VRE capacity factors. We discuss how our results compare to this existing literature body in

Section 6.1.
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3.1 Demand

We analyze in this section the impact of climate change on the french electricity demand. We focus first on the
demand aggregated at the national level and then discuss the regional features of demand change. We rely on four
indicators to analyze the evolution of demand: the load duration curve (LDC), the average demand (which is an
equivalent of the total demand), the demand that occurs 95% of the time, hereafter denoted as base demand, and the
demand that occurs 5% of the time, hereafter denoted as peak demand. This last three indicators are also analyzed
at the regional level.

The LDC corresponding to each climate model pair is shown Figure 1. We can see from it that climate change
impacts median to absolute peak demand — we mean by absolute peak demand the maximum demand that occurs
in each scenario — more significantly than demands close to base demand. Regarding the direction of the evolution,
we can see that demand decreases with increasing climate change. There is good multimodel agreement on these
observations except for the ICHEC-EC-EARTH + COSMO model pair, where demands close to the absolute peak
demand are higher in scenarios REF1.75 and REF2.35 than in the reference (REF) scenario. This is shown Figure 1,
panel (a). This discrepancy probably comes from a bias towards cold extremes for this model pair.

Evolution of average, peak and base demand all point in the direction of a decrease of demand with increasing
climate change intensity. No matter the level of climate change, total (average) demand decreases with climate
change. All models agree on this trend, which in this sense is a robust result. The magnitude of the change varies
between —6% to —8% for the most extreme scenario (REF4.04 vs. REF). Similarly, peak demand decreases with
increasing climate change intensity, and no matter the level of climate change. There is also perfect model agreement
on this trend. Note that the robustness of the result is not so strong for the absolute peak demand, as the analysis
of the LDC suggests. For peak demand, the magnitude of the change varies between —8% to —11% for the highest
level of climate change (REF4.04 vs. REF). We also find base demand to decrease with increasing intensity of
climate change, and no matter the level of climate change. This trend is also observed in all models. The variation
of base demand is comprised between —1% and —2% for the most extreme climate change scenario. Supporting
figures for these results are provided in Appendix B2 (Figures B2, B3 and B1 for average, peak and base demand
respectively). All these results are statistically significative (an independent t-test with an alpha threshold of 0.005
was conducted) between scenarios REF and any other scenario (some adjacent scenarios may not be statistically
significantly different for some models).

At the regional level, there is a spatial heterogeneity in the changes of demand with climate change, either for
total demand, peak demand or base demand (robust result). The magnitude and sign of these heterogeneities, i.e. the
demand change patterns, exhibit more multimodel variability but no strong disagreement either. Overall some trends
can be observed: for total demand a west-north-west—east-south-east gradient with a decrease more marked in the
west can be observed. For base demand a north-west—south-east polarization with an increase or a less pronounced

decrease in the south-east can be observed. Finally, for peak demand, a west-east gradient (except for the model
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pair ICHEC-EC-EARTH + COSMO, which shows are more homogeneous decrease) with a decrease more marked
in the west can be observed. Supporting figures for these results are provided in Appendix B2 (Figures B9 to B13,
Figures B14 to B18, and Figures B4 to B8 for average, peak and base demand respectively).

The geographical level that matters for our modeling exercise is the national level. At this level, we observe a
robust decrease of demand from peak to base. This decrease is more pronounced for peak demand (on the order of
10%) than base demand (on the order of 1%), probably due to the fact that climate change affects the heating temper-
ature sensitive demand and that base demand increases in some regions due to the increase in cooling temperature
sensitive demand. Heterogeneities at the regional level are not of importance in this study since the transmission

network is not accounted for. They could be of importance in future works and are thus worth mentioning.
3.2 Wind and solar capacity factors

We analyze in this section the impacts of climate change on the VRE resource. Here, as investment in VRE capac-
ities occurs at the regional level, the effect of climate change on the regional capacity factors is relevant. In this
section, and for the sake of conciseness, we compare the average capacity factors under the different climate change
scenarios, and leave for further works the detailed comparison of the whole capacity factors distributions.

To back-up and build confidence in the observed trends of regional capacity factors evolution, we perform three
statistical tests: the t-test (von Storch and Zwiers, 1999), a t-test with a variance inflation factor of 2.0 (that we label
T-test V2) according to (Wilks, 2019), and the Wilcoxon-Mann-Whitney (WMW) U test (Mann and Whitney, 1947),
as implemented in the python scipy module’, all with an alpha level (significance level) of 0.005. The WMW U test
allows to discuss the normality hypothesis of the distribution from which the 30-year samples originate and is more
robust to the presence of potential outliers. Despite this, when the normality hypothesis holds, the WMW U test is
almost as powerful as the t-test (Wilks, 2019). We can thus always have high confidence in distributional differences®
validated by the WMW test. If we suppose the normality hypothesis to hold, then we can have high confidence in
the t-test and in the observed difference of the means. Both previous tests suppose that the samples within a 30-year
sample are independent. It can be that because of low-frequency climate variability a time correlation exists between
adjacent years. The T-test V2 allows to account for possible time correlation within the 30-year samples but reduces
the magnitude of the statistic and thus makes the test more complicated to pass. We finally note that discussing
the significativity of the observed trends does not change how these capacity factors time series will impact the
energy system modeling step. It however allows us to discuss the relevance of the modeling results: if the observed
trends are not statistically significative, then modeling results will reflect artificial trends that are not grounded in

any significative difference.

3See https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats. mannwhitneyu.html#scipy.stats. mannwhitneyu
6Note indeed that to the contrary of the t-test, the WMW U test does not test for a difference of the means, but for a difference in the

distributions (and the probability that a sample from one distribution would be larger than a sample drawn from the other distribution).
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3.21 Wind

Wind capacity factors exhibit a trend towards a decline with increasing climate change, although this result is not
perfectly homogeneous across models and regions. This is shown in Figure 2. Variations are comprised between
+5% and —20% across models and regions, for capacity factors comprised between 20% and 28% in the reference
scenario. With the notable exception of region PACA, and excluding model pairs MPI-ESM + COSMO and CNRM-
CMS + ALADING3, all regions show a decrease in wind capacity factors with respect to the reference case for any
level of climate change. Some models and some regions tend to show that this decrease in capacity factor is of higher
magnitude with increasing climate change (e.g. region Nouvelle-Aquitaine under model MOHC-HADGEM?2 +
ALADING63), whereas this is not true in others (e.g. almost all regions under model ICHEC-EC-EARTH + COSMO).
Models MPI-ESM + COSMO and CNRM-CM5 + ALADING3, together with region PACA in some models, exhibit
some increases in wind capacity factors, but these increases are always below +5%.

Significativity tests also point towards a decrease of wind capacity factors. All statistically significative differ-
ences correspond to scenarios with climate change having lower capacity factors than the reference (REF) scenario.
However, not all decreases in wind capacity factors are significative and this no matter the working hypothesis
(normality of the sampling distribution, time correlation). No increase is found to be statistically significative.

Our energy system model will thus run in most cases with moderately degraded (i.e. less than —20%) wind gen-
eration conditions and in some with very mildly improved (less than +5%) conditions. However, only the changes

related to a decrease in wind capacity factors should be taken as significative of changing future conditions.
3.2.2 Solar PV

Solar capacity factors exhibit no clear trend towards an increase or a decrease with increasing climate change:
some models push for an increase of capacity factors, while others suggest a decrease. This is shown in Figure 3.
Variations are comprised within +10% across models and regions, for capacity factors between 9% and 18% in the
reference scenario. All models except MPI-ESM + COSMO exhibit a consistent variability across regions. Some
show a decrease with increasing climate change (ICHEC-EC-EARTH + COSMO) with a stabilization at some point
(CNRM-CM5 + COSMO, MOHC-HADGEM?2 + COSMO), while others suggest a clear increase (CNRM-CM5 +
ALADING63). MOHC-HADGEM?2 + ALADING63 exhibits an increase and then a decrease. Model pair MPI-ESM +
COSMO is the only one exhibiting some heterogeneity across regions: solar capacity factors decrease in all regions
with the exception of the southern regions Nouvelle-Aquitaine, Occitanie and PACA.

Not all observed differences are supported by statistical significativity. Models CNRM-CMS5 + ALADIN63 and
MOHC-HADGEM?2 + ALADING63 suggest that the projected increase in capacity factors are well grounded. Pro-
jected decreases are less significant statistically, except for some regions under model CNRM-CMS5 + COSMO.

The energy system modeling step will thus be affected differently depending on the climate model used. Some

models lead to improved solar generation conditions whereas other lead to impaired conditions. These variations are

11
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however always comprised within +10%. Both this increase and decrease are suggested to be meaningful depending

on the model.
3.3 [Initial value factors

As important as changes in demand and capacity factors is the change in the correlation between the two. This
correlation is measured via the value factor, as introduced in (Tantet and Drobinski, 2021; Delort Ylla et al., 2023).
A value factor greater resp. lower than 1.0 indicates a correlation resp. an anticorrelation between capacity factors
and demand. An increase resp. a decrease in value factor corresponds to both capacity factors and demand being
more resp. less positively correlated.

Wind value factor decreases with increasing climate change across all regions (see Figure 4). This result is ro-
bust across models, although discrepancies persist on the magnitude of the change across regions and models. For
example, changes in value factor are more pronounced for model pair MOHC-HADGEM?2 + COSMO, where het-
erogeneity across regions can be noted by comparing regions PACA, Occitanie and Auvergne-Rhone-Alpes to the
others. This regional heterogeneity must come from the regional capacity factors since the demand is the same for
all regions (national demand). There is thus a change in the wind regime in this three regions that is not markedly
evidenced by changes in average capacity factor (see Figure 2, panel (e)). We however leave for further works the
investigation of the underlying mechanisms.

Solar value factors increase with increasing climate change (see Figure 5). Furthermore, this increase follows
climate change intensity. Both observations are robust results, although the magnitude of the decrease is region and
model specific. This is evidenced by comparing e.g. results with model pair MOHC-HADGEM?2 + ALADING63 to
model pair [CHEC-EC-EARTH + COSMO, the magnitude of the increase in the former being by up to 2 percentage
points higher than in the latter. A consistent heterogeneity between regions can also be observed across models, with
southern regions (PACA, Occitanie, Nouvelle Aquitaine) exhibiting a milder decrease than other regions (robust
result). As for the wind value factors, these differences must be explained by regional changes in solar capacity
factors that are not readily evidenced by average capacity factor changes depicted in Figure 3.

Overall we can conclude on the robust result that the correlation between wind generation and demand decreases
with increasing climate change in most regions, while the correlation between solar generation and demand increases
with increasing climate change. We suggest that these trends are explained by a displacement of the aggregated
national demand from winter and evening time (where wind capacity factors are higher) to summer and daytime
time (where solar capacity factors are higher). A detailed analysis of the underlying processes that could also explain

observed regional heterogeneities is however left for further works.
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4 Systemic assessment of the impact of climate change on optimal wind and solar mixes

We showed so far that at the component level, climate change would lead to a decreased total demand (with the
effect being more pronounced at the peak than at the base) on the order of 10%. In parallel, climate change will
lead to mildly degraded wind generation conditions (comprised within +5% and —20%) whereas the evolution of
solar generation conditions are model specific and comprised within £10%. These changes lead to the decrease of
the correlation between demand and wind generation and the increase of the correlation between demand and solar
generation. We thus expect that wind energy will be less favored under increasing climate change, to the contrary of
solar energy.

We now assess how the different climate change scenarios impact the optimal investment decisions in VRE

capacity. We first discuss the results at the national level and then investigate the regional detail of optimal mixes.
4.1 National level

The impact of climate change on the optimal investment decisions is presented in Figure 6 for the results aggregated
at the national level. Analyzing first the obtained VRE mixes, we can observe that the installed capacities in the
reference scenario are consistent across models, although exhibiting a small variability: wind installed capacity is
of 86 £ 2GW while solar installed capacity is of 70 = 2GW across models. The values of installed capacities under
climate change scenarios are less consistent across models. Nonetheless we observe a robust consistent decrease
of the installed wind capacity with increasing climate change: the former decreases monotonously with increasing
climate change, from —2% to —9% for the REF1.75 scenario and up to —15% to —22% for scenario REF4.04. For
solar, such a consistent trend is not observed: the optimally installed solar capacity exhibits less consistent variations
across models. In some models it exhibits a non-monotonous increase with climate change (model pairs ICHEC-
EC-EARTH + COSMO and CNRM-CMS5 + COSMO), a decrease and then a constant value (model pairs MPI-
ESM + COSMO and CNRM-CM5 + ALADING63), a non-monotonous decrease (model pair MOHC-HADGEM?2 +
ALADING63) or a monotonous increase (MOHC-HADGEM?2 + COSMO). All variations are however kept within
+3% except for model pair MOHC-HADGEM?2 + COSMO where the increase of solar PV with increasing climate
change reaches +6%. This last result is probably due to the impact of climate change on the demand patterns
(seasonality, daily variability) and the resulting increased correlation with demand, since changes in capacity factor
point towards a decrease (Figure 3, panel (e)) and value factors points towards an increase in correlation with solar
generation (Figure 5, panel (e)). Optimal investment decisions in VRE mixes are thus impacted by climate change:
the higher the level of climate change and the less wind capacity is worth installing (robust result). In turn, the
optimal level of investment in solar capacity remains roughly constant with climate change (robust result but for one
model).

The behavior of installed dispatchable capacity with increasing climate change and across models is less con-

sistent. Installed dispatchable capacity corresponds in our model to what is sometimes mentioned as the balancing
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needs. It corresponds to the maximum of the residual demand (i.e. demand net of VRE generation) over the whole
time period of optimization. As such it is strongly linked to extreme events of high residual demand in the time
series: this is why we do not observe a consistent behavior of the dispatchable capacity with increasing climate
change, as extreme residual demand events (e.g. a high demand for heating combined to a wind drought) can still
occur in warmer climates. However some observations suggest that the need for balancing capacity decreases with
increasing climate change. This is e.g. suggested by the comparison of the REF2.35 and REF2.80 scenarios in Fig-
ure 6, panel (c), where both scenarios have the same level (101GW) of dispatchable capacity but maximum demand
is higher in scenario REF2.80 than in REF2.35. This increased maximum demand with less installed VREs would
translate in an increased dispatchable capacity ceteris paribus. The fact that this is not observed is related to the
effect of climate change. A similar effect can be observed by comparing scenario REF2.35 and scenario REF3.28
in in Figure 6, panel (b). Installed dispatchable capacity thus tends to decrease with increasing climate change (on
average extreme events of residual demand are less frequent) although its value is strongly linked to the occurrence
of extreme residual demand events in the time series considered for the optimization problem.

We conclude from these observations that wind is the adjustment variable with respect to climate change in
optimal investment decisions: wind is observed to robustly decrease by —15% to —22% in the most extreme scenario.
To the contrary solar PV remains roughly constant (variations are within +3%) except for a single model where it
increases with climate change. Dispatchable capacity tends to decrease, although its exact value depends on the

occurrence of extreme events of residual demand. We now discuss how these changes translate at the regional level.
4.2 Regional level

The detail of VRE mixes at the regional level are presented Figures 7 and 8 for wind and solar respectively. We
observe that the mix in the reference (REF) scenario is not exactly the same across models, although some main
features persist: for wind, most capacity is installed in all regions but Nouvelle-Aquitaine, [le-de-France, Bretagne
and Bourgogne-Franche-Comté (5GW). For solar, most installed capacity is installed in the three southern re-
gions PACA, Occitanie and Nouvelle-Aquitaine, modulo some installed capacity in the Grand Est region (less than
10GW). The impact of climate change on regional mixes is variable depending wehter solar and wind capacity are
considered. For solar, changes in installed capacity at the national level are minor (less than £3%), which translates
at the regional level by almost non noticeable changes in regional mixes. Multimodel behavior is in this regard quite
consistent except for model pair MOHC-HADGEM?2 + COSMO that exhibits a slightly stronger increase in region
Occitanie (related to the increase of +6% at the national level). For wind, changes in installed capacity are more het-
erogeneous across models, although some common behavior can be observed: regions Auvergne-Rhone-Alpes and
Grand Est are always involved in the installed capacity reductions observed at the national level, while Centre-Val
de Loire and Pays-de-la-Loire (and to a minor extent Bretagne) may contribute depending on the model considered.
The mechanisms underlying these observed regional differences across models are hard to disentangle: we find no

straight answer from the distribution and evolution of initial value factors with climate change, nor from the analysis
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of average value factors. Differences in demand or costs (which are the same across models) cannot by themselves
explain those differences. The explaining factors probably reside in climate model specificities and the evolution
of the correlation between demand and VRE generation as VRE capacity is installed. This could be studied via
the exploration of investment trajectories (Delort Ylla et al., 2023) but goes beyond the scope of this work. We can

consider that to the first order, the impact of climate change on the optimal regional mixes is the same across models.

5 Impacts of climate change on system costs

Aside from the impacts on optimal investment decisions, climate change impacts system costs. These depend on the
adaptation strategy, supposing that some level of climate change will happen: either the central planner decides to
adapt to climate change, and in our case it does so with perfect foresight, either it decides not to adapt, in which
case climate change impacts the mix in its reference state. Since adapting to climate change with perfect foresight
corresponds to decreasing the share of installed wind capacity, any unperfect adaptation strategy (e.g. adapting to a
level of climate change while another one happens to actually unfold) will fall between the two mentioned extremes.
We discuss both these extreme adaptation strategies and associated system costs in the following. Finally, we discuss
the true benefits of perfect adaptation, considering that generation portfolio transformation might come to the cost
of necessary new investment or stranded assets.

Facing climate change with perfect foresight, a central planner has either the choice to perfectly adapt to climate
change (i.e. optimize the VRE mix to a given level of climate change) or the choice not to adapt at all. In this last
case, the VRE mix corresponds to the optimal mix under reference conditions put under the conditions of a changed
climate (i.e. climate change happens whereas mix optimization does not). Each of these adaptation strategies yields a
yearly system total cost that can be compared to the yearly system total cost in the reference scenario. We define the
non-adaptation costs associated to scenario S (NACg) as the difference between the system total cost under scenario
S without adaptation and the system total cost in the reference scenario. Similarly, we define the perfect adaptation
costs associated to scenario S (PACg) as the difference between the system total cost under scenario S with perfect
adaptation (i.e. with the corresponding optimal VRE mix) and the system total cost under the reference scenario.
The evolution of both indicators under the different climate change scenarios is shown in Figure 9. We observe
a monotonous decrease of both the NAC and the PAC with increasing climate change intensity (except between
scenarios REF1.75 and REF2.35 under model pair MOHC-HADGEM?2 + COSMO). This behavior is consistent
across models and is thus robust in this sense. We also observe that both NAC and PAC are always negative: system
total costs under some level of climate change are less than in the reference case. This is also a robust result. The
magnitude of the NAC and PAC varies across models and level of climate change: from a negligible impact (less than
0.01bn€) per year (NAC) and a 0.03bn€ improvement (PAC) for the lowest level of climate change, to 2.67bn€
per year (NAC) and 2.9bn€ per year (PAC) improvements for the highest level of climate change. We thus show

that in our experiment, no matter the future outcome (i.e. the level of climate change) and no matter the adaptation

15



455

460

465

470

475

480

131

strategy, yearly total costs will decrease with climate change, ceteris paribus. In this regard, and under the hypothesis
of this study, climate change is found to have no adverse impacts on the electricity generation sector.

The previous result makes us ask wether perfect adaptation, which implies the building or decomissioning of
new resp. installed capacity with respect to the VRE mix optimal under the reference scenario, is economically
interesting. We discuss this question by defining a quantity that measures the benefits of perfect adaptation and
that we call the cost of unpreparedness (CoU), as a measure of the extra costs incurred in the case where the
central planner with perfect foresight does not adapt the VRE mix to future climate change conditions. The CoU
is computed as the difference between the NAC and the PAC, and is represented in Figure 9. We first observe that
the CoU is positive and steadily increases with increasing climate change intensity: the higher the level of climate
change the more interesting it is to adapt to it. The CoU takes values between 0.02bn€ and 0.23bn¥€ across models
and levels of climate change. However this measure misses the fact that perfect adaptation necessitates the building
resp. decomissioning of new resp. installed capacity departing from the reference mix. In the scope of this study,
adaptation to climate change translates in the decomissioning of wind power plants, between 2GW and 8GW across
models for the lowest level of climate change and between 12GW and 18 GW across models for the highest level
of cimate change. These decomissionings lead to stranded assets costs of 0.23bn€ to 2.08bn€ across models and
levels of climate change. In fact, these stranded assets costs are consistently an order of magnitude higher than
their associated CoU. We thus show that in our experiment, although yearly total system costs are smaller with a
perfectly adapted mix, accounting for the full adaptation path makes the perfect adaptation strategy less attractive

economically than its non-adaptation counterpart.

6 Discussion

We showed so far that the component-level impacts of climate change (a decrease in total demand on the order
of 10%, mildly degraded wind power generation conditions associated to a decrease in average capacity factor
within +5% and —20%, variations of solar capacity factors within £10%, a wind generation vs. demand correlation
decreasing with climate change and a solar generation vs. demand correlation increasing with climate change) led
to optimal mixes with less installed wind capacity with increasing climate change, while the amount of installed
solar capacity remained constant. Furthermore, we showed that in the experiment detailed in this study, climate
change had no adverse impacts on system total costs, and that adapting to climate change revealed more costly
than simply withstanding climate change effects, due to the costs related to the necessary electricity generation
mix transformations. We discuss these conclusions in light of our working hypotheses and existing literature in the

following sections.
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6.1 Component-level results

We first discuss the obtained results on demand, wind and solar capacity factors evolution with climate change. A
review of a body of existing literature on the topic is presented Appendix B. Results on wind generation found in the
literature are in good agreement to what we can find in our study, with decreases up to 10% comprised in the +5%
and —20% interval that we find. Regarding solar generation, compatible results are found as well, with variations
observed in this analysis within +10% aligning well with the worst case variations on the order of 10% mentioned in
the literature. Regarding electricity demand, our study aligns well with previous works as we anticipate a decrease in
demand in France with climate change only (i.e. without any socioeconomic scenario of demand increase/decrease),
on the order of 10% whereas changes anticipated in the literature range within —3% to —5%. We thus expect a
slightly higher total demand decrease.

If the trends of average capacity factor values are in good agreement with literature, nothing guarantees that
the capacity factors variability (seasonal, intraday), derived from the calibrated climate data is representative of
observed capacity factor time series. In fact some studies suggest that reanalysis products such as ERAS are flawed
in the representation of real-world capacity factors time series. This is e.g. shown in (Frank et al., 2018) for solar
capacity factors derived from ERA-Interim or MERRA-2 weather data, or in (Henckes et al., 2020) which directly
assess the impacts of reanalysis errors on the outputs of the full optimal investment modeling chain. More recently,
the work developed in (Jiménez-Garrote et al., 2024; Pozo-Vazquez et al., 2024; Santos-Alamillos et al., 2024)
arrives to similar conclusions. If we can expect the bias calibration step we perform after averaging the capacity
factors over the area of study to correct for potential biases in capacity factors. We can not expect this step to
reduce biases regarding wind and solar capacity factors intraday or seasonal variability. As such, further work could
test the sensitivity of the obtained system-level results to the potential biases contained in capacity factors time
series originating from common reanalaysis products (such as ERAS) and explore/develop more realistic datasets of
capacity factors time series.

Similarly, climate models used can introduce biases depending on the accounted processes. (Allen et al., 2013)
showed that CMIPS5 models struggled to realistically incorporate the role of aerosols. Such an issue is even more
stringent in EURO-CORDEX RCMs (Gutiérrez et al., 2020), where only RCMs projecting evolving aerosols are
in good agreement with GCM projections, changing the sign of the projected solar resource evolution and thus
potentially altering the results of a study similar to ours. Similar biases have been shown to occur for the wind
resource, with the accounting of land use changes being in cause in this case (Wohland, 2022). Further investigations
could thus also tackle how system-level results respond to other climate datasets such as CMIPS5 or CMIP6 GCMs

downscaled with another methodology than regional climate models forcing by a GCM.
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6.2 Discussion of study results and limits of the modeling approach

We show in this analysis that component-level trends do not easily translate into system-wide results. If the observed
results for wind generation (degraded conditions with climate change and subsequent decrease of installed capacity)
may seem to prove the contrary, solar installed capacity results corroborate the previous affirmation. In the case of
solar, optimal installed capacity remains constant with climate change although the correlation of solar with demand
increases (just as it decreased for wind). Translating capacity factor trends, or even generation/demand correlation
trends into optimal investment strategies is thus not straightforward. It is even more difficult if we consider that
assessing component-level impacts implies to simplify the complexity of underlying processes for the sake of the
analysis or the presentation of the results: typically we discussed in this analysis the evolution of average capacity
factors with climate change, when the whole capacity factors distribution, as well as the time correlation with other
processes (demand in particular) is of prime importance. As in (Craig et al., 2018; Khan et al., 2021), we thus
reiterate the importance to perform integrated studies of climate change impacts to correctly assess the impacts of
driving processes.

If previous studies on the impact of climate change on the optimal mixes were found to be limited in some aspects
a comparison of their results to our proves insightful. (Schlott et al., 2018) also find that the importace of wind in
the optimal mix will shrink under climate change conditions but to the contrary of us find that the installed solar
capacity will increase. They do not however account for demand changes with climate change, which we show to
be of major importance when considering the correlation of VRE generation to demand, and is probably of major
importance when adopting the systemic approach. In this study system total costs are found to increase or remain
constant with increasing climate change (depending on the climate model). (Ralston Fonseca et al., 2021a) also find
that solar generation capacity increases while installed wind capacity decreases with climate change. This increase
in installed solar capacity is suggested to happen due to an increase in summer peak demand, while the decrease in
installed wind capacity is not discussed. System costs impacts of climate change are more thoroughly discussed in
(Ralston Fonseca et al., 2021b), where different adaptation strategies are also considered. They do find that system
costs might surge if adaptation to climate change is not appropriately carried. This comes from the fact that a mix
not adapted to climate change fails to supply electricity more often than a correctly adapted mix. This cannot happen
in our study because of our working hypotheses and highlights a crucial limitation of our work.

The crucial hypotheses to highlight when discussing the conclusions of our work is the fact that we considered
dispatchable producers to be available in the desired quantity to no other cost than that of their generation. This
greatly influences the resulting effects on the optimal installed mixes. This hypothesis makes us miss a feedback be-
tween installing more dispatchable generators vs. relying on more wind and solar power. We expect that accounting
for dispatchable fixed costs would lead to less dispatchable investment and in turn more VRE investment to en-
sure adequacy. In turn, this would increase system costs if VRE generation where to be less efficient. Furthermore,

considering that dispatchable producers are always available neglects all the adverse impacts of climate change on
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dispatchable generation, from availability of hydropower to thermal deratings of thermoelectric units. As such, our
analysis represents an ideal case and is probably the reason why no adverse impacts of climate change on system
costs are found. Such a limitation would need methodological developments to be addressed, and is left for fu-
ture works. The effect of other methodological limitations such as not accounting for storage, imports/exports or

transmission constraints is less clear and will also be investigated in future works.

7 Conclusions

We show in this study that in an idealized setting regarding the dispatchable production and for the case of France,
accounting for the compound effect of a VRE resource and a demand change, optimal investment in wind capacity
decreases, whereas the optimal investment in solar capacity is not affected.

We further show that in this idealized setting, climate change has no adverse impacts on system costs and that the
costs of adaptation to climate change overcome the costs incurred in the case of no adaptation, thus not incentiviz-
ing for adaptation measures. This conclusion maybe highlights the importance of dispatchable producers as a key
element in electricity system adaptation to climate change, and the imortance of accounting for the effect of climate
change on the whole electricity generation sector to avoid biased policymaking advice.

We suggest that further research focuses on integrating all climate change impacts in one modeling exercise
to provide policy relevant advice. Other ways forward could be in the inclusion of socioeconomic scenarios of
demand and costs and/or the integration of sector coupling in these prospective modeling exercises. Our study also
confirms that work needs to be sustained in the energy and climate community to build a greater understanding on
how weather patterns associated with climate change affect optimal investment decisions from the regional to the

continental level.

Code and data availability. Code and data available upon request.
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Figure 1. Load duration curves for the levels of global warming considered. Each panel (a) to (f) corresponds to a GCM + RCM

pair. The inset in each panel shows the demands occuring less than 1% of the time.
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Figure 2. Wind capacity factors change for the levels of global warming considered. Each panel ((a) to (f)) corresponds to a
GCM + RCM pair. In each panel, the upper part of the figure shows the evolution of capacity factors for the different climate

change scenarios, while the lower part shows the corresponding statistical tests. In the lower part of the figure, a red cross stands
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for a non-significative difference, a square for a statistically significative difference, and an upper pointing or lower pointing
arrow stands for a statistically significative increase resp. decrease with respect to the REF scenario. “T test” stands for t-test,
“T test V2” stands for t-test with a variance inflation factor of 2.0, and “WMW?” stands for the Wilcoxon-Mann-Whitney U test.
“Historical” corresponds to the REF scenario, “RCP 8.5 - 1.75” corresponds to the REF1.75 scenario and the same logic applies
to the other labels.
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Figure 3. Solar capacity factors change for the levels of global warming considered. Each panel ((a) to (f)) corresponds to a T
GCM + RCM pair. In each panel, the upper part of the figure shows the evolution of capacity factors for the different climate ;
change scenarios, while the lower part shows the corresponding statistical tests. In the lower part of the figure, a red cross stands G)
m

for a non-significative difference, a square for a statistically significative difference, and an upper pointing or lower pointing
arrow stands for a statistically significative increase resp. decrease with respect to the REF scenario. “T test” stands for t-test,
“T test V2” stands for t-test with a variance inflation factor of 2.0, and “WMW?” stands for the Wilcoxon-Mann-Whitney U test.
“Historical” corresponds to the REF scenario, “RCP 8.5 - 1.75” corresponds to the REF1.75 scenario and the same logic applies
to the other labels.
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Figure 4. Wind initial value factors change for the levels of global warming considered. Each panel ((a) to (f)) corresponds to a

GCM + RCM pair.
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Figure 5. Solar initial value factors change for the levels of global warming considered. Each panel ((a) to (f)) corresponds to a

GCM + RCM pair.
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Figure 6. Optimal VRE mixes (national level) for the levels of global warming considered. Each panel ((a) to (f)) corresponds
to a GCM + RCM pair. Bars correspond to the nationally installed capacity in solar PV (red), wind (purple) and dispatchable
(green), and correspond to the left axis graduation. Black dots correspond to the observed average demand during the 30 year

period with the errorbar corresponding to the min-max values. They are associated to the right axis graduations.
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Figure 7. Optimal wind mixes (regional level) for the levels of global warming considered. Each panel ((a) to (f)) corresponds to

a GCM + RCM pair. Colors are hatched when they correspond to the maximum installable capacities.
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Figure 8. Optimal solar mixes (regional level) for the levels of global warming considered. Each panel ((a) to (f)) corresponds to

a GCM + RCM pair. Colors are hatched when they correspond to the maximum installable capacities.
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Figure 9. Non-adaptation costs (NAC), perfect adaptation costs (PAC) and cost of unpreparedness (CoU) for the levels of global
warming considered. Each panel ((a) to (f)) corresponds to a GCM + RCM pair.
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Occitanie

® PACA

Pays-de-la-Loire

Figure A1l. Area of study: detail of french administrative regions, adapted from (Tantet and Drobinski, 2021).

Appendix A: Domain and model parameters
Al Area of study

The area of study corresponds to metropolitan France, subdivided into its administrative regions. A map of the area

of study is presented Figure Al.
A2 Climate data curation

Climate data curation steps are needed to obtain a homogeneous and exploitable dataset. These data curation steps
are reported Table Al. The calendar conversion from 360 to 365/366 format for model pair 1 is done by splitting
each 360 days year in four periods and then adding one day at the end of each period, except the last one where
three days are added. Each day added takes the last value of the previous day throughout the day. If this method
is fine for daily average values, it is more problematic for subdaily time resolution values as in our case. Further
methodological developments should take this point in consideration. In the meantime, we should pay close attention
to results obtained from model pair 1.

The cutoff values procedure that needs to be applied for model pair 2 consists in identifying those EURO-
CORDEX values whose magnitude is higher than 10 times the maximum ERAS reanalysis value. Those values
are then interpolated via linear interpolation when possible, and otherwise taken as equal to the closest previous
non-aberrant value when it exists, or equal to the closest next non-aberrant value otherwise. It is not excluded that
such aberrant values still remain in the final data as the cutoff procedure is only applied during the calibration step

and thus applies only to historical data (1975 — 2005). Further methodological developments could focus on consis-
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Table A1. Data curation steps needed in the study.

GCM/RCM pair ID Issue Workaround
0 - -
1 calendar is 360 days convert to 365/366 days calendar
downloaded val00m file for year 2093 cannot be read replace it with year 2089
downloaded val00m file for year 2094 cannot be read replace it with year 2090
downloaded val00m file for year 2095 cannot be read replace it with year 2091
downloaded val00m file for year 2096 cannot be read replace it with year 2092
downloaded val00m file for year 2097 cannot be read replace it with year 2089
downloaded val00m file for year 2098 cannot be read replace it with year 2090
year 2099 missing for ual0Om, val0Om, tas, rsds replace it with year 2095 or 2091
2 downloaded val00m file for year 2099 cannot be read replace it with year 2098
valOOm field show absurdly high magnitude values set a cutoff value
3 downloaded ual00m file for year 2070 cannot be read replace it with year 2066
downloaded ual00m file for year 2092 cannot be read replace it with year 2088
4 year 2047 missing for ual00m, val00m, tas, rsds replace it with year 2046

downloaded ual00m file for year 2097 cannot be read
downloaded ual00m file for year 2098 cannot be read

downloaded ual00m file for year 2099 cannot be read

replace it with year 2093
replace it with year 2094
replace it with year 2095

tently checking the data for aberrant values and systematically applying a cutoff value procedure to the data. In the

meantime, close attention should be payed to results potentially influenced by aberrant meridional wind field values

(e.g. wind capacity factors) in the case of model pair 2 for the RCP 8.5 experiment.

A3 ESM model parameters

A3.1 VRE fixed costs

VRE fixed costs are the same as in (Tantet and Drobinski, 2021) and taken from (Tsiropoulos et al., 2018; Shirizadeh
et al., 2020). They are reported in Table A2. They correspond to 2050 projections in the “Diversified” scenario from
(Tsiropoulos et al., 2018) in the “Onshore, medium specific capacity, medium hub height” category for wind energy
595 and to the mean of the “Utility-scale PV without tracking”, “Commercial scale PV flat surface” and “Residential

scale PV flat surface” categories for solar energy. This coresponds to the capex of wind and solar energy to be
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respectively 16% and 64% cheaper than in 2015.
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Table A2. VRE fixed costs data for the E4ACLIM model.

Wind  Solar
Overnight cost (€KW 1) 1130 423
Lifetime (years) 25 25
Annuity (€kW ~tyear™!) 812 307

Operation and maintenance (€EkW ~'year™)  34.5 9.2

Rental costs (€kW ~year™!) 1157 399

A3.2 Dispatchable variable cost coefficient (DVCC)

The dispatchable variable cost coefficient (DVCC) is a key parameter in our model as it determines the magnitude

of the dispatchable generators variable costs following
VCpi = ag’, (AD)

where o is the DVCC in € MWh~? and q is the dispatchable generation in MWh. Intuitively, the higher the costs
for the dispatchable producers, and the more competitive it is to install VRE capacity. A high DVCC thus favors
VRE penetration whereas a low DVCC favors a dispatchable-only system.

We show in Figure A2 the results of the optimization for the REF scenario as a function of the DVCC. This
evidences the previous intuition: the higher the DVCC and the more VRE capacity is installed. This tends to reduce
the needed dispatchable capacity to ensure hourly system adequacy. The DVCC parameter is however varied in a
range that yields realistic mixes. We now discuss how we can estimate the present value of this parameter.

The first method to estimate the present-day value of the DVCC is to use market and generation data. It follows
from Equation A1 that the marginal cost A is equal to

_ dVCp
-5

A = 2aq. (A2)

The marginal cost can be approximated by the clearing price of electricity markets, such as the day-ahead one.
There is thus a linear relationship between the day-ahead price and the amount of energy generated by dispatchable
producers, whose coefficient corresponds to the DVCC. We gather data from https://opendata.reseaux-energies.fr/
to get the dispatchable generation (which includes oil, coal, gas, nuclear, hydropower and bioenergies) as a function
of time for the year 2018. Similarly, we gather data from https://energy-charts.info/api.html?l=en&c=FR to get
day-ahead clearing prices for the french bidding zone of the european spot market. We plot the day-ahead price
vs. dispatchable generation relationship in Figure A3, where we can see that a strict linear relationship does not
hold. The reasons behing this unperfect linear relationship are beyond the scope of this work, but we can mention

unperfect competition in markets which tends to invalidate the equivalence between the marginal cost and the spot
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Figure A2. VRE mixes and necessary dispatchable capacity for the REF scenario as a function of the dispatchable variable cost
coefficient (DVCC). Results for model pair [CHEC-EC-EARTH + COSMO.

price, and the effect of VREs on the electricity price, which tends to make prices drop. We nonetheless fit a linear
model to the data, while forcing the intercept to be zero, the latter explaining the obtention of such a bad coefficient
of determination (no observations exist a the (0, 0) point). This however allows us to get a rough estimate of the
present day (2018) DVCC value, which should be around 4.25 - 10"*€MWh 2.

A second method relies on the comparison between modeled mixes and actual ones. Once a rough estimate of
the DVCC has been made, the parameter can be varied in a range of plausible values (as shown Figure A2) to
yield a series of mixes that can then be compared to actual ones. Actual installed electricity generation capacity
for France from 2010 to 2023 is plotted Figure A4. The corresponding value of the DVCC would then be between
2.0-10"*€MWh~2 and 4.0 - 10~*€MWh 2 no matter if the total installed capacity or the installed VRE capacity
is taken as the element of comparison.

The present day DVCC has thus a value of around 2.0 - 10"*€MWh~2 to 5.0 - 10~*€MWh 2 to take a broad
interval. To favor the penetration of VREs, this value is raised to 1.5 - 10~3€MWh~2 in all scenarios of this study.
This leads to a system in the REF scenarios with 155GW of installed VRE capacity, which is close but still below
projections from the french TSO for 2050 (RTE, 2021). A mechanism that could justify such an increase could be the

increase in the cost of carbon emissions, since a non negligible share of the dispatchable producers are carbonated.
A3.3 Maximum installable VRE capacity

Regional maximum installable capacities play a crucial role in our model in determining the final VRE mix, and
in particular its geographical distribution (Delort Ylla et al., 2023). We set maximum installable regional VRE
capacities to those determined in (ADEME, 2015). However we find that the parameters used in this study are not

satisfactory for utility-scale solar PV, yielding too low potentials compared to more recent estimates (Dupré la Tour,
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Coefficient: 8.50e-04 — Intercept: 0.00e+00 — R*: -0.0643
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Figure A3. Estimation of the dispatch variable cost coefficient (DVCC) parameter from market and generation data. Source:
https://opendata.reseaux-energies.fr/ for the generation data and https://energy-charts.info/api.html?I=en&c=FR for the day-

ahead market data.

2023). As such, utility-scale solar PV maximum installable capacities from (ADEME, 2015) are multiplied by a
factor 4 to allow the solar installed capacity to be of the same order of magnitude than projected installed capacity
in 2050 from (RTE, 2021), while remaining below the potentials presented in (Dupré la Tour, 2023). The obtained

regional maximum installable capacities are shown Figure AS.
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Figure A4. Installed electricity generation capacity in France, 2010 — 2023. Source: https://opendata.reseaux-energies.fr/. The
2050 bar represents a projection of installed capacity and capacity to be installed by that time considering that total capacity is
the same as in 2023, that the installed renewable capacity is at least that of 2023, and that no new nuclear capacity has been

installed while programmed decommissionings have taken place (RTE, 2021).
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Figure AS. Maximum installable VRE capacity per region for (a) solar photovoltaic (PV) and (b) wind onshore.
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Appendix B: Impact of climate change on system components
B1 Literature review

We review (IPCC, 2022, Chapter 6), (Craig et al., 2022) and references therein for studies covering the impact of
climate change on the energy supply. We summarize them in Tables B1, B2 and B3 for the studies comprising
France in their geographical area. A similar review over the US is presented in (Craig et al., 2018), and other studies
regarding the impact of climate change on the energy supply in the US can be found in (Bartos and Chester, 2015;
Voisin et al., 2016; Liu et al., 2017; Miara et al., 2017). The impact of climate change on VRE, other renewable
and thermoelectric production is regionally differentiated and technology-dependent. In the case of Europe, thermo-
electric production is expected to decrease by 20% (within 5% to 20% capacityfactor decrease in summer), wind
generation is expected to decrease by less than 10% over Europe (with stability or increases by less than 10% pro-
jected locally), PV generation is expected to remain stable (changes within 2% and less than 10% in the worst
case) and hydropower generation is expected to decrease by up to 20% (with 5% to 20% increases locally). Overall,
changes are of moderate significance over Europe, i.e. changes on the potential power output are on the order of
+20%.

We review a set of studies on the impact of climate change on the demand-side of energy systems, which we
present in Tables B4, B5 and B6. These studies vary in terms of scale and geographical area considered: either at
the regional, country or state scale (Ruth and Lin, 2006; Davis and Gertler, 2015; Ralston Fonseca et al., 2019),
at the continental scale (Eskeland and Mideksa, 2010; Bartos et al., 2016; Auffhammer et al., 2017; Damm et al.,
2017; Craig et al., 2018), or at the global scale (Isaac and van Vuuren, 2009; Levesque et al., 2018; De Cian and
Sue Wing, 2019; van Ruijven et al., 2019). They vary also in terms of climate scenarios considered, although most
studies reviewed here comprise the use of the RCP 8.5 forcing and the resulting warming at the near 2100 time
period. The studies finally vary in scope: most of them include the residential and tertiary energy demand, while
some include other sectors like industry, transport or agriculture. The type of energy demand considered can also
vary between all electric or including other fuels (gas, coal, oil-derived, biofuels). The global energy demand is
expected to a least triple by 2100 (under RCP 8.5 forcing) mostly driven by socioeconomic factors (population rise,
income growth) (Isaac and van Vuuren, 2009; Levesque et al., 2018; van Ruijven et al., 2019). Some studies expect
an 80% increase in electricity demand (Isaac and van Vuuren, 2009) at the global scale. The increase in peak demand
should be exacerbated (Bartos et al., 2016; Auffhammer et al., 2017). At the regional scale projections vary: (Davis
and Gertler, 2015) expect a 15% to 83% increase in electricity demand depending on the adoption of AC (2100,
RCP 8.5) for the state of Mexico, whereas a 6% increase in electricity demand is expected in the Tennessee Valley
Authority region in the US. In the case of France, studies agree that a decrease in the total energy demand on the
order of 3% to 5% should be observed due to climate change (Damm et al., 2017; De Cian and Sue Wing, 2019;
van Ruijven et al., 2019). (Eskeland and Mideksa, 2010) project a 2.5% decrease in electricity demand whereas
(De Cian and Sue Wing, 2019) project a 25% electricity demand increase. This discrepancy is explained by the fact
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Table B1. Review of climate change impacts on the supply-side of energy systems: scope of the study.

Entry Area Scenario Period Models
(van Vliet et al., 2012) US/Europe  SRES A2/B1 2050 -

(Tobin et al., 2016) Europe RCP 4.5/8.5  2lst century -

(Reyers et al., 2016) Europe RCP 4.5/8.5 2040, 2080 22 GCM, 1 RCM
(Karnauskas et al., 2018) World RCP 4.5/8.5 2100 10 GCM
(Tobin et al., 2018) Europe RCP 4.5/8.5  2l1st century 3 GCM, 3 RCM
(Cronin et al., 2018) * World - 2100 -

(Pryor et al., 2020) * World - 2100 -
(Gernaat et al., 2021) World RCP 2.6/6.0 2085 4 GCM

*: review paper. US: United States. SRES: Special Report on Emissions Scenario (IPCC, 2007). RCP: Representative
Concentration Pathway (Moss et al., 2010; IPCC, 2014). GCM: Global Climate Model. RCM: Regional Climate Model.

Table B2. Review of climate change impacts on the supply-side of energy systems: elements of the energy system considered.

Entry Wind Solar Hydro Thermoelectric = Biomass
(van Vliet et al., 2012) X

(Tobin et al., 2016) X

(Reyers et al., 2016) X

(Karnauskas et al., 2018) X

(Tobin et al., 2018) X X X X

(Cronin et al., 2018) X X X

(Pryor et al., 2020) X

(Gernaat et al., 2021) X X X X

that the former only takes into account the effect of climate change when the latter also incorporates socioeconomic

680 effects in the study.
The impacts on the energy system physical infrastructure are mainly related to decreased transmission capacity
due to high temperatures (Bartos et al., 2016; Craig et al., 2018; Cronin et al., 2018), see e.g. (Loew et al., 2016) for

a case study in Texas, US.

B2 Demand
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685 B2.1 National level
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Table B3. Review of climate change impacts on the supply-side of energy systems: results and comments.

Entry

Results & Comments

(van Vliet et al., 2012)
(Tobin et al., 2016)
(Reyers et al., 2016)

(Karnauskas et al., 2018)

(Tobin et al., 2018)

(Cronin et al., 2018)

(Pryor et al., 2020)

(Gernaat et al., 2021)

6% to 19% decrease in summer (Europe)

+5%; Local changes up to 15%

Changes may occur; Uncertainties too high to quantify
sign and magnitude.

Decrease in northern mid-latitudes; Stability (UK);
5% to 10% decrease (Mediterranean);

Stability vs. 30% decrease (Scandinavia-Finland).

Up to 10% decrease in wind;

+2% for PV;

Up to 20% decrease for hydro- and thermoelectric.
+10% for PV (mid- and low-latitudes);

+15% to £30% for wind (Europe);

5% to 20% increase in hydropower (northern Europe);
5% to 20% decrease in hydropower (southern Europe).
< 10% increase in northern Europe;

slight (unquantified) decrease in southern Europe.
32% to 38% increase in biomass (global);

6% increase in Hydropower (global);

< 1% decrease in PV (global);

< 5% decrease in wind (global).

UK: United Kingdom. PV: solar photovoltaic.
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Table B4. Review of climate change impacts on the demand-side of energy systems: scope of the study.

Entry Area Scenario Period Models
(Ruth and Lin, 2006) Maryland (US) 1989 vs. 2025 1 GCM
(Isaac and van Vuuren, 2009) World 1971 to 2100 1TIAM
(Eskeland and Mideksa, 2010) Europe SRES Alb 2000 vs. 2100 -
(Davis and Gertler, 2015) Mexico RCP 4.5/8.5 2010 vs. 2085 25 GCM
(Bartos et al., 2016) usS RCP 2.6/4.5/8.5 2000 vs. 2050 11 GCM
(Auffhammer et al., 2017) UsS RCP 4.5/8.5 2010 vs. 2093 20 GCM
(Damm et al., 2017) Europe RCP 2.6/4.5/8.5 1985 vs. +2°C 11 RCM
(Craig et al., 2018)* US

(Levesque et al., 2018) World RCP 4.5/6.0/8.5 2010 vs. 2100

(Ralston Fonseca et al., 2019) TVA (US) RCP 8.5 2010 vs. 2060/2095 20 GCM
(De Cian and Sue Wing, 2019) World RCP 4.5/8.5 2010 vs. 2050 1 GCM
(van Ruijven et al., 2019) World RCP 4.5/8.5 2010 vs. 2050 21 GCM

US: United States. GCM: Global Climate Model. IAM: Integrated Assessment Model. SRES: Special Report on Emissions Scenario
(IPCC, 2007). RCP: Representative Concentration Pathway (Moss et al., 2010; IPCC, 2014). RCM: Regional Climate Model. TVA:
Tennessee Valley Authority.

Table B5. Review of climate change impacts on the demand-side of energy systems: sector of demand considered.
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Entry Residential ~ Tertiary Industry  Transport Other
(Ruth and Lin, 2006) X X

(Isaac and van Vuuren, 2009) X

(Eskeland and Mideksa, 2010) X

(Davis and Gertler, 2015) X

(Bartos et al., 2016) All
(Auffhammer et al., 2017) All
(Damm et al., 2017) X X

(Craig et al., 2018) All
(Levesque et al., 2018) X X

(Ralston Fonseca et al., 2019) Electricity
(De Cian and Sue Wing, 2019) X X X X Agriculture
(van Ruijven et al., 2019) X X X Agriculture
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Table B6. Review of climate change impacts on the demand-side of energy systems: results and comments.

Entry

Results & Comments

(Ruth and Lin, 2006)

(Isaac and van Vuuren, 2009)

(Eskeland and Mideksa, 2010)

(Davis and Gertler, 2015)

(Bartos et al., 2016)

(Auffhammer et al., 2017)

Up to 20% to 25% yearly average demand increase;
Sensitivity of changes to energy prices;

Impacts differ depending on the sector.

Energy demand increases x 3; Electricity demand
increases by at least 9000TWh (2000 vs. 2100) L,
Climate change = Net decrease (2050), increase (2100);
Climate change impact < Income growth.

Climate change = +20% change in electricity demand;
—2.53% in the case of France.

15% electricity demand increase (cooling)

without AC adoption (RCP 8.5);

83% electricity demand increase (cooling)

with AC adoption (RCP 8.5);

Climate change impact < Income growth.

Peak summertime (JJA) demand increase

by 4% to 15% (2050)

and by up to 30% in 2100 (RCP 8.5).

+5% to +10% in average demand,

+15% to +20% in 95th percentile peak demand.

! This is a 80% increase in electricity demand, based on data from https://theshiftdataportal.org for final electricity
demand in 2000. JJA: June, July, August. RCP: Representative Concentration Pathway (Moss et al., 2010; IPCC, 2014).

AC: Air Conditioning.
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Table B6. Cont.
(Damm et al., 2017) —3% in average demand (France).
(Craig et al., 2018) +5% in average demand;
+10% to +20% in peak demand.
(Levesque et al., 2018) Building demand constant to x 3.

(Ralston Fonseca et al., 2019) 6% electricity demand increase (2095).
(De Cian and Sue Wing, 2019)  17% increase in demand (RCP 8.5);
< 25% rise in electricity demand (France, RCP 8.5);
5% decrease in total demand (France, RCP 8.5).
(van Ruijven et al., 2019) X2 to X3 increase globally (socioeconomic factors);
x 1.4 to x2.5 increase in Europe (socioeconomic factors);
25% to 60% increase globally (climate change);

within +3% change in Europe (climate change).

RCP: Representative Concentration Pathway (Moss et al., 2010; IPCC, 2014).
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Figure B1. Base demand for the levels of global warming considered. Each panel ((a) to (f)) corresponds to a GCM + RCM pair.
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Figure B3. Peak demand for the levels of global warming considered. Each panel ((a) to (f)) corresponds to a GCM + RCM pair.
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Figure B4. Difference in base demand for 1.75°C of global warming. Each panel ((a) to (f)) corresponds to a GCM + RCM pair.
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(e) MOHC-HADGEM2 + COSMO (f) MOHC-HADGEM2 + ALADING3

Figure B5. Difference in base demand for 2.35°C of global warming. Each panel ((a) to (f)) corresponds to a GCM + RCM pair.

51



167

10.0 10.0
7.5 7.5
5.0 5.0
2.5 2.5

2
ABDO5 (%)
ABDO5 (%)

—25 —2.5
5.0 ~5.0
-75 —7.5
~10.0 ~10.0
(a) ICHEC-EC-EARTH + COSMO.
10.0 10.0 —_
75 75 %
5.0 5.0 B
25 = 25 2 7
00 2 00 2 (@)
2 2 =
25 9 25 9 0
~5.0 ~5.0 E
75 —75 >
~10.0 ~10.0 m
0O
XL
10.0 10.0 )Z>
7.5 7.5 ®
L
5.0 5.0 =
25 g 25§ %
00 8 00 & 0O
) oQ >
25 9 25 9 79
"
-5.0 —5.0 O
75 —75 -
-
~10.0 ~10.0 ;
(e) MOHC-HADGEM2 + COSMO (f) MOHC-HADGEM?2 + ALADING3 2
0O
by s

Figure B6. Difference in base demand for 2.8°C of global warming. Each panel ((a) to (f)) corresponds to a GCM + RCM pair.
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(e) MOHC-HADGEM2 + COSMO (f) MOHC-HADGEM2 + ALADING3

Figure B7. Difference in base demand for 3.28°C of global warming. Each panel ((a) to (f)) corresponds to a GCM + RCM pair.
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Figure B8. Difference in base demand for 4.04°C of global warming. Each panel ((a) to (f)) corresponds to a GCM + RCM pair.
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Figure BY. Difference in average demand for 1.75°C of global warming. Each panel ((a) to (f)) corresponds to a GCM + RCM

pair.
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Figure B11. Difference in average demand for 2.8°C of global warming. Each panel ((a) to (f)) corresponds to a GCM + RCM

pair.
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Figure B12. Difference in average demand for 3.28°C of global warming. Each panel ((a) to (f)) corresponds to a GCM + RCM Icl'l)
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Figure B13. Difference in average demand for 4.04°C of global warming. Each panel ((a) to (f)) corresponds to a GCM + RCM

pair.

59



175

10.0 10.0
7.5 7.5
5.0 5.0
2.5 2.5

o

o
APDO5 (%)

o

o
APDO5 (%)

-25 2.5
-5.0 -5.0
—7.5 —7.5
-10.0 -10.0
(a) ICHEC-EC-EARTH + COSMO.
10.0 10.0
75 7.5
5.0 5.0
2.5 2.5

[

(=)
APDO5 (%)
(=)

o
APDO5 (%)

=
>
Q
w
@)
—-2.5 —-2.5 M
-5.0 -5.0 l(_)
-75 -75 <
-10.0 ~10.0 Z.
m
0
I
10.0 10.0 >
P

7.5 7.5
®
5.0 5.0 m
25 25 & 5:'
00 8 00 8 g
25 4 —25 5 p ¢
-5.0 ~5.0 %
-7.5 —7.5 O
M
—10.0 —10.0 -
A
(e) MOHC-HADGEM2 + COSMO (f) MOHC-HADGEM?2 + ALADING3 ;
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Figure B15. Difference in peak demand for 2.35°C of global warming. Each panel ((a) to (f)) corresponds to a GCM + RCM

pair.
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Figure B16. Difference in peak demand for 2.8°C of global warming. Each panel ((a) to (f)) corresponds to a GCM + RCM pair.
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Figure B17. Difference in peak demand for 3.28°C of global warming. Each panel ((a) to (f)) corresponds to a GCM + RCM

pair.
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Figure B18. Difference in peak demand for 4.04°C of global warming. Each panel ((a) to (f)) corresponds to a GCM + RCM Icl'l)
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Abstract

Electricity systems are expected to undergo profound transformations both in
the supply and demand side in the coming decades. We focus in this study on the
problem of solar and wind mix dimensioning facing socioeconomic and climate
change. We use an integrated electricity system model to assess what is the
resilience of a high wind and solar penetration mix to increasing electrification
and climate change intensity, and compare its performance to cost-optimal mixes
to compute the adaptation potential. We find that accounting for the compound
impact of socioeconomic and climate change is necessary to get good qualitative
and quantitative measures of the adaptation potential and other adaptation-
related metrics. We thus recommend the continued incorporation of plausible
socioeconomic scenarios in future climate change studies to improve the accuracy
of policymaking recommendations.

Keywords: Energy system modelling, Climate change, Electrification, Policymaking
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Introduction

Climate change is a threat to human and non-human collectives around the globe,
threatening the worlds political and ecological equilibrium [1, 2]. A key lever of mit-
igation policies for the Paris Agreement parties is the reduction of greenhouse gas
emissions from energy systems as a whole and electricity systems in particular [3].
Because they also represent a strategic [4, 5] and industrial [3, 6] opportunity, low
carbon solar and wind energy sources are expected to surge globally in the coming
decades (see e.g. [6]). In all advanced economies with centralized interconnected elec-
tricity systems, the transition from fully dispatchable to high wind and solar electricity
systems will pose adaptation challenges [7].

From the policymakers point of view, designing public policies to implement a
suitable solar and wind mix to fulfill Paris agreement’s targets at the same time as
ensuring an affordable and secure electricity provision is a complex problem involving
entangled social [8, 9], political [10-12] and economical [7, 13] considerations, along the
precited ecological ones. At the same time, committed and potential climate change
[14] will impact electricity systems both on the demand and supply side [15, 16],
affecting the capacity of planned or resulting mixes to supply electricity reliably [17]
and at the lowest cost. This capacity to perform well will also be affected by socioe-
conomic changes, mainly via impacts on the demand: wether it is through changes
in population [18-20], air conditioning or electric heating adoption [21-24], industry
electrification [25-27] and electric vehicles adoption [28-30], or efficiency [31-33] and
sufficiency [34-36] measures.

How these climatic and socioeconomic changes will combine and impact the elec-
tricity system is uncertain. Planning or designing public policies to incentivize for
the right wind and solar mix is thus submitted to this uncertainty. The resilience of
future mixes and the underlying planning question is a widely addressed problematic
(see e.g. [37] for an overview). Studies in the literature can be broadly divided into
four categories: those that tackle the question at constant climatic and socioeconomic
conditions [38-40], those that take into account at the same time socioeconomic and
climate change [41-45], and those that fall in-between the two by working with a con-
stant parameter and another variable one see e.g. [46-52] for the most recent ones.
Among those studies not all optimize decision making to changing climate and socioe-
conomic conditions, and instead rely on prescribed mixes [47, 48, 50]. Those studies
that do consider optimal investment often fail to consider the combined impact of
socioeconomic and climate change [51], or suffer from limitations in addressing high
wind and solar mixes feasibility [41-44]. A recent study [45] tackled these points by
proposing a novel methodology more adapted to high wind and solar energy pene-
tration, and insisted on the importance to take socioeconomic scenarios into account
in climate change studies to inform mix planning. We go a step further by assess-
ing whether or not these two processes can be studied separately and their effects
additioned, and, in the opposite case, to what extent crucial policymaking support
indicators can be over or underestimated. This is assessed by comparing the adapta-
tion potential, hereby denoted as the cost of unpreparedness, under various scenarios
of socioeconomic and climate change.
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69 We use to this end the bottom-up stochastic capacity expansion model E4CLIM
o in its latest version [53, 54]. In comparison to e.g. [43, 45] our approach is limited
n in its optimal mix planning capabilities as our methodology is voluntarily minimal-
722 istic (this is discussed further in the Methods section). We do however fully account
7 for the impacts of a changing climate by considering the hourly correlation of wind
7 and solar generation and demand over the whole year, and for long time periods to
75 include the influence of interannual variability [46, 55, 56]. Our methodology is thus
7 an interdisciplinary compromise between the usual approaches of the weather and cli-
77 mate community that often limit their energy systems study to the impacts on the
72 demand net of wind and solar generation [50, 57], and that of the energy system mod-
7 eling community that often restrict their analysis to subsampled or yearly averages
s of demand and generation [41-44], hampering their planning skills [58]. This method-
a1 ological framework is situated in the lineage of those models contributing to bridging
& the gap between climate and energy system modeling [56, 59, 60].

8 The uncertainty related to climate and socioeconomic change is accounted for
s using a storylines approach [61], i.e. by deriving a set of plausible future scenarios.
s Different levels of climate change are accounted for through an ensemble of six climate
ss  model pairs from the latest EURO-CORDEX (CMIP5) initiative [62] to ensure suffi-
g7 cient space and time granularity, whereas three socioeconomic scenarios are designed
ss according to grey literature [63-65] to encompass a broad range of possible electri-
s fication futures. The present methodology is applied to the example of France, an
o advanced economy with a highly heating temperature sensitive electricity demand, a
o1 moderate cooling temperature sensitive electricity demand, and an important wind
o and solar resource. We expect our results to be generalizable even if the magnitude
o3 of the impacts are necessarily region and context specific.

o4 Our results show that taking into account the compound effect of socioeconomic
os and climate change is key to correctly evaluate the performance of given solar and
o6 wind mixes under future potential outcomes, and to obtain a good qualitative and
o7 quantitative description of policy relevant metrics such as the adaptation potential.
¢ We thus recommend the continued implementation of plausible future socioeconomic
e scenarios in future climate change studies aiming to provide relevant policy advice.

« Approach

. We start from a reference mix (REF'), which is cost-optimal under the reference
w2 scenario (REF)!. This could correspond to a state where because of economic com-
103 petitivity and some decarbonization efforts, a large share of wind and solar energy is
s already present. In our case, (156 +£2) GW of wind and solar capacity are installed and
s penetration reaches (53 + 1) % of total generation. This is shown in Figures 1 and 2a
s for outputs of model CNRM-CM5 + ALADING3 and Supplementary Information
w7 Figures 2 and 7 for the results of other models. Facing future socioeconomic and cli-
s mate changes, and assuming perfect foresight, a policymaker can make two extreme
1o choices: either to adapt to the foreseen future conditions or not to adapt to them.

1In the text body, mixes are denoted in italics whereas scenarios are written in upright capital letters.
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Fig. 1: Optimal wind and solar mixes and necessary dispatchable capacity aggregated
at the national level and for model pair CNRM-CM5 + ALADING3. Bars are hatched
when maximal installable capacities are reached. PV stands for solar photovoltaic.

Non-adaptation costs

Not adapting to future changes is equivalent to ensuring the adequacy constraint with
mix REF under future climate and socioeconomic conditions defined by a given sce-
nario. In our setting, and since we assume an infinite amount of dispatchable producers
to be available at no costs (see the Methods section), solving for the economically
optimal dispatch while ensuring the hourly adequacy constraint is equivalent to satis-
fying all the residual demand, this is, the demand net of wind and solar generation, via
the dispatchable producers. This entails generation costs, also referred to as variable
costs, on the dispatchable producers side. These generation costs evolve quadratically
with the amount of generated energy. As such, as the amount of energy generated by
dispatchable producers changes with the corresponding scenario, the variable costs
and the associated system total cost change as well. This change in generation pat-
terns with changing scenario is evidenced by comparing Figure 2a and 2c for the total
generation and Figure 2b for how this generation is distributed between peak and
base demand. Note that no changes in the fixed costs of the solar and wind producers
occur since the mix remains fixed. These extra variable costs, that can be positive or
negative, are referred to as the non-adaptation costs associated to scenario S (NACg).
They correspond to the difference in expected yearly system total costs between the
case with mix REF under scenario S and the reference case, i.e. the case with mix
REF under the reference scenario (REF).

The non-adaptation costs are represented by the height of the left bars in Figure 3
for model CNRM-CM5 + ALADING63 and in Figures 8 to 12 of the Supplemen-
tary Information for the other models of the ensemble. Their values are comprised
between 1.6bn€ to 2.8bn€ (scenario SUF4.04) and 40.3bn€ to 48 bn€ (scenario
TOT1.75), ranging from 6.25 % to 10.9 % (scenario SUF4.04), to 157 % to 186 % (sce-
nario TOT1.75) of the system total cost in the reference case. They are thus always
positive for the compound scenarios considered. We also show that they decrease with
increasing levels of climate change and increase with increasing levels of electrification
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I VRE .
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(c) MOD2.35 scenario, REF mix. (d) MOD2.35 scenario, MOD2.35 mix.

Fig. 2: Panels (a), (c), (d): Total generation over the 30 year period for (a) the
reference conditions (REF scenario, REF mix) and two cases showing either (c) non-
adaptation (MOD2.35 scenario, REF mix), and (d) perfect adaptation (MOD2.35
scenario, MODZ2.35 mix) strategies. All results for model CNRM-CM5 + ALADING3.
The number within the pie chart corresponds to the average yearly generation. All
other numbers are percentages. Panel (b): Load duration curve of the residual demand
under in the reference case, in the cases with non adaptation and perfect adaptation
to scenario MOD2.35. rLDC: residual load duration curve.

s (from SUF to MOD to TOT family). These conclusions are robust to the choice of cli-
130 mate model but for model MOHC-HADGEM?2 + COSMO between scenarios SUF1.75
1w and SUF2.35, which we deem not to be a significative deviation from the conclusions.

« Perfect adaptation costs

w2 The perfect adaptation strategy (i.e. adapt with perfect foresight) corresponds to
13 changing the mix from its reference state to a new generation mix that is cost-optimal
s under the foreseen future conditions. In our setting, we assume greenfield optimization
s and thus do not account for stranded assets: wind and solar capacity can be removed



195

146

147

148

149

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

7 [ NACgs (compound)
B PACg (compound)
6 I CoUg (compound)
—~ CZ23 NACY (additive)
Qg 5 Bl PACY (additive)
< B CoU (additive)
=
o
S 4
~
g
3 2.8
E
~
0
< 21
=
1 -

Scenario

(a) SUF family.

Fig. 3: Cont.

at no cost and is installed at a given fixed cost (see Methods section). Changes in
system total cost are thus related to changes in installed wind and solar capacity and
associated fixed costs, and changes in dispatchable generation and associated variable
costs.

We show the computed optimal mixes for each scenario in Figure 1 for model
pair CNRM-CM5 + ALADING3. Other models are shown in Supplementary Infor-
mation, Figure 2. A detail of wind and solar mixes at the regional level are given
in Figures 3 to 6 in Supplementary Information. How changing socioeconomic and
climate conditions impact the optimal wind and solar mix is not the focus of this
study and will be the topic of future works. We can nonetheless highlight that wind
capacity tends to decrease with increasing climate change while wind and solar capac-
ity increase with increasing electrification. This behavior is consistent across models.
Changes in optimal installed capacity due to climate change are in general smaller
than those caused by a change in electrification level for the scenarios considered here.

As with non adaptation, perfect adaptation can lead to a change in generation.
An example of changing generation with perfect adaptation is shown in Figure 2, for
model pair CNRM-CM5 + ALADING3. Comparing panels (a) (reference case) and
(d), we show that the share of wind and solar generation increases together with
curtailment, while albeit decreasing in relative terms, the total dispatchable generation
increases. These changes in total dispatchable generation are the result of a change
in the residual demand distribution as shown in Figure 2, panel (c). These changes

JONVHO ALVINITO ANV JINONODIOID0S 10 193443 ANNOJINOD




196 COMPOUND EFFECT OF SOCIOECONOMIC AND CLIMATE CHANGE

[ NACgs (compound)
35 1 I PACg (compound)
I CoUgs (compound)

~ 30 1 T270 NACY (additive)

PACY (additive)
CoU% (additive)

1

20.1

Scenario
(b) MOD family.

Fig. 3: Cont.

17 in dispatchable generation can lead to changes in variable costs and together with
18 changes in fixed costs associated to investment in wind and solar capacity, to a change
10 in the system total cost.

170 The extra costs, positive or negative, related to perfect adaptation to a changing
wm  future S are referred to as the perfect adaptation costs (PACg). They correspond to
2 the difference in expected yearly system total cost between the case with the optimal
173 mix associated to scenario S under scenario S and the reference case. For example the
s perfect adaptation costs associated to scenario MOD2.35, PACy\opa2.35, correspond
s to the system total cost associated to the optimal dispatch of mix MOD2.35 under
e scenario MOD2.35 minus the system total cost associated to the reference case. These
w7 perfect adaptation costs are represented by the blue bars in Figure 3 for model CNRM-
ws  CM5 + ALADING3 and Figure 8 to 12 in Supplementary Information for the other
o models of the ensemble. They are comprised between 1.6bn€ to 2.7bn€ (scenario
o SUF4.04) and 29.8bn€ to 34.9bn€ (scenario TOT1.75), ranging from 6.25% to
s 10.5% (scenario SUF4.04), to 116 % to 135 % (scenario TOT1.75) of the system total
12 cost in the reference case. We expect the PAC to be smaller than the NAC, since the
183 former correspond to the case with a cost-optimal mix, thus minimizing the system
e total cost. This is indeed what we observe: the PAC are systematically lower than their
15 NAC counterparts. We show that under our hypothesis, similarly to the NAC, the PAC
186 are always positive for the scenarios considered in this study: all scenarios induce extra
187 costs, even with perfect adaptation. We further show, that the perfect adaptation costs
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Fig. 3: Adaptation metrics under the compound or additive impact of socioeconomic
and climate change. Non-adaptation costs (NAC) are shown as full (compound effect)
or dashed (additive effect) empty bars, perfect adaptation costs (PAC) are shown in
blue (compound effect) or green (additive effect) bars, while the cost of unprepadness
(CoU) is shown in orange (compound effect) or in red (additive effect). All results for
model pair CNRM-CM5 + ALADING3.

decrease with increasing climate change and increase with increasing electrification.
These results are robust across models, but for model MOHC-HADGEM?2 + COSMO
between scenarios SUF1.75 and SUF2.35, an exception that we do not consider to be
significative.

Adaptation potential: the cost of unpreparedness

If the non-adaptation costs (NAC) give the extra costs resulting from not adapting
to a foreseen future change and the perfect adaptation costs (PAC) the extra costs
incurred even when perfectly adapting to these future changes, then the difference
between the two yields the adaptation potential. We refer to the adaptation potential
as the cost of unpreparedness (CoU), since it represents the costs related to not being
prepared to future changes. The cost of unpreparedness for scenario S is computed as
the difference between the non-adaptation costs and the perfect adaptation costs as

COUS = NACS — PACS. (1)
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20  Note that because in our case the mixes are optimal with respect to the system total
20 cost, the NAC are always larger than the PAC, and as such the cost of unprepared-
22 ness has the property to be positive: it is always more interesting to adapt to future
203 conditions than to remain passive.

204 The cost of unpreparedness is represented by the orange bars in Figure 3 for model
20s  CNRM-CM5 4+ ALADING3 and Figure 8 to 12 in Supplementary Information for the
206 other models of the ensemble. It is comprised between 0.1 bn€ to 0.2bn€ (scenario
207 SUF4.04) and 10.2bn € to 13.1 bn€ (scenario TOT1.75). It ranges from 0.4 % to 0.8 %
208 (scenario SUF4.04), to 40 % to 51 % (scenario TOT1.75) of the reference case system
20 total cost. We show that the cost of unpreparedness decreases with increasing climate
a0 change, while it increases with increasing electrification. Both these results are robust
an - across models. We further show that the share of the non-adaptation costs that can be
a2 recovered through adaptation decreases with increasing climate change and increases
213 with the level of electrification. This relative adaptation potential corresponds to the
2 cost of unpreparedness (CoU) relative to the non-adaptation costs (NAC). It ranges
x5 from 3% to 5 % (scenario SUF4.04), to 25 % to 27 % (scenario TOT1.75). The observed
26 trends are also robust across models.

»» Compound vs. additive impacts

28 We analyzed so far the compound impact of changing climate and socioeconomic
210 conditions on adaptation metrics related to two extreme strategies a planner can adopt
20 uner perfect foresight. This analysis however required nm + 1 optimal investment
a1 computations and 2nm + 1 solvings of the optimal dispatch problem, with n the
22 number of socioeconomic scenarios and m the number of climate change scenarios.
23 We now ask whether we could have alleviated this computational burden by studying
24 both impacts separately and then adding them back to infer their compound effect.
25 This would significantly reduce the computation costs to respectively n-+m-+1 optimal
26 investment computations and 2(n + m) + 1 optimal dispatch problems.
227 For the analysis of this study we perform both approaches and thus compute the
»s aforementioned adaptation indicators for scenarios of socioeconomic changes alone
2o (SUF, MOD, TOT), scenarios of climate change alone (REF1.75, REF2.35, REF2.80,
a0 REF3.28, REF4.04), and all compound scenarios. The results of these computations
an are shown in Supplementary Information, Figures 13, 14 and 15. We then compute
2 the additive impacts of socioeconomic and climate change by adding the two separate
2 effects, i.e. for a quantity X and a scenario S = SES x CCS computed from a socioe-
24 conomic scenario SES and a climate change scenario CCS, we compute the additive
235 quantity X* as

Xgpsxces = Xsps + Xces- (2)
236 We show that for all adaptation indicators (NAC, PAC, CoU and relative adap-
o tation potential), the additive quantity wrongly captures the compound impact of
28 socioeconomic and climate change. Across all compound scenarios, adding the sep-
20 arate effect of socioeconomic and climate change leads to the overestimation of the
20 non-adaptation costs (NAC), the cost of unpreparedness (CoU), and the relative
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adaptation potential. This effect is more pronounced with increasing levels of cli-
mate change: no matter the socioeconomic scenario considered, the estimation error
is higher both in relative and absolute terms with increasing levels of climate change.
This result is consistent across models. The magnitude of this overestimation however
depends on the level of electrification: if for the NAC the overestimation increases with
increasing electrification, the opposite holds true for the CoU and relative adaptation
potential indicators. All these observations are robust across models. The comparison
of the additive method to the compound estimation for the perfect adaptation poten-
tial (PAC) is more complex: the same observations as for the NAC hold true for the
MOD and TOT family of scenarios, but the additive method tends to underestimate
the NAC in the SUF family of scenarios. This result is less robust across models since
the trend is not observed for one of them (MPI-ESM + COSMO).

If relying on the addition of socioeconomic and climate change effects can miss
the adequate quantification of adaptation indicators, it can also miss the trend of
these indicators with the intensity of the studied phenomena. The evolution of the
non-adaptation and perfect adaptation costs (NAC and PAC) with increasing climate
change is correctly given by the additive approach. This is however not the case for the
(relative) adaptation potential, where the additive method would suggest an increase
of both absolute (CoU) and relative adaptation potential with increasing climate
change, whereas the compound estimation shows that both these quantities tend to
decrease with increasing climate change. The trend of all indicators with increasing
electrification is however well described by the additive method.

Discussion and conclusions

We showed that socioeconomic and climate change induced extra costs in the electric-
ity generation sector. For the compound climate change and electrification scenarios
considered, these extra costs were always positive. The analysis of two extreme
adaptation strategies allowed us to compute the adaptation potential, or cost of unpre-
paredness, of the electricity generation sector facing plausible future changes. We show
that although the qualitative behavior of some of the adaptation indicators we com-
pute is conserved and well reproduced when studying the effects of climate change
and electrification separately, the compound effect of both these factors needs to be
taken into account to obtain quantitatively accurate results.

Our results suggest that in this simplified idealized setting, the system’s behavior
is strongly affected by the level of demand, and to a minor extent by the correlation
of demand with wind and solar generation. Because in our scenarios electrification
translates into more extreme demand changes than climate change, a result shared
by e.g. [24], the non-adaptation and perfect adaptation costs are always positive:
the increase in demand due to electrification is not compensated by a decrease in
demand due to climate change. The coupling between climate change and demand is
suggested to be the cause of the discrepancy betgween the additive and compound
impact methods. This is evidenced by the fact that most indicators are overestimated
with the additive method that misses the increased reduction in heating temperature
sensitive demand due to climate change.

10
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Table 1: EURO-CORDEX GCM/RCM model pairs consid-
ered in the study.

1D Driving GCM Variant RCM
0 ICHEC-EC-EARTH rlilpl COSMO-crCLIM
1 MOHC-HadGEM2-ES rlilpl ~ COSMO-crCLIM
2 MPI-M-MPI-ESM-LR r3ilpl  COSMO-crCLIM
3  CNRM-CERFACS-CNRM-CM5  rlilpl  COSMO-crCLIM
4  CNRM-CERFACS-CNRM-CM5  rlilpl ALADING63
5 MOHC-HadGEM2-ES rlilpl ALADING3

GCM: Global Climate Model. RCM: Regional Climate Model.

284 Some behavior remains however unexplained. In particular, we could not provide
s good suggestions as to why the perfect adaptation costs were underestimated by the
26 additive method only in the SUF family of compound scenarios (although the result
207 18 less robust across models). A natural extension of this study is to complexify the
s modeling of the energy system to include dispatchable fixed costs and diversify the
9 mix of dispatchable producers. The impacts of climate change on the water-energy
200 nexus should also be considered as well.

201 We have however high confidence that the results of this study will transpose to
22 any energy system modeling study aiming at understanding the impacts of climate
23 change on the optimal investment planning question. We thus strongly recommend,
200 in line with [45], that plausible future socioeconomic scenarios are included in any
25 climate change study aiming at producing reliable and accurate policymaking advice.

» Methods

»» Climate data

25 We use climate data from the EURO-CORDEX initiative [62, 66]. Six global/regional
29 model pairs are considered in this study, whose details are given in Tables 1 and 2. We
w0 use both data from the historical (1975-2005) and future (2020-2099) periods, the lat-
s ter being forced with RCP 8.5 [67]. Considered variables are 2m air temperature (tas),
32 surface downward shortwave radiation (rsds), both at 3h time resolution, and zonal
23 (ual00m) and meridional (val00m) wind, both at 1h time resolution. The acronym
s in parenthesis corresponds to the short variable name in EURO-CORDEX. Spatial
305 resolution is approximately 12 x 12kilom over the whole area of study, a map of which
w6 18 shown in Supplementary Information, Figure 1. Data curation steps are needed to
w7 ensure the data is ready-to-use for our modeling purposes. These are recapitulated
w8 in Supplementary Information, Section 1.2. We use the CDF-t algorithm [68-71] to
w0 calibrate the EURO-CORDEX data to ERAD reanalysis data [72]. ERA5 data is first
a0 interpolated at every EURO-CORDEX grid point using bilinear interpolation, and
su then calibrated at each grid point.

11
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Table 2: GCMs and RCMs considered in the study.
Driving GCM/RCM Version  References

ICHEC-EC-EARTH 2 (73, 74]
MOHC-HadGEM2-ES 2 [75]
MPI-M-MPI-ESM-LR - [76, 77]

CNRM-CERFACS-CNRM-CM5 5 [78]
COSMO-crCLIM 4 [79, 80]
ALADING63 6 [81, 82]
GCM: Global Climate Model. RCM: Regional Climate

Model.

Wind and solar generation

We compute time series of wind and solar generation per unit capacity (i.e. capacity
factors) from climate data. Wind and solar capacity factors are computed following
[63, 54, 83]. This entails that wind turbines are supposed to be always facing the
wind and that we neglect wake losses. In turn, solar panels are supposed to be facing
due south and have a fixed tilt. We add a temperature dependency to wind capacity
factors [84] by multiplying the total wind speed by a coefficient

(/po)* = (T_th_))/ 3)

where p is the air density at hub height, pg the reference air density, Ty the reference
temperature (288.15K or 15°C), T is the surface temperature variable, L the lapse
rate (0.0065 Km™1), z is the height of the surface temperature variable (2m), and 2,
the hub height (101 m). We thus obtain wind capacity factors that depend on the wind
regimes as well as the ambient temperature, and solar capacity factors that depend
on surface solar radiation patterns and temperature as well.

These capacity factors are then averaged per region of the area of study (see Sup-
plementary Information, Figure 1) and bias corrected to observations from the french
transmission system operator (freely available at https://opendata.reseaux-energies.
fr/) according to [83].

Demand model

We use the temperature sensitive demand model presented in [54] to generate plau-
sible time series of hourly demand for France. We train the model with electricity
demand data from the french transmission system operator (freely available at
https://opendata.reseaux-energies.fr/) for the years 2014-2019 and surface tempera-
ture time series from ERAS5 reanalysis data [72]. We then validate the model against
data for the year 2013. We find that our model explains 90 % of the demand’s vari-
ability, with a mean error of 5% to 10 % of the observed demand. Model coefficients
are modified as in [54] to generate different socioeconomic scenarios of demand. For
each scenario, 30 year long hourly demand time series are then obtained by applying
the modified demand model to the different periods (historical and future) of climate
data.

12
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s Emnergy system model

a2 We use the bottom-up linear programming stochastic power system model E4CLIM
1 [83] in its most recent version [53, 54] to solve for the optimal investment problem
a4 in wind and solar capacity while ensuring hourly adequacy through the optimization
us  period. The model performs a one-step greenfield optimization based on a system total
ss  cost comprising wind and solar fixed costs and dispatchable producers variable costs.
wr Fixed costs of the dispatchable producers are not accounted for in this version of the
us  model which is equivalent to having an unlimited stock of available dispatchable pro-
a0 ducers at no costs. This places us in an idealized setting in this regard, but should not
w0 affect the conclusions of the study since this behavior is consistent throughout sce-
1 narios. We solve our optimization problem for 30-year long periods of hourly demand
s and wind and solar capacity factors.

s Scenarios

s This study aims at disentangling the compound vs. additive affect of socioeconomic
s and climate change on the adaptation potential of the electricity generation sector.
s Lhis implies the design of future plausible scenarios both of socioeconomic evolution
7 and climate change.

358 In this study, socioeconomic scenarios only relate to the demand side of the elec-
o tricity generation sector. As such, cost data remains fixed throughout the different
;0 scenarios: wind and solar fixed costs are kept constant and equal to those in [54].
s This translates to capex lower by 16 % and 64 % compared to 2015 values [85] for
2 wind and solar respectively. The parameter that determines the variable costs of the
w3 dispatchable production in our model (see [54]) is kept constant as well, but set to a
s« higher value than what is observed at present (2018) to guarantee a high penetration
s of wind and solar energy in cost-optimal mixes. In our study, socioeconomic scenar-
36 10s are determined by the level of heating demand electrification, AC adoption and
s7  baseline demand increase. They are summarized in Table 3. Current levels of heating
s demand electrification, AC adoption and baseline demand make up for the reference
10 (REF) scenario. They are determined from [65] and [64]. The sufficiency (SUF) fam-
w0 ily of scenarios comes from the energy and climate plan of the french government [86]
sn  that projects the increase in electricity demand in 2050. We suppose in this case that
sz the share of electric heating and AC appliances remains constant to that of REF.
s In the moderate electrification (MOD) family of scenarios, the rate of electric heat-
su  ing and AC equipment, as well as the amount of baseline demand are increased to
s reach projections for 2050 from the transmission system operator [65]. Finally, the
s total electrification (TOT) family of scenarios explores extreme electrification levels,
s7 - with baseline demand increase based on electricity demand growth projections from
s [63] up until 2085. These socioeconomic scenarios are then combined to six different
a9 scenarios of climate change to yield the 24 scenarios considered in this study.

380 Climate change scenarios are derived from the sampling of the RCP 8.5 experi-
s ment at different 30 year long periods in the 21st century. We choose to sample the
2 80 year long simulation on periods centered around 2035, 2050, 2060, 2070 and 2085,
;3 corresponding to a global warming above pre-industrial levels of respectively 1.75°C,

13



203

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

Table 3: Socioeconomic scenarios considered in the study.

Scenario family  Electric heating (%) AC adoption (%) Increase in baseline demand (%)

REF 35 23 -
SUF 35 23 15
MOD 88 55 30
TOT 100* 100 45

AC: Air Conditioning.
* This scenario involves some increased usage as well, so that the equivalent level of heating demand
electrification would be of 113.75 % instead of 100 %.

2.35°C, 2.80°C, 3.25°C and 4.04°C [14]. Any socioeconomic scenario combined to a
level of climate change is referenced by the socioeconomic scenario family acronym
followed by the level of global warming: e.g. the MOD scenario combined to 2.35°C
of global warming is thus referred to as the MOD2.35 scenario. The reference climate
is set to be the historical (1975-2005) period. Any socioeconomic scenario combined
to the historical period keeps its acronym, e.g. the MOD socioeconomic scenario com-
bined to the reference climate is simply denoted as the MOD scenario. This yields
4 x 6 = 24 scenarios that combine either a socioeconomic change from the REF sce-
narioi (e.g. MOD), a climate change from the REF scenario (e.g. REF2.35), or both
(e.g. MOD2.35).
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We tackled in this work the question of the vulnerability and the potential of adaptation of elec-
tricity systems facing socioeconomic and climate change. We found that this question was partially
tackled in the literature, and that several gaps remained. In particular, we identified that (i) the im-
pacts of scenarios of heating demand electrification and AC adoption on the optimal investment
decisions in VRE capacity were not satisfactorily addressed, (ii) some aspects of the impacts of cli-
mate change on the vulnerability and the adaptation potential of the electricity system had not been
tackled, and (iii) if some studies assessed the impacts of socioeconomic and climate change jointly,
many did not, despite the fact that the effects of studying both effects separately had not been tested.
We contributed to filling these gaps in the literature in this work. We summarize hereafter the main
findings.

6.1 Main contributions

We divided our work in three main chapters, tackling each one of the research questions identified in
Chapter 1. The methodological aspects of this work are presented in Chapter 2.

6.1.1 Anincrease of the heating temperature sensitive demand favors wind
penetration, the modification of the cooling demand along the exten-
sive margin only has no effect in France.

In Chapter 3 we studied the impacts of scenarios of heating demand electrification and AC adoption
on the optimal investment decisions in VRE capacity.

We first assessed the impact of scenarios corresponding to different levels of electric heating
and AC adoption on the demand. We showed that modifications of the cooling demand along the
extensive margin (adoption) only had a negligible effect on the total demand. Without effects on the
intensive margin (usage), AC adoption is shown to induce very minor modifications to the demand
under the present-day climate in France. These minor have no consequences on the optimal invest-
ment decisions (not shown). If more important effects are not excluded under future climates, we
recommend incorporating scenarios of AC usage in future studies. Modifications of the electric heat-
ing demand along the extensive margin (adoption) without modifications along the intensive margin
(usage) are shown to have much more significant effects on the electricity demand than for the cool-
ing demand. Furthermore, these demand modifications are shown to be heterogeneous across the
different levels of demand: peak demand is more affected than base demand. We then explored in
more detail the effects of these demand modifications on the optimal investment decisions in VRE
capacity.

To do so, we set up a protocol where changes in demand due to electric heating adoption
are compared to equivalent changes in average demand, to remove any effects related to a bulk
demand increase. This is equivalent to comparing an increase in temperature sensitive demand to
an increase in baseline demand (i.e. that demand which is non temperature sensitive). We show
that increasing the temperature sensitive demand favors the penetration of VRE: if increasing the
average demand tends to increase the optimal installed VRE capacity, more VRE capacity is installed
in the temperature sensitive increase case than in the baseline case. We further show that this
increase in temperature sensitive demand increases system costs compared to a baseline increase.
Regarding optimal investment decisions, we show that an increase in temperature sensitive demand
tends to favor wind energy penetration compared to solar. This effect is however of second order
compared to the impacts of technology costs and regional maximum installable capacity: cheaper
technologies (solar in our case) are installed first and in regions where their LCOE is highest. This
study was however conducted using quite restrictive maximal installation capacities for solar, thus
causing investment in wind capacity to occur because all the solar capacity was already installed.
We expect that if these constraints were relaxed, then the observed effects of preferred investment
in wind capacity with higher temperature sensitive demand increase would become more significant.
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As for all results in this work regarding optimal investment decisions, the results obtained in
this chapter are so under an idealized framework regarding dispatchable (i.e. non-VRE) producers.
We did not take into account the investment costs of the dispatchable production. We expect that
accounting for these extra costs would favor investment in VRE capacity and thus exacerbate the
effects observed so far. Further work is however needed to confirm this hypothesis.

6.1.2 Climate change has no adverse impacts if impacts on the dispatch-
able producers are not accounted for, changes in demand are the
driving factor of changes in France.

In Chapter 4 we focused on the impact of climate change on a french electricity system with high
penetration of VREs. We addressed more precisely what are the impacts of the combined change in
VRE resource and electricity demand due to climate change.

We find that increasing levels of climate change tend to reduce the optimal levels of installed VRE
capacity as well as its optimal penetration. Wind is the adjustment variable as its installed capacity
decreases with increasing climate change intensity whereas solar capacity remains constant. We
show that the direct relation between the changes in VRE resource and demand on the one side,
and the resulting optimal VRE mixes on the other side are not straightforward. We however suggest
that the evolution of the demand to capacity factors correlation with climate change might be a good
predictor of the expected changes, given that average demand effects are accounted for. We further
show that the evolution of this correlation is little sensitive to the changes in VRE resource, changes in
demand patterns being the main driver of this evolution. We thus suggest that the effects of climate
change on the optimal investment decisions are thus mainly related to changes in demand rather
than changes in the VRE resource in the case of France. This conclusion might well be region-
specific, as France is a country with a high temperature sensitivity for the electricity demand and
climate change impacts on the VRE resource are moderate (at most +20 %). Further works on other
world regions are necessary to see if this conclusion can be generalized. Further studies should also
couple these assessments to socioeconomic scenarios of demand, as we showed that e.g. heating
demand electrification or AC adoption could influence the temperature sensitivity of the electricity
demand of a country.

We further show in this chapter that the effects of climate change alone tend to decrease system
total costs, whether it be with or without adaptation. We show that the adaptation potential however
remains positive since system total costs are still lower with an optimal mix that with a mix optimal
under reference climate conditions. Still, we show that accounting for the costs of stranded assets
can make this adaptation step less attractive economically than non-adaptation. This positive impact
of climate change regarding total costs is related to the overall decrease in total demand. These
results need not be taken outside of the ideal case under which they are produced: on the one side
we did not consider the investment costs in dispatchable capacity, and on the other side, impacts
of climate change on other system components than the VRE resource and the demand were not
considered. In particular, the impacts of climate change on the dispatchable producers were not
accounted for. The impact of considering investment costs of the dispatchable producers should
favor the investment in VRE capacity and increase system total costs. It shoud not however impact
the observed trends with climate change. Opposedly, considering the impacts of climate change
on the dispatchable producers might strongly influence the results obtained in this study. These
impacts are mainly related to water availability for the cooling of thermoelectric power plants and for
the operation of hydropower generation. Reduced water availability due to deteriorated hydrologic
conditions and increased water temperatures are two phenomena that might reduce the availability
of hydrothermal power plants and thus increase the need for more investment in VRE or the need
for more balancing capacity, thus increasing system total costs with increasing climate change. This
highlights the need to approach climate change studies in an integrated way to provide relevant
policy-making advice and relevant assessments of climate change impacts. We thus recommend
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that further studies incorporate as much climate change effects and on as many components as
possible.

We finally note that in this chapter, we proceeded in an integrated way to identify bulk effects
of climate change impacts. A more detailed protocol could have been set up to differentiate climate
change impacts from average demand effects, or to specifically address the effects of a change in
VRE resource or a change in demand induced by climate change. This is however left for further
works.

6.1.3 Socioeconomic change is potentially the driving force but socioe-
conomic and climate change impacts should be assessed jointly to
issue relevant policy-making advice

In Chapter 5 we studied the compound impact of socioeconomic and climate change. Here electri-
fication of other end-uses than just space heating or AC adoption was considered in the form of an
increase of the baseline demand. These increases were derived from projections in the grey litera-
ture on the electrification potential of the energy sector. Socioeconomic scenarios explored in this
chapter explore at the same time a wide range of electrification futures and a wide range of climate
change futures.

We found that the coupling of our socioeconmic scenarios of electrification with climate change
led to an overall increase of the demand compared to the present state. Our scenarios impact
the electricity demand in two ways. One the one side, heating and cooling temperature sensitive
demand are increased due to electric heating and AC adoption, and baseline demand increases
due to electrification. On the other side, climate change tends to either decrease on average the
heating temperature sensitive demand because of milder average air temperatures in the winter, or
increase on average the cooling temperature sensitive demand because of warmer temperatures in
the summer. This second effect is even more pronounced in either directions that the increase in
temperature sensitive demand is pronounced. However we showed that even for the most extreme
scenarios of climate change found in the literature, the decrease in demand related to climate change
was smaller than the associated increase due to either a baseline demand or temperature sensitive
demand increase. We further showed that demand never increased with climate change in our
scenarios, evidencing that the decrease in heating temperature sensitive demand was still majoritary
compared to the increase in cooling temperature sensitive demand. Modifying the cooling demand
along the extensive margin only, even when coupled with climate change, was not enough to make
cooling sensitive demand majoritary in our scenarios. We thus worked with conservative scenarios
in this regard and highlight here again the fact that further studies should incorporate modifications
of the cooling demand along both margins to capture potentially important demand increases and
further adverse impacts in the case of France.

We also showed that for all the scenarios considered in this study, climate change had a lesser
impact on the demand than socioeconomic change. As we stated in previous section, we showed
in Chapter 4 that climate change impacts on the VRE resource were of second order compared to
changes in demand. When adding socioeconomic scenarios of electrification, these impacts on the
VRE resource thus become negligible. The driving force of change is socioeconomic change in our
case, even when comparing the smallest socioeconomic change considered with the greatest climate
change scenario available in the literature. This shows the importance of considering socioeconomic
scenarios in studies about the future of energy systems: accounting for climate change alone is
not enough. Moreover, if only socioeconomic scenarios that led to an increase in the demand were
considered in this study, scenarios leading to a demand decrease could be envisioned as well. Such
scenarios could for example correspond to the implementation of individual or collective efficiency
or sufficiency measures. Finally, it is important to notice that if socioeconomic change is the driving
force in our setup, this might not be the case once climate change impacts are accounted for in a
more integrated way (we think of climate change impacts on the dispatchable producers in particular).
Further studies would be needed to conclude on this point.
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We then computed the adaptation potential of the electricity system to future changes assuming
perfect foresight. We set up a protocol where we assessed the impacts of socioeconomic change
only and then of climate change only. These two estimates were then added and compared to the
compound assessment of both impacts. We thereby showed that it is necessary to take into account
the compound impact of socioeconomic and climate change when assessing a policy-making rele-
vant metric such as the adaptation potential. Not doing so can lead to erroneous quantitative and
qualitative results on the impacts of climate or socioeconomic change on these metrics. We believe
that this result holds no matter the modeling setup, as long as coupled processes exist between the
two driving forces taken into account: here the coupling between the temperature sensitivity of the
electricity demand and the impacts of climate change on this demand are in cause. Further research
could concentrate on identifying whether this hypthesis holds and if for example cost scenarios can
be studied independently of climate change.

6.1.4 General conclusions and policy advice

Despite working in an idealized setting, we showed in this work that both socioeconomic and climate
change have a significant impact on the vulnerability and adaptation potential of high VRE electricity
systems. We showed that the impacts of both processes on the demand were of first order compared
to the impacts on the VRE resource. Climate change was also found to be of secondary importance
compared to socioeconomic change, although this might be discussed in light of a more thorough
accounting of climate change impacts. If we found that electricity systems were more vulnerable to
socioeconomic scenarios of electrification than to climate change, it should however be kept in mind
that we considered very conservative scenarios of cooling demand increase as we did not consider
modifications of AC usage. Regarding the adaptation potential, we show that how both processes
impact the demand guides the adaptation strategy: changes in the heating temperature sensitive
demand are related to the installation or removal of wind capacity, whereas changes in baseline de-
mand are related to changes in the installed solar capacity. Changes of cooling temperature sensitive
demand have been little explored in this work. We finally showed the importance of the climate and
energy integrated approach, and the importance to account for all elements of the electricity system
and all processes impacting them in a coupled way to produce relevant results from the policy-making
perspective.

This work is a modest contribution to the understanding of how future changes might impact high
VRE penetration electricity systems and what is their adaptation potential in this regard. We were
able to issue generalizable conclusions that go beyond the strict hypothesis and the framework of the
different research studies conducted. These general conclusions would however need further verifi-
cation and exploration to be consolidated, offering many perspectives to the work performed in this
thesis, which we discuss in next section. The question of the policy advice that could be issued from
this work is more delicate. We think that relevant policy advice should come from a meta-analysis
of distributed scientific knowledge in the model of the Intergovernmental Panel on Climate Change
(IPCC) reports, and that a single piece of research work is not capable of encapsulating all dimen-
sions of such a complex problem as policy-making in the energy sector facing such stringent issues
as climate change (among others). Because energy system policy-making is more region-specific,
we do not see the need for the creation of an intergovernmental panel such as the IPCC, although
international coooperation will certainly be beneficial to foster energy sector transformation. We do
however think that a regional, e.g. european or french, panels of experts proceeding to critically re-
view the state of scientific knowledge could be beneficial to build more consensus or at least inform
the debate on the energy question.

6.2 Perspectives

This piece of work paves the way for many exciting continuations and further research.
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We first discuss some minor modifications and questions that could have been addressed in
this work, without the need for further methodological developments or the setup of additional heavy
research protocols. Although this question was reviewed in the introduction, Chapter 1, the feasibility
of very high, i.e. from 90 % to 100 % VRE mixes could have been addressed with the tools and data
at hand. It would have been interesting, in a toy model perspective, to analyze what ratio of average
marginal cost of generation to an average VRE LCoE would have given a 100 % VRE mix. Maybe
this limit cannot be reached even for an infinite ratio, highlighting the fact that 100 % VRE mixes
are not feasible without a minimum amount of balancing capacity available. This would have been an
original way to study the economical cost of very high VRE penetration. Additionally, we think it would
be interesting to reconsider the results presented in Chapter 3 in the light of relaxed constraints on
the maximum solar installable capacities. As previously stated, we would expect the same results to
be found but in a more pronouced way. Performing such an extension to this work would however give
us confidence in this conjecture. Finally, minor protocol changes in Chapter 4 would have allowed to
better disentangle (i) the climate change effects from average demand effects, (ii) a change in VRE
resource alone, and (iii) a change in demand alone compared to the combination of both effects in
the context of climate change impacts. All these minor modifications are left for further works, but
could be undertaken rather straightforwardly from the work done so far.

On top of the aforementioned minor modifications, this work has rather natural extensions. The
first one would be to explore scenarios of AC use coupled to our scenarios of AC adoption. This
could be rather straightforwardly implemented in our demand model and would only require adequate
scenarization hypothesis. Such hypothesis could for example consist in assuming that all regions
in France adopt the same AC usage as the southern regions currently, or setting the usage level
to some average plausible value in all regions. Another way of doing so could be to use a more
sophisticated econometric model based on e.g. income, discomfort levels, etc. A second natural
extension of this work would be to use an energy system modeling that can handle other components
of the electricity system, such as, in the order of importance, dispatchable producers, storage or
transmission constraints. Such an extension of our work would however necessitate methodological
developments or the use of other modeling tools, thus requiring some methodological development
time. We can finally note that our questioning integrates well into an energy system perspective, i.e.
considering the whole energy system rather than the electricity system separately. This would avoid
having to design socioeconomic scenarios of demand electrification as the electricity demand would
be determined endogenously. This would however greatly increase the complexity of the model used,
hampering in this way the interpretability of modeling results, which we showed to be already quite
complex in a minimal setting such as our own.

Based on the current insight we could gain from conducting this work, we think several research
questions would be worth exploring in the future. The first one maybe consists in evaluating the
impact of extreme events on the design of energy systems. Although we did consider some year to
year variability in this study, we did not account for extreme events with high return times. The extent
to which such extreme events would impact the optimal investment decisions after the introduction of
a reliability criteria would be of great interest. The second question that could be considered is that of
the impact of demand-side measures on the optimal investment decisions. Demand-side measures
such as flexibility of sufficiency have the potential to decrease the tension put on the grid either
temporarily or in a durable way, and as such would impact the necessary balancing capacity needed
to accomodate a high penetration of VRE. A third question could relate to expanding the criteria
on which the optimality of the mix is considered. Throughout our study an electricity generation
mix was considered to be optimal if it was able to supply electricity when needed at all times at
the lowest system total cost. This misses the fact that electricity generation systems, and more
broadly energy systems can be thought of as having to ensure other functions and under certain
other conditions. Among the main factors that we did not consider in this study we can mention
all environmental-related impacts other than the decarbonization target, such as land-use and the
sustainable use of biomass. Another aspect that we think should be tackled in further studies is
the sociological aspect of energy system development. These questions go probably beyond the
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discipline of climate and energy system modeling and we do not think that a definite answer should
come from modeling exercises alone. Valuable research at the interface of various disciplines could
however be undertaken to rigorously explore these questions with an integrated point of view.
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A.1 Model results for the best statistical demand model
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Figure A.1. Intercept of linear model. The box represents the distribution over the study area (metropolitan
France). The orange line represents the median while the box represents the interquartile range between first
quartile and third quartile. Whiskers extend to the farthest point within 1.5 times the interquartile range.
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Figure A.2. Base coefficients of the linear model. Model coefficients are represented throughout the day (to

each hour of the day corresponds a coefficient). The different lines correspond to the different french

adminsitrative regions.
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Figure A.3. Heating temperature sensitivity coefficients of the linear model. Model coefficients are represented
throughout the day (to each hour of the day corresponds a coefficient). The different lines correspond to the
different french adminsitrative regions.
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Socioeconomic scenarios of electric
heating and cooling and their
impacts on optimal mixes and
power system costs —
Supplementary information

B.1 Socioeconomic scenarios of electric heating and cooling

B.1.1 Electric heating scenarios

Model coefficients



232 HEATING AND COOLING DEMAND SCENARIOS — Sl

Cal. daytype = 0 Cal. daytype = 1 Cal. daytype = 2
— =100
! 17— e=12%
Il O — =150
e e — _ == _ = = -
% _ _— BE————— ~ L —— e =175
0 = — ¢ =200
-g g H
g &
= -1 3
= fn
Il 1 7
2 g
I
g A\ VAN =
b \ \| £
a o
5 17
= 3
n 1T
2 e
J
7 0 =
© 3
g o
o} -1
= 3
0 10 20 0 10 20 0 10 20
Hour of the day Hour of the day Hour of the day
(@) Auvergne-Rhone-Alpes.
Cal. daytype = 0 Cal. daytype = 1 Cal. daytype = 2
— —— ey = L00
| 15— ey=12
Il L — =150
§ T, T =17
B = — =200
o B
g &
£ -1 3
= e
i 1 7
2 g
= Iy
= 0 =
o
8 =
g <
5 -1
= 3
n 1T
g g
= 'q
z 0 =
o
o‘- g
5 <
= 3
0 10 20 0 10 20 0 10 20
Hour of the day Hour of the day Hour of the day

(b) Bourgogne-Franche-Comté.

Cont.



B.1. Socioeconomic scenarios of electric heating and cooling

233

-1

Temp. daytype

Temp. daytype = 0

Temp. daytype =1

=-1

Temp. daytype

Temp. daytype = 0

Temp. daytype = 1

Cal. daytype = 0

Cal. daytype = 1

Cal. daytype = 2

— BV —_— —_—
/—’\_/\/\ A
10 20 0 10 20 10 20
Hour of the day Hour of the day Hour of the day
(c) Bretagne.
Cal. daytype = 0 Cal. daytype = 1 Cal. daytype = 2
10 20 0 10 20 10 20

Hour of the day

Hour of the day

(d) Centre-Val de Loire.

Cont.

Hour of the day

w (GWhh™'°C™1) w (GWhh'°C™1)

w (GWhh-'°C1)

w (GWhh™t°C™1)

w (GWhh-'°C1)

eg =100
ey =125
ey = 1.50
ey = 1.75
e = 2.00

L
m
;
=
®
>
2
)
0
O
®)
=
=
®
)
m
<
>
Z
)
»n
@)
m
-



234 HEATING AND COOLING DEMAND SCENARIOS — Sl

Cal. daytype = 0 Cal. daytype = 1 Cal. daytype = 2
— =100
| 1 7 — =12
\n\) O — =150
s —— == — T — =17
= 0 = — ey=200
9 =
E‘. ]
-1
@ 3
= fn
Il 1 7
2 g
I
= 0 =
© =
o =
: s
= 3
n 1T
J
£ 0 =
B =
g o
o} -1
= 3
0 10 20 0 10 20 0 10 20
Hour of the day Hour of the day Hour of the day
(e) Grand-Est.
Cal. daytype = 0 Cal. daytype = 1 Cal. daytype = 2
- _ — =10
| 1 7 — =12
Il L — =150
ﬂ) -
= E = e L — =175
g 0 = — =200
o B
s s
@ 3
= e
i 1 7
2 g
= Iy
= 0 =
o
. =
g <
5 -1
= 3
n 1T
2 g
= 'q
& 0 =
o
o; g
5 1
= 3

0 10 20 0 10 20 0 10 20
Hour of the day Hour of the day Hour of the day

(f) Hauts-de-France.

Cont.



B.1. Socioeconomic scenarios of electric heating and cooling

235

-1

Temp. daytype

Temp. daytype = 0

Temp. daytype =1

=-1

Temp. daytype

Temp. daytype = 0

Temp. daytype = 1

Cal. daytype = 0

Cal. daytype = 1

Cal. daytype = 2

=\~

e
_—————————

0 10 20

Hour of the day

Cal. daytype = 0

0 10 20

Hour of the day

(g) lle-de-France.
Cal. daytype = 1

0 10 20

Hour of the day

Cal. daytype = 2

0 10 20

Hour of the day

0 10 20

Hour of the day

(h) Normandie.

Cont.

0 10 20

Hour of the day

w (GWhh'°C™1)

w (GWhh™'°C™1)

w (GWhh-'°C1)

w (GWhh™t°C™1)

w (GWhh-'°C1)

eg =100
ey =125
ey = 1.50
ey = 1.75
e = 2.00

L
m
;
=
®
>
2
)
0
O
®)
=
=
®
)
m
<
>
Z
)
»n
@)
m
-



236

HEATING AND COOLING DEMAND SCENARIOS — Sl

-1

Temp. daytype

Temp. daytype =1 Temp. daytype = 0

-1

Temp. daytype

Temp. daytype =0

Temp. daytype = 1

Cal. daytype = 0

Cal. daytype = 1

Cal. daytype = 2

Hour of the day

Hour of the day

(j) Occitanie.

Cont.

_=— E———— —— E——— —— —
s —— S  — s —
0 10 20 0 10 20 0 10 20
Hour of the day Hour of the day Hour of the day
(i) Nouvelle-Aquitaine.
Cal. daytype = 0 Cal. daytype = 1 Cal. daytype = 2
E— — ——— > _— e ———
/\/\/\ A

X \ \

0 10 20 0 10 20 0 10 20

Hour of the day

o
T
=
S
3

w (GWhh™'°C™1)

w (GWhh-'°C™1)

w (GWhh™t°C™1)

w (GWhh™'°C™1)

e = 1.00
ey =125
ey = 1.50
ey =175
ey = 2.00

eg =100
ey =125
ey = 1.50
ey = 1.75
e = 2.00




B.1. Socioeconomic scenarios of electric heating and cooling 237

Cal. daytype = 0 Cal. daytype = 1 Cal. daytype = 2
! 1T
I o
| —— _—— — —_— = T
s 0 =
3 E
E’. o
-1
2 3
o =
I 1 7
[ 9
g T
- \ X 0 =
o
4 g
5 1%
= 3
i 1T
Il
g it
- - - L
= 0 =
o »
; =
e 3
0 10 20 0 10 20 0 10 20
Hour of the day Hour of the day Hour of the day
(k) PACA.
Cal. daytype = 0 Cal. daytype = 1 Cal. daytype = 2
! 1T
I o
Y ) ) —,
g =
o o
5 <
i 3
= fn
I 1 7
[} /_\/\/\ 1
o -
g /N AN 0 o=
E =
=
§ R
= 3
i 1T
I
J
= 0 =
© =
. =
£ s
= 3
0 10 20 0 10 20 0 10 20
Hour of the day Hour of the day Hour of the day

() Pays de la Loire.

Figure B.1. Coefficients of the model for the heating demand scenarios considered. Temp. daytype
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Impacts on the demand
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Figure B.2. Base demand relative difference for the heating demand scenarios considered, per region.
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B.1.2 Electric cooling scenarios

Model coefficients
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corresponds to whether the day is a working day (0), saturday (1) or sunday/holiday (2). Red dots on the upper

right of the figure indicate an undesired model behavior (that the average over the hours of the day is negative).
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Impacts on the demand
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Figure B.6. Base demand relative difference for the cooling demand scenarios considered, per region.
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The cost of unpreparedness: adaptation potential
facing compound socioeconomic and climate
change in wind and solar mix planning exercises —
Supplementary Information.

Joan Delort Ylla'*, Alexis Tantet! and Philippe Drobinski!

Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace,
Ecole Polytechnique, TP Paris, Sorbonne Université, ENS, PSL
University, CNRS, Palaiseau, 91120, France.

*Corresponding author(s). E-mail(s): joan.delort-ylla@lmd.ipsl.fr;
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1 Model domain and setup
1.1 Area of study

The area of study corresponds to metropolitan France, subdivided into its adminis-
trative regions. A map of the area of study is presented Figure 1.

1.2 Climate data curation

Climate data curation steps are needed to ensure a consistent dataset. They are
recapitulated in Table 1.
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@® Auvergne-Rhéne-Alpes
Bourgogne-Franche-Comté
Bretagne
Centre-Val de Loire

Grand Est
Hauts-de-France

® lle-de-France

@ Normandie

@® Nouvelle-Aquitaine
@ Occitanie

® PACA

Pays-de-la-Loire

Fig. 1: Area of study: detail of french administrative regions.

Table 1: Data curation steps needed in the study.

GCM/RCM pair ID Issue Workaround
0 - -
1 calendar is 360 days convert to 365/366 days calendar
downloaded valOOm file for year 2093 cannot be read replace it with year 2089
downloaded valOOm file for year 2094 cannot be read replace it with year 2090
downloaded valOOm file for year 2095 cannot be read replace it with year 2091
downloaded val00m file for year 2096 cannot be read replace it with year 2092
downloaded val00m file for year 2097 cannot be read replace it with year 2089
downloaded val00m file for year 2098 cannot be read replace it with year 2090
year 2099 missing for ual00m, val00m, tas, rsds replace it with year 2095 or 2091
2 downloaded valOOm file for year 2099 cannot be read replace it with year 2098
val00m field show absurdly high magnitude values set a cutoff value
3 downloaded ualOOm file for year 2070 cannot be read replace it with year 2066
downloaded ualOOm file for year 2092 cannot be read replace it with year 2088
4 year 2047 missing for ual00m, val00m, tas, rsds replace it with year 2046
5 downloaded ualOOm file for year 2097 cannot be read replace it with year 2093

downloaded ualOOm file for year 2098 cannot be read
downloaded ualOOm file for year 2099 cannot be read

replace it with year 2094
replace it with year 2095

GCM: Global Climate Model. RCM: Regional Climate Model.
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2 Computed optimal wind and solar mixes

2.1 National level
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Fig. 2: Optimal wind and solar mixes and necessary dispatchable capacity aggregated
at the national level for all models of the ensemble (but CNRM-CM5 + ALADING3).
Bars are hatched when maximal installable capacities are reached. PV stands for solar
photovoltaic.
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2.2 Regional level
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Fig. 3: Optimal wind installed capacity for the REF scenario. Regions where no
capacity is installed are hatched while regions where maximum installable capacity is

attained are dotted.
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Fig. 5: Cont.



261

o ot [en) (31
Capacity (GW)

ot

Pays-de-la-Loire 40

PACA 35

Occitanie 30
Nouvelle-Aquitaine
Normandie
lle-de-France
Hauts-de-France
Grand Est
Centre-Val de Loire
Bretagne
Bourgogne-Franche-Comté

Auvergne-Rhdne-Alpes 0

@@Q @@? OO

\, o) () X, V00, QA WV, ") V
X TR REREK
é°<<f°<é° ST S IR s
Scenario

(c) CNRM-CM5 + COSMO.

40
Pays-de-la-Loire
PACA 35
Occitani
cc.lta.nle 30
Nouvelle-Aquitaine
Normandie 25

lle-de-France
Hauts-de-France

8
Capacity (GW)

Grand Est 15

Centre-Val de Loire 10
Bretagne

Bourgogne-Franche-Comté 5

Auvergne-Rhone-Alpes 0

< A0 DR 4950 6 A PO A2 69 D P AD 6D QD
A A T S A DA SO S SA2D PR
RIS EANIR @Qwhﬁ®oék&oo'ﬂ<x304v&
NP (,)00)0 @ AR AAXRKXKO

Scenario

(d) CNRM-CM5 + ALADING3.

Fig. 5: Cont.

10

IS — 123443 ANNOdWOD @)



262 COMPOUND EFFECT — SI

Pays-de-la-Loire
PACA

Occitanie
Nouvelle-Aquitaine
Normandie
lle-de-France
Hauts-de-France
Grand Est

Centre-Val de Loire
Bretagne
Bourgogne-Franche-Comté
Auvergne-Rhone-Alpes

[\
(S8

[\
o
Capacity (GW)

15
10
5
L AD 0D & A9 ) /\ 060 o .
/\ % %Qq‘,%“ o RO NI N
KUK <<\<< @Q\o%% S8 NS
QS’QS’QS’QS’QS’ %%}569 ° 5 QRARE RS
Scenario
(e) MOHC-HADGEM2 + COSMO.
Pays-de-la-Loire 40
PACA 35
Occ_lta.nle 30
Nouvelle-Aquitaine .
Normandie 25 %
lle-de-France —
20 2
Hauts-de-France £
Grand Est 15 ¢
Centre-Val de Loire ~
10
Bretagne
Bourgogne-Franche-Comté 5
Auvergne-Rhone-Alpes 0

SRS BRI R R B R IR RS RIS R R B>

PR AR RS @o R KRR
EEELEY PP @@@@@ QOO
Scenario

(f) MOHC-HADGEM2 + ALADING3.

Fig. 5: Optimal wind installed capacity per region and scenario. White regions indi-
cate that no capacity is installed, whereas hatched areas indicate that a region’s
maximum installable capacity has been reached.
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Fig. 6: Optimal solar installed capacity per region and scenario. White regions indi-
cate that no capacity is installed, whereas hatched areas indicate that a region’s
maximum installable capacity has been reached.
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Fig. 7: Total generation over the 30 year period for (a, d, g, j, m) the reference
conditions (REF scenario, REF mix) and two cases showing either (b, e, h, k, n)
non-adaptation (MOD2.35 scenario, REF mix), and (c, {, i, 1, o) perfect adaptation
(MOD2.35 scenario, MODZ2.35 mix) strategies. Results for all models of the ensemble
but CNRM-CM5 + ALADING63. The number within the pie chart corresponds to the
average yearly generation. All other numbers are percentages.
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4 Additive vs. compound effect
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Fig. 8: Adaptation metrics under the compound or additive impact of socioeconomic
and climate change. Non-adaptation costs (NAC) are shown as full (compound effect)
or dashed (additive effect) empty bars, perfect adaptation costs (PAC) are shown in
blue (compound effect) or green (additive effect) bars, while the cost of unprepadness
(CoU) is shown in orange (compound effect) or in red (additive effect). All results for
model pair ICHEC-EC-EARTH + COSMO.
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Fig. 9: Adaptation metrics under the compound or additive impact of socioeconomic
and climate change. Non-adaptation costs (NAC) are shown as full (compound effect)
or dashed (additive effect) empty bars, perfect adaptation costs (PAC) are shown in
blue (compound effect) or green (additive effect) bars, while the cost of unprepadness
(CoU) is shown in orange (compound effect) or in red (additive effect). All results for
model pair MPI-ESM + COSMO.
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Fig. 10: Adaptation metrics under the compound or additive impact of socioeconomic
and climate change. Non-adaptation costs (NAC) are shown as full (compound effect)
or dashed (additive effect) empty bars, perfect adaptation costs (PAC) are shown in
blue (compound effect) or green (additive effect) bars, while the cost of unprepadness
(CoU) is shown in orange (compound effect) or in red (additive effect). All results for
model pair CNRM-CM5 + COSMO.
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Fig. 11: Adaptation metrics under the compound or additive impact of socioeconomic
and climate change. Non-adaptation costs (NAC) are shown as full (compound effect)
or dashed (additive effect) empty bars, perfect adaptation costs (PAC) are shown in
blue (compound effect) or green (additive effect) bars, while the cost of unprepadness
(CoU) is shown in orange (compound effect) or in red (additive effect). All results for
model pair MOHC-HADGEM?2 + COSMO.
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Fig. 12: Adaptation metrics under the compound or additive impact of socioeconomic
and climate change. Non-adaptation costs (NAC) are shown as full (compound effect)
or dashed (additive effect) empty bars, perfect adaptation costs (PAC) are shown in
blue (compound effect) or green (additive effect) bars, while the cost of unprepadness
(CoU) is shown in orange (compound effect) or in red (additive effect). All results for
model pair MOHC-HADGEM2 + ALADING3.
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5 System total costs for all mixes and scenarios

5.1 Climate change only scenarios
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only), for all models of the ensemble.
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Fig. 14: System total cost (STC) per scenario and per mix (socioeconomic scenarios
only), for all models of the ensemble.
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Titre: Vulnérabilité et potentiel d’adaptation des systemes électriques a forte pénétration d’énergies renouvelables
variables a des scénarios socioéconomiques d’électrification du chauffage et d’adoption de la climatisation couplés

au changement climatique: le cas de la France.

Mots clés: Energie, Climat, Demande électrique, Chauffage, Climatisation, Adaptation

Résumé: Le secteur de la production d’électricité est
en pleine mutation. Dans toutes les économies eu-
ropéennes, la pénétration d’énergies renouvelables vari-
ables (ERVs) augmente et est attendue a la hausse dans
un futur proche. Ces mixes futurs doivent étre capables
de fournir une électricité slre et abordable tout en étant
soumis a des contraintes écologiques fortes. Nous étu-
dions dans ce travail deux processus affectant le secteur
économique de la production d’électricité: le change-
ment climatique et I'électrification des usages a travers
I'électrification du chauffage et 'adoption de climatiseurs.
Nous nous demandons en particulier comment ces deux
processus affectent la vulnérabilité du secteur de la pro-
duction d’électricité et comment ces deux processus im-
pactent les décisions optimales d’investissement en ERV.
Comme le changement climatique et I'électrification des
usages sont ancrés géographiquement, nous nous fo-
calisons sur le cas particulier de la France. Nous mon-
trons qu’'une augmentation de la demande thermosensi-
ble de chauffage favorise la pénétration de I'éolien tan-
dis gu’une modification de I'adoption de la climatisation
sans modification de son usage n’a pas d'impacts en

France. Nous montrons également que le changement
climatique n’a pas d’impacts négatifs si 'impact sur les
producteurs conventionnels n’est pas pris en compte, et
que les changements de demande dds au changement
climatique sont le vecteur principal de changements en
décisions d’'investissement optimales. Nous montrons fi-
nalement que les changements socioéconomiques sont
potentiellement le facteur dominant affectant la vulnéra-
bilité des systemes électriques et impactant les déci-
sions optimales d’investissement en ERV. Cependant
ces changemements socioéconomiques doivent étre
étudiés de maniére conjointe avec le changement clima-
tique pour produire des estimations correctes du poten-
tiel d’adaptation. En tout et pour tout, les mixes opti-
maux et les colts associés changent de maniére sub-
stantielle en fonction de I'évolution des conditions socioé-
conomiques ou climatiques, les premieres ayant un im-
pact potentiellement plus grand que les secondes. Nous
suggérons que les recherches ultérieures se focalisent
dans la production d’études d’'impacts plus intégrées, in-
corporant tous les éléments du systéme électrique et
'ensemble des processus les affectant.

Title:

Vulnerability and adaptation potential of high variable renewable energy penetration electricity systems to

socioeconomic scenarios of heating electrification and air conditioning adoption coupled to climate change: the

case of France.

Keywords: Energy, Climate, Electricity demand, Heating, Air conditioning, Adaptation

Abstract: The electricity generation sector is undergo-
ing profound changes. In all european economies, the
penetration of variable renewable energies (VRES) is ris-
ing and is expected to reach important levels in the near
future. These future mixes need to be able to provide se-
cure and affordable electricity while subject to stringent
ecological constraints. We investigate in this work two
processes affecting the electricity generation sector: cli-
mate change, and electrification through heating electri-
fication and air conditioning adoption. In particular, we
ask how vulnerable is the electricity generation sector to
these processes and how both these processes affect
the optimal investment decisions in VRE capacity. Be-
cause climate change and the electrification potential are
region-specific, we focus in the particular case of France.
We show that an increase of the heating temperature
sensitive demand favors wind penetration while the mod-
ification of the cooling demand along the extensive mar-
gin only has no effect in the case of France. We further

show that climate change has no adverse impacts if im-
pacts on the dispatchable producers are not accounted
for, and that changes in demand are the driving factor
of impacts on the optimal investment decisions. We fi-
nally show that socioeconomic change is potentially the
driving force influencing vulnerability and investment de-
cisions, but that socioeconomic and climate change im-
pacts should be assessed jointly to issue relevant policy-
making advice. Overall optimal mixes and associated
costs change substantially with changing socioeconomic
and climate conditions, with the former having a poten-
tially greater impact than the latter. We suggest that
further research focuses on producing more integrated
assessments of potential future changes impacts on the
electricity generation sector, by being exhaustive at the
same time on the elements of the electricity generation
sector considered and on the processes impacting them.
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