Theses Year : 2024

Development of a Detailed Approach to Model the Solid Pyrolysis with the Coupling Between Solid and Gases Intra-Pores Phenomena

Développement d'une approche détaillée de modèle de pyrolyse avec prise en compte du couplage intra-pore solide-gaz

Duy Cuong Dinh
  • Function : Author
  • PersonId : 1494479
  • IdRef : 257641262

Abstract

Pyrolysis of wood is a crucial process in fire safety science because it affects the thermal decomposition and combustion behavior of materials. Wood, a composite of biopolymeric components (cellulose, hemicellulose and lignin) undergoes complex pyrolysis to yield solid char, tar and gases as it thermally decomposes. The pyrolysis process also changes some important characteristics of the sample (density, thermal conductivity, heat capacity, porosity, permeability, emissivity...) that evolve throughout the reaction. Understanding these transformations is crucial for the correct modeling of fire behavior and material response under different thermal conditions. Different final normalized mass between TGA and cone calorimeter experiments challenge existing solid reaction rate models, according to experimental studies. Current models often assume a reaction order of 1, which oversimplifies the complexity of wood pyrolysis and leads to inaccuracies when the reaction order differs from 1. To overcome these shortcomings, a brand new conversion-based model, called ”Virtual Initial Mass”, is proposed. This model, based on TGA data, calculates the reaction rate for each reaction in complicated pyrolysis mechanisms. It supports mechanisms with numerous sequential and competitive reactions and has been implemented in C++. The C++ code for this model is integrated with the DAKOTA toolkit to perform multi objective genetic algorithm (MOGA) optimization of kinetic parameters for multiple heating rates. This ”Virtual Initial Mass” model is integrated in the Porous material Analysis Toolbox based on OpenFOAM (PATO) an Open Source tool distributed by NASA. Further mass transfer, heat transfer, species conservation models in addition to material properties are created within this new framework. A computational model for secondary reactions (gas-phase reactions that produce secondary char) is implemented in PATO. These secondary reactions solidify the sample and distribute heat back into the system. Simulations of cone calorimeter tests are performed in 1D and 2D axisymmetric models to explore the influence of anisotropic wood properties, particularly the orientation of wood fibers. Comparison of models with and without secondary reactions demonstrates their role in heat distribution and secondary char production and points out the experimentally observed difference in normalized mass between TGA and cone calorimeter tests. The model is verified by comparison with experimental results to show that it can simulate the complicated behavior of wood pyrolysis as well as emphasizes the importance of reaction pathways, secondary reactions, heat transfer, mass transfer and intra-pore interaction phenomena.
La pyrolyse du bois est un processus crucial dans la science de la sécurité incendie car elle affecte la décomposition thermique et le comportement de combustion des matériaux. Le bois est un composite biopolymères (cellulose, hémicellulose et lignine) qui subit une pyrolyse complexe, produisant du charbon solide, du goudron et des gaz. Le processus de pyrolyse modifie également certaines caractéristiques importantes de l’échantillon (densité, conductivité thermique, capacité thermique, porosité, perméabilité, émissivité...) qui évoluent tout au long de la réaction de décomposition. La compréhension de ces transformations est cruciale pour la modélisation du comportement du feu des solides. Les évolutions des masses normalisées finales entre les expériences ATG et en cône calorimètre remettent en cause les modèles de taux de réaction solides existants. Les modèles actuels supposent souvent un ordre de réaction égal à 1, ce qui conduit à des inexactitudes lorsque l’ordre de réaction diffère de 1. Pour surmonter ces lacunes, un nouveau modèle basé sur la conversion, appelé ”Masse Initiale Virtuelle”, est proposé. Ce modèle est basé sur des données issues d’essais ATG. Il calcule la vitesse de chaque réaction dans le cas de mécanismes de pyrolyse complexes, avec de nombreuses réactions séquentielles et compétitives et a été implémenté en C++. Le code C++ de ce modèle est intégré avec l’outil DAKOTA pour permettre l’optimisation multi-objectif par algorithme génétique (MOGA) des paramètres cinétiques sur plusieurs vitesses de chauffage. Ce modèle de « Masse Initiale Virtuelle » est intégré dans la boîte à outils d’analyse des matériaux poreux basée sur OpenFOAM (PATO), un outil Open Source créé par la NASA. D’autres modèles de transferts de masse, de chaleur et de conservation des espèces en plus des propriétés des matériaux sont créés dans ce nouveau cadre. Un modèle informatique pour les réactions secondaires (réactions en phase gazeuse qui produisent du charbon secondaire) est implémenté dans PATO. Les simulations des essais en cône calorimètre sont effectuées dans des modèles 1D et 2D axisymétriques pour explorer l’influence des propriétés anisotropes du bois, en particulier l’orientation de ses fibres. La comparaison des modèles avec et sans réactions secondaires démontre le rôle de ces dernières dans la distribution de la chaleur et la production de charbon secondaire. Ce résultat explique la différence de masse finale observée expérimentalement entre les tests en ATG et en cône calorimètre. La comparaison des résultats expérimentaux et numériques montre la pertinence de cette approche pour simuler le comportement complexe de la pyrolyse du bois en mettant en évidence l’importance des voies de réaction, des réactions secondaires, du transfert de chaleur, du transfert de masse et des phénomènes d’interaction intra-pore
Fichier principal
Vignette du fichier
2024ESMA0029_dinh_bis_adobe6.pdf (5.04 Mo) Télécharger le fichier
Origin Version validated by the jury (STAR)

Dates and versions

tel-04904323 , version 1 (21-01-2025)

Identifiers

  • HAL Id : tel-04904323 , version 1

Cite

Duy Cuong Dinh. Développement d'une approche détaillée de modèle de pyrolyse avec prise en compte du couplage intra-pore solide-gaz. Autre. ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechique - Poitiers, 2024. Français. ⟨NNT : 2024ESMA0029⟩. ⟨tel-04904323⟩
0 View
0 Download

Share

More